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This thesis assessed the degree to which the technique of meta-analysis can provide insight
into spectrum effects through comparing study results between studies (or between
subgroups within studies). Chapter 1 introduced the concept of diagnostic accuracy as the
means by which diagnostic tests can be evaluated and also introduced the idea that
diagnostic tests can operate differently according to spectrum-related characteristics. It was
hypothesised that meta-analysis may provide the best available tool to identify the extent to
which various the sources of heterogeneity, including spectrum, can affect test accuracy.
Chapter 2 explained four methods of meta-analysis that allow for variability in threshold and
for variation in DOR with threshold. Only the so-called ‘advanced’ models possess the
characteristics of an 'optimal’ meta-analytic method.

Chapter 3 reported a methodological review of how heterogeneity has been examined in
existing systematic reviews of diagnostic test accuracy. Less than optimal methods of meta-
analysis that do not allow for threshold effects have been commonly employed. Spectrum-
related variables were commonly investigated as potential sources of heterogeneity and
‘statistically significant’ results often reported. The few reviews using the advanced models of
meta-analysis showed overall improved systematic review methods and were more likely to
have considered spectrum-related characteristics.

Chapter 4 reported a detailed case study comparing the four meta-analytic methods on a
large dataset of tests for the detection of tuberculosis. The main observations arsing from
these analyses were further explored in Chapter 5 using data obtained from a large sample of
previously published systematic reviews of diagnostic tests and using only spectrum-related
covariates. The main findings were as follows:

1. On average, weighting the Moses model by the inverse variance of the log of the DOR
(SE(InDOR)) underestimated the results of the unweighted Moses model by around 30%,
with considerable disagreement between models. This underestimation is likely due to
bias in the SE(InDOR) and hence it is likely that the weighted model results are
misleading. The circumstances that lead to biased SE(InDOR) are common in diagnostic
test meta-analyses therefore this form of weighting is not recommended.

2. The unweighted Moses model results were more similar to those of the HSROC model
than those of the weighted Moses model, however it cannot be relied upon to
approximate the results of the ‘optimal’ HSROC model.

3. The BVN model and the HSROC model produce almost identical results for the primary
data analyses (this was investigated only in Chapter 4)

4. For the HSROC model, allowing for differences in the distribution of test results between
diseased and nondiseased by covariate (shape differences) sometimes affects the
conclusions that would be drawn from an analysis and sometimes not. Aithough the
magnitude of differences between groups may vary between models, the inclusion of a
shape interaction term does not necessarily change the strength of evidence for
differences in accuracy. It is not clear whether potential differences in the distributions of
test results (differences in shape) should be routinely modelled or whether the more
simple parallel curve approach will generally suffice. The optimal approach for the
investigation of heterogeneity requires further investigation

5. Finally, strong evidence of effects from spectrum-related characteristics on at least one
model parameter were identified by the parallel or crossing curve HSROC model for over
half of the investigations conducted in Chapter 5 (32/50). This could have considerable
implications for the use of tests in practice.

The advanced methods of meta-analysis show promise in enabling the detection of clinically

important spectrum effects. However, one of the ongoing challenges in the investigation of

heterogeneity, and especially spectrum, in systematic reviews are limitations in the primary
study data.
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1 Introduction

The subject of this thesis is to assess the degree to which the technique of meta-analysis can
provide insight into spectrum effects (or patient case-mix) through comparing results between

studies (or between subgroups within studies).

This chapter introduces the concepts of diagnostic accuracy and patient spectrum, and the
possible influence of spectrum on indices of accuracy in both primary studies and systematic
reviews, with or without meta-analysis. It ends with a summary of why it is important to
investigate spectrum effects in systematic reviews and a recognition of the limitations in doing

SO.

1.1 Diagnosis
Diagnosis is a fundamental element of patient care. It can sometimes be established by

clinical examination or history taking but it usually depends on additional laboratory, radiclogy
or pathology tests. The diagnostic process is important for establishing the presence of
specific disorders, for informing or monitoring patient prognosis and therapy and in reassuring
clinicians and/or patients when disorders are ruled out. Diagnostic tests or strategies can be
applied to differentiate diseased from nondiseased (diagnosis); mild from severe disease (for
prognosis or therapy decisions); or in a screening situation (which can be seen either as a
means of identifying high risk groups, or of identifying disease at an earlier stage). Diagnoses
can also be made in situations where there are no effective treatments. The most obvious are
for some genetic tests that are applied in order to give peace of mind to the patient, either by
excluding the inherited condition, or enabling them to prepare themselves and their families

for the onset of disease at a later date.

With the advancement of technology, an increasingly wide variety and number of tests have
become available. Their roles may be to replace an existing test, to rule out patients who
need not progress to further testing (triage) or they may be performed in addition to one or
more existing tests.” The value of new tests (or new applications of existing tests) and the

contribution that they can make to clinical care requires careful evaluation.

Although there is an increasing interest in the evaluation of diagnostic tests and strategies in
terms of their impact on patient management and outcomes,*” there are practical difficulties
in designing studies to evaluate these outcomes, not least in terms of the large sample sizes
needed to detect the effect on patient outcomes from both test and subsequent treatment.
The majority of studies therefore focus on estimating diagnostic test accuracy, whereby the
results of one (or more) tests for the detection of a given disorder are compared with the
results of some reference standard in a group of patients suspected of having the target
disorder. The resulting indices of test accuracy that may be estimated are outlined in

Appendix 1 and discussed in more detail in Chapter 2. The most commonly used are



Figure 1 Hypothetical distribution of test results (adapted from Griner and colleagues,

1981%)
a. for a perfect test

Test threshold for
positivity

i
Test result considered : Test result considered
negalive , positive

Non-
diseased

4

Frequency

Diseased

b. for a more realistic test

Test threshold for
positivity
A
Test result Test result

considered negative considered positive

True-negatives
False-positives

>

e Non-

[} diseased

=

o

]

2
w

Diseased

False-
negatives

)
1
: True-positives
1
1

c. at different thresholds for positivity

Test threshold for
positivity

c A B

Test result considered

. Test result considered
negative

.
1
]
1
| positive
1
'
1

Non-
diseasad

_/

Frequency

—

Diseased

Se - sensitivity; Sp — specificity

At cutoff:
A: Se 100%, Sp 100%

F Test result

At cutoff:
A: Se 80%, Sp 80%

Test result

At cutoff:

A: Se 80%, Sp 80%
Test result B: Se 50%, Sp 95%

C: Se 95%, Sp 55%
Test result



sensitivity (proportion of diseased participants who have positive test results) and specificity
(proportion of nondiseased participants who have negative test results), but other indices
such as predictive values and likelihood ratios are also presented in reports of primary

studies.

In order to better understand sensitivity and specificity, it helps to think about the distribution
of test results in diseased and nondiseased graphically (Figure 1). Although often interpreted
dichotomously, most tests can be perceived as having a continuous distribution. For exampie,
the results of imaging tests tend to be divided into four or five categories ranging from
definitely positive through to definitely negative. Biochemical tests measure the level of a
given indicator in the blood or urine, producing results that can range, for example for
creatinine kinase from zero to over 480 units.’ Similarly, blood pressure is measured to the

nearest 1 mmHg.

Figure 1a demonstrates the distribution of test results for a ‘perfect’ test, i.e. one that could
discriminate between diseased and nondiseased people with 100% accuracy. There is no
overlap in the distributions of test results and hence no false-positive or false-negative results.
A more realistic picture is presented in Figure 1b, where there is some overlap in the
distribution of test results for diseased and nondiseased persons. Positive test results in both
diseased and nondiseased are on the right-hand side of the threshold line and negative
results are on the left. Figure 1¢c demonstrates the trade-off between sensitivity and specificity
with changing threshold; as the threshold decreases (moves to the left in this example)
sensitivity increases (fewer false negative results) and specificity decreases (more false

positive results) and vice versa.

The distribution of test results in diseased and nondiseased people and the relationship
between them are subject to a variety of biases and effect modifiers which can affect test
accuracy, just as for randomised controlled trials and non-randomised or observational
studies for the evaluation of therapeutic interventions. The investigation of one of these — so-

called spectrum effects — is the main focus of this thesis.

1.2 Diagnostic test accuracy and patient spectrum
The term ‘spectrum’ was coined by Ransohoff and Feinstein® to represent the pathologic,

clinical and co-moerbid patient characteristics (both for diseased and nondiseased) that might
affect a test's sensitivity and/or specificity. In other words, it refers to the case-mix of patients
included in a study. For the diseased group, pathologic features are defined as those relating
to the extent, location and, for certain diseases such as cancer, the cell-type of disease. The
clinical component refers to features such as the chronicity and severity of symptoms. A test
may be positive in patients with more extensive or severe disease and not in those with

localised or less severe disease. The co-morbid component refers to co-existing conditions,



not directly related to the disease under investigation, but that may share the same underlying
determinants that may make a test falsely negative.6 For example, leukocyte esterase-based
dipstick tests for the detection of urinary tract infection can be falsely negative in patients with
immune suppression as the test relies on the presence of white blood cells. The Ransohoff
and Feinstein definition does not specifically refer to the potential impact from demographic
variables, however there may be circumstances in which age or gender for example might
affect test accuracy, e.g. exercise testing for heart disease.’ Itis also possible however that
these may be proxies for true spectrum-related characteristics that are difficult to precisely

identify, characterise and record.

For nondiseased patients, or the comparator group, the relevant features to look for are those
that might lead to false-positive diagnoses. Generally these relate to the presence of co-
morbid conditions whose pathologic or clinical features might be sufficiently similar to those in
the diseased group as to cause false-positive diagnoses. For example Ransohoff and
Feinstein® give the example of a study of a radiolabelled dye marker for diagnosing the
patency of the cystic duct in cholecystitis — patients with severe liver disease may give false-
positive results if the liver does not excrete dye properly, but such patients were not included

in the study leading to falsely elevated specificity.

Sensitivity and specificity (for any given threshold) are often considered to be fixed test
properties so that what are assumed fo vary between studies with different prevalences of
disease are the predictive values.? Re-consideration of the contingency tables from which
accuracy indices are calculated (Appendix 1) demonstrates the basis for this assumption.
Whilst predictive values are calculated across the rows of the 2x2 table, sensitivity and
specificity are calculated on the columns. If the overall relative number of patients with and
without disease should change (change in prevalence), the proportion of each who test

positive need not necessarily change.

The source of the confusion is perhaps the fact that test accuracy is viewed within a
probability framework — sensitivity being the probability that a patient with disease will have a
positive test result and specificity the probability that a patient without disease will have a
negative test result. This implies that the results of a diagnostic test are random, i.e. if a test
has been shown to have 70% sensitivity and it is applied to a randomly selected group of
patients with the target disorder in question, 70% would test posi’tive.g It does not take a broad
stretch of the imagination to see that this is not true of most tests and diseases — not all
patients with (or without) disease will have the same chance of testing positive (or negative).
In other words “homogeneity of risk” is unusual, therefore where patients are not all equally
likely to have a positive result, sensitivity and specificity will be strongly affected by the case

mix of patients recruited to a given study. As Rutjes and colleagues so concisely stated,



“diagnostic accuracy is not a feature of a test itself but a description of how the test behaves

in a particular clinical population”.

n 10

1.2.1 Patient spectrum, disease prevalence and variation in
sensitivity and specificity
Ransohoff and Feinstein were amongst the first to propose that each of the components of

spectrum could affect the results of a test in both diseased and nondiseased patients6 and

that, in some cases, problems in the choice of spectrum for any one component could

invalidate a study’s results. A key factor is the possible impact from disease severity on

sensitivity and of conditions mimicking the target disorder on specificity. If the sensitivity of a

test is related to the severity of disease, a test that is highly sensitive in patients with severe

disease may be less discriminatory or even useless in those with mild to moderate

disease.®'® As one might expect a higher proportion of more severe disease in higher

prevalence studies, it follows that sensitivity may appear to increase with increasing

prevalence. Specificity is affected by the range of alternative diagnoses in patients without the

target disorder that could cause false positive results. Specificity may fall in studies with

higher prevalence due to a higher proportion of patients with diseases most closely

resembling the target disorder. If people without the disease in question share some of same

underlying characteristics or have similar clinical features to those with the disease, they

become more difficult to separate at the gatekeeper primary care level, i.e. the false positive

rate would be higher and specificity lower.

Table 1 Hypothetical example of how spectrum might affect accuracy with constant

prevalence

a. Spectrum of diseased

Number of patients

Stage of disease Test sensitivity by General practice Hospital
stage of disease (n = 100) (n = 100)
Early 0.50 80 20
Intermediate 0.75 15 30
Advanced 1.00 5 50
Observed sensitivity 0.56 0.83
b. Spectrum of nondiseased
Number of patients

Alternative diseases Test specificity by General practice Hospital

alternative disease (n = 100) (n = 100)
Alternative disease X 0.30 30 75
Alternative disease Y 0.95 65 25
Healthy 0.99 5 0
Observed specificity 0.76 0.46




Deeks'" provides a theoretical example to show how differences in the distribution of
diseased and nondiseased characteristics can occur without any difference in prevalence.
Table 1 shows two studies of the same test, one conducted in general practice and one in a
hospital setting. The general practice study has a higher proportion of milder cases of disease
compared to the hospital study, despite the same overall prevalence of disease. The
sensitivity of the test is therefore lower in general practice than when used on a hospital

sample.

Similarly, if the likelihood of a false positive result is greater when certain alternative

diagnoses are present (for example Alternative disease X in Table 1b), and these alternative
diagnoses are more likely to be present in a hospital sample compared to a general practice
sample - perhaps because GPs find it particularly difficult to distinguish them from the target

disorder - the overall specificity of a test will vary according to the study setting.

In order for test sensitivity and specificity to remain constant across different prevalences of
disease, the mix of disease severity and symptoms must be the same regardless of disease
prevalence.'? Test results must then differ between the diseased group and the nondiseased
group (usually being higher in the diseased group), but not within the diseased group nor
within the nondiseased group (i.e. the distribution of results in each group should be
constant). In other words the distributions of test results in diseased and in nondiseased
should be constant in both average (location) and spread (shape).13 This is unlikely in practice
unless the test is not affected by disease severity or the presence of alternative

diagnoses/conditions.

Variation in test results due to differing responses to a test that in turn result from variation in
spectrum-related characteristics is shown schematically in Figure 2. Figure 2a presents the
distribution of test results for a hypothetical test. The prevalence of disease is 50%, therefore
the two bell-shaped curves representing the test results in nondiseased and diseased
participants cover the same area (number of nondiseased, n, is equal to the number of
diseased participants n;). The mean value for the test results in nondiseased and diseased
are represented by p, and p,; the distance between them indicating how good (discriminating)
the test is. The distribution of test results in diseased and nondiseased is the same, therefore
the standard deviation in test results in nondiseased (8,) is egual to the standard deviation in
test results in diseased participants (5,), where §is the standard deviation of the mean test
result (u). The sensitivity and specificity of the test are also equal (number of false-negative

results, FN, is equal to the number of false positive results, FP).

Figure 2b and Figure 2c show how the same test might perform in two different settings, a
primary care setting and a hospital setting. in the primary care, ‘gatekeeper’, setting one

might expect a lower prevalence of disease and lower proportions of both participants with



Figure 2 Variation in distribution of results with constant prevalence
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more advanced disease and of nondiseased particpants with characteristics closely
resembling the diseae in question compared to the hospital setting. For the sake of simplicity
of presentation, the two figures show scenarios with the same prevalence of disease. The
test, however, is better at picking up more advanced cases of disease therefore the sensitivity
of the test is lower in primary care than when used in a hospital setting. Figure 2b shows that
the distribution curves for diseased and nondiseased still cover the same area (n1=n;) but the
shape of the curves differs. The curve for the diseased group is flatter and wider, indicating
that although the mean of the test results (li;) does not necessarily change, fewer participants
have test results near to it.” The distribution of results (8,') has increased such that there are
more participants with test results in the tails of the distributions and therefore a higher
number of false negative results. The curve for the diseased participants in the hospital-based
study (Figure 2c) remains similar to that shown in Figure 2a as there are a higher proportion

of patients with advanced disease and the test is therefore shown to be more accurate.

The distribution curves for nondiseased participants in Figure 2b and c show how this
variation in the mix of nondiseased participants translates into variation in the distribution of
test results between general practice and hospital settings and therefore into a variation in

specificity between settings.

Variation in spectrum therefore can manifest as a variation in prevalence leading to a
misconception that sensitivity and specificity vary with prevalence. In fact variation in
sensitivity and specificity is not actually due to a direct relationship with prevalence but, as
shown here, is related to the distribution of disease severity or symptoms in diseased patients
and of conditions similar to that of the target disorder in nondiseased participants that in turn
leads to variation in test results.""'? This indirect relationship of sensitivity and specificity with
prevalence is generally related to study setting, as prevalence would not be expected to

remain constant across different study settings.

The referral process and patient spectrum
A key factor affecting the different prevalences and spectrums of disease across different

settings is the referral process. As Sackett® has pointed out, major clinical centres of
excellence will have a particularly distorted sample of patients with a given condition in
comparison with the general population of such patients. Given its reputation and expertise,
particularly problem cases are more likely to be referred there and are also more likely to be

kept track of once referred in comparison to less “interesting” patients.

Knottnerus and colleagues'* outlined three factors that affect whether or not a patient is

referred from general practice to a more specialist setting. They did not include factors such

® Note that the distribution curves are not necessarily symmetrical about the mean but may be skewed,
most likely towards the centre of the data, i.e. the left-hand tail for the diseased group and right-hand tail
for the nondiseased group will contain more results than the tails for the extreme positive or negative
results.



as patient anxiety or pressure for second opinion that can also influence referral decisions.
The first of the factors outlined is the degree of ‘symptomatology’. This can range from
asymptomatic to “fully developed” and can also affect patients without the target disorder, e.g.
patients with no coronary artery disease may still suffer from chest pain. The second is the
suspicion of disease severity — there may be clinical signs or other reasons (outwith
symptoms), for example family history, that lead a clinician to suspect that the disease is
present. Finally the result of a diagnostic test applied by the GP will influence the probability
of referral — an abnormal result will increase the probability as might a normal test result if the

clinician has strong clinical grounds for suspecting the presence of a given disease.

The overall impact of referral of patients with more symptoms in whom suspicion of disease
severity is higher is that a relatively large proportion of patients who are referred will have
abnormal test outcomes (both true positive and false positive) in a referral setting, leading to

increased sensitivity, decreased specificity or both.™

Where referral is influenced by the result of the same test applied by the GP or other referring
physician, specificity will fall further. This was shown by Rozanski and colleagues15 for
exercise radionuclide ventriculography for the detection of coronary artery disease in
angiographically normal patients. Evaluations of the test conducted in an earlier time period
found much higher test specificity compared to evaluations conducted at a later time due to
changes in the patient population. When radionuclide ventriculography was first used, it was
evaluated on more severe cases and relatively healthy controls. As the apparent high
accuracy of the test became better known and its use became more widespread, an abnormal
response to radionuclide ventriculography then became a powerful decision criterion for
referral to coronary angiography such that lots of patients undergoing angiography had
already had an abnormal response to radionuclide ventriculography. The subsequent
commissioning of later studies to evaluate ventriculography that selected only patients who
had undergone angiography would produce
a. sensitivity estimates approaching 100% (as all patients with disease would have a
positive response to both ventriculography and angiography) and
b. falling specificity (as a large proportion of patients without disease wouid also have an
abnormal ventriculography result in the study setting, given that a previous abnormal

ventriculography result had referred them for angiography in the first place).

Philbrick and colleagues16 have further outlined the way in which patients can be selected for
inclusion in a research study after referral, using a sample of patients who underwent
exercise tests. They begin with the available popuiation of 205 patients, i.e. those who were
present, or who had been referred to the appropriate medical centre at the time of the
research. It is worth noting that members of the true clinical population may not have

consulted their physician, may have obtained their health care in another setting, or may have



refused the invitation to undergo the test. This may be related to factors such as symptom

severity, socio-economic status or practice habits of their physicians.'

The available population was reduced by 128 patients, either because they had conditions
considered likely to cause false-positive or false-negative results (n=98), or because their
exercise test results were uninterpretable (n=30). A further 71 patients did not undergo the
reference test leaving only six patients who underwent angiography. This is a key problem for
retrospective studies where samples are selected on the basis that the reference test has
been received — it is highly likely that the decision to refer patients for an often invasive and or
unpleasant test is influenced by the clinician’s degree of suspicion that the target disorder is

present and also potentially, by the result of the index test itself.

Referral bias for whatever reason severely affects that centre’s ability to generalise its studies

results to other settings.

1.2.2 Spectrum effects...a bias or effect modifier?
As more authors”'®"® have recognised the potential effect from spectrum, the term ‘spectrum

bias’ has been used to describe scenarios where the accuracy indices obtained in one study
cannot be assumed to apply to other patients in other contexts and also to where test
accuracy has been seen to vary according to subgroups of patients within the same study.
However as Mulherin and Miller point out,”® the term ‘bias’ implies that there has been some
systematic error in the study design that to a smaller or greater extent invalidates a study’s
results. In fact variations in accuracy between subgroups or between studies due to
spectrum-related covariates can be true variations, i.e. the test really does perform differently

in different groups, and the use of the term ‘bias’ is therefore something of a misnomer.

If differences in participants arise intentionally, for example by a deliberate selection of certain
participants during the recruitment process, it seems reasonable for these differences to be
referred to as ‘effect modfiers'. If spectrum differences arise unintentionally because of the
features of the study design, such as use of a case-control design, so that they give you the

wrong answer to the question that you are asking, they should be described as ‘bias’.

1.2.3 Dealing with “spectrum” in primary studies
The proposed solution to what is usually termed ‘spectrum bias’ is often to recruit an

‘appropriate’ or ‘representative’ sample whose characteristics reflect the reality of clinical
practice, i.e. a broad sample of mild and severe, treated and untreated disease, plus
individuals with different but commonly confused disorders. This is similar to the scenario for
RCTs where in order to get a picture of an intervention’s effectiveness rather than efficacy,
pragmatic entry criteria are used in order to include a wider range of participants. This is
recommended in a number of tools for assessing the quality of diagnostic test studies and in

textbooks on primary study design.?’

10



However, regardless of the presence of an appropriate spectrum of patients in a study, the
sensitivity and specificity estimates that are produced will still be ‘average’ estimates that are
potentially very unrealistic for certain parts of the spectrum. It is important also to consider
conducting subgroup analyses according to plausible covariates. Just as in the field of
therapeutic intervention evaluation where appropriate use of subgroup analyses to identify
intervention effectiveness according to patient characteristics is recommended?? and the
generalisability of study results is often of concern, the same approach has been proposed for

diagnostic test accuracy studies.?®?®

However, subgroup analyses appear to be much less
common among diagnostic test studies (see section 1.3.3 below), possibly because studies
are too small to allow any subgroup effects to be detected or because the likelihood of

variation in accuracy by clinically defined subgroups is not well recognised.

The Standards for Reporting of Diagnostic Accuracy (STARD) statement®** published in
2003 covers spectrum in some detail. Similar to the successful CONSORT initiative for
RCTs,*' the STARD initiative aims to improve the quality of reports of diagnostic accuracy. Of
the 25 criteria listed in the STARD checklist, six relate at least partially to patient spectrum.
These can be broadly classified into three groups

1. who the study participants are,

2. how they were recruited, and

3. what the impact on accuracy is.

The following items relate to who the study participants are, or to the description of the
spectrum composition:

i) item 3: describe the study population - the inclusion/exclusion criteria, setting and
locations where data were collected

i) item 4: describe participant recruitment - was recruitment based on presenting
symptoms, results from previous tests, or the fact that the participants had received
the index tests or reference standard?

i) item 15: report clinical and demographic characteristics of the study population (e.g.
age, sex , spectrum of presenting symptoms, comorbidity, current treatments,
recruitment centres)

iv) item 18: report the distribution of severity of disease in those with the target
condition and of other diagnoses in those without the target condition

These criteria primarily allow the reader to judge the generalisability of the study’s results and
its applicability to their own setting and patients. The latter item is described as key for the
consideration of ‘spectrum bias’ as the most notable examples involved differences in the
severity of the target condition: “test sensitivity is often higher in studies with a higher

proportion of patients with more advanced stages of the target condition...... [and] in the
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presence of comorbid conditions, false positive or false-negative test results may occur more

often”.>®

The following item relates to how the study participants were recruited:

v) item 5: describe participant sampling; was the study population a consecutive series
of participants defined by the selection criteria in items 3 and 47 If not specify how
participants were further selected

This item again allows the reader to judge how generalisable the study's findings are. If
participants appear to have been highly selected, the resulting sample is unlikely to be
representative of the patient population. On the other hand it would of course be possible to
have a prospective study using consecutive recruitment that still studied the wrong patients,

so this item cannot be considered independently of the preceding ones.

A final item relates to what the impact from spectrum on accuracy is by considering analysis
of data in pertinent subgroups:
vi) item 23: report estimates of variability of diagnostic accuracy between subgroups of
participants, readers or centres, if done.
Bossuyt and colleagues3° point out that since variability in study results should always be
expected in diagnostic test accuracy studies, pre-planned subgroup analyses should always

be performed in order to explore possible sources of heterogeneity in results.

The extent to which these items have been considered by primary test accuracy studies is

examined in section 1.3.3 below.

1.2.4 Examples of spectrum affecting sensitivity and specificity
In order to better picture the potential impact from spectrum on sensitivity and specificity, it

helps to again think about the distribution of test results in diseased and nondiseased
graphically. The plots in Figure 3 describe a series of hypothetical examples of how spectrum
might affect the distribution of test results. Prevalence is kept at a constant 50% throughout
(the distribution curves for diseased and nondiseased cover the same area) as is the
distribution of test results (represented by the shape of the curves), in order to make the
graphs simpler to interpret. In reality both the prevalence of disease and the distribution of
results between diseased and nondiseased will differ between subgroups when stratified by a
spectrum related covariate, as demonstrated in Figure 2. Real clinical examples where
differences in patient spectrum have impacted on sensitivity and/or specificity are presented
in Table 2.

Figure 3b and ¢ demonstrate a scenario often reflected in theoretical explanations of

spectrum effects: sensitivity or specificity increasing at the expense of the other. This might

be expected in the presence of a variable that similarly affected test results in both diseased
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and nondiseased groups. The resulting effect is akin to a shift in threshold, the two distribution

curves remain the same distance apart, and the threshold appears to shift up or down.

Ginsberg and colleagues32 have shown a similar scenario to that in Figure 3 b and ¢ when
evaluating the D-dimer test to detect pulmonary embolism (PE). As the prior probability of
having PE (based on clinical assessment of signs, symptoms and risk factors and the
likelihood of a diagnosis other than PE) increased, sensitivity increased (from 79% in the low
probability group to 93% in the high probability group) and specificity decreased (from 76% to
45%). Similarly, Hlatky and colleagues7 found that the sensitivity of the exercise
electrocardiography test for detection of coronary disease was highest and specificity lowest
in patients with typical angina and sensitivity was lowest and specificity highest in those with

non-anginal symptoms (Table 2).

When Hlatky and colleagues’ compared test accuracy in patients with atypical anginal
symptoms and those with typical angina, however, there was very little difference in specificity
estimates but big differences in sensitivity. This pattern, depicted in Figure 3d and e was also
shown by the data in the study by Mulherin®® who examined the use of an enzyme
immunoassay for the detection of chlamydia in younger versus older women and by Lachs
and colleagues17 who investigated dipstick tests for urinary tract infection stratified by prior
probability of disease (Table 2). The authors of the latter study state that although a variety of
“classic” UTI symptoms were found in both groups, patients classified as higher probability
had a higher prevalence of dysuria, frequency, urgency, double voiding, gross haematuria
and costovertebral angle tenderness, and furthermore that one would expect sensitivity to be

higher in those with urgency, dysuria and haematuria."’

The scenario of constant sensitivity but differences in specificity (Figure 3 f and g), i.e. where
test results are only affected by a spectrum-related variable in patients without disease, was
demonstrated by the Ginsberg data when patients with a low probability of PE were compared
to those with a moderate probability; sensitivity remained almost the same, but specificity
dropped from 76% to 52%.

The final possible impact from differences in spectrum is where either both sensitivity and
specificity either fall or increase, i.e. the distributions of test results move closer together or
further apart (Figure 3 h and i). Two examples comparing test results for the detection of
coronary artery disease in men and women suggest this pattern. Morise and Diamond® and
to a lesser extent Weiner and colleagues34 found that both sensitivity and specificity were
higher in men compared to women (Table 2). In other words, the test is more discriminatory
(distributions further apart) in men and, less discriminatory (distributions closer together) in

women. It is likely that the extent of disease (number of diseased arteries) and clinical
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Figure 3 Hypothetical description of the potential impact of spectrum on accuracy
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Table 2 Primary studies demonstrating potential spectrum effects

Example Disease Test Total n {Prevalence of| Sensitivity Specificity LR+ LR- DOR
subgroup disease
Ginsberg, 1998% |Pulmonary embolism _ |d-Dimer 177 16.7% 84.8% 68.4% 2.68 0.22 12.0
low probability 703 3.4% 79.2% 76.0% 3.30 0.27 12.0
moderate probability, 382 26.4% 80.2% 51.6% 1.66 0.38 4.3
high probability| 92 78.3% 93.1% 45.0% 1.69 0.15 11.0
Hlatky, 1984° Coronary disease Exercise electrocardiography 2269 61.7% 70.3% 84.4% 4.51 0.35 12.8
Typical angina 1083 87.4% 79.6% 80.9% 417 0.25 16.5
‘ Alypical anginal 825 45.9% 52.8% 82.7% 3.05 0.57 S
non-anginali 361 20.8% 41.3% 88.8% 3.69 0.66 5.6
lLachs, 19927 |Urinary tract infection _|Dipstick | 366 19.7% 83.3% 71.4% 2.92 0.23 12.5
high probability 107 49.5% 92.5% 42.0% 1.59 0.18 8.9
low probability 259 7.3% 57.8% 77.5% 2.57 0.54 4.7
Morise, 1995  |Coronary artery disease |Exercise electrocarﬁiography 788 55.5% 53.5% 77.2% 2.35 0.60 3.9
men, 504 63.1% 56.0% 81.2% 2.97 0.54 5.5
women 284 41.9% 47 1% 72.7% 1.73 0.73 | 2.4
Mulherin, 2002 |Chlamydia Enzyme immunoassay 6672 | 8.8% 0.734 0.994 122.33 0.27 I 4571
(based on Miller 2000*) Age < 24 4524 11.1% 0.759 0.995 151.80 0.24 626.7
Age 225 2737 3.2% 0.583 0.992 72.87 0.42 173.4
Banks, 2004°°  |[Breast cancer Mé:ﬁ;ﬁ]éé?éphy (postmenopausal | 92208 1.2% 85.7% | 97.3% 31.96 CHE 216.9
on
i . current HRT user; 32390 1.2% 80.8% 96.4% 22.19 0.20 111.3
| past HRT usen 14610 1.2% 83.6% 97.6% 34.24 0.17 203.5
never HRT user; 45208 1.1% 91.2% 97.9% 44.06 ‘ 0.09 | 489.7
Weiner, 1979 _Coronary artery disease [Stress testing [ 2045 | s88% | 794% | 694% | 2% | o030 | 84
! male| 1465 5 69.8% 79.7% i 74.0% 3.06 0.27 | 1.1
' female% 580 | 29.1% | 75.7% : 63.7% | 2.09 0.38 I 55

Total n —sample size; LR+ - positive likelihood ratio; LR- - negative likelihood ratio; DOR — diagnostic odds rétio
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presentation (e.g. presence or absence of angina, plus atypical presentations in women)
influence the likelihood of an abnormal result in diseased patients, however reasons for lower
specificity in women seem more difficult to explain.*® Hiatky and colleagues® actually found
higher specificity in women, but other studies (referenced in Hlatky 19849) support the

findings above.

Banks and colleagues®® found a similar pattern of results for mammography for the detection
of breast cancer in postmenopausal women, according to HRT use. Mammography was
found to be more discriminatory in those women who have never used HRT (Figure 3 i)
compared to those who are current users (Figure 3 h). Sensitivity and specificity were both
highest in those who had never used HRT (91% and 98% respectively) and both were lowest
in those who were current HRT users (81% and 96%). Although the difference in

specificity was small (1.5%), given the extremely large numbers of women who are screened
the impact in real terms on number of women receiving false-positive diagnoses would be
quite significant. In this case, HRT use is likely to be a marker for breast density;
mammograms are easier to read in women who have never used HRT and therefore more
breast cancers are detected (higher sensitivity) and benign breast lumps are easier to

distinguish (lower false-positive rate and high specificity).

It is worth re-emphasising that not only might the positioning of the distribution curves for
diseased and nondiseased in relation to threshold vary between groups, but the variability in

test results between groups might also vary considerably.

1.3 Spectrum effects and systematic reviews

1.3.1 Systematic reviews of test accuracy

Systematic reviews provide a means of synthesising information from a number of studies to
“establish where the effects of healthcare are consistent and where they may vary
significantly”,*” for example across populations, settings, and differences in treatment.
Systematic reviews of therapeutic interventions are now commonplace in many if not most
areas of healthcare, and in recent years interest has turned to applying similar techniques to
research evaluating diagnostic tests. The UK Health Technology Assessment (HTA)
Programme has funded a large number of such reviews, and the Cochrane Collaboration are
also introducing reviews of diagnostic test accuracy into the Cochrane Database of

Systematic Reviews (CDSR) which is published within the Cochrane Library.

Systematic reviews of any form of intervention follow key stages, including formulation of the
question, setting of inclusion criteria, searching the literature, quality assessment and data
extraction of included studies, and synthesis of the evidence. Work is ongoing to develop
each of these stages specifically for diagnostic test reviews, for example in literature

38,39

searching and quality assessment,?' and several authors have published general
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guidelines for the conduct of reviews of test accuracy.*®*" Meta-analytic techniques for
combining diagnostic studies are also being developed and improved in order to better

estimate test accuracy.'?%404°

Similarly, the conclusions of all systematic reviews are only as
reliable as the included primary studies and there are a variety of sources of heterogeneity

that can affect conclusions.

Between study differences - or heterogeneity in results - can result from chance, from errors
in calculating accuracy indices or from heterogeneity caused by differences in design,
conduct, participants, tests and reference tests. These are outlined in some detail in Chapter

2. The main focus of this thesis is on heterogeneity due to variation in patient spectrum.

1.3.2 Potential impact from spectrum variation
Mulherin and Miller® present a similar theoretical example to that of Deeks'' discussed in

section 1.2.1 that can be extended to consider how variation due to spectrum alone could

impact on the conclusions of a systematic review.

Table 3 Hypothetical example of how spectrum could affect the conclusion of a
systematic review (adapted from Mulherin and Miller®®)

Number of patients Accuracy

Total | Prev | tp/dis | tn/non-dis | Sens | Spec | LR+ |LR- [ DOR
True test performance
Aged <50 1000 | 0.50 | 475/500 375/500 0.95 0.75 3.8 0.1 57
Aged 250 1000 | 0.50 | 375/500 475/500 0.70 0.85 4.7 0.4 13
Studies with varying age spectrum recruited
Study A: Equal recruitment of both age groups
Aged <50 500 | 0.50 | 475/500 375/500 0.95 0.75 3.8 0.1 57
Aged 250 500 | 0.50 | 375/500 475/500 0.70 0.85 4.7 04 13
Overall 1000 | 0.50 0.83 0.85 5.7 0.2 32
Study B: 75% aged < 50
Aged <50 750 | 0.50 | 238/250 375/500 0.95 0.75 3.8 0.1 57
Aged 250 250 | 0.50 | 175/250 213/250 0.70 0.85 4.7 04 13
Overall 1000 | 0.50 | 413/500 425/500 0.89 0.80 4.5 0.1 36
Study C: 75% aged 2 50
Aged <50 250 | 0.50 | 356/375 213/250 0.95 0.75 3.8 0.1 57
Aged 250 750 | 0.50 88/125 106/125 0.70 0.85 4.7 0.4 13
Overall 1000 | 0.50 | 444/500 400/500 0.76 0.90 8.0 0.2 36

Prev — prevalence; tp — true positives; tn — true negatives; dis — diseased; non-dis — nondiseased; Sens — sensitivity;
Spec - specificity; LR+ - positive likelihood ratio; LR- - negative likelihood ratio; DOR - diagnostic odds ratio

Table 3 demonstrates the situation where the true performance of a test varies according to
patient age; sensitivity is higher and specificity lower in patients aged less than 50 and vice
versa for those aged 50 and over (the distribution of test results would lie predominantly to the

right or to the left of the threshold for test positivity). The impact on overall sensitivity and
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specificity when different spectrums by age group are recruited is then given for hypothetical

studies A, B and C (Table 3); disease prevalence is held constant for the sake of simplicity.

The breakdown by age group for each study (A, B and C) shows that test accuracy within the
age subgroups is ‘unbiased’, i.e. reflects the true sensitivity and specificity of the test within
those groups, but when the groups are combined, the overall sensitivity and specificity is
considerably affected. Equal recruitment of both groups results in almost equivalent values for
sensitivity and specificity; preferential recruitment of younger women results in a scenario
similar to that depicted in Figure 2b and preferential recruitment of older women, Figure 2c.
Plotting these results on a ROC plot (Figure 4a) demonstrates the extent to which results can

vary according to the percentage of patients less than 50 who are recruited to that study.

Figure 4 ROC plots demonstrating impact from spectrum on a systematic review

a) Mulherin and Miller®® b) Ginsberg and colleagues32
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The same theory can be followed using a real-life example from section 1.2.4. As discussed
previously, Ginsberg and colleagues™ found that sensitivity and specificity of the D-dimer test
were affected in opposite directions by the clinical probability of pulmonary embolism being
present, sensitivity was highest and specificity lowest in patients with high clinical probability
and vice versa for those with low clinical probability. If we assume that each of these
subgroups is a separate study of D-dimer, each recruiting patients from different populations
with varying probabilities of pulmonary embolism and plot them on a ROC plot (Figure 4b) we

can see the variation in sensitivity and specificity that results.

1.3.3 Challenges in investigation of spectrum effects in systematic
reviews
There is clearly potential for spectrum variation to have a big effect on the results of both

primary studies and systematic reviews. It is rare for diagnostic accuracy studies to be
sufficiently large in size or to recruit a sufficiently broad spectrum of participants to allow the
influence of spectrum to be examined. It seems that it is more rare for diagnostic accuracy
studies to have actually looked for variation due to spectrum. Systematic reviews that include
all available studies of a given test for a given disorder, are the best available tool that we
have to assess the contribution that a diagnostic test can make to healthcare, assuming that

all sources of bias and other causes of heterogeneity are fully investigated. They are also the
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best tool available to allow us to identify the extent that heterogeneity can affect test
accuracy. However there are challenges in such investigations that one needs to be aware of.
Two of the major challenges to be faced are

1. limitations in the primary studies, and

2. limitations in the meta-analytic methods available

Limitations in the primary studies
One of the main reasons for any lack of investigation of spectrum effects in systematic

reviews is due to the lack of reporting, and potentially recording of, spectrum-related factors in
primary studies. It can be particularly challenging to identify let alone record and publish true
spectrum-related characteristics; variables such as age and sex are often used instead as
proxies. A methodological review by Reid and Colleagues28 assessed 112 primary studies
evaluating the accuracy of diagnostic tests against seven methodological criteria, two of
which were spectrum-reiated:
1. Spectrum composition specified — three out of four of age distribution, sex
distribution, summary of presenting symptoms and/or disease stage, and eligibility of

study subjects had to be reported

2. Analysis of pertinent subgroups — indexes of accuracy cited for any pertinent
demographic or clinical subgroup of the investigated population.

Since the publication of Reid and colleagues, five further methodological reviews using similar
methodology and assessing diagnostic accuracy studies against the same or similar
spectrum-related criteria have been published® (Table 4). Across all six reviews, 44%
(135/308) of primary studies published between 1970 and 2002 were judged to have
adequately specified the spectrum composition of the included study samples and 48%
reported either consecutive or random sampling of participants. Only 24% (64/268) had
included separate analysis of pertinent patient subgroups. There does appear to have been
some improvement over time for all three criteria. Adequate specification of the spectrum
composition was 25% for primary studies published up to the early 1990s and 58% for those
published from around 1993 to 2002, appropriate participant sampling went up from 40% to
50%, while analysis of pertinent subgroups went up from 8% in the earlier period to 35% in
the later one. Nevertheless, these are still not sufficiently high proportions and suggest that
the potential impact from patient spectrum on diagnostic test accuracy is inadequately

assessed in primary studies.

The publication of the STARD statement® should go a long way to addressing this issue. In
the 2005 review by Siddiqui and colleagues® each of five spectrum-related criteria in 16
primary studies in the ophthalmic literature were assessed. In addition to the two criteria

suggested by Reid and colleagues® (for which their studies scored 75% and 25%

P Other such reviews have also been published, e.g. Sheps and Schechter,*® Arroll 1988, efc but they did not use
the same spectrum-related criteria.
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Table 4 Methodologic reviews of studies of diagnostic test accuracy: spectrum-related criteria

§o = 5 4
88% | ge2 |55
g_ £ 8 ot & [ -]
w oo o © " c 3
Study No. o e <o
Study Source/Inclusion years papers Other spectrum-related criteria
Reid,28 Medline, 4 general medical journals 1978- 112 30 (27%) 9 (8%)
1995 1993
Heffner, Medline, 9 general medicine and 6 1992- 41 25 (61%) | 22 (54%) 12 indicated study sample, i.e. pts suspected of target disorder: 37 (90%)
1998% subspecialty journals for pulmonary 1997 (29%)
disease papers
Harper, Papers on ophthalmic diagnostic 1980- 20 12 (60%) 11
1999*° tests selected from recent 1997 (55%)
publications; 9 of which identified
from Medline search
Rothwell, Medline plus author references, 1970-90 20 3(15%) 8 (40%)
2000° random sample papers evaluating
tests to measure carotid stenosis, 1993-97 20 15 (75%) | 10 (50%)
Lumbreras- | Medline, 3 clinical chemistry journals 1996 18 4 (22%) 8 (44%)
Lacarra,
2004 2001 27 10 (37%) 7 (26%)
2002 34 24 (71%) 13
(38%)
Siddiqui, Hand searching of 5 major 2002 16 12 (75%) | 8(50%) | 4(25%) | - describe study population - incl/excl criteria, setting, location: 13 (81%)
200548 ophthalmic journals - describe participant recruitment: presenting symptoms, previous test
results, or receipt of index/reference test: 13 (81%)
Criteria all from STARD guidelines - report distribution of severity of disease in those with the target condition
and of other diagnoses in those without the target condition: 10 (62%)
Primary studies published up to ¢1993 35’;.,2? (%202) ?/81“/15
Primary studies published from ¢1993-2002 1(05242/07)6 (15%%6) ?2/5102 ‘)5
135/308 26/56 64/268
TOTAL % | @e%) | (24%)

20




respectively), they found that 81% of studies adequately described the study population and
patient recruitment, and 62% reported the distribution of severity of disease in patients with
the target condition and of other diagnoses in those without the target condition. The authors
intend for this to provide a baseline against which to evaluate the impact of the STARD

statement.

A further problem partially linked to poor reporting of data in primary studies is our ability to
investigate sources of heterogeneity at the aggregate level. Where details of patient
subgroups within studies are not available, as is likely for diagnostic accuracy studies, one
has to rely on aggregated study-level data, such as the percentage of women in each study,
or the mean age of study participants, and examine whether that variable explains
differences between the studies. Simulation work in the field of RCTs has shown that the
statistical power of meta-regression techniques is dramatically and consistently lower than

that of individual patient data analysis.*®

Methods available for meta-analysis
Systematic reviews of diagnostic accuracy studies aim to report both the individual study

resuits together with a summary of the central tendency and variability of the studies. The
central tendency of the data is either summarised as a typical operating point (average
sensitivity and specificity) or as an SROC curve, which describes the pattern of values of
sensitivity and specificity that could occur across different test thresholds. For a test where
the chance of disease increases with the test value, increases in the cut-off value will
increase specificity and lower sensitivity according to a curvilinear relationship depicted by the

SROC curve (see section 2.2.3 for a fuller explanation of threshold effects).

Obtaining a summary operating point by separately averaging estimates of sensitivity and
specificity is frequently used,”” but is known to potentially be misleading. The approach
ignores the negative correlation likely to exist between sensitivity and specificity where there
are differences in threshold between the included studies, and produce a summary that falls
below the SROC curve. In a systematic review it is likely that the same cutoff has not been
applied in all studies, and even when this is not the case, similar threshold type effects can
arise through differences in test interpretation between observers, characteristics of the

sample and differences in the execution of tests.

One device to overcome the correlation between sensitivity and specificity, is to undertake
meta-analysis using a single summary statistic created from them. The diagnostic odds ratio
(DOR) is one option, and is computed as the ratio of the odds of a positive test result in a
patient with disease compared with a patient without disease (a quantity that has little direct
clinical meaning). The DOR allows for a trade-off between sensitivity and specificity as points
on a summary ROC curve typically have very similar DOR even when they have different

sensitivity and specificity. However, it is possible that the DOR does vary with thresholds,
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particularly when the diseased and nondiseased groups differ in both the variance of the test
measurements as well as the average value of the underlying test result, e.g. patients with
disease may on average have higher values of a given marker than patients without disease

but they may also have a greater variation in values compared to nondiseased (Figure 2).

The ‘SROC approach’ allows this variation in DOR across different thresholds and for this
reason is usually recommended over straight pooling of DORs.""**? The method devised by
Moses and Littenberg54 is the most commonly used, however there are problems with it, not
least that there is no sound statistical basis for the approach. Alternative so-called ‘advanced’
methods of meta-analysis, such as the hierarchical SROC regression (HSROC) method*>*®
and the bivariate normal (BVN) method® *® have been developed. These do have a sound
statistical basis and also allow for threshold effects and for variation in DOR with threshold.
These methods are not in widespread use due to the computational difficulties in undertaking
them, however they have become much more accessible for use in diagnostic systematic

reviews,”*°

The two approaches were originally proposed as alternative models however
recent work has shown that under certain circumstances they are actually different
parameterisations of the same model.”® This and the ability of the methods to investigate

sources of heterogeneity requires further examination.

The next chapter gives more detail on these methods and on other key aspects to consider

when carrying out systematic reviews of diagnostic test studies.
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2 Establishing diagnostic test accuracy in systematic
reviews

This chapter considers how test accuracy is established in primary studies and systematic

reviews, the various sources of heterogeneity (or variation) in study results, and selected

statistical methods for pooling primary studies in systematic reviews.

2.1 Establishing test accuracy

2.1.1 In primary studies

Diagnostic test accuracy is established by comparing the results of a test for the detection of
a given disorder with the results of some reference standard in a group of patients suspected
of having that disorder. These results are classified into a 2x2, or contingency, table and a
variety of indices of test accuracy reflecting the new test's (also referred to as the index or
experimental test) discriminatory ability, or ability to correctly identify patients with and without
the disorder, are then estimated (see Appendix 1). The reference standard (sometimes
referred to as the ‘gold’ standard) should be the best available method for making a definitive
diagnosis of the presence or absence of the disease or condition in question and ideally
should indicate with 100% certainty the presence or absence of disease, although in practice
absolute certainty is rarely achieved.?’ In most cases the reference standard is more invasive,
more unpleasant and/or more costly than the test under investigation, hence the search for as
accurate an alternative as possible. The most commeonly used accuracy indices are sensitivity
(proportion of diseased participants who have positive test results) and specificity (proportion
of nondiseased participants who have negative test results), but predictive values and
likelihood ratios are also presented in reports of primary studies (see Appendix 1 for
definitions).

Primary studies of test accuracy are observational and cross-sectional in design, that is they
aim to compare the result of the index test with that of the reference standard in the same
participant at the same time."° They can be either prospective or, commonly, retrospective in
design. Diagnostic accuracy studies bear some similarity to the ‘cohort’ and ‘case-control’
studies commonly used in epidemiology for the evaluation of aetiology, however diagnostic
studies are distinct from studies of aetiology as there is usually little or no time difference
between the application of the index test (exposure) and application of the reference test
(outcome) so that loss to follow-up, a main drawback of aetiology studies, is not such an a

issue.
Rutjes and colleagues10 have outlined four main variations on the diagnostic accuracy design.

The first, termed the “classic” design assembles patients suspected of a disease (ideally in a

prospective manner) in whom the new (index) test and then the reference standard are
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performed, and results are compared. Studies of this design are generally referred to in the

literature as case series or cohort studies.

The “reversed flow design” reverses the order in which the reference standard and index tests
are applied: cases and controls are sampled from the same population (patients suspected of
having the condition), the reference standard is applied first and the index test applied after
disease status is known. This bears some similarity to the nested or etiologic case-control
design in that cases and controls are selected from the same source population, typically
defined by the clinical presentation.’ This design would enable researchers to recruit a
certain number or proportion of diseased participants or to apply the index test to only a

random sample of nondiseased (reference test negative) participants.

The remaining two designs can also be thought of as variations on the case-control design
but cases and controls this time are sampled from two distinct populations. Diseased
participants (cases) are sampled from a clinical (often hospital) population, while controls are
sampled either from the ‘healthy’ general population or from a group of participants diagnosed
with a specific alternative diagnosis or diagnoses that is known to produce symptoms and
signs similar to those of participants with the target condition.’® These designs are described

as “two-gate designs” either using “healthy controls” or with “alternative diagnosis controls”.

For the latter two designs to generate accurate estimations of sensitivity, representative
sampling of cases must be ensured. If participants with advanced disease are over-
represented it is likely that sensitivity estimates will be inflated. It is unlikely that specificity
estimates from studies using healthy controls will be representative of the test’s performance
in routine practice as most of them will be unlikely to have alternative diagnoses that might
generate false-positive results. In a classic or reverse-flow design, all alternative diagnoses
(that are more or less likely to cause false-positive results) will be represented; where specific
alternative diagnosis controls are used, specificity could be over- or under-estimated
depending on the alternative diagnosis concerned.’ In the former scenarios the effect on
accuracy from spectrum can be considered as an effect modifier, in the latter, if
representative sampling is not ensured, it should be considered a ‘bias’, as introduced in
Chapter 1. '

A further design termed the “two-gate design with representative sampling” still has two sets
of inclusion criteria, one for cases and one for controls, but both are sampled in such a way
that both groups are representative of those obtained in the classic diagnostic accuracy study.

Such designs would be difficult to achieve and none have been identified in the literature.™

Graphical depiction of test results in diseased and nondiseased
The distribution curves for test resuls in diseased and nondiseased persons introduced in

Figure 2a can be transformed to ROC space. Primary study results at different thresholds are
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displayed and an ROC curve drawn through the points to demonstrate the trade-off between
sensitivity and specificity (Figure 5). The closer the curve to the top left-hand corner of the
plot, the more discriminative is the test. The closer the curve to the centre diagonal (ROC
curve for an uninformative test), the less accurate the test. Some authors present the results
of their studies in terms of the ‘area under the curve’ (AUC); perfect tests have areas under
the curve of close to 1, whereas poor tests have AUC close to 0.5.%° The AUC is a global of
measure of test accuracy and as such only gives an overall picture of the accuracy of a test; it

does not give any indication as to the expected operating point of the test.

Figure 5 ROC curve
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ROC plots can also be used in systematic reviews to display the sensitivity and specificity
pairs from individual studies. Rather than demonstrating the effect of changing threshold on
accuracy (as for primary studies above), ROC plots in this context demonstrate the amount of

variability in sensitivity and specificity that there is between primary studies (see Figure 6).

2.1.2 In systematic reviews
Systematic reviews of RCTs, particularly where meta-analysis (the use of statistical methods

to summarise the results of independent studies) can be used, can provide more precise
estimates of the effects of healthcare interventions than those derived from the individual
studies included in a review®” and allow decisions about healthcare to be made that are

based on the totality of the available evidence.

The use of statistical methods to combine test accuracy studies is particularly challenging, not
least because test accuracy is conventionally represented by a pair of statistics (most often
sensitivity and specificity, see Appendix 1) and not by a single measure of effect such as the
odds ratio or relative risk. The paired nature of sensitivity and specificity — one increasing and
the other decreasing with changing threshold —~ means that separate pooling of sensitivities
and specificities or even positive and negative likelihood ratios is not usually the best
approach as it does not allow for this variation with threshold (i.e. doesn't account for the
correlation between them). A variety of methods of meta-analysis that allow for variation due

fo threshold are available and will be discussed below.
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2.2 Sources of variation in diagnostic test accuracy other
than spectrum
Before conducting a statistical synthesis, sources of variation in study results should be

considered. There is almost always considerable variation, i.e. heterogeneity, between the
results of diagnostic studies, possibly to a greater extent than is seen for therapeutic
interventions, though this comparison has not been quantified in empirical studies. This may
be at least partially due to the fact that the importance of rigorous design has been less well
appreciated than for therapeutic interventions, consequently diagnostic studies have often

been retrospective and not conducted according to standard protocols.

