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We investigate the convergence of the derivative expansion of the exact renormali-
sation group, by using it to compute the @ function of scalar Ap®* theory. We show
that the derivative expansion of the Polchinski flow equation converges at one loop
for certain fast falling smooth cutoffs. The derivative expansion of the Legendre flow
equation trivially converges at one loop, but also at two loops: slowly with sharp cut-
off (as a momentum-scale expansion), and rapidly in the case of a smooth exponential
cutoff. Finally, we show that the two loop contributions to certain higher derivative
operators (not involved in ) have divergent momentum-scale expansions for sharp
cutoff, but the smooth exponential cutoff gives convergent derivative expansions for

all such operators with any number of derivatives.

In the latter part of the thesis, we address the problems of applying the exact renor-
malisation group to gauge theories. A regularisation scheme utilising higher covari-
ant derivatives and the spontaneous symmetry breaking of the gauge supergroup

SU(N|N) is introduced and it is demonstrated to be finite to all orders of perturba-

tion theory.
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Chapter 1

Introduction

Central to the acceptance of quantum field theories (QFTs) as the best description of
physics on sub-nuclear scales, has been the deepening in understanding of the process
of renormalisation. Through this development, the attitude towards the infinities that
pervade QFT calculations has shifted from the opinion that they are a disease that
has to be removed by a seemingly ad hoc mathematical trick, to the view that they
are, in some sense, natural consequences of the underlying physics. This latter view

has arisen from the insights gleaned from the formulation of the Wilsonian approach

to the Renormalisation Group (RG) [1].

At the heart of this approach lies the concept of effective field theories. The viewpoint
of the existence of a fundamental QFT (in the sense that it is valid for all particles at
all energy scales) is abandoned, to be replaced by an effective theory that attempts
only to describe physics up to a specified high energy cutoff. The Lagrangian that is
suitable for this energy range is kept general in the sense that all possible interactions
consistent with the syvmmetries of the system are included. There is no longer a
problem with divergences (we have regularised). The issue now is that of predictive

power; is the theory now capable of making predictions given that it contains an



infinite number of coupling constants? Remarkably, the answer can often be given in
the affirmative. If it can be demonstrated that this is the case, this is equivalent to

proving the renormalisability of the theory.

From such ideas. flow equations (that are non-perturbative in the coupling constants)
for the QI'T can be derived. However, to make progress with calculations it is often
necessary to make approximations. One very powerful method is that of using the
derivative expansion; a Taylor expansion in the momenta of the vertices of the QFT.
An obvious issue which must be considered and which is addressed in this thesis, is

under which conditions such an expansion converges.

The extension of the Wilsonian RG from scalar field theory where it has proved very
powerful. to the more physically relevant topic, as far as particle physics is COHCEI‘D;ed,
of gauge theories (specifically Yang-Mills theories) has been fraught with difficulty.
The main problem lies with the incompatibility of restricting the momentum domain
over which the theory is applied with the fact that observables are invariant under

internal gauge symmetries.

Until recently. this obstacle has been tackled by initially breaking the gauge invari-
ance with the aim of re-imposing it at the end of the calculation [2]. Obviously such
a method is far from ideal. However, a fresh approach [3, 4, 5] enables gauge invari-
ance to be maintained at all stages. This is achieved by first regularising via higher
covariant derivatives, the gauge theory equivalent of a momentum space cutoff. It is
well established though, that this cannot remove all divergences. However, by adding
extra gauge invariant particles known as Pauli-Villars fields, complete regularisation
can be achieved. It has been postulated that a similar but more elegant mecha-
nism can be obtained by embedding the gauge group within a larger supersymmetric
gauge group which is then spontaneously broken to regain the low energy physics of

the original theory. We prove that this is the case in this thesis.



This thesis falls into two main parts and is structured as follows. Chapter 2 is an
introductory chapter and presents some of the formalism and background necessary
for dealing with the Wilsonian RG. Two versions of the flow equation are constructed
followed by a discussion of how renormalisability is expressed within this framework.
We conclude with a review of some approximation methods in current use. Chap-
ter 3 then considers some of the conditions necessary for one such approximation
method, the derivative expansion, to converge. The Wilson/Polchinski and Legendre
flow equations are considered at one and two loops for the 8 function of scalar Ag?
field theory for a variety of cutoffs. Chapter 4 is another introductory chapter, this
time concentrating on the problems concerned with constructing a gauge invariant
regularisation scheme compatible with Wilsonian ideas, and some of the group theo-
retical background for the scheme introduced in chapter 5. The final chapter sets up
the regularisation scheme utilising higher covariant derivatives and supersymmetric

gauge groups and demonstrates that it does indeed render the desired theory finite.



Chapter 2

Exact renormalisation group

2.1 Wilson’s renormalisation group

The concepts that provide the basis of the exact renormalisation group were first
formulated within the context of statistical field theory by Wilson and co-workers [1].
The problem of performing calculations concerning e.g. a lattice of spins is exacer-
bated when the system is undergoing a continuous phase transition since the (already
large) number of degrees of freedom which are effectively interacting with one an-
other, diverges in this regime. A procedure for systematically reducing the degrees of
freedom yet retaining the basic physics of the model is the concept of blocking, first

introduced by Kadanoff [6].

This is the idea that in e.g. an array of spins such as a ferromagnet, spins could
be grouped together into blocks and treated as if they were single spins with local
interactions.! Of course these ‘new’ interactions would not be exactly the same as

in the original and on short scales the new system would differ markedly from the

1But not necessarily just nearest neighbour interactions.



old one. However they exhibit the same long distance behaviour and it is only this
behaviour that we are interested in describing. Since the number of degrees of freedom
falls with this procedure, iteration reduces them to a manageable level. The payment
for this is that the new system will in general be much more complicated than the
original, containing as it does many new interactions. However, as we shall see in
the context of quantum field theory, we can obtain flow equations for the changes in
coupling constants of the new interactions with the iteration of the procedure and

thus extract much useful information from this.

This thesis is concerned with the exact RG? which takes these ideas and applies them
to quantum field theories directly in the continuum and as such, we will no longer refer
to statistical mechanics examples. As we shall see there are a number of different (but
equivalent) flow equations that can be derived using the exact RG approach. The

-
{

work in this chapter is based upon that of [7]-[12] unless otherwise specified.

2.2 Wilson/Polchinski flow equation

The partition function for a single scalar field ¢ in D Euclidean spacetime dimensions
is given by®

Z[J] =/Ds-9 exp{—3p- A7 o — Sl + J - ¢}, (2.1)

with the propagator denoted by A, the (bare) interactions contained within S¥* and

we have included a source J for the field. An effective ultra-violet cutoff is introduced

via a modification of the propagator

1 Cr 2 A2
A= o Apy = ﬂ%/——l (2.2)

?Also referred to as the continuum RG.
3The following shorthand is employed a - b - ¢ = [dPz [dPya(z)b(z,y) c(y),
d-e= [dPzd(z)e(x)



Cuv(g?®/A*®) is an as yet unspecified function of its argument (the argument has to be
¢?/A? from Lorentz invariance and dimensions) with the properties Cyyv(0) = 1 and
Cuv — 0 sufficiently fast as ¢ — oo. In a similar fashion, we define an IR modified
propagator Arr = Crr(q?/A?) /¢ (with Cuv(p?/A?) + Crr(p?/A?) = 1). Figure 2.1
shows the properties of these cutoff functions.

\

0

Figure 2.1: Sketch of the properties of the cutoff functions

Although it is not immediately obvious, we are able to rewrite (2.1) (up to an unin-

teresting constant of proportionality which we drop) as

21 = [PosDoc expl-tes - ATk 95 — boe Ajh e
”5'}\r:)t{80> o+ (ps +o)} (2.3)

The equivalence of (2.3) to (2.1) is evident once the substitutions
P> = ¢ —pc, followedby oc=¢"+Cuv g (2.4)
are made in (2.3). This leaves (2.3) in the form
Z[J] = /'D%’Ds:’ exp{—3¢ AT o= 1 (ALY + ALp) ¢ = Silel +J -9}, (2.5)

at which point the Gaussian integral over ¢’ can be performed, resulting in (2.1) (up

6



to the aforementioned constant of proportionality).

From the manner in which it propagates, the ¢s (¢<) can be interpreted as the
momentum modes higher (lower) than A, with the modes lower (higher) than A

damped. If the integral over the higher modes is isolated in (2.3), it can be expressed

as

Z[J]:/DW exp{—2p< - Ajy - o<} Zalp<, I], (2.6)

where Zx[¢<, J] is defined as
Zalp<,J] = /'D% exp{—tos AT 05 — Si¥los + oo+ J - (95 +0)} (2.7)

However, Zj[p<. /] does not depend upon ¢, and J separately but rather on the

sum Asp - J 4+ <. Upon the substitution ¢ = ¢ — @<, (2.7) becomes

Zilp<, J] = eXP{—%P<'Afé'@<}/D<P exp{—3 ¢ - Afp- v =Sl +o (J+ AT <)}
(2.8)

We proceed by integrating over the ¢ variable to obtain

Znlp<, J] = exp{—39< - ATz - 9} X
x exp{=Siv[F1} exp{3(J + ATk -0<) - Arr- (J + AL - <)}
=exp{3J - Amr-J+J o} exp{—5(J + Az 9<)  Arr- (S + Afz - 90)} X
x exp{=Si (5]} exp{3(J + Az - 9<) - Arr- (J + AT - )} (2.9)

When the derivatives in Sj{;t[g‘%] are performed, they are replaced by either Ajg-J+p <

or by Arg, a fact which can be expressed as

Zalp<, ] =exp{3J - Amr-J +J - = SalArr- T + ]} (2.10)

for some functional Sy. confirming the statement given below (2.7). We refer to Sy



as the Wilsonian effective action.

The exact RG flow equations follow from the observation that (2.7) carries its de-
pendence upon \ entirely in the s - A7 - ¢ term. Consequently, when Zj is
differentiated with respect to A, the flow equation for Z, is found to be

9 1[5 ) d . d 5
(DAZA[(K'J] -5 (6] —P< (EXA[R> ’ (5] *99<> Zilpe. J]. (2.11)

/

By explicitly performing these functional derivatives using (2.10), Polchinski’s version

of the Wilson flow equation® is obtained® (we shall refer to it as the Wilson/Polchinski

flow equation):

J 105y dApy 85y 1. 0Apy %S
—Sale] = = X L . ) (2.12)
g\ 28N 0N SA 2 ON  Spdyp
Furthermore. with the momentum expanded action given by
- 0" Sh [
S(p1,. -, Pas ) = sl (2.13)

do(p1) -+~ d¢(pn)’

we can obtain the momentum expanded Wilson/Polchinski flow equation which will

be extensively used in chapter 3:

ad . -
ﬂé(pl,...,pn;/\) = Z S(——-Pl,]1;/\.)[XA(P1)A5(P1,]2;A)
! (L1}

1 rdq . .o
—:?:/WAA(C])b(q,—%PIw--:Pn§A)-, (214)

where [} and I; are disjoint subsets of external momenta such that /; N [, = @ and
LUl ={p1,...,pn}. and we define K5 (p) = a—aKAUV(]f/AZ). The sum over {Iy, I}

utilises the Bose symmetry so pairs are counted only once ie. {I1,l;} = {[,;}.

*Wilson’s version is recovered from that of Polchinski via the substitution # = —S and the

change of variables © — «/Cpv.
>Tr stands for a spacetime trace i.e. Tr(a -b) = dezdey alz, y) by, z).



The momentum P, is defined to be Py, = Y-, ., Pi- The equation can be represented
graphically as in figure 2.2, which manifestly displays how the Wilson/Polchinski flow
equation is composed of a tree structure contribution and a one-particle irreducible

(1PI) part.

d ! _ 1 \
oA = ) -3 :
; {1,L}

Figure 2.2: Graphical representation of the momentum expanded Wilson/Polchinski
flow equation. Crosses denote differentiation with respect to A.

2.3 Legendre flow equation

We need not consider a Wilson inspired RG flow equation only for the action. A flow
equation for the Legendre effective action may also be constructed which has many
additional beneficial properties. We start by observing that the cutoff A can also
be regarded as an infrared cutoff for the modes that have already been integrated
out. This can most easily be seen in (2.7) which we can reinterpret as the partition

function of an infrared cutoff theory with . regarded as an external field.

We start by introducing the Wilsonian generating functional for connected Green's
functions Wi[pc, J] = In Za[w<, J]. Furthermore, with the classical field ¢ defined
via ¢ = Wy /d.J, we can construct [4[¢], the interaction part of the Legendre

effective action:

QW)
—
Ot
S

(6% — o) Ajh- (6% — o) + Tal6™] = ~Waloa, J] +J - 67 (2.1

W |



Using (2.11) we obtain the flow equation for I,

g 1[[iW, o\ [6Wa SWa 9

_ - __ RPN I S22, Ty L

T 2{(5,1 *’<) (az\A[R> <5J *’<>+ (5J5J FACIR
2

(2.16)

where Tr again denotes a spacetime trace. From (2.15) we can derive the relation

52W, L8y \7
A N L L 2.17
5757 (A”? T SeTagt) (2:17)

which, after exploiting (2.15) once more, results in the following flow equation for the

effective action:

0 . o Lo Joarh [ &Ta \7 ) 1e
galale ]—zrh"{ o\ ST s [ (2.13)

This equation is most usefully expressed when we separate off the uninteresting vac-
uum energy by splitting the two-point function into its field dependent and field
independent (effective self energy) parts:

62Ty

Spcl 5ol Fey[0] + oy (2.19)
z 0Py

This leads to the equation we shall refer to as the Legendre flow equation:

] = ——ﬂ{ﬁﬁ?f.(l+[A;§+E]“1.f)“}. (2.20)

In the work contained in chapter 3, the most useful form of this expression is in terms
of a flow equation for the 1PI vertices

o d*q ¢* 5 Cuv(q?/A?)

—I'(p1,....pu:A) = s E(q, Py, Pas A), (2.
TP Pi) = [ (g D PP Pt (@20

10



where

1
E(q Pi.-. '7p7l;A) = —Sr(qa—quh' - vpn:»\)
T Z (g, ~g— P, I;; \)G(Jlg+ P, [: \)I'(q = Pa, —q, [3; A)

{I.I;}
— Y Tlag,—q—P,I;;M)G(lq+ Pi]:\) x
(.Y
D(q+Pi,—q+ Py, I5; A)G(lg = Pof: AT (q — P2, —q, Io; A)

e L (2.22)

Similarly to before, P; = 37, </ p; and 3y, 1,3.1,..1,, 15 @ sum over disjoint subsets
Lnil; =0 (Vij) with U2, ; = {p1,...,pn}. Again, the symmetrization {I}, [5}
means this pair is counted only once. G(p; A) is defined by

Cra(p?/A?) (2
p? + Crr(p*/A?)E(p; A) '

Q]
o
[N
e’

G(pA) =

where ¥ is again the (field independent) self energy.

All the equations following (2.20) apply to smooth cutoff profiles only, as care needs
to be taken with regard to sharp cutoffs. If we denote the width over which the cutoff
effectively varies as 2¢, i.e. Cyv(¢*/A?) ~ 1 for ¢ < A — € and Cyv(g?/A?) ~ 0 for
g > A + €, we can investigate the effect of letting ¢ — 0. First we need to establish
the following lemma:
9 2742 2742 ! ‘

- BKCIR(p‘/‘\‘) f(Crr(p*/A%),A) — §(A ——p)/O dt f(t,p) ase—0, (2.24)

in which we require f(Crgr, A) to be a function whose dependence upon A is continuous

at A = pas e = 0. The proof of (2.24) lies with the identity

_ (ﬁ_OIR(pQ/A?)> f(CIR(p2/1\2>,1’\). (2.25)
A=A

a ! .
[EK /Cm(;ﬁ/m)dt S, A\I)] dA

11



We now note that the integral on the left hand side (LHS) is a representation of a
(smoothed) step function of height f dt f(t..\;). On taking the limit € — 0, the LHS

of (2.25) becomes the right hand side (RHS) of (2.24). Thus we find, for example

— (B CR(PP/AY) Crr(p?/A?) — &
— (& Cnlp*/A) Chalp?/A2) — §0
in the sharp cutoff limit.

Thus returning to (2.20) we now have the mathematical tools to allow the cutoft to

become sharp. We find

F(q,p1,--,pn; A), (2.27)

o [d'q d(g—A)
= /(%)4 ¢* + S(g; A)

where E(q, p1....,Pni ) is as given in (2.22) except now G/(p; A) is defined by

O(p — A) (2.
P+ E(pA) .

