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Abstract

This project aimed to define linkage disequilibrium (LD) patterns and tracts of
extended homozygosity in order to compare populations and search for disease
genes. SNP genotype data were analysed on a Unix platform, using the
programs LDMAP+, for linkage disequilibrium unit (LDU) map creation, and
CHROMSCAN-cluster, for association mapping, as well as software written as
part of this project, in the C programming language, for determining tracts of
homozygosity and for autozygosity mapping. LDU maps were compared over
populations showing similarity in LD structure. A cosmopolitan LDU map
which represents the LD patterns of different population samples was produced
and able to recover 91-95% of the information in the original population specific
data. Genome-wide LDU maps were created, compared across populations, and
compared with the linkage map to estimate effective bottleneck time (t), the
time since the last major bottleneck for each population.

This project also discovered an unanticipated amount of homozygosity in the
outbred individuals genotyped in the HapMap project. Large homozygous tracts
are expected in inbred individuals and this analysis was able to determine 3
individuals with high levels of homozygosity consistent with recent inbreeding.
The relationship between tracts of homozygosity and LD was investigated, using
the LDU maps, showing that long tracts of homozygosity are more likely to
occur in regions of high LD where the underlying haplotypes are of limited
diversity. The relationship shown between LD and homozygosity enabled a
more powerful approach to autozygosity mapping of a recessive locus in a
consanguineous pedigree affected by Congenital Nephrotic Syndrome. High
density SNP genotyping of affected individuals pinpointed regions of
homozygosity which segregate with the disease, with the advantage of using few
individuals and without the need for statistical inference from linkage. The
regions determined were then prioritised on the basis of LDU length, therefore
adding weight to regions of true autozygosity over regions of homozygosity
associated with high LD. This analysis successfully determined a region
containing a strong candidate gene (PLCE1) which has subsequently been
shown to be mutated in the affected individuals.

Extending the search for disease genes to complex disease studies, a genome-
wide association scan was carried out, using real case-control data with an
undisclosed disease and utilising the LDU maps. A combination of the results
from the multi-SNP approach of CHROMSCAN-cluster and single SNP results
allowed selection of regions for follow up in a multi-stage analysis.
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Chapter 1 — Introduction and aims

1.1.Introduction

There are three maps currently used to describe the human genome. The
physical map, measured as sequenced base-pairs; the linkage map, genetic
distance measured in families across a generation; and the linkage
disequilibrium map, genetic distance measured in unrelated individuals across

the many generations since the founding of the population.

1.1.1 The sequence map

The physical map reflects the structure of Deoxyribonucleic acid (DNA), the
molecule responsible for the inheritance of genetic traits. It consists of three
- parts; a sugar, a phosphate, and a base, and forms a double helix structure

(figure 1.1).

Figure 1.1 The double helix structure of DNA showing the base-pairs.
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There are 4 types of base Adenine (A), Cytosine (C), Guanine (G) and Thymine
(T). Long strands of DNA hold information in the sequence of these base-pairs.
There are 46 distinct pieces of DNA in each of our cells. These are the
chromosome pairs 1 to 22 and the sex chromosomes X and Y, with one set
inherited from each parent. The structure of DNA was first described by Watson
and Crick (Watson and Crick 1953). The first base-pair sequencing method was
developed by F. Sanger in the 1970’s (Sanger and Coulson 1975; Sanger,
Nicklen, and Coulson 1977). Several methods were proposed and there has been
development of improved high throughput methods making sequencing of the

entire human genome possible.

The Human Genome Project (HGP) was formally launched in October 1990 by
the U.S. Department of Energy and the National Institutes of Health's National
Human Genome Research Institute (NHGRI). The publicly funded Human
Genome Project announced the release of a draft sequence of the Human
Genome in 2001 (Lander et al. 2001), at the same time as the private venture by
Celera (Venter et al. 2001); the ‘finished’ sequence was announced in April 2003
(Collins, Morgan, and Patrinos 2003; Collins et al. 2003). Since that time,
regular updates to the map have reduced gaps in areas which are hard to
sequence due to heterochromatin or repeat sequences. The availability of the
base pair (bp) sequence of the human genome has provided a wealth of
information, which is publicly accessible via several databases such as, the
National Centre for Biotechnology Information (NCBI)
http://www.ncbi.nlm.nih.gov/) and UCSC genome browser
(http://genome.ucsc.edu/). As well as the sequence information the various
databases provide further annotation of the sequence such as gene locations and
genetic marker positions. The Human Genome Project provides a standard
reference sequence (a composite of several individuals), it is estimated that any
2 genomes are 99.9% identical, however every individual genome is unique and
0.1% difference amounts to millions of variations in the 3.2 billion base-pairs of
sequence. These differences account for the heritable variation among

individuals including susceptibility to disease (Kruglyak and Nickerson 2001).


http://www.ncbi.nlm.nih.gov/
http://genome.ucsc.edu/

1.1.2 Genetic variation

Human variation can be observed in many forms, from the ABO blood groups
and serum protein variations to DNA sequence polymorphisms. Examples of
DNA polymorphisms are restriction fragment length polymorphism (RFLPs),
minisatellites or variable number tandem repeats (VNTRSs), microsatellites or
short tandem repeat polymorphisms (STRPs) which are the basis of the most
linkage maps, small insertion/deletions (indels) (Kidd et al. 2004) and Single
Nucleotide Polymorphisms (SNPs), a change in a single base pair at a given
location. SNPs are the most frequent type of polymorphism in the human
genome; they are generally bi-allelic and have low mutation rates. Large
collections of SNPs have now been established and described in public
databases such as dbSNP (NCBI 2005) and The SNP Consortium (The SNP
Consortium 2005). Approximately 10 million common SNPs are estimated to
exist (Botstein and Risch 2003). Non-synonymous SNPs cause a change in the
amino acid coded by a gene. They are known to cause disease in many
monogenic disorders and are a priority when looking for disease causing
mutations. However synonymous SNPs, which do not change the amino acid
coded, and SNPs in non-coding regions, perhaps promoter or regulatory
regions, may affect the regulation and splicing of genes and also lead to disease.
Most SNPs are located in non-coding regions of the genome and although many
may not cause disease themselves they are still very useful as genetic markers
since they may be associated and inherited with causal polymorphisms, and also
may be used as markers for population genetics and evolutionary studies

(Celedon 2005).

High throughput genotyping is now standard technology and many
investigators use the commercially available genotyping platforms. Affymetrix
gene chips use randomly chosen SNPs depending on the restriction enzyme
used to cleave the DNA. Illumina have used HapMap data to be more selective
in choosing SNPs that offer the best coverage based on LD patterns. There are
ongoing modifications to increase quality, call rate and reduce bias. For
example, the Dynamic Modelling (DM) algorithm was used by Affymetrix to
automatically call genotypes from experimental results. However, it was shown

that this particular algorithm has a bias in that missed calls were more often
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heterozygotes than homozygotes (Rabbee and Speed 2006; Kuruvilla et al.
2006). A new algorithm called BRLMM was introduced to overcome this bias
and is the standard algorithm currently used by Affymetrix. There are several
quality control procedures carried out on genotypic data such as removing SNPs
or individuals with a certain percentage of missing calls, duplicate typing of a
percentage of SNPs or individuals to ensure concordance and Hardy-Weinberg
equilibrium tests. Overall for large samples obvious genotyping errors can be
avoided. Some errors may remain but with error rates much less than 1% they
are likely to have negligible effects on most analyses. However it is wise to
individually check the cluster plots used for genotype calling and the quality
scores associated with genotypes of interest to check the reliability of the

information.

1.1.3 The Linkage map

Long before determining a physical map was considered possible or DNA was
known to be the inherited coding structure, there was a genetic map. The very
first genetic map was constructed in 1913 by Alfred H. Sturtevant an
undergraduate student of Thomas H. Morgan at Columbia University. They had
been working on 6 sex linked ‘factors’ in Drosophila. The factors were given a
linear order based on the length and strength of their association determined by
the number of meiotic crossovers between factors, the phenomena of

interference was also noted, where one crossover inhibits another close by.

Figure 1.2 The first diagram of a genetic map.
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This diagram of factors was the forerunner to the linkage map which measures
the recombination rate in centiMorgan (cM) units. The first comprehensive
linkage map was produced by (Dib et al. 1996) and the most comprehensive
linkage map to date is based on the deCODE pedigrees from Iceland (Kong et al.
2004).

Linkage maps have been valuable in identifying disease-causing ‘major’ genes.
In linkage studies chromosomal segments which co-segregate with the disease
in families are identified, and predicted to contain the causal variation. It is a
powerful method but generally only narrows a region to a few Megabases (Mb),
which may include many genes or variants. The availability of the gene
annotated base-pair sequence has allowed candidate gene analysis as a method
of narrowing down the region of interest (Carlson et al. 2004), where genes with
a known function that may biologically affect the phenotype are studied further.
Linkage studies have been less successful for complex diseases which are caused

by polygenes, variations of small effect in multiple genes.

Figure 1.3 Genes and their effects.
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1.1.4 Linkage Disequilibrium



Attention has therefore shifted towards linkage disequilibrium (LD) which
describes the tendency of linked alleles to be inherited together more often than
would be expected under random segregation. The potentially higher resolution
of disease mapping using linkage disequilibrium makes it an attractive option.
LD is created when a small number of founding individuals and therefore small
numbers of haplotypes form a new population corresponding to a bottleneck.
The major influence on LD is recombination and the amount of time
recombination has had to break up LD since the last major bottleneck, to a
lesser extent, mutation, genetic drift and selection also have an effect (Tapper et
al. 2003). Linkage mapping tracks a disease (D) _and genetic markeri(M)
through 1-2 generations in a family, limiting the linked region of interest by
meiotic recombination events. Association mapping using LD, utilises a similar
idea in a population sample, to determine a region of interest by association of
the disease with genetic marker alleles, narrowed by historical recombination

events determined by LD patterns (figure 1.4).

Figure 1.4 Linkage mapping (A) versus association mapping by LD (B).
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1.1.5 Measures of LD

There are several commonly used measures of LD. D is a simple measure of
disequilibrium and is calculated as D= fAB- (fA x fB), with fAB as the observed
frequency of the AB haplotype and fA x fB being the expected frequency based

on the individual frequencies of the two alleles A and B. D is not of great use for
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comparing the strength of LD since it has a maximum value (Dmax) which is
highly dependent on allele frequency. To account for this Lewontin provides an
extension, D’ calculated as D’=D/Dmax (Lewontin 1964). With an arbitrary
assignment of alleles this value can be positive or negative and is therefore
presented as the absolute value |D’|. |D’| =1 shows complete LD but lower
values have a less clear interpretation, since D’ is dependent on sample size and
is inflated in small samples. Another commonly used measure is r2, which is
equal to D2 divided by the product of the allele frequencies at the two loci. This
is more stable to sample size but is again less reliable for low allele frequencies.
r2 is used to determine power in association mapping and predict the sample
sizes required, whereas as D’ is a measure of LD itself. These pairwise measures,
can be plotted as ‘heatmaps’ using software such as GOLD (Graphical Overview
of Linkage Disequilibrium) (Abecasis and Cookson 2000) or Haploview (Barrett
et al. 2005). These programs are useful for providing a graphical visualization of

pairwise measures between many SNPs but do not allow the creation of a whole

linear additive map.

1.1.6 LDU maps

The LDU map uses the association metric rho (p) which is a probability and
therefore ranges 0-1. Rho is equivalent to |D’| for pairs of SNPs, but not for
marker/disease association and is the most robust metric to allele frequency but
is still sensitive to sample size (Collins and Morton 1998). This metric is
calculated using pairwise data and also modelled by the Malecot equation in the
LDMAP program. The theory for the first map of LD patterns was developed by
Maniatis et al., it is a map with additive distances in LD units (LDU) analogous
to the linkage map in ¢cM (Maniatis et al. 2002). The LDU map is based on the
Malecot model which was originally designed for isolation by distance but has

been adapted to model the decline of LD over distance (Collins and Morton

1998). The model is, p=(1- L)Me“gd + L, and the 3 main parameters are M, L,

and e. M is the association at o distance and has an evolutionary interpretation
as it reflects the association at the last major bottleneck. L is the association at
large distance and reflects background LD levels and the effect of sample size,

which is known to affect rho. Epsilon (¢) measures the decline of LD over
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distance; a large € reflects a rapid decline of LD whereas a small ¢ reflects a
more gradual decline. LDU is calculated as the product of epsilon and distance
in Kb.



Figure 1.5 The method to create an LDU map.
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This diagram shows fitting of the Malecot model and calculating LDU from the estimated € for each pair of SNPs to create an additive LDU map showing plateaus of
high LD/low recombination and steps of low LD/high recombination (Collins, Lau, and De La Vega 2004).



For all pairs of SNPs, p is calculated using the observed pairwise data and

estimated using the model. The estimated and observed values are used to

calculate the composite -2 log likelihood = Z K(p- gS)Z , this is minimised so

that the difference between the two rho values is closest to zero. Composite
likelihood is a combination of likelihoods, usually of small subsets of data, this
reduces computational complexity and allows large datasets and complex
models to be handled when a standard likelihood is not feasible. A drawback to
composite likelihood is that the summation is over non-independent elements
(Zhang et al. 2002). Of the three parameters in the Malecot model, L is not

estimated but a ‘predicted L’ is calculated from the data, as equal to the K-

weighted mean of _/2/nK P where Kp , the information about p per marker

pair, is proportional to sample size (the weighted mean deviation for a normal
distribution). Since L is the asymptote, it is not observed in a small region, and
the block structure revealed by a high density of SNPs distorts a direct estimate
of L thus predicted L has been shown to give more reliable results than
estimating the L parameter (Zhang et al. 2002). Epsilon is iterated for each SNP
interval, it is incrementally changed and the magnitude and direction of the
change is determined using the Newton-Raphson algorithm for finding the roots
of non-linear equations. The -2 log composite likelihood is minimised for each
interval to provide the best model fit to the observed data. The parameter M is
assumed constant across the whole LDU map but is iterated periodically to
minimise the -2 log likelihood. For the creation of an LDU map the epsilon value
for each interval is multiplied by the Kb distance to give a value in LDU,
beginning with 0 LDU at the p-ter of the map the values are cumulative to give
an additive map. A further measure called the swept radius, calculated as 1/,
shows the average extent of ‘useful’ LD on the kilobase scale. The LDU map can
be plotted on a graph opposite the kb map revealing plateaus and steps. The
plateaus show a low LDU/Mb ratio, corresponding to a region of high LD or low
recombination. The steps show a high LDU/Mb ratio, corresponding to a region

of low LD or high recombination (Maniatis et al. 2002).
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' 1.1.7 Properties of the LDU map

Since recombination is the main force behind LD structure, information about
recombination can be reliably obtained from the LDU map. This was shown by
the remarkable correspondence between the results from Jeffreys et al.
(Jeffreys, Kauppi, and Neumann 2001), which was a direct measure of meiotic
recombination carried out by sperm typing, and the LDU maps of the

corresponding region (Zhang et al. 2002) (figure 1.6).

Figure 1.6 A 216-kb segment of class II region of MHC.
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An LDU map (A) and the corresponding region analysed by sperm typing (B), showing the
agreement between steps in the LDU map and the localisation of the recombination hotspots

shown as vertical bars in B (Zhang et al. 2002).

Since the creation of the first LDU maps of small regions, LDU maps have been
created of whole chromosomes. Tapper et al. (2003) created LDU maps for
chromosome 22 for 2 European samples, allowing the LDU map to be compared
with the linkage map over a whole chromosome. There was a good
correspondence between the two genetic maps despite the comparatively low

resolution of the linkage map. The LDU map also allowed the LD patterns in
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different chromosomal regions to be compared showing the variation in LDU

(Tapper et al. 2003).

An LDU map can be used to facilitate positional cloning or association mapping
(Maniatis et al. 2004), enhance the resolution of the linkage map, compare
populations (Lonjou et al. 2003), and detect selective sweeps and other
evolutionary events. The linkage map appears, on limited evidence, not to vary
between populations. The LDU map, however, varies with different population
histories, principally the ‘age’ of the population, the time since the last major
bottleneck. The most apparent difference is found between African and non-
African populations, presumably reflecting the ‘Out of Africa’ bottleneck
(Lonjou et al. 2003; Reich et al. 2001). A small number of individuals
representing a small sample of the haplotypes present in Africa at the time
founded a new Eurasian population, resetting LD in the new population. In
terms of the Malecot model the parameter M would approach 1 and £ would be
small reflecting the high level of LD (Lonjou et al. 2003). Although the overall
length of the LDU map is longer in African populations, reflecting more
recombination, the broad patterns, in terms of plateaus and steps, are aligned.
This similarity can be explained by the co-localisation of recombination
hotspots in all populations. The intensity of recombination shown in the map in
these areas varies due to the differences in time, with more intense hotspots
(longer steps) in the African populations causing the increased map lengths (De
La Vega et al. 2005). This high correlation in LD patterns could allow a
cosmopolitan LDU map to be made incorporating multiple populations; this
standard map could then be scaled to represent the LD structure in any single

population (Lonjou et al. 2003).

1.1.8 The HapMap project

The idea that the genome can be divided into regions or blocks that have low
haplotype diversity (Daly et al. 2001) led to the suggestion that some markers
could be used as surrogates for others with which they are in high or complete
LD; fewer SNPs would reduce the cost and workload of association studies. A

demand for a better understanding of the LD structure of the human genome in
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order to choose which SNPs to type to get the maximum benefit, prompted the
International HapMap Project. There have been many methods and software
programs developed to choose these ‘haplotype tagging’ SNPs, such as Tagger
(de Bakker et al. 2005) and HapBlock (Zhang et al. 2005). The International'
HapMap project aimed to catalogue human variation with the objective of

helping investigators choose tagging SNPs.

The International HapMap project began in 2002 as a collaboration between
scientists and funding agencies from Japan, the United Kingdom, Canada,
China, Nigeria, and the United States. It aimed to genotype over a million SNPs
in 4 populations, CEPH Utah residents with Northern and Western European
ancestors, Japanese from Tokyo, Han Chinese from Beijing, and Yoruba from
Ibadan, Nigeria. In February 2005 Phase I of the project was completed with 1.2
million SNPs genotyped in the 4 populations. After some quality control
measures and error fixing the analysis group carried out their initial analysis of
this Phase I data (Altshuler et al. 2005). The HapMap Consortium continued
genotyping, extending the project to Phase II, with the new goal of
approximately 4 million SNPs resulting in, on average, 1 SNP per 600bp
throughout the genome. The data are periodically released into the public
domain via the website http://www.hapmap.org (International Hapmap Group
2005; National Institutes of Health and National Human Genome Research
institute. 2002; National Institutes of Health and National Human Genome
Research institute. 2005). This resource provides large amounts of publicly

available genotype data on 269 (270 in Phase II) individuals.

The initial analysis of the HapMap phase I data by the HapMap analysis group
gave a description of the data collection, genotyping methods and quality
control procedures. They also carried out some analysis of the data and
discussed the properties of LD in the genome. Many phenomena previously
described in smaller samples and smaller regions were confirmed over the
whole genome, such as the major determinant of variation in LD being
recombination, the block-like structure of LD, and the presence of
recombination hotspots. The extent of LD was shown to vary across populations
and be less extensive in the YRI sample, more extensive LD was shown on the X

chromosome with more long-range haplotypes. Previously reported
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observations of increased LD towards the telomeres, and reduced LD towards
the centromeres, and also a correlation between LD level and chromosome
length were also confirmed. The authors describe the projected use of the
HapMap resource for directing association studies and selecting tagSNPs,
though acknowledge that more data on more populations and data including
rare SNPs (Phase I selectively genotyped common SNPs) is needed to fully test
the portability of tagSNPs across populations. The paper also highlights the use
of the HapMap data for studying natural selection, empirical analyses were
carried out determining the most extreme candidate regions for selection using
a long-range haplotype method and differences in allele frequencies between
populations. However, it is accepted that different types of selection leave
different signatures in current genetic variation data and many methods use
different approaches, also the SNP ascertainment bias because of a focus on
common variation complicates any analysis, and careful interpretation of results

are required (Altshuler et al. 2005).

1.1.9. Coalescent Theory

Coalescent Theory models the underlying genealogy which led to current human
variation. It is modelled backwards in time as a tree, where 2 different lineages
(haplotypes) coalesce to a single ancestor at each level of the tree, going back to
a single common ancestor, the most recent common ancestor (MRCA) of the
current population with the mutation events which lead to the changes being
superimposed on the branches of the tree. To add recombination to the
coalescent model, lineages which join (coalesce) when they have the same
ancestor can also split (bifurcate) when the same segment has 2 ancestors due
to a recombination event. As well as mutation and recombination, other genetic
processes such as population size fluctuations, genetic drift and selection can
also be incorporated into this kind of model. The model then contains several
parameters of interest as well as a genealogy. Simulations are carried out to
define the parameters for the model that produces simulated data matching the
observed genetic variation data. However, the more complex models have
drawbacks due to the computational complexities involved and models may fail

to produce a result in reasonable time. Two methods for attempting to resolve
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this problem are the ‘first approximation’ which removes the need for an exact
match between the simulated and observed data, and the ‘second
approximation’ in which the model itself is simplified (Marjoram and Tavare
2006). Coalescent-based methods are complex and there are many variations,
using these models for determining recombination rates and for association
mapping problems is a current focus. Any statistical analysis of genome-wide
data will face problems due the amount of data, the complexity of the data, the
amount of autocorrelation and the rate of false positives unique to such data.
‘Historical recombination maps’ produced by the LDHAT program are based on
a coalescence method (McVean et al. 2004) and have been shown to correlate
well with linkage maps over the same regions and recombination rates directly
measured from sperm-typing data (Jeffreys, Kauppi, and Neumann 2001).
Instead of modelling recombination over the whole genome, the method
simulates genealogies while moving along a sequence, dividing the data into
subsets and combining likelihood calculations, therefore this is a composite
likelihood method. A similar coalescent-based method has been developed to
identify recombination hotspots using a program called LDHOT based on the
recombination maps produced by LDHAT (Myers et al. 2005).

1.1.10 Extended homozygosity and autozygosity mapping

The data provided by the HapMap project can be used to create LDU maps of
the whole genome and the LDU patterns can be compared in different genomic
regions and across populations to give a better understanding of LD. LDU maps
of these data may also be used to study the demography, and evolutionary
events that have shaped current human populations. The HapMap data allows
an insight into normal variation and normal levels of homozygosity. When a
biallelic marker has identical alleles it is homozygous; this can indicate identity
by state (IBS) or identity by decent (IBD). In IBD homozygosity is likely to
extend to neighbouring SNPs which are inherited together on the same
chromosomal segment, creating a region of homozygosity. Broman and Weber
(1999) found long tracts of homozygosity were more common than expected in a
CEPH sample using short tandem repeat polymorphisms (STRPs). They found

that it was not unusual to find individuals from outbred populations to have
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long homozygous tracts of >10cM. They examined the role of possible typing
error, back mutation of STRPs, gene conversion events and the limitations
imposed by locally low marker density in determining the limits of homozygous
segments. Although relationships between ‘unrelated’ individuals in some
pedigrees were determined, there remained a degree of autozygosity
approaching or exceeding that expected in the progeny of a first cousin mating
where relationships were not detected (Broman and Weber 1999). The HapMap
data provide an ideal opportunity to look at this phenomenon in high quality

and dense SNP data in 4 outbred populations.

Consanguinity is known to be associated with an increased risk of rare recessive
disease. The low haplotype diversity means that a rare mutation is more likely to
be seen in its homozygous form in a family with some consanguinity. Knowledge
of the levels of extended homozygosity in healthy outbred individuals would
provide useful information for the mapping of autosomal recessive genes with
homozygosity mapping (Lander and Botstein 1987). This method is potentially
faster and easier than conventional linkage studies with fewer individuals
required. Some groups are beginning to use high throughput genotyping
technology such as the Affymetrix chips as a relatively cheap method of
genotyping a small number of individuals within an inbred family to detect
regions of homozygosity associated with a recessive phenotype on a genome-
wide scale (Chiang et al. 2006; Weber et al. 2005). Homozygosity and LD are
both determined by the underlying haplotype structure, this may allow
homozygosity associated with LD to be distinguished from autozygosity.
Prioritising regions of homozygosity with respect to LD structure, using LDU

maps, has the potential to increase power in this type of study.

1.1.11 Genome-wide association analyses

Many diseases have an underlying genetic basis, some are caused by ‘major’
genes which are rare but have a large effect, such as the AF508 variant of the
CFTR gene in Cystic Fibrosis. To determine a gene with large effect, genetic
linkage analysis is very effective. The alleles of polymorphic genetic markers are

determined in several generations within affected families and the ‘linked’
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region shared by affected individuals determines the location of the disease
causing variant. The regions detectable by this method are large, generally on a
scale of several centiMorgans (cM) corresponding to several megabases (Mb) of
physical sequence; and linkage analysis has low power to detect common
variants with modest levels of disease risk, such as those predicted to give the
genetic contribution to many complex diseases. Association analyses are
expected to be more powerful in these cases because for modest risk alleles the
pattern of allele sharing among individuals within a family is less striking than

the pattern of allele sharing between unrelated individuals (Carlson et al. 2004).

The first genome-wide linkage study of a complex human disease was carried
out in 1994 for Type 1 Diabetes (Davies et al. 1994). It showed the importance of
the HLA region on chromosome 6. Although many genome-wide linkage studies
have since been undertaken for common diseases, the disappointing
reproducibility of the results and low power mean this has not been as
successful an approach as hoped (McKinney and Merriman 2007). More
powerful association analyses can be carried out on large cohorts of unrelated
cases and controls, to look for differences in the frequencies of alleles between
these groups. Genome-wide association studies (GWAs) can scan the whole
genome for variants affecting a certain disease without a prior hypothesis of
likely candidates or necessarily any knowledge of the disease pathogenesis. This
type of analysis will allow the detection of novel pathways and genes that would
not be candidates based on current knowledge providing vital new biological
insights which may hold the key to novel therapies (Farrall and Morris 2005;

McKinney and Merriman 2007).

Association analyses, however, also have problems. Unlike linkage studies,
which are carried out in families, association studies can produce spurious
results due to underlying population structure. Population stratification in a
sample, a mix of 2 isolated groups, one with high disease frequency and one low,
may show false positive association between the disease and any marker that
shows an allele frequency difference between the two groups (Clark 2003;
Helgason et al. 2005). To avoid this problem studies are carried out on a single
population sample in which there is no evidence of a recent influx of genes with

differing ancestries. However, this is usually based on self identified ethnicity
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and limited knowledge of ancestry. There are methods available to control for
unknown population stratification such as, Genomic Control (GC) methods
which apply a correction to the statistical distribution of the association metric
used, based on a measure of the variability of genotypes (Devlin and Roeder
1999). Another approach is to identify outlying individuals or assign individuals
to various population clusters and carry out separate association tests on the
population stratified groups. An example of this type of method is, Multi
Dimensional Scaling (MDS) within the PLINK analysis toolset, which is carried
out on the basis of the genome-wide average proportion of alleles shared
identical by state (IBS) between any two individuals (Purcell et al. 2007).
Population admixture can be useful for a method known as admixture mapping,
which has been successfully used for mapping hypertension loci (Zhu et al.
2005). However, the usefulness of this method remains to be determined by
further examples and there are several issues to overcome. For example, the
alleles in the parental populations are required to be relatively homogenous and
the allele frequencies must differ substantially. Furthermore admixture in
human populations seldom happens at a specific point in time but over a period
and the parental populations may not be available for study or known precisely

(Jorde 2000; McKeigue 2005).

Association mapping also relies on careful ascertainment of samples and
accurate phenotype measures. It is important to ensure that case and control
samples have been processed in the same way and there is no systematic bias,
which would produce misleading results. With common diseases it is possible
for a proportion of the controls to become cases in the future, which would
reduce power. However, control samples can be enriched using ‘hypercontrols’
ie. individuals much older than the normal age of onset or at the extreme lower
end of the disease spectrum; cases can also be enriched by sampling individuals
with strong family history or particularly extreme phenotypes. This should
result in an increase in power to detect real genetic effects. It is also very
important in retaining power that the cases are stringently phenotyped in a
uniform way. Genetic heterogeneity, different genotypes causing the same
disease, may be partly addressed by stratifying cases based on previously

determined susceptibility alleles.
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There are different approaches to choosing SNPs to genotype for an association
study. A direct approach uses candidate genes for a particular disease based on
functional evidence or suggestive linkage results and coding SNPs within those
genes with the hope of genotyping the causal variant. It is possible to prioritise
non-synonymous SNPs which alter an amino acid these are implicated as high
risk alleles in many mendelian disorders. Although many identified variants for
complex diseases are in non-coding regions and are thought to have regulatory
interactions with other genes. Therefore this may not be useful for common
diseases with moderate risk alleles. An indirect approach is to genotype a high
number of SNPs genome-wide with the hope of genotyping a variant that is in
LD with the causal locus. Most investigators use the commercially available
genotyping platforms, which vary in the coverage attained. Affymetrix gene
chips use randomly chosen SNPs determined by the restriction enzyme used to
cleave the DNA. Illumina have used HapMap data to be more selective in
choosing SNPs that offer the best coverage based on LD patterns. There are
therefore some regions of the genome not well covered by Affymetrix. However
should genotyping fail on a certain SNP tagging a large region the Illumina
platform would not necessarily have a nearby SNP able to cover the region.
Since these platforms offer by far the cheapest strategy for genotyping large
numbers of SNPs in large samples they are of great value particularly for a 2
stage analysis where more targeted genotyping can be carried out on a smaller

scale in the second stage.

1.2 Aims

The main aim of this project is to define linkage disequilibrium patterns and
tracts of extended homozygosity in order to compare populations and search for

disease genes.

LDU maps will be created using in-house software (LDMAP+) and used to
investigate the similarities and differences in patterns of LD across populations,
and determine the properties and utility of a cosmopolitan LDU map. The
recent release of whole genome genotype data provided by the International

HapMap project will allow creation of genome-wide LDU maps in different
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populations and an investigation of evolutionary history of these populations by

estimating the Effective Bottleneck Time (t).

The HapMap data will also be used to investigate homozygosity in the human
genome determining the amount and location of tracts of homozygosity and
their relationship with LD patterns as described by LDU maps. Knowledge of
levels of homozygosity in healthy individuals and the relationship with LD will
add power to homozygosity mapping methods. This will be exploited using data
on individuals from a consanguineous family, affected by Congenital Nephrotic

Syndrome, to localise a candidate gene or region responsible for the disease.

The use of LDU maps for association mapping of genes and variants involved in
complex diseases will then be investigated, with a genome-wide association scan
of anonymous data. In-house software (CHROMSCAN-cluster) will be tested
with genome-wide data and simple single SNP chi square tests will also be
considered. The aim of this initial scan will be to determine regions for follow up
in more detail in a second stage. Whole genome analyses are the basis of new
and innovative approaches to discovering disease genes and an accurate and
informative description of levels of homozygosity and patterns of LD for this

type of data will be invaluable.
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Chapter 2 - Cosmopolitan LDU maps

2.1 Introduction

Linkage maps have been an invaluable tool for mapping major genes through
linkage analysis. Linkage analysis tracks the segregation of a disease and a
marker through a single generation within families. Candidate regions can be
narrowed to a few cM in genetic distance which corresponds to a few Megabases
(Mb) in physical distance. These regions are narrowed by the recombination
events that take place during meiosis. Linkage disequilibrium (LD) differs since
it is influenced by recombination events that take place over many generations
since the founding of the population. The higher number of recombination
events allows the candidate region to be narrowed much further allowing higher
resolution fine scale mapping of disease genes and causative variants. Many
methods of performing disease mapping using LD are currently being
developed, investigated and validated (Maniatis et al. 2004; Zaykin, Meng, and
Ehm 2006; Morris et al. 2003). LD is a major focus for investigators in their
mission to locate moderate risk genes involved in complex human disease.
Knowledge of the background variation and structure of LD across the whole
human genome would be an invaluable tool to this end, in the same way that the
linkage map has been useful for the mapping of high risk ‘major’ genes. With the
advent of high density Single Nucleotide Polymorphism (SNP) panels for whole
chromosomes, LD structure over larger areas can be determined. Different
human populations have different population histories, such as differences in
time since the last major bottleneck, which affect LD. Recombination patterns
are thought to be the similar in all populations, although critical evidence is
lacking (Jorgenson et al. 2005). Over 1-2 generations there is no detectable
effect of drift, selection, mutation and therefore linkage maps are assumed to be
similar irrespective of the population studied. The linkage map effectively
represents current patterns of recombination whereas the LDU map is mostly
determined by historical patterns. However, the LDU map is also affected, to a

lesser degree, by selection, mutation and drift.
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Patterns of LD across large regions can be described by blocks of high LD
separated by small regions of high recombination. Sperm typing data produced
by Jeffreys et al. (Jeffreys, Kauppi, and Neumann 2001) supports this finding
with directly observed meioses in sperm. Long range patterns of LD tend to be
conserved across populations and differences due to duration can be modelled.
Lonjou et al. analysed small data samples ranging 120Kb-1.3Mb with low SNP
density (18 SNPs across 1.3Mb) and several samples of higher density (1 SNP
per 2Kb) in small regions of average size 250Kb. A cosmopolitan map created
from combining samples was able to recover 95% of the information in different
population maps by appropriate scaling (Lonjou et al. 2003). The similarity of
LD structure across populations has been shown by several studies. Shifman et
al. compared LD (D’ and r2) in 3 types of population, admixed (African
American), outbred (Caucasian) and isolated (Ashkenazi Jews). They found very
similar allele frequencies between the Caucasian and the Ashkenazi Jew
populations which both differed from the African Americans, and an average
decline of LD of a similar rate in the Caucasians and Ashkenazi Jews but a more
rapid decline in African Americans. They also found that LD was highly

correlated across populations (Shifman et al. 2003).

The major difference between populations has been found between African and
non-African populations reflecting the presumed ‘out of Africa’ bottleneck. This
would have restricted the diversity of haplotypes founding the non-African
populations effectively resetting LD at this point. Differences in the time
recombination has had to break up founding haplotypes and therefore the
amount of LD between populations can be modelled linearly by scaling, while

the underlying structure of LD remains intact.

2.2 Aims

The aim of this chapter is to investigate the possibility and feasibility of
developing a standard LDU map that is useful and informative for multiple
populations. The similarity of patterns of LD in different populations over a
large region of chromosome 20 will be determined. Previous work has shown

that LD patterns across populations are very similar even though a difference in
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the time that recombination has had to accumulate since an ‘effective
bottleneck’ creates different scales to the LDU maps (Lonjou et al. 2003; Zhang
et al. 2004). The aim is to create a cosmopolitan LDU map by combining
genotype data for 4 populations on a 10Mb region of chromosome 20 and then
determine how well this map represents the information of each of the 4

populations separately.

