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This thesis assessed the degree to which the technique of meta-analysis can provide insight 
into spectrum effects through comparing study results between studies (or between 
subgroups within studies). Chapter 1 introduced the concept of diagnostic accuracy as the 
means by which diagnostic tests can be evaluated and also introduced the idea that 
diagnostic tests can operate differently according to spectrum-related characteristics. It was 
hypothesised that meta-analysis may provide the best available tool to identify the extent to 
which various the sources of heterogeneity, including spectrum, can affect test accuracy. 
Chapter 2 explained four methods of meta-analysis that allow for variability in threshold and 
for variation in DOR with threshold. Only the so-called 'advanced' models possess the 
characteristics of an 'optimal' meta-analytic method. 

Chapter 3 reported a methodological review of how heterogeneity has been examined in 
existing systematic reviews of diagnostic test accuracy. Less than optimal methods of meta­
analysis that do not allow for threshold effects have been commonly employed. Spectrum­
related variables were commonly investigated as potential sources of heterogeneity and 
'statistically significant' results often reported. The few reviews using the advanced models of 
meta-analysis showed overall improved systematic review methods and were more likely to 
have considered spectrum-related characteristics. 

Chapter 4 reported a detailed case study comparing the four meta-analytic methods on a 
large dataset of tests for the detection of tuberculosis. The main observations arsing from 
these analyses were further explored in Chapter 5 using data obtained from a large sample of 
previously published systematic reviews of diagnostic tests and using only spectrum-related 
covariates. The main findings were as follows: 
1. On average, weighting the Moses model by the inverse variance of the log of the DOR 

(SE(lnDOR)) underestimated the results of the unweighted Moses model by around 30%, 
with considerable disagreement between models. This underestimation is likely due to 
bias in the SE(lnDOR) and hence it is likely that the weighted model results are 
misleading. The circumstances that lead to biased SE(lnDOR) are common in diagnostic 
test meta-analyses therefore this form of weighting is not recommended. 

2. The unweighted Moses model results were more similar to those of the HSROC model 
than those of the weighted Moses model, however it cannot be relied upon to 
approximate the results of the 'optimal' HSROC model. 

3. The BVN model and the HSROC model produce almost identical results for the primary 
data analyses (this was investigated only in Chapter 4) 

4. For the HSROC model, allowing for differences in the distribution of test results between 
diseased and nondiseased by covariate (shape differences) sometimes affects the 
conclusions that would be drawn from an analysis and sometimes not. Although the 
magnitude of differences between groups may vary between models, the inclusion of a 
shape interaction term does not necessarily change the strength of evidence for 
differences in accuracy. It is not clear whether potential differences in the distributions of 
test results (differences in shape) should be routinely modelled or whether the more 
simple parallel curve approach will generally suffice. The optimal approach for the 
investigation of heterogeneity requires further investigation 

5. Finally, strong evidence of effects from spectrum-related characteristics on at least one 
model parameter were identified by the parallel or crossing curve HSROC model for over 
half of the investigations conducted in Chapter 5 (32/50). This could have considerable 
implications for the use of tests in practice. 

The advanced methods of meta-analysis show promise in enabling the detection of clinically 
important spectrum effects. However, one of the ongoing challenges in the investigation of 
heterogeneity, and especially spectrum, in systematic reviews are limitations in the primary 
study data. 



DECLARATION OF AUTHORSHiP ................................................................................................. VI 

ACKNOWLEDGEMENTS ................................................................................................................ VII 

LIST OF ABBREVIATIONS .............................................................................................................. IX 

1 INTRODUCTION ........................................................................................................................... 1 

1.1 DIAGNOSIS ............................................................................................................................... 1 

1.2 DIAGNOSTIC TEST ACCURACY AND PATIENT SPECTRUM ......................................................... 3 
1.2.1 Patient spectrum, disease prevalence and variation in sensitivity and specificity 5 
1.2.2 Spectrum effects ... a bias or effect modifier? .......................................................... 10 
1.2.3 Dealing with "spectrum" in primary studies .............................................................. 10 
1.2.4 Examples of spectrum affecting sensitivity and specificity .................................... 12 

1.3 SPECTRUM EFFECTS AND SYSTEMATIC REViEWS .................................................................. 16 

1.3.1 Systematic reviews oftest accuracy. ........................................................................ 16 
1.3.2 Potential impact from spectrum variation ................................................................. 17 
1.3.3 Challenges in investigation of spectrum effects in systematic reviews ............... 18 

2 ESTABLISHING DIAGNOSTIC TEST ACCURACY IN SYSTEMATIC REViEWS .......... 23 

2.1 ESTABLISHING TEST ACCURACY ............................................................................................ 23 

2.1.1 In primary studies ........................................................................................................ 23 
2.1.2 In systematic reviews .................................................................................................. 25 

2.2 SOURCES OF VARIATION IN DIAGNOSTIC TEST ACCURACY OTHER THAN SPECTRUM ............ 26 

2.2.1 Study design and quality considerations .................................................................. 27 
2.2.2 Variation in test(s) ........................................................................................................ 31 
2.2.3 Threshold effects ......................................................................................................... 31 

2.3 SELECTED METHODS OF META-ANALYSIS AND HOW THEY MAY REVEAL/HIDE SPECTRUM 

EFFECTS ............................................................................................................................................. 32 

2.3.1 Characteristics of an optimal meta-analytic method ............................................... 34 
2.3.2 Moses and Littenberg SROC method ....................................................................... 34 
2.3.3 Advanced methods ...................................................................................................... 38 

2.4 EXTENT TO WHICH THE THREE METHODS POSSESS THE CHARACTERISTICS OF AN OPTIMAL 

META-ANALYTIC METHOD ................................................................................................................... 42 

2.4. 1 Summary ....................................................................................................................... 44 
2.5 OUTLINE OF THESIS AND RESEARCH QUESTIONS TO BE ADDRESSED ................................... 44 

3 A METHODOLOGICAL REVIEW OF HOW HETEROGENEITY HAS BEEN EXAMINED 
IN SYSTEMATIC REVIEWS OF DIAGNOSTIC TEST ACCURACy .......................................... 47 

3.1 METHODS ............................................................................................................................... 47 

3. 1. 1 Eligibility criteria ........................................................................................................... 47 
3.1.2 Literature search .......................................................................................................... 47 
3.1.3 Data extraction ............................................................................................................. 48 
3. 1.4 Dat~ synthesis ... ........................................................................................................... 48 

3.2 RESULTS - REVIEWS USING ESTABLISHED METHODS OF META-ANALYSIS ........................... 50 

3.2.1 Summary of reviews identified ................................................................................... 50 
3.2.2 Description of review methods ................................................................................... 50 
3.2.3 Description of statistical methods used .................................................................... 52 
3.2.4 Identification of heterogeneity .................................................................................... 52 
3.2.5 Type of syntheses used .............................................................................................. 55 
3.2.6 Investigation of sources of heterogeneity ................................................................ 57 
3.2.7 Result of heterogeneity investigations (for reviews that examined spectrum-
related factors) ............................................................................................................................. 61 

3.3 RESULTS - REVIEWS USING ADVANCED METHODS OF META-ANALYSIS ................................ 61 

3.3.1 Summary of reviews identified ................................................................................... 62 
3.3.2 Review methods .......................................................................................................... 62 
3.3.3 Statistical methods ...................................................................................................... 65 
3.3.4 Result of heterogeneity investigations ...................................................................... 65 

3.4 DISCUSSION ........................................................................................................................... 66 

3.5 CONCLUSIONS ........................................................................................................................ 72 

4 A CASE STUDY COMPARING THREE META-ANALYTIC METHODS ........................... 74 

ii 



4.1 METHODS USED TO COMPARE META-ANALYTIC MODELS ...................................................... 74 
4.1.1 Comparison of the Moses methods .......................................................................... 75 
4.1.2 Comparison of the Moses model against the HSROC model ............................... 77 

4.2 PRIMARY ANALYSIS OF THE TB DATASET .............................................................................. 77 
4.2.1 An exploration of the differences between Moses models .................................... 80 
4.2.2 Moses versus HSROC comparison .......................................................................... 84 
4.2.3 Summary ....................................................................................................................... 87 

4.3 INVESTIGATION OF HETEROGENEITY IN THE TB DATASET USING THE 3 METHODS ............... 88 
4.3.1 Comparing the Moses model results ........................................................................ 88 
4.3.2 Comparing the advanced model results ................................................................... 97 
4.3.3 Moses model results versus advanced model results ............................................ 99 

4.4 DISCUSSION ......................................................................................................................... 101 

5 A RE-ANALYSIS OF PREVIOUSLY PUBLISHED SYSTEMATIC REVIEWS TO 
IDENTIFY SPECTRUM EFFECTS ................................................................................................. 104 

5.1 METHODS ............................................................................................................................. 104 
5. 1. 1 Literature search ........................................................................................................ 104 
5. 1.2 Eligibility criteria ......................................................................................................... 104 
5.1.3 Data extraction ........................................................................................................... 104 
5.1.4 Data synthesis ............................................................................................................ 105 
5. 1.5 Comparison of meta-analytic methods ................................................................... 106 

5.2 RESULTS .............................................................................................................................. 108 
5.2.1 Summary of reviews identified ................................................................................. 108 
5.2.2 Comparison of primary analysis results ................................................................ 112 
5.2.3 Comparison of heterogeneity investigations .......................................................... 117 
5.2.4 Selected illustrative examples - Moses versus HSROC ..................................... 123 
5.2.5 Evidence of spectrum effects - HSROC parallel versus crossing curves ......... 125 

5.3 DISCUSSION ......................................................................................................................... 127 

6 DISCUSSION ............................................................................................................................. 133 

APPENDiCES .................................................................................................................................... 142 

GLOSSARY ....................................................................................................................................... 214 

REFERENCE LIST ........................................................................................................................... 217 

RELATED PUBLiCATIONS ............................................................................................................ 238 

Appendix 1 Calculation of diagnostic accuracy statistics ....................................................... 143 
Appendix 2 Specification of Rutter and Gatsonis HSROC modeL ......................................... 144 
Appendix 3 Specification of bivariate normal model .............................................................. 145 
Appendix 4 Spectrum-related items used in reviews undertaking quality assessment (n=131) 
............................................................................................................................................... 146 

Appendix 5 Summary details per review of spectrum-related heterogeneity investigations. 153 
Appendix 6 Reviews using advanced methods of meta-analysis: Methods .......................... 156 
Appendix 7 Reviews using advanced methods of meta-analysis: Synthesis methods ......... 159 
Appendix 8 Reviews using advanced methods of meta-analysis: Results ............................ 166 
Appendix 9 Rationale for choice of topic, type of TB and test( s) for the case study ............. 172 
Appendix 10 Meta-analytic methods used for the TB case study .......................................... 175 
Appendix 11 Primary study details ......................................................................................... 181 
Appendix 12 Bias in the standard error of the log DOR ......................................................... 184 
Appendix 13 Deletion residual analysis for Moses (eq) model: studies with;?: 5% effect on at 
least one parameter (sorted by effect on DOR) ..................................................................... 186 
Appendix 14 Deletion residual analysis for HSROC model: studies with;?: 5% effect on at least 
one parameter (sorted by effect on DOR) .............................................................................. 189 
Appendix 15 Plots according to index test blinding (blinding not reported as reference case) 
............................................................................................................................................... 192 

Appendix 16 Plots according to test type (Amplicor as reference case) ............................... 193 
Appendix 17 Plots according to reference test used (combined reference test as reference 
case) ....................................................................................................................................... 194 
Appendix 18 Data extraction form .......................................................................................... 195 

iii 



Appendix 19 Primary analysis details .................................................................................... 196 
Appendix 20 Heterogeneity investigations: comparison of relative diagnostic odds ratios 
between models (Ratio of ROORs) ........................................................................................ 198 
Appendix 21 Heterogeneity investigations - P-values for ROORs per mode!. ...................... 201 
Appendix 22 Heterogeneity investigations - P-values for differences in slope and threshold 
(crossing curve models only) ................................................................................................. 204 
Appendix 23 ROC plots for reviews for which HSROC analyses would not complete .......... 207 
Appendix 24 Box and whisker plots for stratified analyses comparing OORs between models 
............................................................................................................................................... 208 

Appendix 25 Box and whisker plots comparing ROORs between models ............................ 211 
Appendix 26 Comparison of P-values for ROORs between crossing curve models ............. 213 

Table 1 Hypothetical example of how spectrum might affect accuracy with constant 
prevalence .................................................................................................................................. 5 
Table 2 Primary studies demonstrating potential spectrum effects ......................................... 15 
Table 3 Hypothetical example of how spectrum could affect the conclusion of a systematic 
review (adapted from Mulherin and Mille~o) ............................................................................ 17 
Table 4 Methodologic reviews of studies of diagnostic test accuracy: spectrum-related criteria 
................................................................................................................................................. 20 

Table 5 Quality considerations for evaluation of a diagnostic test stud/1
,67 ........................... 27 

Table 6 Comparison of statistical methods .............................................................................. 42 
Table 7 Summary of reviews found ......................................................................................... 51 
Table 8. Breakdown of quality assessment items related to patient spectrum ........................ 52 
Table 9 Summary of statistical methods used ......................................................................... 53 
Table 10 Statistical tests and graphical approaches used according to method of synthesis. 54 
Table 11 Statistical investigations of heterogeneity (n=1 02) ................................................... 59 
Table 12 Summary of spectrum-related heterogeneity investigations ..................................... 60 
Table 13 Summary of reviews using advanced methods ........................................................ 62 
Table 14 Summary of heterogeneity investigations ................................................................. 63 
Table 15: Main model parametersa 

.......................................................................................... 78 
Table 16: Studies with the highest quartile of diagnostic odds ratios ...................................... 80 
Table 17: Breakdown of SE(lnOOR) for selected studies ........................................................ 81 
Table 18 Result of pooled analysis using Moses models minus each study with biased 
SE(lnOOR) ............................................................................................................................... 83 
Table 19 Categories of study with biggest influences on model results .................................. 84 
Table 20 Summary of deletion residual analysis: percentage change in model parameters 
following removal of each individual study ............................................................................... 85 
Table 21 Difference in model parameters: blinded index test interpretation (comparator) 
versus blinding not reported (reference) .................................................................................. 89 
Table 22: Difference in model parameters: MTO (comparator) versus Amplicor (reference) .. 91 
Table 23: Difference in model parameters: culture alone (comparator) versus combined 
reference test (reference ) ......................................................................................................... 95 
Table 24 Summary of similarity of strength of evidence from HSROC model and Moses model 
resu Its ..................................................................................................................................... 100 
Table 25 Summary details of review topics and covariates ................................................... 110 
Table 26 Stratified comparison of OOR estimates between models ..................................... 116 
Table 27 Comparison of relative diagnostic odds ratios (ROORs) between models ............. 118 
Table 28 Agreement in strength of evidence for differences in accuracy between models 
(ROOR P-values at P<0.20) ................................................................................................... 119 
Table 29 Disagreement in strength of evidence for differences in shape between models 
(comparison of P-values for shape differences at P<0.20) .................................................... 120 
Table 30 Agreement in strength of evidence for differences in accuracy between models 
(comparison of P-values for ROOR at Q* and threshold at P<0.20) ..................................... 122 
Table 31 HSROC parallel versus crossing curve models: similarity of strength of evidence 126 

Figure 1 Hypothetical distribution of test results (adapted from Griner and colleagues, 1981 4)2 
Figure 2 Variation in distribution of results with constant prevalence ........................................ 7 
Figure 3 Hypothetical description of the potential impact of spectrum on accuracy ................ 14 
Figure 4 ROC plots demonstrating impact from spectrum on a systematic review ................. 18 
Figure 5 ROC curve ................................................................................................................. 25 

iv 



Figure 6 Sample ROC plot for a systematic review ................................................................. 32 
Figure 7 Scenario required for symmetric SROC curve .......................................................... 33 
Figure 8 Sample Moses plots using data from Scheidler and colleagues76 

............................ 36 
Figure 9 Advanced method plots ............................................................................................. 39 
Figure 10 Flowchart of review inclusion process ..................................................................... 49 
Figure 11 Type of meta-analytic method used by publication year ......................................... 56 
Figure 12 Means of presenting results of SROC analyses (n=64) .......................................... 57 
Figure 13 Number of variables investigated per review ........................................................... 58 
Figure 14 ROC plots for the three meta-analytic methods ...................................................... 77 
Figure 15 Scatter plots of log of diagnostic odds ratio (DOR) ................................................. 79 
Figure 16 D vs S plot for all studies ......................................................................................... 82 
Figure 17 Plots of studies having effect of 5% or more on at least one model parameter ...... 87 
Figure 18 Plot of SE(log DOR) against log DOR - index test blinding .................................... 90 
Figure 19 D vs S plots - by index test blinding ........................................................................ 90 
Figure 20 Plot of SE(log DOR) against log DOR - test type ................................................... 92 
Figure 21 D vs S plots - by test type ....................................................................................... 93 
Figure 22 Plot of SE(log DOR) against log DOR - reference test used .................................. 94 
Figure 23 D vs S plots - by reference test used ...................................................................... 94 
Figure 24 Flowchart of the review selection process ............................................................. 109 
Figure 25 Similarity of DOR estimates between models ....................................................... 112 
Figure 26 Agreement in strength of evidence for asymmetry of SROC curves ..................... 114 
Figure 27 Comparison of P-values for RDORs between parallel curve models .................... 118 
Figure 28 Comparison of strength of evidence for differences in shape between models 
(comparison of P-values for shape interaction term) ............................................................. 119 
Figure 29 Parallel versus crossing SROC curve models: Ratio of RDORs at 0* .................. 120 
Figure 30 Comparison of P-values for RDOR between parallel (PA) and crossing curve (XG) 
models .................................................................................................................................... 121 
Figure 31 Comparison of P-values for threshold differences between HSROC parallel and 
crossing curve models ........................................................................................................... 123 

v 



Acknowledgements 
Completion of this thesis has taken more than seven years and I have several key people to 

thank for helping me get to the end of it. My interest in the methodology of evaluating 

diagnostic tests began during my time at the Centre for Reviews and Dissemination at the 

University of York and I have my then employer, Jos Kleijnen, to thank for stimulating my 

interest in this area. The persuasiveness of Norman Waugh encouraged me to move to the 

Wessex Institute for Heath Research and Dissemination at Southampton University in 2000. It 

is thanks to Norman that I got into the field of systematic reviews six years previously and 

also primarily due to him that I was able to enrol for my PhD, at a time when no-one else in 

the department were studying for PhDs. His continued support and faith in me during the 

years that we have worked together are very valuable to me. 

I am indebted to my supervisers, Paul Roderick and Jon Deeks, for their time, patience, 

guidance and constant encouragement over the course of this thesis. With their input the 

thesis took on a whole new, and ultimately more challenging, direction. Paul's clinical 

perspective really helped to make me think through the implications of some of the more 

'technical' findings. My move from the Wessex Institute to his department and his support of 

my later move to Scotland were instrumental in allowing me to finish the thesis and I sincerely 

thank him for all his support. 

Without Jon's expertise and in-depth knowledge of the field I would not have been able to 

accomplish half of the work contained here and not to nearly the standard that has been 

achieved. I am very lucky to have worked with him over the years and hope that will continue 

in the future. I would also like to thank Michele, Jessie and Oscar for their hospitality during 

my visits from Scotland! 

I gratefully acknowledge the help of my other co-authors on various publications related to the 

thesis: Jo Kirby for the review of previously published reviews, Christine Clar and Andrea 

Gibson for help with data extraction of the TB studies, and Susan Mallett and Sally Hopewell 

for data extraction of reviews for reanalysis. I would also like to thank the National Institute for 

Health Research's Research Capacity Development initiative for funding my fellowship over 

the last four years. 

I have had several office mates through the years and would particularly like to mention Colin 

Green for saving my sanity and latterly, Julie, Chris and Chris (and Trisha next door), for 

providing a stimulating and supportive environment in which I rediscovered my faith and 

enjoyment in academia. I doubt I would have completed the work without their cheerful 

encouragement. 

vii 



My friends and family are in a state of shock that I have finally finished this work. My family 

have always supported me in everything I do and it is partly for them that I have persevered 

this far. In recent months mum and dad have gone above and beyond their usual to look after 

our little Isla and allow me many extra days of PhD time. This was a real godsend and I am 

very lucky to have them. My husband Jon, I think, will be almost more relieved than I to have 

this piece of work finished. He always manages to make me see the lighter side of life when 

all is doom and gloom but he will be glad that grumpy Jac will (largely) be gone and he will 

finally "get his wife back". 

viii 



List of abbreviations 
AFB 

AUC 

BCG 

BMI 

BVN 

CAD 

CDSR 

CI 

CONSORT 

CT 

DARE 

DNA 

DaR 

ECG 

ELISA 

ES 

ESS 

FN 

FP 

FPR 

GP 

HIV 

HRT 

HSROC 

HTA 

INAHTA 

IPD 

IQR 

acid fast bacilli 

area under the curve 

Bacille-Calmette-Guerin 

body mass index 

bivariate normal 

coronary artery disease 

Cochrane Database of Systematic Reviews 

confidence interval 

Consolidated Standards of Reporting Trials 

computed tomography 

Database of Abstracts of Reviews of Effects 

deoxyribonucleic acid 

diagnostic odds ratio 

electrocardiogram 

enzyme-linked immunosorbent assay 

effect size 

effective sample size 

false negative 

false positive 

false positive rate 

general practitioner 

human immunodeficiency virus 

hormone replacement therapy 

hierarchical summary ROC 

Health Technology Assessment 

International Network of Agencies of Health Technology Assessment 

individual patient data 

inter-quartile range 

ix 



LJ 

InDOR 

LR 

M. 

MDR-TB 

MEDION 

mmHg 

MRI 

MTD®) 

NAAT 

OR 

PCR 

PE 

PET 

PPD 

PV 

QA 

QUADAS 

RCT 

RDOR 

ROC 

ROR 

RROR 

SE 

SROC 

STARD 

TB 

TN 

TP 

Lowenstein-Jensen 

log of the diagnostic odds ratio 

likelihood ratio 

mycobacterium 

multidrug resistant tuberculosis 

a database of diagnostic systematic reviews updated by a group of 

Dutch and Belgian researchers 

millimetres of mercury 

magnetic resonance imaging 

Gen-Probe Amplified Mycobacterium tuberculosis Direct Test 

nucleic acid amplification test 

odds ratio 

polymerase chain reaction 

pulmonary embolism 

positron emission tomography 

purified protein derivate 

predictive value 

quality assessment 

Quality Assessment of Diagnostic Accuracy Studies 

randomised controlled trial 

relative diagnostic odds ratio 

receiver operating characteristic 

ratio of diagnostic odds ratios 

ratio of relative diagnostic odds ratios 

standard error 

summary receiver operating characteristic 

STAndards for Reporting Diagnostic Accuracy 

tuberculosis 

true negative 

true positive 

x 



TPR 

TST 

UTI 

WHO 

true positive rate 

tuberculin skin test 

urinary tract infection 

World Health Organisation 

xi 



1 Introduction 
The subject of this thesis is to assess the degree to which the technique of meta-analysis can 

provide insight into spectrum effects (or patient case-mix) through comparing results between 

studies (or between subgroups within studies). 

This chapter introduces the concepts of diagnostic accuracy and patient spectrum, and the 

possible influence of spectrum on indices of accuracy in both primary studies and systematic 

reviews, with or without meta-analysis. It ends with a summary of why it is important to 

investigate spectrum effects in systematic reviews and a recognition of the limitations in doing 

so. 

1. 1 Diagnosis 
Diagnosis is a fundamental element of patient care. It can sometimes be established by 

clinical examination or history taking but it usually depends on additional laboratory, radiology 

or pathology tests. The diagnostic process is important for establishing the presence of 

specific disorders, for informing or monitoring patient prognosis and therapy and in reassuring 

clinicians and/or patients when disorders are ruled out. Diagnostic tests or strategies can be 

applied to differentiate diseased from nondiseased (diagnosis); mild from severe disease (for 

prognosis or therapy decisions); or in a screening situation (which can be seen either as a 

means of identifying high risk groups, or of identifying disease at an earlier stage). Diagnoses 

can also be made in situations where there are no effective treatments. The most obvious are 

for some genetic tests that are applied in order to give peace of mind to the patient, either by 

excluding the inherited condition, or enabling them to prepare themselves and their families 

for the onset of disease at a later date. 

With the advancement of technology, an increasingly wide variety and number of tests have 

become available. Their roles may be to replace an existing test, to rule out patients who 

need not progress to further testing (triage) or they may be performed in addition to one or 

more existing tests. 1 The value of new tests (or new applications of existing tests) and the 

contribution that they can make to clinical care requires careful evaluation. 

Although there is an increasing interest in the evaluation of diagnostic tests and strategies in 

terms of their impact on patient management and outcomes,2,3 there are practical difficulties 

in designing studies to evaluate these outcomes, not least in terms of the large sample sizes 

needed to detect the effect on patient outcomes from both test and subsequent treatment. 

The majority of studies therefore focus on estimating diagnostic test accuracy, whereby the 

results of one (or more) tests for the detection of a given disorder are compared with the 

results of some reference standard in a group of patients suspected of having the target 

disorder. The resulting indices of test accuracy that may be estimated are outlined in 

Appendix 1 and discussed in more detail in Chapter 2. The most commonly used are 
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sensitivity (proportion of diseased participants who have positive test results) and specificity 

(proportion of nondiseased participants who have negative test results), but other indices 

such as predictive values and likelihood ratios are also presented in reports of primary 

studies. 

In order to better understand sensitivity and specificity, it helps to think about the distribution 

of test results in diseased and nondiseased graphically (Figure 1). Although often interpreted 

dichotomously, most tests can be perceived as having a continuous distribution. For example, 

the results of imaging tests tend to be divided into four or five categories ranging from 

definitely positive through to definitely negative. Biochemical tests measure the level of a 

given indicator in the blood or urine, producing results that can range, for example for 

creatinine kinase from zero to over 480 units.5 Similarly, blood pressure is measured to the 

nearest 1 mmHg. 

Figure 1 a demonstrates the distribution of test results for a 'perfect' test, i.e. one that could 

discriminate between diseased and nondiseased people with 100% accuracy. There is no 

overlap in the distributions of test results and hence no false-positive or false-negative results. 

A more realistic picture is presented in Figure 1 b, where there is some overlap in the 

distribution of test results for diseased and nondiseased persons. Positive test results in both 

diseased and nondiseased are on the right-hand side of the threshold line and negative 

results are on the left. Figure 1 c demonstrates the trade-off between sensitivity and specificity 

with changing threshold; as the threshold decreases (moves to the left in this example) 

sensitivity increases (fewer false negative results) and specificity decreases (more false 

positive results) and vice versa. 

The distribution of test results in diseased and nondiseased people and the relationship 

between them are subject to a variety of biases and effect modifiers which can affect test 

accuracy, just as for randomised controlled trials and non-randomised or observational 

studies for the evaluation of therapeutic interventions. The investigation of one of these - so­

called spectrum effects - is the main focus of this thesis. 

1.2 Diagnostic test accuracy and patient spectrum 
The term 'spectrum' was coined by Ransohoff and Feinstein6 to represent the pathologic, 

clinical and co-morbid patient characteristics (both for diseased and nondiseased) that might 

affect a test's sensitivity and/or specificity. In other words, it refers to the case-mix of patients 

included in a study. For the diseased group, pathologic features are defined as those relating 

to the extent, location and, for certain diseases such as cancer, the cell-type of disease. The 

clinical component refers to features such as the chronicity and severity of symptoms. A test 

may be positive in patients with more extensive or severe disease and not in those with 

localised or less severe disease. The co-morbid component refers to co-existing conditions, 

3 



not directly related to the disease under investigation, but that may share the same underlying 

determinants that may make a test falsely negative.6 For example, leukocyte esterase-based 

dipstick tests for the detection of urinary tract infection can be falsely negative in patients with 

immune suppression as the test relies on the presence of white blood cells. The Ransohoff 

and Feinstein definition does not specifically refer to the potential impact from demographic 

variables, however there may be circumstances in which age or gender for example might 

affect test accuracy, e.g. exercise testing for heart disease.7 It is also possible however that 

these may be proxies for true spectrum-related characteristics that are difficult to precisely 

identify, characterise and record. 

For nondiseased patients, or the comparator group, the relevant features to look for are those 

that might lead to false-positive diagnoses. Generally these relate to the presence of co­

morbid conditions whose pathologic or clinical features might be sufficiently similar to those in 

the diseased group as to cause false-positive diagnoses. For example Ransohoff and 

Feinstein6 give the example of a study of a radiolabelled dye marker for diagnosing the 

patency of the cystic duct in cholecystitis - patients with severe liver disease may give false­

positive results if the liver does not excrete dye properly, but such patients were not included 

in the study leading to falsely elevated specificity. 

Sensitivity and specificity (for any given threshold) are often considered to be fixed test 

properties so that what are assumed to vary between studies with different prevalences of 

disease are the predictive values. 8 Re-consideration of the contingency tables from which 

accuracy indices are calculated (Appendix 1) demonstrates the basis for this assumption. 

Whilst predictive values are calculated across the rows of the 2x2 table, sensitivity and 

specificity are calculated on the columns. If the overall relative number of patients with and 

without disease should change (change in prevalence), the proportion of each who test 

positive need not necessarily change. 

The source of the confusion is perhaps the fact that test accuracy is viewed within a 

probability framework - sensitivity being the probability that a patient with disease will have a 

positive test result and specificity the probability that a patient without disease will have a 

negative test result. This implies that the results of a diagnostic test are random, i.e. if a test 

has been shown to have 70% sensitivity and it is applied to a randomly selected group of 

patients with the target disorder in question, 70% would test positive. 9 It does not take a broad 

stretch of the imagination to see that this is not true of most tests and diseases - not all 

patients with (or without) disease will have the same chance of testing positive (or negative). 

In other words "homogeneity of risk" is unusual, therefore where patients are not all equally 

likely to have a positive result, sensitivity and specificity will be strongly affected by the case 

mix of patients recruited to a given study. As Rutjes and colleagues so concisely stated, 
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"diagnostic accuracy is not a feature of a test itself but a description of how the test behaves 

in a particular clinical population" .10 

1.2.1 Patient spectrum, disease prevalence and variation in 
sensitivity and specificity 

Ransohoff and Feinstein were amongst the first to propose that each of the components of 

spectrum could affect the results of a test in both diseased and nondiseased patients6 and 

that, in some cases, problems in the choice of spectrum for anyone component could 

invalidate a study's results. A key factor is the possible impact from disease severity on 

sensitivity and of conditions mimicking the target disorder on specificity. If the sensitivity of a 

test is related to the severity of disease, a test that is highly sensitive in patients with severe 

disease may be less discriminatory or even useless in those with mild to moderate 

disease.6
.
1o As one might expect a higher proportion of more severe disease in higher 

prevalence studies, it follows that sensitivity may appear to increase with increasing 

prevalence. Specificity is affected by the range of alternative diagnoses in patients without the 

target disorder that could cause false positive results. Specificity may fall in studies with 

higher prevalence due to a higher proportion of patients with diseases most closely 

resembling the target disorder. If people without the disease in question share some of same 

underlying characteristics or have similar clinical features to those with the disease, they 

become more difficult to separate at the gatekeeper primary care level, i.e. the false positive 

rate would be higher and specificity lower. 

Table 1 Hypothetical example of how spectrum might affect accuracy with constant 
prevalence 

a. Spectrum of diseased 
Number of patients 

Stage of disease Test sensitivity by General practice Hospital 
stage of disease 

(n = 100) (n = 100) 

Early 0.50 80 20 

Intermediate 0.75 15 30 

Advanced 1.00 5 50 

Observed sensitivity 0.56 0.83 

b. Spectrum of non diseased 

Number of patients 

Alternative diseases Test specificity by General practice Hospital 
alternative disease 

(n = 100) (n = 100) 

Alternative disease X 0.30 30 75 

Alternative disease Y 0.95 65 25 

Healthy 0.99 5 0 

Observed specificity 0.76 0.46 
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Deeks 11 provides a theoretical example to show how differences in the distribution of 

diseased and nondiseased characteristics can occur without any difference in prevalence. 

Table 1 shows two studies of the same test, one conducted in general practice and one in a 

hospital setting. The general practice study has a higher proportion of milder cases of disease 

compared to the hospital study, despite the same overall prevalence of disease. The 

sensitivity of the test is therefore lower in general practice than when used on a hospital 

sample. 

Similarly, if the likelihood of a false positive result is greater when certain alternative 

diagnoses are present (for example Alternative disease X in Table 1 b), and these alternative 

diagnoses are more likely to be present in a hospital sample compared to a general practice 

sample - perhaps because GPs find it particularly difficult to distinguish them from the target 

disorder - the overall specificity of a test will vary according to the study setting. 

In order for test sensitivity and specificity to remain constant across different prevalences of 

disease, the mix of disease severity and symptoms must be the same regardless of disease 

prevalence. 12 Test results must then differ between the diseased group and the nondiseased 

group (usually being higher in the diseased group), but not within the diseased group nor 

within the nondiseased group (Le. the distribution of results in each group should be 

constant). In other words the distributions of test results in diseased and in nondiseased 

should be constant in both average (location) and spread (shape).13 This is unlikely in practice 

unless the test is not affected by disease severity or the presence of alternative 

diagnoses/conditions. 

Variation in test results due to differing responses to a test that in turn result from variation in 

spectrum-related characteristics is shown schematically in Figure 2. Figure 2a presents the 

distribution of test results for a hypothetical test. The prevalence of disease is 50%, therefore 

the two bell-shaped curves representing the test results in nondiseased and diseased 

participants cover the same area (number of nondiseased, n1 is equal to the number of 

diseased participants n2). The mean value for the test results in nondiseased and diseased 

are represented by J..l1 and J..l2; the distance between them indicating how good (discriminating) 

the test is. The distribution of test results in diseased and nondiseased is the same, therefore 

the standard deviation in test results in nondiseased (01) is equal to the standard deviation in 

test results in diseased participants (02)' where 0 is the standard deviation of the mean test 

result (J..l). The sensitivity and specificity of the test are also equal (number of false-negative 

results, FN, is equal to the number of false positive results, FP). 

Figure 2b and Figure 2c show how the same test might perform in two different settings, a 

primary care setting and a hospital setting. In the primary care, 'gatekeeper', setting one 

might expect a lower prevalence of disease and lower proportions of both participants with 
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Figure 2 Variation in distribution of results with constant prevalence 

a. Hypothetical scenario 

Non­
diseased 

Diseased 

b. Primary care setting: sensitivity 60%, specificity 80% 

Non­
diseased 

Diseased 

c. Hospital setting: sensitivity 80%, specificity 60% 

Where: 

Non­
diseased 

Diseased 

Prevalence 50%: 

Same distribution of results in 
diseased and nondiseased: 

~h = 02 

sensitivity = specificity: 
FN = FP 

Prevalence 50%: 

Wider distribution of results in 
diseased participants: 

01 < 02.' 

sensitivity < specificity: 
FN > FP 

Prevalence 50%: 

Wider distribution of results in 
nondiseased participants: 

01' > 02 

sensitivity> specificity: 
FN < FP 

n - number of participants, 0 - standard deviation (distribution of results), 1-1- mean test result, t­
threshold for positivity, FN - false negatives, FP - false-positives 
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more advanced disease and of nondiseased particpants with characteristics closely 

resembling the diseae in question compared to the hospital setting. For the sake of simplicity 

of presentation, the two figures show scenarios with the same prevalence of disease. The 

test, however, is better at picking up more advanced cases of disease therefore the sensitivity 

of the test is lower in primary care than when used in a hospital setting. Figure 2b shows that 

the distribution curves for diseased and nondiseased still cover the same area (n1=n2) but the 

shape of the curves differs. The curve for the diseased group is flatter and wider, indicating 

that although the mean of the test results (Ih) does not necessarily change, fewer participants 

have test results near to it,8 The distribution of results (02') has increased such that there are 

more participants with test results in the tails of the distributions and therefore a higher 

number of false negative results. The curve for the diseased participants in the hospital-based 

study (Figure 2c) remains similar to that shown in Figure 2a as there are a higher proportion 

of patients with advanced disease and the test is therefore shown to be more accurate. 

The distribution curves for nondiseased participants in Figure 2b and c show how this 

variation in the mix of nondiseased participants translates into variation in the distribution of 

test results between general practice and hospital settings and therefore into a variation in 

specificity between settings. 

Variation in spectrum therefore can manifest as a variation in prevalence leading to a 

misconception that sensitivity and specificity vary with prevalence. In fact variation in 

sensitivity and specificity is not actually due to a direct relationship with prevalence but, as 

shown here, is related to the distribution of disease severity or symptoms in diseased patients 

and of conditions similar to that of the target disorder in nondiseased participants that in turn 

leads to variation in test results. 11 .12 This indirect relationship of sensitivity and specificity with 

prevalence is generally related to study setting, as prevalence would not be expected to 

remain constant across different study settings. 

The referral process and patient spectrum 
A key factor affecting the different prevalences and spectrums of disease across different 

settings is the referral process. As Sackett5 has pointed out, major clinical centres of 

excellence will have a particularly distorted sample of patients with a given condition in 

comparison with the general population of such patients. Given its reputation and expertise, 

particularly problem cases are more likely to be referred there and are also more likely to be 

kept track of once referred in comparison to less "interesting" patients. 

Knottnerus and colleagues 14 outlined three factors that affect whether or not a patient is 

referred from general practice to a more specialist setting. They did not include factors such 

a Note that the distribution curves are not necessarily symmetrical about the mean but may be skewed, 
most likely towards the centre of the data, i.e. the left-hand tail for the diseased group and right-hand tail 
for the nondiseased group will contain more results than the tails for the extreme positive or negative 
results. 
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as patient anxiety or pressure for second opinion that can also influence referral decisions. 

The first of the factors outlined is the degree of 'symptomatology'. This can range from 

asymptomatic to "fully developed" and can also affect patients without the target disorder, e.g. 

patients with no coronary artery disease may still suffer from chest pain. The second is the 

suspicion of disease severity - there may be clinical signs or other reasons (outwith 

symptoms), for example family history, that lead a clinician to suspect that the disease is 

present. Finally the result of a diagnostic test applied by the GP will influence the probability 

of referral - an abnormal result will increase the probability as might a normal test result if the 

clinician has strong clinical grounds for suspecting the presence of a given disease. 

The overall impact of referral of patients with more symptoms in whom suspicion of disease 

severity is higher is that a relatively large proportion of patients who are referred will have 

abnormal test outcomes (both true positive and false positive) in a referral setting, leading to 

increased sensitivity, decreased specificity or both.14 

Where referral is influenced by the result of the same test applied by the GP or other referring 

physician, specificity will fall further. This was shown by Rozanski and colleagues 15 for 

exercise radionuclide ventriculography for the detection of coronary artery disease in 

angiographically normal patients. Evaluations of the test conducted in an earlier time period 

found much higher test specificity compared to evaluations conducted at a later time due to 

changes in the patient population. When radionuclide ventriculography was first used, it was 

evaluated on more severe cases and relatively healthy controls. As the apparent high 

accuracy of the test became better known and its use became more widespread, an abnormal 

response to radionuclide ventriculography then became a powerful decision criterion for 

referral to coronary angiography such that lots of patients undergoing angiography had 

already had an abnormal response to radionuclide ventriculography. The subsequent 

commissioning of later studies to evaluate ventriculography that selected only patients who 

had undergone angiography would produce 

a. sensitivity estimates approaching 100% (as all patients with disease would have a 

positive response to both ventriculography and angiography) and 

b. falling specificity (as a large proportion of patients without disease would also have an 

abnormal ventriculography result in the study setting, given that a previous abnormal 

ventriculography result had referred them for angiography in the first place). 

Philbrick and colleagues 16 have further outlined the way in which patients can be selected for 

inclusion in a research study after referral, using a sample of patients who underwent 

exercise tests. They begin with the available population of 205 patients, i.e. those who were 

present, or who had been referred to the appropriate medical centre at the time of the 

research. It is worth noting that members of the true clinical population may not have 

consulted their physician, may have obtained their health care in another setting, or may have 
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refused the invitation to undergo the test. This may be related to factors such as symptom 

severity, socio-economic status or practice habits of their physicians. 16 

The available population was reduced by 128 patients, either because they had conditions 

considered likely to cause false-positive or false-negative results (n=98), or because their 

exercise test results were uninterpretable (n=30). A further 71 patients did not undergo the 

reference test leaving only six patients who underwent angiography. This is a key problem for 

retrospective studies where samples are selected on the basis that the reference test has 

been received - it is highly likely that the decision to refer patients for an often invasive and or 

unpleasant test is influenced by the clinician's degree of suspicion that the target disorder is 

present and also potentially, by the result of the index test itself. 

Referral bias for whatever reason severely affects that centre's ability to generalise its studies 

results to other settings. 

1.2.2 Spectrum effects ... a bias or effect modifier? 
As more authors7,16-19 have recognised the potential effect from spectrum, the term 'spectrum 

bias' has been used to describe scenarios where the accuracy indices obtained in one study 

cannot be assumed to apply to other patients in other contexts and also to where test 

accuracy has been seen to vary according to subgroups of patients within the same study. 

However as Mulherin and Miller point out,20 the term 'bias' implies that there has been some 

systematic error in the study design that to a smaller or greater extent invalidates a study's 

results. In fact variations in accuracy between subgroups or between studies due to 

spectrum-related covariates can be true variations, i.e. the test really does perform differently 

in different groups, and the use of the term 'bias' is therefore something of a misnomer. 

If differences in participants arise intentionally, for example by a deliberate selection of certain 

participants during the recruitment process, it seems reasonable for these differences to be 

referred to as 'effect modfiers'. If spectrum differences arise unintentionally because of the 

features of the study design, such as use of a case-control design, so that they give you the 

wrong answer to the question that you are asking, they should be described as 'bias'. 

1.2.3 Dealing with "spectrum" in primary studies 
The proposed solution to what is usually termed 'spectrum bias' is often to recruit an 

'appropriate' or 'representative' sample whose characteristics reflect the reality of clinical 

practice, i.e. a broad sample of mild and severe, treated and untreated disease, plus 

individuals with different but commonly confused disorders. This is similar to the scenario for 

RCTs where in order to get a picture of an intervention's effectiveness rather than efficacy, 

pragmatic entry criteria are used in order to include a wider range of participants. This is 

recommended in a number of tools for assessing the quality of diagnostic test studies and in 

textbooks on primary study design.21 
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However, regardless of the presence of an appropriate spectrum of patients in a study, the 

sensitivity and specificity estimates that are produced will still be 'average' estimates that are 

potentially very unrealistic for certain parts of the spectrum. It is important also to consider 

conducting subgroup analyses according to plausible covariates. Just as in the field of 

therapeutic intervention evaluation where appropriate use of subgroup analyses to identify 

intervention effectiveness according to patient characteristics is recommended22
-
25 and the 

generalisability of study results is often of concern, the same approach has been proposed for 

diagnostic test accuracy studies.26
-
28 However, subgroup analyses appear to be much less 

common among diagnostic test studies (see section 1.3.3 below), possibly because studies 

are too small to allow any subgroup effects to be detected or because the likelihood of 

variation in accuracy by clinically defined subgroups is not well recognised. 

The Standards for Reporting of Diagnostic Accuracy (STARD) statemene9,30 published in 

2003 covers spectrum in some detail. Similar to the successful CONSORT initiative for 

RCTs,31 the STARD initiative aims to improve the quality of reports of diagnostic accuracy. Of 

the 25 criteria listed in the STARD checklist, six relate at least partially to patient spectrum. 

These can be broadly classified into three groups 

1. who the study participants are, 

2. how they were recruited, and 

3. what the impact on accuracy is. 

The following items relate to who the study participants are, or to the description of the 

spectrum composition: 

i) item 3: describe the study population - the inclusion/exclusion criteria, setting and 

locations where data were collected 

ii) item 4: describe participant recruitment - was recruitment based on presenting 

symptoms, results from previous tests, or the fact that the participants had received 

the index tests or reference standard? 

iii) item 15: report clinical and demographic characteristics of the study population (e.g. 

age, sex, spectrum of presenting symptoms, comorbidity, current treatments, 

recruitment centres) 

iv) item 18: report the distribution of severity of disease in those with the target 

condition and of other diagnoses in those without the target condition 

These criteria primarily allow the reader to judge the generalisability of the study's results and 

its applicability to their own setting and patients. The latter item is described as key for the 

consideration of 'spectrum bias' as the most notable examples involved differences in the 

severity of the target condition: "test sensitivity is often higher in studies with a higher 

proportion of patients with more advanced stages of the target condition ...... [and] in the 
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presence of comorbid conditions, false positive or false-negative test results may occur more 

often".30 

The following item relates to how the study participants were recruited: 

v) item 5: describe participant sampling: was the study population a consecutive series 

of participants defined by the selection criteria in items 3 and 4? If not specify how 

participants were further selected 

This item again allows the reader to judge how generalisable the study's findings are. If 

participants appear to have been highly selected, the resulting sample is unlikely to be 

representative of the patient population. On the other hand it would of course be possible to 

have a prospective study using consecutive recruitment that still studied the wrong patients, 

so this item cannot be considered independently of the preceding ones. 

A final item relates to what the impact from spectrum on accuracy is by considering analysis 

of data in pertinent subgroups: 

vi) item 23: report estimates of variability of diagnostic accuracy between subgroups of 

participants, readers or centres, if done. 

Bossuyt and colieagues30 point out that since variability in study results should always be 

expected in diagnostic test accuracy studies, pre-planned subgroup analyses should always 

be performed in order to explore possible sources of heterogeneity in results. 

The extent to which these items have been considered by primary test accuracy studies is 

examined in section 1.3.3 below. 

1.2.4 Examples of spectrum affecting sensitivity and specificity 
In order to better picture the potential impact from spectrum on sensitivity and specificity, it 

helps to again think about the distribution of test results in diseased and nondiseased 

graphically. The plots in Figure 3 describe a series of hypothetical examples of how spectrum 

might affect the distribution of test results. Prevalence is kept at a constant 50% throughout 

(the distribution curves for diseased and nondiseased cover the same area) as is the 

distribution of test results (represented by the shape of the curves), in order to make the 

graphs simpler to interpret. In reality both the prevalence of disease and the distribution of 

results between diseased and nondiseased will differ between subgroups when stratified by a 

spectrum related covariate, as demonstrated in Figure 2. Real clinical examples where 

differences in patient spectrum have impacted on sensitivity and/or specificity are presented 

in Table 2. 

Figure 3b and c demonstrate a scenario often reflected in theoretical explanations of 

spectrum effects: sensitivity or specificity increasing at the expense of the other. This might 

be expected in the presence of a variable that similarly affected test results in both diseased 
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and nondiseased groups. The resulting effect is akin to a shift in threshold, the two distribution 

curves remain the same distance apart, and the threshold appears to shift up or down. 

Ginsberg and colleagues32 have shown a similar scenario to that in Figure 3 band c when 

evaluating the D-dimer test to detect pulmonary embolism (PE). As the prior probability of 

having PE (based on clinical assessment of signs, symptoms and risk factors and the 

likelihood of a diagnosis other than PE) increased, sensitivity increased (from 79% in the low 

probability group to 93% in the high probability group) and specificity decreased (from 76% to 

45%). Similarly, Hlatky and colleagues7 found that the sensitivity of the exercise 

electrocardiography test for detection of coronary disease was highest and specificity lowest 

in patients with typical angina and sensitivity was lowest and specificity highest in those with 

non-anginal symptoms (Table 2). 

When Hlatky and colleagues7 compared test accuracy in patients with atypical anginal 

symptoms and those with typical angina, however, there was very little difference in specificity 

estimates but big differences in sensitivity. This pattern, depicted in Figure 3d and e was also 

shown by the data in the study by Mulherin20 who examined the use of an enzyme 

immunoassay for the detection of chlamydia in younger versus older women and by Lachs 

and colleagues 17 who investigated dipstick tests for urinary tract infection stratified by prior 

probability of disease (Table 2). The authors of the latter study state that although a variety of 

"classic" UTI symptoms were found in both groups, patients classified as higher probability 

had a higher prevalence of dysuria, frequency, urgency, double voiding, gross haematuria 

and costovertebral angle tenderness, and furthermore that one would expect sensitivity to be 

higher in those with urgency, dysuria and haematuria. 17 

The scenario of constant sensitivity but differences in specificity (Figure 3 f and g), i.e. where 

test results are only affected by a spectrum-related variable in patients without disease, was 

demonstrated by the Ginsberg data when patients with a low probability of PE were compared 

to those with a moderate probability; sensitivity remained almost the same, but specificity 

dropped from 76% to 52%. 

The final possible impact from differences in spectrum is where either both sensitivity and 

specificity either fall or increase, i.e. the distributions of test results move closer together or 

further apart (Figure 3 h and i). Two examples comparing test results for the detection of 

coronary artery disease in men and women suggest this pattern. Morise and Diamond33 and 

to a lesser extent Weiner and colleagues34 found that both sensitivity and specificity were 

higher in men compared to women (Table 2). In other words, the test is more discriminatory 

(distributions further apart) in men and, less discriminatory (distributions closer together) in 

women. It is likely that the extent of disease (number of diseased arteries) and clinical 
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Figure 3 Hypothetical description of the potential impact of spectrum on accuracy 
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Table 2 Primary studies demonstrating potential spectrum effects 

Example Disease Test Total n 
subgroup 

Ginsberg, 1998"' IPulmonary embolism d-Dimer 1177 

IPrevalence of 
disease 

I 

16.7% 

Sensitivity Specificity LR+ LR- DOR 

84.8% I 68.4% 2.68 0.22 12.0 

Hlatky, 19847 

E~ =~-==-~=I===---=': ·:f::==-m:~~~:::~~(=~!~~=~~. 2~~~1· .:~~ :I _u-~:~~ ~==~~~ -=- :: ~: 
----- ------------- ----- ---- --- I --------1-------/-----,----1 

high probabili~y ___ :~ __ ,,_ 78.3%_ 9~: ~~_ 45.0% 1.69 0.15 11.0 

Coronary disease Exercise electrocardiography 2269 61 .7% 70.3% I 84.4% 4.51 0.35 12.8 

Typical angina 1083 87.4% 79.6% 80.9% 4.17 0.25 16.5 

Atypical angina 825 45.9% 52.8% 82.7% 3.05 0.57 5.3 

~~hs~92'1 
non-anginal 361 20.8% __ 41.3% I 88.8% __ ._~~9_r-._ 0.66 5.6 

_____ -f.IU_rinary tract infectiO~j~~~_st_ic~ ____________ "_,,.__ ._"._36_6____. ___ ~~~!:~__ __83_.3_%_0-+ __ 7_1_.4_%_0 2.92 0.23 12.5 
high probability 107 49.5% 92.5% I 42.0% 1.59 0.18 8.9 

"" -------------,,--""-- -".-".----""""--- ------- - ---------1------------- ---------+--------t-.--:-c::----i 
low probability 259 7.3% 57.8% ! 77.5% 2.57 0.54 4.7 

Morise, 199533 Coronary artery disease IExercise electrocardiOgrap~h8i3' 55.5% 53.5% ---1--77.2% 2.35 0.60 3.9 

men 504 63.1% 56.0% 81.2% 2.97 

women 284 41.9% 47.1% 72.7% 1.73 

Mulherin , 2002zu IChlamydia Enzyme immunoassay 6672 8.8% 0.734 0.994 122.33 

(based on Miller 200035
) Age < 241 4524 11 .1% 0.759 0.995 151 .80 

Age ~251 2737 I 3.2% I 0.583 ! 0.992 I 72.87 

B~-;;-ks::" 2-0043'ij-iBreast cancer 1MammOgraPhy (postmen-opaus8lT-922081·--1:Z-% ---- '--85:70/;-1'--97.3% --1~.96 
only) 

current HRT use 32390 1.2% 80.8% 96.4% 22.19 

past HRT use 14610 1.2% 83.6% 97.6% 34.24 

never HRT use 45208 1.1 % 91 .2% 97.9% 44.06 

l\iVeiner,1979"" ICoronary artery disease IStress testing 2045 58.3% 79.1% 69.1% 2.56 
male 1465 69.8% 79.7% 74.0% 3.06 

femalel 580 29.1% 75.7% 63.7% 2.09 

Total n -sample size; LR+ - positive likelihood ratio; LR- - negative likelihood ratio; DOR - diagnostic odds ratio 

15 
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0.15 
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0.17 

0.09 

0.30 
0.27 

0.38 
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2.4 

457.1 

626.7 

173.4 
---
216.9 
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203.5 

489.7 
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presentation (e.g. presence or absence of angina, plus atypical presentations in women) 

influence the likelihood of an abnormal result in diseased patients, however reasons for lower 

specificity in women seem more difficult to explain.33 Hlatky and colleagues9 actually found 

higher specificity in women, but other studies (referenced in Hlatky 19849) support the 

findings above. 

Banks and colleagues36 found a similar pattern of results for mammography for the detection 

of breast cancer in postmenopausal women, according to HRT use. Mammography was 

found to be more discriminatory in those women who have never used HRT (Figure 3 i) 

compared to those who are current users (Figure 3 h). Sensitivity and specificity were both 

highest in those who had never used HRT (91% and 98% respectively) and both were lowest 

in those who were current HRT users (81% and 96%). Although the difference in 

specificity was small (1.5%), given the extremely large numbers of women who are screened 

the impact in real terms on number of women receiving false-positive diagnoses would be 

quite significant. In this case, HRT use is likely to be a marker for breast density; 

mammograms are easier to read in women who have never used HRT and therefore more 

breast cancers are detected (higher sensitivity) and benign breast lumps are easier to 

distinguish (lower false-positive rate and high specificity). 

It is worth re-emphasising that not only might the positioning of the distribution curves for 

diseased and nondiseased in relation to threshold vary between groups, but the variability in 

test results between groups might also vary considerably. 

1.3 Spectrum effects and systematic reviews 

1.3.1 Systematic reviews of test accuracy 
Systematic reviews provide a means of synthesising information from a number of studies to 

"establish where the effects of healthcare are consistent and where they may vary 

significantly",37 for example across populations, settings, and differences in treatment. 

Systematic reviews of therapeutic interventions are now commonplace in many if not most 

areas of healthcare, and in recent years interest has turned to applying similar techniques to 

research evaluating diagnostic tests. The UK Health Technology Assessment (HTA) 

Programme has funded a large number of such reviews, and the Cochrane Collaboration are 

also introducing reviews of diagnostic test accuracy into the Cochrane Database of 

Systematic Reviews (CDSR) which is published within the Cochrane Library. 

Systematic reviews of any form of intervention follow key stages, including formulation of the 

question, setting of inclusion criteria, searching the literature, quality assessment and data 

extraction of included studies, and synthesis of the evidence. Work is ongoing to develop 

each of these stages specifically for diagnostic test reviews, for example in literature 

searching38,39 and quality assessment,21 and several authors have published general 
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guidelines for the conduct of reviews of test accuracy.40,41 Meta-analytic techniques for 

combining diagnostic studies are also being developed and improved in order to better 

estimate test accuracy.11,26,40-45 Similarly, the conclusions of all systematic reviews are only as 

reliable as the included primary studies and there are a variety of sources of heterogeneity 

that can affect conclusions. 

Between study differences - or heterogeneity in results - can result from chance, from errors 

in calculating accuracy indices or from heterogeneity caused by differences in design, 

conduct, participants, tests and reference tests. These are outlined in some detail in Chapter 

2. The main focus of this thesis is on heterogeneity due to variation in patient spectrum. 

1.3.2 Potential impact from spectrum variation 
Mulherin and Mille(o present a similar theoretical example to that of Deeks 11 discussed in 

section 1.2.1 that can be extended to consider how variation due to spectrum alone could 

impact on the conclusions of a systematic review. 

Table 3 Hypothetical example of how spectrum could affect the conclusion of a 
systematic review (adapted from Mulherin and Mille.-2°) 

Number of patients Accuracy 
Total Prey tp/dis tn/non-dis Sens Spec LR+ LR- DOR 

True test performance 

AQed <50 1000 0.50 475/500 375/500 0.95 0.75 3.8 0.1 

Aged ~50 1000 0.50 375/500 475/500 0.70 0.85 4.7 0.4 

Studies with varying age spectrum recruited 

Study A: Equal recruitment of both age roups 

Aged <50 500 0.50 475/500 375/500 0.95 0.75 3.8 0.1 

Aged ~50 500 0.50 375/500 475/500 0.70 0.85 4.7 0.4 

Overall 1000 0.50 0.83 0.85 5.7 0.2 

Study B: 75% aged < 50 

Aged <50 750 0.50 238/250 375/500 0.95 0.75 3.8 0.1 

Aged ~50 250 0.50 175/250 213/250 0.70 0.85 4.7 0.4 

Overall 1000 0.50 413/500 425/500 0.89 0.80 4.5 0.1 

Study C: 75% ,!ged ~ 50 

Aged <50 250 0.50 356/375 213/250 0.95 0.75 3.8 0.1 

AQed ~50 750 0.50 88/125 106/125 0.70 0.85 4.7 0.4 

Overall 1000 0.50 444/500 400/500 0.76 0.90 8.0 0.2 .. .. , 
Prev - prevalence; tp - true posllives; tn - true negatives; dis - diseased; non-dis - nondlseased; Sens - sensitivity; 
Spec - specificity; LR+ - positive likelihood ratio; LR- - negative likelihood ratio; DOR - diagnostic odds ratio 

57 

13 

57 

13 

32 

57 

13 

36 

57 

13 

36 

Table 3 demonstrates the situation where the true performance of a test varies according to 

patient age; sensitivity is higher and specificity lower in patients aged less than 50 and vice 

versa for those aged 50 and over (the distribution of test results would lie predominantly to the 

right or to the left of the threshold for test positivity). The impact on overall sensitivity and 
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, 
specificity when different spectrums by age group are recruited is then given for hypothetical 

studies A, Band C (Table 3); disease prevalence is held constant for the sake of simplicity. 