Furthermore, in randomised trials, the statistical outcomes that are considered are usually
relative comparisons (such as relative risks and odds ratios) or absolute comparisons (such
as risk differences and differences between means) of event rates between treated and
control groups made within each trial. While often there is substantial variation in the event
rates in the treated groups and in the placebo group between the trials (as displayed in a
L'Abbé plot), there may be little variability in relative or absolute comparisons between these
event rates. In contrast, for analyses of diagnostic test accuracy the focus is on the event
rates in the diseased (test sensitivity) and in the nondiseased (test specificity), and not on
relative or absolute comparisons between diseased and nondiseased groups within studies.
Thus the level of heterogeneity observed in test accuracy reviews may be higher than that
observed in randomised trials due to the statistical focus not being on comparisons within

studies but on absolute estimates of event rates.

Between study differences in results can result from:
- chance, from
- errors in calculating accuracy indices or from
- heterogeneity®® including,
o methodological heterogeneity or biases in the conduct of studies that can be
significantly reduced by rigorous design
o clinical heterogeneity that arises from true differences in accuracy between
different test populations
o differences in the test under study, and

o variation in the threshold for positivity or test cut-off, 20494

Empirical evidence for the impact of many of these quality features on test accuracy is still
limited. Two studies®®® have found several features that significantly over- or under-
estimated test accuracy, including the use of case-control design with healthy controls and
severe cases of disease, use of different reference tests, selective inclusion 6f patients and
retrospective data collection.®® Whiting and colleagues have reviewed the literature to provide

a summary of the available evidence that supports various sources of bias or variation.®®
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Table 5 outlines various quality features that are often included in quality assessment tools for
diagnostic test studies, some of which are discussed in more detail below, and groups them
according to whether they are predominantly concerned with internal validity (or study design
issues) or with study generalisability. All of these can potentially impact on accuracy
estimates obtained from a study and all can be confused with the impact of differences in
patient spectrum — the challenge is to differentiate spectrum effects from variation due to
other causes.

Table 5 Quality considerations for evaluation of a diagnostic test study'ﬁ’67

Quality feature Internal General-
validity isability

1. Study population

Selection bias v

Spectrum composition N

2. Selection and execution of tests

Verification bias N
Use of appropriate reference test N
Description of index and reference test execution N

3. Test interpretation

Blinding

Inter-observer variability + N

4. Data analysis & presentation

Uninterpretable test resuits v

Interpretation of test results in clinical context v

2.2.1 Study design and quality considerations

Selection bias
In the evaluation of therapeutic interventions, the term ‘selection bias’ generally refers to bias

resulting from the way that comparison groups are assembled.® In that context,
randomisation is the only means of allocation that controls for unknown and unmeasured
confounders as well as those that are known and measured.” It is possible to control or
adjust for confounders that are known and measured in observational studies but it is not
possible to adjust for those factors that are not known to be confounders or that were not
measured. In the epidemiological literature, selection bias in case-control studies reflects
selection of either cases or controls that is not independent of the exposure under test. Here it
more broadly reflects any bias that may occur due to the selection of subjects for

investigation.
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The ideal study sample for the evaluation of a diagnostic test is one obtained from a
consecutive (or randomly sampled) series of patients recruited from a relevant clinical
population and who meet the study inclusion criteria, i.e. a prospectively designed diagnostic

accuracy study.'®""

Selection bias can occur in several ways, for example where:
i) only those who are referred for the reference test or, in a retrospective study those
who actually underwent the reference test, are included
ii) inclusion is influenced by the result of the experimental test, i.e. test positives more
likely to be included
ii) patients are selected on the basis of another test result that is related to the result of
the test under study
In each of these cases, only those patients whom clinicians most expect to have the target
disorder will be included in the study such that the proportion of patients who have a positive
result will be higher than if all eligible patients had been included. Variations on the “case-
control” design tend to be at higher risk from selection bias: cases tend to be selected on the
basis of a positive reference test result and the result of the test under evaluation ascertained
after true disease status is known; the prevalence of the target disorder tends to be higher
than in practice; and cases and controls are often selected from opposite ends of the disease

spectrum, e.g. severe cases and healthy controls.®

Referral bias occurs where there is a systematic selection of patients for referral to the
experimental test who have characteristics differing from those of the entire population.
Usually, only patients most likely to have the disorder undergo the experimental test and
therefore become eligible for study inclusion. In the presence of selection bias or referral bias
patients available for inclusion in a diagnostic test study may be an unrepresentative sample
of the population to whom the test will be applied in practice, i.e. both biases may result in

variations in spectrum or case-mix.

It is often difficult to establish the extent to which retrospective diagnostic accuracy studies
have been subject to selection bias if, for example, the data necessary to identify all people
who would have been eligible for a test was not routinely collected, or where test results have

not been recorded in any systematic manner."?

Lijmer and colleagues found a significant over-estimation of accuracy (increase in DOR 3.0,
95%CI: 2.0, 4.5) to result from the use of a two-gate design using healthy controls as
opposed to a classic single-gate design for the evaluation of identical tests.®* Using the same
methodology, Rutjes and colleagues® found the bias to be much less in case-control studies
that selected controls from patients with diseases more closely resembling the target disorder.
Whiting and colleagues identified four studies which on balance tended to show increased
accuracy in the presence of distorted selection of par‘cicipan’ts.66 it is likely that sensitivity

would be over-estimated and specificity under-estimated.
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The ‘best’ diagnostic accuracy studies are prospective in design with consecutive recruitment
of patients; this allows evaluation on the full spectrum presenting in that setting, the collection

of appropriate baseline information and implementation of rigorous protocols for testing.

Verification bias

Verification bias occurs where the decision to undertake or apply the reference test is

influenced by the result of the experimental or index test!" 770 (

also called ascertainment bias
or work-up bias). There are two potential elements to verification bias: .

1. Partial verification occurs where only a subgroup of patients who received the index
test undergo the reference test (e.g. where the reference test is unpleasant or
invasive, such as biopsy or angiography). This incomplete verification may be equal
in test positive and test negative cases (i.e. cases missing at random), or it may be
differential where those most likely to have the disease tend to undergo the reference
test,

2. Differential verification occurs where different tests are used according to the results
of the experimental test (e.g. index test positive patients may undergo a more
invasive and probably more accurate reference test than those who tested negative
on the index test).

For example, in a study of radionuclide ventriculography for detecting coronary artery
disease, 31% of index test positive cases underwent verification compared to only 14% of
index test nega’tives.71 The better the test under evaluation, or at least the stronger the
investigator's faith in the test, the greater will be the tendency to preferentially verify index test

positives and the greater will be the bias introduced.”

Whiting and colleagues® found two studies that demonstrated increased accuracy in the
presence of differential verification. The 20 studies that investigated the effects of partial
verification bias had mixed results, mainly suggesting an increase in sensitivity and decrease

in specificity; only two of the 20 studies found no effect from partial verification.

Use of an appropriate reference test
Standard techniques for assessing diagnostic tests assume that a definitive reference test is

available, that is, that the reference test used is as close to 100% accurate as can be.
However, it can be either that the available test is far from perfect, or that such a test simply
does not exist. For example, the diagnosis of metastatic liver cancer can never be definitively
determined even at autopsy. The key issue really is not to find a test that confirms a text book
definition of disease but to find a test that has practical consequences for patient

management, hence the use of the term ‘target disorder’ as opposed to ‘disease’.

In some contexts where a single definitive reference test is unavailable, a reference strategy

may be used, where the reference diagnosis is made on the basis of clinical information in
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combination with a battery of other tests."” Incorporation bias occurs where the experimental
test is used as part of the reference strategy, i.e. the experimental test and reference tests are

not independent, leading to over-estimation of both sensitivity and speciﬁcity.12

Even the most definitive reference test may have considerable inaccuracies, for example,
microbiologic studies of sputum for the detection of tuberculosis can fail to detect
mycobacteria that may be picked up by nucleic acid amplification tests, and will incorrectly
classify patients with TB as false-positive results.”? Walter and Irwig61 refer to a ‘substantial
body of literature’ demonstrating that reference tests may frequently be imperfect. Serious
inaccuracies in the reference test will lead to over- or underestimation of the true accuracy of
a new test. If the index and reference test are conditionally independent then the new test’s
characteristics will be underestimated (non-differential misclassification); if the two tests are
perfectly correlated, or if the new test makes the same errors as the reference test, the
accuracy of the new test will be over-estimated,"” potentially appearing perfectly accurate

regardless of its association with true disease status.”’

Whiting and colleagues identified 8 studies looking at the effects of an inappropriate reference
standard.®® All 8 studies found some association with sensitivity, specificity or accuracy, but

the effects were not consistent across studies.

Blinding or masking

The interpretation of many diagnostic tests involves some degree of subjective interpretation.
In clinical practice, test interpretation can be influenced by both the knowledge of the results
of other tests and by the specific clinical characteristics of the person being tested. Diagnostic
review bias occurs where knowledge of the reference test result influences interpretation of
the experimental test, whilst test review bias refers to the opposite situation. Clinical review
bias is said to occur where knowledge of patients’ clinical characteristics or other test results
influences test interpretation (experimental or reference test). For example, to adequately
evaluate the accuracy of ultrasound for the detection of rotator cuff tear, observers should not
have access to the results of other imaging tests such as x-ray or MRI. This should be

distinguished from observer variability which will occur in interpretation of almost any test.

The recommended solution to these biases is to perform a ‘blinded’ study, where both tests
are interpreted without knowledge of the clinical characteristics or the test results’® to ensure
that it is only the diagnostic contribution of the test itself that is being evaluated. Of course this
is not the same as routine clinical practice where prior information is used to evaluate the
results of subsequent tests. Blinding is particularly important where a new test is intended to
replace an existing test, for example the use of MRI instead of ultrasound for the assessment
of shoulder pain. Where clinical factors play a significant role in assisting test interpretation,

such as in the shoulder pain example above, or where a new test is intended to supplement
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an existing test, it may be more appropriate to identify the additional diagnostic value added

by the test, rather than essentially evaluating the test in isolation.

Whiting and colleagues identified 13 studies looking at the effects of some form of review
bias.*® Only two of the 13 did not find evidence of increases or decreases in either sensitivity,
specificity or accuracy. The most common finding was of increased sensitivity in the presence

of review bias (8 studies).

2.2.2 Variation in test(s)

The manner in which the index and reference tests have been carried out should be
described, not only as good reporting practice and so that the study could be replicated, but to
allow a judgement to be made regarding the applicability of the study’s results.*" Just as
variations in the timing, duration and dosage or intensity of a therapeutic intervention can
affect effectiveness, diagnostic test accuracy may be affected by variations in timing, in
technical aspects of any equipment or materials used, inter and intra observer and laboratory

variation. Similar variations in the reference standards used must also be considered.

Whiting and colleagues found few studies that investigated the effects of biases and sources
of variation associated with the test protocol, making it difficult to draw conclusions on any
effect on test performance.?® They propose that the magnitude of any effect is probably
linked to the test and condition under investigation, being more significant for tests that
require some expertise to perform and for acute conditions that may change rapidly compared

to more chronic diseases.

2.2.3 Threshold effects

A source of heterogeneity that is unique to meta-analyses of diagnostic tests is variation in
the cut-off or threshold chosen to indicate test positivity. Statistics used to report the results of
diagnostic tests (e.g. sensitivity and specificity) by nature present a test result as binary, i.e. a
test is either positive or negative, disease either present or absent. However, in practice the
majority of tests effectively produce continuous data such that an arbitrary cut-off point
(diagnostic threshold) is applied to define positive and negative test outcomes. In some
cases, such as laboratory tests, this could be explicit numerical cut-offs. Imaging tests, e.g.
mammograms, can be interpreted on a categorical scale ranging from definitely normal to
definitely abnormal with various categories of suspicion in between. These thresholds can
also be affected by variation between laboratories or between observers'' — one observer's
‘mildly abnormal’ may be another's ‘definitely abnormal’. The diagnostic classification of
patients therefore depends on whether the measurement of a given trait is above or below
some defined cut-off or threshold value, and the threshold chosen may vary between studies
of the same test. The higher the cut-off value chosen, the higher the specificity and lower the

sensitivity estimates. The issue of threshold effects is further discussed below.
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Whiting and colleagues found very little evidence for any effects from nonarbitrary choice of

threshold value.®®

2.3 Selected methods of meta-analysis and how they may
reveal/hide spectrum effects

The first stage of meta-analysis is to plot the results of individual studies graphically in order
to assess the degree of variability between study results. As mentioned in section 2.1.1, ROC
plots are a useful tool for displaying sensitivity and specificity pairs from individual studies in a
systematic review (Figure 6). The pattern of results can also provide an indication as to
whether or not there is variation between studies due to threshold, i.e. a threshold effect.
Threshold effects are usually interpreted as present if the plotted points mimic the shape of a
ROC curve; if the points appear to vary around some central point, there is assumed to be
minimal variation due to threshold. However, it is possible for a similar pattern of results to be
introduced by variation in the spectrum of diseased and nondiseased patients between study

populations.

Figure 6 Sample ROC plot for a systematic review

=

Sensilivity
.6
1
°

4
f

o

.6 4
Specificily

Straight pooling of diagnostic accuracy indices such as sensitivity and specificity does not
allow for the presence of any threshold effect and therefore cannot distinguish heterogeneity
due to threshold from heterogeneity due to other sources of variation. The exception to this is
the diagnostic odds ratio (DOR). The DOR describes the ratio of the odds of a positive test
result in a patient with disease compared with a patient without disease. It is easier to
understand as a statistical concept than a clinical one and is useful for meta-analysis of test
accuracy as it encompasses all four cells of the 2x2 table rather than the two each for

sensitivity and specificity (Appendix 1).
Although the DOR allows for a trade-off between sensitivity and specificity, pooling of

individual DORs should only be performed if it can be assumed that the relationship between

sensitivity and specificity is constant, i.e. that the DOR is constant across different thresholds.
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As shown in Figure 7, the discriminatory ability (accuracy®) of a test can be defined as a
function of the mean test results in nondiseased and diseased groups (U1 and p3) and the
standard deviation from the mean for each group (8, and &;). Where the standard deviations
from the mean are equal (&, = 8,), accuracy is the difference between the means divided by

the standard deviation.”

Figure 7 Scenario required for symmetric SROC curve
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If the difference between the means remains constant across studies despite differences in
threshold and the standard deviations between groups are equal, the DOR will be constant.*
When studies are plotted on a ROC plot they wilf be described by a symmetric shaped SROC
curve consistent with all points having the same diagnostic odds ratio. This means that the
values of sensitivity at high values of specificity will be the same as the values of specificity at

correspondingly high values of sensitivity.

However, the DOR will vary at different thresholds when the diseased and nondiseased
groups differ in both the average value of the underlying test result and also in the variance of
the values, e.g. patients with disease may on average have higher values of a given marker
than patients without disease but they may also have a greater variation in values,” i.e.
04#0,. Where this occurs, the DOR at higher thresholds will be higher than the DOR at lower
thresholds. The resulting SROC curve (the derivation of which is described below) will not be
symmetric about the sensitivity=specificity line. These concepts are discussed further in

section 2.3.2.

° The term ‘accuracy’ can also used to describe a specific index of accuracy, i.e. the proportion of
patients in a study who test positive or the proportion of true results (both true positives and true
negatives) in the population. In this context it is used as a general term to describe the discriminative
ability of the test

Prevalence of disease can vary between studies
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2.3.1 Characteristics of an optimal meta-analytic method
Before describing the various methods of synthesising diagnostic test accuracy studies that

do allow for threshold effects and for variation in DOR with threshold, it is useful to consider

the characteristics of an optimal meta-analytic method:

1. the model should be bivariate in its parameterisation and should allow interpretation in
terms of sensitivity and specificity.

2. the model should use appropriate weighting. The number of diseased patients in a study
can differ considerably from the number of nondiseased patients, resulting in varying
levels of uncertainty in sensitivity and specificity. The different levels of uncertainty or
precision associated with the sampling variability in TPR and FPR should therefore be
addressed.

3. the model should allow for the threshold relationship or correlation between sensitivity
and specificity.

4. the model should use a random effects approach. Considerable heterogeneity between
studies is almost always to be expected in a systematic review of a diagnostic test or

tests.

2.3.2 Moses and Littenberg SROC method

The Moses and Littenberg SROC method summarises the performance of a test across
studies by fitting a summary (or ‘average’) ROC curve through the observed points.>*’°
Central to the method is the concept that the trade-off between TPR and FPR is most often
due to threshold variation, although it can also be due to the other sources of variation in
accuracy such as variation in tests and testing methods, methodological differences and

variation in patient spectrum.

Model formulation
The model uses the log of the DOR (denoted D) and the log of a proxy measure of threshold

(denoted S). D and S are estimated for each study in a meta-analysis in the following way:

_1| _TPR _FPR
(1-TPR) (1-FPR)
TPR _ (-FPR)|_ ln( LR +ve
(1-TPR) FPR LR -ve

j =logit(TPR) + logit(FPR)

D =1In(DOR) = h{ ] = logit(TPR) - logit(FPR)

The logit indicates the log of the odds, as used in logistic regression. D, estimated by
subtraéting the logit of the FPR from the TPR, is the log of the DOR and is a direct measure
of how well the test discriminates between diseased and nondiseased. S, estimated by
adding the two logits together, is related to how often the test is positive,75 and increases as
threshold decreases. Note that D and S are defined as the difference and sum of the same

two measures - TPR and FPR - each of which are estimates and therefore have an unknown
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degree of error and furthermore covariance may exist between them. Although the uncertainty

and covariance can be corrected for it is not usually considered by meta-analysts.*

The next stage is to plot D against S for each study and compute the best fitting straight line

using the linear regression equation:

D=a+bS

where a denotes the intercept and b the slope of the regression line (Figure 8a). This
regression line is then transformed into ROC space and an SROC curve generated (Figure
8b). The SROC curve does not connect a set of points as the ROC curve for a primary study

does, but rather reflects the central tendency of the data from the primary studies.

Symmetric versus asymmetric SROC curves
As previously mentioned, an SROC curve may be symmetric or asymmetric depending on the

relationship of DOR with threshold.

This can be best illustrated by relating D and S back to the distribution of test results in
diseased and nondiseased participants (Figure 7), Macaskill shows that TPR and FPR can
both be defined as functions of threshold (t), the mean test results in nondiseased and
diseased participants (l; and y,) and their standard deviations (5, and 5,),” therefore D and

S can also be defined as functions of the same parameters.

Where the distribution of results is the same in diseased and nondiseased participants (5, =
8;) the formulae can be simplified to show that although S is linearly related to threshold (t), D
does not depend on threshold (t).”® In this case, S can therefore be assumed to be zero. This
results in a horizontal regression line and an SROC curve that is symmetric about the

sensitivity=specificity line.

Where the distribution of results between diseased and nondiseased participants is not equal
(B4 # B,) both D and S depend on threshold. The resulting regression line has a positive or
negative slope and the SROC curve is asymmetric. The degree of asymmetry in the curve will
depend largely on the extent of the difference between &5 and &,. The derivation of an
asymmetric SROC curve is as follows:

1
1

oo, \(+BY(1-B)
0B 5 1 —specificity
specificity

sensitivity =

1+
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Model interpretation
Returning to the linear regression model, the coefficient for D is the log DOR and indicates

the point at which the regression line intercepts the y-axis, i.e. where S is zero or sensitivity
equals specificity (Figure 8a). The exponential of a therefore gives the DOR associated with
the SROC curve at the point where sensitivity=specificity (or the Q* point) (Figure 8b). The
higher the value of a, the higher the DOR and the closer the SROC curve will be to the top left
hand corner of the ROC plot. The intercept value can also be interpreted as a measure of the
distance between mean test results in diseased and nondiseased (u2-y4, Figure 7); the further

apart the two distributions, the better the test and the higher the value of a.

The coefficient for S indicates how the DOR changes with threshold. If b=0, the DOR does
not change with threshold, the regression line will be horizontal and the resulting SROC curve
will be symmetric (i.e. DOR is constant all along the SROC curve). When the DOR does vary
with S (i.e. b#0), the coefficient for the slope (b) has a considerable effect on the shape of the
SROC curve.” The higher the value for b, the steeper the slope of the regression line and the
more asymmetric the SROC curve (the more the DOR varies with threshold). If b has a
positive value, DOR increases with increasing test positivity, and vice versa if b has a
negative value. Macaskill shows that S can be interpreted as a weighted average distance of

true threshold, t, from the mean test results in diseased and nondiseased (p; and p,).”

Figure 8 Sample Moses plots using data from Scheidler and coIIeagues76
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Where Q* - point where sensitivity=specificity, OP is the operating point estimated using the mean value for 'S’
across studies.

Weighting

The Moses model is usually fitted using weighted or unweighted least squares linear
regression.54 Weighting is commonly carried out using the inverse variance of D. This
assumes that variation between studies is due solely to sampling error (like fixed effects).
Whilst this carries appeal in that it combines studies according to the precision of their
estimates of the odds ratio, it is problematic when sensitivity or specificity (and hence odds

ratios) are high, as the formula for the approximate variance of a log diagnostic odds ratio

36



becomes biased (the variance becoming over-estimated) when any of the counts of true
positives, true negatives, false positives or false negatives is close to zero.”’ Weighting by
inverse variance therefore gives less weight to studies with high sensitivities and specificities

(Figure 8b), all other things being equal.

Using an unweighted (or equal weight) regression model gives results more akin to random

effect assumptions (i.e. where variation is not just due to sampling error but to real differences
in accuracy between studies), because both within and between-study variance are taken into
account.®’ The effect is to give relatively higher weight to smaller studies, as would occur in a

random effects model when heterogeneity is present.

Estimation of sensitivity and specificity
Difficulties in applying the DOR and associated SROC curve in clinical practice mean that the

most likely operating point on the SROC curve is often estimated. A commonly used index is
Q*.”® Q* is the point on the regression line where S=0 or the value on the SROC curve where

sensitivity is equal to specificity.

Q* is not useful if the studies in the analysis do not include estimates of sensitivity and
specificity near to the Q* point as in the example in Figure 8b. it is estimated using the
intercept value a estimated from the regression equation (i.e. the log diagnostic odds ratio

when the threshold parameter is zero} and inserting it into the equation:

Q*=sqrt(e’)/(1+sqri(e”))

An alternative combination of sensitivity and specificity can be estimated using the mean
value of S instead of S=0. The value for D where where S=mean of S (indicated by the dotted
vertical line in Figure 8a) is identified, and sensitivity and specificity at that point estimated

using the following formulae:

fmean S — mean D]
1- exp L 2

Enean S — mean D]
1+ exp 2

exp |mean D [ (1 — specificity)
specificity

exp (mean D [ (1 — specificity)
specificity

Specificity =

Sensitivity =

1+

Because we are using mean values across the dataset, the point identified lies closer to the

centre of the data than Q*. This point is indicative of the average sensitivity and specificity,
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however it does not account for the variability in values between studies. It should also be
remembered that these points represent only one small part of an asymmetric SROC curve;

DOR might vary considerably along the curve.

Investigating heterogeneity in the Moses and Littenberg SROC method
Spectrum effects, or biases, are a source of heterogeneity in a systematic review and are
therefore investigated in the same way as other sources of heterogeneity, by extending the

26,42

model to allow for covariates. A covariate, X, can be added to the regression equation for

each potential effect modifier:

D=a+bS+cX,.
The exponential of each of these terms estimates multiplicative increases in diagnostic odds
ratios (relative odds ratios) for each factor. An underlying assumption is that the shape of the

summary ROC curves is not affected by covariates; i.e. the SROC curves are parallel.

A further extension to the model allows for different shapes for the SROC curves indicated by
the covariates. To do this interaction terms between covariates and thresholds are included

in the model:

D=a+bS+cX, +dSX,

If the covariate indicates, say differences between two tests, this model is equivalent to fitting
separate summary ROC curves for each test. A problem with this model is that it becomes
difficult to judge the importance of differences between the curves, as they may differ both in
average diagnostic accuracy and shape, and will cross over. Furthermore it would not be
possible to identify a source of heterogeneity that had opposing effects on sensitivity and

specificity as the overall DOR would not change.

2.3.3 Advanced methods

Rutter and Gatsonis hierarchical SROC method

Rutter and Gatsonis’ hierarchical SROC (HSROC) approach models summary ROC curves
by estimating the average DOR, the average threshold and the shape (degree of asymmetry)
of the curve.®®*® The HSROC model can be considered as an extension of the Moses

[ 66,56,56
T

mode allowing for uncertainty at different levels. For this application two levels are

considered: variation first within studies, and second, between studies.

The model is formulated in terms of the probability () that a patient in study i with disease j
has a positive fest result, where j=0 for a patient without disease and j=1 for a patient with
disease.”® Appendix 2 provides the full specification of the model. The model yields parameter
estimates for

e B (the implicit threshold parameter which models the trade-off between sensitivity and

specificity in each study). When 8 = 0, the average operating point is at Q*, i.e. where
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sensitivity=specificity. The value of 6 therefore gives an indication of distance from
Q¥

e q; (the log DOR which measures the difference between TP and FP fractions in each
study), and

e [ which allows for asymmetry in the underlying SROC curve by allowing the log DOR
to vary with implicit threshold (i.e. it allows the TP and FP fractions to increase at
different rates as 6; increases). When B = 0, the DOR for each study does not
depend on the cutpoint parameter 6; and g; is the log of the DOR. When (3 # 0 the

DOR varies with threshold (6;) even if the accuracy parameter () is held fixed.

The second level of the model fits 6; and q; as random effects, so that their average value and
variation across studies are estimated. The random effects model takes account of the
clustering of TPR and FPR pairs within studies, thereby accounting for the correlation
between them. The shape parameter B can only be estimated as a fixed effect (estimated by
looking the pattern across studies) because the association between test threshold and
accuracy must be derived using data from the studies considered jointly.60 The precision with
which the parameters are estimated is incorporated into the model by weighting in favour of

those with more precise estimates.

Figure 9 Advanced method plots
a) HSROC and Moses SROC curves b) HSROC curve and bivariate plot
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Where Q* - point where sensitivity=specificity, OP is the operating point estimated using the mean value for 'S’
across studies.

The hierarchical summary ROC curve (Figure 9a and b) is constructed by computing values
of sensitivity across the range of specificities using the a (log DOR) and (3 (shape parameter)
estimates from the regression model. The 6 (threshold) parameter gives an indication of

position on the curve rather than the shape or location of the curve.
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Bivariate normal model
The BVN model uses the same hierarchical approach as the Rutter and Gatsonis method,*®

but preserves the sensitivity/specificity parameterisation of the studies, rather than converting

test values to estimates of diagnostic odds ratios.*

The model uses a random effects approach assuming that the true logit sensitivities for the
individual studies are normally distributed around some common mean value 4 ; with a
between study variability of 0°4. The same random effect assumption is made for true logit
specificities, with mean value ujg; and between study variability of o”s. The potential
correlation o45 between sensitivity and specificity (acknowledging the pairing of data within
each study and the possibility of threshold effects) is addressed by explicitly including this

correlation into the analysis.®”>®

The precision with which sensitivity and specificity have been
estimated is also incorporated into the model by weighting in favour of those with more

precise estimates. The full model specification is provided in Appendix 3.

The model yields parameter estimates for:
¢ mean sensitivity, mean specificity and their 95% confidence intervals
¢ estimates of between study variability in sensitivity and specificity and

¢ estimates of the covariance between sensitivity and specificity.

The parameters of the bivariate distribution can also be used to calculate an elliptical
confidence region around the mean values of logit sensitivity and specificity taking into
account the possibie (positive or negative) correlation between them.*® This can be back-
transformed into conventional ROC space to give a confidence region around the summary
operating point, denoting the area containing the likely combinations of the mean values of
sensitivity and specificity (see Figure 9b). A prediction ellipse can also be constructed to
indicate the region in which the true sensitivity and specificity of the test is likely to lie (within a
given probability, e.g. 95%). The precision of each study is also denoted by varying sized

circles.

Harbord and colleagues have shown that mathematically, the HSROC and BVN model are
essentially alternative parameterisations of the same model, i.e. the parameters produced by
the HSROC model can be transformed into the parameters obtained from the BVN model,
and vice versa.”® This has not been empirically proven and will be further examined in
Chapter 4.

Investigating heterogeneity using the advanced methods
Sources of heterogeneity, incluing spectrum effects or biases, are again examined by

extending the models to allow for covariates. Under the HSROC parameterisation covariates
can be added to the accuracy, threshold and shape components of the model, and are fitted

as fixed effects. The significance of covariates can be evaluated by testing the model terms
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for the covariates, and differences may be noted in whether covariates alter (a) diagnostic
odds ratios, (b) the threshold and (c) the shape of the ROC curve. The remaining unexplained
variance in both the accuracy and threshold parameters is also given by the random effect

terms.

Under the bivariate normal parameterisation covariates are added to both the logit sensitivity
and logit specificity components of the model. The effect of each covariate on sensitivity and
specificity is thus estimated separately so that any variable that increases one'but decreases
the other, for example, could be detected. The remaining unexplained variance in both

sensitivity and specificity is also given as is the covariance between sensitivity and specificity.

After the introduction of a covariate, the similarity of the two models’ output can only be easily
maintained if no interaction of the covariate with shape is allowed for the HSROC model.
Recall that for an individual study, the distribution of test results in diseased and nondiseased
participants determines the shape of the curve; where the two distributions are not equal, the
ROC curve will be asymmetric. At review level, the distributions of results in diseased and
nondiseased across all studies are considered, to determine whether any differences in
distributions are consistent across studies and therefore lead to asymmetry in the SROC
curve. Where a covariate is introduced to the HSROC model one can either assume that the
two (or more) curves have the same shape (parallel) or that they might have different shapes
(crossing curves). If the curves are allowed to have different shapes, one is saying that the
distributions of test results in diseased and nondiseased may differ between the subsets,
although the degree and statistical significance of any such difference may vary. Parallel
curve models ignore any differences in distributions by covariate and model shape for both

groups using the whole set of studies.

The BVN model cannot directly consider ‘shape’ in the same way as the HSROC model.
When no covariates are added, the unexplained variances in sensitivity and specificity from
the bivariate model are used to estimate the HSROC shape parameter. When a covariate is
added, the effect is specified in terms of the effect of that covariate on mean sensitivity and
mean specificity and but not on the variances of the two. As the variances are not affected, no
change in the shape parameter can be estimated. The HSROC parameters can be converted

to bivariate model parameters with or without a shape interaction with a covariate.

The differences in the accuracy, threshold and shape parameters indicate whether the
subgroups of studies by covariate have different SROC curves (difference in accuracy), are
on the same curve but at different points on the curve (difference in threshold), or on different
curves with different shapes (difference in shape), or some combination of these. For
example if there is no evidence of differences in accuracy but strong evidence of differences

in threshold, the two groups of studies are likely to be on the same curve but at different
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points on that curve. If the shape term is significant but the accuracy term not, they are likely
to be on differently shaped curves but at the same point (e.g. at or near the point where the

curves Ccross).

It is important to remember that DORs and RDORSs are estimated at a particular point on the
SROC curves. The natural model output estimates both DOR and RDOR at the Q* point,
however as previously mentioned, Q* may not be representative of the datasets in the review.
The model cutput can be used to estimate DOR at any point on the curve, for example at the
average operating point. The choice of point at which to estimate RDOR can be more
complex. For example, if the average operating points of the two groups are some distance
apart and the two curves have considerable differences in shape, the distance between the
curves could be quite different at each operating point, leading to big differences in RDOR.

This issue will be explored in Chapter 4.

2.4 Extent to which the three methods possess the characteristics of
an optimal meta-analytic method

The extent to which the three methods possess the characteristics of an optimal meta-analytic
method as listed in section 2.3.1 is discussed below. A summary of the characteristics of the

three approaches is provided in Table 6.

Table 6 Comparison of statistical methods

Method Weight Threshold Random effects | Parameterisation
correlation

M&L (eq) none (equal) Yes No DOR+ S

M&L (w) 1/var(InDOR) Yes No DOR+ S

HSROC binomial error for sens + Yes Yes DOR + threshold
spec

BVN binomial error for sens + Yes Yes sens + spec
spec

M&L (eq) — Moses and Littenberg model with equal weights, or unweighted; M&L (w) - Moses and Littenberg model
weighted by inverse variance of the log of the diagnostic odds ratio (INRDOR); sens — sensitivity; spec - specificity

1. The model should be bivariate in its parameterisation and should allow interpretation in
terms of sensitivity and specificity.
Although the Moses approach is bivariate in that it is based on two parameters (D and S), its
output can only be interpreted within a one-dimensional framework. The original formulation
of the model produces a summary ROC curve and allows that curve to have different shapes,
but it does not indicate where on that curve we are likely to be. This is because the
parameterisation between sensitivity and specificity is lost when DOR is estimated. The
method is akin to pooling a single statistic but is an improvement on straight pooling of DOR
as it allows threshold variation, or different shaped curves. The Moses model output can be
used to estimate summary point and interval estimates for sensitivity and specificity but a
value for either sensitivity or specificity must first be specified. Such values are just an
arbitrary choice of possible values and may not be representative of values in the primary

studies.
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The two advanced models are both bivariate in their parameterisations which allows the
model output to be interpreted in terms of both test accuracy (DOR) and threshold and

sensitivity and specificity.

2. The model should use appropriate weighting to allow for sampling variability

There are two main sources of uncertainty in the Moses model. The first is the variance ih D,
which the model attempts to account for, and the second is variation in ‘S’, which the model
cannot allow for (linear regression assumes no error in the explanatory variable) and must

therefore incorrectly assume to be absent.

The variance in D is allowed for by weighting by inverse variance of D (the log of the DOR).
There are two problems with this approach. Firstly, because the sensitivity/specificity
parameterisation is lost when weighting by inverse variance of D, the different levels of
uncertainty associated with the sampling variability in TPR and in FPR cannot be incorporated
(i.e. the number of diseased and nondiseased patients can considerably differ within a study
therefore leading to differences in precision between sensitivity and specificity). This can
potentially lead to inappropriate significance levels in DOR and its association with threshold.
Secondly and more fundamentally, Deeks and colleagues have shown that there are
problems with bias in the variance of D,*' especially where there are zero cells and/or very

high values of sensitivity or specificity.

The advanced methods however, appropriately account for different precision of sensitivity
and specificity within each study by preserving the sensitivity/specificity parameterisation of
the studies. The uncertainty in modelling diseased (sensitivity) and nondiseased (specificity)
is considered separately so that the uncertainty in each proportion is accounted for correctly.
Studies with more precise estimates of sensitivity and/or specificity therefore get more weight

for the estimate of that parameter.

3. The model should allow for the threshold relationship or correlation between sensitivity
and specificity
The threshold relationship can be considered at two levels. The first is to allow for threshold-
type effects, which all three methods do. The second is direct estimation of the correlation
between sensitivity and specificity, which only the advanced methods do. The Moses
approach allows DOR to vary with S, the proxy measure of threshold. Because D and S are
computed before undertaking the modelling required for the SROC curve, individual
information on sensitivity and specificity (and the degree of correlation between them) are
lost.%° Separate pooling of sensitivity and specificity does not allow for this correlation either,

but nor does it allow for any variation with threshold.
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The BVN model directly estimates the strength of the correlation between sensitivity and
specificity by assuming a bivariate normal distribution (combined distribution of two correlated
normally distributed variables) between their logit transforms. As logit sensitivity and
specificity can be estimated by linear combinations of the HSROC parameters accuracy and

threshold, the HSROC model indirectly assumes the same bivariate normal distribution.”®

4. The model should use a random effects approach, i.e. should consider both between-
study and within-study variability
The advanced model(s) properly estimate random effects and properly test for the
significance of any effects to account for variability beyond chance (heterogeneity). The BVN
model uses a random effects approach in the estimation of summary estimates of sensitivity
and specificity and their corresponding 95% confidence intervals. Logit sensitivities and
specificities from individual studies are each assumed to be approximately normally
distributed around some mean value with a certain variability around this mean estimated. >°
This takes into account the heterogeneity beyond chance between studies. The HSROC
model fits threshold and accuracy parameters as random effects, so that their average value
and variation across studies are estimated. The random effects model takes account of the
TPR and FPR pairs within studies, thereby taking account of the correlation between them.
With both approaches, the unexplained between-study variability can be either modelled with

covariates and/or be considered random due to unknown sources of variability.

The Moses approach produces a fixed effect estimate of DOR and no estimate for average
threshold or variability, but it places no restriction on threshold. It does not account for the
variability in sensitivity and specificity as the modelling is undertaken only using the log DOR
and S, the proxy measure of threshold. Any between-study variability is not directly modelled
and can only be explained by covariates — any remaining unexplained variability is not

estimated.

241 Summary
In summary, the advanced methods have several theoretical advantages over the Moses

method, making their results more statistically reliable and accurate. They provide additional
information on threshold and shape and the significance of any changes in sensitivity and
specificity, avoiding any perceived need for separate meta-analyses using both pooling and
SROC methods, which may give inconsistent results.® They also estimate the size of the
variance in all of the parameters. Furthermore, the drawing of 95% confidence ellipses around
the average operating point should enhance our understanding of the heterogeneity between

studies and the correlation within studies.
2.5 Outline of thesis and research questions to be addressed

Chapter 1 has established the extent to which there is potential for spectrum variation to

impact on the results of both primary studies and systematic reviews. As it is rare for

44



diagnostic accuracy studies to be sufficiently large in size or to recruit a sufficiently broad

. spectrum of participants to allow the influence of spectrum to be examined, systematic
reviews that include all available studies of a given test for a given disorder provide the best
means available to assess the impact from heterogeneity, notwithstanding the limitations of
the primary studies in terms of design and reporting. Until recently, our ability to investigate
sources of heterogeneity have been limited, in some cases by the ability of the methods
available, but also by their accessibility. Recent work has made the advanced methods much
less computationally demanding and therefore more accessible, and it is timely that their
ability to investigate sources of heterogeneity should be examined and compared with more

commonly used methods. These methods are explained in detail in Chapter 2.

Chapter 3 reports a methodological review of how heterogeneity has been examined in
systematic reviews of diagnostic test accuracy to date. This provides a picture of current
practice in systematic reviews and meta-analyses in terms of how often spectrum effects
have been considered in systematic reviews, whether and how they have been investigated,

and what impact if any they have had on test accuracy.

In Chapter 4, a case study of the identification of spectrum effects comparing three meta-
analytic methods is reported. A systematic review of two polymerase chain reaction (PCR)
tests for the detection of active pulmonary tuberculosis is used to demonstrate the ability of
the Moses SROC method,** the HSROC method®**®%° and the BVN model®”* to investigate
sources of heterogeneity. Conducting a systematic review from scratch allows one to become
intimately familiar with the data in the analysis, such that it is clear which data of interest were
actually provided by study authors in the original study publications and also allows fully
systematic methods to be employed throughout the review process. This particular dataset
was chosen because the two tests are both commercially produced and are fairly
standardised in terms of their application, thereby reducing one potential alternative source of
heterogeneity. The studies are also generally very large in size, were well-designed and fairly
recently published, this reduces to some extent the degree of methodological heterogeneity
introduced into the review.

Chapter 5 reports the resuits of a re-analysis of previously published systematic reviews using
both of the Moses methods and the HSROC model. The BVN model was not used as it gives
results almost identical to the HSROC model assuming paraliel curves and it cannot easily
model an interaction of covariate with curve shape as the HSROC model does. Systematic
reviews presenting contingency table data plus data on at least one spectrum-related factor
per study were analysed. In this way, it was possible to investigate whether the findings from
Chapter 4 were replicated across a large sample of datasets and also allowed a more
thorough examination of effects from spectrum-related characteristics across a range of tests

and conditions.
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Chapter 6 presents the discussion and conclusions.
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3 A methodological review of how heterogeneity has
been examined in systematic reviews of diagnostic

test accuracy

This chapter reports a methodological review of how heterogeneity has been examined in
systematic reviews of diagnostic test accuracy to date. The first part of the chapter provides a
picture of recent practice in systematic reviews and meta-analyses in terms of how often
spectrum effects have been considered, whether and how they have been investigated, and
what impact if any they have had on test accuracy. The second part of the chapter looks at
the same questions for reviews using the advanced methods of meta-analysis that have been

published over the last four years.

3.1 Methods

3.1.1 Eligibility criteria

To be included, reviews must have evaluated a diagnostic or screening test by including
studies that compared a test {o a reference test with the aim of establishing test accuracy.

Studies were assessed for inclusion by one reviewer.

3.1.2 Literature search

The Centre for Reviews and Dissemination’s Database of Abstracts of Reviews of Effects
(DARE) was used to identify existing systematic reviews of diagnostic studies. This is a
database of quality assessed systematic reviews identified by hand searching key major
medical journals, regular searching of bibliographic databases and by scanning grey literature
since 1994°,

Diagnostic reviews indexed on DARE up to April 2001 had already been screened to identify
diagnostic reviews for a previous project’’ and were automatically included. Reviews indexed
between April 2001 and December 2002 were also screened for inclusion. Only the reviews
for which structured abstracts had been written were considered eligible. Due to the
considerable time lag in loading reviews onto DARE at the time of the search, additional high
quality systematic reviews not yet indexed on DARE but meeting the inclusion criteria were
included. These were identified from sources such as the INAHTA and MEDION' databases.
Nineteen of the 32 reviews identified from these two databases have since been added to the
DARE database.

® further details about DARE can be found at http://agatha.york.ac.uk/darehp.htm
"INAHTA is the International Network of Agencies of Health Technology Assessment and MEDION is a database of
diagnostic systematic reviews updated by a group of Dutch and Belgian researchers.
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None of the reviews identified from the searches described above were found to have used
the advanced methods of meta-analysis. As a considerable time interval had passed since
these searches and as reviews using the advanced methods were known to have been
published in more recent years, additional citation searches of the Science Citation Index and
Social Science Citation Index were conducted in November 2007 to identify any systematic
reviews that had used the advanced methods of meta-analysis. This was carried out to allow
the examination of how these reviews dealt with issues of heterogeneity and spectrum in
comparison to the previously identified set of reviews. Reviews identified from these searches

were analysed subsequently to and separately from the main dataset.

3.1.3 Data extraction

A data extraction form for recording relevant information from each systematic review was
designed and piloted. Data were extracted on a variety of items including:
- the experimental test, reference tests and condition tested for;
- the review methodology including the literature search and approach to quality
assessment;
- review synthesis methods and approach to statistically identifying heterogeneity
in study results
- methods of exploration of variability in study results and variables investigated.
The full systematic reviews were pre-screened independently by two reviewers. Those
meeting the inclusion criterion were data extracted by one reviewer and the completed data
extraction forms checked against the full paper by a second reviewer. Any disagreements

were resolved by consensus or by referral to a third reviewer if necessary.

3.1.4 Data synthesis

A narrative synthesis is presented. The reviews are considered primarily in terms of the
statistical methods used, and the results section is structured to reflect the steps involved in
the synthesis of diagnostic test accuracy studies, i.e.

¢ identification of heterogeneity

¢ meta-analysis

e investigation of sources of heterogeneity.
Particular focus is given to the extent to which spectrum effects or bias are considered, both
as part of quality assessment and spectrum-related characteristics investigated in subgroup
or regression analyses. The frequency of investigation of spectrum-related variables as
sources of heterogeneity in relation to test or quality-related variables is quantified as is the

frequency of reporting of statistically significant effects.
The reviews are considered in two parts: first of all looking at the main sample of reviews

identified from the initial searches; and secondly looking at the reviews that used the

advanced methods of meta-analysis.
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Figure 10 Flowchart of review inclusion process
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3.2 Results — Reviews using established methods of meta-

analysis

3.2.1 Summary of reviews identified

Of 312 systematic reviews identified from the DARE searches, 189 met the inclusion criteria
and were included in the review. Figure 10 provides a flowchart of the review selection
process. Summary details of the 189 included reviews, according to whether they used a
narrative (n=56, 30%) or a statistical method of synthesis (n=133, 70%), are provided in Table

7 to Table 11; fuller details of the reviews are available elsewhere.”

3.2.2 Description of review methods

The reviews cover a wide range of target disorders and test types, from the low technology of
clinical examination for the detection of diseases such as left sided heart failure,* deep vein
thrombosis® or carpal tunnel syndrome®* at one end to highly equipment intensive tests such

85-87

as nucleic acid amplification tests for detecting infection, or positron emission

tomography for the detection of cancer or Alzheimer's disease.®®

Just over half (52%) of all reviews included searched only one electronic database (Medline)
to identify primary studies (Table 7). This was less often the case for narrative reviews (38%)
compared to those using statistical syntheses (569%). 59% of reviews used language

restrictions in their searches; in 84% of these this was to restrict studies to English language
only. Only 14% (27/188) of reviews applied no language restrictions. These proportions were

similar regardiess of whether the reviews carried out narrative or statistical syntheses.

Half of reviews applied inclusion criteria to restrict studies to those of a higher standard on at
least one quality criterion. Most commonly this was to ensure that studies had compared the
index test to an appropriate reference standard (86% of meta-analyses and 48% of narrative
reviews applying quality-related criteria). The next most commonly used criteria were to
ensure blinding had been used (19%), to include only prospective studies (16%) and to
ensure verification bias had been avoided (15%). Restriction to higher quality studies was
more common in meta-analyses than in narrative reviews and meta-analyses were more

likely to apply more than one quality-related criterion.

Quality assessment of included primary studies was reported o have been carried out in 69%
of reviews (Table 7), with most (88/131) using a quality assessment tool apparently
developed by the authors themselves (only 43 reported using a previously published tool). An
analysis of the way in which these reviews considered spectrum-related factors as part of
their quality assessment is provided below; a further detailed analysis of all of the items

included in a sample of these quality assessment tools is provided by Whiting and
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colleagues.?’ A further three reviews carried out a classification of evidence such as that

outlined by the US Preventive Services Task Force.®

Table 7 Summary of reviews found

TOTAL Statistical Narrative
n (%) synthesis synthesis
n (%) n (%)
Total no. of reviews 189 133 (70%) 56 (30%)
Review methods
Medline only efectronic 99 (52%) 78 (59%) 21 (38%)
source
No. using language Restricted 111 (59%) 78 (59%) 33 (59%)
restriction English only 94 (84%) 63 (80%) 31 (94%)
No restriction 27 (14%) 20 (15%) 7 (13%)
Not stated 51 (27%) 35 (26%) 16 (29%)
No. using quality Restricted 94 (50%) 69 (52%) 25 (45%)
restrictions Appropriate reference test 71 (76%) 59 (86%) 12 (48%)
Blinding used 18 (19%) 16 (23%) 2 (8%)
Prospective only 15 (16%) 9 (13%) 6 (24%)
Avoids verification bias 14 (15%) 12 (17%) 2 (8%)
Adequate sample descrip 9 (10%) 5(7%) 4 (16%)
Consecutive enrolment 8 (9%) 8 (12%) 0
Adequate test descrip 2 (2%) 2 (3%) 0
Complete follow-up 2(2%) 2 (3%) 0
No restriction 95 (50%) 64 (48%) 31 (54%)
No. using quality Not conducted 58 (31%) 40 (30%) 18 (32%)
assessment Conducted 131 (69%) 93 (70%) 38 (68%)
Authors' own 88 (67%) 68 (73%) 20 (53%)
Existing tool 43 (33%) 25 (27%) 18 (47%)
Median (IQR) no. of 18 (IQR 20) 22 (IQR 20) 11 (IQR 13)
studies No. studies not reported 7 (4%) reviews 3 (2%} 4 (7%)
Median (IQR) no. of 3,161 (IQR 4,007 (IQR 1,726 (IQR 3619)
patients No. patients not reported 6,815) 7,553) 24 (43%)
68 (36%) reviews 34 (26%)

IQR — inter-quartile range

The median number of studies included in the reviews was 18. Meta-analyses have a higher
number with a median of 22 studies compared to 11 for narrative reviews. The number of
patients included in the studies was not clearly reported in 36% of all reviews; less so for

narrative reviews (not reported in 43%).

Consideration of spectrum-related items in quality assessment

Of the 131 reviews carrying out quality assessment, 51% (n=67) considered patient spectrum
in some way. Appendix 7 provides a full description of the items per review. A summary of the

items related to spectrum are described in Table 8.

Just over a third of reviews (37%; 48/131) required a judgement regarding the
appropriateness of the spectrum of patients included in the study; most asked whether the
spectrum had been appropriate or whether the patients included were representative of those
to whom the test would be applied in practice. 16 of the 48 reviews in this group (33%) also
specifically mentioned the nondiseased as well as the diseased group. Seven reviews asked
whether both diseased and nondiseased patients were included and one wanted ‘a

continuous spectrum of patients that included normal patients’,90

but seven required that
control groups should include patients with disorders ‘commonly confused’ with the target

disorder or with ‘signs suggestive’ of the target disorder.
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Table 8. Breakdown of quality assessment items related to patient spectrum

Quality assessment (QA) items related to: No. (%) of reviews
conducting QA

(n=131)

‘Appropriateness’ of patient spectrum 48 (37%)
(with specific mention of the nondiseased group) 16 (33%)

Spectrum or sample described 30 (23%)
Study setting described 23 (18%)
Participant sampling described 14 (11%)
Analysis of pertinent subgroups 4 (3%)
Spectrum-related items not included in quality 64 (49%)
assessment

Thirty reviews (23%; 30/131) asked whether a description of patients characteristics had been
provided by the study authors and 23 (18%) were interested in the setting in which the study
had been undertaken. Participant sampling was considered in 11% (14/131) of reviews and

analysis of pertinent patient subgroups in only 3% (n=4).

3.2.3 Description of statistical methods used

Summary details of the statistical methods used in the reviews are presented in Table 9.

3.2.4 Identification of heterogeneity

Heterogeneity is best identified by visual comparison of study results on a graphical plot.
Statistical tests to identify heterogeneity and threshold effects are available, however these
lack power. A reasonable recommendation is to assume that heterogeneity and threshold
effects are present, and that it therefore does not make sense to test for their presence.

Instead, random effects models that allow for these features should be employed.

Graphical plots to identify heterogeneity

Over half (75/133, 56%) of meta-analyses used graphical plots to demonstrate the spread in
study results. In 79% (59/75) of cases study results were plotted in ROC space, 13 reviews

plotted sensitivity and/or specificity on forest plots and three reviews used ‘D vs. S’ plots.

Only two of the 56 reviews using a narrative synthesis presented study results graphically, all

using ROC plots.

Statistical tests to identify heterogeneity

Statistical tests to identify heterogeneity were used in 60 of 189 (32%) of reviews (Table 9).

Of the 133 reviews using statistical syntheses, 55 (41%) used statistical tests to identify
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heterogeneity, 34 using the Chi square test and 7 Fisher's exact test. A further five meta-

analyses made a narrative statement regarding the presence of heterogeneity. Fewer meta-

analyses (16%; 21/133) used correlation coefficients to test for a threshold effect, most (14)

choosing the Spearman correlation coefficient.