2.3 Methods

2.3.1 Data

The data analysed consist of 5,954 Single Nucleotide Polymorphisms (SNPs)
genotyped over a 10,098Kb region of chromosome 20q12-13.2. The data were
previously published and made available by Ke et al. (2004). The genotype data
are for 282 individuals across 4 populations; 97 African Americans, 96 UK
Caucasians, 47 Utah individuals from the Centre d’Etude du Polymorphisme
Humain (CEPH) panel and 42 East Asians (32 Japanese and 10 Chinese). The
data were screened for quality and no significant deviations from Hardy-
Weinberg equilibrium were detected. Five SNPs were removed because they
were rare with a minor allele frequency <0.05. This left a total of 5949 SNPs,
not all of which were genotyped in all populations (table 2.1). The alleles for

each SNP were coded as 11, 22, 12 with 00 denoting missing data.

Table 2.1 Chromosome 20 data sample.

No.
Population sample Lo No. SNPs
individuals
AF (African Americans) 97 4938
CA (UK Caucasians) 96 4427
CE (Utah CEPH) 47 5309
AS (East Asians; Japanese and
) 42 4160
Chinese)
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2.3.2 Selecting SNP densities

Constructing LDU maps by analysing pairwise data for thousands of SNPs is
computationally intensive. To reduce the computational burden the SNP density
was reduced, providing an ideal opportunity to investigate the effects of
different SNP densities on the quality of LDU maps. The average SNP density of
the whole sample was 1 SNP every 2Kb. This was reduced to a density of 1 SNP
every 6Kb, similar to that of the initial target of the International HapMap
project, and then further to 1 SNP every 8, 10, 12 and 15Kb and constructed
corresponding LDU maps. This reduction in density was performed using an
algorithm, designed to achieve a uniform spacing of SNPs on the physical map,
avoiding large gaps (figure 2.1). Starting from the end of the map closest to the p
telomere the first typed SNP was designated the ‘starting SNP’ and two other
SNPs were identified that were either side of a position a selected number of Kb
away. The SNP closest to that position was chosen. The chosen SNP then
became the new ‘starting SNP’ and the process was continued along the length
of the map. In the case that the 2 selected SNPs were of equal distance from the
chosen position the SNP closest to the ‘starting SNP’ was chosen. The length of
the region (10,098 kb) was then divided by the number of SNPs selected to
calculate the average density over the region. The process was repeated using a

range of Kb distances until the desired mean density was achieved.

Figure 2.1 Diagram showing the algorithm to select SNPs at reduced densities.
Here selecting the red SNPs (1,3,6 and 10) at a 6Kb average density.

SNP1 SNP2 SNP3 SNP4 SNP5 SNP6 SNP7 SNP8 SNP9 SNP10

e kb pla
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A total 1694 SNPs from the whole sample i.e. 1 SNP every 5.96Kb, were chosen
for the 6Kb map. Due to differences in the SNPs genotyped in the different
population samples, the actual densities vary ranging from 1 SNP every 6.6-8.8
Kb (table 2.2).
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Table 2.2 Number of SNPs at a 6Kb density.

Population sample No.SNPs  Average Density
AF (African Americans) 1338 7.5
CA (UK Caucasians) 1211 83
CE (Utah CEPH) 1518 6.6
AS (East Asians; Japanese and
. 1153 8.8
Chinese)

2.3.3 Creating LDU maps

LDU maps (Maniatis et al. 2002) are based on the Malecot model,
p=(1-L)Me=d + L

which describes the decline in association p as a function of physical distance d
(in Kb). The parameters of the model are M, the maximum association at zero
distance, reflecting association at the last major bottleneck. L, the residual
association at large distance and ¢, the exponential decline of p with distance.
The Malecot parameters € and M are estimated by fitting multiple pairwise
association probabilities, p, and corresponding information, Kp, using
composite likelihood. We used the predicted L (Lp) (Morton et al. 2001), rather
than the estimate of the L parameter since Lonjou et al (2003) found that
estimating L can leading to distortions in the LD map through the creation of
‘holes’ between adjacent SNPs. The LDMAP program,(
http://cedar.genetics.soton.ac.uk/pub/PROGRAMS/LDMAP/) computes & for
each interval between pairs of SNPs. The parameters are estimated to maximise
the composite likelihood, then the length of the ith interval, in LDU, is given by

eidi. The LDU values are summed to give an additive map. An upper limit of 3

LDUs is imposed to maintain the integrity of the map, and intervals of 3 LDUs
are termed ‘holes’. These areas of the genome have been shown to have high
recombination and require more densely genotyped SNPs to resolve the holes
(Tapper et al. 2001), though it is possible that holes in intense recombination

hotspots are impossible to resolve. To construct a cosmopolitan (COS) LDU
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map, pairwise SNP haplotype frequencies were converted to counts using the
algorithm described by Hill (Hill 1974). The haplotype counts were then
combined across populations by summing among matching pairs of loci.
Markers were coded consistently so that an allele coded 1 in one population was
also coded 1 in all other populations where the SNP appeared. Pairwise
association probabilities (p) and the corresponding information (Kp) were
computed from the haplotypes counts to create a cosmopolitan map (Collins,
Lonjou, and Morton 1999). LDU maps were created for each of the 4 population

samples and ‘cosmopolitan’ maps were created at various SNP densities.

2.3.4 Evaluating the maps

The different density cosmopolitan LDU maps were evaluated by comparing
Malecot parameters, map lengths, swept radii and the number of holes. The
population specific maps were compared in the same way. To investigate the
SNP density required to resolve a hole in the map, SNPs were added to intervals
of 3 LDU (holes) where they existed in the full dataset, and the effect on map

length was determined.

The cosmopolitan map was compared to the Kb map and population-specific
LDU maps by fitting the multiple pairwise data to the cosmopolitan map, using
the Malecot model with kb or LDU as the distance and maximising the
composite likelihood. The error variances when fitting the pairwise data for a
given population to the kb map (Vkp), to the population specific LDU map (Vror)
and to the cosmopolitan map (Vcos) and the degrees of freedom were calculated
in the following way. The degrees of freedom were computed as N — (m-1) — 1,
where N is the number of pairs, m is the number of loci (therefore m-1 intervals
in which &€ may be estimated) and r is the number of additional parameters
estimated. Njand N. are defined as the number of pairs of SNPs (pairwise
association probabilities) in the ith population data sample and cosmopolitan
data sample respectively. The number of SNP markers in the ith population

sample and cosmopolitan sample respectively are mjand me.

Vb = -2InL / (N; — 2), where € and M are estimated.
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Vipu=-2InL / (Ni — (m; - 1) -1), where M is estimated and ¢ is estimated in each

map interval.

Veos = -2InL / (Ni = (Ni / No)(im¢ — 1) — 2), where mc-1 intervals in the
cosmopolitan map have been previously computed using the proportion of data

represented by the ith population sample as Ni/N., and £ and M are estimated.

The relative efficiency (RE) of the cosmopolitan maps was calculated, to
determine how much of the information was recovered, as RE = Vpop / Vcos. The
ratio of the € value estimated when the population specific data is fitted to the
cosmopolitan map, and the € value for the cosmopolitan map itself, provides the

scaling factor.

2.4 Results

2.4.1 Evaluation of the cosmopolitan LDU maps at different SNP

densities

The map lengths range from 187-204 LDU and the number of holes ranges from
2-7. The number of holes is generally larger in the longer maps, although this is
not always the case as the ‘15Kb’ map has one more hole than the ‘12Kb’ map
but is slightly shorter. The small number of holes relative to the number of
intervals (m+1) shows that the LD patterns are well characterised and the SNP

density and coverage is adequate.
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Table 2.3 Cosmopolitan LDU maps at different Kb marker densities.

) No. No.
Density N m € M " Lp -2InL df \%
teu LDUs holes
6 132171 1691 1.1521 0.894 0.091 179822 130480 1.378 187.15 2
8 76236 1289 1.1609 0.877 0.092 105937 74947 1413 198.02 5
10 45221 992 1.1399 0.895 0.090 61091 44229 1.381 20441 5
12 31497 833 1.1331 0.897 0.091 40581 30664 1.323 204.56 6
15 20483 670 1.1381 0.870 0.090 28439 19813 1.435 196.28 7

N - number of pairs, m - number of loci, e/M/Lp — Malecot parameters, -2InL — composite -2 log likelihood, df — degrees of freedom, Vipy — residual error variance
for the LDU map.
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Over the different densities the maps remain relatively consistent in overall
length, and the graph (figure 2.2) of the maps shows that the contours are also
well conserved. This shows that the broad patterns of LD are retained even at

low densities and the LDU map is robust to such changes in SNP density.

Figure 2.2 Graph of cosmopolitan maps at different densities.
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It was decided that a density of 1 SNP every 6Kb representing approximately

500,000 SNPs genome-wide, was suitable for evaluating the cosmopolitan map.

2.4.2 Evaluating the fit of the population-specific and cosmopolitan
pairwise data to the Kb and LDU maps

The pairwise data were fitted to the Kb map for each population and the
cosmopolitan map. The swept radii which show the average extent of LD, range
from 80-105 Kb with the AF population having the least extensive LD. AF also
has the lowest M value, 0.66, reflecting a larger effective population size. The

COS map has values intermediate between the AF and other populations.
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Table 2.4 Fitting the pairwise data to the physical (Kb) map.

Population N m € M Lp -2InL df vV, Swept radius(kb)
coS 132171 1691 0.01024 0.738 0.091 339109 132169 2.566 97.6
AF 87135 1338 0.01243 0.661 0.136 114123 87133 1.310 80.4
CA 71097 1211 0.01043 0.877 0.135 109046 71095 1.534 95.9
CE 111067 1518 0.00953 0.805 0.197 102478 111065 0.923 104.9
AS 64586 1153 0.01117 0.861 0.204 52781 64584 0.817 89.6

N - number of pairs, m - number of loci, 8/M/Lp ~ Malecot parameter estimates, -2lnL — composite log likelihood, df — degrees of freedom, Swept radius - 1/¢, Vi, —
residual error variance on fitting pairwise data to the kb map.
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The data were then fitted to the LDU maps. LDU map lengths for the 4
population samples range from 204-272. The AF population has the longest
map showing less LD overall. The COS map is 187 LDU which is shorter than
the intermediate value that might have been expected. However, there are only
2 holes in the COS map and 9-17 holes in the population specific maps. The
number of holes in the population specific maps was reduced by adding SNPs
which were genotyped in the original high density data where available. The
figures in brackets show the map lengths and number of holes when extra SNPs
were added. The number of holes reduces but not substantially, and the maps in

general become marginally shorter, except the CE map.
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Table 2.5 Fitting the pairwise data to the LDU maps.

Population € M -2InL df Vi No. LDUs* No holes*
CcOs 1.1521 0.894 179822 130480 1.378 187.15 2
AF 1.1661 0.842 77916 85797 0.908 272.49 (268.22) 13 (10)
CA 1.0754 0.957 54057 69880 0.774 209.62 (208.06) 9 (8)
CE 1.1290 0.924 67225 109549 0.614 204.19 (204.66) 12 (9)
AS 1.0811 0.923 33777 63434 0.532 223.20 (222.29) 17 (13)

£/M - Malecot parameter estimates, -2InL, — composite log likelihcod, df — degrees of freedom, Vipy — residual error variance for the LDU map.

* values in brackets have extra SNPs added to the maps where available in the original data.
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The LDU maps for each population sample and the cosmopolitan map were
plotted against the Kb map (figure 2.3). The maps vary in length with the AF
map being the longest, the COS map being the shortest and the CE, CA and AS
maps of similar lengths in between. There is general agreement in the contours
of the maps, which seem to have blocks of high LD in the same locations (Blue
area, figure 2.3) and steps of high recombination in the same locations (Red
area, figure 2.3). The size of the steps seems to be the factor that varies most,

altering the overall length of the maps.

Figure 2.3 A graph of all populations.
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2.4.3 Fitting population-specific pairwise data to the cosmopolitan
LDU map

The pairwise data for each population was fitted to the COS map in turn. Again
the AF population has the highest epsilon and lowest M values.
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Table 2.6 Fitting the data for each population to the COS map.

Population € M -2InL df A/
AF 1.5323 0.811 82334 86019 0.957
CA 1.0659 0.968 59172 70186 0.843
" CE 1.0231 0.927 70952 109645 0.647
AS 1.1859 0.931 37198 63758 0.583

£/M — Malecot parameter estimates, -2InL — composite log likelihood, df — degrees of freedom,

Vcos — residual error variance for the individual population data fitted to the COS map.

The scaling factors are calculated as the € value estimated when the population
specific data is fitted to the cosmopolitan map divided by the ¢ value for the
cosmopolitan map. The relative efficiency for each map is calculated as a ratio of
Vipu/Vcos. The values range from 91-95% showing the proportion of the

information which is recovered by scaling using the appropriate scaling factor.

Table 2.7 Relative efficiency of different maps and scaling factors for each

population.
. Scaling
Relative Relative
. . factor
. efficiency  efficiency .
Population V., Vi Vcos relative
of kb map of COS map
to COS
(VLDU/ka) (VLDU/VCOS) map
AF 1.310 0.908 0.957 0.693 0.949 1.330
CA 1.534 0.774 0.843 0.504 0.918 0.925
CE 0.923 0.614 0.647 0.665 0.949 0.888
AS 0.817 0.532 0.583 0.651 0.913 1.029

Figure 2.4 shows scaling of the COS map with the AF scaling factor. The scaled
map is shorter in length but has only 2 holes whereas the AF map has 13 holes,
which are known to inflate LDU map lengths. The 2 holes remaining in the

scaled map are coloured in green (blue in the COS map) and the 13 holes in the

AF map are coloured red.
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Figure 2.4 A graph of the AF and COS LDU maps with the COS map scaled by the
AF scaling factor.
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2.5 Discussion

A suitable SNP density to create and analyse the cosmopolitan LDU map was
determined, taking into account the trade-off between the quality of the map
and the computational time taken to produce the map. With the version of
LDMAP used a 6Kb density was viable. To determine the effect of reducing SNP
density, cosmopolitan maps were also made with 1 SNP every 8, 10, 12 and 15
Kb. Reducing the SNPs density dramatically, and therefore, reducing the
information available to make an LDU map, would result in a lower quality
map. However, it seems that over the range of 1 SNP every 6 to 15 Kb the maps
are relatively robust to density changes. The LDU maps have similar lengths
(187-204LDUs) and have few holes relative to the large number of intervals
considered. Holes generally appear to make maps longer in length, however
sometimes adding SNPs does not resolve a hole as with COS maps of 12Kb and
15Kb density. The 15Kb map is actually slightly shorter even though it has 1
more hole. This is a case where 1 hole which is not resolved by the addition of a

SNP becomes 2 holes. It has been shown that holes represent areas of the
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genome which have high levels of recombination and therefore tend to require a
high number of SNPs to resolve them (Tapper et al. 2003). A density of 6Kb was
the best map for the purposes of this study, it also reflects the approximate
initial target of the HapMap project of 500,000 SNPs genome-wide (The
International HapMap Consortium 2003). Although adding SNPs adds
information and therefore would result in a map of higher quality and accuracy,
low density maps are still useful. They provide a basic and robust description of
the broad LD patterns and can be added to with information provided by more

SNPs or more individuals at a later stage.

LDU maps were made for each population at this density, and the maps were
compared. For each sample the pairwise data were fitted to the Kb and the LDU
maps (tables 2.4 & 2.5). The fit of the data was better for the LDU map than the
Kb map as shown by the lower residual error variance. This is expected since the
Kb map does not reflect patterns of LD. The M parameter in the Malecot Model
has an evolutionary interpretation, and reflects the haplotype diversity at an
‘effective’ bottleneck. The lower value of M in the AF population can therefore
be explained by the longer time since the last major bottleneck in that
population compared to the more recent ‘Out of Africa’ bottleneck in the other
populations. The ‘Out of Africa’ hypothesis suggests that a small number of
individuals left Africa to populate the other continents. This bottleneck caused
the effective resetting of LD at this point due to low haplotype diversity in the
relatively small number of founders. The swept radii show the extent of LD and
the lower value in the AF population shows reduced LD, as does the longer
length of the AF LDU map relative to the maps of the other samples. More
recombination results in more or longer steps in the LDU map and therefore a
longer map overall. Although, the overall lengths of the LDU maps vary, with
the major difference being between the AF and the other populations, the
pattern of LD shown by the contours in figure 2.3 remain very similar across
populations. This shows that the structure of LD is common across populations
even though the intensity changes. Recombination is not uniformly distributed
across the human genome but is concentrated at various locations called
recombination hotspots, which tend to be small regions of 1-2Kb (Jeffreys,
Kauppi, and Neumann 2001). The co-localisation of these hotspots creates the

similar structure of LD across populations. The intensity of recombination at
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these hotspots generates the differences between populations of different ages

(time since last major bottleneck) and is shown in the LDU maps as differing

lengths.

Holes in the maps tend to exaggerate the length of LDU maps. SNPs were added
to holes in the population specific LDU maps in areas where SNPs were
available in the original high density data. The addition of SNPs resolved some
of the holes and had the general effect of reducing map length. However, the CE
map became marginally longer (204.19 to 204.66LDUs) even though 3 holes
were resolved. Holes which are the result of intense recombination hotspots
rather than low local SNP density require particularly high SNP density to
resolve them, suggesting more SNPs are needed in these holes to have a more

dramatic and predictable effect.

The relative efficiency is calculated as a ratio of the residual error variances
when fitting the pairwise population specific data to the COS map and the
residual error variance of the COS map itself (table 2.7). The relative efficiencies
for the 4 populations ranged from 0.91 -0.95, showing that 91-95% of the
information represented in the population specific data can be recovered from
the COS map with appropriate linear scaling. A loss of between 5 and 9% is
tolerable and shows that the COS map could indeed be very valuable for a wide
range of populations. The epsilon value for each population relative to that for
the COS map was calculated to provide an appropriate scaling factor for each
population. There is very good correspondence between the scaled and original
AF LDU maps, shown by plotting against the Kb map (figure 2.4). The scaled
map had a reduced number of holes (2) due to the increased information
provided by the extra SNPs and individuals present in the COS map. The
original AF map has 13 holes, the positions of these holes along the map were
also plotted and it is evident that the holes towards the end of the map are likely

to explain the longer length of the original AF map relative to the scaled map.

There are several benefits to the idea of a cosmopolitan map. One standard map
can be used for many populations and using data from multiple populations to
create the map results in a map of higher quality and accuracy since more

individuals and more SNPs are used, providing a higher resolution map with
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fewer holes. A standard map which is made available to other researchers would
reduce the costs involved in association mapping of complex disease, by
reducing the need to genotype so many individuals for the purposes of defining
LD in the region under study. LDU maps are useful directly for association
mapping or for increasing the resolution of linkage maps, as well as
investigations into population history, such as inbreeding, and evolutionary
forces, such as selection. Genome-wide LDU maps are integrated into Linkage
Disequilibrium DataBase (LDDB) and publicly available. A database of scaling
factors may also be required or investigators could use a population specific
LDU map in a particular region to calculate a scaling factor which could then be
applied across the whole genome. There should be no difference in the scaling
factors required for different chromosomes within a population, since they have
been under the same evolutionary and recombination conditions. Similar ratios

of LDU map length across a population over chromosomes would show this.

Genotyping technology has moved forward with such speed over the last few
years that modifications will be required to cope with the magnitude of data
proposed to be made available by the HapMap project. Updates to the LDMAP
program in terms of the way the algorithm is run and how the data files are
handled, includirig the possibility of parallelising the program, will mean that
genome-wide LDU maps and corresponding cosmopolitan maps are a feasible
proposition. HapMap data will allow the extension of comparisons of LD
patterns across populations to a genome-wide scale, allowing validation of the

use of a single scaling factor across chromosomes.

2.6 Conclusion

This work supports and extends the findings of Lonjou et al. (Lonjou et al.
2003), showing that the careful modelling of LD patterns in humans can show
the similarity in LD patterns across populations. The tendency for
recombination hotspots to be restricted to particular locations which are co-
localised across populations explains the remarkable correspondence of the
broad LD structure as shown by the contour of the LDU maps. Cosmopolitan or

composite LDU maps are therefore a feasible alternative to the costly
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genotyping of many SNPs and individuals in every population. Thus a standard
map and a set of scaling factors will be a valuable tool for association mapping

in many populations.
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Chapter 3 - Creating and analysing genome-wide

LDU maps of multiple populations

2.1 Introduction

An LDU map is a powerful tool for describing the structure and intensity of
Linkage Disequilibrium (LD) in the genome (Maniatis et al. 2002). LDU maps
have been made for various small regions of the genome (Lonjou et al. 2003;
Zhang et al. 2002), a 10MB region of chromosome 20 (Gibson et al. 2005) and
also a whole chromosome, chromosome 22 (Tapper et al. 2003). Maps of this
kind allow us to gain a picture of the structure of LD, a description of the human
genome in Linkage Disequilibrium Units is useful in various ways. LD patterns
can be used to determine the most informative SNPs for association mapping,
and LDU maps can be used for association mapping of complex traits in the
same way that a linkage map has been used for linkage mapping of major genes
with great success. Genome-wide LDU maps have higher resolution which
should allow a disease gene or variant to be located to a much smaller region
than by linkage (Maniatis et al. 2004). Many aspects of population history and
demography can be investigated using LDU maps including a measure of the
age of a population in terms of the effective bottleneck time. This is a measure of
time since the last major bottleneck taking into account the cumulative effects of
successive bottlenecks. Processes that have occurred independently in different
population groups such as the response of different populations to different

environmental factors, known as selection, can also be studied using LDU maps.

Tagging haplotypes can reduce the number of SNPs needed to describe a region
by choosing the most informative SNPs for association mapping based on a
genome-wide description of LD. This idea and recent technological advances in
SNP genotyping have allowed many SNPs to be genotyped at costs which are
much less prohibitive than in recent years prompting the International HapMap
Project (Daly et al. 2001). The International HapMap project set out to
catalogue human variation and began releasing genotype data into the public

domain in December 2003 (The International HapMap Consortium 2003). This
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data is high quality, increasingly high resolution and provides the ideal

opportunity to create LDU maps of the whole human genome.

The first release of HapMap data to contain sufficiently high density data for
creating LDU maps, on all chromosomes, was release 11 (Sept 2004) although
this only contained data for the CEPH population. A total of 665,335 genotypes
were downloaded from the release 11, September 2004 public release of the
data. These data were filtered and 25.8%, 171,927 SNPs were removed for
Hardy-Weinberg deviations and very rare alleles (MAF <5%). 493,408 SNPs
remained for creating LDU maps of all 23 chromosomes, giving an average SNP
density of 1 SNP per 5.6Kb. The LDMAP program creates LDU maps from
pairwise genotype data, this is a computationally intensive process which
becomes a problem for creating LDU maps of large regions, or whole
chromosomes, at high SNP density. Modifications to the LDMAP program by
more efficient file handling have allowed LDU maps to be created from high
density data. Further modifications to the LDMAP program allow LDU maps to
be created in segments which are then rejoined to create a complete map. The
default settings of 500 loci per segment and a 25 SNP overlap were used for the
HapMap release 11 data. The Malecot model is fitted for each SNP interval,
taking into account surrounding SNP pairs containing that interval. However, in
such high density data not all pairs of SNPs are used, with increasing distance
LD declines and SNP pairs are less informative and at extremes can introduce
background noise to the model. For the HapMap data a maximum of 100
surrounding pairs within a 500Kb distance was determined to be appropriate,
giving little loss of information whilst producing a high quality map more
rapidly. These changes to LDMAP and the data produced by the HapMap
project have made it feasible to create the first genome-wide LDU map of the

human genome (Tapper et al. 2005).

A comparison of the linkage map (Kong et al. 2004) and the release 11 LDU
map, of the CEU sample, showed a remarkable correspondence with 96.8% of
the variance in the linkage map explained by LDU, calculated by regression
across chromosome arms for the whole genome. Since the linkage map shows
recombination over a single generation and LDU maps show recombination

over many generations (ignoring the small contribution of stochastic variation)
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the ratio of the two values gives the number of generations since the last major
bottleneck, taking into account the effects of multiple subsequent bottlenecks.
This is termed the “effective bottleneck time” (t). In this data t was calculated as
1,435 generations, multiplied by 20 or 25 years per generation, this gives 28,700
or 35,875 years. Since human chromosomes have undergone the same
evolutionary history in terms of opportunity for recombination (except the
special case of the X chromosome) the values of t should be constant across the
chromosomes. However, there is a small amount of variation in t showing a
trend for smaller values of t in the smaller chromosome arms. A process known
as chiasma interference, means that a cross-over at one location prevents
further crossovers in close proximity. The linkage map has a function to account
for this in the final map, however it is a genome-wide measure applied to all
chromosomes and there is evidence that interference is more intense in the
small chromosomes (Broman et al. 2002). This may lead to an inflation of the
linkage map length in the smaller chromosomes and explain the trend for lower

values of t (Tapper et al. 2005).

An early release of the HapMap data with genotypes on all 4 samples
(November 2004, release 13), allowed me to carry out a preliminary comparison
across populations. Four chromosomes, 20, 19, 13 and 10 had sufficient SNP
density over all 4 populations to create LDU maps. A filtering process removed
duplicate SNPs, very rare markers with an MAF of <5% and those that
dramatically deviated from Hardy-Weinberg Equilibrium (chi squared >10).
The total numbers of SNPs across the 4 chromosomes used for LDU map
construction were, 55,774 for the YRI sample, 69,956 for CEU, 49,068 for CHB,
and 48,578 for the JPT sample. The high correspondence between the linkage
and LDU maps showed that 96% of the variance in the LDU map is explained by
recombination as shown by the linkage map. The effective bottleneck times were

estimated using chromosome arm data (table 3.1).
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Table 3.1 Effective Bottleneck Times (1) for 4 populations based on 4 chromosomes

Effective Time in years
Population bottleneck time  (assuming a generation
t=LDU/Morgans =25 years)
YRI (Yoruba in Ibadan) 1977 49,425
CEU (CEPH Utah
residents with ancestry
1559 38,975
from northern and
western Europe)
CHB (Han Chinese in
1772 44,300
Beijing)
JPT (Japanese in Tokyo) 1506 37,650

The African YRI sample was the oldest, consistent with an out of Africa model
and population comparisons on the chromosome 20 region (chapter 2) and
other studies of multiple populations (De La Vega et al. 2005; Gibson et al.
2005). The HapMap project has continued to release data at higher SNP
densities across 269 individuals over the 4 population samples. This data allows

genome-wide LDU maps to be created and compared across populations.

3.2 Aims

The aim of this chapter is to use the new segmented version of LDMAP
(LDMAP+) to create LDU maps across the whole genome extending previous
work to the more complete Phase I release of the HAPMAP data, approximately
1 million SNPs for all 4 populations. The properties of the maps over the
different populations will be investigated, and comparison with the linkage map

will allow estimation of the Effective Bottleneck Time (t) for each sample.
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2.2 Methods

3.3.1 Data

Phase I (release 16, March 2005) of the HapMap data was the first to contain
high density genotyping on all 4 populations across the 22 autosomes and the X
chromosome. These data were downloaded from the bulk download page of the
HapMap website (www.hapmap.org). A “filtered non-redundant” file was
downloaded for each chromosome. The files were converted to the .dat file
format required by LDMAP and were further filtered to remove Hardy-

Weinberg deviations of >10 chi squared and rare SNPs of <5% minor allele

frequency.

Table 3.2 The number of SNPs used for map construction for each population.

No. No. SNPs over
Population .
Individuals the genome
YRI (Yoruba in Ibadan) 60 founders 783,366
CEU (CEPH Utah residents
with ancestry from
60 founders 756,065
northern and western ,
Europe)
CHB (Han Chinese in
45 unrelated 673,232
Beijing)
JPT (Japanese in Tokyo) 44 unrelated 667,370

The number of SNPs decreases as the chromosome size reduces, with an average

of approximately 200-250 SNPs per Mb (1 SNP per 4-5 Kb).
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Figure 3.1 Number of SNPs per chromosome.
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3.3.2 LDU map creation

A new version of the LDMAP program, LDMAP+, was used to create LDU maps
of the whole genome for all 4 populations. The LDMAP+ program creates LDU
maps from pairwise data using the Malecot model and composite likelihood as
previously described. The maps are created in segments from intermediate files
that are also created from segments of the genotype data file. Making maps in
segments and reassembling the segments to form a whole map dramatically
reduces the computational load caused by handling large files. LDMAP+
requires the user to input the segment size and the overlap between segments.
The default values of 1000 loci per segment and an overlap of 25 loci were used
for the map creation in this case. A small overlapping section at the boundaries
of each segment ensures that there is no “end effect” at each rejoin point. The
LDU distance for each SNP interval is calculated from information from
surrounding SNP intervals. An “end effect” occurs when there is little or no
information about a SNP interval on one side because the end of the region is
reached. Therefore there is less information at either end of the region

compared to the middle. Further options, which determine how many
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surrounding SNP intervals are taken into consideration when fitting the Malecot
model to each SNP pair, are also required. The defaults of 500Kb maximum
distance and 50 intervals were used in this case. Pairwise data included from
pairs separated by large distances are essentially uninformative because LD has
declined to background levels. Including such pairs adds no information but the

computational load increases dramatically.

3.3.3 Fitting the data to the finished map

LDMAP+ creates LDU maps in segments and therefore fits the Malecot model
to each segment at a time to maximise the likelihood. The data can then be fitted
to the completed LDU map of the whole chromosome. Malecot parameters and
genome LDU map lengths can be compared across populations for the whole

genome and also investigated chromosome by chromosome.

3.3.4 Comparing LDU maps across populations

Using the completed LDU maps the structure of LD across the 4 populations
was assessed using a linear regression of LDU values for SNPs common to all
four populations. Regression of each population against each of the other
populations gives 6 comparisons. Regression analysis requires a value for each
unit of analysis to carry out the highest resolution analysis, SNPs common to all
4 populations were used. A high number of SNPs are common to all 4

populations ~70%, across all chromosomes.

3.3.5 Comparing the LDU and linkage map and calculating Effective
Bottleneck Time (1)

The linkage map is not known to vary across populations and it is not influenced
by stochastic historical effects since it reflects only 1-2 generations. The linkage
map is of lower resolution and generally markers do not extend as far towards
the telomeres and the centromere as in the LDU maps. However, comparisons

were made over the shared regions. The LDU maps and linkage maps were split
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into units of analysis of chromosome arms (n=41) and at a higher resolution
deciles (chromosome arm/10 on the Kb scale) (n=410). A regression of LDU
against Morgans (w), weighted for size by Morgans, allows the linkage and LDU

maps to be compared and gives the effective bottleneck time in generations (t).

3.3.6 Comparing values of t across chromosomes

The release 11 HapMap data on the CEPH sample showed a trend for a smaller t
value on the smaller autosomes. Since the chromosomes have the same history
since the last major bottleneck the value of t is expected to be constant across
autosomes within a population. This is investigated using the chromosome arm
values of t (LDU/Morgans) and the chromosome arm length described as
Megabases per Morgan. The X chromosome is a special case because, apart
from the pseudo-autosomal regions, it does not recombine when it is in the XY
state in males. For this study the pseudo-autosomal regions were removed prior
to creating the LDU maps. Since the LDU map represents recombination over
many generations, a third of the time the X chromosome has been in a non-
recombining state in males. The X chromosome LDU map was multiplied by
3/2 extending the map by a half to account for this lack of recombination and

make the X chromosome comparable to the autosomes, when calculating t.

3.3.7 Fine-scale differences between populations

Genome-wide LDU maps could be used for detecting signatures of selection. A
selective sweep is a reduction in variation over a region due to recent positive
selection. Neutral variation surrounding the selected gene is lost due to the over
representation of the haplotype carrying the positively selected variant. Positive
selection in one population but not another (i.e. recent positive selection) would
be evident as a difference in LD structure in the selected region. This difference
would show as a lack of variation represented by a block of high LD in one
population and an LDU “step” in the other. To test this theory a large inversion
discovered on chromosome 17 and published in 2005 by DeCODE Genetics
(Stefansson et al. 2005) was investigated. The inversion created two distinct

lineages called H1 & H2. H2 is common in Europe but found in only ~10% of
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Africans. The predicted old age of the H2 lineage and the fact that it is very
homogeneous, suggests that it is under positive selection in Europeans. The
LDU maps of the YRI and CEU populations were compared in windows of size
500Kb with a 250Kb slide by a ratio of the LDU/Mb in each window.

3.4 Results

3.4.1 Properties of the finished maps

The properties of the LDU maps were compared across population samples for

the genome-wide maps and also by chromosome.

Table 3.3 Properties of the genome-wide LDU maps.

Total
Av. Swept Av. Total No.
) . Av.L Av.M LDU
radius (Kb) epsilon holes
length

CEU 114.133 1.040 0.155 0.974 56250 2911
CHB 107.988 1.030 0.176 0.976 62687 4879
JPT 114.024 1.036 0.177 0.975 56656 3731
YRI 73.996 1.111 0.165 0.908 79499 2958

*Values for individual chromosomes in appendix 1.

Over the whole genome, the YRI sample has the shortest swept radius, longest
map, largest epsilon and the smallest M value. The CHB sample has the most

holes overall. Values for each chromosome are given in appendix 1.

The swept radius reduces slightly towards the smaller chromosomes. The X

chromosome has an increased swept radius (figure 3.2).
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Figure 3.2 The swept radii by chromosome.
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M approaches 1 in all cases but is consistently smaller in the YRI population

which is consistent with a larger number of founding haplotypes (polyphyletic

origin). There is no trend across chromosomes; however, chromosome 20 in the

YRI population is smaller than might be expected, but the difference is small
(figure 3.3).

Figure 3.3 The M parameter in the Malecot model across chromosomes.
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LDU/Mb is higher in the YRI population, there is also a trend for higher
LDU/Mb values in the smaller chromosomes. This is consistent with the
reported higher recombination intensity due to size dependent control of
meiotic recombination (Kaback 1996). The X (23) chromosome has a reduced

LDU/Mb measure (figure 3.4).

Figure 3.4 LDU/Mb by chromosome.
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There are more holes in the larger chromosomes presumably due to increased
length. However, when the length is taken into account as here, holes per Mb
show a trend for greater hole density in the shorter chromosomes, perhaps due
to the increased recombination in these chromosomes which require more SNPs
to resolve the holes. The CHB population generally has more holes than the
other populations, this may reflect differences in marker spacing in critical

regions.
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Figure 3.5 Holes per Mb by chromosome.
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3.4.2 Comparing LDU maps across populations

LDU maps were made using all available SNPs however not all SNPs are present
in all populations. To enable comparison only the SNPs that were common to all
four populations were selected. A linear regression between the YRI and CEU
LDU locations of SNPs common to both maps, for chromosome 22, gives an R2
value of 0.9926 and a regression co-efficient of 1.4791 showing the YRI map to
be 1.4791 times longer than the CEU map (figure 3.6). R2 values for all other
population comparisons and other chromosomes ranged 0.9926-1 showing an

extremely high correspondence.
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Figure 3.6 Chromosome 22 CEU LDU versus YRI LDU.
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3.4.3 Comparing the LDU map with the linkage map and calculating
Effective Bottleneck Time (1)

There is a high correspondence between the linkage map in Morgans and the
LDU maps of chromosome arms. A regression analysis shows that 99% of
variation in the LDU map is explained by the linkage maps for chromosome
arms and 97% in deciles (figure 3.7). These values are calculated as the average
of the results for each population sample, the values are consistent across
populations. A ratio of LDU and Morgans (w), weighted by Morgans, gives the

effective bottleneck time in generations (t) (table 3.4).
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Table 3.4 Effective Bottleneck time (1) for each population based on the whole

genome.
Effective ] _
. . Time in years with 1
Population bottleneck time
generation =25 years
(t=LDU/Morgans)
YRI 2073 51825 (41460)
CEU 1472 36800 (29440)
CHB 1648 41200 (32960)
JPT 1483 37075 (29660)

*yalues in brackets represent a generation time of 20 years.

