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Abstract 

This project aimed to define linkage disequilibrium (LD) patterns and tracts of 
extended homozygosity in order to compare populations and search for disease 
genes. SNP genotype data were analysed on a Unix platform, using the 
programs LDMAP+, for linkage disequilibrium unit (LDU) map creation, and 
CHROMSCAN-cluster, for association mapping, as well as software written as 
part of this project, in the C programming language, for determining tracts of 
homozygosity and for autozygosity mapping. LDU maps were compared over 
populations showing similarity in LD structure. A cosmopolitan LDU map 
which represents the LD patterns of different population samples was produced 
and able to recover 91-95% of the information in the original population specific 
data. Genome-wide LDU maps were created, compared across populations, and 
compared with the linkage map to estimate effective bottleneck time (t), the 
time since the last major bottleneck for each population. 

This project also discovered an unanticipated amount of homozygosity in the 
outbred individuals genotyped in the HapMap project. Large homozygous tracts 
are expected in inbred individuals and this analysis was able to determine 3 
individuals with high levels of homozygosity consistent with recent inbreeding. 
The relationship between tracts of homozygosity and LD was investigated, using 
the LDU maps, showing that long tracts of homozygosity are more likely to 
occur in regions of high LD where the underlying haplotypes are of limited 
diversity. The relationship shown between LD and homozygosity enabled a 
more powerful approach to autozygosity mapping of a recessive locus in a 
consanguineous pedigree affected by Congenital Nephrotic Syndrome. High 
density SNP genotyping of affected individuals pinpointed regions of 
homozygosity which segregate with the disease, with the advantage of using few 
individuals and without the need for statistical inference from linkage. The 
regions determined were then prioritised on the basis of LDU length, therefore 
adding weight to regions of true autozygosity over regions of homozygosity 
associated with high LD. This analysis successfully determined a region 
containing a strong candidate gene (PLCEi) which has subsequently been 
shown to be mutated in the affected individuals. 

Extending the search for disease genes to complex disease studies, a genome-
wide association scan was carried out, using real case-control data with an 
undisclosed disease and utilising the LDU maps. A combination of the results 
from the multi-SNP approach of CHROMSCAN-cluster and single SNP results 
allowed selection of regions for follow up in a multi-stage analysis. 
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Chapter i - Introduction and aims 

1.1 Introduction 

There are three maps currently used to describe the human genome. The 

loaewasTirtHi aK3SHB([UK3DW)e(llb€US€̂ ipaubns;1jbf!lirLk2%gf!]iia]), 

distance measured in families across a generation; and the linkage 

cUkM2qpuilibw]hiiniiLa%y,;9eKLeticcUudbaiiceiiw 

the many generations since the founding of the population. 

1.1.1 The sequence map 

The physical map reflects the structure of Deoxyribonucleic acid (DNA), the 

molecule responsible for the inheritance of genetic traits. It consists of three 

parts; a sugar, a phosphate, and a base, and forms a double helix structure 

(figure i.i). 

Figure l . l The double helix structure of DNA showing the base-pairs. 

Base pairs 

U.S. MfBon*! Ubn«y of W^dicin* 

Adenine Thymine 

Guanlna Cytosine 

Sugar phosphate 
backbone 

(U.S.National Library of Medicine 2006) 



There are 4 types of base Adenine (A), Cytosine (C), Guanine (G) and Thymine 

(T). Long strands of DNA hold information in the sequence of these base-pairs. 

There are 46 distinct pieces of DNA in each of our cells. These are the 

chromosome pairs 1 to 22 and the sex chromosomes X and Y, with one set 

inherited from each parent. The structure of DNA was first described by Watson 

and Crick (Watson and Crick 1953). The first base-pair sequencing method was 

developed by F. Sanger in the 1970's (Sanger and Coulson 1975; Sanger, 

Nicklen, and Coulson 1977). Several methods were proposed and there has been 

development of improved high throughput methods making sequencing of the 

entire human genome possible. 

The Human Genome Project (HGP) was formally launched in October 1990 by 

the U.S. Department of Energy and the National Institutes of Health's National 

Human Genome Research Institute (NHGRI). The publicly funded Human 

Genome Project announced the release of a draft sequence of the Human 

Genome in 2001 (Lander et al. 2001), at the same time as the private venture by 

Celera (Venter et al. 2001); the 'finished' sequence was announced in April 2003 

(Collins, Morgan, and Patrinos 2003; Collins et al. 2003). Since that time, 

regular updates to the map have reduced gaps in areas which are hard to 

sequence due to heterochromatin or repeat sequences. The availability of the 

base pair (bp) sequence of the human genome has provided a wealth of 

information, which is publicly accessible via several databases such as, the 

National Centre for Biotechnology Information (NCBI) 

http://www.ncbi.nlm.nih.gov/) and UCSC genome browser 

(http://genome.ucsc.edu/). As well as the sequence information the various 

databases provide further annotation of the sequence such as gene locations and 

genetic marker positions. The Human Genome Project provides a standard 

reference sequence (a composite of several individuals), it is estimated that any 

2 genomes are 99.9% identical, however every individual genome is unique and 

0.1% difference amounts to millions of variations in the 3.2 billion base-pairs of 

sequence. These differences account for the heritable variation among 

individuals including susceptibility to disease (Kruglyak and Nickerson 2001). 

http://www.ncbi.nlm.nih.gov/
http://genome.ucsc.edu/


1.1.2 Genetic variation 

Human variation can be observed in many forms, from the ABO blood groups 

and serum protein variations to DNA sequence polymorphisms. Examples of 

DNA polymorphisms are restriction fragment length polymorphism (RFLPs), 

minisatellites or variable number tandem repeats (VNTRs), microsatellites or 

short tandem repeat polymorphisms (STRPs) which are the basis of the most 

linkage maps, small insertion/deletions (indels) (Kidd et al. 2004) and Single 

Nucleotide Polymorphisms (SNPs), a change in a single base pair at a given 

location. SNPs are the most frequent type of polymorphism in the human 

genome; they are generally bi-allelic and have low mutation rates. Large 

collections of SNPs have now been established and described in public 

databases such as dbSNP (NCBI 2005) and The SNP Consortium (The SNP 

Consortium 2005). Approximately 10 million common SNPs are estimated to 

exist (Botstein and Risch 2003). Non-synonymous SNPs cause a change in the 

amino acid coded by a gene. They are known to cause disease in many 

monogenic disorders and are a priority when looking for disease causing 

mutations. However synonymous SNPs, which do not change the amino acid 

coded, and SNPs in non-coding regions, perhaps promoter or regulatory 

regions, may affect the regulation and splicing of genes and also lead to disease. 

Most SNPs are located in non-coding regions of the genome and although many 

may not cause disease themselves they are still very useful as genetic markers 

since they may be associated and inherited with causal polymorphisms, and also 

may be used as markers for population genetics and evolutionary studies 

(Celedon 2005). 

High throughput genotyping is now standard technology and many 

investigators use the commercially available genotyping platforms. Affymetrix 

gene chips use randomly chosen SNPs depending on the restriction enzyme 

used to cleave the DNA. Illumina have used HapMap data to be more selective 

in choosing SNPs that offer the best coverage based on LD patterns. There are 

ongoing modifications to increase quality, call rate and reduce bias. For 

example, the Dynamic Modelling (DM) algorithm was used by Affymetrix to 

automatically call genotypes from experimental results. However, it was shown 

that this particular algorithm has a bias in that missed calls were more often 



heterozygotes than homozygotes (Rabbee and Speed 2006; Kuruvilla et al. 

2006). A new algorithm called BRLMM was introduced to overcome this bias 

and is the standard algorithm currently used by Affymetrix. There are several 

quality control procedures carried out on genotypic data such as removing SNPs 

or individuals with a certain percentage of missing calls, duplicate typing of a 

percentage of SNPs or individuals to ensure concordance and Hardy-Weinberg 

equilibrium tests. Overall for large samples obvious genotyping errors can be 

avoided. Some errors may remain but with error rates much less than 1% they 

are likely to have negligible effects on most analyses. However it is wise to 

individually check the cluster plots used for genotype calling and the quality 

scores associated with genotypes of interest to check the reliability of the 

information. 

1.1.3 The Linkage map 

Long before determining a physical map was considered possible or DNA was 

known to be the inherited coding structure, there was a genetic map. The very 

first genetic map was constructed in 1913 by Alfred H. Sturtevant an 

undergraduate student of Thomas H. Morgan at Columbia University. They had 

been working on 6 sex linked 'factors' in Drosophila. The factors were given a 

linear order based on the length and strength of their association determined by 

the number of meiotic crossovers between factors, the phenomena of 

interference was also noted, where one crossover inhibits another close by. 

Figure 1.2 The first diagram of a genetic map. 
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0.0 1.0 30.7 33.7 57.6 
D i a g r a m 1 

(Sturtevant 1913) 



This diagram of factors was the forerunner to the linkage map which measures 

the recombination rate in centiMorgan (cM) units. The first comprehensive 

linkage map was produced by (Dib et al. 1996) and the most comprehensive 

linkage map to date is based on the deCODE pedigrees from Iceland (Kong et al. 

2004^ 

Linkage maps have been valuable in identifying disease-causing 'major' genes. 

In linkage studies chromosomal segments which co-segregate with the disease 

in families are identified, and predicted to contain the causal variation. It is a 

powerful method but generally only narrows a region to a few Megabases (Mb), 

which may include many genes or variants. The availability of the gene 

annotated base-pair sequence has allowed candidate gene analysis as a method 

of narrowing down the region of interest (Carlson et al. 2004), where genes with 

a known function that may biologically affect the phenotype are studied further. 

Linkage studies have been less successful for complex diseases which are caused 

by polygenes, variations of small effect in multiple genes. 

Figure 1.3 Genes and their effects. 
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1.1.4 Linkage Disequilibrium 



Attention has therefore shifted towards linkage disequilibrium (LD) which 

describes the tendency of linked alleles to be inherited together more often than 

would be expected under random segregation. The potentially higher resolution 

of disease mapping using linkage disequilibrium makes it an attractive option. 

LD is created when a small number of founding individuals and therefore small 

The major influence on LD is recombination and the amount of time 

recombination has had to break up LD since the last major bottleneck, to a 

lesser extent, mutation, genetic drift and selection also have an effect (Tapper et 

al. 2003). Linkage mapping tracks a disease (D) and genetic marker^(M) 

through 1-2 generations in a family, limiting the linked region of interest by 

meiotic recombination events. Association mapping using LD, utilises a similar 

idea in a population sample, to determine a region of interest by association of 

thecMGeaseTwtOigfiKdiciaarkereJhd^atEwuioNvedlyptdsba 

events determined by LD patterns (figure 1.4). 

Figure 1.4 Linkage mapping (A) versus association mapping by LD (B). 
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1.1.5 Measures of LD 

There are several commonly used measures of LD. D is a simple measure of 

disequilibrium and is calculated as D= fAJB- (fA x fB), with fAB as the observed 

frequency of the AB haplotype and fA x fB being the expected frequency based 

on the individual frequencies of the two alleles A and B. D is not of great use for 



comparing the strength of LD since it has a maximum value (Dmax) which is 

highly dependent on allele frequency. To account for this Lewontin provides an 

extension, D' calculated as D'=D/Dmax (Lewontin 1964). With an arbitrary 

assignment of alleles this value can be positive or negative and is therefore 

presented as the absolute value | D' |. | D' | =1 shows complete LD but lower 

values have a less clear interpretation, since D' is dependent on sample size and 

is inflated in small samples. Another commonly used measure is r^, which is 

equal to divided by the product of the allele frequencies at the two loci. This 

is more stable to sample size but is again less reliable for low allele frequencies. 

r2 is used to determine power in association mapping and predict the sample 

sizes required, whereas as D' is a measure of LD itself. These pairwise measures, 

can be plotted as 'heatmaps' using software such as GOLD (Graphical Overview 

of Linkage Disequilibrium) (Abecasis and Cookson 2000) or Haploview (Barrett 

et al. 2005). These programs are useful for providing a graphical visualization of 

pairwise measures between many SNPs but do not allow the creation of a whole 

linear additive map. 

1.1.6 LDU maps 

The LDU map uses the association metric rho (p) which is a probability and 

therefore ranges 0-1. Rho is equivalent to |D'| for pairs of SNPs, but not for 

marker/disease association and is the most robust metric to allele frequency but 

is still sensitive to sample size (Collins and Morton 1998). This metric is 

calculated using pairwise data and also modelled by the Malecot equation in the 

LDMAP program. The theory for the first map of LD patterns was developed by 

Maniatis et ah, it is a map with additive distances in LD units (LDU) analogous 

to the linkage map in cM (Maniatis et al. 2002). The LDU map is based on the 

Malecot model which was originally designed for isolation by distance but has 

been adapted to model the decline of LD over distance (Collins and Morton 

1998). The model is, p = (1- L)Me"^^ + L, and the 3 main parameters are M, L, 

and £. M is the association at o distance and has an evolutionary interpretation 

as it reflects the association at the last major bottleneck. L is the association at 

large distance and reflects background LD levels and the effect of sample size, 

which is known to affect rho. Epsilon (e) measures the decline of LD over 
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distance; a large e reflects a rapid decline of LD whereas a small e reflects a 

more gradual decline. LDU is calculated as the product of epsilon and distance 

in Kb. 
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Figure 1.5 The method to create an LDU map. 
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For all pairs of SNPs, p is calculated using the observed pairwise data and 

estimated using the model. The estimated and observed values are used to 

calculate the composite -2 log likelihood = ^ K ( p - p)^ , this is minimised so 

that the difference between the two rho values is closest to zero. Composite 

likelihood is a combination of likelihoods, usually of small subsets of data, this 

reduces computational complexity and allows large datasets and complex 

models to be handled when a standard likelihood is not feasible. A drawback to 

composite likelihood is that the summation is over non-independent elements 

(Zhang et al. 2002). Of the three parameters in the Malecot model, L is not 

estimated but a 'predicted V is calculated from the data, as equal to the Kp -

weighted mean of ^2/nKp , where Kp, the information about p per marker 

pair, is proportional to sample size (the weighted mean deviation for a normal 

distribution). Since L is the asymptote, it is not observed in a small region, and 

the block structure revealed by a high density of SNPs distorts a direct estimate 

of L thus predicted L has been shown to give more reliable results than 

estimating the L parameter (Zhang et al. 2002). Epsilon is iterated for each SNP 

interval, it is incrementally changed and the magnitude and direction of the 

change is determined using the Newton-Raphson algorithm for finding the roots 

of non-linear equations. The -2 log composite likelihood is minimised for each 

interval to provide the best model fit to the observed data. The parameter M is 

assumed constant across the whole LDU map but is iterated periodically to 

minimise the -2 log likelihood. For the creation of an LDU map the epsilon value 

for each interval is multiplied by the Kb distance to give a value in LDU, 

beginning with O LDU at the p-ter of the map the values are cumulative to give 

an additive map. A further measure called the swept radius, calculated as i/e, 

shows the average extent of 'useful' LD on the kilobase scale. The LDU map can 

be plotted on a graph opposite the kb map revealing plateaus and steps. The 

plateaus show a low LDU/Mb ratio, corresponding to a region of high LD or low 

recombination. The steps show a high LDU/Mb ratio, corresponding to a region 

of low LD or high recombination (Maniatis et al. 2002). 
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1.1.7 Properties of the LDU map 

Since recombination is the main force behind LD structure, information about 

recombination can be reliably obtained from the LDU map. This was shown by 

the remarkable correspondence between the results from Jeffreys et at 

(Jeffreys, Kauppi, and Neumann 2001), which was a direct measure of meiotic 

recombination carried out by sperm typing, and the LDU maps of the 

corresponding region (Zhang et al. 2002) (figure 1.6). 

Figure 1.6 A 216-kb segment of class II region of MHC. 
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An LDU map (A) and the corresponding region analysed by sperm typing (B), showing the 

agreement between steps in the LDU map and the localisation of the recombination hotspots 

shown as vertical bars in B (Zhang et al. 2002). 

Since the creation of the first LDU maps of small regions, LDU maps have been 

created of whole chromosomes. Tapper et al (2003) created LDU maps for 

chromosome 22 for 2 European samples, allowing the LDU map to be compared 

with the linkage map over a whole chromosome. There was a good 

correspondence between the two genetic maps despite the comparatively low 

resolution of the linkage map. The LDU map also allowed the LD patterns in 
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different chromosomal regions to be compared showing t h e variation in LDU 

(Tapper et al. 2003) . 

An LDU m a p can be used to facilitate positional cloning o r association mapping 

(Maniatis et al. 2004), enhance the resolution of the l inkage map, compare 

populat ions (Lonjou et al. 2003) , and detect selective s w e e p s and other 

evolutionary events. The linkage m a p appears, on l imited evidence, not to vary 

between populations. The LDU map, however, varies w i t h different population 

histories, principally the 'age' of the population, the t ime s ince the last major 

bottleneck. The most apparent difference is found be tween African and non-

African populations, presumably reflecting the 'Out of Afr ica ' bottleneck 

(Lonjou et al. 2003; Reich et al. 2001). A small n u m b e r of individuals 

represent ing a small sample of the haplotypes present in Afr ica at the t ime 

founded a new Eurasian populat ion, resett ing LD in the n e w population. In 

t e rms of the Malecot model the pa ramete r M would a p p r o a c h 1 and s would be 

small reflecting the high level of LD (Lonjou et al. 2003) . Al though the overall 

length of the LDU m a p is longer in African populat ions, reflecting more 

recombination, the broad pat terns , in t e rms of plateaus a n d steps, are aligned. 

This similarity can be explained by the co-localisation of recombinat ion 

hotspots in all populations. The intensity of recombinat ion shown in the map in 

these areas varies due to the differences in t ime, with more in tense hotspots 

(longer steps) in the African populat ions causing the increased m a p lengths (De 

La Vega et al. 2005) . This high correlation in LD pa t t e rns could allow a 

cosmopoli tan LDU m a p to be made incorporat ing mul t ip le populations; this 

s tandard m a p could then be scaled to represent the LD s t ruc tu re in any single 

populat ion (Lonjou et al. 2003) . 

1.1.8 The HapMap project 

The idea tha t t he genome can be divided into regions or blocks that have low 

haplotype diversity (Daly et al. 2001) led to the suggest ion tha t some markers 

could be used as surrogates for others with which they a r e in high or complete 

LD; fewer SNPs would reduce the cost and workload of associat ion studies. A 

d e m a n d for a bet ter unders tand ing of the LD structure of t h e h u m a n genome in 
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order to choose which SNPs to type to get the m a x i m u m benefi t , prompted the 

Internat ional HapMap Project. There have been many m e t h o d s and software 

programs developed to choose these 'haplotype tagging' SNPs, such as Tagger 

(de Bakker et al. 2005) and HapBlock (Zhang et al. 2005) . The International 

HapMap project a imed to catalogue h u m a n variation wi th the objective of 

helping investigators choose tagging SNPs. 

The Internat ional HapMap project began in 2 0 0 2 as a collaborat ion between 

scientists and funding agencies f rom Japan , the United Kingdom, Canada, 

China, Nigeria, and the United States. It a imed to genotype over a million SNPs 

in 4 populat ions, CEPH Utah residents with Nor thern a n d Wes te rn European 

ancestors, Japanese f rom Tokyo, Han Chinese f rom Beijing, and Yoruba f rom 

Ibadan, Nigeria. In February 2 0 0 5 Phase I of the project was completed with 1.2 

million SNPs genotyped in the 4 populations. After some quali ty control 

measures and error fixing the analysis group carried ou t the i r initial analysis of 

this Phase I da ta (Altshuler et al. 2005). The HapMap Consor t ium continued 

genotyping, extending the project to Phase II, with the n e w goal of 

approximately 4 million SNPs resulting in, on average, 1 SNP per 6 o o b p 

throughout the genome. The data are periodically released into the public 

domain via the website h t tp : / /www.hapmap .org ( Internat ional H a p m a p Group 

2005; National Inst i tutes of Health and National H u m a n Genome Research 

institute. 2002 ; National Inst i tutes of Heal th and National H u m a n Genome 

Research insti tute. 2005) . This resource provides large a m o u n t s of publicly 

available genotype data on 269 (270 in Phase II) individuals. 

The initial analysis of the HapMap phase I data by the H a p M a p analysis group 

gave a description of the data collection, genotyping m e t h o d s and quality 

control procedures. They also carried out some analysis of the data and 

discussed the propert ies of LD in the genome. Many p h e n o m e n a previously 

described in smaller samples and smaller regions were conf i rmed over the 

whole genome, such as the major de te rminant of variat ion in LD being 

recombination, the block-like s t ructure of LD, and the p resence of 

recombinat ion hotspots. The extent of LD was shown to vary across populat ions 

and be less extensive in the YRI sample, more extensive LD was shown on the X 

chromosome with more long-range haplotypes. Previously repor ted 
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observations of increased LD towards the telomeres, a n d reduced LD towards 

the centromeres, and also a correlation between LD level a n d chromosome 

length were also confirmed. The authors describe the pro jec ted use of the 

HapMap resource for directing association studies a n d selecting tagSNPs, 

though acknowledge that more data on more popula t ions and data including 

rare SNPs (Phase I selectively genotyped common SNPs) is needed to fully test 

the portability of tagSNPs across populations. The p a p e r also highlights the use 

of the HapMap data for studying natural selection, empir ical analyses were 

carried out determining the most extreme candidate reg ions for selection using 

a long-range haplotype me thod and differences in allele f requencies between 

populat ions. However, it is accepted tha t different types of selection leave 

different signatures in current genetic variation data a n d many methods use 

different approaches, also the SNP ascer ta inment bias because of a focus on 

common variation complicates any analysis, and careful interpretat ion of results 

are required (Altshuler et al. 2005) . 

1.1.9. Coalescent Theory 

Coalescent Theory models the underlying genealogy wh ich led to current h u m a n 

variation. It is modelled backwards in t ime as a tree, w h e r e 2 different lineages 

(haplotypes) coalesce to a single ancestor at each level of the tree, going back to 

a single common ancestor, the most recent common ances to r (MRCA) of the 

current populat ion with the muta t ion events which l ead to the changes being 

super imposed on the branches of the tree. To add recombina t ion to the 

coalescent model, lineages which join (coalesce) when they have the same 

ancestor can also split (bifurcate) when the same s e g m e n t has 2 ancestors due 

to a recombinat ion event. As well as muta t ion and recombinat ion , other genetic 

processes such as populat ion size fluctuations, genetic dr i f t and selection can 

also be incorporated into this kind of model. The mode l t hen contains several 

parameters of interest as well as a genealogy. Simulat ions are carried out to 

define the parameters for the model tha t produces s imula ted data matching the 

observed genetic variation data. However, t he more complex models have 

drawbacks due to the computat ional complexities involved and models may fail 

to produce a result in reasonable t ime. Two methods f o r a t tempt ing to resolve 
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this problem are the 'first approximation ' which removes the need for an exact 

match between the s imulated and observed data , and t h e ' second 

approximation ' in which the model itself is simplified (Mar jo r am and Tavare 

2006) . Coalescent-based methods are complex and t h e r e are many variations, 

using these models for determining recombinat ion r a t e s a n d for association 

mapping problems is a current focus. Any statistical analysis of genome-wide 

data will face problems due the a m o u n t of data, the complexi ty of the data, the 

amount of autocorrelation and the rate of false positives un ique to such data. 

'Historical recombinat ion maps ' produced by the LDHAT program are based on 

a coalescence me thod (McVean et al. 2004) and have b e e n shown to correlate 

well with linkage maps over the same regions and recombina t ion rates directly 

measured f r o m sperm-typing data (Jeffreys, Kauppi, a n d N e u m a n n 2001). 

Instead of modelling recombinat ion over the whole genome, the method 

simulates genealogies while moving along a sequence, dividing the data into 

subsets and combining likelihood calculations, there fore this is a composite 

likelihood method. A similar coalescent-based me thod h a s been developed to 

identify recombinat ion hotspots using a p rogram called LDHOT based on the 

recombinat ion maps produced by LDHAT (Myers et al. 2005) . 

1.1.10 Extended homozygosity and autozygosity mapping 

The data provided by the HapMap project can be used t o create LDU maps of 

the whole genome and the LDU pat te rns can be compared in different genomic 

regions and across populat ions to give a be t te r under s t and ing of LD. LDU maps 

of these data may also be used to s tudy the demography, and evolutionary 

events tha t have shaped current h u m a n populations. T h e HapMap data allows 

an insight into normal variation and normal levels of homozygosity. When a 

biallelic marker has identical alleles it is homozygous; th i s can indicate identity 

by state (IBS) or identi ty by decent (IBD). In IBD homozygosity is likely to 

extend to neighbouring SNPs which are inher i ted together on the same 

chromosomal segment , creating a region of homozygosity. Broman and Weber 

(1999) found long tracts of homozygosity were more c o m m o n than expected in a 

CEPH sample using shor t t andem repeat po lymorphisms (STRPs). They found 

that it was not unusua l to find individuals f r o m outbred populat ions to have 
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long homozygous tracts of >iocM. They examined the ro le of possible typing 

error, back muta t ion of STRPs, gene conversion events a n d t h e limitations 

imposed by locally low marker density in determining t h e l imits of homozygous 

segments. Although relationships between 'unrelated' individuals in some 

pedigrees were determined, there remained a degree of autozygosity 

approaching or exceeding tha t expected in the progeny of a f i rs t cousin mating 

where relat ionships were no t detected (Broman and W e b e r 1999). The HapMap 

data provide an ideal oppor tuni ty to look at this p h e n o m e n o n in high quality 

and dense SNP data in 4 outbred populat ions. 

Consanguinity is known to be associated with an increased risk of rare recessive 

disease. The low haplotype diversity means tha t a rare m u t a t i o n is more likely to 

be seen in its homozygous fo rm in a family with some consanguini ty . Knowledge 

of the levels of extended homozygosity in heal thy ou tb red individuals would 

provide useful informat ion for the mapping of autosomal recessive genes with 

homozygosity mapp ing (Lander and Botstein 1987). This m e t h o d is potentially 

faster and easier t han conventional linkage studies with fewer individuals 

required. Some groups are beginning to use high t h r o u g h p u t genotyping 

technology such as the Affymetrix chips as a relatively c h e a p method of 

genotyping a small n u m b e r of individuals within an i nb red family to detect 

regions of homozygosity associated with a recessive pheno type on a genome-

wide scale (Chiang et al, 2006; Weber et al. 2005) . Homozygosi ty and LD are 

bo th determined by the underlying haplotype structure, t h i s may allow 

homozygosity associated with LD to be dist inguished f r o m autozygosity. 

Prioritising regions of homozygosity with respect to LD s t ructure , using LDU 

maps, has the potent ial to increase power in this type of s tudy. 

1.1.11 Genome-wide association analyses 

Many diseases have an underlying genetic basis, some a r e caused by 'major ' 

genes which are rare b u t have a large effect, such as the A F 5 0 8 variant of the 

CFTR gene in Cystic Fibrosis. To determine a gene with large effect, genetic 

linkage analysis is very effective. The alleles of polymorphic genetic markers are 

de termined in several generat ions within affected famil ies and the ' l inked' 
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region shared by affected individuals determines the loca t ion of the disease 

causing variant . The regions detectable by this method a r e large, generally on a 

scale of several centiMorgans (cM) corresponding to severa l megabases (Mb) of 

physical sequence; and linkage analysis has low power t o detect common 

variants with modes t levels of disease risk, such as those predic ted to give the 

genetic contr ibut ion to many complex diseases. Association analyses are 

expected to be more powerful in these cases because for m o d e s t risk alleles the 

pat tern of allele sharing among individuals within a fami ly is less striking than 

the pa t te rn of allele sharing between unre la ted individuals (Carlson et al. 2004). 

The first genome-wide linkage study of a complex h u m a n disease was carried 

out in 1994 for Type 1 Diabetes (Davies et al. 1994). It s h o w e d the importance of 

the HLA region on chromosome 6. Although many genome-wide linkage studies 

have since been under taken for common diseases, the d isappoin t ing 

reproducibility of the results and low power mean this h a s no t been as 

successful an approach as hoped (McKinney and M e r r i m a n 2007) . More 

powerful association analyses can be carried out on large cohor ts of unrelated 

cases and controls, to look for differences in the f requencies of alleles between 

these groups. Genome-wide association studies (GWAs) can scan the whole 

genome for variants affecting a certain disease without a p r io r hypothesis of 

likely candidates or necessarily any knowledge of the d isease pathogenesis. This 

type of analysis will allow the detection of novel pa thways a n d genes that would 

not be candidates based on current knowledge providing vital new biological 

insights which may hold the key to novel therapies (Farral l a n d Morris 2005; 

McKinney and Merr iman 2007). 

Association analyses, however, also have problems. Unlike l inkage studies, 

which are carried out in families, association studies can p roduce spurious 

results due to underlying populat ion s tructure. Popula t ion stratification in a 

sample, a mix of 2 isolated groups, one with high disease f requency and one low, 

may show false positive association between the disease a n d any marker that 

shows an allele f requency difference between the two g roups (Clark 2003; 

Helgason et al. 2005) . To avoid this problem studies are carr ied out on a single 

populat ion sample in which there is no evidence of a recent influx of genes with 

differing ancestries. However, this is usually based on self identif ied ethnicity 
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and limited knowledge of ancestry. There are methods available to control for 

unknown populat ion stratification such as, Genomic Cont ro l (GC) methods 

which apply a correction to the statistical distr ibution of t h e association metric 

used, based on a measure of the variability of genotypes (Devlin and Roeder 

1999). Another approach is to identify outlying individuals or assign individuals 

to various populat ion clusters and carry out separate associat ion tests on the 

populat ion stratified groups. An example of this type of m e t h o d is, Multi 

Dimensional Scaling (MDS) within the PLINK analysis toolset , which is carried 

out on the basis of the genome-wide average propor t ion of alleles shared 

identical by state (IBS) between any two individuals (Purcell et al. 2007). 

Population admixture can be useful for a method known as admixture mapping, 

which has been successfully used for mapping hyper tens ion loci (Zhu et al. 

2005) . However, the usefulness of this me thod remains t o be determined by 

fu r the r examples and there are several issues to overcome. For example, the 

alleles in the parental populat ions are required to be relatively homogenous and 

the allele frequencies mus t differ substantially. F u r t h e r m o r e admixture in 

h u m a n populat ions seldom happens at a specific point in t ime but over a period 

and the parental populat ions may not be available for s t u d y or known precisely 

(Jorde 2000 ; McKeigue 2005) . 

Association mapping also relies on careful ascer ta inment of samples and 

accurate phenotype measures . It is impor tan t to ensure t h a t case a n d control 

samples have been processed in the same way and the re is no systematic bias, 

which would produce misleading results. With c o m m o n diseases it is possible 

for a proport ion of the controls to become cases in the fu tu re , which would 

reduce power. However, control samples can be enr iched using 'hypercontrols ' 

ie. individuals much older t h a n the normal age of onset o r at the ext reme lower 

end of the disease spect rum; cases can also be enriched b y sampling individuals 

with strong family history or particularly extreme phenotypes . This should 

result in an increase in power to detect real genetic effects. It is also very 

impor tant in retaining power that the cases are s t r ingent ly phenotyped in a 

un i form way. Genetic heterogeneity, different genotypes causing the same 

disease, may be part ly addressed by stratifying cases b a s e d on previously 

determined susceptibility alleles. 
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There are different approaches to choosing SNPs to geno type for an association 

study. A direct approach uses candidate genes for a par t i cu la r disease based on 

funct ional evidence or suggestive linkage results and cod ing SNPs within those 

genes with the hope of genotyping the causal variant. I t is possible to prioritise 

non-synonymous SNPs which alter an amino acid these a r e implicated as high 

risk alleles in many mendel ian disorders. Although m a n y identif ied variants for 

complex diseases are in non-coding regions and are t h o u g h t to have regulatory 

interactions with other genes. Therefore this may not b e usefiil for common 

diseases with modera te risk alleles. An indirect approach is to genotype a high 

n u m b e r of SNPs genome-wide with the hope of genotyping a variant that is in 

LD with the causal locus. Most investigators use the commercia l ly available 

genotyping platforms, which vary in the coverage a t ta ined. Affymetrix gene 

chips use randomly chosen SNPs determined by the res t r ic t ion enzyme used to 

cleave the DNA. Il lumina have used HapMap data to b e m o r e selective in 

choosing SNPs tha t offer t h e bes t coverage based on LD pa t t e rns . There are 

therefore some regions of the genome not well covered by Affymetrix. However 

should genotyping fail on a certain SNP tagging a large reg ion the Illumina 

p la t form would not necessarily have a nearby SNP able t o cover the region. 

