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The birds of the steppe environments face a number of different threats relating to 
habitat degradation (such as agricultural intensification, land abandonment or 
afforestation), and the vast majority of species have unfavourable conservation status. 
Conservation measures require an understanding of species habitat preferences and 
their occurrence patterns and must be applied at the relevant spatial scales. This study, 
investigated the habitat selection and resulting distributions of the steppe bird 
community in southern Portugal, one of its strongholds. To this aim, it made use of 
large and balanced species location datasets and high quality environmental 
descriptive data (with a strong emphasis in remote sensing data), collected at two 
different spatial scales. It applied advanced processing techniques for information 
extraction, and it optimised the use of species distribution models through a robust 
methodological framework. Species responses and predictions were derived at the two 
scales, and a subsequent hierarchical approach was implemented for multi-scale 
model integration. This procedure resulted in new findings about the ecology of some 
of the species, particular spatial scale effects were identified and the distributions of 
the species were further described within the studied area. It also demonstrated that 
careful planning and the deep understanding of the data analysis methodologies used 
can result in significant advances in the scientific knowledge. Furthermore, it is 
recommended that the added-knowledge resulting from this study is incorporated into 
existing management practices, for an efficient conservation of the species and their 
habitats. 



RESUMO 

MELHORAMENTO DE MODELOS DE DISTRlBUI<;A.O DE ESPECIES PARA A 

DESCRl<;A.O DOS P ADROES DE OCURRENCIA E SELEC<;A.O DE HABITAT 

DE AVES ESTEPARlAS NO SUL DE PORTUGAL 

As aves dos ambientes esteparios enfrentam uma serie de diferentes amea<;:as 
reacionadas corn 0 degradamento dos seus habitats (tais como a intensifica<;:ao 
agricola, 0 abandono das terras ou a floresta<;:ao), e a grande maio ria das especies 
possui urn estatuto de conserva<;:ao desfavoravel. Medidas de conserva<;:ao requerem 0 

conhecimento dos padroes de preferencia de habitat e ocurrencia e necessitam de ser 
aplicados nas escalas adequadas. Este estudo investigou a selec<;:ao de habitat e 
resultantes distribiu<;:oes da comunidade de aves esteparias no SuI de Portugal, que 
constitui urn dos seus redutos. Para este fim, foram utilizadas bases-de-dados de 
localiza<;:ao das especies de grande dimensao e equilibradas, e dados descriptores do 
ambiente de elevada qualidade (corn um grande enfase ern dados de detec<;:ao remota), 
coleccionados a duas escalas espaciais diferentes. Tecnicas avan<;:adas de 
processamento de dados foram aplicadas para extrac<;:ao de informa<;:ao, e modelos de 
distribui<;:ao de especies foram optimisados atraves de urn enquadramento 
metodol6gico robusto. As respostas das especies e suas predi<;:oes de distribui<;:ao 
foram derivadas as duas escalas e subsequentemente foi implementada uma 
abordagem hierarquica de integra<;:ao multi-escala dos modelos. Este procedimento 
resultou ern novas descobertas acerca da ecologia de algumas das especies, efeitos de 
escala particulares foram identificados, e as distribui<;:oes das especies foram descritas 
detalhadamente dentro da area estudada. Este estudo demonstrou tambem que 0 

planeamento cuidado, juntamente corn a profunda compreensao das metodologias de 
analise de dados utilizadas podem resultar ern avan<;:os significativos no conhecimento 
cientifico. Ainda, e recomendado que 0 conhecimento adicionado resultante deste 
estudo seja incorporado ern medidas de gestao existentes, para uma eficiente 
conserva<;:ao das especies e seus habitats. 
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Introduction 

In Europe, low-intensity farming systems have the highest bird diversity of all 

agricultural systems (Beaufoy et at. 1994; Bignal & McCracken 1996; Tucker 

1997). Being dominated by cereal steppe landscapes (pseudo-steppes), the south 

of the Iberian Peninsula, holds significant numbers of several threatened bird 

species, such as the Great Bustard (Otis tarda), the Little Bustard (Tetrax tetrax), 

the Black-bellied Sandgrouse (Pterocles orientalis) and the Lesser Kestrel (Falco 

naumanni) (Tucker & Heath 1994; Suarez et al. 1997; BirdLife International 

2004; Burfield 2005; Santos & Suarez 2005). In Portugal, these flat and open 

landscapes are created by the extensive cultivation of cereals on a rotational basis. 

The result is a mosaic of cereal fields, stubbles, ploughed and fallow land, the 

latter being used as sheep pastures (Suarez et at. 1997; Moreira 1999). In the last 

decades the land use of these steppes has been changing due to agricultural 

intensification (through irrigation) as well as land abandonment and afforestation 

(Tucker & Heath 1994; Burfield 2005; Santos & Suarez 2005). This habitat 

degradation and loss has a direct impact on the bird populations as has been 

described by several authors (Baldock 1991; Tucker 1991; Tucker & Heath 

1994; Suarez et at. 1997; Burfield 2005; Santos & Suarez 2005). 

In 1992, the European Union introduced the principle of maintaining these 

extensive farming systems under the Agri-Environment Programme (EU 

Regulation 2078/92). This incorporates compensation for farmers for keeping 

agricultural practices that allow the conservation of threatened species (Robson 

1997; De la Concha 2005), but their effectiveness is open to question (Kleijn & 

Sutherland 2003; Berendse et at. 2004; Kleijn et at. 2004; Whittingham 2007). 

The new European Union strategic guidelines for Rural Development for the 

period 2007-2013 (2006/144/EC) incorporate these agri-environment schemes 

within the scope of two main EU priorities, the Sustainable Development 

Strategy and the Gothenburg commitment to halt the loss of biodiversity by 2010. 

These reforms have generally been taken both with optimism and concern, as 

they will fundamentally change the development and management of the 

agricultural semi-natural landscapes that constitute the pseudo-steppes ofIberia 

(De la Concha 2005; Ofiate 2005). In order to apply adequate management 

schemes for the conservation of steppe birds and habitats, it is necessary to 
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understand the way these species use the environment. Hence there is a need for 

scientific studies aimed at a better understanding of these agricultural landscapes 

and the effects of human use on bird's habitats. 

Recently, many studies have focused on the steppe environment and its avifauna 

(Telleria et al. 1988; Martinez & Purroy 1993; Beaufoy et al. 1994; Martinez 

1994; Suarez et al. 1997; Moreira 1999; Delgado & Moreira 2000; Lane et al. 

2001; Suarez-Seoane et al. 2002a; Wolff et al. 2002; Brotons et al. 2004a; 

Franco & Sutherland 2004; Silva et al. 2004; Franco et al. 2005; Moreira et al. 

2005; Pinto et al. 2005; Morales et al. 2006; Osborne & Suafez-Seoane 2007; 

Silva et al. 2007; Traba et al. 2007), denoting a growing acknowledgement of its 

importance for biodiversity conservation. Indeed, 83% of the steppe birds in 

Europe have an unfavourable conservation status, which is twice the overall 

figure for all European birds (BirdLife International 2004; Burfield 2005). 

None of the existing studies, however, has focused on the issue of spatial scale 

and its effects on habitat use and selection, and the resulting occurrence patterns 

of steppe birds at different scales. Scale is a key issue in all the spatial and 

environmental sciences. Ecological processes and physical characteristics 

possess an inherent scale at which they occur (Turner et al. 1989; Wiens 1989; 

Levin 1992; Whittaker et al. 2001; Blackburn & Gaston 2002; Boyce 2006). 

Also, the pattern detected in an ecological mosaic is a function of scale. Thus, 

scale is important in several aspects of the study of landscapes, from factors 

affecting single organisms to continental plate tectonics (Forman & Godron 

1986; Carlile et al. 1989; Foody & Curran 1994). Additionally, human activities 

are increasingly affecting patterns and processes at many different scales while 

both animals and humans generally perceive and respond to only a fraction of the 

multi-scale heterogeneity present in natural systems (Forman 1995; Farina 1998). 

The major importance of scale has led many authors to conclude that ecological 

processes and patterns should be studied across scales by using a multi-scale 

(MS) approach (Gardner & Turner 1991; King 1991; Gordon & Dennis 1996; 
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Farina 1998; Gering et af. 2003; Meyer & Thuiller 2006). This is an obvious 

research gap in studies of agricultural steppe birds. A better understanding of the 

way species respond to the environment across different scales has a profound 

consequence for conservation as it allows the development of better management 

measures. Such knowledge would permit a better evaluation of the impacts of 

agricultural uses on the steppe environment and a subsequent optimisation of the 

ED subsidies aimed at nature conservation. Conservation needs habitat 

management prescriptions for threatened steppe birds on agricultural land that 

incorporate scale effects (see e.g. Poiani et af. 2000). Scale can refer to both 

spatial and temporal scale and can be expressed by grain and extent. For the 

spatial scale, grain refers to the spatial resolution, i.e. the pixel size, and extent 

refers to the size of the study area (Turner et aZ. 1989). From an agricultural 

management perspective, spatial scale can be reflected in terms of practices 

implemented at the patchlparcellevel up to the landscape level. 

Geographical Information Systems (GIS) are capable of efficiently storing and 

managing ecosystems data for large areas, as well as translating data between 

multiple scales (Stow 1993; Longley 1998). Remote sensing (RS) data analyses 

explore the spectral characteristics of the Earth's surface through complex 

mathematical algorithms and procedures. With different sources of imagery, it is 

possible to infer resource patterns and habitats at multiple scales through time 

(Quattrochi & Pelletier 1991; Campbell 1996; Jensen 1996; Curran et af. 1998). 

Thus, GIS integrating remotely sensed data provides ecologists with a powerful 

tool for carrying out numerical modelling of spatial ecosystem processes 

(Palmeirim 1988; Stow 1993; Eastman et af. 1995; Johnston 1998; Osborne et af. 

2001; Osborne 2005). Many studies have made use ofthese techniques for 

addressing ecological questions (Palmeirim 1988; Johnston 1989; Pienkowski et 

aZ. 1989; Griffiths et al. 1993; Tucker et af. 1997; Brito et aZ. 1999; Osborne et af. 

2001; Leitao et al. 2002; Swirez-Seoane et af. 2002a; Swirez-Seoane et af. 2004; 

Fuller et al. 2005; Osborne & Swirez-Seoane 2007). Several recent papers review 

the use ofRS data for biodiversity mapping (Nagendra 2001; McDermid et af. 

2005; Leyequien et af. 2007; Gillespie et aZ. 2008). Also, Gottschalk et af. (2005) 
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provide a good review of bird habitat and distribution modelling studies using 

satellite imagery over the last 30 years. 

This study builds on this background by examining the patterns of habitat 

selection and occurrence by steppe birds during the breeding season at two 

different spatial scales, within a common methodological framework. 

1.1. Methodological concept 

This study was performed at two different scales: regional and landscape. At 

each particular scale there are four main work components: habitat 

characterisation; bird population characterisation; GIS integration and modelling; 

and model interpretation. Habitats were characterised by RS imagery, map data, 

and field measurements. The bird populations were characterised by bird 

occurrence (presence / absence) data collected in the field, during the breeding 

season. A specific methodology for data collection was used at each scale. All 

the data were integrated in a GIS, to be used in empirical habitat models, at both 

spatial scales. 

Habitat models based on empirical species data and habitat/environmental 

descriptors quantify the associations between the species and their habitats, and 

in this way describe their habitat preferences and requirements. This can be 

particularly relevant for understanding a species' ecology and its likely response 

to environmental change. When habitat data are available for a certain region, 

these models can then be used to predict a species' abundance and potential 

distribution by mapping the areas of suitable habitat. In recent times, the use of 

habitat models for the spatial prediction of species' distributions has increased 

greatly, and they are now considered a significant tool in conservation planning 

and wildlife management (Buckland & Elston 1993; Guisan & Zimmermann 

2000; Austin 2002; Guisan & Thuiller 2005). In fact, most of the recent 

developments in habitat models have been published in the species distribution 
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modelling literature, and thus are hereafter referred to as Species Distribution 

Models (SDMs). 

The modelling methodologies depend partly on the available species' data, which 

can typically be presence-only (derived from field-based observations, herbarium 

data, etc.), presence-absence (from field surveys) or abundance (count) data. 

Different statistical approaches include: a) generalised regressions, such as 

Generalised Linear Models (GLM; McCullagh & Nelder 1989), Generalised 

Additive Models (GAM; Hastie & Tibshirani 1990; Guisan et al. 2002) and 

Multivariate Adaptive Regression Splines (MARS; Friedman 1991; Leathwick et 

al. 2006); b) classification techniques, such as Multivariate Regression Trees 

(MRT;De'ath 2002) and Classification And Regression Trees (CART; 

Vayssieres et al. 2000); c) environmental envelope models, like BIOCLIM 

(Busby 1991) or DOMAIN (Carpenter et al. 1993); d) ordination techniques, 

such as Canonical Correspondence Analysis (CCA; ter Braak 1986; Guisan et al. 

1999) and Environmental Niche Factor Analysis (ENF A; Hirzel et al. 2002); e) 

Bayesian approaches, i.e., based on Bayesian statistics (Bayes & Price 1763; 

Tucker et al. 1997; Termansen et al. 2006); and f) machine learning techniques, 

like Genetic Algorithm for Rule-set Production (GARP; Stockwell & Peters 

1999), Artificial Neural Networks (ANN; McCulloch & Pitts 1943; Tan & 

Smeins 1996), Support Vector Machines (SVM; Cortes & Vapnik 1995; Drake et 

al. 2006), Random Forests (RF; Breiman 2001), Boosted Regression Trees 

(BRT; De'ath 2002; Elith et al. 2008) or Maximum Entropy Modelling (MaxEnt; 

Phillips et al. 2006; Phillips & Dudik 2008). 

Several recent studies review and compare different techniques, their functioning, 

applicability and performance (Guisan & Zimmermann 2000; Moisen & Frescino 

2002; Brotons et al. 2004b; Segurado & Araujo 2004; Elith et al. 2005; Elith et 

al. 2006; Lawler et al. 2006), which is not the aim of the present study. Instead, a 

single approach is used to fit the species occurrence data to the environmental 

predictors at both scales of study. This eliminates one source of uncertainty when 

comparing patterns across scales. To this end MARS models were used, which 
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are capable of fitting complex functions and have been described as a robust 

method, capable of achieving high model performances with fast computation 

speeds (Moisen & Frescino 2002; Leathwick et al. 2006). Additionally, like other 

regression model approaches, MARS allows the generation of partial regression 

plots, and thus facilitates the inference of the species responses to the 

environmental descriptors (predictor variables). 

In order to incorporate the effects of (spatial) scale in the investigation of the 

species habitat preferences, SDMs were built at both regional and landscape 

scales. Finally, MS models were built in a hierarchical manner, by incorporating 

the regional scale model predictions as predictor variables in the landscape scale 

models (see Chapter 5). 

1.2. Study area 

This study moves across scales by changing both grain and extent of analysis, the 

latter implying a change in the extent of the study area. Thus, the study area at 

the regional scale is the Baixo Alentejo region in southern Portugal, which 

covers an area of approximately 8500 km2 (Figure 1.1), and is characterised by 

dry conditions (Mean Annual Precipitation: 400-800mm) and high temperatures 

(Average Maximum Temperature: 13-30DC). It reflects the typical diversity and 

structure of semi-natural Mediterranean landscapes, with features such as cereal 

steppe grasslands (or pseudo-steppes), open woodland, shrublands, olive-groves 

and vineyards (Neves 1998). 

The main topographic features consist of the valley of the Guadiana River and 

the Serra do Caldeidio hill chain on the south-western edge. Otherwise, most of 

the area is either flat or slightly undulating. It has a low human population 

density, and is served by a small road network, with one highway crossing the 

western edge of the area. The region is of national importance for steppe birds 
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and includes three Special Protection Areas (SPAs) for birds (EU directive 

79/409/EEC) with imp0l1ance for breeding steppe birds (Costa et al. 2003). 

Figure 1.1 - The Baixo Alentejo region in southern Portugal (light grey, inset) , with its main features: the 

Guadiana River (black dashed line) and its valley; the Serra do Caldeiriio hill chain; road network (grey 

lines); and SPAs (in darker grey) 

The landscape scale study focused on an area of approximately 47500 ha 

covering most of the open (steppe) area within the Castro Verde SPA (Figure 

1.2). The Castro Verde SPA landscape is a rolling plain (1 00-300m) of about 

80,000 ha, with a Mediterranean climate, including hot summers (30-35°C on 

average in July), fairly cold winters (averaging 5-8°C in January) and over 75% 

of the annual rainfall (500-600 mm) concentrated in the October-March months 

(Moreira et al. 2005). It is classified under the Natura2000 sites network, and is 

designated as an Important Bird Area (IBA) (Grimmet & Jones 1989; Costa et al. 

2003). It constitutes the main area of cereal steppes (pseudo-steppe habitats) in 

the country and is of national and international importance for populations of 

several threatened steppe bird species, such as the Great Bustard, Little Bustard, 

Black-bellied Sandgrouse, and Lesser Kestrel, among others (Moreira 1999; 

Costa et al. 2003 ; Pinto et al. 2005; Moreira et al. 2007) (see Appendix A.l). A 

great proportion of the SPA (ca. 55,000 ha) is covered with cereal steppes, but 

also includes some areas of shrub lands (mostly Cistus spp.), mainly associated 

with river valleys and in the southeastern part of the region, interspersed with old 
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fallows resulting from agricultural abandonment and scrub encroaclmlent 

(Delgado & Moreira 2000; Moreira et al. 2007) (see Appendix A.1) . Less 

frequent land uses that can be found in the area are some recent afforestations of 

eucalyptus (Eucalyptus spp.), umbrella pines (Pinus pinea) and holm oak 

(Quercus rotundifolia) (Moreira et al. 2005 ; Moreira et al. 2007) (see Appendix 

A.1). Three main roads cross the area: Castro Verde to Sao Marcos da Ataboeira; 

Castro Verde to Entradas; and Castro Verde to Canegueiro. Main rivers include 

the Ribeira de Cobres and the Ribeira de Maria Delgada. 

Figure 1. 2 - Castro Verde SPA, with its main cartographic features, and the extent of the study area at the 

landscape scale 

Legend: 
- Study area 
- SPA Castro Verde 
- Main roads 
- Secondary roads 
.............. Railways 
--_.. Main rivers 

• Towns 0c-=-~5Km 

1.3. Target species 

The study focused on the steppe bird community, which uses the agricultural 

landscapes of the Baixo Alentejo and particularly the pseudo-steppes of the 

Castro Verde SPA. In total, 15 species were considered, as listed in Table 1.1 . 

The Crested and Thekla larks (Galerida cristata and Galerida theklae) were, 

however, categorised to the genus level (Galerida spp.) due to difficulties in the 
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reliable identification of all individuals of these two species in the field (Moreira 

et al. 2007) (see Appendix A.1). In the case of some of the species, the lack of 

presence data points at a particular scale dictated its exclusion from the 

respective study. The performance of the regional scale models defined the list of 

species to be included in the MS analysis (see Chapter 5). 

Table 1.1 - Species considered at each scale of study 

Scientific name Acronym Common name Regional Landscape MS 

Circus pygargus Cirpyg Montagu's Harrier ,j ,j ,j 

Alectoris rufa Aleruf Red-legged Partridge ,j ,j 

Coturnix coturnix Cotcot Quail ,j 

Tetrax tetrax Tettet Little Bustard ,j ,j ,j 

Otis tarda Otitar Great Bustard ,j ,j ,j 

Burhinus oedicnemus Buroed Stone Curlew ,j ,j 

Pterocles orientalis Pteori Black-bellied Sandgrouse ,j 

Galerida spp. Galsp Crested/Thekla Lark ,j ,j 

Melanocorypha calandra Melcal Calandra Lark ,j ,j 

Calandrella brachydactyla Calbra Short-toed Lark ,j 

Anthus campestris Antcam Tawny Pipit ,j 

Oenanthe hispanica Oenhis Black-eared Wheatear ,j ,j 

Saxicola torquata Saxtor Stonechat ,j ,j 

Cisticola junc idis Cisjun Zitting Cisticola ,j ,j ,j 

Miliaria calandra Milcal Corn Bunting ,j ,j ,j 

TOTAL 13 13 6 

1.4. Structure of the thesis 

This thesis includes the present introduction, four main chapters (Chapters 2 - 5) 

and a final synthesis (Chapter 6). Chapters 2 to 4 refer to specific problems 

relating to data analysis, either the functioning of the SDMs or the processing of 

RS data for feature extraction. Chapter 2 uses the regional scale data to assess the 

influence of data sampling bias on the performance of SDMs and on the 

respective predicted distributions patterns. This chapter is written in a manuscript 

form as it constitutes a draft for submission to publication in a peer-reviewed 

scientific journal. Chapter 3 explores (at the landscape scale) different possible 

Digital Image Processing (DIP) approaches for extracting SDM predictor 

variables from Landsat TM data, and their influence on model performance and 

interpretation, while also reviewing some of the major sources ofRS data (to be 
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used as environmental descriptors). Chapter 4 describes the STEPPEBIRD 

airborne campaign and the respective processing of high-resolution laser 

altimetry (or LiDAR - Light Detection And Ranging) data for feature extraction 

in the Castro Verde study area. Chapter 5 includes the final SDMs and respective 

interpretation of the species distribution patterns and habitat preferences at the 

two spatial scales considered, as well as the MS model integration for some of 

the studied species. The last chapter (Chapter 6) interprets the findings of the 

previous chapters in a unified context and discusses some possible directions for 

further research. 

Additionally, two appendices are included, which refer to work done in parallel 

to that within this thesis, and further explore some of the aspects covered in this 

work. Appendix A.l includes the results of the "CAE - Censo de Aves 

Esteparias", a survey of the steppe birds of Castro Verde which occurred during 

the Spring 2006 and which provided data to the landscape scale study (see 

Chapter 5). Appendix A.2 uses data collected within the regional scale study 

surveys and explores the influence of species and habitat positional errors on 

SDMs, their performance and interpretation. 

1.5. Publication overview 

Several parts of this work have been presented in International Conferences, 

Symposia and Workshops, as follows: 

Pedro J. LeWio, Patrick E. Osborne & Francisco Moreira. Habitat-based 

distribution modelling of agricultural steppe birds in South Portugal- a 

multi-scale approach. 16th European Bird Census Council "Bird Numbers 

2004" International Conference, held in Kayseri, Turkey, from the 6th to 

the 11 th of September 2004 - Oral presentation. 
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Pedro J. LeWio, Patrick E. Osborne & Francisco Moreira. Predicting 

steppe-land bird distributions in Baixo Alentejo, Portugal. International 

Symposium on Ecology and Conservation of Steppe-land Birds, held in 

Lleida, Spain, from the 3rd to the 7th December 2004 - Poster presentation. 

Pedro J. Leitao, Patrick E. Osborne & Francisco Moreira. Multi-scale 

habitat selection and distribution modelling of steppe birds in Baixo 

Alentejo, Portugal. International Workshop "Predictive modelling of 

Species distribution - New Tools for the XXI Century", within the series of 

"Current Trends in Environment Workshops", held in Baeza, Spain, from 

the 2nd to the 4th of November 2005 - Poster presentation. 

Pedro J. Leitao, Patrick E. Osborne & Francisco Moreira. The use of 

large-scale remote sensing and map data to determine steppe-land bird 
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remote sensing data in predictive models of species distributions. 1 st 

European Congress of Conservation Biology "Diversity for Europe", held 

in Eger, Hungary, from the 22nd to the 26th of August 2006 - Oral 

presentation. 

Pedro J. Leitao & Patrick E. Osborne. Effects of misregistered data on 

species distribution models. International workshop "Advances in statistical 

1 The abstracts of all congress' presentations were published as a supplement issue of a peer­

reviewed scientific journal: Journal of Ornithology, 147 (Suppl.l) - see author's declaration at 

the beginning of this thesis. 
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Chapters 2 to 5 of the work here presented are intended to be extended, improved 

and re-edited with the aim of being submitted for publication in peer-reviewed 

journals. 
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Additionally, the papers presented in the appendices section have been submitted 

for publication in peer-reviewed journals. The first one has been published and 

the second has been accepted and is currently in press, with the following 

references: 

Moreira, F, Leitao, P.J., Morgado, R., Alcazar, R., Cardoso, A., Carrapato, 

c., Delgado, A., Geraldes, P., Gordinho, L., Henriques, 1., Lecoq, M., 

Leitao, D., Marques, A.T., Pedroso, R., Prego, 1., Reino, L., Rocha, P., 

Tome, R. & Osborne, P.E. 2007. Spatial distribution patterns, habitat 

correlates and population estimates of steppe birds in Castro Verde. Airo, 

17: 5-30. 

Osborne, P.E. & Leitao, P.J. In press. The effects of species and habitat 

positional errors on the performance and interpretation of species 

distribution models. Diversity and Distributions. 
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2. Effects of data sampling bias on species distribution models 

and spatial patterns of biodiversity: a case-study with steppe 

birds in southern Portugal 
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2.1. Abstract 

Species distribution models provide useful information about species and 

biodiversity spatial patterns, which form the basis of many ecological 

applications and management decisions such as the definition of conservation 

priorities and reserve selection. These models however, are frequently based on 

existing datasets which have been collected in an unbalanced (biased) manner. In 

this study we investigated the effects of data sampling bias on model 

performance, interpretation and predictions. A large steppe bird dataset was 

collected in southern Portugal, following a carefully designed sampling scheme, 

and then sub-sampled this dataset with varying degrees of geographical bias and 

random sampling intensity. Sampling bias was characterised by two measures of 

sample size and environmental bias. MARS models were run on all datasets, and 

all the subset models compared with the control in order to assess the effect of 

the respective bias. 

It was found that data sampling bias affected the performance of the models to a 

varying degree. Environmental bias was generally more influential on the model 

results than sampling intensity. Model structure, however, was severely affected 

by sampling bias, raising concern about the ecological interpretations of models 

run on biased datasets. The resulting output predictions from the models, hence 

the spatial patterns of species occurrence and biodiversity, were also affected by 

sampling bias. It is therefore important that special attention is paid to the quality 

of existing datasets used in distribution models, as well as the sampling design 

for collection of new data. Also, when modelling with biased datasets, the 

ecological interpretation of such models should be made with caution and 

explicit awareness of the existing bias. 
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2.2. Introduction 

Understanding spatial patterns of biodiversity is an issue of great concern among 

ecologists, conservationists and biogeographers, in particular for identifying 

conservation priorities and optimum nature reserve design (Pressey et al. 1993; 

Ferrier 2002), as well as for monitoring environmental change (Wilson et al. 

2004). 

When detailed species occurrence data are not available, coarse-scale species 

range maps are commonly used to assess species richness (the most commonly 

used measure of biodiversity) typically by overlapping range maps of several 

species (Blackburn & Gaston 1996). An implicit assumption underlying species 

range maps is that they represent areas of uniform occurrence, which is a source 

of uncertainty for determining species richness patterns. Range maps generally 

overestimate species distributions by assigning false presences (errors of 

commission) within the interior of the species ranges. They therefore lack the 

local and regional patterns necessary for the interpretation of coarse-scale trends 

and environmental associations (La Sorte & Hawkins 2007). 

As an alternative to using crude range maps, detailed species distributions can be 

inferred by using empirical predictive models (Guisan & Zimmermann 2000). 

The use of predictive models has expanded greatly in ecological research, 

benefiting from advances in statistical techniques, as well as from continued 

software and hardware developments. These, particularly when coupled with RS 

data capable of describing environmental conditions in a detailed, systematic and 

synoptic manner, have been shown to be very useful tools for describing 

biodiversity patterns (Fuller et al. 1998; Kerr & Ostrovsky 2003; Leitao et al. 

2006). In fact, species distribution models (SDMs) are capable of reducing the 

frequency of false absences of raw locational datasets, while not incurring the 

false presences of coarse-scale range maps (Ferrier 2002). However, predictions 

of species occurrences from distribution models always have a level of error or 

uncertainty inherent to the modelling process itself. This uncertainty should be 

acknowledged for appropriate interpretation of the data - particularly important 

when these models form the basis of a decision-making process (Elith et al. 
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2002). Error in predictions can be the result of many factors, such as small 

sample sizes, data sampling bias, data prevalence, lack of presence records, 

mismatched scales in the data, or the failure to incorporate critical habitat 

variables in the models (Pearce et al. 2001; Kadmon et al. 2003; Barry & Elith 

2006). It has also been noted by some authors that different modelling 

approaches are likely to generate different spatial patterns, which raises some 

concerns (Wilson et al. 2005). In addition, the ecological characteristics of the 

modelled species can also have an effect on model accuracy potential 

(McPherson & Jetz 2007). 

In this study I investigate the effects of data sampling bias on SDMs and on the 

spatial patterns of biodiversity derived from them. Data sampling has been 

recognised as one of the priority areas for development and research in respect to 

species distribution modelling (Araujo & Guisan 2006). Existing studies have 

investigated the role of sample size (Stockwell & Peterson 2002; Wisz et al. 

2008), sampling survey design (Edwards Jr. et al. 2006) and bias (Kadmon et al. 

2004) on model performance. Others have explored the biased nature of Natural 

History Collection (NHC) datasets (Graham et al. 2004), their effect on model 

performance (Loiselle et al. 2008), and the implications of data sampling bias in 

ecological research (Martinez & Wool 2006), as well as for defining 

conservation priorities and reserve design (Reddy & Davalos 2003; Grand et al. 

2007). None of these studies has, however, explored the consequences of data 

sampling on the predicted spatial patterns of biodiversity, which form the base 

knowledge of many ecological applications and management decisions. I 

assembled a dataset of steppe bird occurrence/non-occurrence in southern 

Portugal, based on a carefully designed, intensive and stratified random sampling 

scheme, which we considered to be complete and unbiased. We then degraded 

this dataset by sub-sampling to generate realistic biases typically found in species 

locational datasets. The models were run on all datasets, and model performance 

and consistency, as well as the predicted maps of species probability of 

occurrence and respective biodiversity maps, were compared between the 

complete and biased datasets. 
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2.3. Methods 

• Study area 

This study was conducted in the Baixo Alentejo region in South Portugal, which 

covers an area of approximately 8500 km2 (Figure 1.1) and is characterised by 

dry conditions (Mean Annual Precipitation: 400-800mm) and high temperatures 

(Average Maximum Temperature: 13-30°C). It reflects the typical diversity and 

structure of semi-natural Mediterranean landscapes, with features such as cereal 

steppe grasslands, open woodland, shrublands, olive-groves and vineyards 

(Neves 1998). 

The typical cereal pseudo-steppe landscape is a spatio-temporal mosaic of 

dominant fallow fields with some low-intensity (winter) cereal crops (mostly 

wheat and oats, but also some barley), which become stubbles after harvest, and 

are ploughed before seeding. The main topographic features consist of the valley 

of the Guadiana River and the Serra do Caldeirao hill chain on the south-western 

edge. Otherwise, most of the area is either flat or slightly undulating. It has a low 

human population density, and is served by a small road network, with one 

highway crossing the western edge of the area. The region is of national 

importance for steppe birds and includes three Special Protection Areas (SPAs) 

for birds (ED directive 79/409/EEC) with importance for breeding steppe birds 

(Costa et at. 2003). One of these, the Castro Verde SPA, is considered the main 

steppe area in the country and is of international importance for several steppe 

bird species (Moreira et al. 2007) (see Appendix A.l). 

• Biological data sampling 

The data survey design - an intensive random sample imposed on a systematic 

geographical stratification - provided a statistical balanced data-base which is 
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representative of the species' frequency of occurrence (natural prevalence) and 

their distribution patterns in the region, and can be considered close to ideal for 

distribution modelling (Hirzel & Guisan 2002; Araujo & Guisan 2006). During 

the spring of2004 (from the end of March until the middle of June) 560 grid 

squares of lxl km2 were sampled, equivalent to c. 6% of the total area (Figure 

2.1 h). Each square was surveyed once during the early morning or evening 

(peak activity period of the birds), for a duration of 30 minutes, and the species' 

occurrence status (presence or absence) determined. Birds were considered 

present when detected by visual or auditory cues. Twelve species representative 

of the regional steppe bird community were sampled (Table 2.1). This unbiased 

dataset, the control, will serve as a reference for comparison with all datasets 

generated with induced biases. 

• Environmental data 

All environmental layers were computed at a spatial grain of 1 x 1 km2 and 

derived from RS and map data. Following findings from previous studies on 

steppe birds, data related to vegetation, terrain and human disturbance were used 

as predictor variables (Osborne et al. 2001). 

Table 2.1 - List of species studied, respective frequency of occurrence in the area, and model performance 

on the control dataset (calculated on the training and cross-validated data) 

Species 
Freq. of 

AVC AVCcv 
occurrence 

Montagu's Harrier 0.188 0.83 0.75 
Red-legged Partridge 0.519 0,77 0.66 
Quail 0.461 0.80 0.74 
Little Bustard 0.285 0.84 0.77 
Great Bustard 0.058 0.86 0.78 
Stone Curlew 0.136 0.81 0.66 
Black-bellied Sandgrouse 0.022 0.94 0.74 
Crested/Thekla Lark 0.512 0.73 0.69 
Calandra Lark 0.132 0.83 0.76 
Black-eared Wheatear 0.055 0.72 0.63 
Stonechat 0.440 0.60 0.52 
Zitting Cisticola 0.637 0.81 0.73 
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Vegetation was described by using a temporal series of Normalized Difference 

Vegetation Index (NDVI) imagery, which allows the characterisation of the 

vegetation phenology and crop cycle (Hill & Donald 2003). A 12-month series of 

NDVI data from the SPOT VEGETATION sensor at a spatial resolution of 1 x 1 

km was used in the form of 10-day synthesis images (www.spot­

vegetation.com/vegetationprogramme/), for the period June 2003 to May 2004. 

These images, which had been previously atmospherically corrected, were 

produced by Maximum Value Compositing (MVC) (Maisongrande et al. 2004). 

This method minimises the cloud cover in NDVI imagery and reduces Sun-angle, 

shadow, aerosol and water-vapour effects, all of which could reduce data 

reliability (Holben 1986). We excluded all data pixels with reported quality 

problems, and subsequently used a further MVC procedure to produce a time­

series of 12 Monthly-synthesis images. Finally, the time-series was reduced into 

seven variables, capable of describing the observed phenological events of the 

vegetation in the area (Table 2.2). 

Variable 

Vegetation 

Summer 

Winter 

Spring 

D,y 

Wet 

Dec 

May 

Terrain 

Alt 

TopovIO 

Disturbance 

Urbandist 

Roaddist 

Table 2.2 - Predictor variables used in the species distribution models 

Description 

Vegetation senescence during the Summer months: Summer = NDVI (Jun) - NDVI (Sep) 

Vegetation growth during the Autumn and Winter months: Winter = NDVI (Mar) - NDVI (Sep) 

Vegetation senescence during the Spring months: Spring = NDVI (Jan) - NDVI (Apr) 

Mean NDVI during the dry months: DIY = Average [NDVI (Jun: Oct) 1 

Mean NDVI during the wet months: Wet = Average [ ND VI (Jan: API) 1 

NDVI value for the month of December: NDVI (Dec) 

NDVI value for the month of May: NDVI (May) 

Mean altitude in metres within a 5 x 5 array of200 x 200 m pixels 

Variation in altitude in a 5 x 5 array of200 x 200 m pixels, where altitude is re-classed to a 10 m 
vertical resolution. TopovIO = (n-l)/(p-I), where n = number of different altitude classes in the 
array, p = number of pixels in the array, i.e. 25 

Distance (in metres) to the nearest pixel containing towns, settlements or constructed structures 

Distance (in metres) to the nearest pixel containing roads 
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Terrain variables were derived from a Digital Terrain Model (DTM) acquired 

from the Instituto Geognifico Portugues (IGP), originally at a spatial resolution 

of 200 x 200 m. From these data, I calculated average altitude (AL T) and 

topographic variability with a 10-m vertical resolution (TOPOVIO) for each grid 

square (Suarez-Seoane et al. 2002a). The disturbance variables considered were 

distance to towns, urban settlements and constructed structures (URBANDIST) 

derived from the Corine Land Cover 2000 raster data provided by the European 

Environment Agency (EEA) and distance to roads (ROADDIST) derived from a 

vector-based road map provided by the Instituto de Estradas de Portugal (IEP). 

• Introducing bias: data sub-sampling 

I considered two types of sampling effects in the data which lead to 

environmental bias in the data and which we expect to affect the predictive 

models: geographical bias and sample size bias. Geographical sampling bias in 

locational datasets can occur for several reasons such as accessibility, degree of 

protection or attractiveness ofthe areas (Romo et al. 2006). Indeed, most 

ecological studies are conducted in protected areas; also, the more accessible or 

more attractive the areas, the more naturalists and volunteers will be present and 

collecting data. Sample size bias refers to the shortage of locational data or small 

datasets, which is frequently the case, due to the cost involved in field data 

collection. These biased data subsets were generated by sub-sampling the control 

dataset according to specific criteria, by using probability density functions 

(PDFs), generated in a GIS. The probabilities assigned in the PDF maps 

determined the proportion of presence points that were kept from the control 

dataset, in each of the subsets (Table 2.3). 

The geographically-biased subsets simulated opportunistic or purposive sampling 

schemes where the true species prevalence remains unknown. For each class of 

the PDF layers, I kept an equal number of absences and presences for all species. 

Taking into account the nature of the study region, with its three SPAs and road 
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network, I generated four different subsets with a decreasing degree of 

geographical bias (Figure 2.1 a-d). 