Table 9 Summary of statistical methods used

TOTAL Statistical Narrative
n (%) synthesis synthesis
n (%) n (%)
Total no. of reviews 189 133 (70%) 56 (30%)
Statistical methods
used
Test for heterogeneity 60 (32%) 56 (42%) 4 (7%)
reported Chi 36 (60%) 34 (61%) 2 (50%)
Fisher 7 (12%) 6 (11%) 1(25%)
Breslow-Day 5(8%) 4 (7%) 1(25%)
Q statistic (ORs) 3 (5%) 3(5%) 0
Kardaun-Kardaun 1(2%) 1(2%) 0
observed v predicted values 6 (10%) 5 (8%) 1(25%)
miscellaneous tests® 5 (8%) 5 (7%) 0
test used but not reported 8 (13%) 8 (14%) 0
Test result Statistically significant 47 (78%) 44 (79%) 3(75%)
Not significant 10 (17%) 10 (18%) 0
Not reported 4 (7%) 3 (5%) 1{25%)
Correlation test for 21 (11%) 21 (16%) 0
threshold effects Spearman correlation 14 (67%)
Pearson correlation 3 (14%)
Kardaun-Kardaun 1(5%)
test used but not reported 2 (10%)
Correlation test result Significant correlation 14 (67%)
No correlation 6 (29%)
Not reported 1(5%)
Study results plotted 77 (41%) 75 (56%) 2 (4%)
graphically ROC plot 57 (74%) 59 (79%) 2 (100%)
forest Se and/or Sp 12 (16%) 12 (16%) 0
forest DOR or log DOR 1(1%) 1(1%) 0
D vs S plot 3 (4%) 3 (4%) 0
miscellaneous plots” 12%) | 9 (12%) 0
Type of synthesis Narrative 0 56 (100%)
used “Pooling methods 109 (82%)
Sensitivity/Specificity 97 (84%) na
LRs ( 4%) na
PVs (10%) na
DOR 10 (9%)
Effectiveness score 8 (7%)
Accuracy 5 (5%)
AUC 3 (3%)
SROC: 64 (48%)
Weighting not specified 27 (42%) na
Unweighted 13 (20%) na
Inverse variance weighted 11 (17%)
Sample size weighted 6 (9%) na
Variance weighted 1(2%) na
‘Weighted’ 7 (11%) na
Robust resistant regression 2 (3%) na
Estimated from DOR or ES 3(5%)
Data presentation:
DOR 4 (6%)
AUC 10 (16%)
SROC parameters 7 (11%)
Q* 18° (28%)
Se or Sp at fixed Sp or Se 20 (31%)
SROC curve only presented 10 (16%)
Comparison of 2 2 curves 4 (6%)
Other methods* 2 (3%)
Paired data considered Yes 12 (9%)
separately (meta- No 42 (32%)
analyses only) No paired data (or can’ tell) 79 (59%)
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TOTAL Statistical Narrative
n (%) synthesis synthesis
n(%) n (%)

Method of Not done 17 (9%) 10 (8%) 7 (13%)

investigating Narrative 68 (36%) 19 (14%) 49 (87%)
heterogeneity Subgroup 74 (39%) 74 (56%) na
Regression 45 (24%) 45 (34%) na
Method not described 2 (1%) 2 (2%) na

ROC - receiver operator characteristic; Se — sensitivity; Sp — specificity; DOR — diagnostic odds ratio; LR - likelihood
ratio; PV — predictive value; AUC — area under the curve; ES — effect size;

# including effectiveness score (2 studies); comparison of fixed vs. random effects results (1 study); 'covariate
adjustment’ (1 study); and goodness of fit test (1 study).

® including: funnel plots using ES (1 study) or log DOR (1 study); scatterplots of AUC (1 study), LR (1 study) or Se (1
study) per study; Se (1 study) or NPV (1 study) plotted against prevalence; Se and Sp as function of prevalence (1
study); and Se/Sp plotted against sample size (1 study).

®including: fraction positive (1 study); correlation coefficient (1 study), Youden index (1 study), odds of false-negative
on index vs reference test (1 study)

¢ Including: ratio of ORs (1 study); estimation of LR, method not reported (1 study)

® in two reviews LR was estimated from Q*

Five of the reviews using a narrative synthesis used statistical tests to identify heterogeneity
(Table 9), four of which reported that statistically significant heterogeneity was found. A
further four reviews specifically stated that the studies were too heterogeneous to be pooled,

though no formal evidence for this was provided.

Identification of heterogeneity according to type of synthesis used

Of the 133 (70%) reviews in which meta-analysis was performed, 52% (n=69) carried out
statistical pooling alone, 18% (24) conducted only SROC analyses, and 30% (40) used both
methods of statistical synthesis (Table 10). None of the included reviews used the more
advanced methods of meta-analysis outlined in Chapter 2 above, i.e. the BVN model and the
HSROC model. Although 57% (76/133) of meta-analyses presented study results graphically,
these were primarily reviews that had used SROC regression models: only 19/69 (28%) using
statistical pooling alone presented results graphically.

Table 10 Statistical tests and graphical approaches used according to method of
synthesis

Statistical

Narrative Statistical syntheses by method of synthesis used
syntheses syntheses
Type of synthesis 56 133 Pooling only Pooling and SROC only
(30%) (70%) 69 (52%) SROC 24 (18%)
40 (30%)
Graphical presentation of 2 (4%) 76 (57%) 19 (28%) 35 (87%) 22 (92%)
results

Many meta-analyses using SROC methods stated that these methods allow for the presence

of a threshold effect (37/64), so presumably did not see the need to specifically test for

threshold effects.
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3.2.5 Type of syntheses used

Narrative syntheses of data

A narrative synthesis was used in 56 (30%) of reviews. In eight reviews the authors indicated
that this was due to the presence of between-study heterogeneity, but the remainder did not

state whether they had considered using statistical approaches to study synthesis.

Meta-analyses of sensitivities and specificities, predictive values and likelihood

ratios

Of the 109 reviews that pooled accuracy indices, 87% pooled sensitivity and/or specificity,
23% pooled likelihood ratios and 10% pooled predictive values. A further 5% of reviews
pooled test ‘accuracy’, which is the percentage of diagnoses that were correct (i.e. number

true positive plus number true negative as a proportion of all test results).

Pooled single summaries of test performance

Single summaries of test performance, estimated by pooling results from individual studies or
by logistic regression methods (akin to fixed effects pooling) were carried out in only a handful
of studies: 9% (10/109) pooled diagnostic odds ratios; 7% (8/109) pooled the ‘effectiveness
score’ (akin to the DOR), and 3% (5/109) pooled area under the curve data from individual

studies.

Single summaries of test performance using SROC regression models

For those reviews presenting SROC curves, all except four used regression models such as
that described by Moses and colleagues®™ to create the curves. Three of the exceptions
estimated SROC curves from the pooled DORs or effectiveness scores and the other did not
describe the method used. For the remainder, the main differences between the models used
are the weights chosen for the regression model. In 42% of cases (27/64) the use of, or
choice of, weight was not provided by the review authors (Table 9). In 13 reviews (20%) the
models were unweighted; in 17% inverse variance weights were used; and in 9% sample size

weights were used. In a further 11% (6/64) models were simply described as 'weighted’.

As discussed in section 2.3.2, SROC curves can be interpreted in several ways. The methods
most commonly used were those that converted certain points of the SROC curve to
sensitivity and specificity pairs (Table 9): the Q* (maximum joint sensitivity and specificity)
was presented in 28% (18/64) of reviews, sensitivity and specificity pairs were read’ from the
SROC curves in 31% (20/64) of reviews, e.g. sensitivity at mean specificity or 95% specificity,
or sensitivity and specificity at mean threshold. Ten reviews (16%; 10/64) chose to provide
area under the curve (AUC) data and only four (6%; 4/64) interpreted the SROC curve as a
DOR. The underlying SROC model parameters were provided by 11% (7/64) of reviews, 16%
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(10/64) presented the SROC curve only with no summary statistics and 6% (4/64) compared

two or more curves for different tests.

Type of statistical synthesis according to publication year

Figure 11 shows the proportion of reviews using each method of synthesis according to
publication year for reviews published between 1995 and 2001 (insufficient numbers of
reviews were available for other years). The proportion of reviews using statistical pooling
alone has slightly declined over that time period (from 67% in 1995 to 42% in 2001, with a
corresponding increase in the use of SROC methods (from 33% of all reviews in 1995 to 58%
in 2001). However, two thirds of those using SROC methods have also carried out statistical
pooling rather than presenting only SROC models (42/64). The tendency to carry out both

methods in the same review has on the whole increased over time.

Figure 11 Type of meta-analytic method used by publication year

70% =

60% 1-|1

50% '

| [IEE=

| | @ Pooling alone (n=69)
@ Both metheds (n=42)

| |0 SROC alone (n=22)

|

40%

30% A

20%

Percentage of reviews per year

10% -

0%

1995 1996 1997 1998 1999 2000 2001
(n=9)  (n=15) (n=13) (n=18) (n=18) (n=22) (n=26)

Publication year

Data presentation according to type of syntheses used

Given the difficulties in the clinical application of SROC curves it was hypothesised that where
SROC analysis alone was used, reviews would be more likely to present the SROC results as
some combination of sensitivity and specificity rather than using alternative means of data

presentation.

Figure 12 shows a breakdown of methods of presenting SROC analyses according to
whether or not statistical pooling was also performed. When only SROC analysis was carried
out, reviews were more likely to report the results as pairs of sensitivity and specificity data
(45% compared to 24% of reviews that also conducted pooling), providing some support for
this hypothesis. It is not clear whether these sensitivity and specificity pairs were in fact ‘read’
from the SROC curve or were actually estimated by some form of averaging. It seems
possible that the point estimates reported were computed by pooling sensitivities and
specificities and may not have been points on the ROC curve. When both pooling and SROC
analysis were reported to have been carried out (i.e. where the pooled estimates were clearly

presented), reviewers were more likely to present area under the curve data, less likely to
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present DORs and more likely to simply present the curves themselves with no further

interpretation.

Figure 12 Means of presenting results of SROC analyses (n=64)
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Consideration of ‘paired’ data

Although a number of reviews evaluated more than one test, only 54 of the 133 meta-
analyses (41%) included primary studies that had evaluated more than one test against a
reference standard, and in only 12 of the 54 reviews did the reviewers attempt to deal with the

fact that they had ‘paired’ data, e.g. by analysing the data from those reviews separately.

3.2.6 Investigation of sources of heterogeneity

Methods of investigating heterogeneity

Of the 56 narrative reviews, 49 (87%) carried out a narrative review of factors that might
cause variation in the results of the primary studies and seven did not really appear to deal

with the question of heterogeneity at all.

Of the 133 meta-analyses, 29 (24%) provided either a narrative discussion of factors affecting
heterogeneity (19) or did not consider heterogeneity at all (10). The remaining 102 attempted
to statistically investigate possible sources of variation: 74 (56%) using subgroup analysis and
45 (34%) using some form of regression analysis. Regression analyses were usually
undertaken by extending the SROC regression model, though 10 reviews reported using
logistic regression models and one used meta-regression. A further two did not report the
method they had used. For those reviews using subgroup analyses, although several

reported P-values for the differences between groups very few reported the test used to
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detect any statistically significant difference: seven reviews reported using a t-test or Mann-
Whitney U test to compare subgroups, two used the chi-square test and three the Wilcoxon

test (paired or unpaired).

Figure 13 Number of variables investigated per review
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Table 11 provides a summary of the number and breakdown of variables investigated by the
102 reviews that statistically investigated possible causes of heterogeneity. The median
number of variables investigated in these reviews was four, ranging from one in 20% of
reviews to over six in 27% of reviews (Table 11). In general, a large number of variables were
investigated in these analyses in comparison to the number of studies included in the review.
The ratio of median number of variables to median number of studies was one to six. Only
38% of reviews complied with the typical recommendation to have at least 10 studies for

every characteristic investigated.

Test and quality-related variables investigated

At least one quality-related variable was investigated in 63% (64/102) of reviews (Table 11).
Within this subset of 64 reviews, the most commonly considered variables were use of
blinding (41% of reviews; 26/64), sample size (33%; 21/64), the reference test used (28%;
18/64) and the avoidance of verification bias (25%; 16/64). The inclusion of an appropriate
spectrum of patients and impact of study design chosen were among the variables
considered in a small minority of reviews, 9% and 5% respectively. Around a third of reviews
(36%) tried to look at the overall effect of study quality on accuracy, for example by classifying

studies as low, medium or high quality or by using the quality score to subdivide studies.

Test- or threshold-related variables were examined by 79% (81/102) of the reviews (Table
11). Most (69%; 56/81) considered items related to variations in the test used, for example by
looking at the effect of variations in the field strength used in MR, or in the level of expertise
of the person interpreting the test. 38% (31/81) of reviews considered threshold by

subdividing studies according to threshold used. Publication year, which could be a proxy for
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changes in a test over time or changes in the patient population tested, was considered
important by 36% (29/81) of reviews.

Spectrum-related variables investigated

The impact of clinical or socio-demographic variables were investigated in 68% (69/102) of
reviews that investigated sources of heterogeneity, a summary of which is provided in Table
12.

The spectrum-related variables considered were broadly grouped into eight main categories.
The mean number of categories covered by the reviews was 1.8 (range 1-6). The clinical
indication or eligibility of patients was considered in 28% (19/69) of reviews that looked at

spectrum-related factors.

Table 11 Statistical investigations of heterogeneity (n=102)

N (%) of reviews
Median no. of variables considered (IQR) 4 (IQR 4)
% considering only 1 variable 20 (20%)
% considering 2 to 5 variables 55 (54%)
% considering > 6 variables 28 (27%)
Ratio of median no. variables investigated to median no. studies 1:6
included
Reviews with ratio < 1:10 63 (62%)
Categories Variables investigated:
Quality-related variables Not investigated 38 (37%)
Investigated 64 (63%)
Blinding 26 (41%)
Sample size 21 (33%)
Ref test used 18 (28%)
Verification bias 16 (25%)
Consecutive enrol 12 (19%)
Prosp/retrospective 9 (14%)
Spectrum 6 (9%)
Disease prog bias 4 (6%)
Sample description 3(5%)
Cohort/case-control design 3 (5%)
Other items 9 (14%)
Quality ‘rating'/score 23 (36%)
Test- or threshold-related Not investigated 21 (21%)
variables Investigated 81 (79%)
Test 56 (69%)
Threshold 31 (38%)
Publication year 29 (36%)
Clinical or socio-demographic Not investigated 33 (32%)
variables Investigated 69 (68%)

IQR - interquartile range

For example, in a review of ultrasonography for detecting peripheral arterial disease, de
vries” and colleagues examined whether clinical indications for testing included peripheral
arterial disease only or whether other diagnoses were considered as well. Oosterhuis and
colleagues92 in a review of mean corpuscular volume for vitamin B12 deficiency also grouped
studies according to clinical indication, i.e. whether patients were in a screening setting, had
the test ordered to exclude B12 deficiency as part of treatment, and whether patients were
considered to have pernicious anaemia. Other reviews looked at particular elements of the

clinical indication. For example De Bruyn and colleagues® and De Bernardinis and
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col|eagues94 examined whether the presumed underlying causes of the target disorder

(cirrhosis™ and acute pancreatitis® respectively) affected test accuracy.

In a review of exercise tests for detecting coronary artery disease in women, Kwok and
colleagues® examined whether exclusion of patients with history of myocardial infraction,
baseline ECG abnormalities, or taking digoxin explained heterogeneity. Berry and
colleagues® examined whether the inclusion of asymptomatic patients affected the accuracy
of spiral and electron beam CT for the detection of hepatic lesions, pulmonary embolus or
CAD, and Leitich and colleagues97 examined the impact of including multifetal gestations on

the accuracy of cervicovaginal fetal fibronectin for predicting preterm delivery.

Fifteen (22%) of the 69 reviews examined studies according to the symptom status (usually
asymptomatic or not) or risk status of participants, for example references 8797102 A further
15% (n=10) considered disease severity or stage, such as in references """ Over a

guarter of reviews examined specific demographic characteristics such as age (26%; 18/69)

for example references "% or sex (13%; 9/69), for example reviews 84.95.113.14

Table 12 Summary of spectrum-related heterogeneity investigations

Number (%) of reviews
(n=69)

Category of spectrum-related Clinical indication/eligibility 19 (28%)
variable Symptoms/risk status 15 (22%)
Disease severity/stage 10 (15%)
Age 18 (26%)
Sex 9 (13%)
Prevalence 21 (29%)
Setting/source of pts 20 (29%)
Sampling/study design 7 (10%)

Mean no. of spectrum-related categories investigated 1.8 (range 1-6)
Results clearly presented? Yes 33 (48%)
Partially 21 (30%)
No 14 (20%)
Significant effect identified Spectrum Yes 41 (59%)
from No 28 (41%)
Test Yes 20 (29%)
No 31 (45%)
not investigated 18 (26%)
Quality Yes 17 (25%)
No 30 (43%)
not investigated 22 (32%)

Prevalence was investigated as a source of heterogeneity in 29% (21/69) of reviews and 29%
(20/69) also considered the setting or source of participants as a variable. In some reviews,
for example Peters and colleagues,'*® Berger and colleagues, ' or Hoffman and

colleagues,'™®

these compared accuracy in patients from a general or screening population to
a referred population, while in others variation in the geographical setting was considered,
such as the reviews by Kinkel and colleagues,’"” Loy and colleagues,® or Visser and
colleagues.'™ In seven reviews, the method of sampling (consecutive or random versus

other) or study design (case-control vs case series) were also considered. Although these
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were included as quality-related features they have also been included here as they can

impact on the spectrum of included subjects.

3.2.7 Result of heterogeneity investigations (for reviews that
examined spectrum-related factors)
This section considers only those reviews that examined spectrum-related factors (n=69).

The results of the heterogeneity investigations were clearly presented in just under half of this
subgroup of reviews (48%; 33/69) (Table 12). In a further 30% (21/69), results were partially
presented. In many cases, only results for those variables having a statistically significant
impact were presented in detail; the other variables were described as having no significant
impact, for example references #%1°%"13120 | other reviews, only the P-values for the
differences between subgroup were given and the full regression results or pooled accuracy

in subgroups were not provided, for example in references '

. In the remaining 14
reviews (20%) the results of the heterogeneity investigations were not presented in detail but
were discussed narratively, usually by listing which variables did and did not have a

significant impact on results.

Of the sample of reviews that considered spectrum-related variables in their heterogeneity
investigations, 59% (41/69) found these variables to have a significant impact on test
accuracy (Table 12), this is in comparison to 29% (n=20) that found an effect from test-related
variables and 25% (n=17) that detected an effect from quality-related variables. Six reviews
included ‘avoidance of spectrum bias’ as an item in their quality assessment of studies and
examined the effect of meeting this criterion on accuracy; five reviews reported a non-

113,116,1
90,96,113,116,122 and 0ne123

significant effect did not report the result.

Fourteen reviews reported both their results in detail and looked at spectrum-, test- and
quality-related covariates.?%98109114.118123129 (3¢ 4hase eight (57%; 8/14) found a statistically
significant impact from spectrum-related factors, eight (57%) from test-related and six (43%)
from quality-related covariates. These reviews used a variety of methods to investigate
heterogeneity including looking at pooled sensitivity, specificity, log DORs and effect sizes in

subgroups and adding covariates to SROC regression models.

3.3 Results - Reviews using advanced methods of meta-
analysis

As no reviews using advanced methods of meta-analysis were identified from the original

searches for this chapter, subsequent searches were undertaken to identify more recently

published reviews known to have used these methods. These were examined according to

whether spectrum effects were considered, how they were investigated, and what impact if

any they have had on model parameters.
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3.3.1 Summary of reviews identified

The citation searches identified 27 potential systematic reviews using the advanced methods
of meta-analysis. 10 of these were excluded as they did not use the advanced methods and

the copies of four could not be obtained in time.

Thirteen reviews using advanced methods of meta-analysis were identified. A summary of the
reviews is provided in Table 13 and Table 14 and details of review methods, analysis

methods and results are given in Appendix 6 to Appendix 8.

3.3.2 Review methods

The reviews predominantly examined the accuracy of imaging tests such as ultrasound, CT,

MRI and PET-scanning (10 reviews). Other tests evaluated were cytology or biochemical

markers.?*"*%"*" The most commonly investigated topic was the diagnosis or staging of

various forms of cancer (5 reviews).

80,132-135

Table 13 Summary of reviews using advanced methods

TOTAL
n (%)
Total no. of reviews 13
Review methods
Medline only electronic source 1(8%)
No. using language restriction Restricted 5(38%)
English only 1(8%)
No restriction 8 (62%)
Not stated 0 (0%)
No. using quality restrictions Restricted 0 (0%)
No. using quality assessment Not conducted 0 (0%)
Conducted 13 (100%)
Authors’ own 7 (62%)
Existing tool 6 (38%)
QUADAS™® 5 (38%)
Synthesis method used
BVN 10 (77%)
HSROC 3 (23%)
Heterogeneity investigation Not conducted due to insufficient
studies 4
Univariate analyses 9
Multivariable model developed 6

QUADAS - Quality of Diagnostic Accuracy Studies tool; BVN — bivariate normal model

model

; HSROC; hierarchical SROC

Only one review (8%) relied on a single electronic database (Medline) to identify primary
studies (Table 13) compared to 59% (78/133) of the meta-analyses in the main ‘DARE

sample’ . Language restrictions were used in 5 (38%) reviews compared to 59% of the main

sample. Only 1 (8%) restricted studies to English language only compared to 47% (63/133) in

the main sample.
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Table 14 Summary of heterogeneity investigations

Study Param Type of characteristics investigated No. No. Detail of spectrum-related factors investigated
eters invest- significant
. Spectrum Design | Test igations results
Bipat, Se,Sp 0 6 o° 48 None None
2003"2
Bipat, Se,Sp 0 7 o° 77 None None
2004™%
Bipat, Se,Sp 1 9 o° 60 12 (20%) Outcome - Diagnosis
2005 Adequate description of patients Helical CT — sufficient description of patient popl (sens P<0.05 and
spec P<0.01)
MRI - sufficient description of patient popl (sens P<0.01)
US — sufficient description of patient popl (sens P<0.01 and spec
P<0.01)
Bipat, Se 1 8 o° 36 Per patient Per lesion
2005a" Adequate description of patients 4 (8%) MRI (1.0T) spectrum of patients was representative of patients in
Per lesion practice (regression coefficient P<.001)
6
Glas, Se,Sp 5 6 1 66 8 (12%) Sensitivity and specificity not correlated with spectrum-related
2003% Adequate description of patients variables (data not shown). Correlations with cohort versus case-
Type of controls control designs were observed, however.
BCG therapy
% haematuria
Tumour differentiation
Koelemay, Se,Sp 0 5 1 12 1 (8%)
2004
Shaheen, InDOR 4 4 1 18 3 (17%) APRI accuracy for detecting significant fibrosis not affected by
2007™ median age patient-related factors:
Y%men Age of study population (P=0.1), sex (P=0.98), prevalence of
inclusion of HIV/HCV co-infected patients significant fibrosis (P=0.46), inclusion of HIV/HCV co-infected
prevalence of significant fibrosis/cirrhosis patients (P=0.60)
For detection of cirrhosis, APRI accuracy was greater in studies
containing higher proportion of men (P=0.001), younger participants
(P=0.04), and HIV/HCV co-infected patients (P=0.03). The other
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Study Param Type of characteristics investigated No. No. Detail of spectrum-related factors investigated
eters invest- significant
. /N a 1u.C
covariates were not significant (data not given).

Whitip3 , o, 0 0 1 1 (100%)
2006
Williams, a, 0, B 7 72 2 (3%) Population characteristics had no significant effect on test
2007"° Severity of renal artery stenosis

Hypertension and other features

Hypertension with or without chronic renal failure
Hypertension moderate or unspecified
Hypertension and peripheral vascular disease

Transplant recipient

Peripheral vascular disease

performance (data not shown)

Se - sensitivity; Sp — specificity; INDOR - natural log of the DOR; a - accuracy parameter; 8 - threshold parameter, B - shape parameter

? number of covariates x number of tests x number of outcomes
® separate subgroup assessment according to test characteristics

¢ listed if spectrum-related




None of the included reviews applied inclusion criteria to restrict studies to those of a higher
quality standard, although one'® did restrict most of their analyses to cohort studies only.
Quality assessment was conducted in all of the thirteen reviews: five used the QUADAS tool
or a modification of it, one used a list published by the Cochrane Methods Group on
Diagnostic tests and seven did not state a source for the tool. 70% (93/133) of meta-analyses
in the main sample used some form of quality assessment.

133

The number of studies included ranged from 8" to 90,"* the latter including 299 datasets.

3.3.3 Statistical methods
Ten reviews employed the BVN model for their analyses and three the HSROC model (Table
14). Seven of the reviews using the BVN method included authors based in the Academic

80,132-135,137,138

Medical Centre at the University of Amsterdam, reflecting the fact that the

adaptation of the BVN method to make it more ‘user friendly’ was also carried out there.”®
Twelve of the thirteen reviews presented forest plots of sensitivity and/or specificity’*234137.14!
or of DOR™ or ROC plots of individual studies®®'313":133.137-140.142 4y yemonstrate the
presence of heterogeneity. Only the review by van Westreenen and colleagues135 did not
provide any graphical presentation of data. 56% of the DARE sample presented data

graphically.

Investigation of sources of heterogeneity was carried out in 9 reviews. The remaining four
recognised the presence of heterogeneity in their reviews but did not consider that they had
sufficient studies to investigate the causes.'""**11142 The characteristics investigated were
generally affected by the guality of reporting in the primary studies. Most reviewers were

unable to carry out all of their planned investigations.

3.3.4 Result of heterogeneity investigations

All nine reviews conducted univariate analyses to determine the variables that individually had
a significant effect on results, usually to P<0.10. Six reviews went on to develop multivariabie

models including characteristics that individually had a significant effect on test accuracy.®*'*

134,137,138

Of the seven studies employing the BVN model that also investigated sources of
heterogeneity, five examined the effect of the variables on sensitivity and specificity, one
considered effects on sensitivity only, and another'® did not appear to investigate
heterogeneity within BVN model framework (Table 14). Shaheen and colleagues130 used a
random effects meta-regression model to examine the effect of the covariates on the natural

log of the DOR. Of the two reviews using the HSROC framework that also investigated
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sources of heterogeneity, one assumed no interaction of covariate with curve shape and

139

therefore examined the effect of on accuracy and threshold only ™ and the second examined

effects on the accuracy, threshold and shape parameters.140

Most reviews focused on the investigation of study design and analysis related characteristics
(Table 14). Five reviews included spectrum-related variables. In two cases this was confined
to a determination of the adequacy of the description of patients. Statistically significant
results were obtained for less than 20% of investigations. Of the five reviews investigating
spectrum-related characteristics, three® "**"¥ found significant effects (Table 14). In two of
these the factors investigated were quality related, in one review whether the studies gave a
sufficient description of the patient population'* and in the other, whether the spectrum of
patients was representative of patients in prac’tice.137 For the review by Shaheen and
colleagues,™ the heterogeneity investigations do not appear to have been undertaken within
the BVN model framework, but a separate random effects regression model to examine the

effect of covariates on InDOR developed.

3.4 Discussion

Due to the timing of the literature seaches undertaken for this chapter, the main focus of it is
on reviews published up to 2002, however as there are currently only a small number of
published reviews using advanced methods the findings from the main sample of reviews are

likely to apply to most reviews published to date.

Spectrum-related issues
Overall, spectrum-related factors appear to be under-considered in systematic reviews of

diagnostic tests. Of the 189 reviews included, only 35% (n=67) considered spectrum as part
of quality assessment and 36% (n=69) investigated the potential impact from spectrum-
related factors statistically. These percentages increase when one considers only those
reviews that actually carried out quality assessment (51% of which included spectrum-related
criteria) those that carried out meta-analysis (52% of which investigated spectrum-related
covariates), and those that reported reported carrying out heterogeneity investigations (68%
of which investigated spectrum-related covariates) nevertheless these percentages are still

low especially when one considers that heterogeneity of study findings is common.

Of the reviews that included spectrum-related criteria in their quality assessments, the
majority (72%; 48/67) required a judgement on the ‘appropriateness’ or otherwise of the
included patients only 16 of which (33%) specifically mentioned the appropriateness of the
nondiseased patients. Only four reviews included an item on whether pertinent subgroups
had been investigated in the primary studies. This is arguably a more important aspect of the
generalisability of a study as inclusion of an appropriate or representative sample may mask

the fact that a test’s discriminatory capacity varies between subgroups.
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The sample of reviews included do not allow any strong conclusions regarding the potential
impact from spectrum on test accuracy to be made. Of the reviews that reported having
considered spectrum (n=69), only 48% (n=33) clearly reported the results of the heterogeneity
investigations and 59% (n=41) stated that they had identified a statistically significant impact
from the spectrum-related variable in question. When the small number of reviews that
considered spectrum-, test- and quality-related variables were examined (n=14), the
proportions finding statistically significant effects from each of these categories were similar
(57%, 57% and 43% respectively). Although the total number of reviews was small, this does
suggest that spectrum is an equally important source of heterogeneity that should at least be
considered if not always investigated. It is worth noting however that there will be an unknown
number of reviews that did investigate spectrum-related or other characteristics but that did
not find any significant effects and therefore did not report having carried them out. There is a
difference between how often spectrum actually matters and how often it has been reported

to matter.

Review methods used
The preferential use of the pooling approach is not least because of the challenge in reporting

SROC methods, as the results are not easily interpreted by clinicians. Clinicians tend to
prefer to have point estimates of the sensitivity and specificity of a test, whereas ROC curves
describe a series of estimates."® The majority (82%) of reviews carrying out statistical
syntheses opted to pool aspects of test performance independently, i.e. separate pooling of
accuracy indices, with little consideration paid to the possibility of a threshold effect, whilst
48% of meta-analyses undertook SROC regression analyses either alone, or in combination
with the pooling approach. Investigation of sources of heterogeneity was undertaken most
commonly either by pooling data according to subgroups (56%) or by extending the SROC

regression model with the addition of covariates (34%).

The addition of a covariate to a regression model produces a regression coefficient for that
covariate that is akin to the relative diagnostic odds ratio, i.e. the extent to which the DOR
would be increased or decreased in the presence of that covariate. For example, Fleischman
and colleagues109 found that amongst studies of exercise echocardiography for the detection
of coronary artery disease both increasing age and later publication year led to significant
decreases in DOR (univariate analysis results: RDOR -0.22 per year; 95%CI: -0.31, -0.12 and
-0.41 per year; 95%Cl: -0.58, -0.24). This sort of information is not particularly meaningful to
many clinicians, therefore other reviewers have attempted {o overcome this problem by
presenting their results as some combination of sensitivity and specificity at given points on
the SROC curve.

Whitsel and colleagues'* in a review of the QTc (or heart rate corrected QT interval) for the

detection of autonomic failure in people with diabetes, estimated accuracy in each subgroup
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using separate SROC models (similar to assuming the presence of an interaction of covariate
with curve shape) and used this data to estimate the relevant sensitivities for each subgroup
at the overall pooled specificity of 86%. Others have reported Q*, or point of maximal joint
sensitivity and specificity. The clinical relevance of these points is not always clear and in
some cases the points chosen appear rather arbitrary. Furthermore a series of potential
operating points were never quoted; this could be a real deficiency for asymmetric SROC
curves where the DOR varies along the curve. The other real problems for reporting of
heterogeneity investigations is that some covariates will affect the diseased group more than
the nondiseased such that any differential impact on sensitivity and specificity will be masked

by presenting the regression coefficients or RDOR.

The problems are further highlighted in a review of the Papanicolau test for cervical
precancer. Fahey and colleagues125 both added covariates to an SROC model and pooled
sensitivity, specificity and DOR in the same subgroups for four spectrum-related, test-related
and quality-related variables, and reported their results in detail. In general, the pooled DOR
analyses indicated differences in the same direction but of a slightly different magnitude than
suggested from the regression analyses (Appendix 11). The exception was earlier publication
year which resulted in an increase in the pooled DOR by about a half, whereas the regression
analysis found no impact from publication year. These differences were accentuated when
inverse variance weighting was used in the regression model. At the same time pooled
sensitivity dropped from 68% in the earlier studies to 58% while specificity increased from
64% to 70%. Although these results don’t account for differences in threshold as mentioned
earlier, it is possible that a change in the way the test was applied or in the population tested
over time affected sensitivity and specificity in opposite directions such that the overail DOR
was not affected. This example demonstrates how potentially conflicting results can be

produced from the same data according to method of meta-analysis.

Use of advanced methods
Problems with the most commonly used methods can potentially be overcome using

advanced statistical methods. No reviews in the main sample attempted to pool studies using
these methods, despite them having been available since 1995. This is likely to be because of
the time needed for new and more complex methodologies to diffuse into routine practice, but
may also may reflect difficulties in applying methods in unconventional software such as
WinBUGS. The development of the advanced methods to make them more easily
accessible®®® has led to the publication of at least 13 reviews using the advanced methods
since 2003.

The overall standard of these reviews is very high and a big improvement on that found in the
main sample of reviews. This is less likely to be a reflection of increasing knowledge of best
practice review methods than the fact that the review authors are mainly based in centres of

academic excellence, some at the forefront of development of these methods. The HSROC
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method has been less used than the BVN model but that too is a reflection of the affiliations of

the respective authors.

Consideration of heterogeneity in the reviews was of a high standard. Spectrum-related
characteristics were investigated in five of the nine reviews that investigated sources of
heterogeneity, but in two cases only the presence of an adequate description of patients was
examined. This is very likely due to lack of recording or reporting in the primary studies. Of
the five reviews that included details on spectrum-related characteristics, three found
statistically significant effects from these variables, supporting the finding from the main
dataset that when spectrum variables are reported to have been considered they are often

found to have a significant effect.

General comments on investigation of heterogeneity in diagnostic test systematic
reviews
Graphical plots to demonstrate the presence of heterogeneity are rarely reported in reviews

using narrative syntheses of diagnostic test accuracy (reported in 4%) and furthermore, are
not always reported in reviews using meta-analytic techniques (reported in 57%). Graphical
presentation of results was mainly carried out by those conducting SROC analysis, e.g.
individual study results as well as the SROC curve were presented in ROC space. Of those
authors opting only to pool data, less than a quarter (19/69) used any form of graphical
presentation of results, only nine of which presented data on a ROC plot thereby

demonstrating any potential correlation between sensitivity and specificity.

Given the high degree of heterogeneity amongst diagnostic test studies, graphical
presentation of individual study results are a useful aid to conveying complex information,
even in reviews choosing to use a narrative synthesis — a perfectly defensible option where
studies are highly variable. Plotting pairs of sensitivity and specificity in ROC space is an easy
way to display heterogeneity of both indices as well as allowing potential threshold effects to
be detected. It is also true however that visual examination of study results to identify
heterogeneity also has limited power to detect bias if the number of studies is small. At the
very least, reviewers should explicitly acknowledge and assess the potential for heterogeneity
to be present. It is encouraging that all 13 reviews using the advanced methods included

some form of graphical presentation of data.

The wide variation in methods chosen to combine the results of primary studies again
perhaps reflects uncertainty in the most appropriate methods to use and also greater
familiarity with more traditional indices of test accuracy (e.g. sensitivity and specificity). It
would be extremely difficult to make a judgement as to whether or not the approach taken by
the individual reviewers was appropriate or not without looking at the primary studies, but

some issues are of particular concern.
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Narrative reviews may have been carried out due to assumed but unreported heterogeneity,
or due to insufficient numbers of studies (the median number of studies in narrative reviews
was only half of that in meta—analyses),' but few reported having considered the option of
using statistical synthesis. Although the median number of studies may have been lower, in
principle many did include a sufficient number of studies to consider meta-analysis. Given that
considerable heterogeneity is a given in diagnostic test meta-analysis, some discussion of it is
warranted regardless of the synthesis method chosen. Furthermore, reviewers should
recognise that a justification for the approach chosen, whether narrative or statistical, should

be provided in systematic reviews.

For those carrying out statistical syntheses, most opted to pool aspects of test performance
independently, as discussed above, with little consideration paid to the possibility of a
threshold effect. Similarly to the presence of heterogeneity, many would agree that a
correlation between sensitivity and specificity is to be expected in diagnostic reviews. As
might be expected, around half of those using SROC approaches (37/64) stated that they did
S0 because this technique allows for any threshold effect. It is likely that the results for many
_ reviews that only carried out pooling of sensitivity and specificity or likelihood ratios would

differ if methods that allow for heterogeneity and threshold variation were employed.

Given the likely presence of heterogeneity, it can certainly be argued that potential sources of
heterogeneity should always be investigated in systematic reviews of diagnostic test accuracy
studies. This should be limited by the number of studies in the review and will also be limited
by the level of reporting in the primary studies. It is unclear, even for reviews of intervention
effectiveness, how many covariates can reliably be investigated, and how this might depend
on the number of studies, the extent of the heterogeneity and the relative weights awarded to

the different studies.’'**

For the investigation of characteristics affecting primary study results a
ratio of one variable for every 20 participants is often recommended; for systematic reviews, a
ratio of one variable for every 10 studies is more usual. Three-quarters of meta-analyses
included in the main sample here attempted to investigate sources of heterogeneity. On
average one characteristic was investigated for every six studies included in these reviews;

indicating likely over-investigation of study characteristics.

The most appropriate choice of variables to be investigated will depend on the specific
context of the review and the included studies however spectrum-, test- and quality-related
variables should at the very least be considered for investigation in any review. Quality-
related variables were considered in less than two-thirds of reviews in this sample. Blinding,
sample size and overall quality classification were the most commonly considered criteria.
Haif of all reviews only included studies that met certain quality-related criteria and so may
have decided that further investigation of the effect of quality on accuracy was not warranted.

However, poor reporting on the part of the authors of the primary studies and until recently'*®
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the fact no standard quality assessment tool has been available will partly explain this under-
investigation. A tool for the quality assessment of diagnostic studies developed using
standard scale development techniques is now available.?' The authors hope that as well as
providing a standardised tool for systematic reviewers, the project may also play a role in
bringing about greater awareness regarding the important quality issues involved in

diagnostic accuracy studies and help to raise the standards of such trials.

Poor reporting is a particular problem with diagnostic accuracy studies such that it is often

difficult to ascertain what procedures to avoid bias were actually followed by study authors.

The STARD initiative® (Standards for Reporting of Diagnostic Accuracy) aims to promote the
completeness and quality of reporting of diagnostic accuracy studies similarly to the

' CONSORT statement for reports of RCTs.*' Greater awareness of methodological principles

for diagnostic accuracy studies will also help inform the design and analysis of primary

studies.

Nearly all reviews focus on undertaking meta-analyses comparing the results of a new test
with a reference standard. Very few reviews analysed only studies which compared results of
several tests in the same patients with a reference standard and only 12/54 (22%) reviews
that included at least some ‘paired’ data on two or more tests considered those studies
separately. One can argue that heterogeneity will be less likely to be so problematic in meta-
analyses of within study comparisons between tests, as many of the factors (such as the
patient group) will be identical for both tests. Statistical methodology for investigating
heterogeneity and threshold effects in studies of paired test comparisons requires further
development, but may in time lead to more robust evidence about the relative performance of

alternative diagnostic tests.

Other issues highlighted by this methodological review includes the significant potential for
publication bias in these reviews — 84% restricted studies to those published in English only
and 52% searched only one electronic database (Medline). Publication bias is known to be a

real problem in reviews of therapeutic interventions.®”'*°

Although its extent has not yet been
quantified for test accuracy reviews it seems likely that it will be as much, if not more of an
issue for tests. The retrospective nature of many diagnostic test studies would imply that

authors may only publish if they have found particularly good results with a test.
It has not been possible to study any variation in the standard of review methods within
different areas of medicine or types of test. This is hard to categorise across reviews and

numbers within sub-categories would be small.

A strength of this review was use of the DARE database. Systematic reviews have to meet a

certain standard of methodological quality before being included on the database. Due to the
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considerable time lag in loading reviews onto DARE at the time of the original search, some
reviews (32/189) identified from other sources were also included to try to make the sample
as current as possible. Nineteen of the 32 reviews (59%) identified in this way have since
been added to the DARE database however it is possible that some of the remaining 13 (7%
of the total sample) may not have met DARE’s quality standards. However in the main, the
reviews included in this chapter are of higher quality than many that are published, so that
systematic review standards may be worse in practice than has been shown here. Given that
the majority of reviews in the main sample were published prior to 2002 and that
comprehensive guidelines on carrying out systematic reviews of diagnostic tests were not
published before 2001,""*8"7 it is likely that review methods have improved significantly
since that time. The superior quality of the reviews using the advanced methods of meta-
analysis may partly reflect this, but as they were mainly carried out in centres of excellence,

one would expect the general standard to be amongst the highest.

3.5 Conclusions

It is clear that a proportion of published meta-analyses use inappropriate methods of analysis.
The likely presence of a correlation between sensitivity and specificity and of between study
heterogeneity is ignored in both the analysis and presentation of their results, and in many
cases average values of sensitivity and specificity (or occasionally likelihood ratios) are
presented. There is a danger that these reviews may be disseminating a misleading
message that implies consistency of test performance when in fact the data that they have
collected clearly display inconsistency. Such inadequate analyses could in the worst instance
lead to inappropriate diagnostic investigations, interpretations and the use of inappropriate
interventions. Where people have reported investigation of spectrum effects the majority have

found statistically significant associations.

Where heterogeneity has been considered, the variability in approaches taken is a reflection
of the level of difficulty and complexity of carrying out such reviews. The methodology is still
developing and there is considerable uncertainty in the most appropriate techniques to use.

High profile guidelines on undertaking diagnostic test reviews'"°

should go some way to
improving standards, as will the inclusion of diagnostic test accuracy reviews in the Cochrane
Library. Nevertheless, carrying out many of the statistical analyses required for these reviews
requires a high degree of familiarity with statistics and statistical software packages. There is
as yet no truly user-friendly software package that can be used by non-statisticians in the way
that packages such as RevMan is used for meta-analyses of therapeutic interventions. It is
highly recommended that diagnostic test accuracy meta-analyses should not be carried out

without the involvement of a statistician familiar with the field.

Difficuities with investigating heterogeneity at review level also points to the need for

sufficiently large, prospective, well-designed multicentre studies that evaluate a number of
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diagnostic tests (or variations on a test), in order to establish test accuracy and also allow the

investigation of the influence of patient characteristics on accuracy.
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4 A case study comparing three meta-analytic

methods

This chapter applies the three meta-analytic methods outlined in Chapter 2 to a dataset from
a previous systematic review of diagnostic tests for the detection of tuberculosis’® to illustrate
similarities and differences in results, and finally to explore the effect of adding covariates to
each model. The rationale for choosing the TB dataset and the main systematic review
methods are provided in Appendix 9 and Appendix 10, respectively. Methods employed to

compare across meta-analytic models are described below.

4.1 Methods used to compare meta-analytic models
Given the statistical rigour of the advanced methods, throughout this chapter they are treated

as the benchmark against which the Moses methods can be assessed, as Harbord and
colleagues did in their wider empirical evaluation of methods."® It is worth noting that the
superiority of the advanced methods has not yet been empirically proven, however against
the criteria outlined in 2.3.1, the advanced models appear best. The comparison of methods
can be split into the comparison of the primary analyses of the complete dataset, and the
comparison of the heterogeneity investigations across models. The models are examined in

three ways, comparing:

.a. theresults of the unweighted and weighted Moses models
b. the HSROC and bivariate normal model results

c. the Moses model results and the advanced methods.

For the heterogeneity investigations, these comparisons are stratified by whether the models
are assumed to have parallel SROC curves or ‘crossing’ SROC curves, i.e. where the
covariate interacts with curve shape so that the SROC curves for the subgroups can have
different shapes.

For all models, accuracy (DOR) was estimated at Q* (the point at which sensitivity=specificity)
and at a point nearer to the centre of the data. The latter is estimated using the mean
threshold of the studies in the dataset and is referred to as the “DOR at the average
threshold”. See section 2.3.2 “Estimation of sensitivity and specificity” for a discussion of the
potential lack of representativeness of Q*. For the investigation of heterogeneity with ‘crossing
curves’, the difference in accuracy between groups (RDOR) was estimated at Q* and at the
average threshold of the studies in each group, i.e at the average threshold of the reference
group and at the average threshold of the comparator group. Where parallel SROC curves

are modeled the RDOR is constant all the way along the curves.
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Three covariates were selected to compare the investigation of heterogeneity across the

three models. The covariates examined were deliberately chosen to reflect increasing levels

of complexity in results, illustrating the effect of the covariates on DOR, threshold, and shape.

The covariates examined were as follows

effect on accuracy (RDORY): index test blinding. For the TB dataset, index test
blinding occurred where the PCR test in question was performed and interpreted
without knowledge of the reference test results (actual diagnosis). Even tests such as
these whose interpretation require a certain numerical threshold to be reached before
being considered positive may involve some degree of subjective interpretation.
effect on threshold: fest type. Two tests were included in this dataset, MTD and
Amplicor. Although operating on the same principles, these were developed by
different manufacturers and may have different accuracy properties in the same way
that different different drugs within a class can have.

effect on curve shape: reference test used. There is no definitive reference standard
for the detection of pulmonary tuberculosis. A commonly used reference standard is
culture alone, however it is known that microbiologic studies of sputum for the
detection of tuberculosis can fail to detect mycobacteria that may be picked up by
PCR tests and will incorrectly classify patients with TB as false-positive results.”? A
compromise solution is to use a reference strategy, where the reference diagnosis is
made on the basis of clinical information in combination with culture and other tests
such as chest x-ray, however this may ‘over-diagnose’, and identify patients as

having TB who in fact do not have the disease.

Because the definition of ‘diseased’ is relatively tight when defined by culture results
alone in comparison to where a combined reference strategy is used, and because
PCR works on the same principle as culture (amplifying the presence of
mycobacterial DNA as opposed to ‘growing’ it), there will be less variance in the
distribution of PCR results when the presence of disease is defined by culture alone

as opposed to a combined reference strategy.

The results of both the primary analysis and the heterogeneity investigations are presented

primarily in tabular format, with the studies and SROC curves plotted in ROC space.

4.1.1 Comparison of the Moses methods
A key factor potentially leading to differences between the results of an unweighted and

weighted Moses analysis is the effect of the weighting system used. The Moses model is

commonly weighted by the inverse of the variance (or standard error) of the log of the DOR,

i.e. the SE(INDOR) which, as Deeks and colleagues have shown,?! can be subject to bias. To

demonstrate how bias can be introduced into the SE(InDOR), it is broken down into three

components for studies with the highest DORs:®'
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i) asample size dependent term (SSdep) which refiects unequal numbers in
diseased and nondiseased groups

i) a proportion test positive term (PTPdep), the effect of which is minimised
when the numbers of true negatives and false positives are equal (specificity
50%). As the balance of TNs and FPs changes due to increasing or
decreasing threshold, the PTPdep term increases multiplicatively.

iif) a DOR dependent term (DORdep), which is 0 when DOR=1 (or where
sensitivity=specificity) and which rises with DOR; the actual magnitude of the
term decreases or increases with smaller or larger numbers of diseased,
respectively

The formula for estimating the SE(InDOR) is

SE(INDOR) = sqrt(SSdep*PTPdep) + DORdep

The full formula and details on each of the components of SE(InDOR) are given in Appendix
15. Only the sample size dependent term will operate appropriately (is unbiased) under the
particular characteristics of diagnostic meta-analyses as follows:*'
= DORs can be extremely high in value, often with very small or zero cells in the 2x2
contingency table. The SE(INDOR) is an asymptotic estimate and therefore may be
invalid where proportions are close to 1, as occurs with zero cells,
» individual studies often vary in the threshold for test positivity, and finally

« diagnostic studies often have unequal sizes of diseased and nondiseased groups.

To help demonstrate the presence of bias in the SE(InDOR), scatter plots of study weight
against effect (essentially funnel plots) are presented. Funnel plots are often used to look at
publication bias, or small study effects.™*">° The bias in this case, however, is not a bias in
the data obtained, such as whether all of the studies have been identified or whether some
are of lower quality, but is in the statistical method itself. Essentially, the calculation of the
SE(InDOR) does not appropriately reflect the precision or ‘value’ of large studies that show

large effects.”’

Three types of funnel plot are presented to help investigate whether the relationship between
study weight and effect may explain the differences in results between the two Moses models.
The first plots INDOR against its standard error; if there is bias in the SE(InDOR), studies
showing large effects will have high standard errors. The second plots InDOR against sample
size to look for a sample size related effect. This will show whether studies with large effects
and large standard errors also have low sample sizes. The third plots INRDOR against the
inverse square root of the effective sample size (where the effective sample size (ESS) is the

sample size needed in equal-sized groups to achieve the available power where there are
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groups of unequal sizes). The latter has been shown to provide a more robust indication of

any sample size related effect in a diagnostic systematic review.”'

The effect of the bias in the SE(INDOR) on the results of the Moses unweighted and weighted
analysis is then illustrated by plotting the two regression lines and the individual studies on a
‘D versus S’ plot and then by examining the effect on the analysis of removing the studies
with the most biased SE(InDORSs).

4.1.2 Comparison of the Moses model against the HSROC model

To help understand whether the Moses and HSROC models are influenced by individual
studies in the same way or whether they treat the studies differently, deletion residual
analysis was employed. Essentially this removes each individual study in turn to identify the
effect that this has on each of the model parameters. The results were then examined to
identify any patterns or categories of studies having the biggest effects on the analyses, and

whether these patterns were the same across models.

4.2 Primary analysis of the TB dataset

The results of the primary analysis of the 51 studies using the four models are given in Table
15 and displayed graphically in Figure 14. Details of all of the datasets included in the review
are provided in Appendix 14.

Figure 14 ROC plots for the three meta-analytic methods
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Where Q* - point where sensitivity=specificity, op point - the operating point estimated using the mean value for 'S’
across studies.

Figure 14 displays the ROC plots for the Moses and advanced methods. The apparent

differences in the location of some of the studies between the Moses method plot and the plot
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for the advanced methods is due to the zero cell correction (the addition of 0.5 to every cell of
a 2x2 table that contains a zero) that is needed in order to carry out the Moses analysis. The
zero cell correction is not required for the advanced methods. The size of the circles in the
plot for the advanced methods indicate the precision of the study; the smaller the circle, the
more precise the study estimate. The figures show considerable heterogeneity between

studies in both sensitivity and specificity and a considerable range in precision.

Table 15 shows that regardless of the parameterisation used, the two advanced models give
near identical results across all parameters. There are considerable differences in DOR
between the two Moses methods, with the unweighted model producing a DOR closest to that

of the advanced models. These differences are explored in section 4.2.1 below.

Table 15: Main model parameters®

Method Mean Mean Mean threshold Shape Average Average
accuracy accuracy sensitivity’ specificityh
(DOR) at Q* (DOR) at OP
Moses method -
unweighted | 121 (52, 284) 181 X -0.17, P=0.21 0.81 0.98
Moses method -
weighted 53 (32, 88) 97 X -0.26, P=0.01 0.75 0.97
HSROC
139 (76, 253) 198 (89, 307) | -0.79(-1.30,-0.28) [ 0.35, P=0.06 0.80 (0.75,0.86) | 0.98(0.97, 0.99)
Bivariate normal
139 (76, 254) 198 (89, 306) | -0.80(-1.30,-0.29) | 0.35 P=0.06 | 0.80(0.75,0.86) | 0.98 (0.97, 0.99)

DOR - diagnostic odds ratio; Q* - point where sensitivity=specificity; OP — average operating point of studies,
estimated using mean threshold

? — figures in italics denote derived values, i.e. parameters which are not the natural output from the model in question
but have been transformed from model parameters

b _ for the Moses methods, the average sensitivity and specificity are estimated using the mean of ‘S’ from the
primary studies

In terms of shape, all of the models suggest that the SROC curve is asymmetric, i.e. that
DOR varies along the curve. The strength of evidence for asymmetry is much stronger from
the weighted Moses model and the advanced models compared to the unweighted Moses

model (P-values closer to 0).

The theta value for the advanced methods is significantly different from zero, indicating that
the study points lie away from the sensitivity=specificity line, i.e. the Q* point does not
adequately summarize the studies in this dataset. The Moses method does not estimate

threshold although it allows it to vary with DOR.

Across the four models, the average threshold points (estimated using the mean threshold of
the studies) for the advanced models are virtually identical to that derived from the
unweighted Moses method output. The sensitivity estimate from the weighted Moses method
is slightly lower than the others (0.75 compared to 0.80).
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Figure 15 Scatter plots of log of diagnostic odds ratio (DOR)
a. Standard error of log DOR [SE(INDOR)) versus log DOR
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4.2.1 An exploration of the differences between Moses models
The scatter plot of INnDOR against its standard error reveals a relationship between DOR and

its SE, with less precise studies having higher DORs (Figure 15a). The studies at the far
bottom right of the plot (numbers 14, 2, 47, 18, 43 and 49) - the studies with the 6 highest
INDORs - have the most influence on this pattern. Plotting INDOR against total sample size
(Figure 15b), the six studies singled out above lie directly to the right of the main group of
studies, suggesting no association of DOR with sample size. Plotting InDOR against the
inverse square root of the ESS (Figure 15¢), as suggested by Deeks and coIIeagues81 in fact
shows the vast majority of studies located within a large group at the centre-top of the plot.
The same six studies lie to the right of the main group, confirming no sample size related

effect in this dataset.

Table 16: Studies with the highest quartile of diagnostic odds ratios

Id Author DOR SE Total n ESS Zero Specificity | Sensitivity | %weight

in top (INDOR) cells?