Since these pla t forms offer by far the cheapest strategy f o r genotyping large 

number s of SNPs in large samples they are of great value particularly for a 2 

stage analysis where more targeted genotyping can be ca r r i ed out on a smaller 

scale in the second stage. 

1.2 Aims 

The main aim of this project is to define linkage disequi l ibr ium pat te rns and 

t racts of extended homozygosity in order to compare popu la t ions and search for 

disease genes. 

LDU m a p s will be created using in-house sof tware (LDMAP+) and used to 

investigate the similarities and differences in pa t te rns of LD across populations, 

and de termine the proper t ies and utility of a cosmopol i tan LDU map. The 

recent release of whole genome genotype data provided b y t h e Internat ional 

HapMap project will allow creation of genome-wide LDU m a p s in different 
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populat ions and an investigation of evolutionary his tory of these populations by 

estimating the Effective Bottleneck Time (t). 

The HapMap data will also be used to investigate homozygosi ty in the human 

genome determining the amoun t and location of t rac ts of homozygosity and 

their relat ionship with LD pa t te rns as described by LDU maps . Knowledge of 

levels of homozygosity in healthy individuals and the re la t ionship with LD will 

add power to homozygosity mapping methods. This will be exploited using data 

on individuals f rom a consanguineous family, affected by Congenital Nephrotic 

Syndrome, to localise a candidate gene or region responsible for the disease. 

The use of LDU maps for association mapping of genes a n d variants involved in 

complex diseases will then be investigated, with a genome-wide association scan 

of anonymous data. In-house software (CHROMSCAN-cluster) will be tested 

with genome-wide data and simple single SNP chi squa re tests will also be 

considered. The aim of this initial scan will be to de te rmine regions for follow up 

in more detail in a second stage. Whole genome analyses are the basis of new 

and innovative approaches to discovering disease genes a n d an accurate and 

informative description of levels of homozygosity and pa t t e rn s of LD for this 

type of data will be invaluable. 
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2.1 Introduction 

Linkage maps have been an invaluable tool for mapp ing m a j o r genes through 

linkage analysis. Linkage analysis tracks the segregation of a disease and a 

marker through a single generation within families. Cand ida te regions can be 

nar rowed to a few cM in genetic distance which cor responds to a few Megabases 

(Mb) in physical distance. These regions are nar rowed b y t h e recombination 

events tha t take place during meiosis. Linkage disequi l ibr ium (LD) differs since 

it is influenced by recombinat ion events tha t take place over many generations 

since the founding of the population. The higher n u m b e r of recombination 

events allows the candidate region to be nar rowed m u c h fu r the r allowing higher 

resolution fine scale mapping of disease genes and causat ive variants. Many 

methods of performing disease mapping using LD are current ly being 

developed, investigated and validated (Maniatis et al. 2 0 0 4 ; Zaykin, Meng, and 

Ehm 2006; Morris et al. 2003) . LD is a ma jo r focus for investigators in their 

mission to locate modera te risk genes involved in complex h u m a n disease. 

Knowledge of the background variation a n d s t ructure of LD across the whole 

h u m a n genome would be an invaluable tool to this end, in the same way tha t the 

linkage m a p has been useful for the mapping of high r isk 'major ' genes. With the 

advent of high density Single Nucleotide Polymorphism (SNP) panels for whole 

chromosomes, LD s t ructure over larger areas can be de te rmined . Different 

h u m a n populat ions have different populat ion histories, such as differences in 

t ime since the last m a j o r bottleneck, which affect LD. Recombinat ion pa t te rns 

are thought to be the similar in all populat ions, a l though critical evidence is 

lacking (Jorgenson et al. 2005) . Over 1-2 generat ions t h e r e is no detectable 

effect of drift , selection, muta t ion and therefore linkage m a p s are assumed to be 

similar irrespective of the populat ion studied. The l inkage m a p effectively 

represents current pa t te rns of recombinat ion whereas t h e LDU m a p is mostly 

de termined by historical pat terns . However, the LDU m a p is also affected, to a 

lesser degree, by selection, muta t ion and drift . 
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Pat terns of LD across large regions can be described b y blocks of high LD 

separated by small regions of high recombination. S p e r m typing data produced 

by Jeffreys et al. (Jeffreys, Kauppi, and Neumann 2001) suppor t s this finding 

with directly observed meioses in sperm. Long range p a t t e r n s of LD tend to be 

conserved across populat ions and differences due to d u r a t i o n can be modelled. 

Lonjou et al. analysed small data samples ranging i s o K b - i . g M b with low SNP 

density (18 SNPs across 1.3Mb) and several samples of h igher density (1 SNP 

per 2Kb) in small regions of average size 250Kb. A cosmopol i tan map created 

f rom combining samples was able to recover 95% of t h e in format ion in different 

populat ion maps by appropr ia te scaling (Lonjou et al. 2 0 0 3 ) . The similarity of 

LD s t ructure across populat ions has been shown by several studies. Shifman et 

al. compared LD (D' and r^) in 3 types of population, a d m i x e d (African 

American), outbred (Caucasian) and isolated (Ashkenazi Jews) . They found very 

similar allele frequencies between the Caucasian and t h e Ashkenazi Jew 

populat ions which both differed f rom the African Americans , and an average 

decline of LD of a similar rate in the Caucasians and Ashkenaz i Jews but a more 

rapid decline in African Americans. They also found t h a t LD was highly 

correlated across populat ions (Shifman et al. 2003) . 

The ma jo r difference between populat ions has been f o u n d between African and 

non-African populat ions reflecting the p resumed 'out of Africa ' bottleneck. This 

would have restricted the diversity of haplotypes found ing the non-African 

populat ions effectively resett ing LD at this point . Differences in the t ime 

recombinat ion has had to break u p founding haplotypes a n d therefore the 

amoun t of LD between populat ions can be modelled l inear ly by scaling, while 

the underlying s t ructure of LD remains intact. 

2.2 Aims 

The aim of this chapter is to investigate the possibility a n d feasibility of 

developing a s tandard LDU m a p tha t is useful and informat ive for multiple 

populat ions. The similarity of pa t te rns of LD in dif ferent populat ions over a 

large region of chromosome 20 will be determined. Previous work has shown 

tha t LD pa t te rns across populat ions are very similar even though a difference in 
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t h e t ime tha t recombina t ion has h a d to accumula te s ince a n 'effective 

bot t leneck ' creates d i f ferent scales to t h e LDU m a p s ( L o n j o u et al. 2003; Zhang 

et al. 2004) . The aim is to create a cosmopol i tan LDU m a p b y combining 

genotype da ta for 4 popula t ions on a 10Mb region of c h r o m o s o m e 20 and then 

de te rmine h o w well th is m a p represen t s t h e i n fo rma t ion of each of the 4 

popula t ions separately. 

2.R Methods 

2.3.1 Data 

The da ta analysed consist of 5 ,954 Single Nucleotide P o l y m o r p h i s m s (SNPs) 

genotyped over a 10 ,098Kb region of c h r o m o s o m e 2 0 q i 2 - i 3 . 2 . The data were 

previously publ i shed a n d m a d e available by Ke et al. ( 2 0 0 4 ) . The genotype da ta 

are for 2 8 2 individuals across 4 popula t ions ; 97 Afr ican Amer icans , 96 UK 

Caucasians, 47 Utah individuals f r o m t h e Centre d ' E t u d e d u Polymorphisme 

H u m a i n (CEPH) pane l a n d 4 2 East Asians (32 J a p a n e s e a n d 10 Chinese). The 

da ta were sc reened for quali ty a n d no s ignif icant devia t ions f r o m Hardy-

Weinberg equi l ibr ium were detected. Five SNPs were r e m o v e d because they 

were rare wi th a m i n o r allele f requency <0 .05 . This le f t a to ta l of 5949 SNPs, 

no t all of which were genotyped in all popu la t ions ( tab le 2.1). The alleles for 

each SNP were coded as 11, 2 2 , 1 2 with 0 0 deno t ing mi s s ing data . 

Table 2.1 Chromosome 20 data sample. 

Population sample 
No. 

indiv iduals 
No. SNPs 

AF (African Americans) 9 7 4 9 3 8 

CA (UK Caucasians) 9 6 4427 

CE (Utah CEPH) 4 7 5 3 0 9 

AS (East Asians; Japanese and 

Chinese) 
4 2 4 1 6 0 
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2.3.2 Selecting SNP densities 

Construct ing LDU m a p s by analysing pairwise da ta fo r t h o u s a n d s of SNPs is 

computa t ional ly intensive. To reduce t h e computa t iona l b u r d e n the SNP densi ty 

TUi\%%skygat*)tlieieffec3BcdF 

dif ferent SNP densi t ies on t h e quali ty of LDU maps . The average SNP densi ty of 

the whole sample was i SNP every 2lCb. This was reduced to a densi ty of i SNP 

every 6Kb, s imilar to t ha t of t h e initial t a rge t of the In te rna t iona l H a p M a p 

project , a n d t h e n fu r t he r to i SNP every 8 , l o , 12 a n d 15Kb and cons t ruc ted 

cor responding LDU maps . This reduct ion in densi ty was p e r f o r m e d us ing an 

a lgor i thm, des igned to achieve a u n i f o r m spacing of SNPs on t h e physical m a p , 

avoiding large gaps (f igure 2.1). Star t ing f r o m t h e end of t h e m a p closest to t h e p 

t e lomere t h e first typed SNP was des ignated t h e ' s tar t ing SNP' a n d two other 

SNPs were ident i f ied t h a t were e i ther side of a posi t ion a selected n u m b e r of Kb 

away. The SNP closest to t h a t posi t ion was chosen. The chosen SNP t h e n 

b e c a m e t h e n e w 's tar t ing SNP' a n d t h e process was con t inued along t h e length 

of t h e map . I n t h e case tha t t h e 2 selected SNPs were of equal d is tance f r o m t h e 

chosen posi t ion t h e SNP closest to t h e ' s tar t ing SNP' was chosen. T h e l eng th of 

t h e region (10,098 kb) was t h e n divided by t h e n u m b e r of SNPs selected to 

calculate the average density over the region. The process was repeated using a 

range of Kb dis tances unt i l t h e desired m e a n densi ty was achieved. 

Figure 2.1 Diagram showing the algorithm to select SNPs at reduced densities. 

Here selecting the red SNPs (1,3,6 and 10) at a 6Kb average density. 

SNPi SNP2 SNPs SNP4 SNPs SNP6 SNP7 SNPS SNP9 SNPio 

I ^ I 

A total 1694 SNPs f r o m t h e whole sample i.e. 1 SNP every 5.96Kb, were chosen 

fo r the 6Kb m a p . Due to differences in the SNPs genotyped in the di f ferent 

popula t ion samples , t h e actual densi t ies vary ranging f r o m 1 SNP every 6 .6-8 .8 

Kb (table 2.2). 
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Table 2.2 Number of SNPs at a 6Kb density. 

Population sample No. SNPs Average Density 

AF (African Americans) 1338 7.5 

CA (UK Caucasians) 1211 8.3 

CE (Utah CEPH) 1518 6.6 

AS (East Asians; Japanese and 

Chinese) 
1153 8.8 

2.3.3 Creating LDU maps 

LDU m a p s (Maniat is e t al. 2 0 0 2 ) are b a s e d on t h e Malecot model , 

p= (i-L)Me-®d + L 

which descr ibes t h e decline in associat ion p as a f unc t i on of physical distance d 

(in Kb). The p a r a m e t e r s of the model a re M, t h e m a x i m u m associat ion at zero 

distance, reflect ing associat ion at t he las t m a j o r bot t leneck . L, t h e residual 

association at large d is tance a n d s, t h e exponent ia l decl ine of p wi th distance. 

The Malecot p a r a m e t e r s e and M are e s t ima ted by fitting mul t ip le pairwise 

associat ion probabil i t ies , p, a n d cor responding in fo rma t ion , Kp, us ing 

composi te l ikelihood. W e used the p red ic ted L (Lp) ( M o r t o n et al. 2001), ra ther 

t h a n the es t imate of t h e L pa rame te r s ince Lon jou et al ( 2 0 0 3 ) f o u n d tha t 

es t imat ing L can leading to dis tor t ions in t h e LD m a p t h r o u g h t h e creat ion of 

'holes' be tween ad jacen t SNPs. The LDMAP program,( 

h t tp : / / c eda r . gene t i c s . so ton . ac .uk /pub /PROGRAMS/LDMAP/ ) c o m p u t e s s for 

each interval be tween pai rs of SNPs. T h e p a r a m e t e r s a r e e s t ima ted to maximise 

t h e composi te l ikelihood, t h e n the length of t h e î h in terval , in LDU, is given by 

Gidi. The LDU values a re s u m m e d to give an addit ive m a p . An u p p e r l imit of 3 

LDUs is imposed to ma in t a in the integri ty of t h e map , a n d intervals of 3 LDUs 

are t e r m e d 'holes' . These areas of the g e n o m e have b e e n shown to have h igh 

recombina t ion a n d requ i re m o r e densely genotyped S N P s to resolve t h e holes 

(Tapper et al. 2001), t h o u g h it is possible t h a t holes in i n t e n s e r ecombina t ion 

ho tspots are imposs ib le to resolve. To cons t ruc t a cosmopol i t an (COS) LDU 
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map, pairwise SNP haplo type f requencies were conve r t ed t o counts using the 

a lgor i thm descr ibed by Hill (Hill 1974). The hap lo type c o u n t s were then 

combined across popula t ions by s u m m i n g a m o n g m a t c h i n g pairs of loci. 

Markers were coded consis tent ly so t ha t an allele coded 1 in one populat ion was 

also coded 1 in all o ther popula t ions where the SNP a p p e a r e d . Pairwise 

association probabil i t ies (p) a n d t h e cor responding i n f o r m a t i o n (Kp) were 

compu ted f r o m the haplo types counts t o create a c o s m o p o l i t a n m a p (Collins, 

Lonjou, and M o r t o n 1999). LDU m a p s were created f o r e a c h of the 4 populat ion 

samples and 'cosmopol i tan ' m a p s were crea ted at va r ious SNP densities. 

2.3.4 Evaluating the maps 

The di f ferent densi ty cosmopol i tan LDU m a p s were eva lua t ed by compar ing 

Malecot pa ramete r s , m a p lengths, swept radii a n d t h e n u m b e r of holes. The 

popula t ion specific m a p s were c o m p a r e d in t h e s ame w a y . To investigate the 

SNP densi ty requ i red to resolve a hole in t h e map , SNPs w e r e added to intervals 

of 3 LDU (holes) where they existed in t h e full da tase t , a n d t h e effect on m a p 

length was de te rmined . 

The cosmopol i tan m a p was compared to t h e Kb m a p a n d populat ion-specif ic 

LDU m a p s by f i t t ing t h e mul t ip le pairwise da t a t o t h e cosmopo l i t an m a p , using 

t h e Malecot mode l wi th kb or LDU as t h e d is tance a n d max imis ing t h e 

composi te l ikelihood. The e r ror var iances w h e n fitting t h e pairwise da ta for a 

given popula t ion to t h e k b m a p (VKb), t o t h e popu la t ion specif ic LDU m a p (Vpop) 

a n d to t h e cosmopol i tan m a p (Vcos) a n d t h e degrees of f r e e d o m were calculated 

in t h e following way. The degrees of f r e e d o m were c o m p u t e d as N - ( m - i ) - r, 

where N is t h e n u m b e r of pairs , m is t h e n u m b e r of loci ( the re fo re m - i intervals 

in which e m a y b e es t imated) and r is t h e n u m b e r of add i t iona l p a r a m e t e r s 

es t imated. Ni a n d Nc a re def ined as the n u m b e r of pa i r s of SNPs (pairwise 

associat ion probabi l i t ies) in t h e ith popu la t ion da ta s a m p l e a n d cosmopol i tan 

da ta sample respectively. The n u m b e r of SNP marke r s i n t h e i th popu la t ion 

sample a n d cosmopol i tan sample respectively a re mi a n d mc. 

VKb = -2lnL / (Ni - 2), w h e r e s a n d M are es t imated . 
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VLDU = -2 lnL / (Ni - ( M I - 1 ) - i ) , where M is es t imated a n d s is es t imated in each 

m a p interval . 

Vcos = -2 lnL / (Ni - (Ni / Nc)(mc - i ) - 2), where mc-l in t e rva l s in the 

cosmopol i tan m a p have b e e n previously compu ted u s i n g t h e propor t ion of data 

r ep resen ted by the i th popula t ion sample as Ni/Nc, a n d s a n d M are estimated. 

The relative efficiency (RE) of the cosmopol i tan m a p s w a s calculated, to 

de t e rmine h o w m u c h of the in fo rmat ion was recovered, a s R E = Vpop / Vcos. The 

ra t io of t h e e value es t imated w h e n t h e popula t ion spec i f ic d a t a is f i t ted to the 

cosmopol i tan map , a n d the e value for the cosmopol i t an m a p itself, provides the 

scaling factor . 

2.4. Results 

2.4.1 Evaluation of the cosmopolitan LDU maps at different SNP 

densities 

The m a p lengths range f r o m 187-204 LDU a n d t h e n u m b e r of holes ranges f r o m 

2-7. The n u m b e r of holes is general ly larger in t h e l onge r m a p s , a l though this is 

no t always t h e case as t h e '15Kb' m a p h a s one m o r e ho le t h a n t h e '12Kb' m a p 

b u t is slightly shor ter . The small n u m b e r of holes re la t ive to t h e n u m b e r of 

intervals ( m + i ) shows t h a t t h e LD pa t t e rns a re well cha rac t e r i s ed a n d the SNP 

densi ty a n d coverage is adequa te . 
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Table 2.3 Cosmopolitan LDU maps at different Kb marker densities. 

Density N m s M Lp -2 lnL df V 
LDU 

No. 

LDUs 

No. 

holes 

6 1 3 2 1 7 1 1 6 9 1 1 . 1 5 2 1 0 . 8 9 4 0 . 0 9 1 1 7 9 8 2 2 1 3 0 4 8 0 1 . 3 7 8 1 8 7 . 1 5 2 

8 76236 1289 1 . 1 6 0 9 0 . 8 7 7 0 . 0 9 2 1 0 5 9 3 7 7 4 9 4 7 1 . 4 1 3 1 9 8 . 0 2 5 

10 4 5 2 2 1 992 1 . 1 3 9 9 0 . 8 9 5 0 . 0 9 0 6 1 0 9 1 4 4 2 2 9 1 .381 2 0 4 . 4 1 5 

12 31497 833 1.1331 0 . 8 9 7 0 . 0 9 1 4 0 5 8 1 3 0 6 6 4 1.323 2 0 4 . 5 6 6 

15 2 0 4 8 3 6 7 0 1 . 1 3 8 1 0 . 8 7 0 0 . 0 9 0 2 8 4 3 9 1 9 8 1 3 1.435 1 9 6 . 2 8 7 

N - number of pairs, m - number of loci, S/M/Lp - Malecot parameters, -2lnL - composite -2 log likelihood, df - degrees of freedom, VLDU - residual error variance 

for the LDU map. 
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Over the diSerent densities the maps remain relatively consistent in overall 

length, and the graph (figure 2.2) of the maps shows that the contours are also 

well conserved. This shows that the broad patterns of LD are retained even at 

low densities and the LDU map is robust to such changes in SNP density. 

Figure 2.2 Graph of cosmopolitan maps at different densities. 
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It was decided that a density of 1 SNP every 6Kb representing approximately 

500,000 SNPs genome-wide, was suitable for evaluating the cosmopolitan map. 

2.4.2 Evaluating the fit of the population-specific and cosmopolitan 

pairwise data to the Kb and LDU maps 

The pairwise data were Gtted to the Kb map for each population and the 

cosmopohtan map. The swept radii which show the average extent of LD, range 

from 80-105 Kb with the AF population having the least extensive LD. AP also 

has the lowest M value, 0.66, reflecting a larger effective population size. The 

COS map has values intermediate between the AF and other populations. 
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Table 2.4 Fitting the pairwise data to the physical (Kb) map. 

Population N m £ M Lp -2lnL df Swept radius(kb) 

COS 132171 1691 0 . 0 1 0 2 4 0 .738 0.091 3 3 9 1 0 9 1 3 2 1 6 9 2 .566 97.6 

AF 8 7 1 3 5 1338 0 . 0 1 2 4 3 0.661 0 .136 1 1 4 1 2 3 8 7 1 3 3 1.310 80.4 

CA 7 1 0 9 7 1211 0 . 0 1 0 4 3 0 .877 0 .135 1 0 9 0 4 6 7 1 0 9 5 1.534 95 .9 

CE 1 1 1 0 6 7 1 5 1 8 0 . 0 0 9 5 3 0 .805 0 .197 1 0 2 4 7 8 1 1 1 0 6 5 0 .923 104.9 

AS 6 4 5 8 6 1153 0.0111 7 0.861 0 .204 52781 6 4 5 8 4 0 .817 89.6 

N - number of pairs, m - number of loci, s/M/Lp - Malecot parameter estimates, -2lnL - composite log likelihood, d f - degrees of freedom, Swept radius - i/e, Vkb 

residual error variance on fitting pairwise data to the kb map. 
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The data were then fitted to the LDU maps. LDU map lengths for the 4 

population samples range from 204-272. The AF population has the longest 

map showing less LD overall. The COS map is 187 LDU which is shorter than 

the intermediate value that might have been expected. However, there are only 

2 holes in the COS map and 9-17 holes in the population specific maps. The 

number of holes in the population specific maps was reduced by adding SNPs 

which were genotyped in the original high density data where available. The 

figures in brackets show the map lengths and number of holes when extra SNPs 

were added. The number of holes reduces but not substantially, and the maps in 

general become marginally shorter, except the CE map. 
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Table 2.5 Fitting the pairwise data to the LDU maps. 

Population £ M 2lnL df V 
LDU 

No. LDUs - No holes* 

COS 1.1521 0 .894 1 7 9 8 2 2 1 3 0 4 8 0 1.378 187.15 2 

AF 1.1661 0 .842 7 7 9 1 6 8 5 7 9 7 0 .908 2 7 2 . 4 9 (268.22) 1 3 ( 1 0 ) 

CA 1.0754 0 .957 5 4 0 5 7 6 9 8 8 0 0 .774 209 .62 (208.06) 9 ( 8 ) 

CE 1.1290 0 .924 6 7 2 2 5 1 0 9 5 4 9 0 .614 2 0 4 . 1 9 (204.66) 12 (9) 

AS 1.0811 0 .923 3 3 7 7 7 6 3 4 3 4 0 .532 223 .20 (222.29) 1 7 ( 1 3 ) 

e / M - Malecot parameter estimates, -2lnL - composite log likelihood, df - degrees of freedom, VLDU - residual error variance for the L D U map. 

* values in brackets have extra SNPs added to the maps where available in the original data. 
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The LDU maps for each population sample and the cosmopolitan map were 

plotted against the Kb map (figure 2.3). The maps vary in length with the AF 

map being the longest, the COS map being the shortest and the CE, CA and AS 

maps of similar lengths in between. There is general agreement in the contours 

of the maps, which seem to have blocks of high LD in the same locations (Blue 

area, figure 2.3) and steps of high recombination in the same locations (Red 

area, figure 2.3). The size of the steps seems to be the factor that varies most, 

altering the overall length of the maps. 

Figure 2.3 A graph of all populations. 
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2.4.3 Fitting population-specific pairwise data to the cosmopolitan 

LDU map 

The pairwise data for each population was fitted to the COS map in turn. Again 

the AF population has the highest epsilon and lowest M values. 
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Table 2.6 Fitting the data for each population to the COS map. 

Population £ M -2lnL df V c o s 

AF 1.5323 0.811 8 2 3 3 4 8 6 0 1 9 0 .957 

CA 1 .0659 0 .968 5 9 1 7 2 7 0 1 8 6 0 .843 

CE 1.0231 0 .927 7 0 9 5 2 1 0 9 6 4 5 0 .647 

AS 1 .1859 0.931 3 7 1 9 8 6 3 7 5 8 0 .583 

s/M - Malecot parameter estimates, -2lnL - composite log likelihood, df - degrees of freedom, 

Vcos - residual error variance for the individual population data fitted to the COS map. 

The scaling factors are calculated as the s value estimated when the population 

specific data is fitted to the cosmopolitan map divided by the e value for the 

cosmopolitan map. The relative efficiency for each map is calculated as a ratio of 

VLDU/VCOS. The values range from 91-95% showing the proportion of the 

information which is recovered by scaling using the appropriate scaling factor. 

Table 2.7 Relative efficiency of different maps and scaling factors for each 

population. 

Population v . . V 
LDU 

Vcos 

Relative 

e f f ic iency 

of kb map 

Relative 

e f f i c i ency 

o f COS map 

Scaling 

factor 

relative 

to COS 

map 

AF 1.310 0 . 9 0 8 0 .957 0 .693 0 . 9 4 9 1.330 

CA 1.534 0 . 7 7 4 0 .843 0 .504 0 . 9 1 8 0 .925 

CE 0 .923 0 . 6 1 4 0 .647 0 .665 0 . 9 4 9 0 .888 

AS 0U317 0 . 5 3 2 0 .583 0.651 0 . 9 1 3 1.029 

Figure 2.4 shows scaling of the COS map with the AF scaling factor. The scaled 

map is shorter in length but has only 2 holes whereas the AF map has 13 holes, 

which are known to inflate LDU map lengths. The 2 holes remaining in the 

scaled map are coloured in green (blue in the COS map) and the 13 holes in the 

AF map are coloured red. 
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Figure 2.4 A graph of the AF and COS LDU maps with the COS map scaled by the 

AF scaling factor. 
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Discussion 

A suitable SNP density to create and analyse the cosmopolitan LDU map was 

determined, tmlnng into account the trade-off between the quality of the map 

and the computational time taken to produce the map. With the version of 

LDMAP used a 6Kb density was viable. To determine the effect of reducing SNP 

density, cosmopolitan maps were also made with 1 SNP every 8,10,12 and 15 

Kb. Reducing the SNPs density dramatically, and therefore, reducing the 

information available to make an LDU map, would result in a lower quality 

map. However, it seems that over the range of 1 SNP every 6 to 15 Kb the maps 

are relatively robust to density changes. The LDU maps have similar lengths 

(187-204LDUS) and have few holes relative to the large number of intervals 

considered. Holes generally appear to make maps longer in length, however 

sometimes adding SNPs does not resolve a hole as with COS maps of 12Kb and 

15Kb density. The 15Kb map is actually slightly shorter even though it has 1 

more hole. This is a case where 1 hole which is not resolved by the addition of a 

SNP becomes 2 holes. It has been shown that holes represent areas of the 
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genome which have high levels of recombination and therefore tend to require a 

high number of SNPs to resolve them (Tapper et al. 2003). A density of 6Kb was 

the best map for the purposes of this study, it also reflects the approximate 

initial target of the HapMap project of 500,000 SNPs genome-wide (The 

International HapMap Consortium 2003). Although adding SNPs adds 

information and therefore would result in a map of higher quality and accuracy, 

low density maps are still useful. They provide a basic and robust description of 

the broad LD patterns and can be added to with information provided by more 

SNPs or more individuals at a later stage. 

LDU maps were made for each population at this density, and the maps were 

compared. For each sample the pairwise data were fitted to the Kb and the LDU 

maps (tables 2.4 & 2.5). The fit of the data was better for the LDU map than the 

Kb map as shown by the lower residual error variance. This is expected since the 

Kb map does not reflect patterns of LD. The M parameter in the Malecot Model 

has an evolutionary interpretation, and reflects the haplotype diversity at an 

'effective' bottleneck. The lower value of M in the AF population can therefore 

be explained by the longer time since the last major bottleneck in that 

population compared to the more recent 'Out of Africa' bottleneck in the other 

populations. The 'Out of Africa' hypothesis suggests that a small number of 

individuals left Africa to populate the other continents. This bottleneck caused 

the effective resetting of LD at this point due to low haplotype diversity in the 

relatively small number of founders. The swept radii show the extent of LD and 

the lower value in the AF population shows reduced LD, as does the longer 

length of the AF LDU map relative to the maps of the other samples. More 

recombination results in more or longer steps in the LDU map and therefore a 

longer map overall. Although, the overall lengths of the LDU maps vary, with 

the major difference being between the AF and the other populations, the 

pattern of LD shown by the contours in figure 2.3 remain very similar across 

populations. This shows that the structure of LD is common across populations 

even though the intensity changes. Recombination is not uniformly distributed 

across the human genome but is concentrated at various locations called 

recombination hotspots, which tend to be small regions of i-2Kb (Jeffreys, 

Kauppi, and Neumann 2001). The co-localisation of these hotspots creates the 

similar structure of LD across populations. The intensity of recombination at 
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these hotspots generates the differences between populations of different ages 

(time since last major bottleneck) and is shown in the LDU maps as differing 

lengths. 

Holes in the maps tend to exaggerate the length of LDU maps. SNPs were added 

to holes in the population specific LDU maps in areas where SNPs were 

available in the original high density data. The addition of SNPs resolved some 

of the holes and had the general effect of reducing map length. However, the CE 

map became marginally longer (204.19 to 204.66LDUS) even though 3 holes 

were resolved. Holes which are the result of intense recombination hotspots 

rather than low local SNP density require particularly high SNP density to 

resolve them, suggesting more SNPs are needed in these holes to have a more 

dramatic and predictable effect. 

The relative efficiency is calculated as a ratio of the residual error variances 

when fitting the pairwise population specific data to the COS map and the 

residual error variance of the COS map itself (table 2.7). The relative efficiencies 

for the 4 populations ranged from 0.91 -0.95, showing that 91-95% of the 

information represented in the population specific data can be recovered from 

the COS map with appropriate linear scaling. A loss of between 5 and 9% is 

tolerable and shows that the COS map could indeed be very valuable for a wide 

range of populations. The epsilon value for each population relative to that for 

the COS map was calculated to provide an appropriate scaling factor for each 

population. There is very good correspondence between the scaled and original 

AF LDU maps, shown by plotting against the Kb map (figure 2.4). The scaled 

map had a reduced number of holes (2) due to the increased information 

provided by the extra SNPs and individuals present in the COS map. The 

original AF map has 13 holes, the positions of these holes along the map were 

also plotted and it is evident that the holes towards the end of the map are likely 

to explain the longer length of the original AF map relative to the scaled map. 

There are several benefits to the idea of a cosmopolitan map. One standard map 

can be used for many populations and using data from multiple populations to 

create the map results in a map of higher quality and accuracy since more 

individuals and more SNPs are used, providing a higher resolution map with 
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fewer holes. A standard map which is made available to other researchers would 

reduce the costs involved in association mapping of complex disease, by 

reducing the need to genotype so many individuals for the purposes of defining 

LD in the region under study. LDU maps are useful directly for association 

mapping or for increasing the resolution of linkage maps, as well as 

investigations into population history, such as inbreeding, and evolutionary 

forces, such as selection. Genome-wide LDU maps are integrated into Linkage 

Disequilibrium DataBase (LDDB) and publicly available. A database of scaling 

factors may also be required or investigators could use a population specific 

LDU map in a particular region to calculate a scaling factor which could then be 

applied across the whole genome. There should be no difference in the scaling 

factors required for different chromosomes within a population, since they have 

been under the same evolutionary and recombination conditions. Similar ratios 

of LDU map length across a population over chromosomes would show this. 