Table 2.3 - Description of datasets, and respective measures of similarity (average percentage values) with 

the control dataset: proportion of data sample points retained; and data range overlap in the predictor 

variables 

Dataset 

No bias 
------

CONTROL 

Geographical bias 

G1 

G2 

G3 

G4 

Sample-size bias 

S1 

S2 

S3 

Description 

Complete field-sampled dataset 

Maximised sampling in the geographical centres of the 
SPAs, excluding all data outside 

Maximised sampling uniformly within the SPAs, excluding 
all data outside 

Maximised sampling inside the SPAs, close to roads, and a 
very low intensity sample of data outside, also maximised 
close to roads 

Maximised sampling uniformly within the SPAs and a very 
low intensity random sample of data outside 

Very low intensity geographically stratified random sample 
of the Control dataset 

Low intensity geographically stratified random sample of 
the Control dataset 

Medium intensity geographically stratified random sample 
of the Control dataset 

Data Range 
retained overlap 

100 100 

8.74 57.29 

12.62 64.58 

13.31 64.17 

16.03 72.54 

1l.66 80.52 

2l.49 86.41 

44.33 91.59 

The sample-size biased subsets simulate geographically stratified random 

sampling schemes (by using randomly distributed PDFs), with a varying degree 

of sample intensity, this way generating differently sized small datasets (Figure 

2.1 e-g). Within these subsets, both presences and absences were equally 

sampled from the control dataset, according to the probabilities assigned on the 

PDF layers, so the data prevalence for each species is expected to remain roughly 

stable at the level it occurs naturally in the area. 
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Figure 2.1 - Data sampling and sampling bias. Probability Density Function layers generated to produce 

the respective biased subsets: a) Gl - geographical centres of the SPAs; b) G2 - uniform within SPAs; c) G3 

- SPAs and road network; d) G4 - SPAs and very low intensity random; e) Sl - velY low intensity random; j) 

S2 - low intensity random; and g) S3 - medium intensity random. Control data sampling: h) location of the 

sampling squares (black) in the study area 

The similarity between each of the subsets and the control was assessed by two 

different measures: proportion of data sample points retained; and data range 

overlap in the predictor variables (Table 2.3). The relationship between these two 

measures of similarity differed greatly between the geographically biased (G) 

and random (S) subsets: while a small reduction in sample size in the 

geographically biased datasets corresponded to a great decrease in the respective 

proportional range overlap (in the data domain), the opposite was observed on 
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the randomly distributed subsets - a large reduction in sample size corresponded 

to only a small decrease in data range overlap . 

• Modellingframework 

For modelling the spatial patterns of biodiversity, we opted for predicting 

individual species distributions and later combining the resulting maps in a 

"predict first, assemble later" manner (Ferrier & Guisan 2006). By doing so, we 

allowed for maximum modelling flexibility in defining individual species spatial 

patterns, as well as facilitating the interpretation of the resulting biodiversity 

patterns. We used Multivariate Adaptive Regression Splines (MARS) (Friedman 

1991) models for predicting the species distributions. This method is capable of 

fitting non-linear relationships between species and environment, much in the 

same way as Generalised Additive Models and with comparable modelling 

performance, but with the great advantage of being computationally less 

demanding due to its simple rule-based architecture (Leathwick et al. 2006). 

Models were fitted in R (R Development Core Team 2008) using code from the 

'mda' library (Hastie & Tibshirani 1996), modified to allow for binary data (logit 

link function) and model cross-validation (Elith & Leathwick 2007). MARS 

models have been shown to present some problems in the variable selection 

procedure when high multi-collinearity is present in the predictor variables (De 

Veaux & Ungar 1994). For this reason, data collinearity in the training data was 

inspected, and whenever two variables were correlated with a (Pearson r) value 

greater than 0.7, one of them was excluded (Freedman et al. 1992). The variable 

retained was the one that scored highest on a Mann-Whitney U rank test between 

the descriptors and response variables. The models were then applied over the 

full study area for prediction of the probabilities of occurrence of each species 

throughout the region, on all datasets (control and subsets). 

An ecological interpretation of the models obtained is not presented, as were 

considered out of the scope of the present paper. 
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• Spatial patterns of species occurrence and biodiversity 

Typically, the resulting probabilities from SDMs are converted into binary maps 

of species distributions, in order to be subsequently assembled into species 

richness or biodiversity maps (Cumming 2000). However, this requires the 

definition of a threshold on the output probabilities, this way losing much of the 

contained information. Moreover, the definition of thresholds of occurrence in 

species distribution predictions is an issue of large debate (Liu et at. 2005). The 

direct use of the probability of occurrence values, on the other hand, has the 

advantage of being threshold-independent and this way quantifying the 

uncertainty of a species occurrence at a location (Loiselle et at. 2003). This 

probabilistic approach has been used successfully in biodiversity mapping, 

particularly on studies aimed at reserve network design (Polasky et at. 2000; 

Cabeza et at. 2004), with significant differences when species occurrence 

uncertainty was higher (i.e., with probability values furthest from 0 or 1). Hence, 

we used the predicted probabilities of species occurrence as descriptors of the 

species distribution patterns and their cumulative probabilities as spatial 

representations of the steppe bird biodiversity patterns in the region, on all 

datasets. These biodiversity maps were subsequently re-scaled to values between 

o and 1 to allow a better comparison between different datasets (this way 

accounting with the possibility of some models not being able to be fitted, 

particularly in the smallest datasets). This way, a resulting value of 1 would 

represent an area with probability of occurrence values of 1 on all modelled 

speCIes. 

• Comparative analysis 

To assess the effects of the different data sampling biases on the distribution 

models and on the spatial biodiversity patterns, we compared results from the 

control and biased datasets at both the individual species level and the 
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community (biodiversity) level. At the individual-species level, we inspected the 

effects both on the habitat models (performance and structure consistency) and 

on the resulting probability maps. Model performance was assessed using 

Receiver Operator Characteristic (ROC) Area Under the Curve (AUC) values 

(Hanley & McNeil 1982), by performing a la-fold cross-validation, while 

controlling for prevalence (AUCcv). We assessed model structure consistency 

between the different data subsets, for each species, by calculating the percentage 

of variables from the control models retained on each of the respective subset 

models. 

The predicted individual-species probability maps were compared by calculating 

the mean absolute pixel difference between the respective control and each of the 

subsets, using the Map Comparison Kit software package (Visser & De Nijs 

2006). These comparisons provided pixel-by-pixel measures of similarity / 

dissimilarity between model predictions, and were therefore used as indicators of 

consistency in the resulting spatial patterns. Also, this measure is expressed in 

the same units as the predicted maps, so it reflects the average change in the 

probability of occurrence values on each map. 

The resulting biodiversity maps were compared using the same dissimilarity 

measure. In this case, however, the resulting units on this absolute difference (or 

change) metric is, as in the biodiversity maps, the proportional cumulative 

probability of occurrence of all species. 

2.4. Res ults 

• Control models of species distributions 

The MARS models were fitted for all species in the control datasets with varying 

degrees of performance (Table 2.1). The AUC values as calculated on the 
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training data ranged from 0.60 to 0.94 (mean 0.79 ± 0.023), and the cross­

validated AUC (AUCcv) from 0.52 to 0.78 (mean 0.70 ± 0.021) . 

Figure 2.2 - a) to h) Biodiversity maps (cumulative probabilities) calculated on the respective datasets: a) 

Gl - geographical centres o/the SPAs; b) G2 - uniform within SPAs; c) G3 - SPAs and road network; d) G4 

- SPAs and very low intensity random; e) Sl - very low intensity random; j) S2 -low intensity random; g) S3 

- medium intensity random; and h) Control 

The predicted probabilities of occurrence for the twelve species were added 

together in order to compile the control biodiversity map (Figure 2.2 h). On this 

map, the areas of greater cumulative probabilities which correspond to the core 

areas for steppe birds in the region (mostly within the Castro Verde SPA) are 

easily identifiable . 
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• Models with geographically biased data sub-samples 

The introduction of geographical bias in the data sampling occasionally had the 

effect of impeding the successful fitting of the models. This happened on four 

occasions for three species with the weakest associations in the control models, 

i.e. those with the lowest AUC values, as calculated on the training data: 

Crested/Thekla Lark (subset G2); Black-eared Wheatear (G2 and G4); and 

Stonechat (G3). Moreover, we observed a relatively small decrease in model 

performance, when assessed by the mean cross-validated AUC values (Table 2.4). 

Subset G3, the most affected one, showed an average drop in AUCcv of around 

10%, whereas this value on subsets G 1, G2 and G4 was always smaller than 5%. 

The variation in the model performance (shown by the SE) increased with 

increasing geographical bias (decreasing data range overlap in the predictor 

variables) in the datasets. Model structure was generally strongly affected, the 

subset models containing only a small proportion of predictor variables in 

common with the respective control models. Subsets G4, however, being the 

least biased also presented greater model structure consistency (though with an 

average of only 47% of variables in common with the control). 

Comparison between the predicted maps of probability of occurrence showed a 

consistently increasing effect (greater difference between control and subset 

maps) with an increased geographical bias on the datasets (Figure 2.3). For 

example, subsets Gland G2 showed an average change of around 0.25 (SE = 

0.022 and 0.029, respectively) on the probability scale, whereas subsets G3, a 

value of 0.22 (±0.025) and subsets G4 resulted in a mean value of 0.18 (±0.017). 

Calculation of biodiversity maps from these four datasets generally resulted in 

great discrepancies from the control map (Figure 2.2 a to d). In effect, these maps 

presented great dissimilarity (high mean pixel difference values) from the control, 

and the core steppe bird areas in the region were no longer identifiable. The 
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observed dissimilarity values were of 0.11, 0.14, 0.10 and 0.10 for datasets G 1 to 

G4, respectively (Figure 2.4). For these models alone, no significant correlation 

was found between the observed differences on the biodiversity maps and the 

measures of data similarity (proportion of data retained and data range overlap). 

Table 2.4 - Mean and SE values of the model comparisons: cross-validated performance (A UCcv) and 

structure consistency (percentage variables in common with the control models) 

Dataset Performance 
Structure 

consistency 

Control O.70±O.O21 l.OO±O.OOO . 

G1 O.67±O.O38 O.36±O.O89 

G2 O.69±O.O37 O.30±O.O75 

G3 O.63±O.O31 O.38±O.O58 

G4 O.68±O.O25 O.47±O.O67 

S1 O.57±O.O27 O.35±O.O81 

S2 O.57±O.O19 O.49±O.O77 

S3 O.64±O.O26 O.38±O.O84 

Figure 2.3 -Average and SE values of mean absolute pixel difference between control and subsets, across 

species, on the predicted individual-species probability maps 
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• Models with sample-size biased sub-samples 

The (geographically stratified) random sub-sampling of the control dataset 

resulted in considerably poorer performing models than the controls. This 

observed effect was greater with a decreasing sample effort in the subsets, e.g. a 
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drop in AUC on subsets S 1 and S2 of around 18% (however, with smaller SE on 

the latter), and 9% on subset S3. Model performance was significantly correlated 

with the proportion of data retained from the control dataset (Spearman rank 

correlation rho or rs = 0.35; n = 36; P < 0.05). As with the geographically biased 

datasets, model structure was severely affected by data bias, for all subsets 

(Table 2.4). 

Comparison between model predicted maps of probability of occurrence showed 

a relatively small effect (small absolute pixel difference values) from this type of 

data sampling bias. Even so, the greater the bias (smaller the dataset), the higher 

was the dissimilarity on the output maps (Figure 2.3). E.g., subsets S 1 and S2 

resulted in average changes of 0.12 (SE = 0.022 and 0.017, respectively) and S3 

in values of 0.09 (±0.014) on the probability scale. The differences observed in 

these datasets, however, were always much smaller than those observed from the 

geographically biased ones. 

The resulting community maps were very similar to the control, with relatively 

low dissimilarity values, even though increasing with the decreasing sample size 

(Figure 2.4). In fact, the dissimilarity was always less than half of that obtained 

from the maps generated with the geographically biased datasets (values of 0.049, 

0.042 and 0.033, for respective datasets Sl to S3). For these models, the 

differences observed between the biodiversity maps were strongly, negatively 

and highly significantly correlated with both data similarity measures, proportion 

of data retained (rs = - 0.87; n = 36;p < 0.001) and data range overlap (rs =-

0.94; n = 36;p < 0.001). Additionally, identification of the core steppe bird areas 

in the region was still possible, with this type of bias (Figure 2.2 e to g). 
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Figure 2.4 - A1ean absolute p ixel difference values between Control and subsets, on biodiversity maps 
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• Data sampling bias effects on model predictions 

Considering all biased subsets together, the observed changes in the individual­

species predictions and in the biodiversity maps were always highly significantly 

correlated with both measures of data bias. Thus, the smaller the datasets used in 

the models, the larger were the differences from the control on both individual­

species (rs = - 0.42; n = 80; p < 0.001) and community predictions (rs = - 0.59; n 

= 84;p < 0.001). However, these differences in predictions were even more 

strongly correlated with the average proportion of data range overlap on the 

predictor variables (rs = - 0.61; n = 80;p < 0.001 , on species predictions; and rs 

= - 0.83; n = 84;p < 0.001, on biodiversity maps). 

2.5. Discussion 

In this study we investigated the effects of data sample bias on predictive SDMs, 

particularly when used as a tool for characterising the spatial patterns of 

biodiversity. The performance of these models and the resulting predictions are 

ultimately dependent on the locational datasets used. Their size, geographical and 

environmental coverage, determined by the data sampling, have been reported to 

affect the modelling process (Elith et al. 2002; Stockwell & Peterson 2002; 
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Kadmon et al. 2003; Edwards Jr. et al. 2006; Loiselle et al. 2008). By 

introducing geographical bias on a dataset, based on previous knowledge of the 

study region (location of the regional SPAs and road network), we have 

simulated a common situation, where due to time, financial or access restrictions 

(or even a lack of knowledge of the species) data are sampled in a non-random or 

purposive manner (see e.g. Reddy & Davalos 2003). It is also often the case that 

SDMs rely on existing biased datasets, from previous studies or from herbarium 

and NHC data (Graham et al. 2004; Loiselle et al. 2008). Depending on the study 

area, geographical sampling bias is expected to result in a varying degree of 

environmental bias (variability reduction and skew) of a dataset, which in turn 

will affect model predictions (Barry & Elith 2006). For example, Kadmon et 

al. (2004) found that geographical sampling bias (close to a road network) in a 

plant locational dataset still resulted in good model predictions due to the fact 

that the road network was relatively unbiased in terms of the environmental 

gradients of the area (i.e., provided a good sample ofthese gradients). 

Nevertheless, it is logical that the greater the geographical bias in a dataset, the 

greater the resulting environmental bias. We demonstrated this in our study by 

observing the change in data coverage (range overlap in the predictor variables) 

between the different geographically and by comparison with the non­

geographically (random) biased data subsets generated. Even with the use of 

carefully designed data sampling schemes (geographically or environmentally 

stratified in a random manner), environmental bias can still occur, particularly 

when the data sample is too small to describe the full environmental variability 

present in the study region. The randomly sorted data (sample size biased) 

subsets of varying sampling intensity used in this study, allowed us to test this 

effect, by generating datasets with varying sample size and proportional coverage 

of the region'S existing environmental gradients. The degree of environmental 

bias in these subsets was, nevertheless, generally much smaller than that in a 

geographically biased dataset of the same size. 

Sample size has previously been found to affect the accuracy of SDMs. 

Stockwell & Peterson (Stockwell & Peterson 2002) found that model accuracy 

on the training set decreases and on the test set increases with larger samples. 
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Also Kadmon et al. (2003) and Wisz et al. (2008), using independent test data to 

evaluate their models, found this pattern of decreasing model accuracy with 

decreasing sample sizes. In our study, it was not possible to use an independent 

evaluation dataset, but a 10-fold model cross-validation was implemented instead. 

We observed a similar pattern particularly on the randomly sampled subsets - the 

greater the proportion of data retained (greater the sample size), the greater the 

model performance. When grouping all cases together (geographically and 

randomly sampled subsets), however, we achieved inconclusive results regarding 

the relationship between sample size and model performance. On the other hand, 

we observed an increase in performance variability (standard error of the mean) 

with decreasing sample size, across species and between subsets, which agrees 

with the findings of the two previous studies. 

Several authors have also investigated the effects of environmental bias on the 

performance of distribution models. Kadmon et al. (2003) and Edwards Jr. et al. 

(2006), compared random and biased datasets and both concluded that the larger 

the environmental bias, the lower the model prediction accuracy. In the first of 

these studies, the authors further concluded that climatic (environmental) bias in 

the data was more influential than data quantity, and that it could alone explain a 

large proportion of the variation in predictive accuracy. We found a similar 

pattern, though only on the geographically biased subsets. On these, the range 

overlap in the data domain of the predictor variables explained 21 % of the 

observed variability in model performance. We could not, however, find a 

similar correlation when compiling all cases together. Loiselle et al. (2008), on 

the other hand, found sample size to be more influential on model performance 

than environmental bias. In their study, though, the authors used presence-only 

data and a machine learning algorithm (maximum entropy), which might be 

affected by data bias in a different way than classification tree (Edwards Jr. et al. 

2006) or regression methods like the one used in our study. 

We found that data sampling bias not only affected model performance, but also 

model structure in terms of the variables selected by the models: different data 
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subsets were fitted on different sets of predictor variables by the MARS variable 

selection procedure. In fact, on average (across species, on each subset) the 

subset models had fewer than half of the variables in common with the control 

models. Moreover, this pattern was observed even when using a randomly sorted 

dataset that covered a large proportion of the control dataset, as in the case of 

subset S3 (where the data range overlap is 91.59%). A similar conclusion was 

reached by Edwards Jr. et al. (2006); the overlap in the predictor variables 

selected by their models, between biased and non-biased datasets was always 

below 38%. Recent research by Osborne & Leitao (in press) (see Appendix A.2) 

has also found large inconsistencies in model structure when small amounts of 

locational error are introduced in the data. This suggests that the variable 

selection algorithms of SDMs are highly sensitive to any source of error, and 

ecological inference about species habitat selection should be made with extreme 

care. We therefore recommend that these interpretations should only be taken 

when using balanced (unbiased) and large datasets. On these cases, nevertheless, 

a reliable ecological interpretation from such models could still be attained by, 

e.g. running data randomisations together with an evaluation about the model 

structure stability. 

Analysis of both the predicted probability maps and resulting biodiversity maps 

showed a clear pattern of an effect of data sampling bias on the resulting 

predictions. Indeed, both measures of data similarity with the control dataset 

used in this study were highly correlated with the differences observed in the 

predicted patterns of species occurrence and biodiversity. Environmental bias, 

however, was more influential on the prediction patterns than sample size bias, 

and the mean data range overlap (in the predictor variables) alone could explain a 

great proportion of the observed differences in species probability and 

biodiversity maps (according to the Spearman rank correlation rho scores). A 

recent study by Grand et al. (2007) focusing on reserve selection algorithms, 

typically based on optimisation of biodiversity measures such as species richness 

or complementarity, found a similar pattern. These authors also compared the 

results of a presumably complete locational dataset (of Proteaceae in South 

Africa) with those of geographically (road) biased and random subsamples in 

61 



Data sampling bias 

order to assess the impacts of sampling bias and sampling effort on reserve 

selection results. Their conclusions were that data sampling bias impacted the 

predictions more severely than decreased sampling effort alone, concurring with 

our study. 

• Concluding remarks 

SDMs are a valuable tool for many different ecological applications as they 

provide information on species and biodiversity spatial patterns which would 

otherwise be mostly unavailable. Locational datasets on which they rely are, 

however, frequently unbalanced as a result of data sampling bias. This, in tum, 

has profound impacts over all phases of the modelling process: performance, 

interpretation and predictions. Data sampling schemes which generate greater 

environmental bias (less representative coverage of the environmental gradients), 

such as geographically-biased or purposive sampling will have a greater effect on 

the distribution models. Special attention should be paid to the quality of existing 

datasets as well as the sampling design for collection of new data. Ideally, 

statistical tests should be performed on the data, to detect the presence of bias 

before modelling is undertaken, and any interpretation of models based on biased 

data should be made with explicit awareness of the existing bias. 
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3. Analysis of remote sensing data to derive predictor variables 

for use in species distribution models 
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3.1. Introduction 

A range of advanced statistical tools for predicting species distributions are 

increasingly becoming available to ecologists and environmental managers 

(Guisan & Zimmermann 2000; Guisan & Thuiller 2005). Their methodological 

principle lies within ecological niche theory, in which the distribution of a 

species is determined by the extent of its niche and is therefore inferred by 

modelling the respective habitat distributions (Guisan & Zimmermann 2000; 

Austin 2007). These methods couple incomplete species locational data 

(response variable) with environmental descriptors (predictor variables), and are 

capable of predicting species distribution patterns over large areas, as well as 

providing insights into the underlying species-environment associations. 

Remote sensing data, by thoroughly and systematically describing the Earth's 

surface, are an excellent source of detailed environmental data to be used as 

predictors in species distribution models (SDMs) (Kerr & Ostrovsky 2003). 

Moreover, they enable the collection of data in remote and otherwise inaccessible 

areas. It is not the aim of this work to present a review on the use of RS data for 

biodiversity mapping, as there are some extensive reviews already present in the 

scientific literature (Nagendra 2001; Gottschalk et al. 2005; McDermid et al. 

2005; Leyequien et al. 2007; Gillespie et al. 2008). We intend, however, to 

describe some common sources of RS data, their characteristics and usage, as 

well as to compare available data analysis approaches for feature extraction in 

order to subsequently use them in SDMs. These approaches are compared in 

terms of achieved model performance, and respective model generality and 

interpretability . 
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• Predictor variables 

Environmental predictors can be described in terms of their position in the chain 

of processes that link them to their impact on the species. Thus they may be 

either proximal or distal, proximal variables being those that are causal, 

determining the species response, while distal variables are those that only 

indirectly affect the species (Austin 2002). From another perspective, one can 

identify three main types of environmental variables, based on their known 

biophysical processes: resource, direct and indirect variables. Resource variables 

refer to matter and energy consumed by the organisms, like water, food, etc.; 

direct variables are environmental parameters with physiological importance, but 

that are not consumed, like temperature, humidity or pH; and indirect variables 

are those that have no direct physiological relevance for a species, like elevation 

or habitat type (Austin 1980; Guisan & Zimmermann 2000; Austin 2002). 

The arrangement of predictors into direct/indirect or proximal/distal directly 

relates to model generality. A model which uses only indirect or distal variables 

lacks generality and only has local value for both prediction and understanding, 

and hence should not be applied to large areas nor to elsewhere (Austin 2002). 

This is because these variables reflect combinations of different resources and 

direct gradients specific to the study location. On the other hand, they are easily 

measured in the field and usually show good correlations with the observed 

species patterns (Guisan & Zimmermann 2000; Austin 2007). Another possible 

advantage of using indirect variables such as land use or habitat type is that they 

can directly relate to land management practices and thus aid local conservation 

efforts. Models based on proximal resource and direct gradients are the most 

robust and widely applicable (with more generality), but because these variables 

are the most difficult to measure they are often impractical for use (Austin 2002). 

Hence, the choice of the predictor variables to use must be primarily dependent 

on the aim of the study, whether it is just intended to predict the species 

66 



Remote sensing data analysis 

distribution within the study region and for the period of study, if the intention is 

to predict over different conditions (other area or other period in time), or if 

ecological interpretations of the model results are to be drawn. Other determining 

factors relate to the existing knowledge of the species ecology, and the ability to 

measure relevant environmental descriptors. RS data offer a suite of different 

data sources and processing techniques, capable of measuring the existing 

environmental gradients, which can then be used as predictors in these models. 

• Remote sensing data 

Earth observation satellites deliver data with spatial resolutions ranging from 

under 1 m to up to 8 km (Table 3.1). Passive remote sensors collect data on 

surface radiation, most commonly reflected sunlight (optical sensors), but also 

emitted radiation (thermal). Optical sensors measure the reflected radiation either 

in a single panchromatic spectral band covering all the visible light wavelengths 

(0.4-0.7 flm), or in distinct spectral bands (multi-spectral), each covering specific 

portions of the electromagnetic spectrum. Typical spectral regions include the 

visible light, near-infra-red (0.7-1.4 flm), short-wave infrared (1.4-3 flm) or mid­

wave infrared (3-8 flm), each used to adequately describe specific surface 

features. For example, terrestrial vegetation can be well described by band 

combinations on the red and near infrared wavelengths, many times used in the 

form of vegetation indices (Tucker 1979), whereas soil moisture is well 

described by combinations of bands on the near and short-wave infrared portions 

of the spectrum (Wilson & Sader 2002; Haubrock et al. 2008). Thermal sensors 

measure the emitted radiation on the long-wave or thermal infrared (8-15 flm) 

region of the spectrum and are capable of describing surface temperature patterns. 

Active remote sensors, on the other hand, emit energy to the surface (at specific 

wavelengths) and then record the backscattered signal, this way calculating some 

target's characteristics such as location, height or orientation (Dobson et al. 

1995). These are suited to produce detailed topographic maps, but can also 

retrieve information on surface moisture and roughness, forest canopy structure 

or agricultural crop structure, yield and orientation. 
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Table 3.1 - Commonly used satellite remote sensors, ordered by pixel spatial resolution. (Legend: CAR -

Cartography; LCM - Land cover mapping; MET - Meteorology & Climatology; NAT - Natural resources 

monitoring; aCE - Ocean monitoring; VEG - Vegetation & agricultural crop monitoring; TOP -

Topography) 

Sensor Type of sensor Pixel spatial Applications 
resolution (m) 

GOES Optical and 1000,4000,8000 MET 

thermal 

Meteosat Optical and 1000,2500,5000 MET 

MVIRIISEVIRI thermal 

SPOTVGT Optical 1150 NAT;VEG 

NOAAAVHRR Optical and 1090 MET; OCE; NAT; VEG 

thermal 

ERSATSR Optical and 1000 OCE; NAT; VEG 

thermal 

Terra MODIS Optical and 250,500,1000 MET; OCE; LCM; NAT 

thermal 

ENVISAT MERIS Optical 300 MET; OCE; LCM; NAT; VEG 

ENVISAT ASAR Radar 30,150,300 TOP; OCE; NAT 

Landsat TMlETM+ Optical and 15,30,60, 120 LCM; NAT; VEG 

thermal 

RADARSAT-1 &-2 Radar 3,8, 10, 12,25,26, NAT;VEG 

30,50,100 

NASASRTM Radar 30,90 TOP 

Terra ASTER Optical and 15,30,90 LCM; NAT; VEG; TOP 

thermal 

IRS LISS-III & -IV Optical 5.8,23.5, 70 LCM; NAT; VEG; CAR 

CHRIS-PROBA Optical 20,34 LCM; NAT; VEG 

ERSSAR Radar 30 TOP; NAT; VEG 

EO-1 Hyperion Optical 30 LCM; NAT; VEG 

SPOT Optical 2.5,10,20 LCM; NAT; CAR; TOP 

HRVIHRVIRlHRG 

TerraSAR-X Radar 1,3, 16 NAT;VEG 

RapidEye Optical 6.5 NAT; VEG; CAR 

Ikonos Optical 0.82,3.28 LCM; NAT; VEG; CAR 

QuickBird Optical 0.61,2.44 LCM; NAT; VEG; CAR 

GeoEye-1 Optical 0.41, 1.64 LCM; NAT; VEG; CAR 
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The applications of these data are multi-fold, depending on their characteristics 

(the type of information collected and its spatial resolution), which range from 

global scale climatologic and meteorological studies; to natural resources, 

vegetation and agricultural crop monitoring at regional and landscape scales; and 

to detailed cartographic and topographic characterisation. Also, recent advances 

in technological research has permitted a multiplication of these data sources 

including the emergence of very-high resolution imagery satellites, such as 

QuickBird or GeoEye-1 (which deliver surface reflectance measurements at sub­

metre resolutions); the development of sensors with dedicated spectral bands for 

the correction of atmospheric effects (reducing an important source of error in 

the characterisation of the Earth's surface), like the ENVISAT MERIS; and the 

development of spaceborne hyperspectral sensors (capable of collecting 

information on hundreds of spectral bands from across the electromagnetic 

spectrum), like the EO-1 Hyperion or the prospective EnMAP satellite (due to be 

launched in 2012). 

Given this, the selection of the RS data sources for use in SDMs must be 

carefully made, and the decision should be guided by the aims of the study, the 

sensor characteristics and its capability of describing environmental factors that 

reflect the species occurrence patterns at the desired scale of study. 

• Digital image processing methods for deriving predictor 

variables 

The multitude of digital image processing (DIP) methods to analyse RS data can 

hinder the decision on how to best derive useful predictor variables for use in 

species distribution modelling. Some products are available in a ready-processed 

format which can be directly used as predictors in SDMs, such as the SRTM­

derived Digital Elevation Model, or the Global Land Cover map provided by the 

Global Land Cover Facility (Hansen et al. 2000), but this is often not the case. 

Also, by carefully selecting and analysing a specific RS image, it is possible to 
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generate fit-for-purpose predictor variables, which the (ready-processed) 

standard products are not able to provide. It is therefore important to assess the 

available methods for processing these data. 

Perhaps the most commonly used approach is to classify the imagery into land 

use/land cover or habitat classes, and then derive measures of composition 

(proportion of cover for each class) and configuration (like fragmentation or 

connectivity) for use as predictors in distribution models (Austin et al. 1996; 

Tucker et al. 1997; Luoto et al. 2002). Image classification can be achieved by 

means of unsupervised or supervised methods. Unsupervised classification 

algorithms are able to aggregate the imagery into "natural" clusters of separable 

spectra (spectral classes), which can then be associated to specific land-cover 

classes or habitats. Typically, iterative methods are used, like the ISODAT A -

Iterative Self-Organizing Data Analysis Technique (Ball & Hall 1965) or the 

SOM - Self-Organizing Map (Kohonen 1990). Supervised methods, on the other 

hand, require the prior identification of areas with known classes, which are used 

to train the classifier to then be applied to the remainder of the image. The latter 

methods permit the classification of the imagery into desired classes, i.e. those 

considered important to describe the species occurrence patterns. However, the 

final classification is highly sensitive to the identification of the training areas, 

which is prone to human error. The most popular of the supervised classification 

methods is the Maximum Likelihood Classifier (MLC), a parametric classifier 

which makes use of the classes' mean spectral values and respective covariance 

matrices to assign a probability of membership of the unknown pixels to each 

class, and subsequently label it with the most likely category, i.e. to the class 

with the highest probability. Further developments in DIP have been the 

introduction of (non-parametric) machine learning methods, such as Artificial 

Neural Networks (ANN) (Benediktsson et al. 1990) or Support Vector Machines 

(SVM) (Huang et al. 2002a) for image classification in order to overcome the 

problems of data distribution constraints, allowing the usage of data with 

complex (multimodal) distributions as well as nominal or ordinal data. 
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These methods produce a hard classification of imagery (i.e. the assignment of 

each pixel to a specific class), which generates discrete classified maps. While 

this is a common procedure, it does not accurately describe the vegetation 

continua of gradually integrating classes, nor the case of mixed pixels, i.e. pixels 

containing more than one class (Wood & Foody 1989; Smith et al. 1990). Soft 

classification techniques, such as probability mapping (as derived from e.g., the 

MLC or the Mahalanobis distance), fuzzy-c-means or non-parametric methods, 

such as the ANN, have been used to this end (Foody 1996). Another related 

method is the spectral unmixing of imagery pixels into its cover fractions 

(Lennington et al. 1984; Adams et al. 1986). This can typically be achieved 

through the use of a Linear Spectral Mixture Model (LSMM), also called linear 

Spectral Mixture Analysis (SMA), which assumes that the spectral signature of a 

given pixel is the result of the linear mixture of the spectra of its component 

features (Settle & Drake 1993). It does, however, require the definition of 

distinct (and linearly independent) spectral end members that might not match 

the desired thematic classes, as well as ignoring the non-linear mixture effects 

resulting from multiple scattering of radiation among different target materials. 

Non-linear spectral un-mixing has been suggested for overcoming these 

problems (Foody et al. 1997). These methods would also permit the definition of 

habitat classes with complex spectra, and therefore suit the intended application, 

but up till now they remain largely untested. 

Soft image and sub-pixel classification techniques are not commonly used 

methods for deriving SDM predictors. On the other hand, spectral indices (band 

combinations and ratios) such as those of vegetation and moisture/wetness have 

wide popularity in SDM research (Wallin et al. 1992; Osborne et al. 2001; 

Zimmermann et al. 2007). Time-series of such indices are capable of describing 

phenological processes (Reed et al. 1994; Jakubauskas et al. 2001) and can be 

particularly useful for describing species distributions (Osborne et al. 2001; 

LeiHio et al. 2006). Additionally, a few studies have made use of texture 

measures for assessing habitat heterogeneity to be used as a predictor of species 

distributions (Hepinstall & Sader 1997; Imhoff et al. 1997). Also, the raw image 

reflectance values, by describing surface characteristics which can relate to 
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specific environmental conditions, can be used directly as predictor variables 

(Hepinstall & Sader 1997; Zimmermann et al. 2007). The multitude of DIP 

techniques available further highlights the vast potential of RS data for deriving 

useful SDM predictor variables . 

• Case study 

A case study is presented, where the distributions of 13 steppe bird species in an 

agricultural landscape in southern Portugal are modelled. In this study different 

DIP techniques for deriving model predictors are compared, and relevant issues 

related to RS data analysis are further discussed. For ease of interpretation we 

use a single source of imagery, and compare single-method approaches, even 

though a combination of different data sources and different methods for 

information extraction is more likely to generate good distribution models 

(Zimmermann et al. 2007; Buermann et al. 2008). Hence, data from the Landsat 

Thematic Mapper (TM) sensor was used, which is the most commonly used 

source of imagery in ecological applications (Cohen & Goward 2004). The 

chosen data relate well to the specific research question as they are capable to 

describe relevant habitat classes at an adequate scale. The observed landscape 

dynamics are described, in order to help understand the important factors that can 

influence the distribution of the species in the area. The choice of the data 

analysis methods are discussed in terms of their advantages and limitations, as 

well as the type of predictor variables generated and the resulting model 

characteristics in terms of performance, interpretability and generality. 
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3.2. Methods 

• Study area 

The study was conducted within 11 randomly selected squares of 3x3 km, fully 

within pseudo-steppe habitats inside the Castro V erde SPA (Figure 3.1). (see 

Chapter 1.2 for a general description of the Castro Verde SPA) 

The cereal pseudo-steppes are a spatio-temporal mosaic resulting from low­

intensity agricultural practices (Moreira et al. 2007) (see Appendix A. I). 

Traditionally, and as a result oflow productive soils, a rotational system is used, 

where each farm is divided into parcels. Each parcel is cultivated with winter 

cereal crops (mostly wheat Triticum spp. and oats Avena spp., sometimes mixed 

forage crops) for two consecutive years, which become stubbles after harvest, 

after which the land is left fallow, normally for a period of 2 to 3 years (but 

sometimes for periods of up to 7 years). The land is then ploughed (before 

seeding) and the rotation cycle re-initiated. This generates a landscape mosaic 

dominated by fallow fields (usually 50% of the area or more) which are usually 

used as pasture for sheep and, more rarely, cattle (Moreira 1999; Delgado & 

Moreira 2002). These fallows have a diverse floristic composition, including 

grasses (Gramineae), composite flowers (Compositae), cloves and other legume 

plants (Leguminosae). Also present are areas of shrublands, sometimes 

interspersed with old fallows as a result of hmd abandonment and scrub 

encroachment. Other less common land uses include afforestations of eucalyptus, 

umbrella pines and holm oak (Moreira et al. 2005), even though these areas were 

mostly excluded from the sample squares. 
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Figure 3.1 - The study area, with the main cartographic features, the eleven sample squares and (in grey) 

the non steppe areas, adapted f rom the CaRINE Land Cover 2000 map 

• Species data collection 
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The selection of the sample squares was based on the Corine Land Cover 2000 

map (of the EEA), at a spatial resolution of 250 m (land cover classes 2.1.1 , 2.3 .1 

and 2.4.3). For each of the sample squares, a systematic grid of 10 x 10 points 

was imposed, totalling 1100 sampling points. During the spring of 2006 

(between the 20th of March and'the 12th of May, covering the birds breeding 

season), bird censuses were carried out at these sampling points using point 

counts (circular-plot censuses) with a 5-minute duration and 125 m distance limit 

and all (visual and auditory) bird observations within the buffer were registered 

(Fuller & Langslow 1984; Bibby et al. 2000). All bird counts were carried out 

during the birds'period of peak-activity, i.e. the early mornings (first four hours 

after sunrise) and evenings (last two hours before sunset). From these counts, the 

occurrence (presence/absence) status of 13 species (Table 3.2) was determined. 

The Crested Lark Galerida cristata and Thekla Lark Galerida theklae were 

categorised to the genus level due to difficulties in reliably identifying all 

individuals ofthese two species in the field (Moreira et al. 2007) (see Appendix 

A.l). These data were integrated in a Geographic Information System (GIS), 

together with the RS data. 
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Table 3.2 - List of species studied and respective frequency of occurrence in the area 

Species 
Freq.of 

occurrence 

Mileal 0.780 

Meleal 0.283 

Galsp 0.230 

Teltet 0.162 

Cisjun 0.115 

Saxtor 0.108 

Calbra 0.101 

Aleruf 0.077 

Cirpyg 0.064 

Anteam 0.054 

Otitar 0.051 

Oenhis 0.033 

Buroed 0.031 

• Remote sensing data description and image pre-processing 

We acquired two overlapping Landsat TM full scenes (path/row: 203/34), which 

cover the whole of the study area. The image selection accounted for the absence 

of cloud contamination over the area, and the temporal coincidence with the field 

surveys. Thus, they are dated from 6th of March and 9th of May 2006, this way 

allowing for the description of the vegetation phenology (and crop cycle) during 

the season, particularly relevant in agricultural landscapes (Reed et al. 1994; Hill 

& Donald 2003). Data acquired in the six reflective TM spectral bands were used, 

from both images, which were subsequently pre-processed. The data pre­

processing included a radiometric correction into reflectance values (by using 

post launch sensor coefficients), an image-based Dark Object Subtraction (DOS) 

atmospheric correction (Chavez Jr. 1988), and a geometrical rectification. The 

latter was done through the careful identification of ca. 100 ground control points 

(GCPs) per image from topographic maps at a spatial scale of 1 :25000 and 

applying a bilinear interpolation resampling, maintaining the 30 m pixel 

resolution, and with a resulting Root Mean Square error of ca. 13.5 m, on both 

images. Owing to the very low terrain variability present in the area, no 

topographic normalisation was performed to the imagery. 
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• Digital Image Processing 

For an assessment of the advantages and limitations of different DIP methods for 

deriving good SDM predictor variables, we applied four distinct DIP techniques: 

hard supervised classification (Hard); soft supervised classification (Soft); 

calculation of spectral indices (SIs); and spectral band ordination (Ord). 