Do
(]
oo
~—

G(pA) =

2.4 Renormalisability

Perhaps the greatest success to date of the Wilsonian approach has been the elegance
with which the issue of renormalisability is addressed. The standard cumbersome
and complicated method involving skeleton expansions is replaced by a much more
physically intuitive argument. As mentioned in chapter 1, it is now a question of
whether the theory retains any predictive power with an infinite number of couplings.
One manner in which this could be demonstrated is via the introduction of an overall
cutoff Ag, and to check the Ag — oo limit exists. However, the exact RG does not
require such artificial constructions and allows us to deal directly in the continuum

using renormalised quantities, an approach which we will follow here. In this section



we will use only dimensionless quantities constructed from the dimensionful ones using

appropriate powers of A.
A fixed point of the flow of the action® in the space of all possible (i.e. an infinite
number of) interactions, 5™, is defined by

)
2 5*[o] = 0. 2.
AgeS7fe) = 0 (2.29)

Since the flow equation is written in terms of dimensionless quantities, the indepen-
dence of A exhibited by 5* means that the action at the fixed point must have no
scale dependence at all. Since a massive theory has a mass to set a scale and a non-
continuum theory has an upper cutoff to perform the same réle, we conclude that the

physics of massless continuum theories must be described entirely by fixed points.

Near a fixed point, we introduce new couplings
ni =Y — ;> (2.30)

where g7 1s the value of the coupling at the fixed point. We can then approximate

the flow of these couplings as

o .
T RETT (2.31)

J

A

where we have neglected contributions of O(n?) and higher, and Y;; is a matrix of

constants. The eigenvalues and eigenvectors of Y are defined by

> Y6 =-ne”  (nosum on k). (2:32)
J

6These arguments also be extended to the case of the Legendre flow equation.

13



The couplings can be expanded in terms of these eigenvectors
k .
=S ay €Y, (2.33)
k

and (2.31) requires that the A-dependent coefficients «y satisfy

Oai(/\)
OA

A = =X a;(A) (no sum on ), (2.34)

where again we have neglected terms of O(c?). This implies that to linear order, we

have

AN A ;
=% (5) 7 et €, (239

for some arbitrary mass scale y. Thus near a fixed point a coupling can flow away from
the fixed point value or towards it depending on whether ); is positive or negative.”
The n; (or g;) for which A; > 0 are referred to as relevant couplings and those where

Ai < 0 are known as rrelevant. In the vicinity of the fixed point we can also write

(to linear order)

\i
, » NI o
Silel = 57+ Lot (§) 0l (2.36)
which defines the scaling operators O;.

This formalism allows us to tackle the slightly less straight forward situation of mas-
sive theories. In the (infinite dimensional) space of actions through which RG tra-
jectories flow, we are able to define the critical manifold. This manifold contains
all the actions that will yield a massless continuum limit. The critical manifold is
spanned by the infinite number of irrelevant operators with other directions spanned

by (typically only one) relevant operators.

After parameterising the bare action, we are able to move slightly off the critical

“If A\; = 0 the behaviour has to be followed to second order where the power law dependency
is replaced by logarithmic evolution. In the following discussion these so-called marginal couplings
will not be explicitly considered.
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‘Infinitely massive’
fixed point

Renormalised
trajectory

Figure 2.3: Procedure for tuning to the massive continuum limit

manifold (see figure 2.3). Initially the RG flow will still move towards the fixed point.
However as the fixed point is approached, the flow will shoot off along one of the
relevant directions to reach a fixed point that describes an infinitely massive theory.
The continuum limit of a (finite) massive theory can be extracted by the following
procedure. With the bare action being tuned back towards the critical manifold,
physical quantities are re-expressed in terms of renormalised ones accounting for the
diverging correlation length. When it reaches the critical manifold, the RG trajectory
splits into a part going into the fixed point and a part that leaves the fixed point in
the relevant directions. This is known as a renormalised trajectory and the actions

that lie upon it are referred to as ‘perfect actions’. The end of this path has a finite

limit when expressed in renormalised quantities. This trajectory is determined by

n p
' Cr ok ; ILL J 5
Salel = S7lel+ > o <K> O;l¢l, (2.37)
{relje_v;nt}
(the sum over j is restricted to the n relevant directions).

Thus given the boundary condition (2.37) and the RG flow equation, the continuum

15



limit is fully specified

Sale] = Sae](al, ..., am). (2.38)

The next step is to define the renormalised couplings g*(A). We choose the renormal-

isation conditions such that

g ~ ol (/A (2.39)

as A — oo to be consistent with the form of O;[p]. But these relations can also be

inverted i.e. .
. WY
& = lim <i> F(A), (2.40)

Ao \ 1
and substituting into (2.38) returns the continuum action in terms of the renormalised
field () the relevant renormalised couplings (g* to ¢”) and the anomalous dimension®
(7):

Salel = Salel(g (), - g™ (M), 4(A)), (241)

and n is finite. This is an equivalent statement to renormalisability since only a finite

number of finite quantities need be considered in describing the theory.

2.5 [ function

An important concept in the field of QFTs is that of 8 functions. This contains
information on how the renormalised couplings” (g;) vary according to scale and is
defined as:

d
Bi = A7y 2.42

8The anomalous dimension (7) is obtained from the wavefunction renormalisation (Z) via y =
A %Z. The wavefunction renormalisation factor is introduced to ensure the coefficient of the kinetic

term is .

q . . . “
“i.e. we restrict ourselves to the relevant directions.
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In the next chapter we will make extensive use of the 3 function for Ap* scalar field
theory. It will prove useful to include wavefunction renormalisation separately within

these calculations so there we choose to redefine it as

a A o 4
B(A) = AEX-Z?(—/—\—)’ (2.43)

where Z is the wavefunction renormalisation. An important property displayed by the
o function is that the first two orders in the perturbative expansion are universal, i.e.

they are independent of renormalisation scheme. We write the perturbative expansion

as

B(A) = BoA? + BiAS 4 -+ (2.44)

If we have another renormalisation scheme with different coupling X', we can define

a ( function for this scheme as well:

BN) = BAN*+ B0 + -, (2.45)
The couplings in the two schemes must be related
N=A+a i+, (2.46)
which can be re-written as
A= N =@ A (2.47)
If we operate with A% upon (2.47) and use the definition of (2.42) we find
Bod? BN o = BN 4 BN T 20 (BN TGN 4, (2.88)
and expressing A’ as a function of A on the RHS of (2.48) shows that
GodA2 4 BN o = BN+ BN+ (2.49)
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from which we can see that, as promised, 8) = Jy and Gy = 8;. The § function for

massless Ao* theory in four dimensions can be calculated using standard perturbation
¥ g

theory [14] to be
B(A) =3 Yo 1 X + O(A\Y) (2.50)
(4w 3 (4m)d ' o

2.6 Approximations

The complexity of the flow equations has prevented the formulation of general solu-
tions. This has resulted in a number of approximation techniques being developed

and investigated. In this section two of the most widely used methods are discussed.

2.6.1 Truncation

The most obvious method of approximation that can be employed is to truncate the
number of operators that appear in the effective action Sy. We can then construct a
number of flow equations for the coefficients of these operators by equating the terms
on the two sides of the original flow equation (2.12) [or (2.20)]. The approximation
lies in neglecting terms from the RHS of the equation which are not members of the

chosen set of operators.

The main problem with using such an approximation scheme is its restricted area of
applicability. Since this approach corresponds to a truncation in the powers of the
field about a selected point, sensible answers can only be obtained if the field ¢ does
not fluctuate much. This amounts to stating that ¢ is always close to the mean field,
a regime in which weak coupling theory is valid anyhow. In non-perturbative settings
it is found that the expansion fails to converge and spurious fixed points are also

generated [10].



2.6.2 Derivative/momentum scale expansion

Within statistical mechanics a successfully applied approximation has been trunca-
tions in real space spin systems. The analogue in QFT is to perform a short distance
expansion of the effective action. If the cutoff utilised has a smooth profile, this

corresponds to a derivative expansion
Sy~ [dPe {V (0, A) + 2(8up) K, A) + 00"} (2.51)

Such an expansion seems a particularly natural one, amounting to an expansion in
external momenta around p = 0. If the higher derivative terms are not ‘small’ the
expansion will fail, but this is probably also an indication that the description of
the theory in terms of the field content is not appropriate and that other degrees of

freedom need to be considered.

When a sharp cutoff is imposed, care needs to be taken when taking a short distance
expansion. Due to the non-analyticity that is introduced, we are no longer able to
expand in powers of momentum. The solutions to the flow equation (2.27) depend
upon the angles between the p; even when any p; — 0; i.e. the solutions are not
analytic in this regime. This behaviour is displayed by terms such as §(|p +q| —A) ~
9(q.p) for p << \ since |g| = A, which could appear in the second term of (2.22).

As a consequence. expansions have to be made in momentum scale |p|.

It is evident that if a sharp cutoff (i.e. Cyv(p*/A?) = 8(A — p)) is employed then
the momentum scale expansion of the Wilson/Polchinski equation runs into addi-
tional problems. The expansion corresponds to expanding Sy in the scale of external
momenta, regarding this as small compared to A. The differentiation of the inter-
nal propagator of the tree term of (2.14) (c.f. figure 2.2) results in a delta function
restricting momentum flow to be A. However momentum conservation requires the

flow should be of order the external momenta which is typically much lower. Conse-
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quently, the tree term of the Wilson/Polchinski equation gets discarded along with
loop diagrams with more than one vertex (since these arise from the substitution of
the tree parts of 54 into the second term of the equation). Since this is such a great
mutilation of the theory we apply the such an expansion only to the 1PI parts of the

action, l.e. only to the Legendre flow equation.

The momentum scale expansion can be incorporated via the introduction of a param-
eter, p, which can be set equal to one at a later time. The 1P vertices of (2.22) are

expanded 1n terms of homogeneous functions of non-negative integer degree

m=0
where we define [(™)(py, ..., pa A) via
T (opy, ..., ppu; A) = p™ T (py, ..., pa; A) (2.53)

Other external momentum dependence in the flow equation can also be expanded in

integer degree homogeneous functions.

The approximation lies in restricting these sums over an infinite number of terms to
some designated order. If the derivative/momentum scale expansion is truncated at
O(p°), we obtain the well established local potential approximation which has proved

to be both reliable and accurate [15].

Of the approximation methods mentioned the most promising appears the deriva-

tive/momentum scale expansion and this is the one which we will investigate in the

following chapter.



Chapter 3

Convergence of derivative

expansion

As discussed in section 2.6, the difficulty in dealing with the functional differential
equation that expresses the exact RG flow usually results in one of a variety of an-
alytic non-perturbative approximation methods being employed. Of the methods
available, the derivative expansion (or momentum scale expansion if a sharp cutoff is
utilised) appears the most promising. However, the question that must be addressed
when using this approximation scheme is whether the expansion converges and, if so,

whether it converges to the correct answer.

Obviously it is an extremely challenging task to settle this issue non-perturbatively
and in all generality. It must be stressed that this is not a controlled expansion in
some small parameter. Rather, the approximation we make in using the derivative
expansion lies in neglecting powers of (p?/A?) where p is some typical momentum of
the system and A the effective cutoff. Consideration of the flow equations (2.12) and
(2.20) leads to the conclusion that the typical momentum that contribute are of order

the effective cutoff, i.e. p ~ A. Hence the issue is a numerical one.



In this chapter we investigate some aspects of the applicability of the derivative
expansion in the weak coupling regime of massless scalar A¢* theory® in four Euclidean
spacetime dimensions. The derivative expanded [ function at one- and two-loop order

is calculated and convergence (or otherwise) is shown for a variety of different cutoff

functions and flow equations [16, 17].

3.1 Wilson/Polchinski flow equation

We start from the expanded Wilson/Polchinski flow equation (2.14)

—S(P1s-- P \) = Z S(=Py, [1; \)KA(P)S(Py, I5; A)

OA ()

1 rdiq ..
_5/(27)41\,\@)5(%“qspb...,pn;/\% (3.1)

utilising the same notation as before. We impose the renormalisation condition
5(0,0,0,0;A) = A (3.2)

If the four-point vertex is considered exactly (i.e. without a derivative expansion or
similar approximation), the exact one-loop [ function can be obtained. The sole
contribution to the flow equation at this order comes from the tree-level six-point

function that has two of its legs joined together to give figure 3.1.

The tree-level six-point function is found by setting n = 6 in (3.1) and substituting

S(P1,P2, P3, Ps) = A (i.e. to lowest order) in the tree-level part of the RHS:

o 6
S(P1, P2, P3, P4, P5.Ps; A) = __/\2/[\ dAy [Z Ky, (p1 + p2 + pi)

=3

Lwith ¢ ¢+ — symmetry

o
o



Figure 3.1: Feynman diagram contributing to the four-point function at one loop,
constructed from the tree-level six-point function with two legs joined

6 6
+ D K (pr+ps+p)+ D Ka(pr+ps+pe) + Ka,(p+ps+ps)|. (33)

=4 k=5

Note that because the integral over A; is UV convergent we can proceed directly to
the continuum without introducing an overall cutoff. This is a reflection of the ability
of the exact RG to deal directly in the continuum using renormalised quantities as
we will see later. Substituting (3.3) into the quantum correction part of (3.1) for the

flow of the four-point vertex (i.e. fix n = 4), we set all external momenta to zero and

obtain
J 1 pdtq . co . .
a&)\ = -——5/@‘):[&1\(([){—6/\2/[\ (lAlj\;\l(Q):‘ (34)
= 337 [ R (@)A1 (35
_ %ﬁ%/jdxc;fg(x)cm(x) (3.6)
3N 1, ; 5
= W;{ [CIR(OO) - CIR(O)} ) (3.7)

where the term in the square bracket of (3.4) is the six-point contribution of (3.3), and
the prime in (3.6) means differentiation with respect to the argument of the function.

Using the definition for the 8 function (2.43), we find that




the expected result at this order [c.f. (2.50)].

Although we have seen that no approximation is required at this stage, we are inves-
tigating the consequences of using a derivative expansion. As such, we expand the
six-point function in terms of its external momentum. In effect, Ajp(q®/A?) of (3.5)
is expanded in ¢*. and so, recalling that C;p = 1 — Cyv, we find that (3.6) is replaced

by

) 6x2 o o)
(4m)? Z

n=1

3= © /OJ% 2"Clry (), (3.9)

n!

with the n-th derivative with respect to = denoted by C[(Jn&(a:) If one naively allows
the cutoff to be sharp, i.e. Cyy = (1 — ), we see immediately that this converges to
the wrong answer. Since, C'L(fv)'(()) =0 for all n > 1, (3.9) will yield a zero § function
at this order. Howevef, as discussed earlier. the sharp cutoff should not be applied
to the Wilson/Polchinski flow equation, so for the remainder of this section, we shall

only consider smooth cutoffs.

If we impose a power law cutoff, then there is a finite value of n larger than which
the integrals in (3.9) diverge. Choosing a cutoff which falls faster than a power
is also not sufficient to obtain a convergent series. Consider a cutoff of the form

Cuv(g®/A?) = exp(—q®/A?). The 3 function is found to be

8= S (=1, | (3.10)

Clearly this is an oscillating series that fails to converge.

However convergence can be found with certain UV cutoff profiles if the chosen func-

tion falls fast enough as * — co. Two such examples are

Cuv(z) = exp(l —e*), (3.11)

Cuv(z) = exple—exp(e”)]. (3.12)



We can (numerically) calculate the one-loop 3 function for these cutoffs using (3.9).

From the first choice of cutoff (3.11) we find

3A? ‘
J= e (1.193 40— 0.194 — 0.060 + 0.032 + - - -).. (3.13)
4
(The second term in this series vanishes since 5—2— exp(l — &) . 0.)
~. 38
< B
<
< I
< 3.4-1 ;\
=
£ |
I o |
=1
:
- 28 : ‘ ‘
0 10 20 30 40

Number of terms in expansion

Figure 3.2: Graph of partial sum contribution to [y coefficient against number of
terms in expansion for the series (3.13)

If we calculate the partial sum contribution to the fy coefficient [c.f. (2.44)] at each
order of the expansion in (3.13), we obtain the graph contained in figure 3.2. With
the second choice of cutoff function (3.12), the following expansion is obtained for
the one-loop J function, with the graph of the partial sums of the series displayed in
figure 3.3:

32
(47)?

3= (1.278 — 0.164 — 0.130 — 0.014 + 0.019 + ---).. (3.14)

In both these cases convergence towards the correct value of the one-loop 3 func-

tion is manifest. Although such convergence is encouraging, we now leave the Wil-
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Figure 3.3: Graph of partial sum contribution to fy coefficient against number of
terms in expansion for the series (3.14)

son/Polchinski flow equation to concentrate on the rather more promising Legendre
flow equation. This has inherently better convergence properties, not least because
as we are dealing with 1PI functions, hence there are no tree-level corrections and
so a numerical series arising from a derivative expansion cannot arise until at least

two-loop order.