25%
18 | Devallois™ 28741 2.01 372 79 fp + fn 1.00 0.98 <0.01%
14 | Chedore™ 18969 1.46 618 533 n 0.98 1.00 <0.01%
47 [ wang™ 5538 1.23 230 198 X 0.99 0.99 <0.01%
43 | Smith™ 5415 2.03 153 37 fp+fn 1.00 0.95 <0.01%
2 Abu-Amero™ | 4292 1.45 628 233 fp 1.00 0.79 <0.01%
49 | Yam™ 4045 1.48 387 159 fp 1.00 0.86 <0.01%
20 | Eing™ 1669 0.79 833 108 X 1.00 0.89 0.01%
27 | LaRocco™ 1145 0.83 246 179 X 0.98 0.95 0.01%
24 | Hoffner (by™ 1088 1.03 309 64 X 0.99 0.88 0.01%
36 | Piersimoni™ 872 0.77 402 268 X 0.99 0.85 0.01%
44 | Smith™ 757 1.55 153 37 fn 0.98 0.95 <0.01%
3 AlZahrani™' 630 1.44 489 204 fp 1.00 0.42 <0.01%
45 | Vuorinen™ 627 0.89 256 93 X 0.99 0.85 0.01%

Shaded cells indicate values at or above median for that parameter; Bolded cells indicate values in top 25% for that
parameter.

DOR - diagnostic odds ratio

SE(InDOR) — standard error of the log diagnostic odds ratio;

ESS - effective sample size is the sample size needed in equal-sized groups to achieve the available power where
there are groups of unequal sizes;

Zero cells? — indicates presence of cells with a zero value in 2x2 contingency table; fp — false positive, fn — false
negative

Sensitivity and specificity are estimated after adding 0.5 to all four cells of 2x2 tables which have at least one zero
cell.

%weight — weight accorded per study under the weighted Moses model

Examination of the studies with the highest DORs (in the top 25% of the dataset) shows that
the top six by DOR also have standard errors in the top 25% of the dataset but do not have
small sample sizes as might be inferred from the more usual interpretation of funnel plots
(Table 16). Five of the top six studies have at least one zero cell in their 2x2 tables and all
have exceptionally high sensitivities or specificities. The inverse relationship between
precision and DOR is therefore not due to a small sample effect but is more likely to be

explained by the estimates of SE(INDOR) being overly
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influenced by extreme diagnostic threshold (high specificities) and/or high test accuracy.

4.2.1.1 Biased SE(InDOR)
The upper section of Table 17 breaks down the SE(INDOR) of the six studies with the highest

DORs into its three components. The sample size dependent term which reflects unequal
numbers in diseased and nondiseased groups, does not make a big contribution to the SE for
the majority of these studies; only one (43 Smith) has a large SSdep term compared to the

rest of the dataset.

The opposite is true of both the PTPdep term and the DORdep term. The effect of the
PTPdep term on the SE is minimised when the numbers of true negatives and false positives
are equal (specificity 50%). For the six studies under consideration here, the PTPdep value is
above the median for all six studies and in the top 25% for four of them. Given that the
smallest possible value for this term is four, all of the studies clearly have very high thresholds

with values ranging from 50 up to 1127 (Table 17).

The DOR dependent term is zero when DOR=1 (or where sensitivity=specificity) and rises
with DOR; the actual magnitude of the term decreases or increases with smaller or larger
numbers of diseased, respectively. The DOR dependent term is above the median for five of
the six studies and in the top 25% for four of them. For all six of these studies except Chedore

(14), the term is negative indicating that specificity is higher than sensitivity for these studies.

Table 17: Breakdown of SE(InDOR) for selected studies

id Author DOR SE Components of SE(INDOR) SSdep*
(InDOR) SSdep PTPdep DORdep PTPdep

Studies with six highest DORs

18 | Devallois™ 28741 2.01 0.05 703 -31.43 35.15
14 | Chedore™ 18969 1.46 0.01 59 1.74 0.51
47 | wang™ 5538 1.23 0.02 80 -0.10 1.6
43 | Smith™ 5415 2.03 0.11 287 -26.56 31.57
2 Abu-Amero™ 4292 1.45 0.02 1127 -17.24 22.54
49 [ Yam™ 4045 1.48 0.03 685 -15.04 20.55

Studies with six lowest DORs

51 | dos Anjos Filho™ 17 0.51 0.04 7 -0.01 0.28

37 | Piersimoni™ 15 0.56 0.06 8 -0.02 0.49

40 | Sato™ 13 0.58 0.06 |, 5 0.07 0.27
Gomez- -0.20

22 | Pastrana'® 12 0.66 0.06 17 0.94

39 | Sato™ 11 0.59 0.06 4 0.12 0.24

35 | Osumi™ 1 1.66 0.38 7 0 274

Shaded cells indicate values at or above median for that parameter; bolded cells indicate values in top 25% for that
parameter

DOR - diagnostic odds ratio; SE(InDOR) — standard error of the log diagnostic odds ratio; SSdep - sample size
dependent term; PTPdep - proportion testing positive term; DORdep - DOR dependent term.
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In contrast, for the studies in the bottom half of Table 17 (the six with the lowest DORs),
where specificities are all below 0.95 and sensitivities are also generally lower (less than
0.86), the SSdep terms are all above the median, while the PTPdep and DORdep terms are
below the median. The PTPdep terms are all very close to the lowest possible value (four).
These studies are therefore not affected by zero or small cells or by threshold variation,

therefore in most cases it is the SSdep term that drives the SE(InDOR).

4.2.1.2 Effect of biased SE(InDOR)
The presence of bias in SE(InDOR) explains the differences in results between the

unweighted and weighted Moses models. As the latter model is weighted by the inverse of
SE(InDOR), studies with high SE(InDOR) get very little weight and vice versa for studies with
low SEs. The final column of Table 16 lists the weights accorded to each study for the
weighted Moses analysis; the weights for each of the 51 studies are given in Appendix 14.
The unweighted Moses model by its nature gives all studies equal weight (i.e. 1/51 or 2%)
whereas for the weighted Moses model, weights range from less than 0.01% to 21%
(Appendix 14). From Table 16 one can see that all of the studies with the highest DORs
receive 0.01% of the weighting or less, i.e. less than 200 times the ‘weight’ that they receive

in the unweighted or equal weight analysis.

Figure 16 plots the INDOR, or D, against S for all studies in the dataset. The studies with the
six highest DORs and biased SE(InDORSs) are circled, lying above the main dataset. All of
these studies receive weighting of less than 0.01% for the weighted model. This explains why
the SROC curve for the weighted model in Figure 14a is considerably below that for the

unweighted model and the DOR considerably smaller.

Figure 16 D vs S plot for all studies
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Table 18 shows the effect of individually deleting each of the six studies from the overall
pooled analysis using the Moses models. It is immediately noticeable that the deletion of two
of the six studies has a relatively much larger effect on the overall pooled analysis compared
to the others, and secondly that for all studies the effect is greater for the unweighted model.
The latter observation would be expected due to the lower weighting attributed to these
studies in the weighted model.

Table 18 Result of pooled analysis using Moses models minus each study with biased
SE(InDOR)

a. Unweighted Moses

Individual Pooled analysis minus individual studies
study values
DOR [} s [}
bline =5 blline 25 sens, spec
121.1 £ 0.17, P=0.21 <
id | Author D s
s 101
1g | Devallois 1027 | 284 | 1125 7% -0.16, P=0.22 7% | 0.80,0.98
14 | Chedore 9.85 | 2.08 80.2 -34% -0.29, P=0.03 73% | 079,098
123
47 | Wang 8.62 | -0.09 101.5 -16% 0.21, P=0.12 24% |  0.80, 0.98
T
43 | Smith 8.60 | -2.71 114.7 5% -0.16, P=0.22 3% | 0.80,0.98
Abu-
155
2 | Amero 8.36 | -5.69 126.8 +5% -0.13, P=0.36 25% | 0.81,0.98
106
4g | Yom 8.31 | -4.75 123.2 +2% -0.14, P=0.31 18% 0.80, 0.98
b. Weighted Moses
Individual Pooled analysis minus individual studies
study values
DOR S s S
bine 25 bline 25 sens, spec
52.5 < -0.26, P=0.01 <
id | Author D s
191
1g | Devallois 1027 | -2.84 52.2 1% -0.26, P=0.01 A% | 075 097
Chedore ™
14 9.85 | 2.08 48.3 -8% -0.28, p<0.01 11% |  0.74,0.97
108
47 | Wang 8.62 | -0.09 49.8 5% -0.27, p<0.01 5% | 0.75,0.97
154
43 | Smith 8.60 | -2.71 52.3 +0% -0.26, P=0.01 0% | 075,097
Abu-
155
o | Amero 8.36 | -5.69 53.2 +1% -0.25, P=0.01 4% | 0.75,0.97
156
49 | Yam 8.31 | -475 52.9 +1% -0.25, P=0.01 3% | 075 0097

DOR - diagnostic odds ratio; b’line — baseline value for analyses including all 52 datatsets; % change - percentage
change in DOR or S from baseline; sens, spec — average sensitivity and specificity

The reason behind the greater effect from two of the six studies is that they are the only two
to have values for 'S’ above the mean (Figure 16). In particular study 14 (Chedore), whose
deletion has the biggest effect on the pooled analysis, both in terms of DOR and shape,
stands out from the main group of studies and therefore has the greatest leverage on the
analysis. This was the one study for which the DORdep component of the SE(InDOR) had a
very large effect on SE, and the only one which had a higher sensitivity than specificity. This

effect is explored further in the next section.

None of the studies has a large effect on the sensitivity or specificity at the average threshold.
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4.2.2 Moses versus HSROC comparison
The identification of bias in the SE(INDOR) in several studies and the effect of this on the

Moses models in section 4.2.1 above, suggests that certain studies may have a greater
impact on the overall pooled analysis than others. Because the differences between the
unweighted and weighted Moses models had already been investigated in some detail, a
deletion residual analysis was undertaken to examine how the unweighted Moses model
agrees with the HSROC model.

Twenty-one studies were identified whose removal affected at least one model parameter by
5% or more, either with the HSROC (19 studies) or Moses (20 studies) model analyses. The
effect from these studies is summarised in Table 20 and plotted in Figure 17; full details are
given in Appendix 13 (unweighted Moses) and Appendix 14 (HSROC). Eighteen of the 21
studies affected the parameters of both models by 5% or more, one (study 4161) affected only
the HSROC mode! results and two (id 20" and 35'%) affected only the Moses model resulits.

Table 19 Categories of study with biggest influences on model results

Category Total no. of No. having
studies in 25% effect on
dataset at least one
model

parameter
sensitivity greater than specificity 5 5
minimal (less than 5%) difference between sensitivity and specificity 11 9
high values (over 93%) for sensitivity 8 8
exceptionally high specificity (99.5% or more) 8 6
studies with zero false negatives 5 4
studies with zero false positives 8 5
studies with lowest sensitivities (40% or less) 2 2

Review of the deletion residual analysis for the two models suggested that these studies fall
into seven categories (Table 19 and Table 20). In general, because the majority of studies in
this dataset have specificity considerably greater than sensitivity, studies in the first two
categories, i.e. with sensitivity greater than specificity or sensitivity close in value to specificity
have by far the biggest effect on the analyses. The studies that lie around the edges of the

dataset, i.e. those with more extreme values have the biggest effects.

For both models, the removal of study 14 (Chedore), which is positioned in the far top left of
the ROC plot (Figure 17), has by far the biggest effect on all parameters, changing threshold,
accuracy and shape by -17%, -21% and +46% for the HSROC model and accuracy and
shape by -34% and +73% for the Moses model (Table 20). This study had the highest
sensitivity (99.7%) in the dataset but also had an extremely high value for specificity (98.0%).
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Table 20 Summary of deletion residual analysis: percentage change in model parameters following removal of each individual study

HSROC: Moses (eq): = a
% change in % change in 3 w w B
o t— = —
Ploely o] B| OB £
k=] (] [+] =
52|53 (28| 5| §| g°2
accuracy accuracy ” E 9 » 0 » O N @
id Author (DOR) shape [ threshold (DOR) shape M R R T ° @ ~ e
Studies whose removal had 25% effect on at least one model parameter for either HSROC or Moses analyses
14 | Chedore, 1999" 21% 46% -17% - -34% 73% Y - Y - Y - -
47 | Wang, 1999"° -12% 19% 6% -16% 24% - Y Y - - - -
39 | Sato, 1998 10% -19% 14% +15% -24% Y - - - - - -
40 | Sato, 1998 9% -14% 11% +13% -19% Y - - - - - -
Devallois,
18 | 1996™" -9% 0% 0% 7% 7% - Y Y Y Y Y -
Middleton,
31 | 2003 7% -15% 13% +9% -15% Y - Y - - - -
dos Anjos Filho,
51 | 2002" 7% -9% 7% +9% -12% - Y - - - - -
48 | Wang, 1999"° 6% 10% -2% 7% 10% - Y Y - - - -
La Rocco,
27 | 1994 -6% 8% -2% 7% 7% - Y Y - - - -
35 | Osumi, 1995' X X X 6% 13% - - - - - - Y
43 | Smith, 1999"™ 6% -1% 0% -5% -3% - Y Y Y Y -
44 | Smith, 1999" -5% 7% 2% -6% 8% - Y Y - Y - -
Hoffner, 1996
23 [ @)™ 5% -6% 6% +6% -8% - Y - - - - -
20 | Eing, 1998"™" X X X -2% -5% - - - Y - |- -
5 | Alcala, 2001 4% -5% 6% +4% -6% - Y - - - -
49 | Yam, 1998"™° -3% -11% 3% +2% -18% - - - Y - Y -
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HSROC: Moses (eq): = a
% change in % change in § i L § a
-] [=] [=] >
5| E2| 33| a2 8 5| g¢
accuracy accuracy 0 o o‘:g 32 :.: g Le
id | Author (DOR) shape | threshold {DOR) shape M
Kambashi,
25 | 2001"" 3% 4% 5% +6% -8% Y
Abu-Amero,
2 | 2002 2% -17% 5% +5% -25% -
Mitarai, 2001
32 [ @™ 1% 12% -10% 1% 12% -
Al Zahrani,
4 | 2000™ 1% -8% -3% X X -
Al Zahrani,
3 | 2000™ 1% 6% -3% +2% 6% -
Studies in the same categories whose removal did not have 25% effect an any model parameter
1 | Abe, 1993"° x X X X X -
Bemer-Melchoir, X X X X
7 | 2000 X -
Cavusoglu, X X X X
13 | 2002'* X -
26 | Kang, 20027 X X X X X -
34 | Neu, 1999' X X X X X -

Studies are sorted by the magnitude of the effect on the pooled DOR using the HSROC analysis
x indicates studies whose removal does not impact on at least one parameter by 5% or more

1 sens>spec: sensitivity greater than specificity

2 min sespdiff: minimal difference between sensitivity and specificity

3 sens = 0.934: sensitivity 2 0.934

4 spec 2 0.995: specificity = 0.995

5 zero cell FN: zero false negative results

6 zero cell FP: zero false positive results

7 studies with lowest sensitivities
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The shape (and threshold for the HSROC model) parameter was more commonly affected
than DOR, with the removal of only four (three for HSROC) studies affecting DOR by 10% or

more. Eleven studies impact on the shape parameter in the Moses model by 10% or more.

For the HSROC model, 9 studies affected shape by 10% or more; five of which also affect the
threshold parameter by 10% or more (Table 20).

Figure 17 Plots of studies having effect of 5% or more on at least one model parameter

a. All studies b. Selected studies
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4 mn sespditl and sens=0.934 © min sespdiff and sens<0.534

< raro FP arxt spec>0 385 spec>=0.995
© axceplions

Filled in symbols indicate effect of 10% or more
4.2.3 Summary
For this dataset, the advanced models (HSROC and BVN models) have near identical results
when all studies are pooled together. However, there are considerable differences in results
between the two Moses methods, in terms of both DOR and shape. Potential explanations for
the difference between the two Moses methods are:

a. the zero cell correction that is needed in order to carry out the analysis, i.e. the
addition of 0.5 to every cell of a 2x2 table that contains a zero. Adding the correction
will attenuate the effect, more so in small studies. However the correction is added for
both equal and weighted models so this is not a likely explanation here.

b. studies receiving the highest weight under the weighted model having the lowest
DOR, possibly due to sample size, pulling the SROC further away from the top-left
had corner of the ROC plot, where accuracy is the highest.

c. as the studies in the dataset generally had very high specificities and some also have
exceptionally high sensitivities (e.g. studies with small or zero cells), it is more likely
that the approximate variance of the log DOR is biased, as shown above. Weighting

by inverse variance of INDOR will therefore give less weight to the studies with the
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highest specificities in particular. This can effect both the magnitude of the DOR and
the shape of SROC curve.
For this dataset the DOR from the unweighted Moses model was closest to that from the
advanced models, although the shape of the curves were different. Whether or not this is a

consistent finding will be explored in the next chapter.

Studies having the most effect on the analyses for both the unweighted Moses and HSROC
models were those for which sensitivity was higher than specificity or sensitivity was close in
value to specificity, especially at higher levels of sensitivity. The shape term was most

commonly affected.

4.3 Investigation of heterogeneity in the TB dataset using the
3 methods

The results of the heterogeneity investigations are presented in tabular format in Table 21,
Table 22 and Table 23, first with no shape interaction allowed, i.e. parallel curve models (top
half of tables), and then allowing for a shape interaction, i.e. crossing curve models (bottom
half of tables). The associated SROC curves are plotted in Appendix 15 to Appendix 17. For
the investigation of heterogeneity, the comparison between models focuses on comparing
SROC curves between groups as opposed to comparing operating points. Where there are

multiple thresholds, a comparison of operating points is not useful.

4.3.1 Comparing the Moses model results
Plots of the SE(InNDOR) against InDOR according to covariate are presented along with ‘D vs

S’ plots for both parallel and crossing curve models. To assist in the comparison of Moses
model results, the six studies in the dataset with the highest DORs are circled according to

covariate.

4.3.1.1 Moses models comparison: Index test blinding
When studies are examined by the presence or absence of index test blinding, the weighted

Moses model shows a much smaller, and nonsignificant difference between groups compared
to the unweighted model (Table 21). This difference is maintained with or without the
interaction of covariate with shape, and regardless of whether RDOR is estimated at Q* or at
the respective average threshold points. Figure 18 shows that all six studies with biased
SE(InDOR) identified from section 4.2.1 above (the group of six studies to the far bottom right

of the plot) fall into the reference case group (blinding not described).
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Table 21 Difference in model parameters: blinded index test interpretation (comparator) versus blinding not reported (reference)

Effect on accuracy (RDOR)® Effect on other parameters”
Method RDOR at Q* RDOR at ref RDOR at comp threshold shape sensitivity specificity
threshold threshold

No shape interaction (parallel curves)

Moses method - - -

equal weight 0.21, P=0.02 as at Q* as at Q" -0.21 -0.01
Moses method - - -
weighted 0.59, P=0.14 as at Q* as at Q* -0.11 0.01
HSROC -
0.25, P=0.02 as at Q* as at Q* -0.47, P=0.19 -0.17, P=0.02 | -0.01, P=0.61
BVN -
0.25, P=0.02 as at Q* as at Q* -0.46, P=0.19 -0.17, P=0.02 | -0.01, P=0.61

With shape interaction (crossing curves)

Moses method -

equal weight 0.15, P=0.07 0.19, P=0.02 0.21, P=0.02 - -0.12, P=0.68 -0.21 -0.01
Moses method -
weighted 0.74, P=0.63 0.62, P=0.19 0.57, P=0.13 - 0.09, P=0.66 -0.11 0.01

HSROC (shape)

0.21, P=0.03 0.47, P=0.08 0.26, P=0.13 -0.25, P=0.65 0.22, P=0.63 -0.17, P=0.11

Figures in italics denote derived values, i.e. parameters which are not the natural output from the model in question but have been transformed from model parameters

® — RDOR - relative diagnostic odds ratio or difference between the curves, at Q* (the point where sensitivity=specificity), at the average threshold of the reference group (ref
threshold) or of the comparator group (comp threshold). Studies reporting blinded index interpretation form the comparator group (numerator) and studies where blinding is not
reported the reference case (denominator)

® _ the effect on parameters other than accuracy is defined as the difference between groups in each parameter and the P-value for the difference
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Figure 18 Plot of SE(log DOR) against log DOR — index test blinding®
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The effect on the pooled analysis can be seen by looking at the same studies on the D vs S
plots (circled in Figure 19). Whether the regression lines are parallel or crossing, the lines are
much closer together when the weighting is applied because the six studies get very little
weight due to their high SEs. The DORs for the two groups are therefore very similar under
the weighted model (Figure 19b and d).

Figure 19 D vs S plots — by index test blinding

a. unweighted Moses model — no shape interaction b. weighted Moses model — no shape interaction

[a]
A
-10
a ==—======_ Blinding no described 4 ——=——— Indax |nslb)indad] L] mmm————— Amplicor L] ———Er[;
c. unweighted Moses model — shape interaction d. weighted Moses model — shape interaction
(=
AL
[a]

e === Biinding not described A = —— Index lesl blinded ‘ L =eee=== Blinding not described L ——— Indux lmst blinded |

*the various average threshold points are denoted where the regression lines cross the vertical lines at S=0 (Q*), S=
-2.16 (ref group average threshold), S= -3.03 (comparator group average threshold).
generated.

9 See section 4.1.1. for a description of this comparison
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Table 22: Difference in model parameters: MTD (comparator) versus Amplicor (reference)

Effect on accuracy (RDOR)*

Effect on other parameters”

Method RDOR at Q* RDOR at ref Method RDOR at Q* RDOR at ref | Method RDOR at Q*
threshold threshold
No shape interaction (parallel curves)
Moses method - -
equal weight 1.99, P=0.28 as at Q* as at Q* - +0.15 -0.02
Moses method - - -
weighted 2.16, P=0.08 as at Q* as atQ* +0.17 -0.03
HSROC -
2.06, P=0.20 as at Q* as at Q* 1.06, p<0.01 0.17, p<0.01 -0.02, P=0.06
BVN -
2.05, P=0.20 as at Q* as at Q* 1.06, p<0.01 0.17, p<0.01 -0.02, P=0.06
With shape interaction (crossing curves
Moses method -
equal weight 3.86, P=0.14 1.48, P=0.58 2.59, P=0.17 - 0.31, P=0.31 +0.15 -0.02
Moses method - -
weighted 1.63, P=0.38 2.82, P=0.06 2.04, P=0.11 -0.18, P=0.43 +0.17 -0.03
HSROC
2.29, P=0.16 1.59, P=0.24 1.64, P=0.14 0.81, P=0.12 -0.23, P=0.56 0.17, P=0.01 -0.02, P=0.57

Figures in italics denote derived values, i.e. parameters which are not the natural output from the model in question but have been transformed from model parameters

? — RDOR - relative diagnostic odds ratio or difference between the curves, at Q* (the point where sensitivity=specificity), at the average threshold of the reference group (ref

threshold) or of the comparator group (comp threshold). Studies using MTD form the the comparator group (numerator) and studies of Amplicor the reference case

(denominator )

® _ the effect on parameters other than accuracy is defined as the difference between groups in each parameter and the P-value for the difference
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4.3.1.2 Moses models comparison: Test type"
When the test covariate is added to the Moses models, the weighted and unweighted results

are very similar, as long as no interaction with shape is allowed (RDORs 2.16 and 1.99
respectively, Table 22). Of the six studies with biased SEs, three are of MTD and three of
Amplicor (Figure 20). Where the SROC curves are assumed to be parallel, the effect is
spread across the two groups, and the difference between groups remains similar whether

weighting is applied or not (Figure 21a and b).

Where an interaction of test type with curve shape is allowed however, the weighted and
unweighted models no longer give similar results (Table 22). Not only does one model give a
larger RDOR than the other, but the RDOR and the model giving the largest RDOR varies

according to the point on the curves at which the RDOR is

Figure 20 Plot of SE(log DOR) against log DOR - test type
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Where RDOR is estimated at Q*, the unweighted model finds MTD to be much more accurate
than Amplicor compared to the difference shown by the weighted model. At the average
threshold for the reference group, it is the weighted model that shows MTD to be a
considerably more accurate test (p<0.10), while the unweighted model shows a much smaller
difference between tests. At the average comparator threshold, the two models find a similar

difference between groups.

The reason for these differences can be seen from the D vs S plots in Figure 21c and d. The
regression line for the reference case (Amplicor) remains similar in position and slope
whether weighting is used or not, however the slope of the regression line for the comparator

case (MTD studies) has a considerably steeper slope under the weighted Moses model.

These differences in slopes explain why there is a bigger difference in RDOR between the
unweighted and weighted models compared to the case where the slopes are assumed to be
the same (Figure 21a and b). In particular, study 14 (Chedore) has a high vale for D and a

" See section 4.1.1. for a description of this comparison



high value for S. Where S is allowed to vary, this study has a considerable effect on the slope

of the regression line and therefore on the point at which the lines intercept zero (Q* point).

Figure 21 D vs S plots — by test type

a. unweighted Moses model — no shape interaction b. weighted Moses model — no shape interaction
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*the various average threshold points are denoted where the regression lines cross the vertical lines at $=0 (Q*), S=
-3.11 (ref group operating point), S= -1.29 (comparator group operating point).

The changing slopes also explains the differences between models according to where
RDOR is estimated. For the unweighted model the regression lines cross at the left hand side
of the plot whereas for the weighted model they would cross at the right hand side of the plot
if the lines were extrapolated slightly further. At Q* (where S=0), the lines are much further
apart under the unweighted model compared to the weighted. At the mean of S for the
reference group (S=-3.11), the opposite is the case, whilst at the mean of S for the
comparator group the lines are similar distances from each other whether weighted or
unweighted. This example demonstrates that even where the difference in shape between
groups is not statistically significant, allowing a difference in shape between groups can lead

to big differences in RDOR according to where RDOR is estimated.

4.3.1.3 Moses models comparison: Reference test used’
At the simplest level (with no interaction of covariate with shape), when the type of reference

test used is added to the Moses models, the RDOR for the unweighted model is 2.48
compared to just 1.12 for the weighted model (Table 23). Only one of the six studies with

' See section 4.1.1. for a description of this comparison
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biased SE(INDOR) is in the reference case group (combined reference test) for this example
(Figure 22).

Figure 22 Plot of SE(log DOR) against log DOR - reference test used
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Figure 23 shows the parallel regression lines for the two groups. The five comparator group
studies with biased SE(INDOR) receive more emphasis in the unweighted model, pulling the
regression line further up the plot. This means that the lines are further apart and the RDOR

higher in comparison to the weighted model, where these studies receive less weight.

Figure 23 D vs S plots — by reference test used

. a. unweighted Moses model — no shape interaction b. weighted Moses model — no shape interaction
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*the various average threshold points are denoted where the regression lines cross the vertical lines at S=0 (Q*), S=
-3.02 (ref group operating point), S= -1.82 (comparator group operating point).
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Table 23: Difference in model parameters: culture alone (comparator) versus combined reference test (reference)

Effect on accuracy (RDOR)?

Effect on other parameters®

Method RDOR at Q* RDOR at ref RDOR at comp threshold shape sensitivity specificity
threshold threshold
No shape interaction (parallel curves) '
Moses method - -
equal weight 2.48°, P=0.12 as at Q* as at Q* - +0.15 -0.01
Moses method - -
weighted 1.12, P=0.73 as at Q* as at Q* - +0.10 -0.02
HSROC - 0.73, P=0.02 -
2.24, P=0.14 as at Q* as at Q* 0.15, P=0.01 -0.01, P=0.40
BVN -
2.23, P=0.14 as at Q* as at Q* 0.72,P=0.02 0.15, P=0.01 -0.01, P=0.40
With shape interaction (crossing curves
Moses method -
equal weight 0.44, P=0.33 4.10, P=0.02 1.69, P=0.35 - -0.74, P=0.01 +0.15 -0.01
Moses method -
weighted 0.56, P=0.32 1.34, P=0.14 0.95, P=0.88 - -0.29, P=0.14 +0.10 -0.02
HSROC
1.22, P=0.76 0.76, P=0.32 8.75, P=0.34 1.74, p<0.01 0.90, P=0.,02 0.14, p<0.01 -0.01, P=0.05

Figures in jtalics denote derived values, i.e. parameters which are not the natural output from the model in question but have been transformed from model

parameters

? — RDOR - relative diagnostic odds ratio or difference between the curves, at Q* {the point where sensitivity=specificity), at the average threshold of the reference

group (ref threshold) or of the comparator group (comp threshold). Studies using culture alone as the reference standard form the comparator group (numerator) and

studies using a combined reference standard the reference case (denominator )

® _ the effect on parameters other than accuracy is defined as the difference between groups in each parameter and the P-value for the difference
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Where an interaction of covariate with shape is allowed, however, a more complex picture
emerges (Figure 23c and d). If RDOR is estimated at the reference or comparator group
average threshold points, the unweighted model suggests that studies using culture alone
have higher accuracy than those using a combined reference test. The difference between
models is much greater at the average reference threshold with the RDOR from the

unweighted model over 3 times that of the weighted model (4.10 compared to 1.34, Table 23).

If RDOR is estimated at the Q* point however, studies using culture alone are shown to be
considerably /ess accurate than those using a combined reference test, and the difference
between the weighted and unweighted models is much less (RDOR 0.44 for the unweighted
and 0.56 for the weighted models respectively, Table 23). The reason for this complex
picture is hinted at by the highly statistically significant shape term (p<0.01) for the
unweighted model.

Figure 23c and d clearly demonstrate the effect of the shape term. Under both models the
regression lines for the two groups cross near to the centre of the data, and furthermore the
slope of the regression lines changes considerably, with that for the reference group
(combined reference test) even changing direction between models. The five studies in the
culture alone group with biased SE(InDOR) receive more emphasis in the unweighted model,
pulling the left hand side of the regression line further up the plot. Due to the high SEs, these
studies receive less weight when the weighting is applied and the slope is much less steep.
The overall effect is that at the average reference threshold, the lines are much further apart

under the unweighted model.

Because the regression lines cross near to the centre of the data, the point at which RDOR is
estimated has a massive impact on its size and direction. At Q* (S=0), the combined
reference test line intercept is above that for culture alone under both models, so that the
RDOR favours the combined reference group. At the average threshold for the reference
group (S= -3.02), however, the regression line for the culture alone group is above that for the

combined reference group, favouring the culture alone group.

4.3.1.4 Summary
The presence of studies with biased SE(InDOR) can potentially have a huge effect on any

heterogeneity investigations under the Moses model framework. Because of the weighting by
the inverse of SE(INDOR), studies with biased SE’s get considerably less emphasis under the
weighted model.

At its simplest, for example where all studies with biased SEs fall into the same subgroup
such as with the presence of index test blinding, the effect manifests predominantly in an
underestimation of RDOR for the weighted model compared to unweighted. However, where

the biased SE studies fall into different groups the effect is more complex. The biased SE
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studies were evenly distributed according to test type. The effect on RDOR alone was less as
both groups were affected - the overall location of the regression lines on the plot does not
change much whether or not weighting is used. However a much larger impact on curve
shape (or the slope of the regression line), was found, especially for the group containing the
outlying study (number 14). This in turn impacts on RDOR as the distance between the
regression lines increases or decreases, depending on the change in slope and the location

at which RDOR is estimated (Q* or average threshold point).

The final example illustrates this last effect as the outlying study 14 was the only one in the
combined reference test group but this was sufficient to change the slope of the regression
line between unweighted and weighted models and contributed considerably to the

differences in RDOR according to the point at which it is estimated.

4.3.2 Comparing the advanced model results
The results in the top halves of Table 21 to Table 23 show that for this dataset, where no

interaction of covariate with shape is allowed (parallel curve models}, the HSROC and
bivariate normal model give near identical results to within two decimals places. The main
comparison is therefore of the HSROC approach with and without the interaction of covariate
with shape, i.e. between the parallel and crossing curve HSROC models. The SROC curves
for the HSROC models with and without a shape interaction are plotted in Appendix 15 to
Appendix 17.

4.3.2.1 HSROC parallel versus crossing curve models: Index test blinding
The top half of Table 21 shows that by assuming parallel SROC curves, the presence of index

test blinding has a large and strong effect on accuracy (RDOR 0.25, P=0.02), suggesting that
the two groups are operating on two different SROC curves. There is also some suggestion of
differences in threshold between groups (P=0.19). Appendix 15, Figure ¢ shows that the
SROC curve for the index test blinded group is considerably below that for the blinding not
reported group. Where an interaction of covariate with shape is allowed (bottom half of Table
21), there is no suggestion of differences in shape or threshold between groups (P=0.63 and
P=0.65 respectively). The RDOR does vary along the curves but the strong evidence of

differences in accuracy generally remains.

The choice of model has a relatively small effect on the conclusions that would be drawn from

this dataset.

4.3.2.2 HSROC parallel versus crossing curve models: Test type
Where test is included as a covariate and SROC curves are assumed to be parallel (Table

22), the advanced method models show some evidence of differences in accuracy between
groups (RDOR 2.05, P=0.20), but the main difference is in threshold (p<0.01), suggesting the

two groups may operate on the same SROC curve but at different thresholds.
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With the interaction of test type with curve shape, there is no evidence for differences in
shape between groups (P=0.56) but the evidence for a difference in threshold remains
although it is less strong (P=0.12) (Table 22). There is now slightly more evidence of a
difference in accuracy, depending on where RDOR is estimated. At Q*, the RDOR is similar
to that for the parallel curve model (2.29, P=0.16), at the average reference and comparator
thresholds, the first of which in particular is considerably closer to the centre of the data than
Q*, the RDOR is slightly lower at 1.59 (P=0.25) and 1.64 (P=0.14) respectively.

The inclusion of the interaction of covariate with shape for this example slightly affects the

strength of conclusions that would be drawn regarding the difference between tests.

4.3.2.3 HSROC parallel versus crossing curve models: Reference test used
A more complex picture emerges according to reference test used. For the parallel curve

models, the advanced method models show reasonable evidence of differences in accuracy
between groups (RDOR 2.23, P=0.14), but the strongest evidence is for a difference in
threshold (P=0.02).

The bottom half of Table 23 however, shows that where the curves are allowed to have
different shapes, there is no real evidence for differences in accuracy regardless of the point
at which RDOR is estimated, but strong evidence for differences in shape and threshold
(P=0.02 and p<0.01, respectively). Although the differences in accuracy are not statistically
significant regardless of where RDOR is estimated, the direction and magnitude of the RDOR
varies considerably. At Q*, the RDOR is:1.22, slightly in favour of the studies using culture
alone having higher accuracy, at the comparator group average threshold point it is 8.75 and
at the average reference threshold it is 0.76 in favour of the combined reference test group
having higher accuracy.

Appendix 17, Figure b helps with the interpretation of this data. Where the curves are allowed
to have different shapes, they cross very near to the sensitivity=specificity line, or Q* point.
This explains why there is so much variation in the RDOR. The model chosen for this

example has a large effect on the results of the analysis.

4.3.2.4 Summary
At the simplest level, where a covariate predominantly affects accuracy alone, allowing for an

interaction of that covariate with shape can have some effect on the size and statistical
significance of differences between groups. For the example here, index test blinding, the
overall conclusion drawn regarding the potential effect from the covariate would not be greatly
affected although the strength of that conclusion would be somewhat affected by the model
chosen (with or without a shape interaction term) and the point at which RDOR was

estimated.
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For the test type covariate example above, where the strongest evidence was for differences
in threshold between groups, choosing a model which allows the SROC curves to have
different shapes led to slightly more evidence for differences in accuracy depending on the
point at which RDOR was estimated. However the RDORSs were not very different from that
given when no interaction with shape is allowed and conclusions regarding the importance of

test to the analysis would not be greatly affected by the model chosen.

In the most complex example, where type of reference test used is added to the analysis, the
model chosen and point at which RDOR is estimated has a big impact on the results. If
parallel SROC curves are modeled, the DORs per subgroup are 191 for culture alone, and 85
for studies using a combined reference test. The differences in the parameters suggests that
it is threshold rather than accuracy that varies the between groups, i.e. the studies are

operating at different points on the same or similar SROC curves.

Where ROC curves have different shapes however, a more confusing picture emerges; with
strong evidence for differences in shape and threshold but not accuracy, with large variations
in RDOR along the curves. It is very difficult to untangle the different effects for this example,
however it is clear that the choice of model has a considerable impact on the conclusion
drawn. With parallel curves, one might infer probable differences in accuracy between groups
(different SROC curves) and that the two groups operate at different thresholds. With
differently shaped curves, one might say that the studies do operate on different SROC
curves but the differences in shape and the fact that the studies operate at different points on

the curves means that there is no associated difference in accuracy between the groups.

4.3.3 Moses model results versus advanced model results
The Moses and advanced model results can be compared both with and without an

interaction of covariate with shape. Again the results of the analyses adding each covariate
can be seen in Table 21 to Table 23. Parallel and crossing SROC curves for each model can

be compared in Appendix 15 to Appendix 17.

4.3.3.1 Moses versus HSROC models: Parallel SROC curves
For each of the three covariates examined here the unweighted Moses model results most

closely resembie the results of the advanced models, in terms of size, direction and strength
of evidence from the RDOR (Table 24). For one covariate (test type) the RDOR for the
weighted Moses model is similar to that from the HSROC and BVN models with an RDOR of
2.16 compared to 2.06 (Table 22). The associated P-value, however, would suggest a strong
difference in accuracy between tests (P=0.08) whereas the advanced models and unweighted
Moses model suggest that the effect is not as strong (P=0.20 and P=0.28). The other two
examples both show the weighted model under-estimates the RDOR compared to the
advanced models (Table 21 and Table 23).
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Table 24 Summary of similarity of strength of evidence from HSROC model and Moses

model results

Blinded index Test type Reference test
test used

PARALLEL SROCs

RDOR eq ~ eq
CROSSING SROCs

RDOR at Q* eq eq neither®
RDOR at ref threshold® eq w neither®
RDOR at comp threshold® w both neither®
Shape both w eq

abneither P-values nor magnitude or direction of RDORs are similar
RDOR, or difference between the curves, at the average reference threshold (ref) or comparator threshold (comp)
eq — unweighted (equal weight) Moses; w — weighted Moses model

4.3.3.2 Moses versus HSROC models: Crossing SROC curves
Where the SROC curves can have different shapes, neither Moses model consistently

approximates the results of the HSROC model (Table 24).

For blinded index test interpretation the unweighted model results are very close to the results
of the HSROC model except for the RDOR at the average reference threshold point which is
over-estimated (0.19 compared to 0.47 for the HSROC model). The weighted Moses model is
closest to the HSROC model at this same point, but underestimates the RDOR in comparison
to the HSROC model at the other two points. All three models show no strong evidence of

differences in shape.

When the test type covariate is added to the models (Table 22), the RDORs for both Moses
models are in the same direction as for the HSROC but both either over- or under-estimate
their magnitude. On the whole, the strength of evidence for differences in accuracy (P-values
for the RDORs) of the unweighted model are most similar to the HSROC. All three models

show no evidence of differences in shape.

For the analyses by type of reference test used, neither Moses model comes near to
estimating the HSROC model results for differences in accuracy. The RDORs for both models
are in the opposite direction to the RDORs from the HSROC model at almost every point
(Table 23). The HSROC model suggests no differences in accuracy despite the varying
magnitudes of RDOR along the SROC curves. Both Moses models however suggest some
evidence of differences in accuracy at the average reference threshold, (P=0.02 for the

unweighted model and P=0.14 for the weighted model).

All three models indicate differences in shape between groups, although the evidence is less

strong for the weighted Moses model (P=0.14).
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4.3.3.3 Summary
For the three covariates examined here, where parallel SROC curves are modeled, the

unweighted Moses model results are very close to the results of the advanced models in
terms of size, direction and statistical significance of the RDOR and difference in sensitivity
and specificity between groups. The weighted Moses model approximates the results of the
advanced model for only one covariate (test type). For the other two examples it considerably

under-estimates the difference in accuracy (RDOR) and in sensitivity.

Where the SROC curves are allowed to have different shapes, neither model consistently
approximates the HSROC model results. For blinded index test interpretation, the equal
weighted model is very close to the HSROC model with the exception of the RDOR at the
average reference threshold. For the analysis by test type, it is the weighted model results
that generally most similar to the HSROC model. For this covariate, the unweighted model
over-estimates the effects seen for the HSROC model, again except at the RDOR at the
average reference threshold. For reference test used, neither Moses model gives RDORs
anywhére near those of the HSROC model and in fact in most cases have results in the

opposite direction.

4.4 Discussion
The HSROC and BVN, or advanced, methods have several theoretical advantages over the

Moses method, making their results more statistically reliable and accurate. This chapter
examined similarities and differences in results between models, and explored the effect of
adding covariates. Part of the aim was to identify any suggestion that either Moses method
could approximate the results of the more statistically rigorous methods. The covariates
examined were specifically chosen to illustrate a range of effects on the different model
parameters and the potential differences between models. The effects are not necessarily

typical of the effects that would be expected in most systematic reviews.

Reflection on the analyses carried out here shows that for the overall pooled analysis for this
dataset:
+ there is considerable disagreement between the two Moses models,
+ the two advanced models gave almost identical results,
¢ the unweighted Moses model results were most similar to those of the advanced
methods. The weighted Moses model considerably under-estimated the results of the
other two models.
With the addition of covariates to the models:
¢ there was common and sometimes considerable disagreement between the two
Moses models regardiess of whether parallel or crossing SROC curves were

modeled,
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* where parallel SROC curves were modeled, the two advanced models give near
identical results

+ for the advanced models, in some circumstances the interaction of covariate with
shape made little difference to the conclusions that would be drawn from the model
regarding the importance of a covariate, but in others conflicting results arose

¢ where parallel SROC curves are modeled, the unweighted Moses model generally
has results more similar to the advanced methods than the weighted Moses model

e where curves are allowed to have different shapes, neither Moses model consistently

approximated the HSROC model results

The disagreement between the two Moses models, both for the overall analysis and the
investigaﬁon of heterogeneity was primarily due to bias in the SE(InDOR), whose inverse was
used as the weight for the weighted model. For some studies in this dataset the SEs are
biased upwards, so that they have higher SEs than might be expected from their sample
sizes. Weighting by the inverse of the SE mean that these studies received a very low
emphasis in the weighted Moses analysis, leading to overall under-estimation of effects in

comparison to the unweighted analysis.

The circumstances under which biased SE(InDOR) might be expected are as follows:
extreme values of sensitivity and specificity, often with zero FNs or FPs, unequal sample
sizes of diseased and nondiseased patients, and variation in the threshold for test positivity
leading to variation in the proportion of patients who are test positive. These circumstances

are common in diagnostic meta-analysis, therefore bias in the SE is always a risk.

Studies with extreme values in sensitivity and/or specificity, along with studies for which
sensitivity estimates were greater than specificity or were similar in magnitude to specificity,
also had the biggest individual effect on the unweighted Moses and HSROC models. This
was because these studies lie around the edges of the dataset; studies with more extreme

values having the greatest effect on an analysis.

The group to which these studies were allocated according to covariate in turn impacted on
the difference in model parameters between groups and the complexity of the differences
between models. In particular, the relationship of the study with the highest sensitivity and
very high specificity (study 14 by Chedore and coIIeagues,152 located at the far top left of the
ROC plot) to other studies in the same subgroup seemed to particularly influence the
importance of the shape term. For example, for the investigations by index test blinding and
test type, this study was surrounded by others in the same subgroup, and the main effects of
the covariate were on accuracy and/or threshold differences. For the reference test used
covariate, the other studies in the same subgroup as Chedore all had high specificity but

generally much lower sensitivity so that the Chedore study had the main influence on the
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shape of the SROC curve, pulling it away from that for the other subgroup. The Chedore
study was one of a small group of studies where sensitivity was greater than specificity, and

its exceptionally high DOR in relation to the others explains its strong influence on this review.

A further finding from the analyses presented here is related to the misleading nature of the
estimation of accuracy and differences in accuracy at Q*. The primary analyses showed a
considerable difference in DOR according to where it is estimated and potentially more
importantly huge differences in relative DORs when comparisons by covariate are made, to
the extent that the direction of effect can change according to where DOR is estimated. This
could lead to highly misleading conclusions. For the primary analyses, estimation of DOR
near to the centre of the data (e.g. using the mean threshold value as was done here), would
seem to give a more representative picture of the data. For the investigation of heterogeneity,
however, the choice of point at which to estimate RDOR is more complex, especially if the
operating points of the subsets of data are not in close proximity to each other and

furthermore, if the SROC curves cross near to the centre of the data.

This and the other findings discussed above require further exploration in other datasets to try
to identify how commonly each occurs and ultimately to make some recommendations as to
whether for the advanced models, an interaction of covariate with shape aids review
interpretation or simply “over-models” the data and whether, in general, either Moses model
provides a better approximation to the advanced model results or not. If supported further, the
under-estimation of effects from the weighted Moses model in comparison to the unweighted
model and the under-estimation of effects from both models compared to the advanced

models will have considerable implications for systematic reviews, both past and future.
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5 Are-analysis of previously published systematic
reviews to identify spectrum effects

This chapter reports an empirical study replicating the methods used in the previous chapter
on data obtained from a large sample of previously published systematic reviews of
diagnostic tests. The aim is to determine the extent to which the findings in Chapter 4 can be
generalised, i.e. to examine the extent to which the meta-analytic models disagree and under

what circumstances and to compare the identification of spectrum effects.

5.1 Methods

The methods followed were similar to those presented in Chapter 3 and Chapter 4 with the

following differences and additions.

5.1.1 Literature search
The Centre for Reviews and Dissemination’s Database of Abstracts of Reviews of Effects

(DARE) was again used to identify existing systematic reviews of diagnostic studies.
Diagnostic reviews indexed on DARE up to December 2002 were screened to identify
diagnostic reviews for inclusion in Chapter 3. This search was updated in July 2005 in order

to identify more recently published reviews.

5.1.2 Eligibility criteria
Diagnostic systematic reviews comparing a test to a reference test were included if they
presented:

1. sufficient information to allow the construction of a 2x2 contingency table for each
primary study. This information was used to calculate relevant accuracy statistics.
Studies reporting only summary accuracy statistics without sufficient raw data to allow
the construction of a 2x2 table were excluded.

2. information on at least one spectrum-related covariate for each primary study

Studies were assessed for inclusion by one reviewer. Screening was undertaken in two
stages, initially the full sample of identified reviews was screened for reviews meeting criterion
1. It was estimated that 30 to 40 reviews would be sufficient for this empirical study and that
more recent reviews might be more likely to publish spectrum-related data, therefore the
second stage was to screen reviews published between 2000 and 2005 for reviews meeting

criterion 2.

5.1.3 Data extraction
A brief data extraction form for recording relevant information from each systematic review

was designed and piloted (Appendix 18). Data were extracted on:

- primary study author and year of publication
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- the experimental test and target disorder

- 2x2 contingency table data

- data on any potential spectrum-related sources of heterogeneity per study.
The full systematic reviews were data extracted independently by two reviewers. Any

disagreements were resolved by consensus or by referral to a third reviewer if necessary.

5.1.4 Data synthesis

Data were synthesised using three meta-analytic models: the Moses model (both unweighted
and weighted by inverse variance of INDOR) and the HSROC model. The BVN model was not
applied because
a. the analyses in Chapter 4 showed that it produces results virtually identical to
those of the HSROC model
b. the BVN cannot easily allow for an interaction of covariate with shape so that it
could only be compared to the other models where paraliel SROC curves were
assumed.
The meta-analytic methods were undertaken as for the TB dataset in Chapter 4 and

described in detail in Appendix 10.

In summary, each model estimates mean accuracy (DOR) with 95% confidence intervals and
an estimate of asymmetry in the SROC curve (P-value associated with the shape term). The
HSROC model also produces an estimate of mean threshold and its 95% confidence
intervals. The models naturally estimate DOR at Q* (the point where sensitivity=specificity),
however this point is often nowhere near the centre of the data and therefore not
representative. The DORs were therefore also estimated at the average threshold, i.e. near to

the average operating point of the dataset.

As before, covariates were added to the models in two ways. First, assuming that the SROC
curves for the two groups are parallel; second, allowing the covariate to interact with curve

shape (i.e. the SROC curves will cross at some point along their length).

Differences between groups according to covariates can be assessed by:

1. differences in accuracy or the relative diagnostic odds ratio (RDOR). Both parallel and
crossing curve models naturally produce the RDOR at Q*. This value is constant along
the length of the parallel curve models, but varies along the length of two crossing curves.
This can be seen visually by the variation in distance between the curves. For the
crossing curve model, the RDOR at Q* does not necessarily adequately represent the
data, especially if the curves cross near to the centre of the data. RDOR has therefore
been estimated at the average threshold for the reference group and at the average
threshold for the comparator group. This gives RDORs near to the average operating

points of each subgroup. RDORs have been estimated at all three points to examine
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whether the differences between models vary according to the point at which RDOR is
estimated and to give a picture of how RDOR varies along the curves.
2. differences in threshold — for the HSROC method only

differences in curve shape - for the crossing curve models only

The difference in sensitivity and specificity between groups can also be estimated however,
unless one can control for differences in threshold between studies, a comparison of

operating points is not useful.

5.1.5 Comparison of meta-analytic methods

As in Chapter 4, three main model comparisons were undertaken:

A.. unweighted Moses versus HSROC

B. weighted Moses versus HSROC

C. weighted Moses versus unweighted Moses (primary analyses only)
Comparisons A and B were to determine whether either Moses method produces results akin
to the HSROC method (the benchmark). Comparison C was undertaken to identify whether
the weighted Moses method consistently underestimates the unweighted method.

Primary analyses of complete datasets

Comparison of DORs

For the overall pooled analyses, the similarity of the DOR estimates were compared by
estimating the ratio of DORs (denoted RORs) between models. These were estimated for the
DORs at Q* (the point where DOR is often estimated in reviews) and at the average threshold
(a point nearer to the centre of the data). RORs were estimated at both points to see if the

model results were more less similar at these points.

A summary of the RORs per comparison was provided using box and whisker plots. These
give a simple graphical summary, showing the central location of the data (the median), two
measures of dispersion (the range and inter-quartile range), the skewness (from the
orientation of the median relative to the quartiles) and an indication of any potential outliers.
The median ROR tells us what, on average, the bias is between one model and another; if the
median ROR is 1, there is on average no bias between the models. The IQR (denoted by the
‘box’) demonstrates the extent to which individual reviews agree or disagree with the median
result. If the disagreements are all very small, the box will be quite tight around the median; if
it is possible that reviews have large disagreements then the box and whisker will extend a

considerable distance.

Comparison of SROC shape

The extent to which the different models show similar evidence of asymmetry of SROC

curves was summarised using a ‘P-value plot'. This is a scatter plot of pairwise comparisons
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of the P-values for the shape terms for each meta-analysis, thereby comparing how two
different models measure the strength of evidence. The closer the scatter points are to the
central diagonal line, the more similar the P-values are between models. The shape
parameter in the Moses model is not directly comparable with the shape parameter in the

HSROC model so they cannot be directly compared.

Stratification of the comparison of DORs

The examination of the overall pooled analyses for the ROR at the average threshold were
also stratified by the following characteristics:

a. size of DOR, using the pooled estimate from the HSROC model as the basis for
the stratification. It was assumed that reviews with very high overall pooled DORs
included studies with high DORs and therefore with exceptionally high
sensitivities and/or specificities.

b. range in ‘S’ per review from the Moses model, to reflect variation in the threshold
for test positivity. At extremes of 'S’, the less equal the numbers of true negatives
and false positives.

c. number of zero FP or FN cells in the included studies. The higher the relative
number of zero cells per review the more biased the SE(InDOR) and the bigger
the differences between the unweighted and weighted Moses models.
Furthermore, where there are lots of zeros, the Moses models will have added
0.5 as a correction in their method, which will lead to downward bias in the
estimate of the odds ratio in comparison to the HSROC model.

d. strength of evidence for asymmetry as estimated from the HSROC model (P-
value associated with shape term)

e. strength of evidence for the importance of differences in threshold as estimated

from the HSROC model (P-value associated with threshold term)

One would expect differences between the unweighted and weighted Moses models
according to characteristics a., b. and c. Stratification by characteristics c., d. and e. might
help illuminate any circumstances under which the Moses methods can approximate the
results of the HSROC model. The stratification of the Moses comparisons by the presence of
asymmetry or threshold effects for the HSROC model would not be useful, therefore only the

comparison with the HSROC model were stratified by characteristics d. and e.
Comparison of heterogeneity investigations

Comparison of RDORs

As discussed above, for each investigation of a covariate in a review, an RDOR is estimated.
To compare between models therefore, a ratio of RDORs was estimated (denoted RROR).
Between model comparisons were made between each Moses model and the HSROC model
for the:
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* RDORs at Q* (for parallel and crossing curve models)
= RDORs at the average reference threshold (crossing curve models)
= RDORs at the average comparator threshold (crossing curve models)
A further within model comparison of RDORs between the parallel and crossing curve

versions of each model was also undertaken for the RDORs at Q*.

