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Theory and applications of supercycled symmetry-based recoupling
sequences in solid-state nuclear magnetic resonance

Per Eugen Kristiansen
Department of Molecular Biosciences, University of Oslo, P.O. Box 1041-Blindern, 0316 Oslo, Norway

Marina Carravetta, Jacco D. van Beek,a� Wai Cheu Lai, and Malcolm H. Levittb�

Chemistry Department, Southampton University, Southampton SO17 1BJ, United Kingdom

�Received 9 March 2006; accepted 24 April 2006; published online 20 June 2006�

We present the theoretical principles of supercycled symmetry-based recoupling sequences in
solid-state magic-angle-spinning NMR. We discuss the construction procedure of the SR26 pulse
sequence, which is a particularly robust sequence for double-quantum homonuclear dipole-dipole
recoupling. The supercycle removes destructive higher-order average Hamiltonian terms and
renders the sequence robust over long time intervals. We demonstrate applications of the SR26
sequence to double-quantum spectroscopy, homonuclear spin counting, and determination of the
relative orientations of chemical shift anisotropy tensors. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2205857�
I. INTRODUCTION

Solid-state nuclear magnetic resonance �NMR� is an in-
creasingly powerful method for addressing biomolecular and
material structural problems.1–5 Many of the applications of
solid-state NMR to molecular structure determination use
radio-frequency pulse sequences which are sensitive to the
through-space dipole-dipole coupling between nuclei. The
presence of a finite dipole-dipole coupling indicates the spa-
tial proximity of nuclei, while an accurate estimate of the
magnitude of the coupling allows a determination of the in-
ternuclear distance. For example, picometer-resolution mo-
lecular structural information has been obtained on the chro-
mophore of the membrane protein rhodopsin.6

For most macromolecular applications of solid-state
NMR, the employed techniques must be compatible with
magic-angle spinning �MAS�, which provides good sensitiv-
ity and resolution.1–5 A wide variety of dipolar recoupling
methods exists for the exploitation of dipole-dipole cou-
plings in the presence of magic-angle spinning.7–26 These
methods allow the determination of qualitative internuclear
proximities and, in some cases, quantitative internuclear dis-
tances. 7–14,18–23 In addition, the recoupling of nuclei under
magic-angle-spinning conditions allows the excitation of
multiple-quantum coherences, enabling the estimation of
molecular torsional angles.12,27–35 The excitation of high-
order multiple-quantum coherences in clusters of coupled
spin-1 /2 allows an estimate to be made of the number of
nuclei in the cluster.32,36–42 The latter method, called
“multiple-quantum spin counting,” was initially demon-
strated on static solids but has also been employed in magic-
angle-spinning NMR.40–42

The symmetry-based approach to pulse sequence
design19–26 leads to a range of recoupling solutions appli-
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cable in a range of circumstances and allows the prediction
of important features of the recoupling sequence, such as its
orientation dependence and decoupling properties, on the ba-
sis of simple integer inequalities. Many of the symmetry-
based recoupling sequences display a property called
“� encoding.”18,26 This implies that the recoupled effective
spin Hamiltonian is phase modulated by the Euler angle �MR,
which is one of the three angles defining the orientation of
the molecules with respect to the sample holder. Sequences
displaying � encoding, such as C719 POST-C7,20 and R142

6,22

can achieve particularly high double-quantum efficiencies in
unoriented samples. However, �-encoded double-quantum
recoupling sequences have not proven so suitable for longer-
range excitation of multiple-quantum coherence, although at-
tempts have been made.23 The main problem is their general
lack of robustness at long recoupling times, where they are
susceptible to interference from chemical shift anisotropies
and radio-frequency phase errors. 23,43

The robustness of symmetry-based sequences may be
greatly improved by supercycling, i.e., repetition of the pulse
sequence with an additional overall phase shift and/or a
change in sign of all phases. We demonstrated recently a
supercycled pulse sequence called SR26,25 which achieves
relatively efficient homonuclear dipolar recoupling even for
small dipolar interactions and relatively large chemical shift
anisotropies. The type of supercycle employed for this se-
quence sacrifices the favorable features of � encoding for the
sake of greater robustness. When applied in the context of
small dipolar couplings, SR26 appears to have a better per-
formance than other methods, including the highly success-
ful DRAWS sequence,12–14 which has already been applied
to many biomolecular problems.14,44 The SR26 sequence has
been used successfully for three-dimensional structural stud-
ies of a zeolite framework.45,46
The SR26 sequence may be written explicitly as follows:
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�9076.15270256.1590283.85270103.85�13

�90283.85270103.859076.15270256.15�13

− �90103.85270283.8590256.1527076.15�13

�90256.1527076.1590103.85270283.85�13, �1�

where each pulse is denoted �� where � is the flip angle and
� is the phase, both given in degrees. The superscripts de-
note 13 repetitions of the bracketed elements. The rf field
amplitude is set so that the entire SR26 sequence has a du-
ration of exactly 16 rotational periods. This requires a rf
nutation frequency of 6.5 times the magic-angle-spinning
frequency.

In this article we show that the operation of the SR26
supercycle may be understood by using average Hamiltonian
theory,2,47,48 supported by numerical evaluations of the effec-
tive Hamiltonian. We also show a variety of experimental
applications of SR26 which exploit its ability to perform
homonuclear dipolar recoupling over relatively long dis-
tances. We use SR26 to determine accurate 13C– 13C dis-
tances in selectively labeled material over a distance of
around 0.4 nm, we exploit double-quantum coherence gener-
ated by SR26 to determine the relative orientations of two
chemical shift anisotropy �CSA� tensors, and we show that
SR26 can be used to generate high-order intermolecular
multiple-quantum coherences in homonuclear dipolar-
coupled networks, in the presence of magic-angle spinning.

II. THEORY

A. Symmetry-based recoupling

The principles of symmetry-based recoupling sequences
have been given in detail elsewhere.19–26 A brief review is
given here in order to prepare the ground for the treatment of
supercycles.

1. Selection rule analysis

There are two major classes of symmetry-based recou-
pling sequences, denoted CNn

� and RNn
�. We will only deal

with the RNn
� class in this article. A pulse sequence with the

symmetry RNn
� is composed of N elements �E0E1¯EN−1�,

each of which has the same duration �E=n�r /N, where �r is a
period of the magic-angle sample rotation, �r= �2� /�r�,
where the angular spinning frequency is �r. Each element Eq,
with q=0¯N−1, is derived from the same “basic element”
R0, as follows:

Eq = �R��/N
0 �q even�

R−��/N
0� �q odd� .

	
Here R0 is any sequence of resonant radio-frequency �rf�
fields that rotates the resonant nuclei by an odd multiple of �
about the rotating-frame x axis; the modified sequence R0� is
derived from R0 by changing the sign of all rf phase shifts.
In the case that R0 only involves phases that are multiples of
� �case of “amplitude modulation”�, then R0� and R0 are
identical. The subscripts in Eq. �2� refer to overall rf phase
shifts. The complete RNn

� sequence, denoted S0, therefore

consists of N /2 pairs of elements, with the two components
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of each pair having opposite overall phases ±�� /N, i.e.,

S0 = �R��/N
0 R−��/N

0� �N/2. �2�

The SR26 sequence is built around a R264
11 cycle em-

ploying the basic element

R0 = R0� = 900270180. �3�

The explicit form of the R264
11 cycle is therefore

S0 = �9076.15270256.1590283.85270103.85�13, �4�

as shown in Fig. 1.
The integrated propagator of the rf field between the

time points ta and tb is denoted Urf�tb , ta� and solves the
equation

d

dt
Urf�t,ta� = − iHrf�t�Urf�t,ta� . �5�

The complete RNn
� sequence lasts exactly n rotor periods and

will be denoted S0. Appendix A shows that the rf propagator
�

FIG. 1. Construction of the SR26 supercycle. �a� The R0 inversion element
is a composite pulse of the form 900270180. �b� Two elements are derived
from R0 by �i� imposing an overall phase shift of +�� /N, leading to
R+11�/26

0 , or �ii� changing the sign of all phases, followed by an overall phase
shift of −�� /N, leading to R−11�/26

0� . In the case of SR26, the symmetry
numbers are �=11 and N=26, and R0�=R0. �c� The R264

11 cycle S0 is
constructed by concatenating 13 R+11�/26

0 R−11�/26
0� pairs. The total sequence

duration is equal to four rotor periods. �d� The SR26 supercycle is con-
structed by concatenating S0 with the cycle S0� �derived by changing the sign
of all phases�, the cycle S� �derived from S0 by an overall � phase shift�,
and the cycle S�� �derived from S0 by an overall � phase shift as well as a
change in sign of all phases�. The SR26 supercycle has a duration of 16
rotor periods.
for the RNn sequence is given by
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Urf�S0� = Urf�n�r + t0,t0� = �− 1��+N/2, �6�

where t0 is the time point at which the sequence starts. The
RNn

� sequence may be regarded as a rf cycle, since the sign
of the propagator is usually unimportant.

Average Hamiltonian theory2,47,48 conducted over the
complete RNn

� sequence leads to the following expression for
the spin propagator:

U�S0� = Urf�S0�exp�− inrrH̄� = �− 1��+�1/2�N exp�− in�rH̄� .

�7�

The effective Hamiltonian may be expressed as a convergent
series �the Magnus expansion�,

H̄ = H̄�1� + H̄�2� + H̄�3� + ¯ , �8�

where each term is a superposition of many different com-
ponents:

H̄�1� = 

1

H̄1
�1�,

H̄�2� = 

2



1

H̄�2,1�
�2� ,

H̄�3� = 

3



2



1

H̄�3,2,1�
�3� . �9�

For the sake of brevity, the bold index 1 is used to represent
the set of quantum numbers �l1 ,m1 ,	1 ,
1� and similarly for
2 and 3. The sums are taken over all combinations of quan-
tum numbers.