3.2 Legendre flow equation at one loop

The momentum expanded Legendre flow equation was given in (2.27), (2.22) and
(2.28) for sharp cutoff or (2.21), (2.22) and (2.23) if the cutoff profile is smooth.
Irrespective of whether the cutoff is sharp or smooth, the flow of the four-point
function at one-loop is given by

0 diq

E{F(Pbpz-p&m;f\) = /(—27;);[&'1\(9) X
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x Z I(a,—q - P i;; A)Amr(lg+ P )T (q = P2, —q. I3 A),  (3.15)
{li.L}

Imposing the renormalisation condition (c.f. condition (3.2))
['(0,0,0,0; A) = A, (3.16)

and substituting the tree-level value of the four-point 1PI vertex ( I'(py, pa, P4, P4 A) =
A) in the RHS of (3.15), the 3 function is found to be

B(X) =—3/\2/\/ dg 1 (C—ZCIR(QQ/AZ)> Cir(q*/A?)

(27)% ¢* \dA
6A2 oo, 917
= Wfo dz Cip(2)Crp(2) (3.17)

Note that no derivative expansion has been (or indeed can be) performed. Unlike the
previous situation with the Wilson/Polchinski equation, there is nothing to expand
in. At one-loop. the Wilson/Polchinski equation had the external momentum of the
tree-level six-point function in which to expand; in the case of the Legendre flow
equation the property of being 1PI means that the only object is that of figure 3.1
which (within the calculation of the 8 function) has no external momentum. Hence
the exact one-loop ( function is obtained irrespective of the exact form of cutoff

function.

3.3 Legendre flow equation at two loops

To iterate the flow equation to two-loop order, care must be taken in using renor-

malised quantities. The four-point function is split into two parts, momentum free



[AM(A)] and momentum dependent [y(p1. ps. P3, Pa; A)] [18]:

F<p17p27p33p4;/\) - ’\(A)+7<php2»p3»P4:A)> (318)
where +(0,0,0,0;A) = 0. (3.19)

It is v(p1, P2, P3- P4; A) which must be iterated as the momentum dependent four-

point function.

The three topological variants allowed for two-loop diagrams with four external legs
are shown in figure 3.4. Actually only topologies (b) and (¢) contribute to the
function. Upon setting external momenta to zero, (3.19) ensures that the iterand of
diagram (a) vanishes. In fact diagram (a) is already incorporated in the one-loop
running A(A) since renormalised quantities are being calculated directly. If this cal-
culation was to be performed in the more traditional manner using bare parameters,

topology (a) would only contribute a divergent part which would be removed upon
renormalisation.

: (a) : : (¢) i

Figure 3.4: Feynman diagrams contributing to four-point function at two loops.

Topology (b) of figure 3.4 can be formed in the flow equation in one of two ways: by
joining two legs from different vertices of the one-loop six-point 1P function (shown
in figure 3.5 (a)), or by attaching two legs from different vertices of the one-loop four-
point function to the tree-level vertex. Topology (c) can also be formed two ways:
from the one-loop six-point 1PI function by joining two legs from the same vertex,

or by inserting the one-loop correction to the propagator (shown in figure 3.5 (b))
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into the one-loop four-point function. As we shall see in the next section, the two
contributions to the 3 function of the form of topology 3.4 (c) cancel one another,

irrespective of the exact form of the cutoff profile employed.

/ (a) ) (6)

Figure 3.5: Diagrams used in forming two loop four-point functions

At this order of the 8 function, wavefunction renormalisation also needs to be taken

into account: PR
B(A) AEKEE N
A g P (3.20)
= ) 2AN—
7 QAA A/\aA Z,

where Z is the wavefunction renormalisation and up until now use has been made of
the fact that Z(A) = 1 + O(A?). At two-loop order its contribution to the 8 function

arises from the diagram of figure 3.6.

Figure 3.6: Feynman diagram contributing to wave function renormalization at two

loops.



3.4 Cancellation of self energy diagrams

We shall now demonstrate that the diagrams of the form of figure 3.4 (¢) do not
contribute to the J function irrespective of the specific shape of the cutoff. We will

start by looking at a general smooth cutoff and then consider the special case of the

sharp cutoff.

The self energy correction to the propagator is obtained directly from the flow equa-

tion. To O(A) it is:

| >

/ 90 (A (3.21)

a N7y —
E\—‘J(pv A) - ( )4 O\

S

Integrating up (3.21) we must not introduce a mass scale as we are dealing with a

massless theory. Consequently, the uniquely determined self energy has to be

S(d) = —5 [ ( /A (3.22)

For example if an exponential cutoff, Cyv (¢2/A2) = e7°/4* is utilised, the self energy
is -—(4‘2)2—2—2—, while a power law cutoff such as Cpyy(¢*/A?) = (1 + (¢*/A?)%)7! gives
rise to a self energy of — (4’7)—7 The general contribution to the flow of A by the

insertion of the self energy correction into the one-loop four-point function is found

to be
2 d4(1 2742 d 2742 . o
—9AA /( )Am( //\)(aAAUV( /A )) E(g; A) o (3.23)
3.5 [ dyq 0 dip ) .
= —2A) /( S 3 (/A )/< )Ayyp//\) (3.24)

with the numerical factor 9 in (3.23) arising from various combinatorics. Since there

are disjoint integrals over p and q, it is evident that no derivative expansion is possible.
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The flow of the one-loop six-point 1PI function is

) d*q (0 -
TGKF(Pl-,P‘z-p&,P%ps-/PB;A) = /(Z—WF (E)—XAUV(Q /A )] x
22 A (3.25)
x> > Amlg+pit+p) Y. D, Amlqg—pr—p)
=1 j=i41 k=i+1Il=7+1
k#;  l#]

This provides contributions to the 3 function of both topology (b) and (c) of figure
3.4. Extracting just the part relating to topology (c¢) we find that its contribution to

the G function is:

9 dtq 0 co d* J
—SAN / L Apv(g?/A?) /\ dA, /@-%;MR(MA?) = Auv(p*/AT) (3:26)
L 7 Ll oy

(27) OA
3., rdiq 0 dip : o
=3 G Ao /X) [ Atatt /A7 520

Combining (3.24) and (3.27), the total input to the 8 function from figure 3.4 (c) is

3 dip

o 1 d
—SAN / (;F; Avv(g®/A?) / (%)44\%@2/1\2) (3.28)
_ 650 e Chly)
-G aA/o dx CUV(:L)/O dy= (3.29)
-0 (3.30)

The situation with regard to the sharp cutoff is very similar, with the self energy
(3.22) replaced by

d*q¢ 0(A —q) 1 A2

A
S(piA) = —5/(%)4 R (3.31)

The different form of the flow equation for sharp cutoffs means that the part of the

0 function arising from self energy insertion is

o d'q 6(g—=MNOg—A) rd'p O(p—A) 3 ..
AN /(27)4 = /(%)4 T B3
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The (3 function contribution of the topology of figure 3.4 coming from the six-point

function is

9 5 7 dq 5q— (l4p c)p A)(92('p——/\1)_ 3 .,
—SA) /( /(11\1/ = (33)

where we use the fact that here? §2(0) = 1/3. Obviously (3.32) and (3.33) combine

to provide the desired cancellation.

3.5 Sharp cutoff

We use the momentum expanded Legendre flow equation for a sharp cutoff contained

in (2.27), (2.22) and (2.28). The momentum dependent part of the four-point function

at one loop is calculated to be

Y(P1, P2- P3. P4; -

B d*q 5q——A ! la+Pil=A) 0(g— A1) 2.
= [7 1\1/(% 22{ CEE }(3.34)

~1
w dig [0(% +a:) P (P’ 1
= )2 / ‘ 1424 (= -z 3.35
Z ( q“ q q 2 33
ME (1P, 1 PNY 3 (P . A
“+Z€5i:2{67\‘+?§6<7\”> + 71305 (%) *} (3:36)

where Py = p; + p; and © = P; - q/ P;g. Note that it is the subtraction in (3.34)

of the part independent of external momentum that allows the upper limit of the A;
integral to be set as oc as the integral is now convergent. In (3.34) the integral over
Ay is performed by noting that 6(0) can be treated as being equal to 1 [c.f. (2.26)].
After changing variables, the step function in (3.35) can be accounted for in the limits

the integral over x allowing the term in braces to be expanded in momentum-scale

2See section 2.3.



= || [7, 12]. Alternatively the step function may be expanded directly [7]

,pi " (n—1) : a5 e
o +e) =0+ £ 5 (5) oo o

where §(»=Y(z) is the (n — 1)th derivative of §(z) with respect to x. The same result

as (3.36) was calculated in ref. [7] but using bare parameters instead of renormalised

ones as here.

Dropping the terms related to the self energy diagram of figure 3.4 (¢), we find the
flow equation for A to O(A%) is

D . 1 3)
aa = A (47)?
3N rdiq § d* Op A)
e /2) /CMI/ i
{ 9(!p+qi A1) bﬁ(lp+qf— A1) O(p = \y)
Ip + ql* P*lp + qf?
+89(q—/\) <9(!p+<11~1\1)_9( Al))} (3.35)
q* Ip + qf? p?

The first two terms arise from the one-loop six-point 1PI function (3.25) with legs
joined so as to be of the form of figure 3.4 (b). The final line of (3.38) arises from
iterating the one-loop four-point function of (3.36) through the flow equation. These
contributions can be calculated using the momentum expansion; in this case the.

embedded one-loop terms are expanded in ¢/p. For the first one we find:

4 _ 4 —_
_W,/dqaq \/dxl/a’m (1Tp++qgl4m>

_BX pdiq S(g—A) redp o 5 (g T (q\’
_~’7T3/(27r)4 q? /“ 4 6\p +Z 2—9 i
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M o1l/x 10 =« 63 « 7035
=12 — -t = = ) 3.39
: (‘2 9 i 4 100 * 6 15680 + (3:39)
This oscillating series converges, but only does so very slowly. The partial sum
contributions to the 3 function from the series of (3.39) are displayed in figure 3.7.

The average of successive partial sums is shown in figure 3.8 allowing an estimate of

A3
(<17r)4

\ 4/A /W A A

1

|
5 ; . : .
0 20 40 60 80

Number of terms in expansion

Partial sum contribution to A function /

Figure 3.7: Partial sum contribution to J function against number of terms in expan-

sion for the series (3.39)
—3.430 755 to be made for the convergence of (3.39).

The next contribution in (3.38) provides a series which converges rapidly to a value

= S

—12)3

dq 3(q d4p é(p 1\1) O(lp+al — M) 8(p — Ay)
(27) / dl\l/ p*|p + q?

_ 6A3/d‘*q <><q—A>/°°dp _w_l_ Ay ()3 (4},
4w ) (27)r @2 A pPl4d 6Ap 240 \ p 8960 \ p

(i_g_:_}..~ 5 +) (3.40)
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Figure 3.8: Average of successive partial sum contributions to # function against
number of terms in expansion for series (3.39)

[terating the one-loop result of (3.36), the final part of (3.38) returns the previously

published value®

4 . 4 " —
_Maﬂdq5q A-/(“a/dpéw A)Og—A)

q2
X<WW+M—A0_WP—MU
Ip+qf? p?
66X pdiq d(g—A) dp |1 [q 1 /[q\° 3 /q\°
“”4n~3/(-2r.)4 gt /A P16\ T20\p) TR0 \p) T
A1 1 9 |
_(4w)4KE(8+IS+9800+ > (3-41)

which converges to 2.56882(—4;\;—41;. As previously discussed, wavefunction renormali-
sation must be accounted for through X(k; A)|ope) = [Z(A) — 1]k? arising from figure
3.6.

9
2
FaaZh

3Calculated using bare parameters [7].



.4 _ 4 —A
:A/dq d(q A/ 1\1/‘“’ 5p /\ )0(lp +a + k| —Ay)
(2 P+atk g

s / d*q d(q—4A) |q+1~il+_‘lq+l~il3 L _la+kP
2473 J ( ¢ A 120 A3 22400 A®

2 )4 02)

Ak? 11 /1 1 3
— il (T 3.42
(4m)* A= ( 48 * 1280 + ) (3.4

The second line of (3.42) is obtained using the expanded one-loop four-vertex of (3.36).
The final line then follows upon the realisation that the net effect of expanding to
second order in & and then averaging over the angles is to convert |q + k| into
in(n + 2)¢"%k*. We find that (3.42) converges to —0.16667(—4—;};—4—5. In figure 3.9 we
display the partial sum contributions to the 3 function from each of the series in

(3.40), (3.41) and (3.42).
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Figure 3.9: Partial sum contributions to the § function against number of terms in
the expansion of the series of (3.40), (3.41) and (3.42)

Thus the momentum expanded g function at two loops using a sharp cutoff is

6 15630

22 Ao T 10 =« 63 T 7035
A= 3 — — 22 — —_ )
5N 3(4/7‘)2 (47r)47r{ <2 9 * 4 100
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+1f><7r 2_ 1 5 >—<8+1+ ) +>
“\2 797 300 15680 15 ' 2300
13
(1 3.4;
<1+24+64O+ >} (3.43)

which converges (albeit slowly) towards the exact expression (2.50). In figure 3.10

we show the value of the §; coefficient [c.f. (2.44)] if we just consider the specified

number of terms from each of the series.
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Figure 3.10: Value of ) coefficient against number of terms in expansion

3.6 Exponential cutoff

The momentum expanded Legendre flow equation for smooth cutoffs is given in (2.21)

and (2.23). Using an exponential cutoff Cyyy = e™9°/%"| the renormalised four-point
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function is given by*

¥(p1, P2, P3-P1: )
(1 - e*[Q+7’i[2/A12)

diq o emr/A?
= )2 A, [ 3.44
Z/ @ 1/ (dz\l q* ) { lq + Pi|? (3:44)

I
[
e

f: /:dAl {( i) (1= Pt - %} (3.45)

i=

N 4 oo ( n 731'2 n
___20m72§:§: — <2Aﬁ) | (3.46)

=2 n=1

The expression in (3.43) can be obtained from (3.44) either by expanding the expo-

nential of —|q+ P;]?/A;?, performing the integration over momentum space and then
q g g P

resumming, or by using

1 — e 7 /N 1 5
L“F-_) e /da gmer A (3.47)

and interchanging the order of integration.

Using the results of section 3.4 and dropping the self energy diagrams, the flow of the
coupling to O(A?) is
0 1 3A?
—ZAA) = —
OA () A (4m)?
213 4 ~q%/A? 4 ~p?/A;
._'.3_A._ d'q a e / d/\l/dp BAI e )

2 J(2m)¢
4 (1 _ e—lp+<1[2//\?) 8 <1 _ e—lp+QI2/Af) (1 _ P’ /A?)
{ prar 7o+ qf
Q{1 — o—9*/7? — e—lp+al’ /A2 — P/
+b(1 (ezq ) (<1 - IHﬁq? 1 ) - <1 ezp 1)>} (3.48)
/I lp+d p

*In agreement with previous calculations using bare parameters [12].
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To perform these integrals, the inner (p) integral must be expanded in terms of the

momentum external to it (i.e. ¢ momentum).

The first two contributions come from the 1PI one-loop six-point diagram with two

of its legs joined to give figure 3.4 (b). The first of these gives the convergent series

A 30 |
1_( my A(I =+ (=1 [111—-;;(1)5_)1{ 231_24-381_1”), (3.49)

n=2

when expanded) which numerically sums to ,‘ L(-2.45411725). The second is
(4m)* A

”24(4§) “( % i ;+1 {(_;)n_(%)“}) (3.50)

Using the fact that

(-1

Il +e)= Y “——a"  (~1<z<1), (3.51)
n=1
we integrate to find
= (=) (z+1)
=1 In(z + 1), 52
> (n+1)r 1 -~ n(z + 1), (3.52)

which is of the same form of the sums of (3.50). Hence (3.50) sums exactly to

25 719103 —2In2 — 5In5]. The final line of (3.48) comes from the iterated value

of v(p1, Pz, P3, p4; \) of (3.46) and gives [12]

o0 'ﬂ. 1 1 _.
5—:: n+ 1) o (1 - 2n+1>' (3.53)

\“1mm3+4m9—5m5—u

Using (3.52),

As for the case of the sharp cutoff we need figure 3.6 at second order in external
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momentum to calculate wavefunction renormalisation. We have

0 diq o e /N
E2——Z(A) = —\? ——
OA (A) = /(27r)4 (0]\ q° )

o0 d'p 9 P /MY [ — e-lptatkl?/a
X / (1/\1 / p
A (2m)* \OAL  p? Ip + q+k[?

