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This thesis presents a study of statistical models for ordered categorical data. The 

generalized linear model plays an essential role in this approach. A Gibbs sampler 

method is used to estimate model parameters for a Bayesian formulation of a ran-

dom effects generalized linear model. The adaptive rejection sampling (ARB) method 

introduced by Gilks and Wild (1992) is used in the Gibbs sampling scheme. Good 

results are obtained in simulations and we applied this model to analyze data concern-

ing telephone connection quality supplied by British Telecom (BT). The concept of 

latent residuals introduced by Albert and Ghib (1995) is used for diagnostic checking. 

A random effects cumulative logit model is employed to analyze longitudinal 

ordinal responses and a Bayesian approach to the cumulative logit model is consid-

ered. The adaptive rejection sampling (ARB) technique is again used to estimate 

model parameters. Simulation results as well as results from a real application are 

presented. A new cumulative logit model is developed to cater for a particular set of 

ordinal categorical data. The main reason is that in the telephone connection quality 

experiment, each subject has his/her personal scale in mind. At the same time, the 

underlying stochastic ordering structure needs to be maintained for the model. This 

model is used to model the telephone connection quality data. A continuation-ratio 

model and cumulative probit model with serial correlation are also considered. 
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Chapter 1 

Introduct ion 

1.1 A n Overview of Exis t ing L i t e r a t u r e on Mod-

elling R e p e a t e d Ordina l D a t a 

In many statistical studies, responses are measured repeatedly for each subject under 

investigation. Correlation is common amongst the repeated measures series. In this 

thesis, I consider situations where the responses are recorded on an ordinal scale. An 

ordinal scale response variable is also referred to aa an ordered categorical response 

variable. For example in a clinical trial, the responses of a patient to a sequence of 

trials on certain drug may be measured on a four-point scale: excellent, good, fair 

and poor. 

1,1.1 Ordinal Responses 

An approach to analyzing ordinal responses which does not involve assigning an arbi-

trary score to each category is to view the ordinal response of subject i on occasion 

j as the ordinal categorical manifestation of an underlying continuous random vari-

able. Suppose there exists a latent continuous variable then the observation 



is observed in the following manner: 

if < Aij < Ck/i (A = 1 , 2 , , A:), (1.1) 

where / ^ = l , 2 , . . . , / r are called the cutpoint parameters. There are /r — 1 cut-

points. Now let Xij take the linear form Xij = + tij where has a specific 

distribution G and .67(6̂ )̂ = 0. is the appropriate row of the general design matrix 

X. The parameters to be estimated are contained in the vector Therefore in this 

setting we have 

F(%- < /̂ ) = - ^ ^ ) (1.2) 

The are necessarily ordered with —oo = do < cti < - < = oo. Different 

choices of G~^ will yield different models for cumulative probabilities. For instance if 

Xij = + eij with e having a logistic distribution, then is the logit transform. 

This and related models have been extensively discussed by McCullagh (1980) and 

more recently by Agresti (1996). The model in equation (1.2) with a logit link is 

called the fixed effect cumulative logit model. The random effects cumulative logit is 

simply of the form 

Xij = P̂ Xi + UiZ.i + (1.3) 

where is the random effects component for each subject i and it is a subset of 

Now let 7,J = P{yij < h), then the following list shows different models for cumulative 

probabilities with different link functions; 

(i) Cumulative Logit Model: = log 

(ii) Probit Model: G^^('yij) = $'^(7ij), where $(-) is the cumulative distribution 

function of a standard normal random variable. 

(iii) Complementary log-log Model: = log{—log(l — 7:;)}, where G is assumed 

to be the standard extreme minimum value distribution. 

(iv) Log-log Model: = log{—log(7ij)}, where G is assumed to be the standard 

extreme maximum value distribution and the relation = — 6*^^(1 — ^ij) holds. 

There are other types of cumulative probability models for ordinal responses. For 



exajnple, the probability, 

I % > /̂ ) = = 1 , 2 , . . . , /c. (1.4) 
4 1- TTijt 

A logit link for 7,̂  in equation 1.4 is referred to as the continuation-ratio logit model: 

l()git == (1.5) 
\ 1 - irijhy/ 

vrhuBre = ]̂ r(2&j == AJ i&CKi = %\ji H-iTfjz 4 H 

Similarly there are the continuation-ratio complementary log-log model and continuation-

ratio probit model when the complementary log-log and probit link functions are used 

respectively. 