Additionally, we used the raw spectral bands without any further processing 

(Raw). The first three methods correspond to knowledge-based approaches as 

they aim to produce ecological meaningful predictor variables. Approaches Ord 

and Raw are numerical-based, which keep the numerical complexity (variability) 

of the data but carry no clear ecological interpretation. 

The hard supervised classification (Hard) was done with SVM models, generally 

considered to be a superior method for multi class image classification (Huang et 

al. 2002a; Foody & Mathur 2004). SVM is a machine learning algorithm based 

on statistical learning theory, effectively an optimal margin classifier which 

seeks to find the optimal separating hyperplane between different classes (Boser 

et al. 1992; Cortes & Vapnik 1995). By being non-parametric, and thus not 

assuming any specific data distribution, is well suited for habitat classes with 

complex and otherwise hardly separable spectral signatures. We used an 

improved version of the 'imageSVM' tool (Janz et al. 2007) which makes use of 

the freely available 'LIBSVM' library (Chang & Lin 2001). We used Gaussian 

radial basis kernel functions to solve the non-linear problems. Model training 

requires the definition of two parameters, y that controls the width of the kernel, 

and the regularization parameter C (C-SVM formulation) which controls the 

trade-off between maximizing the margin and penalizing the training errors. The 

multi-class posterior probabilities estimation was based on a one-against-one 

approach (Hsu & Lin 2002) through the calculation of the normalized sum of the 

respective pairwise posterior probabilities derived from the SVM decision values 

(Platt 2000; Lin et al. 2007). The image classification procedure then assigned 

each pixel to the most likely class of membership (with the highest posterior 
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probability). The search for the best C and'Y parameter combination was 

optimised through a 10-fold cross-validation procedure (Belousov et at. 2002; 

Steinwart 2003) and according to the highest average Cohen's Kappa statistic 

(Cohen 1960) calculated on the respective confusion matrices. This statistic was 

chosen in order to account for classes with different sizes in the training data. On 

both phases of model selection and training we used a low termination criterion 

tolerance (c = 0.0001), in order to allow for high numerical precision. In order to 

ensure model numerical stability, the model training data (spectral bands) were 

previously rescaled to values between 0 and 1. Before this procedure, however, 

they were all stacked together, this way keeping the relative magnitude between 

reflectance values of different bands and of different dates. 

Table 3.3 - Habitat classes defined/or the hard classification a/the imagery 

Class Description 

March habitat-related classes 

Bare soil 

Low vegetation 

Fallow 

Cereal 

Woodland/shrubs 

Water 

May habitat-related classes 

Bare soil 

Low vegetation 

Fallow 

Cereal 

Dry vegetation 

Green vegetation 

Woodland / Shrubs 

Water 

All areas with bare soil or no vegetation, including ploughed fields, 
but also dirt tracks and paved/built-up areas 

All areas with low vegetation, including both pastured fallow fields 
and (late or slow growing) cereal/forage crops 

All fallow fields, excluding those included in "Low vegetation" 

All cereal and forage crop fields, excl uding those inc1 uded in "Low 
vegetation", possibly including some grass-dominated fallows 

All areas of woodland and shrubs 

All water bodies, including rivers and lakes / dams 

Same as for March 

Same as for March 

Same as for March, except areas included in "Green vegetation" and 
"Dry vegetation" 

Same as for March, except areas included in "Green vegetation" and 
"Dry vegetation" 

Areas with particularly dry (senescent) vegetation, mostly 
herbaceous vegetation (Gramineae) such as cereal/forage fields or 
grass-dominated fallows 

Areas with particularly green vegetation, mostly in well irrigated 
areas and along water lines and topographic depressions 

Same as for March 

Same as for March 

The classification training data were extracted by careful interpretation of the 

field notes taken for the 1100 sample points visited during the bird census, and 

by visually interpreting the imagery. These locations were matched with the 

image pixels in the GIS, and the specific habitat-related class was determined for 
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only those pixels that fell within a 50 m radius from the visited locations, this 

way reducing possible labelling errors. When a pixel was composed of more than 

one habitat-related class it was not included in the training data, thus only pure 

pixels were used (2926 in total). The classes were defined according to their 

potential relevance for describing the species occurrence patterns (Table 3.3). 

The classes Fallow and Cereal correspond to the two main land cover classes 

that constitute the steppe mosaic. It was expected, however, that some grass­

dominated (Graminea) fallow fields could be classified as Cereal, due to the 

similar reflectance pattern of these vegetation types. The class Bare soil included 

all non-vegetated areas: even though this could also include paved or built-up 

areas, in the context of the sample squares (within the steppe mosaic), it mainly 

corresponds to ploughed fields and possibly some bare areas around the farm 

houses. The presence or abundance of these land cover classes has been 

previously associated with the studied species, in the region (Delgado & Moreira 

2000; Moreira et al. 2007) (see Appendix A.l). Vegetation vertical structure, 

such as height, is also an important descriptor (Moreira 1999), so low vegetated 

pixels (regardless of the land use) were incorporated in the Low vegetation class. 

Woodland and shrubs, although with a somewhat different ecological 

interpretation (Moreira et al. 2007) (see Appendix A.l), have a similar spectral 

response (at the spectral resolution of Landsat) thus were considered in one 

single class Woodland / Shrubs. The class Water described all the water bodies 

present in the area. Along the period of study (March to May), the landscape was 

subject to sharp phenological events, such as the advanced senescence of 

(mostly) herbaceous vegetation (fallow grasses and forage/cereal crops) in the 

dryer areas, or its contrasting "greenness" in the more irrigated areas (in 

topographic depressions, water lines, etc.). For this reason, we considered two 

phenological classes in May: Green vegetation and Dry vegetation. The rarity of 

the classes Woodland/Shrubs and Water in the study area (within the pseudo­

steppe mosaic), however, presented an image classification problem. The low 

number of pixels from these classes within the training data (34 Woodland / 

Shrubs pixels and 12 Water) resulted in a poor spectral characterisation of these 

classes, and therefore we included 45 additional training pixels (30 and 15 for the 

respective classes) from known locations outside the sample squares. The 

classification of the imagery into separate March and May classes, besides fully 
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characterising the landscape on both dates, also allowed us to possibly infer 

about the timing of important events in the breeding season of individual species. 

Nevertheless, we found that the "knowledge" of the spectral information from 

both images greatly improved each of the two individual classifications (see 

results section), as different habitat classes have different phenological patterns 

along the season. This way, both classifications, used the same multi-date 

spectral data (12 spectral bands: 6 from March and 6 from May), differing only 

on the training data labels. This was also expected to improve the comparison 

between the two classified maps and its interpretation in terms of temporal (and 

phenological) change, by reducing errors resulting from the use of different 

datasets. These errors could include slight image misregistration or the mismatch 

in the calculation (by the SVM classifier) of the hyperplanes between similar 

class pairs (for example bare soil and water) due to data scaling issues rather than 

to real changes in the class characteristics. Classification performance was 

assessed through inspection of the overall classification accuracy (OCA), the 

classwise producer and user accuracies and the Kappa statistic (Congalton 1991; 

Foody 2002), as calculated on a 10-fold cross validation confusion matrix. The 

additional training data (Woodland / Shrubs and Water classes) were not 

considered for the performance assessment because, due to their purposive/non­

random sampling, they would not allow an adequate interpretation of the 

performance statistics (Foody 2002). As a final step, in order to characterize the 

presence/absence of each habitat class, the classified images were converted into 

single-class Boolean images. 

The soft supervised classification (Soft) was done using the same methodological 

approach as above. However, in this case we used the SVM decision values as 

measures of class probabilities (or probabilities of membership of pixels to the 

classes). We considered them to be more suitable than the posterior class 

probabilities (as previously calculated in the image hard classification) because 

the latter, by being based on sigmoid functions, can encourage the hard allocation 

of classes (Foody 1996). The possible advantage of the soft classification 

approach is that it should allow for an ecological interpretation of the species 

habitat preferences (in terms of land use practices) while keeping the numerical 

79 



Remote sensing data analysis 

heterogeneity of the spectral data. Soft classification outputs can be related to the 

respective pixel fractions of cover, in a spectral unmixing manner (applicable to 

classes which describe distinct land uses, such as bare soil, fallow or cereal). 

However, for this purpose the defined classes must be separable in the unmixing 

space and thus we excluded the class Low vegetation. This class is by itself 

composed of a mix of spectra between the dominant bare soil cover and its low 

density vegetation, so it would fall within the spectral mixture space of the class 

Bare soil and the class ofthe respective vegetation (Fallow or Cereal). 

Otherwise, all classes were defined as for Hard (Table 3.4). 

Table 3.4 - Habitat classes defined/or the soft classification a/the imagery 

Class Description 

March habitat-related classes 

Bare soil 

Fallow 

Cereal 

Woodland/shrubs 

Water 

All areas with bare soil or nor vegetation, including ploughed 
fields, but also dirt tracks and paved/built-up areas 

All fallow fields 

All cereal and forage crop fields, possibly including some grass­
dominated fallows 

All areas of woodland and shrubs 

All water bodies, including rivers and lakes / dams 

May habitat-related classes 

Bare soil 

Fallow 

Cereal 

Dry vegetation 

Green vegetation 

Woodland/shrubs 

Water 

Same as for March 

Same as for March, except areas included in "Green vegetation" 
and "Dry vegetation" 

Same as for March, except areas included in "Green vegetation" 
and "Dry vegetation" 

Areas with particularly dry (senescent) vegetation, mostly 
herbaceous vegetation (Gramineae) such as cereal/forage fields or 
grass-dominated fallows 

Areas with particularly green vegetation, mostly in well irrigated 
areas and along water lines and topographic depressions 

Same as for March 

Same as for March 

On the other hand, the probability of membership of a pixel to the phenological 

classes (Green vegetation and Dry vegetation) should instead relate to the 

phenological stage of the respective pixel's vegetation, rather than to its fractions 

of cover. In the classification of the March and May habitat-related classes we 

used 2374 and 2653 training pixels, respectively (the difference between the 

sizes of these datasets relates to the amount of "mixed" low vegetated pixels 

excluded, at any particular date). The classification performance was assessed the 
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same way as with the Hard. Even though these performance measures are better 

suited for hard classification approaches (Gomez et al. 2008), they should still be 

good indicators of the SVM model performance. The SVM decision value 

images for each class were extracted, to serve as model predictor variables. 

The third approach used was the calculation of spectral indices (SIs), separately 

for March and May images. By browsing in the RS literature it is possible to find 

many different spectral indices (band combinations, ratios and normalized 

differences, etc.) which are commonly used to describe vegetation vigour, soil 

moisture content or soil brightness. In the search for the best set of indices that 

could describe the distribution patterns of the studied species, we calculated 

several candidate (potentially useful) indices (Table 3.5). The Tasselled Cap 

transformation (Kauth & Thomas 1976; Crist & Cicone 1984) is a band 

ordination technique designed for reducing Landsat spectral information into 

three meaningful and (linearly) non-correlated components. These are associated 

with soil brightness, vegetation greenness and soil moisture, and were originally 

conceived to describe agricultural crop development. We calculated the Tasselled 

Cap indices using the standard default coefficients for use with Landsat TM data 

(Crist & Cicone 1984). In order to describe bare soil, we also calculated the 

Normalized Difference Soil Index (NDSI) as defined by Rogers & Kearney 

(Rogers & Kearney 2004). Green vegetation was further characterised by two 

more indices: the Normalized Difference Vegetation Index (NDVI) (Rouse et al. 

1973), possibly the single most commonly used spectral index; and the 

Optimized Soil-Adjusted Vegetation Index (OSAVI) (Rondeaux et al. 1996), 

referred as a better method for describing vegetation in an agricultural context by 

reducing the effect of the soil background. Also, two additional indices relating 

to soil moisture content were calculated, the Normalized Difference Moisture 

Index (NDMI) (Wilson & Sader 2002) and the Normalized Soil Moisture Index 

(NSMI) (Haubrock et al. 2008). Finally, we calculated one index associated with 

senescent vegetation, the Normalized Difference Senescent Vegetation Index 

(NDSVI) (Qi & Wallace 2002), which could be particularly useful for describing 

the vegetation phenological condition in May. There is, however, some overlap 

in the architecture (for example, the NDSI is the inverse of the NDMI) and 
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rationale of some of the indices, which should result in high collinearity between 

them as well as similar ecological interpretations (as for example, several indices 

describing green vegetation). Nevertheless, this issue was addressed at a later 

stage and is described in the next section. 

Table 3.5 - Spectral indices calculated to describe bare soil, green and dry (senescent) vegetation and soil 

moisture, in both March and May images (Legend: TM3 to TM5 and TM7 - Thematic Mapper spectral 

bands 3 to 5 and 7) 

Description 

Soil Indices 

TC Bright - Tasselled Cap Brightness Index 

NDSI - Normalized Difference Soil Index 

Green vegetation 

TC Green - Tasselled Cap Greenness Index 

NDVI - Normalized Difference Vegetation Index 

OSA VI - Optimized Soil-Adjusted Vegetation Index 

Dry vegetation 

NDSVI - Normalized Difference Senescent Vegetation Index 

Moisture 

TC Wet - Tasselled Cap Wetness Index 

NDMI - Normalized Difference Moisture Index 

NSMI - Normalized Soil Moisture Index 

Formula 

See Crist & Cicone (1984) 

(TMS-TM4 )/(TMS+ TM4) 

See Crist & Cicone (1984) 

(TM4-TM3 )/(TM4+ TM3) 

(TM4-TM3)/(TM4+TM3+0.16) 

(TMS-TM3 )/(TMS+ TM3) 

See Crist & Cicone (1984) 

(TM4-TMS)/(TM4+ TMS) 

(TMS-TM7)/(TMS+ TM7) 

Spectral band ordination (Ord) was done through a Principal Components 

Analysis (PCA) (Pearson 1901). This procedure projects the data into an 

orthogonal space, to derive linearly non-correlated principal components, being 

particularly useful to handle highly collinear spectral data (Jenson & Watz 1979). 

Thus, it has been extensively applied to RS data for several ends, such as feature 

definition and discrimination (Santisteban & Mufioz 1978; Ceballos & Bottino 

1997), image classification (Patterson & Yool 1998) or the assessment of multi­

temporal and agricultural/phenological patterns (Panigrahy & Sharma 1997; 

Coppin et al. 2004; Lasaponara 2006). The procedure calculates the principal 

components based either on the data's variance/covariance matrix 

(unstandardized PCA), or on the respective correlation matrix (standardized 

PCA). The unstandardized method has the advantage of giving minimal 

weighting to the lower-order components (with smaller eigenvalues), which 

mostly define the noise element of the data, whereas the standardized PCA 

equally-weights all eigenvalues (this way inflating the weighting of variables 
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with relatively small variance and reducing that of variables with greater 

variance) with the resulting exaggeration of the effects of noise (Mimmack et al. 

2001). This second approach, however, is better able to separate the signal to 

noise ratio in the first components (Eklundh & Singh 1993). In this approach, by 

discarding the last components it is possible to eliminate most of the data noise. 

This data reduction procedure, on the other hand, is not recommended for 

subsequent use in a regression analysis, as the principal components with the 

smallest variation may describe infrequent thought influential events, which can 

be of greater importance in the regression equations (Jolliffe 1982). Hence, we 

analysed the 12 spectral bands (in a stack) and retrieved 12 principal components, 

as calculated by the unstandardized scores. 

• Model building 

For the purpose of defining the different sets of predictor variables, all products 

derived from the RS data were matched with the bird census data (within 

circular-plots of 125 m radius). This procedure was done by generating a dataset 

which synthesizes the predictor data within the circular-plot, to be used as model 

training data. The Hard, Soft, SIs, Ord and Raw datasets were calculated by 

averaging the image pixel values, weighted by their respective proportional 

composition in the circular-plots. This resulted in proportions of cover of each of 

the hard classes, and mean values for each of the other methods. At this stage we 

excluded the Hard and Soft classes Woodland / Shrubs (May), as we considered 

there not to have been any changes in the cover of woodlands and shrubs during 

the period of study. Indeed, these corresponded to roughly the same areas in the 

classified images and therefore the predictor related to the highest performing 

classifications (March) was selected. The class Water (for both March and May) 

was also removed as it was not considered relevant to the studied species. 

The species-environmental data were fitted with MARS (Multivariate Adaptive 

Regression Splines) models (Friedman 1991), implemented in R statistical 
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software (R Development Core Team 2008) with modified code from the mda 

package (Hastie & Tibshirani 1996), to allow for binary data (logit link function) 

and n-fold model cross-validation (Elith & Leathwick 2007). MARS is a 

nonparametric regression approach, which is capable of fitting complex (non­

linear) responses with reduced computational resources, by applying piecewise 

linear regression functions in a (modified) recursive partitioning manner 

(Friedman 1991). Its is therefore a fast and high performing modelling method 

(De Veaux et al. 1993), having been successfully applied in SDM studies 

(Leathwick et al. 2005; Elith & Leathwick 2007). The models are built in a two­

step approach: an initial forward stepwise procedure which iteratively splits the 

data domain into sub-regions (by placing knots) to fit them with a series of basis 

functions by ordinary least squares linear regression, until convergence; and a 

subsequent backward stepwise deletion strategy to produce an optimal set of 

basis functions, which keep most of the predictive power. This backward pass, 

aimed at eliminating model overfitting, is based in the lack-of-fit (LOF) criterion, 

a modification of the generalized cross-validation (OCV) criterion (Craven & 

Wahba 1979) to account for non-linearity, which penalizes both for lack-of-fit 

and increasing number of basis functions (Friedman & Silverman 1989; 

Friedman 1991), acting as a model regularization parameter. The implemented 

code allows the definition of the "penalty" parameter (default = 2), a cost 

function of the maximum number of terms (basis functions) included in the 

model, used to calculate the LOF criterion (Friedman 1991; Elith & Leathwick 

2007). Other features of MARS include the capability of fitting interactions 

between predictors ("mars. degree" parameter in the code, which refers to the 

maximum interaction order and is by default set to 1, this way fitting additive 

models) and multiple-species responses (potentially good for rare species with 

few data records). 

Owing to its forward selection procedure, MARS is vulnerable to high 

collinearity (or concurvity) in the predictor variables, with a potentially 

significant performance loss. Indeed, the choice of the best fitting variable (or 

knot) at a particular step of the procedure determines the choice of all further 

variables (and knots), and may not generate the best possible final variable 
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combination (De Veaux & Ungar 1994). Additionally, high collinearity in the 

data presents severe problems for model interpretability (Friedman 1991; Morlini 

2006). For these reasons we applied a variable reduction approach to each of the 

model training datasets so that they only incorporated predictor variables with 

pairwise correlation values smaller than 0.7 (Freedman et at. 1992). For this 

purpose, however, we used the Spearman rank correlation instead ofthe Pearson 

coefficient in order to account for some of the non-linear correlation effects. 

When two highly correlated candidate variables were found, we chose the one 

with the best average fit (as measured by the deviance explained) across species, 

in univariate MARS models. 

Table 3.6- Predictor variables used in the five training datasets (Legend: Mar - March; Dry veg. - Dry 

vegetation; Green veg. - Green vegetation; Wd/shrub - Woodland/shrubs; PCl to PC12 - Principal 

Components 1 to 12; TMI to TM5 and TM7 - Thematic Mapper spectral bands 1 to 5 and 7) 

Hard Soft SIs Ord Raw 

Bare soil (Mar) Bare soil (Mar) TC Bright (Mar) PCI TMI (Mar) 

Low veg. (Mar) Cereal (Mar) NDVI (Mar) PC2 TM2 (Mar) 

Fallow (Mar) Bare soil (May) TC Bright (May) PC3 TM3 (Mar) 

Cereal (Mar) Fallow NDSVI (May) PC4 TM4(Mar) 

Bare soil (May) Cereal (May) TC Wet (May) PCS TMS (Mar) 

Low veg. (May) Dry / Green veg. (May) PC6 TM7 (Mar) 

FaIIow(May) Woodland / Shrubs PC7 TMI (May) 

Cereal (May) PCS TM2(May) 

Dry veg. (May) PC9 TM3 (May) 

Green veg. (May) PCID TM4 (May) 

Woodland / Shrubs PCII TMS (May) 

PCI2 TM7 (May) 

No significant correlations were found between variables in the Hard dataset so 

all were kept (Table 3.6). The Soft dataset included two pairs of highly correlated 

variables: Fallow (March) and Fallow (May) (Spearman rho rs = 0.799; n = 

1100;p < 0.0001); and Dry vegetation (May) and Green vegetation (May) (rs =-

0.726; n = 1100;p < 0.0001). The first pair was reduced to Fallow (May), which 

should hereafter be representative of the class Fallow throughout the period of 
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study. The second pair was reduced to Dry vegetation (May), which should then 

represent the vegetation phenological gradient Green / Dry vegetation. The 

analysis of the SIs dataset aimed at eliminating highly correlated spectral indices 

but also, at a conceptual level, eliminating indices with similar interpretation. 

The inspection of the respective correlation matrix showed that, for each date 

(March and May), all green vegetation and soil moisture indices were highly and 

positively inter-correlated. The same was the case for all the previous and the 

NDSVI in March but not in May, probably due to the absence of senescent 

vegetation (measured by the NDSVI) at the earlier date. Additionally, we found 

that the NDSI was always highly and negatively correlated with all green 

vegetation and moisture indices, within each date. After applying the defined 

variable reduction approach the dataset was reduced to five predictors which are 

able to describe the spatio-temporal patterns of the main relevant landscape 

features: bare soil, green and senescent vegetation and soil moisture (Table 3.6). 

The Ord dataset showed no significant correlations between variables, 

confirming that the PCA was capable of breaking down not only the data's linear 

dependencies but also its rank correlation patterns. The Raw dataset, which is to 

be considered as control, was not subject to this variable reduction procedure. 

This dataset illustrates the potential of raw (unprocessed) RS data for direct use 

as predictors in the SDMs. 

Single-species MARS models were fitted on each of the five datasets. The 

models' maximum interaction order and penalty were optimised according to the 

best average model performance for all methods and all species. This generated a 

common methodological approach, which allowed an easier comparison of the 

model results. Model performance was assessed through a 10-fold cross­

validation, while controlling for prevalence in the data resampling. In order to 

account for the variability inherent in the cross-validation process (Breiman 

1996), five replications of each cross-validation were ran and the respective 

average calculated. As a performance measure we calculated the respective 

averaged ROC AUC scores (Hanley & McNeil 1982). Additionally, the same 

measure was calculated directly on the training data, which, through comparison 

with the cross-validated value allows inference about the model generality. 
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3.3. Results 

• Digital image Processing 

The image hard classification approach generated two classified maps 

corresponding to the habitat-related classes for March and May dates (Figure 3.2) . 

Figure 3.2 - March (above) and May (below) habitat maps, as resultingfrom the image hard classification, 

overlaid with the sample squares 
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Both classifications achieved high overall performance as calculated by the 

cross-validation procedure with OCA values of90.67% and 87.80%, and Kappa 

of 0.8589 and 0.8380, respectively for the March and May habitat classes (Table 

3.7). The respective user's accuracies ranged from 87.03% and 100.00% 

(92.10% on average) and from 80.07% and 100.00% (89.87% on average), and 

the producer's accuracies from 64.71 % and 94.65% (83.92% on average) and 

from 70.59% and 92.61 % (84.05% on average). The lowest ofthese values 

(64.71 % and 70.59%) are relative to the producer's accuracies for class 

Woodland / Shrubs on both March and May classifications. This measure refers, 

however, to the proportion of pixels of a certain class (according to the ground 

truth information) which were correctly classified. Since this class is not well 

represented in the validation dataset, the accuracies obtained should be 

considered an underestimation of the real classwise performances. 

The average performance increase resulting from the incorporation of the full 

(multi-date) spectral data on both March and May habitats classification was of 

8.07% in OCA and 12.77% in Kappa (Table 3.8). 

Table 3.7- Performance of the image hard classification into the March and May habitat-related classes 

Class 

Bare soil 

Low vegetation 

Fallow 

Cereal 

Dry vegetation 

Green vegetation 

Woodland/Shrubs 

Water 

OCA 

Kappa 

March May 

User's Ace. Prod. 's Ace. User's Ace. Prod. 's Ace. 

92.74 % 

87.03 % 

89.22 % 

95.62 % 

88.00 % 

100.00 % 

90.6699 % 

0.858917 

86.47 % 

82.08 % 

94.65 % 

92.29 % 

64.71 % 

83.33 % 

93.68 % 92.61 % 

80.07 % 75.79 % 

88.89 % 92.47 % 

86.00 % 80.48 % 

87.36 % 89.22 % 

90.67 % 87.93 % 

92.31 % 70.59 % 

100.00 % 83.33 % 

87.7990 % 

0.838034 
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The fact that the additional data (from the classes Woodland / Shrubs and Water) 

was not incorporated in the validation dataset did not allow for a statistical 

validation of its inclusion in the image classifications. It was, however, possible 

to observe improvements in the discrimination between these two classes, by 

visual inspection of the classified imagery in areas of known cover. 

Table 3.8 - Pelformance comparison befvlieen the use of single-date and multi-date spectral data in the 

image hard classification models 

March classes 

OCA 

Kappa 

May classes 

OCA 

Kappa 

Single-date 

spectral data 

85 .6459 % 

0.781883 

79.4942 % 

0.722878 

Multi-date 

spectral data 

90.6699 % 

0.858917 

87.7990 % 

0.838034 

The image soft classifications generated a probability of membership map for 

each class, on each classification (Figure 3.3). 

Figure 3.3 - Examples of soft classification outputs (the gradient black to white reflects the probability of 

membership of a pixel to each class, ranging respectively Fom 0 to 1): Bare soil (March) ; Cereal (March) ; 

Woodland / Shrubs (March) ; Bare soil (May); Fallow (May) ; and Dry vegetation (May) 
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The overall cross-validated performance values achieved by these models were 

OCA of95.53% and 91.18% and Kappa of 0.9171 and 0.8754, respectively 

(Table 3.9). The user's accuracies achieved ranged between 95.29% and 

100.00% (96.97% on average) and between 86.52% and 100.00% (92.19% on 

average), and the producer's accuracies between 76.47% and 97.74% (91.21 % on 

average) and between 71.43% and 96.02% (86.70% on average). 

Table 3.9 - Performance of the image soft classification into the March and May habitat-related classes 

Class 

Bare soil 

Fallow 

Cereal 

Dry vegetation 

Green vegetation 

Woodland/Shrubs 

Water 

O.CA. 

Kappa 

March May 

User's Acc. Prod. 's Acc. User's Acc. Prod. 's Acc. 

97.74 % 97.74 % 95.48 % 96.02 % 

95.29 % 97.62 % 92.38 % 94.52 % 

95.51 % 92.54 % 86.52 % 82.35 % 

96.30 % 

100.00 % 

95.5346 % 

0.917136 

76.47 % 

9l.67 % 

90.l6 % 

9l.48 % 

89.29 % 

100.00 % 

91.1844 % 

0.875363 

9l.34% 

87.93 % 

7l.43 % 

83.33 % 

The resulting performance increase due to incorporation of the multi-date 

spectral data was, on average, 9.05% in OCA and 15.74% in Kappa for both 

classifications (Table 3.10). 

The spectral index calculation process resulted initially in 18 images (9 indices x 

2 dates), which were further reduced to 5 by the variable reduction procedure 

above explained (Figure 3.4). 
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Table 3.10 - Peliormance comparison between the use of single-date and multi-date spectral data in the 

image soft classification models 

Single-date Multi-date 

spectral data spectral data 

March classes 

OCA 92.2284 % 95.5346 % 

Kappa 0.854328 0.917136 

May classes 

OCA 78 .9894 % 91.1844 % 

Kappa 0.694354 0.875363 

Figure 3.4 - Spectral indices used in the models: TC Brightness (March); NDV1 (Mar); TC Brightness 

(May); TC Wetness (May); and NDSVI (May) 

By the band 'ordination method we obtained 12 principal components. Most of 

the data variability was contained in the higher order components: 95.87 % in the 

first 4 components (Table 3.11). 
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Table 3.11 - Percentage variability contained in each o/the 12 principal components 

Principal 
Variability 

Principal 
Variability 

Component Component 

47.015 % 7 0.555 % 

2 29.360 % 8 0.314 % 

3 12.650 % 9 0.190% 

4 6.842 % 10 0.091 % 

5 1.923 % 11 0.069 % 

6 0.937 % 12 0.053 % 

• Species distribution models 

The MARS models were fitted for the 13 bird species using the five training 

datasets, corresponding to the five data analysis approaches (Table 3.12). The 

default values of "penalty" (= 2) and "mars.degree" (= 1) were those that 

presented the best average model performance for all methods and across species, 

so these parameters were fixed at these values. 

The model performance values, as calculated by the cross-validation procedure 

(AUCcv), ranged respectively from 0.518 to 0.819 (0.683 on average), from 

0.595 to 0.814 (0.689 on average), from 0.542 to 0.823 (0.683 on average), from 

0.569 to 0.828 (0.710 on average) and from 0.576 to 0.844 (0.703 on average), 

on datasets Hard, Soft, SIs, Ord and Raw. The mean difference found between 

these measures and the AUC calculated on the training data was of 0.082, 0.083, 

0.072, 0.088 and 0.099 for the respective datasets. 

Overall, the numerical-based methods achieved higher performances than the 

knowledge-based approaches (Figure 3.5). Additionally, the use of dataset SIs, 

resulted in good models, i.e. with AUCcv value above 0.7 (Hosmer & Lemeshow 

2000) for five ofthe studied species and datasets Hard and Soft, for six species. 
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Models with datasets Ord and Raw achieved good performing models for seven 

and eight species, respectively. 

Table 3.12 - Model pelformance for the 5 datasets, as calculated directly on the training data (A UC) and 

through a 10-fold cross-validation (A UCcv) 

Hard Soft SIs Ord Raw 

Species Ave Avecv Ave Avecv Ave Avecv Ave Avecv Ave Avecv 

Milcal 0.804 0.766 0.770 0.727 0.785 0.768 0.828 0.791 0.810 0.761 

Melcal 0.781 0.752 0.752 0.711 0.768 0.745 0.824 0.788 0.830 0.782 

Galsp 0.787 0.756 0.774 0.741 0.732 0.702 0.824 0.783 0.821 0.773 

Teitel 0.716 0.644 0.727 0.673 0.697 0.645 0.771 0.722 0.767 0.712 

Cisjun 0.858 0.819 0.852 0.814 0.852 0.823 0.879 0.828 0.883 0.844 

Saxtor 0.738 0.681 0.726 0.654 0.715 0.660± 0.774 0.721 0.785 0.724 

Calbra 0.782 0.700 0.778 0.739 0.757 0.727 0.819 0.735 0.794 0.734 

Aleruf 0.764 0.685 0.742 0.650 0.708 0.675 0.764 0.669 0.788 0.702 

Cirpyg 0.734 0.621 0.749 0.657 0.699 0.607 0.772 0.646 0.701 0.662 

Antcam 0.834 0.685 0.836 0.705 0.812 0.696 0.804 0.666 0.845 0.591 

Otitar 0.650 0.518 0.778 0.617 0.732 0.623 0.766 0.644 0.827 0.584 

Oenhis 0.796 0.705 0.747 0.671 0.840 0.671 0.833 0.662 0.862 0.686 

Buroed 0.698 0.544 0.796 0.595 0.722 0.542 0.705 0.569 0.709 0.576 

3.4. Discussion 

This chapter started by reviewing some of the most commonly used RS data 

sources, their characteristics and main areas of application. The large number of 

available sensors, collecting information at a wide range of spatial scales, makes 

them a prime source of environmental descriptor data, which can be used as 

predictor variables in SDMs. Nevertheless, the empirical nature of these models 

makes them particularly sensitive to errors or biases in the input data (Buckland 

& Elston 1993; Elith et al. 2002). These biases can be within the species 

locational dataset, like observer bias (Diefenbach et al. 2003), sampling bias (see 

Chapter 2) and positional errors (Osborne & Leitao in press) (see Appendix A.2), 

or as well in the model predictors. In order to reduce the possible sources of bias 
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in RS data, all the steps taken in the process of information extraction (image 

pre-processing and processing) should be chosen with care. 

Figure 3.5 - Mean (and standard error) of the model peljormance values, across species, for the 5 dafasefs 
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The first possible source of bias is the selection of the RS data source itself. This 

requires a good understanding of the data characteristics of the different sensors, 

their spectral, radiometric, spatial and temporal resolutions (Lu & Weng 2007). 

The selected imagery should be able to characterise the features or habitats that 

determine the species distributions, at an appropriate spatial resolution (Kerr & 

Ostrovsky 2003; Guisan et al. 2007). Image availability and cost, as well as 

atmospheric conditions can also be influential for this choice. For example, in 

regions of high cloud cover persistence (as in some tropical areas) it is difficult to 

obtain a good, cloud-free, ground coverage from optical sensors and thus radar 

systems could be preferable. In our case study, the Landsat TM imagery acquired 

was able to describe the landscape vegetation patterns important for the studied 

species. Additionally, by acquiring two overlapping images from along the 

season, we were able to describe the observed phenological events in the area, 

during the period of study. 

The image pre-processing stage includes the radiometric , atmospheric and 

geometric corrections of the images. The radiometric and atmospheric 

corrections directly change the values of the image pixels, reducing the biases 
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from the sensor (converting them to radiance or reflectance values) and from 

atmospheric effects, such as haze scattering. Moreover, when using multi-date 

(or multi-sensor) imagery, these corrections allow for a direct comparison 

between different imagery and should therefore be mandatory (Paolini et al. 

2006). Geometric correction is the process of image res amp ling (by 

interpolation) and registration to the user-defined coordinate system, this way 

allowing data integration in a GIS. This process determines the final image pixel 

values and spatial patterns (Cracknell 1998), which will be used as 

environmental descriptor data and should thus be performed with the best 

possible accuracy. 

The DIP method used, however, has much wider implications for the subsequent 

analysis, as it defines the model predictor variables, and thus influences model 

performance, interpretability and generality. Therefore, the selection of an 

adequate approach should be carefully assessed. Our study aimed at providing a 

comparison between different possible methods for information extraction of 

these data. 

Image classification approaches, by definition, bias the spectral information by 

assigning it to spectral or thematic classes, through the definition of thresholding 

rules. Unsupervised methods, although requiring little input (bias) from the user 

(such as number of output classes or number of iterations to use in the 

calculations) and thus being closer to the spectral data distribution, may reveal 

classes that are not important for describing the species distribution patterns. 

Supervised techniques, on the other hand, can directly relate to the desired 

habitat classes, which should be defined accordingly. The classification system 

should thus be designed in order to suit the study aim, by incorporating existing 

knowledge of the species ecology. The prior definition of the output classes, 

however, is a source of data bias and should be carefully undertaken. The chosen 

classes should be suitable to describe the species distribution patterns, on which 

depends the good performance of the SDMs. Nevertheless, the definition of non­

interesting classes can be useful in the image classification process, as it may 
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improve the spectral separability of the classes of interest. A sufficient number of 

training samples should be selected, capable of a good spectral characterisation 

of all defined classes. Indeed we found that the classification of the habitat 

classes in the Castro Verde study area benefitted from the inclusion of additional 

training points of two classes which were poorly represented in the study area 

(Woodland / Shrubs and Water). Additionally, and depending on the 

classification method used, the inclusion of pixels of mixed cover in the training 

data can further bias the class spectral characterisation. 

Image hard classification, i.e. the assignation of image pixels into discrete classes, 

is the most commonly used DIP approach. Parametric methods for image 

classification, such as the MLC, can work well to distinguish homogeneous 

classes and with good spectral separability. However, they assume a normal 

distribution of the input (spectral) data that usually would require an additional 

processing step (for data normalisation). In addition, these methods fail to 

describe classes with complex or overlapping spectral signatures. Thus, non­

parametric approaches such as ANN or SVM are desirable in order to achieve 

good classification results (Benediktsson et al. 1990; Huang et al. 2002a). These 

more robust methods are also capable of dealing with small or mixed pixels 

training datasets (Foody & Mathur 2006). We aimed to achieve a classification 

system which was ecologically meaningful, even though with the definition of 

thematic classes with complex and intergrading spectra. Nevertheless, by 

carefully defining a classification system that incorporated a good knowledge of 

the area and the respective landscape dynamics, it was possible to achieve good 

overall and classwise performances. 

Soft classification techniques, by keeping quantitative information relative to the 

probability of membership of each pixel to every class, include one less step of 

information reduction in the process and should therefore be less biasing than 

hard classification approaches. On the other hand, by imposing a classification 

system to the data they allow an interpretation in terms of the classes of interest 

in the specific study. Moreover, they are able to describe the vegetation continua 
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and intergrading classes as they occur in natural or semi-natural landscapes 

(Foody 1992). They present, therefore, a compromise between information loss 

(and bias) and class interpretability, which should be ideal for use in ecological 

studies. Once again, the choice of the classification algorithm can influence the 

final classification performance. The classification accuracy assessment was, 

however, based on measures most adequate for hard classification approaches 

(Gomez et al. 2008), which should nevertheless be good indicators of the soft 

classification results. 

The use of spectral indices aims to extract useful information from specific 

spectral band combinations known to relate to particular surface characteristics, 

such as vegetation vigour, soil moisture or amount of bare soil. These indices, by 

making use of the information contained in several spectral bands into single 

meaningful measures, can be considered as data reduction techniques. Different 

indices reduce the data in different ways, and the choice of which indices to use 

is therefore another source of bias. Most spectral indices, in fact, combine only 

two spectral bands and discard most of the data contained in the original spectral 

bands. The Tasselled Cap indices (Kauth & Thomas 1976; Crist & Cicone 1984), 

on the other hand, make use of the six reflective bands ofthe Landsat TM sensor. 

