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We investigate the convergence of the derivative expansion of the exact renormali-

sation group, by using it to compute the function of scalar theory. We show 

that the der ivat i \e expansion of the Polchinski Sow equation converges at one loop 

for certain fast falling smooth cutoffs. The derivative expansion of the Legendre Aow 

equation trivially converges at one loop, but also at two loops: slowly with sharp cut-

off (as a momentum-scale expansion), and rapidly in the case of a smooth exponential 

cutoff. Finally, we show that the two loop contributions to certain higher derivative 

operators (not involved in /)) have divergent momentum-scale expansions for sharp 

cutoff, but the smooth exponential cutoff gives convergent derivative expansions for 

all such operators with any number of derivatives. 

In the la t ter par t of the thesis, we address the problems of applying the exact renor-

malisation group to gauge theories. A regularisation scheme utilising higher covari-

ant derivatives and the spontaneous symmetry breaking of the gauge supergroup 

is introduced and it is demonstrated to be finite to all orders of perturba-

tion theory. 
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Chapter 1 

Introduction 

Central to the acceptance of quantum Held theories (QFTs) as the best description of 

physics on sub-nuclear scales, has been the deepening in understanding of the process 

of renormalisation. Through this development, the a t t i tude towards the infinities that 

pervade Q F T calculations has shifted from the opinion tha t they are a disease that 

has to be removed by a seemingly Aoc mathemat ica l trick, to the view that they 

are, in some sense, na tura l consequences of the underlying physics. This lat ter view 

has arisen f rom the insights gleaned from the formulation of the Wilsonian approach 

to the Renormalisation Group (RG) [1]. 

At the heart of this approach lies the concept of e lec t ive Held theories. The viewpoint 

of the existence of a fundamenta l Q F T (in the sense that it is valid for all particles at 

all energy scales) is abandoned, to be replaced by an effective theory that a t tempts 

only to describe physics up to a specified high energy cutoff. The Lagrangian that is 

suitable for this energy range is kept general in the sense tha t all possible interactions 

consistent with the symmetries of the system are included. There is no longer a 

problem with divergences (we have regularised). The issue now is that of predictive 

power; is the theory now capable of making predictions given tha t it contains an 



infinite number of coupling constants? Remarkably, the answer can often be given in 

the affirmative. If it can be demonstrated that this is the case, this is equivalent to 

proving the renormalisability of the theory. 

From such ideas, flow equations ( that are non-perturbative in the coupling constants) 

for the Q F T can be derived. However, to make progress with calculations it is often 

necessary to make approximations. One very powerful method is that of using the 

derivative expansion; a Taylor expansion in the momenta of the vertices of the QFT. 

An obvious issue which must be considered and which is addressed in this thesis, is 

under which conditions such an expansion converges. 

The extension of the W'ilsonian RG from scalar field theory where it has proved very 

powerful, to the more physically relevant topic, as far as particle physics is concerned, 

of gauge theories (specifically Yang-Mills theories) has been fraught with difficulty. 

The main problem lies with the incompatibility of restricting the momentum domain 

over which the theory is applied with the fact that observables are invariant under 

internal gauge symmetries. 

Until recently, this obstacle haa been tackled by initially breaking the gauge invari-

ance with the aim of re-imposing it at the end of the calculation [2]. Obviously such 

a method is far f rom ideal. However, a fresh approach [3, 4, 5] enables gauge invari-

ance to be maintained at all stages. This is achieved by first regularising via higher 

covariant derivatives, the gauge theory equivalent of a m o m e n t u m space cutoff. It is 

well established though, that this cannot remove all divergences. However, by adding 

extra gauge invariant particles known as Pauli-Villars fields, complete regularisation 

can be achieved. It has been postulated that a similar but more elegant mecha-

nism can be obtained by embedding the gauge group within a larger supersymmetric 

gauge group which is then spontaneously broken to regain the low energy physics of 

the original theor\-. We prove that this is the case in this thesis. 



This thesis falls into two main parts and is s tructured as follows. Chapter 2 is an 

introductory chapter and presents some of the formalism and background necessary 

for dealing with the Wilsonian RG. Two versions of the Sow equation are constructed 

followed by a discussion of how renormalisability is expressed within this framework. 

We conclude with a review of some approximation methods in current use. Chap-

ter 3 then considers some of the conditions necessary for one such approximation 

method, the derivative expansion, to converge. The Wilson/Polchinski and Legendre 

How equations are considered at one and two loops for the function of scalar Ay)'* 

field theory for a variety of cutoffs. Chapter 4 is another introductory chapter, this 

t ime concentrating on the problems concerned with constructing a gauge invariant 

regularisation scheme compatible with Wilsonian ideas, and some of the group theo-

retical background for the scheme introduced in chapter 5. The final chapter sets up 

the regularisation scheme utilising higher covariant derivatives and supersymmetric 

gauge groups and demonstrates that it does indeed render the desired theory finite. 



Chapter 2 

Exact renormalisation group 

2.1 Wilson^s renormalisation group 

The concepts tha t provide the basis of the exact renormalisation group were first 

formulated within the context of statistical field theory by Wilson and co-workers [1]. 

The problem of performing calculations concerning a lattice of spins is exacer-

bated when the system is undergoing a continuous phase transit ion since the (already 

large) number of degrees of freedom which are effectively interacting with one an-

other, diverges in this regime. A procedure for systematically reducing the degrees of 

freedom yet retaining the basic physics of the model is the concept of blocking, first 

introduced by Kadanoff [6]. 

This is the idea that in e.g. an array of spins such as a ferromagnet, spins could 

be grouped together into blocks and treated as if they were single spins with local 

interactions.^ Of course these 'new' interactions would not be exactly the same as 

in the original and on short scales the new system would differ markedly from the 

^But not necessarily just nearest neighbour interactions. 



old one. However they exhibit the same distance behaviour and it is only this 

behaviour tha t we are interested in describing. Since the number of degrees of freedom 

falls with this procedure, iteration reduces them to a manageable level. The payment 

for this is tha t the new system will in general be much more complicated than the 

original, containing as it does many new interactions. However, as we shall see in 

the context of c^uantum held theory, we can obtain How equations for the changes in 

coupling constants of the new interactions with the iteration of the procedure and 

thus extract much useful information from this. 

This thesis is concerned with the exact RG^ which takes these ideas and applies them 

to quantum held theories directly in the continuum and as such, we will no longer refer 

to statistical mechanics examples. As we shall see there are a number of different (but 

equivalent) flow ec^uations that can be deri \ed using the exact RG approach. The 

work in this chapter is based upon tha t of unless otherwise specified. 

2.2 Wilson/Polchinski flow equation 

The part i t ion funct ion for a single scalar field y? in D Euclidean spacetime dimensions 

is given by^ 

exp{ — — ( 2 . 1 ) 

with the propagator denoted by A, the (bare) interactions contained within and 

we have included a source J for the field. An effective ultra-violet cutoff is introduced 

via a modihcat ion of the propagator 

9^ 

-Also referred to as the continuum RG. 
^The following shorthand is employed a 6 c = / ^ a ( r ) 6(i, ?/) c(y), 

d • e = fd^x d(x) e(x') 



is an as yet unspecified function of its argument (the argument has to be 

from Lorentz invariance and dimensions) with the properties C(/y(0) = 1 and 

-4^ 0 sufficiently fast as g —> oo. In a similar fashion, we define an IR modified 

propagator = C/A(g^/A^)/9^ (with C[/y(p^/A^) + CfR(p^/A^) = 1). Figure 2.1 

shows the properties of these cutoff functions. 

0 

A 

^ /""" Cm(pVA') 

1 : 
A P 

Figure 2.1: Sketch of the properties of the cutoff functions 

Although it is not immediately obvious, we are able to rewrite (2.1) (up to an unin-

teresting constant of proportionality which we drop) as 

= y e x p { - i 1 

(y> + V:<)}, (2.3) 

The equivalence of (2.3) to (2.1) is evident once the substi tutions 

— f o l l o w e d by + (2.4) 

are made in (2.3). This leaves (2.3) in the form 

= e x p { - | y . A - ^ . y - ^ y ' . ( A ^ | / + A y ^ ) - y ' - g X ; , ^ M + J . y } , (2.5) 

at which point the Gaussian integral over y;' can be performed, resulting in (2.1) (up 

6 



to the aforementioned constant of proportionality). 

From the manner in which it propagates, the (v<) can be interpreted as the 

m o m e n t u m modes higher (lower) than A, with the modes lower (higher) than A 

damped. If the integral over the higher modes is isolated in (2.3), it can be expressed 

as 

exp{-lY?< ' ' y < } ^ A [ y < , J"], (2.6) 

where J ] is defined as 

= y e x p { —^ + ' f<] + "/ ' (Ŷ > + y<)}- (2.7) 

However, J ] does not depend upon and J separately but rather on the 

sum - J + y'<. Upon the substi tution = y — (2.7) becomes 

ZA[(/^<, J ] = e x p { - | y < . A } ; ^ . y , < } ^ D y e x p { - | y A } ] ^ . y - ^ X I ' [ y ] + Y:,.(J + A}^.y'<)} 

(2 .8) 

We proceed by integrating over the y variable to obtain 

^A[<^<, J ] = e x p { - | y < - A]:^ - x 

X exp{-5'%||'^[^]} e x p { ^ ( J + A ; ^ - y < ) - Af;% - ( y + A ; ^ - Y?<)} 

— e x p { | J • A m • J + J • 9?<} e x p { — | ( J + A j ^ • (^<) • A m • ( J + A j ^ - y < ) } x 

X exp{-6'X|,^[;^]} e x p { ^ ( J + A ; ^ - y < ) - A;;% - ( J + A]:]^ - y<)} . (2.9) 

When the derivatives in are performed, they are replaced by either AjR-

or by Af;t , a fact which can be expressed as 

^a[v<i J ] = e x p { | J • A i r - J + J - — SaIAih • J + </'<]}, (2.10) 

for some functional 6'A. conArming the s ta tement given below (2.7). We refer to 5'A 



as the Wilsonian effective action. 

The exact RG flow equations follow from the observation tha t (2.T) carries its de-

pendence upon A entirely in the term. Consequently, when is 

differentiated with respect to A, the How equation for is found to be 

J | = ZAb< . J ] . (2.11) 

By explicitly performing these functional derivatives using (2.10), Polchinski's version 

of the Wilson flow equation' ' is obtained® (we shall refer to it as the Wilson/Polchinski 

flow equation): 

= 2 l A ' ^ ' ] A -

Furthermore, with the momentum expanded action given by 

6 ( p i , . . . , p , ; A) = 

we can obtain the m o m e n t u m expanded Wilson/Polchinski flow equation which will 

be extensively used in chapter 3: 

A 5 ' ( p , , . . . , p ^ ; A ) = ^ ^ ( - P i , A ; A ) A A ( f i ) ^ ( P i , / 2 ; A ) 

^ (2.14) 

where / i and /2 are disjoint subsets of external momenta such tha t A ^2 = 0 &nd 

/ i U = { p i , . . . , Pn}. and we define A'A(p) = ^A(yy(p^ /A^) . The sum over { / i , Jg} 

utilises the Bose symmetry so pairs are counted only once i.e. 

•^Wilson's version is recovered from that of Polchinski via the substitution 7i — —S and the 
change of variables y —> 

""Ti- stands for a spacetime trace i.e. Tr(a • h) = Jd'^x fd^y a[x, y) b{y, x). 



The momen tum P i is defined to be P i = ICp.c/iP,- The equation can be represented 

graphically as in figure 2.2, which manifestly displays how the Wilson/Polchinski flow 

equation is composed of a tree structure contribution and a one-particle irreducible 

( IPI ) part . 

= E 

; h 

\ / 
/ \ 

; h 

Figure 2.2: Graphical representation of the momentum expanded Wilson/Polchinski 
flow equation. Crosses denote differentiation with respect to A. 

2.3 Legendre flow equation 

We need not consider a Wilson inspired RG flow equation only for the action. A flow 

equation for the Legendre effective action may also be constructed which has many 

additional beneficial properties. We start by observing tha t the cutoff A can also 

be regarded as an infrared cutoff for the modes that have already been integrated 

out. This can most easily be seen in (2.7) which we can reinterpret as the partition 

function of an infrared cutoff theory with regarded as an external held. 

We start by introducing the Wilsonian generating functional for connected Green's 

functions = I n < , < / ] - Furthermore, with the classical field defined 

via we can construct the interaction par t of the Legendre 

effective action: 

> Y<, • A -1 
IR 

- y < ) + = - iVA[y<, J ] + J - (2.15) 



Using (2.11) we obtain the Sow equation for 

= " H ^ ^ ^ I • 

(2 .16) 

where T r again denotes a spacetime trace. From (2.15) we caa derive the relation 

which, after exploiting (2.15) once more, results in the following How equation for the 

effective action: 

A ' " ^ " 1 = I ^ 

This equation is most usefully expressed when we separate oE the uninteresting vac-

u u m energy by splitting the two-point function into its Aeld dependent and held 

independent (effective self energy) parts; 

X2p 

+ 2:^!,. (2.19) 

This leads to the equation we shall refer to aa the Legendre Eow equation: 

In the work contained in chapter 3, the most useful form of this expression is in terms 

of a flow equation for the I P I vertices 

^ - r ( P l , . . . : P n ; A ) = ^ (2.21) 
gA ' - - r - / y(27r)4[g2 + C'^^(g2/^2)2(g.y^)]^ 

10 



where 

P i . . . . , p^; A) = - ; ^ r ( q , - q , P i , . . . , p^; A) 

+ ^ r ( q , - q - P i , A ; A ) G ( | q + P i | ; A ) r ( q - P 2 , - q , / 2 ; A ) 
{A./z} 

- ^ r ( q , - q - P i , A ; A ) G ' ( | q + P i | ; A ) x 
{A.;2}J3 

r ( q + P i , —q + Po, I3] A)G( |q — P2I: A ) r ( q — P2, —q, I2', A) 

( 2 . 2 2 ) 

Similarly to before, P , = Z p e/, P; ^ disjoint subsets 

/; n / ; = 0 (Vz,_;') with UI l iA = { P i , ' " , P n } . Again, the symmetrization { / i , / 2} 

means this pair is counted only once. G(p; A) is dehned by 

" P^ + C ,b (pv! 'V)S(P ;A) 

where S is again the (held independent) self energy. 

All the equations following (2.20) apply to smooth cutoE prohles only, as care needs 

to be taken with regard to sharp cutoffs. If we denote the width over which the cutoff 

effectively varies as 2e, z.e. C[/y(g^/A^) 1 for g < A — e and C[/y(g^/A^) % 0 for 

g > A + E, we can investigate the effect of letting e —> 0. First we need to establish 

the following lemma; 

' A 
aA 

(^ /^(p ' /A")^ /(C'/A(p^/A^),A)—^(^(A — p ) ( Z ^ / ( ^ , p ) asc—>^0, (2.24) 

in which we require /((?/;%, A) to be a function whose dependence upon A is continuous 

at A = p aa e — 0 . The proof of (2.24) lies with the identity 

= -(^~C,R(pyA')'j nC,n(p'/A'),A). (2.25) 

11 



We now note tha t t he integral on the left hand side (LHS) is a representat ion of a 

(smoothed) s tep funct ion of height / ( f , Ai). On taking the limit e — 0 , the LHS 

of (2.2o) becomes the right hand side (RHS) of (2.24). Thus we find, for example 

- - P), 

^ —P), Gtc., 

in the sharp cutoff l imit . 

T h u s re turn ing to (2.20) we now have the ma themat i ca l tools to allow the cutoff to 

become sharp. We find 

^ r ( p . . . . . , P,.: A) = p . , . . , , p , ; A). (2^27) 

where E ( q , p i , . . . , A) is as given in (2.22) except now (^(p; A) is defined by 

= + 2 ( p ; A ) ' 

2.4 Renormalisability 

Perhaps the greatest success to da te of the Wilsonian approach has been the elegance 

with which the issue of renormalisabil i ty is addressed. T h e s tandard cumbersome 

and complicated m e t h o d involving skeleton expansions is replaced by a much more 

physically intui t ive a rgumen t . As ment ioned in chapter 1, it is now a question of 

whether the theory re ta ins any predict ive power with an infinite number of couplings. 

One manne r in which this could be demons t ra ted is via the in t roduct ion of an overall 

cutoff Ao, and to check the Ao —̂  oo limit exists. However, the exact RG does not 

require such artificial construct ions and allows us to deal directly in the cont inuum 

using renormalised quant i t ies , an approach which we will follow here. In this section 

12 



we will use only dimensionless quantities constructed from the dimensionful ones using 

appropriate powers of y\.. 

A Axed point of the flow of the action^ in the space of all possible (z'.e. an infinite 

number of) interactions, 6'*, is defined by 

A — = 0. (2.29) 

Since the How equation is writ ten in terms of dimensionless quantities, the indepen-

dence of A exhibited by 5"* means tha t the action at the fixed point must have no 

scale dependence at all. Since a massive theory has a mass to set a scale and a non-

continuum theory has an upper cutoff to perform the same role, we conclude that the 

physics of massless continuum theories must be described entirely by fixed points. 