The breakdown by age group for each study (A, B and C) shows that test accuracy within the 

age subgroups is 'unbiased ', i.e. reflects the true sensitivity and specificity of the test within 

those groups, but when the groups are combined, the overall sensitivity and specificity is 

considerably affected. Equal recruitment of both groups results in almost equivalent values for 

sensitivity and specificity; preferential recruitment of younger women results in a scenario 

similar to that depicted in Figure 2b and preferential recruitment of older women , Figure 2c. 

Plotting these results on a ROC plot (Figure 4a) demonstrates the extent to which results can 

vary according to the percentage of patients less than 50 who are recruited to that study. 

Figure 4 ROC plots demonstrating impact from spectrum on a systematic review 

a) Mulherin and Miliec o b) Ginsberg and colleagues32 
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Specificity 
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The same theory can be followed using a real-life example from section 1.2.4 . As discussed 

previously, Ginsberg and colleagues32 found that sensitivity and specificity of the O-dimer test 

were affected in opposite directions by the clinical probabil ity of pulmonary embolism being 

present, sensitivity was highest and specificity lowest in patients with high cl inical probability 

and vice versa for those with low clinical probability. If we assume that each of these 

subgroups is a separate study of O-dimer, each recruiting patients from different populations 

with varying probabilities of pulmonary embolism and plot them on a ROC plot (Figure 4b) we 

can see the variation in sensitivity and specificity that results. 

1.3.3 Challenges in investigation of spectrum effects in systematic 
reviews 

There is clearly potential for spectrum variation to have a big effect on the results of both 

primary studies and systematic reviews. It is rare for diagnostic accuracy stud ies to be 

sufficiently large in size or to recruit a sufficiently broad spectrum of participants to allow the 

influence of spectrum to be examined. It seems that it is more rare for diagnostic accuracy 

studies to have actually looked for variation due to spectrum. Systematic reviews that include 

all available studies of a given test for a given disorder, are the best available tool that we 

have to assess the contribution that a diagnostic test can make to healthcare, assuming that 

all sources of bias and other causes of heterogeneity are fully investigated. They are also the 

18 



best tool available to allow us to identify the extent that heterogeneity can affect test 

accuracy. However there are challenges in such investigations that one needs to be aware of. 

Two of the major challenges to be faced are 

1. limitations in the primary studies, and 

2. limitations in the meta-analytic methods available 

Limitations in the primary studies 
One of the main reasons for any lack of investigation of spectrum effects in systematic 

reviews is due to the lack of reporting, and potentially recording of, spectrum-related factors in 

primary studies. It can be particularly challenging to identify let alone record and publish true 

spectrum-related characteristics; variables such as age and sex are often used instead as 

proxies. A methodological review by Reid and colleagues28 assessed 112 primary studies 

evaluating the accuracy of diagnostic tests against seven methodological criteria, two of 

which were spectrum-related: 

1. Spectrum composition specified - three out of four of age distribution, sex 

distribution, summary of presenting symptoms and/or disease stage, and eligibility of 

study subjects had to be reported 

2. Analysis of pertinent subgroups - indexes of accuracy cited for any pertinent 

demographic or clinical subgroup of the investigated population. 

Since the publication of Reid and colleagues, five further methodological reviews using similar 

methodology and assessing diagnostic accuracy studies against the same or similar 

spectrum-related criteria have been publishedb (Table 4). Across all six reviews, 44% 

(135/308) of primary studies published between 1970 and 2002 were judged to have 

adequately specified the spectrum composition of the included study samples and 48% 

reported either consecutive or random sampling of participants. Only 24% (64/268) had 

included separate analysis of pertinent patient subgroups. There does appear to have been 

some improvement over time for all three criteria. Adequate specification of the spectrum 

composition was 25% for primary studies published up to the early 1990s and 58% for those 

published from around 1993 to 2002, appropriate participant sampling went up from 40% to 

50%, while analysis of pertinent subgroups went up from 8% in the earlier period to 35% in 

the later one. Nevertheless, these are still not sufficiently high proportions and suggest that 

the potential impact from patient spectrum on diagnostic test accuracy is inadequately 

assessed in primary studies. 

The publication of the STARD statemene
g 

should go a long way to addressing this issue. In 

the 2005 review by Siddiqui and colleagues48 each of five spectrum-related criteria in 16 

primary studies in the ophthalmic literature were assessed. In addition to the two criteria 

suggested by Reid and colleagues28 (for which their studies scored 75% and 25% 

b Other such reviews have also been published, e.g. Sheps and Schechter,46 Arro1l1988,47 etc but they did not use 
the same spectrum-related criteria. 
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Table 4 Methodologic reviews of studies of diagnostic test accuracy: spectrum-related criteria 
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Study No. 0 «I/) 

Study Source/Inclusion years papers Other spectrum-related criteria 
Reid, Medline, 4 general medical journals 1978- 112 30 (27%) 9 (8%) 
1995

28 1993 

Heffner, Medline, 9 general medicine and 6 1992- 41 25 (61%) 22 (54%) 12 indicated study sample, i.e. pts suspected of target disorder: 37 (90%) 
199849 subspecialty journals for pulmonary 1997 (29%) 

disease papers 
Harper, Papers on ophthalmic diagnostic 1980- 20 12 (60%) 11 
199950 tests selected from recent 1997 (55%) 

publications; 9 of which identified 
from Medline search 

Rothwell, Medline plus author references, 1970-90 20 3 (15%) 8 (40%) 
200051 random sample papers evaluating 

tests to measure carotid stenosis, 1993-97 20 15 (75%) 10 (50%) 

Lumbreras- Medline, 3 clinical chemistry journals 1996 18 4 (22%) 8(44%) 
Lacarra, 
200452 2001 27 10 (37%) 7(26%) 

2002 34 24 (71%) 13 
(38%) 

Siddiqui, Hand searching of 5 major 2002 16 12 (75%) 8 (50%) 4(25%) - describe study population - incllexci criteria, setting, location: 13 (81%) 
2005

48 ophthalmic journals - describe participant recruitment: presenting symptoms, previous test 
results, or receipt of index/reference test: 13 (81 %) 

Criteria all from STARD guidelines - report distribution of severity of disease in those with the target condition 
and of other diagnoses in those without the target condition: 10 (62%) 

Primary studies published up to c1993 
33/132 8/20 9/112 
(25%) (40%) (8%) 

Primary studies published from c1993-2002 
102/176 18/36 55/156 
(58%) (50%) (35%) 

TOTAL 135/308 26/56 64/268 
(44%) (46%) (24%) 
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respectively), they found that 81 % of studies adequately described the study population and 

patient recruitment, and 62% reported the distribution of severity of disease in patients with 

the target condition and of other diagnoses in those without the target condition. The authors 

intend for this to provide a baseline against which to evaluate the impact of the STARD 

statement. 

A further problem partially linked to poor reporting of data in primary studies is our ability to 

investigate sources of heterogeneity at the aggregate level. Where details of patient 

subgroups within studies are not available, as is likely for diagnostic accuracy studies, one 

has to rely on aggregated study-level data, such as the percentage of women in each study, 

or the mean age of study participants, and examine whether that variable explains 

differences between the studies. Simulation work in the field of RCTs has shown that the 

statistical power of meta-regression techniques is dramatically and consistently lower than 

that of individual patient data analysis.53 

Methods available for meta-analysis 
Systematic reviews of diagnostic accuracy studies aim to report both the individual study 

results together with a summary of the central tendency and variability of the studies. The 

central tendency of the data is either summarised as a typical operating point (average 

sensitivity and specificity) or as an SROC curve, which describes the pattern of values of 

sensitivity and specificity that could occur across different test thresholds. For a test where 

the chance of disease increases with the test value, increases in the cut-off value will 

increase specificity and lower sensitivity according to a curvilinear relationship depicted by the 

SROC curve (see section 2.2.3 for a fuller explanation of threshold effects). 

Obtaining a summary operating point by separately averaging estimates of sensitivity and 

specificity is frequently used,11 but is known to potentially be misleading. The approach 

ignores the negative correlation likely to exist between sensitivity and specificity where there 

are differences in threshold between the included studies, and produce a summary that falls 

below the SROC curve. In a systematic review it is likely that the same cutoff has not been 

applied in all studies, and even when this is not the case, similar threshold type effects can 

arise through differences in test interpretation between observers, characteristics of the 

sample and differences in the execution of tests. 

One device to overcome the correlation between sensitivity and specificity, is to undertake 

meta-analysis using a single summary statistic created from them. The diagnostic odds ratio 

(DOR) is one option, and is computed as the ratio of the odds of a positive test result in a 

patient with disease compared with a patient without disease (a quantity that has little direct 

clinical meaning). The DOR allows for a trade-off between sensitivity and specificity as points 

on a summary ROC curve typically have very similar DOR even when they have different 

sensitivity and specificity. However, it is possible that the DOR does vary with thresholds, 
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particularly when the diseased and nondiseased groups differ in both the variance of the test 

measurements as well as the average value of the underlying test result, e.g. patients with 

disease may on average have higher values of a given marker than patients without disease 

but they may also have a greater variation in values compared to nondiseased (Figure 2). 

The 'SROC approach' allows this variation in DOR across different thresholds and for this 

reason is usually recommended over straight pooling of DORs. 11
.
26

.4
2 The method devised by 

Moses and Littenberg54 is the most commonly used, however there are problems with it, not 

least that there is no sound statistical basis for the approach. Alternative so-called 'advanced' 

methods of meta-analysis, such as the hierarchical SROC regression (HSROC) method55
.
56 

and the bivariate normal (BVN) method57
.
58 have been developed. These do have a sound 

statistical basis and also allow for threshold effects and for variation in DOR with threshold. 

These methods are not in widespread use due to the computational difficulties in undertaking 

them, however they have become much more accessible for use in diagnostic systematic 

reviews. 59
,6o The two approaches were originally proposed as alternative models however 

recent work has shown that under certain circumstances they are actually different 

parameterisations of the same model.59 This and the ability of the methods to investigate 

sources of heterogeneity requires further examination. 

The next chapter gives more detail on these methods and on other key aspects to consider 

when carrying out systematic reviews of diagnostic test studies. 
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2 Establishing diagnostic test accuracy in systematic 
reviews 

This chapter considers how test accuracy is established in primary studies and systematic 

reviews, the various sources of heterogeneity (or variation) in study results, and selected 

statistical methods for pooling primary studies in systematic reviews. 

2.1 Establishing test accuracy 

2.1.1 In primary studies 
Diagnostic test accuracy is established by comparing the results of a test for the detection of 

a given disorder with the results of some reference standard in a group of patients suspected 

of having that disorder. These results are classified into a 2x2, or contingency, table and a 

variety of indices of test accuracy reflecting the new test's (also referred to as the index or 

experimental test) discriminatory ability, or ability to correctly identify patients with and without 

the disorder, are then estimated (see Appendix 1). The reference standard (sometimes 

referred to as the 'gold' standard) should be the best available method for making a definitive 

diagnosis of the presence or absence of the disease or condition in question and ideally 

should indicate with 100% certainty the presence or absence of disease, although in practice 

absolute certainty is rarely achieved.61 In most cases the reference standard is more invasive, 

more unpleasant and/or more costly than the test under investigation, hence the search for as 

accurate an alternative as possible. The most commonly used accuracy indices are sensitivity 

(proportion of diseased participants who have positive test results) and specificity (proportion 

of nondiseased participants who have negative test results), but predictive values and 

likelihood ratios are also presented in reports of primary studies (see Appendix 1 for 

definitions ). 

Primary studies of test accuracy are observational and cross-sectional in design, that is they 

aim to compare the result of the index test with that of the reference standard in the same 

participant at the same time. 10 They can be either prospective or, commonly, retrospective in 

design. Diagnostic accuracy studies bear some similarity to the 'cohort' and 'case-control' 

studies commonly used in epidemiology for the evaluation of aetiology, however diagnostic 

studies are distinct from studies of aetiology as there is usually little or no time difference 

between the application of the index test (exposure) and application of the reference test 

(outcome) so that loss to follow-up, a main drawback of aetiology studies, is not such an a 

issue. 

Rutjes and colleagues 10 have outlined four main variations on the diagnostic accuracy design. 

The first, termed the "classic" design assembles patients suspected of a disease (ideally in a 

prospective manner) in whom the new (index) test and then the reference standard are 
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performed, and results are compared. Studies of this design are generally referred to in the 

literature as case series or cohort studies. 

The "reversed flow design" reverses the order in which the reference standard and index tests 

are applied: cases and controls are sampled from the same population (patients suspected of 

having the condition), the reference standard is applied first and the index test applied after 

disease status is known. This bears some similarity to the nested or etiologic case-control 

design in that cases and controls are selected from the same source population, typically 

defined by the clinical presentation. 10 This design would enable researchers to recruit a 

certain number or proportion of diseased participants or to apply the index test to only a 

random sample of nondiseased (reference test negative) participants. 

The remaining two designs can also be thought of as variations on the case-control design 

but cases and controls this time are sampled from two distinct populations. Diseased 

participants (cases) are sampled from a clinical (often hospital) population, while controls are 

sampled either from the 'healthy' general population or from a group of participants diagnosed 

with a specific alternative diagnosis or diagnoses that is known to produce symptoms and 

signs similar to those of participants with the target condition.10 These designs are described 

as "two-gate designs" either using "healthy controls" or with "alternative diagnosis controls". 

For the latter two designs to generate accurate estimations of sensitivity, representative 

sampling of cases must be ensured. If participants with advanced disease are over­

represented it is likely that sensitivity estimates will be inflated. It is unlikely that specificity 

estimates from studies using healthy controls will be representative of the test's performance 

in routine practice as most of them will be unlikely to have alternative diagnoses that might 

generate false-positive results. In a classic or reverse-flow design, all alternative diagnoses 

(that are more or less likely to cause false-positive results) will be represented; where specific 

alternative diagnosis controls are used, specificity could be over- or under-estimated 

depending on the alternative diagnosis concerned. 10 In the former scenarios the effect on 

accuracy from spectrum can be considered as an effect modifier, in the latter, if 

representative sampling is not ensured, it should be considered a 'bias', as introduced in 

Chapter 1. 

A further design termed the "two-gate design with representative sampling" still has two sets 

of inclusion criteria, one for cases and one for controls, but both are sampled in such a way 

that both groups are representative of those obtained in the classic diagnostic accuracy study. 

Such designs would be difficult to achieve and none have been identified in the Iiterature.10 

Graphical depiction of test results in diseased and nondiseased 
The distribution curves for test resuls in diseased and nondiseased persons introduced in 

Figure 2a can be transformed to ROC space. Primary study results at different thresholds are 
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displayed and an ROC curve drawn through the points to demonstrate the trade-off between 

sensitivity and specificity (Figure 5). The closer the curve to the top left-hand corner of the 

plot, the more discriminative is the test. The closer the curve to the centre diagonal (ROC 

curve for an uninformative test), the less accurate the test. Some authors present the results 

of their studies in terms of the 'area under the curve' (AU C); perfect tests have areas under 

the curve of close to 1, whereas poor tests have AUC close to 0.5.62 The AUC is a global of 

measure of test accuracy and as such only gives an overall picture of the accuracy of a test; it 

does not give any indication as to the expected operating point of the test. 

Figure 5 ROC curve 

100 

o 
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ROC curve for an 
uninformative test 

Specificity 
o 

Sensitivity and specificity at different thresholds 
for test positivity: 

At cutoff 
A: Sensitivity 80%, Specificity 80% 
B: Sensitivity 50%, Specificity 95% 
C: Sensitivity 95%, Specificity 55% 

ROC plots can also be used in systematic reviews to display the sensitivity and specificity 

pairs from individual studies. Rather than demonstrating the effect of changing threshold on 

accuracy (as for primary studies above), ROC plots in this context demonstrate the amount of 

variability in sensitivity and specificity that there is between primary studies (see Figure 6). 

2.1.2 In systematic reviews 
Systematic reviews of RCTs, particularly where meta-analysis (the use of statistical methods 

to summarise the results of independent studies) can be used, can provide more precise 

estimates of the effects of healthcare interventions than those derived from the individual 

studies included in a review37 and allow decisions about healthcare to be made that are 

based on the totality of the available evidence. 

The use of statistical methods to combine test accuracy studies is particularly challenging, not 

least because test accuracy is conventionally represented by a pair of statistics (most often 

sensitivity and specificity, see Appendix 1) and not by a single measure of effect such as the 

odds ratio or relative risk. The paired nature of sensitivity and specificity - one increasing and 

the other decreasing with changing threshold - means that separate pooling of sensitivities 

and specificities or even positive and negative likelihood ratios is not usually the best 

approach as it does not allow for this variation with threshold (i.e. doesn't account for the 

correlation between them). A variety of methods of meta-analysis that allow for variation due 

to threshold are available and will be discussed below. 
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2.2 Sources of variation in diagnostic test accuracy other 
than spectrum 

Before conducting a statistical synthesis, sources of variation in study results should be 

considered. There is almost always considerable variation, i.e. heterogeneity, between the 

results of diagnostic studies, possibly to a greater extent than is seen for therapeutic 

interventions, though this comparison has not been quantified in empirical studies. This may 

be at least partially due to the fact that the importance of rigorous design has been less well 

appreciated than for therapeutic interventions, consequently diagnostic studies have often 

been retrospective and not conducted according to standard protocols. 

Furthermore, in randomised trials, the statistical outcomes that are considered are usually 

relative comparisons (such as relative risks and odds ratios) or absolute comparisons (such 

as risk differences and differences between means) of event rates between treated and 

control groups made within each trial. While often there is substantial variation in the event 

rates in the treated groups and in the placebo group between the trials (as displayed in a 

L'Abbe plot), there may be little variability in relative or absolute comparisons between these 

event rates. In contrast, for analyses of diagnostic test accuracy the focus is on the event 

rates in the diseased (test sensitivity) and in the nondiseased (test specificity), and not on 

relative or absolute comparisons between diseased and nondiseased groups within studies. 

Thus the level of heterogeneity observed in test accuracy reviews may be higher than that 

observed in randomised trials due to the statistical focus not being on comparisons within 

studies but on absolute estimates of event rates. 

Between study differences in results can result from: 

chance, from 

errors in calculating accuracy indices or from 

heterogeneitl3 including, 

o methodological heterogeneity or biases in the conduct of studies that can be 

significantly reduced by rigorous design 

o clinical heterogeneity that arises from true differences in accuracy between 

different test populations 

o differences in the test under study, and 

o variation in the threshold for positivity or test cut_off. 11
•
2

6,40-45 

Empirical evidence for the impact of many of these quality features on test accuracy is still 

limited. Two studies64
.
65 have found several features that significantly over- or under­

estimated test accuracy, including the use of case-control design with healthy controls and 

severe cases of disease, use of different reference tests, selective inclusion of patients and 

retrospective data collection. 65 Whiting and colleagues have reviewed the literature to provide 

a summary of the available evidence that supports various sources of bias or variation. 66 
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Table 5 outlines various quality features that are often included in quality assessment tools for 

diagnostic test studies, some of which are discussed in more detail below, and groups them 

according to whether they are predominantly concerned with internal validity (or study design 

issues) or with study generalisability. All of these can potentially impact on accuracy 

estimates obtained from a study and all can be confused with the impact of differences in 

patient spectrum - the challenge is to differentiate spectrum effects from variation due to 

other causes. 

Table 5 Quality considerations for evaluation of a diagnostic test study41,67 

Quality feature Internal General-
validity isability 

1. Study population 

Selection bias .y 

Spectrum composition .y 

2. Selection and execution of tests 

Verification bias .y 

Use of appropriate reference test .y 

Description of index and reference test execution .y 

3. Test interpretation 

Blinding .y 

Inter-observer variability .y .y 

4. Data analysis & presentation 

Uninterpretable test results .y 

Interpretation of test results in clinical context .y 

2.2.1 Study design and quality considerations 

Selection bias 
In the evaluation of therapeutic interventions, the term 'selection bias' generally refers to bias 

resulting from the way that comparison groups are assembled .68 In that context, 

randomisation is the only means of allocation that controls for unknown and unmeasured 

confounders as well as those that are known and measured.37 It is possible to control or 

adjust for confounders that are known and measured in observational studies but it is not 

possible to adjust for those factors that are not known to be confounders or that were not 

measured . In the epidemiological literature, selection bias in case-control studies reflects 

selection of either cases or controls that is not independent of the exposure under test. Here it 

more broadly reflects any bias that may occur due to the selection of subjects for 

investigation. 
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The ideal study sample for the evaluation of a diagnostic test is one obtained from a 

consecutive (or randomly sampled) series of patients recruited from a relevant clinical 

population and who meet the study inclusion criteria, i.e. a prospectively designed diagnostic 

accuracy study.10.11 Selection bias can occur in several ways, for example where: 

i) only those who are referred for the reference test or, in a retrospective study those 

who actually underwent the reference test, are included 

ii) inclusion is influenced by the result of the experimental test, i.e. test positives more 

likely to be included 

iii) patients are selected on the basis of another test result that is related to the result of 

the test under study 

In each of these cases, only those patients whom clinicians most expect to have the target 

disorder will be included in the study such that the proportion of patients who have a positive 

result will be higher than if all eligible patients had been included. Variations on the "case­

control" design tend to be at higher risk from selection bias: cases tend to be selected on the 

basis of a positive reference test result and the result of the test under evaluation ascertained 

after true disease status is known; the prevalence of the target disorder tends to be higher 

than in practice; and cases and controls are often selected from opposite ends of the disease 

spectrum, e.g. severe cases and healthy controls.69 

Referral bias occurs where there is a systematic selection of patients for referral to the 

experimental test who have characteristics differing from those of the entire population. 

Usually, only patients most likely to have the disorder undergo the experimental test and 

therefore become eligible for study inclusion. In the presence of selection bias or referral bias 

patients available for inclusion in a diagnostic test study may be an unrepresentative sample 

of the population to whom the test will be applied in practice, i.e. both biases may result in 

variations in spectrum or case-mix. 

It is often difficult to establish the extent to which retrospective diagnostic accuracy studies 

have been subject to selection bias if, for example, the data necessary to identify all people 

who would have been eligible for a test was not routinely collected, or where test results have 

not been recorded in any systematic manner.12 

Lijmer and colleagues found a significant over-estimation of accuracy (increase in DOR 3.0, 

95%CI: 2.0, 4.5) to result from the use of a two-gate design using healthy controls as 

opposed to a classic single-gate design for the evaluation of identical tests.64 Using the same 

methodology, Rutjes and colleagues65 found the bias to be much less in case-control studies 

that selected controls from patients with diseases more closely resembling the target disorder. 

Whiting and colleagues identified four studies which on balance tended to show increased 

accuracy in the presence of distorted selection of participants. 66 It is likely that sensitivity 

would be over-estimated and specificity under-estimated. 
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The 'best' diagnostic accuracy studies are prospective in design with consecutive recruitment 

of patients; this allows evaluation on the full spectrum presenting in that setting, the collection 

of appropriate baseline information and implementation of rigorous protocols for testing. 

Verification bias 
Verification bias occurs where the decision to undertake or apply the reference test is 

influenced by the result of the experimental or index test11.67.70 (also called ascertainment bias 

or work-up bias). There are two potential elements to verification bias: 

1. Partial verification occurs where only a subgroup of patients who received the index 

test undergo the reference test (e.g. where the reference test is unpleasant or 

invasive, such as biopsy or angiography). This incomplete verification may be equal 

in test positive and test negative cases (i.e. cases missing at random), or it may be 

differential where those most likely to have the disease tend to undergo the reference 

test, 

2. Differential verification occurs where different tests are used according to the results 

of the experimental test (e.g. index test positive patients may undergo a more 

invasive and probably more accurate reference test than those who tested negative 

on the index test). 

For example, in a study of radionuclide ventriculography for detecting coronary artery 

disease, 31 % of index test positive cases underwent verification compared to only 14% of 

index test negatives.71 The better the test under evaluation, or at least the stronger the 

investigator's faith in the test, the greater will be the tendency to preferentially verify index test 

positives and the greater will be the bias introduced.72 

Whiting and colleagues66 found two studies that demonstrated increased accuracy in the 

presence of differential verification. The 20 studies that investigated the effects of partial 

verification bias had mixed results, mainly suggesting an increase in sensitivity and decrease 

in specificity; only two of the 20 studies found no effect from partial verification. 

Use of an appropriate reference test 
Standard techniques for assessing diagnostic tests assume that a definitive reference test is 

available, that is, that the reference test used is as close to 100% accurate as can be. 

However, it can be either that the available test is far from perfect, or that such a test simply 

does not exist. For example, the diagnosis of metastatic liver cancer can never be definitively 

determined even at autopsy. The key issue really is not to find a test that confirms a text book 

definition of disease but to find a test that has practical consequences for patient 

management, hence the use of the term 'target disorder' as opposed to 'disease'. 

In some contexts where a single definitive reference test is unavailable, a reference strategy 

may be used, where the reference diagnosis is made on the basis of clinical information in 
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combination with a battery of other tests. 11 Incorporation bias occurs where the experimental 

test is used as part of the reference strategy, i.e. the experimental test and reference tests are 

not independent, leading to over-estimation of both sensitivity and specificity.12 

Even the most definitive reference test may have considerable inaccuracies, for example, 

microbiologic studies of sputum for the detection of tuberculosis can fail to detect 

mycobacteria that may be picked up by nucleic acid amplification tests, and will incorrectly 

classify patients with TB as false-positive results. 72 Walter and Irwig61 refer to a 'substantial 

body of literature' demonstrating that reference tests may frequently be imperfect. Serious 

inaccuracies in the reference test will lead to over- or underestimation of the true accuracy of 

a new test. If the index and reference test are conditionally independent then the new test's 

characteristics will be underestimated (non-differential misclassification); if the two tests are 

perfectly correlated, or if the new test makes the same errors as the reference test, the 

accuracy of the new test will be over-estimated,11 potentially appearing perfectly accurate 

regardless of its association with true disease status.67 

Whiting and colleagues identified 8 studies looking at the effects of an inappropriate reference 

standard.66 All 8 studies found some association with sensitivity, specificity or accuracy, but 

the effects were not consistent across studies. 

Blinding or masking 
The interpretation of many diagnostic tests involves some degree of subjective interpretation. 

In clinical practice, test interpretation can be influenced by both the knowledge of the results 

of other tests and by the specific clinical characteristics of the person being tested. Diagnostic 

review bias occurs where knowledge of the reference test result influences interpretation of 

the experimental test, whilst test review bias refers to the opposite situation. Clinical review 

bias is said to occur where knowledge of patients' clinical characteristics or other test results 

influences test interpretation (experimental or reference test). For example, to adequately 

evaluate the accuracy of ultrasound for the detection of rotator cuff tear, observers should not 

have access to the results of other imaging tests such as x-ray or MRI. This should be 

distinguished from observer variability which will occur in interpretation of almost any test. 

The recommended solution to these biases is to perform a 'blinded' study, where both tests 

are interpreted without knowledge of the clinical characteristics or the test results70 to ensure 

that it is only the diagnostic contribution of the test itself that is being evaluated. Of course this 

is not the same as routine clinical practice where prior information is used to evaluate the 

results of subsequent tests. Blinding is particularly important where a new test is intended to 

replace an existing test, for example the use of MRI instead of ultrasound for the assessment 

of shoulder pain. Where clinical factors playa significant role in assisting test interpretation, 

such as in the shoulder pain example above, or where a new test is intended to supplement 
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an existing test, it may be more appropriate to identify the additional diagnostic value added 

by the test, rather than essentially evaluating the test in isolation. 

Whiting and colleagues identified 13 studies looking at the effects of some form of review 

bias.66 Only two of the 13 did not find evidence of increases or decreases in either sensitivity, 

specificity or accuracy. The most common finding was of increased sensitivity in the presence 

of review bias (8 studies). 

2.2.2 Variation in test(s) 
The manner in which the index and reference tests have been carried out should be 

described, not only as good reporting practice and so that the study could be replicated, but to 

allow a judgement to be made regarding the applicability of the study's results.41 Just as 

variations in the timing, duration and dosage or intensity of a therapeutic intervention can 

affect effectiveness, diagnostic test accuracy may be affected by variations in timing, in 

technical aspects of any equipment or materials used, inter and intra observer and laboratory 

variation. Similar variations in the reference standards used must also be considered. 

Whiting and colleagues found few studies that investigated the effects of biases and sources 

of variation associated with the test protocol, making it difficult to draw conclusions on any 

effect on test performance.66 They propose that the magnitude of any effect is probably 

linked to the test and condition under investigation, being more significant for tests that 

require some expertise to perform and for acute conditions that may change rapidly compared 

to more chronic diseases. 

2.2.3 Threshold effects 
A source of heterogeneity that is unique to meta-analyses of diagnostic tests is variation in 

the cut-off or threshold chosen to indicate test positivity. Statistics used to report the results of 

diagnostic tests (e.g. sensitivity and specificity) by nature present a test result as binary, i.e. a 

test is either positive or negative, disease either present or absent. However, in practice the 

majority of tests effectively produce continuous data such that an arbitrary cut-off point 

(diagnostic threshold) is applied to define positive and negative test outcomes. In some 

cases, such as laboratory tests, this could be explicit numerical cut-offs. Imaging tests, e.g. 

mammograms, can be interpreted on a categorical scale ranging from definitely normal to 

definitely abnormal with various categories of suspicion in between. These thresholds can 

also be affected by variation between laboratories or between observers 11 - one observer's 

'mildly abnormal' may be another's 'definitely abnormal'. The diagnostic classification of 

patients therefore depends on whether the measurement of a given trait is above or below 

some defined cut-off or threshold value, and the threshold chosen may vary between studies 

of the same test. The higher the cut-off value chosen, the higher the specificity and lower the 

sensitivity estimates. The issue of threshold effects is further discussed below. 
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Whiting and colleagues found very little evidence for any effects from non arbitrary choice of 

threshold value.66 

2.3 Selected methods of meta-analysis and how they may 
reveal/hide spectrum effects 

The first stage of meta-analysis is to plot the results of individual studies graphically in order 

to assess the degree of variability between study results . As mentioned in section 2. 1.1, ROC 

plots are a useful tool for displaying sensitivity and specificity pairs from individual studies in a 

systematic review (Figure 6). The pattern of results can also provide an indication as to 

whether or not there is variation between studies due to threshold, i. e. a threshold effect. 

Threshold effects are usually interpreted as present if the plotted points mimic the shape of a 

ROC curve; if the points appear to vary around some central point, there is assumed to be 

minimal variation due to threshold . However, it is possible for a similar pattern of results to be 

introduced by variation in the spectrum of diseased and nondiseased patients between study 

populations. 

Figure 6 Sample ROC plot for a systematic review 
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Straight pooling of diagnostic accuracy indices such as sensitivity and specificity does not 

allow for the presence of any threshold effect and therefore cannot distinguish heterogeneity 

due to threshold from heterogeneity due to other sources of variation . The exception to this is 

the diagnostic odds ratio (OOR). The OOR describes the ratio of the odds of a positive test 

result in a patient with disease compared with a patient without disease. It is easier to 

understand as a statistical concept than a clinical one and is useful for meta-analysis of test 

accuracy as it encompasses all four cells of the 2x2 table rather than the two each for 

sensitivity and specificity (Appendix 1). 

Although the OOR allows for a trade-off between sensitivity and specificity, pooling of 

individual OORs should only be performed if it can be assumed that the relationship between 

sensitivity and specificity is constant, i.e . that the OOR is constant across different thresholds. 
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As shown in Figure 7, the discriminatory ability (accuracyC) of a test can be defined as a 

function of the mean test results in nondiseased and diseased groups (iJ1 and iJ2) and the 

standard deviation from the mean for each group (51 and 52). Where the standard deviations 

from the mean are equal (51 = 52), accuracy is the difference between the means divided by 

the standard deviation.73 

Figure 7 Scenario required for symmetric SROC curve 
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Same distribution of results in 
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Discriminatory ability: 
(1J21 iS2) - (1J11 iS 1) 

Discriminatory ability: 
(lJdJ1/iS) 

n - number of participants. is - standard deviation (distribution of results). IJ - mean test result 

If the difference between the means remains constant across studies despite differences in 

threshold and the standard deviations between groups are equal, the DOR will be constant. d 

When studies are plotted on a ROC plot they will be described by a symmetric shaped SROC 

curve consistent with all points having the same diagnostic odds ratio. This means that the 

values of sensitivity at high values of specificity will be the same as the values of specificity at 

correspondingly high values of sensitivity. 

However, the DOR will vary at different thresholds when the diseased and nondiseased 

groups differ in both the average value of the underlying test result and also in the variance of 

the values, e.g. patients with disease may on average have higher values of a given marker 

than patients without disease but they may also have a greater variation in values,74 i.e. 

51#52 . Where this occurs, the DOR at higher thresholds will be higher than the DOR at lower 

thresholds. The resulting SROC curve (the derivation of which is described below) will not be 

symmetric about the sensitivity=specificity line. These concepts are discussed further in 

section 2.3.2. 

C The term 'accuracy' can also used to describe a specific index of accuracy, i.e. the proportion of 
patients in a study who test positive or the proportion of true results (both true positives and true 
negatives) in the population. In this context it is used as a general term to describe the discriminative 
ability of the test 
d Prevalence of disease can vary between studies 
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2.3.1 Characteristics of an optimal meta-analytic method 
Before describing the various methods of synthesising diagnostic test accuracy studies that 

do allow for threshold effects and for variation in DOR with threshold, it is useful to consider 

the characteristics of an optimal meta-analytic method: 

1. the model should be bivariate in its parameterisation and should allow interpretation in 

terms of sensitivity and specificity. 

2. the model should use appropriate weighting. The number of diseased patients in a study 

can differ considerably from the number of nondiseased patients, resulting in varying 

levels of uncertainty in sensitivity and specificity. The different levels of uncertainty or 

precision associated with the sampling variability in TPR and FPR should therefore be 

addressed. 

3. the model should allow for the threshold relationship or correlation between sensitivity 

and specificity. 

4. the model should use a random effects approach. Considerable heterogeneity between 

studies is almost always to be expected in a systematic review of a diagnostic test or 

tests. 

2.3.2 Moses and Littenberg SROC method 
The Moses and Littenberg SROC method summarises the performance of a test across 

studies by fitting a summary (or 'average') ROC curve through the observed points.54.75 

Central to the method is the concept that the trade-off between TPR and FPR is most often 

due to threshold variation, although it can also be due to the other sources of variation in 

accuracy such as variation in tests and testing methods, methodological differences and 

variation in patient spectrum. 

Model formulation 
The model uses the log of the DOR (denoted D) and the log of a proxy measure of threshold 

(denoted S). D and S are estimated for each study in a meta-analysis in the following way: 

S = In( TPR x FPR J = logit(TPR) + logit(FPR) 
(l-TPR) (l-FPR) 

D = In(DOR) = In( TPR x (1- FPR)J = In(LR + ve) = logit(TPR) -logit(FPR) 
(l-TPR) FPR LR-ve 

The log it indicates the log of the odds, as used in logistic regression. D, estimated by 

subtracting the logit of the FPR from the TPR, is the log of the DOR and is a direct measure 

of how well the test discriminates between diseased and nondiseased. S, estimated by 

adding the two logits together, is related to how often the test is positive,75 and increases as 

threshold decreases. Note that D and S are defined as the difference and sum of the same 

two measures - TPR and FPR - each of which are estimates and therefore have an unknown 
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degree of error and furthermore covariance may exist between them. Although the uncertainty 

and covariance can be corrected for it is not usually considered by meta-analysts. 59 

The next stage is to plot D against S for each study and compute the best fitting straight line 

using the linear regression equation: 

D = a+bS 

where a denotes the intercept and b the slope of the regression line (Figure 8a). This 

regression line is then transformed into ROC space and an SROC curve generated (Figure 

8b). The SROC curve does not connect a set of points as the ROC curve for a primary study 

does, but rather reflects the central tendency of the data from the primary studies. 

Symmetric versus asymmetric SROC curves 
As previously mentioned, an SROC curve may be symmetric or asymmetric depending on the 

relationship of DOR with threshold. 

This can be best illustrated by relating D and S back to the distribution of test results in 

diseased and nondiseased participants (Figure 7), Macaskill shows that TPR and FPR can 

both be defined as functions of threshold (t), the mean test results in nondiseased and 

diseased participants (1J1 and 1J2) and their standard deviations (01 and 02),73 therefore D and 

S can also be defined as functions of the same parameters. 

Where the distribution of results is the same in diseased and nondiseased participants (01 = 

02) the formulae can be simplified to show that although S is linearly related to threshold (t), D 

does not depend on threshold (t).73 In this case, S can therefore be assumed to be zero. This 

results in a horizontal regression line and an SROC curve that is symmetric about the 

sensitivity=specificity line. 

Where the distribution of results between diseased and nondiseased participants is not equal 

(01 -:j: 02) both D and S depend on threshold. The resulting regression line has a positive or 

negative slope and the SROC curve is asymmetric. The degree of asymmetry in the curve will 

depend largely on the extent of the difference between 01 and 02. The derivation of an 

asymmetric SROC curve is as follows: 

1 
sensitivity = 1 

1 + ( .. )(I+b)/(I-b) 
ea/(I-b) x 1- spe~ifi~lty 

specificIty 
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Model interpretation 
Returning to the linear regression model , the coefficient for D is the log DOR and indicates 

the point at which the regression line intercepts the y-axis , i.e. where S is zero or sensitivity 

equals specificity (Figure 8a). The exponential of a therefore gives the DOR associated with 

the SROC curve at the point where sensitivity=specificity (or the Q* point) (Figure 8b). The 

higher the value of a, the higher the DOR and the closer the SROC curve will be to the top left 

hand corner of the ROC plot. The intercept value can also be interpreted as a measure of the 

distance between mean test results in diseased and nondiseased (l-h -1-.I1, Figure 7); the further 

apart the two distributions, the better the test and the higher the value of a. 

The coefficient for S indicates how the DOR changes with threshold . If b=O, the DOR does 

not change with threshold, the regression line will be horizontal and the resulting SROC curve 

will be symmetric (i.e. DOR is constant all along the SROC curve) . When the DOR does vary 

with S (i.e. b;tO), the coefficient for the slope (b) has a considerable effect on the shape of the 

SROC curve.59 The higher the value for b, the steeper the slope of the regression line and the 

more asymmetric the SROC curve (the more the DOR varies with threshold). If b has a 

positive value, DOR increases with increasing test positivity, and vice versa if b has a 

negative value. Macaskill shows that S can be interpreted as a weighted average distance of 

true threshold , t, from the mean test results in diseased and non diseased (1-.1 1 and 1-.12).73 

Figure 8 Sample Moses plots using data from Scheidler and colleagues76 

a) 'D vs S' plots b) SROC curves 
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Where Q* - point where sensitivity=specificity, OP is the operating point estimated using the mean value for'S' 
across studies. 

Weighting 
The Moses model is usually fitted using weighted or unweighted least squares linear 

regression .54 Weighting is commonly carr·ied out using the inverse variance of D. This 

assumes that variation between stUdies is due solely to sampling error (like fixed effects). 

Whilst this carries appeal in that it combines studies according to the precision of their 

estimates ot"the odds ratio , it is problematic when sensitivity or specificity (and hence odds 

ratios) are high, as the formula for the approximate variance of a log diagnostic odds ratio 
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becomes biased (the variance becoming over-estimated) when any of the counts of true 

positives, true negatives, false positives or false negatives is close to zero.77 Weighting by 

inverse variance therefore gives less weight to studies with high sensitivities and specificities 

(Figure 8b), all other things being equal. 

Using an unweighted (or equal weight) regression model gives results more akin to random 

effect assumptions (Le. where variation is not just due to sampling error but to real differences 

in accuracy between studies), because both within and between-study variance are taken into 

account.60 The effect is to give relatively higher weight to smaller studies, as would occur in a 

random effects model when heterogeneity is present. 

Estimation of sensitivity and specificity 
Difficulties in applying the DOR and associated SROC curve in clinical practice mean that the 

most likely operating point on the SROC curve is often estimated. A commonly used index is 

Q*.78 Q* is the point on the regression line where S=O or the value on the SROC curve where 

sensitivity is equal to specificity. 

Q* is not useful if the studies in the analysis do not include estimates of sensitivity and 

specificity near to the Q* point as in the example in Figure 8b. It is estimated using the 

intercept value a estimated from the regression equation (Le. the log diagnostic odds ratio 

when the threshold parameter is zero) and inserting it into the equation: 

An alternative combination of sensitivity and specificity can be estimated using the mean 

value of S instead of S=O. The value for 0 where where S=mean of S (indicated by the dotted 

vertical line in Figure 8a) is identified, and sensitivity and specificity at that point estimated 

using the following formulae: 

1 -
Specificity = 

1 + 

Sensitivity = 

1 + 

[mean S - mean 0 J 
exp C 2 

rmean S - mean 0 I 
exp t 2 ) 

exp rmean 0 r(1 - sp~~i~city) JJ l l speCIfICIty 

exp rmean 0 ( (1 - specificity) JJ 
l speCIfICIty 

Because we are using mean values across the dataset, the point identified lies closer to the 

centre of the data than Q*. This point is indicative of the average sensitivity and specificity, 
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however it does not account for the variability in values between studies. It should also be 

remembered that these points represent only one small part of an asymmetric SROC curve; 

DOR might vary considerably along the curve. 

Investigating heterogeneity in the Moses and Littenberg SROC method 
Spectrum effects, or biases, are a source of heterogeneity in a systematic review and are 

therefore investigated in the same way as other sources of heterogeneity, by extending the 

model to allow for covariates.26,42 A covariate, X, can be added to the regression equation for 

each potential effect modifier: 

D= a+bS+c]X]. 
The exponential of each of these terms estimates multiplicative increases in diagnostic odds 

ratios (relative odds ratios) for each factor. An underlying assumption is that the shape of the 

summary ROC curves is not affected by covariates; i.e. the SROC curves are parallel. 

A further extension to the model allows for different shapes for the SROC curves indicated by 

the covariates. To do this interaction terms between covariates and thresholds are included 

in the model: 

If the covariate indicates, say differences between two tests, this model is equivalent to fitting 

separate summary ROC curves for each test. A problem with this model is that it becomes 

difficult to judge the importance of differences between the curves, as they may differ both in 

average diagnostic accuracy and shape, and will cross over. Furthermore it would not be 

possible to identify a source of heterogeneity that had opposing effects on sensitivity and 

specificity as the overall DOR would not change. 

2.3.3 Advanced methods 

Rutter and Gatsonis hierarchical SROC method 
Rutter and Gatsonis' hierarchical SROC (HSROC) approach models summary ROC curves 

by estimating the average DOR, the average threshold and the shape (degree of asymmetry) 

of the curve.55,56 The HSROC model can be considered as an extension of the Moses 

model,55,56,56 allowing for uncertainty at different levels, For this application two levels are 

considered: variation first within studies, and second, between studies. 

The model is formulated in terms of the probability (llij) that a patient in study i with disease j 

has a positive test result, where j=O for a patient without disease and j=1 for a patient with 

disease.79 Appendix 2 provides the full specification of the model. The model yields parameter 

estimates for 

• 8; (the implicit threshold parameter which models the trade-off between sensitivity and 

specificity in each study), When 8 = 0, the average operating point is at Q*, i.e, where 
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sensitivity=specificity. The value of 8 therefore gives an indication of distance from 

Q*. 

• 0i (the log DOR which measures the difference between TP and FP fractions in each 

study), and 

• 13 which allows for asymmetry in the underlying SROC curve by al lowing the log DOR 

to vary with implicit threshold (i.e . it allows the TP and FP fractions to increase at 

different rates as 8i increases). When 13 = 0, the DOR for each study does not 

depend on the cutpoint parameter 8i and 0i is the log of the DOR. When 13 :f. 0 the 

DOR varies with threshold (8i) even if the accuracy parameter (Oi) is held fixed. 

The second level of the model fits 8i and 0i as random effects, so that their average value and 

variation across studies are estimated. The random effects model takes account of the 

clustering of TPR and FPR pairs within studies , thereby accounting for the correlation 

between them. The shape parameter 13 can only be estimated as a fixed effect (estimated by 

looking the pattern across studies) because the association between test threshold and 

accuracy must be derived using data from the studies considered jointly.6o The precision with 

which the parameters are estimated is incorporated into the model by weighting in favour of 

those with more precise estimates. 

Figure 9 Advanced method plots 
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Where Q* - point where sensitivity=specificity, OP is the operating point estimated using the mean value for 'S' 
across studies. 

The hierarchical summary ROC curve (Figure 9a and b) is constructed by computing values 

of sensitivity across the range of specificities using the ° (log DOR) and 13 (shape parameter) 

estimates from the regression model. The 8 (threshold) parameter gives an indication of 

position on the curve rather than the shape or location of the curve . 
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Bivariate normal model 
The BVN model uses the same hierarchical approach as the Rutter and Gatsonis method,56 

but preserves the sensitivity/specificity parameterisation of the studies, rather than converting 

test values to estimates of diagnostic odds ratios.so 

The model uses a random effects approach assuming that the true logit sensitivities for the 

individual studies are normally distributed around some common mean value J.lAJ with a 

between study variability of if A. The same random effect assumption is made for true logit 

specificities, with mean value J.lBJ and between study variability of if B. The potential 

correlation aAB between sensitivity and specificity (acknowledging the pairing of data within 

each study and the possibility of threshold effects) is addressed by explicitly including this 

correlation into the analysis. 57-59 The precision with which sensitivity and specificity have been 

estimated is also incorporated into the model by weighting in favour of those with more 

precise estimates. The full model specification is provided in Appendix 3. 

The model yields parameter estimates for: 

• mean sensitivity, mean specificity and their 95% confidence intervals 

• estimates of between study variability in sensitivity and specificity and 

• estimates of the covariance between sensitivity and specificity. 

The parameters of the bivariate distribution can also be used to calculate an elliptical 

confidence region around the mean values of logit sensitivity and specificity taking into 

account the possible (positive or negative) correlation between them.59 This can be back­

transformed into conventional ROC space to give a confidence region around the summary 

operating point, denoting the area containing the likely combinations of the mean values of 

sensitivity and specificity (see Figure 9b). A prediction ellipse can also be constructed to 

indicate the region in which the true sensitivity and specificity of the test is likely to lie (within a 

given probability, e.g. 95%). The precision of each study is also denoted by varying sized 

circles. 

Harbord and colleagues have shown that mathematically, the HSROC and BVN model are 

essentially alternative parameterisations of the same model, i.e. the parameters produced by 

the HSROC model can be transformed into the parameters obtained from the BVN model, 

and vice versa.79 This has not been empirically proven and will be further examined in 

Chapter 4. 

Investigating heterogeneity using the advanced methods 
Sources of heterogeneity, incluing spectrum effects or biases, are again examined by 

extending the models to allow for covariates. Under the HSROC parameterisation covariates 

can be added to the accuracy, threshold and shape components of the model, and are fitted 

as fixed effects. The significance of covariates can be evaluated by testing the model terms 
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for the covariates, and differences may be noted in whether covariates alter (a) diagnostic 

odds ratios, (b) the threshold and (c) the shape of the ROC curve. The remaining unexplained 

variance in both the accuracy and threshold parameters is also given by the random effect 

terms. 

Under the bivariate normal parameterisation covariates are added to both the logit sensitivity 

and logit specificity components of the model. The effect of each covariate on sensitivity and 

specificity is thus estimated separately so that any variable that increases one but decreases 

the other, for example, could be detected. The remaining unexplained variance in both 

sensitivity and specificity is also given as is the covariance between sensitivity and specificity. 

After the introduction of a covariate, the similarity of the two models' output can only be easily 

maintained if no interaction of the covariate with shape is allowed for the HSROC model. 

Recall that for an individual study, the distribution of test results in diseased and nondiseased 

participants determines the shape of the curve; where the two distributions are not equal, the 

ROC curve will be asymmetric. At review level, the distributions of results in diseased and 

nondiseased across all studies are considered, to determine whether any differences in 

distributions are consistent across studies and therefore lead to asymmetry in the SROC 

curve. Where a covariate is introduced to the HSROC model one can either assume that the 

two (or more) curves have the same shape (parallel) or that they might have different shapes 

(crossing curves). If the curves are allowed to have different shapes, one is saying that the 

distributions of test results in diseased and nondiseased may differ between the subsets, 

although the degree and statistical significance of any such difference may vary. Parallel 

curve models ignore any differences in distributions by covariate and model shape for both 

groups using the whole set of studies. 

The BVN model cannot directly consider 'shape' in the same way as the HSROC model. 

When no covariates are added, the unexplained variances in sensitivity and specificity from 

the bivariate model are used to estimate the HSROC shape parameter. When a covariate is 

added, the effect is specified in terms of the effect of that covariate on mean sensitivity and 

mean specificity and but not on the variances of the two. As the variances are not affected, no 

change in the shape parameter can be estimated. The HSROC parameters can be converted 

to bivariate model parameters with or without a shape interaction with a covariate. 

The differences in the accuracy, threshold and shape parameters indicate whether the 

subgroups of studies by covariate have different SROC curves (difference in accuracy), are 

on the same curve but at different points on the curve (difference in threshold), or on different 

curves with different shapes (difference in shape), or some combination of these. For 

example if there is no evidence of differences in accuracy but strong evidence of differences 

in threshold, the two groups of studies are likely to be on the same curve but at different 
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points on that curve. If the shape term is significant but the accuracy term not, they are likely 

to be on differently shaped curves but at the same point (e.g. at or near the point where the 

curves cross). 

It is important to remember that OORs and ROORs are estimated at a particular point on the 

SROC curves. The natural model output estimates both OOR and ROOR at the Q* point, 

however as previously mentioned, Q* may not be representative of the datasets in the review. 

The model output can be used to estimate OOR at any point on the curve, for example at the 

average operating point. The choice of point at which to estimate ROOR can be more 

complex. For example, if the average operating points of the two groups are some distance 

apart and the two curves have considerable differences in shape, the distance between the 

curves could be quite different at each operating point, leading to big differences in ROOR. 

This issue will be explored in Chapter 4. 

2.4 Extent to which the three methods possess the characteristics of 

an optimal meta-analytic method 

The extent to which the three methods possess the characteristics of an optimal meta-analytic 

method as listed in section 2.3.1 is discussed below. A summary of the characteristics of the 

three approaches is provided in Table 6. 

Table 6 Comparison of statistical methods 

Method Weight Threshold Random effects Parameterisation 
correlation 

M&L (eq) none (equal) Yes No DOR+S 
M&L(w) 1/var(lnDOR) Yes No DOR+S 
HSROC binomial error for sens + Yes Yes DOR + threshold 

spec 
BVN binomial error for sens + Yes Yes sens + spec 

spec 
M&L (eq) - Moses and Llttenberg model with equal weights, or unwelghted; M&L (w) - Moses and littenberg model 
weighted by inverse variance of the log of the diagnostic odds ratio (InDOR); sens - sensitivity; spec - specificity 

1. The model should be bivariate in its parameterisation and should allow interpretation in 

terms of sensitivity and specificity. 

Although the Moses approach is bivariate in that it is based on two parameters (0 and S), its 

output can only be interpreted within a one-dimensional framework. The original formulation 

of the model produces a summary ROC curve and allows that curve to have different shapes, 

but it does not indicate where on that curve we are likely to be. This is because the 

parameterisation between sensitivity and specificity is lost when OOR is estimated. The 

method is akin to pooling a single statistic but is an improvement on straight pooling of OOR 

as it allows threshold variation, or different shaped curves. The Moses model output can be 

used to estimate summary point and interval estimates for sensitivity and specificity but a 

value for either sensitivity or specificity must first be specified. Such values are just an 

arbitrary choice of possible values and may not be representative of values in the primary 

studies. 
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The two advanced models are both bivariate in their parameterisations which allows the 

model output to be interpreted in terms of both test accuracy (DOR) and threshold and 

sensitivity and specificity. 

2. The model should use appropriate weighting to allow for sampling variability 

There are two main sources of uncertainty in the Moses model. The first is the variance in 0, 

which the model attempts to account for, and the second is variation in'S', which the model 

cannot allow for (linear regression assumes no error in the explanatory variable) and must 

therefore incorrectly assume to be absent. 

The variance in 0 is allowed for by weighting by inverse variance of 0 (the log of the DOR). 

There are two problems with this approach. Firstly, because the sensitivity/specificity 

parameterisation is lost when weighting by inverse variance of 0, the different levels of 

uncertainty associated with the sampling variability in TPR and in FPR cannot be incorporated 

(i.e. the number of diseased and nondiseased patients can considerably differ within a study 

therefore leading to differences in precision between sensitivity and specificity). This can 

potentially lead to inappropriate significance levels in DOR and its association with threshold. 

Secondly and more fundamentally, Deeks and colleagues have shown that there are 

problems with bias in the variance of 0,81 especially where there are zero cells and/or very 

high values of sensitivity or specificity. 

The advanced methods however, appropriately account for different precision of sensitivity 

and specificity within each study by preserving the sensitivity/specificity parameterisation of 

the studies. The uncertainty in modelling diseased (sensitivity) and nondiseased (specificity) 

is considered separately so that the uncertainty in each proportion is accounted for correctly. 

Studies with more precise estimates of sensitivity and/or specificity therefore get more weight 

for the estimate of that parameter. 

3. The model should allow for the threshold relationship or correlation between sensitivity 

and specificity 

The threshold relationship can be considered at two levels. The first is to allow for threshold­

type effects, which all three methods do. The second is direct estimation of the correlation 

between sensitivity and specificity, which only the advanced methods do. The Moses 

approach allows DOR to vary with S, the proxy measure of threshold. Because 0 and S are 

computed before undertaking the modelling required for the SROC curve, individual 

information on sensitivity and specificity (and the degree of correlation between them) are 

lost. 60 Separate pooling of sensitivity and specificity does not allow for this correlation either, 

but nor does it allow for any variation with threshold. 
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The BVN model directly estimates the strength of the correlation between sensitivity and 

specificity by assuming a bivariate normal distribution (combined distribution of two correlated 

normally distributed variables) between their logit transforms. As logit sensitivity and 

specificity can be estimated by linear combinations of the HSROC parameters accuracy and 

threshold, the HSROC model indirectly assumes the same bivariate normal distribution.79 

4. The model should use a random effects approach, i.e. should consider both between-

study and within-study variability 

The advanced model(s) properly estimate random effects and properly test for the 

significance of any effects to account for variability beyond chance (heterogeneity). The BVN 

model uses a random effects approach in the estimation of summary estimates of sensitivity 

and specificity and their corresponding 95% confidence intervals. Logit sensitivities and 

specificities from individual studies are each assumed to be approximately normally 

distributed around some mean value with a certain variability around this mean estimated. 59 

This takes into account the heterogeneity beyond chance between studies. The HSROC 

model fits threshold and accuracy parameters as random effects, so that their average value 

and variation across studies are estimated. The random effects model takes account of the 

TPR and FPR pairs within studies, thereby taking account of the correlation between them. 

With both approaches, the unexplained between-study variability can be either modelled with 

covariates and/or be considered random due to unknown sources of variability. 

The Moses approach produces a fixed effect estimate of DOR and no estimate for average 

threshold or variability, but it places no restriction on threshold. It does not account for the 

variability in sensitivity and specificity as the modelling is undertaken only using the log DOR 

and S, the proxy measure of threshold. Any between-study variability is not directly modelled 

and can only be explained by covariates - any remaining unexplained variability is not 

estimated. 

2.4.1 Summary 

In summary, the advanced methods have several theoretical advantages over the Moses 

method, making their results more statistically reliable and accurate. They provide additional 

information on threshold and shape and the significance of any changes in sensitivity and 

specificity, avoiding any perceived need for separate meta-analyses using both pooling and 

SROC methods, which may give inconsistent results.6o They also estimate the size of the 

variance in all of the parameters. Furthermore, the drawing of 95% confidence ellipses around 

the average operating point should enhance our understanding of the heterogeneity between 

studies and the correlation within studies. 

2.5 Outline of thesis and research questions to be addressed 
Chapter 1 has established the extent to which there is potential for spectrum variation to 

impact on the results of both primary studies and systematic reviews. As it is rare for 
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diagnostic accuracy studies to be sufficiently large in size or to recruit a sufficiently broad 

. spectrum of participants to allow the influence of spectrum to be examined, systematic 

reviews that include all available studies of a given test for a given disorder provide the best 

means available to assess the impact from heterogeneity, notwithstanding the limitations of 

the primary studies in terms of design and reporting. Until recently, our ability to investigate 

sources of heterogeneity have been limited, in some cases by the ability of the methods 

available, but also by their accessibility. Recent work has made the advanced methods much 

less computationally demanding and therefore more accessible, and it is timely that their 

ability to investigate sources of heterogeneity should be examined and compared with more 

commonly used methods. These methods are explained in detail in Chapter 2. 

Chapter 3 reports a methodological review of how heterogeneity has been examined in 

systematic reviews of diagnostic test accuracy to date. This provides a picture of current 

practice in systematic reviews and meta-analyses in terms of how often spectrum effects 

have been considered in systematic reviews, whether and how they have been investigated, 

and what impact if any they have had on test accuracy. 