O(k?)
)\2/{;2 1 o ( 1)n+1
. 3.54
(47) ,\ 2n (3:54)
Using the binomial expansion
== (e (3.5)
= —1)"z
1 +z n=0 , ’
and setting @ = 5 enables the sum of (3.54) to be computed, and so
0 Z(A) = L X1 (3.56)
A O B(dm)tAT -

In figure 3.11 we display the partial sum contributions to the 8 function against the
number of terms in the expansion for the series coming from (3.49), (3.50), (3.53) and
(3.54). The g function to two loops using an exponential cutoff is found by adding

together these series (each of which are separately convergent):

D TORE TR

niﬁ(”;“)i_l{ 1+331H}

5=2

) 1
—3 - s 23 - I 2 - 305 24545 6 - o, (357)

which gives the expected form of (2.50). The quick convergence to the correct value

of the 8, coefficient is displayed in figure 3.12.
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Figure 3.11: Partial sum contributions to the § function against number of terms in

the expansion of the series of (3.49), (3.50), (3.53) and (3.54)
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Figure 3.12: Value of f; coefficient against number of terms in expansion

41



3.7 Power law cutoff

The final form of cutoff under consideration is that of a power law, i.e. Cpy =
1/(1 4 (¢*/A*)"*!) where & is a non-negative integer. For a derivative expansion
of the (non-perturbative) flow equation (2.20), it would appear that if x is chosen
such that & > D/2 — 1 (with D the spacetime dimension) all momentum integrals
will converge. However within the method we have utilised in this chapter. major
problems arise. If we consider the integral pertaining to figure 3.4 (b) obtained by

iterating the one-loop four-point function, we have

N A3 /(['lq ¢* /00 dAy /(14]7
A2xt+3 [1 —f—(q//\)Q'{’*'?]B A A%/‘H@ "

p2r; 1 . -
L+ (p/ AP {1 T T (ar p{/m)%“} qrpr O

A derivative expansion requires an expansion in the external momentum of the one-
loop four-point function which translates as expanding the inner integral in powers
of the momentum ¢. This expansion can be performed to all orders. However, once
the power ¢*™ is such that m > &+ 1, the outer integral over ¢ will cease to converge.
Hence with a power law cutoff even the coefficients of the derivative expansion are

infinite and hence such an expansion ceases to make sense.

This problem arises purely because we are also working within a perturbation expan-
sion. As stated earlier, non-perturbatively all integrzﬂs will converge if £ > D/2 — 1.
The improved behaviour here can be traced to the (¢ -+ CIRE)‘P’ factor contained
in (2.21) and (2.23). For small A, ¥ ~ A?¢*™ at O(9*™), from figure 3.6. The extra
powers of ¢ in the denominator always stabilise the integral providing x > D/2 — 1,

but clearly the integral will then diverge as A — 0.



3.8 Operators of higher powers

The results presented in this chapter can, to a certain extent, also address the issue
of convergence for operators of higher momentum powers than the (zeroth order) g

function. Let us first consider the sharp cutoff of section 3.5.

The nth term in the momentum scale expansion of an O(J*") operator is given by
that of the derivative-free operator (with the same number of fields) but with the ¢"
in the expanded terms of (3.38) replaced by ~ (”/2> q"~?"k*, with k some external
momentum. For large n this will yield a multiplier ~ n?". Thus, if convergence
is to occur for all operators, the coeflicients of the expansion must fall faster than
a power of n. We saw that the series (3.39) barely managed to converge and the
coefficients certainly did not fall faster than any power of n. Without the need for
further calculation, it is evident that the contribution of figure 3.4 (b) will have a
momentum scale expansion that ceases to converge at second or higher order in its

external momenta. In particular, the O(k*) r > 1 coefficients of

I'q (g A Cﬂp o(p 1)‘92(IP+QI_/\1) :
—6x3 [ dA 3.59
Jom e Lo [ pta (3:59)

will not provide a convergent momentum scale expansion.

The situation is much more promising with the smooth exponential cutoff of section
3.6. The series (3.50), (3.53) and (3.54) all fall faster than 1/R", with R > 1 (i.e.
faster than a power of n). The equivalent of the troublesome diagram for the sharp

cutoff is series (3.49) which can best be analysed by recasting the original integral

6/\3/ d'q % e - /A / A /d4 e e —p? /A0 ) (1 — e~ip+q12/A§)2
[4
(27)¢ 1 ST

it

q°
/\3 oo 4 g2 /A? —1) 2n
Ry Py
=0 A /\171! !\1
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It is evident that the integral over « is bounded from above by (2/3)" and from

below by zero. Together with the 1/n! factor, this provides a sufficiently fast rate of

convergernce.

We can take this analysis further by repeating that used with the sharp cutoff. For
an O(9*) operator, the power of ¢?* of the expanded terms of (3.48). is replaced by
~ n* k¥ ¢* =% (with k again being some external momentum). With the coefficients
going like ~ 1/n! or better, the ¢ integral will not completely cancel, leaving a re-
mainder ~ 1/n* for large n. Hence we see that the derivative expansions of higher

derivative operators will converge.

3.9 Summary and conclusions

In summary, the derivative expansion for the § function was calculated at one-loop
order for the Wilson/Polchinski flow equation and was found to converge for certain
fast falling profiles. The equivalent for the Legendre flow equation trivially converged
as no expansion was possible. With a sharp cutoff used within the Legendre flow
equation, slow convergence was found for the two-loop 3 function and it was demon-
strated that higher momentum operators have divergent momentum scale expansions.
While a power law cutoff proved not to provide meaningful results, the most promis-
ing profile was an exponential which, when used in the Legendre flow equation, has
rapid convergence of the derivative expansion of the § function and higher momentum
operators. The properties exhibited by the exponential cutoff has resulted in it being

favoured by many authors [9, 19].

The technique of approximation using derivative expansions within exact RG flow

equations has been shown to be applicable in the calculation of perturbative quanti-
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ties. However, it has been demonstrated that scalar field theory is largely perturbative
in nature both in D = 4 [20] and D = 3 [14]. so the successes recorded here also go
some way to explaining the accurate results found using derivative expansions in a

non-perturbative setting (see e.g. [11, 12, 15. 21]).



Chapter 4

Towards a gauge invariant exact

RG

In this chapter we identify the manner of regularisation as one of the stumbling blocks
in the establishment of a gauge invariant RG. One approach suggests a regularisation
scheme using the ideas of supersymmetry might exist and we introduce some of the
necessary concepts before formulating the regularisation scheme in the next chapter.

Unless otherwise stated, this chapter is based upon material from sources! [3, 14, 23,

24, 25].

4.1 Consequences of gauge invariance

Problems arise when we attempt to carry over the concepts of the Wilsonian RG to
QFTs which have local internal symmetry groups. To see this we need only consider a

theory consisting of just a gauge field A,(z) = Aj(z) T,, where the T, are generators

1The mathematics of supergroups is also discussed in [22]
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of the gauge group. We define the covariant derivative ¥V, with coupling g to be
V=0, —1gA, with the gauge field acting by commutation. We can take the bare

Lagrangian to be

Loauge = 3t0(Fu F), (4.1)

where the field strength is given by F},, := ;‘[vu,vy} and the trace is over group

indices. The Lagrangian is invariant under a gauge transformation of the type
A, — dyw —1g[A,,w], (4.2)

where w is the gauge parameter. When we transform (4.2) to momentum space, the
second term leads to a convolution over all momentum. Thus the restrictions placed
upon allowed values of momentum that we employed in the scalar field theory, do not

respect this invariance.

This restriction upon momentum space is known as a regularisation scheme. We
therefore have to make a choice: either break gauge invariance and hope to restore
at a later stage [2] or find an alternative regularisation scheme. In the next section
we consider whether a regularisation scheme can be found that will enable Wilsonian

ideas to be applied, yet allow us to retain gauge invariance.

4.2 Regularisation techniques

Throughout the subject of QFT, one is confronted with physical calculations that
involve divergent integrals. The need to manipulate these integrals and to rigorously
define the theory. provide the motivation for regularisation - the process of making
the integrals finite at intermediary steps of the calculation. Regularisation is achieved
via a modification of the theory at high energies which renders all integrals finite in

a manner that is determined by a single parameter. This parameter can also be
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tuned to a specified limit in such a way as to regain the original (divergent) theory.
It must be stressed that the procedure of regularisation is completely separate from
that of renormalisation (in old-fashioned parlance the process by which divergences
are removed via redefinitions of the couplings). The final renormalised theory is
independent of regularisation technique utilised and the control parameter will not

appear in calculated physical quantities.

There are a wide variety of regularisation techniques available in the literature, each
with its own advantages and disadvantages and hence its own area off applicability.
In this section, some of the most important methods of regularisation are introduced
and the reasons for their unsuitability as a regulating scheme for a gauge invariant

exact RG are discussed.

4.2.1 Dimensional regularisation

In the case of gauge invariant theories, the most widely utilised regularisation is
dimensional regularisation as this has the attractive property of maintaining gauge
invariance at all stages. The central idea is to generalise the spacetime dimension
from D to an arbitrary (not necessarily integer) dimension d. For sufficiently small
d, all the Feynman diagrams are finite. The UV divergences of the theory appear
as simple or multiple poles at d = D. All symmetries, including gauge symmetries
(although problems arise with chiral fields), that are independent of the dimension of

spacetime are preserved.

While this regularisation scheme is the most widely used and practical technique for
gauge theories, it suffers from a number of drawbacks if it is to be incorporated into
an exact RG framework. Firstly, it does not sit easily with the Wilsonian approach
of suppression of high energy modes since dimensional regularisation has no such

physical interpretation. Secondly, it is not clear whether this scheme has any meaning
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non-perturbatively since it is applied directly to (perturbative) Feynman diagrams
and the non-perturbative capability of the Wilsonian approach is one which we would

like to preserve.

4.2.2 Pauli-Villars regularisation

This technique [26] (like momentum space cutoffs) modifies the behaviour of the
propagator at high momenta. It achieves this by introducing fictitious particles with
the same interactions but which have no effect at low energies. However, at high
energies the propagator of the new field exactly cancels that of the original one. This

is achieved by giving these Pauli-Villars particles large masses, M. Thus we have
AL (p) = A (p) + Y Cu AL (p, M) (4.3)
k

When the limit ), — oo is taken, the regularisation is removed.

4.2.3 Higher covariant derivatives

This method attempts to extend the idea of a momentum space cutoff to the realm
of gauge theories [27]. If we view the scalar theory in Euclidean space, we have cutoff
functions appearing as Cpyv(—8?/A?). Thus to proceed in a gauge invariant manner
we replace all ordinary derivatives by covariant derivatives. In this way we may hope

to regularise the action of (4.1) by replacing it with the following.
‘Cgauge = %tr(F;w CUV(—VQ/A2) ' ij)v (44)

with the dot signifying that the covariant derivatives act via commutation. Unfortu-

nately, this is not enough to completely regularise the theory; the insertion of covari-
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ant derivatives introduces fresh interactions. If the cutoff function Crrv(—V?/A?) is
a polynomial in its argument of rank n, then the superficial degree of divergence of
a (1PI) Feynman diagram in D dimensions is (ignoring gauge-fixing terms which do
not affect the argument)

2n+4
Dr=DL—(2n+2)I+ > (2n+4—1)Va (4.5)

=3

where L is the number of loops of the diagram, [ the number of internal propagators

it possesses and V: the number of vertices at which ¢ A fields are present. Using the

relations

E = =21+ iV, (4.7)
(with E the number of external lines of the Feynman graph), (4.5) becomes
Dr=(D—-4)L—-2n(L—-1)— F+4. (4.8)

In D = 4 (the case of most physical relevance), the rank n can always be chosen
such that Dr is always negative (and hence all diagrams are superficially convergent)

except when L =1 and F < 4, where this regularisation fails.

4.2.4 Hybrid regularisation

This takes the methods of Pauli-Villars and higher covariant derivatives and com-
bines them to produce a gauge-invariant regularisation [28, 29]. The higher covariant
derivatives takes care of all the divergences appearing in diagrams with more than one
loop, and all but a small subset at one loop which are taken care of by thé Pauli-Villars

regularisation. Unfortunately further one-loop divergences then typically arise when
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the Pauli-Villars fields are external. It may be argued that this could be ignored on
the grounds that the Pauli-Villars particles cannot be regarded as physical. However,
these divergences will reappear in internal subdiagrams embedded at higher loops.
This is referred to as the problem of overlapping divergences. It can be cured by
adding yet more Pauli-Villars fields and by carefully choosing their actions [29]. The
Pauli-Villars fields need to appear bilinearly in the action so that upon integrating
out, they provide missing one-loop counterterms. Unfortunately this is not a property

that can be preserved by the exact RG framework.

In a series of papers [3, 4, 5] a manner of constructing a SU(N) gauge invariant exact
RG was suggested. Using the insight that the freedom in the construction of exact RG
equations amounts to a general field redefinition [30], a flow equation is formulated.
The necessary regularisation is provided by a form of the hybrid regularisation. How-
ever, for the regularisation scheme to prove effective, many requirements were placed
upon the properties of the Pauli-Villars fields including the presence of a wrong-sign
gauge field, fermionic gauge partners and scalar fields. The required cancellations
forced the flow equation itself to be of a complicated form [5]. Other shortcomings
of the scheme were that it could only be applied at N = oo and that it suffered from
the problem of overlapping divergences. It was realised however that the plethora of
particles might be more elegantly described (except for a few minor discrepancies) by
embedding the SU(N) gauge group within the larger SU(N|N) supergroup and al-
lowing this larger group to be spontaneously broken. Unlike the bilinear Pauli-Villars

N) structure can be preserved under

regularisation, the spontaneously broken SU(N
exact RG flows. The aim of chapter 5 is to show that spontaneously broken SU(N|N)

with covariant derivatives provides a regularisation scheme to all loop orders at finite

N.

D1



4.3 Supersymmetric groups

An important concept that has attracted wide attention in the field of theoretical
physics since the 1970s is that of supersymmetry, a symmetry which mixes bosons
and fermions. Usually it is considered as a symmetry of the space-time background
[31]. However, work where the supersymmetry exists in the internal symmetry of the
QFT in an ordinary background actually predates this [32] (although largely ignored
at the time) and is what we shall concern ourselves with here. In this section we
shall introduce some of the properties of these supergroups within the context of the

supergroups SU(V|M) and SU(N|N) .

4.3.1 Grading

The set of integers provide the simplest example of a graded structure. They have the
property of being either even or odd. With ordinary addition denoted by the symbol

“’, the additive group of integers has the following behaviour.

even - even = even,
even - odd = odd, (4.9)
odd - odd = even.

This structure is the same as that of Z5, the cyclic group of order 2:
ce=e ea=ae=a, aa¢=e, (4.10)

where e is the identity and « the other element of the group being identified with even
and odd integers respectively. Hence, the grading structure of (4.9) is known as 7,
grading and appears in the Lie superalgebras which are of interest in this work, with

the characteristic of being odd or even replaced by the property of being fermionic or

[
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bosonic.

4.3.2 SU(N|M)

An even supermatrix M is a (p 4 ¢) x (r 4+ s) matrix partitioned such that

A B
M = , (4.11)
C D

where A (D) isa p x r (g X s) submatrix whose elements are even under the grading

structure and B (C) is a ¢ x r (p X s) submatrix constructed from odd elements.

The set of (N + M) x (N4 M) even supermatrices define the Lie supergroup U(N|M)
(with NV £ M) if any element G of the set satisfies the condition

G'G =1, (4.12)

where G* denotes the adjoint of G. The adjoint of a supermatrix is defined such that

the adjoint of the matrix M of (4.11) is

At Ct
M=| |, : (4.13)
B! D!

where the tilde means that we take the transpose of the submatrix. The hash operator
represents the Grassmann adjoint of the submatrix and is defined as follows. In the

vector space in which the submatrix N lies, it can be written as

N = (uy + i), (4.14)

I

where each u, and v, are real numbers and the ¢, form a particular basis. Then we

53



define

N* =% (u, —1v,)el, (4.15)

where for this basis

(4.16)

€

B { €, if €, is bosonic,

—1¢, if €, is fermionic.