These quantum numbers have the following meaning:
Each component of the interaction-frame spin Hamiltonian is
classified according to its transformation properties under
mechanical rotations of the molecular framework �“space”
rotations�, and under rotations of the nuclear magnetic mo-
ments �“spin” rotations�. The space rotational properties are
characterized by a rank � and component m, which takes the
values m= �−� ,−�+1. . .��. The spin rotational properties are
characterized by a rank 	 and component 
, which takes the
values 
= �−	 ,−	+1. . .	�. The various nuclear spin interac-
tions are distinguished by the values of � and 	: For homo-
nuclear dipole-dipole interactions, �� ,	�= �2,2�; for isotropic
chemical shifts, �� ,	�= �0,1�; and for chemical shift
anisotropies, �� ,	�= �2,1�.

The average Hamiltonian theory of symmetry-based
recoupling22–26 leads to the following selection rules for the
first, second, and third-order terms:

H̄1
�1� = 0 if m1n − 
1� � 1

2NZ	1
�10�

and

H̄�2,1�
�2� = 0 if �m2n − 
2� � 1

2NZ	2
Ù

m1n − 
1� � 1
2NZ	1

Ù

�m2 + m1�n − �
2 + 
1�� � 1
2NZ	2+	1

,
�

�11�
and
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H̄�3,2,1�
�3� = 0

if �
m3n − 
3� � 1

2NZ	3
Ù

m2n − 
2� � 1
2NZ	2

Ù

m1n − 
2� � 1
2NZ	1

Ù

�m3 + m2�n − �
3 + 
2�� � 1
2NZ	3+	2

Ù

�m3 + m1�n − �
3 + 
1�� � 1
2NZ	3+	1

Ù

�m2 + m1�n − �
2 + 
1�� � 1
2NZ	2+	1

Ù

�m3 + m2 + m1�n − �
3 + 
2 + 
1�� � 1
2NZ	3+	2+	1

.

��12�

The selection rules Eqs. �10� and �11� use the symbol Z	 to
represent any integer �including zero� with the same parity as
	: If 	 is even, then Z	� �0, ±2, ±4¯ �; if 	 is odd, then
Z	� �±1, ±3¯ �. The symmetry-based approach to recou-
pling pulse sequence design allows one to select the desired
recoupled interaction �to first order� through the simple inte-
ger inequality given in Eq. �10�.

One of the most successful applications of symmetry-
based recoupling has been in the design of �-encoded
double-quantum recoupling sequences.18–23 These sequences
have the following properties: �i� all CSA terms are forbid-
den by the first-order selection rule Eq. �10�; �ii� all homo-
nuclear dipole-dipole �DD� coupling terms are forbidden by
the first-order selection rule Eq. �10�, except for some
double-quantum terms �
= ±2�; and �iii� each double-
quantum term is associated with a single symmetry-allowed
spatial component m. A compilation of symmetries with
these properties has been given;26 two examples are R142

6

�Ref. 23� and R264
11 �Ref. 25�. For both of these sequences,

the only symmetry-allowed first-order dipole-dipole coupling
terms have the quantum numbers �� ,m ,	 ,
�= �2,−1,2 ,2�
and �2,1 ,2 ,−2�. If the homonuclear J coupling is ignored,
the first-order average Hamiltonian for recoupling of isolated
spin-1 /2 pairs Ij and Ik is given by a pure double-quantum
term

H̄�1� = H̄DQ, �13�

where

H̄DQ = �̄2−122
jk 1

2 Ij
+Ik

+ + �̄212−2
jk 1

2 Ij
−Ik

−. �14�

Here the complex amplitude of a recoupled interaction � is
given in general by

�̄�m	

� = ��m	
�A�m

� �R exp�− im�
RL
0 − �rt

0�� . �15�

Here ��m	
 is the first-order scaling factor, which depends on
the quantum number of the recoupled term; the pulse se-
quence symmetry numbers N, n, and �; and the basic ele-
ment R0. Explicit expressions for the scaling factor are given
in Ref. 49. The term �A�m

� �R represents the mth component of
the �th-rank interaction �, expressed in the rotor-fixed frame
R �z axis along the sample rotation axis�. The angle 
RL

0

defines the orientation of the rotor at the start of the recou-
pling sequence �time point t0�. In the case of the dipole-
dipole interaction ��=2, �= jk�, the relevant rotor-frame in-

teraction components are given by
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�A2m
jk �R = 
6bjkd0m

2 ��PR
jk �exp�− im�PR

jk � , �16�

where ��PR
jk ,�PR

jk � are two of the Euler angles relating the
principal axis frame of the dipole-dipole interaction with the
rotor-fixed frame. The dipole-dipole internuclear coupling
constant is related to the inverse cube of the internuclear
distance rjk through

bjk = −

0

4�

�2�

rjk
3 . �17�

These equations show that only the phase of the complex
amplitude �̄ jk depends on the Euler angle �PR

jk : hence the
term “� encoding.” This property minimizes the orientation
dependence of the recoupling, leading to relatively good ef-
ficiency in powder samples. For isolated pairs of spin-1 /2,
the first-order average Hamiltonian in Eq. �13� leads to a
maximum efficiency of 73% for double-quantum filtering of
powder NMR signals.19

2. Chemical shift interference

The first-order selection rule analysis predicts that sym-
metries such as R142

6 and R264
11 suppress the effects of

chemical shifts. However, in practice, chemical shifts �both
isotropic resonance offset effects and chemical shift anisotro-
pies� can be several orders of magnitude larger than the
dipole-dipole interactions. A first-order analysis is often in-
sufficient, especially in the case of small dipole-dipole inter-
actions. In the following analysis, we assume that the terms

H̄�2� and H̄�3� are dominated by chemical shift interactions,
including both isotropic chemical shifts �� ,	�= �0,1� and
chemical shift anisotropies �� ,	�= �2,1�.

All average Hamiltonian terms involving only chemical
shifts involve commutators between single-spin first-rank in-
teractions. Such terms must therefore be proportional to the
angular momentum operators of the spins Ij and Ik. The
higher-order chemical shift interactions therefore give rise to
average Hamiltonian contributions of the form

H̄�2� + H̄�3� � H̄x + H̄y + H̄z, �18�

where

H̄x = �̄ jxIjx + �̄kxIkx,

H̄y = �̄ jyIjy + �̄kyIky ,

H̄z = �̄ jzIjz + �̄kzIkz. �19�

The chemical shift Hamiltonian components H̄x, H̄y, and

H̄z are, in general, strongly dependent on the chemical shift
parameters and the molecular orientation.

Analysis of the second-order selection rule Eq. �11�
shows that the symmetries R142

6 and R264
11 are inequivalent

with respect to the second-order CSA terms: R142
6 has 20

symmetry-allowed CSA�CSA H̄�2� terms, while R264
11 has

only 8 symmetry-allowed CSA�CSA H̄�2� terms. This
qualitative analysis therefore predicts that R264

11 is more ro-
6
bust with respect to CSA interference than R142. Further
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examination of the CSA�CSA H̄�2� terms in the case of
R264

11 �N=26, n=4, �=11, �2=�1=2, and 	2=	1=1� shows
that the only symmetry-allowed terms have the form

H̄2,m,1,±1;2,−m,1,�1
�2� , with m= ±1, ±2. The total Zeeman quan-

tum number for these terms is therefore 
2+
1=0. Simi-
larly, the only second-order isotropic shift terms have the

form H̄0,0,1,±1;0,0,1,�1
�2� , which also has 
2+
1=0. Hence, in

the case of R264
11, the second-order Hamiltonian H̄�2� only

contributes to the longitudinal chemical shift term H̄z.

The third-order Hamiltonian contributes to each of H̄x,

H̄y, and H̄z. A symmetry analysis based on Eq. �12� shows
that there are 96 longitudinal symmetry-allowed third-order
terms, as against 348 transverse symmetry-allowed third-
order terms. The conclusion may be drawn that the longitu-

dinal terms H̄z derives mainly from the second-order chemi-

cal shift term, while the transverse terms H̄x and H̄y are
mainly due to the third-order chemical shift terms, in the
case of R264

11. This property will be used later when analyz-
ing the effect of supercycling.

The chemical-shift-dominated terms H̄x, H̄y, and H̄z

do not commute with H̄DQ and can be highly damaging for
the double-quantum efficiency, especially in the case of
small dipole-dipole interactions. The destructive effect of
these terms has been documented.22,43

3. Instrumental phase errors

RNn
� sequences suffer from a hypersensitivity to the

radio-frequency phase shift. It has been demonstrated22 that
rf phase shift errors of a fraction of a degree may have a
strong detrimental influence on the double-quantum excita-
tion efficiency, especially when recoupling is attempted over
medium-range or long internuclear distances.