In Chapter 4, a case study of the identification of spectrum effects comparing three meta­

analytic methods is reported. A systematic review of two polymerase chain reaction (PCR) 

tests for the detection of active pulmonary tuberculosis is used to demonstrate the ability of 

the Moses SROC method,54 the HSROC method55,56,6o and the BVN mode157-59 to investigate 

sources of heterogeneity. Conducting a systematic review from scratch allows one to become 

intimately familiar with the data in the analysis, such that it is clear which data of interest were 

actually provided by study authors in the original study publications and also allows fully 

systematic methods to be employed throughout the review process. This particular dataset 

was chosen because the two tests are both commercially produced and are fairly 

standardised in terms of their application, thereby reducing one potential alternative source of 

heterogeneity. The studies are also generally very large in size, were well-designed and fairly 

recently published, this reduces to some extent the degree of methodological heterogeneity 

introduced into the review. 

Chapter 5 reports the results of a re-analysis of previously published systematic reviews using 

both of the Moses methods and the HSROC model. The BVN model was not used as it gives 

results almost identical to the HSROC model assuming parallel curves and it cannot easily 

model an interaction of covariate with curve shape as the HSROC model does. Systematic 

reviews presenting contingency table data plus data on at least one spectrum-related factor 

per study were analysed. In this way, it was possible to investigate whether the findings from 

Chapter 4 were replicated across a large sample of datasets and also allowed a more 

thorough examination of effects from spectrum-related characteristics across a range of tests 

and conditions. 
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Chapter 6 presents the discussion and conclusions. 

-f ~.' 
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3 A methodological review of how heterogeneity has 

been examined in systematic reviews of diagnostic 

test accuracy 

This chapter reports a methodological review of how heterogeneity has been examined in 

systematic reviews of diagnostic test accuracy to date. The first part of the chapter provides a 

picture of recent practice in systematic reviews and meta-analyses in terms of how often 

spectrum effects have been considered, whether and how they have been investigated, and 

what impact if any they have had on test accuracy. The second part of the chapter looks at 

the same questions for reviews using the advanced methods of meta-analysis that have been 

published over the last four years. 

3.1 Methods 

3.1.1 Eligibility criteria 

To be included, reviews must have evaluated a diagnostic or screening test by including 

studies that compared a test to a reference test with the aim of establishing test accuracy. 

Studies were assessed for inclusion by one reviewer. 

3.1.2 Literature search 

The Centre for Reviews and Dissemination's Database of Abstracts of Reviews of Effects 

(DARE) was used to identify existing systematic reviews of diagnostic studies. This is a 

database of quality assessed systematic reviews identified by hand searching key major 

medical journals, regular searching of bibliographic databases and by scanning grey literature 

since 19948
• 

Diagnostic reviews indexed on DARE up to April 2001 had already been screened to identify 

diagnostic reviews for a previous projece1 and were automatically included. Reviews indexed 

between April 2001 and December 2002 were also screened for inclusion. Only the reviews 

for which structured abstracts had been written were considered eligible. Due to the 

considerable time lag in loading reviews onto DARE at the time of the search, additional high 

quality systematic reviews not yet indexed on DARE but meeting the inclusion criteria were 

included. These were identified from sources such as the INAHTA and MEDIONI databases. 

Nineteen of the 32 reviews identified from these two databases have since been added to the 

DARE database. 

e further details about DARE can be found at http://agatha.york.ac.uk/darehp.htm 
f INAHTA is the International Network of Agencies of Health Technology Assessment and MEDION is a database of 
diagnostic systematic reviews updated by a group of Dutch and Belgian researchers. 
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None of the reviews identified from the searches described above were found to have used 

the advanced methods of meta-analysis. As a considerable time interval had passed since 

these searches and as reviews using the advanced methods were known to have been 

published in more recent years, additional citation searches of the Science Citation Index and 

Social Science Citation Index were conducted in November 2007 to identify any systematic 

reviews that had used the advanced methods of meta-analysis. This was carried out to allow 

the examination of how these reviews dealt with issues of heterogeneity and spectrum in 

comparison to the previously identified set of reviews. Reviews identified from these searches 

were analysed subsequently to and separately from the main dataset. 

3.1.3 Data extraction 

A data extraction form for recording relevant information from each systematic review was 

designed and piloted. Data were extracted on a variety of items including: 

the experimental test, reference tests and condition tested for; 

the review methodology including the literature search and approach to quality 

assessment; 

review synthesis methods and approach to statistically identifying heterogeneity 

in study results 

methods of exploration of variability in study results and variables investigated. 

The full systematic reviews were pre-screened independently by two reviewers. Those 

meeting the inclusion criterion were data extracted by one reviewer and the completed data 

extraction forms checked against the full paper by a second reviewer. Any disagreements 

were resolved by consensus or by referral to a third reviewer if necessary. 

3.1.4 Data synthesis 

A narrative synthesis is presented. The reviews are considered primarily in terms of the 

statistical methods used, and the results section is structured to reflect the steps involved in 

the synthesis of diagnostic test accuracy studies, i.e. 

• identification of heterogeneity 

• meta-analysis 

• investigation of sources of heterogeneity. 

Particular focus is given to the extent to which spectrum effects or bias are considered, both 

as part of quality assessment and spectrum-related characteristics investigated in subgroup 

or regression analyses. The frequency of investigation of spectrum-related variables as 

sources of heterogeneity in relation to test or quality-related variables is quantified as is the 

frequency of reporting of statistically significant effects. 

The reviews are considered in two parts: first of all looking at the main sample of reviews 

identified from the initial searches; and secondly looking at the reviews that used the 

advanced methods of meta-analysis. 
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Figure 10 Flowchart of review inclusion process 
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3.2 Results - Reviews using established methods of meta­

analysis 

3.2.1 Summary of reviews identified 

Of 312 systematic reviews identified from the DARE searches, 189 met the inclusion criteria 

and were included in the review. Figure 10 provides a flowchart of the review selection 

process. Summary details of the 189 included reviews, according to whether they used a 

narrative (n=56, 30%) or a statistical method of synthesis (n=133, 70%), are provided in Table 

7 to Table 11; fuller details of the reviews are available elsewhere.74 

3.2.2 Description of review methods 

The reviews cover a wide range of target disorders and test types, from the low technology of 

clinical examination for the detection of diseases such as left sided heart failure,82 deep vein 

thrombosis83 or carpal tunnel syndrome84 at one end to highly equipment intensive tests such 

as nucleic acid amplification tests for detecting infection,85-87 or positron emission 

tomography for the detection of cancer or Alzheimer's disease.88 

Just over half (52%) of all reviews included searched only one electronic database (Medline) 

to identify primary studies (Table 7). This was less often the case for narrative reviews (38%) 

compared to those using statistical syntheses (59%). 59% of reviews used language 

restrictions in their searches; in 84% of these this was to restrict studies to English language 

only. Only 14% (27/188) of reviews applied no language restrictions. These proportions were 

similar regardless of whether the reviews carried out narrative or statistical syntheses. 

Half of reviews applied inclusion criteria to restrict studies to those of a higher standard on at 

least one quality criterion. Most commonly this was to ensure that studies had compared the 

index test to an appropriate reference standard (86% of meta-analyses and 48% of narrative 

reviews applying quality-related criteria). The next most commonly used criteria were to 

ensure blinding had been used (19%), to include only prospective studies (16%) and to 

ensure verification bias had been avoided (15%). Restriction to higher quality studies was 

more common in meta-analyses than in narrative reviews and meta-analyses were more 

likely to apply more than one quality-related criterion. 

Quality assessment of included primary studies was reported to have been carried out in 69% 

of reviews (Table 7), with most (88/131) using a quality assessment tool apparently 

developed by the authors themselves (only 43 reported using a previously published tool). An 

analysis of the way in which these reviews considered spectrum-related factors as part of 

their quality assessment is provided below; a further detailed analysis of all of the items 

included in a sample of these quality assessment tools is provided by Whiting and 
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colleagues.21 A further three reviews carried out a classification of evidence such as that 

outlined by the US Preventive Services Task Force.89 

Table 7 Summary of reviews found 

TOTAL Statistical Narrative 
n(%) synthesis synthesis 

n (%) n(%) 
Total no. of reviews 189 133 (70%1 56J30%) 
Review methods 
Medline only electronic 99 (52%) 78 (59%) 21 (38%) 
source 
No. using language Restricted 111 (59%) 78 (59%) 33 (59%) 
restriction English only 94 (84%) 63 (80%) 31 (94%) 

No restriction 27 (14%) 20 (15%) 7 (13%) 
Not stated 51J27%1 35J26%>1 16J.29o/~ 

No. using quality Restricted 94 (50%) 69 (52%) 25 (45%) 
restrictions Appropriate reference test 71 (76%) 59 (86%) 12 (48%) 

Blinding used 18 (19%) 16 (23%) 2 (8%) 
Prospective only 15 (16%) 9 (13%) 6 (24%) 

Avoids verification bias 14 (15%) 12 (17%) 2 (8%) 
Adequate sample descrip 9 (10%) 5 (7%) 4 (16%) 

Consecutive enrolment 8 (9%) 8 (12%) 0 
Adequate test descrip 2 (2%) 2 (3%) 0 

Complete follow-up 2(2%) 2 (3%) 0 
No restriction 95 (50%) 64 (48%) 31 (54%) 

No. using quality Not conducted 58 (31%) 40 (30%) 18 (32%) 
assessment Conducted 131 (69%) 93 (70%) 38 (68%) 

Authors' own 88 (67%) 68 (73%) 20 (53%) 
Existing tool 43J.33°/~ 25J.27°/~ 18J.47O/~ 

Median (IQR) no. of 18 (IQR 20) 22 (IQR 20) 11 (IQR 13) 
studies No. studies not reported 7 (4%) reviews 3J2°/~ 4J7O/~ 
Median (IQR) no. of 3,161 (IQR 4,007 (IQR 1,726 (IQR 3619) 
patients No. patients not reported 6,815) 7,553) 24 (43%) 

68 (36%) reviews 34 (26%1 
IQR - Inter-quartile range 

The median number of studies included in the reviews was 18. Meta-analyses have a higher 

number with a median of 22 studies compared to 11 for narrative reviews. The number of 

patients included in the studies was not clearly reported in 36% of all reviews; less so for 

narrative reviews (not reported in 43%). 

Consideration of spectrum-related items in quality assessment 

Of the 131 reviews carrying out quality assessment, 51 % (n=67) considered patient spectrum 

in some way. Appendix 7 provides a full description of the items per review. A summary of the 

items related to spectrum are described in Table 8. 

Just over a third of reviews (37%; 48/131) required a judgement regarding the 

appropriateness of the spectrum of patients included in the study; most asked whether the 

spectrum had been appropriate or whether the patients included were representative of those 

to whom the test would be applied in practice. 16 of the 48 reviews in this group (33%) also 

specifically mentioned the nondiseased as well as the diseased group. Seven reviews asked 

whether both diseased and nondiseased patients were included and one wanted 'a 

continuous spectrum of patients that included normal patients',90 but seven required that 

control groups should include patients with disorders 'commonly confused' with the target 

disorder or with 'signs suggestive' of the target disorder. 
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Table 8. Breakdown of quality assessment items related to patient spectrum 

Quality assessment (QA) items related to: No. (%) of reviews 

conducting QA 

(n=131) 

'Appropriateness' of patient spectrum 48 (37%) 

(with specific mention of the nondiseased group) 16 (33%) 

Spectrum or sample described 30 (23%) 

Study setting described 23 (18%) 

Participant sampling described 14 (11%) 

Analysis of pertinent subgroups 4 (3%) 

Spectrum-related items not included in quality 64 (49%) 

assessment 

Thirty reviews (23%; 30/131) asked whether a description of patients characteristics had been 

provided by the study authors and 23 (18%) were interested in the setting in which the study 

had been undertaken. Participant sampling was considered in 11 % (14/131) of reviews and 

analysis of pertinent patient subgroups in only 3% (n=4). 

3.2.3 Description of statistical methods used 

Summary details of the statistical methods used in the reviews are presented in Table 9. 

3.2.4 Identification of heterogeneity 

Heterogeneity is best identified by visual comparison of study results on a graphical plot. 

Statistical tests to identify heterogeneity and threshold effects are available, however these 

lack power. A reasonable recommendation is to assume that heterogeneity and threshold 

effects are present, and that it therefore does not make sense to test for their presence. 

Instead, random effects models that allow for these features should be employed. 

Graphical plots to identify heterogeneity 

Over half (75/133, 56%) of meta-analyses used graphical plots to demonstrate the spread in 

study results. In 79% (59/75) of cases study results were plotted in ROC space, 13 reviews 

plotted sensitivity andlor specificity on forest plots and three reviews used '0 vs. S' plots. 

Only two of the 56 reviews using a narrative synthesis presented study results graphically, all 

using ROC plots. 

Statistical tests to identify heterogeneity 

Statistical tests to identify heterogeneity were used in 60 of 189 (32%) of reviews (Table 9). 

Of the 133 reviews using statistical syntheses, 55 (41 %) used statistical tests to identify 

52 



heterogeneity, 34 using the Chi square test and 7 Fisher's exact test. A further five meta­

analyses made a narrative statement regarding the presence of heterogeneity. Fewer meta­

analyses (16%; 21/133) used correlation coefficients to test for a threshold effect, most (14) 

choosing the Spearman correlation coefficient. 

Table 9 Summary of statistical methods used 

TOTAL Statistical Narrative 
n(%) synthesis synthesis 

n(%) n(%) 
Total no. of reviews 189 133 (70%) 56 (30%) 
Statistical methods 
used 
Test for heterogeneity 60 (32%) 56 (42%) 4 (7%) 
reported Chi 36 (60%) 34 (61%) 2 (50%) 

Fisher 7 (12%) 6 (11%) 1 (25%) 
Breslow-Day 5(8%) 4(7%) 1 (25%) 

Q statistic (ORs) 3(5%) 3 (5%) 0 
Kardaun-Kardaun 1 (2%) 1 (2%) 0 

observed v predicted values 6 (10%) 5 (8%) 1 (25%) 
miscellaneous testsa 5(8%) 5 (7%) 0 

test used but not reported 8 (13%) 8 (14%) 0 

Test result Statistically significant 47 (78%) 44 (79%) 3 (75%) 
Not significant 10 (17%) 10 (18%) 0 

Not reported 4(7%) 3 (5%) 1 (25%) 
Correlation test for 21 (11%) 21 (16%) 0 
threshold effects Spearman correlation 14 (67%) 

Pearson correlation 3 (14%) 
Kardaun-Kardaun 1 (5%) 

test used but not reported 2 (10%) 
Correlation test result Significant correlation 14 (67%) 

No correlation 6 (29%) 
Not reported 1 (5%) 

Study results plotted 77 (41%) 75 (56%) 2 (4%) 
graphically ROC plot 57 (74%) 59 (79%) 2 (100%) 

forest Se and/or Sp 12 (16%) 12 (16%) 0 
forest DOR or log DOR 1 (1%) 1 (1%) 0 

o vs S plot 3 (4%) 3(4%) 0 
miscellaneous j)lotsb 12%1 9J12%) 0 

Type of synthesis Narrative 0 56(100%) 
used '"Pooling methoc/s 109 (82%) 

Sensitivity/Specificity 97 (84%) na 
LRs 26 (24%) na 
PVs 11(10%) na 

DOR 10 (9%) 
Effectiveness score 8 (7%) 

Accuracy 5(5%) 
AUC 3 (3%) 

Miscellaneousc 
............... 4.(4%) 

SROC: 
'"' ,>·,·"~""·m '" 

64 (48%) 
Weighting not specified 27 (42%) na 

Unweighted 13 (20%) na 
Inverse variance weighted 11 (17%) 

Sample size weighted 6 (9%) na 
Variance weighted 1 (2%) na 

'Weighted' 7 (11%) na 
Robust resistant regression 2 (3%) na 
Estimated from DOR or ES 3 (5%) 

Data presentation: 
DOR 4(6%) 
AUC 10 (16%) 

SROC parameters 7 (11%) 
Q* 18" (28%) 

Se or Sp at fixed Sp or Se 20 (31%) 
SROC curve only presented 10 (16%) 

Comparison of ~ 2 curves 
Other methodsd 

4(6%) 
2 (3%j 

Paired data considered Yes 12 (9%) 
separately (meta- No 42 (32%) 
analyses only) No paired data (or can' tell) 79 (59%j 
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TOTAL Statistical Narrative 
n(%) synthesis synthesis 

n(%) n(%) 
Method of Not done 17 (9%) 10 (8%) 7 (13%) 
investigating Narrative 68 (36%) 19 (14%) 49 (87%) 
heterogeneity Subgroup 74 (39%) 74 (56%) na 

Regression 45 (24%) 45 (34%) na 
Method not described 2{1%) 2 (2%) na .. ... 

ROC - receiver operator characteristic; Se - sensitivity; Sp - specificity; DOR - diagnostic odds ratio; LR - likelihood 
ratio; PV - predictive value; AUC - area under the curve; ES - effect size; 
a including effectiveness score (2 studies); comparison of fixed vs. random effects results (1 study); 'covariate 
adjustment' (1 study); and goodness of fit test (1 study). 
b including: funnel plots using ES (1 study) or log DOR (1 study); scatterplots of AUC (1 study), LR (1 study) or Se (1 
study) per study; Se (1 study) or NPV (1 study) plotted against prevalence; Se and Sp as function of prevalence (1 
study); and Se/Sp plotted against sample size (1 study). 
C including: fraction positive (1 study); correlation coefficient (1 study), Youden index (1 study), odds of false-negative 
on index vs reference test (1 study) 
d Including: ratio of ORs (1 study); estimation of LR, method not reported (1 study) 
e in two reviews LR was estimated from Q* 

Five of the reviews using a narrative synthesis used statistical tests to identify heterogeneity 

(Table 9), four of which reported that statistically significant heterogeneity was found. A 

further four reviews specifically stated that the studies were too heterogeneous to be pooled, 

though no formal evidence for this was provided. 

Identification of heterogeneity according to type of synthesis used 

Of the 133 (70%) reviews in which meta-analysis was performed, 52% (n=69) carried out 

statistical pooling alone, 18% (24) conducted only SROC analyses, and 30% (40) used both 

methods of statistical synthesis (Table 10). None of the included reviews used the more 

advanced methods of meta-analysis outlined in Chapter 2 above, i.e. the BVN model and the 

HSROC model. Although 57% (76/133) of meta-analyses presented study results graphically, 

these were primarily reviews that had used SROC regression models: only 19/69 (28%) using 

statistical pooling alone presented results graphically. 

Table 10 Statistical tests and graphical approaches used according to method of 
synthesis 

Narrative Statistical Statistical syntheses by method of synthesis used 
syntheses syntheses 

Type of synthesis 56 133 Pooling only Pooling and SROC only 
(30%) (70%) 69 (52%) SROC 24 (18%) 

40 (30%) 
Graphical presentation of 2(4%) 76 (57%) 19 (28%) 35 (87%) 22 (92%) 
results 

-------.-.~'--.--.------.-.-.--. _._ .. _- .•... " .... ~.".. . 

Many meta-analyses using SROC methods stated that these methods allow for the presence 

of a threshold effect (37/64), so presumably did not see the need to specifically test for 

threshold effects. 
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3.2.5 Type of syntheses used 

Narrative syntheses of data 

A narrative synthesis was used in 56 (30%) of reviews. In eight reviews the authors indicated 

that this was due to the presence of between-study heterogeneity, but the remainder did not 

state whether they had considered using statistical approaches to study synthesis. 

Meta-analyses of sensitivities and specificities, predictive values and likelihood 

ratios 

Of the 109 reviews that pooled accuracy indices, 87% pooled sensitivity andlor specificity, 

23% pooled likelihood ratios and 10% pooled predictive values. A further 5% of reviews 

pooled test 'accuracy', which is the percentage of diagnoses that were correct (i.e. number 

true positive plus number true negative as a proportion of all test results). 

Pooled single summaries of test performance 

Single summaries of test performance, estimated by pooling results from individual studies or 

by logistic regression methods (akin to fixed effects pooling) were carried out in only a handful 

of studies: 9% (10/109) pooled diagnostic odds ratios; 7% (8/109) pooled the 'effectiveness 

score' (akin to the DOR), and 3% (5/109) pooled area under the curve data from individual 

studies. 

Single summaries of test performance using SROC regression models 

For those reviews presenting SROC curves, all except four used regression models such as 

that described by Moses and colleagues54 to create the curves. Three of the exceptions 

estimated SROC curves from the pooled DORs or effectiveness scores and the other did not 

describe the method used. For the remainder, the main differences between the models used 

are the weights chosen for the regression model. In 42% of cases (27/64) the use of, or 

choice of, weight was not provided by the review authors (Table 9). In 13 reviews (20%) the 

models were unweighted; in 17% inverse variance weights were used; and in 9% sample size 

weights were used. In a further 11 % (6/64) models were simply described as 'weighted'. 

As discussed in section 2.3.2, SROC curves can be interpreted in several ways. The methods 

most commonly used were those that converted certain points of the SROC curve to 

sensitivity and specificity pairs (Table 9): the Q* (maximum joint sensitivity and specificity) 

was presented in 28% (18/64) of reviews, sensitivity and specificity pairs were 'read' from the 

SROC curves in 31 % (20/64) of reviews, e.g. sensitivity at mean specificity or 95% specificity, 

or sensitivity and specificity at mean threshold. Ten reviews (16%; 10/64) chose to provide 

area under the curve (AUC) data and only four (6%; 4/64) interpreted the SROC curve as a 

DOR. The underlying SROC model parameters were provided by 11% (7/64) of reviews, 16% 
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(10/64) presented the SROC curve only with no summary statistics and 6% (4/64 ) compared 

two or more curves for different tests. 

Type of statistical synthesis according to publication year 

Figure 11 shows the proportion of reviews using each method of synthesis according to 

publication year for reviews published between 1995 and 2001 (insufficient numbers of 

reviews were avai lable for other years). The proportion of reviews using statistical pooling 

alone has slightly declined over that time period (from 67% in 1995 to 42% in 2001, with a 

corresponding increase in the use of SROC methods (from 33% of all reviews in 1995 to 58% 

in 2001). However, two thirds of those using SROC methods have also carried out statistical 

pool ing rather than presenting only SROC models (42/64) . The tendency to carry out both 

methods in the same review has on the whole increased over time. 

Figure 11 Type of meta-analytic method used by publication year 
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Data presentation according to type of syntheses used 

Given the difficulties in the clinical application of SROC curves it was hypothesised that where 

SROC analysis alone was used, reviews would be more likely to present the SROC results as 

some combination of sensitivity and specificity rather than using alternative means of data 

presentation . 

Figure 12 shows a breakdown of methods of presenting SROC analyses according to 

whether or not statistical pooling was also performed. When only SROC analysis was carried 

out, reviews were more likely to report the resu lts as pairs of sensitivity and specificity data 

(45% compared to 24% of reviews that also conducted pooling), providing some support for 

this hypothesis. It is not clear whether these sensitivity and specificity pairs were in fact 'read ' 

from the SROC curve or were actually estimated by some form of averaging. It seems 

possible that the point estimates reported were computed by pooling sensitivities and 

specificities and may not have been points on the ROC curve. When both pooling and SROC 

analysis were reported to have been carried out (i.e . where the pooled estimates were clearly 

presented), reviewers were more likely to present area under the curve data, less likely to 
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present OORs and more li kely to simply present the curves themselves with no further 

interpretation . 

Figure 12 Means of presenting results of SROC analyses (n=64) 

50%,----------------------------------------------, 

45% ,I----------------------rll----------------------~ 

40% 4----------------------1 

35% +----------------------1 
~ 

~ 30% t---------------------j 
.~ i 25% 

~ 20% j---------------r:, .. 
15% 

10% 

5% 

DOR AUC Q' Se/Sp from SROC 
parameters 

Data presentation method 

Graph only Other 

DOR - diagnostic odds ratio ; AUC - area under the curve; Q* - point where sensitivity=specificity; Se - sensitivity; Sp 
- specificity 

Consideration of 'paired' data 

Although a number of reviews evaluated more than one test, only 54 of the 133 meta­

analyses (41%) included primary studies that had evaluated more than one test against a 

reference standard, and in only 12 of the 54 reviews did the reviewers attempt to deal with the 

fact that they had 'paired' data, e.g. by analysing the data from those reviews separately. 

3.2.6 Investigation of sources of heterogeneity 

Methods of investigating heterogeneity 

Of the 56 narrative reviews, 49 (87%) carried out a narrative review of factors that might 

cause variation in the results of the primary studies and seven did not really appear to deal 

with the question of heterogeneity at all. 

Of the 133 meta-analyses, 29 (24%) provided either a narrative discussion of factors affecting 

heterogeneity (19) or did not consider heterogeneity at all (10). The remaining 102 attempted 

to statistically investigate possible sources of variation : 74 (56%) using subgroup analysis and 

45 (34%) using some form of regression analysis. Regression analyses were usually 

undertaken by extending the SROC regression model , though 10 reviews reported using 

logistic regression models and one used meta-regression . A further two did not report the 

method they had used . For those reviews using subgroup analyses, although several 

reported P-values for the differences between groups very few reported the test used to 
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detect any statistically significant difference: seven reviews reported using a t-test or Mann­

Whitney U test to compare subgroups, two used the chi-square test and three the Wilcoxon 

test (paired or unpaired). 

Figure 13 Number of variables investigated per review 
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No. variables Investigated 

Table 11 provides a summary of the number and breakdown of variables investigated by the 

102 reviews that statistically investigated possible causes of heterogeneity. The median 

number of variables investigated in these reviews was four, ranging from one in 20% of 

reviews to over six in 27% of reviews (Table 11). In general , a large number of variables were 

investigated in these analyses in comparison to the number of studies included in the review. 

The ratio of median number of variables to median number of studies was one to six. Only 

38% of reviews complied with the typical recommendation to have at least 10 studies for 

every characteristic investigated. 

Test and quality-related variables investigated 

At least one quality-related variable was investigated in 63% (64/102) of reviews (Table 11 ). 

Within this subset of 64 reviews, the most commonly considered variables were use of 

blinding (41% of reviews; 26/64), sample size (33%; 21/64), the reference test used (28%; 

18/64) and the avoidance of verification bias (25%; 16/64). The inclusion of an appropriate 

spectrum of patients and impact of study design chosen were among the variables 

considered in a small minority of reviews, 9% and 5% respectively. Around a third of reviews 

(36%) tried to look at the overall effect of study quality on accuracy, for example by classifying 

studies as low, medium or high quality or by using the quality score to subdivide studies. 

Test- or threshold-related variables were examined by 79% (81/102) of the reviews (Table 

11). Most (69%; 56/81) considered items related to variations in the test used, for example by 

looking at the effect of variations in the field strength used in MRI, or in the level of expertise 

of the person interpreting the test. 38% (31/81) of reviews considered threshold by 

subdividing studies according to threshold used. Publication year, which could be a proxy for 
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changes in a test over time or changes in the patient population tested, was considered 

important by 36% (29/81) of reviews. 

Spectrum-related variables investigated 

The impact of clinical or socio-demographic variables were investigated in 68% (69/102) of 

reviews that investigated sources of heterogeneity, a summary of which is provided in Table 

12. 

The spectrum-related variables considered were broadly grouped into eight main categories. 

The mean number of categories covered by the reviews was 1.8 (range 1-6). The clinical 

indication or eligibility of patients was considered in 28% (19/69) of reviews that looked at 

spectrum-related factors. 

Table 11 Statistical investigations of heterogeneity (n=102) 

N (%) of reviews 

Median no. of variables considered (IQR) 4(IQR4) 
% considering only 1 variable 20 (20%) 

% considering 2 to 5 variables 55 (54%) 
% considering> 6 variables 28 (27%) 

Ratio of median no. variables investigated to median no. studies 1 : 6 
included 

Reviews with ratio < 1: 1 0 63 (62%) 
Categories Variables investigated: 
Quality-related variables Not investigated 38 (37%) 

Investigated 64 (63%) 
Blinding 26 (41%) 

Sample size 21 (33%) 
Ref test used 18 (28%) 

Verification bias 16 (25%) 
Consecutive enrol 12 (19%) 

Prosp/retrospective 9 (14%) 
Spectrum 6 (9%) 

Disease prog bias 4(6%) 
Sample description 3 (5%) 

Cohort/case-control design 3 (5%) 
Other items 9 (14%) 

Quality'rating'/score 23 i36%i 
Test- or threshold-related Not investigated 21 (21%) 
variables Investigated 81 (79%) 

Test 56 (69%) 
Threshold 31 (38%) 

Publication year 29 (36%i 
Clinical or socio-demographic Not investigated 33 (32%) 
variables Investigated 69 (68%) 

IQR - mterquartlle range 

For example, in a review of ultrasonography for detecting peripheral arterial disease, de 

Vries91 and colleagues examined whether clinical indications for testing included peripheral 

arterial disease only or whether other diagnoses were considered as well. Oosterhuis and 

colleagues92 in a review of mean corpuscular volume for vitamin B12 deficiency also grouped 

studies according to clinical indication, i.e. whether patients were in a screening setting, had 

the test ordered to exclude B12 deficiency as part of treatment, and whether patients were 

considered to have pernicious anaemia. Other reviews looked at particular elements of the 

clinical indication. For example De Bruyn and colleagues93 and De Bernardinis and 
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colleagues94 examined whether the presumed underlying causes of the target disorder 

(cirrhosis93 and acute pancreatitis94 respectively) affected test accuracy. 

In a review of exercise tests for detecting coronary artery disease in women, Kwok and 

colleagues95 examined whether exclusion of patients with history of myocardial infraction, 

baseline ECG abnormalities, or taking digoxin explained heterogeneity. Berry and 

colleagues96 examined whether the inclusion of asymptomatic patients affected the accuracy 

of spiral and electron beam CT for the detection of hepatic lesions, pulmonary embolus or 

CAD, and Leitich and colleagues97 examined the impact of including multifetal gestations on 

the accuracy of cervicovaginal fetal fibronectin for predicting preterm delivery. 

Fifteen (22%) of the 69 reviews examined studies according to the symptom status (usually 

asymptomatic or not) or risk status of participants, for example references 87.97-102. A further 

15% (n=10) considered disease severity or stage, such as in references 76,103-107. Over a 

quarter of reviews examined specific demographic characteristics such as age (26%; 18/69) 

for example references 84,108-112 or sex (13%; 9/69), for example reviews 84,95,113,114. 

Table 12 Summary of spectrum-related heterogeneity investigations 

Number (%) of reviews 
(n=69) 

Category of spectrum-related Clinical indication/eligibility 19 (28%) 
variable Symptoms/risk status 15 (22%) 

Disease severity/stage 10 (15%) 
Age 18 (26%) 
Sex 9 (13%) 
Prevalence 21 (29%) 
Setting/source of pts 20 (29%) 
Sampling/study design 7_(10%) 

Mean no. of spectrum-related categories investigated 1.8 (range 1-6) 
Results clearly presented? Yes 33 (48%) 

Partially 21 (30%) 
No 14 (20%) 

Significant effect identified Spectrum Yes 41 (59%) 
from No 28 (41%) 

Test Yes 20 (29%) 
No 31 (45%) 

not investigated 18 (26%) 
Quality Yes 17 (25%) 

No 30 (43%) 
not investigated 22 (32%) 

Prevalence was investigated as a source of heterogeneity in 29% (21/69) of reviews and 29% 

(20/69) also considered the setting or source of participants as a variable. In some reviews, 

for example Peters and colleagues,115 Berger and colleagues,106 or Hoffman and 

colleagues,116 these compared accuracy in patients from a general or screening population to 

a referred population, while in others variation in the geographical setting was considered, 

such as the reviews by Kinkel and colleagues,117 Loy and colleagues,118 or Visser and 

colleagues. 119 In seven reviews, the method of sampling (consecutive or random versus 

other) or study design (case-control vs case series) were also considered. Although these 
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were included as quality-related features they have also been included here as they can 

impact on the spectrum of included subjects. 

3.2.7 Result of heterogeneity investigations (for reviews that 
examined spectrum-related factors) 

This section considers only those reviews that examined spectrum-related factors (n=69). 

The results of the heterogeneity investigations were clearly presented in just under half of this 

subgroup of reviews (48%; 33/69) (Table 12). In a further 30% (21/69), results were partially 

presented. In many cases, only results for those variables having a statistically significant 

impact were presented in detail; the other variables were described as having no significant 

impact, for example references 85.99.100.113.120. In other reviews, only the P-values for the 

differences between subgroup were given and the full regression results or pooled accuracy 

in subgroups were not provided, for example in references 107,117,121. In the remaining 14 

reviews (20%) the results of the heterogeneity investigations were not presented in detail but 

were discussed narratively, usually by listing which variables did and did not have a 

significant impact on results. 

Of the sample of reviews that considered spectrum-related variables in their heterogeneity 

investigations, 59% (41/69) found these variables to have a significant impact on test 

accuracy (Table 12), this is in comparison to 29% (n=20) that found an effect from test-related 

variables and 25% (n=17) that detected an effect from quality-related variables. Six reviews 

included 'avoidance of spectrum bias' as an item in their quality assessment of studies and 

examined the effect of meeting this criterion on accuracy; five reviews reported a non­

significant effect90 ,96,113,116,122 and one123 did not report the result. 

Fourteen reviews reported both their results in detail and looked at spectrum-, test- and 

quality-related covariates.87,94,98,109,114,116,123-129 Of these, eight (57%; 8/14) found a statistically 

significant impact from spectrum-related factors, eight (57%) from test-related and six (43%) 

from quality-related covariates. These reviews used a variety of methods to investigate 

heterogeneity including looking at pooled sensitivity, specificity, log OORs and effect sizes in 

subgroups and adding covariates to SROC regression models. 

3.3 Results - Reviews using advanced methods of meta-
analysis 

As no reviews using advanced methods of meta-analysis were identified from the original 

searches for this chapter, subsequent searches were undertaken to identify more recently 

published reviews known to have used these methods. These were examined according to 

whether spectrum effects were considered, how they were investigated, and what impact if 

any they have had on model parameters. 
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3.3.1 Summary of reviews identified 

The citation searches identified 27 potential systematic reviews using the advanced methods 

of meta-analysis. 10 of these were excluded as they did not use the advanced methods and 

the copies of four could not be obtained in time. 

Thirteen reviews using advanced methods of meta-analysis were identified. A summary of the 

reviews is provided in Table 13 and Table 14 and details of review methods, analysis 

methods and results are given in Appendix 6 to Appendix 8. 

3.3.2 Review methods 

The reviews predominantly examined the accuracy of imaging tests such as ultrasound, CT, 

MRI and PET-scanning (10 reviews). Other tests evaluated were cytology or biochemical 

markers.80.130.131 The most commonly investigated topic was the diagnosis or staging of 

various forms of cancer (5 reviews).8o.132-135 

Table 13 Summary of reviews using advanced methods 
TOTAL 
n (%) 

Total no. of reviews 13 
Review methods 
Medline only electronic source 1 (8%) 
No. using language restriction Restricted 5 (38%) 

English only 1 (8%) 
No restriction 8 (62%) 
Not stated 0(0%) 

No. using quality restrictions Restricted 0(0%) 
No. using quality assessment Not conducted 0(0%) 

Conducted 13 (100%) 
Authors' own 7 (62%) 
Existing tool 6 (38%) 
QUADAS136 5 (38%) 

Synthesis method used 
BVN 10 (77%) 

HSROC 3 (23%) 
Heterogeneity investigation Not conducted due to insufficient 

studies 4 
Univariate analyses 9 

Multivariable model developed 6 
QUADAS - Quality of Diagnostic Accuracy Studies tool; BVN - blvarrate normal model; HSROC; hierarchical SROC 
model 

Only one review (8%) relied on a single electronic database (Medline) to identify primary 

studies (Table 13) compared to 59% (78/133) of the meta-analyses in the main 'DARE 

sample' . Language restrictions were used in 5 (38%) reviews compared to 59% of the main 

sample. Only 1 (8%) restricted studies to English language only compared to 47% (63/133) in 

the main sample. 
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Table 14 Summary of heterogeneity investigations 

Study Param Type of characteristics investigated No. No. Detail of spectrum-related factors investigated 
eters invest- significant 

Spectrum Design Test igations· resultsC 

Bipat, Se,Sp 0 6 Ou 48 None None 
2003132 

Bipat, Se,Sp 0 7 Ou 77 None None 
2004133 

Bipat, Se,Sp 1 9 Ou 60 12 (20%) Outcome - Diagnosis 
2005137 Adequate description of patients Helical CT - sufficient description of patient popl (sens P<0.05 and 

spec P<O.01) 
MRI - sufficient description of patient popl (sens P<O.01) 
US - sufficient description of patient popl (sens P<O.01 and spec 
P<O.01) 

Bipat, Se 1 8 Ou 36 Per patient Per lesion 
2005a134 Adequate description of patients 4(8%) MRI (1.0T) spectrum of patients was representative of patients in 

Per lesion practice (regression coefficient P<.OO1) 
6 

Glas, Se,Sp 5 6 1 66 8 (12%) Sensitivity and specificity not correlated with spectrum-related 
200380 Adequate description of patients variables (data not shown). Correlations with cohort versus case-

Type of controls control designs were observed, however. 
BCG therapy 
% haematuria 
Tumour differentiation 

Koelemay, Se,Sp 0 5 1 12 1 (8%) 
2004138 

Shaheen, InDOR 4 4 1 18 3 (17%) APRI accuracy for detecting significant fibrosis not affected by 
200y130 median age patient-related factors: 

%men Age of study population (P=O.1), sex (P=0.96), prevalence of 
indusion of HIV/HCV co-infected patients significant fibrosis (P=0.46), indus ion of HIV/HCV co-infected 
prevalence of significant fibrosis/cirrhosis patients (P=0.60) 

For detection of cirrhosis, APRI accuracy was greater in studies 
containing higher proportion of men (P=O.001), younger participants 
(P=0.04), and HIV/HCV co-infected patients (P=0.03). The other 
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Study Param Type of characteristics investigated No. No. Detail of spectrum-related factors investigated 
eters invest- significant 

covariates were not significant (data not given). 
Whitin~, a,e 0 1 0 1 1 (100%) 
200613 

Williams, a, e, ~ 7 8 3 72 2(3%) Population characteristics had no significant effect on test 
2007140 Severity of renal artery stenosis performance (data not shown) 

Hypertension and other features 
Hypertension with or without chronic renal failure 
Hypertension moderate or unspecified 
Hypertension and peripheral vascular disease 
Transplant recipient 
Peripheral vascular disease 

Se - sensitivity; Sp - specificity; InDOR - natural log of the DOR; a - accuracy parameter; e - threshold parameter, ~ - shape parameter 
a number of covariates x number of tests x number of outcomes 
b separate subgroup assessment according to test characteristics 
C listed if spectrum-related 
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None of the included reviews applied inclusion criteria to restrict studies to those of a higher 

quality standard, although one 139 did restrict most of their analyses to cohort studies only. 

Quality assessment was conducted in all of the thirteen reviews: five used the QUADAS tool 

or a modification of it, one used a list published by the Cochrane Methods Group on 

Diagnostic tests and seven did not state a source for the tool. 70% (93/133) of meta-analyses 

in the main sample used some form of quality assessment. 

The number of studies included ranged from 8131 to 90,133 the latter including 299 datasets. 

3.3.3 Statistical methods 
Ten reviews employed the BVN model for their analyses and three the HSROC model (Table 

14). Seven of the reviews using the BVN method included authors based in the Academic 

Medical Centre at the University of Amsterdam,80.132-135.137.138 reflecting the fact that the 

adaptation of the BVN method to make it more 'user friendly' was also carried out there.59 

Twelve of the thirteen reviews presented forest plots of sensitivity and/or specificity132.134,137,141 

or of DOR130 or ROC plots of individual studies80,130,131,133,137-140,142 to demonstrate the 

presence of heterogeneity. Only the review by van Westreenen and colleagues 135 did not 

provide any graphical presentation of data. 56% of the DARE sample presented data 

graphically. 

Investigation of sources of heterogeneity was carried out in 9 reviews. The remaining four 

recognised the presence of heterogeneity in their reviews but did not consider that they had 

sufficient studies to investigate the causes. 131 ,135,141,142 The characteristics investigated were 

generally affected by the quality of reporting in the primary studies. Most reviewers were 

unable to carry out all of their planned investigations. 

3.3.4 Result of heterogeneity investigations 

All nine reviews conducted univariate analyses to determine the variables that individually had 

a significant effect on results, usually to P<0.10. Six reviews went on to develop multivariable 

models including characteristics that individually had a significant effect on test accuracy.80,132-
134,137,138 

Of the seven studies employing the BVN model that also investigated sources of 

heterogeneity, five examined the effect of the variables on sensitivity and specificity, one 

considered effects on sensitivity only, and another130 did not appear to investigate 

heterogeneity within BVN model framework (Table 14). Shaheen and colleagues 130 used a 

random effects meta-regression model to examine the effect of the covariates on the natural 

log of the DOR. Of the two reviews using the HSROC framework that also investigated 
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sources of heterogeneity, one assumed no interaction of covariate with curve shape and 

therefore examined the effect of on accuracy and threshold onl/ 39 and the second examined 

effects on the accuracy, threshold and shape parameters. 140 

Most reviews focused on the investigation of study design and analysis related characteristics 

(Table 14). Five reviews included spectrum-related variables. In two cases this was confined 

to a determination of the adequacy of the description of patients. Statistically significant 

results were obtained for less than 20% of investigations. Of the five reviews investigating 

spectrum-related characteristics, three130 134,137 found significant effects (Table 14). In two of 

these the factors investigated were quality related, in one review whether the studies gave a 

sufficient description of the patient population 134 and in the other, whether the spectrum of 

patients was representative of patients in practice. 137 For the review by Shaheen and 

colleagues,130 the heterogeneity investigations do not appear to have been undertaken within 

the BVN model framework, but a separate random effects regression model to examine the 

effect of covariates on InDOR developed. 

3.4 Discussion 

Due to the timing of the literature seaches undertaken for this chapter, the main focus of it is 

on reviews published up to 2002, however as there are currently only a small number of 

published reviews using advanced methods the findings from the main sample of reviews are 

likely to apply to most reviews published to date. 

Spectrum-related issues 
Overall, spectrum-related factors appear to be under-considered in systematic reviews of 

diagnostic tests. Of the 189 reviews included, only 35% (n=67) considered spectrum as part 

of quality assessment and 36% (n=69) investigated the potential impact from spectrum­

related factors statistically. These percentages increase when one considers only those 

reviews that aGtually carried out quality assessment (51 % of which included spectrum-related 

criteria) those that carried out meta-analysis (52% of which investigated spectrum-related 

covariates), and those that reported reported carrying out heterogeneity investigations (68% 

of which investigated spectrum-related covariates) nevertheless these percentages are still 

low especially when one considers that heterogeneity of study findings is common. 

Of the reviews that included spectrum-related criteria in their quality assessments, the 

majority (72%; 48/67) required a judgement on the 'appropriateness' or otherwise of the 

included patients only 16 of which (33%) specifically mentioned the appropriateness of the 

nondiseased patients. Only four reviews included an item on whether pertinent subgroups 

had been investigated in the primary studies. This is arguably a more important aspect of the 

generalisability of a study as inclusion of an appropriate or representative sample may mask 

the fact that a test's discriminatory capacity varies between subgroups. 
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The sample of reviews included do not allow any strong conclusions regarding the potential 

impact from spectrum on test accuracy to be made. Of the reviews that reported having 

considered spectrum (n=69), only 48% (n=33) clearly reported the results of the heterogeneity 

investigations and 59% (n=41) stated that they had identified a statistically significant impact 

from the spectrum-related variable in question. When the small number of reviews that 

considered spectrum-, test- and quality-related variables were examined (n=14), the 

proportions finding statistically significant effects from each of these categories were similar 

(57%, 57% and 43% respectively). Although the total number of reviews was small, this does 

suggest that spectrum is an equally important source of heterogeneity that should at least be 

considered if not always investigated. It is worth noting however that there will be an unknown 

number of reviews that did investigate spectrum-related or other characteristics but that did 

not find any significant effects and therefore did not report having carried them out. There is a 

difference between how often spectrum actually matters and how often it has been reported 

to matter. 

Review methods used 
The preferential use of the pooling approach is not least because of the challenge in reporting 

SROC methods, as the results are not easily interpreted by clinicians. Clinicians tend to 

prefer to have point estimates of the sensitivity and specificity of a test, whereas ROC curves 

describe a series of estimates. 143 The majority (82%) of reviews carrying out statistical 

syntheses opted to pool aspects of test performance independently, i.e. separate pooling of 

accuracy indices, with little consideration paid to the possibility of a threshold effect, whilst 

48% of meta-analyses undertook SROC regression analyses either alone, or in combination 

with the pooling approach. Investigation of sources of heterogeneity was undertaken most 

commonly either by pooling data according to subgroups (56%) or by extending the SROC 

regression model with the addition of covariates (34%). 

The addition of a covariate to a regression model produces a regression coefficient for that 

covariate that is akin to the relative diagnostic odds ratio, i.e. the extent to which the OOR 

would be increased or decreased in the presence of that covariate. For example, Fleischman 

and colleagues 109 found that amongst studies of exercise echocardiography for the detection 

of coronary artery disease both increasing age and later publication year led to significant 

decreases in OOR (univariate analysis results: ROOR -0.22 per year; 95%CI: -0.31, -0.12 and 

-0.41 per year; 95%CI: -0.58, -0.24). This sort of information is not particularly meaningful to 

many clinicians, therefore other reviewers have attempted to overcome this problem by 

presenting their results as some combination of sensitivity and specificity at given points on 

the SROC curve. 

Whitsel and colleagues 114 in a review of the QTc (or heart rate corrected QT interval) for the 

detection of autonomic failure in people with diabetes, estimated accuracy in each subgroup 
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using separate SROC models (similar to assuming the presence of an interaction of covariate 

with curve shape) and used this data to estimate the relevant sensitivities for each subgroup 

at the overall pooled specificity of 86%. Others have reported Q*, or point of maximal joint 

sensitivity and specificity. The clinical relevance of these points is not always clear and in 

some cases the points chosen appear rather arbitrary. Furthermore a series of potential 

operating points were never quoted; this could be a real deficiency for asymmetric SROC 

curves where the OOR varies along the curve. The other real problems for reporting of 

heterogeneity investigations is that some covariates will affect the diseased group more than 

the nondiseased such that any differential impact on sensitivity and specificity will be masked 

by presenting the regression coefficients or ROOR. 

The problems are further highlighted in a review of the Papanicolau test for cervical 

precancer. Fahey and colleagues 125 both added covariates to an SROC model and pooled 

sensitivity, specificity and OOR in the same subgroups for four spectrum-related, test-related 

and quality-related variables, and reported their results in detail. In general, the pooled OOR 

analyses indicated differences in the same direction but of a slightly different magnitude than 

suggested from the regression analyses (Appendix 11). The exception was earlier publication 

year which resulted in an increase in the pooled OOR by about a half, whereas the regression 

analysis found no impact from publication year. These differences were accentuated when 

inverse variance weighting was used in the regression model. At the same time pooled 

sensitivity dropped from 68% in the earlier studies to 58% while specificity increased from 

64% to 70%. Although these results don't account for differences in threshold as mentioned 

earlier, it is possible that a change in the way the test was applied or in the population tested 

over time affected sensitivity and specificity in opposite directions such that the overall OOR 

was not affected. This example demonstrates how potentially conflicting results can be 

produced from the same data according to method of meta-analysis. 

Use of advanced methods 
Problems with the most commonly used methods can potentially be overcome using 

advanced statistical methods. No reviews in the main sample attempted to pool studies using 

these methods, despite them having been available since 1995. This is likely to be because of 

the time needed for new and more complex methodologies to diffuse into routine practice, but 

may also may reflect difficulties in applying methods in unconventional software such as 

WinBUGS. The development of the advanced methods to make them more easily 

accessible59
,60 has led to the publication of at least 13 reviews using the advanced methods 

since 2003. 

The overall standard of these reviews is very high and a big improvement on that found in the 

main sample of reviews. This is less likely to be a reflection of increasing knowledge of best 

practice review methods than the fact that the review authors are mainly based in centres of 

academic excellence, some at the forefront of development of these methods. The HSROC 
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method has been less used than the BVN model but that too is a reflection of the affiliations of 

the respective authors. 

Consideration of heterogeneity in the reviews was of a high standard. Spectrum-related 

characteristics were investigated in five of the nine reviews that investigated sources of 

heterogeneity, but in two cases only the presence of an adequate description of patients was 

examined. This is very likely due to lack of recording or reporting in the primary studies. Of 

the five reviews that included details on spectrum-related characteristics, three found 

statistically significant effects from these variables, supporting the finding from the main 

dataset that when spectrum variables are reported to have been considered they are often 

found to have a significant effect. 

General comments on investigation of heterogeneity in diagnostic test systematic 
reviews 
Graphical plots to demonstrate the presence of heterogeneity are rarely reported in reviews 

using narrative syntheses of diagnostic test accuracy (reported in 4%) and furthermore, are 

not always reported in reviews using meta-analytic techniques (reported in 57%). Graphical 

presentation of results was mainly carried out by those conducting SROC analysis, e.g. 

individual study results as well as the SROC curve were presented in ROC space. Of those 

authors opting only to pool data, less than a quarter (19/69) used any form of graphical 

presentation of results, only nine of which presented data on a ROC plot thereby 

demonstrating any potential correlation between sensitivity and specificity. 

Given the high degree of heterogeneity amongst diagnostic test studies, graphical 

presentation of individual study results are a useful aid to conveying complex information, 

even in reviews choosing to use a narrative synthesis - a perfectly defensible option where 

studies are highly variable. Plotting pairs of sensitivity and specificity in ROC space is an easy 

way to display heterogeneity of both indices as well as allowing potential threshold effects to 

be detected. It is also true however that visual examination of study results to identify 

heterogeneity also has limited power to detect bias if the number of studies is small. At the 

very least, reviewers should explicitly acknowledge and assess the potential for heterogeneity 

to be present. It is encouraging that all 13 reviews using the advanced methods included 

some form of graphical presentation of data. 

The wide variation in methods chosen to combine the results of primary studies again 

perhaps reflects uncertainty in the most appropriate methods to use and also greater 

familiarity with more traditional indices of test accuracy (e.g. sensitivity and specificity). It 

would be extremely difficult to make a judgement as to whether or not the approach taken by 

the individual reviewers was appropriate or not without looking at the primary studies, but 

some issues are of particular concern. 
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Narrative reviews may have been carried out due to assumed but unreported he~erogeneity, 

or due to insufficient numbers of studies (the median number of studies in narrative reviews 

was only half of that in meta-analyses), but few reported having considered the option of 

using statistical synthesis. Although the median number of studies may have been lower. in 

principle many did include a sufficient number of studies to consider meta-analysis. Given that 

considerable heterogeneity is a given in diagnostic test meta-analysis, some discussion of it is 

warranted regardless of the synthesis method chosen. Furthermore, reviewers should 

recognise that a justification for the approach chosen, whether narrative or statistical, should 

be provided in systematic reviews. 

For those carrying out statistical syntheses, most opted to pool aspects of test performance 

independently, as discussed above, with little consideration paid to the possibility of a 

threshold effect. Similarly to the presence of heterogeneity, many would agree that a 

correlation between sensitivity and specificity is to be expected in diagnostic reviews. As 

might be expected, around half of those using SROC approaches (37/64) stated that they did 

so because this technique allows for any threshold effect. It is likely that the results for many 

reviews that only carried out pooling of sensitivity and specificity or likelihood ratios would 

differ if methods that allow for heterogeneity and threshold variation were employed. 

Given the likely presence of heterogeneity, it can certainly be argued that potential sources of 

heterogeneity should always be investigated in systematic reviews of diagnostic test accuracy 

studies. This should be limited by the number of studies in the review and will also be limited 

by the level of reporting in the primary studies. It is unclear, even for reviews of intervention 

effectiveness, how many covariates can reliably be investigated, and how this might depend 

on the number of studies, the extent of the heterogeneity and the relative weights awarded to 

the different studies. 144 For the investigation of characteristics affecting primary study results a 

ratio of one variable for every 20 participants is often recommended; for systematic reviews, a 

ratio of one variable for every 10 studies is more usual. Three-quarters of meta-analyses 

included in the main sample here attempted to investigate sources of heterogeneity. On 

average one characteristic was investigated for every six studies included in these reviews; 

indicating likely over-investigation of study characteristics. 

The most appropriate choice of variables to be investigated will depend on the specific 

context of the review and the included studies however spectrum-, test- and quality-related 

variables should at the very least be considered for investigation in any review. Quality­

related variables were considered in less than two-thirds of reviews in this sample. Blinding, 

sample size and overall quality classification were the most commonly considered criteria. 

Half of all reviews only included studies that met certain quality-related criteria and so may 

have decided that further investigation of the effect of quality on accuracy was not warranted. 

However, poor reporting on the part of the authors of the primary studies and until recentl/ 39 
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the fact no standard quality assessment tool has been available will partly explain this under­

investigation. A tool for the quality assessment of diagnostic studies developed using 

standard scale development techniques is now available.21 The authors hope that as well as 

providing a standardised tool for systematic reviewers, the project may also playa role in 

bringing about greater awareness regarding the important quality issues involved in 

diagnostic accuracy studies and help to raise the standards of such trials. 

Poor reporting is a particular problem with diagnostic accuracy studies such that it is often 

difficult to ascertain what procedures to avoid bias were actually followed by study authors. 

The STARD initiative30 (Standards for Reporting of Diagnostic Accuracy) aims to promote the 

completeness and quality of reporting of diagnostic accuracy studies similarly to the 

CONSORT statement for reports of RCTs. 31 Greater awareness of methodological principles 

for diagnostic accuracy studies will also help inform the design and analysis of primary 

studies. 

Nearly all reviews focus on undertaking meta-analyses comparing the results of a new test 

with a reference standard. Very few reviews analysed only studies which compared results of 

several tests in the same patients with a reference standard and only 12/54 (22%) reviews 

that included at least some 'paired' data on two or more tests considered those studies 

separately. One can argue that heterogeneity will be less likely to be so problematic in meta­

analyses of within study comparisons between tests, as many of the factors (such as the 

patient group) will be identical for both tests. Statistical methodology for investigating 

heterogeneity and threshold effects in studies of paired test comparisons requires further 

development, but may in time lead to more robust evidence about the relative performance of 

alternative diagnostic tests. 

Other issues highlighted by this methodological review includes the significant potential for 

publication bias in these reviews - 84% restricted studies to those published in English only 

and 52% searched only one electronic database (Medline). Publication bias is known to be a 

real problem in reviews of therapeutic interventions.67
,145 Although its extent has not yet been 

quantified for test accuracy reviews it seems likely that it will be as much, if not more of an 

issue for tests. The retrospective nature of many diagnostic test studies would imply that 

authors may only publish if they have found particularly good results with a test. 

It has not been possible to study any variation in the standard of review methods within 

different areas C?f medicine or types of test. This is hard to categorise across reviews and 

numbers within sub-categories would be small. 

A strength of this review was use of the DARE database. Systematic reviews have to meet a 

certain standard of methodological quality before being included on the database. Due to the 
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considerable time lag in loading reviews onto DARE at the time of the original search, some 

reviews (32/189) identified from other sources were also included to try to make the sample 

as current as possible. Nineteen of the 32 reviews (59%) identified in this way have since 

been added to the DARE database however it is possible that some of the remaining 13 (7% 

of the total sample) may not have met DARE's quality standards. However in the main, the 

reviews included in this chapter are of higher quality than many that are published, so that 

systematic review standards may be worse in practice than has been shown here. Given that 

the majority of reviews in the main sample were published prior to 2002 and that 

comprehensive guidelines on carrying out systematic reviews of diagnostic tests were not 

published before 2001,11,146,147 it is likely that review methods have improved significantly 

since that time. The superior quality of the reviews using the advanced methods of meta­

analysis may partly reflect this, but as they were mainly carried out in centres of excellence, 

one would expect the general standard to be amongst the highest. 

3.5 Conclusions 

It is clear that a proportion of published meta-analyses use inappropriate methods of analysis. 

The likely presence of a correlation between sensitivity and specificity and of between study 

heterogeneity is ignored in both the analysis and presentation of their results, and in many 

cases average values of sensitivity and specificity (or occasionally likelihood ratios) are 

presented. There is a danger that these reviews may be disseminating a misleading 

message that implies consistency of test performance when in fact the data that they have 

collected clearly display inconsistency. Such inadequate analyses could in the worst instance 

lead to inappropriate diagnostic investigations, interpretations and the use of inappropriate 

interventions. Where people have reported investigation of spectrum effects the majority have 

found statistically significant associations. 

Where heterogeneity has been considered, the variability in approaches taken is a reflection 

of the level of difficulty and complexity of carrying out such reviews. The methodology is still 

developing and there is considerable uncertainty in the most appropriate techniques to use. 

High profile guidelines on undertaking diagnostic test reviews 11,40 should go some way to 

improving standards, as will the inclusion of diagnostic test accuracy reviews in the Cochrane 

Library. Nevertheless, carrying out many of the statistical analyses required for these reviews 

requires a high degree of familiarity with statistics and statistical software packages. There is 

as yet no truly user-friendly software package that can be used by non-statisticians in the way 

that packages such as RevMan is used for meta-analyses of therapeutic interventions. It is 

highly recommended that diagnostic test accuracy meta-analyses should not be carried out 

without the involvement of a statistician familiar with the field. 

Difficulties with investigating heterogeneity at review level also points to the need for 

sufficiently large, prospective, well-designed multicentre studies that evaluate a number of 
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diagnostic tests (or variations on a test). in order to establish test accuracy and also allow the 

investigation of the influence of patient characteristics on accuracy. 

