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1. Introduction 

Small area population data from censuses provide an important base layer in many GIS 

applications.  Indeed, census geography played a key role in early GIS data structure 

development (Peucker and Chrisman, 1975).  The ability to produce such detailed data is 

due to censuses’ unique combination of detailed information about individuals and 

households with coverage of an entire population.  However, achieving a complete or near 

complete response rate also makes the data highly susceptible to disclosure. Disclosure 

occurs when an individual can be identified in the data, leading to potentially sensitive 

information being revealed (Lambert, 1993).  Protecting the confidentiality of census data 

by application of statistical disclosure control (SDC) methods is an integral part of the 

census process allowing use of protected data by researchers and policy makers across all 

sectors. SDC methods either restrict or modify the detail released (Willenborg and de Waal, 

2001). Internationally, government statistical organizations undertake population data 

collection under various legislative frameworks (Holt 2003) which generally embody strict 

confidentiality requirements.  The importance of the issue is magnified by reliance of 

official statistics on public trust in the safeguards employed.  Historically, disclosure 

control could be handled by checking outputs manually before publication. However, in the 

past two decades, increases in computing power have stimulated increased demand on the 

part of census users, who are able to employ complex analytical techniques and process 

larger amounts of data. The growth of digital geographical information allows for the 

possibility of automatically generating census geographies as required (Openshaw and Rao 

1995, Martin 2000). In fact, the provision of only one set of geographical units is no longer 
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sufficient to meet users’ demands. Many researchers require data which does not fit into 

neat aggregations of published zones.  In the UK, for example, changes in health service 

organization creates demand for census data which cannot be matched by reaggregation of 

standard outputs.  Such demand pressures have led to discussion of the development of 

flexible tabulation systems in, for example, the UK, Australia and the US (Rhind et al. 

1991, Zayatz 2003, Duke-Williams and Rees, 1997). Any such system would allow users to 

create their own customised tables from unpublished individual records.  In the absence of 

such systems, there is ongoing pressure for the production of outputs for multiple small 

area geography systems.   

   The disclosure risk facing statistical organizations is two-fold: first, the risk from outputs 

for any small population and, second, the additional risk from publishing multiple 

overlapping aggregations.  There is particular demand for tables of counts at 

neighbourhood level but these are potentially risky since it may be possible to recognise 

data relating to particular individuals, especially in the light of local knowledge.  

Identification of individuals may lead to potentially sensitive information being revealed. 

The difficulty of multiple outputs is that published tables, although independently safe, may 

be compared with one another in order to reveal new information. This is particularly a 

problem when data are published for multiple geographical boundaries, described by Duke-

Williams and Rees (1998) as geographical differencing.  The response of the UK statistical 

organizations has been to publish counts only for hierarchical aggregations of the smallest 

output areas. 

    A closely related disclosure issue, arising from the availability of geographically 

referenced data, is termed geoprivacy and concerns the location of sensitive data at the 
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disaggregate level. While not usually considered in the context of aggregate census data, 

there is a close link to the central focus of this paper. Leitner and Curtis (2006) draw a 

distinction between statistical (attribute) and spatial (locational) confidentiality. Statistical 

confidentiality is associated with individual information, in GIS terms the equivalent of 

aspatial attributes, while spatial or locational confidentiality is concerned with the 

placement of individual-level statistical information on a map. To date, relatively little has 

been written about methods to protect the point mapping of individual information although 

this is of increasing concern to the GIS community. Geoprivacy is especially sensitive in 

studies of health and crime data. For example, law-enforcement agencies throughout the US 

provide crime maps (Leitner and Curtis, 2006), while point maps are often published 

representing cases of cancer or infectious diseases (for example, Zimmerman and Pavlik 

2006, Armstrong et al. 1999).  Leitner and Curtis (2006) note that an individual’s 

residential location can be easily displayed, potentially leading to identification of the 

individual and disclosure of confidential information as inverse address matching 

technology can be used to reveal the street address and residents at a point location 

(Zimmerman and Pavlik, 2006). 

    The conventional approach to preserving spatial confidentiality in these data has been to 

adopt the same methodology as for census data, that is to aggregate records across 

populations large enough to ensure prevention of disclosure (Armstrong et al. 1999). 

However, aggregation damages the data, making research into causation with associated 

factors very difficult (Leitner and Curtis, 2006). Armstrong et al. (1999) introduced the 

term geographical masking (geomasking) for the modification of geographical coordinates 

to protect confidentiality. Methods include affine transformation and random perturbation. 



International Journal of Geographical Information Science Submission 
 

 6 

Affine transformations relocate each point by change of scale, rotation, flipping or some 

concatenation of these masks. Random perturbation or jittering involves adding noise to 

original locations. According to Armstrong et al. (1999), random perturbation is an 

effective geomasking technique, to some extent superior to affine and aggregation masks. 

Kwan et al (2004) have assessed the spatial masks discussed in Armstrong et al. (1999), 

particularly levels of random perturbation in relationship to disclosure risk since mapped 

locations of disease or crime contain wide variation in of population density. The amount of 

noise added to location can be allowed to vary with population density. This idea has also 

been discussed by VanWey et al. (2005) who simulated a sampling frame of public schools 

in the US. Their data contained the geographical location of each school with potentially 

sensitive attribute information. A solution was proposed whereby map symbol size was 

adjusted to cover multiple schools, providing locational uncertainty in proportion to a 

specified level of identification risk.  For schools in large cities (densely populated) a much 

smaller point buffer was needed than in remote rural areas. 

    In this paper we propose a geographically intelligent method of statistical disclosure 

control for aggregate census data which draws on elements of these geoprivacy approaches 

by protecting the locations of individual records.  Although described in the census context, 

the method would be applicable to administrative or survey data.  In the following section 

we review the disclosure control problem.  In section 3 we consider traditional record 

swapping methods which are essentially aspatial and propose a local density swapping 

approach which takes into account the distribution of population as a spatial indicator of the 

risk of disclosure. Furthermore, we examine ways of offering greater protection against 

differencing by perturbing larger samples of the data but adding smaller amounts of noise. 
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The remainder of the paper then considers an empirical application of the record swapping 

approaches.  Section 4 describes the creation of a census-like microdataset; section 5 

presents some measures of risk and utility and section 6 presents the results of our analysis.  

The results of our experiments are discussed in section 7 before drawing conclusions 

identifying further research priorities.   