Near a fixed point, we introduce new couplings 

?7. = 5̂ , - a'Z, (2.30) 

where is the value of the coupling at the fixed point. We can then approximate 

the Sow of these couplings as 

where we have neglected contributions of 0(?y^) and higher, and Yjj is a matr ix of 

constants. The eigenvalues and eigenvectors of F are defined by 

^ = - A t (no sum on A;). (2.32) 

^These arguments also be extended to the case of the Legendre flow equation. 

13 



The couplings can be expanded in terms of these eigenvectors 

= (2.33) 
k 

and (2.31) requires tha t the A-dependent coefBcients satisfy 

dcxil yV) 
A — — = —A,a,(^\^) ( n o s u m o n * ) , (2.34) 

where again we have neglected terms of 0(a:^). This implies tha t to linear order, we 

have 

(2.3o) 

for some arbitrar}' mass scale Thus near a hxed point a coupling can Sow away from 

the fixed point \a lue or towards it depending on whether A, is positive or negative.' 

The (or ^,) for which A, > 0 are referred to as couplings and those where 

A; < 0 are known as MTefei;an(. In the vicinity of the fixed point we can also write 

(to linear order) 

= 5" + ^ o : ' ( ^ ) (2.36) 

which defines the scaling operators O,. 

This formalism allows us to tackle the slightly less straight forward situation of mas-

sive theories. In the (infinite dimensional) space of actions through which RG tra-

jectories Sow, we are able to define the critical manifold. This manifold contains 

all the actions that will yield a massless continuum limit. The critical manifold is 

spanned by the infinite number of irrelevant operators with other directions spanned 

by (typically only one) relevant operators. 

After parameterising the bare action, we are able to move slightly off the critical 

' If \ i = 0 the behaviour has to be followed to second order where the power law dependency 
is replaced by logarithmic evolution. In the following discussion these so-called marginal couplings 
will not be explicitly considered. 

14 



'Infinitely massive' 
fixed point 

Renormalised 
trajectory 

Critical manifold 

Figure 2.3: Procedure for tuning to the massive continuum limit 

manifold (see figure 2.3). Initially the RG flow will still move towards the fixed point. 

However as the fixed point is approached, the Sow will shoot off along one of the 

relevant directions to reach a fixed point that describes an infinitely massive theory. 

The continuum limit of a (finite) massive theory can be extracted by the following 

procedure. With the bare action being tuned back towards the critical manifold, 

physical quantities are re-expressed in terms of renormalised ones accounting for the 

diverging correlation length. When it reaches the critical manifold, the RG trajectory 

splits into a part going into the fixed point and a par t t h a t leaves the fixed point in 

the relevant directions. This is known as a renormalised t ra jectory and the actions 

that lie upon it are referred to as 'perfect actions'. The end of this pa th has a finite 

limit when expressed in renormalised quantities. This t ra jec tory is determined by 

or 
j=i 

{relevant} 

(2.37) 

( the sum over j is restricted to the n relevant directions). 

Thus given the boundary condition (2.37) and the RG flow equation, the continuum 
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limit is fully specified 

6 'A[y]z5 'A[y] (a ! \ . . . , o : " ) . (2.38) 

The next step is to define the renormalised couplings choose the renormal-

isation conditions such that 

(2.39) 

as A —̂  oo to be consistent with the form of But these relations can also be 

inverted i.e. 

(240) 

and subst i tu t ing into (2.38) returns the continuum action in terms of the renormalised 

field (Y?) the relevant renormalised couplings (^^ to gr") and the anomalous dimension^ 

(?): 

5'A[y] = S A M ( ^ X A ) , . . . , a l A ) , ^ ( A ) ) , (2.41) 

and n is finite. This is an equivalent s tatement to renormalisability since only a finite 

number of finite quantities need be considered in describing the theory. 

2.5 function 

An impor tan t concept in the field of QFTs is that of ^ functions. This contains 

information on how the renormalised couplings^ (^,) vary according to scale and is 

defined as: 

A := (2.42) 

®The anomalous dimension (7) is obtained from the wavefunction renornaalisation (Z) via 7 = 
A ^ Z . The wavefunction renormalisation factor is introduced to ensure the coefficient of the kinetic 
term is i . 

^f.e. we restrict ourselves to the relevant directions. 

16 



In the next chapter we will make extensive use of the function for scalar field 

theory. It will prove useful to include wavefunction renormalisation separately within 

these calculations so there we choose to redefine it as 

where Z is the wa\ efunction renormalisation. An important property displayed by the 

function is that the first two orders in the per turbat ive expansion are universal, ;.e. 

they are independent of renormalisation scheme. We write the per turbat ive expansion 

as 

,0(A) = + / 3 i A ^ + • • • • ( 2 . 4 4 ) 

If we have another renormalisation scheme with different coupling we can define 

a function for this scheme cis well: 

-j- - - -. (2-45) 

The couplings in the two schemes must be related 

A' = A + aiA^ + . . . , (2.46) 

which can be re-written as 

A = A ' — cixX'"^ . ( 2 . 4 / ) 

If we operate with upon (2.47) and use the definition of (2.42) we find 

/?oA^ + ,i3iA'^ + • • • = I3'q\' ^ + j3[\' ^ — 2ai\'{P'qX' ^ + / 3 ( A ' ^ ) + • • • , ( 2 . 4 8 ) 

and expressing A' as a function of A on the RHS of (2.48) shows tha t 

,̂ oA^ + /3iA^ + - - = /̂ gA^ /)jA^ + - - - , (2.49) 
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from which we can see that , as promised, and The /) function for 

massless Ay'* theory in four dimensions can be calculated using s tandard perturbation 

theory [14] to be 

= ̂ (4^ " T ( 4 ^ + 

2.6 Approximations 

The complexity of the How equations has prevented the formulation of general solu-

tions. This has resulted in a number of approximation techniques being developed 

and investigated. In this section two of the most widely used methods are discussed. 

2.6.1 Truncat ion 

The most obvious method of approximation that can be employed is to t runcate the 

number of operators tha t appear in the effective action 5"/̂ . We can then construct a 

number of How equations for the coefhcients of these operators by equating the terms 

on the two sides of the original How equation (2.12) [or (2.20)]. The approximation 

lies in neglecting terms from the RHS of the equation which are not members of the 

chosen set of operators. 

The main problem with using such an approximation scheme is its restricted area of 

applicability. Since this approach corresponds to a truncation in the powers of the 

Held about a selected point , sensible answers can only be obtained if the Held y does 

not Huctuate much. This amounts to stating that y is always close to the mean Held, 

a regime in which weak coupling theory is valid anyhow. In non-perturbative settings 

it is found that the expansion fails to converge and spurious Hxed points are also 

generated [10]. 
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2.6.2 De r iva t i ve /momen tum scale expansion 

Within statistical mechanics a successfully applied approximation has been trunca-

tions in real space spin systems. The analogue in Q F T is to perform a short distance 

expansion of the effective action. If the cutoff utilised has a smooth profile, this 

corresponds to a derivative expansion 

+ + (2.51) 

Such an expansion seems a particularly natural one, amounting to an expansion in 

external momen ta around p — 0. If the higher derivative terms are not 'small ' the 

expansion will fail, but this is probably also an indication that the description of 

the theory in terms of the Aeld content is not appropriate and that other degrees of 

freedom need to be considered. 

When a sharp cutoff is imposed, care needs to be taken when taking a short distance 

expansion. Due to the non-analyticity that is introduced, we are no longer able to 

expand in powers of momentum. The solutions to the flow equation (2.27) depend 

upon the angles between the pi even when any p, — 0 ; i.e. the solutions are not 

analytic in this regime. This behaviour is displayed by terms such as ^ ( |p + q | — A) ^ 

0(q.p) for p << A since |q| = A, which could appear in the second term of (2.22). 

As a consequence, expansions have to be made in momen tum scale |p | . 

It is evident that if a sharp cutoff (%.e. C(yy(p^/A^) = ^(A — p)) is employed then 

the m o m e n t u m scale expansion of the Wilson/Pol chinski equation runs into addi-

tional problems. The expansion corresponds to expanding 6'^ in the scale of external 

momenta , regarding this as small compared to A. The differentiation of the inter-

nal propagator of the tree te rm of (2.14) (c./. figure 2.2) results in a delta function 

restricting m o m e n t u m flow to be A. However momentum conservation requires the 

flow should be of order the external momenta which is typically much lower. Conse-
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quently, the tree term of the Wilson/Polchinski equation gets discarded along with 

loop diagrams with more than one vertex (since these arise from the substitution of 

the tree parts of 5'A into the second term of the equation). Since this is such a great 

mutilation of the theory we apply the such an expansion only to the IPI parts of the 

action, /.e. only to the Legendre How equation. 

The momentum scale expansion can be incorporated via the introduction of a param-

eter, which can be set equal to one at a later time. The IPI vertices of (2.22) are 

expanded in terms of homogeneous functions of non-negative integer degree 

r ( p i , . . . , P n ; A ) = ^ r ( ' " ) ( p i , . . . , p ^ ; A ) (2.52) 
771=0 

where we deAne . . . , p^; A) via 

r ( " ) ( / , p i , . . . , p p , ; A) = r ( " ) ( p i , . . . , p . ; A) (2.0-3) 

Other external momentum dependence in the Sow equation can also be expanded in 

integer degree homogeneous functions. 

The approximation lies in restricting these sums over an infinite number of terms to 

some designated order. If the derivative/momentum scale expansion is truncated at 

0(p°) , we obtain the well established local potential approximation which has proved 

to be both reliable and accurate [15]. 

Of the approximation methods mentioned the most promising appears the deriva-

t ive /momentum scale expansion and this is the one which we will investigate in the 

following chapter. 
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Chapter 3 

Convergence of derivative 

expansion 

As discussed in section 2.6, the difficulty in dealing with the functional differential 

equation tha t expresses the exact RG Sow usually results in one of a variety of an-

alytic non-perturbat ive approximation methods being employed. Of the methods 

available, the derivative expansion (or momentum scale expansion if a sharp cutoff is 

utilised) appears the most promising. However, the question tha t must be addressed 

when using this approximation scheme is whether the expansion converges and, if so, 

whether it converges to the correct answer. 

Obviously it is an extremely challenging task to settle this issue non-perturbatively 

and in all generality. It must be stressed tha t this is not a controlled expansion in 

some small parameter . Rather , the approximation we make in using the derivative 

expansion lies in neglecting powers of (p^/A^) where p is some typical momentum of 

the system and A the effective cutoff. Consideration of the flow equations (2.12) and 

(2.20) leads to the conclusion that the typical momentum tha t contribute are of order 

the effective cutoff, e. p A. Hence the issue is a numerical one. 
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In this chapter we investigate some aspects of the applicabili ty of the derivative 

expansion in the weak coupling regime of massless scalar theory^ in four Euclidean 

spacet ime dimensions. The derivative expanded funct ion at one- and two-loop order 

is calculated and convergence (or otherwise) is shown for a variety of different cutofF 

funct ions and flow equat ions [16, 17]. 

3.1 Wilson/Polchinski How equation 

We s tar t f rom the expanded Wilson/Polchinski flow equat ion (2.14) 

A 5 ' ( p , , . . . , p ^ : A ) = ^ 6 ' ( - P i , A : . ' Y ) A ' A ( f i ) 5 ' ( P i , / 2 ; A ) 

/ ^ ^ : ; ^ ^ ^ A ( g ) ^ ( q , - q , P i , . . . , P n ; A ) , (3.1) 

utilising the same nota t ion as before. We impose the renormalisat ion condition 

6 ' (0 ,0 ,0 ,0 ;A) = A. (3.2) 

If the four-point vertex is considered exactly (z.e. wi thout a derivative expansion or 

similar approximat ion) , the exact one-loop /) funct ion can be obtained. The sole 

contr ibut ion to the flow equat ion at this order comes f rom the tree-level six-point 

funct ion tha t has two of its legs joined together to give figure 3.1. 

T h e tree-level six-point funct ion is found by set t ing n = 6 in (3.1) and subst i tut ing 

6 ' ( p i , p 2 , p 3 , p 4 ) = A (f.e. to lowest order) in the tree-level par t of the RHS: 

.2 '$'(Pl, P2, P3, P4, Po, P6; A) = - A / c(Ai 
VA 

6 

^ (pi + P2 + Pi) 
2 = 3 

\v i th y —y symmetry 
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Figure 3.1: Feynman diagram contributing to the four-point function at one loop, 
constructed from the tree-level six-point function with two legs joined 

6 6 

+ H (pi + P3 + Pj) + ^ (pi + m + Pt) + (Pi + Ps + Pe) 
j-4 A;=5 

. (3.3) 

Note tha t because the integral over Ai is UV convergent we can proceed directly to 

the cont inuum without introducing an overall cutoff. This is a reflection of the ability 

of the exact RG to deal directly in the continuum using renormalised quantities aa 

we will see later. Subst i tut ing (3.3) into the quantum correction part of (3.1) for the 

flow of the four-point vertex (z.e. fix » = 4), we set all external momenta to zero and 

obtain 

8A 
A 1 / \ 

2/(27r) '* 
6A / (/Ai/irA^(g) 

3A 
(2^r 

6A^ 1 

(47r)^ A Vo 

3A^ 1 

(47r)^ A 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

where the t e rm in the square bracket of (3.4) is the six-point contribution of (3.3), and 

the prime in (3.6) means differentiation with respect to the argument of the function. 

Using the definition for the function (2.43), we And that 

/)(A) 
3 

(4 TT 
(3.8) 
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the expected result at this order [c./. (2.50)]. 

Although we ha\ e seen that no approximation is required at this stage, we are inves-

tigating the consequences of using a derivative expansion. As such, we expand the 

six-point function in terms of its external momentum. In effect, A;R(g^/A^) of (3.5) 

is expanded in g-. and so, recalling that C/R = 1 — C[/y, we find that (3.6) is replaced 

bv 

,3.9) 

with the n- th derivative with respect to z denoted by C ^ ( z ) . If one naively allows 

the cutoff to be sharp, z.e. = ^(1 — z) , we see immediately tha t this converges to 

the wrong answer. Since, C[^'(0) = 0 for all ?? > 1, (3.9) will yield a zero function 

at this order. However, as discussed earlier, the sharp cutoff should not be applied 

to the Wilson/Polchinski flow equation, so for the remainder of this section, we shall 

only consider smooth cutoffs. 

If we impose a power law cutoff, then there is a finite value of n larger than which 

the integrals in (3.9) diverge. Choosing a cutoff which falls faster than a power 

is also not sufficient to obtain a convergent series. Consider a cutoff of the form 

C(/y(g^/A^) = exp(—g^/A^). The function is found to be 

c \ 2 CO 

Clearly this is an oscillating series that fails to converge. 

However convergence can be found with certain UV cutoff profiles if the chosen func-

tion falls fast enough as z — o o . Two such examples are 

C[/y(a;) = exp(l—e"^), (3.11) 

C(y;^(z) = exp[e —exp(e^)]. (3.12) 
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We can (numerically) calculate the one-loop function for these cutoffs using (3.9). 

From the first choice of cutoff (3.11) we find 

J = 
3A^ 

(47r): 
(1.193 + 0 - 0.194 - 0.060 + 0.032 + - - ) . 

(The second term in this series vanishes since ^ exp( l — e"̂ ) 
x=0 

0.1 

(3.13) 

3.6 

X 

3.4 1 

3.2-1 

2 .8 
10 20 30 

Number of terms in expansion 
40 

Figure 3.2: Graph of part ial sum contribution to /)o coefScient against number of 
terms in expansion for the series (3.13) 

If we calculate the part ial sum contribution to the coefEcient [c./. (2.44)] at each 

order of the expansion in (3.13), we obtain the graph contained in figure 3.2. With 

the second choice of cutoff function (3.12), the following expansion is obtained for 

the one-loop .3 function, with the graph of the part ial sums of the series displayed in 

figure 3.3: 

3 = 
3 A 

(1.278 - 0.164 - 0.130 - 0.014 -t- 0.019 4- - - -) . ( 3.14) 

In both these cases convergence towards the correct value of the one-loop func-

tion is manifest . Although such convergence is encouraging, we now leave the Wil-



X 

10 20 30 40 
Number of terms in expansion 

Figure 3.3: Graph of part ial sum contribution to coefhcient against number of 
terms in expansion for the series (3.14) 

son/Polchinski How equation to concentrate on the rather more promising Legendre 

flow equation. This has inherently be t te r convergence properties, not least because 

as we are dealing with I P I functions, hence there are no tree-level corrections and 

so a numerical series arising from a derivative expansion cannot arise until at least 

two-loop order. 

3.2 Legendre How equation at one loop 

The m o m e n t u m expanded Legendre Aow equation was given in (2.27), (2.22) and 

(2.28) for sharp cutoff or (2.21), (2.22) and (2.23) if the cutolf profile is smooth. 