> '4: 
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4 A case study comparing three meta-analytic 

methods 

This chapter applies the three meta-analytic methods outlined in Chapter 2 to a dataset from 

a previous systematic review of diagnostic tests for the detection of tuberculosis78 to illustrate 

similarities and differences in results, and finally to explore the effect of adding covariates to 

each model. The rationale for choosing the TB dataset and the main systematic review 

methods are provided in Appendix 9 and Appendix 1 D, respectively. Methods employed to 

compare across meta-analytic models are described below. 

4. 1 Methods used to compare meta-analytic models 
Given the statistical rigour of the advanced methods, throughout this chapter they are treated 

as the benchmark against which the Moses methods can be assessed, as Harbord and 

colleagues did in their wider empirical evaluation of methods. 148 It is worth noting that the 

superiority of the advanced methods has not yet been empirically proven, however against 

the criteria outlined in 2.3.1, the advanced models appear best. The comparison of methods 

can be split into the comparison of the primary analyses of the complete dataset, and the 

comparison of the heterogeneity investigations across models. The models are examined in 

three ways, comparing: 

a. the results of the unweighted and weighted Moses models 

b. the HSROC and bivariate normal model results 

c. the Moses model results and the advanced methods. 

For the heterogeneity investigations, these comparisons are stratified by whether the models 

are assumed to have parallel SROC curves or 'crossing' SROC curves, i.e. where the 

covariate interacts with curve shape so that the SROC curves for the subgroups can have 

different shapes. 

For all models, accuracy (OOR) was estimated at Q* (the point at which sensitivity=specificity) 

and at a point nearer to the centre of the data. The latter is estimated using the mean 

threshold of the studies in the dataset and is referred to as the "OOR at the average 

threshold". See section 2.3.2 "Estimation of sensitivity and specificity" for a discussion of the 

potential lack of representativeness of Q*. For the investigation of heterogeneity with 'crossing 

curves', the difference in accuracy between groups (ROOR) was estimated at Q* and at the 

average threshold of the studies in each group, i.e at the average threshold of the reference 

group and at the average threshold of the comparator group. Where parallel SROC curves 

are modeled the ROOR is constant all the way along the curves. 
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Three covariates were selected to compare the investigation of heterogeneity across the 

three models. The covariates examined were deliberately chosen to reflect increasing levels 

of complexity in results, illustrating the effect of the covariates on DOR, threshold, and shape. 

The covariates examined were as follows 

• effect on accuracy (RDOR): index test blinding. For the TB dataset, index test 

blinding occurred where the PCR test in question was performed and interpreted 

without knowledge of the reference test results (actual diagnosis). Even tests such as 

these whose interpretation require a certain numerical threshold to be reached before 

being considered positive may involve some degree of subjective interpretation. 

• effect on threshold: test type. Two tests were included in this dataset, MTD and 

Amplicor. Although operating on the same principles, these were developed by 

different manufacturers and may have different accuracy properties in the same way 

that different different drugs within a class can have. 

• effect on curve shape: reference test used. There is no definitive reference standard 

for the detection of pulmonary tuberculosis. A commonly used reference standard is 

culture alone, however it is known that microbiologic studies of sputum for the 

detection of tuberculosis can fail to detect mycobacteria that may be picked up by 

PCR tests and will incorrectly classify patients with TB as false-positive results.72 A 

compromise solution is to use a reference strategy, where the reference diagnosis is 

made on the basis of clinical information in combination with culture and other tests 

such as chest x-ray, however this may 'over-diagnose', and identify patients as 

having TB who in fact do not have the disease. 

Because the definition of 'diseased' is relatively tight when defined by culture results 

alone in comparison to where a combined reference strategy is used, and because 

PCR works on the same principle as culture (amplifying the presence of 

mycobacterial DNA as opposed to 'growing' it), there will be less variance in the 

distribution of PCR results when the presence of disease is defined by culture alone 

as opposed to a combined reference strategy. 

The results of both the primary analysis and the heterogeneity investigations are presented 

primarily in tabular format, with the studies and SROC curves ploUed in ROC space. 

4.1.1 Comparison of the Moses methods 
A key factor potentially leading to differences between the results of an unweighted and 

weighted Moses analysis is the effect of the weighting system used. The Moses model is 

commonly weighted by the inverse of the variance (or standard error) of the log of the DOR, 

i.e. the SE(lnDOR) which, as Deeks and colleagues have shown,81 can be subject to bias. To 

demonstrate how bias can be introduced into the SE(lnDOR), it is broken down into three 

components for studies with the highest DORs:81 

75 



i) a sample size dependent term (SSdep) which reflects unequal numbers in 

diseased and nondiseased groups 

ii) a proportion test positive term (PTPdep), the effect of which is minimised 

when the numbers of true negatives and false positives are equal (specificity 

50%). As the balance of TNs and FPs changes due to increasing or 

decreasing threshold, the PTPdep term increases multiplicatively. 

iii) a DOR dependent term (DORdep), which is 0 when DOR=1 (or where 

sensitivity=specificity) and which rises with DOR; the actual magnitude of the 

term decreases or increases with smaller or larger numbers of diseased, 

respectively 

The formula for estimating the SE(lnDOR) is 

SE(lnDOR) = sqrt(SSdep*PTPdep) + DORdep 

The full formula and details on each of the components of SE(lnDOR) are given in Appendix 

15. Only the sample size dependent term will operate appropriately (is unbiased) under the 

particular characteristics of diagnostic meta-analyses as follows: 81 

• DORs can be extremely high in value, often with very small or zero cells in the 2x2 

contingency table. The SE(lnDOR) is an asymptotic estimate and therefore may be 

invalid where proportions are close to 1, as occurs with zero cells, 

• individual studies often vary in the threshold for test positivity, and finally 

• diagnostic studies often have unequal sizes of diseased and nondiseased groups. 

To help demonstrate the presence of bias in the SE(lnDOR), scatter plots of study weight 

against effect (essentially funnel plots) are presented. Funnel plots are often used to look at 

publication bias, or small study effects. 149.150 The bias in this case, however, is not a bias in 

the data obtained, such as whether all of the studies have been identified or whether some 

are of lower quality, but is in the statistical method itself. Essentially, the calculation of the 

SE(lnDOR) does not appropriately reflect the precision or 'value' of large studies that show 

large effects. 81 

Three types of funnel plot are presented to help investigate whether the relationship between 

study weight and effect may explain the differences in results between the two Moses models. 

The first plots InDOR against its standard error; if there is bias in the SE(lnDOR), studies 

showing large effects will have high standard errors. The second plots InDOR against sample 

size to look for a sample size related effect. This will show whether stUdies with large effects 

and large standard errors also have low sample sizes. The third plots InDOR against the 

inverse square root of the effective sample size (where the effective sample size (ESS) is the 

sample size needed in equal-sized groups to achieve the available power where there are 
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groups of unequal sizes) . The latter has been shown to provide a more robust indication of 

any sample size related effect in a diagnostic systematic review.81 

The effect of the bias in the SE(lnDOR) on the results of the Moses unweighted and weighted 

analysis is then illustrated by plotting the two regression lines and the individual studies on a 

'0 versus S' plot and then by examining the effect on the analysis of removing the studies 

with the most biased SE(lnDORs). 

4.1.2 Comparison of the Moses model against the HSROC model 

To help understand whether the Moses and HSROC models are influenced by individual 

studies in the same way or whether they treat the studies differently, deletion residual 

analysis was employed. Essentially this removes each individual study in turn to identify the 

. effect that this has on each of the model parameters . The results were then examined to 

identify any patterns or categories· of studies having the biggest effects on the analyses, and 

whether these patterns were the same across models. 

4.2 Primary analysis of the TB dataset 

The results of the primary analysis of the 51 studies using the four models are given in Table 

15 and displayed graphically in Figure 14. Details of all of the datasets included in the review 

are provided in Appendix 14. 

Figure 14 ROC plots for the three meta-analytic methods 

a. Moses methods b. Advanced methods 
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Where Q* - point where sensitivity=specificity, op point - the operating point estimated using the mean value for 'S' 
across studies. 

Figure 14 displays the ROC plots for the Moses and advanced methods. The apparent 

differences in the location of some of the studies between the Moses method plot and the plot 
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for the advanced methods is due to the zero cell correction (the addition of 0.5 to every cell of 

a 2x2 table that contains a zero) that is needed in order to carry out the Moses analysis. The 

zero cell correction is not required for the advanced methods. The size of the circles in the 

plot for the advanced methods indicate the precision of the study; the smaller the circle, the 

more precise the study estimate. The figures show considerable heterogeneity between 

studies in both sensitivity and specificity and a considerable range in precision. 

Table 15 shows that regardless of the parameterisation used, the two advanced models give 

near identical results across all parameters. There are considerable differences in DOR 

between the two Moses methods, with the unweighted model producing a DOR closest to that 

of the advanced models. These differences are explored in section 4.2.1 below. 

Table 15: Main model parametersa 

Method Mean Mean Mean threshold Shape Average Average 
specificitY' accuracy accuracy sensitivitY' 

(DOR) at 0' (DOR) at OP 
Moses method -

unweighted 121 (52,284) 181 x -0.17, P=0.21 0.81 0.98 
Moses method -

weighted 53 (32, 88) 97 x -0.26, P=0.01 0.75 0.97 
HSROC 

139 (76, 253) 198 (89, 307) -0.79 (-1.30, -0.28) 0.35, P=0.06 0.80 (0.75, 0.86) 0.98 (0.97, 0.99) 
Bivariate normal 

139 (76, 254) 198 (89, 306) -0.80 (-1.30, -0.29) 0.35, P=0.06 0.80 (0.75, 0.86) 
* 

... 
DOR - diagnostic odds rallo, Q - pOint where sensitivity-specificity, OP - average operating pOint of studies, 
estimated using mean threshold 

0.98 (0.97, 0.99) 

a _ figures in italics denote derived values, i.e. parameters which are not the natural output from the model in question 
but have been transformed from model parameters 
b _ for the Moses methods, the average sensitivity and specificity are estimated using the mean of'S' from the 
primary studies 

In terms of shape, all of the models suggest that the SROC curve is asymmetric, i.e. that 

DOR varies along the curve. The strength of evidence for asymmetry is much stronger from 

the weighted Moses model and the advanced models compared to the unweighted Moses 

model (P-values closer to 0). 

The theta value for the advanced methods is significantly different from zero, indicating that 

the study points lie away from the sensitivity=specificity line, i.e. the Q* point does not 

adequately summarize the studies in this dataset. The Moses method does not estimate 

threshold although it allows it to vary with DOR. 

Across the four models, the average threshold points (estimated using the mean threshold of 

the studies) for the advanced models are virtually identical to that derived from the 

unweighted Moses method output. The sensitivity estimate from the weighted Moses method 

is slightly lower than the others (0.75 compared to 0.80). 
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Figure 15 Scatter plots of log of diagnostic odds ratio (DOR) 

a. Standard error of log DOR [SE(lnDOR)] versus log DOR 
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4.2.1 An exploration of the differences between Moses models 
The scatter plot of InOOR against its standard error reveals a relationship between OOR and 

its SE, with less precise studies having higher OORs (Figure 15a). The studies at the far 

bottom right of the plot (numbers 14, 2, 47, 18, 43 and 49) - the studies with the 6 highest 

InOORs - have the most influence on this pattern. Plotting InOOR against total sample size 

(Figure 15b), the six studies singled out above lie directly to the right of the main group of 

studies, suggesting no association of OOR with sample size. Plotting InOOR against the 

inverse square root of the ESS (Figure 15c), as suggested by Oeeks and colleagues81 in fact 

shows the vast majority of studies located within a large group at the centre-top of the plot. 

The same six studies lie to the right of the main group, confirming no sample size related 

effect in this dataset. 

Table 16: Studies with the highest quartile of diagnostic odds ratios 

Id Author DOR SE Total n ESS Zero Specificity Sensitivity %weight 

in top (InDOR) celis? 

25% 

18 Devaliois lOl 28741 2.01 372 79 fp + fn 1.00 0.98 <0.01% 

14 Chedore' "£ 18969 1.46 618 533 fn 0.98 1.00 <0.01% 

47 Wang'"' 5538 1.23 230 198 x 0.99 0.99 <0.01% 

43 Smith ' '''' 5415 2.03 153 37 fp + fn 1.00 0.95 <0.01% 

2 Abu-Amero '"0 4292 1.45 628 233 fp 1.00 0.79 <0.01% 

49 Yam '"0 4045 1.48 387 159 fp 1.00 0.86 <0.01% 

20 Eing lor 1669 0.79 833 108 x 1.00 0.89 0.01% 

27 LaRocco '"0 1145 0.83 246 179 x 0.98 0.95 0.01% 

24 Hoffner (b) '". 1088 1.03 309 64 x 0.99 0.88 0.01% 

36 Piersimoni ' bu 872 0.77 402 268 x 0.99 0.85 0.01% 

44 Smith '~ 757 1.55 153 37 fn 0.98 0.95 <0.01% 

·3 AIZahrani '0' 630 1.44 489 204 fp 1.00 0.42 <0.01% 

45 Vuorinen .U4 627 0.89 256 93 x 0.99 0.85 0.01% 

Shaded cells indicate values at or above median for that parameter; Bolded cells Indicate values In top 25% for that 
parameter. 
DOR - diagnostic odds ratio 
SE(lnDOR) - standard error of the log diagnostic odds ratio ; 
ESS - effective sample size is the sample size needed in equal-sized groups to achieve the available power where 
there are groups of unequal sizes; 
Zero cells? - indicates presence of cells with a zero value in 2x2 contingency table; fp - false positive, fn - false 
negative 
Sensitivity and specificity are estimated after adding 0.5 to all four cells of 2x2 tables which have at least one zero 
cell. 
%weight - weight accorded per study under the weighted Moses model 

Examination of the studies with the highest OORs (in the top 25% of the dataset) shows that 

the top six by OOR also have standard errors in the top 25% of the dataset but do not have 

small sample sizes as might be inferred from the more usual interpretation of funnel plots 

(Table 16). Five of the top six studies have at least one zero cell in their 2x2 tables and all 

have exceptionally high sensitivities or specificities. The inverse relationship between 

precision and OOR is therefore not due to a small sample effect but is more likely to be 

explained by the estimates of SE(lnOOR) being overly 
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influenced by extreme diagnostic threshold (high specificities) and/or high test accuracy. 

4.2.1.1 Biased SE(lnDOR) 
The upper section of Table 17 breaks down the SE(lnOOR) of the six studies with the highest 

OORs into its three components. The sample size dependent term which reflects unequal 

numbers in diseased and nondiseased groups, does not make a big contribution to the SE for 

the majority of these studies; only one (43 Smith) has a large SSdep term compared to the 

rest of the dataset. 

The opposite is true of both the PTPdep term and the OORdep term. The effect of the 

PTPdep term on the SE is minimised when the numbers of true negatives and false positives 

are equal (specificity 50%). For the six studies under consideration here, the PTPdep value is 

above the median for all six studies and in the top 25% for four of them. Given that the 

smallest possible value for this term is four, all of the studies clearly have very high thresholds 

with values ranging from 50 up to 1127 (Table 17). 

The OOR dependent term is zero when OOR=1 (or where sensitivity=specificity) and rises 

with OOR; the actual magnitude of the term decreases or increases with smaller or larger 

numbers of diseased, respectively. The OOR dependent term is above the median for five of 

the six studies and in the top 25% for four of them. For all six of these studies except Chedore 

(14), the term is negative indicating that specificity is higher than sensitivity for these studies. 

Table 17: Breakdown of SE(lnDOR) for selected studies 

id Author DOR SE Components of SE(lnDOR) 
J 

SSdep' 

(InDOR) SSdep PTPdep DORdep PTPdep 

Studies with six highest DORs 

18 Devallois 28741 2.01 0.05 703 -31.43 35.15 

14 Chedore,oL 18969 1.46 0.01 51 1.74 0.51 

47 Wang 'v, 5538 1.23 0.02 80 -0.10 1.6 

43 Smith '~ 5415 2.03 0.11 287 -26.56 31.57 

2 Abu-Amero' oo 4292 1.45 0.02 1127 -17.24 22.54 

49 Yam "0 4045 1.48 0.03 685 -15.04 20.55 

Studies with six lowest DORs 

51 dos Anjos Filho ' 00 17 0.51 0.04 7 -0.01 0.28 

37 Piersimoni ' bu 15 0.56 0.06 8 -0.02 0.49 

40 Sato'~ 13 0.58 0.06 5 0.07 0.27 

Gomez- -0.20 

22 Pastrana 165 12 0.66 0.06 17 0.94 

39 Sato l64 11 0.59 0.06 4 0.12 0.24 

35 Osumi Obb 1 1.66 0.38 7 0 2.74 

Shaded cells Indicate values at or above median for that parameter, bolded cells indicate values In top 25% for that 
parameter 
DOR - diagnostic odds ratio ; SE(lnDOR) - standard error of the log diagnostic odds ratio ; SSdep - sample size 
dependent term; PTPdep - proportion testing positive term; DORdep - DOR dependent term. 
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In contrast, for the studies in the bottom half of Table 17 (the six with the lowest OORs), 

where specificities are all below 0.95 and sensitivities are also generally lower (less than 

0.86), the SSdep terms are all above the median, while the PTPdep and OORdep terms are 

below the median. The PTPdep terms are all very close to the lowest possible value (four). 

These studies are therefore not affected by zero or small cells or by threshold variation , 

therefore in most cases it is the SSdep term that drives the SE(lnOOR). 

4.2.1.2 Effect of biased SE(lnDOR) 
The presence of bias in SE(lnOOR) explains the differences in resu lts between the 

unweighted and weighted Moses models. As the latter model is weighted by the inverse of 

SE(lnOOR), studies with high SE(lnOOR) get very little weight and vice versa for studies with 

low SEs. The final column of Table 16 lists the weights accorded to each study for the 

weighted Moses analysis; the weights for each of the 51 studies are given in Appendix 14. 

The unweighted Moses model by its nature gives all studies equal weight (i.e. 1/51 or 2%) 

whereas for the w~ighted Moses model , weights range from less than 0.01 % to 21 % 

(Appendix 14). From Table 16 one can see that all of the studies with the highest OORs 

receive 0.01 % of the weighting or less, i.e. less than 200 times the 'weight' that they rece ive 

in the unweighted or equal weight analysis. 

Figure 16 plots the InOOR, or 0 , against S for all studies in the dataset. The studies with the 

six highest OORs and biased SE(lnOORs) are circled , lying above the main dataset. All of 

these studies receive weighting of less than 0.01 % for the weighted model. This explains why 

the SROC curve for the weighted model in Figure 14a is considerably below that for the 

unweighted model and the OOR considerably smaller. 

Figure 16 D vs S plot for all studies 
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Table 18 shows the effect of individually deleting each of the six studies from the overall 

pooled analysis using the Moses models. It is immediately noticeable that the deletion of two 

of the six studies has a relatively much larger effect on the overall pooled analysis compared 

to the others, and secondly that for all studies the effect is greater for the unweighted model. 

The latter observation would be expected due to the lower weighting attributed to these 

studies in the weighted model. 

Table 18 Result of pooled analysis using Moses models minus each study with biased 
SE(lnDOR) 

a. U . ht d M nwelgl e oses 
Individual Pooled analysis minus individual studies 

study values 

DOR Q) 5 Q) 
Cl Cl 

b'line ~c 
o ca b'line ~c o ca sens, spec 

121.1 ~ -0.17, P=0.21 ~ 
u u 

id Author D 5 

18 
Devallois 'v, 

10.27 -2.84 112.5 -7% -0.16, P=0.22 -7% 0.80,0.98 

14 
Chedore,oL 

9.85 2.08 80.2 -34% -0.29, P=0.03 73% 0.79,0.98 

47 
Wang '0' 

8.62 -0.09 101.5 -16% -0.21, P=0.12 24% 0.80,0.98 

43 
Smith 

8.60 -2.71 114.7 -5% -0.16, P=0.22 -3% 0.80,0.98 
Abu-

2 
Amero155 

8.36 -5.69 126.8 +5% -0.13, P=0.36 -25% 0.81,0.98 

49 
Yam'O" 

8.31 -4.75 123.2 +2% -0.14, P=0.31 -18% 0.80,0.98 

b W . ht d M elgl e oses 
Individual Pooled analysis minus individual studies 

study values 

DOR Q) 5 Q) 
Cl Cl 

b'line ~c 
o ca b'line ~c 

o ca sens, spec 
52.5 ~ -0.26, P=0.01 ~ 

u u 
id Author D 5 

18 
Devallois '0, 

10.27 -2.84 52.2 -1% -0.26, P=0.01 -1% 0.75,0.97 

14 
Chedore,oL 

9.85 2.08 48.3 -8% -0.28, p<0.01 11% 0.74,0.97 

47 
Wang '0' 

8.62 -0.09 49.8 -5% -0.27, p<0.01 5% 0.75,0.97 

43 
Smith 

8.60 -2.71 52.3 +0% -0.26, P=0.01 0% 0.75,0.97 
Abu-

2 
Amero155 

8.36 -5.69 53.2 +1% -0.25, P=0.01 -4% 0.75,0.97 

49 
Yam '0" 

8.31 -4.75 52.9 +1% -0.25, P=0.01 -3% 0.75,0.97 
,. 

DOR - diagnostic odds ratio; b line - baseline value for analyses Including all 52 datatsets, % change - percentage 
change in DOR or S from baseline; sens, spec - average sensitivity and specificity 

The reason behind the greater effect from two of the six studies is that they are the only two 

to have values for'S' above the mean (Figure 16). In particular study 14 (Chedore), whose 

deletion has the biggest effect on the pooled analysis, both in terms of DOR and shape, 

stands out from the main group of studies and therefore has the greatest leverage on the 

analysis. This was the one study for which the DORdep component of the SE(lnDOR) had a 

very large effect on SE, and the only one which had a higher sensitivity than specificity. This 

effect is explored further in the next section. 

None of the studies has a large effect on the sensitivity or specificity at the average threshold. 
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4.2.2 Moses versus HSROC comparison 
The identification of bias in the SE(lnDOR) in several studies and the effect of this on the 

Moses models in section 4.2.1 above, suggests that certain studies may have a greater 

impact on the overall pooled analysis than others. Because the differences between the 

unweighted and weighted Moses models had already been investigated in some detail, a 

deletion residual analysis was undertaken to examine how the unweighted Moses model 

agrees with the HSROC model. 

Twenty-one studies were identified whose removal affected at least one model parameter by 

5% or more, either with the HSROC (19 studies) or Moses (20 studies) model analyses. The 

effect from these studies is summarised in Table 20 and plotted in Figure 17; full details are 

given in Appendix 13 (unweighted Moses) and Appendix 14 (HSROC). Eighteen of the 21 

studies affected the parameters of both models by 5% or more, one (study 4161
) affected only 

the HSROC model results and two (id 20157 and 35166
) affected only the Moses model results. 

Table 19 Categories of study with biggest influences on model results 

Category Total no. of No. having 
studies in ~5% effect on 
dataset at least one 

model 
parameter 

sensitivity greater than specificity 5 5 

minimal (less than 5%) difference between sensitivity and specificity 11 9 

high values (over 93%) for sensitivity 8 8 

exceptionally high specificity (99.5% or more) 8 6 

studies with zero false negatives 5 4 

studies with zero false positives 8 5 

studies with lowest sensitivities (40% or less) 2 2 

Review of the deletion residual analysis for the two models suggested that these studies fall 

into seven categories (Table 19 and Table 20). In general, because the majority of studies in 

this dataset have specificity considerably greater than sensitivity, studies in the first two 

categories, i.e. with sensitivity greater than specificity or sensitivity close in value to specificity 

have by far the biggest effect on the analyses. The studies that lie around the edges of the 

dataset, i.e. those with more extreme values have the biggest effects. 

For both models, the removal of study 14 (Chedore), which is positioned in the far top left of 

the ROC plot (Figure 17), has by far the biggest effect on all parameters, changing threshold, 

accuracy and shape by -17%, -21 % and +46% for the HSROC model and accuracy and 

shape by -34% and +73% for the Moses model (Table 20). This study had the highest 

sensitivity (99.7%) in the dataset but also had an extremely high value for specificity (98.0%). 
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Table 20 Summary of deletion residual analysis: percentage change in model parameters following removal of each individual study 

HSROC: Moses (eq): z n. 
% change in % change in CJ u.. u.. ~~ 0) 

0-
VI 

~ 1\1 1\1 
(jj (jj ;::;::; 

1\ CJ CJ o > 
VI 1:'6 VI CJ 0 0 C;E I: ._ 0- I:'<t 0) It) ... ... 

~~ 0) E VI 0)'" O-a> 0) 0) 

accuracy accuracy VI VIa> VIa> N N 0) ..,0 '<to 
0) 

id Author (DOR) shape threshold (DOR) shape 
..... NVI It) CD t--VI 

Studies whose removal had ~5% effect on at least one model parameter for either HSROC or Moses analyses 

14 Chedore, 199911 -21% 46% -17% - -34% 73% Y - Y - Y - -

47 Wang, 1999153 
-12% 19% -6% -16% 24% - Y Y - - - -

39 Sato, 1998164 10% -19% 14% +15% -24% Y - - - - - -

40 Sato, 1998164 9% -14% 11% +13% -19% Y - - - - - -
Devallois, 

18 1996151 -9% 0% 0% -7% -7% - Y Y Y Y Y -
Middleton, 

31 2003167 7% -15% 13% +9% -15% Y - Y - - - -
dos AnJos Filho, 

51 200216 7% -9% 7% +9% -12% - Y - - - - -

48 Wang, 1999153 -6% 10% -2% -7% 10% - Y Y - - - -
La Rocco, 

27 1994168 -6% 8% -2% -7% 7% - Y Y - - - -
35 Osumi, 1995166 x X x 6% 13% - - - - - - Y 

43 Smith,1999154 -6% -1% 0% -5% -3% - Y Y Y Y Y -

44 Smith,1999154 -5% 7% -2% -6% 8% - Y Y - Y - -
Hoffner, 1996 

23 (a)169 5% -6% 6% +6% -8% - Y - - - - -

20 Eing, 1998157 x X x -2% -5% - - - Y - - -
5 Alcala, 2001 170 4% -5% 6% +4% -6% - Y - - - -

49 Yam, 1998156 -3% -11% 3% +2% -18% - - - Y - Y -
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HSROC: Moses (eq): 
% change in % change in 0 

CI> 
0. 
I/) 
/I 
I/) 
C 
III 

accuracy accuracy I/) 

id Author (DOR) shape threshold (DOR) shape 
.... 

Kambashi, 
25 2001 171 3% -4% 5% +6% -8% Y 

Abu-Amero, 
2 2002155 -2% -17% 5% +5% -25% -

Mitarai, 2001 
32 (a)172 1% 12% -10% 1% 12% -

AI Zahrani, 
4 2000161 1% -8% -3% x x -

AI Zahrani, 
3 2000161 1% -6% -3% +2% -6% -

Studies in the same categories whose removal did not have ~5% effect on any model parameter 

1 Abe, 1993173 x x X x x -
Bemer-Melchoir, x x x x 

7 2000174 
X -

Cavusoglu, x x x x 
13 2002175 x -

26 Kang, 2002176 x x X x x -

34 Neu, 1999177 x x X x x -
Studies are sorted by the magnitude of the effect on the pooled DOR using the HSROC analysIs 
x indicates studies whose removal does not impact on at least one parameter by 5% or more 
1 sens>spec: sensitivity greater than specificity 
2 min sespdiff: minimal difference between sensitivity and specificity 
3 sens ~ 00934: sensitivity ~ 00934 
4 spec ~ 00995: specificity ~ 00995 
5 zero cell FN: zero false negative results 
6 zero cell FP: zero false positive results 
7 studies with lowest sensitivities 
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The shape (and threshold for the HSROC model) parameter was more commonly affected 

than DOR, with the removal of only four (three for HSROC) studies affecting DOR by 10% or 

more. Eleven studies impact on the shape parameter in the Moses model by 10% or more. 

For the HSROC model , 9 studies affected shape by 10% or more; five of which also affect the 

threshold parameter by 10% or more (Table 20). 

Figure 17 Plots of studies having effect of 5% or more on at least one model parameter 

a. All studies b. Selected studies 

a 
~----.----.----.-----.---~ 

.8 .6 .4 
Specificity 

4.2.3 Summary 

.2 o 

~ t! --+ a • a 

~ • 

a 
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.8 
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.6 .6 
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o 2010 FP 800 ~O.995· + spee>O.995 

Filled in symbols indicate effect of 10% or more 

o 

For this dataset, the advanced models (HSROC and BVN models) have near identical results 

when all studies are pooled together. However, there are considerable differences in results 

between the two Moses methods, in terms of both DOR and shape. Potential explanations for 

the difference between the two Moses methods are: 

a. the zero cell correction that is needed in order to carry out the analysis, i.e. the 

addition of 0.5 to every cell of a 2x2 table that contains a zero. Adding the correction 

will attenuate the effect, more so in small studies. However the correction is added for 

both equal and weighted models so this is not a likely explanation here. 

b. stUdies receiving the highest weight under the weighted model having the lowest 

DOR, possibly due to sample size, pulling the SROC further away from the top-left 

had corner of the ROC plot, where accuracy is the highest. 

c. as the studies in the dataset generally had very high specificities and some also have 

exceptionally high sensitivities (e.g. studies with small or zero cells) , it is more likely 

that the approximate variance of the log DOR is biased , as shown above. Weighting 

by inverse variance of InDOR will therefore give less weight to the studies with the 
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highest specificities in particular. This can effect both the magnitude of the OOR and 

the shape of SROC curve. 

For this dataset the OOR from the unweighted Moses model was closest to that from the 

advanced models, although the shape of the curves were different. Whether or not this is a 

consistent finding will be explored in the next chapter. 

Studies having the most effect on the analyses for both the unweighted Moses and HSROC 

models were those for which sensitivity was higher than specificity or sensitivity was close in 

value to specificity, especially at higher levels of sensitivity. The shape term was most 

commonly affected. 

4.3 Investigation of heterogeneity in the TB dataset using the 
3 methods 

The results of the heterogeneity investigations are presented in tabular format in Table 21, 

Table 22 and Table 23, first with no shape interaction allowed, i.e. parallel curve models (top 

half of tables), and then allowing for a shape interaction, i.e. crossing curve models (bottom 

half of tables). The associated SROC curves are plotted in Appendix 15 to Appendix 17. For 

the investigation of heterogeneity, the comparison between models focuses on comparing 

SROC curves between groups as opposed to comparing operating points. Where there are 

multiple thresholds, a comparison of operating points is not useful. 

4.3.1 Comparing the Moses model results 
Plots of the SE(lnOOR) against InOOR according to covariate are presented along with '0 vs 

S' plots for both parallel and crossing curve models. To assist in the comparison of Moses 

model results, the six studies in the dataset with the highest OORs are circled according to 

covariate. 

4.3.1.1 Moses models comparison: Index test blinding 
When studies are examined by the presence or absence of index test blinding, the weighted 

Moses model shows a much smaller, and nonsignificant difference between groups compared 

to the unweighted model (Table 21). This difference is maintained with or without the 

interaction of covariate with shape, and regardless of whether ROOR is estimated at Q* or at 

the respective average threshold points. Figure 18 shows that all six studies with biased 

SE(lnOOR) identified from section 4.2.1 above (the group of six studies to the far bottom right 

of the plot) fall into the reference case group (blinding not described). 
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Table 21 Difference in model parameters: blinded index test interpretation (comparator) versus blinding not reported (reference) 

Effect on accuracy (RDOR)a Effect on other parametersU 

Method RDOR at Q* RDOR at ref RDOR at comp threshold shape sensitivity specificity 
threshold threshold 

No shape interaction (parallel curves) 
.. _. 

Moses method - - -
equal weiQht 0.21 , P=0.02 as at Q* as at Q* -0.21 -0.01 

Moses method - - -
weighted 0.59 , P=0.14 as at Q* as at Q* -0.11 0.01 

HSROC -
0.25, P=0.02 as at Q* as at Q* -0.47 , P=0.19 -0.17, P=0.02 -0.01, P=0.61 

BVN -
0.25, P=0.02 as at Q* as at Q* -0.46, P=O. 19 -0 .17 , P=0.02 -0.01 , P=0.61 

With shape interaction (crossing curves 
Moses method -

equal weight 0.16, P=0.07 0.19, P=0.02 0.21 , P=0.02 - -0 .12, P=0.68 -0.21 -0.01 
Moses method -

weighted 0.74, P=0.63 0.62, P=0.19 0.57, P=0.13 - 0.09, P=0.66 -0.11 0.01 
HSROC (shape) 

0.21 , P=0 .03 0.47, P=0.08 0.26, P=0.13 -0.25 , P=0 .65 0.22, P=0.63 -0.17, P=0.11 

Figures in italics denote derived values, i.e. parameters which are not the natural output from the model in question but have been transformed from model parameters 

a _ RDOR - relative diagnostic odds ratio or difference between the curves, at Q* (the point where sensitivity=specificity) , at the average threshold of the reference group (ref 

threshold) or of the comparator group (comp threshold ). Studies reporting blinded index interpretation form the comparator group (numerator) and studies where blinding is not 

reported the reference case (denominator) 

b _ the effect on parameters other than accuracy is defined as the difference between groups in each parameter and the P-value for the difference 
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Figure 18 Plot of SE(log OOR) against log OOR - index test blinding9 

0 32 

0 26 

0 34 

0 29 0'" 

6 
log DOR 

0" 

Blinding not doscribod . Indo)!; lost blinded .I. 
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The effect on the pooled analysis can be seen by looking at the same studies on the 0 vs S 

plots (circled in Figure 19). Whether the regression lines are parallel or crossing, the lines are 

much closer together when the weighting is applied because the six studies get very little 

weight due to their high SEs. The OORs for the two groups are therefore very similar under 

the weighted model (Figure 19b and d). 

Figure 19 0 vs 5 plots - by index test blinding 

a. unweighted Moses model - no shape interaction b. weighted Moses model - no shape interaction 

o o 

• 5 

· 10 ·6 -4 ·2 ·10 ·8 ·6 -4 ·2 
S S 

-----.- Blindingnoldc5cribod • --- Indox toslbllndod 10 . __ u_n_ Ampllcor A --- MTD I 

c. unweighted Moses model - shape interaction d. weighted Moses model - shape interaction 

o o 

·10 .a ·6 -4 ·2 ·10 ·8 -4 ·2 
S S 

I 0 --- Blinding nol doscribed .6 - - - Indox lesl blinded I I 0 ----- Blinding nol described .6 - - - Indox lost bl inded I 

*the various average threshold points are denoted where the regression lines cross the vertical lines at S=O (0*), S= 
-2.16 (ref group average threshold), S= -3.03 (comparator group average threshold). 
generated. . 

9 See section 4.1 .1. for a description of this comparison 
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Table 22: Oifference in model parameters: MTO (comparator) versus Amplicor (reference) 

Effect on accuracy (ROOR) a Effect on other parametersD 

Method ROOR at Q* ROOR at ref Method ROOR at Q* ROOR at ref Method ROOR at Q* 
threshold threshold 

No shape interaction (parall~1 curves) 
.. ,-

Moses method - -
equal weight 1,99, P=0,28 as at Q* as at Q* - +0,15 -0.02 

Moses method - ' - -
weighted 2.16, P=0 ,08 as at Q* as at Q* +0.17 -0.03 

HSROC -
2.06, P=0.20 as at Q* as at Q* 1.06, p<0.01 0.17, p<0.01 -0.02, P=0.06 

BVN -
2.05, P=0.20 as at Q* as at Q* 1,06, p<0.01 0.17 , p<0 .01 -0 .02, P=0.06 

With shape interaction (crossing curves 
Moses method -

equal weight 3.86, P=0.14 1.48, P=0.58 2.59, P=0.17 - 0.31, P=0.31 +0.15 -0.02 
Moses method - -

weighted 1.63, P=0.38 2.82, P=0.06 2.04, P=0.11 -0.18, P=0.43 +0.17 -0.03 
HSROC 

2.29 , P=0.16 1.59, P=0.24 1.64, P=0.14 0.81 , P=0.12 -0.23, P=0 .56 0.17, P=0.01 -0.02, P=0.57 
Figures in italics denote derived values, i.e. parameters which are not the natural output from the model in question but have been transformed from model parameters 

a _ ROOR - relative diagnostic odds ratio or difference between the curves, at Q* (the point where sensitivity=specificity), at the average threshold of the reference group (ref 

threshold) or of the comparator group (comp threshold). Studies using MTO form the the comparator group (numerator) and studies of Amplicor the reference case 

(denominator) 

b _ the effect on parameters other than accuracy is defined as the difference between groups in each parameter and the P-value for the difference 
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4.3.1.2 Moses models comparis'on: Test typeh 

When the test covariate is added to the Moses models , the weighted and unweighted results 

are very similar, as long as no interaction with shape is allowed (ROORs 2.16 and 1.99 

respectively, Table 22). Of the six studies with biased SEs, three are of MTO and three of 

Amplicor (Figure 20). Where the SROC curves are assumed to be parallel , the effect is 

spread across the two groups, and the difference between groups remains similar whether 

weighting is applied or not (Figure 21a and b). 

Where an interaction of test type with curve shape is allowed however, the weighted and 

unweighted models no longer give similar results (Table 22). Not only does one model give a 

larger ROOR than the other, but the ROOR and the model giving the largest ROOR varies 

according to the point on the curves at which the ROOR is 

Figure 20 Plot of SE(log DOR) against log DOR - test type 
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Where ROOR is estimated at Q*, the unweighted model finds MTO to be much more accurate 

than Amplicor compared to the difference shown by the weighted model. At the average 

threshold for the reference group, it is the weighted model that shows MTO to be a 

conside~ably more accurate test (p<0.1 0), while the unweighted model shows a much smaller 

difference between tests. At the average comparator threshold , the two models find a similar 

difference between groups. 

The reason for these differences can be seen from the 0 vs S plots in Figure 21 c and d. The 

regression line for the reference case (Amplicor) remains similar in position and slope 

whether weighting is used or not, however the slope of the regression line for the comparator 

case (MTO studies) has a considerably steeper slope under the weighted Moses model. 

These differences in slopes explain why there is a bigger difference in ROOR between the 

unweighted and weighted models compared to the case where the slopes are assumed to be 

the same (Figure 21a and b). In particular, study 14 (Chedore) has a high vale for 0 and a 

h See section 4.1.1. for a description of this comparison 



high value for S. Where S is allowed to vary, this study has a considerable effect on the slope 

of the regression line and therefore on the point at which the lines intercept zero (Q* point). 

Figure 21 D vs S plots - by test type 

a. unweighted Moses model - no shape interaction b. weighted Moses model - no shape interaction 

Cl Cl 

35 
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c. unweighted Moses model - shape interaction d. weighted Moses model - shape interaction 

Cl Cl 
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S S 

I 0 -------- Ampllcor A --- MfD I 

*the various average threshold points are denoted where the regression lines cross the verti cal lines at S=O (Q*), S= 
-3.11 (ref group operating point), S= -1.29 (comparator group operating point). 

The changing slopes also explains the differences between models according to where 

ROOR is estimated. For the unweighted model the regression lines cross at the left hand' side 

of the plot whereas for the weighted model they would cross at the right hand side of the plot 

if the lines were extrapolated slightly further. At Q* (where S=O), the lines are much further 

apart under the unweighted model compared to the weighted . At the mean of S for the 

reference group (S=-3.11), the opposite is the case, whilst at the mean of S for the 

comparator group the lines are similar distances from each other whether weighted or 

unweighted. This example demonstrates that even where the difference in shape between 

groups is not statistically significant, allowing a difference in shape between groups can lead 

to big differences in ROOR according to where ROOR is estimated. 

4.3.1.3 Moses models comparison: Reference test used i 

At the simplest level (with no interaction of covariate with shape), when the type of reference 

test used is added to the Moses models, the ROOR for the unweighted model is 2.48 

compared to just 1.12 for the weighted model (Table 23). Only one of the six studies with 

i See section 4.1.1. for a description of this comparison 
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biased SE(lnOOR) is in the reference case group (combined reference test) for this example 

(Figure 22). 

Figure 22 Plot of SE(log DOR) against log DOR - reference test used 
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Figure 23 shows the parallel regression lines for the two groups. The five comparator group 

studies with biased SE(lnOOR) receive more emphasis in the unweighted model, pulling the 

regression line further up the plot. This means that the lines are further apart and the ROOR 

higher in comparison to the weighted model, where these studies receive less weight. 

Figure 23 D vs S plots - by reference test used 

a. unweighted Moses model - no shape interaction b. weighted Moses model - no shape interaction 
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*the various average threshold points are denoted where the regression lines cross the vertical lines at S=O (0*), S= 

-3.02 (ref group operating point). S= -1 .82 (comparator group operating point) . 
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Table 23: Oifference in model parameters: culture alone (comparator) versus combined reference test (reference) 

Effect on accuracy (ROOR) a Effect on other parametersO 
Method ROOR at Q* ROOR at ref ROOR at comp threshold shape sensitivity specificity 

threshold threshold 
No shape interactiQn (parallel cllrves) 
Moses methqd - -

equal weight 2.48c
, P=0.12 as at Q* as at Q* - +0.15 -0.01 

Moses method - -
weighted 1.12, P=0.73 as at Q* as at Q* - +0.10 -0.02 

HSROC 0.73, P=0.02 -
2.24, R=0.14 as at Q* as at Q* 0.15, P=0.01 -0.01, P=0.40 

BVN -
2.23, P=0.14 as at Q* as at Q* 0.72,P=0.02 0.15, P=0.01 -0.01 , P=0.40 i 

With shape interaction {crossing curves 
Moses method -

I equal weight 0.44, P=0.33 4.10, P=0.02 1.69, P=0.35 - -0 .74, P=0.01 +0.15 -0.01 
Moses method - I 

weighted 0.56, P=0.32 1.34, P=0.14 0.95, P=0.88 - -0.29, P=0.14 +0.10 -0.02 
HSROC 

-0.01, P=0.05 I 1.22, P=0.76 0.76, P=0.32 8.75, P=0.34 1.74, p<0.01 0.90 , P=0.02 0.14, p<0.01 

Figures in italics denote derived values, i.e. parameters which are not the natural output from the model in question but have been transformed from model 

parameters 

a _ ROOR - relative diagnostic odds ratio or difference between the curves, at Q* (the point where sensitivity=specifici ty), at the average threshold of the reference 

group (ref threshold) or of the comparator group (comp threshold). Studies using culture alone as the reference standard form the comparator group (numerator) and 

studies using a combined reference standard the reference case (denominator) 

b _ the effect on parameters other than accuracy is defined as the difference between groups in each parameter and the P-value for the difference 

'-. 

95 



Where an interaction of covariate with shape is allowed, however, a more complex picture 

emerges (Figure 23c and d). If ROOR is estimated at the reference or comparator group 

average threshold points, the unweighted model suggests that studies using culture alone 

have higher accuracy than those using a combined reference test. The difference between 

models is much greater at the average reference threshold with the ROOR from the 

unweighted model over 3 times that of the weighted model (4.10 compared to 1.34, Table 23). 

If ROOR is estimated at the Q* point however, studies using culture alone are shown to be 

considerably less accurate than those using a combined reference 'test, and the difference 

between the weighted and unweighted models is much less (ROOR 0.44 for the unweighted 

and 0.56 for the weighted models respectively, Table 23). The reason for this complex 

picture is hinted at by the highly statistically significant shape term (p<0.01) for the 

unweighted model. 

Figure 23c and d clearly demonstrate the effect of the shape term. Under both models the 

regression lines for the two groups cross near to the centre of the data, and furthermore the 

slope of the regression lines changes considerably, with that for the reference group 

(combined reference test) even changing direction between models. The five studies in the 

culture alone group with biased SE(lnOOR) receive more emphasis in the unweighted model, 

pulling the left hand side of the regression line further up the plot. Oue to the high SEs, these 

studies receive less weight when the weighting is applied and the slope is much less steep. 

The overall effect is that at the average reference threshold, the lines are much further apart 

under the unweighted model. 

Because the regression lines cross near to the centre of the data, the point at which ROOR is 

estimated has a massive impact on its size and direction. At Q* (S=O), the combined 

reference test line intercept is above that for culture alone under both models, so that the 

ROOR favours the combined reference group. At the average threshold for the reference 

group (S= -3.02), however, the regression line for the culture alone group is above that for the 

combined reference group, favouring the culture alone group. 

4.3.1.4 Summary 
The presence of studies with biased SE(lnOOR) can potentially have a huge effect on any 

heterogeneity investigations under the Moses model framework. Because of the weighting by 

the inverse of SE(lnOOR), studies with biased SE's get considerably less emphasis under the 

weighted model. 

At its simplest, for example where all studies with biased SEs fall into the same subgroup 

such as with the presence of index test blinding, the effect manifests predominantly in an 

underestimation of ROOR for the weighted model compared to unweighted. However, where 

the biased SE studies fall into different groups the effect is more complex. The biased SE 
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studies were evenly distributed according to test type. The effect on ROOR alone was less as 

both groups were affected - the overall location of the regression lines on the plot does not 

change much whether or not weighting is used. However a much larger impact on curve 

shape (or the slope of the regression line), was found, especially for the group containing the 

outlying study (number 14). This in turn impacts on ROOR as the distance between the 

regression lines increases or decreases, depending on the change in slope and the location 

at which ROOR is estimated (0* or average threshold point). 

The final example illustrates this last effect as the outlying study 14 was the only one in the 

combined reference test group but this was sufficient to change the slope of the regression 

line between unweighted and weighted models and contributed considerably to the 

differences in ROOR according to the point at which it is estimated. 

4.3.2 Comparing the advanced model results 
The results in the top halves of Table 21 to Table 23 show that for this dataset, where no 

interaction of covariate with shape is allowed (parallel curve models), the HSROC and 

bivariate normal model give near identical results to within two decimals places. The main 

comparison is therefore of the HSROC approach with and without the interaction of covariate 

with shape, i.e. between the parallel and crossing curve HSROC models. The SROC curves 

for the HSROC models with and without a shape interaction are plotted in Appendix 15 to 

Appendix 17. 

4.3.2.1 HSROC parallel versus crossing curve models: Index test blinding 
The top half of Table 21 shows that by assuming parallel SROC curves, the presence of index 

test blinding has a large and strong effect on accuracy (ROOR 0.25, P=0.02), suggesting that 

the two groups are operating on two different SROC curves. There is also some suggestion of 

differences in threshold between groups (P=0.19). Appendix 15, Figure c shows that the 

SROC curve for the index test blinded group is considerably below that for the blinding not 

reported group. Where an interaction of covariate with shape is allowed (bottom half of Table 

21), there is no suggestion of differences in shape or threshold between groups (P=0.63 and 

P=:=0.65 respectively). The ROOR does vary along the curves but the strong evidence of 

differences in accuracy generally remains. 

The choice of model has a relatively small effect on the conclusions that would be drawn from 

this dataset. 

4.3.2.2 HSROC parallel versus crossing curve models: Test type 
Where test is included as a covariate and SROC curves are assumed to be parallel (Table 

22), the advanced method models show some evidence of differences in accuracy between 

groups (ROOR 2.05, P=0.20), but the main difference is in threshold (p<0.01), suggesting the 

two groups may operate on the same SROC curve but at different thresholds. 
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With the interaction of test type with curve shape, there is no evidence for differences in 

shape between groups (P=O.56) but the evidence for a difference in threshold remains 

although it is less strong (P=O.12) (Table 22). There is now slightly more evidence of a 

difference in accuracy, depending on where ROOR is estimated. At Q*, the ROOR is similar 

to that for the parallel curve model (2.29, P=O.16), at the average reference and comparator 

thresholds, the first of which in particular is considerably closer to the centre of the data than 

Q*, the ROOR is slightly lower at 1.59 (P=O.25) and 1.64 (P=O.14) respectively. 

The inclusion of the interaction of covariate with shape for this example slightly affects the 

strength of conclusions that would be drawn regarding the difference between tests. 

4.3.2.3 HSROC parallel versus crossing curve models: Reference test used 
, 

A more complex picture emerges according to reference test used. For the parallel curve 

models, the advanced method models show reasonable evidence of differences in accuracy 

between groups (ROOR 2.23, P=O.14), but the strongest evidence is for a difference in 

threshold (P=O.02). 

The bottom half of Table 23 however, shows that where the curves are allowed to have 

different shapes, there is no real evidence for differences in accuracy regardless of the point 

at which ROOR is estimated, but strong evidence for differences in shape and threshold 

(P=O.02 and p<O.01, respectively). Although the differences in accuracy are not statistically 

significant regardless of where ROOR is estimated, the direction and magnitude of the ROOR 

varies considerably. At Q*, the ROOR is 1.22, slightly in favour of the studies using culture 

alone having higher accuracy, at the comparator group average threshold point it is 8.75 and 

at the average reference threshold it is 0.76 in favour of the combined reference test group 

having higher accuracy. 

Appendix 17, Figure b helps with the interpretation of this data. Where the curves are allowed 

to have different shapes, they cross very near to the sensitivity=specificity line, or Q* point. 

This explains why there is so much variation in the ROOR. The model chosen for this 

example has a large effect on the results of the analysis. 

4.3.2.4 Summary 
At the simplest level, where a covariate predominantly affects accuracy alone, allowing for an 

interaction of that covariate with shape can have some effect on the size and statistical 

significance of differences between groups. For the example here, index test blinding, the 

overall conclusion drawn regarding the potential effect from the covariate would not be greatly 

affected although the strength of that conclusion would be somewhat affected by the model 

chosen (with or without a shape interaction term) and the point at which ROOR was 

estimated. 
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For the test type covariate example above, where the strongest evidence was for differences 

in threshold between groups, choosing a model which allows the SROC curves to have 

different shapes led to slightly more evidence for differences in accuracy depending on the 

point at which ROOR was estimated. However the ROORs were not very different from that 

given when no interaction with shape is allowed and conclusions regarding the importance of 

test to the analysis would not be greatly affected by the model chosen. 

In the most complex example, where type of reference test used is added to the analysis, the 

model chosen and point at which ROOR is estimated has a big impact on the results. If 

parallel SROC curves are modeled, the OORs per subgroup are 191 for culture alone, and 85 

for studies using a combined reference test. The differences in the parameters suggests that 

it is threshold rather than accuracy that varies the between groups, i.e. the studies are 

operating at different points on the same or similar SROC curves. 

Where ROC curves have different shapes however, a more confusing picture emerges; with 

strong evidence for differences in shape and threshold but not accuracy, with large variations 

in ROOR along the curves. It is very difficult to untangle the different effects for this example, 

however it is clear that the choice of model has a considerable impact on the conclusion 

drawn. With parallel curves, one might infer probable differences in accuracy between groups 

(different SROC curves) and that the two groups operate at different thresholds. With 

differently shaped curves, one might say that the studies do operate on different SROC 

curves but the differences in shape and the fact that the studies operate at different points on 

the curves means that there is no associated difference in accuracy between the groups. 

4.3.3 Moses model results versus advanced model results 
The Moses and advanced model results can be compared both with and without an 

interaction of covariate with shape. Again the results of the analyses adding each covariate 

can be seen in Table 21 to Table 23. Parallel and crossing SROC curves for each model can 

be compared in Appendix 15 to Appendix 17. 

4.3.3.1 Moses versus HSROC models: Parallel SROC curves 
For each of the three covariates examined here the unweighted Moses model results most 

closely resemble the results of the advanced models, in terms of size, direction and strength 

of evidence from the ROOR (Table 24). For one covariate (test type) the ROOR for the 

weighted Moses model is similar to that from the HSROC and BVN models with an ROOR of 

2.16 compared to 2.06 (Table 22). The associated P-value, however, would suggest a strong 

difference in accuracy between tests (P=0.08) whereas the advanced models and unweighted 

Moses model suggest that the effect is not as strong (P=0.20 and P=0.28). The other two 

examples both show the weighted model under-estimates the ROOR compared to the 

advanced models (Table 21 and Table 23). 
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Table 24 Summary of similarity of strength of evidence from HSROC model and Moses 
model results 

Blinded index Test type Reference test 

test used 

PARALLEL SROCs 

ROOR eq - eq 

CROSSING SROCs 

ROOR at Q* eq eq neithera 

ROOR at ref threshold D eq w neithera 

ROOR at comp threshold D w both neithera 

Shape both w eq 
a .. 

neither P-values nor magnitude or direction of ROORs are similar 
b ROOR, or difference between the curves, at the average reference threshold (ref) or comparator threshold (comp) 
eq - unweighted (equal weight) Moses; w - weighted Moses model 

4.3.3.2 Moses versus HSROC models: Crossing SROC curves 
Where the SROC curves can have different shapes, neither Moses model consistently 

approximates the results of the HSROC model (Table 24). 

For blinded index test interpretation the unweighted model results are very close to the results 

of the HSROC model except for the ROOR at the average reference threshold point which is 

over-estimated (0.19 compared to 0.47 for the HSROC model). The weighted Moses model is 

closest to the HSROC model at this same point, but underestimates the ROOR in comparison 

to the HSROC model at the other two points. All three models show no strong evidence of 

differences in shape. 

When the test type covariate is added to the models (Table 22), the ROORs for both Moses 

models are in the same direction as for the HSROC but both either over- or under-estimate 

their magnitude. On the whole, the strength of evidence for differences in accuracy (P-values 

for the ROORs) of the unweighted model are most similar to the HSROC. All three models 

show no evidence of differences in shape. 

For the analyses by type of reference test used, neither Moses model comes near to 

estimating the HSROC model results for differences in accuracy. The ROORs for both models 

are in the opposite direction to the ROORs from the HSROC model at almost every point 

(Table 23). The HSROC model suggests no differences in accuracy despite the varying 

magnitudes of ROOR along the SROC curves. Both Moses models however suggest some 

evidence of differences in accuracy at the average reference threshold, (P=0.02 for the 

unweighted model and P=0.14 for the weighted model). 

All three models indicate differences in shape between groups, although the evidence is less 

strong for the weighted Moses model (P=0.14). 
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4.3.3.3 Summary 
For the three covariates examined here, where parallel SROC curves are modeled, the 

unweighted Moses model results are very close to the results of the advanced models in 

terms of size, direction and statistical significance of the ROOR and difference in sensitivity 

and specificity between groups. The weighted Moses model approximates the results of the 

advanced model for only one covariate (test type). For the other two examples it considerably 

under-estimates the difference in accuracy (ROOR) and in sensitivity. 

Where the SROC curves are allowed to have different shapes, neither model consistently 

approximates the HSROC model results. For blinded index test interpretation, the equal 

weighted model is very close to the HSROC model with the exception of the ROOR at the 

average reference threshold. For the analysis by test type, it is the weighted model results 

that generally most similar to the HSROC model. For this covariate, the unweighted model 

over-estimates the effects seen for the HSROC model, again except at the ROOR at the 

average reference threshold. For reference test used, neither Moses model gives ROORs 

anywhere near those of the HSROC model and in fact in most cases have results in the 

opposite direction. 

4.4 Discussion 
The HSROC and BVN, or advanced, methods have several theoretical advantages over the 

Moses method, making their results more statistically reliable and accurate. This chapter 

examined similarities and differences in results between models, and explored the effect of 

adding covariates. Part of the aim was to identify any suggestion that either Moses method 

could approximate the results of the more statistically rigorous methods. The covariates 

examined were specifically chosen to illustrate a range of effects on the different model 

parameters and the potential differences between models. The effects are not necessarily 

typical of the effects that would be expected in most systematic reviews. 

Reflection on the analyses carried out here shows that for the overall pooled analysis for this 

dataset: 

• there is considerable disagreement between the two Moses models, 

• the two advanced models gave almost identical results, 

• the unweighted Moses model results were most similar to those of the advanced 

methods. The weighted Moses model considerably under-estimated the results of the 

other two models. 

With the addition of covariates to the models: 

• there was common and sometimes considerable disagreement between the two 

Moses models regardless of whether parallel or crossing SROC curves were 

modeled, 
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• where parallel SROC curves were modeled, the two advanced models give near 

identical results 

• for the advanced models, in some circumstances the interaction of covariate with 

shape made little difference to the conclusions that would be drawn from the model 

regarding the importance of a covariate, but in others conflicting results arose 

• where parallel SROC curves are modeled, the unweighted Moses model generally 

has results more similar to the advanced methods than the weighted Moses model 

• where curves are allowed to have different shapes, neither Moses model consistently 

approximated the HSROC model results 

The disagreement between the two Moses models, both for the overall analysis and the 

investigation of heterogeneity was primarily due to bias in the SE(lnDOR), whose inverse was 

used as the weight for the weighted model. For some studies in this dataset the SEs are 

biased upwards, so that they have higher SEs than might be expected from their sample 

sizes. Weighting by the inverse of the SE mean that these studies received a very low 

emphasis in the weighted Moses analysis, leading to overall under-estimation of effects in 

comparison to the unweighted analysis. 

The circumstances under which biased SE(lnDOR) might be expected are as follows: 

extreme values of sensitivity and specificity, often with zero FNs or FPs, unequal sample 

sizes of diseased and nondiseased patients, and variation in the threshold for test positivity 

leading to variation in the proportion of patients who are test positive. These circumstances 

are common in diagnostic meta-analysis, therefore bias in the SE is always a risk. 

Studies with extreme values in sensitivity and/or specificity, along with studies for which 

sensitivity estimates were greater than specificity or were similar in magnitude to specificity, 

also had the biggest individual effect on the unweighted Moses and HSROC models. This 

was because these studies lie around the edges of the dataset; studies with more extreme 

values having the greatest effect on an analysis. 