2 Statistical Disclosure Control  

2.1 Census Tables 

We here outline the production of aggregate census data, drawing specifically on UK 

practice but with international applicability.  A census collects data on attributes (e.g. age 

or household size) for individuals and households.  The objective is usually to collect data 

from the entire population, although in reality some will be missed.  For the purposes of 

this discussion we will disregard the many practical challenges of enumeration which in 

various ways affect data quality and consider the creation of data for publication from the  

database of census responses.    

   Tables of counts are produced by cross-classification of subsets of attribute variables. 

Counts will typically be for either individuals or households and, for generality, we use the 

term unit to denote the individual, household or other set of individuals upon which the 

counts are based. Geographical coordinates ( , )X Y  are associated with each unit, typically 

by matching to a master address list. The data available for tabulation are compiled into a 

microdata file, represented by an ( 2)N K× +  matrix, Z, where N is the total number of 

units and the rows of the matrix contain a 1 K× vector A of  values of K attribute variables 
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as well as values of ( , )X Y  for the different units. We refer to the N units as the population. 

Tables for publication are formed by specifying output zones and attribute categories and 

counting the number of units that fall into each unique combination of output zone and 

category.  For example, Table 1 provides a fictitious illustration of a cross-classification of 

religion by long term illness (both variables in the 2001 census in the United Kingdom) for 

5293 individuals in a given zone. Such tables represent spatial aggregations of the 

microdata file. 

Table 1: Fictitious Census table: Religion by long term illness for Zone H 
Religion Without long term illness With long term illness 

Christian 3251 1004 

Buddhist 8 0 

Hindu 0 2 

Jewish 4 1 

Muslim 0 1 

Sikh 0 0 

Any other religion 13 3 

No religion 556 86 

Religion not stated 248 106 

Total 4088 1205 

 

2.2 The Disclosure Problem 

We are concerned with the disclosure risk which may arise from the publication of multiple 

frequency tables of the type described in the previous section. There are various ways of 

defining disclosure for tabular outputs (Willenborg and de Waal, 2001). Most 

commentators suppose the existence of an intruder who has access to the published tables 

and attempts to use these to disclose information about the units in the population. One 
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basic notion is that of identity disclosure or identification, which arises if it is possible for 

the intruder to establish a one-to-one correspondence between an element of a table and a 

known unit in the population (Bethlehem et al., 1990). Such a possibility is of particular 

concern to census agencies, as it would contradict the confidentiality undertakings made to 

respondents. For illustration, Table 1 reveals that in output zone H there is only one 

Muslim. If, via another source of information, the intruder knows the name and address of a 

Muslim who lives in zone H then they can establish a correspondence between this 

individual and an element in the table. Thus, identity disclosure would have taken place.  

Identity disclosure may occur more readily for cells with counts of one, termed cell 

uniques, and we treat these as risky. 

   It might be argued that such identity disclosure is not serious since the intruder does not 

gain any new information about the respondent. However, identity disclosure can be 

associated with attribute disclosure, which arises if the intruder can learn additional 

information about a unit from the published output. For example, the intruder who knows a 

Muslim living in zone H can learn from Table 1 that this individual suffers from a limiting 

long term illness.  Identity disclosure is not, however, a necessary condition for attribute 

disclosure. For example, an intruder who knows someone in output zone H whose religion 

is Hindu can learn that they must have a long term illness, despite there being two such 

people and thus identification has not taken place.  Despite such considerations, we shall in 

this paper focus on the risk arising from identity disclosure. Focusing on cell uniques also 

gives us an overall indicator of disclosure risk (since the more ones there are, the more 

small cell counts there are likely to be). 
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   Tables produced for non-coterminous geographies may be independently safe, but when 

published together, can sometimes be subtracted or differenced to reveal sensitive 

information relating to a geographical ‘sliver’. This has been termed the geographical 

differencing problem (Duke-Williams and Rees, 1998) and occurs when one or more output 

zones nest entirely within another as in Figure 1.  

Figure 1: Geographical Differencing Problem: Output zones which nest within one another 

 

Suppose Table 2 relates to output zone B in diagram (a) or (b) in Figure 1 and Table 3 

relates to output zone A, then subtracting the corresponding cells (Table 3 from Table 2) 

reveals a new Table 4 which relates to the differenced zone.  All the non-zero cell counts 

are cell uniques. The geographical differencing scenario can be extended to consider output 

zones which when aggregated can, in combination, be differenced from a larger aggregate: 

for example, in diagram Figure 1(c), B2 + B1 can be differenced from A1 + A2. Sections of 

geographical zones which overlap but are not wholly contained are not disclosive as there is 
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no way of knowing which data units in the two tables belong to the intersecting area, as in 

Figure 1(d). These examples demonstrate the problems of publishing tables relating for 

multiple systems of output zones. Small slivers can result producing many small cell counts 

which are potentially disclosive. This can occur through both nested and non-nested 

geographies.  Providing user access to an interactive tabulation tool would present many 

differencing problems.  

Table 2: Illustrating the Geographical Differencing Problem - Fictitious Table representing Geography A  
 16-20 21-30 31-40 … 

Benefit claimed 10 16 19 … 

Benefit not claimed 8 12 11 … 

 
Table 3: Illustrating the Geographical Differencing Problem - Fictitious Table representing Geography B  

 16-20 21-30 31-40 … 

Benefit claimed 9 16 19 … 

Benefit not claimed 8 11 11 … 

 
Table 4: Illustrating the Geographical Differencing Problem - Fictitious Table representing Differenced Area 

 16-20 21-30 31-40 … 

Benefit claimed 1 0 0 … 

Benefit not claimed 0 1 0 … 

 

2.3 Statistical Disclosure Control (SDC) Methods for Tabular Outputs 

A variety of SDC methods have been proposed to protect against the kinds of disclosure 

risk described in the previous section.  They may be divided into pre-tabular methods, 

which are applied to microdata before aggregation into tables, for example by modifying 

the values of the attribute variables and post-tabular methods, which are applied to the 

tables, for example by rounding all cell counts to multiples of some base number, such as 

five (Shlomo, 2006). From a geographical perspective, pre-tabular methods are zone-
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independent, assuming that they only involve modification of the microdata file, Z (see 

section 2.1) and that standard spatial aggregation is used to form the tables from the 

modified microdata. If the base microdata are ‘safe’ then any aggregation must also be safe.  