Genotyping technology has moved forward with such speed over the last few 

years that modifications will be required to cope with the magnitude of data 

proposed to be made available by the HapMap project. Updates to the LDMAP 

program in terms of the way the algorithm is run and how the data files are 

handled, including the possibility of parallelising the program, will mean that 

genome-wide LDU maps and corresponding cosmopolitan maps are a feasible 

proposition. HapMap data will allow the extension of comparisons of LD 

patterns across populations to a genome-wide scale, allowing validation of the 

use of a single scaling factor across chromosomes. 

2.6 Conclusion 

This work supports and extends the findings of Lonjou et al. (Lonjou et al. 

2003), showing that the carefiil modelling of LD patterns in humans can show 

the similarity in LD patterns across populations. The tendency for 

recombination hotspots to be restricted to particular locations which are co-

localised across populations explains the remarkable correspondence of the 

broad LD structure as shown by the contour of the LDU maps. Cosmopolitan or 

composite LDU maps are therefore a feasible alternative to the costly 
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genotyping of many SNPs and individuals in every population. Thus a standard 

map and a set of scaling factors will be a valuable tool for association mapping 

in many populations. 
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LDU maps of multiple populations 

Ai.l Introduction 

An LDU map is a powerful tool for describing the structure and intensity of 

Linkage Disequilibrium (LD) in the genome (Maniatis et al. 2002). LDU maps 

have been made for various small regions of the genome (Lonjou et al. 2003; 

Zhang et al. 2002), a 10MB region of chromosome 20 (Gibson et al. 2005) and 

also a whole chromosome, chromosome 22 (Tapper et al. 2003). Maps of this 

kind allow us to gain a picture of the structure of LD, a description of the human 

genome in Linkage Disequilibrium Units is useful in various ways. LD patterns 

can be used to determine the most informative SNPs for association mapping, 

and LDU maps can be used for association mapping of complex traits in the 

same way that a linkage map has been used for linkage mapping of major genes 

with great success. Genome-wide LDU maps have higher resolution which 

should allow a disease gene or variant to be located to a much smaller region 

than by linkage (Maniatis et al. 2004). Many aspects of population history and 

demography can be investigated using LDU maps including a measure of the 

age of a population in terms of the effective bottleneck time. This is a measure of 

time since the last major bottleneck taking into account the cumulative effects of 

successive bottlenecks. Processes that have occurred independently in different 

population groups such as the response of different populations to different 

environmental factors, known as selection, can also be studied using LDU maps. 

Tagging haplotypes can reduce the number of SNPs needed to describe a region 

by choosing the most informative SNPs for association mapping based on a 

genome-wide description of LD. This idea and recent technological advances in 

SNP genotyping have allowed many SNPs to be genotyped at costs which are 

much less prohibitive than in recent years prompting the International HapMap 

Project (Daly et al. 2001). The International HapMap project set out to 

catalogue human variation and began releasing genotype data into the public 

domain in December 2003 (The International HapMap Consortium 2003). This 
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data is high quality, increasingly high resolution and provides the ideal 

opportunity to create LDU maps of the whole human genome. 

The first release of HapMap data to contain sufficiently high density data for 

creating LDU maps, on all chromosomes, was release i i (Sept 2004) although 

this only contained data for the CEPH population. A total of 665,335 genotypes 

were downloaded from the release 11, September 2004 public release of the 

data. These data were filtered and 25.8%, 171,927 SNPs were removed for 

Hardy-Weinberg deviations and very rare alleles (MAF <5%). 493,408 SNPs 

remained for creating LDU maps of all 23 chromosomes, giving an average SNP 

density of 1 SNP per 5.6Kb. The LDMAP program creates LDU maps from 

pairwise genotype data, this is a computationally intensive process which 

becomes a problem for creating LDU maps of large regions, or whole 

chromosomes, at high SNP density. Modifications to the LDMAP program by 

more efficient file handling have allowed LDU maps to be created from high 

density data. Further modifications to the LDMAP program allow LDU maps to 

be created in segments which are then rejoined to create a complete map. The 

default settings of 500 loci per segment and a 25 SNP overlap were used for the 

HapMap release 11 data. The Malecot model is fitted for each SNP interval, 

taking into account surrounding SNP pairs containing that interval. However, in 

such high density data not all pairs of SNPs are used, with increasing distance 

LD declines and SNP pairs are less informative and at extremes can introduce 

background noise to the model. For the HapMap data a maximum of 100 

surrounding pairs within a 500Kb distance was determined to be appropriate, 

giving little loss of information whilst producing a high quality map more 

rapidly. These changes to LDMAP and the data produced by the HapMap 

project have made it feasible to create the first genome-wide LDU map of the 

human genome (Tapper et al. 2005). 

A comparison of the linkage map (Kong et al. 2004) and the release 11 LDU 

map, of the CEU sample, showed a remarkable correspondence with 96.8% of 

the variance in the linkage map explained by LDU, calculated by regression 

across chromosome arms for the whole genome. Since the linkage map shows 

recombination over a single generation and LDU maps show recombination 

over many generations (ignoring the small contribution of stochastic variation) 
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the ratio of the two values gives the number of generations since the last major 

bottleneck, taking into account the effects of multiple subsequent bottlenecks. 

This is termed the "effective bottleneck time" (t). In this data t was calculated as 

1,435 generations, multiplied by 20 or 25 years per generation, this gives 28,700 

or 35,875 years. Since human chromosomes have undergone the same 

evolutionary history in terms of opportunity for recombination (except the 

special case of the X chromosome) the values of t should be constant across the 

chromosomes. However, there is a small amount of variation in t showing a 

trend for smaller values of t in the smaller chromosome arms. A process known 

as chiasma interference, means that a cross-over at one location prevents 

further crossovers in close proximity. The linkage map has a function to account 

for this in the final map, however it is a genome-wide measure applied to all 

chromosomes and there is evidence that interference is more intense in the 

small chromosomes (Broman et al. 2002). This may lead to an inflation of the 

linkage map length in the smaller chromosomes and explain the trend for lower 

values of t (Tapper et al. 2005). 

An early release of the HapMap data with genotypes on all 4 samples 

(November 2004, release 13), allowed me to carry out a preliminary comparison 

across populations. Four chromosomes, 20,19,13 and 10 had sufficient SNP 

density over all 4 populations to create LDU maps. A filtering process removed 

duplicate SNPs, very rare markers with an MAF of <5% and those that 

dramatically deviated from Hardy-Weinberg Equilibrium (chi squared >10). 

The total numbers of SNPs across the 4 chromosomes used for LDU map 

construction were, 55,774 for the YRI sample, 69,956 for CEU, 49,068 for CHB, 

and 48,578 for the JPT sample. The high correspondence between the linkage 

and LDU maps showed that 96% of the variance in the LDU map is explained by 

recombination as shown by the linkage map. The effective bottleneck times were 

estimated using chromosome arm data (table 3.1). 
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Table 3.1 Effective Bottleneck Times (t) for 4 populations based on 4 chromosomes 

Effective T i m e in years 

Population bott leneck t ime ( a s s u m i n g a generation 

t=LDU/Morgans =25 years) 

YRI (Yoruba in Ibadan) 1977 4 9 , 4 2 5 

CEU (CEPH Utah 

res idents with ancestry 

from northern and 
1559 38 ,975 

wes tern Europe) 

CHB (Han Chinese in 

Beijing) 
1772 4 4 , 3 0 0 

JPT (Japanese in Tokyo) 1506 37 ,650 

The African YRI sample was the oldest, consistent with an out of Africa model 

and population comparisons on the chromosome 20 region (chapter 2) and 

other studies of multiple populations (De La Vega et al. 2005; Gibson et al. 

2005). The HapMap project has continued to release data at higher SNP 

densities across 269 individuals over the 4 population samples. This data allows 

genome-wide LDU maps to be created and compared across populations. 

A:.2 Aims 

The aim of this chapter is to use the new segmented version of LDMAP 

(LDMAP+) to create LDU maps across the whole genome extending previous 

work to the more complete Phase I release of the HAPMAP data, approximately 

1 million SNPs for all 4 populations. The properties of the maps over the 

different populations will be investigated, and comparison with the linkage map 

will allow estimation of the Effective Bottleneck Time (t) for each sample. 

43 



Methods 

3.3.1 Data 

Phase I (release 16, March 2005) of the HapMap data was the first to contain 

high density genotyping on all 4 populations across the 22 autosomes and the X 

chromosome. These data were downloaded from the bulk download page of the 

HapMap website (www.hapmap.org). A "filtered non-redundant" file was 

downloaded for each chromosome. The files were converted to the .dat file 

format required by LDMAP and were further filtered to remove Hardy-

Weinberg deviations of >10 chi squared and rare SNPs of <5% minor allele 

frequency. 

Table 3.2 The number of SNPs used for map construction for each population. 

Population 
No. 

Individuals 

No. SNPs over 

the g e n o m e 

YRI (Yoruba in Ibadan) 6 0 f o u n d e r s 783 ,366 

CEU (CEPH Utah res idents 

with ances try from 

northern and wes tern 
6 0 f o u n d e r s 756 ,065 

Europe) 

CHB (Han Chinese in 

Beijing) 
4 5 unrelated 6 7 3 , 2 3 2 

JPT (Japanese in Tokyo) 4 4 unrelated 6 6 7 , 3 7 0 

The number of SNPs decreases as the chromosome size reduces, with an average 

of approximately 200-250 SNPs per Mb (1 SNP per 4-5 Kb). 
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Figure 3.1 Number of SNPs per chromosome. 
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3.3.2 LDU m a p c rea t ion 

A new version of the LDMAP program, LDMAP+, was used to create LDU maps 

of the whole genome for all 4 populations. The LDMAP+ program creates LDU 

maps from pairwise data using the Malecot model and composite likelihood as 

previously described. The maps are created in segments from intermediate files 

that are also created from segments of the genotype data file. Making maps in 

segments and reassembling the segments to form a whole map dramatically 

reduces the computational load caused by handling large files. LDMAP+ 

requires the user to input the segment size and the overlap between segments. 

The default values of 1000 loci per segment and an overlap of 25 loci were used 

for the map creation in this case. A small overlapping section at the boundaries 

of each segment ensures that there is no "end effect" at each rejoin point. The 

LDU distance for each SNP interval is calculated from information from 

surrounding SNP intervals. An "end effect" occurs when there is little or no 

information about a SNP interval on one side because the end of the region is 

reached. Therefore there is less information at either end of the region 

compared to the middle. Further options, which determine how many 
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surrounding SNP intervals are taken into consideration when fitting the Malecot 

model to each SNP pair, are also required. The defaults of 500Kb maximum 

distance and 50 intervals were used in this case. Pairwise data included from 

pairs separated by large distances are essentially uninformative because LD has 

declined to background levels. Including such pairs adds no information but the 

computational load increases dramatically. 

3.3.3 Fitting the data to the f inished map 

LDMAP+ creates LDU maps in segments and therefore fits the Malecot model 

to each segment at a time to maximise the likelihood. The data can then be fitted 

to the completed LDU map of the whole chromosome. Malecot parameters and 

genome LDU map lengths can be compared across populations for the whole 

genome and also investigated chromosome by chromosome. 

3.3.4 Comparing LDU maps across populations 

Using the completed LDU maps the structure of LD across the 4 populations 

was assessed using a linear regression of LDU values for SNPs common to all 

four populations. Regression of each population against each of the other 

populations gives 6 comparisons. Regression analysis requires a value for each 

unit of analysis to carry out the highest resolution analysis, SNPs common to all 

4 populations were used. A high number of SNPs are common to all 4 

populations -70%, across all chromosomes. 

3.3.5 Comparing the LDU and linkage map and calculating Effective 

Bottleneck Time (t) 

The linkage map is not known to vary across populations and it is not influenced 

by stochastic historical effects since it reflects only 1-2 generations. The linkage 

map is of lower resolution and generally markers do not extend as far towards 

the telomeres and the centromere as in the LDU maps. However, comparisons 

were made over the shared regions. The LDU maps and linkage maps were split 
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into units of analysis of chromosome arms (n=4i) and at a higher resolution 

deciles (chromosome arm/io on the Kb scale) (n=4io). A regression of LDU 

against Morgans (w), weighted for size by Morgans, allows the linkage and LDU 

maps to be compared and gives the effective bottleneck time in generations (t). 

3.3.6 Comparing values of t across chromosomes 

The release 11 HapMap data on the CEPH sample showed a trend for a smaller t 

value on the smaller autosomes. Since the chromosomes have the same history 

since the last major bottleneck the value of t is expected to be constant across 

autosomes within a population. This is investigated using the chromosome arm 

values of t (LDU/Morgans) and the chromosome arm length described as 

Megabases per Morgan. The X chromosome is a special case because, apart 

from the pseudo-autosomal regions, it does not recombine when it is in the XY 

state in males. For this study the pseudo-autosomal regions were removed prior 

to creating the LDU maps. Since the LDU map represents recombination over 

many generations, a third of the time the X chromosome has been in a non-

recombining state in males. The X chromosome LDU map was multiplied by 

3/2 extending the map by a half to account for this lack of recombination and 

make the X chromosome comparable to the autosomes, when calculating t. 

3.3.7 Fine-scale differences between populations 

Genome-wide LDU maps could be used for detecting signatures of selection. A 

selective sweep is a reduction in variation over a region due to recent positive 

selection. Neutral variation surrounding the selected gene is lost due to the over 

representation of the haplotype carrying the positively selected variant. Positive 

selection in one population but not another (i.e. recent positive selection) would 

be evident as a difference in LD structure in the selected region. This difference 

would show as a lack of variation represented by a block of high LD in one 

population and an LDU "step" in the other. To test this theory a large inversion 

discovered on chromosome 17 and published in 2005 by DeCODE Genetics 

(Stefansson et al. 2005) was investigated. The inversion created two distinct 

lineages called Hi & H2. H2 is common in Europe but found in only ~io% of 
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Africans. The predicted old age of the H2 lineage and the fact that it is very 

homogeneous, suggests that it is under positive selection in Europeans. The 

LDU maps of the YRI and CEU populations were compared in windows of size 

500Kb with a 250Kb slide by a ratio of the LDU/Mb in each window. 

• .̂4 Results 

3.4.1 Properties of the finished maps 

The properties of the LDU maps were compared across population samples for 

the genome-wide maps and also by chromosome. 

Table 3.3 Properties of the genome-wide LDU maps. 

Av. Swept Av. 

radius (Kb) eps i lon 
Av. L Av. M 

Total 

LDU 

length 

Total No. 

holes 

CEU 114 .133 1.040 0 .155 0 .974 5 6 2 5 0 2911 

CHB 107 .988 1.030 0 . 1 7 6 0 .976 6 2 6 8 7 4 8 7 9 

JPT 114 .024 1.036 0 . 1 7 7 0 .975 5 6 6 5 6 3731 

YRI 73 .996 1.111 0 .165 0 .908 7 9 4 9 9 2 9 5 8 

*Values f o r i nd iv idua l c h r o m o s o m e s in a p p e n d i x 1. 

Over the whole genome, the YRI sample has the shortest swept radius, longest 

map, largest epsilon and the smallest M value. The CHB sample has the most 

holes overall. Values for each chromosome are given in appendix 1. 

The swept radius reduces slightly towards the smaller chromosomes. The X 

chromosome has an increased swept radius (figure 3.2). 

48 



Figure 3.2 The swept radii by chromosome. 
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M approaches 1 in all cases but is consistently smaller in the YRI population 

which is consistent with a larger number of founding haplotypes (polyphyletic 

origin). There is no trend across chromosomes; however, chromosome 20 in the 

YRI population is smaller than might be expected, but the difference is small 

(figure 3.3). 

Figure 3.3 The M parameter in the Malecot model across chromosomes . 
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LDU/Mb is higher in the YRI population, there is also a trend for higher 

LDU/Mb values in the smaller chromosomes. This is consistent with the 

reported higher recombination intensity due to size dependent control of 

meiotic recombination (Kaback 1996). The X (23) chromosome has a reduced 

LDU/Mb measure (figure 3.4). 

Figure 3.4 LDU/Mb by chromosome. 
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There are more holes in the larger chromosomes presumably due to increased 

length. However, when the length is taken into account as here, holes per Mb 

show a trend for greater hole density in the shorter chromosomes, perhaps due 

to the increased recombination in these chromosomes which require more SNPs 

to resolve the holes. The CHB population generally has more holes than the 

other populations, this may reflect differences in marker spacing in critical 

regions. 
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Figure 3.5 Holes per Mb by chromosome. 
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3.4.2 Comparing LDU maps across populations 

LDU maps were made using all available SNPs however not all SNPs are present 

in all populations. To enable comparison only the SNPs that were common to all 

four populations were selected. A linear regression between the YRI and CEU 

LDU locations of SNPs common to both maps, for chromosome 22, gives an 

value of 0.9926 and a regression co-efficient of 1.4791 showing the YRI map to 

be 1.4791 times longer than the CEU map (figure 3.6). values for all other 

population comparisons and other chromosomes ranged 0.9926-1 showing an 

extremely high correspondence. 
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Figure 3.6 Chromosome 22 CEU LDU versus YRI LDU. 
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3.4.3 Comparing the LDU map with the linkage m a p and calculating 

Effective Bottleneck Time (t) 

There is a high correspondence between the hnkage map in Morgans and the 

LDU maps of chromosome arms. A regression analysis shows that 99% of 

variation in the LDU map is explained by the linkage maps for chromosome 

arms and 97% in deciles (figure 3.7). These values are calculated as the average 

of the results for each population sample, the values are consistent across 

populations. A ratio of LDU and Morgans (w), weighted by Morgans, gives the 

effective bottleneck time in generations (t) (table 3.4). 
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Table 3.4 Effective Bottleneck time (t) for each population based on the whole 

genome. 

Population 

Effective 

bott leneck t ime 

(t=LDU/Morgans) 

T i m e In years with 1 

g e n e r a t i o n =25 years 

YRl 

CEU 

CHB 

JPT 

2 0 7 3 

1472 

1648 

1 4 8 3 

5 1 8 2 5 (41460) 

3 6 8 0 0 (29440) 

4 1 2 0 0 (32960) 

3 7 0 7 5 (29660) 

*values in b racke t s r e p r e s e n t a gene ra t ion t i m e of 2 0 years . 

Figure 3.7 Graph of Morgans versus LDU over all 4 populations (each data-point 

representing a chromosome arm, n=4 i ) 
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3.4.4 Comparing values of t across chromosomes. 

The autosomes have undergone the same history since the last major bottleneck 

in terms of recombination; therefore the value of t should be constant across 

chromosomes within a population. However, there is slight variation in t across 

chromosomes, with a trend for t to be larger in the larger autosomes, this is 

consistent across population samples (figure 3.8). 
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Figure 3.8 lva lues across chromosome arms (W=Morgans). 
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3.4.5 Fine-scale differences between populations. 

To look at the possibility of using genome-wide LDU maps for detecting 

signatures of selection, a previously published example of a large inversion 

thought to be under selection on chromosome 17 was investigated (Stefansson et 

al, 2005). The LDU maps of the YRI and CEU populations were compared in 

windows of size 500Kb with a 250Kb slide using a ratio of the LDU/Mb in each 

window between the two populations. When these ratios are plotted against the 

Kb scale the gookb region of the inversion, assumed to be under selection, is 

clearly identified as a peak (figure 3.9). A more detailed look at the region 

identified by the peak shows that the YRI LDU map has a step where the CEU 

map has a block (figure 3.10). 
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Figure 3.9 Ratios of CEU and YRI LDU/Mb across chromosome 17, in 500 Kb 

windows. The dashed vertical lines indicate the location of the 900Kb inversion. 
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Figure 3.10 LDU maps of the 3.2 Mb region around the peak for the YRI and CEU 

samples, the dashed lines show the location of the inversion. 
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Discussion 

LDMAP+ and the genotype data produced by the International HapMap project 

has allowed genome-wide LDU maps in 4 populations to be created and 

analysed. The properties of the LDU maps were considered, across the whole 

genome and by chromosome. The maps vary in LDU length between 

populations, with the YRI sample having the longest map overall and for each 

chromosome. This is the same trend as published on chromosome 20 data and 

other samples (Gibson et al. 2005; De La Vega et al. 2005) with the sample with 

African ancestry having the longest LDU map. This is consistent with the YRI 

population being older in terms of time since the last major bottleneck, allowing 

more recombination to accumulate extending the length of steps in the map 

creating a longer map overall. The overall length of the CHB genome LDU map 

is intermediate between the YRI population and the JPT and CEU populations 

(which are very similar in length), though it may be expected to be more similar 

to the CEU and JPT maps. The total number of holes in the LDU maps is small 

relative to the number of SNP pairs considered. Holes are partly due to a lack of 

information at particular SNP intervals, i.e low local SNP density. If there is 

insufficient information to keep the map intact, the upper limit of 3 LDUs is 

given. With high density data such as used here, a value of 2.5 LDUs or greater 

is considered a hole. The number of holes is also affected by recombination 

hotspots, there is evidence that holes occur in parts of the genome with 

particularly high recombination rates (Tapper et al. 2003). The CHB population 

has the largest number of holes overall, and this trend is also present when the 

maps are considered chromosome by chromosome. If holes are due to low local 

SNP density they generally lengthen an LDU map. The excess number of holes 

in the CHB population may explain why the CHB LDU map lengths are longer 

than those of the CEU and JPT populations. Accounting for chromosome length, 

there is a trend for more holes per Mb in the smaller chromosomes. The more 

intense recombination on these chromosomes as shown by LDU/Mb may 

account for this. It is also possible that the higher number of holes may be the 

cause of the higher LDU/Mb on the smaller chromosomes due to artificial 

lengthening of the maps. However this data is of high and relatively consistent 

SNP density across chromosomes, therefore it is likely that the holes represent 

regions of high recombination and not insufficient local SNP density particular 
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to the smaller chromosomes. Although a very high SNP density may resolve a 

hole in a recombination hotspot, it is also possible that some holes may remain 

even when all SNPs are typed (Tapper et al. 2005). 

The M parameter in the Malecot model has an evolutionary interpretation and 

shows the amount of LD at the last major bottleneck the value is approaching 1 

in the "Out of Africa" populations, and slightly lower in the YRI population 

consistent across chromosomes. The lower value of M in the YRI population 

shows its older history and polyphyletic origin, in that recombination had 

already begun to accumulate in this population at a time when the other 

populations were going through a bottleneck. The average epsilon values across 

populations are very similar in the CEU, JPT and CHB samples but larger in the 

YRI sample, which shows a more rapid decline of LD over distance. The swept 

radius is calculated as i/epsilon so it follows that the YRI population has the 

smallest swept radius showing less extensive LD as compared to the other 

samples. LDU/Mb is also larger in the YRI population, again showing the lower 

amount of LD in that population compared to the others. There is a small 

amount of variation in swept radius across chromosomes with a smaller swept 

radius in the smaller chromosomes. This indicates that LD extends less in the 

smaller chromosomes, which is consistent with the known increased 

recombination in the smaller chromosomes (Kaback 1996). This is also shown 

by the larger LDU/Mb in the smaller chromosomes. The particularly high swept 

radius and low LDU/Mb shown on the X chromosome shows that there is more 

extensive LD on this chromosome. This is unsurprising given that the X 

chromosome is unable to recombine when it is in males in the XY form. Any 

SNPs present in the recombining pseudo-autosomal regions were removed from 

the data prior to creating the LDU map. LD on the X chromosome is therefore 

broken up by recombination at a much reduced rate (only when present in 

females) compared to the autosomes. 

The whole chromosome LDU maps were investigated to compare the LD 

structure across populations. The amount of LD varies across populations, with 

more LD in the younger populations where recombination has yet to break it up. 

The broad patterns of LD, however, are shared by populations and shaped by 

the co-localisation of recombination hotspots (Gibson et al. 2005; De La Vega et 
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al. 2005). This is the premise that allows construction of a cosmopolitan or 

standard LDU map that can be scaled to be applied to various populations 

(Gibson et al. 2005). Due to computational constraints, it was not feasible to 

construct and compare cosmopolitan maps by the method of combining 

haplotype counts across populations and creating LDU maps from the combined 

data. However, a linear regression of one population against another, using the 

LDU values for all SNPs common to both populations, was carried out to 

determine the similarity of LD structure. Figure 3.6 shows the regression line 

for chromosomes 22 with YRI LDUs against CEU LDUs. The regression 

coefficient (1.479) shows the relative scale of the YRI map to the CEU map. This 

is consistent with the value of 1.43 between the African American and the 

European samples calculated for the chromosome 20 data presented in Chapter 

2 (Gibson et al. 2005). The high value (0.993) shows the remarkable 

similarity of LD structure across populations, even between African and non-

African populations. This similarity was consistently high across chromosomes. 

Removing SNPs that were not present in all populations for this analysis will 

have removed some of the variation between populations. However, all SNPs 

were used to create the maps and thus SNPs that were removed for this purpose 

would still have had an effect on the LDU values of surrounding SNPs. The total 

number of SNPs removed for this purpose was relatively small (-30%) and the 

SNP density remained high. It is possible that the extremely high R^ values are 

inflated, but only by a small amount. 

The linkage map measures recombination, which is the main force in defining 

LD patterns. The linkage map and the LDU maps for all samples were 

compared. The linkage map, made using CEPH family data, does not vary across 

populations because it does not measure historical recombination. It can 

therefore be used to compare current and historical recombination in all 

population samples. Due to the low resolution of the linkage map in comparison 

to the LDU map, larger units of analysis were required. The genome was split 

into chromosome arms and, for higher resolution analysis, deciles (chromosome 

arm/10 on the Kb scale). It has been shown previously that LDU maps 

correspond well to linkage maps of the same region, since recombination is the 

major influence on LD (Zhang et al. 2002; Tapper et al. 2003). In this case 

linear regression showed that 99% of the variance in LDU across the data is 
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explained by recombination as shown by the linkage map when chromosome 

arms are analysed (figure 3.7). The corresponding value when chromosome 

deciles are analysed is 97%. These values are the average over the 4 population 

samples which showed very similar and consistent results. 

An additive LDU map has great value in association mapping, and can also give 

insights into population history. Linkage maps show current recombination 

over a single generation, whereas LDU maps show recombination over many 

generations since the last major bottleneck. Using this relationship it is possible 

to make an estimate of "effective bottleneck time" (t) in generations. This is a 

measure of time since the last major bottleneck taking into account the 

cumulative effects of subsequent bottlenecks. Estimates of t were calculated for 

each of the 4 populations. Using the data for chromosome arms, t = 51,825 years 

for the YRI population and 36,800 years for the CEU population, 41,200 years 

for the CHB population and 37,075 years for the JPT population (assuming a 

generation time of 25 years) (table 3.4). The CEU value compares well with the 

previous estimate of 35,857 years, from the lower density HapMap data (release 

11) (Tapper et al. 2005). The value of t is expected to be consistent across 

chromosomes, since the chromosomes have undergone the same history in 

terms of opportunity for recombination. However, there is a slight trend for t to 

be larger in the larger autosomes consistent across samples and previously 

noted in the CEU population (Tapper et al. 2005). The phenomenon of 

interference occurs when one crossover event at meiosis inhibits the presence of 

another in close proximity. The linkage map is constructed with a single 

genome-wide measure (Kosambi function) to account for interference on all 

chromosomes, although the effect is more pronounced on the smaller 

chromosomes (shown in mice but not conclusively in humans) (Broman et al. 

2002). It is possible that this leads to the inflation in size of linkage maps in the 

smaller chromosomes. This difference may account for the small variation in t 

seen here. The X chromosome spends a third of the time in males and this 

recombination difference was accounted for when calculating t. The t value in 

the X chromosome arms was slightly below the value expected in the analysis of 

the CEU population using release 11 HapMap data (Tapper et al. 2005), 

although this deviation is not seen here. The higher density of the Phase I data 

may explain this discrepancy. 
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Lastly the fine-scale differences in LDU maps between populations were 

investigated for a specific case of a large inversion, under selection, discovered 

on chromosome 17 (Stefansson et al. 2005). The inversion has created two 

distinct lineages known as Hi and H2. H2 is only found in ~io% of Africans but 

is much more common in Europeans. The H2 lineage is predicted to be older 

and has been shown to be very homogeneous, an explanation for this is that H2 

is under positive selection in Europeans. A difference in selection, in a specific 

region, between populations would result in different LDU patterns at that 

location, due to reduced variation around the selected locus. The LDU maps of 

the YRI and CEU populations were compared in windows of 500Kb (with a 

250Kb slide) by a ratio of the LDU/Mb in each window. When these ratios are 

plotted against the Kb scale the 900Kb region of the inversion, assumed to be 

under selection, is clearly identified as a peak on the graph (figure 3.9). The 

peak is caused by a large block of high LD in the CEU population where there is 

a step in the YRI population, suggestive of a selective sweep in the CEU 

population (figure 3.10). The peak could be a signature of selection in one 

population, but it is also possible that it could be a result of the inversion itself. 

Structural variants that change the location of SNPs relative to one another, 

such as inversions, may have unpredictable effects on the LDU map. Genome-

wide LDU maps provide an opportunity to scan the whole genome for other 

similar peaks, but when analysing such large data sets many peaks will appear 

by chance and there is a multiple testing problem to overcome when applying a 

significance level to this type of analysis. Also using windowing of data requires 

arbitrary definitions of window size and of any overlap, both of which will have 

an effect on the size of the regions and the minimum differences in LDU/Mb 

detectable. However, this striking result shows that fine-scale comparison of LD 

patterns by comparing genome-wide LDU maps may reveal evidence of 

selection, though results must be carefully interpreted. 
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A.6 Conclusions 

Genome-wide LDU maps were created from the HapMap Phase I high 

resolution data on 4 population samples. The LDMAP+ program is able to 

handle such high density data and produce good quality maps in reasonable 

time. The properties of the maps follow previous analyses on the CEU sample 

and preliminary data on 4 chromosomes from an early HapMap release. These 

results show the similar broad structure of LD across the whole genome, 

backing up the results on chromosome 20 presented in chapter 2. The genome-

wide LDU maps allow values of effective bottleneck time (t) to be estimated 

allowing estimates of population age. The fine-scale difference in LD patterns 

between populations, detected by comparison of LDU maps, shows a possible 

novel method for detection of selective sweeps. 
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Chapter 4 - Extended tracts of homozygosity in 

outbred populations 

a , i Introduction 

An individual has two sets of chromosomes, one from their mother and one 

from their father, and therefore has two alleles at each locus on the autosomes. 

The two alleles can be different, called heterozygous, or they can be the same, 

called homozygous. There are two types of homozygosity; when the two alleles 

are identical by state but arise from two different sources this is called 

allozygous, or when the alleles are identical by decent and thus come from the 

same source this is called autozygous (figure 4.1). Autozygosity will not affect 

just a single marker but will extend to neighbouring markers on the 

chromosomal background that is inherited. This results in some individuals 

having long tracts where homozygous markers occur in an uninterrupted 

sequence. 

Figure 4.1 Pedigree illustrating allozygous, autozygous and heterozygous. 
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Since recombination interrupts long chromosome segments over time, the 

length of a homozygous segment depends in part on the time since the last 

common ancestor of the parents, the source of the chromosomal segment that is 

identical by decent. It is therefore expected that longer tracts of homozygosity 

would be found in inbred populations as opposed to outbred populations. 

However, long tracts of homozygosity have been recorded previously in CEPH 

individuals (Broman and Weber 1999). 8,000 short tandem-repeat 

polymorphisms (STRPs) in CEPH families were analysed and several families 

with long homozygous segments exceeding 10 centiMorgans (cM) in length were 

identified. The authors examined the roles of possible typing error, back 

mutation of STRPs, gene conversion events and the limitations imposed by 

locally low marker density in determining the limits of homozygous segments. 