As the RDOR for a comparison of subgroups can sometimes be less than one and sometimes
greater than one, the summary statistics were standardised by coding to ensure that the
HSROC model always estimates an RDOR greater than one. For the comparisons where the
RDOR for the HSROC model was less than one, the inverse of the RDORs from all three
models was taken to ensure standardisation of direction. For the within model comparisons,
the summary statistics were coded to ensure that the crossing curve version of each model
always estimates an RDOR greater than one.

A summary of the ratio of RDORs (RRORs) estimated at each point per model was again
provided using box and whisker plots. P-value-plots were used to display the pairwise

comparisons of P-values for each RDOR comparison.

Comparisons of differences in shape

P-value plots were used to display the pairwise comparisons of P-values for the differences in

the shape term between models.

Comparisons of differences in threshold

P-value plots were also used to display the pairwise comparisons of P-values for differences

in threshold for the HSROC model with parallel versus crossing SROC curves.

5.2 Results

5.2.1 Summary of reviews identified
Of 331 identified reviews, 153 presented sufficient data to complete 2x2 contingency tables

per study. Of these, 97 were published between 2000 and 2005. On further examination, 29
presented detailed information on at least one spectrum-related covariate per study. The 29
reviews provided covariate information for 60 spectrum-related investigations of heterogeneity
(Table 25). Figure 24 provides a flowchart of the review selection process. Details of the
reviews and results of the primary analyses are provided in Appendix 19. Details of the

heterogeneity investigations are given in Appendix 20 to Appendix 22.
The median number of studies per review was 17 (IQR 12, 26). The median sample sizes

ranged from 20"® to 7575.7° the most commonly investigated tests were imaging tests (13 of

29 reviews) followed by clinical assessment or examination (5 reviews). The most commonly
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Figure 24 Flowchart of the review selection process
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Table 25 Summary details of review topics and covariates

Median
sample size
id | Review N (SD) Test Topic Covariates investigated
1 | Balk2001™ | 32 | 101(355) | presentation myoglobin acute cardiac ischemia definition of population
Bricker 7,575 gestational age range
2 | 2000 1" (9,324) ultrasound pregnancy setting® screened® risk status
Buchanan dangerous severe
3 | 2001™ 21 | 293(880) | clinical assessment personality disorder sample type time at risk
distal motor latency:
Chapell symptoms/presented presence of bias to selection of diseased
4 | 2002'% 13 85 (115) patient groups carpal tunnel syndrome presence of age bias easy cases patients
detection of primary
Delgado tumours in patients with unknown primary
5 | 2003 15 20 (12) F18-FDG PET metastasis tumour characteristics
Deville straight or cross leg raising
6 | 2000 ° 17 182 (928) test herniated discs previous surgery bilateral excluded® gender
Dijkhuizen
7 | 2000" 33 120 (174) | endometrial sampling endometrial carcinoma menopausal status™ symptomatic status™®
Eden
8 | 2001 7 102 (781) | palpation thyroid cancer screening source of exposure
mean apnoea-
hypopnea index, i.e
Flemons no. events per hour of
9 2003"™ 49 71 (129) sleep monitors sleep apnoea setting gender sleep mean BMI
Flobbe
10 | 2002™ 22 | 213478 mammography breast cancer patient identification
Gifford potentially reversible
11 | 2000" 11 202 (108 clinical assessment causes of dementia age setting patient identification
% urological
12 | Glas 2003* | 26 107 (76 cytology primary bladder cancer % Grade 1 tumours %Grade 2 tumours %Grade 3 tumours controls®
Gould
13 | 2001"7 35 46 (27 FDG-PET lung cancer gender age
Gould mediastinal staging of non
14 | 2003"Y 33 49 (44) PET small cell lung cancer gender age”"®
Gray toludine blue dye in visual
15 | 2000"" 14 85 (301) screening oral cancer patient identification
16 | loannidis'® 10 295 (439) out-of-hospital ECG acute myocardial infarction | patient identification age gender”®
Kittler inclusion of non-
17 | 2002™ 13 | 172(890) | dermoscopy melanoma melanocytic lesions
Koelemay peripheral arterial disease %intermittent
18 | 2001™° 19 96 (71) MRA - aortoiliac tract age gender claudication
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Median
sample size

id | Review N (SD) Test Topic Covariates investigated
vasospasm due to
Lysakowski ruptured cerebral heterogeneity of
19 | 2001™'® 7 66 (32) transcranial Doppler aneurysm population®
MSAC
20 | 2002'% 12 77 (178 cytogenetic tests fragile X syndrome gender patient identification
Nallamothu electron beam computed coronary artery disease
21 | 2001*® 14 104 (63) tomography age gender
Patwardhan Alzheimer disease
22 | 2004™ 19 43 (31) PET dementia age type of controls
Romagnuolo MRI bilary disease - detection
23 | 2003 46 63 (53) cholangiopancreatography | of stones patient identification
Sauerland
24 | 2004'% 13 219 (577 clinical examination pelvic fractures age group
Sotiriadis 4,308
25 | 2003' 12 (4,642) intracardiac echogenic foci | Down syndrome age risk setting
Varonen
26 | 2000 7 156 (74 ultrasound acute maxillary sinusitis setting
Visser
27 | 2000"® 21 404 (739) | Duplex ultrasound peripheral arterial disecase | gender age setting - country
Whitsel Bazett's heart rate- autonomic failure in mean duration
28 | 2000" 17 58 (772) corrected QT interval (QTc) | diabetes age gender % type 1 diabetes of diabetes
Wiese
29 | 2000'? 30 175 (294) | wet mount technique vaginal trichomoniasis setting™

# denotes covariates for which the overall pooled HSROC analysis could not be completed
® denotes covariates for which the parallel curve HSROC analysis could not be completed
¢ denotes covariates for which the crossing curve HSROC analysis could not be completed

N — number of studies
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investigated topic was cancer (9 of 29 reviews), followed by heart disease (3 reviews),

peripheral arterial disease (2 reviews) and dementia (2 reviews) (Table 24).

5.2.2 Comparison of primary analysis results

The HSROC analyses could not be completed for three of the 29 datasets.'?'*'%' The ROC
plots for these three datasets reveal that SROC analyses for these datasets are probably not
appropriate (Appendix 23), with data lying along the sensitivity=specificity line,'> scattered
mainly in the bottom left quadrant of the ROC space,™* or showing all studies with specificity
approaching 100%."%° The comparisons of the two Moses methods are therefore based on 29

comparisons, while the comparisons with the HSROC method are based on 26 comparisons.
Figure 25 Similarity of DOR estimates between models

Box and whisker plot showing ratio of DORs between models: median, interquartile range (box) and
range (whiskers), where weighted Moses model is compared to the unweighted Moses model
(denominator) and each Moses model is compared to the HSROC model (denominator)

10

Ratio of diagnostic odds ratios (ROR)

0.01

M (w) vs M (eq) M (eq)vs HSROC M (w) vs HSROC M (w) vs M (eq) M (eq) vs HSROC M (w) vs HSROC
ROR atQ* ROR at mean threshaold
Maximum ROR 7.78 277 1.21 1.27 481 5,51
75" percentile 0.87 0.99 0.72 0.91 1.05 0.75
Median ROR 0.67 0.78 0.51 0.71 0.94 0.55
25" percentile 0.50 0.51 0.24 0.54 0.68 0.46
Minimum ROR 0.10 0.07 0.10 0.36 0.05 0.03

ROR - ratio of diagnostic odds ratios; Moses (w) — weighted Moses model; Moses (eq) —

unweighted Moses model; HSROC - hierarchical SROC model; Q* - point where
sensitivity=specificity; mean threshold — operating point estimated using mean threshold across

studies

DOR estimates

Figure 25 shows that the weighted Moses model underestimates the results of the

unweighted model on average by about 30% (ROR at Q* 0.67; ROR at average threshold




0.71). The IQRs are similar indicating that most comparisons are similarly spread around the
median (similar levels of agreement) at Q* and at the average threshold but that the overall
range in differences in results is much greater at Q*. This indicates that when DOR is
estimated at Q* there is more scope for extreme differences between models compared to the
DOR at the average threshold.

On average, both Moses models under-estimate the DOR in relation to the estimate from the
HSROC model, with the weighted Moses model showing the biggest under-estimation of
effects. For the unweighted model, the under-estimation at the median is less extreme at the
average threshold compared to at Q*, with an ROR of 0.94 (Figure 25), indicating little bias on
average. The width of the IQR is also narrower at the average threshold but the overall range
in results is greater. This suggests that most of the data is iess biased when DOR is
estimated at the average threshold compared to at Q* (tighter IQR), but where there are

observed biases they are more extreme (wider overall range).

The weighted model, on the other hand, on average underestimates the HSROC by 45 to
50% regardless of where DOR is estimated. A similar pattern in IQR and range to that for the
unweighted model comparison can also be observed with a wider IQR at Q* (less agreement)

but narrower range (less extreme disagreements).

SROC curve shape
The extent to which the different models show similar evidence of asymmetry of SROC

curves is demonstrated from the pairwise comparisons of P-values for the shape terms in
(Figure 26).

The comparison of results from the two Moses models (Figure 26a) shows relatively poor
agreement between the models, and a tendency for the weighted model to find more
asymmetry than the unweighted model. Six out of 29 analyses with the weighted model found
asymmetry to P<0.20 when the unweighted model found no such evidence (P>0.20). Only
two of the unweighted analyses found curve asymmetry (P<0.20) when the weighted model
did not (P>0.20).

For the comparisons of the Moses models with the HSROC model, agreement is better at
lower P-values; i.e. where the HSROC model shows strong evidence of asymmetry, both
Moses models also reach similar conclusions. The HSROC model finds asymmetry to P<0.20
for 14 of the 26 reviews for which the analyses could be completed. The P-values from the

weighted Moses model agree more closely with the P-values from the HSROC model
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Figure 26 Agreement in strength of evidence for asymmetry of SROC curves
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(Figure 26¢) than do those from the unweighted model (Figure 26b). Both Moses models find
evidence of asymmetry for two analyses when the HSROC model! finds no evidence (over-
detection of asymmetry)j. However the unweighted Moses model also under-detects
asymmetry in comparison to the HSROC model for three analyses (i.e. it finds P>0.20 when

the HSROC finds P<0.20)", while there are no such examples for the weighted Moses model.

These results suggest that the weighted Moses model is more sensitive to asymmetry than

the unweighted model.

Stratification of RORs
The results of the stratification of the comparison of DORs between models are presented in

Table 26 and graphically in Appendix 24.

Moses (w) versus Moses (eq)

As anticipated from the analyses in Chapter 4, the weighted Moses model more closely
approximates the unweighted model at lower DORs and at smaller ranges in 'S’ (Table 26).
As DOR increases (the proportion of studies with exceptionally high sensitivities and/or
specificities per review increases) and the range in ‘S’ increases (bigger variation in the
threshold for test positivity) the under-estimation of the weighted compared to unweighted
model’s results increases. On average, the underestimation is less extreme when DORs are
at their highest compared to when they are between 35 and 100, however the IQR is wider
shower greater disagreement. Bias in the SE(InDOR) is common even at moderately high

DORs and ranges in ‘'S’. This data is also shown graphically in Appendix 24, Figure i and ii.

Moses models versus HSROC

The unweighted Moses results are consistently the most similar to those of the HSROC
model (Table 26). At overall pooled DORSs of less than 100 the results are identical to the
HSROC model at the median with a narrow IQR, showing on average no bias and close
agreement. At DORs of over 100, i.e. for reviews that include studies with exceptionally high
sensitivities and/or specificities, the unweighted mode! considerably underestimates the

HSROC results on average and the range in results is wider showing greater disagreement.

One explanation for this is that the reviews with the highest DORs will have the most zero FP
or FN cells. Where there are lots of zeros, the Moses models will have added 0.5 as a
correction in their method, which will lead to downward bias in the estimate of the odds ratio
in comparison to the HSROC model. The analysis by presence of zero cells in Table 26

confirms this pattern.

I See Appendix 19, analyses 13 and 25 for the unweighted model and 7 and 8 for the weighted model.
K See Appendix 19, analyses 1, 4 and 23.
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Table 26 Stratified comparison of DOR estimates between models

Number of reviews’

Moses (w) vs Moses (eq)
n=29

Moses (eq) vs HSROC
n=26

Moses (w) vs HSROC
n=26

Median ROR (p25, p75|

median ROR (p25, p75)

median ROR {p25, p75)

ALL, n= 26 (29)

0.71 (0.54, 0.91)

0.94 (0.68, 1.05)

0.55 (0.46, 0.75)

by size of DOR"

DOR < 35, n=11 (13)

0.86 (0.63, 0.96)

1.01(0.88, 1.16)

0.75 (0.49, 0.95)

DOR 35-100, n=7 (7)

0.60 (0.54, 0.76)

1.00 (0.83, 1.05)

0.53 (0.42, 0.69)

DOR > 100, n=8 (9)

0.71 (0.55, 0.96)

0.67 (0.35, 0.74)

0.49 (0.15, 0.59)

by range in 'S™*

range 3 to <6, n=7 (8)

0.76 (0.715, 0.89)

0.82 (0.68, 1.03)

0.75 (0.52, 0.79)

range 6 to <8, n=13 (14)

0.66 (0.53, 0.96)

0.88 (0.68, 0.99)

0.53 (0.49, 0.75)

range 28, n=6 (7)

0.55 (0.41, 0.86)

1.14 (1.05, 1.17)

0.51(0.42, 0.73)

by % zero cells®

<5%, n=9 (10)

0.81 (0.54, 0.98)

1.01(0.88, 1.05)

0.78 (0.53, 0.88)

5 to 10%, n=9 (9)

0.60 (0.53, 0.66)

1.04 {0.95, 1.11)

0.57 (0.49, 0.73)

>10%, n=10 (8)

0.74 (0.58, 0.96)

0.67 (0.36, 0.72)

0.49 (0.16, 0.70)

by strength of evidence of
asymmetry®

beta, p<0.10, n=9

1.05(1,1.16)

0.53 (0.49, 0.57)

beta, 0.10<p<0.35, n=6

0.84 (0.85, 1.11)

0.49 (0.45, 0.95)

beta, p20.35, n=11

0.82 (0.68, 0.95)

0.75 (0.5, 0.78)

by strength of evidence of
threshold'

theta, p<0.10, n=14

X

0.96 (0.81, 1.11)

0.61(0.49, 0.79)

theta, 0.10<p<0.35, n=5

X

0.59 (0.12, 0.83)

0.24 (0.07, 0.5)

theta, p=0.35, n=7

X

0.99 (0.75, 1.04)

0.75 (0.46, 0.78)

Comparisons are between DORs estimated at the mean threshold. The weighted Moses model is
compared to the unweighted Moses model (denominator) and each Moses model is compared to the

HSROC model (denominator)

ROR - ratio of diagnostic odds ratios; Moses (eq) — unweighted Moses model; Moses (w) — weighted
Moses model; median — ROR at the median; p25 — ROR at the 25th percentile; p75 — ROR at the 75"

percentile

 The analyses per comparison is 29 for the Moses comparisons and 26 for the HSROC comparisons.
The numbers in brackets indicate the numbers per subgroup for the Moses comparisons.

® The stratification by DOR is based on the HSROC overall pooled estimate; where the HSROC model
did not run, it is based on the unweighted Moses model result.
° based on values for ‘S’ from Moses model
? number of zero false positive or false negative cells as a percentage of the total number of cells per

analysis

€ based on P-value associated with shape term from HSROC model
"based on P-value associated with threshold term from HSROC model

The weighted Moses model on average underestimates the HSROC results, but with lower

median RORs and larger interquartile ranges (Appendix 24, Figure i). It also shows on

average greater underestimation of DOR at overall pooled DORs of over 100.

The unweighted Moses model on average underestimates the HSROC DORs at smalier

ranges in ‘S’ and slightly over-estimates the HSROC model at larger ranges in ‘S’; the IQR
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narrows. The under-estimation of the HSROC DOR by the weighted Moses model, however,

worsens as the range in ‘S’ increases and the IQR widens.

Where the HSROC model shows strong evidence of asymmetric SROC curves (P<0.10), the
unweighted Moses model DORs quite closely approximate those from the HSROC model at
the median, showing on average little bias. The IQR is quite narrow showing little
disagreement (Table 26). As the evidence of asymmetry becomes less strong, the
unweighted Moses model on average underestimates the DOR in comparison to the HSROC
model and there is more disagreement. The weighted Moses model results are in the
opposite direction, showing stronger underestimation of the HSROC DOR and less

disagreement, the more asymmetric the SROC curves.

There does not appear to be any clear pattern in results according to the strength of threshold
effects found by the HSROC model.

Summary
The weighted Moses mode! is strongly affected by the presence of bias in the SE(InDOR). It

underestimates the unweighted model by about 30%, and the underestimation is worse at
higher DOR and wider ranges in ‘S’, both circumstances in which biased SE(InDOR) would be

expected.

The weigthed Moses model underestimates the DORs obtained from the HSROC model, and
performs consistently worse than the unweighted model in the stratified analyses. However,
the weighted model is also more likely to find curve asymmetry compared to the unweighted
Moses model, and its P-values are in closer agreement with the HSROC model, compared to

the unweighted model.

5.2.3 Comparison of heterogeneity investigations

The 29 reviews meeting the inclusion criteria provided information on 60 spectrum-related
covariates (Table 25). The most commonly investigated characteristics were age (11/60),
gender (10/60) and characteristics related to patient identification (n=10). Setting was
investigated in 6 reviews. The remaining characteristics were largely more topic specific, such

as the percentage of patients with “previous surgery",123

diabetes”,"™
undertaken: the two Moses models against the HSROC model; and for the HSROC model

only, a comparison of results with and without an interaction of covaraite and shape.

the percentage with “type 1

or with “intermittent claudication™.'® For this section, three comparisons were

Of the 60 investigated covariates, the HSROC model couid not be completed for one
covariate for the parallel curve version, four covariates for the crossing curve version and for
five covariates for either model. These are denoted in Table 25. For 6 of the 10 covariates

there were insufficient numbers of studies in at least one of the subgroups (less than 5
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studies) and in the other four the studies exhibited exceptionally high specificities with varying

sensitivities. The number of covariates per comparison therefore varies:

= Either Moses model versus HSROC with parallel curves, n=54

= Either Moses model versus HSROC with crossing curves, n=51

=  HSROC parallel versus crossing, n=50

Table 27 Comparison of relative diagnostic odds ratios (RDORs) between models
M (eq) vs HSROC M (w) vs HSROC
Parallel curve models Median (IQR) Range Median (IQR) Range
Ratio of RDORs at Q* 0.87 (0.58, 1.02) 0.02, 1.93 0.80 (0.54, 1.05) 0.05, 1.90
Crossing curve models
Ratio of RDORs at Q* 0.66 (0.32, 1.63) <0.01, 76.8 0.76 (0.26, 1.45) <0.01, 35.63
Ratio of RDORs at average 0.70 (0.32, 1.26) <0.01, 4.69 0.64 (0.39, 1.10) <0.01, 11.81
reference group threshold
Ratio of RDORs at average 0.64 (0.39, 1.12) <0.01, 18.16 0.66 (0.34, 0.91) <0.01, 42.14
comparator group threshold

Each Moses model is compared to the HSROC model (denominator); IQR - interquartile range; RDOR — relative
diagnostic odds ratio; RROR - ratio of RDORs
NB: The very extreme ranges for the crossing curve models have occurred in reviews with very small numbers of

studies in one of the comparator groups leading to very big differences in RDORs between models

Comparison of relative RDORs and RDOR P-values
The comparison of RDORs between models shows that on average disagreement is common

regardless of whether a shape interaction is included or not and regardless of the point at
which the RDOR is estimated (Table 27 and Appendix 25). Both Moses models considerably

underestimate the RDORs on average from the HSROC model and to a similar extent. The

under-estimation is less for the parallel curves but nevertheless, they still on average
underestimate the HSROC RDOR by 13% (unweighted Moses) and 20% (weighted Moses).

For all estimates the IQR covers a wide range in values both over and under-estimating

RDOR, showing considerable disagreement between methods. The range of disagreement is

less for the comparisons of parallel curve models (with narrower IQRs).

Figure 27 Comparison of P-values for RDORs between parallel curve models
b. Moses (w) versus HSROC

a. Moses (eq) versus HSROC
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The visual comparison of P-values for RDORSs from parallel curve models (Figure 27)

suggests that neither Moses model has better overall agreement in terms of the strength of

evidence for the effects of covariates on accuracy. However, taking P<0.20 as providing

moderate to strong evidence of differences in accuracy, the weighted Moses model was more

likely to find strong evidence of differences where the HSROC model finds none (7 out of 54
investigations found P<0.20 when HSROC found P>0.20, Table 28).

Table 28 Agreement in strength of evidence for differences in accuracy between
models (RDOR P-values at P<0.20)

HSROC P<0.2 HSROC P>0.2
Moses (eq) Moses (w) Moses (eq) Moses (w)
P>0.2 P>0.2 P<0.2 P<0.2

Paraliel curve models
(n=r54 conL:rp:/arisons) 5 (3%) Zle=d 3 (6%) 7{18%)
Crossing curve models
(F:‘E?fcitm%arisons) 7 (14%) 5 (10%) 6 (12%) 10 (20%)
g{r?)ﬁ)ftﬁ:e"‘;‘gﬁge S/hEnE 4 (8%) 8 (16%) 5 (10%) 8 (16%)
g‘gﬁ’;tﬁ:e"’;‘gage somparaior 2 (4%) 7 (14%) 4 (8%) 9 (18%)

The final column of Table 28 shows that this trend was not strongly maintained for the

RDORs from the crossing curve model with both weighted and unweighted models over and

under-detecting differences in accuracy compard to the HSROC modei.

Figure 28 Comparison of strength of evidence for differences in shape between models
(comparison of P-values for shape interaction term)

b. Moses (w) versus HSROC

a. Moses (eq) versus HSROC
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Differences in SROC curve shape between groups
For the estimation of differences in curve shape between subgroups (Figure 28a and b) there

is again little overall agreement between models. Taking P<0.20 as providing moderate to

strong evidence of differences in shape (Table 29), there were little differences between the

Moses models in the level of agreement with the HSROC model. Both unweighted and

weighted models over and under-estimated differences in shape compared to the HSROC

model.
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Table 29 Disagreement in strength of evidence for differences in shape between

models (comparison of P-values for shape differences at P<0.20)

HSROC P<0.2 HSROC P>0.2
Moses (eq) Moses (w) Moses (eq) Moses (w)
P>0.2 P>0.2 P<0.2 P<0.2
E\::):.Sc?lf)mvestlgatlons 6 (12%) 8 (16%) 4 (8%) 8 (16%)

Comparison of parallel versus crossing curve models
Figure 29 presents within model comparisons of RDORs at Q* with and without the interaction

of covariate with shape, i.e. parallel versus crossing curve versions of the models. This shows
that for each model on average, the parallel curve versions under-estimate the RDORs
compared to the crossing curve versions, by up to 50% for the Moses models and 20% for the
HSROC model. The interquartile ranges are wide for all three models, showing considerable

scope for disagreement between methods.

Figure 29 Parallel versus crossing SROC curve models: Ratio of RDORs at Q*

Box and whisker plot showing ratio of RDORs between models: median, interquartile range (box)
and range (whiskers), where crossing curve version of each model is the reference case
(denominator)

100

0.1 1

0.01 -

0.001

Ratio of relative diagnostic odds ratios (RRORs)

0.0001 ' -
0.00001 -
Moses (eq} Moses (w) HSROC
Maximum RROR 2.58 19.05 2.07
75" percentile 0.96 1.01 1.07
Median RROR 0.55 0.55 0.81
25" percentile 0.15 0.31 0.24
Minimum RROR <0.01 <0.01 <0.01

RROR - ratio of RDORs between models; Moses (w) — weighted Moses mode!; Moses (eq) —
unweighted Moses model; HSROC - hierarchical SROC model

NB: The very extreme ranges for the crossing curve models have occurred in reviews with very small
numbers of studies in one of the comparator groups leading to very big differences in RDORs between
models
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Figure 30 Comparison of P-values for RDOR between parallel (PA) and crossing curve (XG) models

a. Moses (unweighted)
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Although on average the under-estimation is less for the HSROC comparison, the choice of
parallel or crossing curve model can still considerably affect the magnitude of the difference in
accuracy that is found.

Table 30 Agreement in strength of evidence for differences in accuracy between
models (comparison of P-values for RDOR at Q* and threshold at P<0.20)

Crossing curve version P<0.2 P>0.2
Parallel curve version P>0.2 P<0.2

ACCURACY DIFFERENCES
Moses unweighted (n=60) 11 (18%) 8 (13%)
Moses weighted (n=60) 0 7 (12%)
HSROC (n=50) 4 (8%) 3 (6%)
THRESHOLD DIFFERENCES
HSROC (n=50) 6 (12%) 12 (24%)

The agreement between models in terms of the strength of evidence for the effects of

covariates on accuracy is given in Table 30 and Figure 30.

For the unweighted Moses model, agreement is poor both overall and at the more important
lower P-values: 11 of 60 investigations with the parallel curve version of the model found
P>0.20 when the crossing curve version found P<0.20, while 8 of 60 found P<0.20 while the
crossing curve version found P>0.20. The unweighted Moses model with parallel SROC
curves therefore both over and under detects heterogeneity in terms of differences in
accuracy compared to the crossing curve version. The parallel curve weighted Moses model
shows no evidence of under detection of differences in accuracy compared to the crossing

curve version but does over detect differences (7 of 60 investigations).

The comparison of the parallel and crossing curve versions of the HSROC model shows
some over-detection of heterogeneity in terms of differences in accuracy and some under
detection, but not to the same extent as for the unweighted Moses model comparison (Table
30). Four of 50 investigations with the parallel curve version of the model found P>0.20 when
the crossing curve version found P<0.20, while 3 of 50 found P<0.20 while the crossing cure

version found P>0.20.

The comparison of evidence for differences in threshold between the HSROC parallel and
crossing curve models shows no agreement at lower P-values (Table 30 and Figure 31). The
crossing curve model found moderate to strong evidence of threshold differences between
groups for 6 covariate investigations, none of which had P-values of less than 0.20 when
parallel curves were assumed. At the same time, the parallel curve model found evidence of
threshold differences to P<0.20 in 12 datasets, only two of which relatively closely agreed with

the results when curves were allowed to have different shapes.
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Figure 31 Comparison of P-values for threshold differences between HSROC parallel
and crossing curve models
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‘P-value' plot comparing the P-values for the differences in threshold between the parallel curve and crossing curve
(reference case) versions of the HSROC model.

Summary
The two Moses models underestimate the size of differences in accuracy between groups

compared to the HSROC model; the difference is less when parallel curves are modelied but
nevertheless remains. Both models find strong evidence for differences in accuracy when the
HSROC model does not (over-detection of differences), the weighted model more so than the
unweighted model. Both models also do not indicate evidence for differences in accuracy that
are identified by the HSROC model (under detection of differences). For the detection of
differences in curve shape between groups, the unweighted model most closely agreed with

the HSROC models, but still both over and under-detected such differences.

The within model comparisons of parallel and crossing curve versions of the models showed
that this choice will almost always affect a review's conclusions regarding the size of any
differences in accuracy according to a given covariate, sometimes to quite a considerable
extent. Differences in the strength of the evidence for differences also vary by choice of
model. The effect on the size and strength of the difference in accuracy is less for the HSROC

model but nevertheless occurs.
5.2.4 Selected illustrative examples — Moses versus HSROC

Primary Analyses

While the clinical implications of the under-estimation of diagnostic accuracy are relatively
simple to interpret (tests will on average appear less accurate when analysed using the
Moses methods), the implications of the over or under-detection of asymmetry are less
intuitive. SROC curve asymmetry is introduced when the distribution of test results differs
between diseased and nondiseased participants and means that accuracy (DOR) is not
constant, i.e. it varies along the length of the SROC curve. This in turn means that the

apparent accuracy of a test will vary according to the point at which the DOR is estimated.
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The HSROC model found curve asymmetry to P<0.20 for 14 of the 26 reviews analysed
(54%), suggesting that curve asymmetry is a relatively common occurrence. The weighted
Moses model agreed more closely with the HSROC model results regarding asymmetry than
the unweighted model.

Data on the use of FDG-PET for the diagnosis of lung cancer'”’

show strong evidence of
asymmetry with the unweighted Moses model (P=0.05) and no such evidence when analysed
with the HSROC model (P=0.71). The DORs at Q* and at the average threshold are 127 and
72 for the Moses model and 142 and 107 for the HSROC mode! (Appendix 19). Quite apart
from the under-estimation of accuracy, from the Moses model one would conclude that there
are considerable differences in the distribution of test results between diseased and
nondiseased, such that accuracy is not constant along the SROC curve. The HSROC model
indicates that although there may be differences in the distribution of results (there is some

variation in DOR) the differences are not statistically significant.

Heterogeneity analyses - Differences in RDORs

Where subgroup SROC curves are assumed to have the same shape (parallel curves), the
HSROC model finds evidence of differences in accuracy between groups to P<0.20 for 18/54
(33%) analyses. The unweighted Moses model has a tendency to under-detect these

differences, whilst the weighted model is more likely to over-detect differences.

An example of over-detection of differences in accuracy is provided by the review of MRA for
the detection of peripheral arterial disease.’® The weighted Moses model found some
evidence to suggest that MRA is three times more accurate in studies of participants with a
mean age of less than 65 than in those with on average older participants (RDOR 3.35,
P=0.15). The HSROC model on the other hand found no evidence of differences (RDOR
0.89, P=0.91).

Heterogeneity analyses - Differences in shape
Differences in curve shape to P<0.20 were identified by the HSROC model for 12/51 (24%)
investigations for which the analyses could be completed. Both Moses models over- and

under-detected these differences.

An example of over-detection of differences in curve shape is provided by the review of
straight or cross leg raising test for the detection of herniated discs.'® The unweighted Moses
model found strong evidence (P=0.07) that the SROC curves for patients having undergone
previous surgery were different in shape to those who had not received previous surgery. This

suggests that the distribution of test results between diseased and nondiseased differs
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between these subgroups. The HSROC model finds considerably less evidence to suggest
these differences (P=0.22).

5.2.5 Evidence of spectrum effects — HSROC parallel versus
crossing curves

If one takes the advanced models of meta-analysis as the best available tool for the synthesis
of diagnostic test studies, the choice of a parallel (HSROC or BVN) or crossing curve
(HSROC only) model is perhaps the most pertinent discussion to be had regarding the

models assessed here.

Excluding the analyses that could not be completed for either model ieaves 50 comparisons
by spectrum-related covariates. The parallel curve model found evidence of differences in at
least one parameter (accuracy or threshold) for 23 (46%) comparisons, compared to 25
(50%) for the crossing curve model (differences in accuracy, threshold or shape). Sixteen
investigations showed evidence of differences in at least one parameter using both models,

leaving a further 16 showing evidence of differences under only one model.

Of the 32 investigations showing strong effects from the covariate in question using either the
parallel or crossing curve model, 7 were related to mean age, six to gender, 4 to setting, 10 to
factors related to the identification of patients and 5 to particular clinical characteristics of the

patients in question.

The crossing curve model was more likely to find differences in accuracy at Q*, at the
average reference threshold or at the average comparator threshold (40% of investigations
compared to 32% for the parallel curve version). The parallel curve model was more likely to
find differences in threshold (24% compared to 14% for the crossing curve version), with little
overlap in results between models (only one comparison showed evidence of differences in
threshold under both frameworks). Differences in shape were identified in 24% of

investigations.

Effects from spectrum-related covariates are therefore not uncommon however the choice of
model is clearly key. Table 31 shows the differences in results between models. Where the
two models both find differences in at least one parameter (n=16), both models suggest
differences in accuracy in the majority of cases (15/16 for the parallel curve model and 14/16
for the crossing curve model; accuracy being the only parameter affected in 10 and 9
comparisons respectively). If the parallel curve model alone was employed differences in
accuracy would be identified in a further one comparison and differences in threshold for six.
However if the crossing curve model was employed, a further nine examples of differences in
at least one parameter are identified. In six of the 9, this manifests as differences in accuracy.

Allowing for differences in the distribution of test results between subsets of studies (crossing
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curve) therefore produces more evidence of differences in accuracy than assuming no such

differences in distributions exist (parallel curves). Shape is the only parameter affected in a

small number of examples (3/25).

Table 31 HSROC parallel versus crossing curve models: similarity of strength of

evidence
Difference in Parallel Crossing Difference to P<0.20
parameters P<0.20* curves curves® Both models Parallel | Crossing
N=50 N=50 only only
At least one parameter 23 (46%) 25 (50%) 16 7 9
PA XG
Accuracy 16 (32%) 20 (40%) 15 14 1
Shape - 12 (24%) -
Threshold 12 (24%) 7 (14%) 6 3 6 2
accuracy alone 11 (22%) 12 (24%) 10 9 1 3
shape alone - 3 (6%) - 2 3
threshold alone 7 (14%) 1(2%) 1 0 6 0
accuracy and shape only - 3 (6%) - 2 1
accuracy and threshold 5(10%) 0 5 0 0 0
only
accuracy, shape and - 5 (10%) - 3 2
threshold
shape and threshold - 1(2%) - 0 0
only

* analyses for which either the parallel or crossing curve models would not complete are excluded
? difference in accuracy could be at Q*, at the average reference threshold or at the average comparator threshold

Variation in findings regarding differences in threshold and the added complexity from

differences in shape complicate comparisons between models. Details of the results of the

heterogeneity investigations are presented in Appendix 20 to Appendix 22. For illustrative

purposes, two examples where differences in two or more model parameters were found are

presented below.

Firstly, in a review of PET scanning for the detection of Alzheimer disease dementia,’™* the

parallel curve version of the HSROC model finds no evidence of differences in accuracy

according to whether healthy or diseased controls are recruited to the study (RDOR 1.91,

P=0.39). When crossing SROC curves are modelled (i.e. the distribution of test results in

diseased and nondiseased can vary between subgroups), some evidence of differences in
accuracy by type of controls used is found (RDOR at Q* 5.70, P=0.12; RDOR at reference
threshold 0.68, P=0.48; RDOR at comparator threshold 4.57, P=0.26). For this example the

evidence for differences in curve shape and threshold between subgroups was not very

strong (P=0.26 and P=0.37, respectively).
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in a second example, stronger evidence for differences in curve shape (P=0.04) and
184

threshold (P=0.09) between subgroups was identified. = For this review of sleep monitors for
the diagnosis of sleep apnoea, the parallel curve HSROC model found no evidence for
differences in accuracy by mean body mass index (BMI) above or below 30 (RDOR 1.54,
P=0.48). However when the curves had different shapes, a more complex picture emerges. At
Q*, studies of patients with a mean BMI of 30 or less were 11 times more accurate than those
in patients with a mean BMI of greater than 30 (RDOR 11.07, P=0.12). The RDOR at the
comparator group mean threshold was in the same direction (20.71, P=0.27), but at the
reference group mean threshold sleep monitors were less accurate in studies with a lower
mean BMI (RDOR 0.56, P=0.08). This example is similar to the example by reference test in
Chapter 4; the SROC curves cross near to the centre of the data and additionally cross near
to the comparator and reference group mean threshold points. The difference in accuracy

depends on the point at which the RDOR is estimated.

5.3 Discussion
The purpose of this chapter was to determine the extent to which the findings in Chapter 4

could be generalised i.e. to examine the extent to which the meta-analytic models disagree
and under what circumstances, and to determine whether spectrum-effects are more easily
identified using any one of the methods. It should again be noted that both the HSROC and
BVN models were applied to the TB data in Chapter 4 whereas for this chapter only the
HSROC model was employed. This was because, where parallel curves are modelled the two
models produce very similar results and also because the BVN model cannot easily
incorporate an interaction of covariate with shape. As a result, some of the conclusions from
Chapter 4 refer to the ‘advanced models’ whereas the discussion of the findings from this

chapter refer only to the HSROC model.

The TB analyses found for the primary data analysis:

1. considerable disagreement between the two Moses models

This was supported by the re-analysis of review data for this chapter. The weighted Moses
model, on average, consistently under-estimated the results of the unweighted model both for
the DOR at Q* and at the average threshold. Stratification of the analyses showed the under-
estimation to be exaggerated at higher pooled DORs and with wider ranges in ‘S’, i.e. in
reviews of studies with exceptionally high specificity and/or variation in threshold. These are
two of the characteristics that lead to (upward) bias in the SE(InDOR). The third such
characteristic is unequal numbers of diseased and nondiseased participants, but it was not
possible to easily model this across multiple datasets. Weighting by the inverse of the SE
leads to these studies receiving a very low weight in the weighted Moses analyses, so that

the overall pooled DOR is lower in comparison to that of an unweighted analysis.
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There was reasonable agreement between models regarding the presence of asymmetry in
the SROC curves, however the weighted model found more curve asymmetry than the

unweighted model.

2. the unweighted Moses model results were most similar to those of the advanced models.
This was also supported by the re-analysis of review data except for the detection of
asymmetry. For estimation of DOR, the unweighted Moses model on average, only slightly
under-estimated the HSROC results (ROR 0.94). The stratified analyses however, showed
large under-estimations at the highest levels of DOR (i.e. over 100) and with increasing
numbers of zero cells. The correction for zero cells (adding 0.5 to each of the four cells) will
have led to downward bias in the estimate of the odds ratio in comparison to the HSROC

model.

There also appeared to be a trend from under to over-estimation of the HSROC DOR by the
unweighted Moses model as the range in 'S’, or variation in threshold, increased. A similar
pattern occurred with increasing asymmetry of the SROC curve with under estimations of
DOR occurring where there was little or no evidence of asymmetry and over estimations of
DOR occurring in the presence of asymmetry. This suggests that the Moses model cannot
adequately deal with studies with very high specificities nor correctly model variation in
threshold.

The weighted Moses model was more likely to find similar strength of evidence of asymmetry
to the HSROC model, however the DORs for the reviews with asymmetric curves were less
than half that of the HSROC model. The stratified analyses showed similar trends to those for
the unweighted analysis, except by range in S. As the variation in threshold increased, the
weighted model further underestimated the HSROC results.

The suggestions from the TB chapter regarding the addition of covariates to the models were
as follows:
3. where parallel SROC curves are modeled, the unweighted Moses model generally has
results more similar to the advanced models than the weighted Moses model
The reviews re-analysis data found some support for this finding but the differences between
the unweighted and weighted models was small. At the median, the unweighted model
showed slightly less bias in comparison with the weighted model, underestimating the
HSROC model RDOR by 13% compared to 20% respectively. The interquartile ranges were
almost identical, showing similar scope for disagreement with the HSROC results. The
unweighted model was more likely than the weighted model to under detect differences in
accuracy identified by the HSROC model, however the weighted model was more likely to

over detect differences where the HSROC model found none.
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4. where curves have different shapes, neither Moses model consistently approximated the
HSROC model resulls
This finding was also supported by the reviews re-analysis data. Both Moses models on
average considerably underestimated the RDORs of the HSROC model. The model that was
closest to the HSROC varied by the point at which RDOR was estimated. The interquartile
ranges were wide for all comparisons and also included over-estimations of the HSROC
RDOR. The weighted model was also considerably more likely to over detect differences in
curve shape between subgroups. This is a continuation of the feature noted in 2. above that
the weighted model detects asymmetry more sensitively than the unweighted model. This
data shows that it also detects asymmetry more sensitively than the HSROC model. However

both models also under detected shape differences identified by the HSROC model.

5. for the HSROC model, in some circumstances, the interaction of covariate with shape
made little difference to the conclusions that would be drawn from the model regarding
the importance of a covariate, but in others conflicting results arose

There is again some evidence to support this observation. The average differences between

paralle! and crossing curve versions of the models were considerably less for the HSROC

within model comparison than for the Moses comparisons, however on average, the parallel

curve version of the model under-estimated the RDOR of the crossing curve model by 19%

with an QR from 0.24 to 1.07. There were reviews for which the choice of parallel or crossing

curves made only a small difference to the RDOR, however in a considerable number, large
differences were apparent. The agreement between parallel and crossing curve models in
terms of strength of evidence for differences in accuracy was good, however, especially at
lower P-values. Allowing for a shape interaction, however does lead to an increased number

of covariates for which differences in accuracy (and in other parameters) is identified.

Both Moses models demonstrated much bigger differences in the magnitude of the
differences in accuracy between the parallel and crossing versions of the model and in the
strength of evidence of differences in accuracy. This shows that the choice of paraliel or
crossing curve model under the Moses framework, frequently has a large impact on

conclusions regarding differences in accuracy.

A further finding from the TB analyses was common and sometimes considerable
disagreement between the two Moses models regardless of whether parallel or crossing
SROC curves were modeled. This was also examined for the reviews reanalysis dataset, but
for simplicity, the data has not been presented. The observations seen for the TB data were
supported by the reviews re-analysis with the weighted model on average consistently under-

estimating the unweighted model.
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The analyses in this chapter therefore provide considerable support for the general findings of

Chapter 4. There are several implications of this data for the wider literature.

The detailed review of diagnostic test reviews in Chapter 3 showed that use of the weighted
Moses model is common. Of 64 reviews using an SROC analysis, 20% (n=13) used an
unweighted approach, 39% (n=25) a weighted model and a further 27 reviews did not specify
any weighting schedule. Not all of the weighted reviews used the inverse of the variance of
InDOR as the weight, however under estimation of test accuracy in the literature due to the

use of this weighting is clearly a problem as is over detection of asymmetric SROC curves.

Both Moses models can produce results very similar to the results of the HSROC model but
on average they are much more likely to underestimate results both for primary analyses and
for identification of differences in accuracy. Both models also over and under detect
differences in accuracy and shape. This has huge implications for the majority of existing
reviews of diagnostic tests. Taking the HSROC mode! as the benchmark, it is not too much of
an exaggeration to say many hundreds of reviews have underestimated test accuracy and

both over and under identified different aspects of heterogeneity.

These results not only potentially have real clinical significance but also may have
consequences for our understanding of different biases in diagnostic test research. Empirical
studies to identify and quantify sources of biases in diagnostic accuracy studies have used
regression models adapted from the Moses models.®*'*® It is quite reasonable to assume
that their results at the very least under-estimate the size of the biases in operation. It is likely
that spectrum effects exist and that given the appropriate data can be detected, however use
of either of the Moses methods to identify them will often lead to under-estimation of the size
of any effect and to misleading indications of the strength of any effect.

The widespread use of Q* as the point at which to estimate DOR in itself introduces
considerable bias. The Moses models are generally more biased when DOR is estimated at
Q* compared to at the average threshold (wider IQRY), although there are more extreme
biases for DOR at the average threshold for the unweighted model. For the weighted Moses
model compared to the unweighted model, the more extreme biases are at Q*, but on

average the biases are similar at Q* and at the average threshold.

The second aim was to identify effects from spectrum-related variables. The analyses here
were confined to spectrum-related variables and the presence of strong evidence of
differences between subgroups suggests that such effects can be demonstrated using meta-
analytic techniques. However, for many of the investigations only aggregated data such as
the mean age or the percentage of men or women included could be examined. There may

often be question marks over whether such variables are sufficiently good proxies for true
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spectrum-related variables. Furthermore, detection of true effects using aggregated data is

problematic and often not applicable to individual pa’tien’ts.200

At the onset of the work on this thesis, it was hypothesised that an advantage of the
advanced methods would be to identify any differential effects of spectrum-related covariates
on sensitivity and specificity. Current thinking however is that given variations in threshold
across studies it is more appropriate to compare SROC curves, i.e. to compare differences in

accuracy threshold and shape, than it is to compare operating points.

The question remaining for the advanced methods is whether an interaction of covariate with
shape should be routinely modelled or not. These results show that taking the approach of
fitting the simplest model and ignoring any potential differences in distributions of test results
between subsets of studies (difference in shape) can give a different answer to an approach
where shape differences are directly modelled. These differences in results between models
depends on the extent to which the distributions of test results between diseased and
nondiseased differ according to the covariate in question. If the two or more subsets of
studies exhibit similar patterns in these distributions, the associated SROC curves will have
similar shapes and the crossing curve version of the model will produce results more akin to
those of the parallel curve model. If the pattern in the distribution of results differs so that the
SROC curve for one subset of studies is perhaps more asymmetric than the other, the parallel

and crossing curve versions of the model would be expected to produce different results.

For the dataset used here, differences in at least one parameter were identified by both
parallel and crossing curve models for around a third of all of the covariate investigations
(16/50) and for most of these, differences in the accuracy parameter were found. Although a
similar number of additional investigations with strong evidence for differences by covariate
were identified using each model (7 for the parallel curve version and 9 for the crossing curve
version), those identified by the crossing curve model may be more clinically significant. Of
the 7 investigations for which significant differences were found with the parallel curve model
alone, one indicated differences in accuracy and six indicated differences in threshold. Of the
9 investigations for which significant differences were found only with the crossing curve
model, six indicated differences in accuracy, six in shape and two in threshold. Differences in
accuracy suggest that the subgroups are operating on two different SROC curves, differences
in shape that the relationship between the distribution of test results in diseased participants
and nondiseased participants differs by covariate, and differences in threshold that the

studies operate at different points on the curves.
The most appropriate approach to modeling, e.g. whether both models should always be

carried out or whether one should start with the simplest approach and progress to more

complex modeling if required, needs further work. The evidence presented suggests that
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although interpretation of results may be more complex when crossing curves are modelled,
there is possibly a greater risk of missing covariate effects if only parallel curves are
constructed. This question can perhaps only be addressed by simulation studies although

these in themselves would be complex to design.

The strength of this review was the number of datasets available for reanalysis. This enabled
the further investigation of observations identified from a single dataset in Chapter 4 so that
the findings can be strengthened and generalised. Further investigation might identify certain
circumstances under which the Moses methods more closely approximate those of the
HSROC method, however the ease of use of the HSROC method is now such that it or the
BVN model, should be the preferred approach. The main issue that requires further
investigation is the circumstances under which the parallel and/or crossing curve models
should be employed. Some of the extreme results from this dataset also emphasise that
there are circumstances under which meta-analysis should not be undertaken and that this

should be carefully assessed before any pooling is attempted.
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6 Discussion

Chapter 1 introduced the concept of diagnostic accuracy as the means by which diagnostic
tests are evaluated and also introduced that diagnostic tests can operate differently according
to spectrum-related characteristics. Actual clinical examples of variations in accuracy by
spectrum were presented and the mechanism of the effect explained. Namely, characteristics
such as disease severity or symptoms in diseased persons and conditions similar to that of
the target disorder in nondiseased persons can affect the response of an individual to a given
test. The mix or distribution of these characteristics amongst the participants of any given
study affects the distribution of test results in diseased and nondiseased persons and thereby
the sensitivity and specificity of the test in question. The distribution of spectrum-related
characteristics is unlikely to be constant across studies, therefore sensitivity and specificity

will vary to a greater or lesser extent between studies.

Diagnostic accuracy studies are also subject to a host of other potential sources of variation
including those related to test, methodology and threshold. It is rare for diagnostic accuracy
studies to be sufficiently large in size or to recruit a sufficiently broad spectrum of participants
to allow the influence of spectrum to be teased out from other potential sources of variation.
Systematic reviews, and particularly meta-analysis, may therefore be the best available tool to
identify the extent to which various the sources of heterogeneity, including spectrum, can
affect test accuracy. Various methods of meta-analysis may be employed, however random
effect models that specifically allow for threshold effects and for variation in test accuracy
(DOR) with threshold are preferred.

Chapter 2 discussed in more detail the sources of heterogeneity other than spectrum and
explained four methods of meta-analysis that allow for variability in threshold and for variation
in DOR with threshold. These are the Moses model, unweighted and weighted by the inverse
variance of the log of the DOR, and the so-called ‘advanced models’, the bivariate normal
model (BVN) and the hierarchical SROC (HSROC) model.

Primary analyses with all four models produces an SROC curve which can be interpreted in
terms of its DOR (a global measure of test accuracy) and shape (or degree of asymmetry).
The advanced models also produce an estimate of threshold, indicating likely position on the
SROC curve. The shape of the SROC curve depends on the distribution of test results in
diseased and nondiseased persons. If the distribution, or variance, of test results around the
mean is the same in diseased and nondiseased persons there will be no asymmetry in the
SROC curve and it can be represented by a single constant DOR. If the variance in test
results differs between diseased and nondiseased, one distribution perhaps being wider and
flatter as might occur where a study recruits a considerable proportion of patients with

advanced disease, the SROC curve will be asymmetric and the DOR will vary along it.
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Sources of variation in test results are investigated by extending the models to allow for
covariates. At the simplest level one assumes that the variances of test results in diseased
and nondiseased participants do not differ according to the covariate, i.e. the shape of the
SROC curves are the same (parallel curve models). A second level allows for an interaction
of covariate with SROC shape. This means that the variances in test results of diseased and
nondiseased persons can differ between groups; the SROC curves can therefore have
different shapes and will cross at some point along their length (crossing curves). All four
models allow the effect from covariates to be estimated in terms of the differences in accuracy
between groups (relative DOR) and differences in shape' (the distribution of test results
between diseased and nondiseased groups varies according to the covariate in question).

The advanced models also allow differences in threshold to be estimated.

Only the ‘advanced’ BVN and HSROC models - which without the addition of covariates are in

fact different parameterisations of the same model - possess the characteristics of an

‘optimal’ meta-analytic method, i.e. that a model should:

=  be bivariate in its parameterisation and should allow interpretation in terms of sensitivity
and specificity,

= use appropriate weighting to allow the different levels of uncertainty or precision
associated with the sampling variability in TPR and FPR to be addressed,

= allow for the threshold relationship or correlation between sensitivity and specificity,

= use arandom effects approach to allow for the almost inevitable heterogeneity that arises
in a systematic review of a diagnostic test or tests.

It was not known to what extent the less optimal Moses methods might approximate the

results of the advanced methods for the detection of spectrum effects.

Chapter 3 reported a methodological review of how heterogeneity has been examined in
systematic reviews of diagnostic test accuracy in a large sample of reviews published up until
2002 and in a smaller more recent sample of reviews that have used the advanced methods
of meta-analysis. This showed that less than optimal methods of meta-analysis have been
commonly employed. None of the reviews in the main sample employed the advanced
methods of meta-analysis and less than half (48%; 64/133) of those using meta-analysis
employed SROC type methods that allow for a threshold effect; the remainder pooled

individual accuracy indices.

Of the 131 reviews carrying out quality assessment, 51% (n=67) considered patient spectrum
in some way. Where sources of heterogeneity were investigated (102/133 meta-analyses),

spectrum-related variables were commonly included (68%; 69/102) and 'statistically

' Differences in shape cannot be easily modelled within the standard BVN model framework and have
not been modelled in this thesis, however the model is being developed to allow for differences in
shape.
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significant’ results reported (41/69; 59%), although often the results were not reported in detail
but referred to narratively. The small number of reviews (n=14) that reported their results in
detail and also looked at covariates related to test, spectrum and quality showed similar
percentages with statistically significant results, although the methods used to investigate
heterogeneity varied. A statistically significant impact from spectrum-related factors was
identified in 57% (n=8) of investigations, from test-related in 57% and from quality-related

covariates in 43% (n=6) of investigations.

The small number of reviews identified that used the advanced models of meta-analysis
showed overall improved systematic review methods, as would be expected from reviews
coming from academic centres of excellence. The reviews were also more likely to have
considered spectrum-related characteristics, although again this was sometimes restricted to
consideration of the presence of an adequate description of patients. This is very likely due to
lack of recording or reporting in the primary studies. Of the five reviews that examined
spectrum-related characteristics, three found statistically significant effects, supporting the
finding from the main dataset that when spectrum variables are reported to have been

considered they are often found to have a significant effect.

Of the five reviews using advanced methods that also looked at spectrum-related covariates,
three used the BVN model to examine effects on sensitivity and specificity; one used the
HSROC model to examine effects on accuracy, threshold and shape and the last used the
BVN model for the main analysis but appeared to develop a separate random effects meta-
regression model to examine the effect of the covariates on the natural log of the DOR. For
their reviews of diagnostic test accuracy, the Cochrane Collaboration recommend that the
comparison of operating points should only be undertaken where there is an explicit constant
threshold, even though similar threshold type effects could arise through differences in test
interpretation between observers, characteristics of the sample and differences in the
execution of tests. Where the explicit threshold for positivity varies between studies, the
comparison of operating points should not be undertaken as the operating points have no
direct interpretation; they are average points based on the average of the thresholds. The
differential effects of a covariate on sensitivity and specificity in these circumstances are

therefore cannot be identified.