The reason for the phase-shift hypersensitivity is that the
rf propagator Urf�S0� is not proportional to the unity operator
if the experimental phases are misset. Suppose that the pulse
sequence elements are defined by

Eq = �R�
0 , q even

R−�
0� , q odd,

	
instead of by Eq. �2�, where the phase shift is

� =
��

N
+ � , �20�

and � is an instrumental error �or a deliberate fine phase
adjustment�. Appendix A shows that the overall propagator
in this case is given by

Urf�S0� = �− 1��+N/2 exp�i2N�Iz� . �21�

The sign of the propagator may be ignored for most pur-
poses, but the second term shows that an error � in the rf
phase shift leads to a rotation of the spins around the z axis
on completion of each RNn

� sequence. The rotation angle
corresponds to the phase error magnified by the factor −2N.
In the case of R264

11, this multiplication factor is −52, which
means that a 0.1° error in the size of the phase shift leads to

an erroneous rotation of the nuclei by −5° after the comple-
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tion of just one R264
11 cycle. Since many recoupling cycles

are often required, and this rotation accumulates between
consecutive cycles, this feature places almost impossible de-
mands on the phase shift accuracy. To make matters worse,
the rf phase shift as experienced by the spins is influenced by
other factors than the rf phase shift at the radio-frequency
synthesis stage. For example, in the case of a sample rotating
in an inhomogeneous rf field, the effective rf phase is modu-
lated by the change in direction of the rf field experienced by
each moving volume element. NMR phenomena associated
with this effect have been demonstrated.10,50 Hence, the ex-
treme phase-shift sensitivity of the RNn

� sequences can prob-
ably not be addressed purely by improvements in the radio-
frequency synthesis hardware.

4. Effective Hamiltonian

Equations �7�, �13�, �18�, and �21� may be combined to
give the following approximate expression for the spin
propagator under a realistic symmetry-based double-
quantum recoupling sequence:

U�S0� � �− 1��+N/2 exp�i2N�Iz�

�exp�− in�r�H̄DQ + H̄z + H̄x + H̄y�� . �22�

This propagator may be interpreted as the result of a constant
effective Hamiltonian, applied during the entire n�r interval,

U�S0� = exp�− in�rH̄�S0�� . �23�

If the phase shift error � is small, and the double-quantum

and chemical shift terms H̄DQ, H̄z, H̄x, and H̄y are also
small compared to the inverse of the cycle period n�r, the
Baker-Campbell-Hausdorff �BCH� formula2

eBeA = exp��B + A� + 1
2 �B,A� + ¯ � �24�

may be used to obtain an approximate expression for the
effective Hamiltonian over the complete RNn

� sequence,

H̄�S0� � �H̄DQ + H̄z + H̄x + H̄y −
2N�

n�r
Iz�

+ iN��H̄DQ + H̄x + H̄y,Iz� . �25�

The phase-shift error appears in the average Hamiltonian as
an effective field along the z axis, suggesting that a deliberate
misset of the phase shift may be used to compensate the

second-order chemical shift term, which contributes to H̄z.
A fine phase adjustment does indeed lead to improved per-
formance in the case of large chemical shift interactions.22

However, this compensation method only leads to limited
improvements in the performance of the pulse sequence,
since the chemical shift interference terms are strongly ori-
entation dependent.

The average Hamiltonian in Eq. �25� also displays a term
due to the interference between the phase-shift error and the
double-quantum and chemical shift Hamiltonians. In the dis-

cussion below, this term will be ignored.
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B. Modified cycles

A supercycle is constructed by concatenating a set of
modified rf cycles, which are usually the same duration as
the original cycle but which differ in the radio-frequency
phases or in the order of the component elements.

The operations which are used in the construction of the
SR264

11 supercycle are as follows.

�1� Apply an overall phase shift of � �generating a
�-shifted cycle�. If the original cycle is denoted S0, the
phase-shifted cycle is denoted S�.

�2� Change the sign of all rf phase shifts �generating a
phase-inverted cycle�. If the original cycle is denoted
S0, the phase-shifted cycle is denoted S0�.

�3� A combination of the two �generating a �-shifted
phase-inverted cycle�. If the original cycle is denoted
S0, the phase-shifted phase-inverted cycle is denoted
S�� .

The effects of these transformations on the overall spin
propagator are analyzed in Appendix B. The results are as
follows.

1. �-shifted cycles

Appendix B-shows that a � phase shift of all rf pulses
rotates the effective Hamiltonian by � about the z axis. This
inverts the sign of all odd-quantum terms, leaving all even-
quantum terms unchanged. The effective Hamiltonians for a
�-shifted cycle and non-phase-shifted cycle are related
through

H̄�S�� � H̄DQ�S0� + H̄z�S0� − H̄x�S0� − H̄y�S0� −
2N�

n�r
Iz.

�26�

2. Phase-inverted cycles

If the cycle S0 corresponds to a sequence with the sym-
metry RNn

� based on the element R0, then the phase-inverted
cycle S0� corresponds to a sequence with the symmetry RNn

−�,
based on the phase-inverted element R0�. If the basic ele-
ment R0 only contains phase shifts that are multiples of �,
then R0� is identical to R0.

As shown in AppendixB, the relationship between aver-
age Hamiltonian terms for cycles related by a phase inver-
sion depends on the sum of the spin ranks for the participat-
ing interactions �see Eq. �97��. For example, the double-

quantum Hamiltonian H̄DQ derives from the dipole-dipole
interaction, which has spin rank 2. The relationship between
this average Hamiltonian for the phase-inverted and non-
phase-inverted cycles is given by

H̄DQ�S0�� = �xH̄DQ�S0��x
†. �27�

The relationships for the chemical shift terms are more com-

plex. The term H̄z derives predominantly from the second-
order chemical shift cross terms, which have a spin rank sum
of 2. As shown in Appendix B, phase inversion leads to a

sign change for this term,
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H̄z�S0�� � �xH̄z�S0��x
† = − H̄z�S0� . �28�

In the case of R264
11, the transverse interference terms H̄x

and H̄y are derived predominantly from the third-order
chemical shift terms, which have a rank sum of 3. The phase-
inversion relationships are as follows:

H̄x�S0�� � − �xH̄x�S0��x
† = − H̄x�S0� �29�

and

H̄y�S0�� � − �xH̄y�S0��x
† = + H̄y�S0� . �30�

The effective Hamiltonian for a phase-inverted cycle is
therefore given approximately by

H̄�S0�� � �xH̄DQ�S0��x
† − H̄z�S0� − H̄x�S0�

+ H̄y�S0� +
2N�

n�r
Iz. �31�

3. �-shifted phase-inverted cycles

If the rf phase is shifted by � as well as being inverted,
the previous operations are combined. The effective Hamil-
tonian is given by

H̄�S�� � � �xH̄DQ�S0��x
† − H̄z�S0� + H̄x�S0�

− H̄y�S0� +
2N�

n�r
Iz. �32�

C. Supercycles

The error terms in the average Hamiltonian may be re-
duced or eliminated by concatenating modified cycles. The
stabilizing effect of supercycling on the average Hamiltonian
has been examined in detail in the context of triple-quantum
recoupling.48,51,52 Here we examine the effect of supercy-
cling on symmetry-based recoupling double-quantum se-
quences.

The most relevant combinations of cycles are as follows.

1. The supercycle S0S�

If the original cycle S0 is followed by the phase-shifted
cycle S�, the overall propagator is

U�S0S�� = exp�− in�rH̄�S���exp�− in�rH̄�S0�� , �33�

where the effective Hamiltonians are given by Eqs. �25� and
�26�. If the effective Hamiltonian terms are sufficiently
small, the BCH formula �Eq. �24�� may be used to derive the
effective Hamiltonian of the supercycle,

H̄�S0S�� � 1
2 �H̄�S�� + H̄�S0��

+ i 1
4n�r�H̄�S��,H̄�S0�� . �34�

The supercycle effective Hamiltonian is therefore given ap-

proximately by
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H̄�S�S0� � H̄DQ�S0� + H̄z�S0� −
2N�

n�r
Iz, �35�

which shows that the supercycle S0S� eliminates the trans-

verse chemical shift terms H̄x and H̄y to first order, but has
no effect on the phase-shift sensitivity, or the dominant

second-order chemical shift term H̄z. The S0S� supercycle
is therefore of limited use.

2. The supercycle S0S0�

The BCH formula may be used together with Eqs. �25�
and �31� to derive the effective Hamiltonian of the S0S0�
supercycle,

H̄�S0S0�� �
1

2
�H̄DQ�S0� + �xH̄DQ�S0��x

†� + H̄y�S0� .

�36�

The second-order BCH term has been neglected.
Equation �36� shows that the effective Hamiltonian for

the S0S0� supercycle is free of the second-order H̄z chemical
shift term and the phase error term, although the third-order

chemical shift term H̄y is still present. However, the in-
creased robustness with respect to chemical shifts and phase
errors is accompanied by a modification of the double-
quantum term. The effect of this modification is examined in
more detail below.

3. The supercycle S0S0�S�� S�

The twofold supercycles discussed above may be com-
bined to give the four-step supercycle S0S0�S��S�. The BCH
formula may be used together with Eqs. �25�, �26�, �31�, and
�32� to derive the approximate effective Hamiltonian of this
supercycle,

H̄�S0S0�S��S�� � 1
2 �H̄DQ�S0� + �xH̄DQ�S0��x

†� . �37�

The four-step S0S0�S��S� supercycle therefore eliminates all
chemical shift interference and phase error terms, to first
order in the BCH expansions.

The SR26 supercycle given in Eq. �1� corresponds to a
S0S0�S��S� expansion of the R264

11 cycle S0 in Eq. �4�. The
construction of SR26 is summarized in Fig. 1.

Equation �37� may be combined with Eq. �14� to obtain
a more detailed result for the average Hamiltonian of SR26,

H̄�SR26� � �̄SR26Ix
DQ, �38�

where the amplitude of the recoupled double-quantum term
is

�̄SR26 = Re��̄2−122
jk � �39�

and the double-quantum x operator is

Ix
DQ = 1

2 �Ij
+Ik

+ + Ij
−Ik

−� . �40�

The amplitude of the double-quantum term is given explic-

itly by
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�̄SR26 = 
6bjkd0−1
2 ��PR

jk ���2−122�cos��PR
jk + ��

= − 3
2bjk��2−122�sin�2�PR

jk �cos��PR
jk + �� , �41�

where the constant phase angle � is defined by

� = arg �2−122 + 
RL
0 − �rt

0. �42�

The scaling factor �2−122 may be evaluated through the meth-
ods described in Ref. 49. In the case of SR26, it has a mag-
nitude given by

��2−122� = 0.1710. �43�

Equation �41� shows that the magnitude of the recoupled
double-quantum term depends on the Euler angle �PR

jk . A
supercycle of this form is therefore not � encoded.