Figure 3.7 Graph of Morgans versus LDU over all 4 populations (each data-point

representing a chromosome arm, n=41)
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3.4.4 Comparing values of t across chromosomes.

The autosomes have undergone the same history since the last major bottleneck
in terms of recombination; therefore the value of t should be constant across
chromosomes within a population. However, there is slight variation in t across
chromosomes, with a trend for t to be larger in the larger autosomes, this is

consistent across population samples (figure 3.8).
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Figure 3.8 t values across chromosome arms (W=Morgans).
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3.4.5 Fine-scale differences between populations.

To look at the possibility of using genome-wide LDU maps for detecting
signatures of selection, a previously published example of a large inversion
thought to be under selection on chromosome 17 was investigated (Stefansson et
al. 2005). The LDU maps of the YRI and CEU populations were compared in
windows of size 500Kb with a 250Kb slide using a ratio of the LDU/Mb in each
window between the two populations. When these ratios are plotted against the
Kb scale the 9ookb region of the inversion, assumed to be under selection, is
clearly identified as a peak (figure 3.9). A more detailed look at the region
identified by the peak shows that the YRI LDU map has a step where the CEU
map has a block (figure 3.10).

54



Figure 3.9 Ratios of CEU and YRI LDU/Mb across chromosome 17, in 500 Kb

windows. The dashed vertical lines indicate the location of the 9gooKb inversion.
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Figure 3.10 LDU maps of the 3.2 Mb region around the peak for the YRI and CEU

samples, the dashed lines show the location of the inversion.
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2.5 Discussion

LDMAP+ and the genotype data produced by the International HapMap project
has allowed genome-wide LDU maps in 4 populations to be created and
analysed. The properties of the LDU maps were considered, across the whole
genome and by chromosome. The maps vary in LDU length between
populations, with the YRI sample having the longest map overall and for each
chromosome. This is the same trend as published on chromosome 20 data and
other samples (Gibson et al. 2005; De La Vega et al. 2005) with the sample with
African ancestry having the longest LDU map. This is consistent with the YRI
population being older in terms of time since the last major bottleneck, allowing
more recombination to accumulate extending the length of steps in the map
creating a longer map overall. The overall length of the CHB genome LDU map
is intermediate between the YRI population and the JPT and CEU populations
(which are very similar in length), though it may be expected to be more similar
to the CEU and JPT maps. The total number of holes in the LDU maps is small
relative to the number of SNP pairs considered. Holes are partly due to a lack of
information at particular SNP intervals, i.e low local SNP density. If there is
insufficient information to keep the map intact, the upper limit of 3 LDUs is
given. With high density data such as used here, a value of 2.5 LDUs or greater
is considered a hole. The number of holes is also affected by recombination
hotspots, there is evidence that holes occur in parts of the genome with
particularly high recombination rates (Tapper et al. 2003). The CHB population
has the largest number of holes overall, and this trend is also present when the
maps are considered chromosome by chromosome. If holes are due to low local
SNP density they generally lengthen an LDU map. The excess number of holes
in the CHB population may explain why the CHB LDU map lengths are longer
than those of the CEU and JPT populations. Accounting for chromosome length,
there is a trend for more holes per Mb in the smaller chromosomes. The more
intense recombination on these chromosomes as shown by LDU/Mb may
account for this. It is also possible that the higher number of holes may be the
cause of the higher LDU/Mb on the smaller chromosomes due to artificial
lengthening of the maps. However this data is of high and relatively consistent
SNP density across chromosomes, therefore it is likely that the holes represent

regions of high recombination and not insufficient local SNP density particular
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to the smaller chromosomes. Although a very high SNP density may resolve a
hole in a recombination hotspot, it is also possible that some holes may remain

even when all SNPs are typed (Tapper et al. 2005).

The M parameter in the Malecot model has an evolutionary interpretation and
shows the amount of LD at the last major bottleneck the value is approaching 1
in the “Out of Africa” populations, and slightly lower in the YRI population
consistent across chromosomes. The lower value of M in the YRI population
shows its older history and polyphyletic origin, in that recombination had
already begun to accumulate in this population at a time when the other
populations were going through a bottleneck. The average epsilon values across
populations are very similar in the CEU, JPT and CHB samples but larger in the
YRI sample, which shows a more rapid decline of LD over distance. The swept
radius is calculated as 1/epsilon so it follows that the YRI population has the
smallest swept radius showing less extensive LD as compared to the other
samples. LDU/Mb is also larger in the YRI population, again showing the lower
amount of LD in that population compared to the others. There is a small
amount of variation in swept radius across chromosomes with a smaller swept
radius in the smaller chromosomes. This indicates that LD extends less in the
smaller chromosomes, which is consistent with the known increased
recombination in the smaller chromosomes (Kaback 1996). This is also shown
by the larger LDU/Mb in the smaller chromosomes. The particularly high swept
radius and low LDU/Mb shown on the X chromosome shows that there is more
extensive LD on this chromosome. This is unsurprising given that the X
chromosome is unable to recombine when it is in males in the XY form. Any
SNPs present in the recombining pseudo-autosomal regions were removed from
the data prior to creating the LDU map. LD on the X chromosome is therefore
broken up by recombination at a much reduced rate (only when present in

females) compared to the autosomes.

The whole chromosome LDU maps were investigated to compare the LD
structure across populations. The amount of LD varies across populations, with
more LD in the younger populations where recombination has yet to break it up.
The broad patterns of LD, however, are shared by populations and shaped by

the co-localisation of recombination hotspots (Gibson et al. 2005; De La Vega et
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al. 2005). This is the premise that allows construction of a cosmopolitan or
standard LDU map that can be scaled to be applied to various populations
(Gibson et al. 2005). Due to computational constraints, it was not feasible to
construct and compare cosmopolitan maps by the method of combining
haplotype counts across populations and creating LDU maps from the combined
data. However, a linear regression of one population against another, using the
LDU values for all SNPs common to both populations, was carried out to
determine the similarity of LD structure. Figure 3.6 shows the regression line
for chromosomes 22 with YRI LDUs against CEU LDUs. The regression
coefficient (1.479) shows the relative scale of the YRI map to the CEU map. This
is consistent with the value of 1.43 between the African American and the
European samples calculated for the chromosome 20 data presented in Chapter
2 (Gibson et al. 2005). The high R2 value (0.993) shows the remarkable
similarity of LD structure across populations, even between African and non-
African populations. This similarity was consistently high across chromosomes.
Removing SNPs that were not present in all populations for this analysis will
have removed some of the variation between populations. However, all SNPs
were used to create the maps and thus SNPs that were removed for this purpose
would still have had an effect on the LDU values of surrounding SNPs. The total
number of SNPs removed for this purpose was relatively small (~30%) and the
SNP density remained high. It is possible that the extremely high R2 values are

inflated, but only by a small amount.

The linkage map measures recombination, which is the main force in defining
LD patterns. The linkage map and the LDU maps for all samples were
compared. The linkage map, made using CEPH family data, does not vary across
populations because it does not measure historical recombination. It can
therefore be used to compare current and historical recombination in all
population samples. Due to the low resolution of the linkage map in comparison
to the LDU map, larger units of analysis were required. The genome was split
into chromosome arms and, for higher resolution analysis, deciles (chromosome
arm/10 on the Kb scale). It has been shown previously that LDU maps
correspond well to linkage maps of the same region, since recombination is the
major influence on LD (Zhang et al. 2002; Tapper et al. 2003). In this case

linear regression showed that 99% of the variance in LDU across the data is
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explained by recombination as shown by the linkage map when chromosome
arms are analysed (figure 3.7). The corresponding value when chromosome
deciles are analysed is 97%. These values are the average over the 4 population

samples which showed very similar and consistent results.

An additive LDU map has great value in association mapping, and can also give
insights into population history. Linkage maps show current recombination
over a single generation, whereas LDU maps show recombination over many
generations since the last major bottleneck. Using this relationship it is possible
to make an estimate of “effective bottleneck time” (t) in generations. This is a
measure of time since the last major bottleneck taking into account the
cumulative effects of subsequent bottlenecks. Estimates of t were calculated for
each of the 4 populations. Using the data for chromosome arms, t = 51,825 years
for the YRI population and 36,800 years for the CEU population, 41,200 years
for the CHB population and 37,075 years for the JPT population (assuming a
generation time of 25 years) (table 3.4). The CEU value comparestell with the
previous estimate of 35,857 years, from the lower density HapMap data (release
11) (Tapper et al. 2005). The value of t is expected to be consistent across
chromosomes, since the chromosomes have undergone the same history in
terms of opportunity for recombination. However, there is a slight trend for t to
be larger in the larger autosomes consistent across samples and previously
noted in the CEU population (Tapper et al. 2005). The phenomenon of
interference occurs when one crossover event at meiosis inhibits the presence of
another in close proximity. The linkage map is constructed with a single
genome-wide measure (Kosambi function) to account for interference on all
chromosomes, although the effect is more pronounced on the smaller
chromosomes (shown in mice but not conclusively in humans) (Broman et al.
2002). It is possible that this leads to the inflation in size of linkage maps in the
smaller chromosomes. This difference may account for the small variation in t
seen here. The X chromosome spends a third of the time in males and this
recombination difference was accounted for when calculating t. The t value in
the X chromosome arms was slightly below the value expected in the analysis of
the CEU population using release 11 HapMap data (Tapper et al. 2005),
although this deviation is not seen here. The higher density of the Phase I data

may explain this discrepancy.
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Lastly the fine-scale differences in LDU maps between populations were
investigated for a specific case of a large inversion, under selection, discovered
on chromosome 17 (Stefansson et al. 2005). The inversion has created two
distinct lineages known as H1 and H2. H2 is only found in ~10% of Africans but
is much more common in Europeans. The H2 lineage is predicted to be older
and has been shown to be very homogeneous, an explanation for this is that H2
is under positive selection in Europeans. A difference in selection, in a specific
region, between populations would result in different LDU patterns at that
location, due to reduced variation around the selected locus. The LDU maps of
the YRI and CEU populations were compared in windows of 500Kb (with a
250Kb slide) by a ratio of the LDU/Mb in each window. When these ratios are
plotted against the Kb scale the 9o0oKb region of the inversion, assumed to be
under selection, is clearly identified as a peak on the graph (figure 3.9). The
peak is caused by a large block of high LD in the CEU population where there is
a step in the YRI population, suggestive of a selective sweep in the CEU
population (figure 3.10). The peak could be a signature of selection in one
population, but it is also possible that it could be a result of the inversion itself.
Structural variants that change the location of SNPs relative to one another,
such as inversions, may have unpredictable effects on the LDU map. Genome-
wide LDU maps provide an opportunity to scan the whole genome for other
similar peaks, but when analysing such large data sets many peaks will appear
by chance and there is a multiple testing problem to overcome when applying a
significance level to this type of analysis. Also using windowing of data requires
arbitrary definitions of window size and of any overlap, both of which will have
an effect on the size of the regions and the minimum differences in LDU/Mb
detectable. However, this striking result shows that fine-scale comparison of LD
patterns by comparing genome-wide LDU maps may reveal evidence of

selection, though results must be carefully interpreted.
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3.6 Conclusions

Genome-wide LDU maps were created from the HapMap Phase I high
resolution data on 4 population samples. The LDMAP+ program is able to
handle such high density data and produce good quality maps in reasonable
time. The properties of the maps follow previous analyses on the CEU sample
and preliminary data on 4 chromosomes from an early HapMap release. These
results show the similar broad structure of LD across the whole genome,
backing up the results on chromosome 20 presented in chapter 2. The genome-
wide LDU maps allow values of effective bottleneck time (t) to be estimated
allowing estimates of population age. The fine-scale difference in LD patterns
between populations, detected by comparison of LDU maps, shows a possible

novel method for detection of selective sweeps.
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Chapter 4 — Extended tracts of homozygosity in
outbred populations

4.1 Introduction

An individual has two sets of chromosomes, one from their mother and one
from their father, and therefore has two alleles at each locus on the autosomes.
The two alleles can be different, called heterozygous, or they can be the same,
called homozygous. There are two types of homozygosity; when the two alleles
are identical by state but arise from two different sources this is called
allozygous, or when the alleles are identical by decent and thus come from the
same source this is called autozygous (figure 4.1). Autozygosity will not affect
just a single marker but will extend to neighbouring markers on the
chromosomal background that is inherited. This results in some individuals
having long tracts where homozygous markers occur in an uninterrupted

sequence.

Figure 4.1 Pedigree illustrating allozygous, autozygous and heterozygous.
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Since recombination interrupts long chromosome segments over time, the
length of a homozygous segment depends in part on the time since the last
common ancestor of the parents, the source of the chromosomal segment that is
identical by decent. It is therefore expected that longer tracts of homozygosity
would be found in inbred populations as opposed to outbred populations.
However, long tracts of homozygosity have been recorded previously in CEPH
individuals (Broman and Weber 1999). 8,000 short tandem-repeat
polymorphisms (STRPs) in CEPH families were analysed and several families
with long homozygous segments exceeding 10 centiMorgans (¢cM) in length were
identified. The authors examined the roles of possible typing error, back
mutation of STRPs, gene conversion events and the limitations imposed by
locally low marker density in determining the limits of homozygous segments.
In some pedigrees they were able to determine relationships between
apparently unrelated individuals, but there remained a degree of autozygosity
approaching or exceeding that expected in the progeny of a first cousin mating

where relationships were not detected.

The International HapMap project, which provides very densely genotyped
Single Nucleotide Polymorphism (SNP) markers across the whole genome in 4
outbred populations, provides an ideal opportunity to investigate tracts of
homozygosity. Single nucleotide polymorphisms are thought to be of more
ancient origin than STRPs. We might therefore expect to see, in comparison,
fewer and shorter homozygous tracts in SNP maps. However, this is partly offset
by the relatively'reduced mutation rate of these markers which might allow the
longer tracts to remain unbroken over more generations. In addition to
autozygosity another explanation for long tracts of homozygosity is that they
appear in parts of the genome where there is relatively little recombination, due
to high linkage disequilibrium (LD). LD is the tendency for alleles to be
inherited together more often than would be expected under random
segregation. In the human genome there are regions of strong LD broken up by
small regions of intense recombination (Jeffreys, Kauppi, and Neumann 2001).
Blocks of LD represent regions of the genome where a small number of
haplotypes account for most of the variation. An individual inheriting two
copies of a common haplotype in a particular location would be homozygous

over that region. LD as represented by LDU maps (Maniatis et al. 2002) shows
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the contour of the LD patterns and identifies steps which correspond to regions
of high recombination and plateaus which reflect recombination cold regions
(high LD) (Zhang et al. 2002). LDU maps of the 22 autosomes and the X
chromosome based on the Phase I HapMap data have been constructed using
the LDMAP+ program. These maps are described in chapter 3 and available in
the Linkage Disequilibrium DataBase (LDDB) (Genetic Epidemiology and
Bioinformatics group 2008). They can be used to investigate the extent to which

high LD corresponds to tracts of homozygosity.

Extended tracts of homozygosity in a particular region of the genome, common
among individuals within a population, may indicate a selective sweep. An
example of a gene suggested to be under positive selection is the lactase gene on
chromosome 2. The LCT gene encodes the enzyme lactase-phlorizin hydrolase.
There is a great deal of epidemiological data in favour of recent positive
selection at this locus. The ability to use this enzyme to digest lactose during
adulthood varies dramatically across worldwide populations, with particularly
high rates among northern Europeans. A high rate of lactase persistence in
European populations can be explained by positive selection resulting from
increased nutrition from dairy, the only dietary source of lactose; and the
geographic distribution of lactase persistence matches the distribution of dairy

farming (Bersaglieri et al. 2004).

Various factors may influence the length, abundance and location of
homozygous tracts including, mutation rate, population structure, uniparental
disomy (UPD), natural selection, recombination, and linkage disequilibrium
patterns. The extremely dense SNP genotyping in the HapMap sample allows
examination of the distribution, size and location of homozygous tracts and
their relationship to recombination and linkage disequilibrium patterns and

also consideration of other mechanisms.

4.2 Aims

Relatively short segments of homozygosity in the apparently outbred HapMap

populations would be expected, and longer tracts would be expected to be
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uncommon and restricted in length. The aim of this work is to characterise
extended tracts of homozygosity (>1Mb) in the human genome as represented
by the HapMap data and examine the relationship between the location and size
of long tracts of homozygosity and the role of recombination and linkage
disequilibrium patterns; and also examine evidence for recent inbreeding
having a role in the formation of long tracts of homozygosity in some HapMap

individuals.

4.3 Methods

4.3.1 Data

The data examined were produced by the International HapMap Consortium
and released into the public domain via their website (International Hapmap
Group 2005). Phase I of the HapMap data provides over a million SNPs
genotyped in 209 unrelated individuals; 60 CEPH Utah residents with ancestry
from northern and western Europe (CEU), 45 Han Chinese from Beijing (CHB),
44 Japanese from Tokyo (JPT) and 60 Yoruba from Ibadan, Nigeria (YRI). The
average SNP density is 1 SNP every 5kb (The International HapMap Consortium

2003).

The HapMap Phase I data (non-redundant files that have passed quality
control) were downloaded from the HapMap website and include 3,970,277
genotypes across the 22 autosomes over all four populations. These data were
further filtered to remove genotypes with significant deviation from Hardy-
Weinberg (Chi square >10) and minor allele frequencies below 0.05. The total
number of genotypes from each population were 728,353 genotypes from the
CEU sample, 744,006 genotypes from the YRI sample, 644,060 genotypes from
the CHB sample and 639,460 genotypes from the JPT sample.

4.3.2 LDU maps.
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Genome-wide LDU maps were constructed for the 4 populations of the HapMap
data following Maniatis et al. (2002) and Tapper et al. (2005). LDU maps were
constructed, using the LDMAP+ program, from multiplé pairwise association
data using a model which describes the decline in association, p, with distance:
p= (1-L)Me=#d + L. The LDU distance is calculated as id; for each interval i of d
kilobases between a pair of SNPs and LDU locations are computed by
summation over intervals. The additive maps produced are available from

LDDB and described in chapter 3.

4.3.3 Definition of extended homozygous tracts.

The genotypes were coded 11, 12, or 22 with 11 and 22 being the homozygotes.
For each individual starting from the p telomere of chromosome 1 each SNP was
identified as either homozygous or heterozygous. An extended homozygous tract
was defined as an uninterrupted sequence of homozygous SNPs spanning at
least 1Mb in a single individual. For each extended homozygous tract, the
starting SNP and kb location, the ending SNP and Kb location, the number of
SNPs it contained and the starting and ending LDU locations were recorded.
SNPs with missing data (‘NoCall’s) were ignored. The average SNP density
across all populations is approximately 1 SNP every 5 Kb. Since a locally low
SNP density may artificially extend a homozygous tract, tracts with an average
SNP density of less than 1 SNP per 5Kb (200 SNPs per Mb) were excluded. Also
omitted were the centromeric regions and acrocentric p-arms for the same

reason.

4.3.4 Examining the extended homozygous tracts

The number of tracts (>1 Mb) and maximum tract length were determined for
each population sample. To determine the relationship between the amount of
LD and the number of homozygous tracts present, for each sample, the whole
genome was analysed in 1 Megabase segments. Each chromosome was split into
1 Mb segments, the remaining shorter segments at the end of each chromosome
were also included. The LDU/Mb ratio was calculated for each 1 Mb segment
using the LDU map for that population, and the mean tract coverage in

kilobases obtained. For each population this was computed by summation, over
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all individuals, of the length (Kb) of homozygous tracts covering each 1 Mb

segment and dividing by the number of individuals (figure 4.2).

Figure 4.2 Calculating tract coverage for each 1Mb segment in turn.
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To determine whether the location of homozygous tracts is related to LD
structure the correlation between tract coverage and LDU/Mb was obtained and
linear regression was performed using LDU/Mb as the dependent variable and
tract coverage as the independent variable. The units of analysis were 1 Mb
segments of the genome. Analyses were carried out for each population sample
separately and for the concatenated sample. To confirm that the location of
homozygous tracts is directly related to the recombination pattern the same
analysis was carried out but with the linkage map in cM/Mb replacing LDU/Mb.
This is important because, although at a lower resolution, the linkage map is
based on an entirely independent sample, whereas the structure of the LDU
map created from the HapMap data must partly reflect the presence of
horﬁozygous tracts in that sample. The linkage map used (Kong et al. 2004)

comprises 14,759 polymorphic markers.

A correlation analysis between tract coverage values, in each megabase, for all
population pairwise combinations allowed assessment of whether the
distribution of tracts across the genome was similar in all populations. i.e. If a
region of the genome with a large number of tracts in one population also had a

large number of tracts in the other populations.

Next the frequency of tracts for each individual was observed, and the average
tract counts, per individual, for each population were calculated. The amount of

LD in regions where homozygous tracts occur was investigated for each
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individual and compared to the genome-wide average LDU/Mb. Three
individuals were highlighted as having more numerous and longer tracts than
others in their respective population samples. To examine if the LDU/Mb in the
homozygous regions of these three individuals is significantly different from the
levels in other individuals from the same sample, a regression model weighted
by physical size in Mb was used. LDU/Mb was the dependent variable and x was
the independent variable with x=1 for individual NA12874 and x=o0 for other
individuals in the CEU sample. The same model was used with 2 variables (x,

x1) for the 2 outliers in the JPT sample.

To gain a preliminary look at the relationship between homozygosity and
selection the locations of tracts were investigated. The numbers of individuals
(CEU sample) with a tract in each 1Mb segment across chromosome 2 were
plotted against the physical map. Chromosome 2 was chosen as it contains the
LCT gene which has been shown to be under selection, and positively selected in

Caucasian populations (Bersaglieri et al. 2004).

4.4 Results

Across the four populations a total of 1393 homozygous tracts met the criteria
defined in the methods section. The longest tract over all populations was 17.9
Mb in an individual from the JPT sample (table 4.1). This tract comprises 3922

consecutive homozygous SNPs.

Table 4.1 Number and maximum length of homozygous tracts identified.

No. No. Max.

HapMap Population Sample Unrelated

Individuals Tracts. Length Mb
CEU (CEPH Utah residents with
ancestry from northern and western 60 498 6.48
Europe)

CHB (Han Chinese Beijing) 45 263 2.63
JPT (Japanese Tokyo) 44 370 17.91
YRI (Yoruba Ibadan Nigeria) 60 262 11.14
ALL 209 1393 17.91
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Correlation and linear regressions between LDU/Mb and tract coverage allowed
the relationship between homozygosity and LD structure to be determined.
Analyses were carried out for each population sample separately and for the
concatenated sample. All of the correlations were significant at p<0.0001 with
correlation coefficients of around -0.3 for all samples. The regression analyses

were also all significant (p<0.0001) with R2 values ranging from 8-10% (table

4.2).

Table 4.2 Correlation and regression between LDU/Mb and tract coverage.

Population Correlation
. Regression R?

sample Coefficients
CEU -0.32 0.10
CHB -0.29 0.09
JPT -0.30 0.09
YRI -0.28 0.08
ALL -0.29 0.08

The same analysis was carried out using the linkage map (cM/Mb) instead of
the LDU map (LDU/Mb). This confirms the relationship with LD, or in this
case recombination, since the linkage map is based on an entirely independent
sample. Again all the results were highly significant (p<0.0001) with correlation

coefficients of -0.2 and R2 values ranging 4-5% (table 4.3).

Table 4.3 Correlation and regression between ¢M/Mb and tract coverage.

Population Correlation i
.. Regression R?
sample Coefficients
CEU -0.23 0.05
CHB -0.21 0.04
JPT -0.21 0.04
YRI -0.21 0.04
ALL -0.21 0.04
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Next the correlation between tract coverage values across populations was
examined to determine if the distribution of homozygous tracts in the genome
was similar in the different populations. The results showed that all correlations
were significant (p<0.0001) with correlation coefficients ranging 0.27-0.68. The

YRI and CEU samples are the least similar and the CHB and JPT samples are
the most similar (table 4.4).

Table 4.4 Correlation of ‘tract coverage’ values across all populations

CHB JPT YRI
CEU 0.51 0.46 0.27
CHB 0.68 0.30
JPT ~ 0.30

The distribution of tracts per individual across the 4 populations was also
examined. The average tract count per individual ranged from 4.4 - 8.4 for the 4
populations. The YRI sample had the fewest homozygous tracts per individual
and the JPT sample had the most. Three individuals were found with

particularly high tract counts, one in the CEU sample (NA12874) and two in the
JPT sample (NA18992, NA18987) (figure 4.3).
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Figure 4.3 A bar graph for each population.
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Each bar on the graph represents an individual and the Y-axis (0-40) shows a count of the number of tracts in that individual (individuals ordered by magnitude).

The horizontal line and the figure on the graph show the mean average tract count for each population. The three stars show the three individuals with particularly
high tract counts.
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The amount of LD in regions where homozygous tracts occur was investigated
for each individual, averaged for each population, and compared to the genome-
wide average LDU/Mb for each population. This confirmed the correspondence
between long homozygous tracts and regions of strong LD shown previously,
since the mean LDU/Mb in regions containing homozygous tracts is much lower

than the genome average (table 4.5).

Table 4.5 LDU/Mb in tract regions and genome-wide for each population.

. Genome-wide Tract regions
Population
LDU/Mb LDU/Mb
CEU 20.2 8.3
CHB 22.6 6.7
JPT 20.4 7.3
YRI 28.4 154

However, the three individuals highlighted in the previous analysis stand out as
outliers as they have tracts in areas that do not have particularly high LD, in
fact, have levels of LD approaching the genome average for their populations,

ranging from 15.1-17.6 LDU/Mb for the 1 CEU and 2 JPT individuals (figure
4.4).
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Figure 4.4 Graph showing LDU/Mb for each individual, the 4 populations shown.
Circled are the 3 individuals with particularly high tract counts and higher
LDU/Mb, in tract regions, than the rest of the individuals in their populations.
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The three individuals, highlighted above, NA12874, NA18992 and NA18987
have tracts in regions of significantly higher LDU/Mb (less LD) than is typical
for homozygous tract regions. Regression analysis shows that NA12847 explains
42% of the variance in LDU/Mb in the tract regions of the CEU sample and
NA18992 and NA18987 together explain 89% of the variance in the JPT sample.

Chromosome 2 and the CEU sample, were chosen to highlight the relationship
between selection and homozygous tracts, since chromosome 2 contains the
LCT gene known to have been under positive selection in Caucasians
(Bersaglieri et al. 2004). The number of individuals with a tract in each 1Mb
segment across chromosome 2 was plotted. The graph clearly shows a peak
where there is a particularly large number of people within the population with

a tract, 26 out of 60 (43%). This peak aligns with the location of the lactase gene
at ~136Mb (figure 4.5).
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Figure 4.5 Graph of chromosome 2 with the number of individuals with a tract for
each 1Mb segment plotted and the location of the lactase gene, which aligns with

an obvious peak.
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4.5 Discussion

This work has shown that homozygous tracts are remarkably common and long
even in unrelated individuals from the apparently outbred populations
represented in the HapMap data. The evidence indicates that homozygous tracts
are generally found in regions of relatively extensive LD and locally low rates of
recombination. The presence of relatively short haplotype ‘blocks’, regions of
low haplotype diversity, has been well known for several years (Daly et al. 2001).
However, the presence of much longer homozygous tracts (lengths sometimes

greatly in excess of one megabase) was not widely anticipated.

Homozygous tracts can occur when a child inherits the same chromosomal
segment from both parents, who themselves inherited it from a common
ancestor. There are two broad mechanisms by which this could happen. One
explanation is that the parents have a relatively recent common ancestor so
there has been little opportunity for recombination to break up the segment. A

second possibility is that any relationship between the parents is distant but a

74



lack of recombination in the region (i.e. a region of high LD) has enabled the

ancestral segment to persist intact.

This study considers only homozygous tracts that exceed 1 Mb in length, but
there are numerous smaller segments many of which must contribute to the low
haplotype diversity characterised in blocks. Given this, the true level of
homozygosity in the genome is likely to be much greater than indicated by this
analysis of the more extreme examples. These results show that extensive LD in
a region correlates with a higher proportion of homozygous tracts in that region.
This is because genomic regions with low recombination (high LD) allow
particularly long chromosome segments to remain intact over time, increasing

the chance that they come together in an individual as a homozygous tract.

Analysis of tract coverage between populations shows that tracts tend to be co-
localised in all populations. Patterns of LD are also highly similar across human
populations (De La Vega et al. 2005; Gibson et al. 2005) and follow the same
trends as our analysis here, with JPT and CHB having the most similar and YRI
and CEU having the least similar LDU maps. The co-localisation of
recombination hot-spots in all human populations allows long homozygous
tracts to persist in the shared intervening regions which have low meiotic
activity. As might be expected, the YRI population has the fewest long tracts per
individual (4.4), reflecting the longer time over which recombination has been

breaking haplotypes in this sub-Saharan African population.

It is assumed that the four HapMap samples are representative of relatively
outbred human populations and that homozygosity is not particularly
exaggerated due to a limited number of haplotypes or ‘atypical’ individuals
represented in the sample. However, there is little information about the
individuals that contributed to the samples; sample sizes of 44 to 60 unrelated
individuals are fairly small and it is conceivable that the samples are not truly
representative of the whole of the population in each case. Three individuals
stood out in this analysis as having particularly long tracts and high tract
counts, one in the CEU sample and two in the JPT sample. This study has
shown that the tracts in these individuals are not associated with regions of

elevated LD, in contrast to tracts in other individuals. Therefore it is reasonable
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to suggest a different mechanism accounts for the tracts in these cases, such as
recent inbreeding, suggesting that the parents of these individuals have an
unknown relationship which goes back a comparatively small number of
generations. In the most extreme case (NA18992) long homozygous tracts cover
~ 4% of the genome of that individual. Since only contiguous tracts longer than
1Mb are included here, the total amount of homozygosity is likely to be much
higher. Autozygosity of 6% is to be expected in the offspring of a first cousin
mating (Broman and Weber 1999). The same two Japanese individuals have
been identified independently by the HapMap Consortium as showing ‘an above
average degree of cryptic relatedness’ (Altshuler et al. 2005). The same analysis
did not identify the CEU individual (NA12874), however. It seems reasonable to
assume that the impact on the LDU map by including these three individuals is

modest although this was not tested directly.

Aside from inbreeding and LD, there are other mechanisms which might
contribute to the observed extent of homozygosity. There are different types of
UniParental Disomy (UPD); isodisomy is the form where a child inherits two
copies of the same chromosome from the same parent. This results in the child
being homozygous at all loci. Segmental isodisomy can occur when a part, but
not the whole, chromosome is affected. UPD can cause various diseases when it
occurs in a region with imprinted genes, and can also cause rare recessive
disorders. A case of maternal UPD of chromosome 1 was found by chance (Field
et al. 1998) as there were no apparent phenotypic effects. This suggests that as
well as isodisomy for rare recessive genes or UPD in imprinted regions, some
cases of UPD may be asymptomatic and perhaps quite common. The
phenomenon has been little studied where not associated with a disease,
however, scanning methodologies to detect UPD are being developed, initially
as a diagnostic tools, but could be used to answer this question in the future

(Bruce et al. 2005; Altug-Teber et al. 2005).

Heterozygous deletions can sometimes be detected by apparent homozygosity
over an extended region. For example, Huie et al. found a novel 8Kb deletion in
a patient with glycogen storage disease type II. Apparent homozygosity may
serve as an indicator of the presence of a heterozygous deletion but other

molecular techniques are required to be definitive (Huie et al. 2002). SNPs with
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missing data were not included in this analysis, however, when a run of markers
with missing alleles is detected this may indicate a homozygous deletion.
Deletions might account for a few homozygous tracts but we presume that none

of the long tracts we have examined here reflect cryptic deletion.

Particularly long haplotypes that are common in a population may be evidence
of a region that has undergone selection, or may indicate a region that is a cold
spot for mutation and recombination. The lactase gene has been shown to be
under positive selection and aligns with a region of the genome that has a high
number of individuals with a homozygous tract within the CEU population
sample. It seems that selection may contribute to the homozygous tracts in
some regions of the genome particularly when tracts are common in individuals
within a population. Recombination as shown in the LDU map is likely to be
having a larger effect in general. The amount of homozygous tracts associated
with selection and the extent to which selection is detectable by homozygous

tracts requires further study.

The HapMap data undergoes extensive QC procedures but genotyping or
reporting errors are still possible. The recent release of Phase II data, allowed
confirmation that the longest tract detected (17.9Mb) was still present and was
not the result of a problem with the original data. The Phase II data comprises
3,902,623 genotypes that passed QC for the JPT sample. The 17.9 Mb
homozygous tract in individual NA18992 was identified, the same region, which
had 3,922 SNPs in Phase I, had 12,778 SNPs in Phase II. 11 heterozygotes break
the tract into 12 pieces, the largest of which was 5.619 Mb. No two heterozygotes
were adjacent. The presence of only 11 heterozygotes in a contiguous tract of
12,778 otherwise homozygous SNPs spanning 17.9 Mb suggests that these 11
comprise typing errors and/or relatively recent mutations. It seems therefore
that the much higher density genotyping in Phase II will break some of the very
long tracts but the strong relationships to the LD structure and evidence for

inbreeding will be preserved.
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4.6 Conclusion

This work has shown that homozygous tracts are common, in some cases very
long, and, in a few cases reflect recent inbreeding within the pedigree. In
general, long homozygous tracts reflect the presence of long ancestral
haplotypes that remain intact because of locally low rates of recombination or,
more rarely, other mechanisms such as UPD, deletions and in particular
locations, selection. Since only homozygous tracts >1Mb were considered, the
degree of homozygosity characterized is likely to be conservative. It is
conceivable, that the abundance of homozygous regions and their contribution
to long regions of high LD will significantly reduce our ability to fine map
disease genes using association, and affect the interpretation of autozygosity

mapping studies.
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Chapter 5 - Autozygosity mapping to search for a
candidate region or gene for Congenital Nephrotic

Syndrome with Diffuse Mesangial Sclerosis (DMS).