However, the index selection should be related to the aim of the study, by being 

able to describe the species occurrence patterns and by providing good ecological 

interpretability. For this reason we made our decision depend on the species data, 

by fitting univariate models and selecting those indices that better described (on 

average, across species) the observed patterns. This approach is not new 

(Zimmermann et al. 2007) and aims to find a best set of common predictor 

variables for all species, while avoiding collinearity problems in the modelling 

process. Indeed, the Tasselled Cap indices were preferred in most cases to the 

simpler indices, with the exception of the NDVI for March, which was preferred 

instead of the TC Greenness index. The presence of senescent vegetation in May, 

and its relevance for the studied species, resulted in the selection of the NDSVI 

for this date. The five indices selected by this approach were then able to 

describe the amount of bare soil, green vegetation (and soil moisture, which were 

always highly correlated) and senescent vegetation in both dates. 
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The three previous approaches (hard and soft image classifications and spectral 

index calculation) generate model predictor variables which are ecologically 

interpretable, with varying degrees of data reduction and bias introduced. The 

different habitat classes described by the image classifications should be 

considered indirect predictors, as they indirectly reflect a combination of the 

resources used by the species (Guisan & Zimmermann 2000). The nature of the 

predictors extracted from the two classification methods is therefore identical, 

even though the former implies more information loss by the assignation of each 

pixel to individual classes. On the other hand, the latter may be more difficult to 

interpret, as the proportion of cover of a certain class is more parsimonious than 

the probability of membership to the same class. Spectral indices, in turn, can 

express resource, direct and indirect predictors. Amount of green vegetation, as 

measured by the NDVI could be a resource for some of the species (being 

directly consumed by them), or an indirect predictor for others. The amount of 

bare soil present (TC Brightness index) reflects an indirect predictor, the same 

way as the bare soil class from the classification approaches. Surface soil 

moisture or humidity, as measured by the TC Wetness index, can be considered a 

direct predictor as it has a direct physiological influence on the species. Thus, the 

image classification approaches generate more distal predictors than the spectral 

indices (which are more proximal), and should result in models with less 

generality than the latter method. However, by being easily translatable into land 

use practices, they may have an additional value for application to local 

conservation actions. 

The ordination of the spectral bands into principal components for use in 

regression models is a classical approach to handle data collinearity, known as 

principal component regression (Hotelling 1957; Massy 1965), which in the case 

of MARS models has been referred to as principal component MARS (De Veaux 

& Ungar 1994). Indeed, the PCA applied to our spectral dataset was able to break 

the linear and the rank correlation effects between bands. However, the MARS 

models, by fitting non-linear responses to the data, are sensitive to data 

concurvity (non-linear dependencies) (Friedman 1991), hence the 
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implementation of newer non-linear transformation approaches, such as the 

Additive PCA (Donnell et al. 1994) or the iterative Kernel PCA (Scholkopf et al. 

1997; Kim et ai. 2005) would have been preferred to the intended end. 

Nevertheless, these ordination approaches aim to keep all the original data 

variability in a new (non-correlated) feature space, for use in the regression 

models. The same way, the direct use of the raw spectral bands in the models 

also keeps all the data information, even though in a form that is not fully usable 

by the models, due to data correlation effects, as discussed before. Consequently, 

the models resulting from this approach have lower performances than those of 

the principal component MARS. These two numerical-based approaches, while 

keeping most of the data variability and this way resulting in better performing 

models, result in distal and indirect variables of difficult (if possible) 

interpretation. 

Our results confirmed the higher model performance (on average) of the 

numerical-based approaches in relation to the knowledge-based ones. This 

finding suggests that these methods are preferable when issues of model 

generality or interpretability are not concerned, i.e. when used only for prediction 

within the study site and period. This is the case when the aim of the study is to 

derive the best possible distribution map of the studied species, without requiring 

an ecological interpretation or model projection to other areas or study period. 

Nevertheless, a post-modelling interpretation of the resulting patterns and 

association with ecological meaningful variables is always possible. From these 

two approaches, and due to the modelling process itself, we found that data 

ordination resulted in best performing models, whereas the raw bands produced 

models with a higher degree of overfitting. 

When an ecological interpretation is to be taken from the model results, 

knowledge-based approaches must be used. From the comparison between these 

methods we found that predictors generated by image soft classification resulted 

in better performing models (on average) than those of the two other approaches. 

This highlights the potential of soft classification methods for use in SDMs. 
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Models fitted on spectral indices, however, should have more generality than 

those on habitat classes, due to the more proximal nature of their predictors. 

At an individual species level, however, it was not possible to conclude on a best 

predictor-deriving procedure. Within the knowledge-based approaches, both hard 

class and soft class predictors resulted in the best performing model for five 

species each (Meleal, Galsp, Saxtor, Aleruf and Oenhis with hard classes and 

Tettet, Calbra, Cirpyg, Anteam and Buroed when using soft classes). The use of 

spectral indices as predictors resulted in the best models for three species (Milcal, 

Cisjun and Otitar). Moreover, even though the numerical-based methods 

generally resulted in better performing models, this was not always the case, and 

some species (Calbra, Anteam, Oenhis and Buroed) were better modelled by 

knowledge-based predictors. Lastly, it is expected that these models could be 

further improved with the incorporation of predictor variables from other sources, 

such as those describing topography (slope, roughness, etc) and landscape or 

disturbance features, such as distance to road, to track, to water or to tree, etc. 

• Conclusions 

Remote sensing data, from the multiple existing sources and using the varied 

image processing methods available, provide a wide range of environmental 

descriptors, which can be used as predictor variables in SDMs. However, the 

choice of imagery to use and of the processing method to apply, determine the 

characteristics of these predictors, with a resulting effect on model performance, 

their generality and interpretability. Most importantly, DIP methods dictate the 

type and amount of information retained in the final predictors. The most data 

reductive methods, either by the definition of thresholds, such as image 

classification methods, or by discarding information, like the calculation of 

spectral indices, generally result in poorer performing models as judged by the 

cross-validated AUC values. On the other hand, numerically-based methods 

which keep the full data variability, such as PCA or even the direct use of the 
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raw spectral bands as predictors, although resulting in higher performing models 

lack ecological interpretability. The selection of the DIP method to use in the RS 

imagery should therefore be undertaken with care, always accounting for the 

advantages and limitations of the respective method and its adequacy to the study 

aims. 
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4. Very-high resolution laser altimetry datafor describing 

landscape features in the Castro Verde study area: the 

STEPPEBIRD campaign 

. \' 
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4.1. Background 

The Castro Verde study area, being the main steppe bird area in Portugal, holds 

populations of several threatened steppe bird species with national and 

international importance (Moreira et al. 2007) (see Appendix A.l). Despite the 

importance of cereal steppes to conservation, they have changed significantly 

during recent decades through agricultural intensification, land abandonment and 

afforestation with direct impact on bird populations (Baldock 1991; Tucker & 

Heath 1994; Suarez et ai. 1997). In order to devise adequate management 

schemes for the conservation of steppe birds and their habitats, it is necessary to 

understand how species use the environment. This, however, requires the 

acquisition and extraction of adequate environmental descriptors, which relate to 

the observed species occurrence patterns. These descriptors, when used in 

species distribution models (SDMs) allow the inference of species habitat 

preferences and the prediction of their distributions (Guisan & Zimmermann 

2000). 

Besides habitat type (explored in Chapter 3), vegetation height has been 

previously referred to as a key aspect that could influence bird populations in 

these landscapes (Moreira 1999). The presence or density of trees, by acting as 

landscape fragmenting features, has also been found to influence some of these 

species (Moreira et al. 2007; Reino et ai. in press) (see Appendix A.l). Also, 

built-up structures (like farmhouses) can be interpreted as indicators of 

disturbance and potentially be used to derive a predictor of species distributions. 

Finally, some studies at a larger scale have found topographic variability to 

influence some of these species as they tend to prefer relatively flat areas 

(Osborne et ai. 2001; Suarez-Seoane et al. 2002a). 

Airborne laser altimeter data, also known as Light Detection And Ranging 

(LiDAR) data, are capable of quantifying topography and vegetation canopy 

properties (Ritchie 1996). More specifically, LiDAR data are capable of 

measuring vegetation height (Davenport et al. 2000; Gen<; et al. 2004) and the 
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underlying topographic height (Cobby et al. 2001). Other landscape features, 

such as farmhouses and other built-up structures, can also be described by these 

data (Maas & Vosselman 1999; Priestnall et al. 2000). Moreover, these data, 

when coupled with high-resolution multispectral imagery may be used to derive 

spatially fine-grained predictors over large areas (Mason et al. 2003; Bradbury et 

al.2005). 

The current chapter aims to describe the EUF AR (European Fleet for Airborne 

Research) STEPPEBIRD research project, including a flight taken over the 

Castro Verde study area in the Spring of 2006, the data collected by the sensors 

on-board the aircraft and in the field campaigns, as well as the data processing 

for feature extraction and the generation of environmental descriptors for use as 

predictors in SDMs within the study area. 

4.2. Air campaign 

A Dornier 228-101 aircraft, from the Natural Environmental Research Council 

(NERC) Airborne Research & Survey Facility (ARSF), flew over the study area 

on the 18th and 19th of May 2006, as part of the "Western Mediterranean 

Campaign", and supported by EUF AR. On board, LiDAR data were collected by 

the Optech Airborne Laser Terrain Mapper (ALTM) 3033 sensor. The flight 

navigation system used a DGPS location system, referenced to a GPS base 

station mounted on the "Pereiros" trig-point (roughly in the centre of the study 

area), with a Leica System 1230 real-time GPS receiver provided by the NERC 

Geophysical Equipment Facility (GEF; Figure 4.1). Owing to sensor failure, only 

part of the study area was covered on the first flight day (seven flight lines). The 

remaining ofthe area was covered (five additional flight lines) on the second day 

of flight. On both days the aircraft flew at an approximate altitude of 2000 m, 

which resulted in a point data cloud with an approximate density of one point at 

every 1.9 m2
. For each laser pulse, first and last return elevation and signal 

intensity were collected. Additionally, co-registered multi-spectral data were 

collected by the Itres Compact Airborne Spectographic Imager (Casi-2) sensor, 
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which is still under processing (Leitao et al. 2007) and hence it is not described 

here. 

Figure 4.1 -Area covered by the STEPPEB1RDjlight, and location o/the GPS base station within the 

Castro Verde SPA 

Legend: 
~ Fhghtarea 
- SPA Castro Verde 
- Mainroads 
- Secondary roads 
-+-+ Railways 
---- Main rivers 
+ GP$ base station 

o 5Km 
=-==-= 

4.3. Field campaign 

With the aim of calibrating the LiDAR vegetation height data, a series of 

vegetation height measurements were taken in the study area during the weeks 

around (before and after) the STEPPEBIRD flight (Figure 4.2). These 

measurements were made along transects defined according to the different 

relevant land uses (fallow, cereal and shrub), and evenly distributed throughout 

the study area. DGPS locations were recorded for all measurement samples. 

Fallow field measurements were done by sampling the whole spectrum of 

vegetation heights, from the intensively pastured fields (with very low 

vegetation) to the old full growth fallows (vegetation higher than 50 cm). In total, 

401 measurements were made on fallow fields distributed along 19 transects. 

Fallow vegetation is often very heterogeneous in height, having more than one 

vertical stratum. Thus, sample points were selected along the defined transects, 

always spaced at least 5 m apart, so that they were evenly structured in a 3 m 

radius circle, and the dominant stratum was measured and the respective 
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proportion of ground cover estimated. The different cereal crops (varieties of 

wheat, oats and barley) were measured by sampling the full range of observed 

heights . In total 148 cereal measurements were taken along 18 transects. 

Additionally, 40 measurements were done on shrub areas. 

Figure 4.2 - Location a/the (fa llow, cereal and shrub) vegetation measurements within the Castro Verde 

SPA and the STEPPEBIRD fl ight area 

Legend: 
- Flight area 
- SPA Castro Verde 
- Main roads 
- Secondary roads 
--... Railways 
_M_. Main rivers 

• Fallow veg. measurements 

• Cereal veg. measurements 
• Shrub veg. measurements 
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4.4. Data processing and feature extraction 

The LiDAR data were originally processed by the Unit for Landscape Modelling 

of Cambridge University, as part of a collaborative arrangement with NERC 

ARSF. After this initial processing, these data were provided as point cloud data, 

in a single ASCII file per flight line, containing information on First Pulse Height 

(FPH), First Pulse Intensity (FPI), Last Pulse Height (LPH) and Last Pulse 

Intensity (LPI), geo-referenced to the UTM WGS84 coordinate system. 

These data were initially geo-referenced to the "Gauss Militar" (Hayford-Gauss 

projection, International Ellipsoid, Datum Lisboa IGeoE) reference system, with 

the Azimuth Systems' Azgcorr software (Release 110). The four signals (FPH, 

FPI, LPH and LPI) were then split into individual point cloud data files for 

subsequent interpolation into raster images with a 5x5 m2 pixel resolution. All 
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data interpolations were done using the GEON points2grid Utility software 

(http://lidaLasu.edu/points2grid.html), with a search radius equivalent to half of 

the output pixel diagonal. After gridding (interpolating), the output images were 

mosaicked together by averaging the overlapping pixel values. 

The FPI point cloud data were gridded by assigning the pixels to the mean 

elevation value of the points within the respective search radius, and 

subsequently mosaicked. A closer inspection at the intensity mosaic image, 

however, revealed some problems in these data. Firstly, the overall intensity in 

the flight lines flown on the first day was lower than those flown on the second 

flight day, denoting a sensor calibration problem between days - it is possible to 

observe (in Figure 4.3) a generally darker grey colour in the 7 most northern 

flight lines. Secondly, there was an observed banding pattern along and towards 

the edge of the flight lines, also suggesting a sensor calibration problem. Through 

empirical inspection of the data, it was possible to solve the first problem 

(between day calibration) as it was found that FPlday2 = FPlday l + 6.5 . The second 

calibration problem (banding along the flight lines), however, was not solved 

which makes the intensity data unusable without further processing. 

Figure 4.3 - Mosaic of the LiDAR intensity signal before (left) and after (right) in-between day calibration 

correction 

The FPH data was gridded by assigning the pixels to the maximum elevation of 

the points within the search radius . Assuming these data will be reflected from 
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existing landscape features (like vegetation or built-up structures) this procedure 

generates a Digital Surface Model (DSM). It was also assumed that within each 

gridded pixel, at least some of the returned (first) pulse data was reflected from 

the ground (Streutker & Glenn 2006). Therefore the LPH data was gridded by 

assigning the pixels to the minimum elevation of the points within the search 

radius, this way generating a Digital Terrain Model (DTM). (Figure 4.4) 

Figure 4.4 - LWAR-derived DSM (left) and DTM (right), with detailed views (insets) 

The difference between these two layers (DSM - DTM) was computed, which (in 

regi?ns without built-up structures) should be equivalent to a Vegetation Height 

Model (VHM; Figure 4.5), and correlated with the ground vegetation 

measurements. 

However, no significant and only very weak correlations were found between 

these values and the field vegetation height measurements (Table 4.1), which 

indicates that the method used for discriminating vegetation heights within these 

land cover classes was not successful. 
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Figure 4.5 - LWAR-derived VHM, with detailed view (inset) 

- Flightarca 
- SPA Castro Verde 

VHM=3m 

YHM =Om 

Table 4. 1 - Pearson correlation coefficient values between the measured vegetation heights (in/allow, 

cereal and shrub) and the LWAR-derived VHM values, with respective significance value (n.s. = non-

significant) 

Transects Pearson coefficient p-value Sample 

Fallow 0.l62 < 0.0001 401 

Cereal 0.075 D.S. 148 
Shrub -0.213 D.S. 40 

Instead, a high correlation between these and the surface slope (as calculated 

from the DTM) was found (r = 0.844; n = 589; p < 0.0001). Also by visual 

inspection of these two layers (VHM and Slope) it is possible to observe that the 

former mostly reflects the patterns of the latter with other features (such as trees) 

overlaid on top (Figure 4.6). 
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Figure 4.6- Detailed view of the VHM (left) compared with Slope (right) 

On the other hand, features with vertical heights greater than the slope range 

(within each gridded pixel), such as trees and built-up structures, should still be 

possible to extract from this VHM. Hence, a new image was generated which 

included all features with a height value above 3 m (in the VHM), which is then 

a map of (tall) vertical structures in the area (Figure 4.7). Both trees and built-up 

structures were identified in the resulting image, with the aid of topographic 

maps, the unprocessed CASI data and the Landsat soft classification (see Chapter 

3) for the study region. A map of trees was obtained by cleaning the vertical 

structures map from built-up structures and a few particularly high cereal fields. 

Additionally, a map of built-up structures was generated by inclusion of all 

identified objects. 

Figllre 4. 7 - Detailed view of the map of vertical structures above 3 m height (left, in black), compared with 

the tree map (right, in green), resulted from the identification and "cleaning" of the built-up structures 

';1-- '\. 

. .JIf' 
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4.5. Environmental descriptors 

The data layers resulting from the steps described above were then subsequently 

processed in order to generate useful environmental descriptors to be used in the 

SDMs. These were generated at a 30 m pixel resolution in order to match that of 

the Landsat-derived predictor variables (see Chapter 3). 

A Slope image was generated directly from the DTM. This was done by 

calculating, for each pixel, the tangent of the angle that has the maximum 

downhill slope in relation to the four neighbouring pixels (rook' s case procedure), 

multiplied by 100 to produce a percentage gradient (Figure 4.8). 

Figure 4.8 - Slope 

Legend: 
- Flight area 
- SPA Castro Verde I Slope = 10% 

Slope = 0% 

o 5 Km 

-A distance to the nearest built-up structure was calculated from the respective 

map of built-up structures. This reflects the Euclidian distance between each cell 

and the nearest of a set of target features . However, in order to guarantee a 

correct interpretation of this descriptor, the regions where the distance to the 

nearest feature was greater than the distance to the edge of the study area were 

eliminated (Figure 4.9). This variable is the one with the smallest extent, this way 
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defining the maximum common area between all predictor variables at this scale 

of study. 

Figure 4. 9 - Distance to the nearest built-up structure 

Legend: 
- Flight area 
- SPA Castro Verde 
ill Nearest built struct. at 3000+ m 

I Nearest built struel. at 0 m 

o 5 Km 

Additionally, a distance to the nearest tree map was calculated from the map of 

trees, using a similar approach as described above (Figure 4.10). 

Finally, the original 5m pixel resolution tree image was degraded into 30m pixel 

resolution through pixel averaging in order to generate a tree density map. This ' 

density map should be interpreted as the proportion of 5x5 m2 pixels classified as 

trees (in the LiDAR data processing) included in the resulting 30x30 m2 pixel 

(Figure 4.11). 
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Figure 4.10 - Distance fo the nearest tree 

Legend: 
- Flight area 
- SPA Castro Verde 

Nearest tree at 1000+ m 

Nearest tree at 0 m 

,=--=~=,5 Km 

Figure 4.11 - Tree density 

Legend: 
- Flightarea 
- SPA Castro Verde 

Tree density :;; 100% 

Tree density :;; 0% 

o 5 Km 
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4.6. Final remarks 

The initially proposed objectives of the STEPPEBIRD campaign included the 

discrimination of vegetation heights between different fallow and cereal fields, as 

well as the identification of shrubs, trees and other landscape features (such as 

built-up structures) which can influence species occurrence patterns. 

Unfortunately, it was not possible to correlate the LiDAR-derived VHM with the 

vegetation heights measured in the field. Other recent studies which successfully 

used LiDAR data to measure heights of low vegetation, such as wetland 

vegetation (Gene; et al. 2004) or sagebrush steppe vegetation (Streutker & Glenn . 

2006) collected the data at a much lower flight altitude (at app. 500 and 800 m, 

respectively) than in the present study (2000 m), indicating an inadequate 

mission planning for the objectives proposed in this campaign. 

Additionally, the ALTM 3033 sensor showed high instability, reflected in its 

failure during the flight on the first day (this way requiring a second day of 

flying), but also in the de-calibration of the intensity signal from one day to the 

next, and possibly the intensity banding observed towards the edges of each 

flight line. Nevertheless, these data were still useful to derive four predictor 

variables (Slope, Distance to built-up, Distance to tree and Tree density) to be 

used to model the species habitat preferences and distribution patterns within the 

study area. 

It is expected that the coupling of these data with the co-registered CASI data 

(not yet fully processed) will increase its potential use for describing fine-scale 

landscape heterogeneity, particularly within fallow fields, which are of greatest 

importance for most of the studied species (Moreira 1999; Delgado & Moreira 

2000). 
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5. Multi-scale analysis of steppe bird patterns of occurrence and 

habitat selection in Castro Verde 

,~ , 
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5.1. Introduction 

As seen previously (Chapter 1), the birds of the steppe environments face a 

number of different threats relating to habitat degradation, such as agricultural 

intensification, land abandonment or afforestation (Tucker & Heath 1994; 

Burfield 2005; Santos & Suarez 2005). As a result, the vast majority of steppe 

bird species have unfavourable conservation status (BirdLife International 2004), 

which highlights their importance for biodiversity conservation. Nevertheless, 

conservation efforts require an understanding of species habitat preferences, as 

well as their patterns of distribution. Hence, many recent studies have focussed 

on the ecology of these birds, either at the community level (Moreira 1999; van 

Heezik & Seddon 1999; Delgado & Moreira 2000; Brotons et al. 2004a; Moreira 

et al. 2007; Traba et al. 2007; Oparin 2008) (see Appendix A.l) or at the species 

level (Martinez 1994; Stoate et al. 2000; Lane et al. 2001; Franco & Sutherland 

2004; Pinto et al. 2005; Limifiana et al. 2006; Seoane et al. 2006). 

None of these studies, however, has dealt with the issue of spatial scale and thus 

researched steppe bird habitat preferences or the observed occurrence patterns at 

different scales. Scale, though, is a fundamental issue in the spatial and 

environmental sciences, as all ecological processes possess an inherent scale at 

which they occur (Wiens 1989; Levin 1992; Whittaker et ai. 2001; Blackburn & 

Gaston 2002). For this reason, a better understanding of species responses to the 

environment across different scales allows the development of better 

management measures, therefore having great importance for biodiversity 

conservation. The present work builds on this rationale and attempts to fill this 

research gap by investigating the habitat selection and distribution patterns of 

steppe birds in Castro Verde (a well-preserved pseudo-steppe region in South 

Portugal), at two different spatial scales. Additionally, a hierarchical multi-scale 

analysis is performed on some of the studied species (O'Neill et al. 1989; Pearson 

et ai. 2004). 
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For this purpose, a SDM approach was used, which by quantifying the 

associations between the species and the envirol1l11ent, is suitable for the 

inference of habitat selection as well as for the prediction of the resulting 

occurrence patterns (Guisan & Zimmermann 2000; Smirez-Seoane et al. 2002a). 

Furthermore, SDMs can be applied at multiple spatial scales (Whittingham et al. 

2005; Coreau & Martin 2007; Barbaro et al. 2008) and be used to support 

conservation planning (Ferrier 2002; Guisan & Thuiller 2005). Moreover, the 

landscape scale analysis here presented builds on a recent paper by Moreira et al. 

(2007) (see Appendix A.l) which provides the first results of an extensive survey 

of the steppe bird community within the pseudo-steppe areas of Castro Verde, 

carried out in parallel with the present work. 

5.2. Methodology 

• Study area 

This study was carried out at two different spatial scales, with respectively 

different spatial extents. The regional study was conducted in the Baixo Alentejo 

region in southern Portugal, as described in previous chapters (see Chapter 1.2; 

Chapter 2.3; Figure 1.1). The landscape study is located within the previous 

region and inside the Castro Verde SPA. The spatial extent of the study at this 

scale is defined by the maximum common area between all descriptive variables 

(see Chapter 4.5; Figure 4.9; Figure 5.1). 
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Figure 5.1 - Landscape scale study area within the Castro Verde SPA and respective data sampling 

Legend: 
- Study area 
- SPA Castro Verde 
- Mainroads 
- Secondary roads 
~ Railways 
---- Main rivers 

High intensive sample 
+ Low intensive sample 

• Species IDeational datasets 

o 5Km 

The regional scale species dataset consisted of 557 occurrence (presence / 

absence) records, according to an intensive (geographically) stratified sampling 

scheme. These data were collected in the field during the spring of 2004 

following the methodology described in Chapter 2.3. The landscape scale dataset 

included 1293 species occurrence records, according to combined systematic and 

random schemes, as follows. A portion of the dataset used (217 data records) 

follow a low-intensity sampling regular grid covering the full study area (see 

Appendix AI). The remaining ofthe data (1076 records) are located in a regular 

grid within 11 high-intensity sampling squares, which were randomly allocated 

over the region's steppe mosaic (see Chapter 3.2). All landscape data were 

collected during the spring of 2006 using a common field methodology 

(described in Chapter 3.2). In total, 16 species were considered, 11 of which are 

common to the studies at the two scales (Table 1.1). Both regional and landscape 

scale studies included 13 species each, and six species were used in the MS 

analysis. 
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• Environmental descriptors 

Environmental descriptive data were used from several different sources at both 

study scales, but with a large emphasis on RS data. Following work by Osbome 

et al. (2001) and Smirez-Seoane et al. -(2002a) it is assumed that steppe birds 

respond to factors relating to vegetation type / land cover, terrain and disturbance. 

At the regional scale, vegetation was described by two 12-month series ofNDVI 

data from the SPOT VEGETATION sensor, for the periods of June 2003 to May 

2004 and June 2005 to May 2006, respectively covering the year preceding the 

field campaigns at both study scales (Figure 5.2). 

Figure 5.2 - SPOT VGT ND VI ann1lal time-series Jor the periods 200314 and 200516 

Terrain and disturbance were characterised as in Chapter 2.3. This chapter also 

describes the procedures for feature extraction of all regional scale data in order 

to derive the respective model predictor variables (Table 5.1). Additionally, an 

extra variable, quantifying the distance to the nearest river or water body 

(Waterdist) , was included as a disturbance factor. This was derived from a 

hydrographical map provided by the Agencia Portuguesa do Ambiente / Atlas do 

119 



Multi-scale analysis 

Ambiente Digital (http ://www2.apambiente.pt/atlas/est/index. jsp). using the 

same methodology as used for extracting Roaddist. 

Variable 

Vegetation 

Summer 

Winler 

Spring 

D,y 

WeI 

Dec 

May 

Terrain 

A/I 

TopovlO 

Disturbance 

Urbandist 

Waterdist 

Roaddisl 

Table 5.1 - Predictor variables used in the regional scale models 

Description 

Vegetation senescence during the Sununer months: Summer = NDVI (Jun)­
NDVI (Sep) 
Vegetation growth during the AutullUl and Winter months: Winter = NDVI (Mm) 
-NDVI(Sep) 
Vegetation senescence during the Spring months: Spring = ND VI (Jan) - ND VI 
(ApI) 

Mean NDVI during the dry months: D,y = Average [ NDVI (Jun : Ocr)} 

Mean NDVI during the wet months: WeI = Average [ ND VI (Jan: ApI) } 

NDVI value for the month of December: NDVI (Dec) 

NDVI value for the month of May: NDVI (May) 

Mean altitude in metres within a 5 x 5 array of200 x 200 m pixels 

Variation in altitude in a 5 x 5 array of200 x 200 m pixels, where altitude is re­
classed to a 10 m vertical resolution. TopovlO = (n-l)/(p-l), where n = number 
of differenl a/lill/de classes in Ihe array, p = number o(pixe/s in Ihe array, i.e. 25 

Distance (in metres) to the nearest pixel containing towns, settlements or 
constructed structures 

Distance (in metres) to the nearest pixel containing rivers and water bodies 

Distance (in metres) to the nearest pixel containing roads 

Data SOUl-ce 

SPOTVGT 

SPOTVGT 

SPOTVGT 

SPOTVGT 

SPOTVGT 

SPOTVGT 

SPOTVGT 

DTM 

DTM 

CORINELC 

River map 

Road map 

At the landscape scale, vegetation type 1 land cover were described by data from 

the six reflective bands of two overlapping Landsat TM full scenes (path/row: 

203/34), respectively acquired at the beginning and end of the field data 

collection (6th of March and 9th of May 2006). Terrain was characterized by 

airborne LiDAR data acquired on the days 18th and 19th of May 2006. 

Disturbance was described using Landsat TM, LiDAR and field-collected GPS 

data. At this scale, all predictor variables were originally generated at a pixel 

resolution of 30 x 30 m, and the model training dataset was generated by 

synthesizing these data within the field sampled circular-plots (see Chapter 3.2; 

Table 5.2). All Landsat TM data processing for feature extraction is described in 

Chapter 3.2, being the resulting vegetation type 1 land cover predictor variables 

resulting from the SVM soft classifications. The use of soft classification outputs 

should allow for an ecological interpretation of the species habitat preferences 

while keeping the numerical heterogeneity of the spectral data (see Chapter 3.4). 

The disturbance variable D2water, however, used the map resulting from the 
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SVM hard classification of the March imagery. The feature extraction of the 

LiDAR-derived predictors is described in Chapters 4.4 and 4.5. Additionally to 

these, the variable Terrainvar was calculated as the standard deviation of Slope , 

within the respective circular-plot. The Dist2road variable was derived from a 

GPS data coverage of the paved roads in the study area. Finally, the prediction 

dataset was generated by applying a moving-window kernel filter (describing the 

circular-plot) to the predictor layers for the full study area. This procedure 

generated a new set of predictor variable layers with the same 30mx 30m pixel 

resolution, but containing information relative to the 125 m radius circular-plot 

around each pixel centre, i.e. the grain of analysis of the trained models. 

Table 5.2 - Predictor variables used in the landscape scale models 

Variable Description 

Vegetation type / Land Cover 

Fallow 

WdShr 

Terrain 

Bare soil or nor vegetation in March, including ploughed fields and dirt tracks and 
paved / built-up areas 

Cereal and forage crop fields in March, possibly including some grass-dominated 
fallows -

Bare soil or nor vegetation in May, including ploughed fields and dirt tracks and 
paved/built-up areas 

Fallow fie lds, except areas included in "DV_May" 

Cereal and forage crop fields in May, possibly including some grass-dominated 
fallows, except areas included in "DV_May" 

Phenological gradient from green to dry (senescent) vegetation, mostly relevant fo r 
herbaceous vegetation (Gramineae) such as cereal / forage fields or grass­
dominated fallows 

All areas of woodland and shrubs 

Slope Surface slope (in percentage) 

Terrainvar Terrain variability: standard deviation of "Slope" 

Disturbance 

D2water 

D2road 

D2built 

D2tree 

Treedens 

Distance (in metres) to the nearest pixel containing water bodies 

Distance (in metres) to the nearest pixel containing paved roads 

Distance (in metres) to the nearest pixel containing built-up structures 

Distance (in metres) to the nearest pixel contain ing trees 

Tree density: proportion of 5 m pixels classified as " tree" within each 30m pixel 

• Model building 

Data source 

LandsatTM 

LandsatTM 

LandsatTM 

LandsatTM 

LandsatTM 

LandsatTM 

LandsatTM 

LiDAR 

LiDAR 

LandsatTM 

GPS 

LiDAR 

LiDAR 

LiDAR 

All models were built according to a common methodological framework, at 

both scales of study. The species occurrence data were fitted to the 
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environmental descriptors using MARS models (Friedman 1991), for the 

purposes of prediction of the occurrence patterns and inference of habitat 

preferences. These models were implemented in R statistical software (R 

Development Core Team 2008) using code from the mda package (Hastie & 

Tibshirani 1996) further modified to allow for binary data (using a logit link 

function) and n-fold model cross-validation (Elith & Leathwick 2007). 

A detailed description of the functioning of MARS models is included in Chapter 

3.2; T~ey are considered to be fast and high performing (De Veaux et al. 1993; 

Elith ei "al: 2006), although their vulnerability to high collinearity (or concurvity) 

in the predictor data can potentially result in performance loss as well as present 

problems in model interpretability (Friedman 1991 ; De Veaux & Ungar 1994; 

Morlini 2006). Also, the effects of data collinearity on the models, by relating to 

the particular associations between the response variable and the respective inter­

correlated predictors, are expected to be case-specific (Snee & Marquardt 1984). 

Moreover, data multi-collinearity, by affecting the model variable selection 

procedure, is difficult to guard against in one-model approaches (MacNally 

2000). For this reason, and in order to account for these varying effects, three 

models were run for each species, using predictor subsets defined according to a 

varying maximum (Spearman) rank correlation between predictor variables, set 

respectively at 0.7, 0.6 and 0.5 . The selection of the respective sets of predictor 

variables was species-specific and done through a variable reduction approach as 

follows . In cases where two predictor variables were correlated above the set 

threshold, the one that best fitted (in terms of deviance explained) the respective 

response variable, using univariate MARS with a minimal backfitting 

penalization (penalty = 0), was selected. Similarly, in cases where more than two 

predictor variables were highly inter-correlated, all possible sets of variable 

combinations (according to the criterion) were examined and the set with the 

highest fit to the response was selected. Subsequently, the data were fitted using 

single-response MARS models (for each species). The selection of the best 

model parameters (of maximum interaction order "mars.degree" and backfitting 

penalization "penalty") was done through a grid search procedure (by searching 

all possible parameter combinations, in a grid), this way optimising the 
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parameters according to model performance, specific to each dataset. In this 

search, the maximal interaction order parameter was allowed to assume values of 

o (additive model) and 1 (allowing only first order interactions), and the 

backfitting penalization parameter could vary from 0 (minimal penalization) to 4 

(maximal penalization), in discrete steps. Model performance was assessed 

through a 10-fold cross-validation procedure, while controlling for prevalence in 

the data resampling. On each case, five replications were perfonned to account 

for the variability inherent in the c~'oss-validation process (Breiman 1996). The 

averaged (out of the five replicates) ROC AUC scores (Hanley & McNeil 1982) 

were used as a model performance measure (AUCcv). Additionally, the 

variables' drop contributions of the selected models (on each species-predictor 

dataset) were calculated in terms of percentage loss in modefdeviance explained 

when excluding each variable. Also, the model univariate partial regression plots 

were extracted. These represent the species response curves to each variable (or 

response shapes in the case of interacting variables) in the model. Additive and 

interacting effects between variables can result in multivariate responses 

different to those expressed in (single variable) partial plots, and it is therefore 

important to observe the response curves I shapes for the final model to ensure 

that they remain ecologically reasonable (Wintle et al. 2005). 

The overall best scoring model for each species (at each scale) was used for 

predicting its probability of occurrence within the (respective) study area, 

conditional on a minimal model performance (A UCcv) value of 0.7, indicative of 

"good" model performance (sensu Hosmer & Lemeshow 2000). For visualisation 

purposes, the landscape scale predictions (originally at a 30 x 30 m pixel 

resolution, but containing neighbouring infonnation relative to an are'!. equivalent 

to the data sampling circular-plot) were degraded to a 100 x 100 m pixel 

resolution, by pixel averaging. In order to assess the species preference (at the 

regional level) for the Castro Verde SPA, the averaged (regional) model 

prediction values were compared between pixels within this region and the whole 

Baixo Alentejo. 
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F or the purpose of inference of the species-environment associations, however, 

the use of the single best model is not appropriate due to the of data collinearity 

on the models' variable selection procedure. MacNally (2000) suggests that 

single-model approaches are difficult to guard against multi-collinearity, making 

them ineffective for identifying those variables most likely to influence variation 

in the dependent (response) variable. Thus, the three selected models (with the 

different predictor subsets) for each species were considered. The average model 

variable contributions were calculated for each case and the plots of the most 

contributing variables (on average) were inspected. From these plots, the typical 

(consistent among all three selected models) responses wei"e identified and 

. interpreted. This procedure aimed at identifying the predictor variables that 

mostly influenced the models, across different levels of data collinearity. Species 

responses were interpreted through the use of model partial plots, which 

represent the relationship between each variable and the probability of 

occurrence of the respective species, in the multivariate model context, 

independent of the other variables included in the model (Wintle et al. 2005) . 

The MS models were built in a hierarchical manner, using a top-down approach, 

by incorporating the predictions from the regional scale models as descriptive 

variables to be used as predictors at the landscape scale (O'Neill et al. 1989; 

Turner et al. 1989; Pearson et al. 2004). In this way it was possible to assess if 

the species' regional scale occurrence patterns can aid the explanation of those 

observed at the landscape level. The regional scale models, however, were 

trained on datasets relative to the spring of2004, different to that of the 

landscape scale data (spring of 2006). Therefore, these models were applied to 

regional scale datasets collected at both periods, thus, generating predictions of 

the occurrence patterns of steppe birds in the region for each year. These were 

then used separately in different MS models, respectively M2004 and M2006. 

Even though the main annual phenological patterns of the vegetation observed in 

the study region were similar in both years (Figure 5.2), the correlations between 

model predictors between years was always relatively low, with maximum value 

of 0.779, for variable Dry (Table 5.3), although always highly significant (p < 

0.0001). Moreover, a GLM Analysis of Variance (ANOVA) of these datasets 
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showed highly significant differences in the distribution of the data values 

between different years on all variables except for Winter (Table 5.3). 

Nevertheless, it was assumed that the species-environment associations fit on the 

2004 training dataset are transferable to 2006 and to the full regional study area. 

The use of the regional model predictions at the landscape scale, though, assumes 

only transferability within the Castro Verde study area. 