Another ordinal probability model is the adjacent-category probability model 

— (1.6) 

This is the probability of an observation being in category h given that it is in cate-

gory hoi h-^1. Again taking different link functions would result in different models. 

Models for analyzing ordinal data in this thesis are basically cumulative logit models. 

Cumulative logit models have the advantage of being easy to interpret. One can cal-

culate the log-odds ratio concerning a covariate using the regression coefRcient vector 

0. One example of interpretation of the log-odds ratio is from Francom, Chuang and 

Landis (1989). They showed an example of repeated ordered categorical response 

data in tabular form. The table gave results of a randomized, double-blind clinical 

trial comparing an active hypnotic drug with a placebo in patients with insomnia. 

The outcome variable was patient response to the question 'How quickly did you fall 

asleep after going to bed ? ' using categories ( <20, 20-30, 30-60 >60 ) minutes. 

Patients responded at the start and conclusion of a two-week treatment period. The 

repeated measurement makes the response bivariate, measured at levels: initial and 

follow-up. After fitting an interaction model to the data, they estimated that for 

the placebo treatment, the odds that time to falling asleep below any Exed level is 

approximately equal to exp(1.05) = 2.9. This indicates that the odds of time to fall 

aaleep at the follow-up occasion is almost three times higher than that at the initial 

3 



trial. For the active treatment, the effect is exp(1.05 + 0.65) = 5.5. More details 

about the interpretation of model parameters are provided by McCullagh (1980). 

The cumulative logit has the advantage of a certain in variance to response category 

choice. If a cumulative logit model holds for an underlying continuous responses, it 

also holds for any categorical measurement of the responses, with the same values for 

the effect parameters. For sample data, if the model Sts well for a Sxed set of response 

categories, it also tends to fit well when we combine sets of adjacent responses. When 

there is an arbitrary rather than a fixed choice of response categories, interpretation 

of parameters may also be more natural for cumulative logit models. When there is 

a fixed set of responses, the adjacent-category logit is sometimes more useful, since it 

permits contrasts between pairs of response categories. 

In chapter 6, a probit link function is proposed for a model which includes an au-

toregressive process in its linear functional form. A probit link will facilitate the 

estimation procedure. However in many situations, a logit or probit link will both fit 

well. The only real difference is the measurement scale of the parameters. 

1.1.2 Est imation for Ordinal Data 

Now suppose in an experiment, each subject may be observed at d occasions, 

and let (1 ,2 , . . . , r) denote the r possible response categories at each occasion. The 

data can be described by a contingency table with r'^ cells, containing counts of 

possible multivariate response profiles. Let 

TT J w i t h j = ( ; i , . . . , ; j ) (1.7) 

denote the probability that a random selected subject makes response jg at occasion 

1 < Jg ^ r, p = 1, . . . ,d. Ashford (1959), Cox (1970) and McCullagh (1980) con-

sidered models for categorical response variables in general. Haber (1985) gave an it-

erative Newton-Raphson routine of obtaining maximum likehhood estimates (!MLEs) 

of parameters in the models of the form 

AlogB7r = z ' ^ (1.8) 



where ?[ denotes the cell probabilities of a multinomial sample over the possible 

response prohles, with independent samples at each of the s level of z where z is 

the covariate vector. For adjacent-category logits, B contains '0' and T elements 

such that Btt produces the rd marginal probabihties for each level of x and each row 

of the matrix A contains '0' elements except for a single T and ' — 1' positioned to 

form a particular logit. For cumulative logits, B, produces the 2{r — l)d cumulative 

probabilities and their complements. Haber (1985) uses Aitchison and Silvey's (1958) 

method for maximizing a likelihood subject to constraints. However Haber's routines 

are impractical when the table has a large number of cells because of the problem of 

large matrix inversion. 

Koch et al. (1977) use the model in equation (1.8) for repeated measure categorical 

data. A weighted least square (WLS) approach is suggested for parameter estimation. 

Their estimation procedure is outlined as follows: 

Let 2 be the sample proportion estimate of ?[ and Var(p) = V. When z has g levels, 

y is an 5-block diagonal matrix with separate multinomial covariance for each block. 