The group to which these studies were allocated according to covariate in turn impacted on 

the difference in model parameters between groups and the complexity of the differences 

between models. In particular, the relationship of the study with the highest sensitivity and 

very high specificity (study 14 by Chedore and colleagues,152 located at the far top left of the 

ROC plot) to other stUdies in the same subgroup seemed to particularly influence the 

importance of the shape term. For example, for the investigations by index test blinding and 

test type, this study was surrounded by others in the same subgroup, and the main effects of 

the covariate were on accuracy and/or threshold differences. For the reference test used 

covariate, the other studies in the same subgroup as Chedore all had high specificity but 

generally much lower sensitivity so that the Chedore study had the main influence on the 
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shape of the SROC curve, pulling it away from that for the other subgroup. The Chedore 

study was one of a small group of studies where sensitivity was greater than specificity, and 

its exceptionally high OOR in relation to the others explains its strong influence on this review. 

A further finding from the analyses presented here is related to the misleading nature of the 

estimation of accuracy and differences in accuracy at Q*. The primary analyses showed a 

considerable difference in OOR according to where it is estimated and potentially more 

importantly huge differences in relative OORs when comparisons by covariate are made, to 

the extent that the direction of effect can change according to where OOR is estimated. This 

could lead to highly misleading conclusions. For the primary analyses, estimation of OOR 

near to the centre of the data (e.g. using the mean threshold value as was done here), would 

seem to give a more representative picture of the data. For the investigation of heterogeneity, 

however, the choice of point at which to estimate ROOR is more complex, especially if the 

operating points of the subsets of data are not in close proximity to each other and 

furthermore, if the SROC curves cross near to the centre of the data. 

This and the other findings discussed above require further exploration in other datasets to try 

to identify how commonly each occurs and ultimately to make some recommendations as to 

whether for the advanced models, an interaction of covariate with shape aids review 

interpretation or simply "over-models" the data and whether, in general, either Moses model 

provides a better approximation to the advanced model results or not. If supported further, the 

under-estimation of effects from the weighted Moses model in comparison to the unweighted 

model and the under-estimation of effects from both models compared to the advanced 

models will have considerable implications for systematic reviews, both past and future. 
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5 A re-analysis of previously published systematic 
reviews to identify spectrum effects 

This chapter reports an empirical study replicating the methods used in the previous chapter 

on data obtained from a large sample of previously published systematic reviews of 

diagnostic tests. The aim is to determine the extent to which the findings in Chapter 4 can be 

generalised, i.e. to examine the extent to which the meta-analytic models disagree and under 

what circumstances and to compare the identification of spectrum effects. 

5.1 Methods 
The methods followed were similar to those presented in Chapter 3 and Chapter 4 with the 

following differences and additions. 

5.1.1 Literature search 
The Centre for Reviews and Dissemination's Database of Abstracts of Reviews of Effects 

(DARE) was again used to identify existing systematic reviews of diagnostic studies. 

Diagnostic reviews indexed on DARE up to December 2002 were screened to identify 

diagnostic reviews for inclusion in Chapter 3. This search was updated in July 2005 in order 

to identify more recently published reviews. 

5.1.2 Eligibility criteria 
Diagnostic systematic reviews comparing a test to a reference test were included if they 

presented: 

1. sufficient information to allow the construction of a 2x2 contingency table for each 

primary study. This information was used to calculate relevant accuracy statistics. 

Studies reporting only summary accuracy statistics without sufficient raw data to allow 

the construction of a 2x2 table were excluded. 

2. information on at least one spectrum-related covariate for each primary study 

Studies were assessed for inclusion by one reviewer. Screening was undertaken in two 

stages, initially the full sample of identified reviews was screened for reviews meeting criterion 

1. It was estimated that 30 to 40 reviews would be sufficient for this empirical study and that 

more recent reviews might be more likely to publish spectrum-related data, therefore the 

second stage was to screen reviews published between 2000 and 2005 for reviews meeting 

criterion 2. 

5.1.3 Data extraction 
A brief data extraction form for recording relevant information from each systematic review 

was designed and piloted (Appendix 18). Data were extracted on: 

primary study author and year of publication 
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the experimental test and target disorder 

2x2 contingency table data 

data on any potential spectrum-related sources of heterogeneity per study. 

The full systematic reviews were data extracted independently by two reviewers. Any 

disagreements were resolved by consensus or by referral to a third reviewer if necessary. 

5.1.4 Data synthesis 
Data were synthesised using three meta-analytic models: the Moses model (both unweighted 

and weighted by inverse variance of InOOR) and the HSROC model. The BVN model was not 

applied because 

a. the analyses in Chapter 4 showed that it produces results virtually identical to 

those of the HSROC model 

b. the BVN cannot easily allow for an interaction of covariate with shape so that it 

could only be compared to the other models where parallel SROC curves were 

assumed. 

The meta-analytic methods were undertaken as for the TB dataset in Chapter 4 and 

described in detail in Appendix 10. 

In summary, each model estimates mean accuracy (OOR) with 95% confidence intervals and 

an estimate of asymmetry in the SROC curve (P-value associated with the shape term). The 

HSROC model also produces an estimate of mean threshold and its 95% confidence 

intervals. The models naturally estimate OOR at Q* (the point where sensitivity=specificity), 

however this point is often nowhere near the centre of the data and therefore not 

representative. The OORs were therefore also estimated at the average threshold, i.e. near to 

the average operating point of the dataset. 

As before, covariates were added to the models in two ways. First, assuming that the SROC 

curves for the two groups are parallel; second, allowing the covariate to interact with curve 

shape (i.e. the SROC curves will cross at some point along their length). 

Differences between groups according to covariates can be assessed by: 

1. differences in accuracy or the relative diagnostic odds ratio (ROOR). Both parallel and 

crossing curve models naturally produce the ROOR at Q*. This value is constant along 

the length of the parallel curve models, but varies along the length of two crossing curves. 

This can be seen visually by the variation in distance between the curves. For the 

crossing curve model, the ROOR at Q* does not necessarily adequately represent the 

data, especially if the curves cross near to the centre of the data. ROOR has therefore 

been estimated at the average threshold for the reference group and at the average 

threshold for the comparator group. This gives ROORs near to the average operating 

points of each subgroup. ROORs have been estimated at all three points to examine 
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whether the differences between models vary according to the point at which ROOR is 

estimated and to give a picture of how ROOR varies along the curves. 

2. differences in threshold - for the HSROC method only 

3. differences in curve shape - for the crossing curve models only 

The difference in sensitivity and specificity between groups can also be estimated however, 

unless one can control for differences in threshold between studies, a comparison of 

operating points is not useful. 

5.1.5 Comparison of meta-analytic methods 

As in Chapter 4, three main model comparisons were undertaken: 

A.· unweighted Moses versus HSROC 

B. weighted Moses versus HSROC 

C. weighted Moses versus unweighted Moses (primary analyses only) 

Comparisons A and B were to determine whether either Moses method produces results akin 

to the HSROC method (the benchmark). Comparison C was undertaken to identify whether 

the weighted Moses method consistently underestimates the unweighted method. 

Primary analyses of complete datasets 

Comparison of OORs 

For the overall pooled analyses, the similarity of the OOR estimates were compared by 

estimating the ratio of OORs (denoted RORs) between models. These were estimated for the 

OORs at Q* (the point where OOR is often estimated in reviews) and at the average threshold 

(a point nearer to the centre of the data). RORs were estimated at both points to see if the 

model results were more less similar at these points. 

A summary of the RORs per comparison was provided using box and whisker plots. These 

give a simple graphical summary, showing the central location of the data (the median), two 

measures of dispersion (the range and inter-quartile range), the skewness (from the 

orientation of the median relative to the quartiles) and an indication of any potential outliers. 

The median ROR tells us what, on average, the bias is between one model and another; if the 

median ROR is 1, there is on average no bias between the models. The IQR (denoted by the 

'box') demonstrates the extent to which individual reviews agree or disagree with the median 

result. If the disagreements are all very small, the box will be quite tight around the median; if 

it is possible that reviews have large disagreements then the box and whisker will extend a 

considerable distance. 

Comparison of SROC shape 

The extent to which the different models show similar evidence of asymmetry of SROC 

curves was summarised using a 'P-value plot'. This is a scatter plot of pairwise comparisons 
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of the P-values for the shape terms for each meta-analysis, thereby comparing how two 

different models measure the strength of evidence. The closer the scatter points are to the 

central diagonal line, the more similar the P-values are between models. The shape 

parameter in the Moses model is not directly comparable with the shape parameter in the 

HSROC model so they cannot be directly compared. 

Stratification of the comparison of OORs 

The examination of the overall pooled analyses for the ROR at the average threshold were 

also stratified by the following characteristics: 

a. size of OOR, using the pooled estimate from the HSROC model as the basis for 

the stratification. It was assumed that reviews with very high overall pooled OORs 

included studies with high OORs and therefore with exceptionally high 

sensitivities and/or specificities. 

b. range in'S' per review from the Moses model, to reflect variation in the threshold 

for test positivity. At extremes of'S', the less equal the numbers of true negatives 

and false positives. 

c. number of zero FP or FN cells in the included studies. The higher the relative 

number of zero cells per review the more biased the SE(lnOOR) and the bigger 

the differences between the unweighted and weighted Moses models. 

Furthermore, where there are lots of zeros, the Moses models will have added 

0.5 as a correction in their method, which will lead to downward bias in the 

estimate of the odds ratio in comparison to the HSROC model. 

d. strength of evidence for asymmetry as estimated from the HSROC model (P­

value associated with shape term) 

e. strength of evidence for the importance of differences in threshold as estimated 

from the HSROC model (P-value associated with threshold term) 

One would expect differences between the unweighted and weighted Moses models 

according to characteristics a., b. and c. Stratification by characteristics c., d. and e. might 

help illuminate any circumstances under which the Moses methods can approximate the 

results of the HSROC model. The stratification of the Moses comparisons by the presence of 

asymmetry or threshold effects for the HSROC model would not be useful, therefore only the 

comparison with the HSROC model were stratified by characteristics d. and e. 

Comparison of heterogeneity investigations 

Comparison of ROORs 

As discussed above, for each investigation of a covariate in a review, an ROOR is estimated. 

To compare between models therefore, a ratio of ROORs was estimated (denoted RROR). 

Between model comparisons were made between each Moses model and the HSROC model 

for the: 
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• ROORs at Q* (for parallel and crossing curve models) 

• ROORs at the average reference threshold (crossing curve models) 

• ROORs at the average comparator threshold (crossing curve models) 

A further within model comparison of ROORs between the parallel and crossing curve 

versions of each model was also undertaken for the ROORs at Q*. 

As the ROOR for a comparison of subgroups can sometimes be less than one and sometimes 

greater than one, the summary statistics were standardised by coding to ensure that the 

HSROC model always estimates an ROOR greater than one. For the comparisons where the 

ROOR for the HSROC model was less than one, the inverse of the ROORs from all three 

models was taken to ensure standardisation of direction. For the within model comparisons, 

the summary statistics were coded to ensure that the crossing curve version of each model 

always estimates an ROOR greater than one. 

A summary of the ratio of ROORs (RRORs) estimated at each point per model was again 

provided using box and whisker plots. P-value-plots were used to display the pairwise 

comparisons of P-values for each ROOR comparison. 

Comparisons of differences in shape 

P-value plots were used to display the pairwise comparisons of P-values for the differences in 

the shape term between models. 

Comparisons of differences in threshold 

P-value plots were also used to display the pairwise comparisons of P-values for differences 

in threshold for the HSROC model with parallel versus crossing SROC curves. 

5.2 Results 

5.2.1 Summary of reviews identified 
Of 331 identified reviews, 153 presented sufficient data to complete 2x2 contingency tables 

per study. Of these, 97 were published between 2000 and 2005. On further examination, 29 

presented detailed information on at least one spectrum-related covariate per study. The 29 

reviews provided covariate information for 60 spectrum-related investigations of heterogeneity 

(Table 25). Figure 24 provides a flowchart of the review selection process. Details of the 

reviews and results of the primary analyses are provided in Appendix 19. Details of the 

heterogeneity investigations are given in Appendix 20 to Appendix 22. 

The median number of studies per review was 17 (IQR 12, 26). The median sample sizes 

ranged from 20178 to 7575.179 the most commonly investigated tests were imaging tests (13 of 

29 reviews) followed by clinical assessment or examination (5 reviews). The most commonly 
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Figure 24 Flowchart of the review selection process 
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Table 25 Summary details of review topics and covariates 

Median 
sample size 

id Review N (SO) Test Topic Covariates investigated 

1 Balk 2001 180 32 101 (355) presentation mLoglobin acute cardiac ischemia definition of population 
Bricker 7,575 gestational age range 

2 2000179 11 (9,324) ultrasound 2I"egnancy settingb screenedc risk status 
Buchanan dangerous severe 

3 2001 181 21 293 (880) clinical assessment personality disorder sample type time at risk 
distal motor latency: 

Chapell symptoms/presented presence of bias to selection of diseased 
4 2002182 13 85(115) patient groups carpal tunnel syndrome presence of age bias easy cases patients 

detection of primary 
Delgado 

20 (12) 
tumours in patients with unknown primary 

5 2003178 15 F18-FDG PET metastasis tumour characteristics 
Deville straight or cross leg raising 

6 2000123 a 17 182 (928) test herniated discs previous surgery bilateral excludedc gender 
Dijkhuizen 

120 (174) menopausal statusbc symptomatic statusb. C 7 2000100 33 endometrial samplinQ endometrial carcinoma 
Eden 

8 2001 183 7 102 (781) palpation thyroid cancer screeninQ source of exposure 
mean apnoea-
hypopneaindex, i.e 

Flemons no. events per hour of 
9 2003184 49 71 (129) sleep monitors sleep apnoea setting_ Qender sleep mean BMI 

Flobbe 
10 2002185 22 213 (478) mammography breast cancer patient identification 

Gifford potentially reversible 
11 2000186 11 202 (108) clinical assessment causes of dementia age setting patient identification 

Glas 200380 107 (76) 
% urological 

12 26 cytology primary bladder cancer % Grade 1 tumours %Grade 2 tumours %Grade 3 tumours controlsc 

Gould 
13 2001 107 35 46 (27) FDG-PET lung cancer gender age 

Gould mediastinal staging of non 
14 2003187 33 49 (44) PET small cell lung cancer gender ageb. C 

Gray 
85 (301) 

toludine blue dye in visual 
15 2000188 14 screening oral cancer patient identification 

16 loannidis 189 10 295 (439) out-of-hospital ECG acute myocardial infarction patient identification age gende~'c 
Kittler inclusion of non-

17 2002104 13 172 (890) dermoscopy melanoma melanocytic lesions 
Koelemay peripheral arterial disease %intermittent 

18 2001 190 19 96 (71) MRA - aortoiliac tract age gender claudication 
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Median 
sample size 

id Review N (SO) Test Topic 
vasospasm due to 

Lysakowski ruptured cerebral 
19 2001191 a 7 66 (32) transcranial Doppler aneurysm 

MSAC 
20 2002192 12 77 (176) cytogenetic tests fragile X syndrome 

Nallamothu electron beam computed coronary artery disease 
21 2001 193 14 104 (63) tomography 

Patwardhan Alzheimer disease 
22 2004194 19 43 (31) PET dementia 

Roma~nuolo MRI bilary disease - detection 
23 20031 46 63 (53) cholangiopancreatography of stones 

Sauerland 
24 2004196 13 219 (577) clinical examination pelvic fractures 

Sotiriadis 4,308 
25 2003197 12 (4,642) intracardiac echogenic foci Down syndrome 

Varonen 
26 2000198 7 156 (74) ultrasound acute maxillary sinusitis 

Visser 
27 2000119 21 404 (739) Duplex ultrasound peripheral arterial disease 

Whitsel Bazett's heart rate- autonomic failure in 
28 2000114 17 58 (772) corrected QT interval (QTc) diabetes 

Wiese 
29 2000129 a 30 175 (294) wet mount technique vaginal trichomoniasis . 
denotes covariates for which the overall pooled HSROC analysis could not be completed 

b denotes covariates for which the parallel curve HSROC analysis could not be completed 
c denotes covariates for which the crossing curve HSROC analysis could not be completed 
N - number of studies 
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Covariates investigated 

heterogeneity of 
populationb, c 

gender patient identification 

age gender 

age type of controls 

patient identification 

age group 

age risk setting 

setting 

gender age setting - country 
mean duration 

age gender % type 1 diabetes of diabetes 

settingb, c 



investigated topic was cancer (9 of 29 reviews), followed by heart disease (3 reviews), 

peripheral arterial disease (2 reviews) and dementia (2 reviews) (Table 24). 

5.2.2 Comparison of primary analysis results 

The HSROC analyses could not be completed for three of the 29 datasets. 123
.
129,191 The ROC 

plots for these three datasets reveal that SROC analyses for these datasets are probably not 

appropriate (Appendix 23), with data lying along the sensitivity=specificity line,123 scattered 

mainly in the bottom left quadrant of the ROC space,191 or showing all studies with specificity 

approaching 100%.129 The comparisons of the two Moses methods are therefore based on 29 

comparisons, while the comparisons with the HSROC method are based on 26 comparisons. 

Figure 25 Similarity of DOR estimates between models 

Box and whisker plot showing ratio of OORs between models: median, interquartile range (box) and 
range (whiskers), where weighted Moses model is compared to the unweighted Moses model 
(denominator) and each Moses model is compared to the HSROC model (denominator) 
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M (w) vs M (eq) M (eq) vs HSROC M (w) vs HSROC M (w) vs M (eq) M (eq) vs HSROC M (w) vs HSROC 

RORatQ' ROR at mean threshold 

Maximum ROR 7.78 2.77 1.21 1.27 4.81 

75th percentile 0.87 0.99 0.72 0.91 1.05 

Median ROR 0.67 0.78 0.51 0.71 0.94 
25th percentile 0.50 0.51 0.24 0.54 0.68 

Minimum ROR 0.10 0.07 0.10 0.36 0.05 

ROR - ratio of diagnostic odds ratios; Moses (w) - weighted Moses model; Moses (eq) -
unweighted Moses model; HSROC - hierarchical SROC model; Q* - point where 
sensitivity=specificity; mean threshold - operating point estimated using mean threshold across 
stUdies 

DOR estimates 
Figure 25 shows that the weighted Moses model underestimates the results of the 

5.51 

0.75 

0.55 
0.46 

0.03 

unweighted model on average by about 30% (ROR at Q* 0.67; ROR at average threshold 
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0.71}. The IQRs are similar indicating that most comparisons are similarly spread around the 

median (similar levels of agreement) at Q* and at the average threshold but that the overall 

range in differences in results is much greater at Q*. This indicates that when DOR is 

estimated at Q* there is more scope for extreme differences between models compared to the 

DOR at the average threshold. 

On average, both Moses models under-estimate the DOR in relation to the estimate from the 

HSROC model, with the weighted Moses model showing the biggest under-estimation of 

effects. For the unweighted model, the under-estimation at the median is less extreme at the 

average threshold compared to at Q*, with an ROR of 0.94 (Figure 25), indicating little bias on 

average. The width of the IQR is also narrower at the average threshold but the overall range 

in results is greater. This suggests that most of the data is less biased when DOR is 

estimated at the average threshold compared to at Q* (tighter IQR), but where there are 

observed biases they are more extreme (wider overall range). 

The weighted model, on the other hand, on average underestimates the HSROC by 45 to 

50% regardless of where DOR is estimated. A similar pattern in IQR and range to that for the 

unweighted model comparison can also be observed with a wider IQR at Q* (less agreement) 

but narrower range (less extreme disagreements). 

SROC curve shape 
The extent to which the different models show similar evidence of asymmetry of SROC 

curves is demonstrated from the pairwise comparisons of P-values for the shape terms in 

(Figure 26). 

The comparison of results from the two Moses models (Figure 26a) shows relatively poor 

agreement between the models, and a tendency for the weighted model to find more 

asymmetry than the unweighted model. Six out of 29 analyses with the weighted model found 

asymmetry to P<0.20 when the unweighted model found no such evidence (P>0.20). Only 

two of the unweighted analyses found curve asymmetry (P<0.20) when the weighted model 

did not (P>0.20). 

For the comparisons of the Moses models with the HSROC model, agreement is better at 

lower P-values; i.e. where the HSROC model shows strong evidence of asymmetry, both 

Moses models also reach similar conclusions. The HSROC model finds asymmetry to P<0.20 

for 14 of the 26 reviews for which the analyses could be completed. The P-values from the 

weighted Moses model agree more closely with the P-values from the HSROC model 

113 



Figure 26 Agreement in strength of evidence for asymmetry of SROC curves 

a. Moses (w) versus Moses (eq) 
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(Figure 26c) than do those from the unweighted model (Figure 26b). Both Moses models find 

evidence of asymmetry for two analyses when the HSROC model finds no evidence (over­

detection of asymmetryY. However the unweighted Moses model also under-detects 

asymmetry in comparison to the HSROC model for three analyses (i.e. it finds P>0.20 when 

the HSROC finds P<0.20)k, while there are no such examples for the weighted Moses model. 

These results suggest that the weighted Moses model is more sensitive to asymmetry than 

the unweighted model. 

Stratification of RORs 
The results of the stratification of the comparison of OORs between models are presented in 

Table 26 and graphically in Appendix 24. 

Moses (w) versus Moses (eq) 

As anticipated from the analyses in Chapter 4, the weighted Moses model more closely 

approximates the unweighted model at lower OORs and at smaller ranges in'S' (Table 26). 

As OOR increases (the proportion of studies with exceptionally high sensitivities and/or 

specificities per review increases) and the range in'S' increases (bigger variation in the 

threshold for test positivity) the under-estimation of the weighted compared to unweighted 

model's results increases. On average, the underestimation is less extreme when OORs are 

at their highest compared to when they are between 35 and 100, however the lOR is wider 

shower greater disagreement. Bias in the SE(lnOOR) is common even at moderately high 

OORs and ranges in'S'. This data is also shown graphically in Appendix 24, Figure i and ii. 

Moses models versus HSROC 

The unweighted Moses results are consistently the most similar to those of the HSROC 

model (Table 26). At overall pooled OORs of less than 100 the results are identical to the 

HSROC model at the median with a narrow lOR, showing on average no bias and close 

agreement. At OORs of over 100, i.e. for reviews that include studies with exceptionally high 

sensitivities and/or specificities, the unweighted model considerably underestimates the 

HSROC results on average and the range in results is wider showing greater disagreement. 

One explanation for this is that the reviews with the highest OORs will have the most zero FP 

or FN cells. Where there are lots of zeros, the Moses models will have added 0.5 as a 

correction in their method, which will lead to downward bias in the estimate of the odds ratio 

in comparison to the HSROC model. The analysis by presence of zero cells in Table 26 

confirms this pattern. 

j See Appendix 19, analyses 13 and 25 for the unweighted model and 7 and 8 for the weighted model. 
k See Appendix 19, analyses 1, 4 and 23. 
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Table 26 Stratified comparison of DOR estimates between models 

Moses (w) vs Moses (eq) Moses (eq) vs HSROC Moses (w) vs HSROC 
Number of reviews' n=29 n=26 n=26 

Median ROR (p25, p75 median ROR (p25,J:>75) median ROR (p25, p75) 

ALL, n= 26 (29) 0.71 (0.54,0.91) 0.94 (0.68, 1.05) 0.55 (0.46, 0.75) 

by size of DORb 

DOR < 35, n=11 (13) 0.86 (O.63, 0.96) 1.01 (0.88, 1.16) 0.75 (0.49, 0.95) 

DOR 35-100, n=7 (7) 0.60 (O.54, 0.76) 1.00 (0.83, 1.051 0.53 (0.42, 0.69) 

DOR> 100, n=8 (9) 0.71 (0.55,0.96) 0.67 (0.35, 0.74) 0.49 (0.15, 0.59) 

by range in 'S,c 

range 3 to <6, n=7 (8) 0.76 (0.715, 0.89) 0.82 (0.68, 1.03) 0.75 (0.52, 0.79) 

range 6 to <8, n=13 (14) 0.66 (0.53, 0.96) 0.88 (0.68, 0.99) 0.53 (0.49, 0.75) 

ranqe ~8, n=6 (71 0.55 (0.41, 0.86) 1.14 (1.05, 1.1n 0.51 (0.42, 0.73) 

by % zero cellsd 

<5%, n=9(1 Ql 0.81 (0.54, 0.98) 1.01 (0.88, 1.05) 0.78 (0.53, 0.88) 

5 to 10%, n=9 (9) 0.60 (0.53, 0.66) 1.04 (0.95, 1.11) 0.57 (0.49, 0.73) 

>10%, n=10 (8) 0.74 (0.58, 0.96) 0.67 (O.36, 0.72) 0.49 (O.16, 0.70) 

by strength of evidence of 
asymmetry" 

beta, p<0.10, n=9 x 1.05 (1,1.16) 0.53 (0.49, 0.57) 

beta, 0.10:>p<0.35, n=6 x 0.84 (0.65, 1.11) 0.49 (0.45, 0.95) 

beta, p~0.35, n=11 x 0.82 (O.68, 0.95) 0.75 (O.5, 0.78) 

by strength of evidence of 
threshold! 

theta, p<0.10, n=14 x 0.96 (0.81,1.11) 0.61 (0.49,0.79) 

theta, 0.1 0:>p<0.35, n=5 x 0.59 (O.12, 0.83) 0.24 (O.07, 0.5) 

theta, p~0.35, n=7 x 0.99 (0.75, 1.04t 0.75 (0.46, 0.78) 
Comparisons are between DORs estimated at the mean threshold. The weighted Moses model IS 

compared to the unweighted Moses model (denominator) and each Moses model is compared to the 
HSROC model (denominator) 

ROR - ratio of diagnostic odds ratios; Moses (eq) - unweighted Moses model; Moses (w) - weighted 
Moses model; median - ROR at the median; p25 - ROR at the 25th percentile; p75 - ROR at the 75 th 

percentile 
a The analyses per comparison is 29 for the Moses comparisons and 26 for the HSROC comparisons. 
The numbers in brackets indicate the numbers per subgroup for the Moses comparisons. 
b The stratification by DOR is based on the HSROC overall pooled estimate; where the HSROC model 
did not run, it is based on the unweighted Moses model result. 
C based on values for'S' from Moses model 
d number of zero false positive or false negative cells as a percentage of the total number of cells per 
analysis 
e based on P-value associated with shape term from HSROC model 
f based on P-value associated with threshold term from HSROC model 

The weighted Moses model on average underestimates the HSROC results, but with lower 

median RORs and larger interquartile ranges (Appendix 24, Figure i). It also shows on 

average greater underestimation of OOR at overall pooled OORs of over 100. 

The unweighted Moses model on average underestimates the HSROC OORs at smaller 

ranges in'S' and slightly over-estimates the HSROC model at larger ranges in'S'; the IQR 
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narrows. The under-estimation of the HSROC OOR by the weighted Moses model, however, 

worsens as the range in'S' increases and the lOR widens. 

Where the HSROC model shows strong evidence of asymmetric SROC curves (P<0.10), the 

unweighted Moses model OORs quite closely approximate those from the HSROC model at 

the median, showing on average little bias. The lOR is quite narrow showing little 

disagreement (Table 26). As the evidence of asymmetry becomes less strong, the 

unweighted Moses model on average underestimates the OOR in comparison to the HSROC 

model and there is more disagreement. The weighted Moses model results are in the 

opposite direction, showing stronger underestimation of the HSROC OOR and less 

disagreement, the more asymmetric the SROC curves. 

There does not appear to be any clear pattern in results according to the strength of threshold 

effects found by the HSROC model. 

Summary 
The weighted Moses model is strongly affected by the presence of bias in the SE(lnOOR). It 

underestimates the unweighted model by about 30%, and the underestimation is worse at 

higher OOR and wider ranges in'S', both circumstances in which biased SE(lnOOR) would be 

expected. 

The weigthed Moses model underestimates the OORs obtained from the HSROC model, and 

performs consistently worse than the unweighted model in the stratified analyses. However, 

the weighted model is also more likely to find curve asymmetry compared to the unweighted 

Moses model, and its P-values are in closer agreement with the HSROC model, compared to 

the unweighted model. 

5.2.3 Comparison of heterogeneity investigations 
The 29 reviews meeting the inclusion criteria provided information on 60 spectrum-related 

covariates (Table 25). The most commonly investigated characteristics were age (11/60), 

gender (10/60) and characteristics related to patient identification (n=10). Setting was 

investigated in 6 reviews. The remaining characteristics were largely more topic specific, such 

as the percentage of patients with "previous surgery",123 the percentage with "type 1 

diabetes", 114 or with "intermittent claudication".19o For this section, three comparisons were 

undertaken: the two Moses models against the HSROC model; and for the HSROC model 

only, a comparison of results with and without an interaction of covaraite and shape. 

Of the 60 investigated covariates, the HSROC model could not be completed for one 

covariate for the parallel curve version, four covariates for the crossing curve version and for 

five covariates for either model. These are denoted in Table 25. For 6 of the 10 covariates 

there were insufficient numbers of studies in at least one of the subgroups (less than 5 
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studies) and in the other four the studies exhibited exceptionally high specificities with varying 

sensitivities. The number of covariates per comparison therefore varies: 

• Either Moses model versus HSROC with parallel curves, n=54 

Either Moses model versus HSROC with crossing curves , n=51 

HSROC parallel versus crossing , n=50 

Table 27 Comparison of relative diagnostic odds ratios (RDORs) between models 

M (eq) vs HSROC M (w) vs HSROC 

Parallel curve models Median (IQR) Range Median (IQR) Range 

Ratio of ROORs at Q* 0.87 (0.58, 1.02) 0.02, 1.93 0.80 (0 .54, 1.05) 0.05, 1.90 

Crossing curve models 

Ratio of ROORs at Q* 0.66 (0 .32, 1.63) <0.01 , 76.8 0.76 (0.26, 1.45) <0.01 , 35 .63 

Ratio of ROORs at average 0.70 (0 .32, 1.26) <0.01 , 4.69 0.64 (0.39, 1.10) <0.01 ,11 .81 
reference group threshold 

Ratio of ROORs at average 0.64 (0.39, 1.12) <0.01 , 18.16 0.66 (0.34, 0.91) <0.01 ,42. 14 
comparator group threshold 

Each Moses model IS compared to the HSROC model (denominator); IQR - Interquartile range; ROOR - relative 
diagnostic odds ratio; RROR - ratio of ROORs 
NB: The very extreme ranges for the crossing curve models have occurred in reviews with very small numbers of 
studies in one of the comparator groups leading to very big differences in ROORs between models 

Comparison of relative RDORs and RDOR P-values 
The comparison of ROORs between models shows that on average disagreement is common 

regardless of whether a shape interaction is included or not and regardless of the point at 

which the ROOR is estimated (Table 27 and Appendix 25). Both Moses models considerably 

underestimate the ROORs on average from the HSROC model and to a similar extent. The 

under-estimation is less for the parallel curves but nevertheless, they still on average 

underestimate the HSROC ROOR by 13% (unweighted Moses) and 20% (weighted Moses). 

For all estimates the IQR covers a wide range in values both over and under-estimating 

ROOR, showing considerable disagreement between methods. The range of disagreement is 

less for the comparisons of parallel curve models (with narrower IQRs). 

Figure 27 Comparison of P-values for RDORs between parallel curve models 

a. Moses (eq) versus HSROC 

.2 .4 .6 .8 
HSROC parallel curves 

p-va lue for ROOR 

b. Moses (w) versus HSROC 

.2 .4 .6 .8 
HSROC parallel curves 

p-valu. for ROOR 

'P-value' plots comparing the P-values for the relative diagnostic odds ratios (ROORs) between models. For each 
comparison the model represented on the x-axis indicates the reference case. 
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The visual comparison of P-yalues for ROORs from parallel curve models (Figure 27) 

suggests that neither Moses model has better overall agreement in terms of the strength of 

evidence for the effects of covariates on accuracy. However, taking P<O.20 as providing 

moderate to strong evidence of differences in accuracy, the weighted Moses model was more 

likely to find strong evidence of differences where the HSROC model finds none (7 out of 54 

investigations found P<O.20 when HSROC found P>O.20, Table 28). 

Table 28 Agreement in strength of evidence for differences in accuracy between 
models (ROOR P-values at P<O.20) 

HSROC P<O.2 HSROC P>O.2 
Moses (eq) Moses (w) Moses (eq) Moses (w) 

P>O.2 P>O.2 P<O.2 P<O.2 
Parallel curve models 

5 (9%) 2 (4%) 3 (6%) 7 (13%) 
(n=54 comparisons) 
CrossinQ curve models 
ROOR at Q* 

7 (14%) 5 (10%) 6 (12%) 10 (20%) 
(n=51 comparisons) 
ROOR at average reference 

4(8%) 8 (16%) 5 (10%) 8 (16%) group threshold 
ROOR at average comparator 

2 (4%) 7 (14%) 4(8%) 9 (18%) Qroup threshold 

The final column of Table 28 shows that this trend was not strongly maintained for the 

ROORs from the crossing curve model with both weighted and unweigh~ed models over and 

under-detecting differences in accuracy com pard to the HSROC model. 

Figure 28 Comparison of strength of evidence for differences in shape between models 
(comparison of P-values for shape interaction term) 

a. Moses (eq) versus HSROC 
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'P-value' plots comparing the P-values for the relative diagnostic odds ratios (ROORs) between models. For each 
comparison the model represented on the x-axis indicates the reference case. 

Differences in SROC curve shape between groups 
For the estimation of differences in curve shape between subgroups (Figure 28a and b) there 

is again little overall agreement between models. Taking P<O.20 as providing moderate to 

strong evidence of differences in shape (Table 29), there were little differences between the 

Moses models in the level of agreement with the HSROC model. Both unweighted and 

weighted models over and under-estimated differences in shape compared to the HSROC 

model. 
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Table 29 Disagreement in strength of evidence for differences in shape between 
models (comparison of P-values for shape differences at P<0.20) 

HSROC P<O.2 HSROC P>O.2 
Moses (eq) Moses (w) Moses (eq) Moses (w) 

P>O.2 P>O.2 P<O.2 P<O.2 
No. of investigations 

6 (12%) 8 (16%) 4 (8%) 8 (16%) 
(n=51) 

Comparison of parallel versus crossing curve models 
Figure 29 presents within model comparisons of ROORs at Q* with and without the interaction 

of covariate with shape, i.e. parallel versus crossing curve versions of the models. This shows 

that for each model on average, the parallel curve versions under-estimate the ROORs 

compared to the crossing curve versions, by up to 50% for the Moses models and 20% for the 

HSROC model. The interquartile ranges are wide for all three models, showing considerable 

scope for disagreement between methods. 

Figure 29 Parallel versus crossing SROC curve models: Ratio of RDORs at Q* 

Box and whisker plot showing ratio of ROORs between models: median, interquartile range (box) 
and range (whiskers), where crossing curve version of each model is the reference case 
( denominator) 
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0.0001 . 

0.00001 ---------------------------------------------------
Moses (eq) Moses (w) HSROC 

Maximum RROR 2.58 19.05 2.07 

75th percentile 0.96 1.01 1.07 

Median RROR 0.55 0.55 0.81 
25th percentile 0.15 0.31 0.24 

Minimum RROR <0.01 <0.01 <0.01 

RROR - ratio of ROORs between models; Moses (w) - weighted Moses model; Moses (eq)­
unweighted Moses model; HSROC - hierarchical SROC model 
NB: The very extreme ranges for the crossing curve models have occurred in reviews with very small 
numbers of studies in one of the comparator groups leading to very big differences in ROORs between 
models 
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Figure 30 Comparison of P-values for ROOR between parallel (PA) and crossing curve (XG) models 
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'P-value' plots comparing the P-values for the relative diagnostic odds ratios (ROORs) between models. For each comparison the model represented on the x-axis (crossing curve version 
of each model) indicates the reference case. Central diagonal line indicates perfect agreement between methods. 

121 

• 

• 



Although on average the under-estimation is less for the HSROC comparison, the choice of 

parallel or crossing curve model can still considerably affect the magnitude of the difference in 

accuracy that is found. 

Table 30 Agreement in strength of evidence for differences in accuracy between 
models (comparison of P-values for ROOR at Q* and threshold at P<0.20) 

Crossing curve version P<O.2 P>O.2 

Parallel curve version P>O.2 P<O.2 

ACCURACY DIFFERENCES 

Moses unweighted (n=60) 11 (18%) 8 (13%) 

Moses weighted (n=60) 0 7(12%) 

HSROC (n-50) 4 (8%) 3 (6%) 

THRESHOLD DIFFERENCES 

HSROC (n=50) 6 (12%) 12 (24%) 

The agreement between models in terms of the strength of evidence for the effects of 

covariates on accuracy is given in Table 30 and Figure 30. 

For the unweighted Moses model, agreement is poor both overall and at the more important 

lower P-values: 11 of 60 investigations with the parallel curve version of the model found 

P>0.20 when the crossing curve version found P<0.20, while 8 of 60 found P<0.20 while the 

crossing curve version found P>0.20. The unweighted Moses model with parallel SROC 

curves therefore both over and under detects heterogeneity in terms of differences in 

accuracy compared to the crossing curve version. The parallel curve weighted Moses model 

shows no evidence of under detection of differences in accuracy compared to the crossing 

curve version but does over detect differences (7 of 60 investigations). 

The comparison of the parallel and crossing curve versions of the HSROC model shows 

some over-detection of heterogeneity in terms of differences in accuracy and some under 

detection, but not to the same extent as for the unweighted Moses model comparison (Table 

30). Four of 50 investigations with the parallel curve version of the model found P>0.20 when 

the crossing curve version found P<0.20, while 3 of 50 found P<0.20 while the crossing cure 

version found P>0.20. 

The comparison of evidence for differences in threshold between the HSROC parallel and 

crossing curve models shows no agreement at lower P-values (Table 30 and Figure 31). The 

crossing curve model found moderate to strong evidence of threshold differences between 

groups for 6 covariate investigations, none of which had P-values of less than 0.20 when 

parallel curves were assumed. At the same time, the parallel curve model found evidence of 

threshold differences to P<0.20 in 12 datasets, only two of which relatively closely agreed with 

the results when curves were allowed to have different shapes. 
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Figure 31 Comparison of P-values for threshold differences between HSROC parallel 
and crossing curve models 

. . 

o 2 A ~ ~ 1 
Difference in threshold HSROC model with crossing SROCs 

p-value for difference in theta 

'P-value' plot comparing the P-values for the differences in threshold between the parallel curve and crossing curve 
(reference case) versions of the HSROC model. 

Summary 
The two Moses models underestimate the size of differences in accuracy between groups 

compared to the HSROC model; the difference is less when parallel curves are modelled but 

nevertheless remains. Both models find strong evidence for differences in accuracy when the 

HSROC model does not (over-detection of differences), the weighted model more so than the 

unweighted model. Both models also do not indicate evidence for' differences in accuracy that 

are identified by the HSROC model (under detection of differences). For the detection of 

differences in curve shape between groups, the unweighted model most closely agreed with 

the HSROC models, but still both over and under-detected such differences, 

The within model comparisons of parallel and crossing curve versions of the models showed 

that this choice will almost always affect a review's conclusions regarding the size of any 

differences in accuracy according to a given covariate, sometimes to quite a considerable 

extent. Differences in the strength of the evidence for differences also vary by choice of 

model. The effect on the size and strength of the difference in accuracy is less for the HSROC 

model but nevertheless occurs. 

5.2.4 Selected illustrative examples - Moses versus HSROC 

Primary Analyses 

While the clinical implications of the under-estimation of diagnostic accuracy are relatively 

simple to interpret (tests will on average appear less accurate when analysed using the 

Moses methods), the implications of the over or under-detection of asymmetry are less 

intuitive. SROC curve asymmetry is introduced when the distribution of test results differs 

between diseased and nondiseased participants and means that accuracy (DOR) is not 

constant, i.e. it varies along the length of the SROC curve. This in turn means that the 

apparent accuracy of a test will vary according to the point at which the DOR is estimated. 
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The HSROC model found curve asymmetry to P<0.20 for 14 of the 26 reviews analysed 

(54%), suggesting that curve asymmetry is a relatively common occurrence. The weighted 

Moses model agreed more closely with the HSROC model results regarding asymmetry than 

the unweighted model. 

Data on the use of FOG-PET for the diagnosis of lung cancer107 show strong evidence of 

asymmetry with the unweighted Moses model (P=0.05) and no such evidence when analysed 

with the HSROC model (P=0.71). The DORs at Q* and at the average threshold are 127 and 

72 for the Moses model and 142 and 107 for the HSROC model (Appendix 19). Quite apart 

from the under-estimation of accuracy, from the Moses model one would conclude that there 

are considerable differences in the distribution of test results between diseased and 

nondiseased, such that accuracy is not constant along the SROC curve. The HSROC model 

indicates that although there may be differences in the distribution of results (there is some 

variation in DOR) the differences are not statistically significant. 

Heterogeneity analyses - Differences in RDORs 

Where subgroup SROC curves are assumed to have the same shape (parallel curves), the 

HSROC model finds evidence of differences in accuracy between groups to P<0.20 for 18/54 

(33%) analyses. The unweighted Moses model has a tendency to under-detect these 

differences, whilst the weighted model is more likely to over-detect differences. 

An example of over-detection of differences in accuracy is provided by the review of MRA for 

the detection of peripheral arterial disease.19o The weighted Moses model found some 

evidence to suggest that MRA is three times more accurate in studies of participants with a 

mean age of less than 65 than in those with on average older participants (RDOR 3.35, 

P=0.15). The HSROC model on the other hand found no evidence of differences (RDOR 

0.89, P=0.91). 

Heterogeneity analyses - Differences in shape 

Differences in curve shape to P<0.20 were identified by the HSROC model for 12/51 (24%) 

investigations for which the analyses could be completed. Both Moses models over- and 

under-detected these differences. 

An example of over-detection of differences in curve shape is provided by the review of 

straight or cross leg raising test for the detection of herniated discs. 123 The unweighted Moses 

model found strong evidence (P=O.07) that the SROC curves for patients having undergone 

previous surgery were different in shape to those who had not received previous surgery. This 

suggests that the distribution of test results between diseased and nondiseased differs 
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between these subgroups. The HSROC model finds considerably less evidence to suggest 

these differences (P=0.22). 

5.2.5 Evidence of spectrum effects - HSROC parallel versus 

crossing curves 

If one takes the advanced models of meta-analysis as the best available tool for the synthesis 

of diagnostic test studies, the choice of a parallel (HSROC or BVN) or crossing curve 

(HSROC only) model is perhaps the most pertinent discussion to be had regarding the 

models assessed here. 

Excluding the analyses that could not be completed for either model leaves 50 comparisons 

by spectrum-related covariates. The parallel curve model found evidence of differences in at 

least one parameter (accuracy or threshold) for 23 (46%) comparisons, compared to 25 

(50%) for the crossing curve model (differences in accuracy, threshold or shape). Sixteen 

investigations showed evidence of differences in at least one parameter using both models, 

leaving a further 16 showing evidence of differences under only one model. 

Of the 32 investigations showing strong effects from the covariate in question using either the 

parallel or crossing curve model, 7 were related to mean age, six to gender, 4 to setting, 10 to 

factors related to the identification of patients and 5 to particular clinical characteristics of the 

patients in question. 

The crossing curve model was more likely to find differences in accuracy at Q*, at the 

average reference threshold or at the average comparator threshold (40% of investigations 

compared to 32% for the parallel curve version). The parallel curve model was more likely to 

find differences in threshold (24% compared to 14% for the crossing curve version), with little 

overlap in results between models (only one comparison showed evidence of differences in 

threshold under both frameworks). Differences in shape were identified in 24% of 

investigations. 

Effects from spectrum-related covariates are therefore not uncommon however the choice of 

model is clearly key. Table 31 shows the differences in results between models. Where the 

two models both find differences in at least one parameter (n=16), both models suggest 

differences in accuracy in the majority of cases (15/16 for the parallel curve model and 14/16 

for the crossing curve model; accuracy being the only parameter affected in 10 and 9 

comparisons respectively). If the parallel curve model alone was employed differences in 

accuracy would be identified in a further one comparison and differences in threshold for six. 

However if the crossing curve model was employed, a further nine examples of differences in 

at least one parameter are identified. In six of the 9, this manifests as differences in accuracy. 

Allowing for differences in the distribution of test results between subsets of studies (crossing 
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curve) therefore produces more evidence of differences in accuracy than assuming no such 

differences in distributions exist (parallel curves). Shape is the only parameter affected in a 

small number of examples (3/25). 

Table 31 HSROC parallel versus crossing curve models: similarity of strength of 

evidence 

Difference in Parallel Crossing Difference to P<O.20 

parameters P<O.20* curves curves3 Both models Parallel Crossing 

N=50 N=50 only only 

At least one parameter 23 (46%) 25 (50%) 16 7 9 

PA XG 

Accuracy 16 (32%) 20 (40%) 15 14 1 6 

Shape - 12 (24%) - 6 6 

Threshold 12(24%) 7 (14%) 6 3 6 2 

accuracy alone 11 (22%) 12 (24%) 10 9 1 3 

shape alone - 3 (6%) - 2 3 

threshold alone 7 (14%) 1 (2%) 1 0 6 0 

accuracy and shape only - 3 (6%) - 2 1 

accuracy and threshold 5 (10%) 0 5 0 0 0 

only 

accuracy, shape and - 5 (10%) - 3 2 

threshold 

shape and threshold - 1 (2%) - 0 0 

only 

* analyses for which either the parallel or crossing curve models would not complete are excluded 
a difference in accuracy could be at Q*, at the average reference threshold or at the average comparator threshold 

Variation in findings regarding differences in threshold and the added complexity from 

differences in shape complicate comparisons between models. Details of the results of the 

heterogeneity investigations are presented in Appendix 20 to Appendix 22. For illustrative 

purposes, two examples where differences in two or more model parameters were found are 

presented below. 

Firstly, in a review of PET scanning for the detection of Alzheimer disease dementia,194 the 

parallel curve version of the HSROC model finds no evidence of differences in accuracy 

according to whether healthy or diseased controls are recruited to the study (ROOR 1.91, 

P=0.39). When crossing SROC curves are modelled (i.e. the distribution of test results in 

diseased and nondiseased can vary between subgroups), some evidence of differences in 

accuracy by type of controls used is found (ROOR at Q* 5.70, P=0.12; ROOR at reference 

threshold 0.68, P=0.48; ROOR at comparator threshold 4.57, P=0.26). For this example the 

evidence for differences in curve shape and threshold between subgroups was not very 

strong (P=0.26 and P=0.37, respectively). 
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In a second example, stronger evidence for differences in curve shape (P=0.04) and 

threshold (P=0.09) between subgroups was identified. 184 For this review of sleep monitors for 

the diagnosis of sleep apnoea, the parallel curve HSROC model found no evidence for 

differences in accuracy by mean body mass index (BMI) above or below 30 (ROOR 1.54, 

P=0.48). However when the curves had different shapes, a more complex picture emerges. At 

Q*, studies of patients with a mean BMI of 30 or less were 11 times more accurate than those 

in patients with a mean BMI of greater than 30 (ROOR 11.07, P=0.12). The ROOR at the 

comparator group mean threshold was in the same direction (20.71, P=0.27), but at the 

reference group mean threshold sleep monitors were less accurate in studies with a lower 

mean BMI (ROOR 0.56, P=0.08). This example is similar to the example by reference test in 

Chapter 4; the SROC curves cross near to the centre of the data and additionally cross near 

to the comparator and reference group mean threshold points. The difference in accuracy 

depends on the point at which the ROOR is estimated. 

5.3 Discussion 
The purpose of this chapter was to determine the extent to which the findings in Chapter 4 

could be generalised i.e. to examine the extent to which the meta-analytic models disagree 

and under what circumstances, and to determine whether spectrum-effects are more easily 

identified using anyone of the methods. It should again be noted that both the HSROC and 

BVN models were applied to the TB data in Chapter 4 whereas for this chapter only the 

HSROC model was employed. This was because, where parallel curves are modelled the two 

models produce very similar results and also because the BVN model cannot easily 

incorporate an interaction of covariate with shape. As a result, some of the conclusions from 

Chapter 4 refer to the 'advanced models' whereas the discussion of the findings from this 

chapter refer only to the HSROC model. 

The TB analyses found for the primary data analysis: 

1. considerable disagreement between the two Moses models 

This was supported by the re-analysis of review data for this chapter. The weighted Moses 

model, on average, consistently under-estimated the results of the unweighted model both for 

the OOR at Q* and at the average threshold. Stratification of the analyses showed the under­

estimation to be exaggerated at higher pooled OORs and with wider ranges in'S', i.e. in 

reviews of studies with exceptionally high specificity and/or variation in threshold. These are 

two of the characteristics that lead to (upward) bias in the SE(lnOOR). The third such 

characteristic is unequal numbers of diseased and nondiseased participants, but it was not 

possible to easily model this across multiple datasets. Weighting by the inverse of the SE 

leads to these studies receiving a very low weight in the weighted Moses analyses, so that 

the overall pooled OOR is lower in comparison to that of an unweighted analysis. 
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There was reasonable agreement between models regarding the presence of asymmetry in 

the SROC curves, however the weighted model found more curve asymmetry than the 

unweighted model. 

2. the unweighted Moses model results were most similar to those of the advanced models. 

This was also supported by the re-analysis of review data except for the detection of 

asymmetry. For estimation of OOR, the unweighted Moses model on average, only slightly 

under-estimated the HSROC results (ROR 0.94). The stratified analyses however, showed 

large under-estimations at the highest levels of OOR (Le. over 100) and with increasing 

numbers of zero cells. The correction for zero cells (adding 0.5 to each of the four cells) will 

have led to downward bias in the estimate of the odds ratio in comparison to the HSROC 

model. 

There also appeared to be a trend from under to over-estimation of the HSROC OOR by the 

unweighted Moses model as the range in'S', or variation in threshold, increased. A similar 

pattern occurred with increasing asymmetry of the SROC curve with under estimations of 

OOR occurring where there was little or no evidence of asymmetry and over estimations of 

OOR occurring in the presence of asymmetry. This suggests that the Moses model cannot 

adequately deal with studies with very high specificities nor correctly model variation in 

threshold. 

The weighted Moses model was more likely to find similar strength of evidence of asymmetry 

to the HSROC model, however the OORs for the reviews with asymmetric curves were less 

than half that of the HSROC model. The stratified analyses showed similar trends to those for 

the unweighted analysis, except by range in S. As the variation in threshold increased, the 

weighted model further underestimated the HSROC results. 

The suggestions from the TB chapter regarding the addition of covariates to the models were 

as follows: 

3. where parallel SROC curves are modeled, the un weighted Moses model generally has 

results more similar to the advanced models than the weighted Moses model 

The reviews re-analysis data found some support for this finding but the differences between 

the unweighted and weighted models was small. At the median, the unweighted model 

showed slightly less bias in comparison with the weighted model, underestimating the 

HSROC model ROOR by 13% compared to 20% respectively. The interquartile ranges were 

almost identical, showing similar scope for disagreement with the HSROC results. The 

unweighted model was more likely than the weighted model to under detect differences in 

accuracy identified by the HSROC model, however the weighted model was more likely to 

over detect differences where the HSROC model found none. 
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4. where curves have different shapes, neither Moses model consistently approximated the 

HSROC model results 

This finding was also supported by the reviews re-analysis data. Both Moses models on 

average considerably underestimated the ROORs of the HSROC model. The model that was 

closest to the HSROC varied by the point at which ROOR was estimated. The interquartile 

ranges were wide for all comparisons and also included over-estimations of the HSROC 

ROOR. The weighted model was also considerably more likely to over detect differences in 

curve shape between subgroups. This is a continuation of the feature noted in 2. above that 

the weighted model detects asymmetry more sensitively than the unweighted model. This 

data shows that it also detects asymmetry more sensitively than the HSROC model. However 

both models also under detected shape differences identified by the HSROC model. 

5. for the HSROC model, in some circumstances, the interaction of covariate with shape 

made little difference to the conclusions that would be drawn from the model regarding 

the importance of a covariate, but in others conflicting results arose 

There is again some evidence to support this observation. The average differences between 

parallel and crossing curve versions of the models were considerably less for the HSROC 

within model comparison than for the Moses comparisons, however on average, the parallel 

curve version of the model under-estimated the ROOR of the crossing curve model by 19% 

with an IQR from 0.24 to 1.07. There were reviews for which the choice of parallel or crossing 

curves made only a small difference to the ROOR, however in a considerable number, large 

differences were apparent. The agreement between parallel and crossing curve models in 

terms of strength of evidence for differences in accuracy was good, however, especially at 

lower P-values. Allowing for a shape interaction, however does lead to an increased number 

of covariates for which differences in accuracy (and in other parameters) is identified. 

Both Moses models demonstrated much bigger differences in the magnitude of the 

differences in accuracy between the parallel and crossing versions of the model and in the 

strength of evidence of differences in accuracy. This shows that the choice of parallel or 

crossing curve model under the Moses framework, frequently has a large impact on 

conclusions regarding differences in accuracy. 

A further finding from the TB analyses was common and sometimes considerable 

disagreement between the two Moses models regardless of whether parallel or crossing 

SROC curves were modeled. This was also examined for the reviews reanalysis dataset, but 

for simplicity, the data has not been presented. The observations seen for the TB data were 

supported by the reviews re-analysis with the weighted model on average consistently under­

estimating the unweighted model. 
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The analyses in this chapter therefore provide considerable support for the general findings of 

Chapter 4. There are several implications of this data for the wider literature. 

The detailed review of diagnostic test reviews in Chapter 3 showed that use of the weighted 

Moses model is common. Of 64 reviews using an SROC analysis, 20% (n=13) used an 

unweighted approach, 39% (n=25) a weighted model and a further 27 reviews did not specify 

any weighting schedule. Not all of the weighted reviews used the inverse of the variance of 

InDOR as the weight, however under estimation of test accuracy in the literature due to the 

use of this weighting is clearly a problem as is over detection of asymmetric SROC curves. 

Both Moses models can produce results very similar to the results of the HSROC model but 

on average they are much more likely to underestimate results both for primary analyses and 

for identification of differences in accuracy. Both models also over and under detect 

differences in accuracy and shape. This has huge implications for the majority of existing 

reviews of diagnostic tests. Taking the HSROC model as the benchmark, it is not too much of 

an exaggeration to say many hundreds of reviews have underestimated test accuracy and 

both over and under identified different aspects of heterogeneity. 

These results not only potentially have real clinical significance but also may have 

consequences for our understanding of different biases in diagnostic test research. Empirical 

studies to identify and quantify sources of biases in diagnostic accuracy studies have used 

regression models adapted from the Moses models.64.199 It is quite reasonable to assume 

that their results at the very least under-estimate the size of the biases in operation. It is likely 

that spectrum effects exist and that given the appropriate data can be detected, however use 

of either of the Moses methods to identify them will often lead to under-estimation of the size 

of any effect and to misleading indications of the strength of any effect. 

The widespread use of Q* as the point at which to estimate DOR in itself introduces 

considerable bias. The Moses models are generally more biased when DOR is estimated at 

Q* compared to at the average threshold (wider IQR), although there are more extreme 

biases for DOR at the average threshold for the unweighted model. For the weighted Moses 

model compared to the unweighted model, the more extreme biases are at Q*, but on 

average the biases are similar at Q* and at the average threshold. 

The second aim was to identify effects from spectrum-related variables. The analyses here 

were confined to spectrum-related variables and the presence of strong evidence of 

differences between subgroups suggests that such effects can be demonstrated using meta­

analytic techniques. However, for many of the investigations only aggregated data such as 

the mean age or the percentage of men or women included could be examined. There may 

often be question marks over whether such variables are sufficiently good proxies for true 
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spectrum-related variables. Furthermore, detection of true effects using aggregated data is 

problematic and often not applicable to individual patients. 2DD 

At the onset of the work on this thesis, it was hypothesised that an advantage of the 

advanced methods would be to identify any differential effects of spectrum-related covariates 

on sensitivity and specificity. Current thinking however is that given variations in threshold 

across studies it is more appropriate to compare SROC curves, i.e. to compare differences in 

accuracy threshold and shape, than it is to compare operating points. 

The question remaining for the advanced methods is whether an interaction of covariate with 

shape should be routinely modelled or not. These results show that taking the approach of 

fitting the simplest model and ignoring any potential differences in distributions of test results 

between subsets of studies (difference in shape) can give a different answer to an approach 

where shape differences are directly modelled. These differences in results between models 

depends on the extent to which the distributions of test results between diseased and 

nondiseased differ according to the covariate in question. If the two or more subsets of 

studies exhibit similar patterns in these distributions, the associated SROC curves will have 

similar shapes and the crossing curve version of the model will produce results more akin to 

those of the parallel curve model. If the pattern in the distribution of results differs so that the 

SROC curve for one subset of studies is perhaps more asymmetric than the other, the parallel 

and crossing curve versions of the model would be expected to produce different results. 

For the dataset used here, differences in at least one parameter were identified by both 

parallel and crossing curve models for around a third of all of the covariate investigations 

(16/50) and for most of these, differences in the accuracy parameter were found. Although a 

similar number of additional investigations with strong evidence for differences by covariate 

were identified using each model (7 for the parallel curve version and 9 for the crossing curve 

version), those identified by the crossing curve model may be more clinically significant. Of 

the 7 investigations for which significant differences were found with the parallel curve model 

alone, one indicated differences in accuracy and six indicated differences in threshold. Of the 

9 investigations for which significant differences were found only with the crossing curve 

model, six indicated differences in accuracy, six in shape and two in threshold. Differences in 

accuracy suggest that the subgroups are operating on two different SROC curves, differences 

in shape that the relationship between the distribution of test results in diseased participants 

and nondiseased participants differs by covariate, and differences in threshold that the 

studies operate at different points on the curves. 