This implies for a general bosonic element written as X + Y (X and Y real) that
(X +iY) = X —iY, (4.17)

while for a general fermionic element © + ¥ (© and ¥ real Grassmann numbers) we

find
(O+:0)=—i0—-V, (4.18)

In turn, SU(N|M) is the subgroup of U(N|M) whose supermatrices have the addi-

tional property that
sdet G = 1, (4.19)

with the superdeterminant defined [again with regard to the supermatrix of (4.11)]

as

det (A —BD"!C)
det D

sdet M = (4.20)

Let H be a member of the Lie superalgebra of U(N|M), partitioned as an even

%=(P Q). (4.21)
R S

H+H =0, (4.22)

supermatrix:

Condition (4.12) implies that
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which in turn implies that

P = Pt (4.23)
_ & (4.24)
Q = -R', (4.25)

where, for example (Iz‘g)ij = (P%)". Using (4.17) and (4.18), we find we are able to
write the algebra of U(N|M) in the (N + M) dimensional fundamental representation
is of the form of (N + M) x (N + M) even supermatrices

Hy 0
g1 " , (4.26)

67 Hy

Hy (Har)is an N x N (M x M) Hermitian matrix. 6 is a N x M matrix composed
of complex Grassmann numbers and § is its Hermitian conjugate. Together 8 and 67

contain 2N M real anti-commuting Grassmann numbers.

Using the supermatrix of (4.11) as an example once more, the supertrace is defined

to be

strtM = trA —trD (4.27)
= tr(os M), (4.28)

where we have taken the opportunity to introduce the (N + M) x (N + M) version

of the third Pauli matrix.? The supertrace of supermatrices is cyclically invariant.

If we require that H is a member of the Lie superalgebra of SU(N|M), we take

account of the condition placed on the elements of the group (4.19), by noting that

2je o3 = ( 116\' ~3‘[> with Ly (ar) being the N x N (M x M) identity matrix

[$4
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(see Appendix A)
sdet( exp(M)) = exp(str M), (4.29)

and hence require

strH = 0. (4.30)

Imposing (4.30) has the effect that the traceless part of Hy (Hys) can be identified
with an SU(N) (SU(M)) subgroup with the traceful part giving rise to a U(1). Hence
the bosonic sector of SU(N|M) forms a SU(N) x SU(M) x U(1) subgroup.

As a concrete example of an SU(N|M) group we can consider SU(2|1); a supergroup
that has been studied within the context of the Standard Model [33]. A general

element of the algebra may be written as

53: . o' — 10*
1 n'o; + 774]12
H = 3 i=1 63 — 5 (4.31)
Ot + 16? 6% + i0* 2
4 4
m=1 n=1

where o; are the (2 x 2) Pauli matrices, ™ are real bosonic parameters and 0* real

fermionic variables. The bosonic generators Uy, are

0 1 00
1 Ui
Uy == 0|, Usi=| 0 Lo |, (4.33)
0 0/0 0 01



and the fermionic sector generators V, are given by

0 01 0 0 —:
V—l V—l
153 0 O_q_, 275 6 010 ,
1 00 1 010
(4.34)
0 010 0 00
V—-l V—l
3T 35 0 0_1—, 153 0 0| —:
0 1710 0 10

While these generators bear many similarities to those of SU(3), note that the
fermionic generators V,, close onto the bosonic generators by anticommutation, i.e.
{V,V.} = C}, T\.. However, by including the parameters in these relations, we can

retain the usual Lie commutation rule:
[H,H'] =1iH" (4.35)
For general SU(N|M) we have (in the adjoint representation)

H = w? (Ta), (4.36)

where w? is a bosonic or fermionic parameter depending on the index A. The first

N? 4+ M? — 1 are chosen to be bosonic and the remaining 2N M are fermionic.

The generators thus contain only ordinary numbers. They are chosen to be those of

table 4.1, where T&N) are the traceless generators of SU(/N) normalised such that

N 1<A<N?—]
e (r) 700 15, (4.37)
1<B<N?—1

and similarly for (M),



Iy
A=0 N ~ ’ 0 ()
ZV-AT | T ! %\L
1
(V)
0 |0
— . 0 0
A=N? . N 4 M? -2 <O T,gM ) SU(M)
o 0 1 ¢}
0 o s} 0
s s
9] o} ¢} [¢]
A= NI L . etc. | Super
N L
o o o o
— T
o o o o

Table 4.1: Table of generators of SU(N|M)

This enables us to define the super Killing metric of the group as

gap = 2 Stl‘ (TA TB),

and with the generators normalised as in table 4.1, this results in

(4.38)



+1
1
1
-1
-1
gap = (4.39)
0
- 0
0 =z
-1 0
——
U(1) SUL(N) SUz(N) Fermionic

with the sign of the U(1) sector determined as positive for N > M and negative
for N < M. Note that while the metric is symmetric in the bosonic part, it is

antisymmetric in the fermionic sector, a fact that we express as
94p = gpa (=1)/W1E), (4.40)

by introducing f(A4), the grade of the index A defined such that

0 if A 1s a bosonic index
f(A) = (4.41)
1 if A is a fermionic index

We are also able to define another metric g% which is the inverse of that of (4.39)

9*Pgpc = gepg™* = 6%, (4.42)
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with a sum over 5. This enables us to lower indices on the parameters:
X4 :=g4 X5, , (4.43)

(note that it is the second index of the metric that is summed over; from (4.40) it is

clear that the ordering of indices is important), and raise indices on the generators

T4 = ¢ Tp. (4.44)

Since the generators of SU(N|M) form a complete set of (N + M) x (N 4+ M) super-

traceless matrices. we can derive (see Appendix B.1) a completeness relation:

ANg : i ok 1 ; 5
(T‘l) J (TA)AI = (0'3) 155 - m (5]»5]‘:[. (4.40)

[SHEIE

4.3.3 SU(N|N)

It is evident from consideration of the denominator of the U(1) generator in table 4.1

and that of the last term in the completeness relation (4.45) that a naive setting of

N). All of the problems that arise can be

N = M will not be sufficient to define SU(N
traced back to the U(1) subgroup of the bosonic sector. In the case of SU(N|N), this
generator becomes proportional to the identity in 2N dimensions, 1,5, and commutes
with every other generator in the Lie algebra. This will give rise to a number of
interesting properties when SU(N|N) is employed as a gauge group, a discussion of
which we delay until chapter 5. In fact the U(1) part has proved to be so unpalatable,
that some authors have dropped it completely [25]. We will not take such a drastic
step (a deeper discussion of such subtleties is contained in chapter 5). Instead we
note that the identity matrix does indeed have a special réle to play and so separate

it from the other generators.
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We split the generators Ty = {11, S, }, i.e. S, are the traceless generators of SU(N|N),
A = {0,a} and « runs from 1 to 4N? — 1, with the first 2(N? — 1) of these being
bosonic indices. Once again we can define a super Killing metric as in (4.38). The

normalisation of the generators means that the metric is

0
1
1
-1
-1
g4B = (4.46)
0
-t 0
0 =
-1 0
N’
U(1) SU(N) SU>(N) Fermionic

Obviously we cannot define an inverse to this metric. However if we restrict ourselves

to just the traceless S, generators, we are able to define
hap = hpa (—1)1@ ) = 25tr (5,55), (4.47)
with the inverse A%® determined by
h®Fhg, = hyghP* = 6% (4.48)

This then allows us to raise indices as in (4.43) and (4.44). Since the S, generators

form a complete set of supertraceless and traceless matrices, a completeness relation
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can be constructed for them (see Appendix B.2):

This is most usefully cast in the following forms

str(XNS,)str(S?Y) = lstr(XY) - —1— [tr.X strY + strX trY],
2 4N
S S I
str(5,XSY) = §Sth strY” — mtl(X} + YV X),

(4.49)

(4.50)

(4.51)

for arbitrary supermatrices X and Y. In chapter 5 we will use SU(N|N) as a gauge

group and demonstrate how it can act as a regulator.



Chapter 5
Regularisation via SU(IN|N)

As we saw in subsection 4.2.4 it is possible to construct a gauge invariant regular-
isation scheme by combining the techniques of regularisation via covariant higher
derivatives and Pauli-Villars fields. It could also be noted that such a technique
appears cumbersome and unsuited to the exact RG approach. In this chapter we
introduce an extension of these ideas in which the combination of these methods

appears more natural and also more promising as regards the exact RG [34]-[36].

5.1 The action of the regulating scheme

In the this section we describe the action for the regulating scheme using covariant

derivatives in spontaneously broken SU(N|N) gauge theory.
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5.1.1 The gauge field sector
We start by introducing A, the gauge field of SU(N|N) :

A“ = .A: TA

= 4‘1 B + A 0 : (5.1)

B, A2 0 A
where S, are traceless and supertraceless generators of SU(N|N). Note we have also
included the unity generator and its associated bosonic field in (5.1). The A, field is
the usual SU(N) gauge boson which we wish to regulate, with the A, field being a
SU(N) copy which, as we shall see, will enter the Lagrangian with the wrong sign.

The B field is fermionic and will eventually play the role of the fermionic Pauli-Villars

regulating particles.

The Lagrangian we require will be ultra-violet regulated. The first step in achieving
this is to utilise the supergroup variant of higher covariant derivatives. The covariant

derivative is chosen to be

(W)
o
e

V, =0, —igh* P’A, (5.

where we have chosen to make the coupling dimensionless by explicitly including the

appropriate powers of A. The field strength is then given by

Fo = AD/H;-][VM V.. (5.3)

Using the wine notation explained in Appendix C we can then write the pure Yang-

Mills part of the action as

. 1 - -
Sym = _,_)'f;w{c 1}Fuu- (04)
The function ¢! that appears in the wine is chosen to be a polynomial in its ar-
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gument [in this case (V?/A?)] of rank r. The action is invariant under the gauge

transformations

SA, = 3/\0/2-2[%,@]. (5.5)

g

There are two features of (5.4) which must be commented upon. Firstly, the .A° field
plays no part in it. We note that all A field interactions occur via commutators and
since the A? field (uniquely) commutes with everything, it cannot interact. Further-
more, because str(1174) = 0, we see that it cannot propagate and is non-dynamical.
The effect of integrating over the A° field in the partition function is therefore just
to introduce an (infinite) constant which can be factored out. However, we are not
allowed to simply exclude A% as gauge transformations do appear in the 1l direction

since the identity is generated by fermionic elements of the superalgebra, e.g.

0 11N 0 ﬂN

s = HQN. (56)
HN 0 ]-LV 0

DO o

An alternative procedure for tackling the troublesome U(1) sector is that favoured
by ref. [25]. This redefines the Lie bracket to ensure that l,x does not appear. Thus

the *bracket is given by

[’];=[,}i—-2—%tr[,]i (5.7)

where [, ]+ is a graded commutator.! The super Jacobi identity is still satisfied since

(Hi [Ho Hal"]" = [Hi, [Ha, Ha]]” (5.8)

= [7‘[1? [%2, Hg“ - ;)‘N:tr[%l, [Hg, Hg” (59)

&

The equality in (5.8) follows upon the realisation that tr[#Hz, Ha] is always bosonic.

Thus we can conclude that the *bracket is a perfectly acceptable representation of

Lie. it 1s a commutator if at least one of its two arguments is bosonic or an anticommutator

otherwise.
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the super Lie product. Hence, a member of the Lie algebra may be written as w®S,

and the gauge field as A = A*S,, with the commutators of (5.3) and (5.5) being

replaced by the “bracket.

These two alternatives actually amount to the same thing. The role of the *bracket is
to set to zero all the structure constants that generated 1. However, since the Killing
supermetric that appears in the ‘A%free’ representation vanishes in the 1 direction
[c.f. (4.46)], the interactions in the two choices are the same and hence are physically

equivalent. We shall concentrate on the ‘A% free’ representation as it is more elegant.
! p | g

The second aspect of (5.4) worthy of comment is with regard to the A, field. Due

to the properties of the supertrace and its position within the A supermatrix. the A,

propagator comes from
—tr {(9,42 - 9,A%) 71 (=0%/A%) 0,42, } (5.10)

i.e. it has the wrong sign. This has been interpreted as a sign of instability and
deemed physically unacceptable [37], but we argue on the basis of the consideration
of a quantum mechanical analogue described in subsection 5.5.1 that rather it is a
loss of unitarity. However, we expect this not to be problematic since such a loss of

unitarity is confined to terms that will disappear when the regularisation cutoff (A)

is removed.

Of course more has to be added to this scheme if we are to have a satisfactory
regularisation technique for SU(N) gauge theory. The problem is we have also altered
the low energy physics of the embedded SU(N) Yang-Mills theory by the introducion
of new fields. To redress this shortcoming, we must ensure that the fermionic and A,
fields only have a influence on the A, sector at high energies, and this can be achieved
by giving the fermionic fields large masses. The A, field can only interact with the

physically important 4; gauge boson via the B fields.
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It could be asked whether in giving the fermionic fields mass, we really need to
maintain the full SU(N|N) invariance as ultimately the only physically relevant group
is one of the SU(.V) subgroups; i.e. could the B fields be given mass by introducing

explicit mass terms. Unfortunately if the action was of the form
L1, PR | - .
§ = sFu{c P + smBE, (5.11)

the B propagator would not be transverse (as such a property is only guaranteed by
gauge invariance) and divergences would appear in the longitudinal direction. These
can be regulated by the introduction of a scalar field [3]. Since the appearance of this
scalar field seems to be essential, we incorporate it in the most elegant method avail-

able, keeping the full SU(N|N) invariance and introducing spontaneous symmetry

breaking.

5.1.2 Spontaneous symmetry breaking sector

To this end we introduce a superscalar field

ct D
c=1 . (5.12)
D C*?
We require that the fermionic parts of the A field obtain masses so we must sponta-

neously break in these (and only these) directions. This is achieved by introducing a

non-zero vacuum expectation value along a direction
o3 + all (5.13)

(a real) in the Lie superalgebra. Thus C must lie in the adjoint of U(N|N) but trans-

form locally under SUN(N|N). Under gauge transformations (5.5), C transforms



as

5C = —i[C,w]. (5.14)

It is not possible to replace this commutator by the *bracket as the result would not
be gauge invariant in general. This can be seen by considering an example such as
the supertrace of an n'" order monomial that could arise in a potential term. With

the gauge transformation given by ¢C = —i[C,w]", we find

Ot
et
[\$14

QS

n_ﬂz_ on—1 . )
dstrC™ = 2Nstlc tr[C, wl, (5.

i.e. non-vanishing in general. Thus the identity cannot be excluded? from the C field

which can be expanded as
C=Cy + C7%03 + C* S (5.16)

In the unbroken action we introduce a kinetic term for the C field and the usual form

for the Higgs™ potential

—
(W]
—
I

N

o1 »
SEr = S, C{ET )}, C 4 TAT st [aP(C? - AP

We have introduced another cutoff function, ¢7*, which is chosen to be a polynomial of
rank 7. The combined action (5.4) and (5.17), is invariant under the transformations
of the fields (5.5) and (5.14). In contrast to the gauge field, the o3 and 1 components

of C are dynamical. They propagate into one another through the term

NG C° (=% /A% D,C°. (5.18)

When we shift to the stationary point of the C field, the SU(N|N) gauge group will be

2 T : . . .
?We could still dispense with the A° in a consistent manner by using the *bracket for all pure
gauge interactions but using the usual commutator for interactions concerning C fields.
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spontaneously broken to SU(N) x SU(N) (i;e. the symmetries of the bosonic sector).

Upon expanding about the stationary point (i.e. C — AP/2=1g5 4 C), (5.17) becomes

. 1 — . e
5’3’“"6” = —;gQJ\Q[AM, 7al{¢ YA, 03] - ig\[A,, a3]{¢ "}V, - C

1 A -
+5V, - C{ev, -0+ Z;\*D str/([Dx(AD/?_l{rfg,C} +C*2% (5.19)

The first term of (5.19) gives a mass of order the effective cutoff, A to the fermionic
part of A. The bosonic part of C also gains a mass via the last part of (5.19). The

action given by (5.4) and (5.19) is invariant when the fields transform as (5.5) and

6C — —i [C,w] — iNP/ 2 oy, w]. (5.20)

5.1.3 Gauge fixing sector

As with all gauge invariant theories, the gauge must be fixed® to extract physically
relevant quantities from the theory. Otherwise when Greens’ functions are computed.
integrating over an infinite number of copies of the same theory occurs, leading to
spurious divergences being obtained. Obviously the manner in which the gauge is
fixed should not have an influence on the physical predictions extracted from the
theory. At this point we also note that the second term in (5.19) gives rise to a term
linear in both A4 and C which could prove troublesome. As such, we follow the lead
of 't Hooft who faced a similar problem [38] and fix the gauge in a manner which

enables this contribution to the action to be cancelled.

3This is true in standard perturbation theory as this procedure is required to properly define
propagators; gauge invariant ERG does not require gauge fixing to calculate certain quantities

3, 4, 5].
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The following choice of gauge fixing function is made

A et
! (5:21)

Z

F=0,A,~ig

where yet another new cutofl function, ¢7!, has been employed. However, since

this term is not required to be gauge invariant, ¢! is not covariantised; i.e. it is a
polynomial of rank 7 in (—0d*/A?) rather than (—V?*/A?). The process of 't Hooft

averaging results in the gauge fixing contribution to the action being

Spange = EF- &V F

where we have used the notation w- W - v = str /CZD‘I u(z) W(=0%/A*)v(y). When
this is combined with the other parts of the broken action, the second term provides
the required cancellation. The final part of (5.22) contains a mass term for the

fermionic subfield of the superscalar C.