Irrespective of whether the cutoff is sharp or smooth, the How of the four-point 

function at one-loop is given by 

^ r ( p i . p 2 , p 3 , P 4 ; A ) = y ^ ^ f r A ( g ) X 
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X ^ r(q, —q — P i , / i ; A)A//^(|q + P i | ) r ( q — P2, —q,/2; A), (3.15) 

Imposing the renormalisation condition (c./. condition (3.2)) 

r ( 0 , 0 , 0 , 0 ; A ) = A , (3.16) 

and substituting the tree-level value of the four-point IP I vertex ( r ( p i , pg, p^, p^; A) = 

A) in the RHS of (3.13), the function is found to be 

/3(A) = - a X ' A 

A\2 
' a-c;;,(.T)C/B(a;) (3.1?: 

(47r)^ Vo 

(4 7r)2 

Note that no derivative expansion has been (or indeed can be) performed. Unlike the 

previous situation with the Wilson/Polchinski equation, there is nothing to expand 

in. At one-loop, the Wilson/Polchinski equation had the external momentum of the 

tree-level six-point function in which to expand; in the case of the Legendre Eow 

equation the property of being IPI means that the only object is that of figure 3.1 

which (within the calculation of the /3 function) has no external momentum. Hence 

the exact one-loop function is obtained irrespective of the exact form of cutoff 

function. 

3.3 Legendre How equation at two loops 

To iterate the How equation to two-loop order, care must be taken in using renor-

malised quantities. The four-point function is split into two parts, momentum free 
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[A(A)] and m o m e n t u m dependent [ '7(pi;P2.P3,P4;A)] [18]: 

r ( p i , P 2 , P 3 , P 4 ; A ) = A(A) + j ( p i , p 2 , P 3 , P 4 : A ) , (3.18) 

where '^(0,0,0,0; A) = 0. (3.19) 

It is ' 'y(pi ,p2,p3.p4; A) which must be iterated as the momen tum dependent four-

point function. 

The three topological variants allowed for two-loop diagrams with four external legs 

are shown in figure 3.4. Actually only topologies (6) and (c) contribute to the 

function. Upon setting external momenta to zero, (3.19) ensures that the iterand of 

diagram (a) vanishes. In fact diagram (a) is already incorporated in the one-loop 

running A(A) since renormalised quantities are being calculated directly. If this cal-

culation was to be performed in the more traditional manner using bare parameters, 

topology (a) would only contribute a divergent part which would be removed upon 

renormalisation. 

(a) \ ^ (6) / (c) 

Figure 3.4: Feynman diagrams contributing to four-point function at two loops. 

Topology (b) of figure 3.4 can be formed in the Eow equation in one of two ways: by 

joining two legs from different vertices of the one-loop six-point I P I function (shown 

in figure 3.5 (a)), or by at taching two legs from different vertices of the one-loop four-

point function to the tree-level vertex. Topology (c) can also be formed two ways: 

from the one-loop six-point I P I function by joining two legs from the same vertex, 

or by inserting the one-loop correction to the propagator (shown in figure 3.5 (b)) 
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into the one-loop four-point function. As we shall see in the next section, the two 

contributions to the function of the form of topology 3.4 (c) cancel one another, 

irrespective of the exact form of the cutoff profile employed. 

(6) 

Figure 3.-5: Diagrams used in forming two loop four-point functions 

At this order of the function, wavefunction renormalisation also needs to be taken 

into account: 

" " 

where Z is the wavefunction renormalisation and up until now use has been made of 

the fact tha t Z(A) = 1-1- At two-loop order its contribution to the function 

arises f rom the diagram of figure 3.6. 

Figure 3.6: Feynman diagram contributing to wave function renormalization at two 
loops. 
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3.4 Cancellation of self energy diagrams 

We shall now demonstra te that the diagrams of the form of figure 3.4 (c) do not 

contribute to the J function irrespective of the specific shape of the cutoff. We will 

start by looking at a general smooth cutoff and then consider the special case of the 

sharp cutoff. 

The self energy correction to the propagator is obtained directly from the 8ow equa-

tion. To 0 ( A j it is: 

— 2 ( p ; A ) = - g ( 3 . 2 1 ) 

Integrating up (3,21) we must not introduce a mass scale as we are dealing with a 

massless theory. Consequently, the uniquely determined self energy has to be 

V'/TT A") — ^ ^ 
2̂7r 

(p;A) - - - / — ^ A [ / y ( g /A-) . (3.22) 

For example if an exponential cutoff, C(yy(g^/A^) - is utilised, the self energy 

is — w h i l e a power law cutoff such as C[/y(g^/y\.^) = (1 4- (g^/A^)^)"^ gives 

rise to a self energy of — The general contribution to the flow of A by the 

insertion of the self energy correction into the one-loop four-point function is found 

to be 

- S A A ^ y ^ — ^ A ; ; ^ ( g ^ / A ^ ) A(;y(g^/A^) j E(9;A) (3.23) 
0(A) 

with the numerical factor 9 in (3.23) arising f rom various combinatorics. Since there 

are disjoint integrals over p and q, it is evident that no derivative expansion is possible. 
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The Aow of the one-loop six-point IP I function is 

^ r ( p i , p 2 . p 3 , P 4 , P 5 , P 6 ; A ) = X 

3 6 6 6 

x Z ! ^ ^ / A ( q + P, + P ; ) Z ! Z i ^ / B ( q - P t - P f ) . 
i=l j=i+l k=i+l l=j+l 

This provides contributions to the function of both topology (b) and (c) of figure 

3.4. Extracting just the part relating to topology (c) we find that its contribution to 

the function is: 

Combining (3.24) and (3.27), the total input to the function from figure 3.4 (c) is 

= 0 (3.30) 

The situation with regard to the sharp cutoE is very similar, with the self energy 

( 3 . 2 2 ) replaced by 

The different form of the flow equation for sharp cutoEs means that the part of the 

/) function arising from self energy insertion is 

3 (^(g —A)^(g —A) ^(p —A) 3 ^ 

gG y(27r)4 p2 - (4 
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The /) function contribution of the topology of hgure 3.4 coming from the six-point 

function is 

- 2 ' " I v i i Y — f - ] , — / — = 

where we use the fact that here^ 0^(0) = 1/3. Obviously (3.32) and (3.33) combine 

to provide the desired cancellation. 

3.5 Sharp cutoff 

We use the momentum expanded Legendre How equation for a sharp cutoff contained 

in (2.27), (2.22) and (2.28). The momentum dependent part of the four-point function 

at one loop is calculated to be 

7(Pi ,P2 .P3:P4; A) 

f ( / ' ' g ( ^ ( g - A i ) A ( ' ^ ( | q 4 - ? i | - A i ) 0 ( g - A i ) 

i - r A + • - ) / , + 2 , 3 + •'Tl I 9 \ 9 \ 
A ^ ^ r i p , 1 / p , \ 3 3 / p . \ 5 

(3.35) 

4 ^ 5 ^ 6 X + 7 M l x j + m O O + " K 
:=2 

where T̂ i = Pi + p, and x = V\ • c^/Viq. Note that it is the subtraction in (3.34) 

of the part independent of external momentum that allows the upper limit of the Ai 

integral to be set as 00 as the integral is now convergent. In (3.34) the integral over 

Ai is performed by noting that ^(0) can be treated as being equal to ^ [c./. (2.26)]. 

After changing variables, the step function in (3.35) can be accounted for in the limits 

the integral ox^er z allowing the term in braces to be expanded in momentum-scale 

-See section 2.3. 
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= l^il [7, 12]. Alternatively the step function may be expanded directly [7] 

• (3.37) 

where is the (» — l ) t h derivative of with respect to x. The same result 

as (3.36) was calculated in ref. [7] but using bare parameters instead of renormalised 

ones as here. 

Dropping the terms related to the self energy diagram of figure 3.4 (c), we find the 

flow equation for A to O(A^) is 

9A A (47r) 2 

3 ^ / (/''g ( ^ ( g - A ) / cC'p ^(p - Ai) 

[27r)'̂  A J(27r)'^ 

+ q | — Ai) ^ 8 ^ ( | p + q | — Ai) ^(p — Ai) 

I |p + qM p^|p + q P 

8^(9 — A) / ^ ( | p + q | — Ai) ^(p — A i ) \ 

9^ \ |p + 
(3.38) 

The first two terms arise from the one-loop six-point I P I function (3.25) with legs 

joined so as to be of the form of figure 3.4 (b). The final line of (3.38) arises from 

iterating the one-loop four-point function of (3.36) through the flow equation. These 

contributions can be calculated using the momentum expansion; in this case the, 

embedded one-loop terms are expanded in g/p. For the first one we And: 

/" ( ^ ( 9 - A ) /- (^(p _ Ai) g^(|p + q | - Ai) 

y(2Tr)') V(27r)'^ p2 Ip + q]'* 

6A^ ^(g —A) 

4Ti-^V(27r)'' A p^ ^ 4 6 4 \ p y 

80 4 L j ^ 

33 



1 1 /TT 10 TT 63 TT 7035 

" ( 4 - ) " ATT V2 ^ 9 4 " 100 6 15680 
+ (3.39) 

This oscillating series converges, but only does so very slowly. The part ial sum 

contributions to the function from the series of (3.39) are displayed in figure 3.7. 

The average of successive partial sums is shown in figure 3.8 allowing an est imate of 

_g 
"u 

- 3 

-5h 

I -®o 

V WvW/MVAWVVWVVV 

20 40 60 80 
Number of terms in expansion 

Figure 3.7: Part ial sum contribution to function against number of terms in expan-
sion for the series (3.39) 

— 3 . 4 3 0 t o be m a d e for the convergence of (3.39). 

The next contribution in (3.38) provides a series which converges rapidly to a value 

of _ 5 . 1 3 7 6 4 ^ : 

12 A' 
/" (^(g - A) J ( p ^ A i ) 6 i ( | p + q | - A i ) 6 ' ( p - A i ) 

J (27r) 4 q2 y (27r)i p. 

6A /" (^(g — A) ITT 1 / 9 ) 1 / g 

47r^ V (2-)^ A p 

p^lp + q P 
3 

= — 1 2 " 
1 1 2 1 3 

(47r ) ' :A7r \2 9 -300 15680 

6 W y 240 8960 

+ 

+ 

(3.40) 
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Number of terms in expansion 

Figure 3.8: Average of successive partial sum contributions to function against 
number of terms in expansion for series (3.39) 

I terat ing the one-loop result of (3.36), the final part of (3.38) returns the previously 

published value^ 

<^(9- A) y A i ) % - A ) 

yf27r)'' 0̂  /A V(27r)'* ^̂2 X 

X 
| p 4 - q | - A i ) 6 ' ( f - A i ) ' 

|p + q|^ 
, 3 

p-

6A3 /- (f-'g ( ^ (g - A) I 1 1 / 9 ) , 3 / g \ , 

- ^ i (2^)4 ,4 A 7 e U J + S o i p j W + 

'-ir8+ ' 
(47r)'(A7r V 15 2800 

(3.41) 

which converges to 2 . 5 6 8 8 2 A s previously discussed, wavefunction renormali-

sation must be accounted for through 2(6 ; A)|o(t2) = ['Z^(A) — 1]A:̂  arising from figure 

3.6. 

k'jj^ZW 

^Calculated using bare parameters [7], 
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\2 / cf"*? - A) /- - Ai) g( |p + q + k | - Ai) 

„ ,2 A J {i^Y 

A'̂  r ct^q S{q-A) r ( q + k | 1 | q + k p 

A 247r3 y (27r)') 

1 1 / 1 1 3 

( W X ; 1 2 + 4 8 + 1 2 8 0 + 

120 A3 

|p + q + k|2 

1 |q + k | 

22400 AS 
+ 

0(A:') 

+ 
0(t2) 

(3.42) 

The second line of (3.42) is obtained using the expanded one-loop four-vertex of (3.36). 

The Anal line then follows upon the realisation tha t the net effect of expanding to 

second order in A; and then averaging over the angles is to convert |q -f- k | " into 

^n(n -f- 2)9""^/^^. We find tha t (3.42) converges to —0.16667^^^^4^. In figure 3.9 we 

display the par t ia l sum contributions to the funct ion f rom each of the series in 

(3.40), (3.41) and (3.42). 

ir 4 

0 

.2 
(J 
C 

o 

o 

^ - 2 

8 

3 m 

Series (3.40) 
Series (3.41) 
Series 3.42 

% -6 
CL I 10 20 30 

Number of terms in expansion 
40 

Figure 3.9: Par t ia l sum contributions to the /) funct ion against number of terms in 

the expansion of the series of (3.40), (3.41) and (3.42) 

Thus the m o m e n t u m expanded /) funct ion at two loops using a sharp cutoff is 

A2 
P{X) = 3 - + ^ 

^ (4-)2 (47r) ' ' ; r l 1 2 9 4 100 ' 6 15680 

63 TT 7035 + % - + 

36 



^ 9 9 300 15680 
+ + 

(3.43) 

which converges (albeit slowly) towards the exact expression (2.50). In figure 3.10 

we show the value of the coefhcient [c./. (2.44)] if we just consider the specified 

number of terms from each of the series. 

X 

-3.5 

-4.5 

-5.5 

-6.5 -

-7.5-

-8.5 
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Number of terms in expansion 

40 

Figure 3.10: Value of coefScient against number of terms in expansion 

3.6 Exponential cutoff 

The m o m e n t u m expanded Legendre Sow equation for smooth cutoffs is given in (2.21) 

and (2.23). Using an exponential cutoff Cuv = the renormalised four-point 
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function is given by'* 

7 (P i ,P2 ,P3 .P4 :A) 

( l -

(?2 

A, [\T, 

(3.46) 
2 (4- ) - (n + l ) ! n \ 2 A i ' 

The expression in (3.45) can be obtained from (3.44) either by expanding the expo-

nential of — Iq + 'Pij^/Ai^, performing the integration over m o m e n t u m space and then 

resumming, or b\' using 

^ ^ - / d o (3.47) 
Vo 

and interchanging the order of integration. 

Using the results of section 3.4 and dropping the self energy diagrams, the Sow of the 

coupling to O(A^) is 

^-A(A) ' 
<9A ' A (47r) 2 

2/A.2 
3A' f T r f A . f ' " * 

2 V (Svr)'* A V (2??)'̂  

4 ( l - e-lP+qP/A^y 8 ( l - ( l -

|p + q|'i p^lp + q p 

8 ( l - / ( l - e-IP+ql'/Ai'j _ g-p: 

9^ \ |p + 
(3.48) 

• În agreement with previous calculations using bare parameters [12]. 
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To perform these integrals, the inner (p) integral must be expanded in terms of the 

momentum external to it (i.e. g momentum). 

The first two contributions come from the IPI one-loop six-point diagram with two 

of its legs joined to give figure 3.4 (6). The first of these gives the convergent series 

^"3 

4 1 " ( - 1 ) ' 
E 1 

1 
+ 

1 
2^-2 gs-i 

, (3.49) 

(when expanded) which numerically sums to p^ | - (—2.45411725) . The second is 

+ "(5 

Using the fact that 

l n ( l + a ; ) = ^ 2̂  z" ( - l < a ; < l ) , 
71=1 

72 

we integrate to find 

(3.50) 

(3.51) 

(3.52) 

which is of the same form of the sums of (3.50). Hence (3.50) sums exactly to 

1 2 p ^ | - [ 9 In 3 — 2 In 2 — 5 In 5]. The final line of (3.48) comes from the i terated value 

of "/(pi, P2, P3, P4: A) of (3.46) and gives [12] 

- — 1 
(47r)'' A n (n + 1) 2" V 2"+^ / 

(3.53) 

Using (3.52), this sums to 6 ^ ^ ^ ^ [ 6 I n 3 + 41n2 — 5 l n 5 — 1]. 