Pre-tabular methods are generally more flexible, with parameters that can be varied to 

achieve a balance between disclosure risk and utility. Utility refers to the quality of the 

output after SDC and can be assessed by analyzing the impact of SDC methods on 

statistical analysis (Shlomo, 2006).  Pre-tabular methods can cause statistical damage to the 

resulting tables that is difficult for the users of these tables to measure. Hence, the 

parameters of these methods are often set in a way to minimize this damaging effect 

(Shlomo, 2005). Post-tabular methods are zone-dependent since they must be applied 

afresh to every new table that is produced for a given output zone. Not only must any risk 

assessment be updated for each tabulation, but it is in theory necessary to assess that the 

new table cannot be combined with previously released tables to undo the protection that 

was previously applied. Post-tabular methods can be cumbersome to apply, particularly for 

very large tables. Current solutions involving rounding techniques (Salazar et al, 2004) are 

still in development for very large tables with a complex hierarchy of subtotals to ensure 

that marginal totals add up correctly whilst maintaining a high quality table. The fact that 

the pre-tabular SDC methods only need to be applied once is an important advantage 

compared to post-tabular methods, when the aim is to produce tables for multiple 

geographies. The remainder of this paper focuses on pre-tabular methods. In reality, the 

choice between these approaches is not straightforward and a combination of pre- and post-

tabular methods have often been implemented.  Particular attention will be given here to the 
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development of a method which balances risk and utility, avoiding the need for further 

post-tabular adjustment.  

3 The Proposed SDC Approach  

Pre-tabular methods of SDC could involve modification of either attribute variables or 

geographical coordinates. The former has the major disadvantage that it can result in the 

introduction of inconsistencies between the attribute variables, such as a married 10-year-

old. This type of anomaly will not occur as a result of modification of the geographical 

coordinates since most census attributes will be consistent with any geographical location.  

We therefore consider here only geographical perturbation methods, defined as those SDC 

methods which modify the true spatial locations of some or all of the units in the microdata. 

Thus, the coordinates ),( ii YX  of a unit i are modified to new coordinates ( )’’, ii YX . We 

refer to the distance between the old and new locations as the perturbation distance. Usually 

the perturbation distance, d  is measured in Euclidean space: 

( ) ( )2’2’
iiii YYXXd −+−=             (1) 

Geographical perturbation methods may be expected to reduce disclosure risk in the 

aggregated table since it will not be known whether an observed cell unique in a table 

corresponds to a unit which genuinely falls in that cell or indeed whether the true cell count 

is one. Geographical perturbation could be implemented in a number of ways. One 

approach, applied in the geoprivacy literature to point data is that of displacement, where 

the coordinates of each unit are displaced according to some deterministic or random 
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procedure (Armstrong et al., 1999). One problem with this approach is that it cannot be 

guaranteed that the displaced locations will be feasible, for example they might fall in a 

self-evidently unpopulated area such as a lake. An alternative which overcomes this 

problem and avoids the need for detailed validation of new locations is record swapping, 

where pairs of units are selected from the population and the coordinates of each pair are 

swapped while the global set of locations is unchanged.  We will focus on record swapping 

approaches, firstly considering in section 3.1 an established method which has been 

employed in practice by several census agencies (Shlomo, 2005 and Zayatz, 2006). Our 

proposed new approach is introduced in section 3.2. 

  

3.1 Random Record Swapping (RRS) 

Random record swapping (RRS) is a pre-tabular method of geographical perturbation 

resulting in the geographical variables of two units i and j being swapped. Thus, the 

geographical coordinates ),( ii YX  are exchanged with ( , )j jX Y  but the attribute variables 

remain unchanged. Different approaches may be adopted for deciding which pairs of units 

are swapped. Often, pairs of units are matched in some way to limit the potential damage to 

resulting analyses. Following Willenborg and de Waal (2001), the ith record of the 

microdata may be partitioned into three sub-vectors: iM , *
iA and ),( ii YX , where iM is a 

vector of match variables, defining a subset of the attribute variables to be controlled when 

seeking recipient households for swapping, and *
iA is a vector containing the remaining 

attribute variables. Thus, only records j with j iM M=  are considered for swapping with 

record i.  
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   Three features of RRS can be modified, each of which may affect both disclosure risk and 

utility. First, the smaller the fraction of records selected for swapping, the lower both the 

expected risk reduction and distortion. Second, the more variables and categories which are 

used to match pairs of values the less distortion, but this may lead to difficulties in finding 

matching records for all recipients. Third, swapping can be targeted on records deemed 

most ‘risky’, determined by prior analysis of the small counts in tables (Zayatz, 2006). The 

UK 2001 censuses were disclosure-protected by RRS in combination with a post-tabular 

SDC method (Shlomo, 2006). The 2000 US census employed targeted swapping (Zayatz, 

2003) in combination with post-tabular methods.  The specific details of record swapping, 

such as the proportion of records swapped, are kept confidential so as not to aid an intruder.  

   To illustrate RRS further, we present the basic approach adopted in England and Wales in 

2001.  The units swapped were households. Match variables consisted of a hard-to-count 

index1, household size, and a broad age and sex distribution of individuals within the 

household (Shlomo, 2005). A sample of households was swapped between Output Areas 

(OAs: small area building brick for release of 2001 census data) within Local Authority 

Districts (LADs: larger area containing around 50,000 people) (Boyd and Vickers, 1999), 

that is each record in the sample was paired with a matching record from a different OA 

within the same LAD. Thus, LAD is effectively a match variable also and this method is 

zone-dependent, being based on specific LADs and OAs.  A key drawback of such RRS is 

that membership of the same LAD is the only control over the distance and direction of 

                                                 
1 Hard-to-count index was constructed from census variables known to be associated with under-enumeration 
such as multi-occupancy dwellings.  
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perturbation, which may result in significant damage to statistical analyses involving spatial 

elements finer than LADs.  

3.2 Local Density Swapping (LDS) 

The proposed local density swapping (LDS) method is designed to overcome this key 

drawback, by applying pre-tabular perturbation to the microdata in a way which is not 

dependent upon the choice of output zones. The first feature of the method is that 

perturbation distances are sampled from a probability distribution. This allows greater 

control because the type of distribution can be selected, as can its parameters such as mean 

and standard deviation. 