The final contribution to the action comes from the Faddeev-Popov superghosts which
are defined to be

=] | (5.23)

Y o’

In the case of the usual bosonic symmetry groups, the process of gauge fixing leads
to the Faddeev-Popov determinant which can be rewritten in terms of fermionic
ghosts [39]. Likewise we would naively expect the ghosts in our theory to have the
opposite grading to that of the gauge and scalar fields. However, it must be stressed
that superfields are actually of indeterminate grading and the usual requirement of
(anti)commutativity is replaced by (anti)cyclicity of the supertrace. As the grading

stands however, we find that, as required, strnX = —strXn if X is ghost number
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odd, but that strnX = strXo3nos if X has even ghost number.

There is an elegant solution to this problem. Since we are free to choose whether
different fermionic flavours commute or anticommute [41], we take the opportunity
to introduce multiple grading. As well as the usual supergroup grading f [c.f. (4.41)],
we also assign a ghost grading g. All superfields (including ghosts) have supergroup-
odd block off-diagonal elements (f = 1) and supergroup-even block diagonal entries
(f =0). AandC are both ghost-even (g = 0) while n and 7 are ghost-odd (g = 1). We
therefore require that elements commute up to a multiplicative extra sign whenever

odd elements of the same grading are pushed passed one another, i.e. for elements a

and b

[Ng)

ab = ba(—1)f(a)f(b)+g(a)g(b). (5.24)

We now find that
strnX = (1)) strX, (5.25)

as required. The ghost action arises from the variation of the gauge fixing function

(5.21) with gauge transformations (5.5) and (5.20). We find that

é“l

-1

2
Sghost = —;/\D/Z_Qﬁ OV, n—g

>

O

str /de (o3, 7)[AP*tos +C,n]. (5.26)

The contribution to the bare action can be tidied up by shifting the antighost vari-
ables 7 — gA?P/2¢71¢7. We shall see in section 5.2 that this shift has the added
benefit of assigning the correct momentum behaviour to the different legs of the ghost

interaction vertices. The ghost sector of the action is then

2
Sghost = —217- 67160,V - — %—A3_D/2 str /(lD:c [os, 7] [AP/ > o +C,n). (5.27)
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5.1.4 Total action

Gathering together all the elements of the action we have

1 ‘
ghroken = —Fu (T — NP Ay, o3{E HAws 0] — igA[Au, 0s] {67}V, - C

1 A o
+5V,. - C{e IV, -C+ Z/\‘*-Dstr /de(AD/Z”l{ag,C} +C%)?

(DAL EL (DA +igA(0,AL) - & [03,C)

2/\2 ¢? a1~
—g E[ag,C] = [03,C] —27-¢7°¢0,V, -
, ,
—g?/\B_D/2 str/dD:z: (o3, 7[AP*Yos + C, 7). (5.28)

S

Some of the Fevnman rules for this action are contained in Appendix D. To ensure
that the high momentum behaviour of the A propagator is unaffected by the intro-

duction of the scalar field and gauge-fixing we are forced to bound the ranks of the

polynomials:

r>r>71—1. (5.29)

If we had not spontaneously broken the symmetry, the action would be (in covariant
gauge, F'=0,4,)
unbroken 1 -1 i 1 ~—1
S = §fuy{c YF® 4+ é—V“-C{c W,.-C
AL
+ TN str / dPr(C? — AP 4 €(9,A,) - &1 - (8, 4,)
-27-¢7'€9,V, - n, (5.30)
a form which will prove to be of use later as many of the important aspects of the

physics (especially as regards to issues of finiteness) can be discovered by consideration

of just the unbroken sector.
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5.2 Power counting

Within the theory defined in (5.28) and (5.29), the superficial degree of divergence,

Dr, of a 1PI diagram in D spacetime dimensions is calculated using the standard

rules [23] to be

2r-4-4
Dr = DL—(2r+2) 14— (2F+2)Ic — (2F =27 +2) [, + > (2r+4 — i) Vi
=3
2r+2 2r+2
+ D> (2P 42— Vae+ D (2F+2—k) Vaser + (27 — 27 + 1) Vja 4, (5.31)

utilising the following nomenclature: L is the number of loops, I; the number of
internal propagators of type s, and V; the number of vertices containing the set of fields
t. We aim to show that for all but a small sub-class of 1PI diagrams, the ranks of the
polynomials can be chosen so that Dr is negative. This sub-class will then be shown
to be finite by other methods developed in sections 5.3 and 5.4. Since the superficial
degree of divergence of any given diagram and all its connected subdiagrams is thus

shown to be negative, finiteness to all orders of perturbation theory follows from the

convergence theorem [23].

Unfortunately, (5.31) does not adequately take account of 1PI diagrams with external
antighost legs. The formula treats the whole momentum dependence of the associated
V2.4 vertex as if it was loop momentum, whereas it depends only upon the (external)
7 line. Thus the superficial degree of divergence calculated via (5.31) is overestimated
in these diagrams. To remedy this we include an extra term: —(27 — 27+ 1)E,§4, where
E3' is the number of external antighost lines which enter a V;2 4 vertex. The improved

formula for the superficial degree of divergence is

Dr = DL—(2r+2) 14— (2F+2)Ic — (27 =27 +2) [, + 3 (2r +4 — i) Vi

A
5 )

+ Y (2P +2 =) Ve + ) (2F +2— k) Vieer + (27 — 27 + 1) (Vipa — EZ)
’ (5.32)
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The form of (5.32) is unhelpful as written since diagrams are easier to classify by

external, rather than internal, propagators. As such, we use the geometric relations

L=Ta+Ile+T+1=> Vai—=3 Vie—> Varer = Vipa — Vipe — Voo — Vs,
7 J k

(5.33)
Ea= =20+ iVac+ Y. iVae + D kVases + Viza, (5.34)
t J k
Ee==2Ic+Y Vae+2Y Vaeez + Ve + 3o + 4V, (5.35)
7 k
EX + ES + EZ + ES = —21, + 2V,0 4 + 2V (5.36)

The Euler relation (5.33) assumes that all diagrams are connected since the first term
on the RHS (denoting the number of connected components) has been set to 1. Note
that in the relation (5.36), the external ghost and antighost lines have been classified
according to the vertex to which they are attached. They satisfy the constraint

EA + ES = EZ + ES, and so (5.36) can be rewritten as

o

Ef + BS = —I,+ Vipa+ Viee. (5.37)

The four relations (5.33) - (5.36) are used to rewrite Dr as

Dr = (D—2r—4)(L—2)—Es—(r—7—1)Ec—2(r+7—7+1)EF
—@r A EA— (r =7+ 1) Ve + (r = 37 — 1)Ver +2(r — 27) Vs
J

+(r+7=2F = 1)Vee +2(D —r — 2). (5.38)

While it is straightforward to choose sufficient conditions so that all diagrams {except
certain one-loop cases) are superficially convergent, it is trickier to ascertain those
that are also necessary. The strategy we adopt is to consider one- and multi-loop

diagrams separately and establish the sufficient conditions required to make Dr as
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negative in as many diagrams as possible. We will introduce a theorem which will
demonstrate that some of these conditions are not strictly necessary. We will then

show the remaining conditions are necessary by considering examples where they are

needed.

We will temporarily relax the condition that r, 7 and 7 are integers. Instead we
consider them as general real numbers and re-impose the restriction to integers at the

end. In this case we then have to impose the additional constraint

r > —1, (5.39)
which is required to ensure the high momentum behaviour of the C propagator is
unaffected by the spontaneous symmetry mass term in (5.28).
5.2.1 Multiloop diagrams

If we stipulate that L > 1, all such 1PI diagrams can be made superficially convergent
merely by requiring that all the coefficients in (5.38) are negative. Hence the following

sufficient conditions are obtained:

r > D-2, (5.40)
ro> =3/2, (5.41)
r < 2r, (5.42)
Fo< orF4l, (5.43)

as well as the assumed conditions (5.29) and (5.39).

Combining the inequalities (5.40)-(5.42), we obtain a lower bound upon 7 as well,

namely 7 > 1 max(D — 2, —2). The lower bounds on r and 7 are to be expected since
Y 2 2 p
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the higher the number of spacetime dimensions the more divergent the diagrams.
However, there is no obvious physical reason why upper bounds such as (5.43) are
found and one is lead to suspect that such conditions are not necessary. We can prove

that these restrictions are not necessary by the use of the following proposition:

Proposition 1 [f we denote by S the collection of triples (r,7,7) s.t. Dr < 0. then
Y (ro,70,70) € S. the subset {(r,7,7)s.t. 7 >ro, 7 =79, 7 > 7o, 7o <7 <7} CS.

Proof:
We note that (5.38) depends upon 7 as +27(Ef — V,2¢). This term is always non-
positive since it is not possible to have more external antighost lines entering V¢

vertices than V,2¢ vertices themselves. Thus increasing 7 above 7y cannot increase

Dr.

The dependence upon r is carried by
r (——QL +2— FE¢ — ZE% - ZE;? - Z Ve + Ves + 2Ves + ‘/;;QC)
J
= 2r (Z V_Ai — [A> , (_5.44)

with the equality following from (5.31). Since every V4 must be attached to at least
two internal A lines in a 1PI diagram, this contribution is also non-positive and so

increasing r above 7y does not increase Dr. a

Proposition 1 implies that inequalities (5.42) and (5.43) are unnecessary so the suffi-

cient relations for convergence of multiloop diagrams are:

3
r > max (D -2, —-;) , (5.45)
N D 3 3
7> max (—2——1,—5> , (5.46)
P> r >l (5.47)
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At first glance these conditions are apparently necessary to regulate the diagrams of
figure 5.1 (in D > 7). However the naive power counting we have employed does not
take into account other considerations such as the supergroup factors. It transpires
that these two diagrams are already regulated by the supertrace mechanism that
will be discussed in section 5.3 and as such, the necessity of the above conditions
is actually unproven. We leave a demonstration of why these conditions really are

necessary until after the discussion of the one-loop case.

(a) (b)

Figure 5.1: 1PI diagrams which by power counting alone require conditions (5.43) -
(5.47) to be finite. (Curly lines represent A fields and straight lines C fields.)

5.2.2 One-loop diagrams

While the covariant derivatives are not able to regularise all one-loop diagrams, they

are able to ensure finiteness in a number of sub-classes. At one-loop the superficial

degree of divergence is

’D},_IOOP = D_EA_(r_f+1)EC._Q(r—*-f—f’+1)Eg—(27+3)E;
= F RS Ve (= 3~ D 420 — 251
J

F(r+F— 28 — 1)V (5.43)

= a-vV,



where we define the elements of @ and v to be

a, =D vy =1,

oy, = —1 vy = F g4,

a3 =—(r—7+1) vz = E,

ay==2(r+7—7+4+1) vy = EY,

as = —(2r +3) vy = Egi, (5.50)
ag = —(r—7+1) ve = 2. Ve,

ar = (r—37 —1) vr = Ve,

ag = 2(r — 2r) vy = Vpu,

ag = (r+7—27—1) vg = V¢

The general stratergy we shall follow is to consider specific classes of one-loop dia-
grams. With the strictures placed by these classes we shall then change some of the
v; to ensure that all v; are non-negative. This is done in such a manner that (5.48) is
unchanged so we must also adapt the corresponding «;s. To ensure that Dr is then
negative, we require that all the oy < 0. This gives us a number of sufficient condi-
tions, some of which can be shown not to be necessary by appealing to Proposition

1. It then remains to show that the final list of conditions are also necessary.

The cases we consider are:

(i) E4 > D + 1; any number of E., EUA'C, EﬁA’C
The combination (E4 — D — 1) is always non-negative, so we make the following
replacements in (5.50) which leave (5.48) unchanged

al——>a1:—1, ’Ul—>’01:EA—D—1, (551)

ag——>a2:—1, Vg — Ug = 1.

All other «; and v; remain unaltered. Requiring all the coefficients «; to be negative

results, after the assumption of (5.29) and (5.39), in the following restraints being
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placed on the parameters

ro< 27, (5.52)
2r > =3, (5.53)
P r4Fall (5.54)

(ii) Eg‘ > 1; any number of E 4, E., Eg

The new variable will be (E£7' — 1) rather than EZ' so we need to change the following

components in (5.50)

a; — oy = (D —2r = 3), vy = vy = 1, 5.55)
55

as = a5 = —(2r +3), vs = vs = (Ef —1).

If all «; coefficients are to be negative, (5.52)—(5.54) are regained along with the extra

condition D — 2r — 3 < Q.

iii) ES > 1; any number of E4, E;, E£
n n

The only changes to (5.50) that must be made are

ar > a;=D=2(r+7—-7+1), v = v =1, .
(5.56)

ay =y ==2(r+7—7+1), m—)mz(Ef_,—l),

and we obtain the new constraint D — 2(r +# — 7 + 1) < 0, which has to replace the

previous weaker bound (5.54) (for any D > 0).

(iii) E¢c > 2; any number of E4, E/'C, E;—f’c

With the new variable (E¢ — 2) introduced, we adapt

oy —ay=D-=-2(r—-7+1), v — v = 1, (5.57)
’ 557

Ot
Ut

Q3 — i3 = —*(7‘——7:), 7)4——)’042(Ec—~2),
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and an additional constraint is found: r — 7 > % - 1.

(iv) Ec =1, E4 =E¢ = E{“ =0

This gives rise to three possibilities since the internal loop can be one of three flavours.

Internal A loop: DI = D — 2 + 25 —
Internal C loop: D}'l(’“p =D -2+ -9
Internal ghost loop: D}"ZOOP =D +2F -2 —2

We require 7 —# > £ — 1 if the first diagram is to be finite (which will also make the

third diagram finite). The second diagram requires the bound 7 > £ — 1. The more

general case with any allowed number of external A and (anti)ghost lines does not

change these conditions as they both contribute negatively to (5.48).

5.2.3 Final list of constraints

By the use of Proposition 1 it is possible to remove the upper bounds in these con-

straints. The final list of constraints for both multi- and single loop graphs is therefore:

D -3
ro o> max(D—?,, 5
. 1 D -3
ro> ;jmaY(D——Q,——————Q
. D !
r—r > jé“—,

and, as ever, (5.29) and (5.39). With D > 1, these mean

ro>
ro>
rT—7 >
ro>

|
0o

-

Vo w|loe|o O
I

=3
|
funa—s
vV
<



Suitable ranks for polynomials can be found by selecting integers which satisfy these

bounds.

We now address the question of the necessity of these conditions. We noted that the
diagrams of figure 5.1 seemed to demonstrate necessity. However, we have ignored
supergroup factors and, when these are allowed for, we find that the unbroken parts of
these diagrams will actually disappear at large loop momenta through the supertrace
mechanism which will be discussed in the next section (the broken parts are finite by
power counting). Necessity will actually arise from the broken sector of the SU(N|N)
gauge theory. To see this we need to borrow a result from the next section, namely
(5.72), which shows that unbroken one-loop corrections take the form of a product
of two supertraces over the external fields. This carries over to the broken theory as
well except that (C) = o3AP/2=! factors may also arise in these supertraces. Now.
the condition r — 7 > —?— — 1 arose from power counting the one-loop graph made
by attaching an A propagator to the C.A? vertex [i.e. by inspection the vertex from
—igA[A,, o3]{c71}V:C of (5.28)]. Thus r—7 > £—1is necessary for the contributions
with group theory factor strCstroz. The condition 7 > D/2 — 1 is necessary for
finiteness of (strC)? contributions arising from attaching a C propagator to the strC*

vertex. The final condition for any D > 1, namely » > D — 2, already follows from

combining these two.

(a) (b)

Figure 5.2: 1PI diagrams from which the necessity of conditions (5.61)-(5.64) are
demonstrated.

By inspection of (5.48) and use of subsection 5.2.1 we can deduce that the only
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diagrams that remain unregularised after the imposition of the constraints listed

above, have the following properties:

(i) One loop
(i1) Up to D external A legs
(iii) No external C or ghost legs

(iv) Do not have AC, C3, C* or Cn7 interactions

Diagrams with these properties will be known as ‘One-loop Remainder Diagrams’.