The WLS estimate of ^ is 

(1.9) 

where S = AD^^3V3'D~^A' is the approximate covariance matrix for the model 

by using the delta method. The asymptotic covariance of is given by the matrix 

{ x ' . The quadratic form 

(AlogBp — (AlogBp - x'^) (1.10) 

is used for testing goodness of ht. Wald statistics are used for hypothesis testing. A 

disadvantage of WLS is its inefficiency in handhng continuous covariates. Missing data 

or time-dependent covariates often make the WLS procedure complicated. Stram, Wei 

and Ware (1988) proposed a semi-parametric approach for fitting a cumulative logit 

model to repeated measures data. They assume no dependence structure among the 

repeated observations. Their approach is mainly focused on estimation of covariate 

effects rather than occasion effects. This yields estimates of cutpoint parameters 



for the various occasions. One could also use a semi-parametric approach to obtain 

estimated covariances for the cutpoint estimates. In principle one can extend this 

semi-parametric methodology for alternative links, such as adjacent-category logits. 

Another semi-parametric approach can be developed for repeated binary re-

sponses. This is an extension of the methodology proposed by Liang and Zeger (1986). 

The model parameters are estimated aa if the repeated observations were indepen-

dent. The parameter estimates are consistent and asymptotically normal, but the 

inverse of the estimated information matrix is not consistent for the true asymptotic 

covariance matrix. The ML, WLS and semi-parametric approaches each have certain 

advantages. The ML and WLS approaches have the elegance of simultaneously de-

scribing occasion and covariate effects. The semi-parametric approaches may be less 

efficient than ML or WLS approaches in estimating effects if multinomial model holds. 

The semi-parametric approaches make it simpler to allow for time-dependent covari-

ates and for missing data as compared to ML and WLS approaches. For cumulative 

logit models, Landis oZ. (1987) incorporated samphng weights and design effects 

into test statistics using Taylor-series approximations to obtain weighted proportions 

and their covariance matrix. This work is from a classical frequentist approach. One 

may also refer to the books by Agresti (1996) and Fienberg (1994) for more com-

prehensive work on models for categorical data. Jansen (1990), McCullagh (1977, 

1978) and Stram, Wei and Ware (1988) have published articles focusing on models 

for ordinal data in which the responses may be clustered. For example, in studies 

involving related individuals, repeated or multiple measurement on each individual 

are recorded. In such studies the ordered responses of the subjects within the clus-

ters can be positively correlated. One way to explain this correlation is to postulate 

that the linear predictors for each clustered response share cluster-specific effects. 

Agresti and Lang (1993) presented models for repeated ordered categorical responses 

with subject-specific effects. Their model fitting process uses an improved Newton-

Raphson algorithm for fitting generalized loglinear models by maximum likelihood 

estimation subject to constraints. 



Albert and Chib (1993) used exact Bayesian methods for modelling binary and 

polychotomous response data. Binary data is simply a special kind of categorical 

data in which there are only two categories, namely, success and failure. The work of 

Albert and Chib (1993) is based on the concept of a latent variable. This employed 

the Gibbs sampler for parameter estimation. 

The work of this thesis is largely based on these ideas and a Bayesian approach 

to statistical modelling is adopted. This thesis gives details of unified Bayesian ap-

proach for modelling ordinal data with random effects. We use an efficient Gibbs 

sampler scheme to estimate the model parameters. This is especially appropriate 

for estimating the random effects components of the model. Estimating the random 

effects component can be a difEcult task in a classical approach (see Pan and Thomp-

son, 1998) as well as for the Gibbs sampler when using ordinary rejection sampling 

method (see Zeger and Karim, 1991). The sampling method used in this thesis is 

the adaptive rejection sampling (ARS) method developed by Gilks and Wild (1992). 

We develop a model to cater for ordinal scale data. The new model is useful for 

some experiments in which the subjects under observation have their own scale of 

measurements in mind. Finally, a model is proposed to cater for longitudinal ordinal 

responses where time dependence may occur of one trial on another for each subject i. 

The overall results for the models are good in simulation studies. The models are also 

applied to real data from telecommunications experiments. For diagnostic checking of 

the models of empirical data, we examine the latent residuals. The concept of latent 

residuals is introduced by Albert and Chib (1995). Details of latent residuals can 

be found in section (2.4.2) of chapter 2. In the following sections, some background 

on generalized linear models, Bayesian statistical modeUing and Markov chain Monte 

Carlo are briefly introduced. 