   The risk of identifying an individual by differencing depends on the proximity of other 

individuals with similar characteristics. For example, an elderly man located in an area with 

mainly young people will present a high disclosure risk. In general, the more people there 

are in the area, the more likely it is that someone else will share the same characteristics – 

following Tobler’s first law of geography (Tobler, 1970) similar characteristics are most 

likely to be found together. Thus a fundamental predictor of disclosure risk is population 

density. In a densely populated urban area, less perturbation is generally needed to disguise 

the true location of a household. A similar concept was identified earlier in the geoprivacy 

literature (Armstrong et al. 1999, VanWey et al, 2005), masking locations of disease or 

crime on a map in proportion to population density. Density is not taken into account by 

conventional approaches to record swapping. Thus in a densely populated region, more 

perturbation than necessary may be added to a household.   Our second key proposal is to 

take account of population density by defining perturbation distance as household distance 
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as opposed to Euclidean distance. The household distance n  is a measure of the number of 

households between swapped households.  

    Our third proposal aims to reduce the risk from geographical differencing by swapping 

more records but by smaller distances. Thus a cell unique in a differenced area should have 

a likelihood of having been perturbed. Perturbation at the local level will minimise damage 

but introduce uncertainty. In practice this could be implemented by swapping broadly at the 

same scale as the small area geography (for the UK this might be adjacent postcodes for 

example, or blocks in the US) with variation depending on population density. Postcodes or 

blocks represent local areas for which an intruder might know detailed information about 

their neighbours and around which we might want to add noise. The initial sample of 

records selected for swapping could be random within strata (as in the random record swap) 

to ensure even protection against risk.  

   One advantage of LDS is its flexibility. Statistical organizations differ in their assessment 

of tolerable levels of risk and utility. LDS parameters can be varied to achieve an 

appropriate balance between risk and utility. Parameters that can be varied include the 

sampling fraction, the probability distribution, the sample size and selection and match 

variables.  Very rare records with unusual combinations of characteristics (such as a 16 

year-old-widow) are unlikely to be protected by swapping (as they tend to be unique 

irrespective of geography) but these are likely to require separate recoding or suppression 

regardless of the general protection methods applied.  
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4 Creating a Test Dataset 

It is not possible to use an actual census database due to the census confidentiality 

constraints.  However, anonymised microdata samples and small area aggregations are 

available from the UK censuses (Dale and Teague 2002, Dale and Marsh, 1993). In this 

section we briefly describe the creation of a synthetic microdataset created from these 

sources to create a 100% dataset consisting of the full set of census variables, to which we 

assign point locations. The aim is to create a dataset that is realistic for testing disclosure 

control methodologies rather than to accurately replicate a specific regional population.   

4.1 Synthetic Population 

Our synthetic population is based on 1991 UK census microdata, as 2001 files were not 

released until after the commencement of this work. We use the Household Sample of 

Anonymised Records (SAR), a microdata file for a 1% sample of individuals in 

households, including the complete set of census variables but with geographical coding 

limited to Standard Region. We also use Small Area Statistics (SAS), which give 

information on individuals and households in tabular form at enumeration district (ED) 

level, the smallest areas in the 1991 census geography.  EDs are similar in size to OAs 

containing around 200 households or 450 people. SAS tables contain the entire population 

for each small area. However the table dimension is small, containing only two or three 

variables, so the joint distribution for the full set of census variables is not known. 

Microsimulation techniques are used to estimate this joint distribution at the small area 

level.  Our aim is to populate census small areas with ‘plausible’ households and 
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individuals drawn from the microdata sample, broadly preserving actual marginal 

characteristics. 

   Since swapping involves distorting the relationships between geography and attribute 

data, it is important to study an area which is spatially heterogeneous. The county of 

Hampshire in Southern England was chosen because of its diverse characteristics. It 

includes two densely populated urban areas (Portsmouth and Southampton) and extensive 

rural areas. The population of approximately 1.5 million displays wide variety of economic 

activity, household structure and individual characteristics.  The county comprises 3175 

EDs in thirteen LADs with population densities ranging from 138 people per km2 in 

Winchester to over 4000 people per km2 in Portsmouth.  

   A microdataset with a realistic spatial distribution is needed in order to investigate the 

effects of locational swapping.  There are various techniques available including iterative 

proportional fitting based on a set of small area tables (Williamson et al., 1998) or synthetic 

probabilistic reconstruction (Birkin and Clarke, 1989), but here we use a method of 

combinatorial optimisation developed by Williamson and Voas (2000). This approach uses 

the SAR as the parent population from which households can be drawn to recreate 

populations for individual EDs. This is performed iteratively by selecting a combination of 

households from the SAR that best reproduces the characteristics of the ED. Constraints on 

the combination of households chosen are provided by known tabulations of ED data from 

the SAS.  We have chosen four small area tables from the 1991 small area statistics 

covering age, marital status and sex; household space type and tenure of households; 

primary economic position and age; and tenure and socio-economic group of the head of 
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household. The more tables used as constraints, the more iterations are required to give a 

good level of fit.  

   Figure 2 gives an overview of the microsimulation process. The first step is selection of 

an initial sample of households for each ED. Rather than sampling at random, the 

ONSCLASS variable (Wallace et al, 1995) was used to stratify the SAR records. 

ONSCLASS is a census-based classification of wards present on both the SAR and SAS. 

This is a very useful variable since it provides a key to the characteristics of the ward in 

which the household is located.  An initial sample was taken at random from the stratum 

representing the same ONSCLASS as the ED. Communal establishments were excluded 

from our analysis. At each iteration a new household is sampled from the appropriate 

stratum and if the fit is improved the new household kept, otherwise it is dropped. This 

iterative process continues until a satisfactory fit is achieved. To measure fit we compared 

the simulated table frequencies, denoted cF , to the constraint table frequencies, denoted 

cO , (Ballas et al. 1999, Williamson and Voas, 2000). The subscript c denotes a cell in the 

table for which the constraint frequencies are available. We used a measure called Total 

Absolute Error less than 3, denoted TAE and defined by:  

TAE = max 3, 0c cO F − −  ∑        (2) 

This fit measure ignores absolute errors  | |c cO F−  of less than 3 in order to speed up the 

process since an exact fit was not required.  
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Figure 2: An overview of the microsimulation process 

 

The resulting synthetic population provided an adequate fit to the published tables using 

this approach. There were no clusters of error which may have raised concerns that an area 

with unusual characteristics had not been fitted properly. Urban areas showed the worst fit 

but overall the TAE was relatively small at approximately 2 to 4 individuals or households 

per cell. 70% of households were not unique, with 15% of households sampled three times 

(representing 45% altogether) but less than 1% represented more than four times. This 

would be a problem if the objective involved assessing uniques in the entire microdataset 

since only 30% are unique records. However there are many uniques at the small area level 

in tables of two to four variables. Moreover the majority of repeated households are located 

in different LADs. This is an important consideration because households could be 

swapped which are identical thus biasing the empirical results (utility will appear to be 
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better on the synthetic population than on a real population).  An additional consideration is 

that both the LDS and RRS tests will be equally affected by any biases in the synthetic 

population.  