Table 5.3 - Comparison of vegetation descriptors for the Baixo Alentejo between both years: Pearson r 

correlation coefficient; andp value of significance of the GLM ANOVA 

Variable Pearson r ANOVAp 

Summer 0.325 0.0001 

Winler 0.626 0.097 

Spring 0.498 0.0001 

D,y 0.779 0.0001 

WeI 0.450 0.0001 

Dec 0.311 0.0001 

May 0.545 0.0001 

Hence, multi-scale MARS models were fitted only for those species with data 

collected at both spatial scales and with the respective regional model 

performance (AUCcv) above 0.7. The respective model parameters were 

optimized for performance by using the same grid search approach as in the 

single-scale models. In addition, the variable drop contributions were calculated 

for the selected models, and the respective partial plots extracted. Finally, the 

Kendall's 't (tau) rank correlation coefficient was calculated for the variable 

(drop) contribution values between the models at the landscape scale and the 

respective MS models. This measure is used for assessing model consistency, as 

an indicator of the effect of the introduction of the regional prediction variable in 

model structure. 
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5.3. Results 

• Species distribution models 

At each study scale, three models were selected for each species, one for each 

predictor dataset, with maximum rank correlations between variables set 

respectively at 0.7,0.6 and 0.5. The performance scores (AUCcv) of the selected 

regional scale models varied between 0.S90 and 0.807 (mean = 0.72S; SE = 

0.018) when using a correlation threshold of 0.7 (R70), between 0.S80 and 0.836 

(mean = 0.728; SE = 0.019) with a threshold of 0.6 (R60) and between 0.S79 and 

0.813 (mean = 0.72S; SE = 0.019) by setting the maximum correlation between 

variables to O.S (RSO) - see Table S.4. 

Table 5.4 - Species frequency of occurrence and selected regional scale models, when using rank 

·correlation thresholds of 0. 70 (R70), 0.60 (R60) and 0.50 (R50) between input variables (best p eliorming 

models in bold); model parameters are expressed in the form « "mars. degree ". "penalty "» 

Freq. R70 R60 RSO 

Species of 
Model AUCcv Model AUCcv Model AUCcv 

occurr. 

Cilpyg 0.188 1.4 0.771 1.3 0.771 1.1 0.780 

Alent! 0.519 2.0 0.682 1.3 0.673 1.0 0 .671 

Cotcol 0.461 2.3 0.754 1.3 0.746 2.2 0.756 

Teitel 0.285 1.2 0.784 1.0 0.783 1.0 0.793 

Olitar 0.058 1.1 0.807 1.2 0 .792 2.1 0 .787 

Buroed 0.032 1.0 0.695 1.0 0.699 2.1 0.675 

Pleori 0.022 1.2 0.799 1.4 0.836 1.4 0.813 

Galsp 0.232 1.3 0.675 1.3 0.682 2.0 0.652 

Melcal 0.132 1.3 0.770 2.1 0.789 1.0 0.780 

Oenhis 0.055 1.4 0.658 1.4 0.673 1.4 0.671 

Saxtor 0.440 2.0 0.590 2.3 0 .580 2.1 0.579 

Cisjun 0.637 1.1 0.738 1.1 0.733 1.1 0.725 

Milcal 0.903 1.3 0.699 1.0 0.706 1.4 0.739 

The best performing models were achieved for four of the studied species (Aleruf, 

Otitar, Saxtor and Cisjun) , for five species (Buroed, Cotcot, Pteori, Galsp and 

Oenhis) and for four species (Cirpyg, Cotcot, Tettet and MUcal), respectively 

with datasets R70, R60 and RSO. The performance of all best models (one per 
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species) ranged between 0.590 and 0.836 (mean = 0.736; SE = 0.019). The 

maximum model performance difference between datasets of the same species 

varied between 0.009 and 0.040 (mean = 0.019; SE = 0.003). The selected 

models included variable interactions (mars.degree = 2) for three, two and five 

species, respectively on the referred datasets. However, only for one species 

(Sax tor) were variable interactions consistently used on all three selected models, 

and on two of the selected models for one species (Coteot) . 

In terms of model structure, the variable that overall (on average, between the 

three subsets, and across species) most contributed in the models was Dry. In fact, 

this was the variable with the highest drop contribution in the models for five of 

the studied species (Cirpyg, Tettet, Otitar, Pteori and Melea!) and was highly 

contributing in the models of two other species (Buro~d and Gplsp) - see Table 

5.5. Variables May and Wet also had overall large contribution in the species 

models, being the most contributing for two (Aleruf and Buroed) and for three 

species (Coteot, Galsp and Saxtor), respectively. Additionally, Spring, Dec and 

Topov 10 were the variables with the highest drop contribution for one species 

each (respectively Oenhis, Cisjun and MUca!). 

Table 5.5 - Mean relative drop contribution of the regional scale models ' predictor variables (in proportion 

of the deviance explained by the model); the most contributing variables for each species are in bold 

~ ..... ..... ..... ... 
~ ~ ~ ... 

~ ....... .~ 
~ ~ C> ..... <.I 6- ;;:.. :g :: '- ~ ~ .:::: <::. ... :: 
~ ... 

~ ~ ~ "<: l::l ~ l::l 
~ ~ §- ..... ..e;, 

~ <::. :f &.;;; CI:: S 
Cilpyg 0 0 0 0.435 0 0 0.144 0.108 0 0 0 0 

Aleng 0.144 0.138 0 0.040 0.052 0 0.456 0.101 0 0.204 0 0.051 

Cotcot 0.010 0 0.169 0 0.208 0.128 0.130 0.055 0.169 0 0 0 

Teitel 0.059 0 0 0.407 0.150 0 0.050 0 0.045 0.009 0.031 0 

Olitar 0.216 0 0.007 0.490 0.027 0.065 0.016 0 0 0.004 0 0 

Buroed 0.243 0 0 0.202 0.039 0 0.311 0.054 0 0 0 0.105 

Pteori 0 0 0.004 0.757 0.036 0.1 51 0 0 0 0 0.043 0 

Galsp 0.090 0.199 0 0.35\ 0.356 0.306 0 0 0.009 0 0.074 0 

Melcal 0.064 0 0 0.561 0.024 0.035 0 0.123 0.019 0 0.017 0.032 

Oenhis 0 0 0.667 0 0 0 0.333 0 0 0 0 0 

Saxlor 0.143 0.181 0 0.100 0.318 0.085 0.099 0.030 0.1 23 0.023 0.165 0.016 

Cisjun 0.068 0.114 0 0 0.148 0.290 0.150 0.028 0.010 0 0 0.203 

Milcal 0.049 0 0 0.025 0.225 0.061 0 0.018 0.391 0 0 0 

MEAN 0.084 0.049 0.065 0.259 0.122 0.086 0.130 0.040 0.059 0.018 0.025 0.031 
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At the landscape scale, datasets obtained by setting variable correlation 

thresholds at 0.7 (L 70),0.6 (L60) and 0.5 (L50) generated models with 

performance scores ranging respectively from 0.571 to 0.836 (mean = 0.711; SE 

= 0.023), from 0.576 to 0.840 (mean = 0.708; SE = 0.022) and from 0.586 to 

0.833 (mean = 0.715 ; SE = 0.022) - see Table 5.6. These datasets resulted in the 

best performing models for four (Cirpyg, Melcal, Cisjun and Milcal), one 

(Galsp) and eight species (Aleruf, Tettet, Otitar, Buroed, Calbra, Antcam, Oenhis 

and Saxtor), respectively. The performance of the best models for all species 

ranged between 0.586 and 0.840 (mean = 0.718; SE = 0.022). The maximum 

performance difference observed between datasets of each species varied 

between 0.002 and 0.033 (mean = 0.013; SE = 0.003). The selected models 

included interactions between variables for two species on each of the datasets. 

Consistency in the use of variable interactions (on all datasets) was, however, 

only observed on one species (Tettet). 

Table 5.6- Species ji-equency of occurrence and selected landscape scale models, when using rank 

correlation thresholds ofO. 70 (L70) , 0.60 (L60) and 0.50 (L50) between input variables (best pel/arming 

models in bold); model parameters are expressed in the form « "mars. degree ". "penalty"» 

Freq. L70 L60 L50 

Species of 
Model AUCcv Model AUCcv Model AUCcv 

occurr. 

Cilpyg 0.062 1.3 0.630 1.4 0 .621 1.0 0 .624 

Aleruf 0.077 1.3 0 .674 1.2 0 .676 1.2 0.683 

Teitel 0.160 2.2 0.682 2.0 0 .681 2.2 0.683 

Olitar 0.052 2.1 0.571 1.0 0.576 1.0 0.586 

Buroed 0.032 1.3 0.595 1.4 0.585 1.3 0.599 

Galsp 0.232 1.1 0.836 1.0 0.840 1.0 0.833 

Melcal 0.283 1.0 0.803 1.1 0.799 1.0 0 .800 

Calbra 0.102 1.4 0.758 2.2 0.757 1.2 0.762 

An/cam 0.028 1.4 0.737 1.4 0.729 1.3 0.749 

Oenhis 0.033 1.0 0.686 1.1 0 .708 1.0 0.719 

Saxlor 0.110 1.2 0.73 1 1.1 0 .735 1.1 0.738 

Cisjun 0.114 1.4 0.806 1.3 0 .780 1.4 0 .800 

Milcal 0.778 1.4 0.735 1.4 0 .720 2.2 0.716 

The variables C _Mar and BS _May were the two overall most contributing in the 
, 

landscape models, being the ones with the highest drop contribution scores 
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Multi-scale analysis 

(averaged between the three datasets) respectively for five (Cirpyg, Tettet, 

Meleal, Calbra and Cisjun) and three of the studied species (Dtitar, Buroed and 

Oenhis) - see Table 5.7. Furthermore, Dist2tree was also the most contributing 

variable for three species (Galsp, Meleal and Saxtor) even though with a much 

lower overall mean contributing score as the previous. Also, both BS _Mar and 

Slope were the variables with the highest drop contribution for one species each 

(respectively Anteam and AlerufJ. 

Table 5.7 - Mean relative drop contribution o/the landscape scale models ' predictors (in proportion o/the 
: . 

deviance explained by the model) ; the most contributing variables/or each species are in bold 

... ... ... 6- 6- l::: ... 
~ ~ 

~ 
;: 6- ... 

~ 
;:.. ~ ~ 

~ ~ ~ ..::: ·5 .... l::: .... 
~ ~ ~ ~ §- ~ ~ ::: 

~I ~I 
.... 

;::..1 E ;: ... ..Q 
"1 \..)1 ~ \..)1 ~ ~ "1 "1 "1 

~ ~ ~ ~ ~ ~ ~ ~ 

0 0.487 0 0.047 0 0.047 0 0 0 0 0 0 0.097 

0.099 0.161 0.022 0 0 0 0.179 0.241 0 0.101 0.01 9 0 0 

0.024 0.553 0 0.051 0 0 0.137 0 0 0.238 0 0.051 0 

0 0.015 0.528 0.111 0 0.026 0.045 0.024 0 0.093 0 0.163 0 

Bliroed 0 0 0.755 0 0 0 0.096 0 0 0 0 0 0 

Galsp 0.022 0.045 0.018 0 0.033 0.006 0.010 0 0.053 0.072 0.057 0.080 0.096 

Melcal 0 0.199 0.025 0.024 0.014 0.022 0.057 0 0.044 0.032 0.D28 0.060 0.164 

Calbra 0.134 0.217 0.167 0 0.01 2 0 0 0 0 0 0 0.006 0.134 

Anlcam 0.572 0 0 0 0 0 0 0 0 0.150 0 0 0 

Oenhis 0 0.064 0.381 0.146 0 0 0.134 0.11 3 0 0 0.160 0.07 1 0 

Saxtor 0.069 0 0 0 0.055 0.080 0.177 0 0.067 0 0.099 0.062 0.190 

Cisjlln 0.009 0.319 0.033 0.242 0.037 0 0.035 0 0.007 0 0.048 0 0 

Milcal 0.296 0.017 0.062 0.233 0.199 0.123 0.054 0 0 0 0 0.039 0 

MEAN 0.094 0.160 0.153 0.066 0.027 0.023 0.071 0.029 0.013 0.053 0.032 0.041 0.052 

Of the eleven species in common between the two scales, the regional scale 

models best fitted the occurrence data of four of them (Cirpyg, Tettet, Otitar and 

Buroed), the landscape models those of five species (Galsp, Meleal, Oenhis, 

Saxtor and Cisjun), and on two species the regional and landscape scale models 

achieve similar performance values, i.e. with a performance difference smaller 

than 0.010 (Table 5.8). 
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Multi-scale analysis 

Table 5.8 - Performance of the best selected model for each species at each spatial scale (in the cases where 

the performance difference between the two scales is greater than 0.010, the highest value is in bold) 

Species 

Cirpyg 

Alenif 

Cotcot 

Tettet 

Otitar 

BW'oed 

Pteori 

Galsp 

Melcal 

Calbra 

Antcam 

Oenhis 

Saxtor 

Cisjun 

Milcal 

MEAN 

Regional 

0.780 

0.682 

0.756 

0.793 

0.807 

0.699 

0.836 

0.682 

0.789 

0.673 

0.590 

0.738 

0.739 

0.736 

Landscape 

0.630 

0.683 

0.683 

0.586 

0.599 

0.840 

0.803 

0.762 

0.749 

0.719 

0.738 

0.806 

0.735 

0.718 

In the MS analysis, the selected models achieved performances ranging between 

0.619 and 0.813 (mean = 0.717; SE = 0.023) and between 0.632 and 0.804 (mean 

= 0.723; SE = 0.020), respectively when using regional model predictions for 

2004 (M2004) and 2006 (M2006) - see Table 5.9. The change in model 

performance of these models, when compared with the respective landscape 

scale models ranged between -0.010 and 0.053 (mean = 0.009; SE = 0.006) and 

between -0.004 and 0.080 (mean = 0.015; SE = 0.009), respectively for models 

M2004 and M2006. The regional predictions for 2004 were included as predictor 

variables in the selected models of four species (Cirpyg, Otitar, Melcal and 

Milcal), and those for 2006 in the models of three species (Otitar, Melcal and 

Milcal). Also, the performance change (compared with the respective landscape 

models) of those models which selected the regional predictions as predictor 

variables ranged respectively between -0.010 and 0.053 (mean = 0.014; SE = 

0.008) and between -0.002 and 0.080 (mean = 0.032; SE = 0.012). The selected 

models included interactions between variables for one species (Tettet) and for 

two species (Tettet and Milca!), respectively on M2004 and M2006. 
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Table 5.9 - Selected multi-scale models, by using regional predictions for 2004 (M2004) and 2006 (M2006), 

respective model pelformance (A UCcv) and performance change (LlA UCcv) when comparing with the 

respective landscape scale model; in bold, the models which selected the regional predictions; model 

parameters are expressed in the form « "mars. degree". "penalty"» 

M2OO4 M2OO6 
Species 

Model AUCcv LJAUCcv Model AUCcv LJAUCcv 

Cirpyg 1.1 0.619 - 0.010 1.2 0.632 + 0.002 

Tettet 2.3 0.682 - 0.001 2.2 0.68 1 - 0.002 

Otitar 1.0 0.639 + 0.053 1.0 0.666 + 0.080 

Meleal 1.1 0.813 + 0.007 1.0 0.804 - 0.002 

Cisjul1 1.4 0.803 . - 0.003 1.4 0.803 - 0.004 

Mileal 1.0 0.743 + 0.008 2.4 0.753 + 0.018 

The regional predictions for 2004 were selected as predictor variables in the MS 

models on four of the six speCies, and those for 2006 on three species (Table 

5.10). Moreover, the change in model performance, when compared with the 

respective landscape models, was found to be highly correlated with the drop 

contributions of the regional predictions in both the M2004 (r = 0.954; n= 6; p < 

0.01) and M2006 models (r = 0.992; n = 6; p < 0.0001). In terms of model 

structure consistency between the landscape and MS models it was found that, 

similarly on M2004 and M2006, it was observed that the greater the regional 

predictions' contribution in the models the more different the respective model 

structures (smaller the Kendall -r), for three ofthe species (Cirpyg, Tettet and 

Otitar). On the other hand, the same pattern was not found for the remaining 

three species, where for Melcal and Milcal a relatively small contribution of the 

regional predictions coincide with a low -r score. Moreover, in the case of Cisjun, 

even though the regional model predictions were not selected in the final model, 

their presence in the predictor dataset was sufficient for the new models being 

built with a very different variable contribution structure. 
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Table 5.10 - Drop contribution of the regional predictions in the multi-scale models (in proportion of the 

respective model deviance explained) 

M2004 M2006 . 

Contrib. Kendall, Contrib. Kendall , 

Cilpyg 0.053 0.770 0 0.864 

Tellel 0 0.812 0 0.910 

Olilar 0.314 0.737 0.462 0.371 

Meleal 0.075 0.613 0.024 0.409 

Cisjun 0 0.634 0 0.497 

Mileal 0.063 0.585 0.158 0.535 

• Habitat selection and predicted occurrence patterns: species 

accounts 

At the regional scale, Montagu's Harrier (Cirpyg) mostly responded to the 

variable Dry, by selecting areas with respective low values (Table 5.5; Figure 

5.3). These areas should reflect the generally drier or less vegetated areas during 

the dry and warm months, which should roughly correspond to the low-intensity 

agricultural areas, such as fallow grasslands or dry cereal crops (as opposed to 

e.g. irrigated crops, shrublands or forests). Other lower contributing variables in 

the selected models were May and Alt. No disturbance variables were used by 

these species' models. 

Figure 5.3 - Regional scale model partial plots for Montagu 's Harrier (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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This species is predicted to occur mainly in the southern part of the Baixo 

Alentejo region, though avoiding the Serra de Caldeirao hills and the Guadiana 

valley (see Figure 5.4). Within the Castro Verde SPA, the species avoids the non­

steppe areas (see Figure 3.1) and the valleys containing the two main rivers 

(Figure 1.2). By comparing the predicted probability values (out of the regional 

models) for the Baixo Alentejo region and for the Castro Verde SPA (see Figure 

5.5), it is possible to observe a clear preference of this species for the latter­

with a mean predicted probability value in Castro Verde of more than double 

(237.4 %) of that for the whole region. 

Figure 5.4 - Predicted probabilities 0/ occurrence o/Montagu 's Harrier in the Baixo Alentej o 