D. Double-quantum filtering

Double-quantum recoupling sequences convert longitu-
dinal spin angular momentum into double-quantum coher-
ence and vice versa. Signal pathways passing through
double-quantum coherence may be selected by standard
phase-cycling procedures.53–55 Double-quantum filtering
suppresses the signals from isolated spin-1 /2 nuclei and is a
common technique for improving spectral resolution and se-
lectivity.

The efficiency of the overall process may be quantified
by the double-quantum filtering efficiency �DQFE�, given by

fDQ��exc,�rec� = f+2��exc,�rec� + f−2��exc,�rec� , �44�

where

f±2��exc,�rec� = �Iz�Iz�−2��Iz�U��rec�Ij
±Ik

±U��rec�†�

��Ij
±Ik

±�U��exc�IzU��exc�†�� �45�

and Iz= Ijz+ Ikz is the total angular momentum operator in the
direction of the field. The angular brackets denote averaging
over all molecular orientations, while the round brackets in-
dicate a projection in operator �Liouville� space,56

�A�B� = Tr�A†B� . �46�

The symbols �exc and �rec indicate the durations of the
double-quantum excitation and recovery pulse sequences. An
efficiency fDQ=1 would indicate perfect conversion of lon-
gitudinal magnetization into double-quantum coherence and
back again into longitudinal magnetization.

The dynamics of double-quantum excitation may be
treated using the cyclic commutation relationship

� 1
2 Iz,Ix

DQ� = iIy
DQ, �47�

where the imaginary double-quantum operator is

Iy
DQ =

1

2i
�Ij

+Ik
+ − Ij

−Ik
−� . �48�

Equation �47� may be used together with Eq. �38� to predict
the state when the SR26 sequence is applied for a time �exc to

an initial density operator proportional to Iz,
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U��exc�IzU��exc�† � Iz cos��̄SR26�exc�

− 2Iy
DQ sin��̄SR26�exc� . �49�

The second term in this expression corresponds to excited
double-quantum coherences. The theoretical double-quantum
filtering efficiency for SR26 is therefore given by

fDQ��exc,�rec� � �sin��̄SR26�exc�sin��̄SR26�rec�� . �50�

1. Symmetrical protocol

A common procedure is to measure the double-quantum-
filtered signal as a function of the durations of the excitation
and reconversion sequences, which are incremented in syn-
chrony, keeping the durations of the two sequences equal
�exc=�rec=�. The signal trajectory obtained by this symmetri-
cal protocol is defined

fDQ
symm��� = fDQ��,�� �51�

and is given for the case of SR26 by

fDQ
symm��� � �sin2��̄SR26��� = 1

2 − 1
2 �cos�2�̄SR26��� . �52�

The second term may be written explicitly using the expres-
sions in Eq. �41�, giving

�cos�2�̄SR26��� = �4��−1�
0

2�

d�PR
jk �

0

�

sin �PR
jk d�PR

jk

�cos�3��2−122�bjk� sin 2�PR
jk cos��PR

jk + ��� ,

�53�

where �
PR
jk ,�PR

jk ,�PR
jk � are Euler angles relating the reference

frame of the dipole-dipole coupling between spins Ij and Ik

to a rotor-fixed reference frame. Analytical expressions for
integrals of this type have been found in the context of the
REDOR experiment.57 The theoretical double-quantum-
filtered trajectory for SR26, in a symmetrical incrementation
protocol, is given by

fDQ
symm��� =

1

2
−


2�

8
J1/4�3

2
��2−122�bjk��J−1/4�3

2
��2−122�bjk�� ,

�54�

where J±1/4 are quarter-integer Bessel functions.57 The theo-
retical expression in Eq. �54�may be evaluated very rapidly
and has proved to be invaluable in structure-determination
procedures.45,46

Some theoretical plots of fDQ
symm for a range of 13C– 13C

distances are shown in Fig. 2�a�. In practice, these curves are
damped by relaxation and dephasing mechanisms.

2. Constant-time protocol

An alternative protocol which is particularly useful for
long-range distance estimations is to increment �exc while
decrementing �rec, so as to keep the total interval T=�exc

+�rec constant.17,25,58–60 In this protocol, the double-

quantum-filtered signal trajectory is given for SR26 by
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fDQ
CT �T,�� = �sin��̄SR26� 1

2T + ���sin��̄SR26� 1
2T − ���� ,

�55�

where T is fixed and � takes values between −T /2 and +T /2.
The constant-time protocol reduces the distortions to the tra-
jectory caused by relaxation or other decay mechanisms, at
the expense of a somewhat reduced signal intensity.17,25,58–60

Equation �55� may be simplified to give

fDQ
CT �T,�� = 1

2 �cos�2�̄SR26�� − cos��̄SR26T�� , �56�

which has the following analytical form:

fDQ
CT �T,�� =


2�

8
�J1/4�3

2
��2−122�bjk��J−1/4�3

2
��2−122�bjk��

− J1/4�3

4
��2−122�bjkT�J−1/4�3

4
��2−122�bjkT�	 .

�57�

Some theoretical plots of fDQ
CT for a range of 13C– 13C dis-

tances at T=25 ms are shown in Fig. 2�b�. In this case, each
function has been normalized against its maximum value at
�=0. The curves in Fig. 2�b� show that the zero crossings are
particularly sensitive to the magnitude of the dipolar cou-
pling.

The choice of the constant interval T usually requires a
compromise between optimum signal strength, which dic-
tates a value of T close to that maximizing fDQ

CT �T ,0�, and
optimal resolution of the dipolar couplings, which requires a
somewhat larger value of T, in order to observe at least one
zero crossing in the function fDQ

CT �T ,��. In any case, an edu-
cated guess at the internuclear distance is necessary before

FIG. 2. Theoretical double-quantum filtering trajectories for SR26 recou-
pling. �a� Theoretical trajectories for the symmetric procedure, as given in
Eq. �54�, for a selection of 13C– 13C distances. �b� Theoretical trajectories for
the constant time procedure, as given in Eq. �57�, for the case T=25 ms.
Each curve is normalized against its value for �=0.
the constant-time protocol may be used.
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III. NUMERICAL CALCULATIONS

The results given above assume the convergence of the
Magnus expansion and neglect higher-order terms in the
BCH expansion on combining cycles into supercycles. We
have performed numerical simulations of the spin dynamics
to test the validity of these assumptions.

A. Effective Hamiltonian

The spin system propagator for any pulse sequence may
be evaluated by small-step time integration of the spin evo-
lution, i.e., numerical solution of the equation

d

dt
U�t,t0� = − iH�t�U�t,t0� , �58�

where the Hamiltonian H�t� contains all internal and exter-
nal spin interactions, modulated by the sample rotation. In
practice the numerical evaluation of U was performed by
using the SIMPSON simulation package.61

For a system of two coupled spin-1 /2, the numerically
evaluated evolution operator U�S0� is represented by a
4�4 complex matrix U. The matrix is diagonalized numeri-
cally leading to

U = XuX−1, �59�

where the columns of X are the eigenvectors of U, and the
diagonal elements of the diagonal matrix u are the corre-
sponding eigenvalues. The matrix representation of the effec-
tive Hamiltonian is constructed by taking the logarithm of
these eigenvalues,

H̄ = �− iT�−1X�ln u�X−1, �60�

where ln u is calculated by taking the logarithm of the diag-
onal elements and T is the total duration of the pulse se-
quence. In general, the logarithm is multiple valued; how-
ever, in the present case, the effective Hamiltonian is known
to be small compared to T−1, so the smallest value of the
logarithm is appropriate.

The effective Hamiltonian may be analyzed by taking
projections onto any desired spin operator Q, using

�Q�H̄� =
Tr�Q†H̄�
Tr�Q†Q�

, �61�

where Q is the matrix representation of Q. Since the two-
spin-1 /2 system supports 16 orthogonal spin operators, the
effective Hamiltonian of a 2-spin-1 /2 system may therefore
be represented as a point in a 16-dimensional space. For the
purposes of visualization, it is usually necessary to project
this point onto a set of two-dimensional subspaces.

If the calculation is repeated for many different molecu-
lar orientations, a “cloud” of points is built up in the 16-
dimensional operator space. The position and extent of this
cloud provide insight into the nature of the effective Hamil-
tonian and its orientation dependence.