As for the case of the sharp cutoff we need figure 3.6 at second order in external 
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m o m e n t u m to calculate wavefunction renormalisation. We have 

-A 
2 / ^ e 

OO 

/.Y ^ y (^Tr)'' \^c)Ai 

9n 

Using the binomial expansion 

- | p + q + k p / A i " 

|p + q + k|2 
0(t:z) 

(3.54) 

1 + a; n = 0 

(3.55) 

and sett ing a; = ^ enables the sum of (3.54) to be computed, and so 

<9A 
Z(A) 

1 1 

'6(47r)4A' 
(3.56) 

In figure 3.11 we display the partial sum contributions to the function against the 

number of terms in the expansion for the series coming f rom (3.49), (3.50), (3.53) and 

(3.54). The /) funct ion to two loops using an exponential cutoff is found by adding 

together these series (each of which are separately convergent): 

E M ) ' 
n = l 

1 
3 1 2 \ 2 V ^ n ( n + l ) l U V 2" 22"+i 

1 ! ^ / n + i y - l ) \ 

" + i 6 l ^ y ^ - 1 

1 
+ 

1 

— 3 
Â  A3 

(47r)^ (47r)'̂  
72 In 3 - 48 In 2 - 30 In 5 + 2.45411725 + 6 

2^-2 ' g j - l 

1 

3 
(3.57) 

which gives the expected form of (2.50). The quick convergence to the correct value 

of the coefficient is displayed in figure 3.12. 
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Figure 3.11: Part ial sum contributions to the funct ion against number of terms in 
the expansion of the series of (3.49), (3.50), (3.53) and (3.54) 
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Figure 3.12: Value of /3i coe&cient against number of terms in expansion 
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3.7 Power law cutoff 

The Anal form of cutoff under consideration is that of a power law, z.e. = 

1/(1 + where /c is a non-negative integer. For a derivative expansion 

of the (non-perCurbative) Sow equation (2.20), it would appear that if K is chosen 

such that K > D / 2 — 1 (with D the spacetime dimension) all momentum integrals 

will converge. However within the method we have utilised in this chapter, major 

problems arise. If we consider the integral pertaining to figure 3.4 (b) obtained by 

iterating the one-loop four-point function, we have 

AZ'.+sy ^[ l + (g/A)2«+2]3yA 

1 p2K 

[1 + (p/Ai)^''+^]^ 
1 -

1 + ( |q + p|/Ai)2' '+2 |q + p| 
:3.58) 

A derivative expansion requires an expansion in the external momentum of the one-

loop four-point function which translates as expanding the inner integral in powers 

of the momen tum g. This expansion can be performed to all orders. However, once 

the power is such that m > K + 1, the outer integral over g will cease to converge. 

Hence with a power law cutoff even the coefficients of the derivative expansion are 

infinite and hence such an expansion ceases to make sense. 

This problem arises purely because we are also working within a per turbat ion expan-

sion. As s ta ted earlier, non-perturbatively all integrals will converge if /c > D / 2 — 1. 

The improved behaviour here can be traced to the -t- (7/^2)""^ factor contained 

in (2.21) and (2.23). For small A, 2 at C)(^^'"), f rom figure 3.6. The extra 

powers of g in the denominator always stabilise the integral providing /c > D / 2 — 1, 

but clearly the integral will then diverge as A — 0 . 
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3.8 Operators of higher powers 

The results presented in this chapter can, to a certain extent , also address the issue 

of convergence for operators of higher momentum powers than the (zeroth order) 

function. Let us first consider the sharp cutoff of section 3.5. 

The n th te rm in the momentum scale expansion of an operator is given by 

that of the derivative-free operator (with the same number of fields) but with the g" 

in the expanded terms of (3.38) replaced by ^ with A; some external 

momentum. For large n this will yield a multiplier ~ Thus, if convergence 

is to occur for all operators, the coefRcients of the expansion must fall faster than 

a power of n. W'e saw that the series (3.39) barely managed to converge and the 

coefficients certainly did not fall faster than any power of n. Without the need for 

fur ther calculation, it is evident that the contribution of figure 3.4 (b) will have a 

momen tum scale expansion that ceases to converge at second or higher order in its 

external momenta . In particular, the 0(A;^'') r > 1 coefficients of 

/ (/""g ( ^ ( 9 - A ) /- cC'p ( ^ ( p - A i ) ^ ^ ( | p + q | - A i ) 

will not provide a convergent momentum scale expansion. 

The situation is much more promising with the smooth exponential cutoff of section 

3.6. The series (3.50), (3.53) and (3.54) all fall faster t han 1 / ^ " , with .R > 1 (z.e. 

faster than a power of n) . The equivalent of the troublesome diagram for the sharp 

cutoff is series (3.49) which can best be analysed by recasting the original integral 

[ d'l & {"-''"l r., r d'p ^ (i -
/ ( S T T ) - ' ' V ( 2 7 r ) 4 | p + q | 4 

A ^ ( 4 - ) ^ ; ^ y ( 2 7 r ) ' * A ^ Ain! l A i . 
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It is evident that the integral over a is bounded f rom above by (2/3)" and from 

below by zero. Together with the l / n ! factor, this provides a sufficiently fast rate of 

convergence. 

We can take this analysis fur ther by repeating that used with the sharp cutoff. For 

an operator, the power of of the expanded terms of (3.48). is replaced by 

(with A; again being some external momentum) . With the coefficients 

going like 1/n! or bet ter , the g integral will not completely cancel, leaving a re-

mainder ^ 1/n^'' for large n. Hence we see that the derivative expansions of higher 

derivative operators will converge. 

3.9 Summary and conclusions 

In summary, the derivative expansion for the funct ion was calculated at one-loop 

order for the Wilson/Polchinski flow equation and was found to converge for certain 

fast falling proxies. The equivalent for the Legendre flow equation trivially converged 

as no expansion was possible. Wi th a sharp cutoff used within the Legendre dow 

equation, slow convergence was found for the two-loop funct ion and it was demon-

strated tha t higher m o m e n t u m operators have divergent m o m e n t u m scale expansions. 

While a power law cutoff proved not to provide meaningful results, the most promis-

ing profile was an exponential which, when used in the Legendre Aow equation, has 

rapid convergence of the derivative expansion of the function and higher momentum 

operators. The properties exhibited by the exponential cutoE has resulted in it being 

favoured by many authors [9, 19]. 

The technique of approximation using derivative expansions within exact RG flow 

equations has been shown to be applicable in the calculation of per turbat ive quanti-
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ties. However, it has been demonstrated that scalar field theory is largely perturbat ive 

in na ture both in D = 4 [20] and D = 3 [14], so the successes recorded here also go 

some way to explaining the accurate results found using derivative expansions in a 

non-perturbat ive setting (see [11, 12, 15. 21]). 

45 



Chapter 4 

Towards a gauge invariant exact 

RG 

In this chapter we identify the manner of regularisation as one of the stumbling blocks 

in the establishment of a gauge invariant RG. One approach suggests a regularisation 

scheme using the ideas of supersymmetry might exist and we introduce some of the 

necessary concepts before formulating the regularisation scheme in the next chapter. 

Unless otherwise s ta ted, this chapter is based upon mater ial f rom sources^ [3, 14, 23, 

24, 25]. 

4.1 Consequences of gauge invariance 

Problems arise when we a t t empt to carry over the concepts of the Wilsonian RG to 

QFTs which have local internal symmetry groups. To see this we need only consider a 

theory consisting of jus t a gauge field where the 7^ are generators 

^The mathematics of supergroups is also discussed in [22] 
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of the gauge group. We define the covariant derivative with coupling ^ to be 

:= with the gauge field acting by commutat ion. We can take the bare 

Lagrangian to be 

(4.1) 

where the field strength is given by := and the trace is over group 

indices. The Lagrangian is invariant under a gauge transformation of the type 

— ( 4 - 2 ) 

where w is the gauge parameter . When we transform (4.2) to momentum space, the 

second te rm leads to a convolution over all momentum. Thus the restrictions placed 

upon allowed values of momen tum that we employed in the scalar field theory, do not 

respect this invariance. 

This restriction upon momen tum space is known as a regu^afigatjon acAeme. We 

therefore have to make a choice: either break gauge invariance and hope to restore 

at a later stage [2] or Rnd an alternative regularisation scheme. In the next section 

we consider whether a regularisation scheme can be found tha t will enable Wilsonian 

ideas to be applied, yet allow us to retain gauge invariance. 

4.2 Regularisation techniques 

Throughout the subject of QFT, one is confronted with physical calculations that 

involve divergent integrals. The need to manipulate these integrals and to rigorously 

define the theory, provide the motivation for regularisation - the process of making 

the integrals finite at intermediary steps of the calculation. Regularisation is achieved 

via a modification of the theory at high energies which renders all integrals finite in 

a manner tha t is determined by a single parameter . This parameter can also be 
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tuned to a specified limit in such a way as to regain the original (divergent) theory. 

It must be stressed tha t the procedure of regularisation is completely separate from 

that of renormalisation (in old-fashioned parlance the process by which divergences 

are removed via redefinitions of the couplings). The final renormalised theory is 

independent of regularisation technique utilised and the control parameter will not 

appear in calculated physical quantities. 

There are a wide variety of regularisation techniques available in the literature, each 

with its own advantages and disadvantages and hence its own area off applicability. 

In this section, some of the most important methods of regularisation are introduced 

and the reasons for their unsuitability as a regulating scheme for a gauge invariant 

exact RG are discussed. 

4.2.1 Dimensional regularisation 

In the case of gauge invariant theories, the most widely utilised regularisation is 

dimensional regularisation as this has the at tract ive property of maintaining gauge 

invariance at all stages. The central idea is to generalise the spacetime dimension 

from D to an arbi t rary (not necessarily integer) dimension (Z. For sufficiently small 

cf, all the Feynman diagrams are finite. The UV divergences of the theory appear 

as simple or multiple poles at (/ = D. All symmetries, including gauge symmetries 

(although problems arise with chiral fields), tha t are independent of the dimension of 

spacetime are preserved. 

While this regularisation scheme is the most widely used and practical technique for 

gauge theories, it suffers f rom a number of drawbacks if it is to be incorporated into 

an exact RG framework. Firstly, it does not sit easily with the Wilsonian approach 

of suppression of high energy modes since dimensional regularisation has no such 

physical interpretat ion. Secondly, it is not clear whether this scheme has any meaning 
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non-perturbatively since it is applied directly to (perturbative) Feynman diagrams 

and the non-perturbat ive capability of the Wilsonian approach is one which we would 

like to preserve. 

4.2.2 Paiili-Villars regiilarisation 

This technique [26] (like momentum space cutolfs) modifies the behaviour of the 

propagator at high momenta . It achieves this by introducing fictitious particles with 

the same interactions but which have no effect at low energies. However, at high 

energies the propagator of the new field exactly cancels tha t of the original one. This 

is achieved by gi\ ing these Pauli-Villars particles large masses, Thus we have 

= A , „ ( p ) + C i A l i p , A 4 ) ( 4 . 3 ) 

k 

When the limit .Vt —> oo is taken, the regularisation is removed. 

4.2.3 Higher covariant derivatives 

This method a t t empts to extend the idea of a momen tum space cutoff to the realm 

of gauge theories [27]. If we view the scalar theory in Euclidean space, we have cutoff 

functions appearing as Thus to proceed in a gauge invariant manner 

we replace all ordinary derivatives by covariant derivatives. In this way we may hope 

to regularise the action of (4.1) by replacing it with the following. 

= | t r ( f ^ , C c : y ( - V " / A " ) . f ( 4 . 4 ) 

with the dot signifying that the covariant derivatives act via commutat ion. Unfortu-

nately, this is not enough to completely regularise the theory; the insertion of covari-
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ant derivatives introduces fresh interactions. If the cutoff function V^/A^) is 

a polynomial in its argument of rank n, then the superficial degree of divergence of 

a ( IPI ) Feynman diagram in D dimensions is (ignoring gauge-Rxing terms which do 

not affect the argument) 

2n+4 

D r = - (2n + 2)7 + ^ (2^ + 4 - (4.5) 
z = 3 

where ^ is the number of loops of the diagram, / the number of internal propagators 

it possesses and the number of vertices at which i A fields are present. Using the 

relations 

X = 1 + / — ^ Va'^ (4.6) 

E = —2/ + ^ z V ^ t , (4.7) 
: 

(with E the number of external lines of the Feynman graph) , (4.5) becomes 

%)r = ( D - 4 ) I - 2 M ( Z ; - l ) - E + 4. (4.8) 

In D — 4 (the case of most physical relevance), the rank M can always be chosen 

such that D r is always negative (and hence all diagrams are superficially convergent) 

ezcepf when X = 1 and E < 4, where this regularisation fails. 

4.2.4 Hybr id regiilarisation 

This takes the methods of Pauli-Villars and higher covariant derivatives and com-

bines them to produce a gauge-invariant regularisation [28, 29]. The higher covariant 

derivatives takes care of all the divergences appearing in diagrams with more than one 

loop, and all but a small subset at one loop which are taken care of by the Pauli-Villars 

regularisation. Unfortunately fur ther one-loop divergences then typically arise when 
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the Pauli-Villars helds are external. It may be argued tha t this could be ignored on 

the grounds that the Pauli-Villars particles cannot be regarded a.s physical. However, 

these divergences will reappear in internal subdiagrams embedded at higher loops. 

This is referred to as the problem of overlapping divergences. It can be cured by 

adding yet more Pauli-Villars helds and by carefully choosing their actions [29]. The 

Pauli-Villars Relds need to appear bilinearly in the action so that upon integrating 

out, they provide missing one-loop counterterms. Unfortunately this is not a property 

that can be preserved by the exact RG framework. 

In a series of papers [3, 4, 3] a manner of constructing a gauge invariant exact 

RG was suggested. Using the insight that the freedom in the construction of exact RG 

equations amounts to a general field redefinition [30], a How equation is formulated. 

The necessary regularisation is provided by a form of the hybrid regularisation. How-

ever, for the regularisation scheme to prove effective, many requirements were placed 

upon the properties of the Pauli-Villars fields including the presence of a wrong-sign 

gauge field, fermionic gauge partners and scalar fields. The required cancellations 

forced the flow equation itself to be of a complicated form [5]. Other shortcomings 

of the scheme were tha t it could only be applied at TV = oo and that it suffered from 

the problem of overlapping divergences. It was realised however that the plethora of 

particles might be more elegantly described (except for a few minor discrepancies) by 

embedding the 6"[/(A') gauge group within the larger supergroup and al-

lowing this larger group to be spontaneously broken. Unlike the bilinear Pauli-Villars 

regularisation, the spontaneously broken s t ructure can be preserved under 

exact RG flows. The aim of chapter 5 is to show tha t spontaneously broken A )̂ 

with covariant derivatives provides a regularisation scheme to all loop orders at finite 
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4.3 Supersymmetric groups 

An impor tant concept that haa at t racted wide at tention in the field of theoretical 

physics since the 1970s is that of supersymmetry, a symmetry which mixes bosons 

and fermions. Usually it is considered aa a symmetry of the space-time background 

[31]. However, work where the supersymmetry exists in the internal symmetry of the 

Q F T in an ordinary background actually predates this [32] (although largely ignored 

at the t ime) and is what we shall concern ourselves with here. In this section we 

shall introduce some of the properties of these supergroups within the context of the 

supergroups 5 '[ /( :V|M) and 5'[/(A^|jV) . 

4.3.1 Grading 

The set of integers provide the simplest example of a graded structure. They have the 

property of being either even or odd. With ordinary addition denoted by the symbol 

the additive group of integers has the following behaviour. 

even ' ' even = even, 

even - odd = odd, (4.9) 

odd • odd = even. 

This s t ructure is the same as that of Zg, the cyclic group of order 2: 

(4,10) 

where e is the identity and a the other element of the group being identified with even 

and odd integers respectively. Hence, the grading s t ructure of (4.9) is known as 2% 

grading and appears in the Lie superalgebras which are of interest in this work, with 

the characteristic of being odd or even replaced by the property of being fermionic or 
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bosonic. 

4.3.2 

An even supermatr ix M is a (p + g) x (r + 3) mat r ix part i t ioned such that 

M 
/ A B 

C D 
V 

(4.11) 

where A (D) is a p x r (g x g) submatr ix whose elements are even under the grading 

s t ructure and B ( C ) i s a i ; x r ( p X 5 ) submatrix constructed f rom odd elements. 

The set of (A'̂ 4- x (7V + M ) even supermatrices define the Lie supergroup 

(with ^ M ) if any element G of the set satisfies the condition 

G * G = 1, (4.12) 

where G^ denotes the adjoint of G . The adjoint of a supermatr ix is dehned such that 

the adjoint of the mat r ix M of (4.11) is 

D« 
(4.13) 

/ 

where the tilde means tha t we take the transpose of the submatr ix . The hash operator 

represents the Grassmann adjoint of the submatr ix and is defined as follows. In the 

vector space in which the submatr ix N lies, it can be writ ten as 

(4.14) 

where each and are real numbers and the form a part icular basis. Then we 
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deHne 

= (4.15) 
At 

where for this basis 

. 6;̂  if 6̂ . is bosonic, 
4 = . . . (4.16) 

I —it^ if is fermionic. 

This implies for a general bosonic element written as A!" + ( X and F real) that 

(% + 2?')" = X - (4.17) 

while for a general fermionic element 0 4-%^ ( 8 and $ real Grassmann numbers) we 

find 

( 6 + 2$)^ = —iQ — (4.18) 

In turn, is the subgroup of ( / ( # | M ) whose supermatr ices have the addi-

tional property that 

s d e t G = l , (4.19) 

with the superdeterminant defined [again with regard to the supermatr ix of (4.11)] 
as 

= (4.20) 
det D 

Let "H be a member of the Lie superalgebra of [/(7V|M), part i t ioned as an even 

supermatr ix: 

U 
P Q ^ 

(4.21) 
R S 

Condition (4.12) implies tha t 

?{ + %* = 0, (4.22) 
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which in turn implies that 

P = - P " , (4.23) 

S = - S ^ (4.24) 

Q = - R \ (4.25) 

where, for example ( P ^ ) \ - Using (4.IT) and (4.18), we find we are able to 

write the algebra of [/(A^|M) in the (A'̂  + M ) dimensional fundamenta l representation 

is of the form of (yV + M ) x (A^ + M ) even supermatrices 

n (4.26) 

7/v (/^A/) is an x iV ( M x M ) Hermitian matr ix. ^ is a x M matr ix composed 

of complex Grassmann numbers and is its Hermitian conjugate. Together ^ and 

contain 2NM real ant i-commuting Grassmann numbers. 