Chapter 4 reported a detailed case study comparing the four meta-analytic methods on a
large dataset. The methods’ performance regarding primary analysis of the dataset and
heterogeneity investigations with three selected covariates were compared. The three
covariates (index test blinding, test type, a.nd reference test used) were specifically chosen to
reflect increasing levels of complexity in results. Four main observations requiring further

investigation emerged from the analyses.
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Firstly, there was common and sometimes considerable disagreement between the
unweighted and weighted Moses models both for the primary analysis and for the
heterogeneity investigations regardless of whether parallel or crossing SROC curves were
modelled. For almost all comparisons, the weighted Moses model under-estimated the results
of the unweighted model, in terms of accuracy or differences in accuracy. There was also
some suggestion that the two models performed somewhat differently in terms of detection of

differences in the distribution of test results between diseased and nondiseased (shape).

Further investigation showed that the disagreement between the two Moses models in terms
of both accuracy and shape was primarily due to bias in the standard error of the log of the
DOR or the SE(InDOR), whose inverse was used as the weight for the weighted model. The
SE(InDOR) was shown to be biased for several studies in the dataset with very high DORs so
that they had higher standard errors than might have been expected from their sample sizes.
Weighting by the inverse of the standard error meant that these studies received a very low
emphasis in the weighted Moses analysis, leading to overall under-estimation of effects in

comparison to the unweighted analysis.

Secondly, the unweighted Moses model results were more similar to the HSROC model

results than the weighted model but nevertheless still generally under-estimated effects.

The third observation was that for the primary analyses and for the investigation of
heterogeneity with no interaction of covariate with shape (parallel curve models), the BVN
model and the HSROC model produce almost identical results, as had previously been shown

mathematically by Harbord and colleagues.”®

Finally the inclusion of the shape interaction term in the HSROC model sometimes led to
different conclusions regarding the effect of a covariate and sometimes not. This appeared to
be related to the studies lying around the edges of the ROC plot. Studies with extreme values
in sensitivity and/or specificity, or studies for which sensitivity estimates were greater than
specificity or were simitar in magnitude to specificity, had the biggest individual effects on
accuracy and on shape. The group to which these studies were allocated according to
covariate in turn impacted on the difference in model parameters between groups and the

complexity of the differences between models.
Chapter 5 further explored these findings using data obtained from a large sample of
previously published systematic reviews of diagnostic tests and using only spectrum-related

covariates. The key findings of Chapter 4 were strongly supported by this re-analysis.

First of all, weighting the Moses model by the inverse variance of the InDOR led to

consistently lower results compared to the unweighted model. On average the weighted
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model underestimated the results of the unweighted model by around 30%, with considerable
disagreement between models. The stratified analyses suggested that this underestimation is
due to bias in the SE(INDOR) and hence it is likely that the weighted model results are
misleading. The circumstances under which biased SE(InDOR) might be expected are:
extreme values of sensitivity and specificity, often with zero FNs or FPs, unequal sample
sizes of diseased and nondiseased patients, and variation in the threshold for test positivity
leading to variation in the proportion of patients who are test positive. These circumstances

are common in diagnostic meta-analysis, therefore bias in the SE is always a concern.

The comparison of the results of the primary analyses also showed that the weighted model is
more sensitive to the presence of asymmetry, i.e. is more likely to suggest differences in the
distribution of test results between diseased and nondiseased and therefore variation in DOR
along the SROC curve and also that when DOR is estimated at Q* there is more scope for

extreme differences between models compared to the DOR at the average threshold.

The implications of these findings are considerable. Chapter 3 found that use of the weighted
Moses model is common. Not all of the identified reviews used the inverse of the variance of
INDOR as the weight, however under-estimation of test accuracy in the literature due to the
use of this weighting is clearly a big problem as is over detection of asymmetric SROC

curves.

Secondly, aithough the unweighted Moses model results were generally more similar to the
HSROC model than the weighted Moses model, it cannot be relied upon to approximate the
results of the ‘optimal’ HSROC model. For the primary analyses, when DOR was estimated at
the average threshold there was on average little bias in the unweighted method compared to
the HSROC method, however there was still considerable scope for disagreement between
models and furthermore the biases could be quite extreme. At high DORSs, the unweighted
Moses model underestimated the HSROC model on average by 33% and in addition the
differences ranged from under- to over-estimation as the range in ‘S’ increased, suggesting
that the Moses model cannot adequately deal with studies with very high specificities nor

correctly model variation in threshold.

For the investigation of heterogeneity, the unweighted Moses model consistently
underestimated the differences in accuracy that were observed with the HSROC model. The
underestimation was less when parallel SROC curves were modelled. The two models aiso
differed in terms of their indication of the strength of evidence for differences in both accuracy
and shape so that the unweighted Moses model found evidence for such differences when
the HSROC model did not, and also did not detect differences that were identified by the
HSROC model.
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These results have considerable implications for the majority of existing reviews of diagnostic
tests, casting some degree of doubt on the results of the many hundreds that have used the
Moses model and especially the weighted Moses model to analyse their data. The presence
of extreme differences in results between the Moses and HSROC model are particularly
concerning, especially as one cannot necessarily predict the circumstances in which this
might occur. Chapter 3 showed that up until 2002 at least, around half of diagnostic meta-
analyses on the DARE database (i.e. reviews that had passed certain quality standards)
employed SROC methods other than the HSROC method. The remaining half used methods
that do not even allow for threshold effects.

Finally, the suggestion from Chapter 4 that allowing for differences in the distribution of test
results between diseased and nondiseased by covariate (shape differences) sometimes
affects the conclusions that would be drawn from an analysis and sometimes not was also
supported by the reanalysis of review data in Chapter 5. There were differences in RDOR
between parallel and crossing curve HSROC models however, the agreement in terms of
strength of evidence for differences in accuracy was good, especially at lower P-values. This
implies that although the magnitude of differences between groups may vary between
models, the inclusion of a shape interaction term does not necessarily change the strength of

evidence for differences in accuracy.

A key issue for the crossing curve model is the variation in RDOR along the curves. RDOR is
most commonly estimated at Q* however this is not necessarily representative of the majority
of the data. The alternatives presented here were to estimate RDOR at the average threshold
of the each subgroup of studies, however where there are strong differences in shape so that
the curves cross near to the centre of the data and where the expected operating points of the
subgroups are some distance apart, the direction of effect can change according to where
RDOR is estimated. It is potentially highly misleading to rely on estimates of DOR or RDOR at

Q* alone.

It is not clear whether potential differences in the distributions of test results (differences in
shape) should be routinely modelled or whether the more simple parallel curve approach will
generally suffice. Differences in the distributions of test results were identified for 24% of
heterogeneity investigations undertaken for Chapter 5. It is not known whether similar findings
would occur for analyses of test or quality-related variables. It might be that in circumstances
under which one might anticipate differences in the distribution of test results, such as for
spectrum-related characteristics, both simple and more complex models should be

constructed.

For example in Chapter 4, the comparison of the TB dataset according to the type of

reference test used is likely to show differences in the distributions of test results because of
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the differing definitions of disease according to whether culture alone is used to indicate the
presence of TB or whether a combined reference standard (culture plus clinical examination
and other tests such as chest x-ray) is used. This is because culture is a far from perfect gold
standard; a proportion of patients who are culture negative will in fact be found to have TB.
Using a combined reference standard to indicate the presence of TB includes these patients
as disease positive (along with a few patients who have clinical signs and symptoms similar to
TB but do not in fact have the disease). This will lead to a larger number of diseased patients
than would occur if culture alone was used. Because PCR amplifies the presence of
mycobacterial DNA it is less likely to be able to do this in samples that failed to grow the
mycobacteria (culture negative samples). The distribution of PCR test results will therefore be
affected as the number of false negatives will be increased compared to if culture alone was

used as the reference test.

The optimal approach for the investigation of heterogeneity requires further investigation

however the question can perhaps only be fully addressed by simulation studies.

The final observation to make is the frequency of findings of strong evidence of effects from
the spectrum-related variables that were investigated. Strong evidence of effects on at least
one model parameter were identified by the parallel or crossing curve HSROC model for over
half of the investigations conducted (32/50). This could have considerable implications for the
use of tests in practice. For example, the skin test for the detection of TB infection is

interpreted differently according to whether the patient has had a prior BCG vaccination.

It was notable also that both for the analyses in Chapter 5 and the review of reviews in
Chapter 3, the spectrum-related variables investigated were not necessarily truly
representative of the case mix of the patients; prevalence, for example, or age being
commonly considered. One of the main challenges in the investigation of heterogeneity in
systematic reviews are limitations in the primary study data. It can be particularly problematic
to identify, let alone record and publish true spectrum-related characteristics in primary
studies. Characteristics related to patient presentation and previous test results are likely to
be the most relevant, however variables that are easier to measure and record such as age

and sex are often used instead as proxies.

The STARD initiative™® (Standards for Reporting of Diagnostic Accuracy) to promote the
completeness and quality of reporting of diagnostic accuracy studies should help to improve
the reporting of spectrum-related variables in the future, however meta-analysts must take
care in setting their review question and defining their inclusion criteria in addition to being
aware of the limitations in the data that is available. One of the key stages of any review is to
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describe the characteristics that describe the clinical problem to be addressed,” i.e. which

clinical presentations would be recognised as suggesting the clinical problem? Over-
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restrictive inclusion criteria to certain subgroups of patients make it impossible to investigate

key spectrum issues further down the line.

Although it can be argued that on an individual basis age and sex can be good proxies for
true spectrum characteristics, when variables such as these are aggregated across
participants, ‘'ecological bias’ can occur, i.e. where there is insufficient data on which to fully
investigate interactions between a covariate and a treatment effect or test accuracy. For
example if all studies in a review demonstrate similar mean age of participants, a meta
regression will fail to detect effects from age, however that does not mean that age does not

influence effects.?®

One solution to this problem is the use of individual patient data (IPD) analysis where the
reviewer obtains raw study data directly from the original authors. This method is seen by

190.202 55 it minimises

many as the gold standard for meta-analyses to identify treatment effects
bias and increases the power of statistical analysis and reanalysis, and its use has increased
over the years.zoo'zoz’203 The application of IPD analysis to diagnostic accuracy reviews is rare,
however its potential benefits have been recognised.'***** Simulation work in the field of
RCTs has shown that the statistical power of meta-regression techniques is dramatically and
consistently lower than that of IPD analysis.53 Nevertheless, care must be taken in the design
and analysis of IPD studies. A matched comparison of subgroup analyses undertaken using
IPD analysis and conventional analysis of RCTs demonstrated that although reviews using
IPD analysis were more likely to investigate patient and diseased-related characteristics than
those using conventional analysis, direct modelling of the raw data was rarely reported.?*
More commonly, “two-stage” analyses were undertaken such that the individual patient data
was stratified by trial. This approach does not fully utilise the potential statistical power of the
data available. Considerable time and resources are also required and IPD analysis should

not be undertaken lightly.

The ideal solution for the assessment of diagnostic accuracy is for within study comparisons.
Even with improved recording and reporting of study and patient characteristics, systematic
reviews may never be the best way to get evidence of spectrum effects due to dilution from
other confounding factors. It is possible that more important test- or methodology-related
characteristics might affect accuracy in such a way as to dominate any spectrum effects. In
RCTs, for example, lack of allocation concealment during the randomisation process
introduces so much bias as to supersede any differences in patients. Within study
comparisons require diagnostic studies to be sufficiently large, prospective, well-designed and
multi-centre, evaluating a number of diagnostic tests (or variations on a test), thereby allowing
test accuracy to be established as well as allowing the investigation of the influence of patient

and other characteristics on accuracy.
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In the meantime, although questions remain regarding the optimal approach to take with the

advanced methods, such as the inclusion of interactions of covariate with shape in

heterogeneity investigations, the results presented here lend further support for moves to

increase the use of the advanced methods. The October 2007 launch of the new Cochrane

Collaboration database for reviews of diagnostic test accuracy in the Cochrane Library gives

reviewers much needed guidance on conducting diagnostic systematic reviews and meta-

analyses. The complexity and challenges of conducting diagnostic accuracy reviews is

recognised and reinforced by the requirement for the review author team to consist of authors

with certain areas of expertise, including content expertise, review expertise and statistical

expertise. Both the Moses and the advanced methods can be employed, however the

handbook will include guidance on using the advanced methods. This will help to spread

knowledge and understanding of the advanced methods.

Research implications

Simulation studies are needed to find out which methods actually perform best and, if
possible, the circumstances under which parallel or crossing curve models are more
appropriate, i.e. are there circumstances or types of covariate for which which, as a
general rule, one might expect differences in the distributions of test results in
diseased and nondiseased?

Large scale diagnostic accuracy studies should be performed to allow within study

comparison of accuracy in different subgroups

Policy and practice implications

Reviewers should be encouraged to use the more optimal advanced methods of
meta-analysis in place of the Moses method and to carefully consider potential
sources of heterogeneity including spectrum.

The potential importance of spectrum effects in terms of the practical use of tests
should be emphasised to clinicians. Clinicians also need a better understanding of
summary ROC methods and their outputs, such as DOR and RDOR, and hw these
can be applied to their clinical practice.

Investigators conducting primary studies of diagnostic tests shoud be encouraged to
appropriately record actual spectrum characteristics insteadof using proxies and to

follow the STARD guidelines for reporting of their studies.
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Appendix 1 Calculation of diagnostic accuracy statistics

i) Contingency table (2 x 2 table)

+ ve
Index
test
result

-ve

Reference standard

+ve -ve
Diseased Nondiseased
True positives a | b False positives

Total test positive

False negatives ¢

d True negatives

Total test negative

Total diseased

ii) Diagnostic accuracy indices

Total nondiseased

Sensitivity

Specificity

Positive predictive
value (PPV)

Negative predictive
value (NPV)

Positive likelihood
ratio (LR+ve)

Negative likelihood
ratio (LR-ve)

Diagnostic odds
ratio

(DOR)

Proportion of diseased who have
positive test results

Proportion of nondiseased who have
negative test results

Proportion with positive test result
who actually have the disease

Proportion with negative test result
who really don’'t have the disease

Likelihood of a person with disease
having a positive test result than a
person without disease

Likelihood of a person with disease
having a negative test result than a
person without disease

The ratio of the odds of a positive test
result in a patient with disease
compared to a patient without disease

True positives / Total diseased

a/(a+c)

True negatives / Total nondiseased
d/(b+d)

True positives / Total test positive
a/(a+b)

True negatives / Total test negative
d/(c+d)

(True positives / Total diseased) / (False
positives / Total nondiseased)

sensitivity / (1 — specificity)

(False positives / Total diseased) / (True
negatives / Total nondiseased)

(1 — sensitivity) / specificity

(True positives x True negatives) /
(False positives x false negatives)

LR +ve /LR -ve
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Appendix 2 Specification of Rutter and Gatsonis HSROC model

The two-level random effects model is formulated in terms of the probability () that a patient
in study i with disease j has a positive test result, where j=0 for a patient without disease and

j=1 for a patient with disease.? In the first level of the model the precision of the estimates of
the proportion test positive according the numbers diseased and not diseased in each study is
taken into account. In the second level the pattern of estimates of accuracy is modelled using

the following non-linear regression equation:

logit(r ;) = (9,. +a, dis; )exp(— B a’is,.j)

where 7; is the proportion test positive. The model yields parameter estimates o {the mean

of the implicit threshold), & (the mean log diagnostic odds ratio) and ﬁ which allows for

asymmetry in the underlying SROC curve by allowing the logDOR to vary with implicit

threshold. If the threshold and log diagnostic odds ratio parameters are fitted as random

effects, associated variances are also estimated assuming Normal distributions of 6, and a;.

A summary ROC curve can be constructed by computing values of sensitivity across the

range of specificities using the following equation:
1

1+ exp[— o exp(-0.5 ﬁ )— M[MJ exp(— ﬁ )}
specificity

Sensitivity =
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Appendix 3 Specification of bivariate normal model
The BVN model as expressed by Reitsma and colleagues90 considers individual studies (I =
1, ... , k) with sensitivity (p,,;) determined in N, individuals with the target disorder and

specificity (pg;) determined in Ng individuals who do not have the target disorder.

The first level of the model incorporates the precision with which sensitivity and specificity

have been measured in each study.

In the second level a random effects approach is used, assuming that the true logit
sensitivities for the individual studies are normally distributed around some common mean
value p,; with a between study variability of ozA. The same random effect assumption is made
for true logit specificities, with mean value yg; and between study variability of o?s. The
potential correlation o5 between sensitivity and specificity is explicitly included into the

analysis.

Combining two normal distributions that can be correlated leads to the following bivariate

ek e (22

The model yields parameter estimates for:

normal model:

¢ mean logit sensitivity (ua), mean specificity (4g) and their 95% confidence intervals
o estimates of between study variability in sensitivity (0°A) and specificity (o), and

¢ an estimate of the covariance between sensitivity and specificity (0ag)

145




Appendix 4 Spectrum-related

items used in reviews undertaking quality assessment (n=131)

0 £ o o € a
825 |32 | 28 |82 3¢
BeB | E5 | €5 |82 | %
552 | 88|88 |EE | SE
" ooaq S ~
Quality s ° ° o n
Review assessment tool Spectrum related item(s)
Adams, 1998°° Haynes 1995 N v N Grade A: Studies with broad generalisability to a variety of patients and no significant flaws in research methods: sample size >70,
Author's own patients drawn from clinical relevant sample with clinical symptoms completely described, diagnoses defined by an appropriate
reference standard, PET studies technically of high quality and evaluated independently of references diagnosis
Grade B: Studies with narrower spectrum of generalisability, with only a few flaws that are well described: > 70 patients, more
limited spectrum of patients, free of other method flaws that promote interaction between test resuits and disease determination,
prospective study
Grade C: Studies with several method flaws: small sample size, incomplete reporting, retrospective studies of diagnostic accuracy
Grade D: no credible reference standard, test results and determination of final diagnosis not independent, source of patient
cohort could not be determined or influenced by test result, opinions without substantiating data
Anand, 1998 Holleman 1995 - Not considered
Attia, 1999°° Authors' own - Not considered
Bader, 2001%"" Authors’ own - Not considered
Badgett, 1997 Modified Holleman - Not considered
1995
Badgett, 1996° Authors’ own V* Did the population include a continuous spectrum of patients that included normal patients?
Bafounta, 20012 Irwig 1994; V* Spectrum of included patients well described (with a spectrum of melanoma lesions and lesions commonly confused with
Cochrane 1996 melanoma)
Balk, 2001747 Authors own V* For generalisability assessment categories of populations/settings:
| - included all pts with signs/symptoms suggestive of ACI, such as chest pain, shortness of breath, jaw pain, acute puimonary
edema etc
Il - chest pain as inclusion criteria
It - included pts with chest pain but excluded those with clinical of ECG findings diagnostic of AM}
IV - all pts hospitalised or that used additional criteria to enrol highly selected subpopulations or retrospective studies
Setting described
Bastian, 1998°" Holleman 1995 as - Not considered
inclusion criteria
Bastian, 1997 Holleman 1995 - Not considered
Becker, 1996°° Becker 1989 V* The subjects studied represented the complete spectrum of patients with suspected DVT or PE, including those with and without
disease.
Results of tests should be stratified by the extent and severity of DVT or PE.
The reproducibility of the D-dimer results should be evaluated in a setting where the test is likely to be used.
Bell, 1998°™ Cochrane 1996 v Description of the study with respect to major risk factors, which may affect the generalisability of the results to other populations
Berger, 2000 Authors own v Setting - studies divided into those in which a (random) sample of the popl was invited for screening and those in which patients

were referred for gallbladder investigation because of abdominal symptoms

Spectrum - patients in hospital-based studies were classified as 'mild disease’ if so described or if elective referrals, and as
'serious disease' if pts were so described or they were emergency referrals or hospitalised pts. The definition 'no disease' was
applied to all studies based in general population

Patient characteristics

Berry, 1999°™

Authors own*"

Are the study group's clinical, pathological and co-morbid details described? i.e. severity and chronicity of symptoms, sex ratio,

age range and mean age, type and location of di for those receiving gold standard, presence/absence of co-morbid
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Review

Quality
assessment tool

Complete
lappropriate

spectrum
Sample
described
Setting
described
Participant
sampling
Subgroup
analysis

Spectrum related item(s)

conditions

Berry, 2002%

Authors own

Various patient selection biases considered, including referral bias, patient filtering bias, patient cohort bias {description of clinical,
pathologic and co-morbid details)

Blakely, 1995°™ Modified Sackett v Site of patient enrolment (radiology vs surgery)
e 7t |1\A9E:1 55 E t §dpect;um of patients enrolled
onis, ulrow - ot considere
Bradley, 1998°™ | Authors own - Not considered
Buntinx, 1997 Authors own - Setting
Age distribution and sex ratio
Cabana, 1995°" Authors own (as - Not considered
inclusion criteria)
Campens, 199777 | Authors own - Details concerning patient selection and setting were reported for each study
Cher, 20017 Authors own - Not considered
Chien, 1987 Author's own - Not considered
Condg;Agudelo, Authors' own - Not considered
1998
Cuzick, 1999% Authors own (not a v Selection of control groups
formal assessment)
Da Silva, 1995 Authors own V* ideal popl: consecutive infants enrolled prospectively who presented with clinical signs suggestive of sepsis admitted to a neonatal
intensive care unit
2nd best: consecutive infants who had in the past been evaluated for sepsis in a neonatal intensive care unit , enrolled from
hospital records
worst: nonconsecutive
De Bernardinis, Authors’ own - Not considered
1999
de Bruyn, 20017 Authors own N Appropriate spectrum (not further defined)
de Vries, 1996°° | Authors own - Not considered
Deville, 2000™° Cochrane 1996 V* Spectrum of disease and non-disease given; Enough information to identify seffing. Duration of illness before diagnosis; Previous
tests/referral filter; Comorbid conditions in diseased and nondiseased.
Devous, 1998”7 Authors own - Not considered
Dinnes, 2001%®° Authors own - Not considered
2D(i)\{)a1l§§sran, gxistin1gggr51e<é<lists: - Not considered
unn , Guyatt
1992, Cochrang
1996
Ebell, 20007 Authors own (as - Not considered
inclusion criteria)
Fahey, 1995 Authors own - Clinical use: follow-up (i.e. prompted by previous Pap test result) vs. screening;
Fiellin, 20007 Authors own - Adequate description of spectrum if included information on: demographics (age and sex distirbution); comorbidity {medical and
psychiatric); and eligiblity criteria and number of eligible and screened subjects (i.e. participation rate)
Analysis of pertinent clinical subgroups - as test accuracy can vary according to clinical or dempographic characteristcis
Fischer, 2001°%° Adams 1996 \* Patients drawn from a clinically relevant sample (not selected to include only severe disease) with clinical symptoms fully
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Complete
lappropriate
spectrum
Sample
described
Setting
described
Participant
sampling
Subgroup
analysis

Quality
Review assessment tool Spectrum related item(s)
described.
Fleischmann, Authors own (ref - Not considered
1998" Begg 1998)

Fowlie, 1998°"°

Authors own

Did the population studied include an appropriate spectrum of babies to whom the test would be applied in practice?

Garzon, 2001%"

Authors own (as
inclusion criteria)

Not considered

Gianrossi, 1990

Wachter 1988

Not considered

Gottlieb, 19997

Authors own (as
inclusion criteria)

Not considered

Gould, 2001™

Adapted Kent 1992

Not considered

Gronseth, 20007

Authors own

Setting

Hallan, 1997°

Authors own

< < |

Prevalence and degree of disease, clinical setting

Heffner, 19957

Irwig 1994

Generalisability: assessed studies for reporting of characteristics including patient age, presenting complaints, pneumonic
pathogen, comorbid lung disease, comorbid underlying conditions, drug therapy resulting in immunosuppression, duration and
severity of iliness, and blood values for pH, glucose, and LDH obtained concomitant with pleural fluid values.

Heffner, 1997

Authors own

Assessment of generalisability was assessed by noting whether sufficient clinical information, such as age, gender, and
underlying medical conditions was provided to allow the reader to determine if the study results could be generalised to their
population

Cohort assembly (presence of an adequate spectrum of patients and the detail by which the assembly of the cohort was
described)

Hider, 199977

New Zealand
National Health
Committee

Not considered

Hobbs, 1999°®

Reid 1995

Not considered

Hoffman, 2000™°

Authors own

Spectrum of study patients: judged on age, race, sex, digital rectal exam findings, urinary symptoms, presence of benign prostatic
hyperplasia, and cancer stage, plus explicit mention of eligibility criteria

Hooft, 200172

Cochrane 1996

< | P N}

Appropriate clinical sefting and patients spectrum

Hrung, 1999™°

Author's own

Not considered

Huicho, 20027

Modified Mulrow
1989

Were the subjects symptomatic? If so were they assessed?

Did the author describe the age, sex and symptoms of their cohorts or at least state cohort was ‘unselected”?

Did investigators assemble population-based cohorts or did they assemble their cohorts from patients who had been referred for a
urine culture?

What was the age of the cohort?

What % of cohort was male?

Where did the examinations take place: hospital, clinic, in the field or at laboratory?

Huicho, 1996°%

Mulrow 1989

Were pts symptomatic? If so, were they assessed?

Did authors describe age, sex, and symptomatology of their cohorts or did they at least state that their cohorts were ‘unselected?
Did investigators assemble popi-based cohorts or did they assemble their cohorts from pts who had been referred for a stool
culture (fecal microbiologic study or other test)

What was the age of the cohort; what % were male; what other health or comorbid conditions characterised the cohort?

Where did the examinations take place? Hospital, clinic, in the field or at laboratory?
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Pz k-] k-] = a
$£5 |42 |22 | EE| 3%
Eo8 | E5 | €5 | S8 | 2%
582 |58 |48 |E5 |52
. [S3- S0 n©
Quality K © © a
Review nent tool Spectrum related item(s)
loannidis Authors own? N+ - v - - For generalisability assessment categories of populations/settings:
20012924 (reference lrwig I -included all pts with signs/symptoms suggestive of ACI, such as chest pain, shortness of breath, jaw pain, acute puimonary
1994) edema etc
Il - chest pain as inclusion criteria
Il - included pts with chest pain but excluded those with clinical of ECG findings diagnostic of AMI
IV - all pts hospitalised or that used additional criteria to enrol highly selected subpopulations or retrospective studies
Setting described
loannidis, As above V* - v - - Setting described
2001A 89209 Plus separate 4-category scale to group populations and settings (see below). For generalisability assessment categories of
populations/settings:
| - included all pts with signs/symptoms suggestive of ACI, such as chest pain, shortness of breath, jaw pain, acute pulmonary
edema etc
11 - chest pain as inclusion criteria
il - included pts with chest pain but excluded those with clinical of ECG findings diagnostic of AM}
IV - all pts hospitalised or that used additional criteria to enrol highly selected subpopulations or retrospective studies
Also considered differences in prevalence of ACI or AMI as way to determine baseline risk in the 4 population categories
Kearon, 1998™" Authors own - used - - - - - Not considered
as inclusion criteria
Kim, 2001™" Irwig 1994 - - - - - Not considered
Kinkel, 1999 Authors own - - - - - Not considered
Kittler, 2002™ Authors own - - - - - Not considered
Klompas, 2002”® | Refer to previous - - - - - Not considered
articles in series
(JAMA) but give no
reference
Koelemay, Authors own - v - - - Clear definition of study population
2001
Koe!emay Authors own - - - - - Not considered
1996%
Koumans, 1998% Authors own N v - N - 4. Clinical description of sample (whether description of source and characteristics of study sample was complete)
5. Assembly of population (adequate spectrum; sufficient description of assembly; independent application of reference test)
Kowalski, 2001™ Authors own - - - - - Not considered
Kwok, 1999% Authors own - - - - Clear definition of selection criteria and presentation of participant characteristics
Lacasse, 199977 Authors’ own - - - - - Spectrum not included in VA, but authors stated that by only including studies with consecutive pts aiso ascertained that the pt
sample included an appropriate spectrum of pts.
Lau, 1999°® Authors own - - - - - Not considered
Law, 1998™ Authors own - N - - - Subject: score 1 point for description of each of age (mean, range or SD), gender and ethnicity or socio-economic status
Sample from general population
Lederle, 19997 Holleman 1995 \/ - - - - Patients suspected of having the target condition

Liedberg, 1996”"

Authors own

Not considered

Lindbaek, 2002™"

Cochrane 1996

Not considered

Littenberg,
1995%%2

Authors own

Patient sources examined to assess referral bias
Inclusion/exclusion criteria examined to generalisability
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Complete
lappropriate
spectrum
Sample
described
Setting
described
Participant
sampling
Subgroup
analysis

Quality
Review assessment tool Spectrum related item(s)
Loy, 1996 Author's own - Not considered
Lysakowski, Adapted Lijmer N Homogeneity of study population (same vs different pathoiogies)
2001 1998
MacKenzie, Authors own Not considered
1996
Mango, 1998 Authors own Not considered

Mayer, 1997°>°

Sackett 1991

Spectrum of pigmented skin lesions, study sefting, patient demographics, prevalence of melanoma, proportion of pigmented skin
lesions in which no dermatoscopic diagnosis could be made.

McCrory, 1999'

Authors own

Description of disease spectrum
Avoidance of bias in sample selection

McGee, 1999%°

Authors own?

Pts suspected of having volaemia

McNaughton
Collins, 2000%7

Reid 1995

Not considered

Metlay, 19977

Authors own

Patients suspected of having CAP (Level |)

Mol, 19977

Authors own

Not considered

Mol, 19987

Author's own

Not considered

Mol, 1998™°

Authors' own

Not considered

Mol, 1999

Authors own

Not considered

MSAC, 1999

Authors own

Not considered

Mullins, 2000™

Authors own

Sufficient description of selection process; sufficient description of patients; sufficient description of non-enrolled patients;
description of extent of di such that resuits could be stratified by location or severity; reporting of non-PE diagnoses

Muris, 1994

Authors own

The study is done in a setting relevant for a general practitioner
There is a sufficient variation (spectrum) in quantity and severity of diseases
Intra-observer variability of recorded symtoms measured (relates to test variation?)

Muris, 19927

Authors own

Setting relevant to GP

Mustafa, 2002

Jaeschke, 1994

Broad spectrum included

Nailamothu, Authors own Not considered
2001'*
Nanda, 2000™’ Authors own Not considered

Nuovo, 19977

Authors own

Did patient sample include an appropriate spectrum of mild and severe, treated and untreated disease in addition to patients with
different but commonly confused disorders?

Was study sefting and filter through which patients passed adequately described?

Are results applicable to primary care patients?

Qosterhuis,
2000%

Authors own

No selection bias (e.g. where B12 and/or MCV ordered as part of regular treatment)

Owens, 1996™°

Authors own

Adequacy of description of clinical population
Appropriateness of assembly of study sample

Owens, 1996°

Authors own

Clinical description - was the study populatior described adequately?
Cohort assembly - was the spectrum of patients adequate

Pasternak, Authors own Comparability of controls
20017
Patel, 2000°> Irwig 1994 Not considered
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Review nent tool Spectrum related item(s)
Paul, 2000™ Authors own - - - - - Not considered
Pearl, 1996°"° Kent 1992 N - - Representative sample without selection bias
Rao, 199577 Authors own V* - - - - More than 50% of controls had actual diagnoses (e.g. other vasculitides, pulmonary renal syndromes etc) as opposed to being
healthy controls
Rao, 199977 Jaeschke 1994 N - - - - Did the pt sample include an appropriate spectrum of pts to whom the diagnostic test will be applied in clinical practice?
Rathbun, 2000 | Jaeschke 1994 V¢ «l - R - Does study include a consecutive series of patients with suspected PE?
Does the study examine a broad spectrum of patients (including patients with and those without PE) and a broad spectrum of
patient charactenistics (such as: age; sex; high, intermediate or low clinical suspicion of PE; comorbid conditions that may confuse
the diagnosis; and size or PE on angiography)?
Reed, 19967 Author's own - - - - - Not considered
Ross, 19997 Authors V* v - Patients both with and without disease? (1 point); inclusion criteria reported? (1 point); patient selection process described? (1
own;derived from point); statement of where patients were recruited from? (1 point); wide spectrum of patient's SA severity? (1 point); patient
Irwig 1994 and characteristics described? (1 point); patients eligible but not enrolled, described? (1 point);
Flemons 1996
Scheid, 2001°"™ McKibbon 1995 - - - - - Not considered
Schwimmer, Authors own N v N - - Selection/exclusion criteria presented
2000°77 (based on US Patient characteristics: age range gender
medical payer Institution characteristics: special expertise
source criteria) How patients directed to PET (referral pattern)
Scouller, 2000 Authors own N - N N v Case-control design avoided
(based on several Recruitment of consecutive patients
references) Subject selection method recorded
Gender and/or age comparability stated between those positive and negative on reference standard
Spectrum of race stated
Stratification of results by gender, race or age
Also recorded recruitment site of study (clinical or community setting, pts with or without known alcohol problems), and classified
the spectrum of alcohol intake (not part of VA)
Smith-Bindman, Authors own (as - - - - - Not considered
200177 inclusion criteria)
Solomon, 2001*” | Holleman 1995 v - - - - Relevance of the patient
Sonnad, 20017 Single criterion - - - - - Not considered
used
Spencer-Green, Mulrow et al V* - R - - Appropriate study popl. i.e. included a cohort of pts with scleroderma or systemic scierosis

19972

Source of pts described: to satisfy this criterion, papers had to identify from where their patient populations and sera were derived
Wide spectrum of case patients included: required that a description of a spectrum of clinical or laboratory features of the case
patients be included. The description of some evaluation for the presence or absence systemic involvement satisfied this criterion
Inclusion of comorbid disease: papers satisfying this criterion used as non-SSc controls patients with other connective tissue
disorders including systemic lupus erythematosus, rheumatoid arthritis, Sjogrens syndrome, dermatomyositis, or linear
scleroderma, or primary or secondary Raynaud's phenomena.

Comorbid diseases included in case group: papers met this criterion if in their description of SSc patients, the authors did not
specifically exclude comorbid di

Stengel, 20017

Authors own plus
CEBM

Not considered
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Review assessment tool Spectrum related item(s)
Swart, 1995 Authors own - - - - Disease prevalence (< or >= 35%)
Setting (academic or non-academic)
Taylozr&Weetman, Authors own v - - - - Is the population representative of general UK patients?
2002
van Beek, 2001°® | Authors own (as - - - - - Not considered
inclusion criteria)
van den Hoogen, Author's own v v - B - Clinical description: 10 points if sufficiently detailed clinical description of subjects; § points incomplete clinical description; 0 points
19957 no description other than "low back pain”
Study population: 10 points for prospective enrolment, explicit inclusion/exclusion criteria and adequate patient spectrum; 5 points
retrospective design without inclusion criteria or with limited patient spectrum; 0 points other studies. Studies received extra 10
points if from general practice or general population
Study population: studies in which both di: d and nondj, d subjects participated scored 10 points others scored 0
van der Wurff, Authors own™’ - v - - - Description of study population
2000% o5 Description of inclusion and exclusion criteria
Varonen, 2000 Cochrane - - - - - Not considered
Vasb;gader, Authors own B - - - - Inclusion criteria: limited to studies where reason for referral was clinical suspicion of renovascular hypertension, i.e. appropriate
2001 spectrum
Visser, 2000 Authors own plus - - - - - Not considered
Kent 1992 (latter
not described)
Vroomem, 1999”" | Sackett 1991 V* N - y - Patient description: both demographic and clinical characteristics should be described
Study population: prospective design, adequate description of selection criteria and adequate patient spectrum (variance in
disease severity and comorbidity such that the popl was representative of a clinical patient poputation)
. Diseased and nondiseased included
Watson, 2002 Irwig 1984 - - - - - Not considered
Wells, 1995 Authors own - - - - - Not considered
White, 20007 Authors own (as - - - - - Not considered
secondary
inclusion criteria)
Whited, 1998%° Holleman, 1995 (as - - - - - Not considered
inclusion criteria)
Whitsel, 2000™° Authors own - - - - - Not considered
Wiese, 2000'" Irwig 1994 y - - - - Appropriate spectrum included (not stated to be part of quality assessment, but was reported in Results)
Wijnberger, Authors own - v - - - Scored clinical criteria: min/max gestational age, inclusion of multiple pregnancies, diabetic pregnancies, women with ruptured
2001%* membranes, and use of corticosteroids

Williams, 2002

Authors own

Not considered
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Appendix 5 Summary details per review of spectrum-related heterogeneity investigations

Spectrum-related variables investigated

Method of investigating
heterogeneity

Statistically significant
effect from

> 0
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< 0 S =L'D o> Z 0 = o 5 a9 2 >
8 |o235 |ag” | i@ @5 5o | 2 SE |3 - £
e £ @= 3 £ S g2 | & 3 ]
. 7] © x? ) = (<]
Review
Badgett, 1997° V Pooled Se/Sp Y Y nfi nfi
Bafounta, 2001°" wl y Pooled Se/Sp N N N N
Balk, 2001 ™% v Not clear; covariate to regr? N N N nfi
Bastian, 1998°" \l Y Pooled Se/Sp P N N nfi
Bafounta, 20017 v Pooled Se/ES Y Y nfi n/i
Berger, 2000"° Y + Covariate to logistic regr Y Y nfi Y
Berry, 2002° v Covariate to SROC regr model N N N N
Buntinx, 1997 «l v Pooled Se Y Y N nfi
Carison, 1994 Y Pooled Se Y Y nfi n/i
Cher, 20017 N y \/ Covariate to SROC regr model Y Y Y Y
Chien, 1997~ V Pooled LRs P Y nfi N
Conde-Agudelo, 19987 N Median Se/FPR Y Y Y nfi
D'Arcy, 2000™ + v N Study exclusion in sens analysis N N N N
de Bruyn, 20017 N Covariates to SROC regr model N N N N
de Vries, 19967 y V Covariates to SROC regr model N N Y N
De Bernardinis, 1999° N v Pooled ES Y Y Y Y
Deville et el., 2000 N Covariates to SROC regr model Y N Y Y
Di Fabio, 1996™" v ANOVA Y Y N N
Dijkhuizen, 2000™ 7 N Pooled SelSp B Y Y N
Fahey, 1995™ \l Pooled Se/Sp; multiple linear regr Y N N N
Faron, 1998%° N Pooled LRs Y Y Y ni
Fleischmann, 1998™" Y v N N Covariates to SROC regr model Y Y Y N
Gianrossi, 1890~ y N N N Multiple linear regr (Se/Sp as P Y Y Y
dependent variable)
Gould, 2001™" v Separate SROC models (rep as P N N Y
log ORs)
Hallan, 1997 V Separate SROC models Y Y nfi nfi
Heffner, 19957 \/ IPD Y A n/i n/i
Hoffman, 2000"™ v N v Median log DOR in subgroups Y N N N
Hofman, 20007 V V Correl of log DOR with covariates Y Y nfi N
Huicho, 200277 v Covariates added to multiple regr N Y Y N
model
Hurley, 2000 V Separate SROC models Y N N N
loannidis, 20017747 Y Pooled DOR/AUC Y N nfi nfi

153



Spectrum-related variables investigated Method of investigating Statistically significant
heterogeneity effect from
o - 5 o 2 T |8 z
2 w8 Z 820 E 2 B 8c| 3 P
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< n H =23 0 > 3 g9 = ®3 5
8 | 582 |&88” | E¥ &5 as | 2 St | 5 £
& £° @ &2 3 £ E 28 | 8 = o
] ] o @ o o Q 3
Review » r? | on [ a
loannidis, 2001A™20 v Pooled Se/Sp/DOR Y N nfi nfi
Kearon, 1998™" Pooled Se/Sp Y Y nfi nfi
Kim, 2001™" v < Covariates to regr model P Y N Y
Kinkel, 2000™" I v Covariates to SROC regr model P Y N Y
Kinkel, 1999* Covariates to regr mode! N N N N
Kittler, 2002™ \l Covariates to SROC regr model P Y Y N
Koelemay, 2001™° v Covariates to SROC regr model N N Y N
Koumans, 1998% N Pooled Se/Sp P N N nfi
Kowaiski, 2001™ Covariates to GEE regr mode! P Y Y Y
Kwok, 1999% + Covariates to regr model N Y N N
Lacasse, 1999°" Pooled Se/Sp N N N N
Law, 1998™ Correl with LRs N Y nfi Y
Leitich, 1999°" N Pooled Se/Sp Y A A n/i
Loy, 1996""° v Covariates to SROC regr model P N N N
McCrory, 1999 Covariates to log regr P Y nfi Y
Mol, 1998™° Covariates to log regr P Y nfi nfi
Nallamothu, 2:9/01193 Covariates to SROC regr model P N N N
Nanda, 2000 Mean Se/Sp Y A A A
Qosterhuis, 2000° Pooled Se Y Y Y Y
Orr, 1995 Covariates added to linear regron | N N N N
SelSp
Owens, 1996 Pooled log OR Y N Y Y
Owens, 1996" Pooled log OR Y Y Y N
Peters, 1996"" IPD P Y nfi nfi
Rao, 1995 Pooled Se/Sp Y Y nfi N
Reed, 19967 Covariates to SROGC regr model N N N N
Revah, 1998 Pooled Se/Sp Y Y nfi n/i
Scheidler, 19977° Separate SROC models Y N N nfi
Scouller, 2000 Covariates to SROC regr model N N Y nfi
Smith-Bindman, 19987 Pooled Se/Sp; Separate SROC P Y N N
models
Smith-Bindman, 20017 Pooled Se/Sp Y N N N
Spencer-Green, 19977 Pooled Se/Sp P Y N N
Stengel, 2001 Separate SROC models P N N N
Swart, 1995™ Pooled Se/Sp P N N Y
Tugwell, 1997 Pooled Se/Sp Y Y i nfi




Statistically significant

Spectrum-related variables investigated

Method of investigating
heterogeneity

effect from
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Review
Visser, 2000""~ v v N v Covariates to SROC regr model P Y Y Y
White, 2000% v Covariates to SROC regr model? P Y N n/i
Whitsel, 2000"* v v v N Covariates to SROC regr model Y Y N N
Wiese, 2000 v Pooled Se/Sp; correl of Se with Y Y Y Y
covariates
Se - sensitivity; Sp — specificity; Es — effect size; regr — regression; LR — likelihood ratio; FPR; false positive rate; OR — odds ratio; IPD — individual patient data; correl - correlation; DOR —

diagnostic odds ratio; AUC — area under the curve; Y — yes; N — no; P — partially; n/i — not investigated
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Appendix 6 Reviews using advanced methods of meta-analysis: Methods

Study Target disorder Index test(s) Reference test(s) Search strategy Language/q | Validity No. accuracy No. of patients
uality assessme | studies
restrictions | nt
Bipat, cervical cancer staging CT histopathology MEDLINE and none Authors’ MRI 38 Not reported
2003'# according to: MRI EMBASE own CT 11
Both 8
parametrial invasion Jan 1985 to May
bladder invasion 2002
rectal invasion
lymph node involvement
Bipat, rectal cancer staging endoluminal histopathology MEDLINE, English only | Authors’ 90 studies;
2004'% ultrasound EMBASE, own 299 datasets
CT Cochrane,
MRI CANCERLIT
Jan 1985-Dec 2002
Bipat, pancreatic Ultrasound histopathology MEDLINE, English Authors’ For diagnosis For diagnosis
20057 adenacarcinoma CT surgical findings EMBASE, German own Helical CT 23 helical CT 959
MRI follow-up Cochrane, Conventional conventional
CANCERLIT CT 20 CT 1473
MRI 11 MRI 583
Ultrasound 14 ultrasound 2909
For resectability | For resectability
Helical CT 32 helical CT 1823
Conventional conventional
CT 12 CT 1467
MRI 7 MRI 516
Ultrasound 6 ultrasound 1233
Bipat, colorectal liver CT histopathology MEDLINE English QUADAS 61 3187
2005a'# metastases MRI EMBASE German Nonhelical CT Nonhelical CT
PET French 58 1915
Jan 1990 to Dec Helical CT 53 Helical CT 621
2003 1.0T MRI 34 1.0T MRI1 173
1.5T MRI 102 1.5T MRI 391
PET 26 PET 1058
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Glas, primary bladder cancer cytology and cytoscopy MEDLINE English Authors’ 42
2003% urinary based EMBASE German own BTA 6 BTA 715
tumour markers BTA stat 8 BTA stat 1300
1990-Nov 2001 BTA TRAK S BTA TRAK 829
NMP22 14 NMP22 2290
Telomerase 10 Telomerase
FDP 2 855
FDP 157
Halligan, detection of colorectal CT colonography colonoscopy MEDLINE No language | STARD Category 1: 7 Category 1:
2005™ polyps restrictions and 2610
1994 and 2003 QUADAS Category 2: 7
Category 2:
1834
Koelemay, symptomatic carotid CTA arteriography/intra- PubMed, MEDLINE, | None Authors’ 28 864
2004138 artery disease arterial digital PREMEDLINE, own
subtraction EMBASE, and
angiography CINAHL
1990 to July 2003
Kwee, follow-up of intracranial MRA digital subtraction PubMed/MEDLINE English, Adapted 16 616
2007™2 aneurysms treated with angiography and Embase German, QUADAS
Guglielmi detachable French
coils to Jan 2007
Shaheen, prediction of chronic aspartate liver biopsy Medline, EMBASE, No language | QUADAS 22 4266
2007™* hepatitis C virus-related aminotransferase- and Cochrane restrictions
fibrosis to-platelet ratio Library
index
(APRI) (01/1997-12/2006
Thangarati screening tool for pulse aximetry echocardiography MEDLINE, No language | Authors’ 8 35960
nam, congenital heart disease EMBASE, Cochrane | restrictions own newborns
2007™ in asymptomatic Library, MEDION
newborns
Van preoperative staging of FDG-PET pathology or surgery PubMed, Embase, No language | Cochrane N-stage 12 N-stage 421
Westreene patients with and Cochrane restrictions Methods
n, 2004 | esophageal cancer Working M-stage 11 M-stage 452
to June 2003 Group
checklist
Whiting, early diagnosis MRI clinically defined MS 12 databases from No language | QUADAS 40
2006" of multiple sclerosis in inception until restrictions

patients presenting with
suspected
disease

September or
November
2004.

(Most analyses
restricted to 15
cohort studies)
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Williams, diagnosis of renal artery renal duplex intraarterial MEDLINE and No language | Authors’ 88 9974 arteries
2007 stenosis in patients with sonography angiography EMBASE restrictions own
hypertension - peak systolic 1966-2005
velocity, renal-
aortic ratio,

acceleration time,
acceleration index
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Appendix 7 Reviews using advanced methods of meta-analysis: Synthesis methods

Study Method of Heterogeneity investigation Data presentation — overall analysis Data presentation — heterogeneity investigations
study
synthesis
Bipat, BVN Yes, but only possible for MRI for parametrial | No summary results tables presented. Summary No results tables presented. Actual data not
2003** invasion and lymph node involvement sensitivities and 95%Cls reported in text . Some reported in text

(reference Van
Houwelingen,
1993 and 2002)

Covariates investigated for sensitivity and
specificity:

sample size (>50 vs <50)

publication period (1985-1991 vs 1992-1897
vs 1998-2002)

methodological shortcomings (added
simultaneously): patient selection, unblinded
interpretation of test results, verification bias,
and retrospective collection of data

These criteria were adjusted for by adding
covariates simultaneously to the bivariate
approach.

Also subgroup analysis comparing 4 different
aspects of MRI technigues

summary specificities reported in text.

ROC plots according to outcome measure, plotted
per test

Forest plots according to outcome measure, plotted
per test

Forest plots per outcome for MRI by covariate.
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Bipat,
2004

BVN

(reference Van
Houwelingen,
1993 and 2002)

Covariates investigated for sensitivity and
specificity: year of publication (continuous
variable), sample size (<50 vs>50), and
study design characteristics: patient
selection, unblinded interpretation of test
results, verification bias, and retrospective
collection of data

Subsequently developed multivariable
regression models with multiple covariates
for each stage per test to identify the most
important characteristics. Characteristics
were retained when P<0.10

For each test, a model adjusted for
significant variables was obtained using the
regression formula logit-sens= alpha +
beta(logit-spec) and an SROC curve
estimated.

Logit sensitivities and specificities were
compared across imaging technigues using
a final model adjusted for significant
covariates.

Subgroup analysis for MR and EUS
comparing different aspects of test
techniques performed

SROC curves based on the final regression model
for evaluation of perirectal tissue invasion and lymph
node involvement per test presented

Summary estimates of sensitivity and specificity with
95%Cls tabulated for four outcomes in staging of
rectal cancer.

Regression coefficients for covariates reaching
statistical significance in backward regression
analysis presented in tabular format.

Sensitivity and specificity estimates from subgroup
analyses on MR! and endoluminal US for perirectal
tissue invasion presented

SROC curves for different subgroups in the
evaluation of perirectal tissue invasion and for
results of individual datasets given.
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Bipat,
2005

BVN

(reference Van
Houwelingen,
1993 and 2002)

Covariates investigated for sensitivity and
specificity: year of publication (continuous
variable), sample size (250 vs>50),
department of origin (radiology vs others)
and the study design characteristics: patient
selection, unblinded interpretation of test
results, verification bias, and retrospective
collection of data, reporting of study popl,
reporting of test, reporting of ref test.

Subsequently developed a multivariable
regression model to identify the most
important characteristics. Characteristics
were retained when P<0.10

Logit sensitivities and specificities were then
compared across imaging techniques.

Subgroup analysis comparing different
aspects of test techniques and lesion sizes
also performed

Summary sensitivity and specificity per test
presented in tabular format for diagnosis and
resectability.

ROC plots for diagnosis and resectability outcomes

Forest plot of overall pooled sensitivity for each test
presented.

Regression coefficients for covariates reaching
statistical significance in backward regression
analysis presented in tabular format.

Bipat,
2005a"

BVN

(reference Van
Houwelingen,
1993 and 2002)

Covariates investigated for sensitivity:

Year of publication (1995 or eariier vs later
than 1995), sample size (<50 vs>50)
reporting of study popl, reporting of test,
reporting of ref test. Study design
characteristics also investigated not reported
but presumably as for previous reviews

Subsequently developed a multivariable
regression model to identify the most
important characteristics. Characteristics
were retained when P<0.10

Logit sensitivities were then compared
across imaging techniques.

Subgroup analysis comparing different
aspects of test techniques and lesion sizes
also performed

Summary sensitivity per test presented in tabular
format.

Forest plot of overall pooled sensitivity for each test
presented.

Regression coefficients for covariates reaching
statistical significance in backward regression
analysis presented in tabular format.

Sensitivity for some subgroups according to test
technique presented in tabular format for helical CT
and MR.
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Glas,
2003%

BVN

(reference Van
Houwelingen,
2002

Multivariable analysis performed to explain
variation in sensitivity and specificity.
Covariates were selected if a specific
variable correlated with sensitivity or
specificity at P<0.10. Not clearly listed.

Appear to have included

Study design

Type of control group

Clear description of study popl

Clear description of reference test and
marker test

Consecutive pt selection

Verification by the reference standard
Independent assessment of marker test and
reference test

BCG therapy

Hematuria

Distribution of tumour differentiation of the
diseases

Method of urine collection

Summary sensitivity and specificity per test
presented in tabular format along with correlation
between sensitivity and specificity.

ROC plots of studies per test

Forest plots of overall pooled sensitivity and
specificity for each test presented.

Narrative discussion

Halligan,
2005™

HSROC

(reference
Macaskill 2004)

None. Authors report significant
heterogeneity and suggest sources but
insufficient studies to investigate.

No summary results tables presented. Summary
sensitivities, specificities and 95%Cls derived from
HSROC model and reported in text.

Forest plots of sensitivities and specificities per
study (but not for pooled analysis) reported
according to polyp size

ROC plots with HSROC curves reported for category
1 and category 2 polyps. No curve derived for
category 3 polyps.