4.2 Creating Spatial Locations 

Creating spatial locations for the households is particularly important because these will be 

used by the swapping procedure. There are no files directly recording household locations 

in the UK. Instead, the directory of postcodes and enumeration districts was used, which 

provides a household count for each ED-postcode intersection and grid references for each 

postcode (Martin, 1992).  Unique locations were created for households by adding noise 

around postcode locations, proportional to ED population density. An incomplete sort of 

households by tenure type was performed before grid reference allocation, resulting in 

households of similar tenure displaying some spatial clustering.  

Figure 3: Creating artificial household locations 

 

The smallest postcodes do not have formally defined boundaries, so these were generated 

as Thiessen polygons around postcode centroids (DeBerg et al, 2000), and adjacent 
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postcodes identified, using the deldir2 package in the statistical package R.  We thus create 

a synthetic micropopulation for Hampshire consisting of individuals within households 

having a full set of census variables. Each household has a unique point location and is 

assigned to a postcode, ED and ward. The postcodes have synthetic boundaries but do not 

necessarily nest entirely within EDs; EDs nest entirely within wards and wards within 

LADs.  

5 Implementing and Evaluating the Swapping Methodology with the Test Dataset 

This section describes the implementation of the general methodology proposed in Section 

3 using the statistical program SAS and the synthetic population and presents measures for 

the assessment of risk and utility.  We refer to the synthetic data as the ‘original’ 

(unswapped) data. 

5.1 Swapping Methodology 

RRS and LDS are performed by selecting an initial sample of households from the 

population and then finding matching households with which these will be swapped 

(section 3). Match variables of ethnic group, family type, number of persons in household 

and tenure are used. These were chosen as being similar to those used in the actual 2001 

UK census RRS. RRS requires matching households in a different ED but within the same 

LAD.  

   To implement LDS, a ‘distance’, n, is generated randomly from an exponential 

distribution with a specified mean λ for each of the households in the initial sample. This 

                                                 
2 Information on the deldir package in R can be found at: 
http://rweb.stat.umn.edu/R/library/deldir/html/00Index.html 
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distance will determine the number of households, n, in the circle for which the initial 

household is at the centre and the matching household is on the circumference. For ease of 

computation, households are assigned to a 100m raster and a cellular approximation to a 

circular search performed. The circular band corresponding to number of households n, is 

then determined by counting the households in successive bands until the cumulative count 

is greater or equal to n. The outer band of households contains the nth household.   

   Generating n from an exponential distribution ensures n cannot be negative and has a 

rapidly decreasing probability of taking a large value. The probability density function of n 

is given by:  

( ) 1 /nf n e λλ− −=  ,   0n ≥        (3) 

so that ( )E nλ = . In the following experiments a value of λ  has been specified which 

represents an average distance between adjacent postcodes. A random swap of 10% of 

households between adjacent postcodes was performed and λ was determined as the mean 

number of households between all pairs of swapped households. The minimum and 

maximum from this 10% random postcode swap was also used to truncate the distribution 

to prevent swapping over very long distances or very small distances. 

   Once the circular band containing the nth household is determined, a best matching 

household from the households in this band can be found using the match variables of 

ethnic group, tenure, persons in household, family type. Households which have previously 

been swapped are penalized and discouraged from swapping a second time.  

5.2 Evaluating Effectiveness in a Risk-Utility Framework 
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Following Duncan et al (2001), we propose to evaluate the effectiveness of the swapping 

methods in a risk-utility framework, i.e. we study the performance of each of the methods 

in terms of both disclosure risk and the utility of the resulting outputs for analysis. 

Moreover, since the methods depend upon the specification of parameters, such as the 

proportion of records to swap, we shall study how such choices affect risk and utility and 

the trade-off between the two. In order to set up this framework we need to introduce 

measures of risk and utility.   

5.2.1 An Indicator of Disclosure Risk   Disclosure protection can be measured by 

comparing disclosure risk before and after perturbation. In section 2, we discussed how risk 

before perturbation could be measured in terms of cell uniques. A crude measure would be 

the number of cell uniques. After perturbation, cell uniques may also be considered, since 

these might be a natural target for an intruder, but it would be inappropriate to still measure 

risk by the number of cell uniques, since these may no longer be genuine. Instead, the 

probability that an observed cell unique (after perturbation) represents an actual unique is 

considered. 

   Such measures of risk are clearly dependent upon output zones. These may be EDs or 

wards, for example. To measure the risk arising from geographical differencing, the 

disclosure risk for frequency tables for zones assumed to be equivalent in scale to a 

differenced ‘sliver’  is considered, for which the smallest zones available are postcodes (and 

are independent of the geographies used in the methodology).   

   The cells in a table T are defined by cross classifying a subset of the attribute variables in 

the vector A (see section 2.1). An arbitrary cell c in this table is defined by a combination of 
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the categories of this subset of attribute variables. Let cF  denote the cell frequency in a 

specified zone, that is the number of units in the zone with the specified combination of 

values of the attribute variables. To be explicit about the effect of the perturbation process, 

let o
cF  denote the cell frequency before perturbation and p

cF  the cell frequency after 

perturbation.  Also let Tn  denote the number of cells in table T  and let match = 1 if 

1o p
c cF F= =  and if the same unique household appears in the table before and after 

perturbation. A cell count of one after perturbation is called a true unique if match = 1, i.e. 

if  it was also a count of one in the original table and it relates to the same household.  The 

probability of finding a true unique is thus: 

)Pr(TU  = 
( 1& 1)

( 1)

T

T

n o p
c c

n p
c

I F F match

I F

= = =
=

∑
∑

        (4) 

where the sums are over all the cells c in the table and I is an indicator function which 

equal 1 if true, 0 otherwise.  

5.2.2 Measures of Utility  Utility will be measured in terms of distortion to the data, i.e. 

in terms of dis-utility. Specifically, we measure the absolute average deviation per cell 

(AAD) averaged across all tables at a particular level of geography. AAD will be measured 

on tables formed by cross-classifying age, sex and marital status. These variables were 

chosen as they contain vital demographic information which should not be distorted and 

since they do not include any of the matching variables. The measure is defined as:  

AAD = 
Tn p o

c c

T

F F

n

−∑
       (5) 
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Section 6.5 considers some additional measures of utility, which assess how swapping 

distorts spatial features of the tables.  