In some pedigrees they were able to determine relationships between 

apparently unrelated individuals, but there remained a degree of autozygosity 

approaching or exceeding that expected in the progeny of a first cousin mating 

where relationships were not detected. 

The International HapMap project, which provides very densely genotyped 

Single Nucleotide Polymorphism (SNP) markers across the whole genome in 4 

outbred populations, provides an ideal opportunity to investigate tracts of 

homozygosity. Single nucleotide polymorphisms are thought to be of more 

ancient origin than STRPs. We might therefore expect to see, in comparison, 

fewer and shorter homozygous tracts in SNP maps. However, this is partly offset 

by the relatively reduced mutation rate of these markers which might allow the 

longer tracts to remain unbroken over more generations. In addition to 

autozygosity another explanation for long tracts of homozygosity is that they 

appear in parts of the genome where there is relatively little recombination, due 

to high linkage disequilibrium (LD). LD is the tendency for alleles to be 

inherited together more often than would be expected under random 

segregation. In the human genome there are regions of strong LD broken up by 

small regions of intense recombination (Jeffreys, Kauppi, and Neumann 2001). 

Blocks of LD represent regions of the genome where a small number of 

haplotypes account for most of the variation. An individual inheriting two 

copies of a common haplotype in a particular location would be homozygous 

over that region. LD as represented by LDU maps (Maniatis et al. 2002) shows 
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the contour of the LD patterns and identifies steps which correspond to regions 

of high recombination and plateaus which reflect recombination cold regions 

(high LD) (Zhang et al. 2002). LDU maps of the 22 autosomes and the X 

chromosome based on the Phase I HapMap data have been constructed using 

the LDMAP+ program. These maps are described in chapter 3 and available in 

the Linkage Disequilibrium DataBase (LDDB) (Genetic Epidemiology and 

Bioinformatics group 2008). They can be used to investigate the extent to which 

high LD corresponds to tracts of homozygosity. 

Extended tracts of homozygosity in a particular region of the genome, common 

among individuals within a population, may indicate a selective sweep. An 

example of a gene suggested to be under positive selection is the lactase gene on 

chromosome 2. The LCT gene encodes the enzyme lactase-phlorizin hydrolase. 

There is a great deal of epidemiological data in favour of recent positive 

selection at this locus. The ability to use this enzyme to digest lactose during 

adulthood varies dramatically across worldwide populations, with particularly 

high rates among northern Europeans. A high rate of lactase persistence in 

European populations can be explained by positive selection resulting from 

increased nutrition from dairy, the only dietary source of lactose; and the 

geographic distribution of lactase persistence matches the distribution of dairy 

farming (Bersaglieri et al. 2004). 

Various factors may influence the length, abundance and location of 

homozygous tracts including, mutation rate, population structure, uniparental 

disomy (UPD), natural selection, recombination, and linkage disequilibrium 

patterns. The extremely dense SNP genotyping in the HapMap sample allows 

examination of the distribution, size and location of homozygous tracts and 

their relationship to recombination and linkage disequilibrium patterns and 

also consideration of other mechanisms. 

4..2 Aims 

Relatively short segments of homozygosity in the apparently outbred HapMap 

populations would be expected, and longer tracts would be expected to be 
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uncommon and restricted in length. The aim of this work is to characterise 

extended tracts of homozygosity (>iMb) in the human genome as represented 

by the HapMap data and examine the relationship between the location and size 

of long tracts of homozygosity and the role of recombination and linkage 

disequilibrium patterns; and also examine evidence for recent inbreeding 

having a role in the formation of long tracts of homozygosity in some HapMap 

individuals. 

&.A Methods 

4.3.1 Data 

The data examined were produced by the International HapMap Consortium 

and released into the public domain via their website (International Hapmap 

Group 2005). Phase I of the HapMap data provides over a million SNPs 

genotyped in 209 unrelated individuals; 60 CEPH Utah residents with ancestry 

from northern and western Europe (CEU), 45 Han Chinese from Beijing (CHB), 

44 Japanese from Tokyo (JPT) and 60 Yoruba from Ibadan, Nigeria (YRI). The 

average SNP density is 1 SNP every gkb (The International HapMap Consortium 

2003^ 

The HapMap Phase I data (non-redundant files that have passed quality 

control) were downloaded from the HapMap website and include 3,970,277 

genotypes across the 22 autosomes over all four populations. These data were 

further filtered to remove genotypes with significant deviation from Hardy-

Weinberg (Chi square >10) and minor allele frequencies below 0.05. The total 

number of genotypes from each population were 728,353 genotypes from the 

CEU sample, 744,006 genotypes from the YRI sample, 644,060 genotypes from 

the CHB sample and 639,460 genotypes from the JPT sample. 

4.3.2 LDU maps. 
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Genome-wide LDU maps were constructed for the 4 populations of the HapMap 

data following Maniatis et al. (2002) and Tapper et al. (2005). LDU maps were 

constructed, using the LDMAP+ program, from multiple pairwise association 

data using a model which describes the decline in association, p, with distance: 

p= (i-L)Me-Ed + L. The LDU distance is calculated as eidi for each interval i of d 

kilobases between a pair of SNPs and LDU locations are computed by 

summation over intervals. The additive maps produced are available from 

LDDB and described in chapter 3. 

4.3.3 Definition of extended homozygous tracts. 

The genotypes were coded 11,12, or 22 with 11 and 22 being the homozygotes. 

For each individual starting from the p telomere of chromosome 1 each SNP was 

identified as either homozygous or heterozygous. An extended homozygous tract 

was defined as an uninterrupted sequence of homozygous SNPs spanning at 

least iMb in a single individual. For each extended homozygous tract, the 

starting SNP and kb location, the ending SNP and Kb location, the number of 

SNPs it contained and the starting and ending LDU locations were recorded. 

SNPs with missing data ('NoCall's) were ignored. The average SNP density 

across all populations is approximately 1 SNP every 5 Kb. Since a locally low 

SNP density may artificially extend a homozygous tract, tracts with an average 

SNP density of less than 1 SNP per 5Kb (200 SNPs per Mb) were excluded. Also 

omitted were the centromeric regions and acrocentric p-arms for the same 

reason. 

4.3.4 Examining the extended homozygous tracts 

The number of tracts (>i Mb) and maximum tract length were determined for 

each population sample. To determine the relationship between the amount of 

LD and the number of homozygous tracts present, for each sample, the whole 

genome was analysed in 1 Megabase segments. Each chromosome was split into 

1 Mb segments, the remaining shorter segments at the end of each chromosome 

were also included. The LDU/Mb ratio was calculated for each 1 Mb segment 

using the LDU map for that population, and the mean tract coverage in 

kilobases obtained. For each population this was computed by summation, over 
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all individuals, of the length (Kb) of homozygous tracts covering each i Mb 

segment and dividing by the number of individuals (figure 4.2). 

Figure 4.2 Calculating tract coverage for each iMb segment in turn. 

Chr 1 

0Mb 1Mb 2Mb 3Mb 

To determine whether the location of homozygous tracts is related to LD 

structure the correlation between tract coverage and LDU/Mb was obtained and 

linear regression was performed using LDU/Mb as the dependent variable and 

tract coverage as the independent variable. The units of analysis were 1 Mb 

segments of the genome. Analyses were carried out for each population sample 

separately and for the concatenated sample. To confirm that the location of 

homozygous tracts is directly related to the recombination pattern the same 

analysis was carried out but with the linkage map in cM/Mb replacing LDU/Mb. 

This is important because, although at a lower resolution, the linkage map is 

based on an entirely independent sample, whereas the structure of the LDU 

map created from the HapMap data must partly reflect the presence of 

homozygous tracts in that sample. The linkage map used (Kong et al. 2004) 

comprises 14,759 polymorphic markers. 

A correlation analysis between tract coverage values, in each megabase, for all 

population pairwise combinations allowed assessment of whether the 

distribution of tracts across the genome was similar in all populations, i.e. If a 

region of the genome with a large number of tracts in one population also had a 

large number of tracts in the other populations. 

Next the frequency of tracts for each individual was observed, and the average 

tract counts, per individual, for each population were calculated. The amount of 

LD in regions where homozygous tracts occur was investigated for each 

6 7 



individual and compared to the genome-wide average LDU/Mb. Three 

individuals were highlighted as having more numerous and longer tracts than 

others in their respective population samples. To examine if the LDU/Mb in the 

homozygous regions of these three individuals is significantly different from the 

levels in other individuals from the same sample, a regression model weighted 

by physical size in Mb was used. LDU/Mb was the dependent variable and x was 

the independent variable with x=i for individual NA12874 and x=o for other 

individuals in the CEU sample. The same model was used with 2 variables (x, 

xi) for the 2 outliers in the JPT sample. 

To gain a preliminary look at the relationship between homozygosity and 

selection the locations of tracts were investigated. The numbers of individuals 

(CEU sample) with a tract in each iMb segment across chromosome 2 were 

plotted against the physical map. Chromosome 2 was chosen as it contains the 

LCT gene which has been shown to be under selection, and positively selected in 

Caucasian populations (Bersaglieri et al. 2004). 

a.d Results 

Across the four populations a total of 1393 homozygous tracts met the criteria 

defined in the methods section. The longest tract over all populations was 17.9 

Mb in an individual from the JPT sample (table 4.1). This tract comprises 3922 

consecutive homozygous SNPs. 

Table 4.1 Number and maximum length of homozygous tracts identified. 

HapMap Population Sample 

No. 

Unrelated 

Individuals 

No. 

Tracts 

Max. 

Length Mb 

CEU (CEPH Utah res idents with 

ancestry from northern and wes tern 6 0 4 9 8 6 .48 

Europe) 

CHB (Han Chinese Beijing) 4 5 2 6 3 2 .63 

JPT (Japanese Tokyo) 4 4 3 7 0 17.91 

YRI (Yoruba Ibadan Nigeria) 6 0 2 6 2 11.14 

ALL 2 0 9 1393 1 7.91 
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Correlation and linear regressions between LDU/Mb and tract coverage allowed 

the relationship between homozygosity and LD structure to be determined. 

Analyses were carried out for each population sample separately and for the 

concatenated sample. All of the correlations were significant at p<o.oooi with 

correlation coefficients of around -0.3 for all samples. The regression analyses 

were also all significant (p<o.oooi) with values ranging from 8-10% (table 

4.2). 

Table 4.2 Correlation and regression between LDU/Mb and tract coverage. 

Population 

sample 

Correlation 

Coef f ic ients 
Regress ion 

CEU -0.32 0 .10 

CHB -0.29 0 .09 

JPT -0.30 0 .09 

YRI -0.28 0 .08 

ALL 0.29 0.08 

The same analysis was carried out using the linkage map (cM/Mb) instead of 

the LDU map (LDU/Mb). This confirms the relationship with LD, or in this 

case recombination, since the linkage map is based on an entirely independent 

sample. Again all the results were highly significant (p<o.oooi) with correlation 

coefficients of -0.2 and values ranging 4-5% (table 4.3). 

Table 4.3 Correlation and regression between cM/Mb and tract coverage. 

Population 

s a m p l e 

Correlation 

Coef f ic ients 
Regres s ion R̂  

CEU -0.23 0 .05 

CHB -0.21 0 .04 

JPT -0U21 0 .04 

YRI -0.21 0 .04 

ALL -0.21 0 .04 
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Next the correlation between tract coverage values across populations was 

examined to determine if the distribution of homozygous tracts in the genome 

was similar in the different populations. The results showed that all correlations 

were significant (p<o.oooi) with correlation coefficients ranging 0.27-0.68. The 

YRI and CEU samples are the least similar and the CHB and JPT samples are 

the most similar (table 4.4). 

Table 4.4 Correlation of 'tract coverage' values across all populations 

CHB JPT YRI 

CEU 0.51 0 .46 0 . 2 7 

CHB 0 .68 0 . 3 0 

JPT 0 . 3 0 

The distribution of tracts per individual across the 4 populations was also 

examined. The average tract count per individual ranged from 4.4 - 8.4 for the 4 

populations. The YRI sample had the fewest homozygous tracts per individual 

and the JPT sample had the most. Three individuals were found with 

particularly high tract counts, one in the CEU sample (NA12874) and two in the 

JPT sample (NA18992, NA18987) (figure 4.3). 
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Figure 4.3 A bar graph for each population. 
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Each bar on the graph represents an individual and the Y-axis (0-40) shows a count of the number of tracts in that individual (individuals ordered by magnitude). 

The horizontal line and the figure on the graph show the mean average tract count for each population. The three stars show the three individuals with particularly 

high tract counts. 
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The amount of LD in regions where homozygous tracts occur was investigated 

for each individual, averaged for each population, and compared to the genome-

wide average LDU/Mb for each population. This confirmed the correspondence 

between long homozygous tracts and regions of strong LD shown previously, 

since the mean LDU/Mb in regions containing homozygous tracts is much lower 

than the genome average (table 4.5). 

Table 4.5 LDU/Mb in tract regions and genome-wide for each population. 

Population 
Genome-wide Tract reg ions 

LDU/Mb LDU/Mb 

CEU 20.2 8.3 

CHB 22.6 6.7 

JPT 20 .4 7.3 

YRI 28 .4 15.4 

However, the three individuals highlighted in the previous analysis stand out as 

outliers as they have tracts in areas that do not have particularly high LD, in 

fact, have levels of LD approaching the genome average for their populations, 

ranging from 15.1-17.6 LDU/Mb for the l CEU and 2 JPT individuals (figure 

4.4). 
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Figure 4.4 Graph showing LDU/Mb for each individual, the 4 populations shown. 

Circled are the 3 individuals with particularly high tract counts and higher 

LDU/Mb, in tract regions, than the rest of the individuals i n their populations. 
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The three individuals, highlighted above, NA12874, NA18992 and NA18987 

have tracts in regions of significantly higher LDU/Mb (less LD) than is typical 

for homozygous tract regions. Regression analysis shows that NA12847 explains 

42% of the variance in LDU/Mb in the tract regions of the CEU sample and 

NA18992 and NA18987 together explain 89% of the variance in the JPT sample. 

Chromosome 2 and the CEU sample, were chosen to highlight the relationship 

between selection and homozygous tracts, since chromosome 2 contains the 

LCT gene known to have been under positive selection in Caucasians 

(Bersaglieri et al. 2004). The number of individuals with a tract in each iMb 

segment across chromosome 2 was plotted. The graph clearly shows a peak 

where there is a particularly large number of people within the population with 

a tract, 26 out of 60 (43%). This peak aligns with the location of the lactase gene 

at -136Mb (figure 4.5). 
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Figure 4.5 Graph of chromosome 2 with the number of individuals with a tract for 

each iMb segment plotted and the location of the lactase gene, which aligns with 

an obvious peak. 
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Discussion 

This work has shown that homozygous tracts are remarkably common and long 

even in unrelated individuals from the apparently outbred populations 

represented in the HapMap data. The evidence indicates that homozygous tracts 

are generally found in regions of relatively extensive LD and locally low rates of 

recombination. The presence of relatively short haplotype 'blocks', regions of 

low haplotype diversity, has been well known for several years (Daly et al. 2001). 

However, the presence of much longer homozygous tracts (lengths sometimes 

greatly in excess of one megabase) was not widely anticipated. 

Homozygous tracts can occur when a child inherits the same chromosomal 

segment from both parents, who themselves inherited it from a common 

ancestor. There are two broad mechanisms by which this could happen. One 

explanation is that the parents have a relatively recent common ancestor so 

there has been little opportunity for recombination to break up the segment. A 

second possibility is that any relationship between the parents is distant but a 
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lack of recombination in the region (i.e. a region of high LD) has enabled the 

ancestral segment to persist intact. 

This study considers only homozygous tracts that exceed i Mb in length, but 

there are numerous smaller segments many of which must contribute to the low 

haplotype diversity characterised in blocks. Given this, the true level of 

homozygosity in the genome is likely to be much greater than indicated by this 

analysis of the more extreme examples. These results show that extensive LD in 

a region correlates with a higher proportion of homozygous tracts in that region. 

This is because genomic regions with low recombination (high LD) allow 

particularly long chromosome segments to remain intact over time, increasing 

the chance that they come together in an individual as a homozygous tract. 

Analysis of tract coverage between populations shows that tracts tend to be co-

localised in all populations. Patterns of LD are also highly similar across human 

populations (De La Vega et al. 2005; Gibson et al. 2005) and follow the same 

trends as our analysis here, with JPT and CHB having the most similar and YRI 

and CEU having the least similar LDU maps. The co-localisation of 

recombination hot-spots in all human populations allows long homozygous 

tracts to persist in the shared intervening regions which have low meiotic 

activity. As might be expected, the YRI population has the fewest long tracts per 

individual (4.4), reflecting the longer time over which recombination has been 

breaking haplotypes in this sub-Saharan African population. 

It is assumed that the four HapMap samples are representative of relatively 

outbred human populations and that homozygosity is not particularly 

exaggerated due to a limited number of haplotypes or 'atypical' individuals 

represented in the sample. However, there is little information about the 

individuals that contributed to the samples; sample sizes of 44 to 60 unrelated 

individuals are fairly small and it is conceivable that the samples are not truly 

representative of the whole of the population in each case. Three individuals 

stood out in this analysis as having particularly long tracts and high tract 

counts, one in the CEU sample and two in the JPT sample. This study has 

shown that the tracts in these individuals are not associated with regions of 

elevated LD, in contrast to tracts in other individuals. Therefore it is reasonable 
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to suggest a different mechanism accounts for the tracts in these cases, such as 

recent inbreeding, suggesting that the parents of these individuals have an 

unknown relationship which goes back a comparatively small number of 

generations. In the most extreme case (NA18992) long homozygous tracts cover 

~ 4% of the genome of that individual. Since only contiguous tracts longer than 

iMb are included here, the total amount of homozygosity is likely to be much 

higher. Autozygosity of 6% is to be expected in the offspring of a first cousin 

mating (Broman and Weber 1999). The same two Japanese individuals have 

been identified independently by the HapMap Consortium as showing 'an above 

average degree of cryptic relatedness' (Altshuler et al. 2005). The same analysis 

did not identify the CEU individual (NA12874), however. It seems reasonable to 

assume that the impact on the LDU map by including these three individuals is 

modest although this was not tested directly. 

Aside from inbreeding and LD, there are other mechanisms which might 

contribute to the observed extent of homozygosity. There are different types of 

Uniparental Disomy (UPD); isodisomy is the form where a child inherits two 

copies of the same chromosome from the same parent. This results in the child 

being homozygous at all loci. Segmental isodisomy can occur when a part, but 

not the whole, chromosome is affected. UPD can cause various diseases when it 

occurs in a region with imprinted genes, and can also cause rare recessive 

disorders. A case of maternal UPD of chromosome 1 was found by chance (Field 

et al. 1998) as there were no apparent phenotypic effects. This suggests that as 

well as isodisomy for rare recessive genes or UPD in imprinted regions, some 

cases of UPD may be asymptomatic and perhaps quite common. The 

phenomenon has been little studied where not associated with a disease, 

however, scanning methodologies to detect UPD are being developed, initially 

as a diagnostic tools, but could be used to answer this question in the future 

(Bruce et al. 2005; Altug-Teber et al. 2005). 

Heterozygous deletions can sometimes be detected by apparent homozygosity 

over an extended region. For example, Huie et al. found a novel 8Kb deletion in 

a patient with glycogen storage disease type II. Apparent homozygosity may 

serve as an indicator of the presence of a heterozygous deletion but other 

molecular techniques are required to be definitive (Huie et al. 2002). SNPs with 
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missing data were not included in this analysis, however, when a run of markers 

with missing alleles is detected this may indicate a homozygous deletion. 

Deletions might account for a few homozygous tracts but we presume that none 

of the long tracts we have examined here reflect cryptic deletion. 

Particularly long haplotypes that are common in a population may be evidence 

of a region that has undergone selection, or may indicate a region that is a cold 

spot for mutation and recombination. The lactase gene has been shown to be 

under positive selection and aligns with a region of the genome that has a high 

number of individuals with a homozygous tract within the CEU population 

sample. It seems that selection may contribute to the homozygous tracts in 

some regions of the genome particularly when tracts are common in individuals 

within a population. Recombination as shown in the LDU map is likely to be 

having a larger effect in general. The amount of homozygous tracts associated 

with selection and the extent to which selection is detectable by homozygous 

tracts requires further study. 

The HapMap data undergoes extensive QC procedures but genotyping or 

reporting errors are still possible. The recent release of Phase II data, allowed 

confirmation that the longest tract detected (17.9Mb) was still present and was 

not the result of a problem with the original data. The Phase II data comprises 

3,902,623 genotypes that passed QC for the JPT sample. The 17.9 Mb 

homozygous tract in individual NA18992 was identified, the same region, which 

had 3,922 SNPs in Phase I, had 12,778 SNPs in Phase II. 11 heterozygotes break 

the tract into 12 pieces, the largest of which was 5.619 Mb. No two heterozygotes 

were adjacent. The presence of only 11 heterozygotes in a contiguous tract of 

12,778 otherwise homozygous SNPs spanning 17.9 Mb suggests that these 11 

comprise typing errors and/or relatively recent mutations. It seems therefore 

that the much higher density genotyping in Phase II will break some of the very 

long tracts but the strong relationships to the LD structure and evidence for 

inbreeding will be preserved. 
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4.6 Conclusion 

This work has shown that homozygous tracts are common, in some cases very 

long, and, in a few cases reflect recent inbreeding within the pedigree. In 

general, long homozygous tracts reflect the presence of long ancestral 

haplotypes that remain intact because of locally low rates of recombination or, 

more rarely, other mechanisms such as UPD, deletions and in particular 

locations, selection. Since only homozygous tracts >lMb were considered, the 

degree of homozygosity characterized is likely to be conservative. It is 

conceivable, that the abundance of homozygous regions and their contribution 

to long regions of high LD will significantly reduce our ability to fine map 

disease genes using association, and affect the interpretation of autozygosity 

mapping studies. 
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candidate region or gene fo r Congenital Nephrotic 

Syndrome with Diffuse Mesangial Sclerosis (DMS). 

R.l Introduction 

DMS is a rare form of Congenital Nephrotic Syndrome, a rare inherited disorder 

characterised by protein in the urine (proteinuria) and swelling of the body 

which leads to kidney failure. The age of onset and symptoms vary and overlap 

between forms. Some can be managed with medication, but different forms and 

individuals respond differently to treatment; CNS can be severe and lead to 

death in early childhood (MedlinePlus 2007). In this study the prognosis is poor 

for the affected individuals, there is no specific therapy and end stage renal 

failure can be expected by the age of 5. The index case Pedigree ID3 died before 

the age of 2. There are several forms of congenital nephrotic syndrome in which 

causal genes have been identified. Based on phenotype these genes are ruled out 

as a cause, but different mutations in these genes need to be considered. 
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Table 5.1 A summary of genes involved in congenital nephrotic syndromes. 

Table 1. Hereditary Proteinurji Syiwlromes. 

Diseasê  
Congenital nephrotic syn-

drome of t te Finnish 
t /pe (CNF, orNPHSl ; 
OMIMno.2)63CO) 

Corti CD steroid-resistant 
nsphrotic syndrome 
(SRNS.o-NPHSZ; 
OMIM no. 60476q 

Herson's syndrome 
(OMIM no. 150325) 

Nail-patella sftidrome 
(OMIM no. 161200) 

Denj's-Drash syndrome 
lOMIM no. I9J080) 
and Fraslcr's syn-
drome (OMIM no. 
135Wa 

focal segmental glomeru-
losclerosis I'FSGSl; 
OMIM no. 60327*) 

focal segmental glomeru-
losclerosis (FSGS2; 
OMIM no. 6039651 

Mode of 
inheri-

tancet locus and Gene Protein 

AK l O q H j , N P H a Nephrln 

AR Iq25-31, (VPH52 Fbdodn 

Mechanism 

Mutations in the slit-diaphragm protart 
nephrin, leading to maHunctico or 
absence of tlie slit diaphragm 

Mutations in llie slit-diaphragm protein 
pcdodn, leading to malfunction or 
absencs of l l ie slit diaphragm 

AR 3p21.Mft jS2 Lamlninj32 Mutations in tlie adult glcmerularbaseinent 
chain membrane iaminin-11 isoferm. leading 

to abnormalities o fpodogte and slit-
diaphragm de.'elopmait and functicn; 
medianism leading to nephropttlty not 
complete!;' understood 

Clinical Description and Comments 

Usually massk'e proteinuria in utero, with onset f>f nephrotic syn-
drome within the first weetis o f life; placenta weiglit more than 
25% of birth weight: Wdnef transpla n W i m only curat;,'e therapy; 
milder proteinuria plienotypesometimes obsereed; resistant 
to corticosteroid and (j'dophosphamidetheiap)'; genefiictest 
ODmmerdall)' available 

Onset and sa'grify of nephropattny varying (rem earffonset nephro-
sis to mild proteinuria starting in ear^' adulstiood, resistance 
to immunosuppresswecorticosteroidtherapy. early minimal 
changes, and focal segmartal glomerulosclerosis in later stag-
es; genetic test commerdaify available 

Onset of nephrosis soon afterbirth; development of diffuse me-
sangial sclerosis and microoaia ((xed narrowing of the pupil) 

AD I M X I B LMXIB 

AD l l p H . W n VkTl 

AD l@(|13,j4CnW 

Mutations in * e IMXIB transrription factor, 
which regulates pcdoqte genes encod-
ing nephriii, pododn,and CD2-asscciat-
ed protein, as well as C 0 L * 3 and 
C0U.45 type IV collagen 

Mutaticn s in lite Vt'Tl transcri ption factor, 
whidi regulates a number of podoQte 
genes: meclranism leading to nephropa-
tlw not completely understood 

«-.toinin-4 tvlutatlcns in act!nfilament-cross-linking 
cf-actinin-4. leading to abncrmalities 
in podogtes, prcWbly by dfsregulation 
ofthe Jjot-prccess crtoskeleton 

Va riable fMnetrance; nephrrtic syndrome as wel I a s skeletal and 
nail d)'splasias in children 

Male psudol«rmaphn3ditism combined with prcgresswegloma u-
lcpatlt>-, early onset of nephropathy, and end-stage lenal disease 
bf 3 years of age in Denys-Drash s-yndronie; later onset of ne-
phropathy in Frasier's ^ndrome, witli de'^elopnientoftccal 
segmental glomerulosclerosis; resistant to any treatment ex 
cefit k i dn^ transplantation 

Mild p roteinur ia In adolescence or early adulthsod; sbw progres-
sion to focal segmental sderosis and end-stage renal disease 
in aduWiood 

AD 11421-22. TAPOS TWCS Mutaticds in TRFCg, a caldum-permeable Proteinuria in adolescence or early adulthocd; progression to focal 
cation diannd, leadi ng to abnormal segmental glomerulosclerosis and end-stage renal disease in 
pocbcytefunction; medianism leading to adulliiood 
nephropatly not com pletely underst)3od 

* Short forms of tlie disease and iiie corresponding Online Mendelian Inheritance in Man (OMIM) numbers are gwen in parentlieses. 
t A R denotes aitoscmal recessrre, and AD autosomal dominant. 

(Tryggvason, Patrakka, and Wartiovaara 2006) 
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In this study there are 5 affected individuals who have non-syndromic DMS 

which appears most similar to Pierson's syndrome but without eye symptoms 

(microcoria), DMS is also a feature of Denys-Drash Syndrome. Therefore, the 

regions around LAMB2 and WTi are of particular interest as are genes known to 

interact with these loci (table 5.1). The PLCEi gene has also recently been found 

to be associated with nephrotic syndrome in individuals with non-syndromic 

DMS histology offering a further gene of interest (Hinkes et al. 2006). The 

phenotype described by Hinkes et al. best matches the phenotype in this study 

and is therefore the strongest candidate. 

The family involved originates from Pakistan and has a complex and incomplete 

pedigree with a large degree of consanguinity (appendix 2). The affected 

individuals are all from the same, most recent, generation and originally 

consisted of 3 males and 1 female. The female was less severely affected, which, 

it was speculated, may be due to early treatment and a better response. 

However, it was later determined, after withdrawal of treatment, that the female 

was no longer suffering from the disease. The disease is assumed to be 

autosomal recessive due to the patterns of inheritance in the pedigree and X-

inactivation work carried out to rule out an X-linked pattern (personal 

communication Prof. D. Robinson, Wessex Regional Genetics Laboratory). 

Urine tests were also carried out on all available family members to check for 

proteinuria and detect any other mildly affected individuals but no additional 

cases were found. The consanguinity in this pedigree and the presence of just a 

few affected individuals within one family means that autozygosity mapping is 

likely to be the most effective and efficient approach to finding the gene 

involved. 

The concept behind autozygosity mapping assumes that a large region of 

homozygosity shared among affected individuals is likely to contain the disease 

variant (Lander and Botstein 1987). Consanguinity in the pedigree means that 

the affected child is likely to have inherited the same mutation on the same 

haplotype from both parents, who in turn, inherited it from a common ancestor. 

If the mutation occurred recently within the family the region of homozygosity 

is expected to be large since there would not have been time for recombination 
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substantially break up the ancestral causal haplotype. There are expected to be 

many large regions of homozygosity within individuals in an inbred pedigree 

since shared haplotypes will have been inherited through several lineages. 

Homozygous regions shared by all affected individuals should narrow the search 

substantially, and comparing these regions with unaffected individuals from the 

same family should help to narrow the region of interest further. 

The strategy of autozygosity mapping, followed by identification of conserved 

haplotypes and mutation analysis of candidate genes, has proved to be 

successful in the characterisation of recessive disease genes and in 

understanding the biology of disease as well as normal processes. There are 

several examples of successfully mapped novel loci. 

An example of a causal gene identified by autozygosity mapping is MKS3 in 

Meckel-Gruber Syndrome, a rare autosomal recessive condition. Eight 

consanguineous families, with 9 affected individuals originating from the Indian 

sub-continent were studied by Morgan et al. (Morgan et al. 2002). A genome 

wide analysis using 200 microsatellite markers in the affected individuals 

revealed a region of homozygosity -25CM in length. Two candidate genes in the 

region were sequenced for mutation detection without success, however a 

heterozygous SNP in one of the genes narrowed the region fiirther to igcM. This 

region contained >50 genes but with no strong candidates. 

Further work by Smith et al. (Smith et al. 2006) identified the gene. A loK 

Affymetrix Chip was typed in 5 affected individuals reducing the region again. 

22 of 66 genes in this region were sequenced but no mutations were identified. 

A rat model with a similar phenotype was investigated and the human ortholog 

of the rat causal gene, which was present in the identified region, was 

sequenced. Different mutations were identified in the 5 families. The mutations 

were all homozygous consistent with consanguinity and segregated with the 

disease from both parents. The mutations were not found in >120 controls 

showing that they were not common polymorphisms. Searching for regions of 

homozygosity was integral to the search for this gene, and a loK SNP array was 

required to narrow the region detected by microsatellites. However, other 

approaches were required for final identification of the gene. 

82 



Other examples include, the identification of a mutation in WNTioA in 

Ectodermal Dysplasia cases (Adaimy et al. 2007); BLOC1S3 mutations in 

Hermansky-Pudlak Syndrome (Morgan et al. 2006); mutations in RAB3GAP in 

Warburg Micro Syndrome (Aligianis et al. 2005). These studies all used an 

approach which began with genome wide typing of microsatellites in the 

affected individuals to determine a common region of homozygosity. This was 

followed up by typing more microsatellite markers in the region and in more 

individuals. Linkage programs were then used to provide a LOD score for the 

significance of the region. Examples of programs available are 

MAPMAKER/HOMOZ (Kruglyak, Daly, and Lander 1995), 

LINKAGE/FASTLINK (Cottingham, Jr., Idury, and Schaffer 1993; Schaffer et al. 