NA
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Koelemay, BVN Covariates were selected and added to No summary results tables presented. Summary No results tables presented. Actual data not
2004 model if a specific methodological or clinical sensitivities and 95%Cls reported in text . Some reported in text
(reference Van | variable showed a positive Spearman summary specificities reported in text.
Houwelingen, correlation with the sensitivity or specificity
1993 and 2002) | with a probability value <0.1. ROC plot of studies and pooled sensitivity and
specificity with confidence ellipse
Included
year of publication
consecutive enroiment
prospective design
clear description of technique
clear definition of cutoff levels
blind assessment of CT angiography and
arteriography
Patient demographics, symptoms and
interval between CTA and arteriography
could not be included due to incomplete
reporting.
Kwee, BVN None. Authors report insufficient studies to Data for individual studies and pooled analysis NA
20072 use meta-regression to examine the causes | presented in tabular format according to outcome
(reference of the heterogeneity.
Reitsma 2005) ROC plot of studies and pooled sensitivity and
specificity with confidence ellipse per test
Shaheen, BVN Does not appear that heterogeneity Summary sensitivities and specificities at different No results tables presented. Data reported in text
2007'% investigation undertaken within BVN model threshold presented in tabular format for both
(reference framework prediction of significant fibrosis and cirrhosis
Reitsma 2005)

Also conducted
Moses
regression
models to
estimate AUC
and pooled
DORs using
DerSimonian
and Laird
regression
model

Random effects meta-regression model
(referenced to Schmid 2004) to investigate
effect on INDOR of:

sample size

median age

%men

methodological quality

inclusion of HIV/HCV co-infected patients
prevalence of significant fibrosis/cirrhosis
location of the study

histopathologic scoring system

quality of reference standard

ROC plots of individual studies and ROC curve
Forest plot of DORs

Plot of predictive values against prevalence of
significant fibrosis

No BVN plot presented
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Thangaratin | BVN None. Authors report significant Data for individual studies and pooled analysis NA
am, 2007™' heterogeneity but insufficient studies to presented in tabular format for data at commonest
(reference investigate. threshold (Sa0;<95%). Note 8 datasets listed but not
Reitsma 2005) identified according to study
ROC plot of studies and pooled sensitivity and
specificity with confidence ellipse for data at
commonest threshold (Sa02<95%).
Also plot of TPR and FPR for other threshold levels
of Sao,. Studies not identified.
Van BVN None. Exclusion of two outlying studies Data for individual studies and pooled analysis NA
Westreenen mentioned in discussion presented in tabular format according to outcome
, 2004 {reference Van
Houwelingen, No plots presented
1993)
Whiting, HSROC used Random effects meta-analysis used to Study data reported in tabular format ROC plot of case-control and cohort studies
2006" to assess the estimate DOR for cohort and case-control
duration of studies. ROC plot according to cohort and other study ROC plot according to duration of follow-up with
follow-up on designs single SROC curve
overall HSROC model used to assess effect on
accuracy and accuracy and threshold from duration of HSROC curve ROC plots according to MR criteria
threshold follow-up. Separate ROC plots according to
MRI criteria
(ref Rutter
2001)
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Williams,
2007

HSROC

A function of
the estimated
model
parameters
was used to
obtain the
expected
operating point
on the SROC
cue (Rutter
2001)

(reference
Rutter 1995,
2001, Macaskill
2004)

Covariates added to the model to assess
whether test accuracy, threshold or shape
was associated with population or design
characteristics:

articles reporting no. of pts undergoing both
test and reference test

articles reporting no. of failed US

US method described

Exclusion of analyses of occlusion
Severity of renal artery stenosis

Blinded ref test interpretation

Blinded US interpretation

Angiographic views specified

Accessory arteries included/excluded
Prospective design

Vessel diameter measures during
angiography

Consecutive enrolment

Clinical spectrum included

Hypertension and other features
Hypertension with or without chronic renal -
failure

Hypertension moderate or unspecified
Hypertension and peripheral vascular
disease

Transplant recipient

Peripheral vascular disease

No details stated

ROC plots and HSROC curves per test and

according to whether data were paired or unpaired.

Estimated sensitivity, 1-specificty, LR+ and LR-

presented per test in tabular format

Narrative discussion
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Appendix 8 Reviews using advanced methods of meta-analysis: Results

Review Results of main analysis using advanced methods | Heterogeneity investigations using advanced Author comment on advanced method used
methods
Bipat, Sensitivity and specificity (%) with 95%Cls for Text reports that the covariates investigated had no Advantages of BVN:
2003™ influence on both the sensitivity and specificity a. more convenient than Moses method
Parametrial invasion estimates b. produces summary estimates of sensitivity and specificity
Sensitivity: MRI 74 (68-79) CT 55 (44-66), P< 0.01. as outcomes, which are more familiar to clinicians.
specificities: reported to be comparable. ¢. both the error of estimation of the sensitivity and specificity
values in each study and the heterogeneity between studies
Lymph node involvement due to different population or threshold settings are taken into
Sensitivity: MRI 60 (52-68) CT 43 (37-57), P < 0.05. account.
specificities: reported to be comparable. d. also possible to evaluate the effects of study characteristics
on sensitivity and specificity separately.
Bladder invasion
Sensitivity: MRI 75 (66-83) CT 64 (39-82), difference
not statistically significant
Specificity: MRI 91 (83-95 CT 73 (52-87) for CT
(P=0.03
Rectum invasion
sensitivity: MR 71 (53-83) CT 45 (20-73), difference
not statistically significant
specificities: reported to be comparable.
Bipat, Sensitivity and specificity (%) with 95%Cls for Covariates included in the final models were as The model accounts for:
2004 follows: a. the heterogeneity between studies caused by different

Muscularis propria invasion

threshold settings

EUS: 94 (90, 97) 86 (80, 90) Muscularis propria invasion b.  the error of estimation of the sensitivity values in each

CT: NA NA EUS: publication year, sample size study that represents the size of the population

MRI: 94 (89, 97) 69 (52, 82) MRI: none The random model also accounts for the residual
heterogeneity that may remain even after adjusting for study

Perirectal tissue invasion Perirectal tissue invasion characteristics and main techniques

EUS: 90 (88, 92) 75 (69, 81) EUS: consecutive pt selection

CT: 79 (74, 84) 78 (73, 83) CT: publication year

MRI: 82 (74, 87) 76 (65, 84) MRI: prospective data collection

Adjacent organ invasion Adjacent organ invasion

EUS: 70 (62, 77) 97 (96, 98) EUS: publication year, sample size

CT: 72 (64,79) 96 (95, 97) CT: none

MRI: 74 (63, 83) 96 (95, 97) MRI: publication year

Lymph node involvement Lymph node involvement

EUS: 67 (60, 77) 78 (71, 84) EUS: publication year, prospective data collection
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Review

Results of main analysis using advanced methods

Heterogeneity investigations using advanced
methods

Author comment on advanced method used

CT: 55 (43, 79) 74 (67, 80) CT: complete verification
MRI: 66 (54, 83) 76 (59, 87) MRI: publication year, blind interpretation of results
Bipat, Sensitivity and specificity (%) with 95%Cls for Significant predictors (diagnosis) The model accounts for:
2005 c. the heterogeneity between studies caused by different
Diagnosis (sensitivity and specificity respectively) Helical CT - sufficient description of patient popl threshold settings
Helical CT. 91 (86, 94), 85 (76, 91) (sens P<0.05 and spec P<0.01) d. the error of estimation of the sensitivity values in each
Conventional CT. 86 (81, 89), 79 (60, 90) Conventional CT- blinded interpretation of results study that represents the size of the population
MRI 84 (78, 89)*, 82 (67, 92) (sens P<0.01)
us 76 (69, 82)*, 75 (51, 89) MRI - sufficient description of patient popl (sens
P<0.01)
Resectability (sensitivity and specificity respectively) US - sufficient description of patient popl (sens
Helical CT. 81 (76, 85), 82 (77, 87) P<0.01 and spec P<0.01)
Conventional CT. 82 (74, 88), 76 (61, 86)
MRI 82 (69, 91), 78 (63, 87) Significant predictors (resectability)
us 83 (68, 91), 63 (45, 79)*
Helical CT - year of publication (spec P=0.01),
* statistically significant difference compared to helical | departmet of origin (sens P<0.01 and spec P<0.01),
CT sufficient description of diagnostic test (sens P<0.01
and spec P<0.01)
Conventional CT- size of patient popl (sens P<0.01)
Bipat, Sensitivity (%) with 95%Cls for Significant predictors (per patient data): The model accounts for:
20052 e. the heterogeneity between studies caused by different

Non-helical CT. sensitivity 52.3 (52.1, 52.5)
CT. sensitivity 63.8 (54.4, 72.2)

1.0-T MRI sensitivity 66.1 (65.9, 66.3)
1.5 TMRI sensitivity 64.4 (57.8, 70.5)
FDG PET sensitivity 75.9 (61.1, 86.3)

FDG-PET had significantly higher sensitivity than the
other three tests (P<0.001, P=0.003, P<0.001
respectively)

Nonhelical CT - reference standard (P<0.002),
blinded reference test interpretation (P<0.002)

Helical CT - no predictors

MRI - no predictors

FDG PET - blinded index test interpretation
(P<0.002)

threshold settings

f.  the error of estimation of the sensitivity values in each
study that represents the size of the population

g. the residual heterogeneity that may remain even after
adjustment for study design characteristics
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Review Results of main analysis using advanced methods | Heterogeneity investigations using advanced Author comment on advanced method used
methods
Glas, Sensitivity and specificity (%) with 95%Cls for Cytology Method is more convenient than Moses method
2003% Sensitivity correlated with year of publication and Sensitivity and specificity can be interpreted as a pair
Diagnosis (sensitivity and specificity respectively) design (P<0.1) Random effects nature allows systematical and coincidental
Cytology 55 (48, 62), 94 (90, 96) Cohort studies: 48 (39, 57) differences between studies
BTA 50 (30, 65), 79 (70, 86) Case-control: 61 (52, 69)
BTA stat 70 (66, 74), 75 (64, 84)
BTA TRAK 66 (62, 71), 65 (45, 81) From 1990 to 2000 sensitivity decreased linearly from
NMP22 67 (60, 73), 78 (72, 83) 80% to 52% and specificity decreased from 97% to
Telomerase 75(71,79), 86 (71, 94) 92%.
*sensitivity and specificity significantly correlated BTA -
(P<0.05) Study design affected sensitivity: cohort 73 (60, 83)
case-control 33 (26, 41);
Specificity affected by blinded test interpretation:
blinded 59 (46, 71), nonblind (83, 76, 88)
BTS stat —
sensitivity correlated with design: cohort 77 (71, 82)
case-control 66 (60, 4171
NMP22 - positive correlation of sensitivity and
specificity with method of patient selection, but based
on only 2 studies.
Telemerase: publication year — sensitivity increased
from 67 to 95% and specificity decreased from 95%
to 62%
BTA frak — no correlations observed
Halllq Sensitivity and specificity (%) with 95%Cls for Tried to compare studies with and without a modified | HSROC model
2005 reference standard but too few studies to allow a. allows for explicit and implicit vaniation in threshold between

Detection of large polyps alone (category 1)
sensitivity 93 (73, 98) specificity 97 (95, 99)
HSROC curve very close to top left hand comer of plot

Detection of medium and large polyps (category 2)
sensitivity 86 (75, 93) specificity 86 (76, 93),
HSROC curve further from top left hand comner of plot

meaningful analysis

studies.

b. estimates the average threshold and diagnostic odds ratio,
as well as variability, and it allows summary ROC curves to
have either a symmetrical or an asymmetrical shape.

c. allows calculation of the average

operating point, which is the point on the summary ROC curve
that represents

the sensitivity and specificity results

at the average threshold, together

with 95% Cls.
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Review Results of main analysis using advanced methods | Heterogeneity investigations using advanced Author comment on advanced method used
methods
When interpreting the results of these models, it is important to
consider both these figures and the variability in sensitivity and
specificity along this curve, as depicted in the ROC plot across
the range of study values.

Koelema | Sensitivity and specificity (%) with 95%Cls for Incomplete reporting meant that only year of Advantages of BVN:

y, 2004'% publication and design-related characteristics could a. estimates and incorporates the possible correlation between
For detection of a 70% to 99% stenosis: be included one at a time. logit sensitivity and specificity within studies due to possible
sensitivity 85 (79 to 89) differences in threshold between studies. b. uses a random
specificity 93 (89 to 96). Diagnostic accuracy was reportedly not effects approach for both sensitivity and specificity, allowing for

influenced by any covariates except for a heterogeneity beyond chance due to
For detection of 100 stenosis: higher specificity in prospective studies compared clinical or methodological differences between studies.
In nearly all studies, the sensitivity and specificity were | with retrospective studies. Data not reported ¢. acknowledges the difference in precision by which sensitivity
100 for detection of an occlusion. A zero cell correction and specificity have been measured in each study.
was not carried out due to the resulting downward bias
in summary estimates due to low occlusion rates.
Fixed effect pooling resulted in a sensitivity of 97 (to
99) and a specificity of 99 (98 to 100).

Kwee, Nonenhanced time-of-flight MRA (TOF-MRA) for the NA Advantages of BVN:

2007™2 detection of residual flow (within the aneurysmal neck a. assumes a bivariate normal distribution for the logit
and/or coil mesh) transformed sensitivity and specificity values across studies,
Sensitivity 83.3 (70.3-91.3) allowing for heterogeneity beyond chance due to clinical or
Specificity 90.6 (80.4-95.8) methodological differences between studies.

b. incorporates and estimates the correlation that might exist
Contrast-enhanced MRA (CE-MRA) for the detection between estimates of sensitivity and specificity within studies.
of residual flow were
Sensitivity 86.8 (71.4-94.5)
Specificity 91.9 (79.8-97.0), respectively.
There were no statistically significant differences in
pooled sensitivity and specificity between TOF-MRA
and CE-MRA (F test P=0.66
and P=0.82, respectively).
All pooled estimates were subject to heterogeneity
(P<0.05),

Shaheen, | Sensitivity and specificity (%) with 95%Cls for APRI accuracy for detecting significant fibrosis not Pairs of sensitivity and specificity for diagnostic thresholds are

2007%° affected by study-related or patient-related factors (P- | jointly analyzed, incorporating any correlation that might exist

Prediction of significant fibrosis

threshold 0.5 (n=16): sensitivity 81 (76-86) specificity
50 (47-52)

threshold 1.5 (n=15): sensitivity 35 (30-41) specificity

values given). Age of study population (P=0.1), sex
(P=0.96), prevalence of significaint fibrosis (P=0.46),
inclusion of HIV/HCV co-infected patients (P=0.60)

between these measures using a random effects approach
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Review Results of main analysis using advanced methods | Heterogeneity investigations using advanced Author comment on advanced method used
methods
91 (89-92)
For detection of cirrhosis, APRI accuracy was greater
Prediction of significant cirrhosis in studies containing higher proportion of men
threshold 1.0 (n=9): sensitivity 76 (68-82) specificity 71 | (P=0.001), younger participants (P=0.04), and
(69-73) HIV/HCV co-infected patients (P=0.03). The other
threshold 2.0 (n=8): sensitivity 49 (43-55) specificity 91 | covariates were not significant (data not given).
(90-93)
Thangara | Sensitivity and specificity (%) with 95%Cls for NA Authors note that the model produces: a random effect
tinam, estimate of mean sensitivity and specificity with 95% Cls, the
2007™ sensitivity 63 (39 to 83) amount of between-study variation for sensitivity and
specificity 99.8 (99 to 100) specificity separately, and the strength and shape of the
correlation between sensitivity and specificity. Only the first is
presented in the resuits.
Advantages of BVN:
a. accounts for the heterogeneity
between studies caused by different threshold settings.
b. acknowledges the difference in precision by which
sensitivity and specificity have been measured in each
study
c. accounts for the residual heterogeneity due to clinical or
methodological differences between studies.
Van Sensitivity and specificity (%) with 95%Cls for NA Model assumes a bivariate normal distribution for the logit-
Westreen transformed sensitivity and specificity values across studies,
en, Detection of locoregional metastases allowing for additional heterogeneity between studies due to
2004 sensitivity 0.51 (0.34 to 0.69) differences in study characteristics
specificity 0.84 (0.76 to 0.91)
Detection of distant metastases,
sensitivity 0.67 (0.58 to 0.76)
_specificity 0.97 (0.90 to 1.0)
Whiting, None for HSROC HSROC analysis shows that cohort studies with
2006" longer follow-up produced higher estimated specificity
and lower estimated sensitivity (P=0.074)
Williams, | Test (sensitivity and 1-specificity respectively) Peak systolic velocity The model!
2007™° peak systolic velocity 0.85 (0.76, 0.90), 0.08 (0.05, the approach to failed sonographic examinations was | a. takes into account the uncertainty in estimates of both

0.13)

renal-aortic ratio 0.80 (0.62, 0.91), 0.12 (0.05, 0.25)
acceleration time 0.74 (0.55, 0.87), 0.15 (0.07, 0.29)
acceleration index 0.78 (0.67, 0.86), 0.11 (0.67, 0.86)

associated with the cutpoint for test positivity but not
with accuracy. Studies explicitly showing no PSV
failures had a higher expected sensitivity (0.95) and
hence a lower expected specificity (0.76) than those
where PSV failures were excluded, PSV failures were
included, or no indication of what investigators did

sensitivity and specificity within each study

b. includes a random effect for both test accuracy and
threshold thereby taking into account unexplained
heterogeneity between studies

c. allows test accuracy to vary with threshold through the
inclusion of a scale (shape) parameter that provides for
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Review

Results of main analysis using advanced methods

Heterogeneity investigations using advanced
methods

Author comment on advanced method used

with PSV failures was given (sens 0.81 and spec
0.93, difference P=0.004)

acceleration index —

test accuracy increased as test threshold increased.

For every 0.5-m/s2 increase in test threshold, DOR
increased an average of 3.8 times (1.4, 10.5,
P=0.01).

Other popl and study design characteristics had no
significant effect on test performance

asymmetry in the SROC curve. This shape parameter is

assumed to be constant across studies (fixed effect)
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Appendix 9 Rationale for choice of topic, type of TB and test(s) for the case study

Potential for spectrum to affect test accuracy in tuberculosis
A variety of spectrum-related factors could potentially affect the accuracy of tests for

diagnosing TB. In most developed countries, TB mostly affects older people, recent
immigrants from developing countries, members of ethnic minorities, and the

immunocompromised (mainly HIV).

Patient age can confound the diagnosis of TB, it being much more difficult to diagnose in
children and more common in older people. The particular problems amongst children, are
that disease is often asymptomatic, children rarely produce sputum, so that gastric aspirates
are often used for mycobacterial testing, and they are also less likely to be AFB smear
positive, i.e. the bacterial load in children is substantially lower in children than in adults (for

both sputum and gastric aspirate specimens). *2%*%'

The presence of mycobacterial infections other than tuberculosis (MOTT) or non-tuberculous
mycobacteria (NTM), including the atypical forms such as M. avium species is also a key
factor. M. avium complex disease occurs either as a disseminated disease largely in patients
with human immunodeficiency virus (HIV) infection, or as a pulmonary disease in
immunocompromised patients. The rapidly growing atypical mycobacteria, including M.
fortuitum, M. chelonae and M. abscessus cause cutaneous, pulmonary and postsurgical
wound infections.?>* The rates of infection with NTM vary across the world, with rates
pulmonary NTM reported at between 1 and 15 per 100,000.>* Generally similar rate save
been reported in Europe, Japan and Australia, with a particularly high rates in South Africa.*®
A study of non-HIV positive patients in Leeds found an increase in incidence of NTM
infections as a proportion of total number of recorded mycobacterial infections from 8% in
1995, to 14% in 1996, 18% in 1997, 15% in 1998 and 14% in 1999.°* Patients infected with

these mycobacteria are more likely to have false-positive results on testing.

Study setting and place of birth are further key factors that might affect test accuracy due to
the variation in prevalence of both M.TB and other nontuberculous mycobacteria across the
world. Immigrants to the UK and children born to immigrant families are more likely to have
TB on arrival in the UK or to contract the disease from family members returning from visits to

their countries of origin, due to higher prevalence of the disease in those countries.

Tuberculosis in immunocompromised individuals, especially those with HIV infection, may

have unusual features, such as atypical puimonary manifestations or false-negative

305

microbiological results, which can cause diagnostic difficulties.”™” HIV infection substantially

increases the risk of developing TB once infected with the bacillus, and also shortens the time

%5 Those with double infection have an estimated 10% risk of

306,307

to development of the disease.

developing active TB each year. HIV-positive patients may be at 10 times greater risk of
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multi-drug resistant TB (MDR-TB) than HIV-negative patients.’®

Other immunocompromised
populations at risk for developing TB are those with diabetes meliitus,*® those on
immunosuppressive medication post organ transplantation310 and populations receiving
treatment with TNF-alpha antagonists for rheumatoid arthritis and other autoimmune

. 1
diseases.”!

Overall, the prevalence and distribution of these factors within a given study sample could
strongly affect the accuracy of the test under investigation and variation between studies may

contribute significantly to the heterogeneity observed in a systematic review.

Choice of pulmonary TB
A total of 368 datasets comparing a rapid diagnostic test with a reference standard were

included in the HTA systematic review.”® These covered eight different types of TB (plus a
group of studies using miscellaneous specimens from various sites) and nine groups of tests.
The vast majority of the evidence identified (146 datasets) was for tests for the detection of

pulmonary tuberculosis and therefore this was chosen as the topic for the case study.

Choice of test(s)
Of the 146 available datasets in pulmonary TB, 110 related to nucleic acid amplification tests

(NAATS); 59 evaluated commercially produced NAATs and 51 were of ‘in-house’ NAATS, i.e.
tests developed and used within a single laboratory. The NAAT test studies therefore

provided the largest single source of studies from the project.

The commercial nature of over half the test evaluations is also unique to the NAAT tests; very
few serological or biochemical tests are commercially produced and although the fully
automated liquid culture tests are generally commercially produced they are not evaluated
with standard accuracy outcomes (e.g. sensitivity and specificity). The benefit of limiting the
case study to one or more commercial tests is that the test methods and thresholds for
positivity used are more standardised than for in-house tests, thereby largely eliminating this

potential source of variation between studies.

In general, the studies of the commercial NAAT tests recruited more patients and were better
reported than those of the inhouse tests. A meta-analysis of studies with larger sample sizes
is preferable to one with many small and underpowered studies. Better reporting of study
characteristics also makes it easier to judge the quality of the included studies. The mean
number of patients recruited was much lower for the studies of inhouse tests (153, SD 128,
range 14 to 833) compared to commercial tests (n=362, SD 506; range 22 to 3794).”

For these reasons the two most commonly investigated tests: the Roche Amplicor®

mycobacterium tuberculosis test*'? (30 datasets) and the Gen-Probe Amplified
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313

Mycobacterium tuberculosis Direct Test (MTD®)” ™~ (21 datasets) were selected for inclusion

in the case study.
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Appendix 10 Meta-analytic methods used for the TB case study
Aim
For the group of available studies evaluating two nucleic acid amplification tests (MTD and
Amplicor) for the detection of pulmonary tuberculosis, to examine the extent to which the
effect of spectrum on test accuracy can be identified or masked by currently available
methods of meta-analysis as introduced in Chapter 2, i.e.

- the Moses and Littenberg summary ROC (SROC) method

- the Rutter and Gatsonis hierarchical summary ROC (HSROC) model

- the bivariate normal model.

Inclusion criteria

Population

Studies of adults or children with any form of active pulmonary tuberculosis were eligible for
inclusion. Patients with any co-morbidity (including HIV infection) were included. Studies
exclusively conducted in patients with non-tuberculous mycobacterial infection were excluded
on the basis that these infections are rare and inclusion of them was outwith the resource

constraints of the review.

Studies with more than one specimen per patient were included only where accuracy data
could be extracted on a per patient as opposed to a per specimen basis or where the
difference in number of specimens compared to number of patients was less than 10%.
Studies of specimens ‘spiked’ with mycobacteria were excluded as they did not use clinical

samples.

Diagnostic tests
Any study that compared one of two NAAT tests for detection of active pulmonary

tuberculosis with a reference standard was included. The two eligible tests were:
- the Roche Amplicor® mycobacterium tuberculosis test (including either the original
manual version and the subsequently developed automated ‘Cobas Amplicor' test,'
- the Gen-Probe Amplified Mycobacterium Tuberculosis Direct (MTD®) test (including
either the original (AMTD) and the enhanced (EMTD) version.

Reference standards
Reference standards for tests for detecting active TB can be broadly defined as follows:

A: culture and/or microscopy smear test

B: very high clinical suspicion of TB + response to therapy

C: clinical suspicion of TB, but it is not certain one way or the other

Studies may use one or more of these reference tests either alone or in combination with
each other as a reference strategy. Strategy A alone, although previously considered good
practice, is now recognised as an inadequate reference standard especially in patients with
acid fast bacilli (AFB) smear negative tuberculosis. Although culture specificity is high (a
positive culture result is highly indicative of the presence of mycobacteria), sensitivity is much

poorer as culture can miss true cases of TB. Unfortunately, clinical diagnosis, whilst improving
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sensitivity, has a relatively low specificity for TB diagnosis. The definition of strategies B and
C can also vary significantly, i.e. in terms of what signs and symptoms are considered to
suggest the presence of TB infection. We accepted any of these categories as eligible
reference tests and examined any impact on accuracy in the analyses by designating culture
plus high clinical suspicion with or without additional investigations as an ideal reference

strategy, i.e. definition of disease being either positive culture or high clinical suspicion.

Study setting
No restrictions on study setting were applied and studies from all countries were eligible for

inclusion.

Study design
Only ‘cohort’ or case series type studies that compared a diagnostic test with an established

reference standard in patients suspected of having tuberculosis were eligible for inclusion in

the review. These could be either prospective or retrospective in nature.

‘Case-control’ type studies where the performance of a test is compared in two or more
groups of patients potentially ranging from those with confirmed active TB infection through to
those with diseases other than TB or even no known disease (healthy controls) were
excluded. This type of design is known to be significantly more susceptible to bias than
cohort studies especially when healthy control patients are included; the artificial selection of
patients leading to an unrepresentative case mix of patients.

Outcome measures
The evaluation of diagnostic tests has largely focused on the establishment of test accuracy,

and this was the main focus of this review. Studies that examined the effect of diagnosis on
diagnostic thinking, patient management or subsequent patient outcomes were also eligible
for inclusion but none were identified. Studies focusing on the establishment of technical

efficacy alone were excluded.

At a minimum, accuracy studies were required to report sufficient information to allow the
construction of a 2x2 contingency table. This information was used to calculate relevant
accuracy statistics. Studies reporting only summary accuracy statistics without sufficient raw
data to allow the construction of a 2x2 table were excluded. For studies using discrepant
analysis (where false positive and/or false negative results usually against culture are
resolved by examining clinical data for those patients), pre-discrepant analysis results were

used wherever possible as this can be a potential source of bias.*"

To limit the amount of potential variation resulting from varying definitions for an abnormal
result between studies, data were extracted at the manufacturer's designated optimum cut-

offs points where possible. Only one dataset per test comparison was included.
Literature search

Literature was identified from several sources including electronic databases and other

sources. A comprehensive database of relevant articles was constructed using Reference
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Manager. All databases were searched from 1975 to August 2003. Reference lists of included
studies and relevant review articles were scanned to check for additional studies not identified

from other sources.

A highly sensitive strategy to identify studies of tests evaluated in patients with active TB
infection was used in the wider systematic review of all tests.”® Due to the high volume of
studies in TB infection, tuberculosis-related terms were combined firstly with terms relating to
the tests under evaluation, and secondly in combination with a sensitive methodological filter
developed to identify diagnostic accuracy studies. Due to time frame and resource

constraints, searches were restricted to English language only.

Study inclusion
Studies were selected for inclusion in the review in a two-stage process. In the first instance,

the literature search results (titles and abstracts) were screened independently by two
reviewers to identify all citations that appeared to meet our inclusion criteria. Full manuscripts
of all selected citations were retrieved. Where it was not possible to determine study eligibility
from the title and/or abstract the full manuscript were obtained. A checklist for study inclusion
was piloted and subsequently completed for every full paper retrieved. Any disagreements
over study inclusion were resolved by consensus or if necessary by arbitration by a third

reviewer.

Quality assessment
The methodological quality of all included studies was appraised using a formal quality

assessment tool developed by the University of York (also funded by the HTA Programme).21

Use of a formal quality assessment tool allows the exploration of study design aspects either

for which empirical evidence of bias exists®*'%

or that are generally accepted as important for
diagnostic test studies. A list of quality assessment criteria used and guide to their

interpretation is provided on page 212.

Study quality was assessed independently by two reviewers. Any disagreements were

resolved by consensus or if necessary by arbitration by a third reviewer.

Data extraction
The extraction of study findings were conducted in duplicate using a pre-designed and piloted

data extraction form to minimise any errors. Data were recorded onto a Microsoft Access
database. Information on study participants, study desigh, tests and reference test details,
test performance (2x2 contingency tables) and on potential sources of bias were extracted.
Any disagreements between reviewers were resolved by consensus or if necessary by

arbitration by a third reviewer.

Data synthesis
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For each test comparison, the sensitivity, specificity and their exact 95% confidence intervals
were calculated. Statistical heterogeneity of sensitivities and specificities was initially
assessed using the chi-squared test and by plotting sensitivity against the false-positive rate

(one minus specificity} on a ROC plot and visually considering the scatter of points.

Three methods of data synthesis were employed as described in Chapter 2 section 2.3:

1. the Moses and Littenberg summary ROC (SROC) method, both unweighted (or equal
weight) and weighted by inverse variance of InDOR. The analyses were performed
using STATA version 8. The model output estimates mean accuracy (DOR) at the Q*
point, and an estimate of asymmetry in the SROC curve (P-value associated with the
‘S’ term). The mean value of S across the primary studies was used to estimate the
average sensitivity and specificity of a point on the SROC curve that lies closer to the
centre of the data - the average threshold point - as described in section 2.3.2.

2. the Rutter and Gatsonis hierarchical summary ROC (HSROC) model was carried out
using the PROC NLMIXED command in SAS version 8.02. The model estimates
mean accuracy (DOR) at the Q* point, mean threshold and the shape of SROC
curve, along with their 95% confidence intervals. The model output was used to
estimate DOR at the average threshold, and was also transformed to estimate
sensitivity and specificity as described by Harbord and colleagues.”

3. the bivariate normal (BVN) model analyses were performed with the PROC NLMIXED
command in SAS version 8.02. The average sensitivity and specificity, with their 95%
confidence intervals were estimated. The model output was transformed to estimate
DOR at the average threshold, and was also transformed to estimate mean accuracy
(DOR) at the Q* point, mean threshold and the shape of SROC."

Heterogeneity investigations
For each method of meta-analysis, sources of heterogeneity were investigated by adding the

following covariates to the standard models:
= testused, e.g. MTD vs Amplicor and for each test, standard versus enhanced
versions
= reference standard used: culture plus clinical suspicion with or without additional tests
vs culture without clinical diagnoses

= index blinded vs not blinded/unknown

Covariates were added to the models in two ways. At the most simple level, no interaction of
covariate with curve shape is allowed (parallel curve models). This, by definition, assumes
that the SROC curves for the two groups are parallel; the RDOR, or difference in DOR

between groups, is therefore constant at all thresholds.

A further level of complexity is added where the covariate is allowed to interact with curve

shape (‘crossing’ curve models). This can occur only for the Moses and HSROC models; an
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interaction of covariate with shape cannot be modeled under the bivariate normal

parameterisation. Where a covariate interacts with shape, the SROC curves for the

subgroups may have different shapes and therefore will cross at some point along the curves.

The RDOR will not remain constant but vary systematically with threshold, to a greater or

lesser extent along the length of the curves.

The addition of covariates to the models produce the following parameters to assess

differences between groups:

4.

difference in accuracy - the relative diagnostic odds ratio (RDOR). All three models
naturally produce an estimate of RDOR at Q*, with 95% Cls. For the parallel curve
models, the RDOR will be constant all along the length of the curves, however for the
crossing curve models, RDOR will vary. | have estimated RDOR using the average
threshold value (or for the Moses methods mean S) for the reference group and for the
comparator group, this gives RDORSs near to the average operating points of the two
subgroups.

difference in threshold. Only the advanced methods produce an estimate of differences in
threshold between groups; this, with its 95%CI is estimated both for the parallel and
‘crossing’ curve models.

difference in shape. This can be estimated only for the crossing curve models and only for
the Moses models and the HSROC model, not for the BVN model.

difference in sensitivity and specificity. This was estimated for all models, both in their
parallel and crossing curve forms. Only the advanced models provide confidence intervals
for the differences in sensitivity and specificity, as these do not fall naturally from the

Moses models.
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Quality assessment criteria used - QUADAS tool (Whiting and colleagues, 2004*")

Item Yes No Unclear

1 Was the spectrum of patients representative of the patients who Yes No Unclear
will receive the test in practice?

2. Were selection criteria clearly described? Yes No Unclear

3. Is the reference standard likely to correctly classify the target Yes No Unclear
condition?

4. Is the time period between reference standard and index test short | Yes No Unclear
enough to be reasonably sure that the target condition did not
change between the two ftests?

5. Didthe whole sample or a random selection of the sample, receive | Yes No Unclear
verification using a reference standard of diagnosis?

6.  Did patients receive the same reference standard regardless of the | Yes No Unclear
index test result?

7. Was the reference standard independent of the index test (i.e. the | Yes No Unclear
index test did not form part of the reference standard)?

8a. Was the execution of the index test described in sufficient detail to | Yes No Unclear
permit replication of the test?

8b.  Was the execution of the reference standard described in sufficient | Yes No Unclear
detail to permit its replication?

9a. Were the index test results interpreted without knowledge of the Yes No Unclear
results of the reference standard?

9b.  Were the reference standard results interpreted without Yes No Unclear
knowledge of the results of the index test?

10.  Were the same clinical data available when test results were Yes No Unclear
interpreted as would be available when the test is used in
practice?

11.  Were uninterpretable/ intermediate test results reported? Yes No Unclear

12.  Were withdrawals from the study explained? Yes No Unclear
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Appendix 11 Primary study details

Index
Reference interp
id | Study Test standard blinded? | N tp tn fp fn Sens Spec DOR ESS Y%weight
1 | Abe, 1993"° AMTD C alone ? 135 | 29 98 5 3 0.91 0.95 189 98 0.01
2 | Abu-Amero, 2002' Cobas Amplicor C alone ? 628 | 51| 562 0] 13 0.79 1.00 | 4292 | 233 0.00
3 | Al Zahrani, 2000' Amplicor C+Clin+T+X Y 489 | 24 | 430 0| 33 0.42 1.00 630 | 204 0.00
4 | Al Zahrani, 2000" AMTD C+Clin+T+X Y 385 | 20| 336 0| 27 0.43 1.00 502 168 0.00
5 | Alcala, 2001"° AMTD C+Clin ? 365 | 54| 267 | 36 8 0.87 0.88 50 | 206 0.04
6 | Arimura, 1996°"° Amplicor C alone ? 76 | 19 48 2 7 0.73 0.96 65 68 0.01
7 | Bemer-Melchair, 2000"* Cobas Amplicor C+Clin ? 207 | 21| 161 0| 23 0.48 1.00 296 141 0.00
8 | Bennedson, 1996*" Amplicor C alone Y 3794 | 251 | 3333 42 | 168 0.60 0.99 119 [ 1491 0.21
9 | Bergmann, 19967 Amplicor C alone ? 502 | 22| 465 6 9 0.71 0.99 189 116 0.02
10 | Bergmann, 1999 EMTD C+Clin ? 489 | 20| 458 6 5 0.80 0.99 305 95 0.02
11 | Cartuyvels, 1996°* Amplicor C alone ? 536 9| 508 | 15 4 0.69 0.97 76 51 0.02
12 | Catanzaro, 2000** EMTD C+Clin Y 338 | 60| 259 70 12 0.83 0.97 185 227 0.03
13 | Cavusoglu, 2002'7° AMTD C+Clin+T+X ? 63| 30 28 2 3 0.91 0.93 140 63 0.01
14 | Chedore, 1999" EMTD C+Clin ? 618 | 194 | 414 8 0 1.00 0.98 | 18969 | 534 0.00
15 | Chin, 1995**' Amplicor C+T+X ? 227 9| 204 2| 12 0.43 0.99 77 76 0.01
16 | Cohen, 1998°% Amplicor C alone Y 85| 20 54 4 7 0.74 0.93 39 74 0.02
17 | D'Amato, 1995% Amplicor C+Clin+X ? 365 | 17| 333 41 1 0.61 0.99 129 | 103 0.02
18 | Devallois, 1996 Amplicor C alone ? 372 | 20| 350 0 0 0.98 1.00 | 28741 79 0.00
19 | Ehlers, 1996 AMTD C alone ? 261 | 39| 203 | 11 8 0.83 0.95 90 154 0.03
20 | Eing, 1998 Cobas Amplicor C alone ? 833 | 25| 801 4 3 0.89 1.00 | 1669 108 0.01
21 | Gleason Beavis, 1995°* Amplicor C alone Y 270 | 11| 249 6 4 0.73 0.98 114 57 0.01
22 | Gomez-Pastrana, 2001'* Amplicor C+Clin+T+X Y 88 | 11 59 4] 14 0.44 0.94 12 72 0.02




Index

Reference interp
id | Study Test standard blinded? | N tp tn fp fn Sens Spec DOR ESS %weight
23 | Hoffner, 1996 (a)'"®® AMTD C alone Y 274 | 70| 166 | 26 | 12 0.85 0.86 37 230 0.05
24 | Hoffner, 1996 (b)"* AMTD C alone ? 309 | 15| 290 2 2 0.88 0.99 | 1088 64 0.01
25 | Kambashi, 2001'™ AMTD C+Clin+T Y 92 | 63 17 3 g 0.88 0.85 40 63 0.01
26 | Kang, 2002"° Amplicor C+Clin+T+H ? 47 | 11 28 0 6 0.64 0.98 101 44 0.00
27 | La Rocco, 1994"% AMTD C+Clin ? 246 | 56| 184 3 3 0.95 098 | 1145 | 179 0.01
28 | Lim, 2000% Cobas Amplicor C+Clin+T+X Y 441 | 11| 411 5| 14 0.44 0.99 65 94 0.02
29 | Lim, 2002°* Cobas Amplicor C+Clin+T+X ? 128 | 15| 107 1 5 0.75 0.99 321 68 0.01
30 | Lockman, 2003** Amplicor C alone ? 112 | 50 35 3| 24 0.68 0.92 24 | 100 0.02
31 | Middleton, 2003 AMTD C alone ? 773 | 86| 449 | 232 6 0.93 0.66 28 | 324 0.04
32 | Mitarai, 2001 (a)' Amplicor C+Clin+T+H+X | ? 116 | 25 48 1] 42 0.37 0.98 29 | 113 0.01
33 | Mitarai, 2001 (b)*" Amplicor C+Clin+T+H+X | ? 780 | 197 | 449 | 12| 122 0.62 0.97 60 | 754 0.07
34 | Neu, 1999" Amplicor C alone ? 30 2 25 0 0.83 0.94 85 11 0.00
35 | Osumi, 1995' AMTD C+Clin Y 24 0 17 2 0.17 0.83 1 11 0.00
36 | Piersimoni, 2002'% EMTD C+Clin ? 402 | 72| 315 13 0.85 0.99 872 268 0.01
37 | Piersimoni, 1998%% AMTD C+Clin ? 219 | 13| 172 | 28 5 0.72 0.86 15 66 0.02
38 | Reischl, 1998°%° Cobas Amplicor C+Clin ? 807 | 81| 691 | 14| 21 0.79 0.98 190 | 356 0.05
39 | Sato, 1998 Amplicor C alone ? 72| 32 22| 13 5 0.86 0.63 11 72 0.02
40 | Sato, 1998"™ AMTD C alone ? 72| 31 25| 10 6 0.84 0.71 13 72 0.02
41 | SeThoe, 1997°% Amplicor C alone Y 179 | 26 | 142 6 5 0.84 0.96 123 103 0.02
42 | Shim, 2002 Cobas Amplicor C+Clin+T+H+X | ? 331 | 26| 276 3| 26 0.50 0.99 92 175 0.02
43 | Smith, 1999™ AMTD C alone ? 153 142 0 0 0.95 1.00 | 5415 37 0.00
44 | Smith, 1999™ EMTD C alone ? 153 139 3 0 0.95 0.98 757 37 0.00
45 | Vuorinen, 1995'® Amplicor C alone ? 256 | 22| 228 2 4 0.85 0.99 627 93 0.01
46 | Vuorinen, 1995'® AMTD C alone ? 256 | 22| 227 3 4 0.85 0.99 416 93 0.01




Index

Reference interp

id | Study Test standard blinded? | N tp tn fp fn Sens Spec DOR ESS | %weight
47 | Wang, 1999™ AMTD C alone ? 230 71 156 2 1 0.99 0.99 | 5538 198 0.00
48 | Wang, 1999 Cobas Amplicor C alone ? 230 | 69| 152 6 3 0.96 0.96 583 198 0.01
49 | Yam, 1998 Cobas Amplicor C alone ? 387 | 38| 341 0 6 0.86 1.00 | 4045 | 159 0.00
50 | Yee, 2002°% Cobas Amplicor C alone ? 85 | 12 69 1 3 0.80 0.99 276 49 0.01
51 | dos Anjos Filho, 2002'% Amplicor C alone ? 98 | 34 451 10 9 0.79 0.82 17 97 0.03

1. Test

2. Reference test used: C — culture; Clin — clinical diagnosis; H — Histology; T — treatment trial; X — x-ray

3. Index test interpreted blinded?: Y — yes; N — no; ? — can't tell

4. N: total number of patients tested with a given test

5. TP —true positives; TN — true negatives, FP — false positives; FN false neagtvies

6. Sens (95%Cl) [tp/dis]: sensitivity (95% confidence interval) [number true positive/total number of diseased]

7. Spec (95%Cl) [tn/nodis]: specificity (95% confidence interval) [number true negative/total number without disease]

8. DOR (95%Cl): diagnostic odds ratio (95% confidence interval)

9. ESS - effective sample size

10. %weight — percentage weight accorded per study for weighted Moses analysis (weighting by inverse variance InDOR)
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Appendix 12 Bias in the standard error of the log DOR
Deeks and colleagues81 explain the mechanism by which the standard error of the log

diagnostic odds ratio, or SE(INDOR), operates as follows.

The asymptotic estimator for the standard error is as follows:

1 1 1

SE(IRDOR) = | — + ——+——+ —
TP FN FP 1IN

Where TP is true positive, FN is false negative, FP is false positive, TN is true negative. If:

DOR=® = (TP x TN)/(FP x FN);
ny = number not diseased = TN + FP;
n» = number with disease = TP + FN;

r = odds of testing negative in nondiseased = TN/FP,

the asymptotic estimator for the standard error can be re-expressed as:

e [ E T
n, 2 ¥ n, r

The three functions contained in this equation have the following properties.

The sample’ size dependent term (SSdep) which inversely relates to effective sample size™
(4mny)/(n1+ny), appropriately reflecting unequal numbers in diseased and nondiseased

groups:

1 1 n+n
flmpm) =t =T
hy on mn,

The proportion testing positive dependent term (PTPdep):

g(r):r+%+2

The SE(InDOR) is minimised when the numbers of true negatives and false positives are
equal ( = 1). For fixed vales of n; and x>, shifting the threshold changes r and alters the

standard error in a multiplicative manner:

™ Effective sample size (ESS) is the sample size needed in equal-sized groups to achieve the available power where
there are groups of unequal sizes. It will generally be less than the total number of subjects in the unequal groups.
(http://www.uvm.edu/~dhowell/methods/Glossary/Glossary.html)
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e whereris 1, the PTPdep term is 4,
e whereris9or0.11, the PTP termis 11 and

e where ris 0.5 or 99.5, the PTP term is 201

The DOR dependent term (DORdep)

Hg,r,m,)= [‘ZIJG_%}

ez
“\n, \TN TP

The SE(InDOR) increases or decreases according to an additive term dependent on the

DOR. The term is zero when DOR = 1 (i.e. for a test with no diagnostic value) and when
sensitivity = specificity. For a fixed value of », DORdep is positive if sensitivity is greater than
specificity and negative otherwise. The magnitude of the term decreases with increasing
numbers of diseased. For example, for a constant » of 49 and constant sensitivity (0.70) and
specificity (0.90), with numbers of TN and FP (90 and 10) also remaining constant:

¢ where number of diseased=100, the DORdep term is -0.06

e where number of diseased=300, the DORdep term is -0.0

Only the first of the three terms will operate appropriately under the particular characteristics
of diagnostic meta-analyses, i.e.
i. high DOR, with number of fps and fns often small
ii. explicit or implicit variation in threshold leading to variation in the proportion that are test
positive

iii. unequal sample sizes for diseased and nondiseased

This has implications for estimation of confidence intervals for DORSs, detection of bias

graphically and statistically, and for weighting schemes when pooling data.
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Appendix 13 Deletion residual analysis for Moses (eq) model: studies with = 5% effect on at least one parameter (sorted by effect on DOR)

Individual study data

Pooled analysis results minus each study

ol gl 1 81 z1 o bt
@ 2 S 3 g o c o 3
a & ©o o = = S DOR o S & sens, spec
A o Al A 3 3 =N = © o
Rl et b e Do (o (2 ] . . Sens blline & bline S bline
@ E @ a Q g x Sensit Specif  minus =
id Author = ~ e < \n © I~ D S ivity icity Spec 121.1 o -0.17, P=0.21 0.81, 0.98
Chedore,
14 | 1999" Y = Y - Y - - 985 | 2.08 0.997 | 0.980 +0.018 | 80.2 -34% | -0.29,P=0.03 | 73% 0.79, 0.98
47 | Wang, 1999' | - Y Y o - - 8.62 | -0.09 0.986 | 0.987 -0.001 | 1015 | -16% | -0.21,P=0.12 | 24% 0.80, 0.98
39 | Sato, 1998™ Y 5 . 5 5 = E 2.38 | 1.33 0.865 | 0.628 +0.236 | 139.6 | +15% | -0.13,P=0.36 | -24% 0.80, 0.98
40 | sato, 1998'™ Y = - - 2 = 256 | 0.73 0.838 | 0714 | +0.124 | 136.4 | +13% | -0.14,P=032 | -19% 0.80, 0.98
Middleton,
31 | 2003'" Y - Y - 5 5 s 3.32 | 2.00 0.935 | 0.659 +0.275 | 1318 | +9% | -0.14,P=032 | -15% 0.80, 0.98
dos Anjos
51 | Filho, 2002'% . Y - - - g 5 2.83 | -0.17 0.791 | 0.818 -0.027 | 1325 | +9% | -0.15,P=0.28 | -12% 0.81,0.98
48 | Wang, 1999'° | - Y Y - = s 6.37 | -0.10 0.958 | 0.962 -0.004 | 1127 7% -0.19, P=0.18 10% 0.80, 0.98
Devallois,
18 | 1996"" . Y Y Y Y Y = 10.27 | -2.84 0.976 | 0.999 -0.022 | 1125 7% -0.16, P=0.22 7% 0.80, 0.98
La Rocco,
27 | 1994 - Y Y - = - 704 | -1.19 0.949 | 0.984 -0.035 | 1131 7% -0.18, P=0.19 7% 0.80, 0.98
Abu-Amero,
2 | 2002'* = 5 = Y - Y F 8.36 | -5.69 0.792 | 0.999 -0.207 | 1268 | +5% | -0.13,P=0.36 | -25% 0.81, 0.98
Osumi,
35 | 1995' = = = - s - X 0.00 | -3.22 0.170 | 0.830 -0.667 | 128.1 6% -0.19 13% 0.81,0.98
Kambashi,
25 | 2001 X = 5 e - - . 368 | 0.21 0.875 | 0.850 +0.025 | 127.8 +6% -0.16, P=0.26 -8% 0.80, 0.98
44 | Smith, 1999 | - Y Y - Y g : 863 | -0.74 0.950 | 0.976 -0.026 | 113.4 6% -0.18, P=0.19 8% 0.80, 0.98
Hoffner, 1996
23 | @™ o Y - 2 2 5 5 3.62 | -0.09 0.854 | 0.865 -0.011 | 1279 | +6% [ -0.16, P=0.26 -8% 0.80, 0.98
49 | Yam, 1998'"%® - - . Y - Y z 8.31 | -475 0.856 | 0.999 0143 | 1232 | +2% | -0.14,P=0.31 | -18% 0.80, 0.98
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F—

2 )

==

Pooled analysis results minus each study

% = % o = a g Individual study data
@ ° R R o w c o 3
1= 2 o o = = o DOR o S S sens, spec
@» [7] [} ] c
% b % & = = B Sens a 25
2 3 - g 2 =
§ é é % § § % Sensit Specif  minus Tei 4 i S5 o
id  Author - e S o = D S ivity icity Spec 121.1 s -0.17, P=0.21 0.81, 0.98
43 | smith, 1999 | - Y Y Y Y Y S 8.60 | -2.71 0.950 | 0.997 -0.046 | 114.7 -5% -0.16, P=0.22 -3% 0.80, 0.98
5 | Alcala, 2001 | - Y . . = . 5 3.91 | -0.09 0.871 | 0.881 0.010 | 126.2 | +4% | -0.16, P=0.25 6% 0.80, 0.98
Al Zahrani,
3| 2000 L : 5 Y - Y = 6.45 | -7.07 0.422 | 0.999 -0.576 | 123.0 | +2% | -0.16,P=0.28 6% 0.81,0.98
20 | Eing, 1998 < S = Y = f - 742 | -3.18 0.893 | 0.995 -0.102 | 118.3 -2% -0.16, P=0.24 -5% 0.80, 0.98
Mitarai, 2001
32 | (@) 5 = = 5 s - X 3.34 | -4.39 0.370 | 0.980 -0.606 | 121.8 1% -0.19 12% 0.81, 0.98
Studies from categories 1-6 but without big effects on the analysis 2
1 | Abe, 1993' Y S 524 | -071 | 0.906 | 0.951 -0.045 119.5 -1% -0.17,P=0.22 | +2% 0.80, 0.98
Al Zahrani,
4 | 2000"" Y Y = 6.22 | -6.81 0.427 | 0.999 -0.571 | 1221 +1% | -0.16, P=0.26 -4% 0.81, 0.98
Bemer- f
Melchoir,
7 | 2000™ Y Y g 5.69 | -5.87 | 0478 | 0.997 -0.519 120.8 0% -0.17,P=0.23 | +1% 0.81, 0.98
Cavusoglu,
13 | 2002'* Y s 494 | -034 | 0909 | 0.933 -0.024 120.6 0% -0.17, P=0.22 +1% 0.80, 0.98
26 | Kang, 2002'® Y : 461 | -347 | 0639 | 0983 | -0.344 1218 | +1% [ -0.17, P=0.21 +2% 0.81, 0.98
34 | Neu, 1999" Y ) 444 | 122 | 0833 | 0944 | -0111 | 12331 | +2% | -0.17,P=0.23 -2% 0.80, 0.98

Shaded cells indicate studies whose removal has 210% effect on at east one parameter
DOR - diagnostic odds ratio; b'line — baseline value for analyses including all 52 datatsets; % change - percentage change in DOR or S from baseline; sens, spec — average sensitivity

and specificity

1 sens>spec: sensitivity greater than specificity
2 min sespdiff: minimal difference between sensitivity and specificity
3 sens 2 0.934: sensitivity = 0.934
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Appendix 14 Deletion residual analysis for HSROC model:

studies with 2 5% effect on at least one parameter (sorted by effect on DOR)