The most appropriate approach to modeling, e.g. whether both models should always be 

carried out or whether one should start with the simplest approach and progress to more 

complex modeling if required, needs further work. The evidence presented suggests that 
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although interpretation of results may be more complex when crossing curves are modelled, 

there is possibly a greater risk of missing covariate effects if only parallel curves are 

constructed. This question can perhaps only be addressed by simulation studies although 

these in themselves would be complex to design. 

The strength of this review was the number of datasets available for reanalysis. This enabled 

the further investigation of observations identified from a single dataset in Chapter 4 so that 

the findings can be strengthened and generalised. Further investigation might identify certain 

circumstances under which the Moses methods more closely approximate those of the 

HSROC method, however the ease of use of the HSROC method is now such that it or the 

BVN model, should be the preferred approach. The main issue that requires further 

investigation is the circumstances under which the parallel and/or crossing curve models 

should be employed. Some of the extreme results from this dataset also emphasise that 

there are circumstances under which meta-analysis should not be undertaken and that this 

should be carefully assessed before any pooling is attempted. 
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6 Discussion 
Chapter 1 introduced the concept of diagnostic accuracy as the means by which diagnostic 

tests are evaluated and also introduced that diagnostic tests can operate differently according 

to spectrum-related characteristics. Actual clinical examples of variations in accuracy by 

spectrum were presented and the mechanism of the effect explained. Namely, characteristics 

such as disease severity or symptoms in diseased persons and conditions similar to that of 

the target disorder in nondiseased persons can affect the response of an individual to a given 

test. The mix or distribution of these characteristics amongst the participants of any given 

study affects the distribution of test results in diseased and nondiseased persons and thereby 

the sensitivity and specificity of the test in question. The distribution of spectrum-related 

characteristics is unlikely to be constant across studies, therefore sensitivity and specificity 

will vary to a greater or lesser extent between studies. 

Diagnostic accuracy studies are also subject to a host of other potential sources of variation 

including those related to test, methodology and threshold. It is rare for diagnostic accuracy 

studies to be sufficiently large in size or to recruit a sufficiently broad spectrum of participants 

to allow the influence of spectrum to be teased out from other potential sources of variation. 

Systematic reviews, and particularly meta-analysis, may therefore be the best available tool to 

identify the extent to which various the sources of heterogeneity, including spectrum, can 

affect test accuracy. Various methods of meta-analysis may be employed, however random 

effect models that specifically allow for threshold effects and for variation in test accuracy 

(DOR) with threshold are preferred. 

Chapter 2 discussed in more detail the sources of heterogeneity other than spectrum and 

explained four methods of meta-analysis that allow for variability in threshold and for variation 

in DOR with threshold. These are the Moses model, unweighted and weighted by the inverse 

variance of the log of the DOR, and the so-called 'advanced models', the bivariate normal 

model (BVN) and the hierarchical SROC (HSROC) model. 

Primary analyses with all four models produces an SROC curve which can be interpreted in 

terms of its DOR (a global measure of test accuracy) and shape (or degree of asymmetry). 

The advanced models also produce an estimate of threshold, indicating likely position on the 

SROC curve. The shape of the SROC curve depends on the distribution of test results in 

diseased and nondiseased persons. If the distribution, or variance, of test results around the 

mean is the same in diseased and nondiseased persons there will be no asymmetry in the 

SROC curve and it can be represented by a single constant DOR. If the variance in test 

results differs between diseased and nondiseased, one distribution perhaps being wider and 

flatter as might occur where a study recruits a considerable proportion of patients with 

advanced disease, the SROC curve will be asymmetric and the DOR will vary along it. 
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Sources of variation in test results are investigated by extending the models to allow for 

covariates. At the simplest level one assumes that the variances of test results in diseased 

and nondiseased participants do not differ according to the covariate, i.e. the shape of the 

SROC curves are the same (parallel curve models). A second level allows for an interaction 

of covariate with SROC shape. This means that the variances in test results of diseased and 

nondiseased persons can differ between groups; the SROC curves can therefore have 

different shapes and will cross at some point along their length (crossing curves). All four 

models allow the effect from covariates to be estimated in terms of the differences in accuracy 

between groups (relative DOR) and differences in shapei (the distribution of test results 

between diseased and nondiseased groups varies according to the covariate in question). 

The advanced models also allow differences in threshold to be estimated. 

Only the 'advanced' BVN and HSROC models - which without the addition of covariates are in 

fact different parameterisations of the same model - possess the characteristics of an 

'optimal' meta-analytic method, i.e. that a model should: 

• be bivariate in its parameterisation and should allow interpretation in terms of sensitivity 

and specificity, 

• use appropriate weighting to allow the different levels of uncertainty or precision 

associated with the sampling variability in TPR and FPR to be addressed, 

• allow for the threshold relationship or correlation between sensitivity and specificity, 

• use a random effects approach to allow for the almost inevitable heterogeneity that arises 

in a systematic review of a diagnostic test or tests. 

It was not known to what extent the less optimal Moses methods might approximate the 

results of the advanced methods for the detection of spectrum effects. 

Chapter 3 reported a methodological review of how heterogeneity has been examined in 

systematic reviews of diagnostic test accuracy in a large sample of reviews published up until 

2002 and in a smaller more recent sample of reviews that have used the advanced methods 

of meta-analysis. This showed that less than optimal methods of meta-analysis have been 

commonly employed. None of the reviews in the main sample employed the advanced 

methods of meta-analysis and less than half (48%; 64/133) of those using meta-analysis 

employed SROC type methods that allow for a threshold effect; the remainder pooled 

individual accuracy indices. 

Of the 131 reviews carrying out quality assessment, 51 % (n=67) considered patient spectrum 

in some way. Where sources of heterogeneity were investigated (102/133 meta-analyses), 

spectrum-related variables were commonly included (68%; 69/102) and 'statistically 

i Differences in shape cannot be easily modelled within the standard BVN model framework and have 
not been modelled in this thesis, however the model is being developed to allow for differences in 
shape. 
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significant' results reported (41/69; 59%), although often the results were not reported in detail 

but referred to narratively. The small number of reviews (n=14) that reported their results in 

detail and also looked at covariates related to test, spectrum and quality showed similar 

percentages with statistically significant results, although the methods used to investigate 

heterogeneity varied. A statistically significant impact from spectrum-related factors was 

identified in 57% (n=8) of investigations, from test-related in 57% and from quality-related 

covariates in 43% (n=6) of investigations. 

The small number of reviews identified that used the advanced models of meta-analysis 

showed overall improved systematic review methods, as would be expected from reviews 

coming from academic centres of excellence. The reviews were also more likely to have 

considered spectrum-related characteristics, although again this was sometimes restricted to 

consideration of the presence of an adequate description of patients. This is very likely due to 

lack of recording or reporting in the primary studies. Of the five reviews that examined 

spectrum-related characteristics, three found statistically significant effects, supporting the 

finding from the main dataset that when spectrum variables are reported to have been 

considered they are often found to have a significant effect. 

Of the five reviews using advanced methods that also looked at spectrum-related covariates, 

three used the BVN model to examine effects on sensitivity and specificity; one used the 

HSROC model to examine effects on accuracy, threshold and shape and the last used the 

BVN model for the main analysis but appeared to develop a separate random effects meta­

regression model to examine the effect of the covariates on the natural log of the DOR. For 

their reviews of diagnostic test accuracy, the Cochrane Collaboration recommend that the 

comparison of operating points should only be undertaken where there is an explicit constant 

threshold, even though similar threshold type effects could arise through differences in test 

interpretation between observers, characteristics of the sample and differences in the 

execution of tests. Where the explicit threshold for positivity varies between studies, the 

comparison of operating points should not be undertaken as the operating points have no 

direct interpretation; they are average points based on the average of the thresholds. The 

differential effects of a covariate on sensitivity and specificity in these circumstances are 

therefore cannot be identified. 

Chapter 4 reported a detailed case study comparing the four meta-analytic methods on a 

large dataset. The methods' performance regarding primary analysis of the dataset and 

heterogeneity investigations with three selected covariates were compared. The three 

covariates (index test blinding, test type, and reference test used) were specifically chosen to 

reflect increasing levels of complexity in results. Four main observations requiring further 

investigation emerged from the analyses. 
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Firstly, there was common and sometimes considerable disagreement between the 

unweighted and weighted Moses models both for the primary analysis and for the 

heterogeneity investigations regardless of whether parallel or crossing SROC curves were 

modelled. For almost all comparisons, the weighted Moses model under-estimated the results 

of the unweighted model, in terms of accuracy or differences in accuracy. There was also 

some suggestion that the two models performed somewhat differently in terms of detection of 

differences in the distribution of test results between diseased and nondiseased (shape). 

Further investigation showed that the disagreement between the two Moses models in terms 

of both accuracy and shape was primarily due to bias in the standard error of the log of the 

DOR or the SE(lnDOR), whose inverse was used as the weight for the weighted model. The 

SE(lnDOR) was shown to be biased for several studies in the dataset with very high DORs so 

that they had higher standard errors than might have been expected from their sample sizes. 

Weighting by the inverse of the standard error meant that these studies received a very low 

emphasis in the weighted Moses analysis, leading to overall under-estimation of effects in 

comparison to the unweighted analysis. 

Secondly, the unweighted Moses model results were more similar to the HSROC model 

results than the weighted model but nevertheless still generally under-estimated effects. 

The third observation was that for the primary analyses and for the investigation of 

heterogeneity with no interaction of covariate with shape (parallel curve models), the BVN 

model and the HSROC model produce almost identical results, as had previously been shown 

mathematically by Harbord and colleagues. 79 

Finally the inclusion of the shape interaction term in the HSROC model sometimes led to 

different conclusions regarding the effect of a covariate and sometimes not. This appeared to 

be related to the studies lying around the edges of the ROC plot. Studies with extreme values 

in sensitivity and/or specificity, or studies for which sensitivity estimates were greater than 

specificity or were similar in magnitude to specificity, had the biggest individual effects on 

accuracy and on shape. The group to which these studies were allocated according to 

covariate in turn impacted on the difference in model parameters between groups and the 

complexity of the differences between models. 

Chapter 5 further explored these findings using data obtained from a large sample of 

previously published systematic reviews of diagnostic tests and using only spectrum-related 

covariates. The key findings of Chapter 4 were strongly supported by this re-analysis. 

First of all, weighting the Moses model by the inverse variance of the InDOR led to 

consistently lower results compared to the unweighted model. On average the weighted 
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model underestimated the results of the unweighted model by around 30%, with considerable 

disagreement between models. The stratified analyses suggested that this underestimation is 

due to bias in the SE(lnOOR) and hence it is likely that the weighted model results are 

misleading. The circumstances under which biased SE(lnOOR) might be expected are: 

extreme values of sensitivity and specificity, often with zero FNs or FPs, unequal sample 

sizes of diseased and nondiseased patients, and variation in the threshold for test positivity 

leading to variation in the proportion of patients who are test positive. These circumstances 

are common in diagnostic meta-analysis, therefore bias in the SE is always a concern. 

The comparison of the results of the primary analyses also showed that the weighted model is 

more sensitive to the presence of asymmetry, i.e. is more likely to suggest differences in the 

distribution of test results between diseased and nondiseased and therefore variation in OOR 

along the SROC curve and also that when OOR is estimated at Q* there is more scope for 

extreme differences between models compared to the OOR at the average threshold. 

The implications of these findings are considerable. Chapter 3 found that use of the weighted 

Moses model is common. Not all of the identified reviews used the inverse of the variance of 

InOOR as the weight, however under-estimation of test accuracy in the literature due to the 

use of this weighting is clearly a big problem as is over detection of asymmetric SROC 

curves. 

Secondly, although the unweighted Moses model results were generally more similar to the 

HSROC model than the weighted Moses model, it cannot be relied upon to approximate the 

results of the 'optimal' HSROC model. For the primary analyses, when OOR was estimated at 

the average threshold there was on average little bias in the unweighted method compared to 

the HSROC method, however there was still considerable scope for disagreement between 

models and furthermore the biases could be quite extreme. At high OORs, the unweighted 

Moses model underestimated the HSROC model on average by 33% and in addition the 

differences ranged from under- to over-estimation as the range in'S' increased, suggesting 

that the Moses model cannot adequately deal with studies with very high specificities nor 

correctly model variation in threshold. 

For the investigation of heterogeneity, the unweighted Moses model consistently 

underestimated the differences in accuracy that were observed with the HSROC model. The 

underestimation was less when parallel SROC curves were modelled. The two models also 

differed in terms of their indication of the strength of evidence for differences in both accuracy 

and shape so that the unweighted Moses model found evidence for such differences when 

the HSROC model did not, and also did not detect differences that were identified by the 

HSROC model. 
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These results have considerable implications for the majority of existing reviews of diagnostic 

tests, casting some degree of doubt on the results of the many hundreds that have used the 

Moses model and especially the weighted Moses model to analyse their data. The presence 

of extreme differences in results between the Moses and HSROC model are particularly 

concerning, especially as one cannot necessarily predict the circumstances in which this 

might occur. Chapter 3 showed that up until 2002 at least, around half of diagnostic meta­

analyses on the DARE database (i.e. reviews that had passed certain quality standards) 

employed SROC methods other than the HSROC method. The remaining half used methods 

that do not even allow for threshold effects. 

Finally, the suggestion from Chapter 4 that allowing for differences in the distribution of test 

results between diseased and nondiseased by covariate (shape differences) sometimes 

affects the conclusions that would be drawn from an analysis and sometimes not was also 

supported by the reanalysis of review data in Chapter 5. There were differences in ROOR 

between parallel and crossing curve HSROC models however, the agreement in terms of 

strength of evidence for differences in accuracy was good, especially at lower P-values. This 

implies that although the magnitude of differences between groups may vary between 

models, the inclusion of a shape interaction term does not necessarily change the strength of 

evidence for differences in accuracy. 

A key issue for the crossing curve model is the variation in ROOR along the curves. ROOR is 

most commonly estimated at Q* however this is not necessarily representative of the majority 

of the data. The alternatives presented here were to estimate ROOR at the average threshold 

of the each subgroup of studies, however where there are strong differences in shape so that 

the curves cross near to the centre of the data and where the expected operating points of the 

subgroups are some distance apart, the direction of effect can change according to where 

ROOR is estimated. It is potentially highly misleading to rely on estimates of OOR or ROOR at 

Q* alone. 

It is not clear whether potential differences in the distributions of test results (differences in 

shape) should be routinely modelled or whether the more simple parallel curve approach will 

generally suffice. Differences in the distributions of test results were identified for 24% of 

heterogeneity investigations undertaken for Chapter 5. It is not known whether similar findings 

would occur for analyses of test or quality-related variables. It might be that in circumstances 

under which one might anticipate differences in the distribution of test results, such as for 

spectrum-related characteristics, both simple and more complex models should be 

constructed. 

For example in Chapter 4, the comparison of the TB dataset according to the type of 

reference test used is likely to show differences in the distributions of test results because of 
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the differing definitions of disease according to whether culture alone is used to indicate the 

presence of TB or whether a combined reference standard (culture plus clinical examination 

and other tests such as chest x-ray) is used. This is because culture is a far from perfect gold 

standard; a proportion of patients who are culture negative will in fact be found to have TB. 

Using a combined reference standard to indicate the presence of TB includes these patients 

as disease positive (along with a few patients who have clinical signs and symptoms similar to 

TB but do not in fact have the disease). This will lead to a larger number of diseased patients 

than would occur if culture alone was used. Because PCR amplifies the presence of 

mycobacterial DNA it is less likely to be able to do this in samples that failed to grow the 

mycobacteria (culture negative samples). The distribution of PCR test results will therefore be 

affected as the number of false negatives will be increased compared to if culture alone was 

used as the reference test. 

The optimal approach for the investigation of heterogeneity requires further investigation 

however the question can perhaps only be fully addressed by simulation studies. 

The final observation to make is the frequency of findings of strong evidence of effects from 

the spectrum-related variables that were investigated. Strong evidence of effects on at least 

one model parameter were identified by the parallel or crossing curve HSROC model for over 

half of the investigations conducted (32/50). This could have considerable implications for the 

use of tests in practice. For example, the skin test for the detection of TB infection is 

interpreted differently according to whether the patient has had a prior BCG vaccination. 

It was notable also that both for the analyses in Chapter 5 and the review of reviews in 

Chapter 3, the spectrum-related variables investigated were not necessarily truly 

representative of the case mix of the patients; prevalence, for example, or age being 

commonly considered. One of the main challenges in the investigation of heterogeneity in 

systematic reviews are limitations in the primary study data. It can be particularly problematic 

to identify, let alone record and publish true spectrum-related characteristics in primary 

studies. Characteristics related to patient presentation and previous test results are likely to 

be the most relevant, however variables that are easier to measure and record such as age 

and sex are often used instead as proxies. 

The STARD initiative30 (Standards for Reporting of Diagnostic Accuracy) to promote the 

completeness and quality of reporting of diagnostic accuracy studies should help to improve 

the reporting of spectrum-related variables in the future, however meta-analysts must take 

care in setting their review question and defining their inclusion criteria in addition to being 

aware of the limitations in the data that is available. One of the key stages of any review is to 

describe the characteristics that describe the clinical problem to be addressed,201 i.e. which 

clinical presentations would be recognised as suggesting the clinical problem? Over-
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restrictive inclusion criteria to certain subgroups of patients make it impossible to investigate 

key spectrum issues further down the line. 

Although it can be argued that on an individual basis age and sex can be good proxies for 

true spectrum characteristics, when variables such as these are aggregated across 

participants, 'ecological bias' can occur, i.e. where there is insufficient data on which to fully 

investigate interactions between a covariate and a treatment effect or test accuracy. For 

example if all studies in a review demonstrate similar mean age of participants, a meta 

regression will fail to detect effects from age, however that does not mean that age does not 

influence effects.2oo 

One solution to this problem is the use of individual patient data (IPO) analysis where the 

reviewer obtains raw study data directly from the original authors. This method is seen by 

many as the gold standard for meta-analyses to identify treatment effects 150.202 as it minimises 

bias and increases the power of statistical analysis and reanalysis, and its use has increased 

over the years.200.202,203 The application of IPO analysis to diagnostic accuracy reviews is rare, 

however its potential benefits have been recognised.15o,204 Simulation work in the field of 

RCTs has shown that the statistical power of meta-regression techniques is dramatically and 

consistently lower than that of IPO analysis.53 Nevertheless, care must be taken in the design 

and analysis of IPO studies. A matched comparison of subgroup analyses undertaken using 

IPO analysis and conventional analysis of RCTs demonstrated that although reviews using 

IPO analysis were more likely to investigate patient and diseased-related characteristics than 

those using conventional analysis, direct modelling of the raw data was rarely reported.203 

More commonly, "two-stage" analyses were undertaken such that the individual patient data 

was stratified by tria\. This approach does not fully utilise the potential statistical power of the 

data available. Considerable time and resources are also required and IPO analysis should 

not be undertaken lightly. 

The ideal solution for the assessment of diagnostic accuracy is for within study comparisons. 

Even with improved recording and reporting of study and patient characteristics, systematic 

reviews may never be the best way to get evidence of spectrum effects due to dilution from 

other confounding factors. It is possible that more important test- or methodology-related 

characteristics might affect accuracy in such a way as to dominate any spectrum effects. In 

RCTs, for example, lack of allocation concealment during the randomisation process 

introduces so much bias as to supersede any differences in patients. Within study 

comparisons require diagnostic studies to be sufficiently large, prospective, well-designed and 

multi-centre, evaluating a number of diagnostic tests (or variations on a test), thereby allowing 

test accuracy to be established as well as allowing the investigation of the influence of patient 

and other characteristics on accuracy. 

140 



In the meantime, although questions remain regarding the optimal approach to take with the 

advanced methods, such as the inclusion of interactions of covariate with shape in 

heterogeneity investigations, the results presented here lend further support for moves to 

increase the use of the advanced methods. The October 2007 launch of the new Cochrane 

Collaboration database for reviews of diagnostic test accuracy in the Cochrane Library gives 

reviewers much needed guidance on conducting diagnostic systematic reviews and meta­

analyses. The complexity and challenges of conducting diagnostic accuracy reviews is 

recognised and reinforced by the requirement for the review author team to consist of authors 

with certain areas of expertise, including content expertise, review expertise and statistical 

expertise. Both the Moses and the advanced methods can be employed, however the 

handbook will include guidance on using the advanced methods. This will help to spread 

knowledge and understanding of the advanced methods. 

Research implications 

• Simulation studies are needed to find out which methods actually perform best and, if 

possible, the circumstances under which parallel or crossing curve models are more 

appropriate, i.e. are there circumstances or types of covariate for which which, as a 

general rule, one might expect differences in the distributions of test results in 

diseased and nondiseased? 

• Large scale diagnostic accuracy studies should be performed to allow within study 

comparison of accuracy in different subgroups 

Policy and practice implications 

• Reviewers should be encouraged to use the more optimal advanced methods of 

meta-analysis in place of the Moses method and to carefully consider potential 

sources of heterogeneity including spectrum. 

• The potential importance of spectrum effects in terms of the practical use of tests 

should be emphasised to clinicians. Clinicians also need a better understanding of 

summary ROC methods and their outputs, such as OOR and ROOR, and hw these 

can be applied to their clinical practice. 

• Investigators conducting primary studies of diagnostic tests shoud be encouraged to 

appropriately record actual spectrum characteristics insteadof using proxies and to 

follow the ST ARO guidelines for reporting of their studies. 
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Appendix 1 Calculation of diagnostic accuracy statistics 

i) Contingency table (2 x 2 table) 

Index 
test 
result 

+ ve 

- ve 

+ve 

Diseased 

True positives 

False negatives 

Total diseased 

Reference standard 

a 

c 

b 

d 

-ve 

Nondiseased 

False positives 

True negatives 

Total nondiseased 

Total test positive 

Total test negative 

ii) Diagnostic accuracy indices 

Sensitivity 

Specificity 

Positive predictive 
value (PPV) 

Negative predictive 
value (NPV) 

Positive likelihood 
ratio (LR+ve) 

Negative likelihood 
ratio (LR-ve) 

Diagnostic odds 
ratio 

(DOR) 

Proportion of diseased who have 
positive test results 

Proportion of nondiseased who have 
negative test results 

Proportion with positive test result 
who actually have the disease 

Proportion with negative test result 
who really don't have the disease 

Likelihood of a person with disease 
having a positive test result than a 
person without disease 

Likelihood of a person with disease 
having a negative test result than a 
person without disease 

The ratio of the odds of a positive test 
result in a patient with disease 
compared to a patient without disease 
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True positives / Total diseased 

a/(a+c) 

True negatives / Total nondiseased 

d / (b + d) 

True positives / Total test positive 

a/(a+b) 

True negatives / Total test negative 

d / (c + d) 

(True positives / Total diseased) / (False 
positives / Total non diseased) 

sensitivity / (1 - specificity) 

(False positives / Total diseased) / (True 
negatives / Total nondiseased) 

(1 - sensitivity) / specificity 

(True positives x True negatives) / 
(False positives x false negatives) 

LR +ve / LR -ve 



Appendix 2 Specification of Rutter and Gatsonis HSROC model 

The two-level random effects model is formulated in terms of the probability (1lij) that a patient 

in study i with disease j has a positive test result, where j=O for a patient without disease and 

j=1 for a patient with disease.206 I n the first level of the model the precision of the estimates of 

the proportion test positive according the numbers diseased and not diseased in each study is 

taken into account. In the second level the pattern of estimates of accuracy is modelled using 

the following non-linear regression equation: 

where rc ij is the proportion test positive. The model yields parameter estimates {j (the mean 

of the implicit threshold), ii (the mean log diagnostic odds ratio) and jj which allows for 

asymmetry in the underlying SROC curve by allowing the 10gDOR to vary with implicit 

threshold. If the threshold and log diagnostic odds ratio parameters are fitted as random 

effects, associated variances are also estimated assuming Normal distributions of f)i and a i • 

A summary ROC curve can be constructed by computing values of sensitivity across the 

range of specificities using the following equation: 

1 
sensitivity = ----c;;----------:--------:----~ 

1 + exp(-ii exp( -0.5jj) _In(l- spe~iji~ity)exp(-jj)) 
specijiclty 
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Appendix 3 Specification of bivariate normal model 

The BVN model as expressed by Reitsma and coileagues90 considers individual studies (I = 
1, ..... , k) with sensitivity (PA,;) determined in NA individuals with the target disorder and 

specificity (PB,i) determined in NB individuals who do not have the target disorder. 

The first level of the model incorporates the precision with which sensitivity and specificity 

have been measured in each study. 

In the second level a random effects approach is used, assuming that the true logit 

sensitivities for the individual studies are normally distributed around some common mean 

value JiA,i with a between study variability of cl A. The same random effect assumption is made 

for true logit specificities, with mean value JiB,i and between study variability of cl B. The 

potential correlation 0AB between sensitivity and specificity is explicitly included into the 

analysis. 

Combining two normal distributions that can be correlated leads to the following bivariate 

normal model: 

(J-lA'~)~ N((J-lA)'L) with L=(CY~ J-l B,l J-l B CY AB 

The model yields parameter estimates for: 

• mean log it sensitivity ((.JA), mean specificity ((.Js) and their 95% confidence intervals 

• estimates of between study variability in sensitivity (02A) and specificity (02S)' and 

• an estimate of the covariance between sensitivity and specificity (OAS) 
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Appendix 4 Spectrum-related items used in reviews undertaking quality assessment (n=131) 

01 -.2!1OE "'C "'C 1:0) §- .!!! 01 01 0)01 
'" I: Q) .~ :s c.:9 I:..c .~=a o '" ~e~ E t; ~.~ ~ >. 

0)-.- E ..cOl 

8 ~~ '" '" 1I):lj 1:: '" ::l I: II) Q) 

Quality .,!!!'" "'C "'C ~'" II) '" 

Review assessment tool Spectrum related item(s) 
Adams, 1998L

"' Haynes 1995 -..j -..j -..j - - Grade A: Studies with broad generalisability to a variety of patients and no significant flaws in research methods: sample size> 70, 
Author's own patients drawn from clinical relevant sample with clinical symptoms completely described, diagnoses defined by an appropriate 

reference standard, PET studies technically of high quality and evaluated independently of references diagnosis 
Grade B: Studies with narrower spectrum of generalisability, with only a few flaws that are well described: > 70 patients, more 
limited spectrum of patients, free of other method flaws that promote interaction between test results and disease determination, 
prospective study 
Grade C: Studies with several method flaws: small sample size, incomplete reporting, retrospective studies of diagnostic accuracy 
Grade D: no credible reference standard, test results and determination of final diagnosis not independent, source of patient 
cohort could not be determined or influenced by test result, o(Jinions without substantiating data 

Anand, 1998°' Holleman 1995 - - - - - Not considered 
Attia, 1999<"' Authors' own - - - - - Not considered 
Bader, 2001'"' Authors' own - - - - - Not considered 
Badgett, 199r Modified Holleman - - - - - Not considered 

1995 
Badgett, 1996 Authors' own -..j* - - - Did the population include a continuous spectrum of patients that included normal patients? 
Bafounta, 2001<00 Irwig 1994; -..j* -..j - - - Spectrum of included patients well described (with a spectrum of melanoma lesions and lesions commonly confused with 

Cochrane 1996 melanoma) 
Balk, 2001 ,.u, Authors own -..j* - -..j - - For generalisability assessment categories of populations/settings: 

I - included all pts with signs/symptoms suggestive of ACI, such as chest pain, shortness of breath, jaw pain, acute pulmonary 
edema etc 
II - chest pain as inclusion criteria 
III - included pts with chest pain but excluded those with clinical of ECG findings diagnostic of AMI 
IV - all pts hospitalised or that used additional criteria to enrol highly selected subpopulations or retrospective studies 
Setting described 

Bastian, 1998 Holleman 1995 as - - - - - Not considered 
inclusion criteria 

Bastian, 1997'" Holleman 1995 - - - - - Not considered 
Becker, 1996"< Becker 1989 -..j* - - - -..j The subjects studied represented the complete spectrum of patients with suspected DVT or PE, including those with and without 

disease. 
Results of tests should be stratified by the extent and severity of DVT or PE. 
The reproducibility of the D-dimer results should be evaluated in a setting where the test is likely to be used. 

Bell, 1998'" Cochrane 1996 -..j -..j - - - Description of the study with respect to major risk factors, which may affect the generalisability of the results to other populations 
Berger, 2000 '". Authors own -..j - -..j Setting - studies divided into those in which a (random) sample of the popl was invited for screening and those in which patients 

were referred for gallbladder investigation because of abdominal symptoms 
Spectrum - patients in hospital-based studies were classified as 'mild disease' if so described or if elective referrals, and as 
'serious disease' if pts were so described or they were emergency referrals or hospitalised pts. The definition 'no disease' was 
applied to all studies based in general population 
Patient characteristics 

Berry, 1999" Authors own'" - -..j - - - Are the study group's clinical, pathological and co-morbid details described? i.e, severity and chronicity of symptoms, sex ratio, 
8f!.e range and mean age, type and location of disease for those receiving gold standard, presencelabsence of co-morbid 
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Quality U~Ul " " ~"' en '" 
Review assessment tool Spectrum related item(s) 

conditions 
Berry, 2002'0 Authors own " " - - - Various patient selection biases considered, including referral bias, patient filtering bias, patient cohort bias (description of clinical, 

patholoqic and co-morbid details) 
Blakely, 1995<' Modified Sackett " - " - - Site of patient enrolment (radiology vs surgery) 

1991 Disease spectrum of patients enrolled 
Bonis, 1997" Mulrow 1989 - - - - - Not considered 
Bradley, 1998<'" Authors own - - - - - Not considered 
Buntinx, 1997'u, Authors own - " " - - Setting 

Age distribution and sex ratio 
Cabana, 1995 Authors own (as - - - - - Not considered 

inclusion criteria) 
Campens, 1997«0 Authors own - - " " - Details concerning patient selection and setting were reported for each study 
Cher, 2001'" Authors own - - - - - Not considered 
Chien, 1997 Author's own - - - - - Not considered 
Conde-Agudelo, 
1998221 

Authors' own - - - - - Not considered 

Cuzick, 1999<<< Authors own (not a " - - - - Selection of control groups 
formal assessment) 

Da Silva, 1995«> Authors own ". - - " - ideal popl: consecutive infants enrolled prospectively who presented with clinical signs suggestive of sepsis admitted to a neonatal 
intensive care unit 
2nd best: consecutive infants who had in the past been evaluated for sepsis in a neonatal intensive care unit, enrolled from 
hospital records 
worst: nonconsecutive 

De Bernardinis, Authors' own - - - - - Not considered 
199994 

de Bruyn, 2001"' Authors own " - - - - Appropriate spectrum (not further defined) 
de Vries, 1996 Authors own - - - - - Not considered 
Deville, 2000 ,<> Cochrane 1996 -J' -J -J - - Spectrum of disease and non-disease given; Enough information to identify setting. Duration of illness before diagnosis; Previous 

testslreferral filter; Comorbid conditions in diseased and nondiseased. 
Devous, 1998«< Authors own - - - - - Not considered 
Dinnes, 2001 Authors own - - - - - Not considered 
Divakaran, Existing checklists: - - - - - Not considered 
2001 226 Dunn 1995, Guyatt 

1992, Cochrane 
1996 

Ebell,2000w Authors own (as - - - - - Not considered 
inclusion criteria) 

Fahey, 1995'·0 Authors own - - " - - Clinical use: follow-up (I.e. prompted by previous Pap test result) vs. screening; 
Fiellin, 2000«0 Authors own - " - - -J Adequate description of spectrum if included information on: demographics (age and sex distirbution); comorbidity (medical and 

psychiatric); and eligiblity criteria and number of eligible and screened subjects (I.e. participation rate) 
Analvsis of pertinent clinical subgroups - as test accuracy can vary according to clinical or dempographic characteristcis 

Fischer, 2001«' Adams 1996 ". " - - - Patients drawn from a clinically relevant sample (not selected to include only severe disease) with clinical symptoms fully 
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Garzon, 2001"3' 

Gianrossi, 19901M 

Gottlieb, 1999 

Gould, 2001 'Uf 

Gronseth, 2000'" 

Hallan, 1997 
Heffner, 1995"" 

Heffner, 1997'36 

Hider, 1999w 

Hobbs, 1999"'· 
Hoffman, 2000 

Hooft, 2001 239 

Hrullf!, 1999 
Huicho, 2002£41 

Huicho, 1996 

Quality 
assessment tool 

Authors own (ref 
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Authors own 
Authors own (as 
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Wachter 1988 
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Adapted Kent 1992 
Authors own 

Authors own 
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New Zealand 
National Health 
Committee 
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Authors own 
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Mulrow 1989 
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Spectrum related item(s) 
described. 
Not considered 

Did the population studied include an appropriate spectrum of babies to whom the test would be applied in practice? 
Not considered 

Not considered 
Not considered 

Not considered 
Setting 

Prevalence and degree of disease, clinical setting 
Generalisability: assessed studies for reporting of characteristics including patient age, presenting complaints, pneumonic 
pathogen, comorbid lung disease, comorbid underlying conditions, drug therapy resulting in immunosuppression, duration and 
severity of illness, and blood values for pH, glucose, and LDH obtained concomitant with pleural fiuid values. 
Assessment of generalisability was assessed by noting whether sufficient clinical information, such as age, gender, and 
underlying medical conditions was provided to allow the reader to determine if the study results could be generalised to their 
population 
Cohort assembly (presence of an adequate spectrum of patients and the detail by which the assembly of the cohort was 
described) 
Not considered 

Not considered 
Spectrum of study patients: judged on age, race, sex, digital rectal exam findings, urinary symptoms, presence of benign prostatic 
hyperplasia, and cancer stage, plus explicit mention of eligibility criteria 
Appropriate clinical setting and patients spectrum 
Not considered 
Were the subjects symptomatic? If so were they assessed? 
Did the author describe the age, sex and symptoms of their cohorts or at least state cohort was 'unselected'? 
Did investigators assemble population-based cohorts or did they assemble their cohorts from patients who had been referred for a 
urine culture? 
What was the age of the cohort? 
What % of cohort was male? 
Where did the examinations take place: hospital, clinic, in the field or at laboratQlY? 
Were pts symptomatic? If so, were they assessed? 
Did authors describe age, sex, and symptomatology of their cohorts or did they at least state that their cohorts were 'un selected'? 
Did investigators assemble popl-based cohorts or did they assemble their cohorts from pts who had been referred for a stool 
culture (fecal microbiologic study or other test) 
What was the age of the cohort; what % were male; what other health or comorbid conditions characterised the cohort? 
Where did the examinations take place? Hospital, clinic, inthe field or at laboratory? 
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Review assessment tool Spectrum related item(s) 
loannidis Authors own? ,j* - ,j - - For generalisability assessment categories of populations/settings: 
2001209.243 (reference Irwig I - included all pts with signs/symptoms suggestive of ACI, such as chest pain, shortness of breath, jaw pain, acute pulmonary 

1994) edema etc 
II - chest pain as inclusion criteria 
III - included pts with chest pain but excluded those with clinical of ECG findings diagnostic of AMI 
IV - all pts hospitalised or that used additional criteria to enrol highly selected subpopulations or retrospective studies 
SettinQ described 

loannidis, As above ,j* - ,j - - Setting described 
2001 A 189,209 Plus separate 4-category scale to group populations and settings (see below), For generalisability assessment categories of 

populations/settings: 
I - included all pts with signs/symptoms suggestive of ACI, such as chest pain, shortness of breath, jaw pain, acute pulmonary 
edema etc 
II - chest pain as inclusion criteria 
III - included pts with chest pain but excluded those with clinical of ECG findings diagnostic of AMI 
IV - all pts hospitalised or that used additional criteria to enrol highly selected subpopulations or retrospective studies 
Also considered differences in prevalence of ACI or AMI as way to determine baseline risk in the 4 population categories 

Kearon, 1998'"' Authors own - used - - - - - Not considered 
as inclusion criteria 

Kim, 2001 'L' Irwig 1994 - - - - - Not considered 
Kinkel, 1999'·· Authors own - - - - - Not considered 
Kittler, 2002'~ Authors own - - - - - Not considered 
Klompas, 2002<4' Refer to previous - - - - - Not considered 

articles in series 
(JAMA) but give no 
reference 

Koelemay, Authors own - ,j - - - Clear definition of study population 
2001'90 
Koelemay, Authors own - - - - - Not considered 
1996246 

Koumans, 1998 Authors own ,j ,j - ,j - 4. Clinical description of sample (whether description of source and characteristics of study sample was complete) 
5. Assemblv of population (adequate spectrum; sufficient description of assembly; independent application of reference test) 

Kowalski, 2001 '"' Authors own - - - - - Not considered 
Kwok, 1999" Authors own - ,j - - - Clear definition of selection criteria and presentation of participant characteristics 
Lacasse, 1999'< Authors' own - - - - - Spectrum not included in VA, but authors stated that by only including studies with consecutive pts also ascertained that the pt 

sample included an appropriate spectrum of pts. 
Lau, 1999"° Authors own - - - - - Not considered 
Law, 1998 Authors own - ,j - - - Subject: score 1 point for description of each of age (mean, range or SD), gender and ethnicity or socia-economic status 

Sample from Qeneral population 
Lederle, 1999'"" Holleman 1995 ,j - - - - Patients suspected of having the target condition 
Liedberg, 1996 Authors own - - - - Not considered 
Lindbaek, 2002L

" Cochrane 1996 - - - - - Not considered 
Littenberg, Authors own ,j - - - Patient sources examined to assess referral bias 
1995252 

Inclusion/exclusion criteria examined to assess generalisability 
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Review assessment tool Spectrum related item(s) 
LOY, 1996 Author's own - - - - - Not considered 
Lysakowski, Adapted Lijmer ~ - - - - Homogeneity of study population (same vs different pathologies) 
2001'9' 1998 
MacKenzie, 
1996'53 

Authors own - - - - - Not considered 

Marmo, 1998"'" Authors own - - - - - Not considered 
Mayer, 1997'" Sackett 1991 ~ - ~ - - Spectrum of pigmented skin lesions, study setting, patient demographics, prevalence of melanoma, proportion of pigmented skin 

lesions in which no dermatoscopic diagnosis could be made. 
McCrory, 1999 'L< Authors own - ~ - ~ - Description of disease spectrum 

Avoidance of bias in samJJle selection 
McGee, 1999'" Authors own? ~ - - - - Pts suspected of having volaemia 
McNaughton 
Collins, 2000'57 

Reid 1995 - - - - - Not considered 

Metlay, 1997 Authors own ~ - - - - Patients suspected of having CAP (Level I) 
Mol,1997'" Authors own - - - - - Not considered 
Mol, 1998'"u Author's own - - - - - Not considered 
Mol,1998"u Authors' own - - - - - Not considered 
Mol,1999"" Authors own - - - - - Not considered 
MSAC, 1999'b' Authors own - - - - - Not considered 
Mullins, 2000=- Authors own - ~ - ~ ~ Sufficient description of selection process; sufficient description of patients; sufficient description of non-enrolled patients; 

description of extent of disease such that results could be stratified bv location or severitv; reportina of non-PE diaanoses 
Muris, 1994'~ Authors own ~ - ~ - - The study is done in a setting relevant for a general practitioner 

There is a sufficient variation (spectrum) in quantity and severity of diseases 
Intra-observer variability of recorded symtoms measured (relates to test variation?) 

Muris, 1992'b' Authors own - - ~ - - Setting relevant to GP 
Mustafa, 2002'bb Jaeschke, 1994 ~ - - - - Broad spectrum included 
Naliamothu, Authors own - - - - - Not considered 
2001'93 
Nanda, 2000 '" Authors own - - - - - Not considered 
Nuovo. 1997"'1 Authors own ~. - ~ ,j - Did patient sample include an appropriate spectrum of mild and severe, treated and untreated disease in addition to patients with 

different but commonly confused disorders? 
Was study setting and filter through which patients passed adequately described? 
Are results applicable to_primawcare~atients? 

Oosterhuis, Authors own - - ~ - - No selection bias (e.g. where 812 andlor MCV ordered as part of regular treatment) 
20009' 
Owens, 1996 "" Authors own - ,j - ~ - Adequacy of description of clinical population 

Appropriateness of assembly of study samole 
Owens, 1996"' Authors own ~ ~ - - - Clinical description - was the study population described adequately? 

Cohort assembly - was the spectrum of oatients adeauate 
Pasternak, Authors own - ,j - - - Comparability of controls 
2001'68 
Patel,200omr Irwig 1994 - - - - - Not considered 
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Review assessment tool Spectrum related item(s) 
Paul, 2000 'uu Authors own - - - - - Not considered 
Pearl, 1996£<0 Kent 1992 ,j - - Representative sample without selection bias 
Rao, 1995" Authors own ,j* - - - - More than 50% of controls had actual diagnoses (e.g. other vasculitides, pulmonary renal syndromes etc) as opposed to being 

healthy controls 
Rao, 1999"L Jaeschke 1994 ,j - - - - Did the pt sample include an appropriate spectrum of pts to whom the diagnostic test will be applied in clinical practice? 
Rathbun, 2000w Jaeschke 1994 ,j* ,j - ,j - Does study include a consecutive series of patients with suspected PE? 

Does the study examine a broad spectrum of patients (including patients with and those without PEl and a broad spectrum of 
patient characteristics (such as: age; sex; high, intermediate or low clinical suspicion of PE; comorbid conditions that may confuse 
the diagnosis; and size or PE on angiography)? 

Reed, 1996m Author's own - - - - - Not considered 
Ross, 1999",0 Authors ,j* ,j ,j ,j - Patients both with and without disease? (1 point); inclusion criteria reported? (1 point); patient selection process described? (1 

own;derived from point); statement of where patients were recruited from? (1 point); wide spectrum of patient's SA severity? (1 point); patient 
Irwig 1994 and characteristics described? (1 point); patients eligible but not enrolled, described? (1 point); 
Flemons 1996 

Scheid, 2001 McKibbon 1995 - - - - - Not considered 
Schwimmer, Authors own ,j ,j ,j - - Selectionlexclusion criteria presented 
2000277 (based on US Patient characteristics: age range gender 

medical payer Institution characteristics: special expertise 
source criteria) How patients directed to PET (referral pattern) 

Scouller, 2000 Authors own ,j - v v v Case-control design avoided 
(based on several Recruitment of consecutive patients 
references) Subject selection method recorded 

Gender and/or age comparability stated between those positive and negative on reference standard 
Spectrum of race stated 
Stratification of results by gender, race or age 
Also recorded recruitment site of study (clinical or community setting, pts with or without known alcohol problems), and classified 
the ~ectrum of alcohol intakeJno~art of VA) 

Smith-Bind man, Authors own (as - - - - - Not considered 
2001 278 inclusion criteria) 
Solomon, 2001"' Holleman 1995 v - - - - Relevance of the patient 
Sonnad, 2001 LOO Single criterion - - - - - Not considered 

used 
Spencer-Green, Mulrow et al v* - v - Appropriate study popl: i.e. included a cohort of pts with scleroderma or systemic sclerosis 
1997281 

Source of pts described: to satisfy this criterion, papers had to identify from where their patient populations and sera were derived 
Wide spectrum of case patients included: required that a description of a spectrum of clinical or laboratory features of the case 
patients be included. The description of some evaluation for the presence or absence systemic involvement satisfied this criterion 
Inclusion of comorbid disease: papers satisfying this criterion used as non-SSc controls patients with other connective tissue 
disorders including systemic lupus ery1hematosus, rheumatoid arthritis, Sjogrens syndrome, dermatomyositis, or linear 
sclerodenma, or primary or secondary Raynaud's phenomena. 
Comorbid diseases included in case group: papers rnet this criterion if in their description of SSc patients, the authors did not 
specifically exclude comorbid diseases 

Stengel, 2001 LOL Authors own plus - - - - - Not considered 
CEBM 

------
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Review assessment tool Spectrum related itemJ!;) 
Swart, 1995'"' Authors own - - " - - Disease prevalence « or >= 35%) 

Setting (academic or non-academic) 
Taylor-Weetman, Authors own " - - - - Is the population representative of general UK patients? 
2002284 

van Seek, 2001 Authors own (as - - - - - Not considered 
inclusion criteria) 

van den Hoogen, Author's own ". " - " - Clinical description: 1 0 points if sufficiently detailed clinical description of subjects; 5 points incomplete clinical description; 0 points 
1995286 no description other than "low back pain" 

Study population: 10 points for prospective enrolment, explicil inclusionlexclusion criteria and adequate patient spectrum; 5 points 
retrospective design without inclusion criteria or with limited patient spectrum; 0 points other studies. Studies received extra 10 
points if from general practice or general population 
Study population: studies in which both diseased and nondiseased subjects ~articipated scored 10 points others scored 0 

van derWurff, Authors own'"' - " - - - Description of study population 
2000287 Description of inclusion and exclusion criteria 
Varonen, 2000'"" Cochrane - - - - - Not considered 
Vasbinder, Authors own " - - - - Inclusion criteria: limited to studies where reason for referral was clinical suspicion of renovascular hypertension, i.e. appropriate 
2001 288 spectrum 
Visser, 2000 m Authors own plus - - - - - Not considered 

Kent 1992 (latter 
not described) 

Vroomem, 1999'"" Sackett 1991 ". " - " - Patient description: both demographic and clinical characteristics should be described 
Study population: prospective design, adequate description of selection criteria and adequate patient spectrum (variance in 
disease severity and co morbidity such that the popl was representative of a clinical patient population) 
Diseased and nondiseased included 

Watson, 2002'"" IrwiQ 1994 - - - - Not considered 
Wells, 1995£" Authors own - - - - - Not considered 
White, 2000'"' Authors own (as - - - - - Not considered 

secondary 
inclusion criteria) 

Whited, 1998'"' Holleman, 1995 (as - - - - - Not considered 
inclusion criteria) 

Whitsel, 2000 Authors own - - - - - Not considered 
Wiese, 2000"" Irwig 1994 " - - - - Appropriate spectrum included (not stated to be part of quality assessment, but was reported in Results) 
Wijnberger, Authors own - " - - - Scored clinical criteria: minimax gestational age, inclusion of multiple pregnancies, diabetic pregnancies, women with ruptured 
2001 294 membranes, and use of corticosteroids 
Williams, 2002'" Authors own - - - - - Not considered 

------ -----
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Appendix 5 Summary details per review of spectrum-related heterogeneity investigations 

Spectrum-related variables investigated Method of investigating Statistically significant 
heterogeneity effect from 
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Review 
Badgett. 1997" " Pooled Se/Sp Y Y nli nli 
Bafounta, 2001,"0 " " Pooled Se/Sp N N N N 
Balk, 2001"u,,," " Not clear; covariate to regr? N N N nli 
Bastian, 1998"u " " Pooled Se/Sp P N N nli 
Bafounta, 2001 "u. " Pooled Se/ES Y Y nli nli 
Berger, 2000 'u, " " Covariate to logistic regr Y Y nli Y 
Berry, 2002"' " Covariate to SROC regr model N N N N 
Buntinx, 1997 ,uo " " Pooled Se Y Y N nli 
Carlson, 1994'u, " Pooled Se Y Y nli nli 
Cher, 2001"' " " " Covariate to SROC regr model Y Y Y Y 
Chien, 1997"" " Pooled LRs P Y nli N 
Conde-Agudelo, 1998 " Median Se/FPR Y Y Y nli 
D'Arcy, 2000"" " " " Study exclusion in sens analysis N N N N 
de Bruyn, 2001 " Covariates to SROC regr model N N N N 
de Vries, 1996 " " Covariates to SROC regr model N N Y N 
De Bernardinis, 1999 " " Pooled ES Y Y Y Y 
Deville et el., 2000 '" " Covariates to SROC regr model Y N Y Y 
Di Fabio, 1996'" " ANOVA Y Y N N 
Dijkhuizen, 2000 wu " " Pooled Se/Sp P Y Y N 
Fahey, 1995'"' " Pooled Se/Sp; multiple linear regr Y N N N 
Faron, 1998""" " Pooled LRs Y Y Y nli 
Fleischrnann, 1998'U" " " " " Covariates to SROC regr model Y Y Y N 
Gianrossi, 1990'" " " " " Multiple linear regr (Se/Sp as P 

dependent variable i 
Y Y Y 

Gould, 2001'U( " Separate SROC models (rep as P N N Y 
log ORsl 

Hallan, 1997" " Separate SROC models Y Y nli nli 
Heffner, 1995"J> " IPD Y A nli nli 
Hoffman, 2000= " " " Median log DOR in subgroups Y N N N 
Hofman, 2000'" " " Correl of log DOR with covariates Y Y nIi N 
Huicho, 2002" " Covariates added to multiple regr N Y Y N 

model 
Hurley, 2000 "0 " Separate SROC models Y N N N 
loannidis,2001'U""" 

"----- _L-. --- " Pooled DOR/AUC Y N nli nli 
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Spectrum-related variables investigated Method of investigating Statistically significant 
heterogeneity effect from 
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Review 
loannidis,2001A,o'.Lu, '-I Pooled Se/Sp/OOR Y N n/i n/i 
Kearon, 1998 '-I Pooled Se/Sp Y Y n/i n/i 
Kim, 2001 '£0 '-I '-I '-I Covariates to regr model P Y N Y 

Kinkel, 2000 '-I '-I '-I Covariates to SROC regr model P Y N Y 
Kinkel, 1999<44 '-I Covariates to regr model N N N N 
Kittler, 2002 '-I '-I Covariates to SROC regr model P Y Y N 
Koelemay, 2001 '"u '-I Covariates to SROC regr model N N Y N 
Koumans, 1998°0 '-I '-I Pooled Se/Sp P N N n/i 
Kowalski, 2001 'UL '-I Covariates to GEE regr model P Y Y Y 

Kwok, 1999" '-I '-I '-I Covariates to regr model N Y N N 
Lacasse, 1999£" '-I Pooled Se/Sp N N N N 
Law, 1998"u '-I '-I Correl with LRs N Y n/i Y 

Leitich, 1999 '-I '-I Pooled Se/Sp Y A A n/i 
Loy, 1996 '-I '-I '-I '-I Covariates to SROC regr model P N N N 

McCrory, 1999 '" '-I Covariates to log regr P Y n/i Y 
Mol,1998 '-I '-I Covariates to log regr P Y n/i nli 
Nallamothu, 2001 '", '-I '-I '-I Covariates to SROC regr model P N N N 
Nanda, 2000 '-I Mean Se/Sp Y A A A 
Oosterhuis, 2000'£ '-I Pooled Se Y Y Y Y 
Orr, 1995 '-I '-I '-I Covariates added to linear regr on N N N N 

Se/S~ 
Owens, 1996 ,"0 '-I Pooled log OR Y N Y Y 
Owens, 1996°' '-I Pooled log OR Y Y Y N 
Peters, 1996 "0 '-I IPO P Y n/i nli 
Rao, 1995" '-I Pooled Se/Sp Y Y n/i N 
Reed, 1996 '-I Covariates to SROC regr model N N N N 
Revah, 1998"'0 '-I Pooled Se/Sp Y Y nli n/i 
Scheidler, 1997'° '-I Separate SROC models Y N N n/i 
Scouller, 2000 ,,£ '-I '-I '-I Covariates to SROC regr model N N Y nli 
Smith-Bindman, 1998"" '-I Pooled Se/Sp; Separate SROC P Y N N 

models 
Smith-Bindman, 2001 '-I Pooled Se/Sp Y N N N 
Spencer-Green, 1997"°' '-I Pooled Se/Sp P Y N N 
Stengel, 2001 LO£ '-I Separate SROC models P N N N 
Swart, 1995£°' '-I '-I Pooled Se/Sp P N N Y 
Tugwell, 1997'" '-I Pooled Se/Sp Y Y n/i nli 
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Spectrum-related variables investigated Method of investigating Statistically significant 
heterogeneity effect from 
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Review 
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Visser. 2000 m ,j ,j ,j ,j Covariates to SROC regr model P Y Y Y 
White, 2000'" ,j Covariates to SROC regr model? P Y N nli 
Whitsel,2000 ,j ,j ,j ,j ,j Covariates to SROC regr model Y Y N N 
Wiese, 2000"" ,j Pooled Se/Sp; correl of Se with Y Y Y Y 

covariates 
Se - sensitivity; Sp - specificity; Es - effect size; regr - regression; LR - likelihood ratio; FPR; false positive rate; OR - odds ratio; IPO - individual patient data; correl- correlation; OOR­
diagnostic odds ratio; AUC - area under the curve; Y - yes; N - no; P - partially; n/i - not investigated 
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Appendix 6 Reviews using advanced methods of meta-analysis: Methods 

Study Target disorder Index testIs) Reference testIs) Search strategy Language/q Validity No. accuracy No. of patients 
uality assess me studies 
restrictions nt 

Bipat, cervical cancer staging CT histopathology MEDLINE and none Authors' MRI38 Not reported 
2003132 according to: MRI EMBASE own CT 11 

Both 8 
parametrial invasion Jan 1985 to May 
bladder invasion 2002 
rectal invasion 
lymph node involvement 

Bipat, rectal cancer staging endoluminal histopathology MEDLlNE, English only Authors' 90 studies; 
2004133 ultrasound EMBASE, own 299 datasets 

CT Cochrane, 
MRI CANCERLIT 

Jan 1985-Dec 2002 
Bipat, pancreatic Ultrasound histopathology MEDLlNE, English Authors' For diagnosis For diagnosis 
2005137 adenocarcinoma CT surgical findings EMBASE, German own Helical CT 23 helical CT 959 

MRI follow-up Cochrane, Conventional conventional 
CANCERLIT CT20 CT 1473 

MRI11 MRI583 
Ultrasound 14 ultrasound 2909 

For resectability For resectability 
Helical CT 32 helical CT 1823 
Conventional conventional 
CT12 CT 1467 
MRI7 MRI516 
Ultrasound 6 ultrasound 1233 

Bipat, colorectalliver CT histopathology MEDLINE English QUADAS 61 3187 
2005a134 metastases MRI EMBASE German Nonhelical CT Nonhelical CT 

PET French 58 1915 
Jan 1990 to Dec Helical CT53 Helical CT 621 
2003 1.OT MRI34 1.OT MRI173 

1.5T MRI102 1.5T MRI391 
PET 26 ._--- PET 1058 
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Glas, primary bladder cancer cytology and cytoscopy MEDLINE English Authors' 42 
200380 urinary based EMBASE German own BTA6 BTA 715 

tumour markers BTA stat 8 BT A stat 1300 
1990-Nov 2001 BTA TRAK5 BTA TRAK 829 

NMP2214 NMP222290 
Telomerase 10 Telomerase 
FOP 2 855 

FOP 157 
Halligan, detection of colorectal CT colonography colonoscopy MEDLINE No language STARD Category 1: 7 Category 1: 
2005 '4' polyps restrictions and 2610 

1994 and 2003 QUADAS Category 2: 7 
Category 2: 
1834 

Koelemay, symptomatic carotid CTA arteriography/intra- PubMed, MEDLlNE, None Authors' 28 864 
2004 '38 artery disease arterial digital PREMEDLlNE, own 

subtraction EMBASE, and 
angiography . CINAHL 

1990 to July 2003 
Kwee, follow-up of intracranial MRA digital subtraction PubMed/MEDLINE English, Adapted 16 616 
2007 '42 aneurysms treated with angiography and Embase German, QUADAS 

Guglielmi detachable French 
coils to Jan 2007 

Shaheen, prediction of chronic aspartate liver biopsy Medline, EMBASE, No language QUADAS 22 4266 
2007 '30 hepatitis C virus-related aminotransferase- and Cochrane restrictions 

fibrosis to-platelet ratio Library 
index 
(APRI) (01/1997-12/2006) 

Thangarati screening tool for pulse oximetry echocardiography MEDLlNE, No language Authors' 8 35960 
nam, congenital heart disease EMBASE, Cochrane restrictions own newborns 
2007 '31 in asymptomatic Library, MEDION 

newborns 
Van preoperative staging of FOG-PET pathology or surgery PubMed, Embase, No language Cochrane N-stage 12 N-stage 421 
Westreene patients with and Cochrane restrictions Methods 
n,2004 '35 esophageal cancer Working M-stage 11 M-stage 452 

to June 2003 Group 
checklist 

Whiting, early diagnosis MRI clinically defined MS 12 databases from No language QUADAS 40 
200613 of multiple sclerosis in inception until restrictions 

patients presenting with September or (Most analyses 
suspected November restricted to 15 
disease 2004. cohort studies) 
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Williams, diagnosis of renal artery renal duplex intraarterial MEDLINE and No language Authors' 88 9974 arteries 
2007140 stenosis in patients with sonography angiography EMBASE restrictions own 

hypertension - peak systolic 1966-2005 
velocity, renal-
aortic ratio, 
acceleration time, 

'------- .- -- -
acceleration index 
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Appendix 7 Reviews using advanced methods of meta-analysis: Synthesis methods 

Study Method of Heterogeneity investigation Data presentation - overall analysis Data presentation - heterogeneity investigations 
study 

synthesis 
Bipat, BVN Yes, but only possible for MRI for parametrial No summary results tables presented. Summary No results tables presented. Actual data not 
2003132 invasion and lymph node involvement sensitivities and 95%Cls reported in text. Some reported in text 

(reference Van summary specificities reported in text. 
Houwelingen, Covariates investigated for sensitivity and Forest plots per outcome for MRI by covariate. 
1993 and 2002) specificity: ROC plots according to outcome measure, plotted 

sample size (>50 vs :::50) per test 
publication period (1985-1991 vs 1992-1997 
vs 1998-2002) Forest plots according to outcome measure, plotted 
methodological shortcomings (added per test 
simultaneously): patient selection, unblinded 
interpretation of test results, verification bias, 
and retrospective collection of data 

These criteria were adjusted for by adding 
covariates simultaneously to the bivariate 
approach. 