1994) and Easylinkage (Lindner and Hoffmann 2005). These programs require 

assumptions about penetrance, disease gene frequency, pedigree completeness 

(inbreeding coefficients), marker allele frequency in particular populations, and 

also require data from several affected and unaffected family members. The 

regions defined in this way can be very large, i0-20cM depending on the density 

of microsatellites used, and may contain many genes. Candidate genes can be 

sequenced for mutations but if none are found or there are no strong candidates 

further narrowing of the region is required. Fine mapping of regions has been 

carried out using a loK Affymetrix SNP chip on affected individuals, for 

example in the MKS3 and BLOC1S3 studies (Smith et al. 2006; Morgan et al. 

2006). 

The development of high density SNP genotyping technologies and the relatively 

low costs involved when only a few individuals need be typed, mean that many 

studies can now use high density SNP arrays to carry out autozygosity mapping. 

High density typing means that regions of homozygosity can be identified and 

visualized without the need for statistical inference or LOD scores. This 

technique has the advantage of speed and resolution. For autozygosity mapping, 

the assumption that the disease is caused by a homozygous mutation inherited 

from a relatively recent ancestor must be correct and the gain in resolution is in 

part dependent on the pedigree. If the affected individuals are closely related 

and the mutation occurred very recently, the region of homozygosity harbouring 

the mutation is likely to be large, whereas if the affected individuals have a 
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higher degree of separation and the mutation occurred less recently, the region 

will be smaller and the advantage of high resolution SNP genotyping will be 

greater (Gibbs and Singleton 2006). 

There are several examples of disease loci identified using high throughput 

genotyping technology such as the Affymetrix chips and Illumina bead arrays. 

Genome wide screening in 2 affected Kartagener Syndrome patients (Gutierrez-

Roelens et al. 2006) used microsatellites to identify 10 regions of autozygosity 

and 26 uninformative regions. Additional microsatellite markers in this small 

family were not informative, so higher density screening was carried out using 

the loK SNP array. This refined the candidate regions to a 44.6Mb region on 

chromosome 1 and a 13.7Mb region on chromosome 7. The higher density of the 

SNP array over the microsatellite panel allowed these regions to be discovered, 

however, the regions are still large and although higher density SNP array data 

may refine the locations more individuals from more families would be required 

to substantially narrow the regions of interest. 

The search for genetic variants causing the autosomal recessive form of Severe 

Congenital Neutopenia (Kostmann syndrome) was attempted by two different 

methods (Melin et al. 2007; Klein et al. 2007). Melin et al. used a loK SNP array 

in 4 affected individuals from one family. Software was written to define regions 

of homozygosity in 3 ways. Firstly, regions greater than iMb in size. Secondly, 

regions containing >=20 consecutive homozygous SNPs in all 4 affected 

individuals, and lastly, regions containing >=30 consecutive homozygous SNPs 

in 3 of the 4 affected individuals systematically removing one individual. The 

regions defined in this way were further analysed by microsatellites in all 

members of 2 families. The loK analysis found no regions that could be 

confirmed by microsatellites. Higher density analysis using the looK array 

identified 30 regions, one of which was confirmed in 3 of the 4 affected 

individuals. The region was 1.8Mb and was further confirmed by 2 affected 

individuals from a second family. The presence of the same haplotype narrowed 

the candidate region to 1.2 Mb containing 37 known genes. The loK data 

confirms this result, although on the original screen the region was not detected 

because it contains only 4 homozygous SNPs and several hundred such regions 
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were found in the loK array analysis. This shows that the loK SNP array may 

not be of sufficient density for this type of study. 

At the same time as this study, Klein et al. approached the identification of the 

genes responsible for Kostmann syndrome with genome wide genotyping of 217 

microsatellites carried out on 4 affected and 4 unaffected individuals from 3 

families. Only 1 of these markers was homozygous in all 4 cases, all available 

family members were genotyped for microsatellites in the region and a peak 

LOD of 4.15 was obtained. This approach gave an interval of 34.4Mb containing 

275 genes, a much larger region than that defined by Melin et al Prioritizing 

potential candidates led to mutation screening of HAXi and identification of a 

causal mutation. 15 of 63 further patient samples had the mutation and 200 

healthy controls did not. The 2 groups collaborated and both authors are listed 

on both papers. They used different methods and different patient samples for 

the initial screen, however, the region defined by Melin et al. using the lOoK 

SNP array was much smaller and gave fewer candidate genes to investigate in 

the next stage of analysis. 

A study by Chiang et al. identified TRIM32 as the locus for Bardet-Biedl 

syndrome (BBSii) (Chiang et al. 2006). An initial genome wide microsatellite 

screen using 400 markers was uninformative and failed to identify any regions 

homozygous in the 4 affected individuals studied. The use of a 50K SNP array 

identified 14 regions with >=25 SNPs in the 4 cases. Typing microsatellites in 

all available family members in these regions excluded all but one, the largest 

region detected, which was 2.4Mb. This region had no microsatellites in the 

original screen so would have been impossible to identify. Mutation screening in 

the candidate region revealed a mutation in TRIM31 which was confirmed by its 

absence in 184 controls. 

Puffenberger et al. used the loK SNP array to investigate the cause of 

symptomatic epilepsy syndrome in a group of 7 distantly related Mennonite 

children. Surprisingly analysis did not show any large blocks of homozygosity 

common to all 7 patients. To explain this lack of autozygosity, both locus and 

mutation heterogeneity were considered but with no success. Regions of the loK 

array which have low SNP coverage were then investigated. A chance 
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observation of a single SNP which produced 'NoCalls' for all 7 patients despite 

an average call rate of 98.5% led to further investigation which showed that all 

14 parents of the cases were called as homozygous for this particular SNP. It was 

determined that the parents were actually hemizygous for the SNP and all 7 

cases were homozygous for a deletion in a 7Kb region around the SNP in the 

LYK5 gene (Puffenberger et al. 2007). The lack of local SNP coverage on the 

lower density SNP arrays in particular regions is another reason high density 

arrays are required for autozygosity mapping. This study also shows that 

identifying regions where 'NoCalls' are present, consistent with a small causal 

deletion, must be considered in the analysis of these data. 

There are some analysis and visualisation programs designed for this type of 

data. Examples include, Scamp (Forshew and Johnson 2004), ExcludeAR 

(Woods et al. 2004), AutoSNPa (Carr et al. 2006), IBDfinder (Carr, Sheridan, 

and Bonthron 2007), and PLINK (Purcell et al. 2007). However, Scamp and 

ExcludeAR are based on a Microsoft excel spread sheet format, while Scamp 

only analyses microsatellites, ExcludeAR analyses SNP data but both are limited 

to the amount of data they can handle and neither can cope with more than the 

loK Affymetrix array (Forshew and Johnson 2004; Woods et al. 2004). 

AutoSNPa analyses SNP array data and can load data from the 250K array but 

this will increase computational time. It also requires pedigree data, and is 

primarily designed to visually analyse results, from which regions chosen by eye 

can be exported to text or excel files for further scrutiny. IBDfinder provides a 

less restricted qualitative approach to the identification of identity by decent 

(IBD) regions. It ignores pedigree structure, thereby allowing the analysis of 

singletons and groups of unrelated individuals. It is designed to handle 

Affymetrix format data and includes an error rate allowance and a SNP density 

adjustment. It effectively scores each marker in each individual based on the 

number of adjacent homozygous SNPs, then combines this information across 

individuals in windows of 0.125Mb (or cM), as the number of individuals with 

or without IBD in that window. It takes no account of linkage disequilibrium 

and, like AutoSNPa, the results are visualised and would require examination of 

interesting regions to define them more precisely (Carr et al. 2006; Carr, 

Sheridan, and Bonthron 2007). PLINK offers detection of runs of homozygosity 

in windows of user defined SNP number or Kb size. It also allows a user defined 
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number of heterozygotes or NoCalls in each window. The program allows 

pooling of regions of homozygosity across individuals allowing a threshold to be 

set for the amount of allelic identity, but the genome-wide output is extensive 

and thus difficult to interpret. Measuring homozygosity in a sliding window 

approach does not provide accurate definitions of regions and this method does 

not take into account LD. A method for detection of shared extended haplotypes 

of IBD is in progress but documentation has yet to be produced (Purcell et al. 

2007). Visualization methods are intuitive but become more difficult to 

interpret the more data and more individuals involved. 

5.2 Aims 

The aim of this work is to use densely genotyped SNP data to determine regions 

of homozygosity in inbred individuals affected with Congenital Nephrotic 

Syndrome and determine a homozygous region associated with the rare 

autosomal recessive disease. The program written for searching for homozygous 

regions in HapMap individuals is to be extended to incorporate data from 

several individuals at once. Regions will be determined on both the LDU and Kb 

scale. Knowledge of homozygosity in outbred populations from previous work 

(chapter 4) shows that regions which are in LD blocks are more likely to be 

homozygous by chance (because of low haplotype diversity), this may be 

important in determining the most likely candidate regions. Genes in the 

selected candidate regions will be compared with genes involved in known 

kidney diseases, with kidney related functions or known interaction with other 

candidate genes. Further to this project, mutation screening in candidate genes 

and the identification of a causal locus would give the possibility of anti-natal 

and carrier testing assisting in genetic counselling in this family. 

5.:% Methods 

5.3.1 The cases 

The pedigree shows complex consanguinity and an autosomal recessive 

inheritance pattern with all the affected individuals in one generation (appendix 

2). An ancestor common to the affected individuals (ID58) is a possible the 
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route of inheritance. Originally the presence of an affected female gave weight to 

the rejection of an X-linked pattern, however the relatively small number of 

affected males in the pedigree and X-inactivation work have also helped to rule 

this out. Two of the cases (ID25 and ID114) were diagnosed with a mild 

phenotype, with levels of protein in the urine higher than the normal range, but 

not extreme. In ID25 this proteinuria resolved after treatment with ACE 

inhibitors. ID114 was also diagnosed with a mild phenotype on the basis of 

higher than the normal, but not extreme, levels of proteniuria. ID114 seems to 

be following the same disease pathway as ID25 but is currently only a few 

months old and has just started treatment. Three of the cases (ID3, ID4 and 

ID19) were diagnosed with a severe phenotype with extreme levels of 

proteinuria and were not responding well to treatment. All 3 have had renal 

biopsies and DMS histology confirmed (Personal communication via project 

meeting, Dr R. Gilbert, Consultant Paediatric Nephrologist, Southampton 

General Hospital). 

5.3.2 Data 

This analysis was based on 3 datasets. The initial dataset was genotype data 

from the 50K Affymetrix SNP microarray, the second was the higher density 

500K Affymetrix SNP microarray, and the final dataset was the Illumina 

humanhap550 bead array. A total of 7 individuals were genotyped on one or 

more of the platforms. A range of genotyping efforts were undertaken due to an 

unanticipated lack of homozygosity common to the affected individuals in the 

initial analysis and concerns over genotyping accuracy. However, the phenotype 

status of some individuals changed during this study, leading to a different 

interpretation of the results. 
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Table 5.2 The 7 genotyped individuals 

Pedigree ID 

sex 

Phenotype; 

unaffected (0) 

Genotyped? 

fat he 
individual 

r 

mothe 

r 

mild (1) 

a f fec ted (2) 
Affymetrix 50K Affymetrix 500K 

Illumina 

550K 

3 2 1 male 2 y e s y e s y e s 

4 2 1 male 2 y e s y e s y e s 

19 9 8 65 male 2 y e s y e s y e s 

114 64 13 male 1 no no y e s 

25 78 15 f emale 1 y e s y e s y e s 

17 98 65 male 0 no y e s no 

18 9 8 65 male 0 no y e s no 
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5.3-3 Investigating data quality 

The call rates for all genotypes over all individuals called was high. However, 

ID3 in the Affymetrix 50K dataset, ID19 in the Illumina dataset had lower 

genotype call rates than the rest. 

Table 5.3 Genotype call rates (%) over all data for all individuals genotyped on the 

3 platforms. 

Affymetrix 

50K 

Affymetrix 

500K l l lumina550K 

IDS 94 .92 96 .83 99 .47 

ID4 9 9 . 4 9 98 .85 99 .49 

[D19 98 .95 98 .68 90 .07 

10114 - - 97 .93 

ID25 98 .53 98 .13 99.51 

ID17 - 97.82 -

ID18 - 98 .43 

The data were organised by chromosome and location on the physical map in 

Kb (NCBI build 36.1, UCSC build 18, Maro6). SNPs on the X, Y and 'unknown' 

chromosomes or those which could not be located on the current sequence were 

removed. The numbers of SNPs available for analysis were 57,179 in the 

Affymetrix 50K data, 440,734 in the Affymetrix 500K data and 547,475 in the 

Illumina 550K data. 

The Affymetrix 500K chip and the Illumina 550K bead array data have 76,116 

SNPs in common. In the 4 individuals genotyped on both platforms there were 

11,981 'NoCalls', leaving 292,483 successfully typed genotypes. All possible 

combinations of genotype calls on the 2 platforms in each individual were 

recorded and different classes of discrepancies were detected. The 2 platforms 

use different methods to code SNP genotypes so in a proportion of cases an 

Affymetrix AA call is the same as a BB Illumina call. However, discrepancies 

where one platform called a heterozygote and the other a homozygote, indicates 

an error in one of the genotype calls. This would have a significant impact on 
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this analysis since a questionably typed heterozygote could break up an 

otherwise long homozygous region. The two platforms provide confidence 

scores for each genotype call but the confidence scores have different 

interpretations. Affymetrix scores range o-i with scores closer to o having a 

higher confidence. A default threshold of 0.5 is applied and genotypes with a 

score above this are not called. Illumina scores range from 0-1 with scores closer 

to 1 having a higher confidence. Genotypes with a score below the default 

threshold of 0.25 are not called. The average scores for heterozygous calls and 

the 2 homozygous calls were calculated and average confidence scores for each 

class of discrepancy were also calculated. 

To investigate confidence score thresholds to optimise data quantity and 

accuracy, genotypes with the lowest scores were removed using several 

percentile cut offs, 5,10, 50, 80, 85 and 90. Each threshold was applied and the 

number of discrepancies for each class was recounted. An optimal reduction in 

data, based on scores, was defined and all known discrepancies were also 

removed before analysis. 

5.3.4 Checking for smal l deletions 

To check if any small homozygous deletions were picked up in the data, software 

was written in C to count the number of genotypes given a 'NoCalF in all 

affected individuals and detect runs of consecutive 'NoCalls'. 

5.3.5 Def in ing regions of homozygosity 

Software was written in C to search through the data, SNP by SNP, and detect 

regions of consecutive homozygous SNPs flanked by heterozygotes. Firstly 

regions of homozygosity were detected for each individual and then regions 

where all the affected are homozygous for the same alleles at consecutive 

markers were recorded. These regions are flanked by SNPs where at least one of 

the 4 individuals is heterozygous or homozygous for the opposite allele. 

Therefore all affected will be homozygous for the same haplotype over each 

region detected. Centromeric and heterochromatic regions were excluded from 

analysis. 
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Long regions of homozygosity common to all 4 affected may be adjacent but 

broken by a single heterozygote call. To identify this, a count of homozygous 

SNPs following the SNP that ends a region was also recorded. This is the 

number of SNPs in the next homozygous region if the two regions are separated 

by a single marker. 

5.3.6 Priori t is ing a n d selecting regions for fo l low up 

Regions of interest were prioritised by the genetic length of the region in LDUs. 

The genetic length is the most informative since it takes into account the linkage 

disequilibrium across the region. The physical length in Kb and the number of 

homozygous SNPs in the region were also recorded. The number of SNPs in a 

region is useful as a measure of the amount of information in the region, a lower 

limit of 5 consecutive homozygous SNPs was applied. 

A database of functionally relevant candidates, known to be involved in other 

forms of CNS, involved in other kidney disease, or known to interact with 

candidates, was created using data from the literature and the Human Kidney 

Gene DataBase (Human kidney Gene DataBase 2004; Renshaw et al. 2004; 

Tryggvason, Patrakka, and Wartiovaara 2006; Hinkes et al. 2006). 

A list of functionally relevant candidate genes are given in appendix 3. 

Fi.d Results 

5.4.1 Investigating data quality 

The average confidence scores are shown (table 5.4) for heterozygotes and 

homozygotes in the Affymetrix 500K and Illumina 550K datasets (information 

is not available for the Affymetrix 50K dataset). The confidence is slightly higher 

(closer to 0) for heterozygous calls than for homozygotes calls for the Affymetrix 
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data. The opposite is true for the Illumina data with homozygote calls given a 

slightly higher score (closer to i), although all scores are high. 

Table 5.4 Mean confidence scores for homozygous and heterozygous genotype 

calls. 

Affymetrix 500K Illumina 550K 

h e t e r o z y g o u s h o m o z y g o u s h e t e r o z y g o u s h o m o z y g o u s 

IDS 0 .053 0 .085 0 . 8 6 0 0 .863 

ID4 0 .032 0 . 0 5 9 0 . 8 6 2 0 .863 

ID19 0.031 0 .054 0 . 8 2 9 0 .837 

10114 - - 0 . 8 4 5 0 .863 

ID25 0 . 0 3 6 0 . 0 5 8 0 . 8 6 2 0 .863 

ID17 0 .039 0 . 0 7 0 - -

ID18 0 .035 0 .065 - -

Comparing the number of discrepant genotype calls between the Affymetrix and 

Illumina data indicates an error rate of 0.63%. Analysis of discrepant genotype 

calls between Affymetrix 500K and Illumina 550K datasets showed that in cases 

where a discrepancy between a heterozygote and a homozygote call was 

detected, the average confidence score was lower for the platform calling a 

heterozygote than for other classes of discrepancy. 
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Table 5.5 Comparison of genotype calls for the 4 individuals genotyped on both the Affymetrix 500K array and Illumina 550K array. 

Genotype call 

Mean conf idence 

scores 

Affymetrix 

lllumin 

a IDS ID4 1D19 ID25 All % 

Indicates 

an error? 

Affymetri 

X 
Illumina 

AA AA 12072 1 2 3 0 0 11207 1 2 4 7 7 4 8 0 5 6 16.43 No 0 . 0 5 2 3 0 . 8 6 1 8 

AA BB 13431 13971 12561 1 4 0 1 8 53981 18.46 No 0 . 0 6 9 3 0 . 8 5 9 4 

BB AA 1 0 7 3 3 1 0 7 3 8 1 0 0 1 6 1 0 9 4 9 4 2 4 3 6 14.51 No 0 .0495 0 . 8 6 6 6 

BB BB 1 4 0 6 3 1 4 6 4 4 1 3 0 9 8 1 4 5 7 8 5 6 3 8 3 19.28 No 0 . 0 7 3 0 0 . 8 5 5 4 

AB AA 166 6 9 87 9 4 4 1 6 0 .14 Yes 0 .2344 0 . 8 7 1 7 

AB BB 373 6 3 81 196 713 0.24 Yes 0 .2452 0 .8656 

AA AB 32 24 2 3 7 24 317 0.11 Yes 0 . 1 1 0 9 0 .6971 

BB AB 4 0 27 3 0 2 2 7 3 9 6 0 .14 Yes 0 .1102 0 . 7 0 7 3 

AB AB 2 2 8 7 0 2 3 3 2 2 21171 2 2 4 2 2 8 9 7 8 5 30 .70 No 0 .0345 0 . 8 5 8 6 

Total 7 3 7 8 0 75158 6 8 7 6 0 7 4 7 8 5 2 9 2 4 8 3 100.0 

* Lowest-confidence scores for each platform in bold. Affymetrix scores 0-1, with o indicating an accurate call. Illumina scores 0-1, with 1 indicating an accurate call. 

94 



Removing a percentage of the data based on confidence scores showed that to 

remove all known discrepancies from the data required a cut off of 90% in both 

the Affymetrix and Illumina data, leaving only 1% of the comparable genotypes 

for analysis (table 5.6). Removal of the lower 10% reduced the percentage of 

known discrepancies to 0.23% (from 1842 to 566) in the remaining 83.05% of 

the comparable data. 

Table 5.6 The number of discrepancies and percentage of data remaining after the 

quality thresholds are altered to remove a percentile of the data on both platforms. 

% of g e n o t y p e 

Illumina Affymetrix c o m p a r i s o n s No. 

Percentile threshold threshold remaining discrepancies 

0 0 .50 0 . 2 5 0 1 0 0 1842 

5 0.69 0 .209 91 .33 8 1 9 

10 0 .77 0 .142 83 .05 566 

50 0 .87 0.031 2 5 . 9 0 73 

75 0.91 0 .012 6 .59 15 

8 0 0 .92 0 .009 4 .25 10 

85 0 .93 0 .006 2.41 6 

9 0 0 .95 0 .004 1.05 0 

Analysing the discrepancies between SNPs typed on both the Affymetrix 500K 

chip and the Illumina 550K array allowed a reasonable 10% cut off based on 

confidence scores to be applied. Known discrepancies were also removed in 

both datasets. 
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5.4'2 Detecting deletions 

Table 5.7 The number of'NoCalls' for all confirmed affected individuals. 

No. NoCalls % of total No. of these 

for all SNPs successfully typed on 

affected genotyped another platform 

AffySOK 29 0.05 14 

AffySOOK 107 0.03 19 

lllum550K 316 0.06 38 

None of these SNPs are adjacent therefore there are no runs of the sort that 

might indicate a small deletion. 

5.4.2 Homozygosity 

The level of homozygosity in each dataset was detected at the SNP level. The 

number of SNPs homozygous for the same allele in all affected was recorded 

and the percentage of the total calculated. 

Table 5.8 The number of SNPs which are homozygous in all confirmed affected 

individuals. 

No. SNPs homozygous in all 

affected % of total 

AffySOK 26646 46.60 

AffySOOK 200579 47.73 

lllumSSOK 214090 39.11 

Regions of homozygosity in each individual were then identified. The maximum 

size in Mb and the number of regions greater the iMb were recorded. 
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Table 5.9 Homozygous regions in each individual for the different datasets, the 

number of regions >1 Mb and the maximum region length in Mb. 

AffySOK AffySOOK lllum550K 

Max 

> l M b length >1 Mb Max length > l M b Max length 

ID3 198 12.48 73 7.41 46 29.97 

ID4 176 20.80 56 12.37 37 21.28 

ID19 172 28.55 92 11.19 97 6.59 

ID114 - - - - 46 19.89 

ID25 165 31.39 97 8.45 42 31.27 

ID! 7 - - 79 10.37 - -

ID18 - - 79 16.50 " 

For comparison the maximum number and size of regions defined in the 

HapMap samples are presented. 

Table 5.10 Homozygous regions defined in the HapMap samples. 

Sample 
No. 

Individuals 

Mean No. 

tracts per 

individual 

Max No. 

tracts per 

individual 

Max 

Length 

(Mb) 

No. SNPs 

in 

sample 

CEU 60 8.30 26 6.48 728353 

CHB 45 5.84 11 2.63 644060 

JPT 44 8.41 36 17.91 639460 

YRl 60 4.37 10 11.14 744006 

5.4.3 Initial analyses of regions of homozygosity common to the 

affected individuals. 

Initial analysis included ID25 as an affected individual, and defined regions 

common to all 4 affected individuals. The maximum genetic length was 70.5 

LDU in a region containing only 5 SNPs in the Affymetrix 50K dataset. 

An increase in SNP density using the 500K Affymetrix chip gave maximum 

genetic length of 17.29 LDU in a region containing 9 SNPs. The results of these 
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analyses did not provide an expected single particularly long region in all 

affected individuals and no strong candidate genes were present in the longest 

regions detected. It later became known that ID25 had a milder and possibly 

different phenotype which resolved after treatment, it was therefore 

unsurprising that the analysis did not give definitive results. 

5.4.4 Analyses of regions of homozygosity c o m m o n to the confirmed 

affected individuals 

New data on the Illumina 55 oK bead array, were provided for the affected 

individuals including one new affected born into the family, ID114. ID25 has a 

different (milder) phenotype to ID3, ID4 and ID19, thus not considering her as 

one of the affected individuals is likely to have the biggest impact on the results. 

Again regions were defined using only affected individuals, leaving 3 in the 

Affymetrix 50K and 500K data and 4 in the Illumina data. The newest 

individual (ID114), typed only in the Illumina sample has a mild phenotype 

similar to the phenotype observed in ID25, and is too young to have had the 

diagnosis confirmed by renal biopsy. For this reason analysis was carried out 

with and without ID114 in the Illumina sample. The Illumina dataset has higher 

density typing, generally higher call rates (except ID19), and the analysis of 

homozygous regions by individual, shows longer regions implying less 

erroneously typed heterozygotes than the Affymetrix 500K dataset. It also has 

data on all confirmed and unconfirmed affected individuals. Therefore the main 

analysis was carried out using the Illumina dataset, and results were then 

confirmed using the Affymetrix datasets. 

Analysing the Illumina 550K array dataset with ID114 gave a maximum region 

length on the genetic scale of 12.52 LDU containing 14 SNPs. No single region 

stood out as particularly long or was backed up by good evidence in the form of 

a high SNP number. Reanalysing the Illumina 550K array dataset without ID114 

gave a maximum region length on the genetic scale of 54.81 LDU for a region on 

chromosome 13 containing 787 SNPs. Several adjacent regions on chromosome 

13 are also detected, suggesting the possibility of a single long region broken by 

erroneous genotype calls. A region on chromosome 10 was the second longest 

on the LDU scale but longest on the physical scale and contains the largest 
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number of SNPs. This region is of particular interest since it contains the PLCEi 

candidate gene. 

Table 5.11 Illumina 550K array, top 10 regions ordered by genetic length on the 

LDU scale. A) Regions common to ID3, ID4, ID19 and ID114. B) Regions common 

to ID3, ID4 and ID19 (see appendix 4 & 5 for Affymetrix 50K and 500K results) 

Location (Kb) No. SNPs in 

Kb LDU No. following 

Chr Start End length length SNPs region 

A) 10 45468.76 47063.96 1595.2 12.52 14 0 

3 114797.7 114806.5 8.77 12.09 7 3 

2 86902.21 88092.11 1189.89 11.62 21 9 

10 34234.54 34288.87 54.33 9.97 27 2 

1 230117.3 230223.4 106.11 9.92 56 2 

11 126346.8 126415.8 69.01 9.91 48 5 

16 86431.64 86521.22 89.58 9.53 13 2 

1 98726.83 98752.58 25.75 9.49 11 3 

2 199350 199374.4 24.38 9.29 7 0 

19 36071.87 36084.21 12.34 9.08 6 4 

B) 13 25046.97 26660.55 1613.59 54.81 7 8 4 70 

10* 95364.46 98420.58 3056.12 42.55 1034 35 

13 23512.1 24130.55 618.45 34.71 339 343 

13 24132.95 25045.65 912.7 22 .23 343 784 

17 74075.91 74116.72 40.81 18.45 19 0 

5 150883.7 1 50964.4 80.73 16.13 43 2 

15 20606.43 21218.85 612.43 13.17 17 0 

10 45468.76 47063.96 1 595.2 12.52 14 0 

3 114797.7 114806.5 8.77 12.09 7 3 

2 86902.21 88092.11 1189.89 11.62 21 9 

* Region containing PLCEi gene. 

Reanalysing the Affymetrix 50K and 500K array datasets, both showed long 

regions of homozygosity common to the confirmed affected. The regions are 

longer on both the genetic and physical scale than those detected including ID25 

and have greater evidence in the form of high SNP number. The regions on 
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chromosome lo and 13 appeared in all 3 datasets and are thus the most 

convincing candidate regions. 

5.4.5 Candidate regions 

Investigating these candidate regions further, the homozygous regions falling 

partially or wholly within these candidate regions were examined in all 

individuals. The candidate region on Chromosome 10 defined by the Illumina 

data is located between 95364.46-98420.58 Kb. the region defined by the 

Affymetrix 500K data is located between 95282.73-96261.83 Kb. The candidate 

region on chromosome 13 is located between 25046.97-26660.55 Kb in the 

Illumina data and 23906.63-25639.08 Kb in the Affymetrix 500K data. Table 

5.12 shows that the 3 confirmed affected individuals have long homozygous 

regions across the length of the candidate region on chromosome 10 and the 

mildly affected (ID25 and ID114) and the unaffected (ID17 and ID18) have many 

much smaller regions of homozygosity. The same pattern is seen in the 

chromosome 13 region, with the exception of the unaffected ID17 which is 

homozygous across the candidate region. The affection status of ID17 is not 

thought to be ambiguous therefore this result seems to rule out the chromosome 

13 region as a direct cause of this condition. 
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Table 5.12 Regions within or overlapping the chromosome 10 candidate region, in the Illumina 550K and Aflfymetrix 500K datasets. Showing 

regions of homozygosity in all 7 individuals genotyped. 

Phenotype; 

unaffected (0) SNPs in Other regions within or 

mild (1) location (Kb) following adjacent to the candidate 

affected (2) Start End KB length LDU SNPs region region 

llluminaSSOK ID3 2 72628.49 98526.09 25897.61 448.35 8958 2 

ID4 2 95364,46 98526.09 3161.64 47.23 1070 2 

ID19 2 95364.46 98420.58 3056.12 42.55 1034 35 

1D114 1 97725.08 97988.57 263.49 4.25 101 0 +69 smaller regions 

ID25 1 96284.84 96459.62 1 74.78 0.47 23 1 +107 smaller regions 

AffySOOK + 18 large adjacent 

IDS 2 95226.92 97016.52 1 789.60 24.90 239 310 regions 

1D4 2 9 5 2 8 2 . 7 3 96261.83 979.10 19.00 165 377 

ID19 2 95282.73 97016.52 1733.79 21.97 232 310 

1D25 1 96127.14 96359.42 232.28 0.11 12 4 +20 smaller regions 

ID17 0 95772.92 95956.76 183.84 3.31 29 2 +9 smaller regions 

1D18 0 95772.92 95956.76 183.84 3.31 29 4 + 10 smaller regions 
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Table 5.13 Regions within or overlapping the chromosome 13 candidate region, in the Illumina 550K and Asymetrix 500K datasets. Showing 

regions of homozygosity in all 7 individuals genotyped. 

Phenotype; Other regions within 

unaffected(O) 
location (Kb) SNPs in or adjacent to the 

mild (1) KB following candidate region 

affected (2) Start End length LOU SNPs region 

llluminaSSOK IDS 2 23104.63 27358.66 4254.03 145.68 2002 3 

ID4 2 23104.63 27358.66 4254.03 145.68 2002 3 

ID19 2 25046.97 26660.55 1613.59 54.81 7 8 4 70 +6 other large regions 

ID114 1 24938.85 25207.14 268.29 3.40 115 0 +112 smaller regions 

ID25 1 24229.03 24469.23 240.21 1.94 72 0 +107 smaller regions 

AffySOOK IDS 2 23906.63 25639.08 1 732.45 42.64 322 177 +3 other large regions 

1D4 2 23906.63 27103.08 3196.45 89.00 635 69 +4 other large regions 

ID19 2 23906.63 26863.54 2956.91 86.16 582 7 +3 other large regions 

ID25 1 24226.68 24467.35 240.67 1.69 29 0 +61 smaller regions 

1017 0 23906.63 27103.08 3196.45 89.00 635 313 +8 other large regions 

1018 0 24933.66 25181.31 247.65 3.02 55 3 +39 smaller regions 

102 



5.5 Discussion 

5.5.1 Phenotype ambiguity 

There are several issues to be tackled in these data the most important being 

ambiguity in phenotype. ID25 was originally assigned as affected but was 

subsequently assigned as mildly affected. Removing this individual from the 

analysis made a large impact on the results. ID114 is a newborn with a mild 

phenotype, carrying out the analysis with and without this individual was the 

best way to insure against the possibility of a change in phenotype status of this 

individual. Only ID3, ID4 and ID19 have had their diagnosis of DM8 confirmed 

by renal biopsy. Urine tests of all available adults in the family found no 

proteinuria, making it unlikely that there are other mildly affected family 

members. This evidence and the inheritance pattern in the pedigree show the 

disease is most likely to be an autosomal recessive condition. It is also sensible 

to consider the possibility of mutation heterogeneity, for example ID25 and 

ID114 were diagnosed with milder symptoms than the other individuals and it is 

possible that a different mutation is causing a different phenotype in these cases 

and further justifies analysis excluding these individuals. 