5.3 Supertrace mechanism

The power counting arguments of the previous section are a demonstration of the
well established problem that the introduction of higher covariant derivatives is not
sufficient to regularise all one-loop diagrams in gauge theories [27]. The improvement
in the high momentum behaviour of the propagators is not enough to compensate
for the number of new interactions we have been forced to introduce. We obviously
need further regularsiation and this is the reason the SU(N|N) gauge group has been
used. The aim is to demonstrate that the extra fields introduced by the supergroup
provide a mechanism for cancellation to occur between component fields and hence
regularise some of the remaining troublesome diagrams. Actually, gauge invariance
arguments mean that the one-loop diagrams with 3 < E4 < D do not diverge in the
manner one would expect from the naive power counting, as will be demonstrated in

section 5.4, and so we concentrate on the cases with £ 4 < 3 in this section.

There are three varieties of One-loop Remainder Diagrams: those with just C, A or

ghost internal propagators. We will calculate the group theory factors for the unbro-
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ken parts of these diagrams and see that at large loop momentum they disappear,

while we demonstrate that the broken parts are finite by power counting arguments.

5.3.1 One-loop Remainder Diagrams with 4 propagators

The large momentum behaviour of the A propagator can be obtained from (D.3) and

is found to be

Tt
(@]
(W1}
~—

() A p) = et g+ 2 (22 ) oy s
p p £cp
The second term on the RHS arises from the symmetry breaking; the constraints
introduced earlier mean that the parts of diagrams using these symmetry breaking
terms are finite. We need to use pure .A* vertices which either come from the unbroken
interactions of (5.4) with index of divergence 2r 4+ 4 — i, or from the regularised
mass term in (5.19) with index 27 4+ 2 — i: using the symmetry breaking part of
the propagator and/or the symmetry breaking vertices will result in the degree of
divergence of the ensuing integral being bounded by Dr < D — F4—2(r—7+1) <0,

1.e. these contributions are finite.

Feynman diagrams are constructed by creating propagators using Wick contraction
between different supertraces originating from interactions. Concentrating on the

group theory dependence only, we find tree diagrams take the following form:

str(X A)str(AY) =str(XY) + ..., (5.66)
I

where the ellipsis denotes group theory factors arising from broken symmetry parts,
X and Y are products of supermatrices, and we have used the completeness relation

in the form of (4.50). In general, a term of the following structure should also be
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included

—E%V—(trX strY” + strX trY). (5.67)

If this term was required, it would imply that the propagation of only A# would be
inconsistent (i.e. .A° would also be needed) since such terms, although they arise in
the unbroken theory, actually break SU(N|N). However we are saved by the fact
that all A interactions occur via commutators,? so by rearrangement X and Y can

also be expressed as commutators. Since the supertrace of a commutator vanishes,

so does (5.67).

One-loop diagrams are formed by Wick contracting within a supertrace. From the

previous arguments, (5.66) and (4.50), we know this must be of the form

str( [A, Z1] Z2[A, Z3]Zy) = %[str(Zl Zy)str(Zs Zy) + str(Zy Zy) str(Zy Z3)
| e
—str(Zy Zo Zs)str(Za) — ste(Zy Zs Za)ste(Za)] + -+, (5.68)
or
str( A[A, Z1]) = 0, (5.69)
Lot

where Z; are products of superfields and again the ellipsis correspond to suppressed
(finite) terms from the broken sector. The possible O <%V) corrections from (4.50)
cancel out for the same reasons as above. In the cases we are interested in £ 4 < 3,
so the terms in (5.68) yield either str A = 0 or strll = 0. Thus we can cénclude that
One-loop Remainder diagrams with A internal propagators are finite, because their
contributions from the spontaneous symmetry breaking sector are finite by power

counting, while the unbroken part has group theory factors which disappear.

4This is true in the A%-free representation; in the *bracket version, extra interactions play the

same role.



5.3.2 One-loop Remainder Diagrams with C propagators

From (D.5) we see that the large momentum behaviour of the C propagator is
~ [ . —de2m
(C5(p)Ch(=p)) = ;%5%(03)’3 +O0(p™**m), (5.70)

where m = min(27,7). Again we note that contributions arising from the broken part
of the theory are finite by power counting as the degree of divergence of a one-loop
diagram using the broken part of (5.70) is bounded by Dr < D — E4 —2—2min(r, #—

#) < 0, and we have already shown that we need not consider CA? interactions.

Tree diagrams have the form

str(X; C)str(C Xy) = str( Xy Xg) + -+, (5.71)
[

where the ellipsis signifies contributions from the broken sector. Note that we do not
have to address the issue of O (%7) corrections here. The one-loop diagram then takes

the general form

str(C Y, CYa) = strYy strYy + -+, (5.72)
|

with broken sector contributions represented by the ellipsis. Similarly to the previous
situation, Y] and Y3 are the products of the remaining superfields, and with £4 < 3,
this leaves us with either strll = 0 or str4 = 0, and so One-loop Remainder Diagrams

with £4 < 3 and C internal propagators are also finite.

5.3.3 One-loop Remainder Diagrams with 1 propagators

The analysis for these diagrams is the same as that for the A propagators in sub-
section 5.3.1, which is unsurprising as 7 is linked to gauge transformations by BRST

(see subsection 5.4.1). With the symmetry breaking terms once more finite by power
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counting since their degree of divergence is bounded from above by the already nega-
tive D — E4 —2(7 —7 4 1), the unbroken sector yields one-loop diagrams of the same

form as the RHS of (5.68) and/or (5.69), and so we can draw the same conclusions

with regard to finiteness.

5.3.4 Example of explicit calculation of supergroup factors

In this subsection we present the explicit results of a calculation of the supergroup
factors of diagrams using the Feynman rules of Appendix D. This hides much of the
simplicity and elegance of the previous section since individual diagrams do not allow

for the fact that vertices appear only as commutators.

Since the Feyvnman rules have been derived for a strict cycle of fields, diagrams are
calculated by considering all possible topological variants. For example, figure 5.3
shows the two possibilities that arise for the one-loop correction to the A propagator

that uses just A® vertices.

Figure 5.3: One-loop contributions to the A4 propagator

We are only interested in the high momentum behaviour of such graphs; specifically
we alm to demonstrate that the leading contribution vanishes in this regime, with
subleading terms arising from broken terms already shown to be finite, and hence
the diagram is UV regulated. We will use only the single index (i.e. adjoint index)

notation here as the example uses only A fields. Of course the same results are

86



obtained using the double index (i.e. fundamental and complex conjugate indices),
which is the notation that appears more natural if C fields are involved. Inspection
of the momentum part of (D.9) reveals that we need not consider o3 insertions; such
contributions to these diagrams are already finite by power counting. If we take
figure 5.3 (b) as an example, the group theory part of the calculation comes from

(suppressing Lorentz indices and spacetime dependence):

A% AP A7 A AP A7 st1(54.55S, ) str(Se S5 S.)
L= |

~ A% AP A5 A5 1 st2( 50555, ) str(SeSsS)
L

~ AT AS AP AZ (= 1)I OO 5tr(5,555, ) str(Se 555e)
[

~ A A (=D B str( S, 555, ) str( S S5.Se)
~ AT AP RPe st (5,555, ) st Se Ssia)Se)

+ A2 APDRB R st0(S, 555, ) str(SeSsi)Se), (5.73)

where we have used the property of cyclicity under the supertrace and taken the
opportunity of Wick contracting two fields (to form an internal propagator) on the
second line using the high momentum behaviour exhibited in (5.65). The notation
§(b) (6(f)) introduced in the final line means we only consider the bosonic (fermionic)
parts of the A’ field. Similarly for figure 5.3 (a) the group theory part is calculated

to be
AT ASRPCRT 5t1(54.55S, ) str(Se S5 S:) (5.74)

Now we utilise the completeness relations in the forms (4.50) and (4.51). We then

find that (5.73) and (5.74) both equate to

[l
=1
(W1
-

1 D - 1
_ﬁAaAé [str(Saos9s) + str(035a55) ] = — 57 str (0'3/12) 5.

However, (D.8) shows us that the A* Feynman rule is antisymmetric in the exchange
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of any two momenta. Consequently there is a relative minus sign between the two
contributions of figure 5.3, but since they have the same momentum and group theory
parts at large loop momelltt1n1, these two topologies cancel in this regime. The same
argument applies to the diagrams with two internal Cs or ghosts. Similar calculations
have been performed (using the FORM algebra manipulation package) for all One-
loop Remainder Diagrams with just two or three external A lines and these diagram

were again shown shown to be finite.

5.4 Ward identities

The only diagrams that now remain to be tested whether or not theyv are finite are
the one-loop diagrams with 3 < E4 < D and E; = FE, = E; = 0, originating
from the unbroken theory. In this section, we shall use gauge invariant arguments
to demonstrate that the regularisation works up to D = 8. The key to doing this is
the BRST construction [40]. We use only the unbroken action (5.30) as we have seen

that all contributions from the broken sector are finite by power counting.

5.4.1 BRST

We introduce the BRST parameter € which is even under the group grading but odd

under ghost grading. The BRST algebra is given as

SA = AP, 0], (5.76)
5C = —i€lC, ], (5.77)
& = ig’en?, (5.78)
67 = eAPPTeE10,A,. (5.79)
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The unbroken action (5.30) is invariant under these transformations, as is the naive

functional measure.

The next stage is to construct the Lee-Zinn-Justin identities [14]. We need to add

source terms for the fields and non-linear BRST transformations:

Ssour::es = _Stl/(le (juAu + jc + 577 + ﬁé& + Ag—QIC“[VW 77} - zg’H[C, 77] + Zg[’772> .
(5.80)
Here J is an unconstrained superfield
JU K o
J=1| _ : (5.81)
L J?

but J, (distinguished from [J by the Lorentz index) expands only over® S, and o3:

1 1 o 0
w = ZJ:Y ,Sa -+ *2—2\—[17# gs, (DbZ)
so that
Stl‘juA;z - j;»Aua + j;Ag, (583)

and these same constraints apply to ¢, ¢, H, K and £. We define the functional

differential so as to extract the conjugate from under the supertrace [5], i.e. we require

5 .
st /de Jc=c, (5.84)
so we have
S _[ar o (5.85
57 = ) A 5.85)
SK T g2

5If the *bracket formalism is used, the expansion is just over S,.
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with a similar definition for §/5C. Analogously, we choose

5 s 5

= 25, + ==, 5.86

57, 57 57 (5.86)
5 B |

= 28, 22 5.87

A, T CUTAL, TanNsAg (5:87)

and likewise for the other field and source differentials.

Viewing the BRST transformations (5.76)-(5.79) as changes in integration variables,
we find the generator of connected Green’s functions W = In Z satisfies the following

relation

. e oW oW oW LW o
ECAP/?2 ¢ 1-(?“5 —+—st1‘]dD:c<,7M5)C —{—j().%—g(sL):O. (5.88)
" I3

We then perform the Legendre transformation to obtain the equivalent equation for

the generator of 1PI diagrams
F+¢0,A, &1 9,4, =W +str /dD;L’ (ju/lu +JC+(n+ 77() , (5.89)

where A, C and n must now be viewed as classical fields. The gauge fixing term has

been extracted so that upon using the antighost Dyson-Schwinger equation

or ér
T — 9 2—-D/2 71~ — 5.
str 1’4 (57_7 A ¢ Ca“(SlCu) 0, (5.90)

the simplified Lee-Zinn-Justin identities are obtained

ST 6T 6U6T  6T4r
. [D‘ — —_— ] = (). 5.
str [ % (MN 5K, T 3CoH T 5y 55) 0 (5.91)
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5.4.2 Finiteness of diagrams with BRST source insertions

An issue which must now be addressed is the finiteness (or otherwise) of the new
diagrams introduced by the BRST sources X, H and £ in (5.80). Fortunately, since
these interactions do not involve higher derivatives it is straightforward to adapt

the arguments of section 5.2 to show such diagrams are superficially finite by power

counting.

We first note that (5.32) remains the same, but (5.33)~(5.35) now become

L=Iqa+Ie+1,+1=> Vai—=> Vae—> Varez — Vipa — Vize — Voo — Vs
( J k

_‘/Kn - ‘/K.An - V’HCn - ‘/L‘,ﬁ, (592)
EA = ":ZIA —+ ZiVAJC + ZjVA]C -+ Z A‘/Akcﬂ + VnQA -+ VK.Am (593)
i i k
Ee==2Ic 4+ Viaie +2> Vascs + Vipe + 3Ves + 4Ves + Vi, (5.94)
J k
The ghost equation (5.36) in the desired form
Ef + Ef = =L+ Vipa + Viee (5.95)
is unchanged, while we also have the new (trivial) relations
Ex = Vkn, — Vian (5.96)
By = V'ch (597)
Er=Vipe (5.98)
The net result of this is that Dr in the form (5.38) picks up the new terms
—(2r+3)Ex — (r+ 7+ 3)Ey — (2r +4)E. (5.99)
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Proposition 1 still holds as do the sufficient conditions (5.45)—(5.47) since these ensure
that (5.99) provides a negative contribution to Dr. The only set of diagrams that
remain unregularised by the covariant derivatives are exactly those defined before as

One-loop Remainder Diagrams. Thus all diagrams involving BRST source terms are

finite in any dimension D.

5.4.3 Finiteness of one-loop diagrams using Ward Identities

We write I in terms of its classical and one-loop parts, I' = I'°+Al!. In the unbroken
theory we expand the one-loop pure A vertices as (similar to (C.3) and the double

supertrace result of the previous section)

1 .
A “« e D i D' .. D 1 3 . o0 . . e 5
5 ;2%—2/(1 2y dPandPy o dPym T e, (X1 T YL Ym)

str[Ay, (21) - Ay, (@n)] str[ A (y1) - Auy (Y] (5.100)

The only O(h) terms in (5.91) with one n and otherwise only As come from

St 6r° 10 o1t
. D -
str /d T <5 " K, + 5L 5/@)’ (5.101)

and so we can deduce that

PP T simmnoow (P3P @2 Gm) = Dy o (PL A P2, P35 Pri @1+ 3 )

"—Fl (p27"'7pn—-17pn+p1;CI13"'aqm)+ ﬁnitew (5102)

H2,yHnWyUm

where ‘finite’ denotes parts arising from the second term of (5.101) (finiteness fol-
lowing from the results of subsection 5.4.2). Similar Ward identities can be obtained
using the cyclicity and invariance under the exchange of the two sets of arguments
implied by (5.100) [similar to (C.6) and (C.7)]. If we set n = m = 2, (5.102) and its

counterparts will relate the longitudinal parts of the four-point vertex to the unbroken
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three-point vertices, which we know from the preceeding section vanish. Hence, we

know that the longitudinal part of the four-point vertex is finite in any dimension.

Thus a divergence, if it is to exist, has to arise in the totally transverse part. However,
this part of the four-point vertex must have a tensor structure involving at least four
external momenta. This means that the superficial degree of divergence has been
over estimated by four as these powers of momentum are not available for use as loop
momentum, z.¢. instead of Dr = D — 4 we have Dr = D — 8. Thus we can infer that

the one-loop four-point pure A vertex is finite in all dimensions D < 8.

This argument can be extended to show the finiteness of all the remaining diagrams.
The longitudinal part of the five-point pure A vertex is related to the difference of
finite® four-point vertices plus finite corrections, while the transverse part actually
has Dr = D — 5 — 5 and so is finite for all D < 10. Proceeding in this manner we
see that for D < 8, the remaining 3 < £4 < D One-loop Remainder diagrams are
finite. Thus all 1PI diagrams are finite in ) < 8 as a consequence of a combination

of power counting. the supertrace mechanism and gauge invariance.

5.5 Unitarity

It was noted earlier that the supertrace gives rise to the wrong sign action for certain
fields such as Ai. The functional integrals over these field that appear in the partition
function need to be analytically continued in a manner consistent with the SU(N|N)
symmetry in order for them to make sense. Equivalently, the system could be defined
through exact RG methods [4, 5] which do not suffer from such problems of definition.
Rather than being a sign of instability, ¢.e. the choice of Fock vacuum leading to an

unbounded Hamiltonian, covariant quantisation with these wrong signs results in the

SFor D < 8.
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appearance of negative norm states. These states are unphysical and lead to a non-
unitary S-matrix. A simple quantum mechanics example which demonstrates this
point is given below. The situation here is similar in many ways to the Gupta-Bleuler
quantisation procedure [23], which also has to handle the wrong sign action for time-
like photons in quantum electrodynamics. Again, choices of vacua exist, but Lorentz
covariant quantisation picks out the ones with negative norm states. Unfortunately,
we have no Gupta-Bleuler condition to exclude unphysical states. Instead we will find
that in the continuum limit A — oo, A} and Ai fields decouple enabling a unitary

SU(N) Yang-Mills theory to be recovered in the A; sector.