Also subgroup analysis comparing 4 different 
aspects of MRI techniques 
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Bipat, BVN Covariates investigated for sensitivity and SROC curves based on the final regression model Regression coefficients for covariates reaching 
2004133 specificity: year of publication (continuous for evaluation of perirectal tissue invasion and lymph statistical significance in backward regression 

(reference Van variable), sample size (:550 vs>50), and node involvement per test presented analysis presented in tabular formal. 
Houwelingen, study design characteristics: patient 
1993 and 2002) selection, un blinded interpretation of test Summary estimates of sensitivity and specificity with Sensitivity and specificity estimates from subgroup 

results, verification bias, and retrospective 95%Cls tabulated for four outcomes in staging of analyses on MRI and endoluminal US for perirectal 
collection of data rectal cancer. tissue invasion presented 

Subsequently developed multivariable SROC curves for different subgroups in the 
regression models with multiple covariates evaluation of perirectal tissue invasion and for 
for each stage per test to identify the most results of individual datasets given. 
im portant characteristics. Characteristics 
were retained when P<0.1 0 

For each test, a model adjusted for 
significant variables was obtained using the 
regression formula logit-sens= alpha + 
beta(logit-spec) and an SROC curve 
estimated. 

Logit sensitivities and specificities were 
compared across imaging techniques using 
a final model adjusted for significant 
covariates. 

Subgroup analysis for MR and EUS 
comparing different aspects of test 
techniques performed 
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Bipat, BVN Covariates investigated for sensitivity and Summary sensitivity and specificity per test Regression coefficients for covariates reaching 
2005137 specificity: year of publication (continuous presented in tabular formatfor diagnosis and statistical significance in backward regression 

(reference Van variable), sample size (S50 vs>50), resectability. analysis presented in tabular format. 
Houwelingen, department of origin (radiology vs others) 
1993 and 2002) and the study design characteristics: patient ROC plots for diagnosis and resectability outcomes 

selection, unblinded interpretation of test 
results, verification bias, and retrospective Forest plot of overall pooled sensitivity for each test 
collection of data, reporting of study popl, presented. 
reporting of test, reporting of ref test. 

Subsequently developed a multivariable 
regression model to identify the most 
important characteristics. Characteristics 
were retained when P<0.10 

Logit sensitivities and specificities were then 
compared across imaging techniques. 

Subgroup analysis comparing different 
aspects of test techniques and lesion sizes 
also performed 

Bipat, BVN Covariates investigated for sensitivity: Summary sensitivity per test presented in tabular Regression coefficients for covariates reaching 
2005a134 Year of publication (1995 or earlier vs later format. statistical significance in backward regression 

(reference Van than 1995), sample size (S50 vs>50) analysis presented in tabular format. 
Houwelingen, reporting of study popl, reporting of test, Forest plot of overall pooled sensitivity for each test 
1993 and 2002) reporting of ref test. Study design presented. Sensitivity for some subgroups according to test 

characteristics also investigated not reported technique presented in tabular format for helical CT 
but presumably as for previous reviews and MR. 

Subsequently developed a multivariable 
regression model to identify the most 
important characteristics. Characteristics 
were retained when P<0.10 

Logit sensitivities were then compared 
across imaging techniques. 

Subgroup analysis comparing different 
aspects of test techniques and lesion sizes 
also performed 

----------
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Glas, BVN Multivariable analysis performed to explain Summary sensitivity and specificity per test Narrative discussion 
200380 variation in sensitivity and specificity. presented in tabular format along with correlation 

(reference Van Covariates were selected if a specific between sensitivity and specificity. 
Houwelingen, variable correlated with sensitivity or 
2002 specificity at P<0.1 o. Not clearly listed. ROC plots of studies per test 

Appear to have included Forest plots of overall pooled sensitivity and 
Study design specificity for each test presented. 
Type of control group 
Clear description of study popl 
Clear description of reference test and 
marker test 
Consecutive pt selection 
Verification by the reference standard 
Independent assessment of marker test and 
reference test 
BCG therapy 
Hematuria 
Distribution of tumour differentiation of the 
diseases 
Method of urine collection 

Halligan, HSROC None. Authors report significant No summary results tables presented. Summary NA 
2005141 heterogeneity and suggest sources but sensitivities, specificities and 95%Cls derived from 

(reference insufficient studies to investigate. HSROC model and reported in text. 
Macaskill 2004) 

Forest plots of sensitivities and specificities per 
study (but not for pooled analysis) reported 
according to polyp size 

ROC plots with HSROC curves reported for category 
1 and category 2 polyps. No curve derived for 
category 3 polyps. 

--- ._-
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Koelemay, BVN Covariates were selected and added to No summary results tables presented. Summary No results tables presented. Actual data not 
2004138 model if a specific methodological or clinical sensitivities and 95%Cls reported in text. Some reported in text 

(reference Van variable showed a positive Spearman summary specificities reported in text. 
Houwelingen, correlation with the sensitivity or specificity 
1993 and 2002) with a probability value <0.1. ROC plot of studies and pooled sensitivity and 

specificity with confidence ellipse 
Included 
year of publication 
consecutive enrolment 
prospective design 
clear description of technique 
clear definition of cutoff levels 
blind assessment of CT angiography and 
arteriography 

Patient demographics, symptoms and 
interval between CTA and arteriography 
could not be included due to incomplete 
reporting. 

Kwee, BVN None. Authors report insufficient studies to Data for individual studies and pooled analysis NA 
2007142 use meta-regression to examine the causes presented in tabular format according to outcome 

(reference of the heterogeneity. 
Reitsma 2005) ROC plot of studies and pooled sensitivity and 

specificity with confidence ellipse per test 
Shaheen, BVN Does not appear that heterogeneity Summary sensitivities and specificities at different No results tables presented. Data reported in text 
2007130 investigation undertaken within BVN model threshold presented in tabular format for both 

(reference framework prediction of significant fibrosis and cirrhosis 
Reitsma 2005) 

Random effects meta-regression model ROC plots of individual studies and ROC curve 
Also conducted (referenced to Schmid 2004) to investigate Forest plot of OaRs 
Moses effect on InDOR of: Plot of predictive values against prevalence of 
regression sample size significant fibrosis 
models to median age No BVN plot presented 
estimate AUC %men 
and pooled methodological quality 
OaRs using inclusion of HIV/HCV co-infected patients 
DerSimonian prevalence of Significant fibrosis/cirrhosis 
and Laird location of the study 
regression histopathologic scoring system 
model quality of reference standard 

-- -- --- --- -- - - - - -
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Thangaratin BVN None. Authors report significant Data for individual studies and pooled analysis NA 
am, 2007131 heterogeneity but insufficient studies to presented in tabular format for data at commonest 

(reference investigate. threshold (Sa02<95%). Note 8 datasets listed but not 
Reitsma 2005) identified according to study 

ROC plot of studies and pooled sensitivity and 
specificity with confidence ellipse for data at 
commonest threshold (Sa02<95%). 

Also plot of TPR and FPR for other threshold levels 
of Sa02. Studies not identified. 

Van BVN None. Exclusion of two outlying studies Data for individual studies and pooled analysis NA 
Westreenen mentioned in discussion presented in tabular format according to outcome 
,2004135 (reference Van 

Houwelingen, No plots presented 
1993) 

Whiting, HSROC used Random effects meta-analysis used to Study data reported in tabular format ROC plot of case-control and cohort studies 
200613 to assess the estimate DOR for cohort and case-control 

duration of studies. ROC plot according to cohort and other study ROC plot according to duration of follow-up with 
follow-up on designs single SROC curve 
overall HSROC model used to assess effect on 
accuracy and accuracy and threshold from duration of HSROC curve ROC plots according to MRI criteria 
threshold follow-up. Separate ROC plots according to 

MRI criteria 
(ref Rutter 
2001) 

--
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Williams, HSROC Covariates added to the model to assess ROC plots and HSROC curves per test and Narrative discussion 
I 2007140 whether test accuracy, threshold or shape according to whether data were paired or unpaired. 

A function of was associated with population or design 
the estimated characteristics: Estimated sensitivity, 1-specificty, LR+ and LR-
model articles reporting no. of pts undergoing both presented per test in tabular format 
parameters test and reference test 
was used to articles reporting no. of failed US 
obtain the US method described 
expected Exclusion of analyses of occlusion 
operating point Severity of renal artery stenosis 
on the SROC Blinded ref test interpretation 
cue (Rutter Blinded US interpretation 

I 2001) Angiographic views specified 
Accessory arteries included/excluded 

I 
(reference Prospective design 
Rutter 1995, Vessel diameter measures during 
2001, Macaskill angiography 

I 

2004) Consecutive enrolment 
Clinical spectrum included 
Hypertension and other features 
Hypertension with or without chronic renal 
failure 
Hypertension moderate or unspecified 
Hypertension and peripheral vascular 
disease 

I 

Transplant recipient 
Peripheral vascular disease 
No details stated 
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Appendix 8 Reviews using advanced methods of meta-analysis: Results 

Review Results of main analysis using advanced methods Heterogeneity investigations using advanced Author comment on advanced method used 
methods 

Bipat, Sensitivity and specificity (%) with 95%Cls for Text reports that the covariates investigated had no Advantages of BVN: 
I 2003132 influence on both the sensitivity and specificity a. more convenient than Moses method 

Parametrial invasion estimates b. produces summary estimates of sensitivity and specificity 
Sensitivity: MRI 74 (68-79) CT 55 (44-66), P< 0.01. as outcomes, which are more familiar to clinicians. 

I specificities: reported to be comparable. c. both the error of estimation of the sensitivity and specificity 
values in each study and the heterogeneity between studies 

Lymph node involvement due to different population or threshold settings are taken into 
Sensitivity: MRI 60 (52-68) CT 43 (37-57), P < 0.05. account. 
specificities: reported to be comparable. d. also possible to evaluate the effects of study characteristics 

on sensitivity and specificity separately. 
Bladder invasion 
Sensitivity: MRI 75 (66-83) CT 64 (39-82), difference 
not statistically significant 
Specificity: MRI 91 (83-95 CT 73 (52-87) for CT 
(P=0.03 

Rectum invasion 
sensitivity: MRI 71 (53-83) CT 45 (20-73), difference 
not statistically significant 
specificities: reported to be comparable. 

Bipat, Sensitivity and specificity (%) with 95%Cls for Covariates included in the final models were as The model accounts for: 
2004133 follows: a. the heterogeneity between studies caused by different 

Muscularis propria invasion threshold settings 
EUS: 94 (90,97) 86 (80, 90) Muscularis propria invasion b. the error of estimation of the sensitivity values in each 
CT: NA NA EUS: publication year, sample size study that represents the size of the population 
MRI: 94 (89, 97) 69 (52, 82) MRI: none The random model also accounts for the residual 

heterogeneity that may remain even after adjusting for study 
Perirectal tissue invasion Perirectal tissue invasion characteristics and main techniques 
EUS: 90 (88, 92) 75 (69, 81) EUS: consecutive pt selection 
CT: 79 (74, 84) 78 (73,83) CT: publication year 
MRI: 82 (74,87) 76 (65,84) MRI: prospective data collection 

Adjacent organ invasion Adjacent organ invasion 
EUS: 70 (62, 77) 97 (96, 98) EUS: publication year, sample size 
CT: 72 (64, 79) 96 (95, 97) CT: none 
MRI: 74 (63, 83) 96 (95, 97) MRI: publication year 

Lymph node involvement Lymph node involvement 
78 (71,84) 

'------- -
EUS: 67 (60, 77) EUS: publication year, prospective data collection_ 

- --- - --
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Review Results of main analysis using advanced methods Heterogeneity investigations using advanced Author comment on advanced method used 
methods 

CT: 55 (43,79) 74 (67,80) CT: complete verification I MRI: 66 i54, 83) 76 (59, 87) MRI: publication 1ear, blind interpretation of results I 
Bipat, Sensitivity and specificity (%) with 95%Cls for Significant predictors (diagnosis) The model accounts for: 

I 2005137 
c. the heterogeneity between studies caused by different 

Diagnosis (sensitivity and specificity respectively) Helical CT - sufficient description of patient popl threshold settings 
Helical CT. 91 (86,94),85 (76, 91) (sens P<0.05 and spec P<0.01) d. the error of estimation of the sensitivity values in each 
Conventional CT. 86 (81, 89), 79 (60, 90) Conventional CT - blinded interpretation of results study that represents the size of the population I 
MRI 84 (78, 89)*, 82 (67, 92) (sens P<0.01) I 

US 76 (69, 82)*, 75 (51, 89) MRI- sufficient description of patient popl (sens 
I P<0.01) 

Resectability (sensitivity and specificity respectively) US - sufficient description of patient popl (sens 
Helical CT. 81 (76, 85), 82 (77, 87) P<0.01 and spec P<0.01) 

I Conventional CT. 82 (74, 88), 76 (61,86) I 

MRI 82 (69, 91), 78 (63, 87) Significant predictors (resectability) 
US 83 (68, 91), 63 (45, 79)* 

I 

Helical CT - year of publication (spec P=0.01), 
* statistically significant difference compared to helical departmet of origin (sens P<0.01 and spec P<0.01), 
CT sufficient description of diagnostic test (sens P<0.01 

and spec P<0.01) 
Conventional CT - size of patient popl (sens P<0.01) 

Bipat, Sensitivity (%) with 95%Cls for Significant predictors (per patient data): The model accounts for: 
2005a134 

e. the heterogeneity between studies caused by different 
Non-helical CT. sensitivity 52.3 (52.1, 52.5) Nonhelical CT - reference standard (P<0.002), threshold settings 
CT. sensitivity 63.8 (54.4, 72.2) blinded reference test interpretation (P<0.002) f. the error of estimation of the sensitivity values in each 
1.0-T MRI sensitivity 66.1 (65.9,66.3) study that represents the size of the population 
1.5 T MRI sensitivity 64.4 (57.8, 70.5) Helical CT - no predictors g. the residual heterogeneity that may remain even after 
FOG PET sensitivity 75.9 (61.1, 86.3) MRI - no predictors adjustment for study design characteristics 

FOG PET - blinded index test interpretation 
I FOG-PET had significantly higher sensitivity than the (P<0.002) 

other three tests (P<0.001, P=0.003, P<0.001 

I 
respectively) 

~-- ~ --
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Review Results of main analysis using advanced methods Heterogeneity investigations using advanced Author comment on advanced method used 
methods 

Glas, Sensitivity and specificity (%) with 95%Cls for Cytology Method is more convenient than Moses method 
200380 Sensitivity correlated with year of pUblication and Sensitivity and specificity can be interpreted as a pair 

Diagnosis (sensitivity and specificity respectively) design (P<0.1) Random effects nature allows systematical and coincidental 
Cytology 55 (48, 62), 94 (90, 96) Cohort studies: 48 (39, 57) differences between studies 
BTA 50 (30, 65), 79 (70, 86) Case-control: 61 (52, 69) 
BTA stat 70 (66, 74), 75 (64, 84) 
BTATRAK 66 (62, 71), 65 (45, 81) From 1990 to 2000 sensitivity decreased linearly from 
NMP22 67 (60, 73), 78 (72, 83) 80% to 52% and specificity decreased from 97% to 
Telomerase 75 (71,79),86 (71,94)' 92%. 

'sensitivity and specificity significantly correlated BTA-
(P<0.05) Study design affected sensitivity: cohort 73 (60, 83) 

case-control 33 (26, 41); 
Specificity affected by blinded test interpretation: 
blinded 59 (46, 71), non blind (83, 76, 88) 

BTS stat-
sensitivity correlated with design: cohort 77 (71, 82) 
case-control 66 (60, 4171 

NMP22 - positive correlation of sensitivity and 
specificity with method of patient selection, but based 
on only 2 studies. 

Telemerase: publication year - sensitivity increased 
from 67 to 95% and specificity decreased from 95% 
to 62% 

BTA trak - no correlations observed 
Halli~an, Sensitivity and specificity (%) with 95%Cls for Tried to compare studies with and without a modified HSROC model 
2005 41 reference standard but too few studies to allow a. allows for explicit and implicit variation in threshold between 

Detection of large polyps alone (category 1) meaningful analysis studies. 
sensitivity 93 (73, 98) specificity 97 (95, 99) b. estimates the average threshold and diagnostic odds ratio, 
HSROC curve very close to top left hand comer of plot as well as variability, and it allows summary ROC curves to 

have either a symmetrical or an asymmetrical shape. 
Detection of medium and large polyps (category 2) c. allows calculation of the average 
sensitivity 86 (75, 93) specificity 86 (76, 93), operating point, which is the point on the summary ROC curve 
HSROC curve further from top left hand comer of plot that represents 

the sensitivity and specificity results 
at the average threshold, together 
with 95% Cis. 
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Review Results of main analysis using advanced methods Heterogeneity investigations using advanced Author comment on advanced method used 
methods 

When interpreting the results of these models, it is important to 
consider both these figures and the variability in sensitivity and 
specificity along this curve, as depicted in the ROC plot across 
the range of study values. 

Koelema Sensitivity and specificity (%) with 95%Cls for Incomplete reporting meant that only year of Advantages of BVN: 
y,2004138 publication and design-related characteristics could a. estimates and incorporates the possible correlation between 

For detection of a 70% to 99% stenosis: be included one at a time. logit sensitivity and specificity within studies due to possible 
sensitivity 85 (79 to 89) differences in threshold between studies. b. uses a random 
specificity 93 (89 to 96). Diagnostic accuracy was reportedly not effects approach for both sensitivity and specificity, allowing for 

influenced by any covariates except for a heterogeneity beyond chance due to 
For detection of 100 stenosis: higher specificity in prospective studies compared clinical or methodological differences between studies. 
In nearly all studies, the sensitivity and specificity were with retrospective studies. Data not reported c. acknowledges the difference in precision by which sensitivity 
100 for detection of an occlusion. A zero cell correction and specificity have been measured in each study. 
was not carried out due to the resulting downward bias 
in summary estimates due to low occlusion rates. 

Fixed effect pooling resulted in a sensitivity of 97 (to 
99) and a specificity of 99 (98 to 100). 

Kwee, Nonenhanced time-of-flight MRA (TOF-MRA) for the NA Advantages of BVN: 
2007142 detection of residual flow (within the aneurysmal neck a. assumes a bivariate normal distribution for the logit 

and/or coil mesh) transformed sensitivity and specificity values across studies, 
Sensitivity 83.3 (70.3-91.3) allowing for heterogeneity beyond chance due to clinical or 
Specificity 90.6 (80.4-95.8) methodological differences between studies. 

b. incorporates and estimates the correlation that might exist 
Contrast-enhanced MRA (CE-MRA) for the detection between estimates of sensitivity and specificity within studies. 
of residual flow were 
Sensitivity 86.8 (71.4-94.5) 
Specificity 91.9 (79.8-97.0), respectively. 

There were no statistically significant differences in 
pooled sensitivity and specificity between TOF-MRA 
and CE-MRA (F test P=0.66 
and P=0.82, respectively). 

All pooled estimates were subject to heterogeneity 
(P<0.05), 

Shaheen, Sensitivity and specificity (%) with 95%Cls for APRI accuracy for detecting significant fibrosis not Pairs of sensitivity and specificity for diagnostic thresholds are 
2007130 affected by study-related or patient-related factors (P- jointly analyzed, incorporating any correlation that might exist 

Prediction of significant fibrosis values given). Age of study population (P=0.1), sex between these measures using a random effects approach 
threshold 0.5 (n=16): sensitivity 81 (76-86) specificity (P=0.96), prevalence of significaint fibrosis (P=0.46), 
50 (47-52) inclusion of HIV/HCV co-infected patients (P=0.60) 

-- ~-

L threshold 1.5 (n=15): sensitivity 35~30-41) i5pecificity_ 
-
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Review Results of main analysis using advanced methods Heterogeneity investigations using advanced Author comment on advanced method used 
methods 

91 (89-92) 
For detection of cirrhosis, APRI accuracy was greater 

Prediction of significant cirrhosis in studies containing higher proportion of men 
threshold 1.0 (n=9): sensitivity 76 (68-82) specificity 71 (P=0.001), younger participants (P=0.04), and 
(69-73) HIV/HCV co-infected patients (P=0.03). The other 
threshold 2.0 (n=8): sensitivity 49 (43-55) specificity 91 covariates were not significant (data not given). 
(90-93) 

Thangara Sensitivity and specificity (%) with 95%Cls for NA Authors note that the model produces: a random effect 
tinam, estimate of mean sensitivity and specificity with 95% Cis, the 
2007131 sensitivity 63 (39 to 83) amount of between-study variation for sensitivity and 

specificity 99.8 (99 to 100) specificity separately, and the strength and shape of the 
correlation between sensitivity and specificity. Only the first is 
presented in the results. 

Advantages of BVN: 
a. accounts for the heterogeneity 
between studies caused by different threshold settings. 
b. acknowledges the difference in precision by which 
sensitivity and specificity have been measured in each 
study 
c. accounts for the residual heterogeneity due to clinical or 
methodological differences between studies. 

Van Sensitivity and specificity (%) with 95%Cls for NA Model assumes a bivariate normal distribution for the logit-
Westreen transformed sensitivity and specificity values across studies, 
en, Detection of locoregional metastases allowing for additional heterogeneity between studies due to 
2004135 sensitivity 0.51 (0.34 to 0.69) differences in study characteristics 

specificity 0.84 (0.76 to 0.91) 

Detection of distant metastases, 
sensitivity 0.67 (0.58 to 0.76) 
~ecificity_ 0.97 (0.90 to 1.0) 

Whitin~, None for HSROC HSROC analysis shows that cohort studies with 
200613 longer follow-up produced higher estimated specificity 

and lower estimated sensitivity (P=0.074) 
Williams, Test (sensitivity and 1-specificity respectively) Peak systolic velocity The model 
2007140 peak systolic velocity 0.85 (0.76, 0.90), 0.08 (0.05, the approach to failed sonographic examinations was a. takes into account the uncertainty in estimates of both 

0.13) associated with the cutpoint for test positivity but not sensitivity and specificity within each study 
renal-aortic ratio 0.80 (0.62, 0.91), 0.12 (0.05, 0.25) with accuracy. Studies explicitly showing no PSV b. includes a random effect for both test accuracy and 
acceleration time 0.74 (0.55, 0.87), 0.15 (0.07, 0.29) failures had a higher expected sensitivity (0.95) and threshold thereby taking into account unexplained 
acceleration index 0.78 (0.67, 0.86), 0.11 (0.67,0.86) hence a lower expected specificity (0.76) than those heterogeneity between studies 

where PSV failures were excluded, PSV failures were c. allows test accuracy to vary with threshold through the 
inCluded, or no indication of what investigators did inclusion of a scale (shape) parameter that provides for 
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Review Results of main analysis using advanced methods Heterogeneity investigations using advanced Author comment on advanced method used 
methods 
with PSV failures was given (sens 0.81 and spec asymmetry in the SROC curve. This shape parameter is 
0.93, difference P=0.004) assumed to be constant across studies (fixed effect) 

acceleration index -
test accuracy increased as test threshold increased. 
For every 0.5-m/s2 increase in test threshold, DaR 
increased an average of 3.8 times (1.4, 10.5, 
P=0.01). 

Other popl and study design characteristics had no 
significant effect on test performance 
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Appendix 9 Rationale for choice of topic, type of TB and test(s) for the case study 

Potential for spectrum to affect test accuracy in tuberculosis 
A variety of spectrum-related factors could potentially affect the accuracy of tests for 

diagnosing TB. In most developed countries, TB mostly affects older people, recent 

immigrants from developing countries, members of ethnic minorities, and the 

immunocompromised (mainly HIV). 

Patient age can confound the diagnosis of TB, it being much more difficult to diagnose in 

children and more common in older people. The particular problems amongst children, are 

that disease is often asymptomatic, children rarely produce sputum, so that gastric aspirates 

are often used for mycobacterial testing, and they are also less likely to be AFB smear 

positive, i.e. the bacterial load in children is substantially lower in children than in adults (for 

both sputum and gastric aspirate specimens). 300,301 

The presence of mycobacterial infections other than tuberculosis (MOTT) or non-tuberculous 

mycobacteria (NTM), including the atypical forms such as M. avium species is also a key 

factor. M. avium complex disease occurs either as a disseminated disease largely in patients 

with human immunodeficiency virus (HIV) infection, or as a pulmonary disease in 

immunocompromised patients. The rapidly growing atypical mycobacteria, including M. 

fortuitum, M. chelonae and M. abscessus cause cutaneous, pulmonary and postsurgical 

wound infections.302 The rates of infection with NTM vary across the world, with rates 

pulmonary NTM reported at between 1 and 15 per 100,000.303 Generally similar rate save 

been reported in Europe, Japan and Australia, with a particularly high rates in South Africa. 303 

A study of non-HIV positive patients in Leeds found an increase in incidence of NTM 

infections as a proportion of total number of recorded mycobacterial infections from 8% in 

1995, to 14% in 1996, 18% in 1997, 15% in 1998 and 14% in 1999.304 Patients infected with 

these mycobacteria are more likely to have false-positive results on testing. 

Study setting and place of birth are further key factors that might affect test accuracy due to 

the variation in prevalence of both M. TB and other nontuberculous mycobacteria across the 

world. Immigrants to the UK and children born to immigrant families are more likely to have 

TB on arrival in the UK or to contract the disease from family members returning from visits to 

their countries of origin, due to higher prevalence of the disease in those countries. 

Tuberculosis in immunocompromised individuals, especially those with HIV infection, may 

have unusual features, such as atypical pulmonary manifestations or false-negative 

microbiological results, which can cause diagnostic difficulties.305 HIV infection substantially 

increases the risk of developing TB once infected with the bacillus, and also shortens the time 

to development of the disease. 305 Those with double infection have an estimated 10% risk of 

developing active TB each year.306
,307 HIV-positive patients may be at 10 times greater risk of 
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multi-drug resistant TB (MDR-TB) than HIV-negative patients.308 Other immunocompromised 

populations at risk for developing TB are those with diabetes mellitus,309 those on 

immunosuppressive medication post organ transpiantation310 and populations receiving 

treatment with TNF-alpha antagonists for rheumatoid arthritis and other autoimmune 

diseases.311 

Overall, the prevalence and distribution of these factors within a given study sample could 

strongly affect the accuracy of the test under investigation and variation between studies may 

contribute significantly to the heterogeneity observed in a systematic review. 

Choice of pulmonary T8 
A total of 368 datasets comparing a rapid diagnostic test with a reference standard were 

included in the HTA systematic review.78 These covered eight different types of TB (plus a 

group of studies using miscellaneous specimens from various sites) and nine groups of tests. 

The vast majority of the evidence identified (146 datasets) was for tests for the detection of 

pulmonary tuberculosis and therefore this was chosen as the topic for the case study. 

Choice of test(s) 
Of the 146 available datasets in pulmonary TB, 110 related to nucleic acid amplification tests 

(NAATs); 59 evaluated commercially produced NAATs and 51 were of 'in-house' NAATs, i.e. 

tests developed and used within a single laboratory. The NAAT test studies therefore 

provided the largest single source of studies from the project. 

The commercial nature of over half the test evaluations is also unique to the NAA T tests; very 

few serological or biochemical tests are commercially produced and although the fully 

automated liquid culture tests are generally commercially produced they are not evaluated 

with standard accuracy outcomes (e.g. sensitivity and specificity). The benefit of limiting the 

case study to one or more commercial tests is that the test methods and thresholds for 

positivity used are more standardised than for in-house tests, thereby largely eliminating this 

potential source of variation between studies. 

In general, the studies of the commercial NAA T tests recruited more patients and were better 

reported than those of the inhouse tests. A meta-analysis of studies with larger sample sizes 

is preferable to one with many small and underpowered studies. Better reporting of study 

characteristics also makes it easier to judge the quality of the included studies. The mean 

number of patients recruited was much lower for the studies of inhouse tests (153, SO 128, 

range 14 to 833) compared to commercial tests (n=362, SO 506; range 22 to 3794).78 

For these reasons the two most commonly investigated tests: the Roche Amplicor® 

mycobacterium tuberculosis tese12 (30 datasets) and the Gen-Probe Amplified 
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Mycobacterium tuberculosis Direct Test (MTD®)313 (21 datasets) were selected for inclusion 

in the case study. 

J 

., ,.)~ 
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Appendix 10 Meta-analytic methods used for the TB case study 

Aim 
For the group of available studies evaluating two nucleic acid amplification tests (MTD and 

Amplicor) for the detection of pulmonary tuberculosis, to examine the extent to which the 

effect of spectrum on test accuracy can be identified or masked by currently available 

methods of meta-analysis as introduced in Chapter 2, i.e. 

the Moses and Littenberg summary ROC (SROC) method 

the Rutter and Gatsonis hierarchical summary ROC (HSROC) model 

the bivariate normal model. 

Inclusion criteria 

Population 
Studies of adults or children with any form of active pulmonary tuberculosis were eligible for 

inclusion. Patients with any co-morbidity (including HIV infection) were included. Studies 

exclusively conducted in patients with non-tuberculous mycobacterial infection were excluded 

on the basis that these infections are rare and inclusion of them was outwith the resource 

constraints of the review. 

Studies with more than one specimen per patient were included only where accuracy data 

could be extracted on a per patient as opposed to a per specimen basis or where the 

difference in number of specimens compared to number of patients was less than 10%. 

Studies of specimens 'spiked' with mycobacteria were excluded as they did not use clinical 

samples. 

Diagnostic tests 
Any study that compared one of two NAA T tests for detection of active pulmonary 

tuberculosis with a reference standard was included. The two eligible tests were: 

the Roche Amplicor® mycobacterium tuberculosis test (including either the original 

manual version and the subsequently developed automated 'Cobas Amplicor' test, 

the Gen-Probe Amplified Mycobacterium Tuberculosis Direct (MTD®) test (including 

either the original (AMTD) and the enhanced (EMTD) version. 

Reference standards 
Reference standards for tests for detecting active TB can be broadly defined as follows: 

A: culture and/or microscopy smear test 

B: very high clinical suspicion of TB ± response to therapy 

C: clinical suspicion of TB, but it is not certain one way or the other 

Studies may use one or more of these reference tests either alone or in combination with 

each other as a reference strategy. Strategy A alone, although previously considered good 

practice, is now recognised as an inadequate reference standard especially in patients with 

acid fast bacilli (AFB) smear negative tuberculosis. Although culture specificity is high (a 

positive culture result is highly indicative of the presence of mycobacteria), sensitivity is much 

poorer as culture can miss true cases of TB. Unfortunately, clinical diagnosis, whilst improving 

175 



sensitivity, has a relatively low specificity for TB diagnosis. The definition of strategies Band 

C can also vary significantly, i.e. in terms of what signs and symptoms are considered to 

suggest the presence of TB infection. We accepted any of these categories as eligible 

reference tests and examined any impact on accuracy in the analyses by designating culture 

plus high clinical suspicion with or without additional investigations as an ideal reference 

strategy, i.e. definition of disease being either positive culture or high clinical suspicion. 

Study setting 
No restrictions on study setting were applied and studies from all countries were eligible for 

inclusion. 

Study design 
Only 'cohort' or case series type studies that compared a diagnostic test with an established 

reference standard in patients suspected of having tuberculosis were eligible for inclusion in 

the review. These could be either prospective or retrospective in nature. 

'Case-control' type studies where the performance of a test is compared in two or more 

groups of patients potentially ranging from those with confirmed active TB infection through to 

those with diseases other than TB or even no known disease (healthy controls) were 

excluded. This type of design is known to be significantly more susceptible to bias than 

cohort studies especially when healthy control patients are included; the artificial selection of 

patients leading to an unrepresentative case mix of patients. 

Outcome measures 
The evaluation of diagnostic tests has largely focused on the establishment of test accuracy, 

and this was the main focus of this review. Studies that examined the effect of diagnosis on 

diagnostic thinking, patient management or subsequent patient outcomes were also eligible 

for inclusion but none were identified. Studies focusing on the establishment of technical 

efficacy alone were excluded. 

At a minimum, accuracy studies were required to report sufficient information to allow the 

construction of a 2x2 contingency table. This information was used to calculate relevant 

accuracy statistics. Studies reporting only summary accuracy statistics without sufficient raw 

data to allow the construction of a 2x2 table were excluded. For studies using discrepant 

analysis (where false positive and/or false negative results usually against culture are 

resolved by examining clinical data for those patients), pre-discrepant analysis results were 

used wherever possible as this can be a potential source of bias. 314 

To limit the amount of potential variation resulting from varying definitions for an abnormal 

result between studies, data were extracted at the manufacturer's designated optimum cut­

offs points where possible. Only one dataset per test comparison was included. 

Literature search 
Literature was identified from several sources including electronic databases and other 

sources. A comprehensive database of relevant articles was constructed using Reference 
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Manager. All databases were searched from 1975 to August 2003. Reference lists of included 

studies and relevant review articles were scanned to check for additional studies not identified 

from other sources. 

A highly sensitive strategy to identify studies of tests evaluated in patients with active TB 

infection was used in the wider systematic review of all tests.78 Due to the high volume of 

studies in TB infection, tuberculosis-related terms were combined firstly with terms relating to 

the tests under evaluation, and secondly in combination with a sensitive methodological filter 

developed to identify diagnostic accuracy studies. Due to time frame and resource 

constraints, searches were restricted to English language only. 

Study inclusion 
Studies were selected for inclusion in the review in a two-stage process. In the first instance, 

the literature search results (titles and abstracts) were screened independently by two 

reviewers to identify all citations that appeared to meet our inclusion criteria. Full manuscripts 

of all selected citations were retrieved. Where it was not possible to determine study eligibility 

from the title and/or abstract the full manuscript were obtained. A checklist for study inclusion 

was piloted and subsequently completed for every full paper retrieved. Any disagreements 

over study inclusion were resolved by consensus or if necessary by arbitration by a third 

reviewer. 

Quality assessment 
The methodological quality of all included studies was appraised using a formal quality 

assessment tool developed by the University of York (also funded by the HTA Programme).21 

Use of a formal quality assessment tool allows the exploration of study design aspects either 

for which empirical evidence of bias exists64 ,199 or that are generally accepted as important for 

diagnostic test studies. A list of quality assessment criteria used and guide to their 

interpretation is provided on page 212. 

Study quality was assessed independently by two reviewers. Any disagreements were 

resolved by consensus or if necessary by arbitration by a third reviewer. 

Data extraction 
The extraction of study findings were conducted in duplicate using a pre-designed and piloted 

data extraction form to minimise any errors. Data were recorded onto a Microsoft Access 

database. Information on study participants, study design, tests and reference test details, 

test performance (2x2 contingency tables) and on potential sources of bias were extracted. 

Any disagreements between reviewers were resolved by consensus or if necessary by 

arbitration by a third reviewer. 

Data synthesis 
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For each test comparison, the sensitivity, specificity and their exact 95% confidence intervals 

were calculated. Statistical heterogeneity of sensitivities and specificities was initially 

assessed using the chi-squared test and by plotting sensitivity against the false-positive rate 

(one minus specificity) on a ROC plot and visually considering the scatter of points. 

Three methods of data synthesis were employed as described in Chapter 2 section 2.3: 

1. the Moses and Littenberg summary ROC (SROC) method, both unweighted (or equal 

weight) and weighted by inverse variance of InDOR. The analyses were performed 

using STATA version 8. The model output estimates mean accuracy (DOR) at the Q* 

point, and an estimate of asymmetry in the SROC curve (P-value associated with the 

'S' term). The mean value of S across the primary studies was used to estimate the 

average sensitivity and specificity of a point on the SROC curve that lies closer to the 

centre of the data - the average threshold point - as described in section 2.3.2. 

2. the Rutter and Gatsonis hierarchical summary ROC (HSROC) model was carried out 

using the PROC NLMIXED command in SAS version 8.02. The model estimates 

mean accuracy (DOR) at the Q* point, mean threshold and the shape of SROC 

curve, along with their 95% confidence intervals. The model output was used to 

estimate DOR at the average threshold, and was also transformed to estimate 

sensitivity and specificity as described by Harbord and colleagues.79 

3. the bivariate normal (BVN) model analyses were performed with the PROC NLMIXED 

command in SAS version 8.02. The average sensitivity and specificity, with their 95% 

confidence intervals were estimated. The model output was transformed to estimate 

DOR at the average threshold, and was also transformed to estimate mean accuracy 

(DOR) at the Q* point, mean threshold and the shape of SROC.79 

Heterogeneity investigations 
For each method of meta-analysis, sources of heterogeneity were investigated by adding the 

following covariates to the standard models: 

• test used, e.g. MTD vs Amplicor and for each test, standard versus enhanced 

versions 

• reference standard used: culture plus clinical suspicion with or without additional tests 

vs culture without clinical diagnoses 

• index blinded vs not blinded/unknown 

Covariates were added to the models in two ways. At the most simple level, no interaction of 

covariate with curve shape is allowed (parallel curve models). This, by definition, assumes 

that the SROC curves for the two groups are parallel; the RDOR, or difference in DOR 

between groups, is therefore constant at all thresholds. 

A further level of complexity is added where the covariate is allowed to interact with curve 

shape ('crossing' curve models). This can occur only for the Moses and HSROC models; an 
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interaction of covariate with shape cannot be modeled under the bivariate normal 

parameterisation. Where a covariate interacts with shape, the SROC curves for the 

subgroups may have different shapes and therefore will cross at some point along the curves. 

The ROOR will not remain constant but vary systematically with threshold, to a greater or 

lesser extent along the length of the curves. 

The addition of covariates to the models produce the following parameters to assess 

differences between groups: 

4. difference in accuracy - the relative diagnostic odds ratio (ROOR). All three models 

naturally produce an estimate of ROOR at Q*, with 95% Cis. For the parallel curve 

models, the ROOR will be constant all along the length of the curves, however for the 

crossing curve models, ROOR will vary. I have estimated ROOR using the average 

threshold value (or for the Moses methods mean S) for the reference group and for the 

comparator group, this gives ROORs near to the average operating points of the two 

subgroups. 

5. difference in threshold. Only the advanced methods produce an estimate of differences in 

threshold between groups; this, with its 95%CI is estimated both for the parallel and 

'crossing' curve models. 

6. difference in shape. This can be estimated only for the crossing curve models and only for 

the Moses models and the HSROC model, not for the BVN model. 

7. difference in sensitivity and specificity. This was estimated for all models, both in their 

parallel and crossing curve forms. Only the advanced models provide confidence intervals 

for the differences in sensitivity and specificity, as these do not fall naturally from the 

Moses models. 
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Quality assessment criteria used - QUADAS tool (Whiting and collea 21 ues, 2004 ') 

Item Yes No Ullclear 

1. Was the spectrum ofpatients representative of the patients who Yes No Unclear 
will receive the test in practice? 

2. Were selection criteria clearly described? Yes No Unclear 

3. Is the reference standard likely to correctly classify the target Yes No Ullclear 
condition? 

4. Is the time period between reference standard and index test short Yes No Ullclear 
enough to be reasonably sure that the target condition did not 
change between the two tests? 

5. Did the whole sample or a random selection of the sample, receive Yes No Ullclear 
verification using a reference standard of diagnosis? 

6. Did patients receive the same reference standard regardless of the Yes No Ullclear 
index test result? 

7. Was the reference standard independent of the index test (i.e. the Yes No Ullclear 
index test did not form part of the reference standard)? 

8a. Was the execution of the index test described in sufficient detail to Yes No Ullclear 
permit replication of the test? 

8b. Was the execution of the reference standard described in sufficient Yes No Ulle/ear 
detail to permit its replication? 

9a. Were the index test results interpreted without knowledge of the Yes No Ulle/ear 
results of the reference standard? 

9b. Were the reference standard results interpreted without Yes No Ullclear 
knowledge of the results of the index test? 

10. Were the same clinical data available when test results were Yes No Ulle/ear 
interpreted as would be available when the test is used in 
practice? 

11. Were uninterpretablel intermediate test results reported? Yes No Ullclear 

12. Were withdrawals from the study explained? Yes No Ulle/ear 
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Appendix 11 Primary study details 

Index 
Reference interp 

id Study Test standard blinded? N tp tn fp fn Sens Spec DOR ESS %weight 

1 Abe, 1993173 AMTD C alone ? 135 29 98 5 3 0.91 0.95 189 98 0.01 

2 Abu-Amero, 2002155 Cobas Amplicor C alone ? 628 51 562 0 13 0.79 1.00 4292 233 0.00 

3 AI Zahrani, 2000161 Amplicor C+Clin+T+X Y 489 24 430 0 33 0.42 1.00 630 204 0.00 

4 AI Zahrani, 2000161 AMTD C+Clin+T+X Y 385 20 336 0 27 0.43 1.00 502 168 0.00 

5 Alcala, 2001 170 AMTD C+Clin ? 365 54 267 36 8 0.87 0.88 50 206 0.04 

6 Arimura, 1996315 Amplicor C alone ? 76 19 48 2 7 0.73 0.96 65 68 0.01 

7 Bemer-Melchoir, 2000174 Cobas Amplicor C+Clin ? 207 21 161 0 23 0.48 1.00 296 141 0.00 

8 Bennedson, 1996316 Amplicor C alone Y 3794 251 3333 42 168 0.60 0.99 119 1491 0.21 

9 Bergmann, 1996317 Amplicor C alone ? 502 22 465 6 9 0.71 0.99 189 116 0.02 

10 Bergmann, 1999318 EMTD C+Clin ? 489 20 458 6 5 0.80 0.99 305 95 0.02 

11 Cartuyvels, 1996319 Amplicor C alone ? 536 9 508 15 4 0.69 0.97 76 51 0.02 

12 Catanzaro, 2000320 EMTD C+Clin Y 338 60 259 7 12 0.83 0.97 185 227 0.03 

13 Cavusoglu, 2002175 AMTD C+Clin+T+X ? 63 30 28 2 3 0.91 0.93 140 63 0.01 

14 Chedore, 199911 EMTD C+Clin ? 618 194 414 8 0 1.00 0.98 18969 534 0.00 

15 Chin, 1995321 Amplicor C+T+X ? 227 9 204 2 12 0.43 0.99 77 76 0.01 

16 Cohen, 1998322 Amplicor C alone Y 85 20 54 4 7 0.74 0.93 39 74 0.02 

17 D'Amato, 199592 Amplicor C+Clin+X ? 365 17 333 4 11 0.61 0.99 129 103 0.02 

18 Devaliois, 1996151 Amplicor C alone ? 372 20 350 0 0 0.98 1.00 28741 79 0.00 

19 Ehlers, 1996297 AMTD C alone ? 261 39 203 11 8 0.83 0.95 90 154 0.03 

20 Eing, 1998157 Cobas Amplicor C alone ? 833 25 801 4 3 0.89 1.00 1669 108 0.01 

21 Gleason Beavis, 1995323 Amplicor C alone Y 270 11 249 6 4 0.73 0.98 114 57 0.01 

22 Gomez-Pastrana, 2001 165 Amplicor C+Clin+T+X Y 88 11 59 4 14 0.44 0.94 12 72 0.02 
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Index 
Reference interp 

id Study Test standard blinded? N tp tn fp fn Sens Spec DOR ESS %weight 

23 Hoffner, 1996 (a)169 AMTD C alone Y 274 70 166 26 12 0.85 0.86 37 230 0.05 

24 Hoffner, 1996 (b) 159 AMTD C alone ? 309 15 290 2 2 0.88 0.99 1088 64 0.01 

25 Kambashi,2001 171 AMTD C+Clin+T Y 92 63 17 3 9 0.88 0.85 40 63 0.01 

26 Kang, 2002176 Amplicor C+Clin+T+H ? 47 11 28 0 6 0.64 0.98 101 44 0.00 

27 La Rocco, 1994168 AMTD C+Clin ? 246 56 184 3 3 0.95 0.98 1145 179 0.01 

28 Lim, 2000324 Cobas Amplicor C+Clin+T+X Y 441 11 411 5 14 0.44 0.99 65 94 0.02 

29 Lim, 2002325 Cobas Amplicor C+Clin+T+X ? 128 15 107 1 5 0.75 0.99 321 68 0.01 

30 Lockman, 2003326 Amplicor C alone ? 112 50 35 3 24 0.68 0.92 24 100 0.02 

31 Middleton, 2003167 AMTD C alone ? 773 86 449 232 6 0.93 0.66 28 324 0.04 

32 Mitarai, 2001 (a)172 Amplicor C+Clin+ T +H+ X ? 116 25 48 1 42 0.37 0.98 29 113 0.01 

33 Mitarai, 2001 (b )327 Amplicor C+Clin+ T +H+ X ? 780 197 449 12 122 0.62 0.97 60 754 0.07 

34 Neu, 1999177 Amplicor C alone ? 30 2 25 1 0 0.83 0.94 85 11 0.00 

35 Osumi, 1995166 AMTD C+Clin Y 24 0 17 3 2 0.17 0.83 1 11 0.00 

36 Piersimoni,2002160 EMTD C+Clin ? 402 72 315 2 13 0.85 0.99 872 268 0.01 

37 Piersimoni, 1998328 AMTD C+Clin ? 219 13 172 29 5 0.72 0.86 15 66 0.02 

38 Reischl, 1998329 Cobas Amplicor C+Clin ? 807 81 691 14 21 0.79 0.98 190 356 0.05 

39 Sato, 1998164 Amplicor C alone ? 72 32 22 13 5 0.86 0.63 11 72 0.02 

40 Sato, 1998164 AMTD C alone ? 72 31 25 10 6 0.84 0.71 13 72 0.02 

41 SeThoe, 1997330 Amplicor C alone Y 179 26 142 6 5 0.84 0.96 123 103 0.02 

42 Shim, 2002331 Cobas Amplicor C+Clin+ T +H+ X ? 331 26 276 3 26 0.50 0.99 92 175 0.02 

43 Smith,1999154 AMTD C alone ? 153 9 142 0 0 0.95 1.00 5415 37 0.00 

44 Smith,1999154 EMTD C alone ? 153 9 139 3 0 0.95 0.98 757 37 0.00 

45 Vuorinen, 1995162 Amplicor C alone ? 256 22 228 2 4 0.85 0.99 627 93 0.01 

46 Vuorinen, 1995162 AMTD C alone ? 256 22 227 3 4 0.85 0.99 416 93 0.01 
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Index 
Reference interp 

id Study Test standard blinded? N tp tn fp fn Sens Spec DCR ESS %weight 

47 Wanq, 1999153 AMTD C alone ? 230 71 156 2 1 0.99 0.99 5538 198 0.00 

48 Wang, 1999153 Cobas Amplicor C alone ? 230 69 152 6 3 0.96 0.96 583 198 0.01 

49 Yam, 1998156 Cobas Amplicor C alone ? 387 38 341 0 6 0.86 1.00 4045 159 0.00 

50 Yee, 2002332 Cobas Amplicor C alone ? 85 12 69 1 3 0.80 0.99 276 49 0.01 

51 dos Anjos Filho, 2002163 Amplicor C alone ? 98 34 45 10 9 0.79 0.82 17 97 0.03 
1. Test 
2. Reference test used: C - culture; Clin - clinical diagnosis; H - Histology; T - treatment trial; X - x-ray 
3. Index test interpreted blinded?: Y - yes; N - no; ? - can't tell 
4. N: total number of patients tested with a given test 
5. TP - true positives; TN - true negatives, FP - false positives; FN false neagtvies 
6. Sens (95%CI) [tp/dis]: sensitivity (95% confidence interval) [number true positive/total number of diseased] 
7. Spec (95%CI) [tn/nodis]: specificity (95% confidence interval) [number true negative/total number without disease] 
8. DOR (95%CI): diagnostic odds ratio (95% confidence interval) 
9. ESS - effective sample size 
10. %weight - percentage weight accorded per study for weighted Moses analysis (weighting by inverse variance InDOR) 
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Appendix 12 Bias in the standard error of the log DOR 

Deeks and colleagues81 explain the mechanism by which the standard error of the log 

diagnostic odds ratio, or SE(lnDOR), operates as follows. 

The asymptotic estimator for the standard error is as follows: 

SE(lnDOR) = 
1 1 1 1 
-+--+-+­
TP FN FP TN 

Where TP is true positive, FN is false negative, FP is false positive, TN is true negative. If: 

DOR = <I> = 
n1 = number not diseased = 

n2 = number with disease = 

(TP x TN)/(FP x FN); 

TN + FP; 

TP + FN; 

r = odds of testing negative in nondiseased = TN/FP, 

the asymptotic estimator for the standard error can be re-expressed as: 

The three functions contained in this equation have the following properties. 

The sample size dependent term (SSdep) which inversely relates to effective sample sizem 

(4nJn2)/(nJ +n2), appropriately reflecting unequal numbers in diseased and nondiseased 

groups: 

The proportion testing positive dependent term (PTPdep): 

The SE(lnDOR) is minimised when the numbers of true negatives and false positives are 

equal (r = 1). For fixed vales of nJ and n2, shifting the threshold changes r and alters the 

standard error in a multiplicative manner: 

m Effective sample size (ESS) is the sample size needed in equal-sized groups to achieve the available power where 
there are groups of unequal sizes. It will generally be less than the total number of subjects in the unequal groups. 
(http://www.uvm.edu/-dhowell/methods/Glossarv/Glossarv.html) 
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• where r is 1, the PTPdep term is 4, 

• where r is 9 or 0.11, the PTP term is 11 and 

• where r is 0.5 or 99.5, the PTP term is 201 

The DOR dependent term (DORdep) 

= [~J(FP _ FN) 
n2 TN TP 

The SE(lnDOR) increases or decreases according to an additive term dependent on the 

DOR. The term is zero when DOR = 1 (i.e. for a test with no diagnostic value) and when 

sensitivity = specificity. For a fixed value of r, DORdep is positive if sensitivity is greater than 

specificity and negative otherwise. The magnitude of the term decreases with increasing 

numbers of diseased. For example, for a constant r of 49 and constant sensitivity (0.70) and 

specificity (0.90), with numbers of TN and FP (90 and 10) also remaining constant: 

• where number of diseased=100, the DORdep term is -0.06 

• where number of diseased=300, the DORdep term is -0.0 

Only the first of the three terms will operate appropriately under the particular characteristics 

of diagnostic meta-analyses, i.e. 

i. high DOR, with number of fps and fns often small 

ii. explicit or implicit variation in threshold leading to variation in the proportion that are test 

positive 

iii. unequal sample sizes for diseased and nondiseased 

This has implications for estimation of confidence intervals for DORs, detection of bias 

graphically and statistically, and for weighting schemes when pooling data. 
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Appendix 13 Deletion residual analysis for Moses (eq) model: studies with ~ 5% effect on at least one parameter (sorted by effect on DOR) 

I I u l :!: I ~ I ~ l z l(L Individual study data Pooled analysis results minus each study 
If) 

Q) "0 Ol CJ) LL LL c::: DOR 
Q) 

S ~ a. g. 6 0 = = 0 en sens, spec 
~ ~ N N ~ ~ a c: III Q) 

Sens III .r:en 
~ c ~ ~ e e Q) b'line .r: b'line b' line u C.l c: 
Q) 'E Q) Q. Q) Q) >< Sensit Spec if minus u 
If) If) If) N N Q) ~ id Author .... N M '<t I/) (Q ..... D S ivity icity Spec 121 .1 -0.17, P=0.21 0.81 , 0.98 

Chedore, 
14 199911 Y - Y · Y - - 9.85 2.08 0.997 0.980 +0.01 8 80.2 -34% -0.29, P=0.03 73% 0.79, 0.98 

47 Wang, 1999153 - Y Y · - - 8.62 -0.09 0.986 0.987 -0.001 101 .5 -16% -0.21, P=0.12 24% 0.80, 0.98 

39 Sato, 1998164 Y - - - - - - 2.38 1.33 0.865 0.628 +0.236 139.6 +15% -0.13, P=0.36 -24% 0.80, 0.98 

40 Sato, 1998164 Y - - - - - 2.56 0.73 0.838 0.714 +0.124 136.4 +13% -0.14, P=0.32 -19% 0.80,0.98 
Middleton, 

31 2003167 Y - Y - - - - 3.32 2.00 0.935 0.659 +0.275 131 .8 +9% -0.14, P=0.32 -15% 0.80, 0.98 

51 
dos Anjos 
Filho, 2002163 - Y - - - - - 2.83 -0.17 0.791 0.818 -0.027 132.5 +9% -0.15, P=0.28 -1 2% 0.81 , 0.98 

48 Wang, 1999153 - Y Y · - - 6.37 -0.10 0.958 0.962 -0.004 112.7 -7% -0.19, P=0.18 10% 0.80, 0.98 
Devailois, 

18 1996151 - Y Y Y Y Y - 10.27 -2.84 0.976 0.999 -0.022 112.5 -7% -0.16, P=0.22 -7% 0.80, 0.98 
La Rocco , 

27 1994168 - Y Y · - - 7.04 -1.19 0.949 0.984 -0.035 113.1 -7% -0.18, P=0 .19 7% 0.80, 0.98 
Abu-Amero, 

2 2002155 - - - Y - Y - 8.36 -5.69 0.792 0.999 -0.207 126.8 +5% -0.13 , P=0.36 -25% 0.81 , 0.98 
Osumi, 

35 1995166 - - - - - - X 0.00 -3.22 0.170 0.830 -0.667 128.1 6% -0.19 13% 0.81 , 0.98 
Kambashi, 

25 2001 171 Y - - - - - - 3.68 0.21 0.875 0.850 +0.025 127.8 +6% -0.16 , P=0.26 -8% 0.80, 0.98 

44 Smith , 1999154 - Y Y · Y - - 8.63 -0.74 0.950 0.976 -0.026 11 3.4 -6% -0.18, P=0.19 8% 0.80, 0.98 
Hoffner, 1996 

23 (a)169 - Y - - - - . 3.62 -0.09 0.854 0.865 -0.011 127.9 +6% -0.16, P=0 .26 -8% 0.80, 0.98 

49 Yam, 1998156 - - - Y - Y - 8.31 -4.75 0.856 0.999 -0.143 123.2 +2% -0.14, P=0.31 -18% 0.80, 0.98 
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I I () I ~I ~ I ~I zl a.. Individual study data Pooled analysis results minus each study 
C/) 

Q) Ol Ol U. U. c:: II> :::i:! Cl. ci ci DCR S Cl. C/) Qi Qi 0 CI 0 sens, spec 
C/) 

~ c: 
A Q) AI AI () () 

'" II> C/) 
C/) 

C/) () Q) Sens "' . ~CI e 0 b'l ine ~ b'line b'line c:: c:: c:: Q) Qj () 

Sensit Specif minus 0 o c: 
Q) 'E Q) Cl. II> X 
C/) C/) C/) N N Q) ~ id Author ..... _N M '<t Ii') CD r-- D S ivity icity Spec 121.1 -0.17, P=0.21 0.81,0.98 

43 Smith, 1999154 - Y Y Y Y Y - 8.60 -2.71 0.950 0.997 -0.046 114.7 -5% -0.16, P=0.22 -3% 0.80, 0.98 

5 Alca la, 2001 170 - Y - - - - - 3.91 -0.09 0.871 0.881 -0.010 126.2 +4% -0.16, P=0.25 -6% 0.80, 0.98 
AI Zahrani, 

3 ' 2000161 - - - y - y - 6.45 -7.07 0.422 0.999 -0.576 123.0 +2% -0.16, P=0.28 -6% 0.81 , 0.98 

20 Eing , 1998157 - - - y - - - 7.42 -3.18 0.893 0.995 -0. 102 118.3 -2% -0.16, P=0.24 -5% 0.80, 0.98 
Mitarai, 2001 

32 (a)172 - - - - - - X 3.34 -4.39 0.370 0.980 -0.606 121.8 1% -0.19 12% 0.81,0.98 

Studies from categories 1-6 but without bi ~ effects on the anal sis - I 
1 Abe, 1993173 Y - 5.24 -0.71 0.906 0.951 -0.045 119.5 -1% -0.17, P=0.22 +2% 0.80,0.98 

AI Zahrani, 
4 2000161 Y Y - 6.22 -6 .81 0.427 0.999 -0.571 122.1 +1% -0.16, P=0.26 -4% 0.81 , 0.98 

Bemer-
Melchoir, 

7 2000174 Y Y - 5.69 -5 .87 0.478 0.997 -0.519 120.8 0% -0.17, P=0.23 +1% 0.81 , 0.98 

13 
Cavusoglu, 
2002175 Y - 4.94 -0.34 0.909 0.933 -0.024 120.6 0% -0.17, P=0.22 +1% 0.80,0.98 

26 Kang, 2002176 Y - 4.61 -3 .47 0.639 0.983 -0.344 121 .8 +1% -0.17, P=0.21 +2% 0.81,0.98 

34 Neu, 1999177 Y 
-

4.44 -1.22 0.833 0.944 -0.11 1 123.31 +2% -0.17, P=0.23 -2% 0.80, 0.98 

Shaded cells indicate studies whose remova l has ;:>:10% effect on at east one parameter 
DOR - diagnostic odds ratio; b'line - baseline value for analyses including all 52 datatsets; % change - percentage change in OCR or S from baseline; sens, spec - average sensitivity 
and specificity 

1 sens>spec: sensitivity greater than specificity 
2 min sespdiff: minimal difference between sensitivity and specificity 
3 sens ;:>: 0.934: sensitivity;:>: 0.934 

187 



00 
00 
T""" 



Appendix 14 Deletion residual analysis for HSROC model: studies with ~ 5% effect on at least one parameter (sorted by effect on DOR) 

u :t:: "<t l(') Z a.. Individual study data Pooled analysis results minus each study :0 C") OJ 
Q) OJ OJ LL LL (/) 

a. a. 0 
c:: 

(/) (/) 0 Qi Qi 0 DOR Total n ESS theta DOR beta 
A Q) AI AI u u a (/) (/) Q) Q) 
c:: c:: (/) u e 0 Q) Sens Q) Ol Ol 
Q) c:: Q) Q; u Ol ~ c:: ~ c:: (/) 'E Q) a. Q) x Sens- Spec- minus c:: 

(/) (/) N N Q) median Median Median b'line - '" b'line o '" b'l ine 0.35, o '" .r:: .r:: 
id Author ~ N C") "<t l(') <0 ,.... 