5.5.2 Genotype quality 

The form of the data available added complexity to this analysis. There are 3 

different data sets, with 7 individuals genotyped on one or more platform. 

However, using several datasets has the advantage of extra SNP coverage and 

replication of results on an independent genotyping platform. The Illumina 

array has a more even distribution of SNPs on the genetic map (using a 

haplotype tagging approach to choose their SNPs) and the highest SNP density 

which should be helpful in this analysis. Melin et al (2007) showed that the loK 

Affymetrix array failed to detect a homozygous region, later detected by the 

Affymetrix lOOK array, due to insufficient local SNP density. There is also, 

however, a disadvantage of very high SNP density in this type of analysis 

because as SNP density increases so does the expected number of wrongly called 

heterozygous SNPs, even though the percentage remains small. This can have a 

large effect on results by breaking up long homozygous regions, whereas 
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miscalled homozygotes would have a much smaller effect on results. Multiple 

datasets allowed the comparison of genotypes and inferences to be made about 

the accuracy of the genotype calling. There was a lack of long regions and thus 

promising results in the original analysis of the Affymetrix 50K and 500K data, 

including ID25. In such an inbred family this led to questions about the 

frequency of mistyped heterozygous genotypes. 

Genotype call rates for all platforms were high but with notable lower rates for 

ID3 and ID19 in the Affymetrix and Illumina datasets respectively (table 5.3). 

Lower call rates do not necessarily imply that the genotypes which were called 

are questionable since a quality score threshold is applied to all data. However, 

examination of confidence scores showed that ID3 in the Affymetrix dataset and 

ID19 in the Illumina dataset have slightly lower mean scores for both genotype 

calls (table 5.4). Overall confidence was slightly higher for heterozygous over 

homozygous calls in the Affymetrix dataset but the opposite in the Illumina 

dataset, although the differences were very small. The availability of genotype 

calls for 76,116 SNPs in 4 individuals on 2 platforms allowed discrepant results 

to be investigated. Table 5.5 shows the discrepancies between datasets, ID19 has 

more cases where Illumina calls a heterozygote and Affymetrix calls a 

homozygote and ID3 has more cases where the opposite calls are made. This 

suggests that the lower call rate and average confidence scores for these 

individuals in these datasets may increase the number of erroneously called 

heterozygotes. The mean confidence scores for heterozygote Illumina calls when 

Affymetrix calls a homozygote are lower (0.6971 and 0.7073) than other classes 

of discrepancy. When the opposite calls are made the Affymetrix scores are 

lower (0.2344 and 0.2452). Suggesting that the heterozygote calls rather than 

the homozygote calls are the more questionable. 

Removing different percentages of the data based on the confidence scores 

shows that only by removing 98.95% of the data (90% from Affymetrix and 90% 

from Illumina) were all the discrepancies removed (table 5.7). A10% cut off 

leaves a discrepancy rate of 0.23% down from 0.63% and retains 83.05% of the 

data which seemed a reasonable balance between data quality and quantity. All 

known discrepancies were removed from both datasets since it cannot be 

reliably judged which genotype call is correct. 
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5.5*3 Detecting deletions 

A small percentage of SNPs are NoCalls for all affected individuals although 

some of these are successfully genotyped on another platform (table 5.7). There 

were no runs of consecutive NoCalls in all affected individuals which might 

indicate a deletion. However, the LYK5 paper (Puffenberger et al. 2007) found 

only one NoCall common to all affected individuals, but it happened to be in a 

region of the genome poorly typed on the Affymetrix 10 K array. The high 

density genotyping in this study on 3 platforms means failure to detect a 

deletion is unlikely, but small deletions are still possible. 

5.5.4 Homozygosity 

Table 5.8 shows that 39.11-47.73% of SNPs typed in the different samples are 

homozygous for all affected individuals, showing the high level of homozygosity 

in this inbred pedigree. The summary of homozygous regions detected in the 

HapMap samples (table 5.10) cannot be directly compared with the results in 

this study (table 5.9) since the size and number of regions depends to a great 

extent on SNP density and the HapMap sample had approximately 700,000 

SNPs. However, it is clear the size and number of homozygous regions in these 

samples exceed those in the HapMap samples, which is expected given the 

consanguinity in the pedigree. The regions detected on the Affymetrix 500K 

array are a little shorter than expected given the Illumina results, but they are 

more numerous suggesting that the regions are broken up by isolated and 

perhaps erroneously called heterozygotes. Table 5.9 also shows shorter regions 

for ID3 in the Affymetrix datasets compared to the other samples and shorter 

and more numerous regions for ID 19 in the Illumina sample. Both of these 

samples have lower call rates and average confidence scores than other 

individuals genotyped on the same platforms further suggesting the presence of 

miscalled heterozygotes breaking up otherwise long regions of homozygosity. 

5.5.5 Regions of homozygosity common to the affected individuals 

Only the affected individuals were considered to determine common regions of 

homozygosity. To require the normal individuals to be heterozygous or 
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homozygous for the opposite allele across the entire region is too strict a 

criteria, especially since there are many SNPs where only one allele is present in 

this sample. Therefore a SNP could be homozygous in the affected and 

unaffected family members without indicating that the region does not 

segregate with the disease. Instead these SNPs may just be uninformative in this 

population or sample, since accurate information on allele frequencies in this 

particular population is not available. It has been shown that regions of 

homozygosity are more often found in regions of high LD where there has been 

little recombination and haplotypes inherited through both parents from a 

common ancestor are more likely to remain intact (Gibson, Morton, and Collins 

2006). For this reason the homozygous regions were prioritised on the LDU 

scale which takes into account linkage disequilibrium, giving more weight to 

regions of lower LD and high LDU than regions of higher LD which have fewer 

LDU. 

Initial results using the Affymetrix data and including ID25 did not give 

definitive results. Both Affymetrix datasets showed some large regions but each 

containing few SNPs and therefore no compelling evidence making it difficult to 

prioritise these regions (appendix 4). Analysing the Illumina data with the new 

affected individual ID114 also failed to give an expected long region with a large 

SNP number. However, when ID114 and ID25 were removed from the analysis, 

limiting to only the confirmed affected, the results changed dramatically. Two 

candidate regions were identified one on chromosome 10 and one on 

chromosome 13. The number of SNPs indicated a high level of information in 

these regions and the number of SNPs in the following region showed that there 

are 3 regions on chromosome 13 that are separated by single markers, and it is 

therefore possible that genotyping errors split one long region into 3 smaller 

ones (table 5.11). Removing ID25 from analysis in the Affymetrix 50K and 500K 

data confirmed these 2 regions (appendix 5). 

5.5.6 Candidate regions on chromosome 10 and 13 

These results are particularly interesting because the regions are longer and 

more convincing (due to higher SNP number) than previous results and the 

region on chromosome 10 contains the gene PLCEi. This is the strongest 
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candidate gene as it was detected by Hinkes et al. (Hinkes et al. 2006) in 

individuals with the same phenotype (published after the initial analysis). The 

candidate regions were investigated further to determine the size of 

homozygous regions in each individual which lie within the common region 

detected. The evidence in support of the chromosome 10 region relies on the 

phenotype status of ID 114 being 'unaffected'. The mild and possibly treatable 

condition of ID25 and ID114 may be caused by a different mutation. It does not 

seem likely that ID25 and ID114 are simply heterozygous for the mutation and 

therefore less severely affected, since they have a mixture of heterozygote and 

homozygote genotype calls across the candidate region. The region on 

chromosome 13 is more complicated, since ID 17 an unaffected individual also 

shares the region of homozygosity, and seems to rule out this region as a direct 

cause. Other possibilities are a more complex cause of the disease involving 2 

interacting genes; the family carries another undetected autosomal recessive 

condition caused by the chromosome 13 region; or the chromosome 13 region is 

shared by chance, which is perhaps not unlikely in such a consanguineous 

family. The presence of the PLCEi candidate in the chromosome 10 region 

means a mutation in this gene is a possible cause of the disease and worthy of 

more investigation. 

Future work will include sequencing the 34 exons of PLCEi, and looking for 

known or new mutations. If mutations are found in the affected individuals this 

would allow screening of other family members and possibly classification of 

milder cases that may resolve with treatment, like ID25 and ID114, and those 

that are more severe. If no mutations are detected, it is possible that expression 

analysis using biopsy samples may be carried out to see if the gene product is 

expressed. If the results do not implicate the PLCEi gene, other genes in the 

candidate regions will have to be examined by function and then by sequencing. 

5.6 Conclusion 

Analysis and the presence of the strong candidate gene, PLCEi, indicate that 

this gene in the chromosome 10 region is most likely to be causal. Further 

experimental work will be needed to confirm the presence of a mutation in this 
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gene. The chromosome 13 region is more complex since it is shared by an 

unaffected individual but may have a role in modifying the effect of mutations in 

the PLCEi gene (if this is confirmed). There is still no answer to the cause of the 

milder and possibly treatable condition for ID25 and ID114. However, if this 

gene allows distinction between the mild and severe cases, mutation screening 

and carrier testing, it would be invaluable to this family and potentially other 

cases of congenital nephrotic syndrome with diffuse mesangial sclerosis. 
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Chapter 6 - A genome-wide association mapping 

astniidLy LiasiLn*; acn ziiniciinryrrnLOTjis diilbBi gszimjpilis 

6.1 Introduction 

Association has overtaken linkage as the most promising method for genome 

wide studies to determine genes involved in common diseases. Association 

promises higher resolution and the ability to locate variants to a much smaller 

interval on the Kb scale, as well as higher power when variants of modest risk 

are sought. Large unrelated case control cohorts are easier to recruit than 

multiply affected families, especially for diseases of late onset like many 

complex diseases. However, association analyses require a higher density of 

genetic markers than linkage analysis. There are several advances which have 

made whole genome association analyses feasible. Firstly, the availability of the 

reference sequence of the human genome with fewer gaps and increasing 

annotation (UCSC Genome Browser 2007). Secondly, a database of human 

genetic variation (SNPs) made available by the genotyping efforts of the 

international HapMap project and their recently released phase II data 

(International Hapmap Group 2005; Frazer et al. 2007). This provides 

approximately 4 million SNPs in each of 270 individuals from 4 populations, 

providing a genome-wide average SNP density of 1SNP every 6oobp. LDU 

maps have been updated to include the Phase II data, and are publicly available 

(Lau et al. 2007; Kuo, Lau, and Collins 2007). Also increasing the feasibility of 

genome wide association studies are the continuing advancements in high 

throughput genotyping technologies. For example, both Affymetrix and 

Illumina have large single chip or bead based array systems able to analyse 

upwards of 500,000 SNPs on a single array. The falling price of this technology 

has made it a viable option for smaller groups as well as international consortia. 

There have been many examples of association projects successfully identifying 

an association, such as, the lymphotoxin-alpha gene in myocardial infarction 

(Ozaki et al. 2002), complement factor H in age-related macular degeneration 

(Klein et al. 2005), PARKio locus in Parkinson disease (Maraganore et al. 
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2005), and a variant near the INSIG2 gene associated with obesity (Herbert et 

al. 2006). However, results in this type of analysis are plagued by lack of 

replication particularly since a positive association is more likely to be detected 

if the association is over represented in the sample tested, meaning that a larger 

sample would be needed to replicate the results (Chanock et al. 2007). This 

becomes less of a problem when very large sample sizes are analysed. Many 

international consortia are combining resources to conduct such large scale 

genome-wide association studies with >1000 cases and controls. Recently the 

Wellcome Trust Case Control Consortium (WTCCC) published results of the 

largest study so far, detecting 24 strong association signals and a further 58 

moderate association signals over 7 diseases (WTCCC 2007). The high power of 

these studies promises the most comprehensive results, however independent 

replication should always be required. The WTCCC results represent replication 

of several previously reported associations and many of the new associations 

detected have been replicated in independent studies (Todd et al. 2007; Zeggini 

et al. 2007; Frayling et al. 2007). 

Most association mapping studies rely on a single SNP approach, for example 

the single SNP chi square test for association at each marker, looking for any 

SNPs that have a chi square above a certain significance threshold. This has a 

considerable 'multiple testing' burden especially when using high density 

genotype array technologies. The p values should be corrected for the number of 

tests carried out to adjust for the increased probability of obtaining a significant 

result by chance the more tests carried out. The standard correction is the 

Bonferroni adjustment which reduces the threshold p value for significance i.e. 

0.05 (5%) becomes 0.05/number of tests. Most multiple testing adjustments 

assume independent SNPs, however, due to LD, this is not the case, making the 

Bonferroni adjustment ultra conservative. There are other methods such as the 

False Discovery Rate (FDR) which controls the proportion of type 1 errors in the 

significant results and is less conservative (Storey and Tibshirani 2003). It is 

difficult to determine the best strategy for determining a threshold for 

significance and for this reason permutation tests are often used. This involves 

shuffling the case control status of the samples and determining an empirical 

significance threshold from this distribution. 
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Due to the difficulty of determining a genome wide significance level many 

researchers ignore this problem since the need for this type of adjustment is 

debated (Perneger 1998). Performing a second stage analysis or replication is 

seen as sufficient. The results of the first stage direct the choice of SNPs and 

regions for a more concentrated second stage where fewer tests would mean less 

of a multiple testing problem. It may not be necessary to determine formal 

significance levels in the first stage of a multi stage analysis, instead choose all 

regions around markers with an uncorrected significant P value for follow-up. It 

is also possible to rank results according to several criteria such as proximity to 

candidate genes, or in terms of possible functional significance. Another 

approach is Bayesian analysis where prior information is used to predict 

posterior outcomes (Morris, Whittaker, and Balding 2000; Morris 2006). Such 

prior information can include candidate genes, and previous associations or 

linkage results. 

As well as single SNP tests genotypes can be combined to form haplotypes 

thereby considering multiple genotypes in association with a disease. 

Haplotypes have greater power than single SNPs if the causal SNP is not tested 

or if there are multiple mutations in a gene or region. However, since genotypes 

in unrelated individuals are unphased, the actual haplotypes inherited from the 

parents are unknown, statistical algorithms are used to infer the most likely 

common haplotypes. The EM algorithm and several modifications are 

implemented in computer programs such as SNPHAP (Clayton 2002). A 

coalescent based Markov chain model is used in the program PHASE (Stephens 

and Donnelly 2003). The accuracy of haplotype prediction is good, but limited 

as longer haplotypes are considered, since there is increasing error and also a 

massive computational load. Simple 2-5 SNP haplosets may be more powerful 

for association within a candidate gene or region but the difficulties of 

determining haplotypes mean interpretation of genome-wide haplotype analysis 

is complex. 

CHROMSCAN-cluster analyses the genome using a region by region scan, 

multiple SNPs in a region are simultaneously tested by composite likelihood to 

model association. This reduces the number of tests required and thus the 

multiple testing burden. The regions analysed are determined by LDU length 
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and SNP density. CHROMSCAN-cluster is a high throughput version of the 

program CHROMSCAN and analyses multiple regions in parallel subsequently 

combining the results, in this way CHROMSCAN-cluster can handle large 

datasets without difficulty. CHROMSCAN-cluster, like LDMAP, is based on the 

Malecot equation. However, instead of describing the exponential decline of 

association between markers of known physical location, it describes the decline 

of association between SNPs and an unknown causal location. CHROMSCAN 

also accounts for the autocorrelation between SNPs due to LD by using a rank-

based permutation test under Ho to determine significance (Morton et al. 2007; 

Collins and Lau 2007). CHROMSCAN has been used to analyse the CYP2D6 

region on chromosome 22. The CYP2D6 gene is responsible for the metabolism 

of 20% of drugs, mutations in the gene lead to the poor metaboliser (PM) 

phenotype. As a proof of principle the known location of the gene was predicted 

by CHROMSCAN using genotype information from surrounding SNPs. The 

predicted location was within 2Kb of the actual location and shows the power of 

this method in a candidate region analysis (Maniatis, Collins, and Morton 

2007). The genome-wide properties of this method still require investigation. 

To test and develop association mapping methods it is possible to analyse 

simulated data that mimic some of the important features of real data. However, 

this study collaborates with a research group on a genome-wide association 

study with the understanding that the disease is not disclosed. In this way the 

many questions raised by advances in association mapping on a genome-wide 

scale can be realistically addressed before the expected flood of data requiring 

such analysis and also allowing testing of the CHROMSCAN-cluster program. 

6.2 Aims 

The aims of this chapter are to make use of genome wide LDU maps in a 

genome-wide association study using anonymous data. The parallel 

CHROMSCAN-cluster program will be tested and the properties and problems 

of genome wide studies will be investigated. The most significant single SNP 

chi-square (msSNP) in each region will be determined and compared and 

combined with evidence from the composite likelihood results of 
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CHROMSCAN-cluster, with a view to selecting promising regions from a stage i 

analysis for further analysis in stage 2. 

6 / t Methods 

6.3.1 Data 

The data consist of 239,146 SNPs genotyped across 798 individuals (403 cases, 

395 controls). 17 SNPs removed due to lack of a Kb location, some of which 

mapped to multiple locations in the USCS May04 sequence. Only the autosomes 

were considered, leaving 233,686 genotypes. The data were then filtered to 

remove SNPs which deviated from Hardy-Weinberg Equilibrium with a xf of 10 

or more, leaving a total of 230,400 SNPs for analysis. Genome-wide 

cosmopolitan LDU maps updated with the latest (Phase II) HapMap data were 

used for this analysis, since no information was available on the population 

sample. 

6.3.2 CHROMSCAN-cluster 

For analysis by CHROMSCAN-cluster, the SNP data were split into non-

overlapping regions which cover at least 10 linkage disequilibrium units (LDU) 

and contain a minimum of 30 SNPs without breaking blocks of linkage 

disequilibrium (LD). This gives 5,387 regions across the genome. Multiple SNPs 

across a region are simultaneously tested for the presence of a causal locus by 

using composite likelihood to model association which reduces the number of 

tests required. CHROMSCAN-cluster is based on the Malecot equation, 

describing the exponential decline of association between a SNP and an 

unknown causal location. 

Z = ( l - L ) M e ^ ) + L 
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A new parameter (s) is included in the model to estimate this location. Two sub-

hypotheses of the Malecot model are used to test for a causal polymorphism 

within each region. Model A, which assumes no association between affection 

status and SNPs, is taken as the null hypothesis and compared with Model D 

which estimates disease location (S), the intercept (M), and residual association 

(L). The test statistic, X, is determined by the difference in the sum of squares 

between these two models 

X = - A q 

Where 

A = % ( z , - z , y 

In order to account for autocorrelation between SNPs as a result of LD, the 

significance of this test statistic (X) is determined empirically by a rank-based 

permutation test. The case-control status is randomly shuffled and the test 

repeated to give a distribution of Xi under the null hypothesis (Ho). The 

replicates are sorted and assigned p values by rank/n. The corresponding 

and variance are calculated from this. Values of variance assigned to X values 

surrounding the X under Hi are used to assign a variance to X under Hi, from 

which a and p value can be calculated. The chance of encountering a very 

significant association by chance increases as the number of replicates 

increases. For example, it is expected to see one p value of approximately o.ooi 

when there are looo replicates i.e. i / iooo. Thus to determine accurate levels of 

significance on this distribution, the number of permutation replicates must 

approach lo/P so that interpolation of the variance under Hi is reliable. 

6.3.3 Investigating the number of replicates 

CHROMSCAN-cluster uses a rank-based permutation method to determine an 

empirical significance based on a null distribution. The number of replicates 

required to produce this distribution determines the computational time of the 

program. It is therefore important to determine an optimal number to have 

confidence in the results and still run the program efficiently. Initially the 

program was run with 100 replicates, however due to the increased speed of 

CHROMSCAN-cluster this was increased this to 1000 without incurring an 
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unreasonable computational load. These results were compared to investigate 

the effect replicate number has on the p values. To ensure that the p values 

obtained were accurate the most significant regions (p<0.0i) were then 

repeated using 50,000 replicates. The speed of CHROMSCAN-cluster allows 

50,000 replicates to be run for a subset of regions without difficulty; this 

number will be unnecessary in most cases but allows accurate p values to be 

determined approaching 0.0002. 

6.3.4 Correcting the msSNP p values 

In order to compare evidence from CHROMSCAN and single SNPs, we identify 

the most significant single SNP (msSNP) from each region. However, selecting 

the msSNP from a large number of SNPs (30 or more) biases the nominal x? 

and conventional P value computed on the null hypothesis. To determine the 

effects of the region definition on the p values for msSNPs and composite 

likelihood, a stepwise regression model was tested. The dependent variable was 

the p value, and the independent variables were SNP number and LDU length. 

The only significant result showed the bias in msSNP p values caused by the 

number of SNPs in the region. 

Using the principle that msSNP P values should correspond to xl = -2lnP 

(Fisher, 1950), the variance of this nominal Xz among regions in a genome scan 

with the same number of SNPs under Ho should be V = 4 and the mean p = 2. If 

selection of msSNPs were unbiased, adjustment of V would give an estimate of \x 

near 2, whereas adjustment of p. is less sensitive to small values of P, and 

therefore would not provide a good estimate of V. The bias in p must be reduced 

before adjusting V. 

Since the regions defined by CHROMSCAN-cluster vary in the number of SNPs, 

subsets of regions with limited diversity, but including at least 100 regions, were 

selected in which to estimate the Bonferroni parameter R. R is the effective 

number of independent SNPs in a subset with S SNPs. For each subset the 

weighted mean number of SNPs is S = Efimi/^^fi, where fi is the number of 
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regions with mi SNPs. The Bonferroni model assumes a corrected P value of Pd 

= i - ( i - P m ) ^ (Gibson et al. 2 0 0 8 ) . 

To obtain a mean of X2 = 2 when X2 = -zln Pd, the formula is rearranged to give 

the equation ^fi + ]rin [ i - ( i - P m ) ^ ] = 0 . 

As below, 

Zf. 
- 2 i : 4 - ( i - P . . r j 

If, 

This equation was then solved by regula falsi to find the Bonferroni R giving the 

desired mean xl of 2. This method requires two estimates of R either side of the 

real value so that one gives a negative solution and the other gives a positive 

solution. These values of R are then incremented and iterated until a solution 

sufficiently close to zero, in this case to 5 decimal places, is obtained. The 

relationship between R and S was then determined by regression so that a value 

of R could be assigned to each region given S. Corrected P values for msSNPs 

are then given by P d = i - ( i - P n i ) ^ . This corrected P value is then converted to 

=-2lnP. 

To set the variance of xl to 4 requires dividing both xl and pby (3 = 

^ to give the desired variance with mean 2/|3, which is acceptable 

only if p ~ 1. 

Analysis of composite likelihood is simpler, since only a correction of variance is 

required, after conversion to xl by Xi - -2lnP. 

6.3.5 Combination of evidence from msSNPs and composite 

likelihood 
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The relationship between the corrected msSNP Xa and the composite likelihood 

X2 was determined using a correlation analysis. A principal component analysis 

based on this correlation matrix gives a first principal component (PCl) which 

brings together the 2 variables and a second principal component (PC2) which 

shows the differences. PCl was used to order and rank all the regions, this rank 

was converted to a P value by rank/n which was then converted to a X2 by -2lnP. 

This gives a X2 for each region based on the combination of evidence. 

6.3.6 Investigating discrepancies 

In order to investigate the properties involved in cases where there are 

discrepancies between the results of the msSNP and composite likelihood 

analyses, PC2 was investigated. Regions which had extreme values of PC2 (>4 or 

<4) were investigated further. To check the role of the LDU map, the genotype 

data for each region were used to create data-specific 'local' LDU maps, which 

were then used by CHROMSCAN-cluster. The results and the quality of these 

local LDU maps were compared with the HapMap cosmopolitan LDU maps. 

SNP density and coverage was investigated by the number of SNPs in the region 

and by determining the inter-marker distances between the SNPs flanking the 

msSNP. The extent of LD around the msSNP was also determined to examine 

whether the msSNP was located within a 'step' or a 'hole', regions with high 

recombination, which may explain the lack of other disease associated SNPs 

nearby. The arbitrary location of the region when the msSNP falls at the 

beginning or end was also investigated. 
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6.4. Results 

6.4.1 Investigating the number of replicates 

Running CHROMSCAN-cluster with 100 replicates, gave 16 regions with p < 

0.001 and 61 regions with p < 0.01. With 1000 replicates, there were 8 regions 

with p < 0.001 and 53 regions with p < 0.01. P values for all 5387 regions, with 

100 and 1000 replicates, across the whole genome are shown in figure 6.1. 

Figure 6.1A shows the p values are well correlated and have a linear 

relationship, although there seems to be more variation in the middle than at 

the extremes. The black lines indicate that a cut off of 0.1 at 100 replicates is 

required to capture all the regions with p values of < 0.05 at 1000 replicates. 

However, the values actually differ more dramatically at the extreme low end, 

but the numbers are so small that they are not visible in figure 6.1A but are 

shown by a graph of the ratio of the two P values in figure 6.1B. This shows that 

the number of replicates is of more importance at the lower end of the scale, 

thus the 53 regions with a P value < 0.01 at 1000 replicates were repeated using 

50,000 replicates. 
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Figure 6.1 A) p values with lOO and l o o o replicates. B) Ratio of p values for lOO 

and l o o o replicates. 
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6.4.2 msSNP p value bias 

The msSNP p values are artificially exaggerated by the number of SNPs in the 

region (>30) and are always below 0.3, whereas the p values for composite 

likelihood range 0-1 (figure 6.3A). This bias was illustrated by regressing p 

values on LDU length and SNP number. For the composite likelihood p values, 

neither variable was significant. For the msSNP p values only the SNP number 
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was significant ( p < o . o o o i ) with an = 0 . 0 2 9 5 , showing, as expected, the 

higher the number of SNPs in a region the more chance of finding a highly 

significant p value. 

All regions were assigned to 11 subsets on the basis of the number of SNPs in the 

region. S was calculated as the weighted mean of the number of SNPs in the 

subset, R was calculated as the effective number of independent SNPs in the 

subset by regula falsi, and m is the number of regions in each subset. These 

values are given in table 6.1. 

Table 6.1 Subsets of regions 

SNP range m R S 

30 1536 27.10 30.00 

31-35 638 26.55 33.12 

36-40 712 32.86 37.96 

41-45 650 35.76 42.87 

46-50 508 35.99 47.89 

51-55 421 41.73 52.93 

56-60 280 37.66 57.91 

61-65 221 44.89 62.77 

66-70 163 67.41 67.82 

71-75 109 63.89 72.83 

76-1- 149 71.06 84.63 

Total 5387 

The relationship between R and S was shown to be linear by regression analysis 

and is illustrated in figure 6.2. This relationship allows R to be calculated for 

any S value. 
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Figure 6.2 The linear relationship between R and S, the area of each datapoint 

shows the number of regions per subset (m). 
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For each region the p value was corrected using the appropriate Rvalue. This 

correction greatly reduces the significance of msSNPs, but conserves the order 

of the nominal p values. Converting these corrected p values to X2 gives a mean 

(|LI) and variance (V) over all regions of p = 2.0 and V = 5.2. When V is 

constrained to its expected value of 4 under Ho, the estimate of |n becomes 1.8, 

corresponding to p = 1.1. The composite likelihood variance was 4.2 and after 

adjustment became, V = 4 and |li = 2. The corrected msSNP p values are shown 

in figure 6.3 B. 
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Figure 6.3 A) msSNP p values before correction against composite likelihood p 

values B) msSNP p values after correction against composite likelihood p values. 
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6.4 3 Combining evidence 

A principal component analysis was applied to all regions for the adjusted X2 

values for composite likelihood and msSNPs. The first principal component was 

converted to a rank, which was then transformed to p and ^2 as for composite 

likelihood (Ewens 2003). The largest combined X2 is 17.2 and the top 50 are all 

greater than 9.3. A Bonferroni correction would require a critical significance 

level of .05/N, when N is the number of regions analysed. This corresponds to 

X2 of 23.17, which no region met, however this is considered a conservative 

correction. The region with the highest combined Xj is shown in figure 6.4. 

Figure 6.4 Region ranked 1 by the combined metric (composite likelihood =1, 

msSNP=2) 
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Among the 50 most significant regions ordered by the combined X2 values, 3 

had a second principal component with a value greater than 4, indicating 

substantially greater significance for the msSNP than for composite likelihood. 

In no instance was the opposite observed (second principal component < -4). 

Local LDU maps for these outlier regions, constructed from control data, and 

the results of CHROMSCAN-cluster with the local maps were compared with 

initial results using the cosmopolitan HapMap LDU map. There was little 
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difference between the 2 LDU maps in terms of the fit to the data or the 

structure and length of the maps. The composite likelihood results were also 

very similar and e values of close to 1 for the regions validate the use of 1 as the 

epsilon parameter in CHROMSCAN-cluster. The ranks of the regions on the 3 

different scales show the extent of the discrepancy (table 6.2). The number of 

SNPs and holes in each region, the distance in Kb between the SNPs flanking 

the msSNP and the LDU/Mb between these flanking SNPs are shown in table 

6.2. 
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Table 6.2 Outliers favouring evidence f r o m msSNPs 

Rank 
No, 

SNPs 

No. ho les 

(LDU>2.5) 

f lanking SNPs msSNP 
HapMap 

map 
local map 

msSNP 
c o m p o s i t e 

l ikelihood 
combined 

No, 

SNPs 

No. ho les 

(LDU>2.5) 
Kb LDU/Mb 

msSNP 

%3 
£ 

1 3 6 9 5 19 51 0 30 .573 34.41 20 .27 1.49 0 .96 1.07 

3 4731 2 9 30 0 3 .956 57.38 18.60 0 .68 0 .45 1.12 

4 5 6 9 16 30 2 3 .970 19.14 16.88 6 .33 5.20 1.11 
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When the regions were centred on the msSNP, maximising evidence from 

markers on both sides, the remained low. For the region ranked i by msSNP, 

the composite likelihood was 1.49, and in the msSNP centred region it was 

1-55 (figure 6.5 A&B). 

Figure 6.5 A) Region r a n k e d 1 by msSNP (composi te l ikel ihood=3695, 

combined=i9 ) B) Region cen t red on the msSNP. 
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The X2 values for the top 50 regions by combined rank are given in figure 6.6 

and table 6.3. The 3 regions with PC2 >4 are shown in figure 6.6 as combined 

ranks 16,19 and 29, and are shaded in table 6.3. In the top 50, the msSNP result 

is more significant than the composite likelihood result 24 times. Discrepancies 

occur when a very significant SNP is isolated with no other evidence from 

surrounding SNPs, composite likelihood gives more weight to regions with 

clusters of highly significant SNPs. This can be seen in figure 6.4. The 3 cases 

with the largest discrepancy (PC2 >4) were also the 3 with the largest difference 

in between the msSNP and the next most significant SNP in the region (table 

6.3). 
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Figure 6.6 The top 50 regions by the combined metr ic . 
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Table 6.3 The top 50 regions by the combined metr ic . 

PCI PC2 

Rank X2 
No. 

SNPs 
LDU/Mb 

LDU 

di f ference d i f ference 
PCI PC2 

combined 
c o m p o s i t e 

l ikelihood 
msSNP combined 

c o m p o s i t e 

l ikelihood 
msSNP 

No. 