6 Results of Applying Swapping Methodology to Test Dataset 

6.1 Comparison of 10% RRS with 10% LDS  

We begin our analysis by simulating a 10% RRS, taken to be a realistic option which might 

be employed in a census, and compare with a 10% LDS. The methods are applied to the 

entire synthetic population of Hampshire. The same initial 5% random sample (forming one 

half of the swapped records) was used in both cases, with the number of records selected 

proportional to the total population in each ward. This ensured an even distribution of 

records for swapping over the entire county.  

      Table 5 presents disclosure risk in terms of (a) percentage of ‘true uniques’  and (b) 

number of true uniques per 1000 population at risk. We assess disclosure risk in tables of 

long term illness and ethnicity since these variables are likely to produce many small cell 

counts. Table 5(a) shows that using matching variables (the variables iM  (section 3.1) on 

which both households must match for a swap) as opposed to swapping households at 

random, the resulting disclosure risk is higher.  There is very little difference between the 

two methods when swapping only 10% of households. More importantly the disclosure risk 

after applying both RRS and LDS is very high at all levels of geography at over 80%. This 

means there is a high probability that a cell count of one relates to the original household.  

This is likely to be considered unacceptable by a statistical agency and in this case it would 

seem sensible to apply a post-tabular method to the data (as in 2001). Table 5(b) also shows 

that disclosure risk is highest for small zones, i.e. at postcode level with approximately 7 
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true uniques per 1000 population at risk. At higher levels of geography, there are far fewer 

uniques.  

 
Table 5: Assessing Disclosure Risk (Percentage of True Uniques)  

(a) DISCLOSURE RISK (proportion of true uniques) 
 Postcode ED Ward 

10% Random Record  
 

Swap (with matching) 

0.94 

 

0.88 

 

0.81 

 

10% Random Record 
 

Swap (without matching) 

1.00 0.93 0.88 

10% Local Density Swap 
 

(with matching) 

0.89 0.92 0.92 

(b) DISCLOSURE RISK (number of true uniques per 1000 population at risk) 
 Postcode ED Ward 

10% Random Record 

Swap (with matching) 

7.55 3.13 0.30 

10% Local Density Swap 

(with matching) 

6.79 2.92 0.27 

 

Table 6 presents the utility of the data after swapping, measured in terms of deviation 

between cell counts in the original and protected tables. As before, an average is taken over 

all tables at a particular level of geography. In general the LDS produces smaller average 

cell deviations.                                           

Table 6: Assessing Utility (Absolute Average Distance)  
UTILITY Postcode ED Ward 

10% Random Record Swap (non-matching) 

10% Random Record Swap (matching) 

0.25 

0.17 

1.11 

1.09 

6.66 

5.75 

10% Local Density Swap  (matching) 0.24 0.97 4.40 
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6.2 Increasing the sampling fraction  

Since the 10% swap results in high disclosure risk we next examine how the risk-utility 

outcome changes as we increase the total proportion of records swapped. In this scenario, 

we use only a sub-region of the synthetic population relating to the Basingstoke and Deane 

local authority because the methods are computationally intensive.  Initial samples are 

drawn which when paired with matched households make  total swapped samples of 10%, 

25%, 50%, 70%, 90%, 100%. In this case the samples were completely random with no 

stratification by ward. Moreover each sample was independent meaning that the 10% RRS 

initial sample was different to the 10% LDS initial sample. In figure 4 we measure risk at 

postcode level as it is the sliver level which presents the greatest disclosure risk (see table 

5). The measure used is the probability of being a true unique. However, utility is measured 

at ward level representing a more common scale for analytical use. 

Figure 4: Comparing the Risk-Utility outcome for LDS and RRS with different sampling fractions 
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The graph shows how LDS improves upon RRS across all sampling fractions. Thus, for a 

given utility (a vertical line on the graph), LDS always has a lower disclosure risk at 

postcode level than RRS. Conversely, for a given level of risk (a horizontal line on the 

graph), LDS always achieves greater utility at ward level than RRS. Suppose a statistical 

agency wanted to ensure disclosure risk was below 0.5; following figure 4, they would need 

to swap approximately 70% of the records to achieve this through RRS but around 50% of 

the records would need to be swapped if LDS was used. Moreover if 50% of records were 

swapped with LDS, we would still obtain higher utility at ward level than if 70% of the 

records were swapped with RRS.  

 

6.3 Changing the Mean Perturbation Distance for LDS  

The sampling fraction is one parameter of the LDS method that can be changed. Another is 

the mean perturbation distance. This distance is measured in terms of number of households 

and thus doubling the perturbation distance does not mean the households are moved twice 

as far in Euclidean space. The relationship between the area of the circular band and the 

radius of the circle containing n households is not linear and this needs to be taken into 

account when selecting an appropriate perturbation distance. A small sample size of 10% 

would require setting 10,000λ ≥  households to reduce disclosure risk by a significant 

amount (less than 50%) with an average distortion of 5 per cell. On the other hand, with a 

sampling fraction of 70%, to reduce disclosure risk below 0.5 at ward level, λ = 2,000 

households would be appropriate but the distortion per cell would be 15. 
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6.4 The relationship between Geography and the R-U Outcome 

In Figure 5, we show the general pattern in terms of risk-utility over different output scales. 

These results include a completely independent geography derived from the 2001 census: 

Lower Super Output Areas.  LSOAs are larger than EDs but smaller than wards.  Risk here 

is measured in terms of the probability of being a true unique for the respective geography 

(i.e. postcode, LSOA or ward). Utility is the AAD for the respective geography. The figure 

shows a definite scale effect. As the zone size increases, the utility worsens in terms of 

AAD, with wards having the greatest average cell deviation and postcodes having the 

smallest average cell deviation: the larger zones of course have larger populations. 

However, the most important effect observable in Figure 5 concerns the disclosure risk at 

postcode level. LDS results in better utility (lower AAD) and lower risk than RRS for 

equivalent sampling fractions (0%, 10%, 25%, 50%, 70%, 90%, 100%) as indicated by the 

positioning of the lines. However, it is difficult to detect any difference between the 

methods at the higher levels of geography; partly because of the more unpredictable effect 

of RRS. Similar patterns were picked up for OAs and EDs (not much difference between 

the two methods) but are not included in the graph for clarity.  
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Figure 5: Comparing the Risk-Utility Outcome of LDS with RRS over different levels of geography  

 

The sample sizes have been omitted from the graph for clarity; however the lines are joined 

in order of increasing sample size.  