Legend: 
- Baixo Alentejo 
- SPA Castro Verde 

Prob. of occur ... 1 

Prob. of occur. = 0 

~~~2,5km 

Figure 5.5 - Mean values o/predicted p robability (at the regional scale) in the whole Baixo Alentej o region 

and within the Castro Verde SPA 
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The landscape scale models for this species never achieved "good" performance 

values (sensu (Hosmer & Lemeshow 2000), and thus the occurrence patterns of 

Montagu's Harrier for the Castro Verde SPA at this scale were not predicted. 

Nevertheless, the species data were fitted mostly by the variable C _Mar, 

suggesting its relevance for the species (Table 5.7). This variable describes the 

fields cultivated with cereal early in the breeding season, which seems to be 

favourable for the occurrence of these birds (Figure 5.6). Minor contributing 

variables on the selected models were D2tree, Fallow and DV_ May. 

Figure 5.6 - Landscape scale model partial plots for Montagu 's Harrier (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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The M2004 multi-scale model for this species selected the regional predictions as 

a predictor variable, even though this resulted in a model performance loss. 

Nevertheless, by inspecting the species response to this variable, it was observed 

that the species (in 2006) selected areas with a low probability of occurrence at 

the regional scale in 2004 (Figure 5.7). The M2006 model did not select the 

regional prediction as predictor variable, and therefore it can only be assumed 

that the predicted regional distribution patterns do not help to explain the 

observed occurrence patterns at the finer (landscape) scale. 
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Multi-scale analysis 

Figure 5.7 - MS model partial plots for Montagu 's Harrier: M2004 (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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The selected Red-legged Partridge (Aleruf) models never achieved "good" 

performance values, at either of the two scales, hence no predictions of 

occurrence patterns were generated for this species. The regional scale models 

(Table 5.4), however, had greater contributions from the variables May and 

Roaddist (Table 5.5). While the fitted responses to May were difficult to interpret 

(including interactions with Summer and Wet on model R70) the response to 

Roaddist showed an avoidance of areas closer than 2000 m from the nearest 

paved road (Figure 5.8). Additionally, other variables used by the selected 

models, though with lower (drop) contributions were Summer, Winter, Alt, Wet, 

Urbandist and Dry. 

The landscape scale models (Table 5.6), on the other hand, had greater 

contributions from variables Slope, WdShr and C_Mar (Table 5.7). The 

examination of the model partial plots indicated that this species selected areas 

with higher slope and with woodland and shrubs, while avoiding areas without 

cereal fields (Figure 5.9). Minor contributing variables in the selected models 

included D2water; BS ~ar, BS _May and D2road. 

135 



Multi-scale analysis 

Figure 5.8 - Regional scale model partial plots for Red-legged Partridge (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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Figure 5.9 - Landscape scale model partial plots for Red-legged Partridge (the X-axis represents the range 

of values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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Quail (Cotcot) occurrence data was only collected at the regional scale and thus 

no landscape scale models were built. Variable Wet was the most contributing 

variable in the selected models for this species (Table 5.4; Table 5.5), with 

greater probabilities of occurrence in areas with high NDVI values during the 

months of January to April (Figure 5.10), which should correspond to areas of 

greater winter cereal production. Two of the selected models (R70 and R50) 

included interactions between this variable and Aft, by avoiding areas with high 

values of Wet and low altitude. Less contributing variables in the models were 
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Spring, TopovlO, May, Dec, Alt and Summer. These species data, therefore, was 

never fitted with any disturbance variables. 

Figure 5.10 - Regional scale model partial plots for Quail (the X-axis represents the range of val lie sf or the 

environmental variable; the rug plot above this axis represents the distribution of values in this variable; 

probabilities on the Y-ax is are plotted in transformed 'logit' space) 
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The predicted occurrence patterns of Quail show a generalised distribution of the 

species throughout the Baixo Alentejo region, possibly reflecting the distribution 

of the winter cereal areas (Figure 5.11). Within the Castro Verde SPA, the 

species is predicted to occur over most of the area, though avoiding some regions 

ofless favourable habitat such as the holm oak 'montado ' areas at the S and NE 

of the area, as well as some existing afforestations. The mean regional prediction 

value for the Castro Verde SPA was 153 .5 % of that for the Baixo Alentejo 

region (see Figure 5.5). 

Figure 5.11 - Predicted p robabilities of occurrence of Quail in the Baixo Alentejo 
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In the selected regional scale Little Bustard (Tettet) models (Table 5.4), DIY was 

by far the most contributing variable, with a positive response to areas with lower 

Dry values (Figure 5.12). Other contributing variables were Wet, Summer, May, 

TopovlO, Waterdist and Roaddist. 

Figure 5.12 - Regional scale model partial plots for Little Bustard (the X-axis represents the range of values 

for the environmental variable; the rug plot above this axis represents the distribution of values in this 

variable; probabilities 011 the Y-axis are plotted in transformed 'logit ' space) 
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The predicted occurrence patterns of Little Bustard in the Baixo Alentejo show 

an avoidance of the hilly areas, as well as the steep areas of the river valleys 

(Figure 5.13). It is also possible to observe a preference of the species for the 

Castro Verde plains, with a mean predicted probability value within the SPA of 

209.8 % of that for the Baixo Alentejo (see Figure 5.5). 

Figure 5.13 - Predicted probabilities of occurrence of Little Bustard in the Baixo Alentejo 
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The selected landscape scale models never achieved predicting performance 

(Table 5.6). Nevertheless, these models had high (over 50 %) drop contribution 

of the variable C _Mar, also with considerable contributions from D2water, 

Treedens and WdShr (Table 5.7). Inspection ofthe species responses to the 

predictor variables suggests they avoid areas with high cereal coverage, close to 

water bodies, and areas with tree density over 0.025 - roughly equivalent to one 

5 x 5 m pixel classed as "tree" within each 30 x 30 m pixel (Figure 5.14). From 

all studied species, this was the only one that selected the Treedens (instead of 

D2tree) at the pre-modelling variable reduction phase. Additionally, all selected 

models included an interaction between WdShr and D2water, by avoiding areas 

with high values on both variables. Minor contributing variables in the selected 

models were Fallow, D2built and BS Mar. No variables describing the terrain 

were included in any of the selected landscape scale models for this species. 

Figure 5.14 - Landscape scale model partial plots for Little Bustard (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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In the MS analysis, the regional predictions (for both 2004 and 2006) were not 

included in the selected models, which are thus very similar to the respective 

landscape models, both in terms of performance and structure (Table 5.9; Table 
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5.10). This way, the predicted regional distribution patterns for this species did 

not improve the fitting of those observed at the landscape scale within the Castro 

Verde study area. 

At the regional scale, the selected Great Bustard (Otitar) models (Table 5.4) had 

greater contribution from variable Dry (Table 5.5), being the areas with the 

lowest values the most favourable ones (Figure 5.15). The second most 

contributing variable was Summer, the species selecting those areas with little 

decrease in NDVI during the Summer months (June to September). In one of the 

selected models (R50), however, an interaction between these two variables was 

fitted, with a positive response to areas with simultaneously low Dry and high 

Summer values. Other minor contributing variables included Dec, Wet, May, 

Spring and Roaddist. No terrain variables were used in the selected models. 

Figure 5.15 - Regional scale model partial plots for Great Bustard (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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The predicted distribution of Great Bustard in the Baixo Alentejo was very 

sparse and restricted to two main areas within the Castro Verde SPA plus a few 

small nuclei elsewhere (Table 5.16). Indeed, the mean prediction value for Castro 

Verde is 515.6 % of that for the whole Baixo Alentejo, this showing a sharply 

marked preference of this species for the Castro Verde pseudo-steppes (see 

Figure 5.5). 
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Figure 5.16 - Predicted p robabilities of occurrence of Great Bustard in the Baixo Alentejo 

Legend: 
- Baixo Alentejo 
- SPA Castro Verde 
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Prob. of occur. = 0 

The Great Bustard landscape models (Table 5.6) used mostly the BS_May 

variable (Table 5.7), even though with a response of difficult interpretation 

(Figure 5.17). The second most contributing variable was D2built, with the 

species avoiding areas closer to 500 m to the nearest built-up structure. Minor 

contributing variables were Fallow, D2water, WdShr, D V_May, Slope and 

C _Mar. These models, however, never achieved predicting performance, so no 

predictions were generated for this species at this scale. 

Figure 5.17 - Landscape scale model partial plots for Great Bustard (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis represents the distribution of vailles in 

this variable; probabilities on the Y-axis are plotted in transformed '/ogit ' space) 
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Both MS models for this species (M2004 and M2006) had high contributions of 

the regional scale prediction variables (Table 5.10), with considerable 

improvements in the fitting of the landscape bird data, even though still resulting 
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in weak performances of the selected models (Table 5.9). In particular the 

selected M2006 model for this species was the MS model (of all selected for all 

species) which showed the highest model performance increase (I1AUCcv = + 

0.080). Also, in terms of model structure, this model showed the lowest T value 

of all MS models, i.e. the biggest change in model structure in comparison with 

the respective landscape scale model. The response of the species to the regional 

scale prediction patterns was selection of areas with the highest probability of 

occurrence at the larger scale, for both years (Figure 5.18). 

Figure 5.18 - Multi-scale model partial plots for Great Bustard: M2004 (left); and M2006 (right) (the X­

axis represents the range of values for the environmental variable; the rug plot above this axis represents 

the distribution of values in this variable; probabilities on the Y-axis are plotted in transformed 'logit' 

space) 
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The Stone Curlew (Buroed) models never achieved "good" performance, and 

thus its probability patterns were not predicted for this species. Nevertheless, the 

selected regional models (Table 5.4) were mostly based on the variables May, 

Summer and Dry (Table 5.5). The observed responses to these variables were, 

however, mostly difficult interpret (Table 5.19). For example, the Stone Curlew 

data showed a selection of areas with both high NDVI decrease in the summer 

months or with an increase, but avoiding areas with a low NDVI decrease. The 

response to Dry, on the other hand, was the same as already observed for other 

species, of selecting areas with low NDVI values during the dry months. 
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Figure 5. J 9 - Regional scale model partial plots for Stone Curlew (the X-axis represents the range of values 

for the environmental variable; the rug plot above this axis represents the distribution of values in this 

variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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The selected landscape models (Table 5.6) were all built on only two variables 

(BS_Mayand WdShr) although with much higher contribution of BS_May, 

therefore never using any terrain or disturbance related variables (Table 5.7). 

Nevertheless, within these data, Stone Curlew showed a preference for areas with 

high proportion of bare soil in May, although avoiding areas with little or no 

woodlands / shrubs (Figure 5.20). 

Figure 5.20 - Landscape scale model partial plots for Stone Curlew (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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Black-bellied Sandgrouse (Pteori) data were only collected at the regional scale, 

so no landscape and MS models were run. The selected regional scale models 

(Table 5.4) had very high contributions of the Dry variable, with over 70 % (on 

average) of deviance explained loss when this variable was dropped (Table 5.5). 

As for other steppe bird species, the Black-bellied Sandgrouse selected areas 

with low Dry values (Figure 5.21). Other minor contributing variables in the 

selected models were Dec, Waterdist, Wet and Spring. Thus, no variables 

describing terrain contributed for the selected models. 

Figure 5.21 - Regional scale model partial plots for Black-bellied Sandgrouse (the X-axis represents the 

range of values for the environmental variable; the rug plot above this axis represents the distribution of 

values in this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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The predicted distribution ofthis species in the Baixo Alentejo is mostly 

confined to pseudo-steppe areas within the Castro Verde SPA (Figure 5.22), with 

mean prediction in this area constituting 632.0 % of that for the Baixo Alentejo 

(see Figure 5.5). 
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Figure 5.22 - Predicted probabilities of occurrence of Black-bellied Sandgrouse in the Baixo Alentejo 
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The regional scale models for the Galerida larks (Galsp) did not achieve 

predicting performance (Table 5.4). However these models were built on three 

main variables: Wet, Dry and Dec (Table 5.5). In them, the species avoided areas 

with high values on the Wet and Dry and low values on the Dec variable (Figure 

5.23). Other variables included in these models were Winter, Summer, Waterdist 

and TopovlO. 

Figure 5.23 - Regional scale model partial p lots for Galerida larks (the X-axis represents the range of 

values for the environmental variable; the nlg plot above this axis represents the distribution of values in 

this variable; p robabilities on the Y-axis are plotted in transformed 'logit ' space) 
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The landscape scale models, on the other hand, achieved the highest model 

performances of all landscape models for all species (Table 5.6). The models had 

large contributions of the disturbance variables D2built and D2tree (Table 5.7), 

with the species occurring mostly in areas closer than 250 m to the nearest tree 
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and avoiding areas far from built-up structures (Figure 5.24) . Other less 

contributing variables included D2water, D2road, Terrainvar, C _Mar, C _May, 

BS_Mar, BS_May, WdShr and DV_May. 

Figure 5.24 - Landscape scale model partial plots for Galerida larks (the X-axis represents the range of 

values fo r the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; p robabilities on the Y-axis are plotted in transformed 'logit ' space) 
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The predicted distribution of these species in the Castro Verde study area showed 

their occurrence mostly around the valleys of the two main rivers, the extreme 

SE of the area, plus some small circular nuclei around farmhouses and local 

villages (Figure 5.25). 

Figure 5.25 - Predicted probabilities of occurrence of Gale rid a larks in the Castro Verde SPA 
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The selected regional models (Table 5.4) of Calandra Lark (MelcaT) had high 

contributions of the variable Dry (Table 5.5). On these models, Calandra Lark 
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preferred areas with low values of this variable (Figure 5.26). In one of the 

selected models (R60) an interaction was fitted between this variable and Alt (the 

second most contributing variable), even though this is of difficult interpretation 

and as it was not fitted consistently on all selected models it may possibly be a 

statistical artefact, rather than a real species response. Other variables with minor 

contributions in these models were Summer, Dec, Urbandist, Wet, TopovlO and 

Waterdist. 

Figure 5.26 - Regional scale model partial plots for Calandra Lark (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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The predicted distribution patterns of this species show it mainly occurs inside 

the Castro Verde SPA and in an area south of it, with some additional small 

nuclei elsewhere (Figure 5.27). Indeed, the mean predicted probability values for 

Calandra Lark within the Castor Verde SPA was 287.4 % of that for the whole 

Baixo Alentejo (see Figure 5.5). 

The selected landscape scale models (Table 5.6) had highest contributions from 

the variables Cyar and D2tree (Table 5.7). The observed responses were of 

avoid~ce of areas with high proportion of cereal and closer than 250 m to the 

nearest tree (Figure 5.28). Other variables with smaller contributions in the 

selected models were D2built, WdShr, Terrainvar, Dist2water, Dist2road, 

BS_May, Fallow, DV_May and C_May. 
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Figure 5.27 - Predicted probabilities of occllrrence of Calandra Lark in the Baixo Alentejo (left) and in the 

Castro Verde SPA (right) 
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Figure 5.28 - Landscape scale model partial plots for Calandra Lark (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit ' space) 
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The predicted probabilities of Calandra Lark within the Castro Verde study area 

show a generalised distribution throughout the area, although with a patchy 

pattern, and mostly absent in the areas close to the main rivers - which was also 

observed in the regional model predicted distributions (Figure 5.27) . 

Both MS model selected the regional scale predictions as predictor variables, 

even though with small contributions, and respective little change in model 

performance and stmcture (Table 5.9; Table 5.10). The observed responses of the 

species to the regional predictions for 2004 (M2004) were of increasing 

landscape scale probabilities with the increasing regional scale probabilities up to 

an optimal value of ca. 0.90, and a sharp decline on landscape scale probability 

148 



Multi-scale analysis 

of occurrence for areas with regional probabilities close to 1 (Figure 5.29). The 

observed response to the regional scale predictions for 2006 (M2006), on the 

other hand, was of avoidance of areas with low predicted probability values at 

the larger scale. 

Figure 5.29 - Multi-scale model partial plots for Calandra Lark: M2004 (left); and M2006 (right) (the X­

axis represents the range of values for the environmental variable; the rug plot above this axis represents 

the distribution of values in this variable; probabilities on the Y-axis are plotted in transformed 'logit' 

space) 
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Occurrence data for Short-toed Lark (Calbra) were only collected at the 

landscape scale, so no regional scale and MS models were run for this species. 

The most contributing variables in the selected landscape models (Table 5.6) 

were Cyar, BS_May, BS_Mar and D2tree (Table 5.7). This species selected 

areas with intermediate values for C _Mar (which is of difficult interpretation) 

and generally with a high proportion of base soil, while avoiding areas closer 

than 150 m to the nearest tree (Figure 5.30). Minor contributing variables were 

C_May and D2built, hence without the inclusion of terrain-related variables. 

The predicted occurrence patterns of Short-toed Lark show a scarce distribution, 

restricted mostly to specific landscape patches, namely those which remained 

ploughed during the breeding season (Figure 5.31). 
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Figure 5.30 - Landscap e scale model partial plots for Short-toed Lark (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis rep resents the distribution of values in 

this variable; p robabilities on the Y-CL'<:is are plotted in transformed '1ogit ' space) 
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Figure 5.31 - Predicted probabilities of occurrence of Short-toed Lark in the Castro Verde SPA 
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Tawny Pipit (Antcam) occurrence data were only collected at the landscape scale, 

so no regional scale and MS models were run for this species . The selected 

landscape scale models (Table 5.6) were only built on two predictor variables: 

the most contributing BS _Mar; and the least contributing D2water (Table 5.7). 

Hence, no terrain variables were used to model this species ' distribution. The 

fitted responses indicate that the species selects areas with a relatively high 
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proportion of bare soil (in March), although it seems to avoid areas of full bare 

soil coverage (Figure 5.32). 

Figure 5.32 - Landscape scale model partial plots for Tawny Pipit (the X-axis represents the range of values 

for the environmental variable; the rug plot above this axis represents the dish-ibution of values in this 

variable; probabilities on the Y-axis are plotted in transformed 'logit ' space) 
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The predictions of occurrence of Tawny Pipit in the Castro Verde study area 

shows it to be well distributed throughout the area, although probably with low 

densities -low values of probability of occurrence (Figure 5.33). 

Figure 5.33 - Predicted probabilities of occurrence of Tawny Pipit in the Castro Verde SPA 
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In the case of Black-eared Wheatear (Oenhis), the achieved performances of the 

selected regional models of did not allow for prediction of the species 

distributions in the Baixo Alentejo (Table 5.4). These models were fit using only 

two variables : Spring (the most contributing) and May, so always excluding 
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variables descriptive of terrain and disturbance (Table 5.5). According to the 

response curves plotted (Figure 5.34), this species selected areas with low values 

in the two most contributing variables. 

Figure 5.34 - Regional scale model partial plots for Black-eared Wheatear (the X-axis represents the range 

of values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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The selected landscape scale models (Table 5.6) had higher contributions from 

variables BSJ1ay and D2road, but also with lower contribution of Fallow, 

WdShr, Slope, D2built and C_Mar (Table 5.7). The species response to the main 

contributing variables was of selection of areas with a generally high proportion 

of bare soil and close to roads (Figure 5.35). 

Figure 5.35 - Landscape scale model partial plots for Black-eared Wheatear (the X-axis represents the 

range of values for the environmental variable; the rug plot above this axis represents the distribution of 

values in this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 

0.Q5 010 0.15 020 025 

BSj<oy 

~ 

Lj...LJc...y..L..L./--,--+---.-'-' 

"'" JOOO 

D2ro~ 

According to the predicted probabilities of occurrence, Black-eared Wheatear is 

mostly distributed in areas of bare soil (such as ploughed fields) not far from the 
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main roads (Figure 5.36). However, the relatively low predicted probability 

values suggest it occurs in low densities . 

Figure 5.36 - Predicted probabilities of occurrence of Black-eared Wheatear in the Castro Verde SPA 
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The selected regional models of Stonechat (Saxtor) did not achieve predicting 

performance (Table 5.4). However, they had higher contributions of the Wet and 

Winter variables, although with small contributions of Waterdist, Summer, 

TopovlO, Dry, May, Dec, Alt, Roaddist and Urbandist (Table 5.5). The most 

contributing variable (" Wet") was however always selected in interaction with 

other variables, like Dry and Urbandist, making difficult the interpretation of the 

species responses (Figure 5.37). On the other hand, areas with high values of 

Winter were avoided by this species. 

Figure 5.37 - Regional scale model partial plots for Stonechat (the X-axis represents the range of values for 

the environmental variable; the rug plot above this axis represents the distribution of va III es in this variable; 

probabilities on the Y-axis are plotted in transformed 'logit ' space) 
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The selected Stonechat landscape models (Table 5.6) had higher contributions of 

the variable D2tree and WdShr (Table 5.7). The model partial plots (Figure 5.38) 

indicate that Stonechat avoids areas further than 250 m from the nearest tree, and 

selects areas with intermediate WdShr values, i.e. it avoids areas without trees or 

shrubs, but also areas with full (dense) wood or shrub coverage. 

Figure 5.38 - Landscape scale model partial plots for Stonechat (the X-axis represents the range of values 

for the environmental variable; the rug plot above this axis represents the distribution of va III es in this 

variable; probabilities on the Y-axis are plotted in transformed 'logit ' space) 
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The predicted probabilities of occurrence show a generalised distribution 

throughout the area, altholJgh in greater densities (higher probability) close to the 

two main rivers in the area (Figure 5.39). 

Figure 5.39 - Predicted probabilities ofoccllrrence of Stone chat in the Castro Verde SPA 
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At the regional scale, the Zitting Cisticola (Cisjun) models (Table 5.4) had 

greater contributions from Dec and Urbandist, but also minor contributions from 

May, Wet, Winter, Summer, Alt and TopovlO (Table 5.5). The species 

preferentially selected areas with low NDVI values in the month of December 

(Figure 5.40). Its response to Urbandist, however consistent among all selected 

models was difficult to interpret, showing a bimodal effect with optima at 0 and 

9000 m, while avoiding areas at 2000m from the nearest urban / built-up area. 

Figure 5.40 - Regional scale model partial plots for Zitting Cisticola (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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According to the predicted probabilities of occurrence, Zitting Cisticola occurs 

throughout the Baixo Alentejo, although avoiding some ofthe hilly or steep areas 

(of the Serra do Caldeirao and in the Guadiana valley) as well as the Sand E 

edges of the area. The species did not show particular preference for the Castro 

Verde SPA, and the mean prediction value for this area is 122.9 % of that for the 

whole region (see Figure 5.5). 

The selected landscape models (Table 5.6) had high contributions from variables 

C_Mar and Fallow, but also lower contributions from D2road, DV_May, WdShr, 

BS_May, BSyar and Terrainvar (Table 5.7).-The model partial plots indicate 

that the species selects areas with high cover of cereal and low of fallow (Figure 

5.42). 
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Figure 5.41 - Predicted probabilities of occurrence ofZitting Cisticola in the Baixo Alentejo (left) and in the 

Castro Verde SPA (I-ight) 
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Figllre 5.42 - Landscape scale model partial plots for Zifting Cisticola (the X-axis represents the range of 

values for the environmental variable; the rug plot above this ax is represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transform ed 'logit ' space) 
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The selected MS model for this species did not use the regional predictions as 

landscape predictor variables, which resulted in roughly the same models as at 

the landscape scale, with little change in model performance or structure (Table 

5.9; Table 5.10). From this, and as for Little Bustard, it can only be concluded 

that the predicted regional distribution patterns for this species do not help to 

describe those observed at the landscape scale within the Castro Verde study area. 

Finally, the selected regional Com Bunting (MilcaT) models (Table 5.4) showed 

high contributions from the Topov 10 and Wet variables, but also lower 

contributions from Dec, Summer, D,y and Alt, hence with no contributions from 

disturbance-related variables (Table 5.5). The model partial plots show that Com 
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Bunting avoided areas with high topographic variability, as well as with low 

NDVI values between the months of January to April (Figure 5.43). 

Figure 5.43 - Regional scale model partial plots for Corn BlInting (the X-axis represents the range of values 

fo r the environmental variable; the rug plot above this axis represents the distriblltion of values in this 

variable; probabilities on the Y-axis are plotted in transformed 'logit ' space) 
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The predicted probabilities of occurrence of Com Bunting in the Baixo Alentejo 

showed widespread distribution of the species, except in some small areas such 

as parts of the Guadiana valley and of the Serra do Caldeirao hills (Figure 5.44). 

Within the Castro Verde SPA, a similar pattern of widespread occurrence was 

observed - indeed the mean predicted values for this area was very similar 

(105 .5 %) to that for the Baixo Alentejo (see Figure 5.5). 

Figure 5.44 - Predicted probabilities of occllrrence of Corn Bunting in the Baixo Alentejo (left) and in the 

Castro Verde SPA (right) 
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The variables most contributing to the respective selected landscape scale models 

(Table 5.6) were BS_May, Fallow and C_May. Least contributing variables in 

these models were DV_May, BS_May, WdShr, D2built and C_Mar, thus not 

incorporating variables describing terrain (Table 5.7). Corn Bunting seemed to 

prefer areas without bare soil, and with low fallow and high cereal cover (Figure 

5.45). 

Figure 5.45 - Landscape scale model partial plots for Corn Bunting (the X-axis represents the range of 

values for the environmental variable; the rug plot above this axis represents the distribution of values in 

this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 

OD 0.4 0.10 0.15 020 025 

cjrot~y 

The predicted patterns of occurrence at this scale also showed a generalised 

distribution of the species throughout the Castro Verde study area, although 

avoiding some particular land patches as e.g. ploughed fields (Figure 5.44). 

The selected MS models did use the regional scale predictions on both cases 

(M2004 and M2006), even though with lower contribution in M2004 (Table 

5.10), this reflected in terms of both model performance (Table 5.9) and structure. 

The partial plots for these models show that the species avoided areas with a 

predicted probability of occurrence in 2004 of around 0.96, while avoiding all 

areas with predicted probability in 2006 lower than 0.97 (Figure 5.46). 
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Figure 5.46 - Multi-scale model partial plots for Corn Bunting: M2004 (left); and M2006 (right) (the X-axis 

represents the range of values for the environmental variable; the rug plot above this axis represents the 

distribution of values in this variable; probabilities on the Y-axis are plotted in transformed 'logit' space) 
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5.4. Discussion 

The modelling framework used in this chapter, by replicating the predictor 

datasets into three samples (for each species) with different correlation thresholds 

between variables, together with the implementation of an (exhaustive) grid 

search for the selection of the respective model parameters, allowed the 

optimisation ofthe model fitting for each species. The use of three models with 

different predictor subsets (with varying correlation thresholds), for each species 

can be considered as an extension of the grid search approach. Data collinearity, 

on the other hand, is usually referred to as a source of uncertainty in the 

interpretation of these models (Friedman 1991; Morlini 2006). However, by 

averaging the drop contributions of the predictor variables across the three model 

replicates (for each species) it was possible to identify the predictors that 

consistently influenced the observed occurrence patterns, across different levels 

of data collinearity. Also, model averaging and other multi-model inference 

approaches are considered to be superior to single-model ones (Buckland et al. 

1997; MacNally 2000; Burnham & Anderson 2004). 

The hierarchical (top-down) MS modelling approach applied here, with the 

incorporation of larger-scale predictions as predictor variables in the finer-scale 

models, follows work done by Pearson et al. (2004), which used it for predicting 

four plant species in Britain with ANN models. Other MS approaches include the 
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use of large-scale occurrence data instead of model predictions (Araujo et al. 

2005; McPherson et al. 2006) or the non-hierarchically inclusion of variables 

collected at different grains in a single model (Coreau & Martin 2007). 

The prediction of the regional scale models over 2005/6 vegetation data (models 

M2006) assumes model transferability between the two years, and within the 

Castro Verde study area. In fact, by describing the annual vegetation 

phenological cycle, these variables can be considered to be proximal and the 

respective models, therefore contain a certain degree of generality (Austin 2002). 

Additionally, all fitted responses to the 2006 regional predictions (for Great 

Bustard, Calandra Lark and Com Bunting) were consistent with the expected, 

with increasing probabilities of occurrence at the landscape scale with the 

increasing probabilities at the regional scale (Figure 5.18; Figure 5.29; Figure 

5.46). For the species whose MS models did not select this variable, however, no 

conclusions should be taken in respect to scale effects on habitat selection or on 

the respective distribution patterns. On the other hand, on models M2004, 

responses showing species avoiding (at the landscape scale) the areas with high 

regional probabilities in 2004 (Figure 5.7; Figure 5.29), or other more complex 

responses (Figure 5.46) may be related with the existing agricultural crop 

rotation system. Indeed, the most suitable areas for a certain species in a 

particular year most likely will have an opposite land use (e.g. fallow to cereal) 

two years later. Nevertheless, due to the uncertainty associated with the 

transferability of these models, no conclusions should be taken from those 

species whose models did not select the regional predictions in the landscape 

models. The Great Bustard, on the other hand, was positively associated with 

regional predictions on both years, which probably relates to site fidelity, 

observed on this species (Alonso et al. 2000; Martin et al. 2002). 

The use of image soft classification outputs in the landscape scale models is not 

without implications for model interpretation. Unlike hard classification outputs 

where a high value of a certain class would be directly related to the proportion 

of cover of the circular-plot by the respective class, the same may not be true for 
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predictors derived from soft classes. For example, a medium value of a certain 

soft class, i.e. an average intermediate probability of membership of the pixels 

(within the circular-plot) to the respective class, may be the result of the process 

above described (as for hard classes), but it could also mean that those pixels 

belong to another class which is spectrally close to that described (Foody 1999). 

For this reason, some care must be taken in interpreting the species responses 

along the gradients represented by these predictors. In fact this could partially 

explain the complex response curves found in some of the models (e.g. BSyay 

in Figure 5.17 or May in Figure 5.19). 

Also, the use of high-resolution LiDAR data considerably improved the models 

for some species (Table 5.8). In particular, on three occasions, LiDAR-derived 

variables were the most contributing in the respective models ("Slope" for Red­

legged Partridge and D2tree for Galerida larks and Stonechat), and relatively 

important variables on five other cases (Treedens for Little Bustard, D2built for 

Great Bustard and Galerida larks, and D2tree for Calandra Lark and Short-toed 

Lark). This corroborates the findings of other authors, which have unveiled the 

potential of LiDAR data for generating habitat descriptor variables in agricultural 

and woodland areas (Mason et al. 2003; Bradbury et al. 2005). 

This study greatly improved existing knowledge about steppe bird habitat 

selection in South Portugal, and in particularly in the Castro Verde pseudo­

steppes. This study greatly improved existing knowledge about steppe bird 

habitat selection in South Portugal, and in particularly in the Castro Verde 

pseudo-steppes. In terms of their habitat preferences, the studied species could be 

grouped in four main groups. A first group "Dry-Fallow" would include species 

which selected, at the regional scale, areas with little vegetation during the dry 

summer months - low Dry values, mostly associated with the pseudo-steppe 

landscapes - and/or, at the landscape scale, areas of fallow (usually expressed in 

the models as avoiding the second most common habitat, the cereal fields): Little 

Bustard and Calandra Lark. A second group "Dry-Ploughed" would be 

constituted by species also selecting little vegetated areas in the summer at the 
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regional scale, and/or areas of bare soil I ploughed fields at the landscape scale: 

Stone Curlew, Black-bellied Sandgrouse, Short-toed Lark, Tawny Pipit and 

Black-eared Wheatear. Species which selected, at the regional scale, areas with 

vigorous vegetation during the wet winter months (high values of Wet, mostly 

associated to winter cereal crops) andlor high proportion of cereal (C _Mar or 

C _May), at the landscape scale, would constitute a third group "Wet-Cereal": 

Quail, Zitting Cisticola and Corn Bunting. A forth group "Others" would include 

species which are not associated with any of the previous, but rather mostly to 

other features in the landscape, such as trees, shrubs or built-up areas: Red­

legged Partridge, Galerida larks and Stonechat. Two species, however, were 

difficult to fit into these groups. Montagu's Harrier, which at the regional scale 

selected dry (pseudo-steppe) areas, at the landscape scale was associated to 

cereal fields (which could theoretically constitute a fifth group "Dry-Cereal"). 

Great Bustard, on the other hand, while clearly selecting dry areas (regionally), at 

the landscape level it was difficult to interpret its habitat preferences (besides its 

avoidance of built-up structures). Also, the Galerida larks, while included in the 

forth group of species, at the regional scale also selected the (pseudo-steppe) dry 

areas. These four main groups of species mostly agree with the findings of 

Moreira et al. (2007) (see Appendix A.l), with some differences. For example, 

Montagu's Harrier had been included with the cereal-associated species by these 

authors, even though positive associations with fallows with shrubs had also been 

found. Also, in the referred study, no habitat associations had been found for 

Stone Curlew, while other studies had associated its presence in fallows to shrub 

occurrence (Moreira 1999) and its abundance to ploughed fields (Delgado & 

Moreira 2000). In the present study it was possible to identify its preference to 

ploughed fields, while also to areas of shrubs, nevertheless placing it within the 

group "Dry-Ploughed". Additionally, the stronger fit of the Little Bustard 

occurrence data to tree density as opposed to the distance to the nearest tree, also 

agrees with the results of Moreira et al. (2007) (see Appendix A.l) where the 

species responded to the abundance of holm oak 'montados' within the circular­

plot instead of its presence. 
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Besides the improvement (and slight rearrangement) of the grouping of the 

steppe bird community of Castro Verde according to their habitat preferences, 

other species-habitat associations were found, some of which were not known 

before. For example, while the avoidance of Calandra Lark to afforestation has 

been investigated in a recent study (Reino et al. in press), the disturbance effect 

of single trees in the landscape has been described and quantified for the first 

time in the present study, the bird avoiding areas closer than 250 m to the nearest 

tree. Additionally, a similar although smaller disturbance effect (of individual 

trees in the steppe landscape) on Short-toed Lark was also found and quantified: 

areas closer to 150 m to the nearest tree being avoided. Similarly, it was possible 

to quantify the disturbance effect of built-up structures for Great Bustards: areas 

closer than 500 m to the nearest house or built-up structure being avoided. 

Additionally to these findings, it was possible to infer some aspects of habitat 

selection relating to scale effects by investigating species-environment responses 

at two different spatial scales. By comparison of the achieved performances of 

the models, it is possible to observe that generally species with larger body sizes 

tended to be better modelled at the large spatial scale. From another perspective, 

only the models for the (small sized) passerine birds (from Galerida larks to 

Com Bunting on Table 1.1) achieved predictive performance at the landscape 

scale. In fact, only three species (Galerida larks, Zitting Cisticola and Com 

Bunting) were fitted at both scales with predictive performance. This opens the 

way for future macroecological research (Blackburn & Gaston 2002), such as e.g. 

investigating the ideal grain size to explain the various species distributions. 

However, with the present study it was possible to decouple some scale effects, 

as for example, for the Montagu's Harrier. In the work by Moreira et al. (2007) 

(see Appendix A.l), this species was positively associated with both cereal fields 

and fallows with scattered shrubs. On the other hand, in the obtained SDMs, this 

species seemed to select areas of pseudo-steppe (low Dry) at the larger (regional) 

scale, while selecting areas of cereal at the finer (landscape) level. 
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In the MS analysis, the regional scale predictions only showed clear 

improvements in the fitting of the landscape scale responses for one species, the 

Great Bustard. From this result it is possible to interpret that its large scale 

distribution patterns, which result from processes functioning at a regional scale, 

are capable of explaining its landscape scale occurrences. It may be then 

assumed that this species responds to processes that occur at a spatial scale larger. 

than that of the landscape scale study. From the remaining five species modelled 

with the MS approach, no conclusions can be drawn, as the regional scale 

patterns either were not selected by the respective MS models, or the resulting 

model performance did not change greatly. 

Finally, the distribution patterns of the studied birds were predicted for the 

respective study areas (when the model performance allowed for prediction). In 

the case where predictions were made at both scales, it was possible to observe 

the concordance of both predicted distributions within the Castro Verde SPA. 

Furthermore, the species occurrence patterns in Castro Verde, which were 

originally described (recurring to spatial interpolation of the presence points) by 

Moreira et al. (2007) (see Appendix A.I) were further improved by the addition 

of habitat contextual information within the architecture of the present SDMs. 

164 



Synthesis 

6. Synthesis and general discussion 
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6.1. Synthesis 

The work here presented had as its main goal the improvement the knowledge 

and understanding of the occurrence patterns and habitat preferences of the 

steppe bird community of southern Portugal, while accounting for the effects of 

spatial scale. 

A second goal of this work was a methodological one. It aimed at making the 

best use of robust statistical analysis methods, commonly called species 

distribution models (SDMs), in order to achieve the first goal. In other words, it 

aimed at improving or optimising off-the-shelf tools for answering the particular 

ecological question for which was proposed. 

Special attention was paid to the data used as input in the models, the derivation 

of both the response and predictor variables, and the effects of data quality in 

terms of model performance, prediction and interpretation. In particular, the 

effects of (species) data sampling bias (see Chapter 2), and of the use of different 

processing methods for information extraction from remote sensing imagery -

the main used source of environmental descriptive data used (see Chapters 3 and 

4) - were explored. Finally, the effects of spatial scale were incorporated, by 

performing the analyses at two different scales, including a hierarchical multi­

scale model integration (see Chapter 5). 

Overall, the proposed objectives were achieved. In terms of the ecology and 

distribution of steppe birds in the study region, this study generated new 

knowledge about some species-habitat associations (as for Calandra Lark and 

Short-toed Lark), decoupled some spatial scale effects (e.g. Montagu's Harrier 

and Great Bustard), and further described the resulting occurrence patterns of 

most studied species. 
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Methodologically, it made significant progress in the understanding of the 

functioning of SDMs and their sensitivity to the data characteristics. From this 

understanding, it was possible to optimise these models in order to answer the 

research question. This optimisation was done through the improvement of the 

input data quality, by using advanced data processing techniques (such as the use 

of SVM soft classification) and through a robust methodological approach (like 

the use of multiple predictor subsets and the selection of the model parameters). 

These achievements, however, were only possible with the use of high quality 

environmental datasets (such as the LiDAR data) and by extensive and carefully 

planned fieldwork campaigns, capable of collecting large (and statistically 

balanced) species locational datasets. 

Nevertheless, it is considered the added-knowledge about the steppe birds in the 

region justifies the long data processing involved and the complex 

methodological set-up. Furthermore, it is recommended that this added­

knowledge is translated into new (or incorporated into existing) management 

recommendations for a more effective conservation of these species and their 

habitats. There are several issues, however, relevant to the work presented, which 

should be further discussed. 

6.2. Discussion 

In this study, species-environment associations were investigated by using 

species occurrence data. While this is a common practice (Martinez 1994; Carol 

et al. 1999; Suarez-Seoane et al. 2002a; Moreira et al. 2004; Rosalino et al. 

2008), it is also clear that the incorporation of species abundance data could 

provide further insights into their habitat preferences (Ralph 1985; Leitao & 

Costa 2001; Silva et al. 2007). While there are clear relationships between 

distribution and abundance (Brown 1984; Gaston et al. 2000), the latter is much 

more difficult to model successfully (see e.g. Nielsen et al. 2005), which requires 

the application of more complex statistical methodologies from those 
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implemented here (Vincent & Haworth 1983; Barry & Welsh 2002; Potts & Elith 

2006), and would thus constitute an alternative study approach. 

Also, by starting with the premise that steppe bird distributions are determined 

by factors relating to vegetation type, terrain and disturbance (Osborne et al. 

2001; Smrrez-Seoane et al. 2002a), the role of food availability was not 

considered, even though it has been demonstrated to have an influence on the 

birds habitat and territory selection (Moreira et al. 2004; Traba et al. 2008). 

Nevertheless, the abundance of food (seeds and arthropods) can be associated to 

specific land use types (Delgado & Moreira 2002) and to the degree of land use 

intensification (Sousa et al. 2004), which have been characterized in the 

approach used, this way indirectly reflecting food availability. Alternatively, 

food supply (e.g. arthropod abundance) could be modelled and predicted for 

being incorporated as a predictor variable in the bird models. Nevertheless, this 

would imply further field data collection and model building, with the inevitable 

consequence of error propagation resulting from the combination of the 

uncertainty of the food supply and bird models. 

Moreover, this study analysed the steppe bird community by considering single­

species responses to the environment, i.e. by assessing each species individually. 

Other possible approaches include the assemblage ofthe species data into the 

community-level, like e.g. modelling species richness (Cumming 2000; Oindo et 

al. 2003), or the use of multi -response models, capable of analysing multiple 

species data (Hastie et al. 1994; Olden 2003). Indeed the integration of biotic 

interactions (interactions between species) in the analyses has been seen to 

improve the prediction of species distributions (Heikkinen et al. 2007). On the 

other hand, care must be taken on the interpretation of such models, as some 

species might be good predictors of others, due to their co-occurrence and similar 

habitat preferences instead of true biotic interactions. Also, the use of the 

occurrence of other species for predicting the target species might improve the 

model performances, because the former might help explaining environmental 

factors which were not properly measured before. This means that the occurrence 

168 



Synthesis 

of other species might serve as indirect predictors of the target species, thus 

making the predictions unreliable (Austin 2002). Still, the implementation of 

multi-species responses is accessible, as the code used in this work for fitting the 

MARS models is capable of handling multiple responses, as described by 

Leathwick et al. (2005), although this option was not explored. Ferrier & Guisan 

(2006) define these two approaches, respectively as "assemble first, predict later" 

and "assemble and predict together", as opposed to the approach "predict first, 

assemble later" used on Chapter 2. 

The study design - in respect to the definition of the study area location, extent 

and grain of analysis, at each particular scale - determined the amount of 

variability contained in the datasets, which is expected to have had an influence 

on the achieved model performances (Collingham et al. 2000; Guisan et al. 

2007). In particular, the selection of generally suitable areas for the occurrence of 

the studied species (respectively the Baixo Alentejo region and the Castro Verde 

landscapes), probably affected the power of discrimination within the models. 

Indeed, the study by Osborne et al. (2001), which analysed Great Bustard 

occurrence data in the Madrid province (Spain) using a comparable dataset, 