SNPs 
LDU/Mb 

LDU 

di f ference d i f ference 

11.173 1.367 1 1 2 17.18 15.86 19.51 75 11 .214 0 .000 10.19 

8 .368 1.056 2 17 7 15.80 12.33 15.10 6 0 7 .485 0 .035 5.75 

8 .190 0 .210 3 7 9 14.99 13.27 13.65 37 2 1 . 3 8 4 0 .093 8 .42 

7 .679 0 .002 4 13 12 14.41 12.85 12.64 55 14 .053 0 .362 0 .97 

7.491 1.634 5 3 37 13.96 14.89 10.06 4 5 33 .129 0 .159 2.02 

:^316 1.511 6 4 38 13.60 14.47 9 .98 4 4 19 .654 0 .228 4 .74 

7 .148 2 .132 7 2 5 4 13.29 15.11 8 .87 30 80 .039 0 .000 1.00 

7 ,133 2 .393 8 6 4 5 13.02 8 .69 15.25 37 41 .994 0 .000 (L21 

7 .109 -0.803 9 8 23 12.79 13.18 10.69 32 42 .365 0 .515 7.63 

41987 -0.266 10 18 19 12.58 12.24 11.28 31 38 .276 0 .000 4 .23 

6 .954 -1.050 11 6 35 12.39 13.31 10.12 38 36 .385 0.241 (x73 

6 .848 0 .053 12 21 18 12.21 11.60 11.53 4 2 22 .649 0 .614 1.54 

I&655 2 .110 13 5 75 12.05 14.38 8 .20 3 4 29.741 0 .826 1.55 

6 .575 1.159 14 11 4 3 11.91 12.93 9 .43 4 8 19 .849 0 .488 L21 

& 4 2 9 -1.285 15 12 50 11.77 12.90 9 .05 30 6 0 . 8 6 8 a 6 5 8 1.49 

6 ,247 4 .437 16 5 6 9 4 11.64 4 .55 16.88 30 61 .102 0 .000 18,16 
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6.165 0.582 17 22 41 11.52 11.53 9.67 30 9 7 3 3 7 0.438 2.77 

6 .124 1.500 18 14 72 11.40 12.77 8.32 85 9 .528 0 .364 0.28 

6 .098 6 .984 19 3695 1 11.29 0.74 20,27 51 18.822 7.506 21.64 

6 .043 3.450 2 0 325 6 11.19 5.66 15,20 55 14.345 0 .000 11.99 

6 .035 -0.678 21 23 4 4 11.09 11.48 9.35 51 19.360 0 .008 0.03 

5/915 -1.920 22 9 115 11,00 13.07 7,43 55 13.453 0 .110 0.62 

5.836 3.156 23 307 8 10.91 5.78 14,49 30 20 .883 0 .000 12.53 

5.601 -1.942 24 16 144 10.83 12.66 6,95 30 93.065 0 .000 0.06 

5.498 2.651 25 2 7 9 11 10.75 6.02 13.30 64 11.492 1.559 12.18 

5.424 0 .749 26 67 27 10.67 8.60 10.50 30 30.086 2.052 0.98 

5.341 1.200 27 103 20 10.59 TUBS 11.03 4 0 21.783 0 .000 3.44 

5.340 -0.288 28 33 53 10.52 9.95 8.92 30 47 .445 0 .184 1.18 

5.334 6.562 29 4731 3 10.45 0.25 18.60 30 102.507 1.326 17.61 

5.280 1.018 30 95 24 10,38 8.02 10.68 37 28.991 0 .000 3.36 

5.206 -0.664 31 28 76 10.32 10.29 8.20 56 20.805 0 .000 0.56 

5.194 -2.389 32 15 274 10.25 12^71 5.74 4 0 46 .479 2 .343 1.46 

5.177 1.403 33 24 132 10.19 11.29 7.11 38 51.511 1.409 2.37 

5.172 -1.930 34 19 201 10.13 12.03 6.36 37 26.273 0 .000 1.50 

5.156 1.011 35 100 28 10.07 7.85 10.50 39 38.868 0 .000 6.01 

5.071 0 .453 36 71 42 10.02 8.52 9.59 45 17.275 5.518 5.08 

5.055 -1.256 37 25 130 9.96 10.91 7.15 61 20.055 0 .670 2.14 
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5.032 0.205 38 58 4 6 SL91 8.82 9.18 62 16/412 3.288 5.01 

4 .953 2.064 39 270 16 9.86 6.08 11.70 30 1 7.309 0 .000 12.55 

4 .915 -1.287 40 2 6 148 9.81 10.76 6.91 30 64 .687 0 .379 1.70 

4 .864 -0.701 41 36 98 9.76 9.86 7.66 55 1 5.468 0.156 1.85 

4 .859 -1.952 42 20 2 5 9 9.71 11.62 5.89 30 41 .413 0 .103 0.96 

4 .857 -0.913 4 3 30 119 9.66 10.15 7.35 4 8 48.821 0.068 0.12 

/k828 -0.843 44 31 116 9.62 10.01 7.41 35 30.483 0.075 0.26 

4 .809 -2.940 45 10 520 9.57 12.95 4.42 30 27 .879 1.236 0.57 

4 .807 -0.442 46 41 85 9.53 9.41 7.95 48 46.781 0 .053 0.12 

4 .795 1.219 47 152 32 9.48 7.05 10.28 4 6 20 .270 0 .007 4.74 

4 .757 1.357 48 174 30 9.44 6.80 10.42 30 27.112 4.215 !x51 

4.651 1.287 4 9 188 34 9.40 6.75 10.17 30 40.621 0 .303 10.59 

4 .649 0.511 50 104 4 9 9.36 7.84 9.07 30 33.717 0 .030 3J57 

x f d i f f e r ence = d i f f e r ence in x f b e t w e e n t h e m o s t s ign i f ican t S N P ( m s S N P ) a n d t h e n e x t m o s t s ign i f i can t S N P in a reg ion , L D U d i f f e r ence = d i f f e r ence in L D U 

b e t w e e n t h e m s S N P a n d t h e p o i n t loca t ion given b y c o m p o s i t e l ike l ihood, L D U / M b = LDU p e r m e g a b a s e over t h e reg ion , P C 1 / P C 2 = a n d 2 ^ p r inc ipa l 

c o m p o n e n t s 
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6 . 5 Discussion 

The data consist of an unknown phenotype coded i, o for cases and controls, 

and are dealt with anonymously to gain some insight into the nature of 

problems encountered by association mapping, and the use of CHROMSCAN-

cluster for genome-wide analysis. The genome is analysed in non-overlapping 

regions each containing lo LDU (or at least 30 SNPs). The CHROMSCAN-

cluster program handled the genome-wide data without difficulty, since the file 

is split into batches of regions which are run in parallel. The efficiency of 

CHROMSCAN-cluster allowed the whole genome to be analysed with both 100 

and 1000 replicates. Comparison of these results showed that the p values are 

stable except at the most extreme lower end of the distribution, we therefore 

chose to rerun regions with a p value <0.01 with 50000 replicates. It is likely 

that a replicate number of 10/p would be adequate. Regression showed that a 

Bonferroni correction was required for the msSNP p values, which was 

complicated by the diversity of their regional lengths and SNP densities. 

However the regula falsi approach allowed an adjustment to be made based on 

the effective number of independent SNPs in each region. The corrected p 

values were in the range 0-1 and were no longer biased by the number of SNPs 

in the region. Figure 6.3 shows the msSNP p values before and after correction. 

The lower right of the graph in figure 6.3 (B) shows that there is a cluster of 

cases where the p value for the msSNP result is significant and the composite 

likelihood result is not. The lack of data points in the top left of the graph show 

that the opposite situation is rare. 

Three X2 metrics were considered for each region; the most significant SNP in 

the region (msSNP), the composite likelihood result, and a metric combining 

both results by principal component analysis. Figure 6.4 shows the region 

ranked 1 by the combined metric. The msSNP and composite likelihood point-

location implicate the same SNP which has the highest xf in the region. 

However, some of the surrounding SNPs have very low xf despite being in close 

proximity to the msSNP on the Kb and LDU scale. 
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All regions were ranked by the 3 metrics, and 3 regions with large discrepancies 

between results (PC2>4) were examined. These regions have a high msSNP 

rank and a low composite likelihood rank. To explain the lack of evidence from 

composite likelihood several options were investigated. A local LDU map 

showed little difference to the cosmopolitan HapMap LDU map used in this 

case, the maps were very similar in length and structure (figure 6.5 A). The 

composite likelihood results obtained using the local LDU map were very 

similar though slightly weaker than those obtained using the HapMap LDU 

map, possibly due to the lower SNP density in the local map (table 6.3). This 

evidence suggests the discrepancy is not due to the use of an inappropriate LDU 

map. 

Low SNP density should not be a problem because CHROMSCAN-cluster 

accounts for SNP number in the region definition (10 LDU and >30 SNPs), the 3 

regions have 51, 30 and 30 SNPs (table 6.3). However, a localised lack of SNPs 

could explain the lack of evidence from composite likelihood. The inter-marker 

distance between the SNPs flanking the msSNP are 3.96, 3.97 and 30.57Kb 

(table 6.3) which are not excessive and figure 6.4 shows that SNP coverage is 

generally even and the msSNP is not isolated on the Kb scale. This suggests that 

neither low SNP density nor insufficient SNP coverage explain the discrepancy. 

However, figure 6.3 shows that, for the region with a combined ranked of 1, 

there are several markers close to the msSNP with very low x? • It is possible 

that in these 3 cases increasing SNP density would find other significant SNPs 

nearby, and the isolated high xf is due to a random lack of typing associated 

markers. 

It is also possible that the msSNP is located in a step in the LDU map, a region 

of particularly high recombination, or a hole where an arbitrary LDU distance is 

applied to neighbouring SNPs when no LD (background only) is detected 

between SNPs. However, the msSNPs were not isolated on the LDU scale and 

the LDU/Mb between flanking SNPs was 19.14, 34.41 and 57.38 (table 6.3). The 

genome average LDU/Mb is 20.2 for the HapMap CEU sample and 28.4 for the 

YRI sample, therefore 57.38 indicates only a small step. The recent publication 

describing analysis of the Phase II HapMap data, show the presence of SNPs in 

regions of very high recombination (hotspots), which are described as 
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'untaggable' SNPs (Frazer et al. 2007). For association analysis in regions of 

high recombination these SNPs would need to be directly tested since 

surrounding SNPs have insufficient LD to provide any information. Regions of 

very high recombination are described as 'holes' in the LDU map. Although not 

directly close to the msSNP one region has 2 holes (>2.5 LDU between SNPs), 

this may have the effect of reducing information and the number of SNPs in LD 

with the msSNP in the region. There were no holes in the 2 other regions. 

Composite likelihood gives more weight to regions where there is a cluster of 

SNPs with high or moderate xf results. These 3 regions all contain an msSNP 

with no other high x? in the region (table 6.3). In 2 of the discrepant regions, the 

msSNP is at the beginning of the region (but not the first SNP). This would 

reduce information from the left of the msSNP. However, re-aligning the 

regions with the msSNP in the centre, to maximise the evidence from either 

side, failed to change the composite likelihood results (figure 6.5 B). 

It may be the case that these 3 signals represent type 1 errors (false positives). 

However, only larger sample sizes and higher density genotyping will be able to 

answer this question. A known phenotype would also allow information from 

previous studies and functional considerations which may help determine the 

likelihood of type 1 error. At present there can be no objective recognition of the 

more reliable test and since it would be undesirable to miss a possible 

association, a combined metric was devised to help choose regions for follow up 

in stage 2, The 50 most significant regions representing approximately 1% of the 

genome seem a reasonable sample to investigate in stage 2, Combining evidence 

allows the very significant msSNP results to be included in the top 50 and is the 

best way to combine evidence for stage 2 to avoid losing potential candidate 

regions. This is a preliminary analysis, and although no signals met a Bonferroni 

adjustment for the number of regions, there were interesting findings. Further 

to this project a strategy for stage 2 would involve increasing SNP density in 

these 50 regions, which may resolve the discrepancies between msSNP and 

composite likelihood results, regions can then be prioritised based on candidate 

genes. Meta-analysis including previously published findings may help give 

more weight to results and could help to narrow down a region of interest. 
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There have been several examples of the successes of association mapping such 

as the recent publication of findings from the Wellcome Trust Case Control 

Consortium (WTCCC 2007). The release of this and other genome-wide data to 

the scientific community for further analysis, will allow comparison of methods, 

meta-analysis, and cohorts of controls for use in the study of other diseases 

(WTCCC 2007; Genetic Association Information Network (GAIN) 2007; Cancer 

Genetic Markers of Susceptibility (CGEMS) 2007). Databases of association 

analysis results will also be of great use in meta-analysis (database of Genotype 

and Phenotype (dbGaP) 2007). 

The WTCCC managed to validate many of their findings with independent 

samples or previously published results. However, in general, association 

analyses suffer from a lack of convincing replication and publication bias 

towards positive results. As well as false positives there are many other 

explanations for non replication; samples from differing populations, 

differences in phenotype classification or assessment between studies, or an 

insufficiently sized replication sample. A larger sample is required for 

replication due to the increased chance of finding an association when it is over 

represented in the initial sample. Larger samples and combining samples by 

meta-analysis are approaches to increase power to find genes and validate 

results. However, the problems of sample consistency and population 

stratification become even more important. 

Another possibility to increase power is to make use of LD patterns. One way is 

to impute genotypes based on LD patterns. The theory is that if a causal marker 

is not typed, an observed marker in LD can be used to detect the association, but 

power is reduced relative to any departure from perfect LD between the 2 

markers. Using patterns of LD from the HapMap data to predict the genotypes 

at un-typed SNPs may regain some lost power, though only if the imputation is 

accurate. It is estimated that accuracy levels of >98% can be achieved, however, 

this is highly dependent of the local LD patterns, and accuracy would be 

severely compromised in regions of low LD or recombination hotspots. Also, 

although broad LD patterns are very similar across populations, fine scale 

differences mean that imputation would be inaccurate if the population sample 

investigated was not closely related to one of the HapMap study samples. 
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Statistically inferring genotypes in this way, which can then be analysed by any 

method, may provide an additional source of power for association studies, but 

must be used with caution (Marchini et al. 2007; Clark and Li 2007). The 

composite likelihood approach implemented in CHROMSCAN-cluster has the 

benefit of analysing multiple SNPs in a region reducing the need for multiple 

testing adjustments, and uses LD patterns described by LDU maps to increase 

power. Mapping on the LDU map rather than the Kb map is more powerful and 

was also shown to increase accuracy of the point location in the test case of 

CYP2D6 and the poor-metaboliser phenotype (Maniatis, Collins, and Morton 

2007). Simulations were also carried out using SNPs from chromosome 4 of the 

Age-Related Macular Degeneration data described by Klein et al. (2005). These 

results show a 47% increase in accuracy of location estimate and a 5% increase 

in power when using the LDU map compared to the Kb map (Collins and Lau 
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Future studies are likely to involve analysis of more genetic variation, higher 

density genotyping, whole genome sequencing, as well as copy number 

variations (CNVs). Structural variants which have frequencies of >1% are 

considered genuine heritable polymorphisms, the structural Variation Database 

(Human Genome Structural Variation Project 2007) describes around 4,000 

CNV loci. CNVs have also been identified in the 270 HapMap individuals and 

new SNP array technologies are being developed to score them, though SNP 

associations may not be sufficient to detect all CNVs. Knowledge of the extent of 

CNV contribution to phenotype is incomplete, gene dosage effects by 

duplication or deletion of a genes as well as regulatory influences by CNVs 

located outside of genes are thought to be involved. An example of a CNV with a 

phenotypic affect in complex disease is the CCL3L1 variant known to influence 

susceptibility to HIV-i and rheumatoid arthritis (McKinney and Merriman 

2007; Clark and Li 2007; Komura et al. 2006). 

There are already examples of novel therapies and clinical interventions arising 

from association results, for example, clinical trials of Abatacept (CTLA4lg) 

have shown evidence of its efficacy in rheumatoid arthritis (Ruderman and Pope 

2005), though translating genetic risk into clinical relevance can be challenging. 

The best analyses will still miss rare moderate risk variants and small risk 
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variants due to lack of power. The chances of transforming low risk or very rare 

variants directly into clinical interventions are not high, but may still give 

insights into disease pathways. There are still many statistical challenges to 

overcome when analysing genome-wide SNP data and the optimum approach 

has not yet been defined. The challenge will be to determine how best to exploit 

the massive accumulation of genomic data soon to be released. 

6.6 Conclusions 

This work has allowed testing of CHROMSCAN-cluster with genome-wide 

association mapping data, showing that the program is able to cope with high 

density data without difficulty. The results of this stage i analysis showed 

several regions with evidence for association, though none were significant after 

Bonferroni correction. msSNPs (most significant single SNPs) were also defined 

for each region analysed by CHROMSCAN-cluster. In three cases the evidence 

for association did not agree between the msSNP and CHROMSCAN-cluster 

results. The reasons for this discrepancy are not clear; however it is likely that 

higher density data and larger samples will resolve the issue. However, for this 

first scan of the data, a metric was devised to allow selection of regions for 

follow up, based on the combined evidence. 
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Chapter 7 — Summary and discussion 

Linkage Disequilibrium (LD) describes the tendency for alleles to be inherited 

together more often than would be expected under random segregation. There 

has been increased interest, over the last few years, in a complete description of 

the structure and intensity of LD in the human genome across different 

population samples. The first descriptions of LD patterns and their relationship 

to recombination were published in 2001, Jeffreys et al. studied the MHC region 

on chromosome 6 and concluded that recombination was not evenly distributed 

across the genome but limited to small regions of i-2Kb, referred to as 

recombination hotspots, which were separated by regions of high LD. This work 

was carried out by observing meioses in sperm (Jeffreys, Kauppi, and Neumann 

2001). Daly et al. investigated a region of chromosome 5 using haplotypes to 

show that there are regions or 'blocks' of lowhaplotype diversity (high LD), 

separated by recombination sites (Daly et al. 2001). These findings led to a view 

of LD in the human genome that could be described by blocks of high LD 

interspersed with recombination hotspots. 

An LDU map describes these patterns of LD in the form of an additive map. The 

LDMAP (and LDMAP+) program produces a description of LD using genotype 

(diplotype) data and the Malecot model which is used to model the decline of 

LD over distance. The map determines a location in Linkage Disequilibrium 

Units (LDU) for each SNP marker (Maniatis et al, 2002). The LDMAP program 

has proven capable of reproducing the block structure (LDU map plateaus) 

shown with the Daly et al. data and the hotspots (LDU map steps) described in 

the Jeffreys et al. data. This allowed validation of the LDMAP method since it 

was able to recover information about recombination hotspots from genotype 

data, which were originally detected by direct observation in sperm data (Zhang 

e t a L 2 0 0 2 ^ 

With the increasing availability of genotype data for this type of analysis, 

individuals with European ancestry were analysed for the first LDU map of a 

whole chromosome (22) with marker density ranging 1 SNP every i5-23Kb, 

showing the structure of LD and the high correspondence between LDU and 
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linkage maps (Tapper et al. 2003). High density data (1 SNP every 2Kb) was 

produced on a 10Mb region of chromosome 20, enabling a more fine scale 

description of LD and investigation into the effects of SNP density, this showed 

the robustness of the LDU map (Ke et al. 2004). These data were then used to 

investigate LDU maps of different populations and the feasibility of a 

cosmopolitan LDU map (chapter 2). These data consisted of genotypes on 3 

continental populations, with East Asian, African and European descent. Based 

on a previous study with smaller samples and regions (Lonjou et al. 2003) this 

work showed the high similarity in LDU patterns between populations, the 

differences in LD extent and the usefulness of a standard cosmopolitan LDU 

map that can be scaled to be applied to various population samples (Gibson et 

al. 2005). The similarity of LD patterns across populations described here, has 

also been shown for 3 chromosomes across 4 populations (De La Vega et al. 

2005) and across chromosome 22 in 11 population isolates and one outbred 

European sample. The 'younger' isolates were shown to have more extensive LD 

than the outbred sample (Service et al. 2006). The major limitation of the work 

described in chapter 2 is that it is based on a region of a single chromosome and 

the results are interpreted to apply to the whole genome. Extension of this work 

was only possible when genome-wide data became available (International 

Hapmap Group 2005) and modifications to the LDMAP program (LDMAP+) 

allowed such large scale analysis. 

Interest in creating a description of haplotype structure and LD across the 

Human Genome led to the initiation of the International HapMap project in 

2002. Advances in genotyping technology enabled increasingly high density 

SNP genotyping in 270 individuals in 4 populations and the data were publicly 

released periodically via the HapMap website (International Hapmap Group 

2005). The first release (11) to contain high density genotype data across all 

chromosomes (CEU sample only) was used to create the first genome-wide LDU 

map. This work allowed an estimate of effective bottleneck time for the CEU 

population sample based on whole genome data (Tapper et al. 2005). A 

preliminary analysis was carried out to compare all 4 populations as soon as 

data were available (4 chromosomes only). These results confirmed previous 

work on the similarities and differences between LDU maps in different 

populations (chapter 2), and allowed a first estimate of effective bottleneck 
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times across the 4 populations. The HapMap Phase I data was the first release to 

contain high density whole genome data on all 4 populations. Genome-wide 

LDU maps were made for each population (chapter 3). This allowed extension 

of the analysis of LD patterns across different populations, to genome-wide 

data, and also allowed comparison with the linkage map and estimation of 

population age by calculating effective bottleneck time (t). The genome-wide 

LDU maps of the 4 HapMap population samples showed the same trends as the 

work on chromosome 20 (chapter 2). The major difference in LDU maps was 

between the African and non-African samples, with the least extensive LD in the 

African sample. The patterns of LD were again very similar, on the broad scale, 

across all chromosomes in all population comparisons (r^ >0.99). Such a high 

similarity suggests recombination hotspots are co-localised in all populations, 

since recombination is the major force determining LD. Comparison of the LDU 

and linkage maps over the whole genome showed a remarkable correspondence 

(97-99%) confirming this. The estimated age of 29,440-36,800 years for the 

CEU population falls short of the estimated 100,000 years since the 'Out of 

Africa' bottleneck. However, the effective bottleneck time is influenced by 

subsequent smaller bottlenecks which have the effect of increasing LD by 

restricting the haplotypes in the population. As well as subsequent bottlenecks, 

it is possible that the estimate is influenced by the small sample size (60 

individuals) and the specific population sample (Utah residents with northern 

and western European ancestry). 

Whole genome historical recombination maps of the HapMap data have been 

created using a coalescent method implemented in the LDHAT program 

(McVean et al. 2004). The LDHOT program which analyses the historical 

recombination maps provided by LDHAT, has been used on a publicly available 

genome-wide dataset (Hinds et al. 2005) produced by the genotyping company 

Perlegen Sciences and also the HapMap Phase I data (Myers et al. 2005) to 

predict over 25,000 recombination hotspots across the genome, the results are 

provided in the UCSC genome browser and through the HapMap genome 

browser (UCSC Genome Browser 2007; International Hapmap Group 2005). In 

a comparison of these maps and LDU maps of the genome, the LDU maps, 

which are based on a much simpler theory, show marginally higher levels of 

similarity than the historical recombination maps to the only genome-wide 
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recombination information available, the linkage map (Kong et al. 2004; Tapper 

et al. 2008). However, overall the historical recombination and LDU maps are 

very similar even though the LDU map allows the inclusion of the effects of 

other stochastic processes such as selection, whereas the LDHAT program 

models only recombination. The inclusion of the effects of other processes in 

the LDU map allows the evidence of selection, for example, to remain and be 

investigated. 

An accurate description of 'normal' variation is valuable in any analysis of 

disease causing variation. The whole genome LDU maps and the genotype data 

produced by the HapMap project provide the opportunity to carry out analyses 

of genome-wide variation such as regions of extended homozygosity. Longer 

than expected tracts of homozygosity have been shown in CEPH individuals 

with European ancestry using microsatellites (Broman and Weber 1999), but 

this was in part due to an identifiable relationship between some pedigrees. 

Long regions of homozygosity tend to occur in families where there is a certain 

degree of consanguinity regardless of levels of LD in these regions. To a lesser 

extent long regions of homozygosity occur in isolated populations and generally 

show a lack of haplotype diversity, which can also be shown by patterns of LD 

(Service et al. 2006). Chapter 4 investigates the extent of long homozygous 

tracts in the outbred populations represented in the HapMap project, and shows 

that even in outbred populations extended tracts of homozygosity are present 

and have a strong relationship with patterns of LD as shown by the LDU map. 

Three individuals from the HapMap data were identified as having longer and 

more numerous tracts than other individuals from the same population sample. 

This suggests that these individuals were from families where there has been 

some consanguinity in the past few generations, thus reducing the haplotype 

diversity to less than would be expected in the general population. In this way 

high density SNP data were used to evaluate the levels of inbreeding in an 

individual's history (Gibson, Morton, and Collins 2006). Two of these 

individuals were also identified as showing cryptic relatedness, i.e. relatedness 

in the ancestors of the sampled individual, by the HapMap analysis group in 

their publication on the Phase I HapMap data, although a direct analysis of 

homozygous tracts was not carried out. 
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Further to this work several other studies have analysed extended 

homozygosity. Li et al. describe long contiguous stretches of homozygosity in 

Han Chinese, Taiwan aborigines, Caucasians and African-Americans. 17 of 20 

homozygous tracts determined in the HapMap CHB sample (chapter 4) were 

also present in the Han Chinese sample studied. The possible alternative 

explanation for extended homozygosity, the presence of a deletion when 

hemizygotes are miscalled as homozygotes, was ruled out using DNA copy 

number determination by hybridization intensity analysis and real-time 

quantitative PCR (Li et al. 2006). Simon-Sanchez et al. analysed 276 DNA 

samples (from lymphoblast cell lines) from Caucasian subjects. They found 26 

samples with contiguous tracts of homozygosity >5Mb, they also repeated 

analysis in a proportion of subjects with DNA extracted directly from blood 

samples. They were able to show that the process of creating lymphoblastic cell 

lines did not create long regions of homozygosity that were not present in the 

original sample. They did not directly rule out the possibility of segmental 

uniparental disomy as a cause, but concluded that it was unlikely since many of 

the subjects with one long region of homozygosity also had several other regions 

(Simon-Sanchez et al. 2007). Another study was able to determine that long 

regions of homozygosity are not due to uniparental disomy (Curtis 2007). This 

paper analysed genotype data on 10 CEPH individuals and their parents to 

determine the presence of mendelian errors that would indicate uniparental 

disomy, for example, mother=AA, father=BB and child=AA or BE. It was 

determined that although these type of errors appeared within long homozygous 

regions they did so less than would be expected by chance and did not occur 

contiguously as might be expected if segmental uniparental disomy was the 

cause of the homozygosity (Curtis 2007). The latest release of the HapMap data 

(Phase II) has been published and an analysis of homozygosity was included 

(Frazer et al. 2007). The analysis detected the 3 individuals with unusually high 

levels of homozygosity, highlighted in the work described in chapter 4, and 

'identified 79 regions over 3 Mb in 51 individuals, with many segments 

extending over 10 Mb' (Frazer et al. 2007). 

Homozygosity usually occurs in inbred samples, and is particularly common in 

consanguineous pedigrees where a child is likely to have inherited the same 

haplotypes from both parents because they are related. Autozygosity mapping 
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exploits this to determine the location of genetic variants causing autosomal 

recessive conditions. The use of high density SNP array data is becoming a 

popular way of determining regions of autozygosity that could be causal 

(Gutierrez-Roelens et al. 2006; Melin et al. 2007; Puffenberger et al. 2007). 

Following on from the work to determine the extent of homozygosity in outbred 

individuals (chapter 4), a study was undertaken to determine a candidate region 

for autosomal recessive congenital nephrotic syndrome in individuals from a 

large consanguineous pedigree (chapter 5). The analysis was designed to make 

use of high density SNP array technology, avoiding a traditional linkage 

approach which would rely on uncertain pedigree information and few 

individuals (4 affected). The high density SNP data allows determination of 

regions of homozygosity (presumed autozygosity) and increased power was 

obtained from use of LDU maps, since the correlation of LD patterns and 

homozygosity has been shown (chapter 4). Two regions of interest were 

determined, one of which contained a strong candidate gene. Further laboratory 

work is currently underway, preliminary results have determined a 4 base-pair 

deletion in exon 3 of the PLCEi gene, present in all the affected individuals 

which generates a premature translational termination codon. However, this 

mutation also seems to be present and homozygous in one of the parents of an 

affected child, and further investigation is required. 

The data for autozygosity mapping was provided with 4 individuals genotyped 

on 2 high density platforms, the Affymetrix 500K chip array and the Illumina 

humanhap550 bead array. This allowed comparison of the genotype calls and 

results show that low call rates and low call scores for an individual correlate 

with more discrepant genotypes where the platform with the poorer sample calls 

a heterozygote. Overall the Affymetrix platform had more discrepant 

heterozygous calls than the Illumina platform. Although this does not 

necessarily indicate that Affymetrix has more errors, an excess of inaccurate 

heterozygote calls would break up otherwise long homozygous regions which is 

critical for this type of analysis. Increasing the quality score threshold used to 

define a 'NoCall' genotype, decreased the number of discrepancies between the 

2 platforms. Therefore, an increased quality score threshold was used to reduce 

the number of potential errors in the data prior to analysis. These results should 
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direct the choice of genotyping platform and quality score threshold appropriate 

for future autozygosity mapping projects. 

LD offers gene mapping at a much increased resolution than linkage mapping, 

although investigation is ongoing to determine the power, accuracy and 

sensitivity of these methods (Maniatis et al. 2004; Maniatis et al. 2005; Zaykin, 

Meng, and Ehm 2006; Morris et al. 2003). However, many studies use a simple 

single SNP , at least as a stage 1 scan (WTCCC 2007) and patterns of LD are 

also important for choosing the most appropriate SNPs for analysis, avoiding 

redundancy. 

After using LDU maps to increase power for a disease gene search in a 

consanguineous pedigree (chapter 5), the maps were then used to search for a 

disease gene in an unrelated case-control sample by genome-wide association 

analysis (chapter 6). The cosmopolitan LDU maps created from Phase I 

HapMap data were used for this study. This was a stage 1 analysis, using an 

unknown disease, to determine regions for follow up in stage 2. CHROMSCAN-

cluster is based on the Malecot model, like LDMAP, but determines association 

between markers and a disease. Results revealed several regions with evidence 

of association, however, none met a strict Bonferonni correction. The msSNP 

(most significant SNP) in each region analysed by CHROMSCAN-cluster was 

also determined. Three regions showed discrepancies, where the evidence from 

the msSNP analysis did not agree with CHROMSCAN-cluster results. Evidence 

from both sets of results were combined to determine regions for follow-up in a 

stage 2 analysis to avoid missing potentially important regions. This was a 

preliminary analysis with no information about the disease or, therefore, any 

candidate genes. However, the aim of determining regions for follow up was 

accomplished (Gibson et al. 2008). 

There are several aspects to this project which could be investigated further in 

the future. Genome-wide association analysis using CHROMSCAN-cluster and 

msSNPs in higher density data and larger samples may resolve discrepancies 

between the 2 sets of results. Several large datasets have recently been released 

which would offer an ideal opportunity for more investigation of these methods 

(WTCCC 2007) (Cancer Genetic Markers of Susceptibility (CGEMS) 2007) 
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(Genetic Association Information Network (GAIN) 2007). This project also 

included some initial investigation into the evidence for selection detectable 

using high density SNP genotype data. Fine-scale differences in LD patterns 

between populations in particular regions and extended regions of 

homozygosity are both possible indicators of a selective sweep. However, LD 

and homozygosity are highly correlated and analysis must take both into 

account when determining putative regions under selection (Wang et al. 2006). 

Several studies have carried out genome scans for evidence of selection (Carlson 

et al. 2005; Zhang et al. 2006; Voight et al. 2006; Tang, Thornton, and 

Stoneking 2007; Sabeti et al. 2007). Analysing extended homozygosity with 

reference to LDU maps has the potential to give an advantage over these 

methods, and an analysis which makes use of the most recent high density data 

and the forthcoming HapMap data on 7 new population samples (Frazer et al. 

2007), should provide interesting results. 

It would also be valuable to build on the success of the autozygosity mapping 

work (chapter 5), with analysis of new datasets, this would provide validation of 

the method used. It is also possible to modify the method, for homozygosity 

mapping of recessive disease in outbred populations (Simon-Sanchez et al. 