 

6.5 Spatial Measures of Utility 

Measurement of utility in terms of AAD may have masked underlying effects not picked up 

by averaging. In this section we attempt to study utility in more depth. As discussed in 

section 3.1, the perturbation methods swap a record i with values ( )*, , ,i i iM A X Y with a 

record j with values ( )*, , ,j j jM A X Y  so that, after swapping, record i has 

values( )*, , ,i j jM A X Y . Thus, the relationship between the match variables M and the 

attribute variables *A  is unchanged.  Similarly the relationship between the geography and 

match variables is unchanged. For example, we would expect the relationship between 

tenure and occupation to be the same after swapping. In fact this is an important advantage 

of geographical perturbation methods over other disclosure methods. Rounding, for 
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example, distorts the interrelationships between the attribute variables, often artificially 

increasing correlations (Shlomo, 2005; 2006). However, the relationship between the 

geography variables and the attribute variables is distorted with swapping. Thus when 

searching for appropriate utility measures, it would seem sensible to focus on measures in a 

spatial context. In this section we shall study utility primarily at LSOA level, representing a 

common scale for policy-making and analysis. 

6.5.1 Changes in spatial rank We first consider how zones change relative to one another 

in terms of their ranking for a particular attribute. We are interested in changes in overall 

spatial pattern, such as would alter the shading classes on a choropleth map; that is changes 

in rank order rather than changes in scale. We here sort zones according to an attribute and 

assign these ranks into groups, comparing the rank group for each zone before and after 

swapping. 

   The test will be carried out on LSOAs for two different attributes: (1) percentage 

unemployment and (2) percentage of male head of households, aged 35-50, in a 

professional job with a first degree or higher. As with any large mixed urban/rural area, 

these attributes are likely to vary over space. The latter is a category formed from a cross-

classification of the variables and will show the extent to which interactions of the variables 

are distorted by geography. The LSOAs are split into deciles. We present the results in 

Table 7 as absolute percentage change (in rank group) showing the median of the 

approximate normal distribution and the maximum. The table shows that, in general, LDS 

results in fewer rank changes than RRS. The cross-classified attribute histograms also 

showed similar patterns so have not been included here. This indicates that the underlying 

patterns in the data are likely to be more distorted by RRS than LDS. 
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Table 7: Absolute Percent Changes in Rank Group for LSOAs: Comparing LDS and RRS for 25% and 80% 

swaps.  
 RRS25 LDS25 RRS80 LDS80 

Median 2 1 2 2 

Maximum 7 9 9 20 

Proportion no 

change 

29/103 36/103 11/103 17/103 

 

6.5.2 Effect on Spatial Autocorrelation Another way of assessing changes in spatial 

distributions is to study the effect on clustering / spatial autocorrelation (Fotheringham et 

al, 2002). Swapping is likely to distort patterns of spatial autocorrelation. In particular, 

swapping over large distances is likely to make the data more homogeneous and pockets of 

households exhibiting unusual characteristics would tend to become more like the region as 

a whole. Therefore if we know of a variable (or set of variables) which exhibit spatial 

dependency, we can exploit this relationship to assess the effect of the two swapping 

methods.  

   Typically a single measure of spatial autocorrelation is calculated which describes an 

overall degree of spatial dependency across the whole dataset. Local measures of spatial 

autocorrelation allow spatial variations in the spatial arrangement of data to be examined 

(since a global measure may mask the true pattern). In this section we will assess spatial 

autocorrelation for the two attributes (a) percentage unemployed and (b) percentage of male 

head of households aged 35-50 in a professional job with a first degree. The results for the 

swapped populations will be compared against the original data.  

The global measure of spatial autocorrelation to be used is the Moran’ s I: (Moran, 1950) 
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where m is the number of zones  

uZ is the percentage in a particular category of a variable or a cross-classification of 

variables A, for zone u 

Z is the mean of the percentages across all zones 

uvw is an element of a contiguity matrix, taking the value 1 if zone u is a neighbour of zone 

v  and 0 otherwise.  

Values of Moran’ s I larger than 0 indicate positive spatial autocorrelation; values smaller 

than 0 indicate negative spatial autocorrelation. 

 

Spatial autocorrelation at a local level will be measured using the LISA statistic (Local 

Indicators of Spatial Association) computed as: 
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∑

       (7) 

Maps can be produced showing the value of uI for each zone u. In the LISA maps, high-

high and low-low relate to incidences of positive spatial autocorrelation whereas high-low 

and low-high relate to incidences of negative spatial autocorrelation. The Moran’ s I and the 

LISA maps were computed in GeoDa3 and relate to the Basingstoke and Deane local 

authority.  

                                                 
3 GeoDa is a spatial analysis software tool developed at the Spatial Analysis Lab, University of Illinois; 
https://www.geoda.uiuc.edu/ 
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6.5.2.1 Spatial Autocorrelation for Percentage Unemployed The LISA maps in Figure 6 

were computed for LSOAs in Basingstoke and Deane comparing the absolute change in uI  

between the original unswapped data and the swapped populations (for samples of 25% and 

80%). The original LISA map (not pictured here) showed evidence of negative spatial 

autocorrelation north of the centre of Basingstoke but positive spatial autocorrelation in 

central and southern Basingstoke.  The nearest neighbour weights matrix was used with 

eight nearest neighbours selected. This means that there is some randomness in which 

‘neighbours’  are selected (if there are more than eight nearest neighbours). For this reason, 

the same weights matrix was used in every case. Figure 6 shows that at the 80% level, there 

are significant amounts of absolute change in uI particularly in and around the central urban 

area. There is more change for RRS than LDS as indicated by the darker shadings of the 

LSOAs with absolute change being greater than one in several LSOAs. At the 25% level 

there were only small changes for both RRS and LDS (not displayed in this paper). All 

swapped populations were found to have fewer significant areas of spatial autocorrelation 

as the sampling fraction increases suggesting that the data, after swapping, is possibly 

becoming more homogeneous as might be expected.  



International Journal of Geographical Information Science Submission 
 

 37 

Figure 6: LISA maps showing Absolute Change in iI  between the original (unswapped) data and the 

swapped data, for LSOAs for %unemployed.  

 

Moran’ s I gives a global indicator of spatial autocorrelation although it is perhaps 

misleading in this case with both positive and negative correlation present. Moran’ s I is 
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0.3491 for the original data and changes very little at 25% swapping.  At 80% it fell to 

0.2341 for RRS while remaining at 0.3338 for LDS. 