Two-dimensional projections of these clouds are shown
for a set of different pulse sequences in Fig. 3. The left

¯
column of this figure show the projections of H onto the
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double-quantum operator Ij
−Ik

−. For each molecular orienta-
tion, a dot was placed in the two-dimensional plane at the
coordinates

left column, horizontal = Re��Ij
−Ik

−�H̄�� ,

left column, vertical = Im��Ij
−Ik

−�H̄�� . �62�

The right column of Fig. 3 shows the projections of H̄ onto
the two single-quantum operators Iz and Ix. For each molecu-
lar orientation, a dot was placed in the two-dimensional
plane at the coordinates

right column, horizontal = �Ijx�H̄� ,

¯

FIG. 3. Projections of the effective Hamiltonian onto two different two-
dimensional subspaces, for four different pulse sequences. The numerically
evaluated effective Hamiltonian for each molecular orientation is repre-
sented by a point. Repetition of the calculation for many molecular orienta-
tions generates a cloud. Left column: projections onto real and imaginary
double-quantum operators �Eq. �62��. Right column: projections onto angu-
lar momentum operators along the x and z axes �Eq. �63��. ��a� and �b�� A
single R264

11 sequence. ��c� and �d�� A S0S� supercycle. ��e� and �f�� A S0S0�
supercycle. ��g� and �h�� A S0S0�S��S� supercycle. All simulations were per-
formed using the spin system parameters in Table I, at an external magnetic
field of 9.4 T, a spinning frequency of 7 kHz, and a rf nutation frequency of
45.5 kHz.
right column, vertical = �Ijz�H� . �63�
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Figure 3 was constructed by evaluating the effective
Hamiltonian over the R264

11 sequence for 3003 different val-
ues of the molecular orientation angles �
MR ,�MR ,�MR�, se-
lected by the Zaremba-Conroy-Cheng �ZCW� method.62,63

The spin system parameters used for these simulations are
given in Table I. These correspond to a homonuclear 2-spin-
1 /2 system, with large chemical shift anisotropies, and a
relatively small dipole-dipole coupling, corresponding to a
13C– 13C distance of around 0.3 nm. This is a relatively chal-
lenging case. The phase shifts were assumed to be exact in
all calculations.

1. Single cycle

Figures 3�a� and 3�b� show representations of the effec-
tive Hamiltonian for the single R264

11 cycle given in Eq. �4�.
The cloud in Fig. 3�a� corresponds to the �-encoded double-

quantum Hamiltonian H̄DQ. The cloud is circular in form

since the phase, but not the magnitude, of H̄DQ depends on
the Euler angle �MR, which is a random variable in a powder.
The dispersion of the cloud in the radial direction reflects the
dependence of the double-quantum Hamiltonian on the angle
�MR.

The large diffuse cloud in Fig. 3�b� indicates the pres-
ence of high-order chemical shift terms in the effective
Hamiltonian. The cloud is loosely clustered around the lon-
gitudinal axis, which reflects the dominance of the second-

order H̄z term. However, the dispersion of the cloud along
the x axis indicates that third-order �and higher� chemical

shift terms H̄x are also significant.
For the case chosen, which has rather large chemical

shift terms and a small homonuclear coupling, the “chemical
shift” cloud in Fig. 3�b� is around the same size as the
“double-quantum cloud” in Fig. 3�a�. This suggests a severe
chemical shift interference with the double-quantum recoup-
ing. This problem was represented in a different way by
Karlsson et al.43

2. The supercycle S0S�

Figures 3�c� and 3�d� show representations of the effec-
tive Hamiltonian for the S0S� supercycle. As anticipated
from Eq. �35�, the � encoding of the double-quantum Hamil-
tonian is left intact. The compression of the cloud in Fig. 3�c�
shows that the supercycle reduces the H̄x terms generated by
the chemical shift interference, but does not reduce the more

harmful H̄z terms.

3. The supercycle S0S0�

Figures 3�e� and 3�f� show the projected average Hamil-
tonian components generated by the S0S0� supercycle. The
reduced vertical dispersion of the cloud in Fig. 3�f� illustrates

the removal of the second-order H̄z term, in agreement with
Eq. �36�. In addition, the cloud in Fig. 3�f� is compressed in
the horizontal direction, in comparison to that in Fig. 3�b�.
This corresponds to the removal of the third-order H̄x term

by the S0S0� supercycle. The marked squeezing of the
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double-quantum cloud in the vertical dimension, shown in
Fig. 3�e�, illustrates the removal of double-quantum � encod-
ing.

4. The SR264
11 supercycle

Figures 3�g� and 3�h� show the projected average Hamil-
tonian components generated by the S0S0�S��S� supercycle.
As with the S0S0� supercycle, the sequence is no longer �
encoded. The loss of � encoding is an undesirable but nec-
essary consequence of removing the chemical shift interfer-
ence terms, represented by the strong radial compression of
the cloud displayed in Fig. 3�b�.

B. Double-quantum trajectories

Figure 4 shows numerical simulations of the double-
quantum filtering efficiencies fDQ

symm��� as a function of �, as
defined in Eq. �51�.

1. Single cycles

The simulated curves shown in Fig. 4�a� involve nonsu-
percycled R264

11 sequences. The bold solid line �i� represents
an idealized case in which the dipole-dipole coupling from
Table I was used, but with all chemical shift parameters set
to zero. The strong oscillations with a maximum DQ effi-
ciency of approximately 73% are characteristic of �-encoded
double-quantum recouping.18–23 The thin solid line �ii� shows
a more realistic simulation in which all parameters in Table I
are included. The maximum efficiency is much lower and
negative double-quantum-filtered signals are generated at
longer times. This is a symptom of the chemical shift inter-
ference in the average Hamiltonian, illustrated in Fig. 3�b�.
Similar problems with symmetry-based recouping sequences
for the case of weak dipole-dipole couplings and large

43

TABLE I. Spin interaction parameters used in the N

Interactions Notes Diammonium

� j
iso–�k

iso a

� j
aniso b

� j
c

�
PM
j ,�PM

j ,�PM
j � d �28.9°

�k
aniso b

�k
c

�
PM
k ,�PM

k ,�PM
k � d �28.9°

bjk /2� e

�
PM
jk ,�PM

jk ,�PM
jk � f

aIsotropic shift difference between sites.
bCSA �deshielding units�.
cBiaxiality �asymmetry parameter�.
dEuler angles �degrees� relating the principal axis sy
eDipole-dipole coupling constant.
fEuler angles �degrees� relating the principal axis sy
reference frame.
The parameters for diammonium �1,4-13C2�-fumarate
ence frame with the z axis perpendicular to the olefin
carboxylate carbon nuclei. The parameters for �11,20
a molecular reference frame with the z axis parallel t
plane of the conjugated system.
MR simulations.

�1,4-13C2�-fumarate �11,20-13C2�-all-E-retinal

0 −121.2 ppm
−64.8 ppm 15.5 ppm

0.82 1.0
,15.3° ,−42.6° � �0,5.7°,0�

−64.8 ppm −112.2 ppm
0.82 0.72

,15.3° ,−42.6° � �−31° ,85° ,−87° �
−136.5 Hz −290.7 Hz
�0,90°,0� �0,0,0�

stem of the CSA to the molecular reference frame.

stem of the 13C2 dipole-dipole coupling to the molecular

are adapted from Ref. 70 and employ a molecular refer-
ic plane and the x axis parallel to the line joining the two
-13C2�-all-E-retinal are adapted from Ref. 72 and employ
o the line joining the two 13C nuclei and the x axis in the
chemical shift terms were identified by Karlsson et al.
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FIG. 4. Numerical simulations of symmetric double-quantum filtering tra-
jectory functions fDQ

symm��� as defined in Eq. �51�. Unless stated, all simula-
tions use the parameters in Table I, with a magnetic field of 9.4 T, a spin-
ning frequency of 7 kHz, and a rf nutation frequency of 45.5 kHz. �a�
Trajectories without supercycling: �i� ideal trajectory for repetitions of the
R264

11 sequence, omitting all chemical shift terms; �ii� calculated trajectory
for R264

11 but including all parameters in Table I, �iii�, as in �ii�, but adjust-
ing the rf phases by �=−0.1°, as defined in Eq. �A10�. �b� Trajectories for
supercycles: �iv� calculated trajectory for the S0S� supercycle; �v� calcu-
lated trajectory for the S0S0� supercycle; �vi� calculated trajectory for the

11
SR264 supercycle; and �vii� result of the analytical formula in Eq. �54�.
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The dashed line �iii� in Fig. 4�a� shows the result
of simulating R264

11 but with a small phase adjustment of
�=−0.1°, as defined in Eq. �73�. Phase shift tuning partially
compensates the chemical shift interference and leads to a
double-quantum filtering trajectory which is much closer to
the ideal curve. This protocol was used in order to estimate
medium to long-range spin-spin distances using R142

6

recouping.23

The extreme sensitivity of the double-quantum filtering
efficiency to rf phase shifts is explored further in Fig. 5
�dashed line�. For the simulation parameters used, the
double-quantum filtering efficiency of R264

11 is sensitive to
phase changes of the order of 0.01°. Phase shifts with such
accuracy are beyond the technical specifications of many
commercial spectrometers. Sequences such as R264

11 and its
relatives are therefore not recommended for double-quantum
experiments at medium-range to long-range spin-spin dis-
tances, without the stabilization offered by supercycling.

2. Supercycles

The simulated curves shown in Fig. 4�b� concern various
supercycles of the R264

11 sequence. The solid line �iv� in Fig.
4�b� shows the effect of the S0S� supercycle. This is similar
to the simulation for the nonsupercycled R264

11 sequence
�line �ii� in Fig. 4�a��, confirming that the S0S� supercycle
does not provide any significant improvement in perfor-
mance.

The construction of a S0S0� supercycle, on the other
hand, immediately leads to a considerable improvement of
the long-term performance of the double-quantum pulse se-
quence �line �v� in Fig. 4�b��. However, this long-term im-
provement is accompanied by the classic symptoms of loss
in � encoding. The dipolar oscillations are reduced in ampli-
tude and the maximum achievable efficiency is around 50%

FIG. 5. Simulated double-quantum filtering efficiency as a function of the
phase adjustment parameter � �see Eq. �A10��. Dashed line: simulations of
fDQ

symm��� for the R264
11 sequence, at the point of maximum double-quantum-

filtered signal ��=3.43 ms�. Solid line: simulations of fDQ
symm��� for the

SR264
11 supercycle, at the point of maximum double-quantum-filtered signal

��=4.57 ms�. All simulations were performed using the spin system param-
eters in Table I, at an external magnetic field of 9.4 T, a spinning frequency
of 7 kHz, and a rf nutation frequency of 45.5 kHz.
rather than the �-encoded optimum of 73%.
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Construction of the S0S0�S��S� supercycle �SR26� leads
to further stabilization of the sequence at long excitation
times �line �vi� in Fig. 4�b��. The double-quantum-filtered
signal trajectory for the SR26 supercycle is very close to the
analytical form given in Eq. �54�, which is shown by the
solid bold line �vii�.