spatial extent and grain of analysis to that of the present regional study, achieved 

much higher model performances (AUC score of 0.969). This was probably due 

to the inclusion of highly unsuitable areas, like urban areas and a mountain range. 

Also, the work by Suarez-Seoane et al. (2002a) on three species in common with 

the present study, used a similar approach (methodological premises and dataset) 

and the same grain of analysis (of the regional scale models), while covering a 

much larger spatial extent (the whole of Spain). This study thus incorporated 

very high environmental variability which resulted in high model performances 

(cross-validated AUC of 0.91, on average across the three species). Hence, while 

restricting the study extent to a narrow environmental range weakens the 

apparent performance of the models this is due to the fact that the "easy" task of 

eliminating unsuitable habitats or land cover types has been achieved a priori 

(Lobo et al. 2008). 
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Osborne & Smirez-Seoane (2002), on the other hand, have noted that partitioning 

large spatial extents into smaller regions can improve distribution models, by 

better accounting for regional variations in the dataset. These variations can 

either refer to region-specific combinations of (indirect) predictors or geographic 

variation in species behaviour and its interaction with environmental 

heterogeneity. Another way to deal with these regional variations is to use non­

stationary modelling approaches, such as Geographically Weighted Regression 

(GWR) or Varying Coefficient Modelling (VCM), used in a SDM context by 

Foody (2004) and Osborne et al. (2007). These modelling methods do not 

assume the modelled associations or processes to be constant across space. These 

models, however, do not allow for generalisation into other areas (outside the 

training domain) and do not facilitate the inference of spatially variant species 

environment associations, with the aim of drawing management 

recommendations for their conservation. 

The selection of the spatial extent of both analyses of the present work, while 

arbitrarily defined by administrative boundaries (the Baixo Alentejo region and 

the Castro Verde SPA), nevertheless resulted in areas with particular 

geographical and environmental characteristics, which were preferred by the 

studied species. By focusing the analysis within these areas, it was aimed at 

describing the relevant associations which drive the species occurrences, as well 

as to identify potential threats to these species, in their stronghold. 

In terms of grain of analysis, this study defined it according to the grain of the 

input species data. While the regional scale data sampling was suited to match 

the spatial resolution of the remotely sensed imagery used, the predictor variables 

at the landscape scale were compiled to the area of the species sampling unit (the 

circular-plot). It has been noted, however, that SDM performance is sensitive to 

the respective grain of analysis (Guisan et al. 2007). Several other studies have 

made use of geostatistical analysis to assess the grain that best describes the 

observed patterns of habitat selection (Schaefer & Mayor 2007) and occurrence 

(Carroll & Pearson 1998). Furthermore, geostatistics can be used for data re-
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sampling (by spatial interpolation) to an adequate grain, appropriate for the 

respective data analysis (Atkinson & Tate 2000). Thus, further work should 

explore the utility of geostatistical techniques to address this issue. 

The presence of high data (multi -)collinearity and concurvity among 

environmental descriptors, used as predictor variables in multivariate models has 

been seen to have effects on both model performance and interpretation 

(MacNally 2002; Morlini 2006; Blanche et al. 2008). This study thus followed 

the general recommendation of removing highly correlated variables before 

modelling (Freedman et al. 1992). In this procedure, however, rank correlations 

were used, which do not fully capture all non-linear dependencies (concurvities) 

in the data. Possible methods to deal with data concurvity include the use of non­

linear forms of PC As, such as the Additive PCA (Donnell et al. 1994) or the 

iterative Kernel PCA (Scholkopf et al. 1997; Kim et al. 2005). These methods, 

though, would probably increase performance at the cost of interpretability. 

Nevertheless, their implementation can be extremely useful for the (sole) purpose 

of prediction. 

Alternatively, bootstrapping techniques have also been used to minimize the 

effects of concurvity in additive models (Figueiras et al. 2005). Moreover, when 

removing inter-correlated variables before modelling, hierarchical partitioning 

(MacNally 2002; MacNally & Walsh 2004), which is based on a hierarchically 

exhaustive regression-model building (by running all possible models which 

include each individual variable), has been used to aid the identification of the 

subset of variables to retain. As for bootstrapping, this method uses data 

randomization in order to calculate the significance of the predictors' 

independent influence on the response variable. During the time of this work, 

however, none of these methods were possible to implement in a MARS 

framework. Nevertheless a multi-model approach was used, based on predictor 

subsets determined by different variable correlation thresholds, this way 

accounting for some of the (varying) effects of data collinearity in the data fitting. 
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Data describing environmental systems present high levels of spatial 

dependencies, or spatial auto-correlation (Legendre 1993; Koenig 1999). As for 

the non-spatial dependencies (data correlation), spatial autocorrelation can 

influence the models' performance and interpretation (Segurado et ai. 2006; 

Dormann 2007). Common alternative approaches to deal with this are 

autoregressive models (Augustin et al. 1996), geostatistical models (Rossi et al. 

1992) and GWR (Leung et al. 2000). Dormann et al. (2007) further explore the 

issue and reviews it in the context of SDMs. Spatial autocorrelation effects, 

however, were not accounted for in the present study. 

The great potential of the use of remotely sensed data as environmental 

descriptors in SDMs has been discussed and demonstrated within this study. 

Pixel-based methods, such as those implemented in the present study, are most 

commonly used to this end, even though object-based methods, such as image 

segmentation can be particularly useful for extracting information from high 

resolution data (Mason et ai. 2003). 

Remote sensing image pixels, however, (due to combined factors like the 

instrument optics, the detector and electronics) incorporate spectral signal from 

areas surrounding the nominal instantaneous field-of-view (IFOV). In other 

words, an image pixel signal includes contributions not only from the field-of­

view corresponding to that pixel but also from the neighbouring areas, in a way 

described by a point spread function (PSF), which is sensor-dependent 

(Townshend 1981; Cracknell 1998; Huang et al. 2002b). If the respective 

sensor's PSF is known, it can be inverted to estimate the true ground response by 

image enhancement - de-convolution of the observed response (Forster & Best 

1994). In most cases, however, this is not feasible and this remains a source of 

uncertainty in the data, which has been noted by Townshend et al. (2000) to 

influence land-use characterisation. These authors thus recommend that land 

cover properties be reported at spatial resolutions coarser than the individual 

pixel. Additionally, interpolation procedures such as image resampling applied 

for geometrical rectification, constitute an additional source of uncertainty 
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resulting from image processing methodologies (Cracknell 1998). Indeed, image 

registration errors have been widely associated with biases in change detection 

studies (e.g. Townshend et al. 1992; Dai & Khorram 1998; Wang & Ellis 2005). 

In the context of the use of remote sensing imagery in SDMs, Osborne & Leitao 

(in press) (see Appendix A.2) have seen these type of errors to impact on the 

models' performances, predictions and interpretations. These authors further 

recommend that researchers, as a rule of thumb, restrict analysis to grain sizes at 

least twice that of the largest likely error in the datasets. To this concern, the 

grain sizes used in the analyses in the present work (and particularly so in the 

landscape scale models), were much greater than the expected errors in the 

original input data. 

The hierarchical bottom-up MS model integration method used, i.e. the 

incorporation ofthe predictions from the coarser scale as descriptive variables in 

the finer scale models is not new (see e.g. Pearson et al. 2004). It is, however, 

one of many different possible approaches to MS data analysis. For example, 

another similar top-down approach consists of using coarse-scale species 

occurrence (or atlas) data instead of model predictions (Araujo et al. 2005; 

McPherson et al. 2006). Alternatively, top-down approaches can make use, for 

example, of aggregated fine-scale species response to heterogeneity for 

explaining the observed coarse scale patterns (With & Crist 1996). Yet another 

approach is to incorporate predictor variables collected at different scales (grain 

sizes) in a single model (Estes et al. 2008). In such cases, the decomposition of 

scale effects can be assessed with the use of methods like hierarchical variance 

decomposition (Cushman & McGarigaI2002). There is, however, no reason to 

assume that some approaches are any better than others for describing patterns 

across scales. 
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6.3. Future lines of research 

Finally, several topics (besides those covered in this discussion) arose during the 

course of this work, which need further investigation. Some of them, either by 

their relevance or by the set-up assembled in this work (e.g. datasets, tools, 

knowledge), would be most suited as follow-up research. 

For example, the collection of high-resolution multispectral (CASI) data during 

the STEPPEBIRD flight, together with the LiDAR data and the extensive bird 

datasets collected, allows the exploration of the use of high-resolution RS data 

for describing landscape heterogeneity in these habitats. 

Also, during the spring of2005, during the most severe drought of the last 60 

years in Portugal, a bird dataset was compiled (990 data points), which is 

equivalent to the one used in the landscape scale models presented. These two 

datasets (2005 and 2006), together with the respective Landsat satellite imagery 

(also acquired), make up ideal datasets for answering ecological questions about 

the steppe birds in the region, which could potentially be extrapolated for other 

taxa and other regions. One such question could be: are the species habitat 

associations explained by the SDMs transferable to different environmental 

conditions, within the same area? Or: do the patterns of species co-occurrence 

remain constant during severe climatological events? Both the previous questions 

have clear implications for climate change research. Unfortunately, an attempted 

application for a NERC small grant presenting these questions in this context 

(with the aim of funding the analysis of these data) was rejected with the claim 

that single drought events are not related with climate change issues, which is 

highly arguable. With this claim, however, the application assessment report did 

not consider the unique opportunity of the existence of such an ideal real-life 

dataset for addressing those questions, even though it did not dispute the quality 

and emergence of the scientific topic presented. 
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Additionally, and deriving from the previous proposed question, the development 

of community models (such as multi-response models) could answer further 

questions about the structure of the steppe bird community in the region, as well 

as identify relevant biotic interactions between the studied species. 

As discussed in Chapter 5.4, the apparent effect of species body size on the grain 

of the fitted responses for each species raises macroecological questions which 

would be interesting to expand. Indeed, the study by Smlrez-Seoane et al. 

(2002a) focussed on three steppe bird species of highly contracting body sizes 

(Great Bustard, Little Bustard and Calandra Lark), but by fixing the grain of all 

environmental predictors (at 1 x 1 km2 pixel resolution) was unable to address 

this question. 

The integration of these datasets with those existing for the rest of the country 

and for Spain (and possibly also for Morocco), eventually with the collection of 

some more field data (in areas with low data density) would allow the 

exploration of biogeographical questions. For example, while only covering 

Spain, Suarez-Seoane et al. (2002b) found that birds of different biogeographical 

origins showed different responses to agricultural land abandonment, which has 

clear consequences for species conservation. 

More importantly, the translation of the model results into conservation practices 

would be desirable. This could be done either through the drafting of general 

management recommendations based on the habitat associations described, or by 

using the species distribution predictions for identifying potentially important 

steppe bird areas which are currently unprotected. The latter could, for example, 

make use of reserve design algorithms such as those used by Cabeza et al. (2004). 

Particularly, it would be interesting to understand if EU policies targeting species 

conservation is perhaps failing because they are acting at the wrong scale. Indeed, 

Whittingham (2007) suggests that EU Agri-environmental schemes are applied 

to very small patches of land, this way creating a complex mosaic of differing 

habitat quality at a larger scale. 
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Lastly, the incorporation of spatial (landscape) context variables relating to 

habitat configuration, fragmentation or connectivity (Opdam 1991; McGarigal & 

McComb 1995), could also further help explain the observed patterns of species 

distributions, as well as give more insights into species population dynamics, for 

example by associating particular landscape structural features to decreasing 

population densities (Garcia et al. 2007). Further research in this area could 

improve the understanding of the factors influencing these species, also with 

clear implications for their conservation (Hansson & Angelstam 1991). 
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Steppe birds in Castro Verde 

A.1. Spatial distribution patterns, habitat correlates and 

population estimates of steppe birds in Castro Verde 
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A.I.I. Abstract 

Castro Verde is the main area of cereal steppes in Portugal (ca. 80,000 ha), 

having international importance for several steppe bird species with unfavourable 

conservation status. In spring 2006, a large-scale assessment of bird populations 

in the region was carried out using a simple methodological procedure. The 

occurrence and abundance of 16 species of steppe birds was estimated in 391 

squares (1 x 1 km) in order to describe the spatial distribution patterns, explore 

the habitat variables explaining the observed patterns and estimate population 

sizes. The more frequent steppe species in the region were Com Bunting Miliaria 

calandra (present in 78% of the sampling points), Calandra Lark Melanocorypha 

calandra (29%), Crested / Thekla larks Galerida spp. (29%) and Little Bustard 

Tetrax tetrax (28%). In terms of estimated population sizes, we confirnled the 

national importance of Castro Verde for several species, most noticeably Great 

Bustard Otis tarda, Little Bustard, Calandra Lark and Montagu's Harrier Circus 

pygargus. Regarding species habitats associations, four groups of species could 

be identified: a) those associated with fallow land and grasslands, e.g. Calandra 

lark; b) species associated with cereal fields, e.g. Zitting Cisticola Cisticola 

juncidis; c) species associated with ploughed fields, e.g. Black-eared Wheatear 

Oenanthe hispanica; and d) species associated with habitat mosaics, e.g. 

Galerida larks. Although simple, the methodology used permitted the 

characterization of the present distribution and abundance patterns, and 

established a baseline for the monitoring of changes in the future. 
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A.1.2. Introduction 

The pseudo steppes of the Iberian Peninsula are one of the farmland habitat types 

holding a larger number of bird species with unfavourable conservation status 

(Suarez et al. 1997). Pseudosteppes occupy an area over 4,5 million hectares 

(Suarez et at. 1997) representing an important part ofthe Natura 2000 network in 

the region. There are several types of pseudo steppes, including semideserts, 

paramos and cereal steppes (Telleria et at. 1988; Martinez & Purroy 1993), but 

the latter is more common in western Spain and Portugal, and holds populations 

of many endangered birds including globally threatened species such as the Great 

Bustard (Otis tarda) and the Lesser Kestrel (Falco naumanni) (Tucker & Heath 

1994; Tucker 1997). 

Cereal steppes result mostly from the cultivation of dry cereal crops and 

extensive pastures. Thus, they are economically marginal farming systems 

threatened by agricultural intensification in the more productive soils, 

agricultural abandonment, often with afforestation of agricultural land, in poorer 

soils and, more generally, changes in management practices according to 

agricultural policy trends (Suarez et at. 1997). 

Castro Verde is the main area of cereal steppes in Portugal (Costa et at. 2003). It 

has national and international importance for populations of several steppe bird 

species including Great Bustard, Little Bustard (Tetrax tetrax), Calandra Lark 

(Melanocorypha calandra), Lesser Kestrel, Stone Curlew (Burhinus oedicnemus), 

Roller (Coracias garrulus) and Black-bellied Sandgrouse (Pterocles orientalis) 

(Costa et at. 2003). It is the most important area in the country for Great Bustard 

and Lesser Kestrel (Costa et at. 2003; Pinto et al. 2005) and it holds high 

densities of breeding Little Bustards (the highest in Europe) and Calandra Lark 

(Moreira 1999). As other steppe regions, Castro Verde is threatened by changes 

in farming practices and agricultural abandonment. Owing to its ornithological 

importance, three LIFE projects on steppe bird conservation have been carried 
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out in the region. Moreover, a specific agri-environmental programme for 

farmers in the area (Castro Verde Zonal Plan) allows the existence of subsidies to 

carry out agricultural practices compatible with bird conservation. 

Scientific research in Castro Verde was scarce until the 1990' s, although the 

monitoring of some species such as the Great Bustard (Pinto et at. 2005), Lesser 

Kestrel (Rocha et at. 1996) and Crane Grus grus (Almeida 1992) had started 

since the 1980's. The beginning of the first LIFE project carried out by the 

. Portuguese League for Nature Conservation (LIFE92 NAT/P/013900 - First 

phase of the conservation of steppic birds in Castro Verde) boosted scientific 

research in the area in the late 1990' s, either on bird communities (Leitao & 

Moreira 1996; Moreira & Leitao 1996a, b) or single-species studies (Franco et al. 

1996; Morgado & Moreira 2000). Since then, there have been a growing number 

of scientific publications on Castro Verde's birds. In spite of this wealth of 

information there has been no large-scale detailed assessment of distribution 

patterns, or population estimates, for most species in the region. This is a 

drawback that hinders an effective characterization of the current situation (or 

system state) and the monitoring of likely changes in the near future (Y occoz et 

al. 2001; Martin et at. 2007). 

As part of a EUF AR (European Fleet for Airborne Research) research project 

(STEPPEBIRD), the Natural Environment Research Council (UK) NERC 

undertook flights over Castro Verde in spring 2006 to collect detailed remotely­

sensed data on habitat type and vegetation structure. These data are still being 

processed and will be used in further scientific studies, including bird-habitat 

relationships and vegetation structure. The opportunity was also taken to carry 

out a large-scale census of bird populations in the region using point counts to: a) 

describe the spatial distribution patterns of ground nesting steppe birds in the 

region; b) explore the habitat variables explaining the observed patterns; c) 

obtain population estimates for the more common species. The final aim was to 

provide a baseline characterisation against which the results of future bird 

monitoring, using a similar approach, could be compared. 
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As a final remark, one must notice that this study was carried out in the spring of 

2006, the year following the worst drought of the last 60 years in Portugal. In 

fact, during 2005 rainfall in the region was just 40% of an average year (INAG 

2005), which resulted in a poor agricultural year, particularly for dry crops 

(cereal yield was very low). This drought probably had important impacts on bird 

populations, mainly for resident species, which are likely reflected in the current 

results. This should be born in mind when discussing the present results and 

comparing them with future surveys. 

A.1.3. Methods 

• Study area 

The Castro Verde special protection area (SPA; Figure A.I.l) is a plain (100-300 

m) of about 80,000 ha, having a Mediterranean climate including hot summers 

(30-35°C on average in July), fairly cold winters (averaging 5-8°C in January) 

and over 75% of annual rainfall (500-600 mm) concentrated in October-March 

(Delgado & Moreira 2000; Moreira et al. 2005). It is mainly occupied with 

pseudo-steppe habitats (ca. 55,000 ha; Figure A.I.2) created by farming activities. 

The traditional agricultural system used in this region is as follows: each farm is 

divided into parcels, each lying under cereal cultivation for two years, after 

which the land is left fallow, normally for 2-3 years. The parcel is then ploughed 

to re-initiate the rotation cycle. Fallow land is generally used as pasture for sheep 

and, more rarely, cattle. In the north and south of the region there are holm oak 

Quercus rotundifolia woodlands ('montados') of scarce tree cover, frequently 

with a grassy understory grazed by livestock. Other forested areas are more rare 

and include olive groves, old eucalyptus Eucalyptus spp. plantations and recent 

«10 years) afforestations with eucalyptus, umbrella pines Pinus pinea and holm 

and cork oak Quercus suber (Figure A.l.2). 
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Figure A.i.i - Location o/the Castro Verde Special Protection Area/or birds, and location o/main roads, 

rivers and villages 

5 Km 

Legend: 
- SPACastroVerde 
- Main roads 
- Secondary roads 
~ Railways 
-_... Main rivers 

Figure A.i.2 - Land use map o/the Castro Verde Special Protection Area. Adaptedfrom Project 

LlFE20021NATIP848i "Recuperar;iio do Peneireiro-das-torres (Falco naumanni) em Portugal " 

Legend: 
- SPA Castro Verde 
- Main roads 
- Secon"dary roads 
............. Railways 
_ .... - Main rivers 
D Steppe mosaic 
rR'J Shrubs 
W Montados 
E:22! Forests 
t!'fEI Other 
• waler O,=--=~,;5 Km 

Areas of shrublands occUr mainly in association with river valleys and in the 

south-eastern part of the region, as a mosaic of shrublands interspersed with old 

fallows resulting from agricultural abandonment and scrub encroachment 
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(Moreira et al. 2005). Three main roads cross the area, the Castro Verde - Sao 

Marcos road, the Castro Verde - Entradas road, and the Castro Verde -

Carregueiro road. A railway also crosses the western part of the area. Main rivers 

include the Ribeira de Cobres and Ribeira de Maria Delgada (Figure A.l.l). 

• Sampling scheme 

The sampling area corresponded to the core of the SPA, a rectangle with 44,860 

ha where pseudo-steppe habitat prevailed (Figure A.l.3). Our sampling scheme 

consisted in a grid of 391 sampling points placed throughout the study area in a 

systematic manner, by assigning one sampling point to each Gauss 1 x 1 km grid 

square (Hayford-Gauss projection, International Ellipsoid, Datum Lisboa IGeoE) 

(Figure A. 1.3). The sampling points were located over dirt tracks (for 

accessibility) and as close as possible to the square's centre. A 125m circular 

buffer was defined around each point, and it was also required that this buffer fell 

completely on pseudo-steppe habitat (based on Figure A.l.2) and within a single 

grid square. In cases where these conditions did not apply, the grid square was 

not surveyed. 

• Bird counts 

Bird censuses were carried out at the selected sampling points using 5-minute 

point counts with a distance limit of 125 m (Fuller & Langslow 1984; Bibby et al. 

2000). All observations within the buffer were registered and, whenever possible, 

the sex and age group (juvenile or adult) of the birds was recorded. Most ofthe 

bird counts (about 75%) were carried out between the 29th of April and the 8th 

of May of2006 by 9 teams comprising a total of 19 observers. The remaining 

counts were carried out in a larger time span (between the 20th of March and the 

12th of May) by two observers (PJL and RM) ofthe former group. All counts 

were carried out in the first 4 hours after sunrise and in the last 2 hours before 
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sunset. Categorisation to the genus level was made for the Crested and Thekla 

larks (Galerida cristata and Galerida theklae) due to difficulties in reliably 

identifying all individuals of these two species in the field. All observers were 

experienced, thus we believe inter-observer differences did not significantly 

affect the results. Ajoint session with all observers to improve the team accuracy 

in estimating the distance limit for bird counts was carried out prior to the 

surveys. 

Figure A.I. 3 - Study area (rectangle) and location of survey points for bird counts and habitat 

Legend: 
- Studyarea 
- SPA Castro Verde 
- Mainroads 
- Secondary roads 
.......... Railways 
---- Main rivers 

• Sampled god squares 

• Habitat measurements 

measurements 

,=-=-='i
5Km 

Land-use information was collected in each sampling point by dividing the 

125m-radius buffer into 8 quadrants and visually estimating the dominant habitat 

in each one of them. The following seven habitat categories were considered: a) 

fallow land and grasslands; b) fallow land and grasslands with scattered shrubs; 

c) cereal fields; d) ploughed fields; e) shrub lands; f) afforestations; g) holm oak 

'montados' . 
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• Data analysis 

In total, ca. 3000 birds from 62 different species were observed. For the purposes 

of this study, we selected only 16 species (Table A.1.1) including mostly ground­

nesters, but also non-obligate ground nesters that, although not exclusive of 

steppe-like habitats, were fairly common in the study area. The abundance of 

each species in each point was expressed as: (a) the number of pairs for 

songbirds (Passeriformes) and Quail (Coturnix coturnix). The number of pairs 

was determined using only the number of singing males, unless twice that 

number was less than the number of singing males plus the number of all other 

observations. In the latter case, the number of pairs was determined from half the 

sum ofthe number of singing males plus the number of all other observations 

(DeSante 1981); (b) number of males for Little Bustard (Tetrax tetrax). In this 

species with a polygynous mating systems, females are quite inconspicuous and 

male density is usually assessed for population monitoring (Faria & Raba<;a 

2004); and (c) as number of individuals for the remaining species, in which 

difficulties in separating males from females occurred, or total population is 

usually assessed without discriminating gender. Population estimates were 

derived simply by using the mean and 95% confidence intervals of bird density 

in each point, for each species, to extrapolate to the total steppe area in the region 

(55,490 ha). Without correction for detectability, the obtained values are 

probably underestimates, and should be used only to compare time variations 

within-species; between-species comparisons should not be made. The average 

popUlation size was compared with the estimates given by BirdLife International 

(BirdLife International 2004) for Portugal, in order to assess the national 

importance of Castro Verde. 

For each species, we produced a map showing all the points where the species 

occurred (presence/abundance). For visualisation purposes and interpretation of 

the spatial pattern of the four most frequent species, we interpolated the presence 

data points using Ordinary Kriging, a geostatistical technique capable of 
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producing probability contour maps, derived from point data (Rossi et al. 1992; 

Burroughs 1995). For the more common species (Corn Bunting), an interpolated 

map of abundance (pairs/point) was also produced, using the same technique. All 

the geostatistical analyses were carried out in ArcGIS version 9.0 software 

package (ESRI 2004). 

Table A.I.I - List of the 16 species studied. ordered by decreasing frequency of occurrence in the 391 

sampled points 

Scientific name Common name 
Proportion 
of points 

Miliaria calandra Com Bunting 0.783 
MelanocO/ypha calandra Calandra Lark 0.294 
Galerida spp. Galerida larks 0.289 
Tetrax tetrax Little Bustard 0.276 
Saxicola torquata Stonechat 0.148 
Cisticola juncidis Zitting Cisticola 0.113 
Alectoris rufa Red-legged Partridge 0.100 
Calandrella brachydactyla Short-toed Lark 0.097 
Circus pygargus Montagu's Harrier 0.066 
Cotumix cotumix Quail 0.066 
Burhinus oedicnemus Stone Curlew 0.064 
Upupaepops Hoopoe 0.061 
Anthus campestris Tawny Pipit 0.054 
Oenanthe hispanica Black-eared Wheatear 0.051 
Otis tarda Great Bustard 0.041 
Pterocles orientalis Black-bellied Sandgrouse 0.020 

From the seven initial habitat variables describing habitat availability (number of 

quadrants where the habitat was dominant, ranging from zero to eight), other 

variables were derived: presence of habitat (binary variable stating if the habitat 

was present in any of the eight quadrants), habitat dominance (binary variable 

stating ifthe habitat was dominant on four-or-more quadrants), and habitat 

richness (total number of habitat classes in the buffer). Habitat dominance 

variables were only extracted in cases where, through empirical inspection of the 

bird and habitat data (by using scatter plots), we found some significant pattern 

that could explain the bird's probability of occurrence. 

In order to explain the species-habitat associations, we applied a Generalized 

Linear Model (GLM) with a logit link function (logistic regression) using species 
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presence-absence data (derived from the field data) and the habitat variables 

described above. In order to reduce the number of variables to enter in the 

models, we first used a Mann-Whitney U test (univariate non-parametric test for 

independent samples) to screen the variables excluding those that showed a weak 

association with the bird presence absence data (p > 0.1). In the multivariate 

GLMs, we used a forward stepwise (likelihood ratio) variable selection method 

as an exploratory approach. Based on the chosen model (by the stepwise 

procedure), we included and excluded variables considered important to describe 

the bird's probability of occurrence, based on ecological knowledge of the 

species, and compared the several models obtained. We used an Information 

Theoretic (IT) approach based on the AIC values to choose the best model for 

each species (Akaike 1974; Burnham & Anderson 2002,2004). 

A.1.4. Results 

The frequency of occurrence of the species studied is shown in Table A.l.l. 

Results are detailed below, ordered by decreasing species frequency. 

• Corn Bunting 

The Com Bunting was by far the most frequent species in the study area, 

occurring in 78.3% of the sampling points, with an average abundance of 1425 

pairs per point (range = 0-6; SE = 0.060), which yielded an estimate of 16185 

(95% CI = 14852-17519) pairs for the total pseudo-steppe area of the Castro 

Verde SPA. The national population of this species has been roughly estimated 

as 100,000 to 1,000,000 pairs (BirdLife International 2004), so it is difficult to 

evaluate the significance of the Castro Verde population, as it could range from 2 

to 16% of the national population. 
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The species was very common and widespread in the region, although more 

likely to be found west of the Castro Verde - Entradas road. Two hotspots with 

higher population densities were identified: west of the Castro Verde­

Carregueiro road and in the southeast, south of Ribeira da Chada (Figure A.1.4). 

Figure A.l.4 - Map of Corn Bunting (Miliaria calandra) occurrence (above), interpolated map of probability 

of occurrence (below left) and interpolated map of abundance (below right) . Sample points where the 

species did not occur are not shown, and dot size is proportional to abundance. The darker the colour the 

higher the probability of occurrence/estimated abundance 
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The existence of cereal fields was the main factor increasing Com Bunting 

probability of occurrence (Table A.1.2). The species was also more likely to be 

found near 'montados' . The association of the species with cereal fields during 

the breeding season has already been reported (Delgado & Moreira 2000; Stoate 

et al. 2000) and is probably related to the availability of food (mainly arthropods) 

combined with appropriate nest cover provided by tall and dense vegetation. The 
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presence of scattered holm/cork oak trees in the 'montados' probably increases 

breeding habitat suitability, as these are intensively used as perches by singing 

males. Furthermore, many 'montados' have an understory of cereal crops. 

Table A.I.2 - Summmy of logistic regression models, indicating for each species, the habitat variables 

selected, their slope (positive or negative), and significance values (* p<O.05; ** p<O.OI; and *** 

p<O.OOI). Model performance is indicated by the Nagerkelke r2 and the area under the ROC curve. 

Variable legend: F (amount offallow land and grasslands); F +S (amount offallow land and grasslands 

with scattered shrubs); C (amount of cerealfields); P (amount of ploughed fields); Md (amount of holm oak 

'montados '); PresF (presence of fallow land and grasslands); PresC (presence of cereal fields); PresP 

(presence of ploughed fields); PresMd (presence of holm oak 'montados '); PresAf(presence of 

afforestations); PresF (presence of shrublands); P050 (ploughedfields dominate more than half of the 

sampling point) 

AUkai Atl:kIl Gtll.~'l Tetld Cirjtm Alerll! Calhm Cir/!!;g (iJliot Gporj>o Gel/hh Plmli 

Variables 
y' +. -*** +) :f~-** +. ** 
F+S +, ** 
C +, ** +, *** * 
P +. ** 
Aid * 
PresF +, *** 
PresC +, **-f: +, *** 
P"".<I> +, *-** 
Pre.rAId +., ¥: - Nt: +. ** 
PresA( +, ** 
PresS +. , *** .+ , ·f 
.t>oJO +. * 
RidlllOSJ +, * 

Model performance 
r2 0.109 0.208 0.179 0.122 0.200 0.059 0.108 0.080 0.114 0.031 0.147 O.o.IJ 
ROCAUC 0.669 0.7}! 0.696 0.676 0.74.3 0.628 0.671 0.694 O.72!:? 0.624 0.701 0 . .557 

• Calandra Lark 

Calandra Lark was the second most frequent species, being present in 29.4% of 

the sampled points, with an average abundance of 0.542 pairs per point (range = 

0-8; SE = 0.056), which yielded an estimate of 6160 (95% CI = 4910-7410) pairs 

for the total pseudo-steppe area of the Castro Verde SPA. When compared with 

the previous population estimate for this region (400-8500 pairs, (Costa et al. 

2003), this new estimate adds extra precision, particularly in the lower range 

limit, and according to national population estimates (BirdLife International 
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2004), represents at least 60% of the total Portuguese population, showing how 

important this area is for the conservation of the species. 

The Calandra Lark occurred all over the region, although three main nuclei of 

occurrence could be identified. The largest one was in the southeast (south of the 

Castro Verde-Sao Marcos road). A second was found between the Castro Verde­

Entradas road and the Cobres River, and the third was located west of the Castro 

Verde - Carregueiro road (Figure A.1 .5). 

Figure A.1.5 - Map of Calandra Lark (Melanocorypha calandra) occurrence (left) and interpolated map of 

probability of occurrence (right) . Sample points where the species did not occur are not shown, and dot size 

is proportional to abundance. The darker the colour the higher the probability of occurrence/estimated 

abundance 
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Calandra Larks were more likely to be seen in points having a higher proportion 

of fallow fields and in areas without 'montados' (Table A.1.2). The association 

of the species with fallow fields during the breeding season in this region is in 

agreement with the results of previous studies (Moreira & Leitao 1996b; Moreira 

1999; Delgado & Moreira 2000), and could be related to the characteristic 

vegetation structure and diversity of fallow fields, which seems to suit better the 

breeding ecological requirements this lark species (e.g. nest cover, food 

availability and accessibility, predation risk perceiving) in comparison to 

alternative breeding habitats (e.g. cereal fields, ploughed fields). The species ' 

191 



Steppe birds in Castro Verde 

avoidance of forested areas, including 'montados', had already been recognized 

(e.g. Cramp 1988). 

• Crested / Thekla Larks 

Crested / Thekla Larks were present in 28.9% of the sampling points, with an 

average abundance of 0.329 pairs per point (range = 0-4; SE = 0.031), which 

yielded an estimate of 3734 (95% CI = 3031-4437) pairs for the total pseudo­

steppe area of the Castro Verde SPA. Although these two species were not 

separated in the field due to their morphological similarities, most observations 

should correspond to Thekla Larks as they are more abundant in eastern Alentejo 

than Crested Larks (Rufino 1989). The Portuguese population has been roughly 

estimated as 50,000 to 500,000 pairs for Thekla Lark and 10,000 to 100,000 pairs 

for Crested Lark (BirdLife International 2004). These species occurred across the 

region but were more frequent in the area where the Cobres and Maria Delgada 

rivers meet and in the southeast (Figure A.l.6). 

The obtained model showed that the probability of finding these larks increased 

where shrublands, fallow fields and afforestations occurred (Table A.l.2). These 

results are in general accordance with those obtained elsewhere, and reflect the 

association of these species to heterogeneous environments and to the presence 

of shrub-like cover. Manrique & Yanes (Manrique & Yanes 1994) for example, 

describe optimum habitat for Thekla Larks as open scrub of low to medium 

height in arid or semi-arid terrain. Rufino (Rufino 1989) reports that in 

agricultural habitats, Thekla Larks occupy fallow land with scattered shrubs and 

trees, and sparse holm oak 'montados'. In Castro Verde, Delgado & Moreira 

(Delgado & Moreira 2000) did not find a clear association of Galerida larks with 

specific habitat types, but other studies on fallow land showed that they prefer 

grasslands with scattered shrubs or trees (Moreira 1999; Santos 2000; Moreira et 

al. 2005). 
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Figure A.l.6 - Map o/Crested/Thekla Larks (Galerida spp.) occurrence (left) and interpolated map 0/ 
probability 0/ occurrence (i'ight). Sample points where the species did not occur are not shown, and dot size 

is proportional to abundance. The darker the colour the higher the probability 0/ occurrence/estimated 

abundance 
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The Little Bustard occurred in 27.6% of the sampling points, with an average 

abundance of 0.371 males per point (range = 0-4; SE = 0.036), which yielded an 

estimate of 4213 (95% CI = 3402-5025) male Little Bustards for the total 

pseudo-steppe area of the Castro Verde SPA. These figures represent roughly 

24% of the most recent estimate for the Alentejo region (17551 displaying males; 

Silva et al. 2006). Considering that the Alentejo holds 85% of the distribution 

area of Little Bustard in Portugal (Rufino 1989; Silva et al. 2006), we can say 

that the study area supports around 20% of the national population of this species. 

The estimate presented here is higher than the most recent estimate for Castro 

Verde (3340 displaying males, (Silva et al. 2006). 

The species occurred in the whole study area, although four to five scattered 

nuclei with higher prevalence could be identified {Figure A.l. 7). The main factor 

influencing (positively) the probability of occurrence was the availability of 

fallow fields. In contrast, a higher availability of , mont ados ' decreased the 

probability of Little Bustard occurrence (Table A. 1.2). This agrees with the 

patterns found in other studies conducted in Castro Verde and in other areas of 
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Alentejo (Moreira & LeiHio 1996a, b; Moreira 1999; Faria & Rabac;a 2004). 

These studies clearly showed that the Little Bustard is strongly associated with 

the grass layer of large fallow fields, both for displaying and laying the eggs, and 

that this species avoids overgrazed and recently ploughed fields and forested 

areas. 

Figure A.i. 7 - Map of Little Bustard (Tetrax tetrax) occurrence (left) and interpolated map of probability of 

occurrence (right). Sample points where the species did not occur are not shown, and dot size is 

proportional to abundance. The darker the colour the higher the probability of occurrence/ estimated 

abundance 
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The Stonechat occurred in 14.8% ofthe sampling points, with an average 

abundance of 0.136 pairs per point (range = 0-3; SE = 0.019), which yielded an 

estimate of 1540 (95% CI = 1122-1958) pairs for the total pseudo-steppe area of 

the Castro Verde SPA. Recent studies carried out in the area did not provide 

information on either abundance or population estimates (Moreira & Leitao 

1996a, b; Delgado & Moreira 2000), thus the current estimates are the first 

available for the region. Rufino (Rufino 1989) suggested that this species is more 

abundant in the Alentejo region and Beira Interior than in the rest of the country. 

In any case, the Castro Verde population is not a significant proportion (at most 

ca. 5%) ofthe national population (25,000-250,000 pairs; BirdLife International 

2004). 
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Figure A. J. 8 - Map of Stonechat (Saxicola torquatus) occurrence. Sample points where the species did not 

occur are not shown, and dot size is proportional to abundance 
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In the study area this species occurred locally, but it was scattered in the region 

(Figure A. 1.8). None of the studied variables significantly influenced its 

probability. of occurrence (Table A.l.2). Stonechats are known to be associated 

with a great variety of habitats in Baixo Alentejo, including not only agricultural 

land but also, hedges, bushes and salt marsh, open oak woods, riverine vegetation 

and even sand dunes with bushes (Soares 1999). It is likely that other local and 

landscape variables that were not measured in this study, such as the amount of 

edges, fragmentation variables or vegetation structure, influence the Stonechat's 

distribution. 

• Zitting Cisticola 

The Zitting Cisticola was present in 11 .3 % of the sampling points, with an 

average abundance of 0.115 pairs per point (range = 0-2; SE = 0.017), which 

yielded an estimate of 1308 (95% CI = 931-1684) pairs for the total pseudo­

steppe area of the Castro Verde SPA. In comparison with the estimate for the 

national population (50,000-500,000 pairs; BirdLife International 2004), the ,.. 
population in Castro Verde is not significant at the national level. 
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Figure A.l.9 - Map of Zitting Cisticola (Cisticola juncidis) occurrence. Sample points where the species did 

not occur are not shown, and dot size is proportional to abundance 
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This species could be found scattered in the area (Figure A.1.9). It was more 

likely to occur in points where cereal fields were present (Table A.1.2), which 

agrees with previous studies that have showed that the species is much more 

abundant in cereal fields than in other habitat types (Delgado & Moreira 2000). 

Delgado & Moreira (Delgado & Moreira 2002) also found a preference of Zitting 

Cisticola for wheat over barley and oat fields, suggesting that the incorporation 

in this analysis of variables describing cereal type structure would produce a 

more accurate prediction model of this species' occurrence. 

• Red-legged Partridge 

The Red-legged Partridge was detected in 10.0% of the sampling points, with an 

average abundance of 0.133 birds per point (range = 0-3; SE = 0.022), which 

yielded an estimate of 1511 (95% CI = 1022- 2000) individuals for the total 

pseudo-steppe area of the Castro Verde SPA. This is equivalent to a density of ca. 

0.02 partridges/ha, similar to the estimates ofBorralho et al. (1997; Borralho et 

al. 2000) in other areas without specific game management in Alentejo region. 

The Portuguese Red-legged Partridge population was estimated in 10,000-

196 



Steppe birds in Castro Verde 

100,000 pairs (BirdLife Intemationa12004), indicating a low importance of 

Castro Verde SPA population in a national context (less than 5%). 

Figure A.l.lO - Map of Red-legged Partridge (Alectoris rufa) occurrence. Sample points where the species 

did not occur are not shown, and dot size is proportional to abundance 
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The species has a scattered distribution in the region (Figure A.1.1 0), being more 

common where holm I cork oak trees (,montados') and shrublands were present 

(Table A.1.2). The positive association with scattered 'montados' and shrubs 

may be related with the availability of shelter and breeding sites. This has been 

already reported in similar areas, with partridges showing a preference for 

boundaries and shrub patches (Fortuna 2002). Although Borralho et al. (1999) 

found a positive association with fallows during the breeding season, in this 

study this association was not found, probably due to the sampling period (late 

for this species). 

• Short-:toed Lark 

The Short-toed Lark occurred in 9.7% ofthe sampling points, with an average 

abundance of 0.128 birds per point (range = 0-4; SE =0.023), which yielded an 

estimate of 1453 (95% CI = 939-1966) pairs for the total pseUdo-steppe area of 

the Castro Verde SPA. If compared with the population estimates of 2000-20,000 
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pairs for Portugal (BirdLife International 2004), this corresponds at least to 7% 

of the national population, but could be as high as 60% or more. There are no 

previous population estimates for the region, and usable density estimates to 

extrapolate population sizes are only available for fallow land (Moreira & Leitao 

1996b; Moreira 1999), which does not represent the habitat with the highest 

abundance (see below). 

Figure A.l.ll - Map of Short-toed Lark (Caiandrella brachydactyla) occurrence. Sample points where the 

species did not occur are not shown, and dot size is proportional to abundance 

Legend: 
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- SPA Castro Verde 
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The species was uncommon, although it occurred all over the region (Figure 

A.1.11). Increasing availability of fallow land and ploughed fields favoured its 

occurrence (Table A.1.2). Previous studies have shown that this species prefers 

sparse vegetation including dunes, low density shrublands, fallow fields, and 

ploughed land (Rufino 1989; Diaz 1994; Suarez et al. 2002). In Castro Verde, 

Delgado & Moreira (Delgado & Moreira 2000) found that Short-toed Larks were 

most abundant in ploughed land, although they also occurred in fallow fields and 

pastures. Densities in fallow grasslands increased where fields had a higher 

proportion of bare ground (Moreira 1999). 
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• Montagu's Harrier 

The Montagu's Harrier occurred in 6.6% of the sampling points, with an average 

abundance of 0.077 birds per point (range = 0-3; SE = 0.016), which yielded an 

estimate of 872 (9S% CI=S21-1223) birds for the total pseudo-steppe area of the 

Castro Verde SPA. Yet, the used methodology is not suitable for accurately 

censusing raptors, therefore results should be interpreted cautiously. In a 

previous study, Franco et at. (1996) estimated a population density of 4S-S0 pairs 

per 10,000 ha in the area of Castro Verde SPA, which would correspond to a 

population size of ca. SOO individuals. The Portuguese population is estimated as 

900-1200 individuals (BirdLife International 2004), which suggests that Castro 

Verde is one of the strongholds for this species in Portugal. This harrier occurred 

scattered in the region (Figure A.l.12). It was more likely to be seen in points 

with higher availability of cereal fields and fallow land with scattered shrub 

patches (Table A.l.2). These results confirm the preferred habitat types of 

Montagu's harrier for breeding and feeding (Hagemeijer & Blair 1997; Millon et 

at. 2002) in most of its distribution range. These habitats seem to be the most 

suitable since they are likely to contain large amounts of arthropods, microtine 

rodents, and birds, which represent the main prey taken by the species (Hiraldo et 

al. 1975; Arroyo 1998). 

:: ,-
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Figure A.I.12 - Map of Montagu 's Harrier (Circus pygargus) occurrence. Sample points where the species 

did not occur are not shown, and dot size is proportional to abundance 

• Quail 

Legend: 
- Sludyarea 
- SPA Castro Verde 

- ..... """" 
- Secondary ram 
--. RaItWays. 
...... M."inMI'$ 

• 1 indo 
e 2inds . 
., 3inds. 

The Quail was detected in 6.6% of the sampling points, with an average 

abundance of 0.082 birds per point (range = 0-3; SE = 0.017), which yielded an 

estimate of930 (95% CI = 553-1307) individuals for the total pseudo-steppe area 

of the Castro Verde SPA. BirdLife International (BirdLife International 2004) 

roughly estimated a national population of 5,000 to 50,000 pairs (based on data 

from 2002) which suggests that the Castro Verde plains may represent from 1 % 

to 9% of the total Portuguese population. 

The species was more common in the western part of the study area (Figure 

A.1.13), and the likelihood of occurrence increased proportionally with the 

availability of cereal fields (Table A.l.2). The association of the species with this 

habitat is consistent with results from previous studies duririg the breeding 

season (Carvalho et al. 1996; Borralho et al. 1998; Delgado & Moreira 2000). In 

comparison with the Zitting Cisticola, this species responded positively not only 

to the presence of cereal fields, but to their abundance, suggesting that it may 

favour larger patches of cereal crops. 
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Figure A.I.I3 - Map of Quail (Cotumix cotumix) occurrence. Sample points where the species did not 

occur are not shown, and dot size is proportional to abundance 
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The Stone Curlew was detected in 6.4% of the sampling points, with an average 

abundance of 0.087 birds per point (range = 0-3; SE = 0.018), which yielded an 

estimate of988 (95% CI = 579-1397) individuals for the total pseudo-steppe area 

of the Castro Verde SPA. The used methodology is not suitable for accurately 

censusing this species, so care should be taken when interpreting this result. 

Population estimates for Portugal range from 2500 to 10,000 birds (Cabral et al. 

2006), thus Castro Verde could hold at least 10%, and up to 40% of the national 

population. For Castro Verde, the previous estimate of 100-150 pairs (Costa et al. 

2003) is lower than the current one. 
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Figure A.l.l4 - Map a/Stone Curlew (Burhinus oedicnemus) occurrence. Sample points where the species 