6.5.2.2. Spatial autocorrelation for Percentage in a Category of a Cross-Classification 

We now turn to the percentage in a category of a cross-classification of variables, 

represented by the percentage of male head of households, aged 35-50, with a first degree 

or higher in a professional job. As expected this percentage is broadly inversely related to 

levels of unemployment. As before, most of the structure is retained at the 25% swap rate, 

perhaps more so for the LDS, with little change in uI  for the LSOAs (not shown). On the 

other hand at the 80% level, there is major damage to the autocorrelation structure as 

indicated by the dark shaded LSOAs for RRS in Figure 7. Further investigation for RRS 

showed that many of the significant LSOAs showed incorrect directions of spatial 

autocorrelation after swapping. This observation is also supported by Moran’ s I. At 25% 

the spatial correlation is little changed from the 0.2640 for the original data for both RRS 

and LDS. At 80% swapping this has reduced to 0.0367 for RRS whereas for LDS it 

remains at 0.2336.  RRS swaps over much larger distances, having the potential for much 

greater damage than LDS swapping, primarily over shorter distances. This divergence 

between the methods is more apparent for the cross-classification than for a single variable.  
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Figure 7: LISA maps showing Absolute Change in iI  between the original (unswapped) data and the 

swapped data, for LSOAs for % male heads in professional job aged 35-50 first degree.   

 

OA-level maps (not shown) display similar patterns to the LSOA maps shown here but the 

small size of the OAs makes visual interpretation of the patterns difficult.  In conclusion, 
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the work in this section provides some evidence the LDS is less damaging to the detailed 

spatial data structure than RRS.  

6.6 Discussion of Results 

We here discuss some of the principal themes emerging from our results. Swapping records 

shorter distances and in proportion to local population density using the LDS method does 

seem to be effective in reducing disclosure risk at the postcode level and has the important 

benefit that it permits small area tables to be produced with less risk and provides stronger 

protection against geographical differencing. Although more noise is added at the local 

level, similar levels of protection and damage to those seen for more conventional methods 

are observed for larger zones.  In addition, LDS makes no reference to pre-existing 

geographical boundaries and is thus more resilient to future reaggregation and differencing 

challenges.   

   We have begun to assess the utility of the new method by studying the changes in spatial 

relationships after swapping. The LISA maps showed that with LDS, the most significant 

patterns in the data still remained after a large proportion of records were swapped. 

However with RRS, patterns were lost at lower levels swapping, particularly for the cross-

classified attribute. Changes in rank order indicated that LDS was altering the data less than 

RRS, which is particularly relevant to GIS and mapping applications. LDS achieved a 

better outcome than RRS at the postcode level, producing smaller average cell deviations in 

a table made up of the independent variables age, marital status and sex. Many different 

utility measures could be employed but in general LDS retains higher utility than RRS 

because households are only moved in proportion to local population density, with 
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households in high density areas being moved only short distances.  In general, this 

contributes to the RRS results being more unpredictable than those for LDS. 

    A statistical organization would normally desire that disclosure risk should be less than 

50% so that the odds are against an intruder finding a true unique. Ideally the disclosure 

risk would be even smaller than this, at around 10% or less. Swapping a 10% sample under 

either method was very ineffective and the percentage of true uniques remained above 80%.  

Even swapping 25% of the data resulted in a disclosure risk still above 50% at all levels of 

geography and this helps to explain why utility remained so high in the LISA maps at this 

level. Also at the 25% swap level, the order of rankings was not disturbed too greatly. To 

reduce the disclosure risk below 10% for all levels of geography would probably mean 

swapping around 90-100% of the records under either method. Organizations would 

probably consider it unacceptable to implement such high swapping levels, which means it 

is unlikely that swapping could ever be used as a sole protection method and would 

probably always have to be combined with some post-tabular modification.  

7 Conclusion 

Statistical agencies wishing to provide outputs by flexible geographies need to protect 

against the geographical differencing problem which may arise. Pre-tabular disclosure 

control methods are most attractive for this purpose, because they need only be applied 

once, ensuring that any tables and resulting differenced areas must also be safe. In this 

paper, we have proposed the LDS method as an alternative to the established RRS method 

and have argued that it may provide greater protection at the local level as well as allowing 

more records to be swapped whilst retaining spatial patterns in the data. Essentially, it 
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employs greater spatial intelligence and whether or not record swapping alone is judged to 

provide sufficient protection, it is a powerful disclosure control method which may provide 

a more efficient balance of risk and utility particularly for GIS applications. A census user 

might only know the percentage of records swapped but this still affords a large degree of 

uncertainty around each cell. This contrasts with post-tabular methods such as rounding 

where an intruder can usually deduce a narrow uncertainty interval around each cell in 

relation to the rounding base. Moreover local swapping is a good way of providing 

confidentiality protection whilst ensuring the plausibility of the data. RRS often moves 

households out of their local area and thus if the two areas are very different (moved from 

an inner city zone to a rural zone for example), it could be obvious that a household has 

been swapped presenting both a disclosure risk and reduction in accuracy of the data. More 

work needs to done to study other measures of disclosure risk and utility.  Risk assessment 

may, for example, be extended by looking at disclosure from zeros and other small cells 

and not just from cell uniques. Another idea might be to obtain two similar geographies and 

analyse the differencing risk attributable to the two swapping methods.   

   With regard to utility, most GIS use of census-type data currently ignores the impacts of 

disclosure control methods whereas these may in fact significantly affect geographical 

analysis results.  Measurement of utility is far from straightforward.  AAD, used here, is 

limited because it is an absolute value, not relative to the original cell values and since it is 

an average, it can mask underlying detailed effects. However AAD has provided a useful 

initial evaluation of the effects of changing the parameter values for swapping, due to its 

ease of calculation. It is important to remember that the work in this paper has been carried 

out for a particular synthetic population and to some extent the results will depend on the 
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unique characteristics of this dataset.  Since LDS is dependent on population density, it 

would be a logical extension to study the effects in regions of high and low density more 

closely. Moreover, we have focused here on record swapping, but it would also be possible 

to perform other types of geographical perturbation such as displacement using standard 

GIS functions which are being used for geoprivacy purposes. A more comprehensive 

examination of utility after swapping would need to more carefully address the spatial 

operations that GIS census users typically apply. Much more work needs to be done, both 

to fully understand current practice and with regard to future census data production. 
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