The SR26 supercycle is also much more stable than the
single R264

11 cycle with respect to phase-shift errors, as illus-
trated in Fig. 5 �solid line�. The required phase accuracy for
the supercycle is around �0.5°, which is readily achievable
on most commercial instruments. Note, however, that the
achievable double-quantum signal is less than that predicted
for the single cycle after optimization of the phase shift. This
drop in optimum efficiency is associated with the loss of �
encoding for the supercycle.

IV. METHODS

A. Samples

The experimental demonstrations employed three differ-
ent 13C-labeled organic compounds, with molecular struc-
tures shown in Fig. 6.

�11,20-13C2�-all-E-retinal �Fig. 6�a�� was used to dem-
onstrate the determination of internuclear distances. The
13C-labeled retinal was synthesized by standard methods,64

and recrystallized from n-pentane, together with a tenfold
excess of nonlabeled all-E-retinal. The distance between the
two 13C nuclei, determined by x-ray diffraction,65 is
295.9 pm.

The estimation of relative shielding tensor orientations
was demonstrated using diammonium �1,4-13C2�-fumarate
�DAF� �Fig. 6�b��. The 13C2-labeled diammonium fumarate
was diluted to a level of 6% in nonlabeled diammonium
fumarate. The distance between the two 13C nuclei, deter-

66

FIG. 6. Molecular systems used in the experimental demonstrations. Gray
circles indicate 13C labels. �a� �11,20-13C2�-all-E-retinal, �b� diammonium
�1,4-13C2�-fumarate, and �c� �1-13C�-glycine.
mined by x-ray diffraction, is 387.8 pm.
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The demonstrations of high-order multiple-quantum ex-
citation in solids were performed using �1-13C�-glycine, used
as purchased from Cambridge Isotope Laboratories �An-
dover, MA�. The x-ray crystal structure of glycine67 shows
that the 1-13C sites are arranged in pairs, with an internuclear
distance of 310.4 pm within each pair. The closest approach
of 1-13C sites belonging to different pairs is 405.5 pm.

B. NMR experiments

All experiments were performed at a magnetic field of
14.1 T using a Varian Infinity+console, using 3.2 mm zirco-
nia rotors in a standard T3 triple-resonance probehead. Data
processing was performed using Varian SPINSIGHT software
and MATNMR.68

All NMR experiments were performed using a spinning
frequency of 5.923 kHz. The SR26 pulse sequences were
performed using simultaneous 13C and 1H rf fields, with am-
plitudes corresponding to nutation frequencies of 38.5 and
100 kHz, respectively. 13C signal acquisition was performed
in the presence of two-pulse-phase-modulated �TPPM� 1H
decoupling,69 with a nutation frequency of 84 kHz. The 13C
reference frequency was always set to the mean resonance
frequency of the recoupled sites. 13C� pulses used a nutation
frequency of 62.5 kHz.

FIG. 7. Pulse sequences for the application of SR26 to the 13C spectroscopy
of organic solids. �a� Pulse sequence for the double-quantum filtering of
cross-polarized 13C NMR signals. The shaded elements are given a four-step
phase cycle to select signals passing through �±2�-quantum coherence. The
thin rectangles represent � /2 pulses. �b� Pulse sequence for the determina-
tion of relative CSA tensor orientations. A single rotor period of double-
quantum evolution is inserted, interrupted by two strong � pulses, and sepa-
rated by an interval � �white rectangles�. A series of experiments is
performed in which � is increased, moving the � pulses from the center of
the rotational period ��=0� to the ends of the rotational period ��=�r�.
All multiple-quantum filtering efficiencies were deter-
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mined by comparing the integrated multiple-quantum-filtered
signals with the integrals of cross-polarized signals, obtained
under identical conditions.

V. APPLICATIONS

A. Determination of 13C– 13C distances

Internuclear distances within isolated spin pairs may be
estimated by using the pulse sequence in Fig. 7�a�. The DQ-
filtered signal amplitudes are estimated as a function of the
intervals �exc and �rec, which may be varied according to one
of the protocols discussed above. The dipole-dipole coupling
is estimated by comparing the DQ-filtered signal trajectories
with the analytical functions given in Eqs. �54� and �57�, or
with numerical simulations. It is usually preferable to use the
analytical functions, since they may be calculated very rap-
idly. However, one should first verify the close resemblance
of the analytical curves with accurate numerical simulations
for some representative cases.

Figure 8 shows experimental double-quantum-filtered
signal amplitudes for �11,20-13C2�-all-E-retinal, obtained us-
ing the constant-time protocol with T=21.6 ms. The best fit
of the analytical function in Eq. �57� to the experimental
points yields a dipole-dipole coupling of bjk /2�
=−276±5 Hz, which corresponds to an internuclear distance
of 302±2 pm. If the fitting is repeated using SIMPSON nu-
merical simulations rather than analytical expressions, the
result is only slightly different �297±2.4 pm�.

The internuclear distance as determined by x-ray
diffraction65 is 295.9 pm. A small systematic discrepancy be-
tween NMR and x-ray diffraction of around 3 pm is typical
and may be attributed to the influence of molecular

23

FIG. 8. Double-quantum-filtered signal amplitudes for �11,20-13C2�-all-
E-retinal using the SR26 supercycle. The excitation interval �exc was incre-
mented in steps of a half-supercycle, while the reconversion interval �rec was
decremented at the same time to keep the total interval fixed at T
=21.6 ms. The experimental amplitudes �gray curves� are compared with
the analytical functions in Eq. �57�, adjusting the vertical scale of the ana-
lytical functions in each case to obtain the best fit. The dipole-dipole cou-
plings and corresponding internuclear distances �bjk /2� ,rjk� are as follows:
�i� �−339.1 Hz, 281.9 pm�; �ii� �−305.5 Hz, 291.9 pm�; �iii� �−276.1 Hz,
301.9 pm�; �iv� �−250.3 Hz, 311.9 pm�; and �v� �−248.0 Hz, 312.9 pm�. The
bold line �iii� �corresponding to 301.9 pm� is the best fit.
vibrations.
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B. Determination of relative CSA orientations

The evolution of DQ coherences is sensitive to the rela-
tive orientation of spin interaction tensors. Since the spin
interaction tensors often have a known relationship with the
local molecular geometry, this phenomenon often allows mo-
lecular geometrical parameters, such as torsional angles, to
be determined by studying the double-quantum
evolution.12,27–33 In particular, the torsional angles of a pro-
tein backbone may be estimated by determining the relative
orientation of 13C CSA tensors for neighboring carboxyl
sites.32,33

The SR26 pulse sequence should be very useful for such
studies since it is capable of exciting double-quantum coher-
ences between 13C nuclei experiencing large chemical shift
anisotropies, even at rather large internuclear distances. The
evolution of the DQ coherence under the two 13C CSA in-
teractions may be studied by using the pulse sequence in Fig.
7�b�, which assumes that the reference frequency is set to the
mean resonance frequency of the two sites. The 13C2 DQ
coherences are excited in the usual way by a SR26 pulse
sequence. The double-quantum coherences are allowed to
evolve for one rotor period �r, in the presence of proton
decoupling, before reconversion into observable signal by a
second SR26 interval. Two strong � pulses are inserted in
the evolution period, centered at positions �r /2±� /2. A se-
ries of experiments is conducted in which the �-pulse sepa-
ration is incremented from �=0 �in which case the two �
pulses coincide at the center of the rotor period� to �=�r �in
which case the � pulses are at the beginning and end of the
rotor period�. The opposed motion of the two � pulses is
depicted in Fig. 7�b�.

When �=0, the two � pulses coincide at the center of
the rotor period and hence have a little effect, since the com-
bined flip angle is then 2�. In this case, the double-quantum
coherences do not evolve at all under the �r period �except
for relaxation�, since the effect of the chemical shift aniso-
tropy vanishes over the complete magic-angle rotation, and
the isotropic chemical shift also has no effect, due to the
choice of the spectrometer reference frequency. The chemi-
cal shift evolution also vanishes for �=�r, since the two �
pulses are then located at the beginning and end of the in-
serted rotor period. However, at intermediate values of �, the
double-quantum coherences are strongly phase modulated by
the combined effects of the two CSA interactions. The
double-quantum-filtered signal should therefore be maximal
for �=0 and �=�r, dipping strongly at intermediate values.

The precise form of the � dependence depends on the
orientation of the two CSA tensors with respect to each other,
since the DQ evolution frequency is given by the instanta-
neous sum of the two chemical shifts. Less intuitively, the �
dependence of the DQ-filtered signal also depends on the
orientation of the CSA tensors with respect to the molecular
reference frame, even when the the principal axis systems of
the two CSA tensors are held in the same relative orientation.
This effect is not due to double-quantum evolution, but in-
stead to the orientation dependence of the double-quantum
excitation.
We have demonstrated this phenomenon by using SR26
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to excite double-quantum coherence between the two 13C
sites of diammonium �1,4-13C2�-fumarate, which are sepa-
rated by 382 pm �Fig. 6�b��. In this particular case, the prin-
cipal axis systems of the two CSA tensors are constrained to
be collinear, due to the inversion symmetry of the crystal
structure. The orientation of the two CSA tensors in a mo-
lecular reference frame has been determined by Bechmann et
al. by combining data from several different experiments.70

The spin system parameters are listed in the first column of
Table I. For the purposes of the current study, the tensor
orientations are specified using a molecular reference frame
with the z axis perpendicular to the plane of the olefinic
system, and the x axis along the line joining the two 13C
labels. The principal axis systems of the two CSA tensors
coincide, with the most-shielded axis approximately perpen-
dicular to the carboxylate planes.