5.1 Introduction

DMS is a rare form of Congenital Nephrotic Syndrome, a rare inherited disorder
characterised by protein in the urine (proteinuria) and swelling of the body
which leads to kidney failure. The age of onset and symptoms vary and overlap
between forms. Some can be managed with medication, but different forms and
individuals respond differently to treatment; CNS can be severe and lead to
death in early childhood (MedlinePlus 2007). In this study the prognosis is poor
for the affected individuals, there is no specific therapy and end stage renal
failure can be expected by the age of 5. The index case Pedigree ID3 died before
the age of 2. There are several forms of congenital nephrotic syndrome in which
causal genes have been identified. Based on phenotype these genes are ruled out

as a cause, but different mutations in these genes need to be considered.
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Table 5.1 A summary of genes involved in congenital nephrotic syndromes.

Tsble b Hereditary Proteinuria Syndromes.

Disesse®

Cangenital nephiotic syn-
drome of the Finnish
trpe (CNF, or MPHS1;
QR ne, 2563000

Carticosteroid-resistant
nepbirotic syndrome
{SRIS, or NPHS X,
ONMIM s, 6047 56)

Fierson’s syndrome
(ORI o, 150325)

Mail-patella gendrome
{OKIM no. 161200%

Denys~Drash syndrime
OMIN no. 184030)
and Frasier's syn-
drome (OMIMno.
1366805

Focal segmantal glomery-
losclerosis {FSGSY;
OMIM no. 503278)

Focal segrantal glomeru-
losclemsis (FSGSZ,
OMIM nex, 5039653

Kode of
Inheri-
tancet

AR

AR

Locus and Gene

199131, NPHSE  Nephrin

1q25-31, NPHS2 Pododn

Ip21, LAMB2

chain
9q34.1, LMW¥IB  LWMIB
11pi3, wTi WTL

1813 ACTNY

11921-22, TRACE TRPCE

Brotein

Hechanism

tutations in the sli+-diaphragm protén
nephrin, leading to malfunctice or
absence sfthe slit diaphragm

RMutations in the slit-diaphragm protein
pedesin, leading to malfunction or
absence ofthe slit diaphragm

Laminin 82 Mutations in the adult glermerular basement

membrane laminin -1l isoform, leading
to abnormalities of podocyte and sl
disphragm development and function;
mechanisim leading to nephropathy not
completely undarstond

Mutaticns in the UAXIB transzription fachor,
swhich regulates pedacte genes encod-
ing nephrin, padodn, and CD2-associat-
ed predein, aswell as COL4AS and
COLAAS type [V callagen

Mutaticns in the ¥ TI transcription factor,
which regulates a number of padocete
genes; mechanism leading to nephropa-
thy not completel: undarstood

a-dctinin-d  Mutaticns in adin filament-cress-linking

cr-actinin-d, leading to abncemalities
in podocgtes, probably by dysregulation
ofthe foot-process crtoskelston

Mutaticas in TRRCS, a calkium-permeable
cation channd, leading to abnommal
pochocrte function; medianism leading to
nephrapathy net completaly understond

Clirdeal Description and Commants

Lsually massive proteinuria inouters, with onset of nephotiv syn-
drome within the firstwedks of life; placents weight more than
25% of hith weight; kidney transplantation only curative theraps;
milder proteinuria phencdype sometimes ohservad; resistant
to corticosteroid and cyddophcsphamide therapy, genetic test
commerdially available

Onset and sevarity of nephropathy varying from early-onset nephm-
sis to mild proteinuria starting in early adulthocd, redstance
to immunasuppressive corticostersid therapy, early minimal
changes, and focal segmental glomerulestlerasis in later stag-
ws; genetic test commerdally available

Cnset of nephrosis soon after birth; developraent of diffuse me-
sangial sclerosis and microcovia (foed narrowing of the pupil

Variable penstrance; nephrotic syndrome aswell as sheletal and
nail dysplasias in children

Male pseudobenmaphrod itism cambined with progressive glomeru-
lepathy, earl onset of nephropathy, and end-stage renal disease
by 3 years of age in Denys-Drash syndrome later onsetof ne-
phropathy in Frasier's syndrome, with development of focal
segmental glomerulosclerosis; resistant to ary treatment ex-
cept kidney transplantation

Mibd peoteinuria in adolescence or early adulthood; show progres-
sion to focal sepmental sderosis and end-stag e renal disease
in acdulthood

Proteinuria in adolescence or early adulthood; progression 1o focal
segmental glomerulasclerosis and end-stage renal disesse in
adubhoad

* Short forms of the disease and the rorresponding Online Mendelian Inheritance in Man {OMIM) numbers are given in parentheses,
T AR denctes autosomal recessies, and AD autosomal dominant.

(Tryggvason, Patrakka, and Wartiovaara 2006)
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In this study there are 5 affected individuals who have non-syndromic DMS
which appears most similar to Pierson’s syndrome but without eye symptoms
(microcoria), DMS is also a feature of Denys-Drash Syndrome. Therefore, the
regions around LAMB2 and WT1 are of particular interest as are genes known to
interact with these loci (table 5.1). The PLCE1 gene has also recently been found
to be associated with nephrotic syndrome in individuals with non-syndromic
DMS histology offering a further gene of interest (Hinkes et al. 2006). The
phenotype described by Hinkes et al. best matches the phenotype in this study

and is therefore the strongest candidate.

The family involved originates from Pakistan and has a complex and incomplete
pedigree with a large degree of consanguinity (appendix 2). The affected
individuals are all from the same, most recent, generation and originally
consisted of 3 males and 1 female. The female was less severely affected, which,
it was speculated, may be due to early treatment and a better response.
However, it was later determined, after withdrawal of treatment, that the female
was no longer suffering from the disease. The disease is assumed to be
autosomal recessive due to the patterns of inheritance in the pedigree and X-
inactivation work carried out to rule out an X-linked pattern (personal
communication Prof. D. Robinson, Wessex Regional Genetics Laboratory).
Urine tests were also carried out on all available family members to check for
proteinuria and detect any other mildly affected individuals but no additional
cases were found. The consanguinity in this pedigree and the presence of just a
few affected individuals within one family means that autozygosity mapping is
likely to be the most effective and efficient approach to finding the gene

involved.

The concept behind autozygosity mapping assumes that a large region of
homozygosity shared among affected individuals is likely to contain the disease
variant (Lander and Botstein 1987). Consanguinity in the pedigree means that
the affected child is likely to have inherited the same mutation on the same
haplotype from both parents, who in turn, inherited it from a common ancestor.
If the mutation occurred recently within the family the region of homozygosity

is expected to be large since there would not have been time for recombination
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substantially break up the ancestral causal haplotype. There are expected to be
many large regions of homozygosity within individuals in an inbred pedigree
since shared haplotypes will have been inherited through several lineages.
Homozygous regions shared by all affected individuals should narrow the search
substantially, and comparing these regions with unaffected individuals from the

same family should help to narrow the region of interest further.

The strategy of autozygosity mapping, followed by identification of conserved
haplotypes and mutation analysis of candidate genes, has proved to be
successful in the characterisation of recessive disease genes and in
understanding the biology of disease as well as normal processes. There are

several examples of successfully mapped novel loci.

An example of a causal gene identified by autozygosity mapping is MKS3 in
Meckel-Gruber Syndrome, a rare autosomal recessive condition. Eight -
consanguineous families, with g affected individuals originating from the Indian
sub-continent were studied by Morgan et al. (Morgan et al. 2002). A genome
wide analysis using 200 microsatellite markers in the affected individuals
revealed a region of homozygosity ~25¢M in length. Two candidate genes in the
region were sequenced for mutation detection without success, however a
heterozygous SNP in one of the genes narrowed the region further to 15¢M. This

region contained >50 genes but with no strong candidates.

Further work by Smith et al. (Smith et al. 2006) identified the gene. A 10K
Affymetrix Chip was typed in 5 affected individuals reducing the region again.
22 of 66 genes in this region were sequenced but no mutations were identified.
A rat model with a similar phenotype was investigated and the human ortholog
of the rat causal gene, which was present in the identified region, was
sequenced. Different mutations were identified in the 5 families. The mutations
were all homozygous consistent with consanguinity and segregated with the
disease from both parents. The mutations were not found in >120 controls
showing that they were not common polymorphisms. Searching for regions of
homozygosity was integral to the search for this gene, and a 10K SNP array was
required to narrow the region detected by microsatellites. However, other

approaches were required for final identification of the gene.
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Other examples include, the identification of a mutation in WNT10A in
Ectodermal Dysplasia cases (Adaimy et al. 2007); BLOC1S3 mutations in
Hermansky-Pudlak Syndrome (Morgan et al. 2006); mutations in RAB3GAP in
Warburg Micro Syndrome (Aligianis et al. 2005). These studies all used an
approach which began with genome wide typing of microsatellites in the
affected individuals to determine a common region of homozygosity. This was
followed up by typing more microsatellite markers in the region and in more
individuals. Linkage programs were then used to provide a LOD score for the
significance of the region. Examples of programs available are
MAPMAKER/HOMOZ (Kruglyak, Daly, and Lander 1995),
LINKAGE/FASTLINK (Cottingham, Jr., Idury, and Schaffer 1993; Schaffer et al.
1994) and Easylinkage (Lindner and Hoffmann 2005). These programs require
assumptions about penetrance, disease gene frequency, pedigree completeness
(inbreeding coefficients), marker allele frequency in particular populations, and
also require data from several affected and unaffected family members. The
regions defined in this way can be very large, 10-20cM depending on the density
of microsatellites used, and may contain many genes. Candidate genes can be
sequenced for mutations but if none are found or there are no strong candidates
further narrowing of the region is required. Fine mapping of regions has been
carried out using a 10K Affymetrix SNP chip on affected individuals, for
example in the MKS3 and BLOC1S3 studies (Smith et al. 2006; Morgan et al.

2006).

The development of high density SNP genotyping technologies and the relatively
low costs involved when only a few individuals need be typed, mean that many
studies can now use high density SNP arrays to carry out autozygosity mapping.
High density typing means that regions of homozygosity can be identified and
visualized without the need for statistical inference or LOD scores. This
technique has the advantage of speed and resolution. For autozygosity mapping,
the assumption that the disease is caused by a homozygous mutation inherited
from a relatively recent ancestor must be correct and the gain in resolution is in
part dependent on the pedigree. If the affected individuals are c;losely related
and the mutation occurred very recently, the region of homozygosity harbouring

the mutation is likely to be large, whereas if the affected individuals have a
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higher degree of separation and the mutation occurred less recently, the region
will be smaller and the advantage of high resolution SNP genotyping will be
greater (Gibbs and Singleton 2006).

There are several examples of disease loci identified using high throughput
genotyping technology such as the Affymetrix chips and Illumina bead arrays.
Genome wide screening in 2 affected Kartagener Syndrome patients (Gutierrez-
Roelens et al. 2006) used microsatellites to identify 10 regions of autozygosity
and 26 uninformative regions. Additional microsatellite markers in this small
family were not informative, so higher density screening was carried out using
the 10K SNP array. This refined the candidate regions to a 44.6Mb region on
chromosome 1 and a 13.7Mb region on chromosome 7. The higher density of the
SNP array over the microsatellite panel allowed these regions to be discovered,
however, the regions are still large and although higher density SNP array data
may refine the locations more individuals from more families would be required

to substantially narrow the regions of interest.

The search for genetic variants causing the autosomal recessive form of Severe
Congenital Neutopenia (Kostmann syndrome) was attempted by two different
methods (Melin et al. 2007; Klein et al. 2007). Melin et al. used a 10K SNP array
in 4 affected individuals from one family. Software was written to define regions
of homozygosity in 3 ways. Firstly, regions greater than 1Mb in size. Secondly,
regions containing >= 20 consecutive homozygous SNPs in all 4 affected
individuals, and lastly, regions containing >=30 consecutive homozygous SNPs
in 3 of the 4 affected individuals systematically removing one individual. The
regions defined in this way were further analysed by microsatellites in all
members of 2 families. The 10K analysis found no regions that could be
confirmed by microsatellites. Higher density analysis using the 100K array
identified 30 regions, one of which was confirmed in 3 of the 4 affected
individuals. The region was 1.8Mb and was further confirmed by 2 affected
individuals from a second family. The presence of the same haplotype narrowed
the candidate region to 1.2 Mb containing 37 known genes. The 10K data
confirms this result, although on the original screen the region was not detected

because it contains only 4 homozygous SNPs and several hundred such regions
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were found in the 10K array analysis. This shows that the 10K SNP array may
not be of sufficient density for this type of study.

At the same time as this study, Klein et al. approached the identification of the
genes responsible for Kostmann syndrome with genome wide genotyping of 217
microsatellites carried out on 4 affected and 4 unaffected individuals from 3
families. Only 1 of these markers was homozygous in all 4 cases, all available
family members were genotyped for microsatellites in the region and a peak
LOD of 4.15 was obtained. This approach gave an interval of 34.4Mb containing
275 genes, a much larger region than that defined by Melin et al. Prioritizing
potential candidates led to mutation screening of HAX1 and identification of a
causal mutation. 15 of 63 further patient samples had the mutation and 200
healthy controls did not. The 2 groups collaborated and both authors are listed
on both papers. They used different methods and different patient samples for
the initial screen, however, the region defined by Melin et al. using the 100K
SNP array was much smaller and gave fewer candidate genes to investigate in

the next stage of analysis.

A study by Chiang et al. identified TRIM32 as the 11th locus for Bardet-Bied]
syndrome (BBS11) (Chiang et al. 2006). An initial genome wide microsatellite
screen using 400 markers was uninformative and failed to identify any regions
homozygous in the 4 affected individuals studied. The use of a 50K SNP array
identified 14 regions with >= 25 SNPs in the 4 cases. Typing microsatellites in
all available family members in these regions excluded all but one, the largest
region detected, which was 2.4Mb. This region had no microsatellites in the
original screen so would have been impossible to identify. Mutation screening in
the candidate region revealed a mutation in TRIM31 which was confirmed by its

absence in 184 controls.

Puffenberger et al. used the 10K SNP array to investigate the cause of
symptomatic epilepsy syndrome in a group of 7 distantly related Mennonite
children. Surprisingly analysis did not show any large blocks of homozygosity
common to all 7 patients. To explain this lack of autozygosity, both locus and
mutation heterogeneity were considered but with no success. Regions of the 10K

array which have low SNP coverage were then investigated. A chance
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observation of a single SNP which produced ‘NoCalls’ for all 7 patients despite
an average call rate of 98.5% led to further investigation which showed that all
14 parents of the cases were called as homozygous for this particular SNP. It was
determined that the parents were actually hemizygous for the SNP and all 7
cases were homozygous for a deletion in a 7Kb region around the SNP in the
LYKS5 gene (Puffenberger et al. 2007). The lack of local SNP coverage on the
lower density SNP arrays in particular regions is another reason high density
arrays are required for autozygosity mapping. This study also shows that
identifying regions where ‘NoCalls’ are present, consistent with a small causal

deletion, must be considered in the analysis of these data.

There are some analysis and visualisation programs designed for this type of
data. Examples include, Scamp (Forshew and Johnson 2004), ExcludeAR
(Woods et al. 2004), AutoSNPa (Carr et al. 2006), IBDfinder (Carr, Sheridan,
and Bonthron 2007), and PLINK (Purcell et al. 2007). However, Scamp and
ExcludeAR are based on a Microsoft excel spread sheet format, while Scamp
only analyses microsatellites, ExcludeAR analyses SNP data but both are limited
to the amount of data they can handle and neither can cope with more than the
10K Affymetrix array (Forshew and Johnson 2004; Woods et al. 2004).
AutoSNPa analyses SNP array data and can load data from the 250K array but
this will increase computational time. It also requires pedigree data, and is
primarily designed to visually analyse results, from which regions chosen by eye
can be exported to text or excel files for further scrutiny. IBDfinder provides a
less restricted qualitative approach to the identification of identity by decent
(IBD) regions. It ignores pedigree structure, thereby allowing the analysis of
singletons and groups of unrelated individuals. It is designed to handle
Affymetrix format data and includes an error rate allowance and a SNP density
adjustment. It effectively scores each marker in each individual based on the
number of adjacent homozygous SNPs, then combines this information across
individuals in windows of 0.125Mb (or ¢M), as the number of individuals with
or without IBD in that window. It takes no account of linkage disequilibrium
and, like AutoSNPa, the results are visualised and would require examination of
interesting regions to define them more precisely (Carr et al. 2006; Carr,
Sheridan, and Bonthron 2007). PLINK offers detection of runs of homozygosity

in windows of user defined SNP number or Kb size. It also allows a user defined
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number of heterozygotes or NoCalls in each window. The program allows
pooling of regions of homozygosity across individuals allowing a threshold to be
set for the amount of allelic identity, but the genome-wide output is extensive
and thus difficult to interpret. Measuring homozygosity in a sliding window
approach does not provide accurate definitions of regions and this method does
not take into account LD. A method for detection of shared extended haplotypes
of IBD is in progress but documentation has yet to be produced (Purcell et al.
2007). Visualization methods are intuitive but become more difficult to

interpret the more data and more individuals involved.

5.2 Aims

The aim of this work is to use densely genotyped SNP data to determine regions
of homozygosity in inbred individuals affected with Congenital Nephrotic
Syndrome and determine a homozygous region associated with the rare
autosomal recessive disease. The program written for searching for homozygous
regions in HapMap individuals is to be extended to incorporate data from
several individuals at once. Regions will be determined on both the LDU and Kb
scale. Knowledge of homozygosity in outbred populations from previous work
(chapter 4) shows that regions which are in LD blocks are more likely to be
homozygous by chance (because of low haplotype diversity), this may be
important in determining the most likely candidate regions. Genes in the
selected candidate regions will be compared with genes involved in known
kidney diseases, with kidney related functions or known interaction with other
candidate genes. Further to this project, mutation screening in candidate genes
and the identification of a causal locus would give the possibility of anti-natal

and carrier testing assisting in genetic counselling in this family.

5.2 Methods

5.3.1 The cases

The pedigree shows complex consanguinity and an autosomal recessive
inheritance pattern with all the affected individuals in one generation (appendix

2). An ancestor common to the affected individuals (ID58) is a possible the
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route of inheritance. Originally the presence of an affected female gave weight to
the rejection of an X-linked pattern, however the relatively small number of
affected males in the pedigree and X-inactivation work have also helped to rule
this out. Two of the cases (ID25 and ID114) were diagnosed with a mild
phenotype, with levels of protein in the urine higher than the normal range, but
not extreme. In ID25 this proteinuria resolved after treatment with ACE
inhibitors. ID114 was also diagnosed with a mild phenotype on the basis of
higher than the normal, but not extreme, levels of proteniuria. ID114 seems to
be following the same disease pathway as ID25 but is currently only a few
months old and has just started treatment. Three of the cases (ID3, ID4 and
ID19) were diagnosed with a severe phenotype with extreme levels of
proteinuria and were not responding well to treatment. All 3 have had renal
biopsies and DMS histology confirmed (Personal communication via project
meeting, Dr R. Gilbert, Consultant Paediatric Nephrologist, Southampton
General Hospital).

5.3.2 Data

This analysis was based on 3 datasets. The initial dataset was genotype data
from the 50K Affymetrix SNP microarray, the second was the higher density
500K Affymetrix SNP microarray, and the final dataset was the Illumina
humanhaps50 bead array. A total of 7 individuals were genotyped on one or
more of the platforms. A range of genotyping efforts were undertaken due to an
unanticipated lack of homozygosity common to the affected individuals in the
initial analysis and concerns over genotyping accuracy. However, the phenotype
status of some individuals changed during this study, leading to a different

interpretation of the results.

88



Table 5.2 The 7 genotyped individuals

Phenotype;
Pedigree ID Genotyped?
sex unaffected (0)
L fathe mothe mild (1) ] . Mumina
individual Affymetrix 50K Affymetrix 500K
r r affected (2) 550K
3 2 1 male 2 yes yes yes
4 2 1 male 2 yes yes yes
19 98 65 male 2 yes yes yes
114 64 13 male 1 no no yes
25 78 15 female 1 yes yes yes
17 98 65 male 0 no yes no
18 98 65 male 0 no yes no
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5.3.3 Investigating data quality

The call rates for all genotypes over all individuals called was high. However,
ID3 in the Affymetrix 50K dataset, ID19 in the Illumina dataset had lower
genotype call rates than the rest.

Table 5.3 Genotype call rates (%) over all data for all individuals genotyped on the

3 platforms.
Affymetrix Affymetrix
50K 500K Hlumina550kK

ID3 94.92 96.83 99.47

ID4 99.49 98.85 99.49
ID19 98.95 98.68 90.07
ID114 - - 97.93
ID25 98.53 98.13 99.51
ID17 - 97.82 -

ID18 - 98.43 -

The data were organised by chromosome and location on the physical map in
Kb (NCBI build 36.1, UCSC build 18, Maro6). SNPs on the X, Y and ‘unknown’
chromosomes or those which could not be located on the current sequence were
removed. The numbers of SNPs available for analysis were 57,179 in the
Affymetrix 50K data, 440,734 in the Affymetrix 500K data and 547,475 in the
Ilumina 550K data.

The Affymetrix 500K chip and the Illumina 550K bead array data have 76,116
SNPs in common. In the 4 individuals genotyped on both platforms there were
11,981 ‘NoCalls’, leaving 292,483 successfully typed genotypes. All possible
combinations of genotype calls on the 2 platforms in each individual were
recorded and different classes of discrepancies were detected. The 2 platforms
use different methods to code SNP genotypes so in a proportion of cases an
Affymetrix AA call is the same as a BB Illumina call. However, discrepancies
where one platform called a heterozygote and the other a homozygote, indicates

an error in one of the genotype calls. This would have a significant impact on
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this analysis since a questionably typed heterozygote could break up an
otherwise long homozygous region. The two platforms provide confidence
scores for eabh genotype call but the confidence scores have different
interpretations. Affymetrix scores range 0-1 with scores closer to 0 having a
higher confidence. A default threshold of 0.5 is applied and genotypes with a
score above this are not called. Illumina scores range from 0-1 with scores closer
to 1 having a higher confidence. Genotypes with a score below the default
threshold of 0.25 are not called. The average scores for heterozygous calls and
the 2 homozygous calls were calculated and average confidence scores for each

class of discrepancy were also calculated.

To investigate confidence score thresholds to optimise data quantity and
accuracy, genotypes with the lowest scores were removed using several
percentile cut offs, 5, 10, 50, 80, 85 and 90. Each threshold was applied and the
number of discrepancies for each class was recounted. An optimal reduction in
dafa, based on scores, was defined and all known discrepancies were also

removed before analysis.

5.3.4 Checking for small deletions

To check if any small homozygous deletions were picked up in the data, software
was written in C to count the number of genotypes given a ‘NoCall’ in all

affected individuals and detect runs of consecutive ‘NoCalls’.

5.3.5 Defining regions of homozygosity

Software was written in C to search through the data, SNP by SNP, and detect
regions of consecutive homozygous SNPs flanked by heterozygotes. Firstly
regions of homozygosity were detected for each individual and then regions
where all the affected are homozygous for the same alleles at consecutive
markers were recorded. These regions are flanked by SNPs where at least one of
the 4 individuals is heterozygous or homozygous for the opposite allele.
Therefore all affected will be homozygous for the same haplotype over each

region detected. Centromeric and heterochromatic regions were excluded from

analysis.
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Long regions of homozygosity common to all 4 affected may be adjacent but
broken by a single heterozygote call. To identify this, a count of homozygous
SNPs following the SNP that ends a region was also recorded. This is the
number of SNPs in the next homozygous region if the two regions are separated

by a single marker.

5.3.6 Prioritising and selecting regions for follow up

Regions of interest were prioritised by the genetic length of the region in LDUs.
The genetic length is the most informative since it takes into account the linkage
disequilibrium across the region. The physical length in Kb and the number of
homozygous SNPs in the region were also recorded. The number of SNPs in a
region is useful as a measure of the amount of information in the region, a lower

limit of 5 consecutive homozygous SNPs was applied.

A database of functionally relevant candidates, known to be involved in other
forms of CNS, involved in other kidney disease, or known to interact with
candidates, was created using data from the literature and the Human Kidney
Gene DataBase (Human kidney Gene DataBase 2004; Renshaw et al. 2004;

Tryggvason, Patrakka, and Wartiovaara 2006; Hinkes et al. 2006).

A list of functionally relevant candidate genes are given in appendix 3.

5.4 Results

5.4.1 Investigating data quality

The average confidence scores are shown (table 5.4) for heterozygotes and
homozygotes in the Affymetrix 500K and Illumina 550K datasets (information
is not available for the Affymetrix 50K dataset). The confidence is slightly higher

(closer to 0) for heterozygous calls than for homozygotes calls for the Affymetrix
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data. The opposite is true for the Illumina data with homozygote calls given a

slightly higher score (closer to 1), although all scores are high.

Table 5.4 Mean confidence scores for homozygous and heterozygous genotype

calls.

Affymetrix 500K lHlumina 550K
heterozygous homozygous heterozygous homozygous
ID3 0.053 0.085 0.860 0.863
ID4 0.032 0.059 0.862 0.863
ID19 0.031 0.054 0.829 0.837
iD114 - - 0.845 0.863
ID25 0.036 0.058 0.862 - 0.863
ID17 0.039 0.070 -
ID18 0.035 0.065 - -

Comparing the number of discrepant genotype calls between the Affymetrix and
[Nlumina data indicates an error rate of 0.63%. Analysis of discrepant genotype
calls between Affymetrix 500K and Illumina 550K datasets showed that in cases
where a discrepancy between a heterozygote and a homozygote call was
detected, the average confidence score was lower for the platform calling a

heterozygote than for other classes of discrepancy.
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Table 5.5 Comparison of genotype calls for the 4 individuals genotyped on both the Affymetrix 500K array and lllumina 550K array.

Mean confidence

Genotype call scores
Humin Indicates Affymetri

Affymetrix a iD3 iD4 1D19 iD25 All % an error? X Hllumina
AA AA 12072 12300 11207 12477 48056 16.43 No 0.0523 0.8618
AA BB 13431 13971 12561 14018 53981 18.46 No 0.0693 0.8594
BB AA 10733 10738 10016 10949 42436 14.51 No 0.0495 0.8666
BB BB 14063 14644 13098 14578 56383 19.28 No 0.0730 0.8554
AB AA 166 69 87 94 416 0.14 Yes 0.2344 0.8717
AB BB 373 63 81 196 713 - 0.24 Yes 0.2452 0.8656
AA AB 32 24 237 24 317 0.11 Yes 0.1109 0.6971
BB AB 40 27 302 27 396 0.14 Yes 0.1102 0.7073
AB AB 22870 23322 21171 22422 89785 30.70 No 0.0345 0.8586

Total 73780 75158 68760 74785 292483 100.0

* Lowest-confidence scores for each platform in bold. Affymetrix scores 0-1, with o indicating an accurate call. Illumina scores 0-1, with 1 indicating an accurate call.
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Removing a percentage of the data based on confidence scores showed that to
remove all known discrepancies from the data required a cut off of 90% in both
the Affymetrix and Illumina data, leaving only 1% of the comparable genotypes
for analysis (table 5.6). Removal of the lower 10% reduced the percentage of
known discrepancies to 0.23% (from 1842 to 566) in the remaining 83.05% of

the comparable data.

Table 5.6 The number of discrepancies and percentage of data remaining after the

quality thresholds are altered to remove a percentile of the data on both platforms.

% of genotype

lHlumina Affymetrix comparisons No.
Percentile threshold threshold remaining discrepancies
0 0.50 0.250 100 1842
5 0.69 0.209 91.33 819
10 : 0.77 0.142 83.05 566
50 0.87 0.031 25.90 73
75 0.91 0.012 6.59 15
80 0.92 0.009 4.25 10
85 0.93 0.006 241 6
90 0.95 0.004 1.05 0

Analysing the discrepancies between SNPs typed on both the Affymetrix 500K
chip and the Illumina 550K array allowed a reasonable 10% cut off based on

confidence scores to be applied. Known discrepancies were also removed in

both datasets.
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5.4.2 Detecting deletions

Table 5.7 The number of ‘NoCalls’ for all confirmed affected individuals.

No. NoCalls % of total No. of these
for all SNPs successfully typed on
affected genotyped another platform
Affy50K 29 0.05 14
Affy500K 107 0.03 19
IHlum550K 316 0.06 38

None of these SNPs are adjacent therefore there are no runs of the sort that

might indicate a small deletion.

5.4.2 Homozygosity

The level of homozygosity in each dataset was detected at the SNP level. The
number of SNPs homozygous for the same allele in all affected was recorded

and the percentage of the total calculated.

Table 5.8 The number of SNPs which are homozygous in all confirmed affected

individuals.
No. SNPs homozygous in all
affected % of total
Affy50K 26646 46.60
Affy500K 200579 47.73
Hlum550K 214090 39.11

Regions of homozygosity in each individual were then identified. The maximum

size in Mb and the number of regions greater the 1Mb were recorded.
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Table 5.9 Homozygous regions in each individual for the different datasets, the

number of regions >1 Mb and the maximum region length in Mb.

Affy50K Affy500K Hlum550K
Max
>1Mb length >1Mb Max length >1Mb Max length

ID3 198 12.48 73 7.41 46 29.97

1D4 176 20.80 56 12.37 37 21.28
ID19 172 28.55 92 11.19 97 6.59
ID114 - - - - 46 19.89
ID25 165 31.39 97 8.45 42 31.27
ID17 - - 79 10.37 - -
iID18 - - 79 16.50 -

For comparison the maximum number and size of regions defined in the

HapMap samples are presented.

Table 5.10 Homozygous regions defined in the HapMap samples.

N Mean No. Max No. Max No. SNPs
o.
Sample .. tracts per tracts per Length in
Individuals Lo L
individual individual (Mb) sample
CEU 60 8.30 26 6.48 728353
CHB 45 5.84 11 2.63 644060
JPT 44 8.41 36 17.91 639460
YRI 60 4.37 10 11.14 744006

5.4.3 Initial analyses of regions of homozygosity common to the

affected individuals.

Initial analysis included ID25 as an affected individual, and defined regions

common to all 4 affected individuals. The maximum genetic length was 70.5

LDU in a region containing only 5 SNPs in the Affymetrix 50K dataset.

An increase in SNP density using the 500K Affymetrix chip gave maximum

genetic length of 17.29 LDU in a region containing 9 SNPs. The results of these
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analyses did not.provide an expected single particularly long region in all
affected individuals and no strong candidate genes were present in the longest
regions detected. It later became known that ID25 had a milder and possibly
different phenotype which resolved after treatment, it was therefore

unsurprising that the analysis did not give definitive results.

5.4.4 Analyses of regions of homozygosity common to the confirmed

affected individuals

New data on the Illumina 550K bead array, were provided for the affected
individuals including one new affected born into the family, ID114. ID25 has a
different (milder) phenotype to ID3, ID4 and ID19, thus not considering her as
one of the affected individuals is likely to have the biggest impact on the results.
Again regions were defined using only affected individuals, leaving 3 in the
Affymetrix 50K and 500K data and 4 in the Illumina data. The newest
individual (ID114), typed only in the Illumina sample has a mild phenotype
similar to the phenotype observed in ID25, and is too young to have had the
diagnosis confirmed by renal biopsy. For this reason analysis was carried out
with and without ID114 in the Illumina sample. The Illumina dataset has higher
density typing, generally higher call rates (except ID19), and the analysis of
homozygous regions by individual, shows longer regions implying less
erroneously typed heterozygotes than the Affymetrix 500K dataset. It also has
data on all confirmed and unconfirmed affected individuals. Therefore the main
analysis was carried out using the Illumina dataset, and results were then

confirmed using the Affymetrix datasets.

Analysing the Illumina 550K array dataset with ID114 gave a maximum region
length on the genetic scale of 12.52 LDU containing 14 SNPs. No single region
stood out as particularly long or was backed up by good evidence in the form of
a high SNP number. Reanalysing the Illumina 550K array dataset without ID114
gave a maximum region length on the genetic scale of 54.81 LDU for a region on
chromosome 13 containing 787 SNPs. Several adjacent regions on chromosome
13 are also detected, suggesting the possibility of a single long region broken by
erroneous genotype calls. A region on chromosome 10 was the second longest

on the LDU scale but longest on the physical scale and contains the largest
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number of SNPs. This region is of particular interest since it contains the PLCE1

candidate gene.

Table 5.11 Illumina 550K array, top 10 regions ordered by genetic length on the

LDU scale. A) Regions common to ID3, ID4, ID19 and ID114. B) Regions common

to ID3, ID4 and ID19 (see appendix 4 & 5 for Affymetrix 50K and 500K results)

Location (Kb) No. SNPs in
Kb LDU No. following
Chr Start End length length SNPs region
A) 10 45468.76 47063.96 1595.2 12.52 14 0
3 114797.7 114806.5 8.77 12.09 7 3
2 86902.21 88092.11 1189.89 11.62 21 9
10 34234.54 34288.87 54.33 9.97 27 2
1 230117.3 2302234 106.11 9.92 56 2
11 126346.8 126415.8 69.01 9.91 - 48 5
16 86431.64 86521.22 89.58 9.53 13 2
1 98726.83 98752.58 25.75 9.49 11 3
2 199350 199374.4 24.38 9.29 7 0
19 36071.87 36084.21 12.34 9.08 6 4
B) 13 25046.97 26660.55 1613.59 54.81 784 70
10* 95364.46 98420.58 3056.12 42.55 1034 35
13  23512.1 24130.55 618.45 34.71 339 343
13 2413295 25045.65 912.7 22.23 343 784
17 7407591 74116.72 40.81 18.45 19 0
5 150883.7 150964.4 80.73 16.13 43 2
15 20606.43 21218.85 61243 13.17 17 0
10 45468.76 47063.96 1595.2 12.52 14 0
3 114797.7 114806.5 8.77 12.09 7 3
2 86902.21 88092.11 1189.89 11.62 21 9

* Region containing PLCE1 gene.

Reanalysing the Affymetrix 50K and 500K array datasets, both showed long

regions of homozygosity common to the confirmed affected. The regions are

longer on both the genetic and physical scale than those detected including ID25

and have greater evidence in the form of high SNP number. The regions on
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chromosome 10 and 13 appeared in all 3 datasets and are thus the most

convincing candidate regions.

5.4.5 Candidate regions

Investigating these candidate regions further, the homozygous regions falling
partially or wholly within these candidate regions were examined in all
individuals. The candidate region on Chromosome 10 defined by the Illumina
data is located between 95364.46-98420.58 Kb. the region defined by the
Affymetrix 500K data is located between 95282.73-96261.83 Kb. The candidate
region on chromosome 13 is located between 25046.97-26660.55 Kb in the
INlumina data and 23906.63-25639.08 Kb in the Affymetrix 500K data. Table
5.12 shows that the 3 confirmed affected individuals have long homozygous
regions across the length of the candidate region on chromosome 10 and the
mildly affected (ID25 and ID114) and the unaffected (ID17 and ID18) have many
much smaller regions of homozygosity. The same pattern is seen in the
chromosome 13 region, with the exception of the unaffected ID17 which is
homozygous across the candidate region. The affection status of ID17 is not
thought to be ambiguous therefore this result seems to rule out the chromosome

13 region as a direct cause of this condition.
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Table 5.12 Regions within or overlapping the chromosome 10 candidate region, in the Illumina 550K and Affymetrix 500K datasets. Showing
regions of homozygosity in all 7 individuals genotyped.