2007; Miyazawa et al. 2007). One such method was able to determine highly 

penetrant recessive loci in schizophrenia using long stretches of homozygosity 

(Lencz et al. 2007). Using homozygosity to search for selection and disease 

variants is an exciting and current field of research, however careful 

consideration of LD patterns and interpretation of results is required. LDU 

maps which provide a high resolution metric map of the amount and structure 

of LD in the genome will be of great value. 
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Appendices 

Appendix i . Chapter 3 - Proper t ies of LDU maps , f o r each ch romosome . 

chr pop pairs loci E_kb L_kb M_kb 
Swept 

radius 
v_kb E_LDU L_LDU M_LDU v_LDU holes LDU length kb length 

1 CEU 2998419 59118 0.009 0.156 0.883 117.581 2.135 1042 0.156 0.971 0827 189 4182.493 245448 

2 CEU 3147075 61911 0.008 0.150 0.893 127.747 2.374 1033 0UI5O 0.975 0.916 164 4100.860 243341 

3 CEU 2579693 50715 0.008 &152 0.877 129.370 2.434 1036 &152 0^177 0 890 205 3629.121 199130 

4 CEU 2203783 43357 0.008 &151 0.912 117.742 2209 1.038 0.151 0.975 0892 192 3421510 191682 

5 CEU 2221207 43687 &008 &152 0.879 128.768 2.417 1032 0M52 0977 0.902 125 3197.480 180747 

6 CEU 2417066 47504 0.008 0,154 0.897 121525 2341 1.040 0.154 o^ms 0.930 140 3074 203 170676 

7 CEU 1842213 36308 0.009 0.154 0.892 111.968 2.202 1CW8 0M54 0 ^ 8 8 0 895 153 2906.975 158412 

8 CEU 2782669 54740 0.009 0.145 0.911 115.267 2 ^ 6 5 1032 0U45 0.985 0.881 102 267&105 146141 

9 CEU 2210255 43495 0.011 &150 0.885 92086 2.485 1039 0.150 0 ^ ^ 3 0CW8 109 2597.887 136218 

10 CEU 1748957 34496 0.009 0M53 0.870 111698 2 335 1.045 0M53 0^169 0.887 124 2649.018 134989 

11 CEU 1644502 32326 0.008 0.153 0.872 118.104 2.368 1.040 0.153 0.975 0.872 137 2543.549 134292 

12 CEU 1760581 34834 &009 &154 0.868 114.708 2 3 4 3 1(M3 0.154 0.970 0.891 149 2692.728 131958 

13 CEU 1292984 25441 0.009 0155 0.898 107.098 :2212 1037 0U55 0.974 0 ^ 9 2 109 1987.097 %193 

14 CEU 1085385 21;M4 0.009 0.154 0 863 111.748 2 2 8 4 1038 0.154 0 965 0.902 91 181&273 87057 

15 CEU 624023 12440 0.007 &152 &802 144.904 2 5 7 8 1CW1 0M52 0^166 0.884 143 1898.181 81862 

16 CEU 871772 17360 0.012 0UI55 0GW2 81909 2070 1.059 0.155 0.957 0.838 128 1931467 89882 

17 CEU 896052 17724 0.009 0.152 0 839 114.478 2.501 1.053 0.152 0.977 0.804 111 1924.621 81652 

18 CEU 1483222 29136 0.011 0.148 0.937 89.223 2 3 8 0 1.028 0M48 0.985 0.913 108 1894^49 76111 
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19 CEU 626105 12339 0.013 &157 &845 79.852 1^48 1052 0.157 0 969 0 7 8 6 115 1725.310 63742 

20 CEU 777285 15327 0.011 0.156 0.855 88119 2 130 1.054 0156 0967 0 822 109 1633.093 63585 

21 CEU 757237 14889 0.015 0 153 0.934 67.524 2 262 1032 &153 0 ^ # 7 0.891 51 990.788 37027 

22 CEU 709324 13959 0.012 0.151 0.808 84.744 2.676 1043 0.151 0.977 0.860 38 1023.686 34923 

23 CEU 1660095 33615 0.004 0.197 0.876 245.897 1.395 1025 0197 0.990 0.471 119 1749.021 150761 

1 HCB 2551176 50373 0 009 0.173 0.888 116.352 1831 1029 0.173 0978 0664 356 4809.644 245227 

2 HCB 2762531 54430 0.008 &172 0.906 122.924 1.744 1023 &172 0.979 0 670 301 4471.459 243341 

3 HCB 2164361 42615 0.008 &173 0.892 124 999 1793 1027 &173 0.981 0.650 295 3921.675 199131 

4 HCB 1886361 37171 0.009 0.174 &923 116124 1591 1.028 0.174 0 979 0669 274 3653.231 191652 

5 HCB 1901227 37456 0.008 &172 0 889 125.445 1779 1.022 0.172 0983 0.650 253 3514.323 180747 

6 HCB 2210501 43418 0.008 0 174 0 884 118.121 1.811 1.038 &174 0.954 0799 212 3356.298 170669 

7 HCB 1499404 29638 &009 &178 0.910 110.852 1.564 1.032 0.178 0972 0.656 238 3111463 158406 

8 HCB 2604974 51218 0.009 &164 (1924 113.686 1969 1020 &164 0993 0618 186 2965.858 146141 

9 HCB 2058288 40471 0.011 &170 0 895 89856 1854 1030 0.170 0.976 0677 220 2985.126 136216 

10 HCB 1596965 31540 0.010 &174 0.882 104.161 1738 1.033 0.174 o ^ y o 0 ^ # 3 227 3017.485 134944 

11 HCB 1440908 28366 0 008 &174 0.878 118.605 1798 1.028 0.174 0 ^ y 5 0676 237 2859.712 134292 

12 HCB 1534157 30209 (1010 0.178 0.855 101.073 1659 1034 0.178 0^944 0.780 246 3061.044 131980 

13 HCB 1182325 23232 0.009 0174 0.904 10&387 1698 1.019 0U74 0.978 0.661 178 2239.873 96206 

14 HCB 946760 18618 0.009 0174 0 875 111134 1.704 1032 0.174 0.973 0657 141 1953.690 87047 

15 HCB 832855 16519 0.009 0.175 0.820 113.945 1827 1.041 0 175 0973 0.641 187 2099.593 81777 

16 HCB 750898 15043 0 013 &177 0 859 78.619 1.510 1056 0 177 0.968 0.631 206 2208.123 89882 

17 HCB 767925 15263 0 009 0.173 OEWO 108.729 1.825 1.037 0.173 0.983 0.615 192 2221.497 81626 

18 HCB 1333632 26218 0 012 0 168 0.938 86.636 1803 1022 0 168 0.988 0.644 174 2156.418 76111 

19 HCB 557644 11009 0.013 0.179 0.877 74.484 1.423 1.041 0 179 0977 0.601 218 1982.320 63584 
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20 HCB 647048 12785 0.012 0.177 0.873 83.026 1.598 1035 &177 0 969 0.636 180 1869.510 63585 

21 HCB 761137 14956 0.015 &172 0.940 65.677 1J73 1016 0172 0.983 0 662 93 1116.590 37027 

22 HCB 686607 13512 0 013 0.169 0.867 75.016 1.988 1.030 0M69 0982 0 642 64 1121687 34760 

23 HCB 1428435 29172 0 005 0 223 0.882 217.866 1098 1012 0 223 0.994 0 370 201 1989.874 150761 

1 JPT 2530333 49977 0.008 0175 0.884 124 400 1.771 1.035 &175 0 ^ y 8 0.674 269 4316.699 245219 

2 JPT 2744504 54072 0.008 &173 0.899 131438 1736 1.031 0173 0.977 0.703 202 4019.888 243341 

3 JPT 2144533 42238 0.007 &175 0.886 135.452 1785 1.034 0.175 0.979 0683 232 3519.691 199124 

4 JPT 1866053 36756 0.008 0.176 &926 120.593 1563 1.034 &176 0.978 0.679 224 3392.487 191652 

5 JPT 1888568 37215 0.008 0175 0.892 130.342 1737 1.027 &175 0^W2 0.697 191 3198.336 180747 

6 JPT 2194520 43105 0.008 0.175 0.882 125.219 1816 1.035 &175 0.952 0.837 174 3108.028 170669 

7 JPT 1483986 29330 0.008 0.180 0.897 119.641 1.581 1039 0U8O 0 968 0.676 195 2848.551 158406 

8 JPT 2590769 50945 &008 0.166 0 925 121.012 1959 1028 &166 0993 OjM2 158 2759.806 146141 

9 JPT 2053174 40372 0.011 &172 0.893 93.685 1843 1036 &172 0.976 0.712 160 2685.329 136216 

10 JPT 1591294 31403 0.009 &175 0.874 114.228 1760 1.038 0U75 0.971 0698 192 2810.696 134944 

11 JPT 1436562 28279 0.008 &176 0.876 127.292 1800 1.032 0 176 0 ^ ^ 6 0.711 155 2493.952 134292 

12 JPT 1527551 30085 0 009 0.179 0.850 106.310 1657 1039 0M79 0.939 0.812 185 2740.319 131958 

13 JPT 1176240 23112 0.009 0.176 0 892 115.510 1.730 1032 0 J 7 6 0.974 0.697 139 2016.941 96206 

14 JPT 937082 18439 0.008 0175 0.868 120.132 1733 1037 0175 0.975 0.670 130 1873.782 87047 

15 JPT 823239 16336 0 008 0 177 0.820 118.712 1779 1.044 0.177 0 ^ # 9 0.664 146 1868.918 81777 

16 JPT 750704 15029 0.012 0M79 0.863 81.416 1518 1059 0M79 0^167 0^W6 159 2013.295 89882 

17 JPT 760932 15136 0 009 0.175 0.835 114.202 1795 1044 0 J 7 5 0.983 0.619 130 1921419 81626 

18 JPT 1319489 25938 0.011 0.169 0.934 91234 1.821 1.024 0.169 0.988 0.653 130 1933.176 76111 

19 JPT 538975 10668 0,013 0179 0.869 78.795 1.436 1.044 0M79 0.972 0.632 159 1742.227 63584 

20 JPT 642269 12685 0.011 0.177 &870 90.328 1611 1053 0 177 0.971 O^^O 120 1590.950 63585 
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21 JPT 756081 14857 0.014 &174 0.944 69282 1.708 1.028 &174 0.985 0703 56 967773 37027 

22 JPT 685070 13483 0.013 0.171 &868 78 595 1992 1.030 &171 0979 0.666 86 1139.183 34760 

23 JPT 1362571 27910 0.005 0.228 0.885 214.724 1.023 1024 0.228 0.988 0 387 139 1694.528 150761 

1 YRI 2959312 58317 0.013 &163 0.734 76 863 1790 1107 0U63 0.881 1066 229 6092728 245265 

2 YRI 2998624 58512 0.014 &161 0.754 82.000 1.810 1.101 &161 0.890 1.010 150 5875.767 243402 

3 YRI 2582077 50716 0.012 &162 0.748 86.068 1.905 1106 &162 0.919 1.006 178 4986.423 199151 

4 YRI 2253989 44318 0.013 &162 0.773 75 802 1642 1.110 0M62 0.902 1.000 155 4605.885 191649 

5 YRI 2121833 41737 0.012 &163 0.755 81346 1.721 1.099 0.163 0.909 0^966 159 4528.654 180751 

6 YRI 2462162 48364 0.013 0163 0.780 77628 1823 1096 0.163 0.914 1.034 109 4299.258 170675 

7 YRI 1742456 34373 0.012 0.164 0.761 82.645 1.701 1.125 &164 0.908 0.971 163 3930.962 158406 

8 YRI 2953573 58035 0.015 0.158 0.812 64.734 2.148 1096 0.158 0.941 1.092 75 3943.892 146141 

9 YRI 2307503 45386 0.017 0 1 5 8 0.767 59785 2.080 1104 0.158 0.915 1.062 122 3714.281 136290 

10 YRI 1870403 3G878 0.014 &162 0.742 70749 1823 1109 0M62 0907 0.985 113 3827.724 134890 

11 YRI 1628897 32032 0.012 0M63 0 J 4 6 81.149 1789 1.111 0163 0913 0 ^ n 6 125 3472.884 134291 

12 YRI 1813663 35789 0.014 0.162 0 J 5 2 71450 1773 1.100 &162 0.900 0.997 135 3748.051 131993 

13 YRI 1425104 28015 0.014 0163 0759 72.722 1.796 1103 0.163 0.914 1.004 78 2750.522 96190 

14 YRI 1065775 20958 0.012 &163 0726 83.443 1767 1115 0M63 0.908 0 c n 7 92 2481317 87057 

15 YRI 955882 18954 0.013 0M64 0 682 74.614 1720 1119 0M64 &890 0.936 111 2490.796 81777 

16 YRI 892103 17712 0 013 0M62 0 658 78.&M 1.808 1164 0M62 0902 0902 138 2582.023 89882 

17 YRI 870795 17225 0 013 0M63 0.690 76.442 1697 1129 0U63 0^W5 0.902 150 2679.498 81626 

18 YRI 1618944 31809 0.019 0.159 0 828 53.209 1989 1080 0M59 0.938 1052 137 2922.153 76111 

19 YRI 615655 12127 0 014 0M63 0706 71530 1612 1136 0.163 0.913 0.864 120 2153.041 63580 

20 YRI 746647 14725 0.016 &164 0.654 61.738 1533 1129 0M64 0 8 1 8 1.011 164 2420.084 63585 

21 YRI 809890 15914 0.025 0 ^ 6 1 O a i 8 3&359 1765 1098 0M61 0 918 1.000 29 1451245 37027 
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Appendix 2 Chapter 5 - Large consanguineous pedigree d iagram, genotype da ta is available f o r the individuals in bold. 

107 

101 125 

5 a — j — s k 

100 115 116 105 58 53 54 

55 56 41 42 51 

128 7 59 109 

72 70 4 95 

0.01953135 

1 3 8 l % 6 1 ^ 7 
m iM 1 . 1 1 1 3 2 

O D 0 6 0.̂ 648439 0.0644Sm 
OTaawg 

1 1 4 2 1/19 (umsw* 
0742187 

79 110 45 46 47 48 

.oasMM) 

6 i i i i i i i i £ 6 1 
88 90 89 112 86 113 83 84 106 l y 18 19 3 5 6 4 

6 6 6 i 6 6 i 6 6 6 
2 5 38 40 39 37 31 32114 21 22 23 

A black symbol indica tes a con f i rmed af fec ted indiv idual a n d a grey symbol ind ica tes a mi ldly a f fec ted indiv idual (Diagram prov ided by Beverley Dell, Wessex 

Clinical Genet ics Service). 
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Appendix 3 Chapter 5 - Genes associated with the kidney or kidney disease. 

Gene symbol Description chr Start kb End kb source 

4 8 C 8 f ATP-binding cassette subfamily B member 1 7 8677A599 86987 215 2 

4 8 C C f ATP-binding cassette, subfamily C, member 1 16 15950.935 16143.774 2 

ABCC6 ATP-binding cassette, subfamily C, member 6 16 16151491 16224 815 2 

/4CE angiotensin 1 converting enzyme 17 5891&909 58952935 2 Associated with Nephrotic syndrome 

a-Actinin-4 19 4383&166 4391&010 3 Focal-segmentai glomerulosclerosis 

dGTR? angiotensin II receptor, type 1 3 149898.363 149943.486 2 

4PC adenomatosis polyposis coll 5 112101.483 112209.834 2 

dPCWf apolipoprotein A-l precursor 11#2 random random 2 

4PCW2 apolipoprotein A-ll precursor 1 158005.156 158006.491 2 

APOE apolipoprotein E 19 50100 879 50104.489 2 Associated with Nephrotic syndrome 

Androgen receptor X 66571704 66727M40 1 

AREG Amphiregulin (schwannoma-derived GF) 4 75675 888 75685.760 1 

8 4 X BCL2-associated X protein 19 54149.929 54156 866 1 

8 8 S f Bardet-Biedl sydrome 1 11 66034.695 660&A660 2 

8CL2 B-cell chronic lymphocytic leukemia/lymphoma 2 18 58941.559 59137.025 1 

B0KRB7 bradykinin receptor B1 14 95792 312 95800.851 2 

BF complement factor B preproprotein 6 32021J61 32027.839 2 Associated with Nephrotic syndrome 

8HD folliculin 17 1705&254 17081 221 2 

8S/V0 barttin 1 5517&638 55486.485 2 

C3 complement component 3 precursor 19 6628.878 6671.660 2 Associated with Nephrotic syndrome 

C4A complement component 4A preproprotein 6 32090.550 32111M73 2 Associated with Nephrotic syndrome 

C/\9 carbonic anhydrase IX precursor 9 35663.915 
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CCL2 small inducible cytokine A2 precursor 17 29606.409 2960&331 2 

CCN07 cyclin D1 11 69165.054 69178.422 2 
COHf Cadherin 1, type1, E-cadherin (epithelial) 16 67328.756 67424.940 1 

CDKN1A Cyclin-dependent kinase inhibitor 1A (p21, cip1) 6 36754.465 36763.086 1 
C0KA/2/\ cyclin-dependent kinase inhibitor 2A 9 21957.758 21965.038 2 
C0/(/V28 cyclin-dependent kinase inhibitor 2B 

systic fibrosis transmembrane conductance 

9 21992.903 21999 312 2 

CF IR regulator ATP-binding cassette subfanily C 

member 7 7 116713 968 116902.666 2 

CLC/V5 cholride channel 5 X 49537.192 49560.557 2 

C0L4/:\3 type IV alpha 3 collagen 2 227854.786 228002.091 2 

C0L4/\4 alpha 4 type IV collagen precursor 2 227692.935 227852780 2 

C0L445 type IV alpha-5 collagen X 107489 299 107746.920 2 

C0L446 type IV alpha-6 collagen X 107204 991 107487.805 2 

CSPf Colony-stimulating factor 1 (macrophage) 1 110165 499 110184.397 1 

C S M Cystatin A (stefin A) 3 123526.701 123543.503 1 

C I G F Connective tissue growth factor 6 132311.018 132314M47 1 

C7/V/V8f 
catenin (cadherin-associated protein) beta1 

C7/V/V8f 
88kDa 3 41216.016 4125&938 2 

CUL2 cullin 2 10 35338.814 35419.300 2 

CYLO cylindromatosis (turban tumor syndrome) 16 49333.530 49393.347 2 

cytochrome P450, family 1, subfamily A, 

polypeptide 1 15 72798.943 72804.930 2 

CyP2EY cytochrome P450, family 2, subfamily E, 10 13522&748 
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EGFR 
EGRf 

ER882 

polypeptide 1 

epidermal growth factor receptor 

Early growth response 1 

v-erb-b2 erythroblastic leukemia viral oncogene 

7 54860.934 55049.239 2 

5 137829.080 137832 903 1 

homologue 2 17 35109.780 35438.441 2 

ESRf estrogen receptor 1 6 152220.800 152516.520 2 

E%4V eyes absent 1 8 72272.222 72437 021 2 

F5 coagulation factor V precursor 1 166215.067 166287.379 2 

FGF1 Fibroblast growth factor 1 (acidic) 5 141953 307 142045.812 1 

FH fumerate hydratase precursor 1 237986.947 238009.095 2 

FHIT fragile histidine triad gene 3 59710.078 61212.164 2 

FK8P6 FK506-binding protein 6 7 72186.951 722TA292 2 

FOXOV Forkhead box D1 5 72777.843 72780.108 1 

Fraser syndrome 1 4 79336.275 79822.602 2 

6/47/13 GATA binding protein 3 10 8136 673 8157.170 2 

GLA galactosidase alpha X 100458 942 100469.096 2 

GU3 GLi-Kruppel family member GLI3 7 41776.920 4203&135 2 

GNAW G protein, a inhibiting activity polypeptide 2 3 50248.651 50271790 1 

GS7Pf glutathione transferase 11 67107.862 6711&699 2 

m s H19 11 1972.984 1975.280 2 

HPRrV hypoxanthine phosphoribosyltransferase 1 X 13331&777 133360.216 2 

v-Ha-ras Harvey rat sarcoma viral oncogene 

homologue 11 522.243 525.550 2 

HSCIM82 Hydroxysteroid (11-beta) dehydrogenase 2 16 66022.537 66028.953 2 
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Heat shock 70-kDa protein 1A 6 31891316 3189&698 1 
IFNG interferon, gamma 12 66834.817 66839 788 2 

/GF7R insulin-like growth factor 1 15 97010 288 97319.034 1 

/GF2 Insulin-like growth factor 2 (somatomedin A) 11 2110.364 2116.780 1 

IL11 lnterleukin-11 19 60567.569 60573 626 1 

/L fRN interleukin 1 receptor antagonist 2 113591.701 113607.823 2 

INHA Inhibin a 2 220262.459 220265.932 1 

/NSR insulin receptor 19 7067.049 7245.011 1 

Kallmann syndrome 1 protein X 8306.651 8509.963 2 

KCNJ7 potassium inwardly-recifying channel J1 11 128213M25 128242.478 2 

/(FMS2 c-K-ras2 protein 12 25249.447 25295 121 2 

M M 8 2 Laminin b2 chain 3 49133.551 49145.603 3 

LIM homeobox transrciption factor 1 beta 9 126456 354 126538.284 3 

lymphotoxin alpha precursor 6 31648.072 31650.077 2 

LYZ lysozyme precursor 12 68028.431 680&L280 2 

MET met proto-oncogene precursor 7 115906.410 116032.390 2 

MMP1 matrix metalloproteinase 1 11 102165.861 102174.104 2 

MSH2 mutS homologue 2 2 47541.914 47622011 2 

MTHFR Methylenetetrahydrofolate reductase 1 11780.945 1180&248 2 

MYB 
v-myb avian myeloblastosis virus (AMV) 

MYB 
oncogene homologue 6 135544M46 135582.002 1 

MYC v-myc AMV oncogene homologue 8 1288fA686 128822.853 1 

MYC/V 
v-myc myelocytomatosis viral related oncogene, 

MYC/V 
neuroblastoma derived 2 16031 281 16037J26 2 

Associated witii Nephrotic syndrome 

Associated with Nephrotic syndrome 

Pierson's syndrome 

Nial-patella syndrome 
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MYHS myosin heavy polypeptide 9 non-muscle 22 35001.827 35108.481 2 
NME1 nucleoside-diphosphate kinase 1 17 46585.919 46594.449 2 
N0S3 nitric oxide synthase 3 (endothelial cell) 7 150125.795 150149.323 2 Associated with Nephrotic syndrome 
NOV Nephroblastoma overexpressed gene 8 120497.822 120505.776 1 

NPHP1 nephrocystin 2 110237.281 110319.969 2 
NPHP4 nephroretinin 1 5857.136 5986.797 2 

/VPHSV Congenital nephrotic syndrome of 

Nephrin 19 41008.696 41034.579 3 the Finnish type 

nephrosis 2, idiopathic, steroid-resistant corticosteroid-resistant nephrotic 
A/PHS2 (podocin) 1 176251.333 176276.725 3 syndrome 
A/PyfR neuropeptide Y receptor Y1 4 164602.722 164611.353 2 Associated with Nephrotic syndrome 

A/ROB V 
Nuclear receptor subfamily 0, group b, member 

A/ROB V 
1 X 30082.243 30087.149 1 

/VR3C2 nuclear receptor subfamily 3 group C member 2 4 149357.525 149721.128 2 

OCRL 
phosphatidylinositol polyphosphate 5-

OCRL 
phosphatase X 128399.787 128452.063 2 

ODC1 Ornithine decarboxylase 1 2 10531.106 10539.051 1 

P4X2 Paired box gene 2 10 102495.322 102579.687 1 

PGOFA Platelet-derived growth factor a polypeptide 7 98637.240 98650.943 1 

P/GR polymeric immunoglobulin receptor 1 203490.267 203508.202 2 Associated with Nephrotic syndrome 
PKOY polycystin 1 precursor 16 2078.712 2125.900 2 

PK02 polycystin 2 4 89285.999 89356.107 2 

PKH07 polycystic kidney and hepatic disease 1 6 51588.104 52060.382 2 

P M 2 G 7 phospholipase A2, group VII (platelet-activating 6 46780.238 
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factor acetylhydrolase, plasma) 

*PLCE1 
phospholiase C.epsilon 1 10 95780.559 96078 136 4 

PNN Pinin, desmosome associated protein 14 38714 151 38721178 2 
P0N1 paraoxonase 1 7 94571.639 94598.495 2 

peroxisome proliferative activated receptor 

gamma 3 12367.959 12450 840 2 

PTEN phosphatase and tensin homologue 10 89613.175 89716 382 2 

PTHLH parathyroid hormone-like hormone 12 28006.521 2801&183 2 

RARA Retinoic acid receptor a 17 35740.896 35767.420 1 

RWSSF7 Ras association domain family 1 3 50342.221 50353.371 2 

RB1 retinoblastoma 1 13 47775.912 47954.023 2 

RNF139 ring finger protein 139 8 12555&189 125570.040 2 

S4H SA hypertension-associated homologue 16 20682.813 21715 979 2 

SWLLf sal-like 1 16 49727.830 49742.653 2 

SALL2 Sal (Drosophiia)-like 2 14 21059.074 21075177 1 

SCGBfd f secretogiobin, family 1A, member 1 (uteroglobin) 11 61943.099 61947.242 2 

SOCV Syndecan 1 2 20322.188 20346.822 1 

SERPINE1 plasminogen activator inhibitor-1 7 100363.887 100375.741 2 

SLCfZAf 
sodium potassium chloride cotransporter 2 

SLCfZAf 
family 12 member 1 15 46285.790 4638&568 2 

SLC242 
solute carrier family 2 (facilitated glucose 

transporter) member 2 3 172196.839 172227.470 2 

SLC34A7 solute carrier family 34 (sodium phosphate) 5 176744.061 176758.454 2 

Nephrotic Syndrome with diffuse 

mesangial sclerosis (DMS) 

Associated with Nephrotic syndrome 

Associated with Nephrotic syndrome 
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member 1 

SLC447 
solute carrier family 4 anion exchanger member 

1 17 39682.566 39700 993 2 

SLC444 
solute carrier family sodiumbicarbonate 

SLC444 
cotransporter member 4 4 72569.852 72802.834 2 

SLC%47 
solute carrier family 7 (cationic amino acid 

SLC%47 
transporter y+ system) member 7 14 22312 274 22354 852 2 

SL/r2 slit homologue 2 4 19931.504 20297.057 2 

SWI/SNF related, matrix associated, actin 

SWARCBf dependent regulator of chromatin subfamily b. 

member 1 22 22453.704 22501258 2 

SOOf Superoxide dismutase 1 21 31953.806 31963 112 1 

7'/\P1/4BCB2 transporter 1, ATP-binding cassette, subfamily B 6 32920.965 32929.726 2 

rCF2 transcription factor 2 17 33162.729 3317&182 2 

TGFB1 Tranforming growth factor 01 19 46528.491 46551 656 1 

THBSV Thrombospondin 1 15 37660.572 37676.959 1 

thyroid hormone receptor alpha 17 35472.686 35503.611 2 

IHRB thyroid hormone receptor beta 3 24139.236 24511317 2 

T-cell lymphoma invasion and metastasis 1 21 31238.438 31853M61 2 

r/MP3 tissue inhibitor of metalloproteinase 3 22 31521.362 31583 581 2 

TNF tumour necrosis factor alpha 6 31651329 31654 091 2 

rP53 tumour protein 53 17 7512.464 7531.642 2 

IRAa T-cell antigen receptor, alpha polypeptide 14 21961.312 22090.938 2 

7RPCG TRPG6 11 100827 582 100959.869 3 

158 

Associated with Nephrotic syndrome 

Associated with Nephrotic syndrome 

Focal-segmental glomerulosclerosis 



r s c f tuberous sclerosis 1 9 13279&290 132849.574 2 

7SC2 tuberous sclerosis 2 16 2038.600 2078.713 2 

UMOD uromoduiin 16 20251^75 20271^38 2 Associated with Nephrotic syndrome 

VDR Vitamin D (1,25-dihydroxyvitamin D3) receptor 12 46521.589 46585.081 1 

VHL von Hippel-Lindau tumour suppressor 3 10158.319 10168.744 2 

i v r v Wilms tumor 1 11 32365.897 32413 643 3 Denys-drash syndrome 

Source; i . ( R e n s h a w et al. 2 0 0 4 ) 2. ( H u m a n k idney Gene Da taBase 2 0 0 4 ) 3. (Tryggvason, Pa t r akka , a n d W a r t i o v a a r a 2 0 0 6 ) 4 . (H inkes et al. 2 0 0 6 ) 
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Appendix 4. Chapter 5 - Affymetrix 50K and 500K array, top 10 regions common to 

ID3, ID4, ID19 and ID25, ordered by genetic length on the LDU scale. 

Location (Kb) No. SNPs 

LDU No. in following 

Chr Start End Kb length length SNP region 

AffySOK 10 132872^ 135126.6 2254.18 70.5 5 0 

1 836.73 3127.56 2290.83 49.22 8 0 

16 83445.94 84394.93 948.98 4&04 13 0 

6 41551.67 42430.49 878.83 4 2 0 3 5 0 

19 61906.99 62826.08 91&1 3 7 ^ 7 6 0 

10 12535&9 126428 1071.14 3 6 7 8 5 0 

22 46949.92 47337.59 387.67 30.31 8 0 

22 43945.37 44400.71 455.34 2&84 6 0 

13 26159.37 2671195 552.58 2 8 3 3 9 1 

4 25204.63 25687.53 4 8 2 ^ 27M3 5 0 

AffySOOK 3 192033.4 192151.3 1 f A 9 2 1 7 j # 9 0 

19 56116.92 56177.01 60.09 17.20 7 0 

19 5878176 58823.45 41.69 16.09 8 0 

4 33115.56 33882.9 767.33 1472 52 0 

2 157803 1580&L7 251.67 13.42 37 0 

8 62165.45 62175.6 1&15 12.35 5 2 

5 94765.45 94804.7 39.25 12.30 10 9 

19 18708.61 18966.45 257.84 1187 9 1 

6 151239.2 15129&1 55.88 11.50 15 1 

18 10132.32 10188.74 5&42 11.38 8 3 
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Appendix 5. Chapter 5 - Affymetrix 50K and 500K array, top 10 regions common 

to ID3, ID4 and ID19, ordered by genetic length on the LDU scale. 

Location (Kb) No. SNPs 

LDU No. in following 

Chr Start End Kb length length SNP region 

AffySOK 13 22793.60 26016.28 3222.68 110.73 88 14 

10 132872 40 135126.60 2254 18 7&50 5 0 

10* 95364.46 99548.30 4183.84 6 4 7 5 78 0 

22 46627.38 47337.59 710.21 5&24 9 0 

1 836.73 3127.56 2290.83 49.22 8 0 

6 4155167 42598.50 1046.83 4 & 8 5 6 0 

19 42606.99 45229.64 2622.65 4%25 5 0 

16 83445.94 84394.93 948.98 45.04 14 0 

4 8171.57 9668.55 1496.98 44.22 13 0 

19 60069.02 61064.52 995.49 4 & 2 1 8 3 

AffySOOK 13 2390&63 25639.08 1732 45 42.64 322 177 

13 2565125 26431.64 780.39 35.38 177 81 

13 23458.33 23868.71 410.38 3 1 8 3 136 0 

10 97017.08 98526.09 1509.02 2 8 7 5 310 0 

10* 95282.73 96261.83 97&1 19.00 165 66 

4 32756.28 33882.9 1126.61 18 36 103 0 

3 192033^ 1921513 117.92 17.29 9 0 

19 56116.92 56177.01 60 09 17 jW 7 0 

19 5878176 58823.45 41.69 16.09 8 0 

5 150898.3 151007.2 108.89 1&29 23 0 

Regions containing PLCEi gene. 
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