Figure 9�a� compares the experimental � dependence of
the DQ-filtered signal with simulations for the literature ten-
sor orientations.70 These data were obtained using double-
quantum excitation and reconversion intervals of �exc=�rec

=8.1 ms. The agreement is good.
Figure 9�b� shows the dependence of the �-dependent

FIG. 9. Double-quantum evolution trajectories as a function of the separa-
tion � between the � pulses in Fig. 7�b�. All simulations and experiments
use double-quantum excitation and reconversion intervals of �exc=�rec

=8.1 ms. �a� Experimental data points for diammonium �1,4-13C2�-fumarate
�gray squares� and simulated double-quantum trajectory for the parameters
given in the first column in Table I. �b� Simulated double-quantum evolution
trajectories for the parameters given in the first column in Table I, except for
the Euler angles 
PM

j =
PM
k , which are specified in the plot.
trajectory on the CSA orientations. In these simulations, two
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of the Euler angles defining the orientation of each CSA
tensor are held equal to the literature values ��PM

j =�PM
k

=15.3° and �PM
j =�PM

k =−42.6°�, while the other Euler angles
is varied with respect to the literature value �
PM

j =
PM
k

=28.9° � in steps of 30°. Since the Euler angle sets
�
PM

j ,�PM
j ,�PM

j � and �
PM
k ,�PM

k ,�PM
k � are always equal,

each simulation employs the same relative orientation of the
two CSA tensors. Nevertheless, the DQ trajectories depend
rather strongly on the value of 
PM

j =
PM
k . As mentioned be-

fore, this phenomenon is due to the orientation dependence
of the DQ excitation. More detailed analysis �not shown�
indicates that the double-quantum experiment is able to de-
termine the angle 
PM

j =
PM
k with an accuracy of approxi-

mately ±10°.

C. Multiple-quantum spin counting

If a sample containing a network of coupled spins is
allowed to evolve under the homonuclear dipolar couplings,
Zeeman order is transformed into spin-spin correlation terms
of increasingly high order, including multiple-quantum co-
herences. Since isolated clusters of N coupled spin-1 /2 only
support multiple-quantum coherences of order p satisfying
−N� p�N, the detection of a NMR signal that has passed
through multiple-quantum coherence of order p sets a lower
bound on the size of the coupled spin cluster, N� �p�. This
technique is known as multiple-quantum spin
counting.32,36–42

Initial applications of multiple-quantum spin counting
concerned coupled 1H nuclei, since the relatively small
chemical shift anisotropies and strong homonuclear cou-
plings make the excitation of high-order multiple-quantum
coherences easier.37,38,40 The introduction of shift-compensed
pulse sequences allowed applications to nuclei such as 13C as
well.32,39 These experiments were performed on nonrotating
samples, such as 13C-labeled Alzheimer’s peptides, where
the dynamics of the multiple-quantum excitation could be
analyzed to obtain information on the molecular
organization.32

It is clearly desirable to combine multiple-quantum spin
counting experiments with the high resolution and sensitivity
offered by magic-angle spinning. Oyler and Tycko used
finite-pulse radio-frequency-driven recoupling16 �fpRFDR�
to obtain multiple-quantum excitation of orders up to 8 �and
possibly 10� in 13C-labeled amino acids.41 In this section we
report unambiguous excitation of 13C multiple-quantum or-
ders up to 10 in �1-13C�-glycine, using SR26.

The multiple-quantum spin counting experiments are
conducted using the pulse sequence in Fig. 7�a�. The dura-
tions of the excitation and reconversion blocks are equal ��
=�exc=�rec�. A series of N separate experiments is conducted
in which the overall phase shift � of the excitation block
�shaded� is incremented from 0 to 2��N−1� /N in steps of
2� /N. In order to prevent folding, the number of phase steps
N should exceed twice the maximal excited coherence order.
The data are stored separately for each value of �. Fourier
transformation with respect to � generates a multiple-
quantum excitation spectrum which displays the fraction of

signal f±p��� passing through multiple-quantum orders ±p at
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the junction of the excitation and reconversion blocks.
Multiple-quantum excitation spectra for a set of � values are
shown for the case of SR26 applied to �1-13C�-glycine in the
left-hand column of Fig. 10.

In practice, experiments with different � values were
executed in random order to avoid systematic errors associ-
ated with incomplete relaxation between transients.

The left-hand column of Fig. 10 shows the multiple-
quantum excitation spectra for SR26 applied to
�1-13C�-glycine, at a set of recoupling times � in the range of
5.4–27 ms. In all cases, only even-quantum coherences have
a significant amplitude, as expected for double-quantum re-
coupling. The presence of multiple-quantum orders up to 10
is clearly visible at long times �Figs. 10�c� and 10�d��. The
multiple-quantum-filtered intensities f±p��� are normalized
against the total signal intensity obtained in an ordinary
cross-polarization experiment. Figure 10�a� shows that al-
most 50% of the �1-13C�-glycine signal passes through inter-
molecular double-quantum coherence when SR26 is applied
for 5.4 ms. Figure 10�c� shows that almost 5% of the �1
-13C�-glycine signal passes through intermolecular four-
quantum coherence when SR26 is applied for 21.6 ms.

The right-hand column of Fig. 10 shows the same data
on a logarithmic scale, in order to accentuate the small
peaks. Gray shading indicates negative values, which were
inverted in sign before taking the logarithm. The error bars
were obtained from the distribution of intensities obtained
for six repetitions of the same experiment. These plots
clearly show the “noise floor” of the multiple-quantum exci-
tation data and establish that the ten-quantum peaks in Figs.
10�c� and 10�d� are significant.

Recently, an extension of the multiple-quantum spin
counting experiment known as spherical tensor analysis
�STA� has been demonstrated.71 In this experiment, the spin
order terms are classified according to their rotational prop-
erties about three orthogonal axes. STA experiments on
�1-13C�-glycine using SR26 demonstrated the presence of
spherical tensor spin operators up to rank 4. The fourth-rank
spin operators appear more rapidly than four-quantum
coherences.71

VI. CONCLUSIONS

Symmetry-based pulse sequences provide a set of con-
venient and versatile tools for a variety of recoupling
tasks.19–26 They are particularly well established for recou-
pling of strong dipolar interactions, since in this context they
have two distinct advantages over most other pulse se-
quences: �i� they allow a straightforward implementation of
�-encoded recoupling, which provides strong dipolar oscilla-
tions with a high dynamic range, and �ii� they permit a good
time resolution of the dipolar oscillations, since the recou-
pling intervals may be incremented in intervals of much less
than one rotor period.26

Symmetry-based recoupling sequences have been less
suitable for recoupling over longer distances, since they are
sensitive to interference from chemical shift anisotropy and
phase-shift errors.23,43 The work described in this paper

shows that these disadvantages may be avoided by the con-
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struction of supercycles. Supercycles of the form S0S0�S��S�

are particularly useful. The supercycle SR26, which is based
on the R264

11 symmetry-based cycle, provides robust double-
quantum recoupling which is well compensated for chemical
shift anisotropy and phase-shift errors. The results shown in
this paper demonstrate accurate 13C– 13C distance measure-
ments and high-order intermolecular multiple-quantum exci-
tation. The double-quantum coherences excited by SR26
may be used to determine the relative orientations of chemi-
cal shift anisotropy tensors.

In the case of isolated spin-1 /2 pairs, the trajectories of
the double-quantum-filtered signals are often given to a good
approximation by Bessel function analytical expressions
�Eqs. �54� and �57��. These functions may be computed very
rapidly, allowing the rapid optimization of molecular struc-
tural parameters against the experimental double-quantum-
filtered signals. Several zeolite framework structures have
been solved by analyzing the 29Si– 29Si double-quantum tra-
jectories induced by SR26 recoupling.45,46

Supercycles such as SR26 do have some disadvantages
over single symmetry-based sequences such as C72

1, R264
11,

and R142
6. The loss of � encoding leads to a lower achievable

double-quantum efficiency than for simple cycles, and much
lower dynamic range in the dipolar oscillations. In addition,
the time resolution of the recoupling intervals is greatly re-

duced since an integer multiple of supercycles must be com-
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pleted �although sometimes the completion of a fractional
supercycle is acceptable�. For example, SR26 consists of a
S0S0�S��S� supercycle. Completion of a half-supercycle is ac-
ceptable since the S0S0� supercycle has the same orientation-
dependent recoupling characteristics as the full supercycle.
However, completion of a quarter supercycle is not accept-
able since S0 is � encoded while S0S0�S��S� is not. The mini-
mum incrementation interval for SR26 is therefore eight ro-
tor periods. This may be contrasted with the basic cycle
R264

11, for which the minimum incrementation interval is two
R elements, i.e., 4 /13 of a rotor period.