Phenotype;
unaffected (0) SNPs in Other regions within or
mild (1) location (Kb) following adjacent to the candidate
affected (2) Start End KB length  LDU SNPs region region
illumina550K ID3 2 72628.49 98526.09 25897.61 448.35 8958 2
ID4 2 95364.46 98526.09 3161.64 47.23 1070 2
ID19 2 95364.46 98420.58 3056.12 42,55 1034 35
ID114 1 97725.08 97988.57 263.49 4.25 101 0 +69 smaller regions
ID25 1 96284.84 96459.62 174.78 0.47 23 1 +107 smaller regions
Affy500K +18 large adjacent
ID3 2 95226.92 97016.52 1789.60 24.90 239 310 regions
1D4 2 95282.73 96261.83 979.10 19.00 165 377
ID19 2 95282.73 97016.52 1733.79 21.97 232 310
1ID25 1 96127.14 96359.42 232.28 0.11 12 4 +20 smaller regions
ID17 0 95772.92 95956.76 183.84 3.31 29 2 +9 smaller regions
ID18 0 9577292 95956.76 183.84 3.31 29 4 +10 smaller regions
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Table 5.13 Regions within or overlapping the chromosome 13 candidate region, in the Illumina 550K and Affymetrix 500K datasets. Showing
regions of homozygosity in all 7 individuals genotyped.

Phenotype; Other regions within
unaffected(0) location (Kb) SNPs in or adjacent to the
mild (1) KB following candidate region
affected (2)  Start End length LDU  SNPs  region
Ilumina550K ID3 2 23104.63 27358.66 4254.03 145.68 2002 3
ID4 2 23104.63 27358.66 4254.03 145.68 2002 3
ID19 2 25046.97 26660.55 1613.59 54.81 784 70 +6 other large regions
ID114 1 24938.85 25207.14 268.29 3.40 115 0 +112 smaller regions
ID25 1 24229.03 24469.23 240.21 1.94 72 0 +107 smaller regions
Affy500K ID3 2 23906.63 25639.08 173245 42.64 322 177 +3 other large regions
ID4 2 23906.63 27103.08 3196.45 89.00 635 69 +4 other large regions
ID19 2 23906.63 26863.54 295691 86.16 582 7 +3 other large regions
ID25 1 24226.68 24467.35 240.67 1.69 29 0 +61 smaller regions
ID17 0 23906.63 27103.08 3196.45 89.00 635 313 +8 other large regions
ID18 0 24933.66 25181.31 247.65 3.02 55 3 +39 smaller regions
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5.5 Discussion

5.5.1 Phenotype ambiguity

There are several issues to be tackled in these data the most important being
ambiguity in phenotype. ID25 was originally assigned as affected but was
subsequently assigned as mildly affected. Removing this individual from the
analysis made a large impact on the results. ID114 is a newborn with a mild
phenotype, carrying out the analysis with and without this individual was the
best way to insure against the possibility of a change in phenotype status of this
individual. Only ID3, ID4 and ID19 have had their diagnosis of DMS confirmed
by renal biopsy. Urine tests of all available adults in the family found no
proteinuria, making it unlikely that there are other mildly affected family
members. This evidence and the inheritance pattern in the pedigree show the
disease is most likely to be an autosomal recessive condition. It is also sensible
to consider the possibility of mutation heterogeneity, for example ID25 and
ID114 were diagnosed with milder symptoms than the other individuals and it is
possible that a different mutation is causing a different phenotype in these cases

and further justifies analysis excluding these individuals.

5.5.2 Genotype quality

The form of the data available added complexity to this analysis. There are 3
different data sets, with 77 individuals genotyped on one or more platform.
However, using several datasets has the advantage of extra SNP coverage and
replication of results on an independent genotyping platform. The Illumina
array has a more even distribution of SNPs on the genetic map (using a
haplotype tagging approach to choose their SNPs) and the highest SNP density
which should be helpful in this analysis. Melin et al. (2007) showed that the 10K
Affymetrix array failed to detect a homozygous region, later detected by the
Affymetrix 100K array, due to insufficient local SNP density. There is also,
however, a disadvantage of very high SNP density in this type of analysis
because as SNP density increases so does the expected number of wrongly called
heterozygous SNPs, even though the percentage remains small. This can have a

large effect on results by breaking up long homozygous regions, whereas
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miscalled homozygotes would have a much smaller effect on results. Multiple
datasets allowed the comparison of genotypes and inferences to be made about
the accuracy of the genotype calling. There was a lack of long regions and thus
promising results in the original analysis of the Affymetrix 50K and 500K data,
including ID25. In such an inbred family this led to questions about the

frequency of mistyped heterozygous genotypes.

Genotype call rates for all platforms were high but with notable lower rates for
ID3 and ID19 in the Affymetrix and Illumina datasets respectively (table 5.3).
Lower call rates do not necessarily imply that the genotypes which were called
are questionable since a quality score threshold is applied to all data. However,
examination of confidence scores showed that ID3 in the Affymetrix dataset and
ID19 in the Illumina dataset have slightly lower mean scores for both genotype
calls (table 5.4). Overall confidence was slightly higher for heterozygous over
homozygous calls in the Affymetrix dataset but the opposite in the Illumina
dataset, although the differences were very small. The availability of genotype
calls for 76,116 SNPs in 4 individuals on 2 platforms allowed discrepant results
to be investigated. Table 5.5 shows the discrepancies between datasets, ID19 has
more cases where Illumina calls a heterozygote and Affymetrix calls a
homozygote and ID3 has more cases where the opposite calls are made. This
suggests that the lower call rate and average confidence scores for these
individuals in these datasets may increase the number of erroneously called
heterozygotes. The mean confidence scores for heterozygote Tlumina calls when
Affymetrix calls a homozygote are lower (0.6971 and 0.7073) than other classes
of discrepancy. When the opposite calls are made the Affymetrix scores are
lower (0.2344 and 0.2452). Suggesting that the heterozygote calls rather than

the homozygote calls are the more questionable.

Removing different percentages of the data based on the confidence scores
shows that only by removing 98.95% of the data (90% from Affymetrix and 90%
from Illuminé) were all the discrepancies removed (table 5.7). A 10% cut off
leaves a discrepancy rate of 0.23% down from 0.63% and retains 83.05% of the
data which seemed a reasonable balance between data quality and quantity. All
known discrepancies were removed from both datasets since it cannot be

reliably judged which genotype call is correct.
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5.5.3 Detecting deletions

A small percentage of SNPs are NoCalls for all affected individuals although
some of these are successfully genotyped on another platform (table 5.7). There
were no runs of consecutive NoCalls in all affected individuals which might
indicate a deletion. However, the LYK5 paper (Puffenberger et al. 2007) found
only one NoCall common to all affected individuals, but it happened to be in a
region of the genome poorly typed on the Affymetrix 10K array. The high
density genotyping in this study on 3 platforms means failure to detect a

deletion is unlikely, but small deletions are still possible.

5.5.4 Homozygosity

Table 5.8 shows that 39.11-47.73% of SNPs typed in the different samples are
homozygous for all affected individuals, showing the high level of homozygosity
in this inbred pedigree. The summary of homozygous regions detected in the
HapMap samples (table 5.10) cannot be directly compared with the results in
this study (table 5.9) since the size and number of regions depends to a great
extent on SNP density and the HapMap sample had approximately 700,000
SNPs. However, it is clear the size and number of homozygous regions in these
samples exceed those in the HapMap samples, which is expected given the
consanguinity in the pedigree. The regions detected on the Affymetrix 500K
array are a little shorter than expected given the Illumina results, but they are
more numerous suggesting that the regions are broken up by isolated and
perhaps erroneously called heterozygotes. Table 5.9 also shows shorter regions
for ID3 in the Affymetrix datasets compared to the other samples and shorter
and more numerous regions for ID19 in the Illumina sample. Both of these
samples have lower call rates and average confidence scores than other
individuals genotyped on the same platforms further suggesting the presence of

miscalled heterozygotes breaking up otherwise long regions of homozygosity.

5.5.5 Regions of homozygosity common to the affected individuals

Only the affected individuals were considered to determine common regions of

homozygosity. To require the normal individuals to be heterozygous or
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homozygous for the opposite allele across the entire region is too strict a
criteria, especially since there are many SNPs where only one allele is present in
this sample. Therefore a SNP could be homozygous in the affected and
unaffected family members without indicating that the region does not
segregate with the disease. Instead these SNPs may just be uninformative in this
population or sample, since accurate information on allele frequencies in this
particular population is not available. It has been shown that regions of
homozygosity are more often found in regions of high LD where there has been
little recombination and haplotypes inherited through both parents from a
common ancestor are more likely to remain intact (Gibson, Morton, and Collins
2006). For this reason the homozygous regions were prioritised on the LDU
scale which takes into account linkage disequilibrium, giving more weight to
regions of lower LD and high LDU than regions of higher LD which have fewer
LDU.

Initial results using the Affymetrix data and including ID25 did not give
definitive results. Both Affymetrix datasets showed some large regions but each
containing few SNPs and therefore no compelling evidence making it difficult to
prioritise these regions (appendix 4). Analysing the Illumina data with the new
affected individual ID114 also failed to give an expected long region with a large
SNP number. However, when ID114 and ID25 were removed from the analysis,
limiting to only the confirmed affected, the results changed dramatically. Two
candidate regions were identified one on chromosome 10 and one on
chromosome 13. The number of SNPs indicated a high level of information in
these regions and the number of SNPs in the following region showed that there
are 3 regions on chromosome 13 that are separated by single markers, and it is
therefore possible that genotyping errors split one long region into 3 smaller
ones (table 5.11). Removing ID25 from analysis in the Affymetrix 50K and 500K

data confirmed these 2 regions (appendix 5).

5.5.6 Candidate regions on chromosome 10 and 13

These results are particularly interesting because the regions are longer and
more convincing (due to higher SNP number) than previous results and the

region on chromosome 10 contains the gene PLCE1. This is the strongest
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candidate gene as it was detected by Hinkes et al. (Hinkes et al. 2006) in
individuals with the same phenotype (published after the initial analysis). The
candidate regions were investigated further to determine the size of
homozygous regions in each individual which lie within the common region
detected. The evidence in support of the chromosome 10 region relies on the
phenotype status of ID114 being ‘unaffected’. The mild and possibly treatable
condition of ID25 and ID114 may be caused by a different mutation. It does not
seem likely that ID25 and ID114 are simply heterozygous for the mutation and
therefore less severely affected, since they have a mixture of heterozygote and
homozygote genotype calls across the candidate region. The region on
chromosome 13 is more complicated, since ID17 an unaffected individual also
shares the region of homozygosity, and seems to rule out this region as a direct
cause. Other possibilities are a more complex cause of the disease involving 2
interacting genes; the family carries another undetected autosomal recessive
condition caused by the chromosome 13 region; or the chromosome 13 region is
shared by chance, which is perhaps not unlikely in such a consanguineous
family. The presence of the PLCE1 candidate in the chromosome 10 region

means a mutation in this gene is a possible cause of the disease and worthy of

more investigation.

Future work will include sequencing the 34 exons of PLCE1, and looking for
known or new mutations. If mutations are found in the affected individuals this
would allow screening of other family members and possibly classification of
milder cases that may resolve with treatment, like ID25 and ID114, and those
that are more severe. If no mutations are detected, it is possible that expression
analysis using biopsy samples may be carried out to see if the gene product is
expressed. If the results do not implicate the PLCE1 gene, other genes in the

candidate regions will have to be examined by function and then by sequencing.

5.6 Conclusion

Analysis and the presence of the strong candidate gene, PLCE1, indicate that
this gene in the chromosome 10 region is most likely to be causal. Further

experimental work will be needed to confirm the presence of a mutation in this
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gene. The chromosome 13 region is more complex since it is shared by an
unaffected individual but may have a role in modifying the effect of mutations in
the PLCE1 gene (if this is confirmed). There is still no answer to the cause of the
milder and possibly treatable condition for ID25 and ID114. However, if this
gene allows distinction between the mild and severe cases, mutation screening
and carrier testing, it would be invaluable to this family and potentially other

cases of congenital nephrotic syndrome with diffuse mesangial sclerosis.
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Chapter 6 - A genome-wide association mapping

study using an anonymous data sample

6.1 Introduction

Association has overtaken linkage as the most promising method for genome
wide studies to determine genes involved in common diseases. Association
promises higher resolution and the ability to locate variants to a much smaller
interval on the Kb scale, as well as higher power when variants of modest risk
are sought. Large unrelated case control cohorts are easier to recruit than
multiply affected families, especially for diseases of late onset like many
complex diseases. However, association analyses require a higher density of
genetic markers than linkage analysis. There are several advances which have
made whole genome association analyses feasible. Firstly, the avaﬂabﬂity of the
reference sequence of the human genome with fewer gaps and increasing
annotation (UCSC Genome Browser 2007). Secondly, a database of human
genetic variation (SNPs) made available by the genotyping efforts of the
international HapMap project and their recently released phase II data
(International Hapmap Group 2005; Frazer et al. 2007). This provides
approximately 4 million SNPs in each of 270 individuals from 4 populations,
providing a genome-wide average SNP density of 1 SNP every 600bp. LDU
maps have been updated to include the Phase II data, and are publicly available
(Lau et al. 2007; Kuo, Lau, and Collins 2007). Also increasing the feasibility of
genome wide association studies are the continuing advancements in high
throughput genotyping technologies. For example, both Affymetrix and
HNlumina have large single chip or bead based array systems able to analyse
upwards of 500,000 SNPs on a single array. The falling price of this technology

has made it a viable option for smaller groups as well as international consortia.

There have been many examples of association projects successfully identifying
an association, such as, the lymphotoxin-alpha gene in myocardial infarction
(Ozaki et al. 2002), complement factor H in age-related macular degeneration

(Klein et al. 2005), PARK10 locus in Parkinson disease (Maraganore et al.
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2005), and a variant near the INSIG2 gene associated with obesity (Herbert et
al. 2006). However, results in this type of analysis are plagued by lack of
replication particularly since a positive association is more likely to be detected
if the association is over represented in the sample tested, meaning that a larger
sample would be needed to replicate the results (Chanock et al. 2007%). This
becomes less of a problem when very large sample sizes are analysed. Many
international consortia are combining resources to conduct such large scale
genome-wide association studies with >1000 cases and controls. Recently the
Wellcome Trust Case Control Consortium (WTCCC) published results of the
largest study so far, detecting 24 strong association signals and a further 58
moderate association signals over 7 diseases (WTCCC 2007). The high power of
these studies promises the most comprehensive results, however independent
replication should always be required. The WTCCC results represent replication
of several previously reported associations and many of the new associations
detected have been replicated in independent studies (Todd et al. 2007; Zeggini

et al. 2007; Frayling et al. 2007).

Most association mapping studies rely on a single SNP approach, for example
the single SNP chi square test for association at each marker, looking for any
SNPs that have a chi square above a certain significance threshold. This has a
considerable ‘multiple testing’ burden especially when using high density
genotype array technologies. The p values should be corrected for the number of
tests carried out to adjust for the increased probability of obtaining a significant
result by chance the more tests carried out. The standard correction is the
Bonferroni adjustment which reduces the threshold p value for significance i.e.
0.05 (5%) becomes 0.05/number of tests. Most multiple testing adjustments
assume independent SNPs, however, due to LD, this is not the case, making the
Bonferroni adjustment ultra conservative. There are other methods such as the
False Discovery Rate (FDR) which controls the proportion of type 1 errors in the
significant results and is less conservative (Storey and Tibshirani 2003). It is
difficult to determine the best strategy for determining a threshold for
significance and for this reason permutation tests are often used. This involves
shuffling the case control status of the samples and determining an empirical

significance threshold from this distribution.
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Due to the difficulty of determining a genome wide significance level many
researchers ignore this problem since the need for this type of adjustment is
debated (Perneger 1998). Performing a second stage analysis or replication is
seen as sufficient. The results of the first stage direct the choice of SNPs and
regions for a more concentrated second stage where fewer tests would mean less
of a multiple testing problem. It may not be necessary to determine formal
significance levels in the first stage of a multi stage analysis, instead choose all
regions around markers with an uncorrected significant P value for follow-up. It
is also possible to rank results according to several criteria such as proximity to
candidate genes, or in terms of possible functional significance. Another
approach is Bayesian analysis where prior information is used to predict
posterior outcomes (Morris, Whittaker, and Balding 2000; Morris 2006). Such
prior information can include candidate genes, and previous associations or

linkage results.

As well as single SNP tests genotypes can be combined to form haplotypes
thereby considering multiple genotypes in association with a disease.
Haplotypes have greater power than single SNPs if the causal SNP is not tested
or if there are multiple mutations in a gene or region. However, since genotypes
in unrelated individuals are unphased, the actual haplotypes inherited from the
parents are unknown, statistical algorithms are used to infer the most likely
common haplotypes. The EM algorithm and several modifications are
implemented in computer programs such as SNPHAP (Clayton 2002). A
coalescent based Markov chain model is used in the program PHASE (Stephens
and Donnelly 2003). The accuracy of haplotype prediction is good, but limited
as longer haplotypes are considered, since there is increasing error and also a
massive computational load. Simple 2-5 SNP haplosets may be more powerful
for association within a candidate gene or region but the difficulties of
determining haplotypes mean interpretation of genome-wide haplotype analysis

is complex.

CHROMSCAN-cluster analyses the genome using a region by region scan,
multiple SNPs in a region are simultaneously tested by composite likelihood to
model association. This reduces the number of tests required and thus the

multiple testing burden. The regions analysed are determined by LDU length
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and SNP density. CHROMSCAN-cluster is a high throughput version of the
program CHROMSCAN and analyses multiple regions in parallel subsequently
combining the results, in this way CHROMSCAN-cluster can handle large
datasets without difficulty. CHROMSCAN-cluster, like LDMAP, is based on the
Malecot equation. However, instead of describing the exponential decline of
association between markers of known physical location, it describes the decline
of association between SNPs and an unknown causal location. CHROMSCAN
also accounts for the autocorrelation between SNPs due to LD by using a rank-
based permutation test under Ho to determine significance (Morton et al. 2007;
Collins and Lau 2007). CHROMSCAN has been used to analyse the CYP2D6
region on chromosome 22. The CYP2D6 gene is responsible for the metabolism
of 20% of drugs, mutations in the gene lead to the poor metaboliser (PM)
phenotype. As a proof of principle the known location of the gene was predicted

by CHROMSCAN using genotype information from surrounding SNPs. The
predicted location was within 2Kb of the actual location and shows the power of
this method in a candidate region analysis (Maniatis, Collins, and Morton

2007). The genome-wide properties of this method still require investigation.

To test and develop association mapping methods it is possible to analyse
simulated data that mimic some of the important features of real data. However,
this study collaborates with a research group on a genome-wide association
study with the understanding that the disease is not disclosed. In this way the
many questions raised by advances in association mapping on a genome-wide
scale can be realistically addressed before the expected flood of data requiring

such analysis and also allowing testing of the CHROMSCAN-cluster program.

6.2 Aims

The aims of this chapter are to make use of genome wide LDU maps in a
genome-wide association study using anonymous data. The parallel
CHROMSCAN-cluster program will be tested and the properties and problems
of genome wide studies will be investigated. The most significant single SNP
chi-square (msSNP) in each region will be determined and compared and
combined with evidence from the composite likelihood results of
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CHROMSCAN-cluster, with a view to selecting promising regions from a stage 1

analysis for further analysis in stage 2.

6.3 Methods

6.3.1 Data

The data consist of 239,146 SNPs genotyped across 798 individuals (403 cases,
395 controls). 17 SNPs removed due to lack of a Kb location, some of which
mapped to multiple locations in the USCS Mayo4 sequence. Only the autosomes
were considered, leaving 233,686 genotypes. The data were then filtered to
remove SNPs which deviated from Hardy-Weinberg Equilibrium with a 3’ of 10
or more, leaving a total of 230,400 SNPs for analysis. Genome-wide
cosmopolitan LDU maps updated with the latest (Phase II) HapMap data were
used for this analysis, since no information was available on the population

sample.

6.3.2 CHROMSCAN-cluster

For analysis by CHROMSCAN-cluster, the SNP data were split into non-
overlapping regions which cover at least 10 linkage disequilibrium units (LDU)
and contain a minimum of 30 SNPs without breaking blocks of linkage
disequilibrium (LD). This gives 5,387 regions across the genome. Multiple SNPs
across a region are simultaneously tested for the presence of a causal locus by
using composite likelihood to model association which reduces the number of
tests required. CHROMSCAN-cluster is based on the Malecot equation,
describing the exponential decline of association between a SNP and an

unknown causal location.

7=(1-L)Me 8AGTS) 11,
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A new parameter (s) is included in the model to estimate this location. Two sub-
hypotheses of the Malecot model are used to test for a causal polymorphism
within each region. Model A, which assumes no association between affection

status and SNPs, is taken as the null hypothesis and compared with Model D

which estimates disease location (S ), the intercept (M), and residual association
(L). The test statistic, X, is determined by the difference in the sum of squares

between these two models
Where
A=3K,(z - Zi)z

In order to account for autocorrelation between SNPs as a result of LD, the
significance of this test statistic (X) is determined empirically by a rank-based
permutation test. The case-control status is randomly shuffled and the test

repeated to give a distribution of Xj under the null hypothesis (Ho). The

2
replicates are sorted and assigned p values by rank/n. The corresponding %3
and variance are calculated from this. Values of variance assigned to X values

surrounding the X under H1 are used to assign a variance to X under Hi, from

which a 1 and p value can be calculated. The chance of encountering a very
significant association by chance increases as the number of replicates
increases. For example, it is expected to see one p value of approximately 0.001
when there are 1000 replicates i.e. 1/1000. Thus to determine accurate levels of
significance on this distribution, the number of permutation replicates must

approach 10/P so that interpolation of the variance under H; is reliable.

6.3.3 Investigating the number of replicates

CHROMSCAN-cluster uses a rank-based permutation method to determine an
empirical significance based on a null distribution. The number of replicates
required to produce this distribution determines the computational time of the
program. It is therefore important to determine an optimal number to have
confidence in the results and still run the program efficiently. Initially the
program was run with 100 replicates, however due to the increased speed of

CHROMSCAN-cluster this was increased this to 1000 without incurring an
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unreasonable computational load. These results were compared to investigate
the effect replicate number has on the p values. To ensure that the p values
obtained were accurate the most significant regions (p<0.01) were then
repeated using 50,000 replicates. The speed of CHROMSCAN-cluster allows
50,000 replicates to be run for a subset of regions without difficulty; this
number will be unnecessary in most cases but allows accurate p values to be

determined approaching 0.0002.

6.3.4 Correcting the msSNP p values

In order to compare evidence from CHROMSCAN and single SNPs, we identify

the most significant single SNP (msSNP) from each region. However, selecting

the msSNP from a large number of SNPs (30 or more) biases the nominal xlz

and conventional P value computed on the null hypothesis. To determine the
effects of the region definition on the p values for msSNPs and composite
likelihood, a stepwise regression model was tested. The dependent variable was
the p value, and the independent variables were SNP number and LDU length.
The only significant result showed the bias in msSNP p values caused by the

number of SNPs in the region.

Using the principle that msSNP P values should correspond to %3 = -2InP
(Fisher, 1950), the variance of this nominal 32 among regions in a genome scan
with the same number of SNPs under Ho, should be V = 4 and the mean p = 2. If
selection of msSNPs were unbiased, adjustment of V would give an estimate of p
near 2, whereas adjustment of p is less sensitive to small values of P, and
therefore would not provide a good estimate of V. The bias in u must be reduced

before adjusting V.

Since the regions defined by CHROMSCAN-cluster vary in the number of SNPs,
subsets of regions with limited diversity, but including at least 100 regions, were
selected in which to estimate the Bonferroni parameter R. R is the effective
number of independent SNPs in a subset with S SNPs. For each subset the

weighted mean number of SNPs is S = Y fim;/Y'f;, where f; is the number of
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regions with m; SNPs. The Bonferroni model assumes a corrected P value of P

= 1-(1-Pn)R (Gibson et al. 2008).

To obtain a mean of 3 = 2 when 2 = -2In P, the formula is rearranged to give

the equation Yf; + ¥ In [1-(1-Pni)R] = 0.

As below,

-2 InP, —2zln[1—(1—Pm)RJ
{ Zfi }:: Zfi =2

This equation was then solved by regula falsi to find the Bonferroni R giving the
desired mean y; of 2. This method requires two estimates of R either side of the

real value so that one gives a negative solution and the other gives a positive
solution. These values of R are then incremented and iterated until a solution
sufficiently close to zero, in this case to 5 decimal places, is obtained. The
relationship between R and S was then determined by regression so that a value
of R could be assigned to each region given S. Corrected P values for msSNPs

are then given by Pei =1-(1-Pni)R. This corrected P value is then converted to

%2 by x5 = -2InP.

To set the variance of %3 to 4 requires dividing both y2and uby B =

2 2 2
/%:((fof _,1)) to give the desired variance with mean 2/f, which is acceptable

onlyif § ~ 1.

Analysis of composite likelihood is simpler, since only a correction of variance is

required, after conversion to x; by %2 = -2InP.

6.3.5 Combination of evidence from msSNPs and composite

likelihood
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The relationship between the corrected msSNP x> and the composite likelihood

x5 was determined using a correlation analysis. A principal component analysis

based on this correlation matrix gives a first principal component (PC1) which
brings together the 2 variables and a second principal component (PC2) which

shows the differences. PC1 was used to order and rank all the regions, this rank

was converted to a P value by rank/n which was then converted to a y by -2InP.

This gives a y’ for each region based on the combination of evidence.

6.3.6 Investigating discrepancies

In order to investigate the properties involved in cases where there are
discrepancies between the results of the msSNP and composite likelihood
analyses, PC2 was investigated. Regions which had extreme values of PC2 (=4 or
<4) were investigated further. To check the role of the LDU map, the genotype
data for each region were used to create data-specific ‘local’ LDU maps, which
were then used by CHROMSCAN-cluster. The results and the quality of these
local LDU maps were compared with the HapMap cosmopolitan LDU maps.
SNP density and coverage was investigated by the number of SNPs in the region
and by determining the inter-marker distances between the SNPs flanking the
msSNP. The extent of LD around the msSNP was also determined to examine
whether the msSNP was located within a ‘step’ or a ‘hole’, regions with high
recombination, which may explain the lack of other disease associated SNPs
nearby. The arbitrary location of the region when the msSNP falls at the

beginning or end was also investigated.
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6.4 Results

6.4.1 Investigating the number of replicates

Running CHROMSCAN-cluster with 100 replicates, gave 16 regions with p <
0.001 and 61 regions with p < 0.01. With 1000 replicates, there were 8 regions
with p < 0.001 and 53 regions with p < 0.01. P values for all 5387 regions, with
100 and 1000 replicates, across the whole genome are shown in figure 6.1.
Figure 6.1A shows the p values are well correlated and have a linear
relationship, although there seems to be more variation in the middle than at
the extremes. The black lines indicate that a cut off of 0.1 at 100 replicates is

required to capture all the regions with p values of < 0.05 at 1000 replicates.

However, the values actually differ more dramatically at the extreme low end,
but the numbers are so small that they are not visible in figure 6.1A but are
shown by a graph of the ratio of the two P values in figure 6.1B. This shows that
the number of replicates is of more importance at the lower end of the scale,

thus the 53 regions with a P value < 0.01 at 1000 replicates were repeated using

50,000 replicates.
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Figure 6.1 A) p values with 100 and 1000 replicates. B) Ratio of p values for 100

and 1000 replicates.
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6.4.2 msSNP p value bias

The msSNP p values are artificially exaggerated by the number of SNPs in the
region (=30) and are always below 0.3, whereas the p values for composite
likelihood range 0-1 (figure 6.3A). This bias was illustrated by regressing p
values on LDU length and SNP number. For the composite likelihood p values,

neither variable was significant. For the msSNP p values only the SNP number
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was significant (p<0.0001) with an R2 = 0.0295, showing, as expected, the
higher the number of SNPs in a region the more chance of finding a highly

significant p value.

All regions were assigned to 11 subsets on the basis of the number of SNPs in the
region. S was calculated as the weighted mean of the number of SNPs in the
subset, R was calculated as the effective number of independent SNPs in the
subset by regula falsi, and m is the number of regions in each subset. These

values are given in table 6.1.

Table 6.1 Subsets of regions

SNP range m R S

30 1536 27.10 30.00
31-35 638 26.55 33.12
36-40 712 32.86 37.96
41-45 650 35.76 42.87
46-50 508 35.99 47.89
51-55 421 41.73 52.93
56-60 280 37.66 57.91
61-65 221 44.89 62.77
66-70 163 67.41 67.82
71-75 109 63.89 72.83

76+ 149 71.06 84.63
Total 5387

The relationship between R and S was shown to be linear by regression analysis
and is illustrated in figure 6.2. This relationship allows R to be calculated for

any S value.
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Figure 6.2 The linear relationship between R and S, the area of each datapoint

shows the number of regions per subset ().

100 -
75 -
x 50
0 - |
o N o1 ~J -
(3] o (%)) o
o

For each region the p value was corrected using the appropriate R value. This

correction greatly reduces the significance of msSNPs, but conserves the order
of the nominal p values. Converting these corrected p values to y} gives a mean
(1) and variance (V) over all regions of p = 2.0 and V = 5.2. When V is
constrained to its expected value of 4 under Ho, the estimate of ;1 becomes 1.8,
corresponding to 3 = 1.1. The composite likelihood variance was 4.2 and after
adjustment became, V = 4 and p = 2. The corrected msSNP p values are shown

in figure 6.3 B.
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Figure 6.3 A) msSNP p values before correction against composite likelihood p

values B) msSNP p values after correction against composite likelihood p values.
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6.4.3 Combining evidence

A principal component analysis was applied to all regions for the adjusted y}
values for composite likelihood and msSNPs. The first principal component was

converted to a rank, which was then transformed to p and 2 as for composite

likelihood (Ewens 2003). The largest combined 7 is 17.2 and the top 50 are all

greater than 9.3. A Bonferroni correction would require a critical significance

level of .05/N, when N is the number of regions analysed. This corresponds to

> of 23.17, which no region met, however this is considered a conservative

correction. The region with the highest combined %2 is shown in figure 6.4.

Figure 6.4 Region ranked 1 by the combined metric (composite likelihood =1,
msSNP=2)
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Among the 50 most significant regions ordered by the combined 1y values, 3
had a second principal component with a value greater than 4, indicating
substantially greater significance for the msSNP than for composite likelihood.
In no instance was the opposite observed (second principal component < -4).
Local LDU maps for these outlier regions, constructed from control data, and
the results of CHROMSCAN-cluster with the local maps were compared with

initial results using the cosmopolitan HapMap LDU map. There was little

123



difference between the 2 LDU maps in terms of the fit to the data or the
structure and length of the maps. The composite likelihood results were also
very similar and & values of close to 1 for the regions validate the use of 1 as the
epsilon parameter in CHROMSCAN-cluster. The ranks of the regions on the 3
different scales show the extent of the discrepancy (table 6.2). The number of
SNPs and holes in each region, the distance in Kb between the SNPs flanking
the msSNP and the LDU/Mb between these flanking SNPs are shown in table

6.2.
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Table 6.2 Qutliers favouring evidence from msSNPs

Rank flanking SNPs  mssnp 2PMAP ocal map
No. No. holes map
composite
msSNP o F combined °NPS  (DU>25)  p tpumb 2 . 72 e

likelihood X3
1 3695 19 51 0 30.573 34.41 20.27 1.49 0.96 1.07
3 4731 29 30 0 3.956 57.38 18.60 0.68 0.45 1.12
4 569 16 30 2 3.970 19.14 16.88 6.33 5.20 1.11
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When the regions were centred on the msSNP, maximising evidence from

markers on both sides, the %; remained low. For the region ranked 1 by msSNP,

the composite likelihood 7} was 1.49, and in the msSNP centred region it was
1.55 (figure 6.5 A&B).

Figure 6.5 A) Region ranked 1 by msSNP (ecomposite likelihood=3695,
combined=19) B) Region centred on the msSNP.
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The y3 values for the top 50 regions by combined rank are given in figure 6.6

and table 6.3. The 3 regions with PC2 >4 are shown in figure 6.6 as combined
ranks 16, 19 and 29, and are shaded in table 6.3. In the top 50, the msSNP result
is more significant than the composite likelihood result 24 times. Discrepancies
occur when a very significant SNP is isolated with no other evidence from
surrounding SNPs, composite likelihood gives more weight to regions with
clusters of highly significant SNPs. This can be seen in figure 6.4. The 3 cases
with the largest discrepancy (PC2 >4) were also the 3 with the largest difference

in 3’ between the msSNP and the next most significant SNP in the region (table
6.3).
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Figure 6.6 The top 50 regions by the combined metric.
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Table 6.3 The top 50 regions by the combined metric.