did not occur are not shown, and dot size is proportional to abundance 
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The species occurred scattered over the area (Figure A.1.l4), and none ofthe 

studied variables influenced its probability of occurrence (Table A.1.2). Moreira 

(Moreira 1999) found that the presence of the species in fallow land was 

associated with shrub occurrence, while Delgado & Moreira (Delgado & Moreira 

2000) found relatively high densities in ploughed land when compared with other 

habitats. In the Alto Alentejo, Brito (Brito 1996) also found a significant 

selection of uncultivated fields with scattered scrubs and a large proportion of 

bare ground. These results suggest that habitat selection patterns of the Stone 

Curlew are determined by vegetation structure and soil ground-cover variables 

that were probably not addressed at the appropriate scale in the present analysis . 

• Hoopoe 

The Boopoe was present in 6.1 % of the sampling points, with an average 

abundance of 0.077 birds per point (range = 0-4; SE = 0.017), which yielded an 

estimate of872 (95% CI=485-1258) individuals for the total pseudo-steppe area 

of the Castro Verde SPA. The 10,000 to 100,000 pairs estimated by BirdLife 

International (BirdLife International 2004) suggest that Castro Verde's plains are 

not very important for this species. This is not surprising if we consider that, in 
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Iberia, the highest densities occur in open holm oak stands and juniper 

woodlands (Santos et al. 1981 {Diaz, 1996 #1266{Mufioz, 2003 #1280). 

Figure A.I.I5 - Map ofHoopoe (Upupa epops) occurrence. Sample points where the species did not occur 

are not shown, and dot size is proportional to abundance 
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Hoopoes occurred in a scattered pattern all over the region (Figure A.l.15). The 

likelihood of finding this species increased proportionally with habitat richness in 

the points (Table A.1.2). The Hoopoe is basically a bird of warm, dry, level or 

gently undulating terrain with much exposed bare surface, but numerous 

upstanding features offering perches, shade and breeding cavities, thus avoiding 

extensive featureless open tracts, like some large irrigated cultivation and pasture 

fields (Snow & Perrins 1998). In southern Europe, it is common on farmland 

with walls and isolated trees, bare or sparsely vegetated soil being in every case 

essential for ground feeding (Bannerman 1955). Mixed landscapes where woods 

alternate with cultivation, fallow and pasture fields also appear to be its favourite 

habitat in Portugal (Rufino 1989), and agrees with our finding of preference for 

areas with higher habitat diversity. In the most featureless areas of Castro Verde 

plain pseudo-steppe, the Hoopoe breeds mostly on piles of stones removed from 

cultivation fields to make ploughs easier, a situation also noted in Spain (Mufioz 

& Altamirano 2003). 
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• Tawny Pipit 

Figure A.l.16 - Map a/Tawny Pipit (Anthus campestris) occurrence. Sample points where the species did 

not occur are not shown, and dot size is proportional to abundance 

Legend: 
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The Tawny Pipit occurred in 5.4% of the sampling points, with an average 

abundance of 0.041 birds per point (range = 0-1; SE = 0,009), which yielded an 

estimate of 465 (95% CI=260-670) pairs for the total pseudo-steppe area of the 

Castro Verde SPAThe current estimate of the Portuguese population of this 

species is 1,000-10,000 pairs (BirdLife International 2004), which means that 

Castro Verde could hold 5 to 45% of the national population. 

The species was scarce but occurred across the whole region. However, the data 

suggests that it was more prevalent in the western part (Figure Al.I6). None of 

the studied variables influenced its probability of occurrence (Table Al.2). 

Rufino (Rufino 1989) describes it as a species typical of mountain pastures and 

also fallow land. Previous studies in Castro Verde found highest densities in 

ploughed land (Delgado & Moreira 2000). 
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• Black-eared Wheatear 

The Black-eared Wheatear occurred in 5.1 % of the sampling points, with an 

average abundance of 0.049 birds per point (range = 0-2; SE = 0.011), which 

yielded an estimate of 552 (95% CI=302-802) wheatear pairs for the total 

pseudo-steppe area of the Castro Verde SPA. The national breeding population 

has been estimated as 2,000-20,000 pairs (BirdLife International 2004), the 

species being more common and abundant in the south of the country (Rufino 

1989). More recently, Almeida et al. (2006) reported that the Portuguese 

breeding population was probably less than 10,000 birds. Considering this 

estimate, the Castro Verde SPA could support at least 10% of the national 

breeding population. 

The species was very scarce but occurred across the whole region (Figure 

A.l.17). However, it seemed more prevalent in the eastern part. Its occurrence 

was positively related to the presence of ploughed fields, and negatively related 

to the availability of cereal fields (Table A.l.2). In Portugal, this wheatear is 

strongly associated with very dry land with poor vegetation cover, as fallow land 

and a variety of habitats with poor or low vegetation cover and height (Rufino 

1989). Delgado & Moreira (2000) reported higher densities on ploughed land for 

Castro Verde. The present distribution in Castro Verde SPA may partially be 

explained by both habitat and climatic features, as the eastern part of the study 

area is drier, probably with poor soils and less vegetation cover. 
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Figure A.I.!7 - Map of Black-eared Wheatear (Oenanthe hispanica) occurrence. Sample points where the 

species did not occur are not shown, and dot size is proportional to abundance 
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• Great Bustard 

The Great Bustard was present in 4.1 % of the sampling points, with an average 

abundance of 0.064 birds per point (range = 0-4; SE = 0.018), which yielded an 

estimate of726 (95% CI=316-1137) individuals for the total pseudo-steppe area 

of the Castro Verde SPA. Pinto et al. (2005) estimated ca. 900 birds in this SPA, 

corresponding to 80% of the national population. Thus, although the 

methodology used was not suitable for accurately censusing this species (Alonso 

& Alonso 1996; Pinto et al. 2005), the population estimate reflects the real 

population size in the area. 

The spatial distribution pattern across the region (Figure A.1.18) partially reflects 

what is known on the main areas of occurrence during the breeding season 

(Rocha 1999; Morgado & Moreira 2000), with more observations occurring 

close to the main lekking grounds. Nevertheless, other known lekking areas were 

not detected by our sampling scheme. 
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Figure A.I.I8 - Map o/Great Bustard (Otis tarda) occurrence. Sample points where the species did not 

occur are not shown, and dot size is proportional to abundance 
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None of the studied variables influenced the probability of occurrence of this 

species in the sampled points (Table A.l.2), probably because the spatial scale 

and methods were not suitable for describing habitat selection patterns in the 

Great Bustard. Previous studies in Castro Verde showed gender differences in 

habitat selection during the breeding season, with males showing stronger 

selection for fallows and females preferring cereal fields (Morgado & Moreira 

2000; Moreira et al. 2004). 

• Black-bellied Sandgrouse 

The Black-bellied Sandgrouse was the scarcest ofthe studied species, being 

detected in just 2.0% of the sampling points, and with an average abundance of 

0.046 birds per point (range = 0-4; SE = 0.018). This yielded an estimate of 523 

(95% CI = 122-924) individuals for the total pseudo-steppe area of the Castro 

Verde SPA, but the methodology used is not suitable for accurately censusing 

this species. This probably explains why the obtained estimate was higher than 

that given by Costa et al. (2003) for Castro Verde (20-120 birds). More recently, 

a Black-bellied Sandgrouse national census estimated that the Portuguese 
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population is not larger than 300 individuals, and counted just 50 individuals in 

the Castro Verde region, during spring (Cardoso 2005). 

Figure A.l.19 - Map of Blackbellied Sandgrouse (pterocles oriental is) occurrence. Sample points where the 

species did not occur are not shown, and dot size is proportional to abundance 
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The species occurred mainly in the eastern part of the region (Figure A.l.19), a 

pattern also observed during the national census (Cardoso 2005). Although the 

area has suitable habitat further west, where observations had occurred in 

previous years, the present data suggest that the distribution area of Black-bellied 

Sandgrouse is contracting towards the east (Cardoso 2005). 

The probability of finding Black-bellied Sandgrouse was higher in points with a 

large (over 50%) availability of ploughed land (Table A.l.2). This finding is 

consistent with a previous study on habitat selection of this species in a nearby 

area, which found that it prefers areas with scarce vegetation cover (Poeiras 

2003). The same study also reports an association with pastures and a high 

preference for dry leguminous crops. 
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A.lo5. Discussion 

• Spatial distribution patterns 

The Com Bunting was substantially more prevalent (almost in 80% of the points) 

than the other studied species across the region, probably because of a 

combination of large abundance and high detectability. Little Bustard, Calandra 

Lark and Galerida larks occurred in ca. 30% of the points whereas all the other 

species had a prevalence value lower than 15%. Most species occurred all over 

the region, with no obvious spatial pattern of large areas of absence or spatially 

concentrated occurrence. This could be expected as we focused our effort in the 

central area of Castro Verde, composed mostly of steppe habitat suitable for the 

target species. However, areas of higher frequency (and abundance, for Com 

Bunting) could be identified, and future monitoring should clarify whether these 

are determined mostly by annual variations in habitat availability or are 

consistent across time. 

• Species habitat associations 

The species studied could be grouped into four categories, in terms of 

relationship with the measured habitat variables: a) species clearly favouring 

fallow fields and permanent pastures include Calandra Lark and Little Bustard; 

b) a second category included species associated with cereal fields, namely Quail, 

Com Bunting, Zitting Cisticola and Montagu's Harrier; c) a third group was 

composed of species associated with ploughed fields: Short-toed Lark, Black­

eared Wheatear, Black-bellied Sandgrouse; d) a last group included species 

probably associated to more diverse habitat mosaics or to landscape variables not 

assessed at the scale used in the present study: Galerida larks, Red-legged 

Partridge, Hoopoe, Stone Curlew, Stonechat and Great Bustard. Some of these 

species did not show any association with the measured variables. 
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• Population estimates 

The population estimates obtained were not corrected for detectability, so they 

cannot be compared among species and should be considered as an index for 

future within-species comparisons, assuming detectability remains constant over 

time (Martin et al. 2007). As they stand, they mostly consist of underestimates 

and, thus, minimum population sizes. Additionally, the estimates available for 

Portugal are often very crude, hindering the assessment of the national relevance 

of Castro Verde populations. Even with these constraints, when compared to 

previous population estimates (Costa et al. 2003), the present data show that the 

importance of Castro Verde for steppe birds is even higher than supposed. For 

Little Bustard, previous estimates of 360-3340 males (Costa et al. 2003; Silva et 

al. 2006) are increased to 3400-5000 males. For Stone Curlew, previous 

estimates of 100-150 pairs now reached 580-1400 individuals. For Calandra Lark, 

estimates become more precise, with the minimum rising from 400 pairs (Costa 

et al. 2003) to 4900 pairs and the maximum decreasing from 8500 to 7400 pairs. 

This work provides the first population estimates for Com Bunting, Short-toed 

Lark, Tawny Pipit and Black-eared Wheatear. For other species, such as Great 

Bustard, Montagu's Harrier or Black-bellied Sandgrouse, the methodology used 

cannot be considered appropriate, and other census methods should be used to 

assess population status. 

In terms of national importance, Castro Verde is extremely important for Great 

Bustard (80% of the Portuguese population), Calandra Lark (over 60%), Little 

Bustard (20%) and, probably, Montagu's Harrier. Additionally, the region 

probably holds relevant percentages (10% or more) of the national population of 

Short-toed Lark, Stone Curlew, Black-eared Wheatear and Black-bellied 

Sandgrouse. The area is probably also of relevance for the Com Bunting, 

although there are no precise estimates of the national population for this species. 
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Again, we emphasise that this study was carried out in the spring of 2006, 

following the worst drought of the last 60 years in Portugal. This drought 

probably had important negative impacts on bird populations, mainly for resident 

species, which are likely to be reflected in the current results. Even agricultural 

management practices were changed, for example livestock grazing was 

introduced in failed cereal crops. Bird censuses at the national level have 

suggested a strong impact of the drought of 2004/2005 on bird populations 

(Hilton 2006). 

• Expected trends in habitats and populations - what will 

happen in the future? 

As a final exercise, based on the obtained species-habitat associations, we 

hypothesize expected trends in species populations in relation to potential 

scenarios of land management changes in the region. 

With decoupling, dry cereal cultivation will no longer be a profitable option for 

local farmers. Thus, one likely scenario will be for dry cereal abandonment and 

its replacement by pastures. This will be detrimental for species associated with 

cereal fields, such as Corn Bunting, Zitting Cisticola, Quail and Montagu's 

Harrier. But other species are expected to decline as the end of crop cultivation 

will probably also mean the end of field ploughing. Thus, species associated with 

ploughed land, such as the Black-eared Wheatear, Short-toed Lark and Black­

bellied Sandgrouse, are also expected to decline. 

As another management alternative, in the context of the end of cereal cultivation, 

afforestations of former agricultural land are increasing in the region. This is also 

a threat to most steppe birds, mainly species requiring large areas of fallow and 

pastures such as Calandra Lark and Little Bustard. On the other hand, 

afforestations could be beneficial for Galerida larks, at least in the short to 
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medium term, and for Red-legged Partridges and Corn Buntings, if the long-term 

consequence is the increase of 'montados' in the area. 

On the other hand, the increase of permanent pastures could a priori be 

considered beneficial for species such as Little Bustard and Calandra Lark, but 

this will depend on the grazing system, livestock densities and resulting 

vegetation structure. 

Finally, agricultural abandonment and subsequent scrub encroachment are 

expected, at least in the medium term, to improve habitat suitability for a few 

species such as Galerida larks, and Red-legged Partridges, but would be highly 

detrimental for typical steppe birds such as Great Bustard, Little Bustard and 

Calandra Lark. 

• Conclusion 

This study provided the first data on detailed spatial distribution patterns and 

population estimates for several steppe birds in Castro Verde. The results suggest 

that the method used is a quick and effective one for characterising occurrence 

patterns and making population estimates across relatively large areas of pseudo­

steppe, as well as describing broad scale bird-habitat relationships. The main 

value ofthe data obtained in this project is to use them as a baseline situation 

against which the results of future monitoring can be compared. We propose that 

changes in habitat and bird populations should be monitored at least every 5 

years. 
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A.2. The effects of species and habitat positional errors on the 

performance and interpretation of species distribution models 

,.' i ~ . , ,~ ; 
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A.2.1. Abstract 

Aim: A key assumption in species distribution modelling is that both species and 

environmental data layers contain no positional errors yet this will rarely be true. 

This study assesses the effect of introduced positional errors on the performance 

and interpretation of species distribution models. 

Location: Baixo Alentejo region of Portugal 

Methods: Data on steppe bird occurrence were collected using a random 

stratified sampling design on a 1 km2 pixel grid. Environmental data were 

sourced from satellite imagery and digital maps. Error was deliberately 

introduced into the species data as shifts in a random direction of 0-1 pixels, 2-3 

pixels, 4-5 pixels and 0-5 pixels. Whole habitat layers were shifted by one pixel 

to cause misregistration and the cumulative effect of one to three shifted layers 

investigated. Distribution models were built for three species using three 

algorithms with three replicates. Test models were compared with controls 

without errors. 

Results: Positional errors in the species data led to a drop in model performance, 

although not enough for models to be rejected. Model interpretation was more 

severely affected with inconsistencies in the contributing variables. Errors in the 

habitat layers had similar although lesser effects. 

Main conclusions: Models with species positional errors are hard to detect, often 

statistically good, ecologically plausible and useful for prediction, but 

interpreting them is dangerous. Misregistered habitat layers produce smaller 

effects probably because shifting entire layers does not break down the 

correlation structure to the same extent as random shifts in individual species 

observations. Spatial autocorrelation in the habitat layers protects against 

positional errors to some extent but they should be minimised through careful 

field design and processing. 

Keywords: Misregistration; location error; spatial autocorrelation; species 

distribution model; steppe birds 
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A.2.2. Introduction 

Species distribution modelling (SDM) refers to a group of techniques for 

predicting the full range of a species over a given geographical area from 

incomplete species location data (sightings, museum records, radio-tracked fixes 

etc.). The numerous algorithms available for SDM (e.g. Elith et al. 2006) work 

by relating the presence of a species to environmental conditions at geographic 

locations where it occurs to form some expression of the ecological niche 

(Sober6n 2007). An implicit assumption in this process is that both the species 

location and the associated environmental conditions are measured without 

positional errors, yet there is good reason to suppose that this will not often be 

true. Attempts to relate species and environmental data with unknown location 

errors are unlikely to model true ecological relationships and may lead to 

inappropriate conservation actions (Loiselle et al. 2003; Visscher 2006). The 

problems of positional errors and error propagation in spatial modelling are not 

new (e.g. Heuvelink 1998) and there have been many attempts to understand and 

limit the impact of image registration errors on change detection in remote 

sensing (e.g. Townshend et al. 1992; Dai & Khorram 1998; Wang & Ellis 2005) 

and citing papers). Methods also exist for handling georeferencing errors and 

calculating uncertainty (Wieczorek et al. 2004) although these have not been 

used in SDM to our knowledge. Despite this background, it is only recently that 

attention has been paid to positional errors in SDM. Van Niel et al. (2004) 

studied the effects of errors in Digital Elevation Models (DEM) on vegetation 

modelling, noting that similar problems probably exist for other environmental 

data. Hines et al. (2005) noted the impact of errors in mapped forest 

characteristics in delineating suitable habitat for spotted owls Strix occidentalis 

occidentalis. Graham et al. (2008) have evaluated how errors in the species data 

may affect SDM with a focus on a comparison of modelling algorithms, while 

Visscher (Visscher 2006) has considered the implications of error in GPS 

telemetry data. Only Johnson & Gillingham (Johnson & Gillingham 2008) 

appear to have considered both errors in species data (Global Positioning System 

(GPS) locations) and environmental data (misclassification ofland classes), 

although Graham et al. (2008) also note that this is important. 
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In this paper, we extend existing studies by exploring the impact of both typical 

and extreme positional errors in species and environmental data on the 

performance ofSDM for steppe birds in Portugal. We consider not only metrics 

of the predictive performance of the models (e.g. Graham et al. 2008) but also 

their ecological interpretation and the spatial pattern in their predictions which 

could influence conservation practitioners. Scale is likely to be an important 

determinant of the effect of positional errors in SDM. By typical errors, we mean 

positional shifts that are small relative to the grain (pixel) size at which analysis 

is undertaken. Co-registration errors in RS, for example, are likely to be smaller 

than a single pixel, and modern animal survey data recorded by GPS are likely to 

be placed in the correct pixel when rasterized down to 100 x 100 m or so. 

Examining more extreme errors is important, however, both to understand the 

trends in error propagation as error increases, and in anticipation of a growth in 

studies using finer resolution satellite imagery as a source of predictors. Recent 

sensors such as Ikonos, QuickBird, OrbView-3 and GeoEye-l provide data 

below 4 x 4 m resolution, heralding the possibility of detailed within-territory 

habitat assessments for birds and other organisms. With these sensors, it is 

evident that errors in the species data will often be multiples of the grain size at 

which analysis is possible. 

A.2.3. Methods 

• Data sources 

The field data were collected in spring 2004 in the Baixo Alentejo region of 

Portugal (Figure A.2.l). This region covers ca. 8500 km2
, comprising a mix of 

semi-natural Mediterranean habitats including rolling cereal-steppes, fallow 

fields, open woodlands ('''montados'''), shrublands, olive groves and vineyards. 

The region is important for steppe birds and includes three Special Protection 

Areas (SPAs) e.g. Castro Verde SPA, the main steppe area in Portugal and of 

international importance for several steppe bird species (Moreira et al. 2007) (see 

Appendix A.l). Bird data were gathered systematically in 560 1 km2 grid squares 

according to a stratified random sampling design, close to the ideal for SDM 
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(Araujo & Guisan 2006). Each square was surveyed once during the early 

morning or evening for 30 minutes and the GPS locations of breeding species 

recorded. By using a GPS, we estimate the maximum location error in the 

species data to be < 100 m, well within the grain size used for analysis (1 km2
) . 

For this analysis we chose three species with contrasting habitat preferences: 

Melanocorypha calandra (calandra lark) which favours fallow land; Circus 

pygargus (Montagu's harrier) which prefers cereals; and Elanus caeruleus 

(Black-winged kite) which uses the 'montados'. 

Figure A.2.1 - The study area comprised the Baixo Alentejo region of Portugal covering ca. 8,500 Ian' . Bird 

surveys (white dots) were conducted at 560 locations on a 1 Ian' grid 

The environmental data layers were derived from RS and map data at a spatial 

resolution of 1 km2
, following the approach of Osborne et al. (2001). Vegetation 

was described by using a 12-month time series of Normalized Difference 

Vegetation Index (NDVI) images from the SPOT VEGETATION sensor 

( www.spotvegetation.comlvegetationprogrammeD. We calculated monthly 

images as maximum value composites of three successive 10-day images for 

each month to minimise the effects of cloud cover and reduce sun-angle, shadow, 

aerosol and water-vapour effects, all of which can reduce data reliability (Holben 

1986). For modelling purposes, we reduced the time-series into seven variables 
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which described vegetation characteristics according to season. Terrain variables 

were derived from a DEM acquired from the Instituto GeogrMico Portugues 

(IGP), originally at a spatial resolution of250 x 250 m. From this we calculated 

average altitude (AL T) and topographic variability with a 10m vertical 

resolution (TOPOVI 0) within each 1 km2 grid square (Suarez-Seoane et al. 

2002a). Proxies for disturbance were calculated as 

distance to urbanisation (URBANDIST) derived from the Corine Land Cover 

2000 raster data provided by the EEA, and distance to roads (ROADDIST) 

derived from a vector-based road map provided by the Instituto de Estradas de 

Portugal (IEP). 

• Introduction of location error 

For the species data, we assumed errors at each location point would be 

independent (e.g. simulating GPS errors). The original vector coordinates were 

therefore shifted by a random distance and direction, according to four scenarios 

which explored different facets of the problem. In scenario Sl, locations were 

shifted by up to 1 km, i.e. one pixel at the resolution analysed, probably a 

realistic degree of error in many situations. To test more extreme errors that 

might occur at fine spatial resolutions, we forced errors to be 2 to 3 km for S2, 

and 4 to 5 km for S3, i.e. every pixel suffered some degree of location error. 

Lastly, as a more realistic scenario for fine-scale data, we introduced an error of 

o to 5 km for S4. In all cases, values were drawn from a uniform random 

distribution (see Discussion). After shifting, the data were rasterised to a 1 km2 

grid for analysis. Scenario S 1 therefore corresponded to a positional error in the 

species data of zero or one pixel, S2 two or three pixels, S3 four or five pixels, 

and S4 zero to five pixels. Three stochastic realisations of each scenario were run 

to indicate variability. 

For the habitat data we assumed that the commonest positional errors would arise 

from misregistration of GIS or imagery data layers. Errors for each pixel in a 

single layer would therefore have uniform distance and direction from the true 
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position. We also reasoned that misregistration would arise in the parent data 

layers such that all derived layers would be similarly affected (van Niel et at. 

2004). For example, if a DEM and the species data were misregistered, a 

consistent error would apply to derived variables such as altitude, slope and 

aspect. In habitat scenario HI, we shifted one parent layer by one pixel in a 

random direction, varying which layer was chosen on each of three runs. Under 

scenario H2, a further (different) parent layer was shifted by one pixel and added 

to HI, such that the three runs in H2 each had two different shifted parent layers. 

Similarly, under H3 we combined three shifted parent layers. Table A.2.1 shows 

which parent layers were shifted in each of the three habitat scenarios. As 

shifting the habitat layers meant they no longer overlapped perfectly, we reduced 

the size of the study area to the common area across all layers to prevent 

computational difficulties. 

Table A.2.I - The three scenarios, HI to H3, with introduced error in the habitat layers. For example, run 2 

of scenario H2 had both DEM and ND VI layers shifted while run I of H3 had ND VI, the river map and 

DEMshifted 

Model run 

Scenario code 1 2 3 

HI NDVI imagery DEM Road map 

H2 + River map + NDVI imagery +DEM 

H3 +DEM + Land cover map + NDVI imagery 

• Modelling 

Models were run using two popular and reliable algorithms (Elith et at. 2006) 

with one variant in the model selection routine. Our aim was not to compare the 

algorithms as such but to assess the way positional errors were propagated 

through the modelling process to the final output. As an example of a good 

general technique for presence and verified absence data, we used generalised 

additive modelling (GAM) (Hastie & Tibshirani 1990) with model selection 

based on multiple competing hypotheses assessed using Akaike's Information 

Criterion (AIC) (Akaike 1974; Burnham & Anderson 2002,2004). As an 
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alternative empirical approach more suited to prediction than interpretation, we 

used a GAM with an automated backward stepwise selection routine based on 

AIC (step GAM) (Lehmann et at. 2002). To simulate situations where verified 

absence data are lacking, Maximum Entropy Modelling (MaxEnt, v.2.l) was 

used with the presence data contrasted against a randomly drawn sample of 

background pixels (see Phillips et at. 2006) and (Phillips & Dudik 2008) for 

computational details). 

Model fits were assessed using the explained deviance in the GAMs and change 

in gain within MaxEnt (an analogue of deviance). Performance was evaluated 

using the area under the receiver operating characteristics curve (AUC) which 

has comparable although slightly different meaning when applied to GAMs and 

MaxEnt (see Beck & Shultz 1986; Phillips et al. 2006). Comparison of model 

interpretation within algorithms was made by calculating the drop contribution of 

each variable to the model on each run of each scenario, drop contributions being 

assessed by the change in deviance or gain when a variable was removed from 

the overall model. To quantify differences in mapped outputs from control and 

scenario models, we first standardised the probability scores to favourability to 

remove the effects of prevalence (Real et at. 2006) and then calculated the mean 

absolute difference in the predictions across all pixels as: 

1 - [LI(Ci - Si) I / p] 

where Ci is the value of the ith pixel in the control model, Si the corresponding 

pixel in the scenario model, and p the total number of pixels in the model, using 

the Map Comparison Kit (Visser & De Nijs 2006). Identical models have a score 

of 1 using this metric and zero would indicate totally dissimilar predictive maps. 

Control models without introduced errors were calculated for each algorithm and 

all results expressed relative to these for ease of comparison (Figure A.2.2). 
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Figure A.2.2 - Schematic representation of the modelling process 

RJI'Y 

date 

A.2.4. Results 

• Control models 

1----1>/ Distrib. 
map 

All three modelling approaches produced "good" models Gudged by the AUe 

statistic: Table A.2.2.) that were ecologically plausible for each species. Models 

for Elanus were weakest whereas those for Melanocorphya were strongest 

according to step GAM and GAM while MaxEnt produced the best model for 

Circus. 
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Table A.2.2 - Mean and SE of the change in A UC between the control model and models with introduced 

error in the species (SI to S4) or habitat (HI to H3) data. Values are expressed as a proportion of the A UC 

achievedfor the corresponding control model (third columnji-om left) 

CODtI"O! 
A UC foreaeh s<::enmio <IS propllniOfl of control A UC 

Algorithm Species AUC SI S2 S.l S4 Hl H2 H3 

Cir<.11S O.S-! O.9S±O.IHI O.94±O.OIS O.91±O.O22 O.9.j~Wl2 n.97~~IX)5 O.97~HX)9 0.97"0,1.008 

StepGAM Elan,,"s 0.77 O.99±O.IB9 {I.S5~W4(> I.OI±<Hl'iO O.97~WZ8 (l.96±<)'lJr~ (1.9~J.()~5 O.97±<I.024 

M~lmUJCf)ryplw 0.S8 O.97±O.OO2 0. 94±O.020 0.S5±o.on O.93~m6 O.99±O.O13 0.97±O.OlO O.9B±O.OIJ 

Circus O.SO O.97±O.OH5 H.92±O.004 O.SS:{l0l4 H.9J±<l0!2 O.97±<HI09 O.96±O.OO7 0.96:0-'110 

GAM Elam,s 0.74 O.99±O.022 {l.S6~l.{}Z} il.9%')J)28 O.9J±<WI3 O.9S"oO.lll' 0.96±11.017 O.94±O.OIl4 

Meiarmcol)piJa 0.S5 0.99:0.009 O.96±<o.oll O.SS:O.OOS O.93±O,00l:l 0.9&:0.003 0.98±O.OOl 0.98:0.004 

Circus M8 1.00±O.OO6 0.96±O.011 0.95:0.008 0.97:0.012 0.99±O.004 0.99:0.005 0.99:0.001 

MaxEilt Elall[(s 0.76 r.ot±O.!HII O.95~I.OI9 ! .OO±O.O2'~ O.99±O.OJ5 0.98±O.02t O.9B:O.ON O.9S±O.o:1A 

MeiarmcorypiJa 0.85 O.96±O.O06 {I. 95:0.01 1 O.lIS±O.m6 O.93±'.lW9 (i.99±O.IK'S O.9&t!H)JO O.9Fdl.0l4 

• Models with error introduced into the species location data 

In the majority of cases (species, algorithms and scenarios), positional error in 

the species data led to a drop in AUC although in S3 with stepGAM and S 1 with 

MaxEnt, Elanus showed a marginally "improved" model (Table A.2.2). The drop 

in AUC for the 0 to 1 pixel shift (S 1) was, however, no more than 4% on average, 

suggesting that the models would still be regarded as "good" (sensu (Hosmer & 

Lemeshow 2000) when judged by AUC alone. Even shifts of 4 to 5 pixels (S3) 

failed to reduce AUC in all cases although typically around a 10% average 

reduction was observed. The standard errors in the drop between runs were 

highest for Elanus which also had the weakest control models, perhaps indicating 

that overall model quality has an impact on the way error affects performance. 

The changes in deviance or gain showed a broadly similar pattern to AUC (Table 

A.2.3) although differences were more pronounced. In three cases for S 1 and one 

for S3, the models with introduced error were "better" than the control models 

but in all other cases were weaker. The decline in fit was correlated with the 

degree of error in Circus and Melanocorypha but erratic for Elanus. The latter 

species also showed high standard errors for step GAM, indicative of different 

predictor variables being selected on different runs within a scenario. 
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Table A.2.3 - Mean and SE of the change in deviance (StepGAM and GAM) or gain (MaxEnt) between the 

control model and models with introduced error in the species (SI to S4) or habitat (HI to H3) data. Vallles 

are expressed as a proportion of the deviance/gain achieved for the corresponding control model 

Dcvianc;..Vgain >1S pl~ltion of control forsrenari.o 
Algorithm Species 5! !i? :n 54 HI Hl m 

Or(,I1.~ ().91::O.049 0.75::0.080 0.59::0.080 0.75::Q.06J O.iiS±O.{)19 O.S7:tlO4J 0.S5,;,{).038 

StepGAM Eilllws 1.{)I±O.l}{) 0.39::0,117 1.09±O.306 0.79::0,103 O.75±O,070 O. 8(}:j), 102 O.SO::O.130 

Me i(JrI,ocor.'piltl O.S2±O.OOS 0.7I±O,067 OAO±O.067 O,64±O,047 0,95::0,0111 O.86::J}.056 0.91=0.057 

Orms 0,84:0.024 O,59"O.OlJ o.4ti±O.046 O.66±O.O61 O,84"().04J 0,82.:D.03~ {)'7:'1:O,037 

GAM E1illlt<s ll.9HO.l23 0,4O±O.057 0.47,,0.064 o.54±O.066 O.S8:O.ll75 O.76:D.057 0-68=0.001:> 

Meillnororypiltl n. 9:l±ll 066 0,78±O.054 0.47:0.0:16 O,67±O.OJ! O,9I±O.lllO 0.S8:D.0IO 0.90=0,004 

arCliS UI4::O.023 O,~'{)dl,OIS 0.73::0.056 0.89±O,054 U}t±O,()ll 1.04::J}.OlS 0.97=O'(U6 

MnEm E/Llnll,1 1.2J±O,109 0.71:0.0]7 0.85=0,(166 0.85=0.026 1. 17±O,094 1.05:lfJ.lOJ 1.03:0.072 

MelmlDcorypila 0.&9:0.055 0.S:~J.044 0.5',,0.048 O.72:lfJ.050 1.00±0.046 0,9ti:lfJ.0.16 0.95:0.040 

When we compared the predictive maps produced by the models, the trend in 

their similarity with the control models was again predictable across scenarios S 1 

to S3 (Table A.2.4). The effect of S4 (0-5 pixels shift) was always greater than 

the effect of S 1 (0-1 pixel shift). Despite this, the visual change in the models as 

error was increased was not always apparent (e.g. Figure A.2.3 which shows the 

stepGAM results for Melanocorypha). In general, the core areas were recognised 

by the error models while peripheral detail varied between scenarios. 

Table A.2.4 - Comparison of predictive map outputs from the control models and models with introduced 

error in the species (SI to S4) or habitat (HI to H3) data. The metric shown is the mean and SE of I - mean 

absolute difference in predictions across all map pixels 

1- n1eilll absolulJ! differen:e for seenario: 
Algotltbm Species SI S2 S3 54 HI 1-12 IU 

Cfrw.\· O.9J:O.021 O.89:0.0IH O.S5±O.OW o.R5±O.Ol.:! 0.94::(},022 O.90±0.OU 0. 93±<l.O2 S 

5lepGAM ElQm .. ~ O.91:110l6 H.84"O.OHl (1.82:(1. OJ6 O.85:lUllJ 0.91:0.010 fl.S7:1]'{}21 O.87±O.OJ{) 

Mekmm:orypfu/ n.92:(IHl4 O.86±l1.!Jl2 n. 85:(1. OJ6 O.8~U){l4 O.9:'>±lI.W7 fJ.88:(U)I)} O.90±O.{tJ4 

Cil'CIIS 0.9S:O.005 0.9]:0.002 0.91:0.006 0.91:0.015 0.96±OAJl4 0.94±O.005 O.95::Q.1ll4 

GAM Elatms 0.97:0.002 0.&8:0.004 0.87±O.022 0.86:0.008 0.95:0.014 0.93:0.006 0.91:::0.007 

Mekmowrypila 0.97:!:O.005 0.93:0.002 0.92:0.018 0.~.OO8 0.9ti:(l.{)17 0.9.1:0.00 I 0.94±O.016 

CirCUlI 0.$8:0.004 0.86±<J.009 0.84:0.011 O.81±O.O04 O.87:!:O.OO6 O.86±O.003 0.86±<U){)9 

MaxEnt Elamis O.Ji9:ll.OO4 O.IIO::Q.OlH 0.1IO::Q.022 O.1l3±0.OI8 O.87:!:O.0l6 0.84±O.008 0. 85±0.022 

M ekuUJcI1!)1liw 0.94:0.005 0.92±O.001 0.8S:o.022 O.87±O.O09 0.9'3±{).009 0.91:0.004 O.92±OJ.l12 
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Figllre A.2.3 - Examples of output maps from stepGAM models on MelanocOIypha (run with median AVe 

chosen to illustrate each scenario). (a) - control model with no error; (b) S1 (run 2) - 0 to 1 pixel shift; (c) 

S3 (run 1) - 4 to 5 pixel shift; (d) S4 (I-un 1) - 0 to 5 pixel shift; (e) H1 (run 2) - 1 pixel shift in one layer; (f) 

H3 (I'un 1) - 1 pixel shift in three layers 

While the absolute contributions of variables to models with error might not 

reasonably be expected to be the same as in the control models, the rank order of 

variables would need to be preserved if ecological interpretations are to be 

consistent. To test this, we calculated the rank correlation between the drop 

contributions of variables to the control model with the mean of drop 

contributions across the three runs for each scenario (Table A.2.5). In general, 

the small amount of error introduced in S 1 had a modest effect on the variable 

contributions, with MaxEnt suffering worst. The extreme error in S3 often led to 

major changes in which variables appeared in the models, sometimes with almost 

no correlation between the drop contributions (e.g. Melanocorypha with 

MaxEnt). This instability in the important predictors probably explains the 
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changing appearance of the output map (Figure A.2.3 - see especially S3). We 

also noted that the drop contributions were not consistent between the different 

runs for each scenario. For example, for the three species and four scenarios with 

MaxEnt, 11 out of 12 tests using Kendall's measure of concordance showed that 

the rank order of drop contributions was in disagreement between runs (at 

p<O.05). There was little consistency in the way concordance changed with the 

degree of error in the model: for Circus, agreement between the runs declined 

with increasing error whereas for Melanocorypha agreement increased and for 

Elanus it was erratic. 

Table A.2.5 - Correlations between the rank order of variable contributions to the scenario models with 

introduced error and the control models. Rank order was calculatedji-om the mean of the contributions 

across the three runs for each scenario. Sample size n = 12 for all cases except the GAM models where 

samples sizes are given above for each species. The Spearman's correlation statistic rho as used here 

should be viewed as a comparative measure of association across the scenarios rather than a test of a 

hypothesis. The critical value of rho at p<O. 05 is 0.591 for n= 12, but significance is less important here 

than the magnitude of the statistic 

Correlation hltwoonmnk order ofnriables in oolltml model IIn4 scenario 

Algol!thm Species 51 52 53 54 HI H2 H3 

Circus 0.S3 {U9 O.?O O.?! 0.94 0.76 0.69 

S1epGAM EJalllis n.M 0.27 0.32 0.19 0.95 O.B" {l.ll 

M. .. kuwmrypha 0.90 0.66 0..3t 0.&9 0.90 0.57 0.14 

CircuslJ.=4 l.00 (l.SO 0.80 UK) 1.00 1.00l 1.00 

GAM EJalllisn:=5 0.90 0.60 -0.30 0.60 0.90 0.90 0.70 

Me.ImrotaryplUJ n=5 1.1)() 0.90 0.90 0.90 1.00 0.90 1.00 

Circus 0.60 0.78 0..45 0.53 0.36 0.59 0.7 I 

MaxEnt EJalllis 0.50 ..(l.05 0.38 0.30 053 OAl! O.}? 

Mell1lU.uoryplia n.7J O.4t ·{W6 0.73 O.SI 1174 {l.411 

• Models with error introduced into the habitat data 

The misregistration of habitat data layers caused a decline in Aue in all cases 

but the largest drop across scenarios was only 6% and more usually no more than 

3% (Table A.2.2). Again the standard errors for the species with the weakest 

model (Elan us) were greater than for other species and stepGAM under the H3 

scenario produced a "better" model than under the less severe HI and H2 

scenarios. Deviance and gain behaved in a broader similar fashion to Aue but all 
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the MaxEnt models for Elanus produced a higher gain with the shifted habitat 

layers than without (Table A.2.3). Differences between scenarios did not follow 

the expected pattern of larger drops in explained deviance/gain the more elTor 

was added, the effects being rather unpredictable. In comparing the output maps, 

scenario H2 always produced a greater difference from the control than HI, but 

H3 often led to smaller differences than H2 despite more layers being shifted 

(Table A.2.4), suggesting that the number of layers misregistered may be less 

important than their identity. The rank order of variable contributions to the 

habitat elTor models often differed widely from the control and generally 

increased in severity the more layers were shifted (Table A.2.5). For example, 

the H3 scenario using stepGAM for Melanocorypha had only three variables in 

common with the control out of a total of nine used, although the visual effect on 

the probability map was not striking (Figure A.2.3). Overall across all 

comparison statistics used, the impact of misregistered predictor layers was less 

than an equivalent pixel shift in the species layer. 

A.2.5. Discussion 

In this study we introduced positional elTors into our species data ranging from 

mild to extreme distortion in order to understand how errors are propagated 

through the modelling process. Our mildest distortion of up to one pixel (S I) 

may be the maximum experienced in many studies where the pixel size used for 

analysis is more than double the likely positional error. It may even be too severe 

as we drew the random shifts from a uniform distribution (e.g. rather than a 

normal curve cf. (Johnson & Gillingham 2008) in order to induce more effect 

(Visscher 2006). It is therefore likely that species positional errors have a small 

effect on the fit and predictive performance of many models as judged by AVC 

(concurring with (Graham et at. 2008). The corollary of this is that AVC is not a 

helpful statistic for distinguishing models with and without positional errors and 

the thresholds for accepting models as "good" based on AVC may be too low 

(see also (Lobo et at. 2008). Changes in deviance or gain for the same models 

were far more pronounced and in our view provide a better indicator of errors 

than the small changes in AVe. In the majority of cases with mild elTors, 
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however, neither the changes in AUe nor deviance explained were sufficient to 

cause the researcher to reject the model (according to the thresholds for 

acceptable models based on Aue - see Swets 1988; Hosmer & Lemeshow 2000; 

Pearce & FelTier 2000). In consequence, models containing positional errors 

have probably been interpreted ecologically and used in applied contexts. 

Analysis of the predictive maps produced, however, showed strong similarities 

especially in the core areas of a species range. If our results are typical of other 

situations, it is unlikely that interpretation of such maps by conservation 

managers would have led to grave errors in identifying key areas for protection 

or the boundaries to the main areas used by a species, although they could 

certainly mislead in more marginal areas. Our findings therefore agree with those 

of Graham et af. (2008) that useful predictions can be made even when species 

data contain some positional error. In addition, however, our results show that 

the predictors driving such models were markedly affected by elTors (see also 

(Johnson & Gillingham 2008) whereas Graham et al. (2008) did not study model 

inference. When we examined the variable contributions, we found large 

inconsistencies between models with introduced elTor and those without, even 

between runs of a single scenario. Yet in many cases, it would be possible for a 

competent ecologist to "explain" why the selected variables were important to 

the species. Unless positional errors are known to be very small, it is dangerous 

to infer that the variables selected by the modelling algorithms are those used by 

the species during habitat selection, or even proxies for them, and their 

coefficients cannot be taken to indicate importance to the species. Thus although 

predictive success may be preserved in models built from datasets with positional 

elTors, ecological interpretation is not. Our take-home message is that models 

with species positional errors are hard to detect, often statistically good, 

ecologically plausible and useful for prediction, but interpreting them is 

dangerous. Although it was not our main purpose to compare algorithms, our 

results are consistent with those of Graham et al. (2008) in noting differences 

between them and that MaxEnt appears robust to moderate levels of elTor. 

The introduction of extreme positional elTors (up to 5 pixels) into the species 

data caused larger changes in fit than the smaller errors: in general, the greater 
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the error, the more AUC and deviance or gain declined. Again, however, AUC 

was often insufficiently affected for the models to be rejected. We used these 

extreme errors to indicate what might happen when researchers start to use the 

increasingly available very high resolution imagery as predictors in their models 

(i.e. to explore scale effects). Even at a resolution of 10 x 10 m pixels, the errors 

in species locations are likely to be several pixels unless extreme care is taken 

(e.g. using differential GPS). Our analysis suggests that models built with large 

degrees of positional error will be weaker and very often based on different 

predictors than control models. 

Our findings also showed that misregistration of habitat layers caused smaller 

effects on the models than a shift of the same magnitude in the species data 

((Johnson & Gillingham 2008) also found that positional errors in the species 

data had the largest effect on model outcomes). In fact, it was not always 

apparent that an increase in the number of layers shifted caused greater impact on 

the models. Overall the effects were less severe and less predictable than 

corresponding species positional errors. One reason why this might be true is a 

difference in the way the errors are propagated. Species errors usually have both 

random distance and direction: if the predictor data layers have low spatial 

autocorrelation (see below) the effect of species errors is to break-down the 

correlation structure with the predictors. In contrast, misregistered habitat layers 

are often shifted in a single direction by a fixed amount (but see Brown et al. 

2007) for treatment of spatial variability in misregistration). A constant 

directional shift weakens but does not break down the correlation structure 

between the species and predictor layers. The relationships identified may be 

"wrong" in the sense that the variables involved are not the cues used by the 

species in habitat selection, but they remain consistent enough to produce 

predictive models. In fact, we would go further and argue that all the variables 

commonly used in bird distribution models (and those for many other species) 

are only proxies for causal variables. Positional errors cause the substitution of 

another proxy but the predictions remain valid. This is another reason why 

interpreting 2 ecologically which variables drive the models is inadvisable. 
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The over-riding recommendation must be that researchers make themselves 

aware of the many potential sources of positional errors in SDMs and minimise 

them through careful field design and data processing. As a general rule of thumb, 

it would be prudent to consider the likely degree of error in each data layer (both 

predictor and response variables) and, having identified the largest likely error, 

restrict analysis to grain sizes at least twice this value. For example, in a study 

using bird data from point counts (sighting error ~ 10 - 30 m), located using a 

modern GPS unit (inherent error up to 20 m) and modelled against resampled 

Landsat imagery (error up to 30 m), it would be unwise to base analysis on single 

Landsat pixels of 30 m. Instead, a more robust analysis would come from using a 

3 x 3 matrix of Landsat pixels (= 90 m resolution) at roughly twice the error in 

the bird data (which equals 20 + 30 m). The data from individual Landsat pixels 

need not be lost but should be incorporated as a variability measure within the 

unit of analysis. 

Figure A.2.4 - Average within-scenario variability of a p redictor's contribution to the model (across all 

species and scenarios) against the spatial autocorrelation in the p redictor (Rook's case Moran 's 1). Low 

values on the y-axis indicate greater consistency in the peiformance of predictor variables when subjecllo 

positional errors; such variables tend to have higher spalial autocorrelation. Analysis based on results fi'0 111 

MaxEnt 

2.0 

• 

• • 
1.2 '---- ---'-----'-----'-----'-------'-----' 

0.65 0.7 0 .75 0.8 0 .135 0.9 0.95 

Spatia l autocorre la tion in pmdictor 
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We suspect that a further indication of the potential impact of positional errors on 

SDMs may be gained by examining spatial autocorrelation, a common feature of 

predictor variables more often seen as a challenge than an opportunity (Dormann 

et al. 2007). Logically, errors in species coordinates will matter less if the shifted 

location shares the same environmental features as the true location (i.e. the 

habitat variables are spatially auto-correlated). In such cases, analysis will still 

uncover the ecological relationships (niche) which underpin distribution models. 

Similarly, when habitat layers are misregistered, the correlation structure 

between the habitat variables will be preserved if there is strong similarity in the 

values of adjacent pixels. Although theoretically true, we know of no 

demonstration of this on real ecological data and therefore performed an 

exploratory test for our study site. If spatial autocorrelation serves to "rescue" 

models with location errors, we would expect to see a link between this 

autocorrelation and consistency in the rank position of variables within models 

across any situation. We calculated the standard deviation in rank position of 

each variable across the three runs for each scenario (Sl to S4) for each species 

and then averaged these standard deviations (n = three species x four scenarios). 

We t~en plotted this measure against Moran's I for each variable (Figure A.2A). 

As surmised, the variables which appeared most consistently in models despite 

errors in location were those with the highest spatial autocorrelation. The 

relationship was not strong (r2 = 0.37) perhaps due to the stochastic differences 

between runs or use of Moran's I which is known to be sensitive to the chosen 

neighbourhood and weightings applied to neighbours. This plausible link 

between SDM robustness to positional error and spatial autocorrelation suggests 

that modellers could usefully examine the spatial autocorrelation in each 

predictor variable (after the appropriate spatial resolution for analysis has been 

chosen) to indicate vulnerability. Ironically, the variables with most resilience to 

positional errors could also be those with poorest predictive power since they 

would be spatially invariant. There is clearly a trade-off between local spatial 

invariance to protect against the effects of positional error and the need for larger 

scale variability to separate good from poor habitat for the species being studied. 
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