For these reasons, supercycles such as SR26 are only to
be preferred over single symmetry-based cycles in the case
of weak dipolar interactions. For such cases, the reduced
time resolution of supercycles is not a serious issue and their
increased robustness at long times is a decisive advantage.
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APPENDIX A: rf PROPAGATORS OF RNn
� SEQUENCES

The spin Hamiltonian contains terms for the internal spin
interactions, and the applied radio-frequency pulse sequence,

H�t� = Hint�t� + Hrf�t� . �A1�

A propagator is defined by integrating the effect of the rf
field from the start of the pulse sequence,

d

dt
Urf�t,t0� = − iHrf�t�Urf�t,t0� . �A2�

The internal spin interactions are transformed into the inter-
action frame of the rf field,

H̃int�t� = Urf�t0,t�Hint�t�Urf�t,t0� , �A3�

where Urf�t0 , t�=Urf�t , t0�†. The propagator over the pulse se-
quence may then be expressed as

U�t,t0� = Urf�t,t0�exp�− i�t − t0�H̄�t0,t�� , �A4�

where the effective Hamiltonian H̄ is expressed as a Mag-
nus expansion

H̄�t,t0� = H̄�1��t,t0� + H̄�2��t,t0� + ¯ , �A5�

where the first term is the average Hamiltonian,

H̄�1��t,t0� = �t − t0�−1�
t0

t

dt�H̃int�t�� . �A6�

Equation �A4� shows that the spin system propagator in-
volves the integrated effect of the rf field over the pulse
sequence, as expressed by the propagator Urf, as well as the

average Hamiltonian terms H̄�1�, H̄�2�, etc.
By definition, the basic element R0 rotates the resonant

spins by an odd multiple of � around the x axis,

Urf�R0� = ± �x, �A7�

where the rotation operator is

�x = exp�− i�Ix� . �A8�

The positive sign in Eq. �A7� applies if the rotation angle
differs from � by an even multiple of 2�; the negative sign
applies if the rotation angle differs from � by an odd mul-
tiple of 2�. The propagators for the even-numbered elements
of the RNn

� sequence are therefore given by

Urf�Eeven� = ± exp�− i�Iz��x exp�+ i�Iz�

= ± exp�− 2i�Iz��x, �A9�

where the phase shift � is given by

� =
��

N
+ � . �A10�

Here � is an instrumental phase error. The rf fields for the
odd and even elements of the RNn

� sequence are related by a
change in sign of the phase: This corresponds to a rotation of
the rf field by � around the x axis. The propagator for the

odd-numbered elements is therefore given by
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Urf�Eodd� = �xUrf�Eeven��x
†. �A11�

A pair of elements therefore generates the propagator

Urf�Eodd�Urf�Eeven� = �x
2 exp�+ 4i�Iz� = − exp�+ 4i�Iz� .

�A12�

The complete sequence of N /2 pairs generates the overall
propagator

Urf�RNn
�� = �− 1�N/2 exp�i2N�Iz� . �A13�

This shows that the RNn
� sequence rotates the spins by −2N�

about the z axis. From Eq. �A10�, this rotation angle is

− 2N� = − 2�� − 2N� , �A14�

where � is the misset in the rf phase shift, with respect to the
ideal value. The overall rf propagator is given by

Urf�RNn
�� = �− 1��+N/2 exp�i2N�Iz� . �A15�

The overall sign of the rf propagator is usually of little con-
sequence, but is included here for completeness.

APPENDIX B: EFFECTIVE HAMILTONIANS
OF TRANSFORMED CYCLES

Consider two cycles, A and B, for which the applied rf
interaction differs by a constant unitary transformation of the
rf field at corresponding time points, i.e.,

Hrf
B�t� = V�B,A�Hrf

A�t�V�A,B� , �B1�

where V�A ,B�=V�B ,A�†. The rf propagators for the two
cycles are related by the same transformation,

Urf
B�tb,ta� = V�B,A�Urf

A�tb,ta�V�A,B� . �B2�

For example, the rf propagators for the cycles S0 and S� are
related by the operation V�S� ,S0�=�z, while the the rf
propagators for the cycles S0 and S0� are related by the op-
eration V�S0� ,S0�=�x.

Now consider a particular internal spin interaction term
H�, where � refers to the dipole-dipole coupling, chemical
shift, or any other spin interaction. In high field, the trun-
cated form of this interaction term is

H��t� = ���t�T	0
� , �B3�

where T	0
� is a component of an irreducible spherical tensor

operator, and 	 is the spin rank of the interaction �. If rf
sequence A is applied, the spin interaction term may be trans-
formed into the interaction frame of the rf field through

H̃�
A�t� = Urf

A�t0,t�H��t�Urf
A�t,t0� , �B4�

where t0 is the starting point of the pulse sequence, and
Urf

A�t0 , t�=Urf
A�t , t0�†. Similarly, the spin interaction term for

the sequence B is given by

H̃�
B�t� = Urf

B�t0,t�H��t�Urf
B�t,t0� , �B5�
which may be written as
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H̃�
B�t� = V�B,A�Urf

A�t0,t�V�A,B�H��t�V�B,A�Urf
A�t,t0�V�A,B�

=���A,B�V�B,A�H̃�
A�t�V�A,B� , �B6�

where the number ���A ,B� is the parity of the spin tensor T	0
�

under transformation by the operation V�A ,B�, i.e.,

V�A,B�T	0
� V�B,A� = ���A,B�T	0

� . �B7�

For the cases of interest, the parity ���A ,B� is equal to ±1, as
will be discussed below.

The first-order average Hamiltonian for the interaction �
is given by the following integral:

H̄�
�1��t,t0� = �t − t0�−1�

t0

t

dt�H̃��t�� . �B8�

It follows from Eq. �84� that the first-order average Hamil-
tonians for the same interaction � under the different cycles
A and B are related through

H̄�
�1��B� = ���A,B� � V�B,A�H̄�

�1��A�V�A,B� . �B9�

The second-order average Hamiltonian involving two in-
teractions �1 and �2 is given by a double integral over a
commutator,

H̄�2�1

�2� �t,t0� =
1

2i
�t − t0�−1�

t0

t

dt��
t0

t�
dt��H̃�2

�t��, H̃�1
�t��� .

�B10�

It follows that the second-order average Hamiltonians for the
cycles A and B are related through

H̄�2�1

�2� �B� = ��2
�A,B���1

�A,B�V�B,A�H̄�2�1

�2� �A�V�A,B� .

�B11�

In general, the Kth order average Hamiltonian terms are re-
lated for the two cycles by

H̄�K¯�1

�K� �B� = ��
Q=1

K

��Q
�A,B��V�B,A�H̄�K¯�1

�K� �A�V�A,B� .

�B12�

We may now use this formula to investigate the properties of
some special cases.

1. �-shifted cycles

The rf fields of �-phase-shifted cycles are related by a �
rotation about the z axis,

V�S�,S0� = �z, �B13�

where �z is given by

�z = exp�− i��Ijz + Ikz�� . �B14�

Since all high-field Hamiltonians are rotationally invariant
about the z axis, the parities of all interactions are given by

��Q
�S�,S0� = 1. �B15�

It follows from Eq. �B12� that all average Hamiltonian terms

are related by
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H̄�K¯�1

�K� �S�� = �zH̄�K¯�1

�K� �S0��z
†. �B16�

Hence all odd-quantum terms in the average Hamiltonian are
inverted in sign when the rf pulse sequence is shifted in
phase by �, while the even-quantum terms are unchanged. It
follows that the recoupled double-quantum dipolar interac-
tion, and the z component of the chemical shift terms, are
invariant to a � phase shift of the recoupling sequence. The
x and y components of the chemical shift terms change sign.
These properties are included in Eq. �26�.

2. Phase-inverted cycles

The transformations of the average Hamiltonian terms
under phase inversion are less intuitive. The rf fields of
phase-inverted cycles are related by a � rotation about the x
axis,

V�S0�,S0� = �x. �B17�

The parities of spin interactions under this transformation are
given by

��Q
�S�,S0� = �− 1�	Q, �B18�

where 	Q is the spin rank of interaction �Q. The average
Hamiltonian terms are therefore related by

H̄�K¯�1

�K� �S0�� = �− 1��	 � �xH̄�K¯�1

�K� �S0��x
†, �B19�

where

�	 = 

Q=1

K

	Q. �B20�

The effect of the phase inversion depends on whether the
sum of the spin ranks of all the participating interactions is
odd or even.

Consider the double-quantum dipole-dipole term, which
appears in the first-order average Hamiltonian. Since the spin
rank of this term is 2, the rank sum is also �	=2, and the
first-order term for the phase-inverted cycle is given by

H̄DQ�S0�� = �xH̄DQ�S0��x
†. �B21�

The double-quantum Hamiltonian is therefore rotated by �
about the x axis for the phase-inverted cycle, as indicated in
Eq. �31�.

The second-order term is usually dominated by the
chemical shift interactions. Since chemical shift interactions
have spin rank 	=1, and two such interactions are involved
in a second-order term, the rank sum is �	=2. As discussed
in the text, the second-order chemical shift term is purely
longitudinal in the case of R264

11, and dominates the term

H̄z. The longitudinal chemical shift term for the phase-
inverted cycle is therefore given by

H̄z�S0�� � �xH̄z�S0��x
†. �B22�

This implies that the second-order H̄z term changes sign

upon phase inversion,
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H̄z�S0�� � − H̄z�S0� . �B23�

This important relationship accounts for the usefulness of the
S0S0� supercycle in the context of symmetry-based recou-
pling.

The relationship in Eq. �B22� is only approximate since

H̄z also contains a third-order term, which is invariant to
phase inversion �see below�.

The transverse chemical shift terms H̄x and H̄y appear
in the third-order average Hamiltonian. Since the chemical
shift terms have a spin rank of 1, the third-order rank sum is
�	=3, and the corresponding relationships are given by

H̄x�S0�� � − �xH̄x�S0��x
†,

H̄x�S0�� � − H̄x�S0� , �B24�

and

H̄y�S0�� � − �xH̄y�S0��x
†,

H̄y�S0�� � + H̄y�S0� . �B25�

This implies that the H̄x term is changed in sign for the

phase-inverted cycle, while the H̄y term is invariant to phase

inversion. Similarly, the third-order contribution to the H̄z

term is invariant to phase inversion.
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