) % § § 2l (R o Individual study data . Pooled analysis results minus each study
- Il =T = - B S | por Totaln | ESS theta DOR beta
Yy 2 A Al o o °a ] o
5| & 8 2| g 8 Sens <3 SH e
@ | E| 8| &| 8| 8| & | medan | Sens- | Spec- | minus | Median | Median | bline - & | oline S8 | bline 035, X
id Author D R i I e e ~ 129 itivity | ificity Spec 256 24 0.79 XG5 139.06 o P=0.06 o
Chedore,
14 | 1999" Y el | NG5 - 18969 | 0.997 | 0.98 | 0.018 618 533 -0.66 -17% 109.78 | -21% 0.51, P=0.01 46%
Wang,
47 19999*"3 = (e ESE b o 5 - - 5538 | 0.986 | 0.987 | -0.001 230 198 -0.75 -6% 122.47 | -12% 0.41, P=0.03 19%
39 | Sato, 1998 | v | - = = ~ . E 11 0.865 | 0.628 | 0.236 72 72 -0.9 14% 152.99 10% 0.28, P=0.14 | -19%
Devallois,
18 | 1996'" o e e e = 28741 | 0.976 | 0.999 | -0.022 372 79 -0.79 0% 125.89 -9% 0.35, P=0.06 0%
40 | Sato, 1998 | v | - = - : . - 13 0.838 | 0.714 | 0.124 72 72 -0.88 11% 151.06 9% 0.30, P=0.11 | -14%
dos Anjos
51 | Filho, 2002 | - | ¥ | - = 5 3 5 17 0.791 | 0.818 | -0.027 98 97 -0.85 7% 149.1 7% 0.32, P=0.09 -9%
Middleton,
31 | 2003'% Yo | 1E=11 S| 82 = - = 28 0.935 | 0.659 | 0.275 773 324 -0.9 13% 148.18 7% 0.29,P=0.12 | -15%
Smith,
43 | 1999"™ = | Ry A= RS Al 5 5415 | 095 | 0.997 | -0.047 153 37 -0.79 0% 130.26 -6% 0.34, P=0.06 -1%
La Rocco,
27 | 1994 | R g e g | z s 5 1145 | 0.949 | 0.984 | -0.035 | 246 179 -0.78 2% 130.16 6% 0.38, P=0.05 8%
Wang,
48 1999953 SO T A - - - 583 | 0.958 | 0.962 | -0.004 | 230 198 -0.78 -2% 130.93 -6% 0.38,P=0.04 | 10%
Hoffner, 1996
23 | (@™ 20 kvl : 5 s < 37 0.854 | 0.865 | -0.011 | 274 230 -0.84 6% 146.06 5% 0.33,P=0.08 | -6%
Smith,
44 | 1999 = S S = el = 757 0.95 | 0976 | -0.026 153 37 -0.78 2% 132.41 -5% 0.37, P=0.05 7%
Alcala,
5 | 2001"° o Bk - - = = 50 0.871 | 0.881 | -0.01 365 206 -0.84 6% 144.47 4% 0.33, P=0.08 -5%
Kambashi,
25 | 2001 Yo e - - = = - 40 0.875 | 0.85 | 0.025 92 63 -0.84 5% 143.75 3% 0.33, P=0.08 -4%
49 | Yam, 1998'% . S o e [ Y = 4045 | 0.856 | 0.999 | -0.143 | 387 159 -0.82 3% 134.32 -3% 0.31,P=0.10 | 11%
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§ % § Lé E fis @ Individual study data Pooled analysis results minus each study
a @ =) =) 2 2 9 DOR Total n ESS theta DOR beta
A 3 Al Al o o it - =
SN 2 el 2y | RS S Sens o .2 L2
9 E g oy I N 3 median | Sens- | Spec- | minus | Median | Median b'line - 5 bline = gy b'line 0.35, s o
id Author TN o || 0| © ™~ 129 itivity | ificity Spec 256 24 0.79 X6 139.06 [ P=0.06 O
Abu-Amero,
2 | 2002"° - E S s 4292 | 0792 | 0.999 | -0.207 | 628 233 -0.83 5% 136.96 2% 0.29, P=0.12 | -17%
Al Zahrani,
4 | 2000" c > = ESY | - 502 0.427 | 0.999 | -0.571 385 168 -0.77 -3% 139.97 1% 0.33, P=0.08 -6%
Al Zahrani,
3 | 2000 = = o I el - 630 | 0422 [ 0.999 | -0.576 | 489 204 -0.77 -3% 139.98 1% 0.32, P=0.09 -8%
Mitarai, 2001
32 | (@)™ = < 2 - = = X 29 0.370 | 0.980 | -0.606 116 113 -0.72 -10% 141.08 1% 0.39, P=0.04 12%
Studies from categories 1-6 but without big effects on the
analysis
1 | Abe, 1993 S (G| r 2 5 = 189 | 0.906 | 0.951 | -0.045 135 98 -0.8 1% 137.81 -1% 0.36, P=0.06 2%
Bemer-
Melchair,
7 | 2000™ = = S B O IR |15 < 296 | 0.478 | 0.997 | -0519 | 207 141 -0.77 -3% 140.27 1% 0.33, P=0.08 -4%
Cavusoglu,
13 | 2002'° = | e a : s = 140 | 0.909 | 0.933 | -0.024 63 63 -0.81 2% 138.12 1% 0.35, P=0.06 2%
20 | Eing, 1998 - 2 =yl = 5 5 1669 | 0.893 | 0.995 | -0.102 | 833 108 -0.8 0% 133.42 -4% 0.34, P=0.07 -2%
26 | Kang, 2002"° | - - = = =) 3|y = 101 0.639 | 0.983 | -0.344 47 44 -0.79 -1% 140.48 1% 0.34, P=0.07 -4%
34 | Neu, 1999 - - - el - 85 0.833 | 0.944 | -0.111 30 11 -0.79 0% 137.32 1% 0.36, P=0.06 3%

Shaded cells indicate studies whose removal has 210% effect on at east one parameter

DOR - diagnostic odds ratio; b’line — baseline value for analyses including all 52 datatsets; % change - percentage change in DOR or S from baseline; sens, spec — average sensitivity

and specificity

1 sens>spec: sensitivity greater than specificity
2 min sespdiff: minimal difference between sensitivity and specificity

3 sens 2 0.934: sensitivity = 0.934
4 spec 2 0.995: specificity 2 0.995

5 zero cell EN: zero false negative results
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Appendix 15 Plots according to index test blinding (blinding not reported as reference

case)

a. All studies
B Blinding not reported
A ____  Indextestblinded
[ ] | Operating points

297
= SROC all studies
[Z}
5 - .
DR --—-—-— sens=spec line
('\! -
a
o
1 .8 6 4 2 0
Specificity
b. HSROC with shape interaction c. HSROC no shape interaction
RDOR at RDOR 0.25
Q" 0.21
refOP: 0.47
compQOP: 0.26
> oy
3 3
G 3
3 5
w w
N\,
N\,
\\ N\,
N\, N\
N N\,
o N\ o N\,
r N 3 \
N\ AS
N\, N\
N\, N\,
A N\
N\, N\,
o M. o - N
1 8 6 ) 2 0 1 8 6 a 2 0
Specificity Specificity
d. Moses (eq) with shape interaction e. Moses (eq) no shape interaction
RDOR at RDOR 0.21
Q*: 0.15
refOP: 0.19
compOP: 0.21
o 4 ’J > >
.g \\\ »% \\\
D < N ® S
N\ N\,
N\, N\,
N\, N\,
AN N\
AN N
N\, N\,
~ N\, N\,
g 'y \
N\ \,
N\, N\,
N\ N
N\, N\,
N\, N\
o b (=% N
1 8 6 ) 2 1 8 6 4 2 0
Specificity Specificity

Moses (eq) — unweighted Moses model; RDOR - relative diagnostic odds ratio (index test linding not reported is
reference case {(denominator); Q* - point where sensitivity=specificity (denoted by diagonal line); refOP — operating
point estimated at average threshold in reference group; compOP - operating point estimated at average threshold in
comparator group
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Appendix 16 Plots according to test type (Amplicor as reference case)

a. All studies

Sensitivity

(\! -
e
1 8 6 4 2 0
Specificity
b. HSROC with shape interaction
RDOR at
Q*: 2.29
refOP: 1.59
compOP: 1.64
2
3
.‘u;;
&
0w
AN
AN
AN
AN
AN
AN
o AN
i AN
AN
N
N
AN
AN
o X
1 8 4 2 0

6
Specificit

d. Moses (eq) with shape interaction

i RDOR at
Q*: 3.86
13 refOP: 1.48
i compOP: 2.59
297
=)
2
&
0«
AN
AN
AN
AN
AN
AN
N \\
AN
AN
AN
N
N
o 7
1 8 4 ) 0

6 .
Specificity

Amplicor

MTD

Operating points
SROC all studies

sens=spec line

¢. HSROC no shape interaction

RDOR 2.06

w 4
B \
= AN
3 \\\
& AN
D 4 \

AN
AN
AN
AN
AN
AN
o™ 4 AN
I N
AN
AN
AN
AN
AN
o Y
| p— T T T T T
1 8 4 2 0

.6 ’
Specificity

e. Moses (eq) no shape interaction

Sensitivity

RDOR 1.99

T T T T

6 4
Specificity

Moses (eq) — unweighted Moses model; RDOR - relative diagnostic odds ratio (studies of Amplicor test are reference
case (denominator); Q* - point where sensitivity=specificity (denoted by diagonal line}); refOP — operating point
estimated at average threshold in reference group; compOP - operating point estimated at average threshold in

comparator group
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Appendix 17 Plots according to reference test used (combined reference test as

reference case)

a. All studies

Sensitivity

T T T T T
1 .8 .6 A4 2
Specificity

b. HSROC with shape interaction
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3 Q122
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Moses (eq) — unweighted Moses model; RDOR — relative diagnostic odds ratio (combined reference test is reference

case {denominator); Q* - point where sensitivity=specificity {denoted by diagonal line); refOP — operating point
estimated at average threshold in reference group; compOP - operating point estimated at average threshold in

comparator group
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Appendix 18 Data extraction form

NAME FILE "YYYY SURNAME1STAUTHOR"
ENTER EACH DISEASE IN A SEPARATE

WORKSHEET

Review code

Review author

Review year

Extractor Jac
Disease
Cochrane Review ‘
Group i
Needs checking Yes
Some studies evaluate
more than one test Yes No
No
or
Covariates extracted? Yes | n/a
Some studies report
subgroup data Yes No

Spec
Study 2 x 2 counts Sample sizes Prevalences Performance Statistics Test | trum | Test
Dis Dis Test Test | Total Prev Prev
Author Year Test TP FP FN TN + - + - N Dis+ Test+ | Sens Spec LR+ LR- PPV NPV DOR AUC | detail | detail | detail
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Appendix 19 Primary analysis details

DORs at average theta, P-
threshold beta, P-values values Ratio of DORs (RORs) Subgroups by key characteristics®
Thresh
Moses | Moses Moses | Moses Moses (eq) | Moses (w) v | Moses (w) v Range Zero Asym old
id | Review eq) (w) HSROC (eq) (w) HSROC | HSROC v HSROC HSROC Moses (eq) | DOR | in ‘S’ cells metry diffs
1 Balk 2001 38 15 34 0.29 0.06 0.12 0.00 1.11 0.45 0.41 1 3 2 2 1
2 | Bricker 2000' 705 688 872 0.96 0.41 0.52 0.01 0.81 0.79 0.98 3 1 1 3 1
3 | Buchanan 2001 2 3 1 0.13 0.20 0.13 0.07 4.81 5.51 1.15 1 3 1 2 1
4 | Chapell 2002'% 80 61 117 0.74 0.04 0.18 0.01 0.68 0.52 0.76 3 1 3 2 1
5 | Delgado 2003'™ 19 19 25 0.30 0.30 0.42 0.38 0.75 0.75 1.00 1 2 3 3 3
6 | Deville 2000" 4 3 . 0.82 0.07 . . . . 0.86 3 1 .
7 | Dijkhuizen 2000 823 481 18220 0.54 0.13 0.34 0.10 0.05 0.03 0.58 3 2 3 3 2
8 | Eden 2001'® 12 11 14 0.88 0.10 0.36 0.00 0.82 0.75 0.91 1 1 3 3 1
9 | Flemons 2003'® 57 31 54 0.02 0.01 0.02 0.00 1.05 0.57 0.54 2 3 2 1 1
10 | Flobbe 2002'% 30 26 30 0.07 0.00 0.01 0.00 1.01 0.88 0.87 1 1 1 1 1
11 | Gifford 2000 4 4 4 0.03 0.02 0.12 0.48 0.99 0.95 0.96 1 2 2 2 3
12 | Glas 2003% 29 16 32 0.02 0.09 0.01 0.00 0.92 0.49 0.53 1 2 2 1 1
13 | Gould 2001 72 69 107 0.05 0.52 0.71 0.06 0.68 0.65 0.96 3 2 3 3 1
14 | Gould 2003"" 52 34 50 0.96 0.94 0.72 0.79 1.04 0.69 0.66 2 1 2 3 3
15 | Gray 2000 36 22 44 0.40 0.69 0.35 0.11 0.83 0.50 0.60 2 2 2 3 2
16 | loannidis®® 96 35 83 0.09 0.05 0.08 0.40 1.17 0.42 0.36 2 3 2 1 3
17 | Kittler 2002 69 37 69 0.00 0.11 0.01 0.07 1.00 0.53 0.54 2 2 1 1 1
18 | Koelemay 2001 228 91 384 0.15 0.03 0.08 0.28 0.59 0.24 0.40 3 2 3 1 2
Lysakowski
19 | 2001™ 2 1 . 0.71 0.84 ) . . . 0.68 i 3 .
20 | MSAC 2002'% 46 25 368 0.46 0.39 0.22 0.31 0.12 0.07 0.55 3 3 3 2 2
Nallamothu
21 | 2001™* 16 12 88 0.92 0.68 0.62 0.00 0.18 0.13 0.76 2 1 i 3 1
Patwardhan
22 | 2004 33 21 28 0.03 0.06 0.07 0.01 1.16 0.73 0.63 1 3 2 1 1
Romagnuolo
23 | 2003 285 201 438 0.35 0.09 0.13 0.92 0.65 0.46 0.71
24 | Sauerland 2004'% 91 72 95 0.87 0.73 0.71 0.56 0.95 0.75 0.79
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25 | Sotiriadis 2003' 6 7 7 0.04 0.39 0.36 0.00 0.88 1.12 1.27 1 2 1 3 1
26 | Varonen 2000'%® 16 12 15 0.91 0.95 0.99 0.78 1.03 0.78 0.75 1 1 1 3 3
27 | Visser 2000 164 83 156 0.03 0.00 0.01 0.20 1.05 0.53 0.51 3 2 1 1 2
28 | Whitsel 2000 8 2 5 0.19 0.03 0.08 0.00 1.20 0.49 0.41 1 2 1 1 1
29 | Wiese 2000 757 764 0.83 0.72 1.01 2 3

* The stratification by DOR is based on the HSROC overall pooled estimate; where the HSROC madel did not run, it is based on the unweighted Moses model result.
The stratification by range in 'S’ is based on values for 'S’ from Moses model

The stratification by zero cells number of zero false positive or false negative cells as a percentage of the total number of cells per analysis
The stratification by degree of asymmetry based on P-value associated with shape term from HSROC model

The stratification by threshold differences based on P-value associated with threshold term from HSROC model
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Appendix 20 Heterogeneity investigations: comparison of relative diagnostic odds ratios between models (Ratio of RDORSs)

Parallel Crossing curves Parallel v Crossing
curves Q* ref threshold comp threshold curves
id Review Comparator Reference n 1 2 3 1 2 3 1 2 3 1 2 3 M(eq) | M(w) | H
emergency department
patients with

1.1 Balk 2001 hospitalised patients symptoms/pain 14v18 | 06 [ 12 {07 ] 05 16 | 0.8 |05 | 0.2 04 0.5 1.2 0.6 1.5 29 | 21

2.1% | Bricker 2000'™ | tertiary care primary/secondary care 47 |07 ]| - - o5 [768|356]07 |02 |01 ]o07 |27 |18] 00 0.0

2.2° | Bricker 2000 | 2nd trimester 1st, 2™ and 3rd trimester ev5 |o9|14]13] 0.1 0.8 1.2 0.0 0.0

2.3 | Bricker 2000' | low risk unselected 4v7 09|08 |08 01 |510]| 58 Jo7]| 02 | 01 )06 | 25]| 16 0.0 0.0 | 0.0
Buchanan community/hospital

3.1 | 2001™ prison release discharges 8v13 Jo3|10]03] 09 [ 10 |09 |o7] 15 [ 11]07 |10] 07 1.0 04 | 1.0
Buchanan

3.2 | 2001™ time at risk <=20mos >20 mos 10v8 |10]09 |09 10|10 |10 11|13 |14 ] 1110 11 1.1 1.6 | 1.1
Chapeli

4.1 2002'% possible age bias no bias or not reported 4v9 19107113 20 (113 [225]08 | 05 0.6 1.2 0.5 0.4 0.0 0.1 0.5
Chapell possible bias to easy

42 | 2002'2 cases no bias to easy cases 5v8 |11|04]04] 60 | 06| 34 08|07 |06]09]|21]19]| 02 04 | 02

symptoms/presented

4.3 | Chapell™ cases unspecified diagnosis g5 |07]06|09])75 |04 | 01]08]15 1207 |05 |07 ]| 03 03 |08
Delgado unknown primary

51 | 2003 tumours other 87 |12]04]04] 10 03 03]10] 04 | 04] 10 ] 02 ] 02 0.9 1.1 [ 01

6.1 | Deville 2000 | previous surgery no previous surgery 89 | 061610} 06 | 06 | 11)05| 18 |09 05 |18 |09 | 13 | 10 | 0.8

6.2° | Deville 2000 | bilateral excluded bilateral not excluded 3vi4 |07 |12]09] 06 0.7 07 1.4 0.6

6.3 | Deville 2000'® | <=60% men >60% men 10v4 |11]09|10] 11 | 09 | 10 09|10 |09 |11 ] 1.0 | 1.1 0.8 08 [ 08

7.1% | Dijkhuizen pre and post- post-menopausal women

b 2000 menopausal women only 22v7 | 1.0 0.5 1.0 1.3 0.3 0.7

7.27 | Dijkhuizen

° 2000 asymptomatic or both | symptomatic only 20v13 | 0.6 1.8 0.6 0.6 0.2 0.1

environmental

8.1 | Eden 2001'® exposure medical/not exposed 3v4 |os5lo5]|10)] 13 )] 19 | 26 |10] 09 |09 )10 ] 07 | 07 0.0 0.1 ] 02
Flemons

9.1 | 2003'™ home setting sleep laboratory 13v36 | 10| 09|08| 08 | 10 [ 08 09| 19 [ 17 109 | 09 | 09 1.0 40 | 11
Flemons

9.2 | 2003'™ <75%men 75-100% men 10v29 | 14|09 |13]| 15 | 05 | 08 o7 | 06 |04 ] 15[ 05|07 ] 09 0.8 | 05
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Parallel Crossing curves Parallel v Crossing
curves Q* ref threshold comp threshold curves
id Review Comparator Reference n 1 2 3 1 2 3 1 2 3 1 2 3 M(eq) | M{w) H
Fiemons
9.3 | 2003'™ mean AHI"<=30 Ahi>30 15v17 | 08|09 |07] 08 | 07 | 06 |07 05 | 08 ) o8 | 08|07 0.8 0.7 | 06
Flemons
9.4 | 2003™ mean BMI<=30 BMI>30 9v25 Jos8|08]07] 10 ] 03 ]| 03]10|[ 04 | 04] 10| 01 ] 01 0.5 04 | 0.1
clinical examination or
10.1 | Flobbe 2002' | pathology referral mammography 13v9 |12 ]09|10] 12 |07 |08 |12 06 | 05 ] 12 |06 | 07 1.0 1.8 | 07
11.1 | Gifford 2000'® | age <=70 >70 years 38 |o5|05|10] 04 | 04 | 10]03]| 03| 10 ] 06| 06 | 10 0.8 10 | 1.0
dementia/memory
11.2 | Gifford 2000 | clinics other setting 5v6 06|06 |04] 08|07 | 05]08|] 19 | 15 ] 08 | 05 | 04 0.9 0.7 | 09
11.3 | Gifford 2000'® | diagnostic criteria met | referrals 6v5 |05]|09]05] 05 )09 | 04]]o5|12 | 06]05 |08 ] 04 1.0 21 109
<30% Grade 1
12.1 | Glas 2003 tumours >=30% Grade 1 tumours 14v6 |08 |10|07] 01 | 33 | 03 10| 30 | 29 )06 | 11| 06 0.3 27 | 09
<30% Grade 2
12.2 | Glas 2003% tumours >=30% Grade 2 tumours évi4 |30 |05|15| 14 |08 | 11 |16 ] 02 | 03| 16 | 02 | 03 0.1 01 | 0.1
<30% Grade 3
12.3 | Glas 2003%° tumours >=30% Grade 3 tumours avi2 |08 |10]|08] 07 [ 31| 21]o6] 11|07 |06 |12 ] 08 0.3 0.3 | 08
12.4
b Glas 2003% 100% urological rest 12 10 ]12] 00 0.7 0.5 0.2 0.2
13.1 | Gould 2001'" | >=70% men <70% men 14v14 |08 |14 |11] 09 [ 02 | 02 09|01 |01 ] 13 ]| 03] 03 0.4 0.3 | 0.1
13.2 | Gould 2001'" | <60years >=60 years 7vi7 |07 |14]09) 05 | 06 | 03 |16]| 00 |01 |06 | 01| 01 0.3 0.3 | 0.1
14.1 | Gould 2003" | >=70% men <70% men 12v10 J 071 03{051 06 | 02 | 04 |06| 06 | 0.4 { 06 | 04 | 07 0.8 0.9 | 0.9
14.2
ae Gould 2003"" | <60 years >=60 years w21 |11 1.3 1.4 1.6 2.6 2.2
15.1 | Gray 2000'®® suspicion/lesions cancer history 1ov4 Jo1|16]02] 01 | 25 | 02 ]01] 03 |19]03 ]| 10 | 03 0.5 10 | 08
s symptoms suggestive
16.1 | loannidis of ACI pts with chest pain 46 Jo7|o09|06] 06 |26 |16 |05]| 47 | 23] 03 | 08 | 02 0.3 11 | 08
16.2 | loannidis*® <65 years >=65 years 3v4 |11]08[09] 11 |06 | 05]10]|09 [08] 14|08 ]| 12] 05 03 | 14
16.3
° loannidis®*® <65% men >=65% men vd |17]07]13] 10 0.9 0.5 0.1 0.6
non-melanocytic non-melanocytic lesions
17.1 | Kittler 2002' | lesions excluded included 49 |22|03]|o6| 27 |00 ]| 00]26]05]02]23]|00]00 1.7 14 | 0.0
Koelemay
18.1 | 2001™ <65 years >=65 years 9v7 |27]07|03]| 3900 |00 )15 07 |05] 23 |182]421] 00 0.0 | 10
Koelemay
18.2 | 2001™ <70% men >=70% men 7vit | 21|09 19| 04 | 688 27512 00 | 00 )17 | 05| 08 0.0 0.1 | 09

* mean apnoea-hypopnea index
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Parallel Crossing curves Parallel v Crossing
curves Q* ref threshold comp threshold curves

id Review Comparator Reference n 1 2 3 1 2 3 1 2 3 1 2 3 M(eq) [ M(w) H
Koelemay <65% with intermittent | >=65% with intermittent

18.3 | 2001"° claudication claudication 5v10 1906|1113 |13 |17 ]16]| 18 | 29 |19 | 05 | 09 0.4 07 | 1.1

19.1 | Lysakowski heterogeneous

ab 2001 opulation homogenous papulation 43 | o7 0.7 07

20.1 | MSAC 2002 | <50% men >=50% men 6v6 26 |00[01] 18 | 00 |00 |21]07 | 15|21 |00 |00 1.3 190 | 1.3

20.2 | MSAC 2002' | families /pedigree definite/suspected/prenatal | 8v4 | 4303 |12]259| 04 |[110]80 | 15 | 118 74 | 02 | 17 0.8 01 [ 12
Nallamothu

21.1 | 2001"* <55 years >=55 years 5v0 08|06|05] 04| 21|08 ]08|07 |06])]07 ]| 06]05 0.4 05 | 1.3
Nallamothu

21.2 | 2001 <65%men >=65% men 7vi |04|06[13] 23 )01 | 00]oe| 04 | 06]06 | 13|08 0.1 0.1 | 04
Patwardhan

22.1 | 2004 <70 years >=70 years 11v6 |04 |13 |05]1 20 | 05 | 03 104 [ 21 09 ] 05 06 | 0.3 0.4 0.4 1.1
Patwardhan

22.2 | 2004'% healthy controls diseased controls 13v6 |07 |11]08] 24 | 04 | 09 |08 | 03 | 04 ] 13 | 05 | 06 1.0 0.3 | 03

| Romagnuolo wide variety of stones or cancer

23.1 | 2003"" possible diagnoses diagnoses 11v35 110 07]08] 15 | 05 | 07 |11 ] 03 | 03 | 10 | 04 | 04 0.8 0.6 | 06
Sauerland

24.1 | 2004'% adults children 10v3 |06 |19 (12| 06 | 12 | 08 |06 01 | 02 |06 | 24 | 15 1.0 1.0 | 06
Sotiriadis

25.1 | 2003'% <=30 years >30 years 4v8 0907|0653 | 01|07 07|11 ]08]07]|10] 07 1.0 18 | 0.2
Sotiriadis

25.2 | 20038'Y high risk low risk/routine 7v5 13104 |05] 09 | 00 | 00 |14 05 ]| 04 ] 13 | 03| 04 0.6 0.8 | 0.0
Varonen

26.1 | 2000'® ENT dlinic general clinic 3v4 |o8|12|10]) 09 |16 | 15 ]09| 34 | 32108 | 18 [ 14 1.1 11 | 1.6

27.1 | Visser 2000"° | <=60% men >60% men 8v8 01|09|01] 00| 20| 01]04| 10 | 04 ] 01| 24 | 02 0.5 05 | 1.2

27.2 | Visser 2000'° | <=65 years >65 years 8v8 10|08 (08| 58 | 05 |30 09|07 |06 ] 07 |05] 03 2.0 03 | 1.2

27.3 | Visser 2000'"° N America other country 14v7 16 |07 (12] 43 0.7 32 |26 | 07 1.8 1.6 0.8 1.2 1.0 0.4 1.0

28.1 | Whitsel 2000"™ | <=40 years > 40 years 88 |03|17]05|08 |01 |01]03|00]00)05] 00 1] 01 |05 |00

28.2 | Whitsel 2000™ | <=50% men >50% men 5v11 Jo7]o4]06] 08 |02 ] 02]05| 04 | 08]07 03] 04 0.7 06 | 0.6

<=50% type 1
28.3 | Whitsel 2000' | diabetes 50-100% 5v10 |11/10/11] 02 | 00 |00 |12] 00 |00 |13 |00/ 00 0.1 04 | 00
mean duration <=10

28.4 | Whitsel 2000 | vears >10 years 1ov4 o4 |12|05] 05 | 21 [ 10]05]| 19 |08 ] 04 | 14 | 086 0.8 0.7 | 14

29.1

ab Wiese 2000 | STD clinic speciality/general clinic 14v16 | 1.1 1.0 1.1 1.1 0.1 0.3

1 - Moses (w) versus Moses (eq) model comparison; 2 — Moses (eq) versus HSROC model comparison; 3 - Moses (w) versus HSROC model comparison

a denotes covariates for which the parailel curve HSROC analysis could not be completed b denotes covariates for which the crossing curve HSROC analysis could riot be completed
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Appendix 21 Heterogeneity investigations — P-values for RDORs per model

Crossing curve
Parallel curve models Q* ref threshold comp threshold
id tudy Comparator group Reference group n M(eq) | M{w) H M(eq) | M(w) H M(eq) | M(w) H M(eq) | M{w) H
mergency department
1.1 |Balk 2001 hospitalised patients patients with symptoms/pain | 14v18 0.03 0.06 | 0.03 0.20 0.92 | 0.64 0.02 0.04 | 0.90 0.07 049 | 0.20
2.1* [Bricker 2000 tertiary care primary/secondary care 4v7 0.48 0.48 0.18 0.10 | 0.26 0.54 0.72 | 0.19 0.27 0.21 | 0.93
.2° [Bricker 2000'° [2nd trimester 1st, 2" and 3rd trimester Bv5 075 | 070 | 098 | 0.7 0.10 0.79 0.98 062 | 0.31
0.3 |Bricker 2000”7°  Jlow risk unselected av7 043 | 039 | 024] 020 | 017 [ 024 | 047 067 | 017 | 0.28 0.40 | 0.92
lcommunity/hospital
3.1 |Buchanan 2001 prison release discharges 8v13 0.12 0.19 | 0.12 0.20 0.16 | 0.16 0.13 0.31 0.17 0.13 0.34 0.12
3.2 |Buchanan 2001™" |time at risk <=20mos >20 mos 10v8 0.43 0.43 | 0.33 0.60 0.52 | 0.48 0.45 0.22 0.53 0.43 0.19 0.34
4.1 [Chapell 2002'®  |possible age bias no bias or not reported 4v9 048 | 009 [ 041] 003 | 000 |036| 098 | 076 | 036 | 024 | 007 | 096
possible bias to easy
4.2 [Chapell 20022 cases no bias to easy cases 5v8 0.09 0.10 | 0.04 0.11 0.01 | 0.10 0.09 0.14 | 0.10 0.08 0.11 | 0.93
ymptoms/presented
4.3 [Chapell'™® cases unspecified diagnosis 8v5 0.50 0.97 | 0.89 0.71 0.29 | 0.99 0.48 0.74 | 0.96 0.60 0.96 0.85
unknown primary
5.1 |Delgado 2003'®  |tumours other 8v7 0.80 0.58 | 0.71 0.72 0.72 | 0.63 0.86 0.86 0.31 0.73 0.73 | 0.74
6.1 |Deville 2000'% previous surgery no previous surgery 8v9 0.08 053 | 036 | 021 0.80 | 0.97 | 0.05 0.83 | 030 | o0.06 0.87 | 0.63
2° [Deville 2000"* bilateral excluded bilateral not excluded 3v14 0.37 0.75 | 047 | 0.83 0.74 0.47 0.96 0.36 0.77
6.3 [Deville 2000'®  |<=60% men >60% men 10v4 099 | 072 {071 | 073 | 039 | 034 ] 097 0.86 | 0.87 | 0.88 0.59 | 0.78
pre and post-menopausallpost-menopausal women
.1*"|Dijkhuizen 2000' jwomen nly 22v7 0.56 0.66 0.17 0.33 0.37 0.37 0.88 0.65
7.2 25{Dijkhuizen 2000 lasymptomatic or both  |symptomatic only 20v13 0.32 0.91 0.05 0.06 0.44 0.78 0.27 0.92
8.1 [Eden 2001' nvironmental exposure |medical/not exposed 3v4 0.95 042 | 0.36 0.42 0.34 | 0.53 0.82 0.86 | 044 0.79 0.87 | 0.92
9.1 |Flemons 2003'*  |home setting [sleep laboratory 13v36 0.00 0.00 | 0.00 0.00 0.01 [ 0.01 0.00 0.00 [ 0.01 0.00 0.00 | 0.00
9.2 [Flemons 2003'*  |<75%men [75-100% men 10v29 0.97 0.37 0.87 0.77 0.21 0.34 0.87 0.53 | 0.14 0.92 0.30 0.48
9.3 |Flemons 2003'  Jmean AHI"®<=30 AhI>30 15v17 | 014 | 025 | 007 | 0.11 011 Joo6| 038 | 077 | 081 | 0.11 0.14 | 0.08
9.4 |Flemons 2003'  |mean BMI<=30 BMI>30 9v25 0.61 0.94 | 0.48 0.09 0.18 | 0.12 0.48 0.55 | 0.08 0.61 0.67 0.27
clinical examination or
10.1 |Flobbe 2002'% athology referral fmammography 13v9 0.30 0.04 0.07 0.28 0.04 | 0.12 0.28 0.04 1.00 0.36 0.07 0.06
11.1 |Gifford 2000 lage <=70 >70 years 3v8 057 | 064 | 084 ] 051 067 | 084 | 052 | 063 [ 074 ] o066 | 092 | 092
11.2 IGifford 2000'* Idementia/memory clinics other setting 5v6 0.28 0.74 | 0.18 0.20 0.41 | 0.26 0.18 0.38 | 0.61 0.28 0.52 | 0.28

® mean apnoea-hypopnea index
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Crossing curve

Parallel curve models Q* ref threshold comp threshold
id tudy omparator group Reference group n M(eq) | M(w) { H M{eg) | M(w) H M(eq) | M(w) H M(eq) | M(w) H
11.3 |Gifford 2000'%® iagnostic criteria met  |referrals 6v5 0.01 0.07 | 0.06 0.02 0.09 | 0.07 0.02 0.10 | 0.21 0.02 0.10 | 0.11
12.1 [Glas 2003% <30% Grade 1 tumours [>=30% Grade 1 tumours 14v6 0.02 0.05 | 0.03 0.24 0.86 | 0.16 0.03 0.06 | 0.05 0.03 0.06 | 0.07
12.2 |Glas 2003%° <30% Grade 2 tumours [>=30% Grade 2 tumours 6v14 0.11 0.00 | 0.01 0.00 0.00 | 0.02 0.04 0.01 | 0.19 0.08 0.02 | 0.20
12.3 [Glas 2003 <30% Grade 3 tumours  [>=30% Grade 3 tumours 8v12 0.48 0.62 | 0.46 0.25 0.30 | 0.38 0.60 0.91 0.37 0.46 092 [ 0.74
12.4Glas 2003%° 100% urological rest 0.83 0.52 | 0.84 0.41 0.53 0.55 0.81 0.96 0.33
13.1 {Gould 2001' >=70% men <70% men 14v14 0.46 0.72 | 0.91 0.46 0.51 | 0.31 0.40 0.48 | 0.27 | 0.00 0.54 | 0.54
13.2 [Gouid 2001 <60years >=60 years 7v17 060 | 0.94 | 096 ] 030 052 | 057 | 095 053 [ 051 ]| 057 0.77 | 0.65
14.1 {Gould 2003'™ >=70% men <70% men 12v10 | 0.40 062 | 034 ] 030 | 050 [044 | 043 0.93 [ 050 | 0.38 0.82 | 0.75
14.2
; Gould 2003'%7 <60 years >=60 years 4v21 0.09 0.11 0.69 0.51 0.26 0.14 0.08 0.05
15.1 [Gray 2000'® uspicion/lesions cancer history 10v4 0.55 0.13 | 0.76 0.43 0.15 | 0.66 0.53 0.38 | 0.83 0.89 0.68 | 0.84
‘iymptoms suggestive of
16.1 [loannidis*** Cl ts with chest pain 4v6 0.03 0.03 | 0.01 0.01 0.01 | 0.00 0.01 0.01 | 0.02 0.03 0.57 | 0.07
16.2 |loannidis** <65 years >=65 years 3v4 0.71 0.62 | 0.49 0.93 0.93 | 0.80 0.99 1.00 | 0.83 0.74 0.68 | 0.54
16.3 Jloannidis**® <65% men >=65% men 3v4 0.49 0.06 | 0.17 0.04 0.01 0.05 0.01 0.81 0.46
non-melanocytic lesions |non-melanocytic lesions
17.1 |Kittler 2002'® xcluded included 4v9 0.52 0.16 | 0.10 0.86 0.28 | 0.18 0.66 0.18 | 0.34 0.24 0.09 | 0.39
18.1 [Koelemay 2001 |<65 years >=65 years 97 0.81 0.15 | 0.91 ] 008 | 005 [083 | 088 [ 053 |075]| 010 | 0.03 | 0.87
18.2 |[Koelemay 2001™° |<70% men >=70% men 7v11 0.17 0.01 | 0.25 0.14 0.15 | 0.38 0.08 0.03 | 0.58 0.18 0.03 | 0.26
<65% with intermittent =65% with intermittent
18.3 |[Koelemay 2001™ lclaudication claudication 5v10 0.60 0.16 | 0.34 0.77 0.72 | 0.40 0.68 0.45 | 0.80 0.62 0.21 0.43
g9.1 9 heterogeneous
k_ysakowski 2001""[population homogencus population 4v3 0.16 0.29 0.25 0.22 017 0.27 0.19 0.29
20.1 [MSAC 2002 <50% men >=50% men 6v6 0.24 0.16 | 0.04 0.40 0.45 | 0.08 0.25 024 | 0.29 0.28 0.30 | 0.08
20.2 [MSAC 2002'% families /pedigree definite/suspected/prenatal 8v4 0.51 0.19 | 0.34 0.49 0.08 | 0.41 0.53 0.11 | 0.59 0.54 0.12 | 0.34
21.1 Nallamothu 2001'%*|<55 years >=55 years 5v9 0.48 0.62 | 0.37 0.35 0.71 | 0.58 0.54 0.76 | 0.37 0.44 0.69 | 0.37
21.2 [Naltamothu 2001%*|<65%men >=65% men V7 043 | 057 | 098] o027 0.06 | 071 ] 045 094 | 064 | 0.38 0.79 | 0.85
Patwardhan
b2.1 2004 <70 years >=70 years 11v5 0.34 0.96 | 042 0.99 0.62 | 0.67 0.31 0.80 | 0.72 0.90 0.65 [ 0.43
Patwardhan
2.2 004" healthy controls diseased controls 13v6 0.34 049 | 0.39 0.69 0.32 | 0.12 0.36 0.41 | 0.48 0.51 0.30 | 0.26
omag%nuolo ide variety of possible
3.1 003" diagnoses Istones or cancer diagnoses 11v35 0.16 0.11 0.10 0.17 0.04 | 0.21 0.15 0.06 | 0.41 0.18 0.12 | 0.36
4.1 |Sauerland 2004'® |adults lchildren 10v3 0.32 0.61 | 0.77 0.35 0.62 | 0.40 0.35 0.64 | 0.51 0.35 0.60 | 0.92
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Crossing curve

Parallel curve models Q* ref threshold comp threshold
id tudy Comparator group Reference group n Megq) | M(w) | H M(eq M{w) H M(eq) | M(w) H M(eq) | M(w) H
25.1 [Sofiriadis 2003'"  |<=30 years >30 years 4v8 0.04 055 | 027 ] o049 0.31 | 019 ] o0.06 070 | 025 | 0.08 0.74 | 0.60
5.2 [Sotiriadis 2003"  |high risk ow risk/routine 7v5 0.63 065 | 028 | 0.50 0.75 | 0.21 0.89 069 | 068 | 061 0.66 | 0.49
6.1 [Varonen 2000'®  [ENT clinic eneral clinic 3v4 0.01 0.02 0.01 0.04 0.06 0.11 0.06 0.10 0.22 0.03 0.05 0.05
7.1 |Visser 2000'"® <=60% men |Eeo% men 8v8 039 | 006 | 034 ] 023 001 | 047 | 052 078 | 025 | 026 0.03 | 0.84
27.2 [Visser 2000'" <=65 years >65 years 8v8 0.09 0.10 | 0.05 | 066 002 | 012 ] 0.02 003 [ 016 | 0.12 0.32 | 0.16
7.3 Visser 2000'"® N America ther country 14v7 0.69 0.37 | 0.41 0.84 0.41 [ 0.44 0.76 0.34 | 0.55 0.70 0.39 | 0.50
8.1 [Whitsel 2000 |<=40 years > 40 years 8V8 0.23 080 | 047 ] o0.66 058 | 025 ]| 021 0.81 | 048 | 085 0.59 | 0.57
8.2 Whitsel 2000 |<=50% men >50% men 5v11 0.66 0.96 | 065 | 057 061 | 063 ] 0098 0.65 | 060 | 0.61 0.77 | 0.63
8.3 [Whitsel 2000™  [<=50% type 1 diabetes  [50-100% 5v10 0.66 045 | 058 ] o010 |.0.34 | o014 | 0.61 0.37 | 040 | o0.69 0.39 | 0.42
imean duration <=10
28.4 Whitsel 2000 ears >10 years 10v4 0.45 085 | 052 | 057 090 | 093] 046 1.00 | 093 | 051 0.84 | 0.83
3.1
P iese 2000'% STD clinic peciality/general clinic 14v16 | 0.05 0.03 0.15 0.15 0.03 0.02 0.07 0.04

? denotes covariates for which the paralle! curve HSROC analysis could not be completed

® denotes covariates for which the crossing curve HSROC analysis could not be completed
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Appendix 22 Heterogeneity investigations — P-values for differences in slope and threshold (crossing curve models only)

difference in slope

difference in theta

P-values P-values
id Review Comparator group Reference group n M{eq) M(w) H Hp Hx
emergency department patients

1.1 | Balk 2001 hospitalised patients with symptoms/pain 14v18 0.27 0.22 | 0.16 0.07 0.74

2.1% | Bricker 2000 | tertiary care primary/secondary care 4v7 0.21 0.11 | 0.35 0.27

2.2° | Bricker 2000"° 2nd trimester 1st, 2™ and 3rd trimester 6v5 0.15 0.09 0.43

2.3 | Bricker 2000"° | low risk unselected 4v7 0.23 0.20 | 0.32 0.36 0.27
Buchanan

3.1 2001" prison release community/hospital discharges 8v13 0.89 0.32 | 0.88 0.97 0.95
Buchanan

3.2 | 2001™ time at risk <=20mos >20 mos 10v8 0.71 0.50 | 0.57 0.81 0.73

4.1 | Chapell 2002 | possible age bias no bias or not reported 4v9 0.04 0.01 | 0.50 0.29 0.29

4.2 | Chapell 2002 | possible bias to easy cases | no bias to easy cases 5v8 0.24 0.03 [ 0.31 0.45 0.27

4.3 | Chapell'® symptoms/presented cases unspecified diagnosis 8v5 0.56 0.28 | 0.89 0.28 0.64
Delgado

51 | 2003'® unknown primary tumours other 8v7 0.63 0.63 | 0.47 0.37 0.70

6.1 | Deville 2000 | previous surgery no previous sturgery 8v9 0.07 0.28 | 0.22 0.93 0.93

6.2° | Deville 2000'* | bilateral excluded bilateral not excluded 3v14 0.37 0.54 0.53

6.3 | Deville 2000'® | <=60% men >60% men 10v4 0.44 0.19 | 0.21 0.62 0.66

7.1% | Dijkhuizen pre and post-menopausal

b 2000 women post-menopausal women only 27 0.21 0.05

7.2° | Dijkhuizen

° 2000"" asymptomatic or both symptomatic only 20v13 | 0.09 0.04

8.1 | Eden 2001'® environmental exposure medical/not exposed 3v4 0.40 0.42 | 0.64 0.91 0.90
Fiemons

9.1 | 2003™ home setting sleep laboratory 13v36 | 0.98 0.55 | 0.69 0.59 0.51
Flemons

9.2 [ 2003™ <75%men 75-100% men i0v29 | 0.35 0.26 | 0.14 0.58 0.48
Flemons

9.3 2003™ mean AHI1'<=30 Ahl>30 15v17 0.48 0.24 0.33 0.04 0.68
Flemons

9.4 | 2003"™ mean BMI<=30 BMI>30 9v25 0.02 0.05 | 0.04 0.64 0.09

clinical examination or
10.1 | Flobbe 2002"™ | pathology referral mammography 13v9 0.67 0.54 | 0.53 0.74 0.72

1 .
® mean apnoea-hypopnea index
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difference in slope

difference in theta

P-values P-values
id Review Comparator group Reference group n M(eq) M(w) H Hp Hx
11.1 | Gifford 2000'® | age <=70 >70 years 3v8 0.70 0.84 | 0.61 0.11 0.20
11.2 | Gifford 2000 | dementia/memory clinics other setting 5v6 0.22 0.28 | 0.17 0.74 0.37
11.3 | Gifford 2000 | diagnostic criteria met referrals 6v5 0.90 077 | 0.75 0.90 0.98
12.1 | Glas 2003% <30% Grade 1 tumours >=30% Grade 1 tumours 14v6 0.58 0.64 0.95 0.17 0.29
12.2 | Glas 2003% <30% Grade 2 tumours >=30% Grade 2 tumours 6vi4 0.02 0.02 | 0.02 0.96 0.11
12.3 | Glas 2003%° <30% Grade 3 tumours >=30% Grade 3 tumours 8vi2 0.34 0.36 0.65 0.75 0.59
12.4
° Glas 2003 100% urological rest 0.43 0.42 0.46
13.1 | Gould 2001 >=70% men <70% men 14v14 0.17 0.30 | 0.12 0.85 0.17
13.2 | Gould 2001"" [ <60years >=60 years V17 0.37 0.44 | 0.33 0.32 0.33
14.1 | Gould 2003" | >=70% men <70% men 12v10 | 0.52 0.41 | 0.30 0.93 0.34
14.2
ab Gould 2003"¥ <60 years >=60 years 4v21 0.26 0.20
15.1 | Gray 2000'® suspicion/lesions cancer history 10v4 0.58 0.90 | 0.60 0.36 0.81
16.1 | loannidis®® symptoms suggestive of ACl | pts with chest pain 4v6 0.12 0.08 | 0.17 0.12 0.38
16.2 | loannidis®*® <65 years >=65 years 3v4 0.80 0.84 | 0.66 0.41 0.70
16.3
b loannidis®* <65% men >=65% men 3vd 0.04 0.03 0.11
non-melanocytic lesions
17.1 | Kittler 2002'™ excluded non-melanocytic lesions included 4v9 0.24 0.30 | 0.03 0.78 0.16
Koelemay -
18.1 | 2001'® <B5 years >=65 years 9v7 0.08 0.08 | 0.77 0.25 0.46
Koelemay
18.2 | 2001™ <70% men >=70% men 7v11 0.22 0.35 | 0.36 0.15 0.24
Koelemay <65% with intermittent >=65% with intermittent
18.3 | 2001™° claudication claudication 5v10 0.86 0.93 | 0.90 0.47 0.86
19.1 | Lysakowski
ab 2001"" heterogeneous population homogenous population 4v3 0.38 0.33
20.1 | MSAC 2002 | <50% men >=50% men 6v6 0.63 0.72 | 0.87 0.34 0.54
20.2 | MSAC 2002™ families /pedigree definite/suspected/prenatal 8v4 0.77 0.21 0.80 0.81 0.89
Nallamothu
21.1 | 2001 <55 years >=55 years 5v9 0.48 0.84 | 0.72 0.77 0.88
Nallamothu
21.2 | 2001 <65%men >=65% men T 0.14 0.07 | 0.60 0.09 0.32
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difference in slope

difference in theta

P-values P-values

id Review Comparator group Reference group n M(eq) M(w) H Hp Hx
Patwardhan )

22.1 | 2004 <70 years >=70 years 11v5 0.53 0.58 | 0.95 0.08 0.38
Patwardhan

22.2 | 2004 healthy controls diseased controls 13v6 0.98 0.42 | 0.26 0.45 0.51
Romag%nuolo wide variety of possible

23.1 | 2003 diagnoses stones or cancer diagnoses 11v35 0.63 0.19 | 0.38 0.37 0.29
Sauerland

24.1 | 2004'% adults children 10v3 1.00 0.69 | 0.45 0.01 0.86
Sotiriadis

25.1 | 2003 <=30 years >30 years 4v8 0.96 0.38 | 0.33 0.80 0.88
Sotiriadis

25.2 | 20037 high risk low risk/routine 7v5 0.57 0.90 | 0.12 0.26 0.37
Varonen

26.1 | 2000 ENT clinic general clinic 3v4 0.69 0.89 | 0.66 0.20 0.83

27.1 | Visser 2000'° | <=60% men >60% men 8v8 0.35 0.08 | 0.48 0.12 0.20

27.2 | Visser 2000""° | <=65 years >65 years 8v8 0.05 0.07 | 0.11 0.68 0.11

27.3 | Visser 2000'"° | N America other country 14v7 1.00 0.62 | 0.63 0.42 0.49

28.1 | Whitset 2000""* | <=40 years > 40 years 8Vv8 0.38 0.61 | 0.07 0.28 0.36

28.2 | Whitsel 2000""* | <=50% men >50% men 5v11 0.70 057 | 0.76 0.02 0.23

28.3 | whitsel 2000""* | <=50% type 1 diabetes 50-100% 5v10 0.10 0.48 | 0.03 0.62 0.17

28.4 | Whitsel 2000""* | mean duration <=10 years >10 years 10v4 0.88 0.81 | 0.85 0.34 0.51

29.1

ab Wiese 2000 | STD clinic speciality/general clinic 14v16 0.30 0.31

® denotes covariates for which the parallel curve HSROC analysis could not be completed
® denotes covariates for which the crossing curve HSROC analysis could not be completed
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Appendix 23 ROC plots for reviews for which HSROC analyses would not complete
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Appendix 24 Box and whisker plots for stratified analyses comparing DORs between

models

Box and whisker plots showing ratio of DORs (RORs) at mean threshold between models for

stratified analyses: median, interquartile range (box) and range (whiskers). Weighted Moses model
is compared to the unweighted Moses model (denominator) and each Moses model is compared to
the HSROC model (denominator)
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sensitivity=specificity; mean threshold — operating point estimated using mean threshold across
studies
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Appendix 25 Box and whisker plots comparing RDORs between models

Box and whisker plots showing ratio of RDORs (RRORs) between models at Q* and at the mean threshold of the reference and comparator groups: median,
interquartile range (box) and range (whiskers). Each Moses mode! is compared against the HSROC model results (denominator) for both the parallel (PA) and
crossing (XG) curve versions of the models.
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RROR - ratio of relative diagnostic ods ratios between models; Moses (w) — weighted Moses model; Moses (eq) — unweighted Moses model; HSROC —
hierarchical SROC model; RROR - ratio of RDORs between models; Q* - point where sensitivity=specificity; ref group threshold — operating point estimated using
mean threshold of reference group; comp group threshold — operating point estimated using mean threshold of comparator group

NB: The very extreme ranges, especially for the far right comparison have occurred in reviews with very small numbers of studies in one of the comparator groups
leading to very big differences in RDORs between models.
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Appendix 26 Comparison of P-values for RDORs between crossing curve models
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Glossary

Accuracy A general term to describe the discriminative ability of the test or
alternatively, the percentage of correct results obtained by a test
under evaluation compared with the results of a reference or 'gold
standard’ test.

Bias Deviation of results or inferences from the truth, or processes leading

to such deviation

Binomial distribution

Categorization of a group into two mutually exclusive subgroups, e.g.

Sick and not sick.

Blinding

Refers to whether patients, clinicians providing an intervention, people
assessing outcomes, and/or data analysts were aware or unaware of

the group to which patients were assigned

Confidence interval

Quantifies the uncertainty in measurement; usually reported as 95% ci,
which is the range of values within which we can be 95% sure that the

true value for the whole population lies.

Confounding

Confounding refers to a situation in which a measure of the effect of an
intervention or exposure is distorted because of the association of
exposure with other factor(s) that influence the outcome under
investigation. This can lead to erroneous conclusions being drawn,

particularly in observational studies.

CONSORT The consort statement comprises a checklist and flow diagram to help
improve the quality of reports of randomized controlled trials. It offers a
standard way for researchers to report trials.

Cut-off For diagnostic tests that produce a numerical result, the point above

which test results are classified as positive is called the cut-off.

Diagnostic odds

ratio

The ratio of the odds of a positive test result in a patient with disease

compared to a patient without disease

Effect size

This is the standardised effect observed; a generic term for the

estimate of effect for a study

Effective sample

size

The sample size needed in equal-sized groups to achieve the available

power where there are groups of unequal sizes

False-positive

A test result that is positive even though the tested subject does not

have the disease in question

False-negative

A test result that is negative even though the tested subject has the

disease in question

Fixed effect model

A meta-analytic model where only within-study variation is taken to
influence the uncertainty of results (as reflected in the confidence
interval). Variation between the estimates of effect from each study

does not affect the confidence interval.
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Heterogeneity

Variability or differences between studies in the estimates of effects.

Individual patient

data

The availability of raw data for each study participant in each included

study

Likelihood Ratio

The likelihood that a given test result would be expected in a patient
with a disease compared to the likelihood that the same result would

be expected in a patient without that disease.

Meta-analysis

A method for combining the results of several independent studies that
measure the same outcomes so that an overall summary statistic can

be calculated.

Odds ratio Describes the odds of a patient in the experimental group having an
event divided by the odds of a patient in the control group having the
event

P-value The probability (ranging from zero to one) that the results observed in

a study (or results more extreme) could have occurred by chance.

Polymerase chain

reaction

A laboratory technigue that can amplify the amount of dna from a tiny

sample to a large amount within just a few hours

Predictive value

The probability that a positive/negative result accurately indicates the

presence/absence of disease.

Prevalence

The proportion of a given population with a target disorder at a given

time

Primary care

Medical care provided by the clinician of first contact for the patient.

Typically, the primary care physician is a general practitioner.

Q*

Point on the sroc curve at which sensitivity=specificity

Random effect

model

A meta-analytic model in which both within-study sampling error
(variance) and between-study variation are included in the assessment
of the uncertainty (confidence interval) of the results of a meta-

analysis.

Randomized

controlled trial

Experiment in which subjects are randomly allocated to receive or not
receive an experimental preventive, therapeutic, or diagnostic

procedure and then followed to determine the effect.

Reference standard

A method having established or widely accepted accuracy for
determining a diagnosis, providing a standard to which a new
screening or diagnostic test can be compared. The method need not
be a single or simple procedure but could include follow-up of patients
to observe the evolution of their conditions or the consensus of an
expert panel of clinicians, as is frequently used in the study of

psychiatric conditions.

Relative diagnostic

odds ratio

Estimate of relative difference in accuracy between two groups of

studies
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Sensitivity The sensitivity of a diagnostic or screening test is the proportion of
people with a designated disorder who are so identified by the test
Specificity The specificity of a diagnostic or screening test is the proportion of

people free of a designated disorder who are so identified by the text.

Standard deviation

A measure of variability; quantifies how much values vary from each

other.

Standard error

A measure of variability; quantifies how accurately the true population

mean is known.

STARD The stard statement comprises a checklist and flow diagram to help
improve the quality of reports of diagnostic accuracy studies.

Tests Any method for obtaining additional information regarding a patient's
health status.

Variance A measure of the average distance between each of a set of data

points and their mean value; equal to the sum of the squares of the

deviation from the mean value. Describes the spread of a distribution

Sources of definitions

http://www.nature.com/nrmicro/journal/v5/n11_supp/glossary/nrmicro1523.html

http://www.jr2.ox.ac.uk/bandolier/glossary.html

http://www.elsevier.com/framework_products/promis_misc/apmrglossary.pdf
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