Rank e 2
No. LDU e
PC1 PC2 composite composite LDU/Mb ]
combined msSNP combined msSNP SNPs difference difference
likelihood likelihood
11.173 1.367 1 1 2 17.18 15.86 19.51 75 11.214 0.000 10.19
8.368 1.056 2 17 7 15.80 12.33 15.10 60 7.485 0.035 5.75
8.190 0.210 3 7 9 ' 14.99 13.27 13.65 37 21.384 0.093 8.42
7679 0.002 4 13 12 14.41 12.85 12.64 55 14.053 0.362 0.97
7.491 -1.634 5 3 37 13.96 14.89 10.06 45 33.129 0.159 2.02
7.316  -1.511 6 4 38 13.60 14.47 9.98 44 19.654 0.228 4.74
7.148 -2.132 7 2 54 13.29 15.11 8.87 30 80.039 0.000 1.00
7.133  2.393 8 64 5 13.02 8.69 15.25 37 41.994 0.000 9.21
7.109 -0.803 9 8 23 12.79 13.18 10.69 32 42.365 0.515 7.63
6.987 -0.266 10 18 19 12.58 12.24 11.28 31 38.276 0.000 4.23
6.954 -1.050 11 6 35 12.39 13.31 10.12 38 36.385 0.241 6.73
6.848 0.053 12 21 18 1221 11.60 11.53 42 22.649 0614 1.54
6.655 -2.110 13 5 75 12.05 14.38 8.20 34 29.741 0.826 1.55
6.575 -1.159 14 11 43 11.91 12.93 9.43 48 19.849 0.488 1.21
6.429 -1.285 15 12 50 11.77 12.90 9.05 30 60.868 0.658 1.49
6247 4437 16 569 = 4 1164 455 1688 30 61.102 0000  18.16
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6.165
6.124
6.098
6.043
6.035
5.915
5.836
5.601
5.498
5.424
5.341
5.340
5.334
5.280
5.206
5.194
5.177
5.172
5.156
5.071
5.055

-0.582
-1.500
6.984

3.450

-0.678
-1.920
3.156
-1.942
2.651

0.749
1.200
-0.288
6.562

1.018

-0.664
-2.389
-1.403
-1.930
1.011
0.453
-1.256

17
18

19
20

21
22
23
24
25
26
27
28
29

30

31
32
33
34
35
36
37

22
14

3695

325
23

307
16
279
67
103
33
4731
95
28
15
24
19
100
71
25

41
72

44
115

144
11
27
20
53

24
76
274
132
201
28
42
130

11.52
11.40
11.29
11.19
11.09
11.00
10.91
10.83
10.75
10.67
10.59
10.52

1045

10.38
10.32
10.25
10.19
10.13
10.07
10.02
9.96

130

11.53
12.77

074

5.66
11.48
13.07
5.78
12.66
6.02
8.60
7.85
9.95

025

8.02
10.29
12.71
11.29
12.03
7.85
8.52
10.91

9.67
8.32
20.27
15.20
9.35
7.43
14.49
6.95
13.30
10.50
11.03
8.92
18.60
10.68
8.20
5.74
7.11
6.36
10.50
9.59
7.15

85

51

55
51
55
30
30
64
30
40
30

30

37
56
40
38
37
39
45
61

97.337
9.528

18.822

14.345
19.360
13.453
20.883
93.065
11.492
30.086
21.783
47.445

102.507

28.991
20.805
46.479
51.511
26.273
38.868
17.275
20.055

0.438
0.364
7.506
0.000
0.008
0.110
0.000
0.000
1.559
2.052
0.000
0.184
1.326
0.000
0.000
2.343
1.409
0.000
0.000
5.518
0.670

2.77
0.28
21.64
11.99
0.03
0.62
12.53
0.06
12.18
0.98
3.44
1.18
1761
3.36
0.56
1.46
2.37
1.50
6.01
5.08
2.14



5.032
4.953
4.915
4.864
4.859
4.857
4.828
4.809
4.807
4.795
4.757
4.651
4.649

0.205
2.064
-1.287
-0.701
-1.952
-0.913
-0.843
-2.940
-0.442
1.219
1.357
1.287
0.511

38
39
40
41
42
43
44
45
46
47
48
49
50

58
270
26
36
20
30
31
10
41
152
174
188
104

46
16
148
98
259
119
116
520
85
32
30
34
49

9.91
9.86
9.81
9.76
9.71
9.66
9.62
9.57
9.53
9.48
9.44
9.40
9.36

8.82
6.08
10.76
9.86
11.62
10.15
10.01
12.95
941
7.05
6.80
6.75
7.84

9.18
11.70
6.91
7.66
5.89
7.35
741
4.42
7.95
10.28
10.42
10.17
9.07

62
30
30
55
30
48
35
30
48
46
30
30
30

16.412
17.309
64.687
15.468
41.413
48.821
30.483
27.879
46.781
20.270
27.112
40.621
33.717

3.288
0.000
0.379
0.156
0.103
0.068
0.075
1.236
0.053
0.007
4.215
0.303
0.030

5.01
12.55
1.70
1.85
0.96
0.12
0.26
0.57
0.12
4.74
5.51
10.59
3.67

xf difference = difference in xf between the most significant SNP (msSNP) and the next most significant SNP in a region, LDU difference = difference in LDU

between the msSNP and the point location given by composite likelihood, LDU/Mb = LDU per megabase over the region, PC1/PC2 = 1st and 2™ principal

components
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6.5 Discussion

The data consist of an unknown phenotype coded 1, 0 for cases and controls,
and are dealt with anonymously to gain some insight into the nature of
problems encountered by association mapping, and the use of CHROMSCAN-
cluster for genome-wide analysis. The genome is analysed in non-overlapping
regions each containing 10 LDU (or at least 30 SNPs). The CHROMSCAN-
cluster program handled the genome-wide data without difficulty, since the file
is split into batches of regions which are run in parallel. The efficiency of
CHROMSCAN-cluster allowed the whole genome to be analysed with both 100
and 1000 replicates. Comparison of these results showed that the p values are
stable except at the most extreme lower end of the distribution, we therefore
chose to rerun regions with a p value <0.01 with 50000 replicates. It is likely
that a replicate number of 10/p would be adequate. Regression showed that a
Bonferroni correction was required for the msSNP p values, which was
complicated by the diversity of their regional lengths and SNP densities.
However the regula falsi approach allowed an adjustment to be made based on
the effective number of independent SNPs in each region. The corrected p
values were in the range 0-1 and were no longer biased by the number of SNPs
in the region. Figure 6.3 shows the msSNP p values before and after correction.
The lower right of the graph in figure 6.3 (B) shows that there is a cluster of
cases where the p value for the msSNP result is significant and the composite
likelihood result is not. The lack of data points in the top left of the graph show

that the opposite situation is rare.

Three y; metrics were considered for each region; the most significant SNP in

the region (msSNP), the composite likelihood result, and a metric combining
both results by principal component analysis. Figure 6.4 shows the region
ranked 1 by the combined metric. The msSNP and composite likelihood point-

location implicate the same SNP which has the highest y? in the region.

However, some of the surrounding SNPs have very low 5’ despite being in close

proximity to the msSNP on the Kb and LDU scale.
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All regions were ranked by the 3 metrics, and 3 regions with large discrepancies
between results (PC2>4) were examined. These regions have a high msSNP
rank and a low composite likelihood rank. To explain the lack of evidence from
composite likelihood several options were investigated. A local LDU map
showed little difference to the cosmopolitan HapMap LDU map used in this
case, the maps were very similar in length and structure (figure 6.5 A). The
éomposite likelihood results obtained using the local LDU map were very
similar though slightly weaker than those obtained using the HapMap LDU
map, possibly due to the lower SNP density in the local map (table 6.3). This

evidence suggests the discrepancy is not due to the use of an inappropriate LDU

map.

Low SNP density should not be a problem because CHROMSCAN-cluster
accounts for SNP number in the region definition (10 LDU and =30 SNPs), the 3
regions have 51, 30 and 30 SNPs (table 6.3). However, a localised lack of SNPs
could explain the lack of evidence from composite likelihood. The inter-marker
distance between the SNPs flanking the msSNP are 3.96, 3.97 and 30.57Kb
(table 6.3) which are not excessive and figure 6.4 shows that SNP coverage is
generally even and the msSNP is not isolated on the Kb scale. This suggests that
neither low SNP density nor insufficient SNP coverage explain the discrepancy.
However, figure 6.3 shows that, for the region with a combined ranked of 1,
there are several markers close to the msSNP with very low ;. It is possible

that in these 3 cases increasing SNP density would find other significant SNPs

nearby, and the isolated high y; is due to a random lack of typing associated

markers.

It is also possible that the msSNP is located in a step in the LDU map, a region
of particularly high recombination, or a hole where an arbitrary LDU distance is
applied to neighbouring SNPs when no LD (background only) is detected
between SNPs. However, the msSNPs were not isolated on the LDU scale and
the LDU/Mb between flanking SNPs was 19.14, 34.41 and 57.38 (table 6.3). The
genome average LDU/Mb is 20.2 for the HapMap CEU sample and 28.4 for the
YRI sample, therefore 57.38 indicates only a small step. The recent publication
describing analysis of the Phase II HapMap data, show the presence of SNPs in

regions of very high recombination (hotspots), which are described as
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‘untaggable’ SNPs (Frazer et al. 2007). For association analysis in regions of
high recombination these SNPs would need to be directly tested since
surrounding SNPs have insufficient LD to provide any information. Regions of
very high recombination are described as ‘holes’ in the LDU map. Although not
directly close to the msSNP one region has 2 holes (22.5 LDU between SNPs),
this may have the effect of reducing information and the number of SNPs in LD

with the msSNP in the region. There were no holes in the 2 other regions.

Composite likelihood gives more weight to regions where there is a cluster of

SNPs with high or moderate y; results. These 3 regions all contain an msSNP

with no other high y; in the region (table 6.3). In 2 of the discrepant regions, the
msSNP is at the beginning of the region (but not the first SNP). This would

reduce information from the left of the msSNP. However, re-aligning the
regions with the msSNP in the centre, to maximise the evidence from either

side, failed to change the composite likelihood results (figure 6.5 B).

It may be the case that these 3 signals represent type 1 errors (false positives).
However, only larger sample sizes and higher density genotyping will be able to
answer this question. A known phenotype would also allow information from
previous studies and functional considerations which may help determine the
likelihood of type 1 error. At present there can be no objective recognition of the
more reliable test and since it would be undesirable to miss a possible
association, a combined metric was devised to help choose regions for follow up
in stage 2. The 50 most significant regions representing approximately 1% of the
genome seem a reasonable sample to investigate in stage 2. Combining evidence
allows the very significant msSNP results to be included in the top 50 and is the
best way to combine evidence for stage 2 to avoid losing potential candidate
regions. This is a preliminary analysis, and although no signals met a Bonferroni
adjustment for the number of regions, there were interesting findings. Further
to this project a strategy for stage 2 would involve increasing SNP density in
these 50 regions, which may resolve the discrepancies between msSNP and
composite likelihood results, regions can then be prioritised based on candidate
genes. Meta-analysis including previously published findings may help give

more weight to results and could help to narrow down a region of interest.
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There have been several examples of the successes of association mapping such
as the recent publication of findings from the Wellcome Trust Case Control
Consortium (WTCCC 2007). The release of this and other genome-wide data to
the scientific community for further analysis, will allow comparison of methods,
meta-analysis, and cohorts of controls for use in the study of other diseases
(WTCCC 2007; Genetic Association Information Network (GAIN) 2007; Cancer
Genetic Markers of Susceptibility (CGEMS) 2007). Databases of association
analysis results will also be of great use in meta-analysis (database of Genotype

and Phenotype (dbGaP) 2007).

The WTCCC managed to validate many of their findings with independent
samples or previously published results. However, in general, association
analyses suffer from a lack of convincing replication and publication bias
towards positive results. As well as false positives there are many other
explanations for non replication; samples from differing populations,
differences in phenotype classification or assessment between studies, or an
insufficiently sized replication sample. A larger sample is required for
replication due to the increased chance of finding an association when it is over
represented in the initial sample. Larger samples and combining samples by
meta-analysis are approaches to increase power to find genes and validate
results. However, the problems of sample consistency and population

stratification become even more important.

Another possibility to increase power is to make use of LD patterns. One way is
to impute genotypes based on LD patterns. The theory is that if a causal marker
is not typed, an observed marker in LD can be used to detect the association, but
power is reduced relative to any departure from perfect LD between the 2
markers. Using patterns of LD from the HapMap data to predict the genotypes
at un-typed SNPs may regain some lost power, though only if the imputation is
accurate. It is estimated that accuracy levels of >98% can be achieved, however,
this is highly dependent of the local LD patterns, and accuracy would be
severely compromised in regions of low LD or recombination hotspots. Also,
although broad LD patterns are very similar across populations, fine scale
differences mean that imputation would be inaccurate if the population sample

investigated was not closely related to one of the HapMap study samples.
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Statistically inferring genotypes in this way, which can then be analysed by any
method, may provide an additional source of power for association studies, but
must be used with caution (Marchini et al. 2007; Clark and Li 2007). The
composite likelihood approach implemented in CHROMSCAN-cluster has the
benefit of analysing multiple SNPs in a region reducing the need for multiple
testing adjustments, and uses LD patterns described by LDU maps to increase
power. Mapping on the LDU map rather than the Kb map is more powerful and
was also shown to increase accuracy of the point location in the test case of
CYP2D6 and the poor-metaboliser phenotype (Maniatis, Collins, and Morton
2007). Simulations were also carried out using SNPs from chromosome 4 of the
Age-Related Macular Degeneration data described by Klein et al. (2005). These
results show a 47% increase in accuracy of location estimate and a 5% increase

in power when using the LDU map compared to the Kb map (Collins and Lau

2007).

Future studies are likely to involve analysis of more genetic variation, higher
density genotyping, whole genome sequencing, as well as copy number
variations (CNVs). Structural variants which have frequencies of >1% are
considered genuine heritable polymorphisms, the structural Variation Database
(Human Genome Structural Variation Project 2007) describes around 4,000
CNV loci. CNVs have also been identified in the 270 HapMap individuals and
new SNP array technologies are being developed to score them, though SNP
associations may not be sufficient to detect all CNVs. Knowledge of the extent of
CNV contribution to phenotype is incomplete, gene dosage effects by
duplication or deletion of a genes as well as regulatory influences by CNVs
located outside of genes are thought to be involved. An example of a CNV with a
phenotypic affect in complex disease is the CCL3L1 variant known to influence
susceptibility to HIV-1 and rheumatoid arthritis (McKinney and Merriman

2007; Clark and Li 2007; Komura et al. 2006).

There are already examples of novel therapies and clinical interventions arising
from association results, for example, clinical trials of Abatacept (CTLA4Ig)
have shown evidence of its efficacy in rheumatoid arthritis (Ruderman and Pope
2005), though translating genetic risk into clinical relevance can be challenging.

The best analyses will still miss rare moderate risk variants and small risk
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variants due to lack of power. The chances of transforming low risk or very rare
variants directly into clinical interventions are not high, but may still give
insights into disease pathways. There are still many statistical challenges to
overcome when analysing genome-wide SNP data and the optimum approach
has not yet been defined. The challenge will be to determine how best to exploit

the massive accumulation of genomic data soon to be released.

6.6 Conclusions

This work has allowed testing of CHROMSCAN-cluster with genome-wide
association mapping data, showing that the program is able to cope with high
density data without difficulty. The results of this stage 1 analysis showed
several regions with evidence for association, though none were significant after
Bonferroni correction. msSNPs (most significant single SNPs) were also defined
for each region analysed by CHROMSCAN-cluster. In three cases the evidence
for association did not agree between the msSNP and CHROMSCAN-cluster
results. The reasons for this discrepancy are not clear; however it is likely that
higher density data and larger samples will resolve the issue. However, for this
first scan of the data, a metric was devised to allow selection of regions for

follow up, based on the combined evidence.
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Chapter 7 — Summary and discussion

Linkage Disequilibrium (LD) describes the tendency for alleles to be inherited
together more often than would be expected under random segregation. There
has been increased interest, over the last few years, in a complete description of
the structure and intensity of LD in the human genome across different
population samples. The first descriptions of LD patterns and their relationship
to recombination were published in 2001. Jeffreys et al. studied the MHC region
on chromosome 6 and concluded that recombination was not evenly distributed
across the genome but limited to small regions of 1-2Kb, referred to as
recombination hotspots, which were separated by regions of high LD. This work
was carried out by observing meioses in sperm (Jeffreys, Kauppi, and Neumann
2001). Daly et al. investigated a region of chromosome 5 using haplotypes to
show that there are regions or ‘blocks’ of low haplotype diversity (high LD),
separated by recombination sites (Daly et al. 2001). These findings led to a view
of LD in the human genome that could be described by blocks of high LD

interspersed with recombination hotspots.

An LDU map describes these patterns of LD in the form of an additive map. The
LDMAP (and LDMAP+) program produces a description of LD using genotype
(diplotype) data and the Malecot model which is used to model the decline of
LD over distance. The map determines a location in Linkage Disequilibrium
Units (LDU) for each SNP marker (Maniatis et al. 2002). The LDMAP program
has proven capable of reproducing the block structure (LDU map plateaus)
shown with the Daly et al. data and the hotspots (LDU map steps) described in
the Jeffreys et al. data. This allowed validation of the LDMAP method since it
was able to recover information about recombination hotspots from genotype

data, which were originally detected by direct observation in sperm data (Zhang

et al. 2002).

With the increasing availability of genotype data for this type of analysis,
individuals with European ancestry were analysed for the first LDU map of a
whole chromosome (22) with marker density ranging 1 SNP every 15-23Kb,
showing the structure of LD and the high correspondence between LDU and
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linkage maps (Tapper et al. 2003). High density data (1 SNP every 2Kb) was
produced on a 10Mb region of chromosome 20, enabling a more fine scale
description of LD and investigation into the effects of SNP density, this showed
the robustness of the LDU map (Ke et al. 2004). These data were then used to
investigate LDU maps of different populations and the feasibility of a
cosmopolitan LDU map (chapter 2). These data consisted of genotypes on 3
continental populations, with East Asian, African and European descent. Based
on a previous study with smaller samples and regions (Lonjou et al. 2003) this
work showed the high similarity in LDU patterns between populations, the
differences in LD extent and the usefulness of a standard cosmopolitan LDU
map that can be scaled to be applied to various population samples (Gibson et
al. 2005). The similarity of LD patterns across populations described here, has
also been shown for 3 chromosomes across 4 populations (De La Vega et al.
2005) and across chromosome 22 in 11 population isolates and one outbred
European sample. The ‘younger’ isolates were shown to have more extensive LD
than the outbred sample (Service et al. 2006). The major limitation of the work
described in chapter 2 is that it is based on a region of a single chromosome and
the results are interpreted to apply to the whole genome. Extension of this work
was only possible when genome-wide data became available (International
Hapmap Group 2005) and modifications to the LDMAP program (LDMAP+)

allowed such large scale analysis.

Interest in creating a description of haplotype structure and LD across the
Human Genome led to the initiation of the International HapMap project in
2002. Advances in genotyping technology enabled increasingly high density
SNP genotyping in 270 individuals in 4 populations and the data were publicly
released periodically via the HapMap website (International Hapmap Group
2005). The first release (11) to contain high density genotype data across all
chromosomes (CEU sample only) was used to create the first genome-wide LDU
map. This work allowed an estimate of effective bottleneck time for the CEU
population sample based on whole genome data (Tapper et al. 2005). A
preliminary analysis was carried out to compare all 4 populations as soon as
data were available (4 chromosomes only). These results confirmed previous
work on the similarities and differences between LDU maps in different

populations (chapter 2), and allowed a first estimate of effective bottleneck
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times across the 4 populations. The HapMap Phase I data was the first release to
contain high density whole genome data on all 4 populations. Genome-wide
LDU maps were made for each population (chapter 3). This allowed extension
of the analysis of LD patterns across different populations, to genome-wide
data, and also allowed comparison with the linkage map and estimation of
population age by calculating effective bottleneck time (t). The genome-wide
LDU maps of the 4 HapMap population samples showed the same trends as the
work on chromosome 20 (chapter 2). The major difference in LDU maps was
between the African and non-African samples, with the least extensive LD in the
African sample. The patterns of LD were again very similar, on the broad scale,
across all chromosomes in all population comparisons (r2 20.99). Such a high
similarity suggests recombination hotspots are co-localised in all populations,
since recombination is the major force determining LD. Comparison of the LDU
and linkage maps over the whole genome showed a remarkable correspondence
(97-99%) confirming this. The estimated age of 29,440-36,800 years for the
CEU population falls short of the estimated 100,000 years since the ‘Out of
Africa’ bottleneck. However, the effective bottleneck time is influenced by
subsequent smaller bottlenecks which have the effect of increasing LD by
restricting the haplotypes in the population. As well as subsequent bottlenecks,
it is possible that the estimate is influenced by the small sample size (60
individuals) and the specific population sample (Utah residents with northern

and western European ancestry).

Whole genome historical recombination maps of the HapMap data have been
created using a coalescent method implemented in the LDHAT program
(McVean et al. 2004). The LDHOT program which analyses the historical
recombination maps provided by LDHAT, has been used on a publicly available
genome-wide dataset (Hinds et al. 2005) produced by the genotyping company
Perlegen Sciences and also the HapMap Phase I data (Myers et al. 2005) to
predict over 25,000 recombination hotspots across the genome, the results are
provided in the UCSC genome browser and through the HapMap genome
browser (UCSC Genome Browser 2007; International Hapmap Group 2005). In
a comparison of these maps and LDU maps of the genome, the LDU maps,
which are based on a much simpler theory, show marginally higher levels of

similarity than the historical recombination maps to the only genome-wide
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recombination information available, the linkage map (Kong et al. 2004; Tapper
et al. 2008). However, overall the historical recombination and LDU maps are
very similar even though the LDU map allows the inclusion of the effects of
other stochastic processes such as selection, whereas the LDHAT program
models only recombination. The inclusion of the effects of other processes in

the LDU map allows the evidence of selection, for example, to remain and be

investigated.

An accurate description of ‘normal’ variation is valuable in any analysis of
disease causing variation. The whole genome LDU maps and the genotype data
produced by the HapMap project provide the opportunity to carry out analyses
of genome-wide variation such as regions of extended homozygosity. Longer
than expected tracts of homozygosity have been shown in CEPH individuals
with European ancestry using microsatellites (Broman and Weber 1999), but
this was in part due to an identifiable relationship between some pedigrees.
Long regions of homozygosity tend to occur in families where there is a certain
degree of consanguinity regardless of levels of LD in these regions. To a lesser
extent long regions of homozygosity occur in isolated populations and generally
show a lack of haplotype diversity, which can also be shown by patterns of LD
(Service et al. 2006). Chapter 4 investigates the extent of long homozygous
tracts in the outbred populations represented in the HapMap project, and shows
that even in outbred populations extended tracts of homozygosity are present
and have a strong relationship with patterns of LD as shown by the LDU map.
Three individuals from the HapMap data were identified as having longer and
more numerous tracts than other individuals from the same population sample.
This suggests that these individuals were from families where there has been
some consanguinity in the past few generations, thus reducing the haplotype
diversity to less than would be expected in the general population. In this way
high density SNP data were used to evaluate the levels of inbreeding in an
individual’s history (Gibson, Morton, and Collins 2006). Two of these
individuals were also identified as showing cryptic relatedness, i.e. relatedness
in the ancestors of the sampled individual, by the HapMap analysis group in
their publication on the Phase I HapMap data, although a direct analysis of

homozygous tracts was not carried out.
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Further to this work several other studies have analysed extended
homozygosity. Li et al. describe long contiguous stretches of homozygosity in
Han Chinese, Taiwan aborigines, Caucasians and African-Americans. 17 of 20
homozygous tracts determined in the HapMap CHB sample (chapter 4) were
also present in the Han Chinese sample studied. The possible alternative
explanation for extended homozygosity, the presence of a deletion when
hemizygotes are miscalled as homozygotes, was ruled out using DNA copy
number determination by hybridization intensity analysis and real-time
quantitative PCR (Li et al. 2006). Simon-Sanchez et al. analysed 276 DNA
samples (from lymphoblast cell lines) from Caucasian subjects. They found 26
samples with contiguous tracts of homozygosity >5Mb, they also repeated
analysis in a proportion of subjects with DNA extracted directly from blood
samples. They were able to show that the process of creating lymphoblastic cell
lines did not create long regions of homozygosity that were not present in the
original sample. They did not directly rule out the possibility of segmental
uniparental disomy as a cause, but concluded that it was unlikely since many of
the subjects with one long region of homozygosity also had several other regions
(Simon-Sanchez et al. 2007). Another study was able to determine that long
regions of homozygosity are not due to uniparental disomy (Curtis 2007). This
paper analysed genotype data on 10 CEPH individuals and their parents to
determine the presence of mendelian errors that would indicate uniparental
disomy, for example, mother=AA, father=BB and child=AA or BB. It was
determined that although these type of errors appeared within long homozygous
regions they did so less than would be expected by chance and did not occur
contiguously as might be expected if segmental uniparental disomy was the
cause of the homozygosity (Curtis 2007). The latest release of the HapMap data
(Phase II) has been published and an analysis of homozygosity was included
(Frazer et al. 2007). The analysis detected the 3 individuals with unusually high
levels of homozygosity, highlighted in the work described in chapter 4, and
‘identified 79 regions over 3 Mb in 51 individuals, with many segments

extending over 10 Mb’ (Frazer et al. 2007).

Homozygosity usually occurs in inbred samples, and is particularly common in
consanguineous pedigrees where a child is likely to have inherited the same

haplotypes from both parents because they are related. Autozygosity mapping
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exploits this to determine the location of genetic variants causing autosomal
recessive conditions. The use of high density SNP array data is becoming a
popular way of determining regions of autozygosity that could be causal
(Gutierrez-Roelens et al. 2006; Melin et al. 2007; Puffenberger et al. 2007).
Following on from the work to determine the extent of homozygosity in outbred
individuals (chapter 4), a study was undertaken to determine a candidate region
for autosomal recessive congenital nephrotic syndrome in individuals from a
large consanguineous pedigree (chapter 5). The analysis was designed to make
use of high density SNP array technology, avoiding a traditional linkage
approach which would rely on uncertain pedigree information and few
individuals (4 affected). The high density SNP data allows determination of
regions of homozygosity (presumed autozygosity) and increased power was
obtained from use of LDU maps, since the correlation of LD patterns and
homozygosity has been shown (chapter 4). Two regions of interest were
determined, one of which contained a strong candidate gene. Further laboratory
work is currently underway, preliminary results have determined a 4 base-pair
deletion in exon 3 of the PLCE1 gene, present in all the affected individuals
which generates a premature translational termination codon. However, this
mutation also seems to be present and homozygous in one of the parents of an

affected child, and further investigation is required.

The data for autozygosity mapping was provided with 4 individuals genotyped
on 2 high density platforms, the Affymetrix 500K chip array and the Illumina
humanhaps50 bead array. This allowed comparison of the genotype calls and
results show that low call rates and low call scores for an individual correlate
with more discrepant genotypes where the platform with the poorer sample calls
a heterozygote. Overall the Affymetrix platform had more discrepant
heterozygous calls than the Illumina platform. Although this does not
necessarily indicate that Affymetrix has more errors, an excess of inaccurate
heterozygote calls would break up otherwise long homozygous regions which is
critical for this type of analysis. Increasing the quality score threshold used to
define a ‘NoCall’ genotype, decreased the number of discrepancies between the
2 platforms. Therefore, an increased quality score threshold was used to reduce

the number of potential errors in the data prior to analysis. These results should
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direct the choice of genotyping platform and quality score threshold appropriate

for future autozygosity mapping projects.

LD offers gene mapping at a much increased resolution than linkage mapping,
although investigation is ongoing to determine the power, accuracy and
sensitivity of these methods (Maniatis et al. 2004; Maniatis et al. 2005; Zaykin,

Meng, and Ehm 2006; Morris et al. 2003). However, many studies use a simple

single SNP Xz , at least as a stage 1 scan (WTCCC 2007) and patterns of LD are

also important for choosing the most appropriate SNPs for analysis, avoiding

redundancy.

After using LDU maps to increase power for a disease gene search in a
consanguineous pedigree (chapter 5), the maps were then used to search for a
disease gene in an unrelated case-control sample by genome-wide association
analysis (chapter 6). The cosmopolitan LDU maps created from Phase I
HapMap data were used for this study. This was a stage 1 analysis, using an
unknown disease, to determine regions for follow up in stage 2. CHROMSCAN-
cluster is based on the Malecot model, like LDMAP, but determines association
between markers and a disease. Results revealed several regions with evidence
of association, however, none met a strict Bonferonni correction. The msSNP
(most significant SNP) in each region analysed by CHROMSCAN-cluster was
also determined. Three regions showed discrepancies, where the evidence from
the msSNP analysis did not agree with CHROMSCAN-cluster results. Evidence
from both sets of results were combined to determine regions for follow-up in a
stage 2 analysis to avoid missing potentially important regions. This was a
preliminary analysis with no information about the disease or, therefore, any
candidate genes. However, the aim of determining regions for follow up was

accomplished (Gibson et al. 2008).

There are several aspects to this project which could be investigated further in
the future. Genome-wide association analysis using CHROMSCAN-cluster and
msSNPs in higher density data and larger samples may resolve discrepancies
between the 2 sets of results. Several large datasets have recently been released
- which would offer an ideal opportunity for more investigation of these methods

(WTCCC 2007) (Cancer Genetic Markers of Susceptibility (CGEMS) 2007)
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(Genetic Association Information Network (GAIN) 2007). This project also
included some initial investigation into the evidence for selection detectable
using high density SNP genotype data. Fine-scale differences in LD patterns
between populations in particular regions and extended regions of
homozygosity are both possible indicators of a selective sweep. However, LD
and homozygosity are highly correlated and analysis must take both into
account when determining putative regions under selection (Wang et al. 2006).
Several studies have carried out genome scans for evidence of selection (Carlson
et al. 2005; Zhang et al. 2006; Voight et al. 2006; Tang, Thornton, and
Stoneking 2007; Sabeti et al. 2007). Analysing extended homozygosity with
reference to LDU maps has the potential to give an advantage over these
methods, and an analysis which makes use of the most recent high density data
and the forthcoming HapMap data on 7 new population samples (Frazer et al.

2007), should provide interesting results.

It would also be valuable to build on the success of the autozygosity mapping
work (chapter 5), with analysis of new datasets, this would provide validation of
the method used. It is also possible to modify the method, for homozygosity
mapping of recessive disease in outbred populations (Simon-Sanchez et al.
2007; MiyazaWa et al. 2007). One such method was able to determine highly
penetrant recessive loci in schizophrenia using long stretches of homozygosity
(Lencz et al. 2007). Using homozygosity to search for selection and disease
variants is an exciting and current field of research, however careful
consideration of LD patterns and interpretation of results is required. LDU
maps which provide a high resolution metric map of the amount and structure

of LD in the genome will be of great value.
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Appendices

Appendix 1. Chapter 3 - Properties of LDU maps, for each chromosome.

chr  pop pairs loci E_kb L_kb M_kb :::5: v kb E_LDU L_LDU M_LDU v DU holes LDUlength kb length
1 CEU 2998419 59118 0.009 0.156  0.883 117.581 2135  1.042 0.156 0.971 0.827 189 4182493 245448
2 CEU 3147075 61911  0.008 0.150 0.893 127.747  2.374  1.033 0.150 0.975 0.916 164 4100.860 243341
3 CEU 2579693 50715 0.008 0.152  0.877 129.370 2434  1.036 0.152 0.977 0.890 205 3629.121 199130
4 CEU 2203783 43357 0.008 0.151 0.912 117.742 2.209 1.038 0.151 0.975 0.892 192 3421.510 191682
5 CEU 2221207 43687 0.008 0.152  0.879 128.768 2417  1.032 0.152 0.977 0.902 125 3197.480 180747
6 CEU 2417066 47504 0.008 0154  0.897 121.525  2.341 1.040 0.154 0.975 0.930 140 3074.203 170676
7 CEU 1842213 36308 0.009 0154  0.892 111.968  2.202  1.048 0.154 0.968 0.895 153 2906.975 158412
8 CEU 2782669 54740 0.009 0.145  0.911 115.267 2565 1.032 0.145 0.985 0.881 102 2678.105 146141
9 CEU 2210255 43495  0.011 0.150  0.885 92.086 2485  1.039 0.150 0.973 0.948 109 2597.887 136218
10 CEU 1748957 34496 0.009 0.153  0.870 111698 2335 1.045 0.153 0.969 0.887 124 2649.018 134989
11 CEU 1644502 32326 0.008 0.153  0.872 118.104  2.368  1.040 0.153 0.975 0.872 137 2543.549 134292
12 CEU 1760581 34834 0.009 0.154  0.868 114.708  2.343  1.043 0.154 0.970 0.891 149 2692.728 131958
13 CEU 1292984 25441 0.009 0155  0.898 107.098 2212  1.037 0.155 0.974 0.892 109 1987.097 96193
14 CEU 1085385 21344 0.009 0.154 0.863 111.748  2.284 1.038 0.154 0.965 0.902 91 1818.273 87057
15 CEU 624023 124490 0.007 0.152 0.802 144.904 2.578 1.041 0.152 0.966 0.884 143 1898.181 81862
16 CEU 871772 17360 0.012 0.155 0.842 84.909 2.070 1.059 0.155 0.957 0.838 128 1931.467 89882
17 CEU 896052 17724 0.009 0.152 0.839 114.478 2.501 1.053 0.152 0.977 0.804 111 1924.621 81652
18 CEU 1483222 29136  0.011 0.148  0.937 89.223 2380  1.028 0.148 0.985 0.913 108 1894.649 76111

146



N N NN
w N = O ©

o © ® N o g A 0N

[ S O U G U Gy
© 0 ~N O O hHh LW N

CEU
CEU
CEU
CEU
CEU
HCB
HCB
HCB
HCB
HCB
HCB
HCB
HCB
HCB
HCB
HCB
HCB
HCB
HCB
HCB
HCB
HCB
HCB
HCB

626105
777285
757237
709324
1660095
2551176
2762531
2164361
1886361
1901227
2210501
1499404
2604974
2058288
1596965
1440008
1534157
1182325
946760
832855
750898
767925
1333632
557644

12339
15327
14889
13959
33615
50373
54430
42615
37171
37456
43418
29638
51218
40471
31540
28366
30209
23232
18618
16519
15043
15263
26218
11009

0.013
0.011
0.015
0.012
0.004
0.009
0.008
0.008
0.009
0.008
0.008
0.009
0.009
0.011
0.010
0.008
0.010
0.009
0.009
0.009
0.013
0.009
0.012
0.013

0.157
0.156
0.153
0.151
0.197
0.173
0.172
0.173
0.174
0.172
0.174
0.178
0.164
0.170
0.174
0.174
0.178
0.174
0.174
0.175
0477
0.173
0.168
0.179

0.845
0.855
0.934
0.808
0.876
0.888
0.906
0.892
0.923
0.889
0.884
0.910
0.924
0.895
0.882
0.878
0.855
0.904
0.875
0.820
0.859
0.840
0.938
0.877

79.852
88.119
67.524
84.744
245.897
116.3562
122.924
124.999
116.124
125.445
118.121
110.852
113.686
89.856
104.161
118.605
101.073
106.387
111.134
113.945
78.619
108.729
86.636
74.484

1.948
2.130
2.262
2.676
1.395
1.831
1.744
1.793
1.591
1.779
1.811
1.564
1.969
1.854
1.738
1.798
1.659
1.698
1.704
1.827
1.510
1.825
1.803
1.423

147

1.052
1.054
1.032
1.043
1.025
1.029
1.023
1.027
1.028
1.022
1.038
1.032
1.020
1.030
1.033
1.028
1.034
1.019
1.032
1.041
1.056
1.037
1.022
1.041

0.157
0.156
0.153
0.151
0.197
0.173
0.172
0.173
0.174
0.172
0.174
0.178
0.164
0.170
0.174
0.174
0.178
0.174
0.174
0.175
0.177
0.173
0.168
0.179

0.969
0.967
0.977
0.977
0.990
0.978
0.979
0.981
0.979
0.983
0.954
0.972
0.993
0.976
0.970
0.975
0.944
0.978
0.973
0.973
0.968
0.983
0.988
0.977

0.786
0.822
0.891
0.860
0.471

0.664

0.670
0.650
0.669
0.650
0.799
0.656
0.618
0.677
0.673
0.676
0.780
0.661
0.657
0.641
0.631
0.615
0.644
0.601

115
109
51
38
119
356
301
295
274
253
212
238
186
220
227
237
246
178
141
187
206
192
174
218

1725.310
1633.093
990.788
1023.686
1749.021
4809.644
4471.459
3921.675
3653.231
3514.323
3356.298
3111.463
2965.858
2985.126
3017.485
2859.712
3061.044
2239.873
1953.690
2099.593
2208.123
2221.497
2156.418
1982.320