5.5.1 U(1|1) quantum mechanics

We define the Hermitian superposition &’ to be
X=|" , (5.103)

and consider the Lagrangian (in Minkowski space) of a simple harmonic oscillator:
L = %strz\.f'E — Sstr A% (5.104)

Classically this Lagrangian is invariant under SU(1|1) transformations 6 =7 [, X].
however we also get for free invariance under U(1|1). By Noether’s theorem, these

transformations are generated by the charges
Q =1i[X,X], (5.105)

through the Poisson bracket with strw@. Note that the charge for w ~ 1l vanishes

which is a reflection of its trivial action on &X. With a supercovariant derivative
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defined as in (5.83), the supermomentum is given by

0. L=24X. (5.106)

P o=
oX

This differs by some convenient signs from the usual set of definitions. We can then

write the Hamiltonian as

H=strPX -1, (5.107)

while quantisation is via the graded commutator:
[(’Y)abv(p)cd]j: = 1(03)% 0%. (5.108)

By including arbitrary constant supermatrices U and V, we can easily see that this
respects U(1|1):
[str UX,str VP ] =istr UV, (5.109)

and this actually corresponds to the usual relations using the usual definitions for

momenta:
) .
JL .
Py = F5 (5.111)
oL y
Ps = 55 : (5.112)

Care needs to be taken since the naive ordering suggested by (5.105) will not leave
Q supertraceless after quantisation. This problem can be cured by subtracting the

supertrace which corresponds, as we will see, to normal ordering:

Q = i[X,P] -z osstr [X,P] = i [X,P] + 205, C (5.113)
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The annihilation and creation operators arve chosen to be

/ (X +14P) .
X —P)
R .
Al = (5.115)
with the normalised vacuum defined to be 4]0) = 0. These operators have the
expected graded commutation relations:
[(A4)7, (A, = (03)% 85, (5.116)

The vacuum respects U/(1|1) since @]0) = 0 and we also note that the supercharges

(5.113) may be written as @ =: [AT, A]: i.e. we introduce normal ordering.

We can rewrite (5.114) and (5.115) in terms of components using the usual definitions
of momenta contained in (5.110)—(5.112). We then find that @' has the usual form of
annihilation operator, namely a! = (z'+ip')//2, but the one for z? actually contains
a wrong sign: a® = (2%—ip?)/v/2. This gives rise to a wrong sign commutation relation
[a%,a?T] = —1 as can be easily seen from (5.116). This sign is precisely what is needed
to compensate for the wrong sign of a?fa? in the Hamiltonian, H = str AT4 42, and
ensuring that is is bounded from below. However, it also results in negative norms

appearing in the ‘2’ sector. With the normalised ket vectors in this sector given by

1 .
In >= ﬁ(a?f)”m, (5.117)
we find that
<nln >=(=1)" (5.118)

2

Any attempt to rectify this by altering the sign in ¢* results in an unbounded Hamil-

tonian and a U(1[1) and SU(1]1) violating vacuum.
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5.5.2 Recovery of unitarity in A! sector

We established in sections 5.2, 5.3 and 5.4 that covariant derivative spontaneously
broken SU(N|N) theory is finite in all dimensions D < 8. However, more is required
if this is to be a suitable regulating method for SU(V) Yang-Mills theory. We also
need to establish that in the limit A — oo, SU(N) Yang-Mills theory can be recovered

from the SU(N|.\) scheme.

Except for AZ, all fields become infinitely heavy” in the A — oc limit and consequently
drop out of the spectrum, so at low energies the gauge group is just SU(N) x SU(N).
We need to ascertain that there is no interaction between the two SU(.V) gauge fields.

thus enabling us to ignore the A* sector in this limit.

Such a problem is addressed by the Appelquist-Carazzone decoupling theorem [42].
This theorem states that for a renormalisable theory, as the mass scale of the heavy
sector tends to infinity, the effective Lagrangian is given by a renormalisable one for
the light fields with corrections which vanish by inverse powers of the heavy scale
which is identified with the overall cutoff of the effective theory.® Our case is actually
even simpler than this as the heavy mass and cutoff scales have always been identified
so we need not concern ourselves with subtleties arising from exchanges of limits of
these scales. It must be stressed that the Appelquist-Carazzone decoupling theorem is
only applicable to initially renormalisable theories. The standard analysis for Yang-
Mills theory carries over to the supergroup case, so we know that spontaneously

broken SU(N|N) is renormalisable in D < 4.

We therefore conclude that in D < 4 dimensions, the effective SU(N) x SU(N)

theory can be described by an effective Lagrangian containing just these fields with

"The fermionic 7' fields also remain massless. Strictly speaking, we should take into account the
effects of the ghosts and BRST in the following analysis. However these do not alter the conclusions

of the Appelquist-Carazzone decoupling theorem [43].
8For example, this theorem is used to justify the assumption that a spontaneously broken Grand

Unified Theory is equivalent to the Standard Model SU(3) x SU(2) x U(1) at low scales.
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couplings ¢; # g. and with other interactions weighted by appropriate powers of A as
determined by dimensions. If such an interaction between the A! and A? fields was
to exist, it would have to contain at least two traces, one for each sector. The lowest
dimension interaction comes from a group theory structure tr4’ Al trA2A? with the
Lorentz indices somehow contracted. To be gauge invariant under SU(N) x SU(N)

it must take the form (up to In A corrections)

APl P P F, (5.119)
where F) is the field strength of A' and the Lorentz indices are again contracted

in some fashion. This is irrelevant in any dimension and since it is the minimal

dimension interaction, we know that all other interactions are irrelevant and disappear

as A — 00.?

The fact that we have decoupled sectors as A — oc is actually a statement that
unitarity has been restored in the A! sector. A non-unitary amplitude can only arise
from contributions with internal A? propagators. Cutkosky cutting such an amplitude
will then result in a non-vanishing amplitude connecting the 4! and A? sector [23]

which we have shown cannot exist in the continuum limit.

5.6 Summary and conclusions

A method of regularising SU(N) Yang-Mills theory in a gauge invariant manner in
fixed dimensions D < 4 has been established. By the use of a higher covariant
derivatives all but a small number of one-loop 1PI diagrams of spontaneously broken
SU(N|N) gauge theory were shown to be finite. In turn, these troublesome diagrams

were themselves shown to be finite in D < 8 either by cancellations caused by the

9This is true in D < 4 dimensions. In D > 4 the couplings g; are non-renormalisable and higher
order interactions are unsuppressed. Thus not only is D < 4 sufficient, it is also necessary.
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supersymmetry through the supertrace mechanism, or by appealing to gauge invari-
ance arguments via Ward Identities. For the scheme to provide regularisation for
SU(N) Yang-Mills theory it is necessary to be able to recover it when the regular-
isation scheme is tuned to a certain limit. The first stage in this was to introduce
spontaneous symmetry breaking so that all fields except the field we wish to regulate
and a wrong sign copy, gain mass. When these masses are taken to infinity they
decouple from the massless fields. The last issue to address is whether the remaining
massless fields interact in the continuum limit; if so, the embedded SU(N) theory
would violate unitarity. Fortunately, the Appelquist-Carazzone theorem, applicable

in D < 4, guarantees no such interactions can exist.

There are a number of obvious applications and extensions to this work. Since these
ideas first arose within the context of the exact RG, it would be very appealing to
construct a fully SU(N|N) invariant flow equation. Another attractive aspect of this
work would be to investigate large N Yang-Mills theory. The interest here lies with
the fact that at large V, the supertrace mechanism ensures that there are no quantum
corrections in the symmetric phase. Of course these ideas would also benefit from the
introduction of quarks (and their bosonic superpartners) so direct comparison with

physically important theories such as quantum chromodynamics would be possible.
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Appendix A

Proof of eq. (4.29)

This proof of (4.29) is based upon that of [24]. Suppose we have a supermatrix of the

[+2)
N = . (A1)
0D

expA B
expN = , (A.2)
0 expD

special form

Then it is evident that

for some complicated B’ whose exact form is not required. Then by using the defini-

tion of the superdeterminant (4.20) we find

det(exp A)

detN = —————=, Al
oee det(exp D) (4:3)
Since A and D are ordinary matrices, we can further conclude that
trA
sdetN = —2 1 (A.4)
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i.e. the result (4.29) holds if N is of the form (A.2). Similarly, it holds if N is of the

[$2)
N = ) (A.5)
C D

Next we use the relation (which we shall not prove here) sdet(R S) = sdetR sdetS

form

(for any supermatrices R and S), to deduce that

len)=(23)
sdet |exp exp (A.6)
C D 0 -D

" (A B ~A -B

= sdet |exp sdet [exp (A.7)
I C D J| 0 -D
r 1 r .

A B A B

= sdet |exp exp | —str (A.8)
i C D | ] 0 D ]
- (aB\] | A B\

= sdet |exp exp |—str (A.9)
i C D J| C D /|

However we could use the Campbell-Baker-Hasudroff formula to rewrite (A.6) as

=) ]
sdet | exp + M’ , (A.10)
Cc o

where M’ is a set of commutators partitioned as

A0
M’ = . (A.11)
C D
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Since the matrix to be exponentiated in (A.10) is of the form (A.5) (7.e. of a form for

which we know (4.29) holds), (A.10) becomes

les)
exp | str +M =1, (A.12)
C 0

since the supertrace of commutators vanishes. Thus we know

A B A B
sdet | exp exp | —str
C D C D

and that (4.29) holds for general supermatrices.

} =1, (A.13)




Appendix B

Completeness relations

B.1 SU(N|M)

The generators of SU({N|M) provide a complete set of supertraceless matrices (as
can be demonstrated by a simple counting argument). Hence a general (non-super)
matrix denoted X can be extended in these generators supplemented by any matrix
with an non-vanishing supertrace. For the purposes of this derivation we employ the
Iy 0

) to perform the latter réle. Thus we have
HM

identity Uy yar = (

X :XATA +4gﬂj\f+1w, (Bl)

where X* and X are coefficients and there is an implied sum over A. Furthermore,

X4 = 2str(T*X),
X L (x (B2)
N a7 v
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Thus we can re-express (B.1) as

1

(X, =2 (03 (T4 (VR (T4l + i (00) (X8 (B3)
Since X is an arbitrary matrix, this implies that
(Sim 6k] =2 (03)kl (TA)[m (T4)l] + N — M (0-3)1:771, 52]7 (B4)

which, after re-arrangement and relabelling, returns the form of (4.45):

1yi : itk 1 i ok .
(T4 (Ta) = = (03)', 6% — SN = M) &' 6. (B.5)

[N

I

B.2 SU(N|N)

The S, generators of SU(N|N) as defined above (4.46) form a complete set of
traceless and supertraceless matrices. As a consequence, a general (non-super) matrix

Y can be expanded in terms of S, llony and o3, i.e.
Y = Y5, + Vi + Yos, (B.6)
where there is a sum over a and the coefficients ¥'*, ¥ and Y are determined by

Yo = 2str(59Y),
Y = 5L tr(Y), : (B.7)

Y = 2Lostr(Y),

which means that

>3
——~
n
2
S
o=
+
—~
~
??_k'
o
.
+
PN
Q
W
N
iy
ot
Al
p——g
o
——~
Q
w
SN
-~
EamanN
o
oo

(Y)'; = 2(03)" (59, (Y)%
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Using the fact that Y is an arbitrary matrix, we deduce that

ok > i 1 ; 1 : ;
5Zm ij =2 (03)kl (b )lm (‘Sa) i + ‘jﬁcgkm(sj + —Q—N— (0_3)Am (0-3) i (B9>

leading to the completeness relation for the S, generators of SU(N|N) (4.49)

caNt [ 1 i ck 1 i <k i 3
(575 (5a) = 5 (02)' 1 8% = [(05)'; 8% + 6%, (03)"] . (B.10)



Appendix C

Wine notation

We introduce the ‘wine’ notation of refs [3, 4, 5]. Given a generic kernel W (p?/A?).
we can construct the wine (j{WW}%,. This functional is a gauge covariantization of
the original kernel, and incorporates parallel transport of the tensor representation.

If ul(z) and v] y) are N ® N representations of the gauge group, we have
P k
u{W}v:= /clL zdPy uﬁ(x)xi{w }fybi(y) (C.1)

A wide choice exists for the exact form of the wine; we shall only use the following
representation

u{W}lv =str /de u(z)W(=V2/A%) - v(z), (C.2)
where V, is defined as in (5.2). The wine can be expanded in momentum space in

terms of the gauge field [see (5.1)] as

u{Wiv=v{Wlu=

Z /(lDr dPsdPp, ...d"p, d%: ...d g, Wit smi oo (Pls oo e s Prs Qs v oy Qi Ts S)
m,n=0

str [u() Ay (p1) - A (9 )V (3) A (@) - Asy (4. (C.3)
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Such an expansion is represented graphically in figure C.1, with the labelling scheme

shown in figure C.2.
v v v v v v
A (q1)
= + + + + 4+
Au (1)1)
u y u u u u
Figure C.1: Wine expansion, where the thick lines represent the full series.

Un /3 Vg UV
n 93 92 41

T

Pr P2 p3 Pn
Hi M2 U3 Hn

Figure C.2: Convention for wine labelling

We use the following shorthand to reduce the plethora of arguments indices, commas

and semi-colons. For the n = 0 case of (C.3), we replace the second string of A fields

by the identity and define
Wotoin (D1 ooy Pn;78) = Wy (P15 oD 575 8), (C.4)
while for the m = n = 0 case we regain the original kernel

W, = W (; ;p,—p) = W(p*/A?). (C.5)



Evidently from the definition of a wine we have the exchange identity

Wit simm (PLs e e s P Gy - oy @i Ty 8) = Wl vminoown (Q1s o oo @ P1o e oo Py 8,7,
(C.6)

Furthermore, charge conjugation invariance (arising from the symmetry A4, < —AE)

implies

I/Vul...un,ul.“um(pla ceey Py qry -5 qns Ty S)

= (=)W s (P oo s P13 Gy -+ 5 q1;8,7). (C.7)
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Appendix D

Some Feynman rules for SU(N|N)
gauge theory

Some of the Feynman rules for the broken action contained in (5.28) are given here.
The Feynman rules were derived as follows: each rule is the sum of all possible ways
of assigning the relevant fields to points but maintaining the order within supertraces.
This means that when it comes to calculating diagrams, care has to be taken to ensure

that all possible combinatorics and topologies are taken into account. The following

short hand is employed:

(A7 4 1P, (D)

(h*7 — hP%), (D.2)

b>h

il

SR A N R

i

i

as well as the wine notation described in Appendix C.
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The A propagator is

Al s oA

7 "
_yon [ 9w PPy (¢;' = &6")
1?2 p? feole-l
P p “p
~1 A1
orf Guv PuPv (C -“é-C )
+f g {c‘1])2 441\25‘1 + (c*1p2 _:4 \2¢6-1) (§6—1pp2 + 41325—1)} : (D3)

J2 P P bp 6y P

In double index notation we find

“52} <O3)kj + (US)iz 513‘ - ’1— {5% (Us)kz + (UB)ij(Skl}}
X{ Guv +pupu(c;71_—§é;1)}}

—1,,2 4 camla—1
&P P Lo

+%1 { {yz (UB)kj — (o3)}) 5kj}

v v C__l — é—‘l
X{ —1 29#4A2~_1 Sl 22%11 \25-1 A(—1p2 iir)_l }} (D.4)
¢, pt+ ¢ (cpp+/cp)(§cpp+/cp)

The C propagator is given by

(CipCi(=p)) = p—a (00 4 52 (5 (00)s — (a1 d5) . (D9

3%
A% ¢,

The superghost propagator is found to be

Nt - i b’ N Vi |
7 é;lép p? é;lép p? 4 4A2¢6-1

(D.6)
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Or equivalently

H‘Siz (03)kj + (o3)) (Skj - % {(Sij (o3)f + (0-3)ij 517]} A_11~ 3

Cp Cpp

| —

(' () n(=p)) =

1
é;lépr + 4A26-1

+ {‘Sil (UB)kj - ((73){15%} } . (D.7)

The pure A® interaction was found to have the Feynman rule

= 29[ (POau = Pr0) + (@7, P)(pars — Pr)

o TAE (@ p) 8+ 2 cycles of (Par @)
\ x str( 575557,

A (D.8)

Three point interactions with inserted o3s (arising from the symmetry breaking) also

occur. The positioning of a o3 is indicated by a wedge.

gA\*? [5;1(({;]9, ) dun + (P T q) 6un + &5 (T34, p) 5;“/}
x str(o35%035P57).
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Some more three point Feynman rules are given below.

((A)'5(p) Chlg)Cm(r))
=2 [t~ &g+ & pirq) g o ]

4
X(g3)kn [51‘1(03)";- — % {(gs)ij 7711 + 5%(03)”}}} . (D.l())

AL BT = —ge7 & 1, str(575757)

’7 (D.11)

A: OO0 X = gé;léq qu Str(SaSﬁSW)
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