Using the supermatr ix of (4.11) as an example once more, the supertrace is defined 

to be 

s t r M = t rA — t r D (4.27) 

= tr (era M ) , (4.28) 

where we have taken the opportunity to introduce the (A/̂  + M ) x ( # + M ) version 

of the third Pauli matrix.^ The supertrace of supermatrices is cyclically invariant. 

If we require that is a member of the Lie superalgebra of 6'(7(A^|M), we take 

account of the condition placed on the elements of the group (4.19), by noting that 

"z.e. 0-3 = ^ ^ ^ being the # x # (M x M) identity matrix 
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(see Appendix A) 

sde t ( exp(M)) = e x p ( s t r M ) , (4.29) 

and hence require 

str 'H = 0. (4.30) 

Imposing (4.-30) has the effect that the traceless part of (^Af) can be identified 

with an 5'C/(A^) (5 ' [ / (M)) subgroup with the traceful part giving rise to a (7(1). Hence 

the bosonic sector of 5'[/(A^|M) forms a 6'(/(7V) x ^ ' ( / (M) x [ / ( I ) subgroup. 

As a concrete example of an .^(/(TVIM) group we can consider 5 '[ /(2 | l) ; a supergroup 

that has been studied within the context of the Standard Model [33]. A general 

element of the algebra may be written as 

n 
/ 3 

1 7̂7'(7,- + 7ŷ ]l2 

2 
i=l - 2 

E + E c ' K . , 

(4.31) 

(4.32) 
m = l 71=1 

where <7, are the (2 x 2) Pauli matrices, are real bosonic parameters and real 

fermionic variables. The bosonic generators are 

/ 
0 ^ (i 

2 0 0 

1 <7; 
^' = 2 0 , [/4 = 0 1 

2 
0 

0 0 
0 J u 0 1 

\ 

(4.33) 
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and the fermionic sector generators are given by 

14 

0 0 1 

0 0 0 

1 0 0 

0 0 0 

0 0 1 

\ 
0 1 0 

/ v 

0 0 —i 

0 0 0 

i 0 0 

0 0 0 

0 0 —i 

0 i 0 

(4.34) 

/ 

While these generators bear many similarities to those of 6'[/(3), note that the 

fermionic generators close onto the bosonic generators by an^zcommutation. z.e. 

%/} = However, by including the parameters in these relations, we can 

retain the usual Lie commutat ion rule: 

[?/, H'] = i Ti". 

For general 6'(7(jV|M) we have (in the adjoint representation) 

V , = {TiY 

(4.35) 

(4.36) 

where is a bosonic or fermionic parameter depending on the index A. The first 

N"̂  + NP — 1 are chosen to be bosonic and the remaining 2NM are fermionic. 

The generators thus contain only ordinary numbers. They are chosen to be those of 

table 4.1, where are the traceless generators of 5'[/(A^) normalised such that 

1 < A < - 1 

1 < F < - 1 
(4.37) 

and similarly for 
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A = 0 

/I = 1 , . . . , yV'̂  — 1 

A = , yY2 + _ 2 

A = - 1 , . . . , 

WM 
2 |W-Af I 

/V 0 

0 M 

r f 0 

0 0 

0 0 

0 'A 

0 0 0 
0 0 0 0 

1 0 0 0 
0 0 0 0 

: 
e^c. 

v 

0 0 —1 0 
0 0 0 0 

0 0 0 
0 0 0 0 

: 

[/(I) 

^C/(7V) 

Super 

Table 4.1: Table of generators of 5'[/(A^|M) 

This enables us to define the super Killing metric of the group as 

= 2s t r ( 2 ^ 7 5 ) , 

and with the generators normalised as in table 4,1, this results in 

(4.38) 
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[ 
1 

1 

= 

- 1 

- 1 

\ 

0 i 

-i 0 

0 i 

- 2 0 

(4.39) 

[/(I) 5[/2(.V) Fermionic 

with the sign of the (7(1) sector determined as positive for > M and negative 

for ^ < M . Note tha t while the metr ic is symmetric in the bosonic par t , it is 

ant isymmetr ic in the fermionic sector, a fact tha t we express as 

by introducing f(.4), the grade of the index A defined such tha t 

(4.40) 

0 if A is a bosonic index 

1 if A is a fermionic index 
(4.41) 

We are also able to define another metr ic which is the inverse of that of (4.39) 

c , (4.42) 
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with a sum over 5 . This enables us to lower indices on the parameters: 

(4.43) 

(note that it is the second index of the metric that is summed over; f rom (4.40) it is 

clear that the ordering of indices is important) , and raise indices on the generators 

(4.44) 

Since the generators of 6'C/(7V|M) form a complete set of (A^ + M ) x (A^ + M ) super-

traceless matrices, we can derive (see Appendix B . l ) a completeness relation: 

(T-y, (Ta)\ = i <5'} - i', • (4.45) 

4 . 3 . 3 5 ' [ / ( N | N ) 

It is evident f rom consideration of the denominator of the (7(1) generator in table 4.1 

and that of the last t e rm in the completeness relation (4.45) that a naive setting of 

A = M will not be sufficient to dehne 5'[/(A|A^). All of the problems tha t arise can be 

traced back to the (7(1) subgroup of the bosonic sector. In the case of 5'(/(A^|A), this 

generator becomes proportional to the identity in 2N dimensions, II2/V, and commutes 

with every other generator in the Lie algebra. This will give rise to a number of 

interesting properties when 6'[/(A|A^) is employed as a gauge group, a discussion of 

which we delay until chapter 5. In fact the (7(1) par t has proved to be so unpalatable, 

tha t some authors have dropped it completely [25]. We will not take such a drastic 

step (a deeper discussion of such subtleties is contained in chapter 5). Instead we 

note that the identity matr ix does indeed have a special role to play and so separate 

it from the other generators. 
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We split the generators 7^ = {H, 6'a}, i e . 6'a are the traceless generators of 

A = { 0 , a } and a runs from 1 to — 1, with the hrst — 1) of these being 

bosonic indices. Once again we can dehne a super Killing metric as in (4.38). The 

normalisation of the generators means that the metric is 

/ 0 

1 

1 

5^.45 = 

- 1 

- 1 

I 

0 i 

-i 0 

0 i 

- i 0 

(4.46) 

L'(l) SC/iM Fermionic 

Obviously we cannot define an inverse to this metric. However if we restrict ourselves 

to jus t the traceless 5"̂  generators, we are able to define 

/Za/) = 28tr (g^S"^), 

with the inverse determined by 

(4.47) 

(4.48) 

This then allows us to raise indices aa in (4.43) and (4.44). Since the 5% generators 

form a complete set of supertraceless and traceless matrices, a completeness relation 
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can be constructed for them (see Appendix B.2): 

(S=)' = 5 (^3)', s', - i [(<T3)-, S\ + S', (CTJ)',] . (4.49) 

This is most usefully cast in the following forms 

s t r ( X j ^ J s t r ( 5 " " y ) = ^ s t r ( X y ) - ^ [ t r . Y s t r y + s t r X t r y ] , (4.50) 

s t r ( 6 ' « X ^ " y ) = ^ s t r % s t r y - ^ t r ( X y + y X ) , (4.51) 

for arbi t rary supermatrices % and y . In chapter 5 we will use 6'(/(7V|A^) as a gauge 

group and demonstra te how it can act aa a regulator. 
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Chapter 5 

Regularisation via SU{N\N) 

As we saw in subsection 4.2.4 it is possible to construct a gauge invariant regular-

isation scheme by combining the techniques of regularisation via covariant higher 

derivatives and Pauli-Villars fields. It could also be noted tha t such a technique 

appears cumbersome and unsuited to the exact RG approach. In this chapter we 

introduce an extension of these ideas in which the combination of these methods 

appears more natural and also more promising as regards the exact RG [34]-[36]. 

5.1 The action of the regulating scheme 

In the this section we describe the action for the regulating scheme using covariant 

derivatives in spontaneously broken gauge theory. 
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5.1.1 T h e gauge field sector 

We star t by introducing the gauge field of 6'(y(AA|/V) 

I .4i B , ^ 

\ B , Al J V u ; 
+ 

/ >1° 0 \ 

0 
(.3.1) 

where 6"̂  are traceless and supertraceless generators of 5'[/(A^|A^). Note we have also 

included the unity generator and its associated bosonic Aeld in (5.1). The Ai held is 

the usual 6'C/(A^) gauge boson which we wish to regulate, with the .4; held being a 

6'(/(7V) copy which, as we shall see, will enter the Lagrangian with the wrong sign. 

The B held is fermionic and will eventually play the role of the fermionic Pauli-Villars 

regulating particles. 

The Lagrangian we require will be ultra-violet regulated. The hrst step in achieving 

this is to utilise the supergroup variant of higher covariant derivatives. The covariant 

derivative is chosen to be 

:= (5.2) 

where we have chosen to make the coupling dimensionless by explicitly including the 

appropriate powers of A. The field strength is then given by 

(5.3) 

Using the wine notat ion explained in Appendix C we can then write the pure Yang-

Mills part of the action as 

6'yM = (5.4) 

The function tha t appears in the wine is chosen to be a polynomial in its ar-
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gument [in this case (V^/A^)] of rank r . The action is invariant under the gauge 

transformations 

(^yl, = ^ A ^ / ' - ' [ V ^ , w ] . (5.5) 

There are two features of (5.4) which must be commented upon. Firstly, the field 

plays no par t in it. We note that all ^ field interactions occur via commutators and 

since the field (uniquely) commutes with everything, it cannot interact. Further-

more, because str(117x) = 0, we see tha t it cannot propagate and is non-dynamical. 

The effect of integrating over the A'^ field in the part i t ion function is therefore just 

to introduce an (infinite) constant which can be factored out. However, we are not 

allowed to simply exclude ^4° as gauge transformations do appear in the ]1 direction 

since the identity is generated by fermionic elements of the superalgebra, e.g. 

]l2N. (5.6) 

An al ternative procedure for tackling the troublesome f7( l ) sector is that favoured 

by ref. [25]. This redefines the Lie bracket to ensure that ]l2N does not appear. Thus 

the ^bracket is given by 

where [ , ]± is a graded commutator.^ The super Jacobi identity is still satisfied since 

["Hi, [ % , % ] * ] ' = [9^1, [7^2,%]]* (5.8) 

= [ % , [ % , % ] ] - ^ t r [ ' K i , [ % , % ] ] . (5.9) 

The equality in (5.8) follows upon the realisation that t r [ % , is always bosonic. 

Thus we can conclude tha t the *bracket is a perfectly acceptable representation of 

0 llN 

^i.e. it is a commutator if at least one of its two arguments is bosonic or an anticommutator 
otherwise. 
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the super Lie product. Hence, a member of the Lie algebra may be written as 

and the gauge held as with the commutators of (5.3) and (5.5) being 

replaced by the '"bracket. 

These two alternatives actually amount to the same thing. The role of the '^bracket is 

to set to zero all the s t ructure constants that generated 11. However, since the Killing 

supermetric that appears in the '^'^-free' representation vanishes in the 11 direction 

[c./. (4.46)], the interactions in the two choices are the same and hence are physically 

equivalent. We shall concentrate on the ' ^° - f ree ' representation as it is more elegant. 

The second aspect of (5.4) worthy of comment is with regard to the y42 field. Due 

to the properties of the supertrace and its position within the ./l supermatr ix . the A2 

propagator comes f rom 

-tr — ( 5 . 1 0 ) 

z'.e. it has the wrong sign. This has been interpreted as a sign of instability and 

deemed physically unacceptable [37], but we argue on the basis of the consideration 

of a quan tum mechanical analogue described in subsection 5.5.1 that rather it is a 

loss of unitarity. However, we expect this not to be problematic since such a loss of 

unitari ty is confined to terms that will disappear when the regularisation cutoff (A) 

is removed. 

Of course more has to be added to this scheme if we are to have a satisfactory 

regularisation technique for ^'[/(A^) gauge theory. The problem is we have also altered 

the low energy physics of the embedded 5 ' (7(#) Yang-Mills theory by the introducion 

of new Aelds. To redress this shortcoming, we must ensure tha t the fermionic and /Ig 

fields only have a inHuence on the sector at high energies, and this can be achieved 

by giving the fermionic fields large masses. The A; field can only interact with the 

physically important .4i gauge boson via the B fields. 
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It could be asked whether in giving the feimionic helds mass, we really need to 

mainta in the full invariance as ultimately the only physically relevant group 

is one of the 6 ' r( :V) subgroups; z.e. could the B fields be given mass by introducing 

explicit mass terms. Unfortunately if the action waa of the form 

^ (0 .11) 

the B propagator would not be transverse (as such a property is only guaranteed by 

gauge invariance) and divergences would appear in the longitudinal direction. These 

can be regulated by the introduction of a scalar field [3]. Since the appearance of this 

scalar field seems to be essential, we incorporate it in the most elegant method avail-

able, keeping the full invariance and introducing spontaneous symmetry 

breaking. 

5.1.2 Spontaneous symmetry breaking sector 

To this end we introduce a superscalar field 

) \ 
(5.12) 

/ r. \ 
c 

We require tha t the fermionic parts of the ^ field obtain masses so we must sponta-

neously break in these (and only these) directions. This is achieved by introducing a 

non-zero vacuum expectation value along a direction 

(73 + a l l (5.13) 

(o real) in the Lie superalgebra. Thus C must lie in the adjoint of [/(yVjjV) but trans-

form locally under 6'[''̂ A^(A^|A^). Under gauge transformations (5.5), C transforms 
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as 

JC = -2[C,w]. (3.14) 

It is possible to replace this commutator by the ^bracket as the result would not 

be gauge invariant in general. This can be seen by considering an example such as 

the supertrace of an order monomial that could arise in a potential term. With 

the gauge t ransformation given by = —z[C,w]'', we find 

6 s t r C " = ^ ^ s t r C " " ^ tr[C,w], (5-15) 

z'.e. non-vanishing in general. Thus the identity cannot be excluded^ f rom the C field 

which can be expanded as 

c = c°]i2N + r ( T 3 + r 6 ' ^ . (5.16) 

In the unbroken action we introduce a kinetic term for the C Aeld and the usual form 

for the Higgs' potential 

^ _ C{c-^}V^ - C + Str A ( C ^ - (-5.17) 

We have introduced another cutoff function, , which is chosen to be a polynomial of 

rank f . The combined action (5.4) and (5.17), is invariant under the transformations 

of the Aelds (5.5) and (5.14). In contrast to the gauge field, the erg and 11 components 

of C are dynamical . They propagate into one another through the t e rm 

2 A r a ^ c ° c - X - a " / A ^ ) 8 ^ r . (5.18) 

When we shift to the stat ionary point of the C held, the 5'[/(yV|A^) gauge group will be 

'We could still dispense with the A° in a consistent manner by using the ^bracket for all pure 
gauge interactions but using the usual commutator for interactions concerning C fields. 



spontaneously broken to x 5'!y(A^) (z.e. the symmetries of the bosonic sector). 

Upon expanding about the stationary point (z.e. C — + (5.17) becomes 

(;.6,L,ten _ — Z^A[^^,(73]{c "C 

+ - C{c - ' }V^ . C + str y + C") ' . (5.19) 

The first term of (5.19) gives a mass of order the effective cutoE, A to the fermionic 

part of >1. The bosonic part of C also gains a mass via the last part of (5.19). The 

action given by (5.4) and (5.19) is invariant when the fields t ransform as (5.5) and 

- 2 [C,w] - [or3,w]. (5.20) 

5.1.3 Gauge fixing sector 

As with all gauge invariant theories, the gauge must be fixed^ to extract physically 

relevant quantities f rom the theory. Otherwise when Greens' functions are computed, 

integrating over an inhnite number of copies of the same theory occurs, leading to 

spurious divergences being obtained. Obviously the manner in which the gauge is 

fixed should not have an inAuence on the physical predictions extracted from the 

theory. At this point we also note that the second te rm in (5.19) gives rise to a term 

linear in both A and C which could prove troublesome. As such, we follow the lead 

o f ' t Hooft who faced a similar problem [38] and fix the gauge in a manner which 

enables this contribution to the action to be cancelled. 