63742
63585
37027
34923
150761
245227
243341
199131
191652
180747
170669
158406
146141
136216
134944
134292
131980
96206
87047
81777
80882
81626
76111
635684



NN NN
w N - O

O 00 ~N O A W DN -

—
- O

N = a2 A - a3 e
O W o N O oW N

HCB
HCB
HCB
HCB
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT
JPT

647048
761137
686607
1428435
2530333
2744504
2144533
1866053
1888568
2194520
1483986
2590769
2053174
1591294
1436562
1527551
1176240
937082
823239
750704
760932
1319489
538975
642269

12785
14956
13512
20172
49977
54072
42238
36756
37215
43105
29330
50045
40372
31403
28279
30085
23112
18439
16336
15029
15136
25938
10668
12685

0.012
0.015
0.013
0.005
0.008
0.008
0.007
0.008
0.008
0.008
0.008
0.008
0.011
0.009
0.008
0.009
0.009
0.008
0.008
0.012
0.009
0.011
0.013
0.011

0.177
0.172
0.169
0.223
0.175
0.173
0.175
0.176
0.175
0.175
0.180
0.166
0.172
0.175
0.176
0.179
0.176
0.175
0177
0.179
0.175
0.169
0.179
0.177

0.873
0.940
0.867
0.882
0.884
0.899
0.886
0.926
0.892
0.882
0.897
0.925
0.893
0.874
0.876
0.850
0.892
0.868
0.820
0.863
0.835
0.934
0.869
0.870

83.026
65.677
75.016
217.866
124.400
131.438
135.452
120.593
130.342
125.219
119.641
121.012
93.685
114.228
127.292
106.310
115.510
120.132
118.712
81.416
114.202
91.234
78.795
90.328

1.598
1.773
1.988
1.098
1.771
1.736
1.785
1.563
1.737
1.816
1.581
1.959
1.843
1.760
1.800
1.657
1.730
1.733
1.779
1.518
1.795
1.821
1.436
1.611

148

1.035
1.016
1.030
1.012
1.035
1.031
1.034
1.034
1.027
1.035
1.039
1.028
1.036
1.038
1.032
1.039
1.032
1.037
1.044
1.059
1.044
1.024
1.044
1.053

0.177
0.172
0.169
0.223
0.175
0.173
0.175
0.176
0.175
0.175
0.180
0.166
0.172
0.175
0.176
0.179
0.176
0.175
0.177
0.179
0.175
0.169
0.179
0177

0.969
0.983
0.982
0.994
0.978
0.977
0.979

10.978

0.982
0.952
0.968
0.993
0.976
0.971
0.976
0.939
0.974
0.975
0.969
0.967
0.983
0.988
0.972
0.971

0.636
0.662
0.642
0.370
0.674
0.703
0.683
0.679
0.697
0.837
0.676
0.642
0.712
0.698
0.711
0.812
0.697
0.670
0.664
0.646
0.619
0.653
0.632
0.670

180
93
64

201

269

202

232

224
191
174
195
158

160
192
155
185
139
130

146
159

130
130
159
120

1869.510
1116.590
1121.687
1989.874
4316.699
4019.888
3519.691
3392.487
3198.336
3108.028
2848.551
2759.806
2685.329
2810.696
2493.952
2740.319
2016.941
1873.782
1868.918
2013.295
1921.419
1933.176
1742.227
1590.950

63585
37027
34760
150761
245219
243341
199124
191652
180747
170669
158406
146141
136216
134944
134292
131958
96206
87047
81777
89882
81626
76111
63584
63585
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JPT
JPT
JPT
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI
YRI

756081
685070
1362571
2959312
2998624
2582077
2253989
2121833
2462162
1742456
2953573
2307503
1870403
1628897
1813663
1425104
1065775
955882
892103
870795
1618944
615655
746647
809890

14857
13483
27910
58317
58512
50716
44318
41737
48364
34373
58035
45386
36878
32032
35789
28015
20958
18954
17712
17225
31809
12127
14725
15914

0.014
0.013
0.005
0.013
0.014
0.012
0.013
0.012
0.013
0.012
0.015
0.017
0.014
0.012
0.014
0.014
0.012
0.013
0.013
0.013
0.019
0.014
0.016
0.025

0.174
0.171
0.228
0.163
0.161
0.162
0.162
0.163
0.163
0.164
0.158
0.158
0.162
0.163
0.162
0.183
0.163
0.164
0.162
0.183
0.159
0.163
0.164
0.161

0.944
0.868
0.885
0.734
0.754
0.748
0.773
0.755
0.780
0.761
0.812
0.767
0.742
0.746
0.752
0.759
0.726
0.682
0.658
0.690
0.828
0.706
0.654
0.818

69.282
78.595
214.724
76.863
82.000
86.068
75.802
81.346
77.628
82.645
64.734
59.785
70.749
81.149
71.450
72.722
83.443
74.614
78.833
76.442
53.209
71.530
61.738

© 39.359

1.708
1.992
1.023
1.790
1.810
1.905
1.642
1.721
1.823
1.701
2.148
2.080
1.823
1.789
1.773
1.796
1.767
1.720
1.808
1.697
1.989
1.612
1.533
1.765
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1.028
1.030
1.024
1.107
1.101
1.106
1.110
1.099
1.096
1.125
1.096
1.104
1.109
1111
1.100
1.103
1.115
1.1419
1.164
1.129
1.080
1.136
1.129
1.098

0.174
0.171
0.228
0.163
0.161
0.162
0.162
0.163
0.163
0.164
0.158
0.158
0.162
0.163
0.162
0.163
0.163
0.164
0.162
0.163
0.159
0.163
0.164
0.161

0.985
0.979
0.988
0.881
0.890
0.919
0.902
0.909
0.914
0.908
0.941
0.915
0.907
0.913
0.900
0.914
0.908
0.890
0.902
0.905
0.938
0.913
0.818
0.918

0.703
0.666
0.387
1.066
1.010
1.006
1.000
0.966
1.034
0.971
1.092
1.062
0.985
0.976
0.997
1.004
0.977
0.936
0.902
0.902
1.062
0.864
1.011
1.000

56
86
139
229
150
178
155
159
109
163
75
122
113
125
135
78
92
11
138
150
137
120
164
29

967.773
1139.183
1694.528
6092.728
5875.767
4986.423
4605.885
4528.654
4299.258
3930.962
3943.892
3714.281
3827.724
3472.884
3748.051
2750.522
2481.317
2490.796
2582.023
2679.498
2922.153
2153.041
2420.084
1451.245

37027
34760
150761
245265
243402
199151
191649
180751
170675
158406
146141
136290
134890
134291
131993
96190
87057
81777
80882
81626
76111
63580
63585
37027



22 YRI 736975 14511 0.020 0.160 0.710 49.112 2.064 1.114 0.160

0.908 1.056 55 1523.018 34897
23 YRI 1965649 39360  0.007  0.221 0.728 136.152 1230 1.086 0.221

0.941 0.621 171 3019.187 150761
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Appendix 2 Chapter 5 - Large consanguineous pedigree diagram, genotype data is available for the individuals in bold.
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A black symbol indicates a confirmed affected individual and a grey symbol indicates a mildly affected individual (Diagram provided by Beverley Dell, Wessex

Clinical Genetics Service).
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Appendix 3 Chapter 5 - Genes associated with the kidney or kidney disease.
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Gene symbol Description chr Start kb End kb source
ABCB1 ATP-binding cassette subfamily B member 1 7 86777.599 86987.215 2
ABCC1 ATP-binding cassette, subfamily C, member 1 16 15950.935 16143.774 2
ABCC6 ATP-binding cassette, subfamily C, member 6 16 16151.491 16224.815 2
ACE angiotensin | converting enzyme 17 58915.909 58952.935 2 Associated with Nephrotic syndrome
ACTN4 a-Actinin-4 19 43830.166 43913.010 3 Focal-segmental glomerulosclerosis
AGTR1 angiotensin 1l receptor, type 1 3 149898.363 149943.486 2
APC adenomatosis polyposis coli 5 112101.483 112209.834 2
APOA1 apolipoprotein A-l precursor 11/22 random random 2
APOA2 apolipoprotein A-Il precursor 1 158005.156  158006.491 2
APOE apolipoprotein E 19 50100.879 50104.489 2 Associated with Nephrotic syndrome
AR Androgen receptor X 66571.704 66727.140 1
AREG Amphiregulin {(schwannoma-derived GF) 4 75675.888 75685.760 1
BAX BCL2-associated X protein 19 54149.929 54156.866 1
BBS1 Bardet-Biedl sydrome 1 11 66034.695  66057.660 2
BCL2 B-cell chronic lymphocytic leukemia/lymphoma2 18 58941.659  59137.025 1
BDKRB1 bradykinin receptor B1 14 95792.312  95800.851 2
BF complement factor B preproprotein 6 32021.761 32027.839 2 Associated with Nephrotic syndrome
BHD folliculin 17 17056.254 17081.221 2
BSND barttin 1 55176.638  55486.485 2
C3 complement component 3 precursor 19 6628.878 6671.660 2 Associated with Nephrotic syndrome
C4A complement component 4A preproprotein 32090.550 32111.173 2 Associated with Nephrotic syndrome
CA9 carbonic anhydrase 1X precursor 9 35663.915 35671.152 2




CCL2
CCND1
CDH1
CDKN1A
CDKN2A
CDKN2B

CFTR

CLCN5
COL4A3
COL4A4
COL4A5
COL4A6

CSF1
CSTA
CTGF

CTNNBT

CcuL2
CYLD

CYP1A1

CYP2E1

small inducible cytokine A2 precursor
cyclin D1
Cadherin 1, type1, E-cadherin (epithelial)
Cyclin-dependent kinase inhibitor 1A (p21, cip1)
cyclin-dependent kinase inhibitor 2A
cyclin-dependent kinase inhibitor 2B
systic fibrosis transmembrane conductance
regulator ATP-binding cassette subfanily C
member 7
cholride channel 5
type IV alpha 3 collagen
alpha 4 type IV collagen precursor
type IV alpha-5 collagen
type IV alpha-6 collagen
Colony-stimulating factor 1 (macrophage)
Cystatin A (stefin A)
Connective tissue growth factor
catenin (cadherin-associated protein) beta1
88kDa
cullin 2
cylindromatosis (turban tumor syndrome)
cytochrome P450, family 1, subfamily A,
polypeptide 1
cytochrome P450, family 2, subfamily E,

17
11
16

10
16

15
10

29606.409
69165.054
67328.756
36754.465
21957.758
21992.903

116713.968
49537.192
227854.786
227692.935
107489.299
107204.991
110165.499
123526.701

132311.018

41216.016
35338.814
49333.530

72798.943
135229.748
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29608.331
69178.422
67424.940
36763.086
21965.038
21999.312

116902.666
49560.557
228002.091
227852.780
107746.920
107487.805
110184.397
123543.503
132314.147

41256.938
35419.300
49393.347

72804.930
135241.501

N N =2 =2 NN

—_ s s NN NN




polypeptide 1

EGFR epidermal growth factor receptor
EGR1 Early growth response 1
v-erb-b2 erythroblastic leukemia viral oncogene
ERBB2
homologue 2
ESR1 estrogen receptor 1
EYA1 eyes absent 1
F5 coagulation factor V precursor
FGF1 Fibroblast growth factor 1 (acidic)
FH fumerate hydratase precursor
FHIT fragile histidine triad gene
FKBP6 FK506-binding protein 6
FOXD1 Forkhead box D1
FRAS1 Fraser syndrome 1
GATA3 GATA binding protein 3
GLA galactosidase alpha
GLI3 GLI-Kruppel family member GLI3
GNAI2 G protein, a inhibiting activity polypeptide 2
GSTP1 glutathione transferase
H19 H19
HPRT1 hypoxanthine phosphoribosyltransferase 1
v-Ha-ras Harvey rat sarcoma viral oncogene
HRAS
homologue
HSD11B2 Hydroxysteroid (11-beta) dehydrogenase 2

7

BOTNW a0 oo D

T w N X 35

x o

11
16

54860.934
137829.080

35109.780
152220.800
72272.222
166215.067
141953.307
237986.947
59710.078
72186.951
72777.843
79336.275
8136.673
100458.942
41776.920
50248.651
67107.862
1972.984
133319.777

522.243
66022.537
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55049.239
137832.903

35438.441
152516.520
72437.021
166287.379
142045.812
238009.095
61212.164
72217.292
72780.108
79822.602
8157.170
100469.096
42036.135
50271.790
67110.699
1975.280
133360.216

525.550
66028.953

N N RN =2~ DN NN 2NN =2 DN —_

N

Associated with Nephrotic syndrome




HSPA1A
IFNG
IGF1R
IGF2
11
IL1RN
INHA
INSR
KAL1
KCNJ1
KRAS2
LAMB2
LMX1B
LTA
Lyz
MET
MMP1
MSH2
MTHFR

MYB

mMyc

MYCN

Heat shock 70-kDa protein 1A
interferon, gamma
Insulin-like growth factor 1
Insulin-like growth factor 2 (somatomedin A)
Interleukin-11
interleukin 1 receptor antagonist
Inhibin a
insulin receptor
Kallmann syndrome 1 protein
potassium inwardly-recifying channel J1
c-K-ras2 protein
Laminin b2 chain
LIM homeobox transrciption factor 1 beta
lymphotoxin alpha precursor
lysozyme precursor
met proto-oncogene precursor
matrix metalloproteinase 1
mutS homologue 2
Methylenetetrahydrofolate reductase
v-myb avian myeloblastosis virus (AMV)
oncogene homologue

v-myc AMV oncogene homologue

v-myc myelocytomatosis viral related oncogene

neuroblastoma derived

12

15

(i

19

19

11
12

12

11

31891.316
66834.817
97010.288
2110.364
60567.569
113591.701
220262.459
7067.049
8306.651
128213.125
25249.447
49133.551
126456.354
31648.072
68028.431
115906.410
102165.861
47541.914
11780.945

135544.146
128817.686

16031.281
155

31893.698
66839.788
97319.034
2116.780
60573.626
113607.823
220265.932
7245.011
8509.963
128242.478
25295.121
49145.603
126538.284
31650.077
68034.280
116032.390
102174.104
47622.011
11800.248

135582.002
128822.853

16037.726

N RN RN NN N GO W NN NN 22 a2 N 2 A s N

—

Associated with Nephrotic syndrome

Associated with Nephrotic syndrome

Pierson's syndrome

Nial-patella syndrome




MYH9
NME1
NOS3
NOV
NPHP1
NPHP4

NPHS1

NPHS2
NPY1R

NROB1

NR3C2

OCRL

OoDC1

PAX2
PGDFA
PIGR
PKD1
PKD2
PKHD1
PLA2G7

myosin heavy polypeptide 9 non-muscle
nucleoside-diphosphate kinase 1
nitric oxide synthase 3 (endothelial cell)
Nephroblastoma overexpressed gene
nephrocystin

nephroretinin

Nephrin
nephrosis 2, idiopathic, steroid-resistant
(podocin)
neuropeptide Y receptor Y1
Nuclear receptor subfamily 0, group b, member
1
nuclear receptor subfamily 3 group C member 2
phosphatidylinositol polyphosphate 5-
phosphatase
Ornithine decarboxylase 1
Paired box gene 2
Platelet-derived growth factor a polypeptide
polymeric immunoglobulin receptor
polycystin 1 precursor
polycystin 2
polycystic kidney and hepatic disease 1
phospholipase A2, group VI (platelet-activating

10

16

356001.827
46585.919
150125.795
120497.822
110237.281
5857.136

41008.696

176251.333
164602.722

30082.243
149357.525

128399.787
10531.106
102495.322
98637.240
203490.267
2078.712
89285.999
51588.104
46780.238
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35108.481
46594.449
150149.323
120505.776
110319.969
5986.797

41034.579

1762768.725
164611.353

30087.149
149721.128

128452.063
10539.051
102579.687
98650.943
203508.202
2125.900
89356.107
52060.382
46811.389

N N -~ N NN

[\

NN N NN 2 a a N

Associated with Nephrotic syndrome

Congenital nephrotic syndrome of
the Finnish type
corticosteroid-resistant nephrotic
syndrome
Associated with Nephrotic syndrome

Associated with Nephrotic syndrome

Associated with Nephrotic syndrome




*PLCET

PNN
PON1

PPARG

PTEN
PTHLH
RARA
RASSF1
RB1
RNF139
SAH
SALLA1
SALL2
SCGB1A1
SDC1
SERPINE1

SLC12A1

SLC2A2

SLC34A1

factor acetylhydrolase, plasma)

phospholiase C,epsilon 1
Pinin, desmosome associated protein
paraoxonase 1
peroxisome proliferative activated receptor
gamma
phosphatase and tensin homologue
parathyroid hormone-like hormone
Retinoic acid receptor a
Ras association domain family 1
retinoblastoma 1
ring finger protein 139
SA hypertension-associated homologue
sal-like 1
Sal (Drosophila)-like 2
secretoglobin, family 1A, member 1 (uteroglobin)
Syndecan 1
plasminogen activator inhibitor-1
sodium potassium chloride cotransporter 2
family 12 member 1
solute carrier family 2 (facilitated glucose
transporter) member 2

solute carrier family 34 (sodium phosphate)

10
14

10
12
17

13

16

16

14
11

15

95780.559
38714.151
94571.639

12367.959
89613.175
28006.521
35740.896
50342.221
47775.912
125556.189
20682.813
49727.830
21059.074
61943.099
20322.188
100363.887

46285.790

172196.839
176744.061
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96078.136
38721.178
94598.495

12450.840
89716.382
28016.183
36767.420
50353.371
47954.023
125570.040
21715.979
49742.653
21075.177
61947.242
20346.822
100375.741

46383.568

172227.470
176758.454

N = N =2 DD NN NN S N NN

Nephrotic Syndrome with diffuse

mesangial sclerosis (DMS)

Associated with Nephrotic syndrome

Associated with Nephrotic syndrome




SLC4A1

SLC4A4

SLC7A7

SLIT2

SMARCB1

SOD1

TAP1/ABCB2

TCF2
TGFB1
THBS1

THRA

THRB
TIAM1
TIMP3

TNF

TP53

TRAa
TRPC6

member 1
solute carrier family 4 anion exchanger member
1
solute carrier family sodiumbicarbonate
cotransporter member 4
solute carrier family 7 (cationic amino acid
transporter y+ system) member 7
slit homologue 2
SWI/SNF related, matrix associated, actin
dependent regulator of chromatin subfamily b,
member 1
Superoxide dismutase 1
transporter 1, ATP-binding cassette, subfamily B
transcription factor 2
Tranforming growth factor B1
Thrombospondin 1
thyroid hormone receptor alpha
thyroid hormone receptor beta
T-cell ymphoma invasion and metastasis 1
tissue inhibitor of metalloproteinase 3
tumour necrosis factor alpha
tumour protein 53
T-cell antigen receptor, alpha polypeptide
TRPC6

17

14

22
21

17
19
15
17

21
22

17
14
11

39682.566
72569.852

22312.274
19931.504

22453.704
31953.806
32920.965
33162.729
46528.491
37660.572
35472.686
24139.236
31238.438
31521.362
31651.329
7512.464
21961.312
100827.582
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39700.993

72802.834

22354.852
20297.057

22501.258
31963.112
329029.726
33179.182
46551.656
37676.959
35503.611
24511.317
31853.161
31583.581
31654.091
7531.642
22090.938
100959.869

GWONN NN DN NN @@ A NN >N

Associated with Nephrotic syndrome

Associated with Nephrotic syndrome

Focal-segmental glomerulosclerosis




TSC1 tuberous sclerosis 1 9 132796.290 132849.574

2
TSC2 tuberous sclerosis 2 16 2038.600 2078.713 2
UMOD uromodulin 16 20251.875 20271.538 2 Associated with Nephrotic syndrome
VDR Vitamin D (1,25-dihydroxyvitamin D3) receptor 12 46521.589 46585.081 1
VHL von Hippel-Lindau tumour suppressor 3 10158.319 10168.744 2
wr1 Wilms tumor 1 11 32365.897 32413.643 3 Denys-drash syndrome

Source; 1. (Renshaw et al. 2004) 2. (Human kidney Gene DataBase 2004) 3. (Tryggvason, Patrakka, and Wartiovaara 2006) 4. (Hinkes et al. 2006)
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Appendix 4. Chapter 5 - Affymetrix 50K and 500K array, top 10 regions common to
ID3, ID4, ID19 and ID25, ordered by genetic length on the LDU scale.

Location (Kb) No. SNPs
LDU No. in following
Chr Start End Kb length length  SNP region
Affy50K 10 132872.4 135126.6 2254.18 70.5 5 0
1 836.73 3127.56 2290.83 49.22 8 0
16 83445.94 84394.93 948.98 45.04 13 0
6 415651.67 42430.49 878.83 42.03 5 0
19  61906.99 62826.08 9191 37.27 6 0
10 125356.9 126428 1071.14 36.78 5 0
22 4694992 47337.59 387.67 30.31 8 0
22 43945.37 44400.71 455.34 28.84 6 0
13 26159.37 26711.95 552.58 28.33 9 1
4 25204.63 25687.53 482.9 27.13 5 0
Affy500K 3 192033.4 192151.3 117.92 17.29 9 0
19 56116.92 56177.01 60.09 17.20 7 0
19 58781.76 58823.45 41.69 16.09 8 0
4 33115.56 33882.9 767.33 14.72 52 0
2 157803 158054.7 251.67 13.42 37 0
8 62165.45 62175.6 10.15 12.35 5 2
5 94765.45 94804.7 39.25 12.30 10 9
19 18708.61 18966.45 257.84 11.87 9 1
6 151239.2 151295.1 55.88 11.50 15 1
18 10132.32 10188.74 56.42 11.38 8 3
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Appendix 5. Chapter 5 - Affymetrix 50K and 500K array, top 10 regions common
to ID3, ID4 and ID19, ordered by genetic length on the LDU scale.

Location (Kb) No. SNPs
LDU No. in following
Chr Start End Kb length length SNP region
Affy50K 13 22793.60 26016.28 3222.68 110.73 88 14
10 132872.40 135126.60 225418 70.50 5 0
10* 95364.46 99548.30 4183.84 64.75 78 0
22 46627.38 47337.59 710.21 50.24 g 0
1 836.73 3127.56 2290.83 49.22 0
6 41551.67 42598.50 1046.83 48.85 0
19 42606.99 45229.64 2622.65 47.25 0
16 83445.94 84394.93 948.98 45.04 14 0
4 8171.57 9668.55 1496.98 44.22 13 0
19 60069.02 61064.52 995.49 43.21 8 3
Affy500K 13 23906.63 25639.08 1732.45 42.64 322 177
13 25651.25 26431.64 780.39 35.38 177 81
13 23458.33 23868.71 410.38 31.83 136
10 97017.08 98526.09 1509.02 28.75 310 0

10* 956282.73 96261.83 979.1 19.00 165 66

4 32756.28 33882.9 1126.61 18.36 103 0
3 192033.4 192151.3 117.92 17.29 9 0
19 56116.92 56177.01 60.09 17.20 7 0
19 58781.76 58823.45 41.69 16.09 8 0

0

5 150898.3 151007.2 108.89 16.29 23

* Regions containing PLCE1 gene.

161



References

1.

10.

Abecasis GR and Cookson WO (2000) GOLD--graphical overview of
linkage disequilibrium. Bioinformatics. 16 (2):182-183.

Adaimy L, Chouery E, Megarbane H, Mroueh S, Delague V, Nicolas E,
Belguith H, de MP, and Megarbane A (2007) Mutation in WNT10A is
associated with an autosomal recessive ectodermal dysplasia: the odonto-
onycho-dermal dysplasia. Am.J.Hum.Genet 81 (4):821-828.

Aligianis IA, Johnson CA, Gissen P, Chen D, Hampshire D, Hoffmann K,
Maina EN, Morgan NV, Tee L, Morton J, Ainsworth JR, Horn D, Rosser
E, Cole TR, Stolte-Dijkstra I, Fieggen K, Clayton-Smith J, Megarbane A,
Shield JP, Newbury-Ecob R, Dobyns WB, Graham JM, Jr., Kjaer KW,
Warburg M, Bond J, Trembath RC, Harris LW, Takai Y, Mundlos S,
Tannahill D, Woods CG, and Maher ER (2005) Mutations of the catalytic
subunit of RAB3GAP cause Warburg Micro syndrome. Nat Genet 37
(3):221-223.

Altshuler D, Brooks LD, Chakravarti A, Collins FS, Daly MJ, and
Donnelly P (2005) A haplotype map of the human genome. Nature 437

(7063):1299-1320.

Altug-Teber O, Dufke A, Poths S, Mau-Holzmann UA, Bastepe M,
Colleaux L, Cormier-Daire V, Eggermann T, Gillessen-Kaesbach G, Bonin
M, and Riess O (2005) A rapid microarray based whole genome analysis
for detection of uniparental disomy. Hum.Mutat. 26 (2):153-159.

Barrett JC, Fry B, Maller J, and Daly MJ (2005) Haploview: analysis and
visualization of LD and haplotype maps. Bioinformatics. 21 (2):263-265.

Bersaglieri T, Sabeti PC, Patterson N, Vanderploeg T, Schaffner SF,
Drake JA, Rhodes M, Reich DE, and Hirschhorn JN (2004) Genetic
signatures of strong recent positive selection at the lactase gene.
Am.J.Hum.Genet 74 (6):1111-1120.

Botstein D and Risch N (2003) Discovering genotypes underlying human
phenotypes: past successes for mendelian disease, future approaches for
complex disease. Nat.Genet. 33 Suppl:228-237.

Broman KW, Rowe LB, Churchill GA, and Paigen K (2002) Crossover
interference in the mouse. Genetics 160 (3):1123-1131.

Broman KW and Weber JL (1999) Long homozygous chromosomal
segments in reference families from the centre d'Etude du
polymorphisme humain. Am.J. Hum.Genet 65 (6):1493-1500.

162



11.

12,

13.

14.

15.

16.

17.

18.

19.

20.

Bruce S, Leinonen R, Lindgren CM, Kivinen K, hlman-Wright K,
Lipsanen-Nyman M, Hannula-Jouppi K, and Kere J (2005) Global
analysis of uniparental disomy using high density genotyping arrays.
J.Med.Genet 42 (11):847-851.

Cancer Genetic Markers of Susceptibility (CGEMS) (2007)
http://cgems.cancer.gov/index.asp. accessed 09/12/07.

Carlson CS, Eberle MA, Kruglyak L, and Nickerson DA (2004) Mapping
complex disease loci in whole-genome association studies. Nature 429

(6990):446-452.

Carlson CS, Thomas DJ, Eberle MA, Swanson JE, Livingston RJ, Rieder
MJ, and Nickerson DA (2005) Genomic regions exhibiting positive
selection identified from dense genotype data. Genome Res. 15 (11):1553-

1565.

Carr IM, Sheridan E, and Bonthron DT (2007) Intuitive tools for
pedigree-free detection of autozygous regions in SNP data. in
preparation.

Carr IM, Flintoff KJ, Taylor GR, Markham AF, and Bonthronr DT (2006)
Interactive visual analysis of SNP data for rapid autozygosity mapping in
consanguineous families. Hum.Mutat. 27 (10):1041-1046.

Celedon JC (2005)
http://innateimmunity.net/files/ CANDGENES /siframes.html. accessed

25/04/05.

Chanock SJ, Manolio T, Boehnke M, Boerwinkle E, Hunter DJ, Thomas
G, Hirschhorn JN, Abecasis G, Altshuler D, Bailey-Wilson JE, Brooks LD,
Cardon LR, Daly M, Donnelly P, Fraumeni JF, Jr., Freimer NB, Gerhard
DS, Gunter C, Guttmacher AE, Guyer MS, Harris EL, Hoh J, Hoover R,
Kong CA, Merikangas KR, Morton CC, Palmer LJ, Phimister EG, Rice JP,
Roberts J, Rotimi C, Tucker MA, Vogan KJ, Wacholder S, Wijsman EM,
Winn DM, and Collins FS (2007) Replicating genotype-phenotype
associations. Nature 447 (7145):655-660.

Chiang AP, Beck JS, Yen HJ, Tayeh MK, Scheetz TE, Swiderski RE,
Nishimura DY, Braun TA, Kim KY, Huang J, Elbedour K, Carmi R,
Slusarski DC, Casavant TL, Stone EM, and Sheffield VC (2006)
Homozygosity mapping with SNP arrays identifies TRIM32, an E3
ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11).
Proc.Natl.Acad.Sci.U.S.A 103 (16):6287-6292.

Clark AG (2003) Finding genes underlying risk of complex disease by
linkage disequilibrium mapping. Curr.Opin.Genet.Dev. 13 (3):296-302.

163


http://innateimmunity.net/files/CANDGENES/siframes.html

21.

22,

23,

24.

25.

26.

27.

28.

29.

30.

31.

32,

33-

34-

Clark AG and Li J (2007) Conjuring SNPs to detect associations. Nat
Genet 39 (7):815-816.

Clayton D (2002) http://www-

gene.cimr.cam.ac.uk/clayton/software/snphap.txt. accessed 25/11/07.

Collins A and Lau W (2007) CHROMSCAN: genome-wide association
using a linkage disequilibrium map. J.Hum.Genet.

Collins A, Lau W, and De La Vega F (2004) Mapping genes for common
diseases: the case for genetic (LD) maps. Hum.Hered. 58 (1):2-9.

Collins A, Lonjou C, and Morton NE (1999) Genetic epidemiology of
single-nucleotide polymorphisms. Proc.Natl. Acad.Sci.U.S.A 96

(26):15173-15177.

Collins A and Morton NE (1998) Mapping a disease locus by allelic
association. Proc.Natl.Acad.Sci.U.S.A 95 (4):1741-1745.

Collins FS, Green ED, Guttmacher AE, and Guyer MS (2003) A vision for
the future of genomics research. Nature 422 (6934):835-847.

Collins FS, Morgan M, and Patrinos A (2003) The Human Genome
Project: lessons from large-scale biology. Science 300 (5617):286-290.

Cottingham RW, Jr., Idury RM, and Schaffer AA (1993) Faster sequential
genetic linkage computations. Am.J.Hum.Genet 53 (1):252-263.

Curtis D (2007) Extended homozygosity is not usually due to cytogenetic
abnormality. BMC.Genet 8:67.

Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, and Lander ES (2001)
High-resolution haplotype structure in the human genome. Nat Genet 29

(2):229-232.

database of Genotype and Phenotype (dbGaP) (2007)
http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap. accessed 09/12/07.

Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard
LE, Reed PW, Gough SCL, Jenkins SC, Palmer SM, Balfour KM, Rowe
BR, Farrall M, Barnett AH, Bain SC, and Todd JA (1994) A Genome-Wide
Search for Human Type-1 Diabetes Susceptibility Genes. Nature 371

(6493):130-136.
de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, and Altshuler D

(2005) Efficiency and power in genetic association studies. Nat Genet 37
(11):1217-1223.

164


http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap

35-

36.

37-

38.

39-

40.

41.

42.

43.

De La Vega FM, Isaac H, Collins A, Scafe CR, Halldorsson BV, Su X,
Lippert RA, Wang Y, Laig-Webster M, Koehler RT, Ziegle JS, Wogan LT,
Stevens JF, Leinen KM, Olson SJ, Guegler KJ, You X, Xu LH, Hemken
HG, Kalush F, Itakura M, Zheng Y, de TG, O'Brien SJ, Clark AG, Istrail S,
Hunkapiller MW, Spier EG, and Gilbert DA (2005) The linkage
disequilibrium maps of three human chromosomes across four
populations reflect their demographic history and a common underlying
recombination pattern. Genome Res. 15 (4):454-462.

Devlin B and Roeder K (1999) Genomic control for association studies.
Biometrics 55 (4):997-1004.

Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P,
Marc S, Hazan J, Seboun E, Lathrop M, Gyapay G, Morissette J, and
Weissenbach J (1996) A comprehensive genetic map of the human
genome based on 5,264 microsatellites. Nature 380 (6570):152-154.

Ewens WJ (2003) On eStimating P values by the Monte Carlo method.
Am.J.Hum.Genet 72 (2):496-498.

Farrall M and Morris AP (2005) Gearing up for genome-wide gene-
association studies. Hum.Mol.Genet 14 Spec No. 2:R157-R162.

Field LL, Tobias R, Robinson WP, Paisey R, and Bain S (1998) Maternal
uniparental disomy of chromosome 1 with no apparent phenotypic
effects. Am.J.Hum.Genet 63 (4):1216-1220.

Forshew T and Johnson CA (2004) SCAMP: a spreadsheet to collate
autozygosity mapping projects. J.Med.Genet 41 (12):e125.

Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM,
Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW, Shields B,
Harries LW, Barrett JC, Ellard S, Groves CJ, Knight B, Patch AM, Ness
AR, Ebrahim S, Lawlor DA, Ring SM, Ben-Shlomo Y, Jarvelin MR, Sovio
U, Bennett AJ, Melzer D, Ferrucci L, Loos RJ, Barroso I, Wareham NJ,
Karpe F, Owen KR, Cardon LR, Walker M, Hitman GA, Palmer CN,
Doney AS, Morris AD, Smith GD, Hattersley AT, and McCarthy MI
(2007) A common variant in the FTO gene is associated with body mass
index and predisposes to childhood and adult obesity. Science 316
(5826):889-894.

Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA,
Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler
DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, Hu H, Hu W, LiC, Lin W,
Liu S, Pan H, Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H,
Zhao H, Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice
M, Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC,
Parkin M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen Y,
Yao Z, Huang W, Chu X, He Y, Jin L, Liu Y, Shen Y, Sun W, Wang H,
Wang Y, Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT,

165



44.

45.

46.

47.

48.

Galver LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS,
Montpetit A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS,
Roumy S, Sallee C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC,
Miller RD, Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W,
Song YQ, Tam PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T,
Nagashima A, Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P,
Bird CP, Delgado M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J,
Powell D, Stranger BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI,
Barrett J, Chretien YR, Maller J, McCarroll S, Patterson N, Pe'er I, Price
A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC,
Varilly P, Altshuler D, Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK,
Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S,
Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ, McVean G,
Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C, Marchini J,
Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR, Clarke G,
Evans DM, Morris AP, Weir BS, Tsunoda T, Mullikin JC, Sherry ST,
Feolo M, Skol A, Zhang H, Zeng C, Zhao H, Matsuda I, Fukushima Y,
Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T,
Marshall PA, Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer
A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster
MW, Clayton EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth
L, Sodergren E, Weinstock GM, Wheeler DA, Yakub I, Gabriel SB,
Onofrio RC, Richter DJ, Ziaugra L, Birren BW, Daly MJ, Altshuler D,
Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths
M, Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen
Z, Han H, Kang L, Godbout M, Wallenburg JC, L' Archeveque P,
Bellemare G, Saeki K, Wang H, An D, Fu H, Li Q, Wang Z, Wang R,
Holden AL, Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL,
Shi M, Spiegel J, Sung LM, Zacharia LF, Collins FS, Kennedy K,
Jamieson R, and Stewart J (2007) A second generation human haplotype
map of over 3.1 million SNPs. Nature 449 (7164):851-861.