129 itivity ifici ty Spec 256 24 0.79 ~ .r:: 139.06 u P=0.06 u o u 
Chedore, 

14 199911 Y - Y - Y - - 18969 0.997 0.98 0.018 618 533 -0.66 -1 7% 109.78 -21% 0.51, P=0.01 46% 
Wan~ , 

47 1999 53 - Y Y - - - - 5538 0.986 0.987 -0.001 230 198 -0.75 -6% 122.47 -12% 0.41, P=0.03 19% 

39 Sato, 1998164 Y - - - - - - 11 0.865 0.628 0.236 72 72 -0.9 14% 152.99 10% 0.28, P=0.14 -19% 
Devallois, 

18 1996151 - Y Y Y Y Y - 28741 0.976 0.999 -0. 022 372 79 -0.79 0% 125.89 -9% 0.35, P=0.06 0% 

40 Sato, 1998164 Y - - - - - - 13 0.838 0.714 0.124 72 72 -0.88 11% 151.06 9% 0.30, P=0.11 -14% 
dos Anjos 

51 Filho, 2002163 - Y - - - - - 17 0.791 0.818 -0.027 98 97 -0 .85 7% 149.1 7% 0.32, P=0.09 -9% 
Middleton, 

31 2003167 Y - Y - - - - 28 0.935 0.659 0.275 773 324 -0.9 13% 148.18 7% 0.29, P=0.12 -1 5% 
Smith, 

43 1999154 - Y Y Y Y Y - 5415 0.95 0.997 -0.047 153 37 -0.79 0% 130.26 -6% 0.34, P=0.06 -1% 
La Rocco, 

27 1994168 - Y Y - - - - 1145 0.949 0.984 -0.035 246 179 -0.78 -2% 130.16 -6% 0.38, P=0.05 8% 
Wan~ , 

48 1999 53 - Y Y - - - - 583 0.958 0.962 -0.004 230 198 -0.78 -2% 130.93 -6% 0.38, P=0.04 10% 
Hoffner, 1996 

23 (a)169 - Y - - - - - 37 0.854 0.865 -0.01 1 274 230 -0.84 6% 146.06 5% 0.33, P=0.08 -6% 
Smith, 

44 1999154 - Y Y - Y - - 757 0.95 0.976 -0.026 153 37 -0.78 -2% 132.41 -5% 0.37, P=0.05 7% 
Alcala, 

5 2001 170 - Y - - - - - 50 0.871 0.881 -0.01 365 206 -0.84 6% 144.47 4% 0.33, P=0.08 -5% 
Kambashi, 

25 2001171 Y - - - - - - 40 0.875 0.85 0.025 92 63 -0 .84 5% 143.75 3% 0.33, P=0.08 -4% 

49 Yam, 1998155 - - - Y - Y - 4045 0.856 0.999 -0.143 387 159 -0.82 3% 134.32 -3% 0.31 , P=0.10 -11% 
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u tt:: "<t Ln Z Il.. Individual study data Pooled analysis results minus each study 
Q) 15 C") CJ) 

LL LL If) 
CJ) CJ) 

0. 0. 0 0 
c: 

Total n ESS theta DOR beta If) If) Qi Qi 0 DOR 
II Q) III III u u :a If) If) Q) 
c: c: If) u 2 2 Q) Sens Q) Cl 
Q) c: Q) u Cl ~ c: 
If) 'E Q) 0. Q) Q) x Sens- Spec- minus c: 

N N median Median Median b'line - b'line o (lJ b'l ine 0.35, If) If) Q) (lJ £ 
id Author 

~ N C") "<t Ln <0 r-- 129 itivity ificity Spec 256 24 0.79 ~ £ 139.06 U P=0.06 o u 

Abu-Amero, 
2 2002155 - - - y - y - 4292 0.792 0.999 -0.207 628 233 -0.83 5% 136,96 -2% 0.29, P=0.12 

AI Zahrani, 
4 2000161 - - - y - y - 502 0.427 0.999 -0.571 385 168 -0.77 -3% 139.97 1% 0.33, P=0.08 

AI Zahrani, 
3 2000161 - - - y - y - 630 0.422 0.999 -0.576 489 204 -0.77 -3% 139.98 1% 0.32, P=0.09 · 

Mitarai, 2001 
32 (a)172 - - - - - - X 29 0.370 0.980 -0.606 116 113 -0.72 -10% 141 .08 1% 0.39, P=0.04 

Studies from categories 1-6 but without big effects on the 
anal sis 

1 Abe, 1993173 - Y - - - - - 189 0.906 0.951 -0.045 135 98 -0.8 1% 137.81 -1 % 0.36, P=0.06 
Bemer-
Melchoir, 

7 2000174 - - - y - y - 296 0.478 0.997 -0.519 207 141 -0.77 -3% 140.27 1% 0.33, P=0.08 

13 
Cavusoglu , 
2002175 - Y - - - - - 140 0.909 0.933 -0.024 63 63 -0.81 2% 138.12 -1% 0.35, P=0.06 

20 Eing, 1998157 - - - y - - - 1669 0.893 0.995 -0.102 833 108 -0.8 0% 133.42 -4% 0.34, P=0.07 

26 Kang , 2002176 - - - - - y - 101 0.639 0.983 -0.344 47 44 -0.79 -1 % 140.48 1% 0.34, P=0.07 

34 Neu, 1999177 - - - - 'L - --
- 85 0.833 0.944 -0.111 30 11 -0.79 0% 137.32 -1% 0.36, P=0.06 

Shaded cells indicate studies whose removal has ~10% effect on at east one parameter 
DOR - diagnostic odds ratio ; b'line - baseline value for analyses including all 52 datatsets; % change - percentage change in DOR or S from baseline; sens, spec - average sensitivity 
and specificity 

1 sens>spec: sensitivi ty greater than specificity 
2 min sespdiff: minimal difference between sensitivity and specificity 
3 sens ~ 0.934: sensitivity ~ 0.934 
4 spec ~ 0.995: specificity ~ 0.995 
5 zero cell FN: zero false negative results 
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Appendix 15 Plots according to index test blinding (blinding not reported as reference 
case) 

a. All studies 
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Moses (eq) - unweighted Moses model ; ROOR - relative diagnostic odds ratio (index test linding not reported is 
reference case (denominator); Q* - point where sensitivity=specificity (denoted by diagonal line); refOP - operating 
point estimated at average threshold in reference group; compOP - operating point estimated at average threshold in 
comparator group 
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Appendix 16 Plots according to test type (Amplicor as reference 'case) 
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Moses (eq) - unweighted Moses model; ROOR - relative diagnostic odds ratio (studies of Amplicor test are reference 
case (denominator); Q* - point where sensitivity=specificity (denoted by diagonal line); refOP - operating point 
estimated at average threshold in reference group; com pOP - operating point estimated at average threshold in 
comparator group 
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Appendix 17 Plots according to reference test used (combined reference test as 
reference case) 

a. All studies 
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Moses (eq) - unweighted Moses model ; ROOR - relative diagnostic odds ratio (combined reference test is reference 
case (denominator); Q* - point where sensitivity=specificity (denoted by diagonal line); refOP - operating point 
estimated at average threshold in reference group; com pOP - operating point estimated at average threshold in 
comparator group 
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Appendix 18 Data extraction form 

NAME FILE "YYYV SURNAME1STAUTHOR" 
ENTER EACH DISEASE IN A SEPARATE 

WORKSHEET 

Review code 

Review author 

Review year 

Extractor Jac 

Disease 
Cochrane Review 
Group 

Needs checking Yes 
Some studies evaluate 
more than one test Yes No 

No 
or 

Covariates extracted? Yes nfa 
Some studies report 
subgroup data Yes No 

Study 2 x 2 counts 

Author Year Test TP FP FN 

I j I ! ! 

Sample sizes 
Dis Dis Test Test 

TN + - + -

", 

I I ! 1 I I 1 I I I I i I I 

Spec 
Prevalences Performance Statistics Test trum Test 

Total Prey Prey 
N Dis+ Test+ Sens Spec LR+ LR- PPV NPV DOR AUC detail detail detail 
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Appendix 19 Primary analysis details 

OORs at average theta, P-
threshold beta, P-values values Ratio of OORs (RORs) Subgroups by key characteristics· 

Thresh 
Moses Moses Moses Moses Moses (eq) Moses (w)v Moses (w) v Range Zero Asym old 

id Review jeq) --'-wI HsROC (eq) (w) HsROC HsROC v HsROC HsROC Moses (eq) OOR in '5' cells metry diffs 

1 Balk 2001 180 38 15 34 0.29 0.06 0.12 0.00 1.11 0.45 0.41 1 3 2 2 1 

2 Bricker 2000179 705 688 872 0.96 0.41 0.52 0.01 0.81 0.79 0.98 3 1 1 3 1 

3 Buchanan 2001 181 2 3 1 0.13 0.20 0.13 0.07 4.81 5.51 1.15 1 3 1 2 1 

4 Chapell 2002182 80 61 117 0.74 0.04 0.18 0.01 0.68 0.52 0.76 3 1 3 2 1 

5 Delgado 2003178 19 19 25 0.30 0.30 0.42 0.38 0.75 0.75 1.00 1 2 3 3 3 

6 Deville 2000123 4 3 0.82 0.07 0.86 3 1 

7 Dijkhuizen 2000100 823 481 18220 0.54 0.13 0.34 0.10 0.05 0.03 0.58 3 2 3 3 2 

8 Eden 2001 183 12 11 14 0.88 0.10 0.36 0.00 0.82 0.75 0.91 1 1 3 3 1 

9 Flemons 2003184 57 31 54 0.02 0.01 0.02 0.00 1.05 0.57 0.54 2 3 2 1 1 

10 Flobbe 2ooi8S 30 26 30 0.07 0.00 0.01 0.00 1.01 0.88 0.87 1 1 1 1 1 

11 Gifford 2000186 4 4 4 0.03 0.02 0.12 0.48 0.99 0.95 0.96 1 2 2 2 3 

12 Glas 200380 29 16 32 0.02 0.09 0.01 0.00 0.92 0.49 0.53 1 2 2 1 1 

13 Gould 2001 107 72 69 107 0.05 0.52 0.71 0.06 0.68 0.65 0.96 3 2 3 3 1 

14 Gould 2003187 52 34 50 0.96 0.94 0.72 0.79 1.04 0.69 0.66 2 1 2 3 3 

15 Gray 2000188 36 22 44 0.40 0.69 0.35 0.11 0.83 0.50 0.60 2 2 2 3 2 

16 loannidis243 96 35 83 0.09 0.05 0.08 0.40 1.17 0.42 0.36 2 3 2 1 3 

17 Kittler 2002104 69 37 69 0.00 0.11 0.01 0.07 1.00 0.53 0.54 2 2 1 1 1 

18 Koelem~:i 2001 190 228 91 384 0.15 0.03 0.08 0.28 0.59 0.24 0.40 3 2 3 1 2 
Lysakowski 

19 2001 191 2 1 0.71 0.84 0.68 1 3 

20 MSAC 2002192 46 25 368 0.46 0.39 0.22 0.31 0.12 0.07 0.55 3 3 3 2 2 
Nallamothu 

21 2001 193 16 12 88 0.92 0.68 0.62 0.00 0.18 0.13 0.76 2 1 1 3 1 
Patwardhan 

22 2004194 33 21 28 0.03 0.06 0.07 0.01 1.16 0.73 0.63 1 3 2 1 1 

23 
Romaanuolo 
20031 285 201 438 0.35 0.09 0.13 0.92 0.65 0.46 0.71 3 2 3 2 3 

24 Sauerland 2004196 91 72 95 0.87 0.73 0.71 0.56 0.95 0.75 0.7~ 2_ ~ 2 3 3 
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25 Sotiriadis 2003197 6 7 7 0.04 0.39 0.36 0.00 0.88 1.12 1.27 1 2 1 3 

26 Varonen 2000198 16 12 15 0.91 0.95 0.99 0.78 1.03 0.78 0.75 1 1 1 3 

27 Visser 2000119 164 83 156 0.03 0.00 0.01 0.20 1.05 0.53 0.51 3 2 1 1 

28 Whitsel 2000114 6 2 5 0.19 0.03 0.08 0.00 1.20 0.49 0.41 1 2 1 1 

29 Wiese 2000129 757 764 0.83 0.72 1.01 2 3 

a The stratification by DOR is based on the HSROC overall pooled estimate; where the HSROC model did not run, it is based on the unweighted Moses model result. 
The stratification by range in'S' is based on values for'S' from Moses model 
The stratification by zero cells number of zero false positive or false negative cells as a percentage of the total number of cells per analysis 
The stratification by degree of asymmetry based on P-value associated with shape term from HSROC model 
The stratification by threshold differences based on P-value associated with threshold term from HSROC model 
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Appendix 20 Heterogeneity investigations: comparison of relative diagnostic odds ratios between models (Ratio of RDORs) 

Parallel Crossing curves Parallel v Crossing 
curves Q* ref threshold comp threshold curves 

id Review Comparator Reference n 1 2 3 1 2 3 1 2 3 1 2 3 M(eq) M(w) H 
emergency department 

Balk 2001 180 
patients with 

1.1 hospitalised patients symptoms/pain 14v1S 0.6 1.2 0.7 0.5 1.6 O.S 0.5 0.2 0.4 0.5 1.2 0.6 1.5 2.9 2.1 

2.1" Bricker 2000179 tertiary care primary/secondary care 4v7 0.7 - - 0.5 76.S 35.6 0.7 0.2 0.1 0.7 2.7 1.S 0.0 0.0 

2.2b Bricker 2000179 2nd trimester 1 st, 2nd and 3rd trimester 6v5 0.9 1.4 1.3 0.1 O.S 1.2 0.0 0.0 

2.3 Bricker 2000179 low risk unselected 4v7 0.9 O.S O.S 0.1 51.0 5.S 0.7 0.2 0.1 0.6 2.5 1.6 0.0 0.0 0.0 
Buchanan community/hospital 

3.1 2001 181 prison release dischar!]es Sv13 0.3 1.0 0.3 0.9 1.0 0.9 0.7 1.5 1.1 0.7 1.0 0.7 1.0 0.4 1.0 
Buchanan 

3.2 2001 181 time at risk <=20mos >20 mos 10vS 1.0 0.9 0.9 1.0 1.0 1.0 1.1 1.3 1.4 1.1 1.0 1.1 1.1 1.6 1.1 
Chapell 

4.1 200i82 possible age bias no bias or not reported 4v9 1.9 0.7 1.3 2.0 11.3 22.5 O.S 0.5 0.6 1.2 0.5 0.4 0.0 0.1 0.5 
Chapell possible bias to easy 

4.2 200i82 cases no bias to easy cases 5vS 1.1 0.4 0.4 6.0 0.6 3.4 O.S 0.7 0.6 0.9 2.1 1.9 0.2 0.4 0.2 

Chapell182 
symptoms/presented 

4.3 cases unspecified diagnosis Sv5 0.7 0.6 0.9 7.5 0.4 0.1 O.S 1.5 1.2 0.7 0.5 0.7 0.3 0.3 O.S 
Delgado unknown primary 

5.1 2003178 tumours other Sv7 1.2 0.4 0.4 1.0 0.3 0.3 1.0 0.4 0.4 1.0 0.2 0.2 0.9 1.1 0.1 

6.1 Deville 2000123 previous surgery no previous surgery Sv9 0.6 1.6 1.0 0.6 0.6 1.1 0.5 1.S 0.9 0.5 1.S 0.9 1.3 1.0 O.S 

6.2 b Deville 2000123 bilateral excluded bilateral not excluded 3v14 0.7 1.2 0.9 0.6 0.7 0.7 1.4 0.6 

6.3 Deville 2000123 <=60% men >60% men 10v4 1.1 0.9 1.0 1.1 0.9 1.0 0.9 1.0 0.9 1.1 1.0 1.1 O.S O.S O.S 
7.1 " Dijkhuizen pre and post- post-menopausal women 
b 2000100 menopausal women only 22v7 1.0 0.5 1.0 1.3 0.3 0.7 
7.2" Dijkhuizen 
b 2000100 asymptomatic or both symptomatic only 20v13 0.6 1.S 0.6 0.6 0.2 0.1 

environmental 
S.1 Eden 2001 183 exposure medical/not exposed 3v4 0.5 0.5 1.0 1.3 1.9 2.6 1.0 0.9 0.9 1.0 0.7 0.7 0.0 0.1 0.2 

Flemons 
9.1 2003184 home setting sleep laboratory 13v36 1.0 0.9 O.S O.S 1.0 O.S 0.9 1.9 1.7 0.9 0.9 0.9 1.0 4.0 1.1 

Flemons 
9.2 2003184 <75%men 75-100% men 10v29 1.4 0.9 1.3 1.5 0.5 O.S 0.7 0.6 0.4 1.5 0.5 0.7 0.9 O.S 0.5 -------
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Parallel Crossing curves Parallel v Crossing 
curves Q* ref threshold comp threshold curves 

id Review Comparator Reference n 1 2 3 1 2 3 1 2 3 1 2 3 M(eq) M(w) H 
Flemons 

9.3 2003184 mean AHI14<=30 Ahl>30 15v17 0.8 0.9 0.7 0.8 0.7 0.6 0.7 0.5 0.8 0.8 0.8 0.7 0.8 0.7 0.6 
Flemons 

9.4 2003184 mean BMI<=30 BMI>30 9v25 0.8 0.8 0.7 1.0 0.3 0.3 1.0 0.4 0.4 1.0 0.1 0.1 0.5 0.4 0.1 
clinical examination or 

10.1 Flobbe 2002185 jJathology referral mammogra[lhy 13v9 1.2 0.9 1.0 1.2 0.7 0.8 1.2 0.6 0.5 1.2 0.6 0.7 1.0 1.8 0.7 

11.1 Gifford 2000186 age <=70 >70 years 3v8 0.5 0.5 1.0 0.4 0.4 1.0 0.3 0.3 1.0 0.6 0.6 1.0 0.8 1.0 1.0 

Gifford 2000186 
dementia/memory 

11.2 clinics other setting 5v6 0.6 0.6 0.4 0.8 0.7 0.5 0.8 1.9 1.5 0.8 0.5 0.4 0.9 0.7 0.9 

11.3 Gifford 2000186 diagnostic criteria met referrals 6v5 0.5 0.9 0.5 0.5 0.9 0.4 0.5 1.2 0.6 0.5 0.8 0.4 1.0 2.1 0.9 
<30% Grade 1 

12.1 Glas 200380 tumours >=30% Grade 1 tumours 14v6 0.8 1.0 0.7 0.1 3.3 0.3 1.0 3.0 2.9 0.6 1.1 0.6 0.3 2.7 0.9 
<30% Grade 2 

12.2 Glas 200380 tumours >=30% Grade 2 tumours 6v14 3.0 0.5 1.5 1.4 0.8 1.1 1.6 0.2 0.3 1.6 0.2 0.3 0.1 0.1 0.1 
<30% Grade 3 

12.3 Glas 200380 tumours >=30% Grade 3 tumours 8v12 0.8 1.0 0.8 0.7 3.1 2.1 0.6 1.1 0.7 0.6 1.2 0.8 0.3 0.3 0.8 
12.4 
b Glas 200380 100% urological rest 1.2 1.0 1.2 0.0 0.7 0.5 0.2 0.2 

13.1 Gould 2001 107 >=70% men <70% men 14v14 0.8 1.4 1.1 0.9 0.2 0.2 0.9 0.1 0.1 1.3 0.3 0.3 0.4 0.3 0.1 

13.2 Gould 2001 107 <60years >=60 years 7v17 0.7 1.4 0.9 0.5 0.6 0.3 1.6 0.0 0.1 0.6 0.1 0.1 0.3 0.3 0.1 

14.1 Gould 2003187 >=70% men <70% men 12v10 0.7 0.3 0.5 0.6 0.2 0.4 0.6 0.6 0.4 0.6 0.4 0.7 0.8 0.9 0.9 
14.2 
ab Gould 2003187 <60 years >=60 years 4v21 1.1 1.3 1.4 1.6 2.6 2.2 

15.1 Gray 2000188 suspicion/lesions cancer history 10v4 0.1 1.6 0.2 0.1 2.5 0.2 0.1 0.3 1.9 0.3 1.0 0.3 0.5 1.0 0.8 

loannidis243 
symptoms suggestive 

16.1 of ACI pts with chest pain 4v6 0.7 0.9 0.6 0.6 2.6 1.6 0.5 4.7 2.3 0.3 0.8 0.2 0.3 1.1 0.8 

16.2 loannidis243 <65 years >=65 years 3v4 1.1 0.8 0.9 1.1 0.6 0.5 1.0 0.9 0.8 1.4 0.8 1.2 0.5 0.3 1.4 
16.3 
b loannidis243 <65% men >=65% men 3v4 1.7 0.7 1.3 1.0 0.9 0.5 0.1 0.6 

non-melanocytic non-melanocytic lesions 
17.1 Kittler 2002104 lesions excluded included 4v9 2.2 0.3 0.6 2.7 0.0 0.0 2.6 0.5 0.2 2.3 0.0 0.0 1.7 1.4 0.0 

18.1 
Koelemay 
2001 190 <65 years >=65 years 9v7 2.7 0.7 0.3 3.9 0.0 0.0 1.5 0.7 0.5 2.3 18.2 42.1 0.0 0.0 1.0 

18.2 
Koelemay 
2001 190 <70% men >=70% men 7v11 2.1 0.9 1.9 0.4 68.8 27.5 1.2 0.0 0.0 1.7 0.5 0.8 0.0 0.1 0.9 

14 h· d mean apnoea- ypopnea In ex 
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Parallel Crossing curves Parallel v Crossing 
curves Q* ref threshold comp threshold curves 

id Review Comparator Reference n 1 2 3 1 2 3 1 2 3 1 2 3 M(eq) M(w) H 
Koelemay <65% with intermittent >-65% with intermittent 

1S.3 2001 190 claudication claudication 5v10 1.9 0.6 1.1 1.3 1.3 1.7 1.6 1.S 2.9 1.9 0.5 0.9 0.4 0.7 1.1 
19.1 Lysakowski heterogeneous 
ab 2001 191 population homoQenous population 4v3 0.7 0.7 0.7 

20.1 MSAC 2002 192 <50% men >=50% men 6v6 2.6 0.0 0.1 1.S 0.0 0.0 2.1 0.7 1.5 2.1 0.0 0.0 1.3 19.0 1.3 

20.2 MSAC 2002192 families /pedigree definite/suspected/prenatal Sv4 4.3 0.3 1.2 25.9 0.4 11.0 S.O 1.5 11.S 7.4 0.2 1.7 O.S 0.1 1.2 
Nallamothu 

21.1 2001 193 <55 years >=55 years 5v9 O.S 0.6 0.5 0.4 2.1 O.S O.S 0.7 0.6 0.7 0.6 0.5 0.4 0.5 1.3 
Nallamothu 

21.2 2001 193 <65%men >=65% men 7v7 0.4 0.6 1.3 2.3 0.1 0.0 0.6 0.4 0.6 0.6 1.3 O.S 0.1 0.1 0.4 
Patwardhan 

22.1 2004194 <70 years >=70 years 11v5 0.4 1.3 0.5 2.0 0.5 0.3 0.4 2.1 0.9 0.5 0.6 0.3 0.4 0.4 1.1 
Patwardhan 

22.2 2004194 healthy controls diseased controls 13v6 0.7 1.1 O.S 2.4 0.4 0.9 O.S 0.3 0.4 1.3 0.5 0.6 1.0 0.3 0.3 
Romagnuolo wide variety of stones or cancer 

23.1 2003195 possible diagnoses diagnoses 11v35 1.0 0.7 O.S 1.5 0.5 0.7 1.1 0.3 0.3 1.0 0.4 0.4 O.S 0.6 0.6 
Sauerland 

24.1 2004196 adults children 10v3 0.6 1.9 1.2 0.6 1.2 O.S 0.6 0.1 0.2 0.6 2.4 1.5 1.0 1.0 0.6 
Sotiriadis 

25.1 2003197 <=30 years >30 years 4vS 0.9 0.7 0.6 5.3 0.1 0.7 0.7 1.1 O.S 0.7 1.0 0.7 1.0 1.S 0.2 
Sotiriadis 

25.2 2003197 high risk low risk/routine 7v5 1.3 0.4 0.5 0.9 0.0 0.0 1.4 0.5 0.4 1.3 0.3 0.4 0.6 O.S 0.0 
Varonen 

26.1 2000198 ENT clinic general clinic 3v4 O.S 1.2 1.0 0.9 1.6 1.5 0.9 3.4 3.2 O.S 1.S 1.4 1.1 1.1 1.6 

27.1 Visser 2000119 <=60% men >60% men SvS 0.1 0.9 0.1 0.0 2.0 0.1 0.4 1.0 0.4 0.1 2.4 0.2 0.5 0.5 1.2 

27.2 Visser 2000119 <=65 years >65 years SvS 1.0 O.S O.S 5.S 0.5 3.0 0.9 0.7 0.6 0.7 0.5 0.3 2.0 0.3 1.2 

27.3 Visser 2000119 N America other country 14v7 1.6 0.7 1.2 4.3 0.7 3.2 2.6 0.7 1.S 1.6 O.S 1.2 1.0 0.4 1.0 

2S.1 Whitsel 2000114 <=40 years > 40 years SvS 0.3 1.7 0.5 O.S 0.1 0.1 0.3 0.0 0.0 0.5 0.0 0.1 0.1 0.5 0.0 

2S.2 Whitsel 2000114 <=50% men >50% men 5v11 0.7 0.4 0.6 O.S 0.2 0.2 0.5 0.4 O.S 0.7 0.3 0.4 0.7 0.6 0.6 

2S.3 Whitsel 2000114 
<-50% type 1 
diabetes 50-100% 5v10 1.1 1.0 1.1 0.2 0.0 0.0 1.2 0.0 0.0 1.3 0.0 0.0 0.1 0.4 0.0 
mean duration <-10 

2S.4 Whitsel 2000114 years >10 years 10v4 0.4 1.2 0.5 0.5 2.1 1.0 0.5 1.9 O.S 0.4 1.4 0.6 O.S 0.7 1.4 
29.1 
ab Wiese 2000129 STD clinic speciality/general clinic 14v16 1.1 1.0 1.1 1.1 0.1 0.3 

- - -

1 - Moses (w) versus Moses (eq) model comparison; 2 - Moses (eq) versus HSROC model comparison;3 - Moses (w) versus HSROC model companson 
a denotes covariates for which the parallel curve HSROC analysis could not be completed b denotes covariates for which the crossing curve HSROC analysis could not be completed 
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Appendix 21 Heterogeneity investigations - P-values for ROORs per model 

Crossing curve 

Parallel curve models Q* ref threshold com threshold 

id Is_tudy Comparator group Reference group n M(eq) M(w) H M(eq) M(w) H M(eq) M(w) H M(eq) M(w) H 

1.1 Balk 2001 180 hospitalised patients 
emergency department 
patients with symptoms/pain 14v18 0.03 0.06 0.03 0.20 0.92 0.64 0.02 0.04 0.90 0.07 0.49 0.20 

~.1a Bricker 2000179 ertiary care primary/secondary care 4v7 0.48 0.48 0.18 0.10 0.26 0.54 0.72 0.19 0.27 0.21 0.93 

12·2
b Bricker 2000179 ~nd trimester 1 st, 2nd and 3rd trimester 6v5 0.75 0.70 0.98 0.17 0.10 0.79 0.98 0.62 0.31 

12.3 Bricker 2000179 low risk unselected 4v7 0.43 0.39 0.24 0.20 0.17 0.24 0.47 0.67 0.17 0.28 0.40 0.92 

13·1 Buchanan 2001 181 Iprison release 
ommunity/hospital 

discharges 8v13 0.12 0.19 0.12 0.20 0.16 0.16 0.13 0.31 0.17 0.13 0.34 0.12 

13.2 Buchanan 2001 181 ime at risk <=20mos >20 mos 10v8 0.43 0.43 0.33 0.60 0.52 0.48 0.45 0.22 0.53 0.43 0.19 0.34 

4.1 rhapell 200i82 jpossible age bias no bias or not reported 4v9 0.48 0.09 0.41 0.03 0.00 0.36 0.98 0.76 0.36 0.24 0.07 0.96 

4.2 !chapell 2002182 
possible bias to easy 
cases no bias to easy cases 5v8 0.09 0.10 0.04 0.11 0.01 0.10 0.09 0.14 0.10 0.08 0.11 0.93 

4.3 r'hapell 182 
Isymptoms/presented 
cases unspecified diagnosis 8v5 0.50 0.97 0.89 0.71 0.29 0.99 0.48 0.74 0.96 0.60 0.96 0.85 

5.1 Delgado 2003178 
unknown primary 
umours other 8v7 0.80 0.58 0.71 0.72 0.72 0.63 0.86 0.86 0.31 0.73 0.73 0.74 

6.1 Deville 2000123 [previous surgery no previous surgery 8v9 0.08 0.53 0.36 0.21 0.80 0.97 0.05 0.83 0.30 0.06 0.87 0.63 

6.2b Deville 2000123 bilateral excluded bilateral not excluded 3v14 0.37 0.75 0.47 0.83 0.74 0.47 0.96 0.36 0.77 

6.3 Deville 2000123 <=60% men >60% men 10v4 0.99 0.72 0.71 0.73 0.39 0.34 0.97 0.86 0.87 0.88 0.59 0.78 

7.1 a b Dijkhuizen 2000100 
pre and post-menopausal post-menopausal women 
~omen bnly 22v7 0.56 0.66 0.17 0.33 0.37 0.37 0.88 0.65 

7.2ab Dijkhuizen 2000100 [as~mptomatic or both !5ymptomatic only 20v13 0.32 0.91 0.05 0.06 0.44 0.78 0.27 0.92 

8.1 Eden 2001 183 
~nvironmental exposure medical/not exposed 3v4 0.95 0.42 0.36 0.42 0.34 0.53 0.82 0.86 0.44 0.79 0.87 0.92 

9.1 Flemons 2003184 home setting sleep laborat~ry 13v36 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 

9.2 Flemons 2003184 <75%men 175-100% men 10v29 0.97 0.37 0.87 0.77 0.21 0.34 0.87 0.53 0.14 0.92 0.30 0.48 

13.3 Flemons 2003184 imean AHI15<=30 ~hl>30 15v17 0.14 0.25 0.07 0.11 0.11 0.06 0.38 0.77 0.81 0.11 0.14 0.08 

~4 Flemons 2003184 
~ean BMI<=30 BMI>30 9v25 0.61 0.94 0.48 0.09 0.18 0.12 0.48 0.55 0.08 0.61 0.67 0.27 

linical examination or 
10.1 Flobbe 2002185 [pathology referral imammography 13v9 0.30 0.04 0.07 0.28 0.04 0.12 0.28 0.04 1.00 0.36 0.07 0.06 

11.1 Gifford 2000186 [age <=70 p70 years 3v8 0.57 0.64 0.84 0.51 0.67 0.84 0.52 0.63 0.74 0.66 0.92 0.92 

11.2 Gifford 2000186 ~ementia/memory clinics pther setting 5v6 0.28 0.74 0.18 0.20 0.41 0.26 0.18 0.38 0.61 0.28 0.52 0.28 

15 mean apnoea-hypopnea index 
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Crossing curve 
Parallel curve models Q* ref threshold comp threshold 

id study ~omparator grolJ1l Reference group n M(eq) M(w) H M(eq) M(w) H M(eq) M(w) H M(eq) M(w) H 

11.3 Gifford 2000186 ~iagnostic criteria met referrals 6v5 0.01 0.07 0.06 0.02 0.09 0.07 0.02 0.10 0.21 0.02 0.10 0.11 

12.1 Glas 200380 <30% Grade 1 tumours >=30% Grade 1 tumours 14v6 0.02 0.05 0.03 0.24 0.86 0.16 0.03 0.06 0.05 0.03 0.06 0.07 

12.2 Glas 200380 <30% Grade 2 tumours >=30% Grade 2 tumours 6v14 0.11 0.00 0.01 0.00 0.00 0.02 0.04 0.01 0.19 0.08 0.02 0.20 

12.3 Glas 200380 <30% Grade 3 tumours >=30% Grade 3 tumours 8v12 0.48 0.62 0.46 0.25 0.30 0.38 0.60 0.91 0.37 0.46 0.92 0.74 

12.4 t Glas 200380 100% urological rest 0.83 0.52 0.84 0.41 0.53 0.55 0.81 0.96 0.33 

13.1 Gould 2001 107 >=70% men <70% men 14v14 0.46 0.72 0.91 0.46 0.51 0.31 0.40 0.48 0.27 0.00 0.54 0.54 

13.2 Gould 2001 107 <60years >=60 years 7v17 0.60 0.94 0.96 0.30 0.52 0.57 0.95 0.53 0.51 0.57 0.77 0.65 

14.1 Gould 2003187 >=70% men <70% men 12 v10 0.40 0.62 0.34 0.30 0.50 0.44 0.43 0.93 0.50 0.38 0.82 0.75 
14.2 

Gould 2003187 <60years >=60 years 4v21 0.09 0.11 0.69 0.51 0.26 0.14 0.08 0.05 

15.1 Gray 2000188 
~uspicion/lesions cancer history 10v4 0.55 0.13 0.76 0.43 0.15 0.66 0.53 0.38 0.83 0.89 0.68 0.84 

loannidis243 
~ymptoms suggestive of 

16.1 ~CI pts with chestpain 4v6 0.03 0.03 0.01 0.01 0.01 0.00 0.01 0.01 0.02 0.03 0.57 0.07 

16.2 loannidis243 <65 years >=65 years 3v4 0.71 0.62 0.49 0.93 0.93 0.80 0.99 1.00 0.83 0.74 0.68 0.54 

16.3 loannidis243 <65% men >=65% men 3v4 0.49 0.06 0.17 0.04 0.01 0.05 0.01 0.81 0.46 

Kittler 200i04 
non-melanocytic lesions non-melanocytic lesions 

17.1 ~xcluded included 4v9 0.52 0.16 0.10 0.86 0.28 0.18 0.66 0.18 0.34 0.24 0.09 0.39 

18.1 Koelemay 2001 190 <65 years >=65 years 9v7 0.81 0.15 0.91 0.08 0.05 0.89 0.88 0.53 0.75 0.10 0.03 0.87 

18.2 Koelemay 2001 190 <70% men >=70% men 7v11 0.17 0.01 0.25 0.14 0.15 0.38 0.08 0.03 0.58 0.18 0.03 0.26 
<65% with intermittent >'-65% with intermittent 

18.3 Koelemay 2001 190 laudication laudication 5v10 0.60 0.16 0.34 0.77 0.72 0.40 0.68 0.45 0.80 0.62 0.21 0.43 
19.1 heterogeneous 

Lysakowski 2001 191 Ipopulation homogenous population 4v3 0.16 0.29 0.25 0.22 0.17 0.27 0.19 0.29 I 
~0.1 MSAC 2002192 <50% men >=50% men 6v6 0.24 0.16 0.04 0.40 0.45 0.08 0.25 0.24 0.29 0.28 0.30 0.08 

20.2 MSAC 2002192 amilies Ipedigree pefinite/suspected/prenatal 8v4 0.51 0.19 0.34 0.49 0.08 0.41 0.53 0.11 0.59 0.54 0.12 0.34 

21.1 Nallamothu 2001 193 <55 years >=55 years 5v9 0.48 0.62 0.37 0.35 0.71 0.58 0.54 0.76 0.37 0.44 0.69 0.37 

21.2 Nallamothu 2001 193 <65%men >=65% men 7v7 0.43 0.57 0.98 0.27 0.06 0.71 0.45 0.94 0.64 0.38 0.79 0.85 
Patwardhan 

122.1 t2004194 <70years 1.>=70 years 11v5 0.34 0.96 0.42 0.99 0.62 0.67 0.31 0.80 0.72 0.90 0.65 0.43 
Patwardhan 

~2.2 2004194 healthy controls k!iseased controls 13v6 0.34 0.49 0.39 0.69 0.32 0.12 0.36 0.41 0.48 0.51 0.30 0.26 

23.1 
Romaanuolo ~ide variety of possible 
20031 ~iagnoses ~tones or cancer diagnoses 11v35 0.16 0.11 0.10 0.17 0.04 0.21 0.15 0.06 0.41 0.18 0.12 0.36 

~4.1 pauerland 2004196 ladults hildren 
--

10v3 0.32 0.61 0.77 ~3L 0.62 0.40 0.35 0.64 0.51 0.35 0.60 0.92 
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id "tudy Comparator groul! Reference group n 

~5.1 isotiriadis 2003197 <=30 years >30 years 4v8 
125.2 Sotiriadis 2003197 

hi~h risk ow risk/routine 7v5 
~6.1 tvaronen 2000198 ENT clinic general clinic 3v4 

~7.1 tvisser 2000119 <=60% men 1>60% men 8v8 
127.2 !Visser 2000119 <=65 years >65 years 8v8 
127.3 tvisser 2000119 N America ~ther country 14v7 

~8.1 fNhitsel2000114 <=40 years > 40 years 8V8 

128.2 fNhitsel2000114 <=50% men >50% men 5v11 
128.3 fNhitsel2000114 <=50% type 1 diabetes 150-100% 5v10 

mean duration <-10 
128.4 fNhitsel2000114 years 1>10 years 10v4 
~9.1 

fNiese 2000129 STD clinic ispeciality/general clinic 14v16 
, 

denotes covariates for which the parallel curve HSROC analysis could not be completed 
b denotes covariates for which the crossing curve HSROC analysis could not be completed 

I? 

Parallel curve models 

lIIl(eq) M(wl H 

0.04 0.55 0.27 

0.63 0.65 0.28 

0.01 0.02 0.01 

0.39 0.06 0.34 

0.09 0.10 0.05 

0.69 0.37 0.41 

0.23 0.80 0.47 

0.66 0.96 0.65 

0.66 0.45 0.58 

0.45 0.85 0.52 

0.05 0.03 

Crossing curve 
Q* ref threshold comp threshold 

M~q'- M(wl H M(eq) M(w) H M(eq) M(w) H 

0.49 0.31 0.19 0.06 0.70 0.25 0.06 0.74 0.60 

0.50 0.75 0.21 0.89 0.69 0.68 0.61 0.66 0.49 

0.04 0.06 0.11 0.06 0.10 0.22 0.03 0.05 0.05 

0.23 0.01 0.47 0.52 0.78 0.25 0.26 0.03 0.84 

0.66 0.02 0.12 0.02 0.03 0.16 0.12 0.32 0.16 

0.84 0.41 0.44 0.76 0.34 0.55 0.70 0.39 0.50 

0.66 0.58 0.25 0.21 0.81 0.48 0.85 0.59 0.57 

0.57 0.61 0.63 0.98 0.65 0.60 0.61 0.77 0.63 

0.10 ,p.34 0.14 0.61 0.37 0.40 0.69 0.39 0.42 

0.57 0.90 0.93 0.46 1.00 0.93 0.51 0.84 0.83 

0.15 0.15 0.03 0.02 0.07 0.04 
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Appendix 22 Heterogeneity investigations - P-values for differences in slope and threshold (crossing curve models only) 

difference in slope difference in theta 
P-values P-values 

id Review Comparator group Reference group n M(eq) M(w) H Hp Hx 

Balk 2001 180 
emergency department patients 

1.1 hospitalised patients with symptoms/pain 14v18 0.27 0.22 0.16 0.07 0.74 

2.1a Bricker 2000179 tertiary care primary/secondary care 4v7 0.21 0.11 0.35 0.27 

2.2b Bricker 2000179 2nd trimester 1 st, 2nd and 3rd trimester 6v5 0.15 0.09 0.43 

2.3 Bricker 2000179 low risk unselected 4v7 0.23 0.20 0.32 0.36 0.27 
Buchanan 

3.1 2001 181 prison release community/hospital discharges 8v13 0.89 0.32 0.88 0.97 0.95 
Buchanan 

3.2 2001 181 time at risk <=20mos >20 mos 10v8 0.71 0.50 0.57 0.81 0.73 

4.1 Ch~ell 2002182 JJossible age bias no bias or not reported 4v9 0.04 0.01 0.50 0.29 0.29 

4.2 Chapell 200i82 possible bias to easy cases no bias to easy cases 5v8 0.24 0.03 0.31 0.45 0.27 

4.3 Chapell182 symptoms/presented cases unspecified diagnosis 8v5 0.56 0.28 0.89 0.28 0.64 
Delgado 

5.1 2003178 unknown primal}' tumours other 8v7 0.63 0.63 0.47 0.37 0.70 

6.1 Deville 2000123 previous surgery no previous surgery 8v9 0.07 0.28 0.22 0.93 0.93 
6.2b Deville 2000123 bilateral excluded bilateral not excluded 3v14 0.37 0.54 0.53 

6.3 Deville 2000123 <=60% men >60% men 10v4 0.44 0.19 0.21 0.62 0.66 
7.1 a Dijkhuizen pre and post-menopausal 
b 2000100 post-menopausal women only 22v7 0.21 0.05 women 
7.2a Dijkhuizen 
b 2000100 asymptomatic or both symptomatic only 20v13 0.09 0.04 

8.1 Eden 2001 183 environmental exposure medical/not exposed 3v4 0.40 0.42 0.64 0.91 0.90 
Flemons 

9.1 2003184 home setting sleep laboratory 13v36 0.98 0.55 0.69 0.59 0.51 
Flemons 

9.2 2003184 <75%men 75-100% men 10v29 0.35 0.26 0.14 0.58 0.48 
Flemons 

9.3 2003184 mean AHI 16<=30 Ahl>30 15v17 0.48 0.24 0.33 0.04 0.68 
Flemons 

9.4 2003184 mean BMI<=30 BMI>30 9v25 0.02 0.05 0.04 0.64 0.09 
clinical examination or 

10.1 Flobbe 200i85 pathology referral mammography 13v9 0.67 0.54 0.53 0.74 0.72 
-- -

16 mean apnoea-hypopnea index 
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difference in slope difference in theta 
P-values P-values 

id Review Comparator group Reference group n M(eq) M(w) H Hp Hx 

11.1 Gifford 2000186 age <=70 >70 years 3v8 0.70 0.84 0.61 0.11 0.20 

11.2 Gifford 2000186 dementia/memory clinics other setting 5v6 0.22 0.28 0.17 0.74 0.37 

11.3 Gifford 2000186 diagnostic criteria met referrals 6v5 0.90 0.77 0.75 0.90 0.98 

12.1 Glas 200380 <30% Grade 1 tumours >=30% Grade 1 tumours 14v6 0.58 0.64 0.95 0.17 0.29 

12.2 Glas 200380 <30% Grade 2 tumours >=30% Grade 2 tumours 6v14 0.02 0.02 0.02 0.96 0.11 

12.3 Glas 200380 <30% Grade 3 tumours >=30% Grade 3 tumours 8v12 0.34 0.36 0.65 0.75 0.59 
12.4 
b Glas 200380 100% urological rest 0.43 0.42 0.46 

13.1 Gould 2001 107 >=70% men <70% men 14v14 0.17 0.30 0.12 0.85 0.17 

13.2 Gould 2001 107 <60years >=60years 7v17 0.37 0.44 0.33 0.32 0.33 

14.1 Gould 2003187 >=70% men <70% men 12 v10 0.52 0.41 0.30 0.93 0.34 
14.2 
ab Gould 2003187 <60 years >=60years 4v21 0.26 0.20 

15.1 Gray 2000188 suspicionflesions cancer history 10v4 0.58 0.90 0.60 0.36 0.81 

16.1 loannidis243 symptoms suggestive of ACI pts with chest pain 4v6 0.12 0.08 0.17 0.12 0.38 

16.2 loannidis243 <65 years >=65years 3v4 0.80 0.84 0.66 0.41 0.70 
16.3 
b loannidis 243 <65% men >=65% men 3v4 0.04 0.03 0.11 

Kittler 2002104 
non-melanocytic lesions 

17.1 excluded non-melanocytic lesions included 4v9 0.24 0.30 0.03 0.78 0.16 
Koelemay 

18.1 2001 190 <65 years >=65 years 9v7 0.08 0.08 0.77 0.25 0.46 
Koelemay 

18.2 2001 190 <70% men >=70% men 7v11 0.22 0.35 0.36 0.15 0.24 
Koelemay <65% with intermittent >-65% with intermittent 

18.3 2001 190 claudication claudication 5v10 0.86 0.93 0.90 0.47 0.86 
19.1 Lysakowski 
ab 2001 191 heterogeneous population homogenous population 4v3 0.38 0.33 

20.1 MSAC 2002192 <50% men >=50% men 6v6 0.63 0.72 0.87 0.34 0.54 

20.2 MSAC 2002192 families /pedigree definite/suspected/prenatal 8v4 0.77 0.21 0.80 0.81 0.89 
Nallamothu 

21.1 2001 193 <55 years >=55 years 5v9 0.48 0.84 0.72 0.77 0.88 
Nallamothu 

21.2 2001 193 <65%men >=65% men 7v7 0.14 0.07 0.60 0.09 0.32 
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difference in slope difference in theta 
P-values P-values 

id Review Comparator group Reference group n M(eq) M(w) H Hp Hx 
Patwardhan 

22.1 2004194 <70 years >=70 years 11v5 0.53 0.58 0.95 0.08 0.38 
Patwardhan 

22.2 2004194 healthy controls diseased controls 13v6 0.98 0.42 0.26 0.45 0.51 
Roma~nuolo wide variety of possible 

23.1 20031 diagnoses stones or cancer diagnoses 11v35 0.63 0.19 0.38 0.37 0.29 
Sauerland 

24.1 2004196 adults children 10v3 1.00 0.69 0.45 0.01 0.86 
Sotiriadis 

25.1 2003197 <=30 years >30 years 4v8 0.96 0.38 0.33 0.80 0.88 
Sotiriadis 

25.2 2003197 high risk low risk/routine 7v5 0.57 0.90 0.12 0.26 0.37 
Varonen 

26.1 2000198 ENT clinic general clinic 3v4 0.69 0.89 0.66 0.20 0.83 

27.1 Visser 2000119 <=60% men >60% men 8v8 0.35 0.08 0.48 0.12 0.20 

27.2 Visser 2000119 <=65 years >65 years 8v8 0.05 0.07 0.11 0.68 0.11 

27.3 Visser 2000119 N America other country 14v7 1.00 0.62 0.63 0.42 0.49 

28.1 Whitsel 2000114 
<=40~ears > 40 years 8V8 0.38 0.61 0.07 0.28 0.36 

28.2 Whitsel 2000114 <=50% men >50% men 5v11 0.70 0.57 0.76 0.02 0.23 

28.3 Whitsel 2000114 <=50% type 1 diabetes 50-100% 5v10 0.10 0.48 0.03 0.62 0.17 

28.4 Whitsel 2000114 mean duration <=10 years >10years 10v4 0.88 0.81 0.85 0.34 0.51 
29.1 I ab Wiese 2000129 STD clinic speciality/general clinic 14v16 0.30 0.31 

" denotes covariates for which the parallel curve HSROC analysis could not be completed 
b denotes covariates for which the crossing curve HSROC analysis could not be completed 
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Appendix 23 ROC plots for reviews for which HSROC analyses would not complete 

a. Deville 123 

<q 

<:-'" 
~ 
u; 
lii 
en,,: 

~ 

.8 .6 .6 
Specificity 

.2 

.'. 

o 

b. Lysakowski191 

<q 

<:-'" .s; 

~ 
" en,,: 

~ 

o 

.8 .6 .6 
Specificity 

.2 o 

c. Wiese129 

'. 
<q 

~«=!-I , 

i 
en,,: 

~ 

o L'r' -----.------,-----,------.-----.-
.8 .6 .6 

Specificity 
.2 

207 



Appendix 24 Box and whisker plots for stratified analyses comparing OORs between 
models 

Box and whisker plots showing ratio of DORs (RORs) at mean threshold between models for 
stratified analyses: median, interquartile range (box) and range (whiskers). Weighted Moses model 
is compared to the unweighted Moses model (denominator) and each Moses model is compared to 
the HSROC model (denominator) 

i. size of DOR 
10,-------------------·-------------···---··-··--··-··--·-··----.. -----.... ----.-.- .. --, r--------------~ 

0.01 1----------------,----------------...------------1 
All All 

M (w) vs M (eq) M (eq) vs HSRQC M (W) va HSROC 

ii. range in'S' (from Moses model) 
10,---------------------------------, 

0.1 

0.01 ...... ---................. -.. _-_ ........................ -.. -........... ._ ......... [ .......................................... ··--···-·········_-·······························1··· ................................................. _ ............... -.... . 
All 1 2 3 All 1 2 3 All 1 2 3 

M (w) va M (eq) M (eq) va HSROC M (w) va HSROC 

DOR 
1. <35, n=11 (13) 
2. 35-100, n=7 (7) 
3. >100, n=8 (9) 

Range in'S' 
1.3 to <6, n=7 (8) 
2.6 to <8, n=13 (14) 
3. ~8, n=6 (7) 
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iii. percentage of 2x2 cells with zero values [(no. FP + no. FN)/(no. studies x4)] 
10.00 ,-----------.... ------.--.. -.--------.. - .... - ..... - ... - .... - ........ - .... - ............ --.. - ............. - .......... -...... . 

Zero cells 
1. <5%, n:::9 (10) 
2. 5 to 10%, n:::9 (9) 
3. >10%, n:::10 (8) 

0.01 -/------------,----------,---------1 
All All All 

M (w) vs M (eq) M (eq) vs HSRQC M (w) va HSROC 

iv. degree of asymmetry (based on beta P-value from HSROC model) 
10 ----------------------.-------.-------- r----------, 

beta P-value 
1. p<0.10, n:::9 
2. 0.1 OSp<0.35, n:::6 
3. p~0.35, n:::11 

0.01 I---'!-------N---~-----,I--'!-------N---~---i 

M (eq) vs HSROC M {WI vs HSROC 

v. importance of threshold (based on theta P-value from HSROC mode) 
10 ---... -----.... -.-.--........ --.-.. - ... -.--..... --.--.-... -.----.-.---..... - ... -.--........ -.. - ........ _ ............ _...... ...... . ................ _-_._-... _ ....... _._ ............ .. 

0.01 -\----------------,-------------1 

I M (eq) vs HSROC M (w) va HSROC 

ROR - ratio of diagnostic odds ratios; Moses (w) - weighted Moses model; Moses (eq)­
unweighted Moses model; HSROC - hierarchical SROC model; Q* - pOint where 

theta P-value 
1. p<0.10, n=14 
2. 0.10sp<0.35, n:::5 
3. p~0.35, n:::7 
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sensitivity=specificity; mean threshold - operating point estimated using mean threshold across 
studies 

" , 
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Appendix 25 Box and whisker plots comparing ROORs between models 

Box and whisker plots showing ratio of ROORs (RRORs) between models at Q* and at the mean threshold of the reference and comparator groups: median, 
interquartile range (box) and range (whiskers). Each Moses model is compared against the HSROC model results (denominator) for both the parallel (PA) and 
crossing (XG) curve versions of the models. 
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PA - parallel SROC curve 
models 

XG - crossing curve models 

Model comparisons 
1. Moses (eq) vs HSROC 
2. Moses (w) vs HSROC 
3. Moses (w) vs Moses (eq) 
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RROR - ratio of relative diagnostic ods ratios between models; Moses (w) - weighted Moses model; Moses (eq) - unweighted Moses model; HSROC­
hierarchical SROC model; RROR - ratio of ROORs between models; Q* - point where sensitivity=specificity; ref group threshold - operating point estimated using 
mean threshold of reference group; comp group threshold - operating point estimated using mean threshold of comparator group 

NB: The very extreme ranges, especially for the far right comparison have occurred in reviews with very small numbers of studies in one of the comparator groups 
leading to very big differences in ROORs between models. 
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Appendix 26 Comparison of P-values for ROORs between crossing curve models 

ROOR at Q* 
a. Moses (eq) versus HSROC 

.2 .4 .6 .8 
HSROC crossing curves 
p-value for ROOR at Q-

b. Moses (w) versus HSROC 

.2 .4 .6 .8 
HSROC crossing curves 
p-value for RDOR at Q" 

ROOR at average reference group threshold 
c. Moses (eq) versus HSROC d. Moses (w) versus HSROC 
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Moses (w) - weighted Moses model; Moses (eq) - unweighted Moses model; HSROC - hierarchical SROC 
model ; RDOR - relative diagnosic odds ratio; Q* - point where sensitivity=specificity; ref group - reference 
group; comp group - comparator group 
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Glossary 
Accuracy A general term to describe the discriminative ability of the test or 

alternatively, the percentage of correct results obtained by a test 

under evaluation compared with the results of a reference or 'gold 

standard' test. 

Bias Deviation of results or inferences from the truth, or processes leading 

to such deviation 

Binomial distribution Categorization of a group into two mutually exclusive subgroups, e.g. 

Sick and not sick. 

Blinding Refers to whether patients, clinicians providing an intervention, people 

assessing outcomes, and/or data analysts were aware or unaware of 

the group to which patients were assigned 

Confidence interval Quantifies the uncertainty in measurement; usually reported as 95% ci, 

which is the range of values within which we can be 95% sure that the 

true value for the whole population lies. 

Confounding Confounding refers to a situation in which a measure of the effect of an 

intervention or exposure is distorted because of the association of 

exposure with other factor(s) that influence the outcome under 

investigation. This can lead to erroneous conclusions being drawn, 

particularly in observational studies. 

CONSORT The consort statement comprises a checklist and flow diagram to help 

improve the quality of reports of randomized controlled trials. It offers a 

standard way for researchers to report trials. 

Cut-off For diagnostic tests that produce a numerical result, the point above 

which test results are classified as positive is called the cut-off. 

Diagnostic odds The ratio of the odds of a positive test result in a patient with disease 

ratio compared to a patient without disease 

Effect size This is the standardised effect observed; a generic term for the 

estimate of effect for a study 

Effective sample The sample size needed in equal-sized groups to achieve the available 

size power where there are groups of unequal sizes 

False-positive A test result that is positive even though the tested subject does not 

have the disease in question 

False-negative A test result that is negative even though the tested subject has the 

disease in question 

Fixed effect model A meta-analytic model where only within-study variation is taken to 

influence the uncertainty of results (as reflected in the confidence 

interval). Variation between the estimates of effect from each study 

does not affect the confidence interval. 
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Heterogeneity Variability or differences between studies in the estimates of effects. 

Individual patient The availability of raw data for each study participant in each included 

data study 

Likelihood Ratio The likelihood that a given test result would be expected in a patient 

with a disease compared to the likelihood that the same result would 

be expected in a patient without that disease. 

Meta-analysis A method for combining the results of several independent studies that 

measure the same outcomes so that an overall summary statistic can 

be calculated. 

Odds ratio Describes the odds of a patient in the experimental group having an 

event divided by the odds of a patient in the control group having the 

event 

P-value The probability (ranging from zero to one) that the results observed in 

a study (or results more extreme) could have occurred by chance. 

Polymerase chain A laboratory technique that can amplify the amount of dna from a tiny 

reaction sample to a large amount within just a few hours 

Predictive value The probability that a positive/negative result accurately indicates the 

presence/absence of disease. 

Prevalence The proportion of a given population with a target disorder at a given 

time 

Primary care Medical care provided by the clinician of first contact for the patient. 

Typically, the primary care physician is a general practitioner. 

Q* Point on the sroc curve at which sensitivity=specificity 

Random effect A meta-analytic model in which both within-study sampling error 

model (variance) and between-study variation are included in the assessment 

of the uncertainty (confidence interval) of the results of a meta-

analysis. 

Randomized Experiment in which subjects are randomly allocated to receive or not 

controlled trial receive an experimental preventive, therapeutic, or diagnostic 

procedure and then followed to determine the effect. 

Reference standard A method having established or widely accepted accuracy for 

determining a diagnosis, providing a standard to which a new 

screening or diagnostic test can be compared. The method need not 

be a single or simple procedure but could include follow-up of patients 

to observe the evolution of their conditions or the consensus of an 

expert panel of clinicians, as is frequently used in the study of 

psychiatric conditions. 

Relative diagnostic Estimate of relative difference in accuracy between two groups of 

odds ratio studies 
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Sensitivity The sensitivity of a diagnostic or screening test is the proportion of 

people with a designated disorder who are so identified by the test 

Specificity The specificity of a diagnostic or screening test is the proportion of 

people free of a designated disorder who are so identified by the text. 

Standard deviation A measure of variability; quantifies how much values vary from each 

other. 

Standard error A measure of variability; quantifies how accurately the true population 

mean is known. 

STARD The stard statement comprises a checklist and flow diagram to help 

improve the quality of reports of diagnostic accuracy studies. 

Tests Any method for obtaining additional information regarding a patient's 

health status. 

Variance A measure of the average distance between each of a set of data 

points and their mean value; equal to the sum of the squares of the 

deviation from the mean value. Describes the spread of a distribution 

Sources of definitions 

http://www.nature.com/nrmicro/journal/v5/n11_supp/glossary/nrmicr01523.html 

http://www.jr2.ox.ac.uklbandolier/glossary.html 

http://www.elsevier.com/framework_products/promis_misc/apmrglossary.pdf 
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