^This is true in standard perturbation theory as this procedure is required to properly define 
propagators; gauge invariant ERG does not require gauge fixing to calculate certain quantities 
[3, 4, 5]. 
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The following choice of gauge fixing function is made 

A c-^ 
F — -^[cr3,C], (5.21) 

where yet another new cutoff function, has been employed. However, since 

this te rm is not required to be gauge invariant, is not covariantised; z'.e. it is a 

polynomial of rank f in ( — r a t h e r than (—V^/A^). The process of 't Hooft 

averaging results in the gauge Axing contribution to the action being 

= - C - ' . . C- ' . [(73,C] 

(5.22) 

where we have used the notat ion w IK - f = str ^ ? / ( a ; ) li^(—^^/A^) i;(2/). When 

this is combined with the other parts of the broken action, the second te rm provides 

the required cancellation. The final part of (5.22) contains a mass te rm for the 

fermionic subfield of the superscalar C. 

The final contribution to the action comes from the Faddeev-Popov superghosts which 

are defined to be 

V (5.23) 
\ v; 7̂ y 

In the case of the usual bosonic symmetry groups, the process of gauge fixing leads 

to the Faddeev-Popov determinant which can be rewri t ten in terms of fermionic 

ghosts [39]. Likewise we would naively expect the ghosts in our theory to have the 

opposite grading to tha t of the gauge and scalar fields. However, it must be stressed 

tha t superfields are actually of indeterminate grading and the usual requirement of 

(ant i )commutat ivi ty is replaced by (anti)cyclicity of the supertrace. As the grading 

stands however, we find tha t , as required, str = —str.Vf; if % is ghost number 
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odd, but tha t str = str%cr37;(73 if % haa even ghost number. 

There is an elegant solution to this problem. Since we are free to choose whether 

different fermionic flavours commute or anticommute [41], we take the opportunity 

to introduce multiple grading. As well as the usual supergroup grading f [c./. (4.41)], 

we also assign a ghost grading g. All superhelds (including ghosts) have supergroup-

odd block off-diagonal elements (f = 1) and supergroup-even block diagonal entries 

(f = 0). X and C are both ghost-even (g = 0) while and ^ are ghost-odd (g = 1). We 

therefore require that elements commute up to a multiplicative extra sign whenever 

odd elements of the same grading are pushed passed one another, ;.e. for elements a 

and 6 

= 6a(_i)f(':)r(6)+s('')g(6). (5.24) 

We now find that 

strT^X = (—l)^('^)str%7;, (5.25) 

as required. The ghost action arises f rom the variation of the gauge fixing function 

(5.21) with gauge transformations (5.5) and (5.20). We find that 

Sgkost = — — ^ f j • • ?7 — g~ T^rs t r f d^x [<73, V3 4-C,7j]. (5.26) 

The contribution to the bare action can be tidied up by shifting the antighost vari-

ables ^ We shall see in section 5.2 tha t this shift has the added 

benefit of assigning the correct momen tum behaviour to the different legs of the ghost 

interaction vertices. The ghost sector of the action is then 

= - 2 ^ - - 7; - str y [ 0 - 3 , ?;][A'°/^''^(Z3 -t- C, ?;]. (5.27) 
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5.1.4 Total action 

Gathering together all the elements of the action we have 

+ - C { c - ' } V ^ . C + ^A'^-^st r y + C')" 

+ s( • c ^ • {di,Ay) + igK{d^j,Aij) • c ^ • [(73,C] 

, A \ _ c-^ 
F ^ ^ k 3 , C ] - ^ - [(73,c] - 2;; - c - ?; 

y A ^ - ' ^ / ^ s t r y c / ^ z [(73,^][A^/^-^(73 f C , ; ; ] . (5.28) 

Some of the Feynman rules for this action are contained in Appendix D. To ensure 

that the high m o m e n t u m behaviour of the ./I propagator is unaEected by the intro-

duction of the scalar field and gauge-Axing we are forced to bound the ranks of the 

polynomials: 

f > r > r — 1. (5.29) 

If we had not spontaneously broken the symmetry, the action would be (in covariant 

gauge, F = 8 ^ ^ ^ ) 

^ . C{c-^}V^ - C 

+ ^ A " - ^ s t r - A^-")^ -t- ^(a^,^^) - r ' . ( a , A ) 

- 2 ^ . c - ^ c a ^ V ^ . / / , (5.30) 

a form which will prove to be of use later as many of the important aspects of the 

physics (especially as regards to issues of finiteness) can be discovered by consideration 

of jus t the unbroken sector. 



5.2 Power counting 

Within the theory defined in (5.28) and (5.29), the superficial degree of divergence, 

D r , of a I P I diagram in D spacetime dimensions is calculated using the standard 

rules [23] to be 

2 r + 4 

Dp = D I - ( 2 r + 2 ) / ^ - ( 2 f + 2 ) / c - ( 2 f - 2 f + 2 ) / ^ + ^ ( 2 r + 4 - z ) l { 4 . 
i=S 

+ ^ (2r + 2 — j ) ^ (2f + 2 — A:) + (2r — 2r + 1) Kj2^, (5.31) 
J = 2 k-l 

utilising the following nomenclature: Z, is the number of loops, 7̂  the number of 

internal propagators of type a, and the number of vertices containing the set of fields 

f. We aim to show that for all but a small sub-class of I P I diagrams, the ranks of the 

polynomials can be chosen so that % is negative. This sub-class will then be shown 

to be finite by other methods developed in sections 5.3 and 5.4. Since the superficial 

degree of divergence of any given diagram and all its connected subdiagrams is thus 

shown to be negative, finiteness to all orders of per turbat ion theory follows from the 

convergence theorem [23]. 

Unfortunately, (5.31) does not adequately take account of I P I diagrams with external 

antighost legs. The formula t reats the whole momentum dependence of the associated 

V̂ 2_4 vertex as if it was loop momentum, whereas it depends only upon the (external) 

?7 line. Thus the superficial degree of divergence calculated via (5.31) is overestimated 

in these diagrams. To remedy this we include an extra te rm: —(2f — 2f + 1)_E'^, where 

is the number of external antighost lines which enter a vertex. The improved 

formula for the superficial degree of divergence is 

D r = D I - ( 2 r + 2 ) / ^ - ( 2 f + 2 ) / c - ( 2 f - 2 f 4 - 2 ) 7 , - t . ^ ( 2 r - k 4 - i ) % 4 . 
i 

+ + 2 — j ) + ^ ( 2 f 4- 2 — A;) -t- (2f — 2r -f- 1) (%,2^ — E ^ ) . 
J k 

(5.32) 
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The form of (3.32) is unhelpful as wri t ten since diagrams are eaaier to classify by 

external, ra ther than internal, propagators. As such, we use the geometric relations 

L — -f /c + /,; + 1 — ^ V^! — ^ Vaic — X/ — Vn ĉ — Vc3 — Vc4, 

(5..33) 

EA = —'21 A + X/ ^ klAkc"^ + (5.34) 
' 3 k 

Ec — —'2Ic + ^2 Aic + 2 X + 31^3 + 41/^4, (5.35) 
J A: 

+ -G'S = —2/^ + 2%;2^ + 2Vn2c. (5.36) 

The Euler relation (5.33) assumes that all diagrams are connected since the first term 

on the RHS (denoting the number of connected components) has been set to 1. Note 

that in the relation (5.36), the external ghost and antighost lines have been classified 

according to the vertex to which they are attached. They satisfy the constraint 

and so (5.36) can be rewritten as 

— ~~In + (5.37 

The four relations (5.33) - (5.36) are used to rewrite Dp as 

c Dr = (D - 2r - 4 ) ( I - 2) - - (r - f - f ) E c - 2(r + f - f + 1)E^ 

— (2r + 3)-£'^ — (r — f + 1) ^ Va^c + (r — 3r — l)Vc3 + 2 (r — 2r)Vci 
j 

+ ( r + f - 2 f - l ) % , 2 c + 2 ( D - r - 2 ) . (.5.38) 

While it is straightforward to choose sufficient conditions so tha t all diagrams (except 

certain one-loop cases) are superficially convergent, it is trickier to ascertain those 

that are also necessary. The strategy we adopt is to consider one- and multi-loop 

diagrams separately and establish the sufficient conditions rec^uired to make "Dp as 
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negative in as many diagrams as possible. We will introduce a theorem which will 

demonstra te that some of these conditions are not strictly necessary. We will then 

show the remaining conditions are necessary by considering examples where they are 

needed. 

We will temporari ly relax the condition that r , f and f are integers. Instead we 

consider them as general real numbers and re-impose the restriction to integers at the 

end. In this case we then have to impose the additional constraint 

f > - 1 , (5.39) 

which is required to ensure the high momen tum behaviour of the C propagator is 

unaffected by the spontaneous symmetry mass te rm in (5.28). 

5.2.1 Multiloop diagrams 

If we st ipulate that Z > 1, all such IP I diagrams can be made superficially convergent 

merely by requiring tha t all the coefBcients in (5.38) are negative. Hence the following 

sufficient conditions are obtained: 

r > D - 2 , (5.40) 

r > - 3 / 2 , (5.41) 

r < 2f , (5.42) 

r < r f + 1, (5.43) 

as well as the assumed conditions (5.29) and (5.39). 

Combining the inequalities (5.40)-(5.42), we obtain a lower bound upon f as well, 

namely f > ^ m a x ( D — 2, — ̂ ). The lower bounds on r and f are to be expected since 
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the higher the number of spacetime dimensions the more divergent the diagrams. 

However, there is no obvious physical reason why upper bounds such as (5.43) are 

found and one is lead to suspect that such conditions are not necessary. We can prove 

that these restrictions are not necessary by the use of the following proposition: 

Propos i t ion 1 If we denote by S the collection of triples (r, r, f ) s.t. Dp < 0, then 

V(ro , fo , fo ) 6 <S. (Ae {(r, r , f j a . l r > ro, r = fo, f > fo, fo < r < f } C 

frooyi 

We note that (5.38) depends upon f as + 2 f ( E ^ — %,2c). This term is always non-

positive since it is not possible to have more external antighost lines entering 

vertices than vertices themselves. Thus increasing f above fo cannot increase 

'Dr. 

The dependence upon r is carried by 

r^-2L-^2-Ec- - E + Vc + 2Vc. + V>c 

2 r { Z V A . - l A y (5.44) 

with the equality following f rom (5.31). Since every must be attached to at least 

two internal A lines in a I P I diagram, this contribution is also non-positive and so 

increasing r above rq does not increase % . O 

Proposition 1 implies tha t inequalities (5.42) and (5.43) are unnecessary so the suffi-

cient relations for convergence of multiloop diagrams are: 

r > m a x ^ D —2, — (5.45) 

f > m a x ^ : ^ - ! , - ^ ^ , (5.46) 

f > r > f — 1. (5-47) 
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At first glance these conditions are apparently necessary to regulate the diagrams of 

figure 5.1 (in D > ^). However the naive power counting we have employed does not 

take into account other considerations such as the supergroup factors. It transpires 

that these two diagrams are already regulated by the supertrace mechanism that 

will be discussed in section 5.3 and as such, the necessity of the above conditions 

is actually unproven. We leave a demonstration of why these conditions really are 

necessary until after the discussion of the one-loop case. 

(a) (b) 

Figure 5.1: I P I diagrams which by power counting alone require conditions (5.45) -
(5.47) to be finite. (Curly lines represent fields and straight lines C fields.) 

5.2.2 One-loop diagrams 

While the covariant derivatives are not able to regularise all one-loop diagrams, they 

are able to ensure finiteness in a number of sub-classes. At one-loop the superficial 

degree of divergence is 

^ i - w p ^ 2 ) - E ^ - ( r - f - H ) E c - 2 ( r - k r - f + l ) E ^ - ( 2 r + 3 ) E ^ 

- ( r - f + 1) g + (r - 3f - 1 ) ^ 3 + 2 (r - 2 f ) ^ 4 
i 

-k(r + f - 2f - l)%,2c (5.48) 

= a - V, (5.49) 
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where we define the elements of a and v to be 

a i = D = 1, 

0:2 = - 1 Ug = EA-, 

03 = — (r — f -I- 1) 1̂ 3 = Ec. 

0:4 = —2(r -t- f — f -|- 1) V4 = El 

0(5 = - ( 2 r + 3) U5 = 

CK6 = — (r - f + 1) 1)6 = 

O7 = (r — 3f — 1) V-T = 

Qfg = 2 (r - 2 f ) Ug = 

Og = (r 4- f — 2f — 1) fg — 

(5.50) 

The general stratergy we shall follow is to consider specific classes of one-loop dia-

grams. Wi th the strictures placed by these classes we shall then change some of the 

z;, to ensure tha t all Ui are non-negative. This is done in such a manner tha t (5.48) is 

unchanged so we must also adapt the corresponding a.s. To ensure tha t Dp is then 

negative, we require tha t all the a , < 0. This gives us a number of sufBcient condi-

tions, some of which can be shown not to be necessary by appealing to Proposition 

1. It then remains to show tha t the final list of conditions are also necessary. 

The cases we consider are: 

(i) > D -t- 1; a n y n u m b e r of Ec , , E^'^ 

The combination {Ea — D — 1) is always non-negative, so we make the following 

replacements in (5.50) which leave (5.48) unchanged 

cvi —>• cvj = — 1, vi ^ vi = Ej[ — D — 1, 
(5.51) 

0=2 0:2 = — 1, 1*2 —>• 1*2 = 1-

All other a , and remain unaltered. Requiring all the coefhcients a , to be negative 

results, after the assumption of (5.29) and (5.39), in the following restraints being 
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placed on the parameters 

r < 2f , (o.'52) 

2r > - 3 , (5.53) 

r < r + f + 1. (5.54) 

(ii) > 1; a n y n u m b e r of E ^ , Ec , E? 

The new variable will be (E'^ — 1) rather than so we need to change the following 

components in (5.50) 

Qi —y cii = [D — 2r — 3), Vi —y vi = 1, 
(5.55) 

Q5 —>• Q5 = — (2r + 3), ^5 —>• 1)5 = (jE*^ — 1). 

If all a , coefScients are to be negative, (5.52)-(5.54) are regained along with the extra 

condition D — 2r — 3 < 0. 

(iii) > 1; any number of Ec, 

The only changes to (5.50) that must be made are 

ai Oi = D — 2(r + f — r + 1), Vi —>• Ui = 1, 

0(4 —> 04 = —2(r + f — f + 1), ?;4 — ^ 4 = (E^ — 1), 
(5.56) 

and we obtain the new constraint D — 2(r + f — r + 1) < 0, which has to replace the 

previous weaker bound (5.54) (for any D > 0). 

(iii) Ec > 2; a n y n u m b e r of E ^ , E^ '^ , E^'^ 

With the new variable ( E j — 2) introduced, we adapt 

Qi ^ Qi = Z? — 2(r — r + 1), Vi ^ vi = 1, 
^ ^ (5.57) 

03 03 = - ( r - f ) , 1)4 ^4 = (Ec - 2), 
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and an additional constraint is found: r — r > y — 1. 

(Iv) Ec = 1, = E:;^'^ = E^'^ = 0 

This gives rise to three possibilities since the internal loop can be one of three Eavours. 

Internal ^ loop: = D — 2r + 2f — 2 

Internal C loop: = D — 2f — 2 

Internal ghost loop: = D + 2f — 2f — 2 

We require r — r > y — l i f the Arst diagram is to be finite (which will also make the 

third diagram finite). The second diagram requires the bound f > y — 1. The more 

general case with any allowed number of external ^ and (anti)ghost lines does not 

change these conditions as they both contribute negatively to (5.48). 

5.2.3 Final list of constraints 

By the use of Proposition 1 it is possible to remove the upper bounds in these con-

straints. The final list of constraints for both multi- and single loop graphs is therefore: 

r > max - 2, ^ , (5-38) 
2 ' 2 / ' 

f > ^ m a x ( ' D - 2 , ^ ^ , - ^ 1 , (5 59) 
2 \ ' 2 ' 9 

r — r > — 1, (5.60) 

and, as ever, (5.29) and (5.39). With D > 1, these mean 

r > D - 2 , (5.61) 

f > y - 1 , (5.62) 

r - f > y - 1, (5.63) 

f > r > f — 1 > 0 . (5.64) 
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Suitable ranks for polynomials can be found by selecting integers which satisfy these 

bounds. 

We now address the question of the necessity of these conditions. We noted that the 

diagrams of hgure 5.1 seemed to demonstrate necessity. However, we have ignored 

supergroup factors and, when these are allowed for, we hnd tha t the unbroken parts of 

these diagrams will actually disappear at large loop momenta through the supertrace 

mechanism which will be discussed in the next section (the broken parts are finite by 

power counting). Necessity will actually arise from the broken sector of the 

gauge theory. To see this we need to borrow a result f rom the next section, namely 

(5.72), which shows tha t unbroken one-loop corrections take the form of a product 

of two supertraces over the external fields. This carries over to the broken theory as 

well except that (C) = factors may also arise in these supertraces. Xow. 

the condition r — f > y — 1 arose from power counting the one-loop graph made 

by at taching an ^ propagator to the vertex [z.e. by inspection the vertex from 

—igK[A^^ cr3]{c~^} of (5.28)]. Thus r — f > y —1 is necessary for the contributions 

with group theory factor strCstrcTa. The condition r > D / 2 — 1 is necessary for 

finiteness of (str C)^ contributions arising from attaching a C propagator to the strC"* 

vertex. T h e final condition for any D > 1, namely r > D — 2, already follows from 

combining these two. 