Genetic Association Information Network (GAIN) (2007)

http://www.fnih.org/GAIN2/home new.shtml. accessed 09/12/07.

Genetic Epidemiology and Bioinformatics group (2008)
http://cedar.genetics.soton.ac.uk/public html/L.DB2000/release.html.
last accessed 09/12/07.

Gibbs JR and Singleton A (2006) Application of genome-wide single
nucleotide polymorphism typing: simple association and beyond.
PL0S.Genet 2 (10):e150.

Gibson J, Morton NE, and Collins A (2006) Extended tracts of
homozygosity in outbred human populations. Hum.Mol.Genet 15

(5):789-795.

Gibson J, Tapper W, Cox D, Zhang W, Pfeufer A, Gieger C, Wichmann
HE, Kaab S, Collins AR, Meitinger T, and Morton N (2008) A
multimetric approach to analysis of genome-wide association by single

166


http://www.fnih.org/GAIN2/home
http://cedar.genetics.soton.ac.uk/public

49.

50.

51.

52.

53.

54.

55

56.

markers and composite likelihood. Proc.Natl. Acad.Sci.U.S.A 105
(7):2592-2597.

Gibson J, Tapper W, Zhang W, Morton N, and Collins A (2005)
Cosmopolitan linkage disequilibrium maps. Hum.Genomics 2 (1):20-27.

Gutierrez-Roelens I, Sluysmans T, Jorissen M, Amyere M, and Vikkula M
(2006) Localization of candidate regions for a novel gene for Kartagener
syndrome. Eur.J.Hum.Genet 14 (77):809-815.

Helgason A, Yngvadottir B, Hrafnkelsson B, Gulcher J, and Stefansson K
(2005) An Icelandic example of the impact of population structure on
association studies. Nat.Genet. 37 (1):90-95.

Herbert A, Gerry NP, McQueen MB, Heid IM, Pfeufer A, Illig T,
Wichmann HE, Meitinger T, Hunter D, Hu FB, Colditz G, Hinney A,
Hebebrand J, Koberwitz K, Zhu X, Cooper R, Ardlie K, Lyon H,
Hirschhorn JN, Laird NM, Lenburg ME, Lange C, and Christman MF
(2006) A common genetic variant is associated with adult and childhood

obesity. Science 312 (5771):279-283.

Hill WG (1974) Estimation of linkage disequilibrium in randomly mating
populations. Heredity 33 (2):229-239.

Hinds DA, Stuve LL, Nilsen GB, Halperin E, Eskin E, Ballinger DG,
Frazer KA, and Cox DR (2005) Whole-genome patterns of common DNA
variation in three human populations. Science 307 (5712):1072-1079.

Hinkes B, Wiggins RC, Gbadegesin R, Vlangos CN, Seelow D, Nurnberg
G, Garg P, Verma R, Chaib H, Hoskins BE, Ashraf S, Becker C, Hennies
HC, Goyal M, Wharram BL, Schachter AD, Mudumana S, Drummond I,
Kerjaschki D, Waldherr R, Dietrich A, Ozaltin F, Bakkaloglu A, Cleper R,
Basel-Vanagaite L, Pohl M, Griebel M, Tsygin AN, Soylu A, Muller D,
Sorli CS, Bunney TD, Katan M, Liu J, Attanasio M, O'toole JF,
Hasselbacher K, Mucha B, Otto EA, Airik R, Kispert A, Kelley GG,
Smrcka AV, Gudermann T, Holzman LB, Nurnberg P, and Hildebrandt F
(2006) Positional cloning uncovers mutations in PLCE1 responsible for a
nephrotic syndrome variant that may be reversible. Nat Genet 38

(12):1397-1405.

Huie ML, nyane-Yeboa K, Guzman E, and Hirschhorn R (2002)
Homozygosity for multiple contiguous single-nucleotide polymorphisms
as an indicator of large heterozygous deletions: identification of a novel
heterozygous 8-kb intragenic deletion (IVS7-19 to IVS15-17) in a patient
with glycogen storage disease type II. Am.J.Hum.Genet 70 (4):1054-

1057.

167



57

58.

59-

60.

61.

62.

63.

64.

65.

66.

67.

68.

Human Genome Structural Variation Project (2007)
htip://humanparalogy.gs.washington.edu/structuralvariation/. accessed

09/12/07.

Human kidney Gene DataBase (2004)
http://www.urogene.org/kgdb/index.htm. accessed 10/11/07.

International Hapmap Group (2005) http://www.hapmap.org. accessed
25/04/05.

Jeffreys AJ, Kauppi L, and Neumann R (2001) Intensely punctate meiotic
recombination in the class II region of the major histocompatibility
complex. Nat.Genet. 29 (2):217-222.

Jorde LB (2000) Linkage disequilibrium and the search for complex
disease genes. Genome Res. 10 (10):1435-1444-.

Jorgenson E, Tang H, Gadde M, Province M, Leppert M, Kardia S, Schork
N, Cooper R, Rao DC, Boerwinkle E, and Risch N (2005) Ethnicity and
human genetic linkage maps. Am.J.Hum.Genet. 76 (2):276-290.

Kaback DB (1996) Chromosome-size dependent control of meiotic
recombination in humans. Nat.Genet. 13 (1):20-21.

Ke X, Hunt S, Tapper W, Lawrence R, Stavrides G, Ghori J, Whittaker P,
Collins A, Morris AP, Bentley D, Cardon LR, and Deloukas P (2004) The
impact of SNP density on fine-scale patterns of linkage disequilibrium.
Hum.Mol.Genet 13 (6):577-588.

Kidd KK, Pakstis AJ, Speed WC, and Kidd JR (2004) Understanding
human DNA sequence variation. J.Hered. 95 (5):406-420.

Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I,
Schaffer AA, Rathinam C, Boztug K, Schwinzer B, Rezaei N, Bohn G,
Melin M, Carlsson G, Fadeel B, Dahl N, Palmblad J, Henter JI, Zeidler C,
Grimbacher B, and Welte K (2007) HAX1 deficiency causes autosomal
recessive severe congenital neutropenia (Kostmann disease). Nat Genet

39 (1):86-92.

Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK,
SanGiovanni JP, Mane SM, Mayne ST, Bracken MB, Ferris FL, Ott J,
Barnstable C, and Hoh J (2005) Complement factor H polymorphism in
age-related macular degeneration. Science 308 (5720):385-389.

Komura D, Shen F, Ishikawa S, Fitch KR, Chen W, Zhang J, Liu G, Thara
S, Nakamura H, Hurles ME, Lee C, Scherer SW, Jones KW, Shapero MH,
Huang J, and Aburatani H (2006) Genome-wide detection of human
copy number variations using high-density DNA oligonucleotide arrays.
Genome Res. 16 (12):1575-1584.

168


http://www.urogene.org/kgdb/index.htm
http://www.hapmap.org

69.

70.

71.

72.

73-

74.

75-

Kong X, Murphy K, Raj T, He C, White PS, and Matise TC (2004) A
combined linkage-physical map of the human genome. Am.J.Hum.Genet.

75 (6):1143-1148.

Kruglyak L, Daly MJ, and Lander ES (1995) Rapid multipoint linkage
analysis of recessive traits in nuclear families, including homozygosity
mapping. Am.J.Hum.Genet 56 (2):519-527.

Kruglyak L and Nickerson DA (2001) Variation is the spice of life.
Nat.Genet. 27 (3):234-236.

Kuo TY, Lau W, and Collins AR (2007) LDMAP: the construction of high-
resolution linkage disequilibrium maps of the human genome. Methods

Mol.Biol. 376:47-57.

Kuruvilla, F, Green, T, Altshuler, D, Daly, M, and Gabriel, S. An
evaluation of the Bayesian Robust Linear Modeling using Mahalanobis
Distance (BRLMM) Genotyping Algorithm. Broad Institute of MIT and
Harvard . 2006. 10-6-2006.

Ref Type: Electronic Citation

Lander ES and Botstein D (1987) Homozygosity mapping: a way to map
human recessive traits with the DNA of inbred children. Science 236

(4808):1567-1570.

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J,
Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K,
Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P,
McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J,
Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-
Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston
J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A,
Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L,
Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd
C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A,
Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RX,
Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla
AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner
TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx
PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P,
Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C,
Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB,
Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL,
Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A,
Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y,
Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P,
Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L,
Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M,
Nyakatura G, Taudien S, Rump A, Yang H, YuJ, Wang J, Huang G, Gu J,
Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP,

169



76.

77-

78.

79-

8o.

81.

82,

Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR,
Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S,
Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J,
Lehrach H, Reinhardt R, McCombie WR, de la BM, Dedhia N, Blocker H,
Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A,
Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC,
Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey
TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D,
Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S,
Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D,
Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N,
Pollara VJ, Ponting CP, Schuler G, Schuliz J, Slater G, Smit AF, Stupka E,
Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J,
Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F,
Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A,
Morgan MJ, de JP, Catanese JJ, Osoegawa K, Shizuya H, Choi S, and
Chen YJ (2001) Initial sequencing and analysis of the human genome.
Nature 409 (6822):860-921.

Lau W, Kuo TY, Tapper W, Cox S, and Collins A (2007) Exploiting large
scale computing to construct high resolution linkage disequilibrium maps
of the human genome. Bioinformatics. 23 (4):517-519.

Lencz T, Lambert C, Derosse P, Burdick KE, Morgan TV, Kane JM,
Kucherlapati R, and Malhotra AK (2007) Runs of homozygosity reveal
highly penetrant recessive loci in schizophrenia.
Proc.Natl.Acad.Sci.U.S.A 104 (50):19942-19947.

Lewontin RC (1964) The Interaction of selection and linkage. II.
Optimum Models. Genetics 50:757-782.

Li LH, Ho SF, Chen CH, Wei CY, Wong WC, Li LY, Hung SI, Chung WH,
Pan WH, Lee MT, Tsai FJ, Chang CF, Wu JY, and Chen YT (2006) Long
contiguous stretches of homozygosity in the human genome.
Hum.Mutat. 27 (11):1115-1121.

Lindner TH and Hoffmann K (2005) easyLINKAGE: a PERL script for
easy and automated two-/multi-point linkage analyses. Bioinformatics.

21 (3):405-407.

Lonjou C, Zhang W, Collins A, Tapper WJ, Elahi E, Maniatis N, and
Morton NE (2003) Linkage disequilibrium in human populations.
Proc.Natl.Acad.Sci.U.S.A 100 (10):6069-6074.

Maniatis N, Collins A, Gibson J, Zhang W, Tapper W, and Morton NE

(2004) Positional cloning by linkage disequilibrium. Am.J. Hum.Genet.
74 (5):846-855.

170



83.

84.

85.

86.

87.

88.

89.

90.

o1.

92.

93.

94.

Maniatis N, Collins A, and Morton NE (2007) Effects of single SNPs,
haplotypes, and whole-genome LD maps on accuracy of association
mapping. Genet Epidemiol. 31 (3):179-188.

Maniatis N, Collins A, Xu CF, McCarthy L.C, Hewett DR, Tapper W, Ennis
S, Ke X, and Morton NE (2002) The first linkage disequilibrium (LD)
maps: delineation of hot and cold blocks by diplotype analysis.
Proc.Natl.Acad.Sci.U.S.A 99 (4):2228-2233.

Maniatis N, Morton NE, Gibson J, Xu CF, Hosking LK, and Collins A
(2005) The optimal measure of linkage disequilibrium reduces error in
association mapping of affection status. Hum.Mol.Genet. 14 (1):145-153.

Maraganore DM, de AM, Lesnick TG, Strain KJ, Farrer MJ, Rocca WA,
Pant PV, Frazer KA, Cox DR, and Ballinger DG (2005) High-resolution
whole-genome association study of Parkinson disease. Am.J.Hum.Genet

77 (5):685-693.

Marchini J, Howie B, Myers S, McVean G, and Donnelly P (2007) A new
multipoint method for genome-wide association studies by imputation of
genotypes. Nat Genet 39 (7):906-913.

Marjoram P and Tavare S (2006) Modern computational approaches for
analysing molecular genetic variation data. Nat Rev Genet 7 (10):759-

770.

McKeigue PM (2005) Prospects for admixture mapping of complex traits.
Am.J.Hum.Genet. 76 (1):1-7.

McKinney C and Merriman TR (2007) The human genome and
understanding of common disease: present and future technologies. Cell
Mol.Life Sci. 64 (7-8):961-978.

McVean GA, Myers SR, Hunt S, Deloukas P, Bentley DR, and Donnelly P
(2004) The fine-scale structure of recombination rate variation in the
human genome. Science 304 (5670):581-584.

MedlinePlus (2007)
http://www.nlm.nih.gov/medlineplus/ency/article/001576.him.

accessed 10/11/07.

Melin M, Entesarian M, Carlsson G, Garwicz D, Klein C, Fadeel B,
Nordenskjold M, Palmblad J, Henter JI, and Dahl N (2007) Assignment
of the gene locus for severe congenital neutropenia to chromosome 1q22
in the original Kostmann family from Northern Sweden.
Biochem.Biophys.Res.Commun. 353 (3):571-575.

Miyazawa H, Kato M, Awata T, Kohda M, Iwasa H, Koyama N, Tanaka T,
Huqun, Kyo S, Okazaki Y, and Hagiwara K (20077) Homozygosity

171


http://www.nlm.nih.gov/medlineplus/encv/article/00

95.

96.

97-

98.

99.

100.

101.

102.

103.

104.

105.

haplotype allows a genomewide search for the autosomal segments
shared among patients. Am.J.Hum.Genet 80 (6):1090-1102.

Morgan NV, Gissen P, Sharif SM, Baumber L, Sutherland J, Kelly DA,
Aminu K, Bennett CP, Woods CG, Mueller RF, Trembath RC, Maher ER,
and Johnson CA (2002) A novel locus for Meckel-Gruber syndrome,
MKS3, maps to chromosome 8q24. Hum.Genet 111 (4-5):456-461.

Morgan NV, Pasha S, Johnson CA, Ainsworth JR, Eady RA, Dawood B,
McKeown C, Trembath RC, Wilde J, Watson SP, and Maher ER (2006) A
germline mutation in BLOC1S3/reduced pigmentation causes a novel
variant of Hermansky-Pudlak syndrome (HPS8). Am.J.Hum.Genet 78
(1):160-166.

Morris AP (2006) A flexible Bayesian framework for modeling haplotype
association with disease, allowing for dominance effects of the underlying
causative variants. Am.J.Hum.Genet 79 (4):679-694.

Morris AP, Whittaker JC, and Balding DJ (2000) Bayesian fine-scale
mapping of disease loci, by hidden Markov models. Am.J.Hum.Genet 67

(1):155-169.

Morris AP, Whittaker JC, Xu CF, Hosking LK, and Balding DJ (2003)
Multipoint linkage-disequilibrium mapping narrows location interval
and identifies mutation heterogeneity. Proc.Natl.Acad.Sci.U.S.A 100

(23):13442-13446.

Morton N, Maniatis N, Zhang W, Ennis S, and Collins A (2007) Genome
scanning by composite likelihood. Am.J.Hum.Genet 80 (1):19-28.

Morton NE, Zhang W, Taillon-Miller P, Ennis S, Kwok PY, and Collins A
(2001) The optimal measure of allelic association.
Proc.Natl.Acad.Sci.U.S.A 98 (9):5217-5221.

Myers S, Bottolo L, Freeman C, McVean G, and Donnelly P (2005) A fine-
scale map of recombination rates and hotspots across the human
genome. Science 310 (5746):321-324.

National Institutes of Health and National Human Genome Research
institute. (2002) International Consortium Launches Genetic Variation
Mapping Project. http://www.genome.gov/10005336. accessed

25/04/05.

National Institutes of Health and National Human Genome Research
institute. (2005) International HapMap Consortium Expands Mapping
Effort. http://www.genome.qov/13014173. accessed 25/04/05.

NCBI (2005) http://www.ncbi.nlm.nih.gov/projects/SNP/. accessed
25/04/05.

172


http://www.senome.EOv/ioooF:/i%5e6
http://www.qenome.qov/13Q14173
http://www.ncbi.nlm.nih.gov/proiects/SNP/

106.

107.

108.

109.

110.

111.

112.

113.

114.

Ozaki K, Ohnishi Y, Iida A, Sekine A, Yamada R, Tsunoda T, Sato H, Sato
H, Hori M, Nakamura Y, and Tanaka T (2002) Functional SNPs in the
lymphotoxin-alpha gene that are associated with susceptibility to
myocardial infarction. Nat Genet 32 (4):650-654.

Perneger TV (1998) What's wrong with Bonferroni adjustments. BMJ 316
(7139):1236-1238.

Puffenberger EG, Strauss KA, Ramsey KE, Craig DW, Stephan DA,
Robinson DL, Hendrickson CL, Gottlieb S, Ramsay DA, Siu VM, Heuer
GG, Crino PB, and Morton DH (2007) Polyhydramnios, megalencephaly
and symptomatic epilepsy caused by a homozygous 7-kilobase deletion in
LYK5. Brain 130 (Pt 7):1929-1941.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D,
Maller J, Sklar P, de Bakker PI, Daly MJ, and Sham PC (2007) PLINK: a
tool set for whole-genome association and population-based linkage
analyses. Am.J.Hum.Genet 81 (3):559-575.

Rabbee N and Speed TP (2006) A genotype calling algorithm for
affymetrix SNP arrays. Bioinformatics. 22 (1):7-12.

Reich DE, Cargill M, Bolk S, Ireland J, Sabeti PC, Richter DJ, Lavery T,
Kouyoumjian R, Farhadian SF, Ward R, and Lander ES (2001) Linkage
disequilibrium in the human genome. Nature 411 (6834):199-204.

Renshaw J, Orr RM, Walton MI, Te PR, Williams RD, Wancewicz EV,
Monia BP, Workman P, and Pritchard-Jones K (2004) Disruption of WT1
gene expression and exon 5 splicing following cytotoxic drug treatment:
antisense down-regulation of exon 5 alters target gene expression and
inhibits cell survival. Mol.Cancer Ther. 3 (11):1467-1484.

Ruderman EM and Pope RM (2005) The evolving clinical profile of
abatacept (CTLA4-1g): a novel co-stimulatory modulator for the
treatment of rheumatoid arthritis. Arthritis Res.Ther. 7 Suppl 2:521-S25.

Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X,
Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, Frazer KA,
Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW,
Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD,
YuF, Yang H, Zeng C, Gao Y, Hu H, Hu W, Li C, Lin W, Liu S, Pan H,
Tang X, Wang J, Wang W, Yu J, Zhang B, Zhang Q, Zhao H, Zhao H,
Zhou J, Gabriel SB, Barry R, Blumenstiel B, Camargo A, Defelice M,
Faggart M, Goyette M, Gupta S, Moore J, Nguyen H, Onofrio RC, Parkin
M, Roy J, Stahl E, Winchester E, Ziaugra L, Altshuler D, Shen'Y, Yao Z,
Huang W, Chu X, He Y, Jin L, Liu Y, Shen Y, Sun W, Wang H, Wang Y,
Wang Y, Xiong X, Xu L, Waye MM, Tsui SK, Xue H, Wong JT, Galver
LM, Fan JB, Gunderson K, Murray SS, Oliphant AR, Chee MS, Montpetit
A, Chagnon F, Ferretti V, Leboeuf M, Olivier JF, Phillips MS, Roumy S,
Sallee C, Verner A, Hudson TJ, Kwok PY, Cai D, Koboldt DC, Miller RD,

173



115.

116.

117.

118.

119.

Pawlikowska L, Taillon-Miller P, Xiao M, Tsui LC, Mak W, Song YQ, Tam
PK, Nakamura Y, Kawaguchi T, Kitamoto T, Morizono T, Nagashima A,
Ohnishi Y, Sekine A, Tanaka T, Tsunoda T, Deloukas P, Bird CP, Delgado
M, Dermitzakis ET, Gwilliam R, Hunt S, Morrison J, Powell D, Stranger
BE, Whittaker P, Bentley DR, Daly MJ, de Bakker PI, Barrett J, Chretien
YR, Maller J, McCarroll S, Patterson N, Pe'er I, Price A, Purcell S, Richter
DJ, Sabeti P, Saxena R, Schaffner SF, Sham PC, Varilly P, Altshuler D,
Stein LD, Krishnan L, Smith AV, Tello-Ruiz MK, Thorisson GA,
Chakravarti A, Chen PE, Cutler DJ, Kashuk CS, Lin S, Abecasis GR, Guan
W, LiY, Munro HM, Qin ZS, Thomas DJ, McVean G, Auton A, Bottolo L,
Cardin N, Eyheramendy S, Freeman C, Marchini J, Myers S, Spencer C,
Stephens M, Donnelly P, Cardon LR, Clarke G, Evans DM, Morris AP,
Weir BS, Tsunoda T, Johnson TA, Mullikin JC, Sherry ST, Feolo M, Skol
A, Zhang H, Zeng C, Zhao H, Matsuda I, Fukushima Y, Macer DR, Suda
E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T, Marshall PA,
Nkwodimmah C, Royal CD, Leppert MF, Dixon M, Peiffer A, Qiu R, Kent
A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster MW, Clayton
EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth L, Sodergren
E, Weinstock GM, Wheeler DA, Yakub I, Gabriel SB, Onofrio RC, Richter
DJ, Ziaugra L, Birren BW, Daly MJ, Altshuler D, Wilson RK, Fulton LL,
Rogers J, Burton J, Carter NP, Clee CM, Griffiths M, Jones MC, McLay K,
Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z, Han H, Kang L,
Godbout M, Wallenburg JC, L'Archeveque P, Bellemare G, Saeki K, Wang
H, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL, Brooks LD, McEwen
JE, Guyer MS, Wang VO, and Peterson JL (2007) Genome-wide
detection and characterization of positive selection in human
populations. Nature 449 (7164):913-918.

Sanger F and Coulson AR (1975) A rapid method for determining
sequences in DNA by primed synthesis with DNA polymerase. J.Mol.Biol.

94 (3):441-448.

Sanger F, Nicklen S, and Coulson AR (1977) DNA sequencing with chain-
terminating inhibitors. Proc.Natl.Acad.Sci.U.S.A 74 (12):5463-5467.

Schaffer AA, Gupta SK, Shriram K, and Cottingham RW, Jr. (1994)
Avoiding recomputation in linkage analysis. Hum.Hered. 44 (4):225-237.

Service S, DeYoung J, Karayiorgou M, Roos JL, Pretorious H, Bedoya G,
Ospina J, Ruiz-Linares A, Macedo A, Palha JA, Heutink P, Aulchenko Y,
Oostra B, van DC, Jarvelin MR, Varilo T, Peddle L, Rahman P, Piras G,
Monne M, Murray S, Galver L, Peltonen L, Sabatti C, Collins A, and
Freimer N (2006) Magnitude and distribution of linkage disequilibrium
in population isolates and implications for genome-wide association
studies. Nat Genet 38 (5):556-560.

Shifman S, Kuypers J, Kokoris M, Yakir B, and Darvasi A (2003) Linkage
disequilibrium patterns of the human genome across populations.
Hum.Mol.Genet. 12 (7):771-776.

174



120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

Simon-Sanchez J, Scholz S, Fung HC, Matarin M, Hernandez D, Gibbs
JR, Britton A, de Vrieze FW, Peckham E, Gwinn-Hardy K, Crawley A,
Keen JC, Nash J, Borgaonkar D, Hardy J, and Singleton A (2007)
Genome-wide SNP assay reveals structural genomic variation, extended
homozygosity and cell-line induced alterations in normal individuals.
Hum.Mol.Genet 16 (1):1-14.

Smith UM, Consugar M, Tee LJ, McKee BM, Maina EN, Whelan S,
Morgan NV, Goranson E, Gissen P, Lilliquist S, Aligianis IA, Ward CJ,
Pasha S, Punyashthiti R, Malik SS, Batman PA, Bennett CP, Woods CG,
McKeown C, Bucourt M, Miller CA, Cox P, Algazali L, Trembath RC,
Torres VE, ttie-Bitach T, Kelly DA, Maher ER, Gattone VH, Harris PC,
and Johnson CA (2006) The transmembrane protein meckelin (MKS3) is
mutated in Meckel-Gruber syndrome and the wpk rat. Nat Genet 38

(2):191-196.

Stefansson H, Helgason A, Thorleifsson G, Steinthorsdottir V, Masson G,
Barnard J, Baker A, Jonasdottir A, Ingason A, Gudnadottir VG, Desnica
N, Hicks A, Gylfason A, Gudbjartsson DF, Jonsdottir GM, Sainz J,
Agnarsson K, Birgisdottir B, Ghosh S, Olafsdottir A, Cazier JB,
Kristjansson K, Frigge ML, Thorgeirsson TE, Gulcher JR, Kong A, and
Stefansson K (2005) A common inversion under selection in Europeans.

Nat.Genet. 37 (2):129-137.

Stephens M and Donnelly P (2003) A comparison of bayesian methods
for haplotype reconstruction from population genotype data.
Am.J Hum.Genet 73 (5):1162-1169.

Storey JD and Tibshirani R (2003) Statistical significance for
genomewide studies. Proc.Natl.Acad.Sci.U.S.A 100 (16):9440-9445.

Sturtevant AH (1913) The linear arrangement of six sex-linked factors in
Drosophila, as shown by their mode of association. Journal of Experimental

Zoology 14:43-59.

Tang K, Thornton KR, and Stoneking M (2007) A New Approach for
Using Genome Scans to Detect Recent Positive Selection in the Human
Genome. PL0S.Biol. 5 (7):e171.

Tapper W, Collins A, Gibson J, Maniatis N, Ennis S, and Morton NE
(2005) A map of the human genome in linkage disequilibrium units.
Proc.Natl.Acad.Sci.U.S.A 102 (33):11835-11839.

Tapper W et al.A comparison of methods to detect recombination
hotspots. Hum.Hered. (in press)

Tapper WJ, Maniatis N, Morton NE, and Collins A (2003) A metric
linkage disequilibrium map of a human chromosome. Ann.Hum.Genet.

67 (Pt 6):487-494.
175



130.

131.

132.

133.

134.

135.

136.

137.

Tapper WJ, Morton NE, Dunham I, Ke X, and Collins A (2001) A
sequence-based integrated map of chromosome 22. Genome Res. 11

(7):1290-1295.

The International HapMap Consortium (2003) The International
HapMap Project. Nature 426 (6968):789-796.

The SNP Consortium (2005) http://snp.cshl.org/. accessed 25/04/05.

Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, Bailey
R, Nejentsev S, Field SF, Payne F, Lowe CE, Szeszko JS, Hafler JP, Zeitels
L, Yang JH, Vella A, Nutland S, Stevens HE, Schuilenburg H, Coleman G,
Maisuria M, Meadows W, Smink LJ, Healy B, Burren OS, Lam AA,
Ovington NR, Allen J, Adlem E, Leung HT, Wallace C, Howson JM, Guja
C, Ionescu-Tirgoviste C, Simmonds MJ, Heward JM, Gough SC, Dunger
DB, Wicker LS, and Clayton DG (2007) Robust associations of four new
chromosome regions from genome-wide analyses of type 1 diabetes. Nat

Genet 39 (7):857-864.

Tryggvason K, Patrakka J, and Wartiovaara J (2006) Hereditary
proteinuria syndromes and mechanisms of proteinuria. N.Engl.J.Med.

354 (13):1387-1401.

U.S.National Library of Medicine. What is DNA? - Genetics Home
Reference. http://ghr.nlm.nih.gov/handbook/basics/dna . 16-7-2006.
Ref Type: Electronic Citation

UCSC Genome Browser (2007) http://genome.ucsc.edu/. accessed
25/11/07.

Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith
HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew
RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L,
Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL,
Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine
AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher
A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S,
Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, bu-Threideh J,
Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M,
Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di F, V, Dunn
P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z,
Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y,
LiZ, LiJ, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM,
Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S,
Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M,
Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao
Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S,
Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin
D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A,
Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz

176


http://snp.cshl.org/
http://ghr.nlm.nih.gov/handbook/basics/dna

138.

139.

140.

141.

142.

143.

144.

145.

S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B,
Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T,
Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F,
May D, McCawley S, MclIntosh T, McMullen I, Moy M, Moy L, Murphy B,
Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M,
Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C,
Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S,
Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-
Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ,
Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T,
Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail
S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A,
Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH,
Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D,
Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A,
Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S,
Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C,
Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J,
Murphy S, Newman M, Nguyen T, Nguyen N, and Nodell M (2001) The
sequence of the human genome. Science 291 (5507):1304-1351.

Voight BF, Kudaravalli S, Wen X, and Pritchard JK (2006) A map of
recent positive selection in the human genome. PL0oS.Biol. 4 (3):e72.

Wang H, Lin CH, Service S, Chen Y, Freimer N, and Sabatti C (2006)
Linkage disequilibrium and haplotype homozygosity in population
samples genotyped at a high marker density. Hum.Hered. 62 (4):175-189.

Watson JD and Crick FH (1953) Molecular structure of nucleic acids; a
structure for deoxyribose nucleic acid. Nature 171 (4356):737-738.

Weber S, Mir S, Schlingmann KP, Nurnberg G, Becker C, Kara PE,
Ozkayin N, Konrad M, Nurnberg P, and Schaefer F (2005) Gene locus
ambiguity in posterior urethral valves/prune-belly syndrome.
Pediatr.Nephrol. 20 (8):1036-1042.

Woods CG, Valente EM, Bond J, and Roberts E (2004) A new method for
autozygosity mapping using single nucleotide polymorphisms (SNPs) and
EXCLUDEAR. J.Med.Genet 41 (8):e101.

WTCCC (2007) Genome-wide association study of 14,000 cases of seven
common diseases and 3,000 shared controls. Nature 447 (7145):661-678.

Zaykin DV, Meng Z, and Ehm MG (2006) Contrasting linkage-
disequilibrium patterns between cases and controls as a novel
association-mapping method. Am.J.Hum.Genet 78 (5):737-746.

Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H,
Timpson NJ, Perry JR, Rayner NW, Freathy RM, Barrett JC, Shields B,
Morris AP, Ellard S, Groves CJ, Harries LW, Marchini JL, Owen KR,

177



146.

147.

148.

149.

150.

Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney AS,
McCarthy MI, and Hattersley AT (2007) Replication of genome-wide
association signals in UK samples reveals risk loci for type 2 diabetes.
Science 316 (5829):1336-1341.

Zhang C, Bailey DK, Awad T, Liu G, Xing G, Cao M, Valmeekam V, Retief
J, Matsuzaki H, Taub M, Seielstad M, and Kennedy GC (2006) A whole
genome long-range haplotype (WGLRH) test for detecting imprints of
positive selection in human populations. Bioinformatics. 22 (17):2122-
2128.

Zhang K, Qin Z, Chen T, Liu JS, Waterman MS, and Sun F (2005)
HapBlock: haplotype block partitioning and tag SNP selection software
using a set of dynamic programming algorithms. Bioinformatics. 21

(1):131-134.

Zhang W, Collins A, Gibson J, Tapper WJ, Hunt S, Deloukas P, Bentley
DR, and Morton NE (2004) Impact of population structure, effective
bottleneck time, and allele frequency on linkage disequilibrium maps.
Proc.Natl.Acad.Sci.U.S.A 101 (52):18075-18080.

Zhang W, Collins A, Maniatis N, Tapper W, and Morton NE (2002)
Properties of linkage disequilibrium (LD) maps.
Proc.Natl.Acad.Sci.U.S.A 99 (26):17004-17007.

Zhu X, Luke A, Cooper RS, Quertermous T, Hanis C, Mosley T, Gu CC,
Tang H, Rao DC, Risch N, and Weder A (2005) Admixture mapping for
hypertension loci with genome-scan markers. Nat.Genet. 37 (2):177-181.

178



Publications

1. Tapper W, Gibson J, Morton NE, Collins A.
A comparison of methods to detect recombination hotspots.

Human Heredity. 2008 In press.

2. Gibson J, Tapper W, Cox D, Zhang W, Pfeufer A, Gieger C, Wichmann HE,
Kéadb S, Collins AR, Meitinger T, Morton N.

A multimetric approach to analysis of genome-wide association by single
markers and composite likelihood.

Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2592-7. Epub 2008 Feb 11.

3. Gibson J, Morton NE, Collins A.
Extended tracts of homozygosity in outbred human populations.

Hum Mol Genet. 2006 Mar 1;15(5):789-95. Epub 2006 Jan 25.

4. Tapper W, Collins A, Gibson J, Maniatis N, Ennis S, Morton NE.
A map of the human genome in linkage disequilibrium units.

Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11835-9. Epub 2005 Aug 9.

5. Gibson J, Tapper W, Zhang W, Morton N, Collins A.
Cosmopolitan linkage disequilibrium maps.

Hum Genomics. 2005 Mar;2(1):20-7.

6. Zhang W, Collins A, Gibson J, Tapper WJ, Hunt S, Deloukas P, Bentley DR,
Morton NE.

Impact of population structure, effective bottleneck time, and allele frequency
on linkage disequilibrium maps.
Proc Natl Acad Sci U S A. 2004 Dec 28;101(52):18075-80. Epub 2004 Dec 16.

7. Maniatis N, Morton NE, Gibson J, Xu CF, Hosking LK, Collins A.

The optimal measure of linkage disequilibrium reduces error in association
mapping of affection status.

Hum Mol Genet. 2005 Jan 1;14(1):145-53. Epub 2004 Nov 17.

179



8. Maniatis N, Collins A, Gibson J, Zhang W, Tapper W, Morton NE.
Positional cloning by linkage disequilibrium.

Am J Hum Genet. 2004 May;74(5):846-55. Epub 2004 Mar 26.

180



The following published papers were included in the bound thesis, but are not made
available due to copyright restrictions. Digital object identifiers (DOI) to the published
papers are provided. Pages 16 —105 are removed from the digitised PDF.

Gibson, J. et al (2007} A multimeric approach to analysis of genome-wide association by
single markers and composite likelihood. PNAS 105 (7) 2592-2597
d0i:10.1073/pnas.0711903105

Gibson, ] et al (2006) Extended tracts of homozygosity in cutbred human populations.
Human Molecular Genetics 15 (5) 789-795
d0i:10.1093/hmg/ddi493

Tapper, W et al (2005)A map of the human genome in linkage disequilibrium units. PNAS
102 {33) 11835-11839
doi:10.1073/pnas.0505262102

Gibson, ] et al (2004) Cosmopolitan linkage disequilibrium maps. Human Genomics 2 (1)
1479-7364
http://eprints.soton.ac.uk/24708/

Zhang, W et al (2004) Impact of population structure, effective bottieneck time, and allele
frequency on linkage disequilibrium maps. PNAS 101 (52) 18075-18080
doi:10.1073/pnas.0408251102

Maniatis, N et al (2005) The optimal measure of linkage disequilibrium reduces error in
association mapping of affection status. Human Molecular Genetics 14 {1) 145-153
doi:10.1093/hmg/ddi019

Maniatis, N et al (2004} Positional cloning by linkage disequilibrium. Human Genetics 73 (5)
846-855
doi:10.1086/383589