(a) (b) 

Figure 5.2: I P I diagrams f rom which the necessity of conditions (5.61)-(5.64) are 
demonstra ted. 

By inspection of (5.48) and use of subsection 5.2.1 we can deduce that the only 

81 



diagrams tha t remain unregularised after the imposition of the constraints listed 

above, have the following properties: 

(i) One loop 

(ii) Up to D external legs 

(iii) No external C or ghost legs 

(iv) Do not have C"* or interactions 

Diagrams with these properties will be known as 'One-loop Remainder Diagrams'. 

5.3 Supertrace mechanism 

The power counting arguments of the previous section are a demonstrat ion of the 

well established problem that the introduction of higher covariant derivatives is not 

sufhcient to regularise all one-loop diagrams in gauge theories [27]. The improvement 

in the high m o m e n t u m behaviour of the propagators is not enough to compensate 

for the number of new interactions we have been forced to introduce. We obviously 

need fur ther regularsiation and this is the reason the SUiN\N) gauge group has been 

used. The aim is to demonstra te that the extra fields introduced by the supergroup 

provide a mechanism for cancellation to occur between component fields and hence 

regularise some of the remaining troublesome diagrams. Actually, gauge invariance 

arguments mean that the one-loop diagrams with 3 < < D do not diverge in the 

manner one would expect from the naive power counting, as will be demonstrated in 

section 5.4, and so we concentrate on the cases with < 3 in this section. 

There are three varieties of One-loop Remainder Diagrams: those with jus t C, ^ or 

ghost internal propagators. We will calculate the group theory factors for the unbro-
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ken parts of these diagrams and see that at large loop momen tum they disappear, 

while we demonstra te that the broken parts are finite by power counting arguments. 

5.3.1 One-loop Remainder Diagrams with A propagators 

The large momentum behaviour of the A propagator can be obtained from (D.3) and 

is found to be 

(A"(p)A'(-p)) = PuPu I Cp + (5.6o) 

The second term on the RHS arises from the symmetry breaking; the constraints 

introduced earlier mean tha t the parts of diagrams using these symmetry breaking 

terms are finite. We need to use pure vertices which either come from the unbroken 

interactions of (3.4) with index of divergence 2r + 4 — i, or f rom the regularised 

mass te rm in (5.19) with index 2f + 2 — i: using the symmetry breaking part of 

the propagator and /o r the symmetry breaking vertices will result in the degree of 

divergence of the ensuing integral being bounded by % ^ ^ — f/yt — 2(r — f + 1) < 0. 

i.e. these contributions are finite. 

Feynman diagrams are constructed by creating propagators using Wick contraction 

between different supertraces originating from interactions. Concentrating on the 

group theory dependence only, we find tree diagrams take the following form: 

s t r ( X ^ ) str( .4 F ) = s t r (% ?') + . . . , (3.66) 
I I 

where the ellipsis denotes group theory factors arising f rom broken symmetry parts, 

X and Y are products of supermatrices, and we have used the completeness relation 

in the form of (4.30). In general, a te rm of the following s t ructure should also be 
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included 

- ^ ( t i - X s t r F + s t r X t i - y ) . (5.67) 

If this term was required, it would imply that the propagation of only would be 

inconsistent {i.e. would also be needed) since such terms, although they arise in 

the unbroken theory, actually break SU{N\N). However we are saved by the fact 

that all >4 interactions occur via c o m m u t a t o r s / so by rearrangement .Y and y can 

also be expressed as commutators . Since the supertrace of a commuta tor vanishes, 

so does (5.67). 

One-loop diagrams are formed by Wick contracting within a supertrace. From the 

previous arguments, (5.66) and (4.50), we know this must be of the form 

str( [A, Zi] Z-i [A, ZsjZ^) = — str(Z'i Z2) str(Z3 Z4) s tr(Zi Z4) str(Z2 Z3) 

—str(^i Z2 Z2,) str(Z^) — stx{Zi Z^ Z^) s t r (^2) j 4" ' ' ' , (5.68) 

or 

8 t r (y4 [^ ,Z i ] ) = 0, (5.69) 

where Zi are products of superfields and again the ellipsis correspond to suppressed 

(finite) terms from the broken sector. The possible 0 corrections from (4.50) 

cancel out for the same reasons as above. In the cases we are interested in Ej, < 3, 

so the terms in (5.68) yield either str.A = 0 or strll = 0. Thus we can conclude that 

One-loop Remainder diagrams with A internal propagators are finite, because their 

contributions from the spontaneous symmetry breaking sector are finite by power 

counting, while the unbroken part has group theory factors which disappear. 

''This is true in the .4°-free representation; in the *bracket version, extra interactions play the 
same role. 
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5.3.2 One-loop Remainder Diagrams with C propagators 

From (D.5) we see that the large momentum behaviour of the C propagator is 

(C',(p)C\[-v)) = (5.70) 

where m = min(2r, r ) . Again we note that contributions arising from the broken part 

of the theory are finite by power counting as the degree of divergence of a one-loop 

diagram using the broken par t of (5.70) is bounded by % < D — — 2 — 2 min(f , r — 

f ) < 0, and we have already shown that we need not consider interactions. 

Tree diagrams ha\ e the form 

str(%i C) str(C Xg) = , (5-71) 

where the ellipsis signifies contributions from the broken sector. Note that we do not 

have to address the issue of 0 corrections here. The one-loop diagram then takes 

the general form 

str(C Yi C = strV^ str}^ + - " , (5.72) 

with broken sector contributions represented by the ellipsis. Similarly to the previous 

situation, Yi and }2 &re the products of the remaining superAelds, and with < 3, 

this leaves us with either strll = 0 or str.A = 0, and so One-loop Remainder Diagrams 

with Ex < 3 and C internal propagators are also finite. 

5.3.3 One-loop Remainder Diagrams with i] propagators 

The analysis for these diagrams is the same as tha t for the propagators in sub-

section 5.3.1, which is unsurprising as is linked to gauge transformations by BRST 

(see subsection 5.4.1). Wi th the symmetry breaking terms once more finite by power 
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counting since their degree of divergence is bounded from above by the already nega-

tive D — — 2(r — f + 1), the unbroken sector yields one-loop diagrams of the same 

form as the RHS of (5.68) and /or (5.69), and so we can draw the same conclusions 

with regard to Aniteness. 

5.3.4 Example of explicit calculation of supergroup factors 

In this subsection we present the explicit results of a calculation of the supergroup 

factors of diagrams using the Feynman rules of Appendix D. This hides much of the 

simplicity and elegance of the previous section since individual diagrams do not allow 

for the fact tha t vertices appear only as commutators. 

Since the Feynman rules have been derived for a strict cycle of Aelds, diagrams are 

calculated by considering all possible topological variants. For example, figure 5.3 

shows the two possibilities that arise for the one-loop correction to the propagator 

that uses jus t vertices. 

(a) (b) 

Figure 5.3: One-loop contributions to the A propagator 

We are only interested in the high momentum behaviour of such graphs; specifically 

we aim to demonst ra te that the leading contribution vanishes in this regime, with 

subleading te rms arising from broken terms already shown to be finite, and hence 

the diagram is UV regulated. We will use only the single index (%.e. adjoint index) 

notation here as the example uses only .X fields. Of course the same results are 
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obtained using the double index (z.e. fundamenta l and complex conjugate indices), 

which is the notation tha t appears more natural if C fields are involved. Inspection 

of the momen tum par t of (D.9) reveals that we need not consider <73 insertions; such 

contributions to these diagrams are already finite by power counting. If we take 

figure 5.3 (b) as an example, the group theory par t of the calculation comes from 

(suppressing Lorentz indices and spacetime dependence): 

str(6'^5'/)5'^) s t r ( ^ ( ^ j & ) 

- str(S«^X3'$''7) str(^(^{6':) 

^ str(6'a5'^5'^) str(5'(5'g5',) 

- str(5'c5'x35%) str(6'(6'^&) 

Str(5'a5'/36\) Str(5'(5'f(j)5':) 

str(5'^6'^^^) str(.?( .?{(/)&), (5.73) 

where we have used the property of cyclicity under the supertrace and taken the 

opportuni ty of Wick contracting two fields (to form an internal propagator) on the 

second line using the high momentum behaviour exhibited in (5.65). The notation 

(^(6) ((^(/)) introduced in the final line means we only consider the bosonic (fermionic) 

parts of the field. Similarly for figure 5.3 (a) the group theory part is calculated 

to be 

str(5'«^^5'^) str(6'(5'6&) (5.74) 

Now we utilise the completeness relations in the forms (4.50) and (4.51). We then 

find tha t (5.73) and (5.74) both equate to 

[str(5'aCr36'j) + str((736'a6'{) ] = str (0-3^1 .̂) (5.75) 

However, (D.8) shows us tha t the Feynman rule is antisymmetric in the exchange 
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of any two momenta . Consequently there is a relative minus sign between the two 

contributions of figure 5.3, but since they have the same m o m e n t u m and group theory 

parts at large loop momentum, these two topologies cancel in this regime. The same 

argument applies to the diagrams with two internal Cs or ghosts. Similar calculations 

have been performed (using the F O R M algebra manipulat ion package) for all One-

loop Remainder Diagrams with just two or three external A lines and these diagram 

were again shown shown to be finite. 

5.4 Ward identities 

The only diagrams tha t now remain to be tested whether or not they are finite are 

the one-loop diagrams with 3 < < D and Ec = Ey, = = 0, originating 

f rom the unbroken theory. In this section, we shall use gauge invariant arguments 

to demonstra te that the regularisation works up to D = 8. The key to doing this is 

the BRST construction [40]. We use only the unbroken action (5.30) as we have seen 

tha t all contributions f rom the broken sector are finite by power counting. 

5.4.1 BRST 

We introduce the BRST parameter e which is even under the group grading but odd 

under ghost grading. The BRST algebra is given as 

6A = [V^, r?], (5.76) 

(5.77) 

(5.78) 

(5.79) 
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The unbroken action (5.30) is invariant under these transformations, aa is the naive 

functional measure. 

The next stage is to construct the Lee-Zinn-Justin identities [14]. We need to add 

source terms for the fields and non-linear BRST transformations: 

Ssources = —Stl'/cl^X + J'C + (l] -j- fjC, + A 2 t]] — Tj] 4" igCr]''') . 

(5.80) 

Here is an unconstrained superheld 

J 
A" ^ 

A' 
(5.81) 

but (distinguished from JT by the Lorentz index) expands only over 5'a and erg: 

5'a -t- [5.82) 

so that 

str (5.8.3) 

and these same constraints apply to ( , ( , K. and C. We define the functional 

differential so as to extract the conjugate from under the supertrace [5], %.e. we require 

str J ( f x JC = C, (5.84) 

so we have 
X 

_5_ 
[5.85) 

°If the ^bracket formalism is used, the expansion is just over Sa-
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with a similar definition for Analogously, we choose 

+ (5.86) 

+ (5.87; 
27V (^^0' 

and likewise for the other field and source differentials. 

Viewing the BRST transformations (5.76)-(o.79) as changes in integration variables, 

we find the generator of connected Green's functions IV = In Z satisfies the following 

relation 

{(A"''-'. r ' . + stv fd^x = 0. (5.SS) 

We then perform the Legendre transformation to obtain the equivalent equation for 

the generator of IP I diagrams 

r + • c ^ = — W + str J + JT'C + Cry + f]C,^ , (5.69) 

where C and /; mus t now be viewed as classical fields. The gauge fixing term has 

been extracted so that upon using the antighost Dyson-Schwinger equation 

str 714 = 0, (5.90) 

the simplified Lee-Zinn-Justin identities are obtained 
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5.4.2 Finiteiiess of diagrams with BRST source insertions 

An issue which must now be addressed is the Aniteness (or otherwise) of the new 

diagrams introduced by the B R S T sources "K and Z! in (5.80). Fortunately, since 

these interact ions do not involve higher derivatives it is s t raightforward to adapt 

the a rguments of section 5.2 to show such diagrams are superficially finite by power 

counting. 

We first no te tha t (5.32) remains the same, but (5.33)-(5.35) now become 

L = Ia + —^1 — 'Yl K4'=C2 ~ ~ ^ 
i 3 k 

— VfCn — ^''fCAri — yUCr] — ^£7)2. ( 5 . 9 2 ) 

^ ^ (5.93) 
i j k 

Ec = —'2Ic + ^ ^ A^c + 2 ^ + 3Vc3 + 4 V c 4 + V-ucv ( 5 . 9 4 ) 

j k 

The ghost equat ion (5.36) in the desired form 

+ Eg = (5.95) 

is unchanged, while we also have the new (trivial) relat ions 

E/ : = ^ 7 , - (5.96) 

(5.97) 

(5.98) 

T h e net result of this is t ha t % in the form (5.38) picks up the new terms 

— (2r + 3)E';c — (r + f + 3)^?^ — (2r + 4 ) E r . (5.99) 
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Proposition 1 still holds as do the sufEcient conditions (5.45)-(o.47) since these ensure 

that (5.99) provides a negative contribution to Dp. The only set of diagrams that 

remain unregularised by the covariant derivatives are exactly those defined before as 

One-loop Remainder Diagrams. Thus all diagrams involving BRST source terms are 

Anite in any dimension D. 

5.4.3 Finiteness of one-loop diagrams using Ward Identities 

We write F in terms of its classical and one-loop parts, F = F^ + ^F^. In the unbroken 

theory we expand the one-loop pure ^ vertices as (similar to (C.3) and the double 

supertrace result of the previous section) 

7 i . m = 2 

A„(3:n)] str[^^X2/i) '"-^^,n(2/m)] (5.100) 

The only O(^) terms in (5.91) with one and otherwise only ,4s come from 

and so we can deduce tha t 

- - - ,Pn; 91, - " , 9m) - + P2,P3, ' " ,Pn| , 9m) 

+ Pi; 91,' " , gm) + Anite, (5.102) 

where 'Anite' denotes par ts arising f rom the second t e rm of (5.101) (Aniteness fol-

lowing from the results of subsection 5.4.2). Similar Ward identities can be obtained 

using the cyclicity and invariance under the exchange of the two sets of arguments 

implied by (5.100) [similar to (C.6) and (C.T)]. If we set n, = m = 2, (5.102) and its 

counterparts will relate the longitudinal parts of the four-point vertex to the unbroken 
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three-point vertices, which we know from the preceeding section vanish. Hence, we 

know that the longitudinal part of the four-point vertex is finite in any dimension. 

Thus a divergence, if it is to exist, has to arise in the totally transverse part . However, 

this par t of the four-point vertex must have a tensor s t ructure involving at least four 

external momenta . This means that the superficial degree of divergence has been 

over est imated by four as these powers of momentum are not available for use as loop 

momentum, z.e. instead of Dr = ^ — 4 we have Dr = D — 8. Thus we can infer that 

the one-loop four-point pure ^ vertex is finite in all dimensions D < 8. 

This argument can be extended to show the finiteness of all the remaining diagrams. 

The longitudinal part of the five-point pure vertex is related to the difference of 

finite^ four-point vertices plus finite corrections, while the transverse part actually 

has Dp = D — 0 — 5 and so is hnite for all D < 10. Proceeding in this manner we 

see that for D < 8, the remaining 3 < < D One-loop Remainder diagrams are 

finite. Thus all I P I diagrams are hnite in D < 8 as a consequence of a combination 

of power counting, the supertrace mechanism and gauge invariance. 

5 . 5 U n i t a r i t y 

It was noted earlier tha t the supertrace gives rise to the wrong sign action for certain 

Aelds such as The functional integrals over these Held tha t appear in the partition 

function need to be analytically continued in a manner consistent with the 

symmetry in order for t hem to make sense. Equivalently, the system could be defined 

through exact RG methods [4, 5] which do not suffer f rom such problems of definition. 

Rather than being a sign of instability, %.e. the choice of Fock vacuum leading to an 

unbounded Hamiltonian, covariant quantisation with these wrong signs results in the 

'For D < 8. 
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appearance of negative norm states. These states are unphysical and lead to a non-

unitary S-matrix. A simple quan tum mechanics example which demonstrates this 

point is given below. The situation here is similar in many ways to the Gupta-Bleuler 

quantisation procedure [23], which also has to handle the wrong sign action for time-

like photons in quan tum electrodynamics. Again, choices of vacua exist, but Lorentz 

covariant quantisation picks out the ones with negative norm states. Unfortunately, 

we have no Gupta-Bleuler condition to exclude unphysical states. Instead we will And 

that in the continuum limit A — o o , and fields decouple enabling a unitary 

Yang-Mills theory to be recovered in the sector. 

5.5.1 t / ( l | l ) q u a n t u m mechanics 

We define the Hermit ian superposition to be 

A" 
/ T-l (9 \ X 

[5.103) 

/ 

and consider the Lagrangian (in Minkowski space) of a simple harmonic oscillator: 

I ^ ^ s t r A ' ^ - ^ s t r ; ) : ' ^ (-5.104) 

Classically this Lagrangian is invariant under 5 ' [ / ( l | l ) t ransformations A"], 

however we also get for free invariance under (/(1|1). By Noether 's theorem, these 

transformations are generated by the charges 

Q = z[A',A'], (5.105) 

through the Poisson bracket with s t r w Q . Note tha t the charge for w H vanishes 

which is a reflection of its trivial action on A:'. With a supercovariant derivative 
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defined as in (5.85), the supe rmomen tum is given by 

= (5.106) 
a;!:' ^ 

This differs by some convenient signs f rom the usual set of definitions. We can then 

write the Hami l ton ian as 

/ f = s t r ? A ' - I , (5.107) 

while quant isa t ion is via the graded commuta to r : 

(5.108) 

By including a rb i t r a ry constant supermatr ices and y , we can easily see that this 

respects ( / (1 |1): 

momenta : 

[str f/A:', s t r F ' P ] — z str (/V, (5.109) 

corresponds to the usual relations using the usual definitions for 

P' = P' = (5.110) 

(5.111) Pi) = (5.111) 

(5.112) = (5.112) 

Care needs to be taken since the naive ordering suggested by (5.105) will not leave 

Q supertraceless af te r quant isat ion. This problem can be cured by subtract ing the 

super t race which corresponds, as we will see, to normal ordering: 

G = z [ A ' , ? ] - ^ c r 3 s t r [ A ' , ? ^ ] = 2[;i:',7:'] + 2(73. (5.113) 
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The annihilation and creation operators are chosen to be 

4 = ( , , 1 4 , 

(5.115) 
v 2 

with the normalised vacuum dehned to be .4|0) = 0. These operators have the 

expected graded commutat ion relations: 

= ( ^ 3 ) " ^ ^ . (3.116) 

The vacuum respects [/(1|1) since Q|0) = 0 and we also note that the supercharges 

(5.113) may be written as Q =; [A\A] : i.e. we introduce normal ordering. 

We can rewrite (5.114) and (5.115) in terms of components using the usual definitions 

of momen ta contained in (5.110)-(5.112). We then find tha t has the usual form of 

annihilation operator, namely = (x'' -l-ip^ )/\/2, but the one for actually contains 

a wrong sign: = (a;^—2p^)/\/^. This gives rise to a wrong sign commutat ion relation 

= —1 aa can be easily seen f rom (5.116). This sign is precisely what is needed 

to compensate for the wrong sign of in the Hamiltonian, jif = str.4^.4 + 2, and 

ensuring that is is bounded from below. However, it also results in negative norms 

appearing in the '2' sector. Wi th the normalised ket vectors in this sector given by 

V 72. 

we find that 

< M | n > = ( - l ) " . (5.118) 

Any a t t empt to rectify this by altering the sign in results in an unbounded Hamil-

tonian and a ( / ( l | l ) and 5 ' [ / ( l | l ) violating vacuum. 



5.5.2 Recovery of i ini tar i ty in sec tor 

We established in sections 5.2, 5.3 and 5.4 that covariant derivative spontaneously 

broken theory is finite in all dimensions D < 8. However, more is required 

if this is to be a suitable regulating method for Yang-Mills theory. We also 

need to establish that in the limit A —> oo, Yang-Mills theory can be recovered 

from the 5'(/(yV|.V) scheme. 

Except for all fields become infinitely heavy' in the A — o o limit and consequently 

drop out of the spectrum, so at low energies the gauge group is just x 

We need to ascertain tha t there is no interaction between the two ) gauge fields, 

thus enabling us to ignore the sector in this limit. 

Such a problem is addressed by the Appelquist-Carazzone decoupling theorem [42]. 

This theorem states tha t for a renormalisable theory, as the mass scale of the heavy 

sector tends to infinity, the effective Lagrangian is given by a renormalisable one for 

the light fields with corrections which vanish by inverse powers of the heavy scale 

which is identified with the overall cutoff of the effective theory.^ Our case is actually 

even simpler than this as the heavy mass and cutoff scales have always been identified 

so we need not concern ourselves with subtleties arising from exchanges of limits of 

these scales. It must be stressed that the Appelquist-Carazzone decoupling theorem is 

only applicable to initially renormalisable theories. The s tandard analysis for Yang-

Mills theory carries over to the supergroup case, so we know that spontaneously 

broken is renormalisable in D < 4. 

We therefore conclude tha t in D < 4 dimensions, the effective x 

theory can be described by an effective Lagrangian containing just these fields with 

'The fermionic rj' fields also remain massless. Strictly speaking, we should take into account the 

effects of the ghosts and BRST in the following analysis. However these do not alter the conclusions 

of the Appelquist-Carazzone decoupling theorem [43]. 
®For example, this theorem is used to justify the assumption that a spontaneously broken Grand 

Unified Theory is equivalent to the Standard Model ,9(7(3) x x (7(1) at low scales, 

97 



couplings ^ gr. and with other interactions weighted by appropriate powers of A as 

determined by dimensions. If such an interaction between the and fields was 

to exist, it would have to contain at least two traces, one for each sector. The lowest 

dimension interaction comes from a group theory structure tr.Aj^A^trA^A^ with the 

Lorentz indices somehow contracted. To be gauge invariant under x 

it must take the form (up to In A corrections) 

(5.119) 

where is the field strength of A' and the Lorentz indices are again contracted 

in some fashion. This is irrelevant in any dimension and since it is the minimal 

dimension interaction, we know that all other interactions are irrelevant and disappear 

as A —oo.^ 

The fact that we have decoupled sectors as A — o o is actually a statement that 

unitarity has been restored in the sector. A non-unitary amplitude can only arise 

from contributions with internal propagators. Cutkosky cutting such an amplitude 

will then result in a non-vanishing amplitude connecting the .4^ and sector [23] 

which we have shown cannot exist in the continuum limit. 

5.6 Summary and conclusions 

A method of regularising 5 ' [ / ( # ) Yang-Mills theory in a gauge invariant manner in 

fixed dimensions D < 4 has been established. By the use of a higher covariant 

derivatives all but a small number of one-loop IPI diagrams of spontaneously broken 

SU(N\N) gauge theory were shown to be finite. In turn, these troublesome diagrams 

were themselves shown to be finite in D < 8 either by cancellations caused by the 

®This is true in D < 4 dimensions. In D > 4 the couplings g, are non-renormalisable and higher 
order interactions are unsuppressed. Thus not only is D < 4 sufficient, it is also necessary. 
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supersymmetry through the supertrace mechanism, or by appealing to gauge invari-

ance arguments via Ward Identities. For the scheme to provide regularisation for 

Yang-Mills theory it is necessary to be able to recover it when the regular-

isation scheme is tuned to a certain limit. The first stage in this was to introduce 

spontaneous symmetry breaking so that all fields except the field we wish to regulate 

and a wrong sign copy, gain mass. When these masses are taken to infinity they 

decouple f rom the massless fields. The last issue to address is whether the remaining 

maasless fields interact in the continuum limit; if so, the embedded theory 

would violate unitarity. Fortunately, the Appelquist-Carazzone theorem, applicable 

in D < 4, guarantees no such interactions can exist. 

There are a number of obvious applications and extensions to this work. Since these 

ideas first arose within the context of the exact RG, it would be very appealing to 

construct a fully .^[/(A'lA^) invariant flow equation. Another at t ract ive aspect of this 

work would be to investigate large AA Yang-Mills theory. The interest here lies with 

the fact tha t at large A ,̂ the supertrace mechanism ensures tha t there are no quantum 

corrections in the symmetr ic phase. Of course these ideas would also benefit from the 

introduction of quarks (and their bosonic superpartners) so direct comparison with 

physically important theories such as quantum chromodynamics would be possible. 
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A p p e n d i x A 

Proof of eq. (4.29) 

This proof of (4.29) is based upon that of [24]. Suppose we have a supermatrix of the 

special form 

N = - ^ 
0 D 

[A.l) 

Then it is evident that 

e x p N 
^ exp A B ' ^ 

(A.2 
0 e x p D j 

for some complicated B ' whose exact form is not required. Then by using the deEni-

tion of the superdeterminant (4.20) we find 

- ssa 
Since A and D are ordinary matrices, we can fur ther conclude tha t 

sde tN = 2 ^ . (A.4) 
exp t r D 
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z.e. the result (4.29) holds if N is of the form (A.2). Similarly, it holds if N is of the 

form 

^ A 0 

C D 

N 
\ 

/ 
(A.5) 

Next we use the relation (which we shall not prove here) s d e t ( R S ) — sde tRsde tS 

(for any supermatrices R and S), to deduce tha t 

sdet 
/ 

exp 
A B 

C D 

^ - A - B ^ 
exp 

sdet 

sdet 

sdet 

0 

exp 

exp 

exp 

D 

A B 

C D 

A B 

C D 

A B 

C D 

sdet 

exp 

exp 

- A - B 
exp 

-str 

-str 

D 

/ A B ^ 

0 D n 

A B ^ 

C D y j 

(A.6) 

(A.7; 

(A.8) 

(A.9) 

However we could use the Campbell-Baker-Hasudroff formula to rewrite (A.6) as 

sdet exp 
0 0 

C 0 
-l-M' A.IO) 

where M ' is a set of commutators partit ioned as 

M ' 
A ' 0 

C D ' 
[A. l l ) 
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Since the matr ix to be exponentiated in (A.10) is of the form (A.5) (z.e. of a form for 

which we know (4.29) holds), (A.10) becomes 

exp str 
0 0 

C 0 
+ M' 1, (A.12) 

since the supertrace of commutators vanishes. Thus we know 

sdet exp 
A B ^ 

C D 
exp -str 

A B 

C D 
(A.13) 

and that (4.29) holds for general supermatrices. 

102 



A p p e n d i x B 

Comple teness relat ions 

B.l SU{N\M) 

The generators of 5 '[ ' (Ar |M) provide a complete set of supertraceless matrices (as 

can be demonstra ted by a simple counting argument). Hence a general (non-super) 

matr ix denoted X can be extended in these generators supplemented by any matr ix 

with an non-vanishing supertrace. For the purposes of this derivation we employ the 

, 0 ^ 
identity ]l;v+Af — 

0 llM/ 
to perform the latter role. Thus we have 

+ (B.l) 

where and are coefficients and there is an implied sum over A. Furthermore, 

= 2s t r ( r "^X) , 
1 (B.2) 
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Thus we can re-express (B. l ) as 

(A-)', = 2 (era)'-, (A-)-; {T^)• ^ (a , ) ' , { X ) \ S ) . (B.3) 

Since X is an arbitrary matr ix , this implies that 

•S'„ S', = 2 (<^3)', {T,y, + (a3) '„ i ' , , (B.4) 

which, after re-arrangement and relabelling, returns the form of (4.43) 

(T-'y, (T,r, = i (.3)-, S) - • i', ̂  (B,5) 

B.2 SU{N\N) 

The 5'a generators of 5 '[ /(A^|#) as defined above (4.46) form a complete set of 

traceless and supertraceless matrices. As a consequence, a general (non-super) matr ix 

Y can be expanded in terms of 6'a, ]l2w and era, z.e. 

Y = -K yilzAT + (B.6) 

where there is a sum over a and the coefficients K", Y and Y are determined by 

= 2s t r (6 ' "Y) , 

F = A M Y ) . . (B.7) 

y = A s t r ( Y ) , 

which means that 

( v y , = 2 w , (5») '„. ( m i s ' y , + i ( > ' ) \ s>i + ^ ( „ A ( n ' . W , • (B.8) 
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Using the fact that Y is an arbitrary matr ix , we deduce that 

- 2 ((T3)* ^ ((^3)% , (B.9) 

leading to the completeness relation for the 6'a generators of 6'C/(A |̂A/^) (4.49) 

(5"')'^ (5'a)^( = - (0-3)% ^ [((̂ 3̂)%- (cTs)^;] . (B.IO) 
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A p p e n d i x C 

W i n e no ta t ion 

We introduce the 'wine' notat ion of refs [3, 4, 5]. Given a generic kernel 

we can construct the wine This functional is a gauge covariantization of 

the original kernel, and incorporates parallel transport of the tensor representation. 

If W'(a;) and # (g) VV representations of the gauge group, we have 

u { » ' } v ••= / d ' ' x d ' ' y u ' , ( x ) ^ , { W ] ' - „ v l { y ) (C, l ) 

A wide choice exists for the exact form of the wine; we shall only use the following 

representation 

u { i y } v = str y V ^ / A " ) - (C.2) 

where is defined as in (5.2). The wine can be expanded in momentum space in 

terms of the gauge field [see (5.1)] as 

u{l 'F}v = v{PF}u = 
oo . 
^ y / ^ ^ ^ ^ . . . f/ Pn d Qi . , . cl Qn (pi, • • . iPrf) 9l 7 • • • , (In; -S) 

m,n=Q 

Str [ u ( r ) ^ ^ X P l ) - - - ^ , in (Pn)v (5 )Ai (9 l ) - - .^:,m(9m)]. (C.3) 
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Such an expansion is represented graphically in figure C. l , with the labelling scheme 

shown in figure C.2. 

Figure C . l : Wine expansion, where the thick lines represent the full series. 

l^n 
qn 

1/3 Z/2 
93 92 91 

Pi P2 P3 
^1 fJ-n 

Figure C.2: Convention for wine labelling 

We use the following shorthand to reduce the plethora of arguments indices, commas 

and semi-colons. For the n = 0 case of (C.3), we replace the second string of A fields 

by the identity and define 

...Hn (Pl) • • • ) Pn ! •^) — Ml •••Mn, (Pl) * • • 5 Pn! 1 ^ ) >5)) (C.4) 

while for the m = n = 0 case we regain the original kernel 

(C.5) 
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Evidently f rom the definition of a wine we have the exchange identity 

(Pl 7 • • • ? Pn J • 7 Q.TI 7 '^) UI •••fJ-n (^1 7 ' ' ' 7 Qn 1 Pi 7 • ' • 5 Pn ? ^) • 

(C.6) 

Furthermore, charge conjugation invariance (arising f rom the symmetry ^4;, 44 — 

implies 

•••ftn (Pl 5 • • • 5 Pn 1 Ql^ • • • 1 (in-, 5̂ •S) 

= (Pn, . . . ,Pi; 9m, . . . , gi; 5, r). (C.7) 
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A p p e n d i x D 

Some Feynman rules for SU(N\N) 

gauge theo ry 

Some of the Feynman rules for the broken action contained in (5.28) are given here. 

The Feynman rules were derived as follows: each rule is the sum of all possible ways 

of assigning the relevant fields to points but maintaining the order within supertraces. 

This means tha t when it comes to calculating diagrams, care has to be taken to ensure 

that all possible combinatorics and topologies are taken into account. The following 

short hand is employed: 

6°^ = + (D.l) 

(D.2) 

as well as the wine notat ion described in Appendix C. 
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The ^ propagator is 

+r'' a/) 

P' 

9, + 
( S ' - f c - ' ) 

c-ip2 + 4A2c-i (c-ip2 + 4A2c-i) (^c-ip2 + 4A2c-i) j ' 
(D.3) 

In double index notation we And 

{{A,y ,{p) {A.)\{~p)) 

1 
(0-3)% + ((̂ 3)% (cTs)̂ / + (o'3)\(^^; 

Qnu Pfj-Pi^ i^p ) 
r 

Cp P 1^2 ^4 ^c_l^_l 

+ - {(̂ 'f (0'3)% - ((^'3)'/^%} 

_ f 
+ 

c-^p2 + 4A2c-i (c-ip2 4- 4A^c-i) + 4A2c-^) 
. (D.4) 

The C propagator is given by 

('?'3)% - . (D.5) 
P Vi Cp 

The superghost propagator is found to be 

+ T 
y«/) 

[c-lcpp2 C- lCpp2+4A2^- l J 
(D.6) 
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Or equivalently 

1 1 

C/CpP" 

+ M W , - W W ' : , } C-lCpp2 + 4 A 2 ^ - l 
(D.7) 

The pure interaction was found to have the Feynman rule 

= 2 [̂cpXP;/<^AA, + c^^(9;r,p)(pAr;, -p . r^A,; ) 

^ r ,p ) + 2 cycles of (p^, n ) ] 

X str(5'°'6''^5"^). 

(D.8) 

Three point interactions with inserted 1T3S (arising from the symmetry breaking) also 

occur. The positioning of a (73 is indicated by a wedge. 

[c^ X9; P, ^ (p; r, g) + C;̂  ^ (r; g, p) 

X str((73^''(;3^^5'^). 

(D.9) 

(We refrain from including the double index versions of these vertices.] 
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Some more three point Feynman rules are given below. 

[cr'r, - c~'5„ + c;'(p; r, q) (j • r 

1 

g r=-i 
4 

X((73)' (D.IO) 

V 

\ 

f \ Y 
\ \ 

V (D. l l ) 

.c 

7 

^TRTOirX grc^c,g^str(6'°'5'^5"^) 

Y (D.12) 
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