1.1.3 Generalized Linear Model with R a n d o m Effects 

In recent years, generalized linear models (McCullagh and Nelder, 1989; Nelder and 

Wederburn, 1972 ) have gained wide popularity in various fields of statistical research 

as well as in practical applications. The models have unified regression methodology 

for a wide variety of discrete, continuous, and censored responses that can be assumed 

to be independent. However in many situations this is unlikely to be the case. For 

example, in the analysis of repeated measures data, repeated responses from a subject 

are likely to be correlated. Correlation among responses in a sample often appears in 

many real life situations. Therefore, dependence must be considered in order to assess 

the relationship of the response Y with the explanatory variables X and a model which 

includes random effects terms may be more appropriate than the ordinary generalized 

linear model. The Gaussian linear model with random effects has the general form 

where is the response for the jth observation in cluster i, is a p x 1 vector of 

covariates associated with that response; P is the vector of regression coefficients; 

is a q X 1 subset of x,ij with random coefficients; 6, is a q x 1 vector of random effects 

assumed to follow a Gaussian distribution with mean 0 and unknown variance D; and 

Sij is an independent Gaussian error with mean 0 and variance For a generalized 

linear model with random effects, conditional on a random component 6,, % follows 

an exponential family distribution, i.e, 

/ ( z / u I = e x p { [ 2 / i j ^ - ( 1 . 1 2 ) 

The conditional moments = -^(z/u | ^) = a'(^u) = yor(2/ij | ^) = a 

satisfy 

h[fLij) = rjij = + —u'Ai (1-13) 

and 

Vij = g{jj.ij)(j) (1 14) 



where & and p are known hnk and variance functions respectively. If the distribution 

is normal, the canonical link function is identity. The link refers to a linear combina-

tion of and 6'g such that the linear combination is equal to some function of the 

expected value of i.e., where is a monotone, differ-

entiable function. For the canonical link h{/j.ij) = 9ij. If the distribution is binomial, 

then the canonical link function is logit. One may refer to the book by McCullagh 

and Nelder (1989) for more details. 

Generalized linear models with random effects have been studied by others in the 

past twenty years. Examples include Laird and Ware (1982) and Lindstrom and 

Bates (1988). Both these articles use a maximum likelihood approach to estimate 

model parameters. Numerical maximization methods such as Newton-Raphson are 

used. Several authors have investigated the extension of random effects models to the 

generalized linear model family. Williams (1982) studied the Beta-binomial model 

and Breslow (1984) studied Poisson-gamma models. Anderson and Aitkin (1985) 

use EM and Newton-Raphson algorithm to estimate parameters in logistic regression 

models with a Gaussian random intercept. Gilmour, Anderson and Rae (1985) dis-

cussed probit-Gaussian models. 

Zeger, Liang and Albert (1988) presented a paper on models for longitudinal data 

using a generalized estimating equation approach. They considered the generalized 

linear models with random effects defined in equation 1.13. To model the marginal 

expectation they assume /i*(//ij) = and yor(?/̂ _;) = p'(/i,j)^. Let = 

E(?/i) = . . . , = diag{/( / /n) , - - -

For independent observations, Cov(^i) = However we expect correlation among 

repeated observations for a subject. Let 7^(a) be a "working" correlation matrix. 

can be estimated by solving the "generahzed estimating equation " (GEE) 

= = 0 (L15) 

1 1 ^ * 

where 14(c»:) = v4j'.Ri(a!)Aĵ . Liang and Zeger (1986) show that ^ is consistent and 

asymptotically (n —oo) Gaussian given only correct specihcation of the mean and 

the usual regularity conditions. The GEE method can be used in the cumulative logit 



models for parameter estimation. 

Crouchley (1995) presents a random ejects models for multivariate and grouped 

univariate ordered categorical data. He deSnes a random effects ordered response 

model for individual z's j'th response by means of an underlying latent response vari-

able 

= ^0 + + Gij (1 16) 

where — oo < < oo, /?o is a constant, is a vector of unknown parameters, 3:̂ ^ is a 

vector of regressors, ^ is a vector of individual-speciGc random effects, is a known 

matrix, and e,;j is a stochastic disturbance term. The term and Cij are assumed to 

be independent. 

Unfortunately is not observed, but we do know to which of the /^-categories it 

belongs. It is assumed that belongs to the Mh category if < Pij < ak 

where and ak denote the lower and upper boundaries of the k category and also 

Q'o = —oo, and < ctk for all k. If G{-) is the cumulative distribution function for 

and if we let = 1 when individual i's jth response is in the /rth category and 

0 otherwise, then, conditional on the regressors and the random effects 

= 1 I Gij) = < a t I e^j) 

~ ^ I 6,;j) P{yij < cvfc—i I e,:j) 

— ( ? ( — — e^j) — G( — — Gij) (1 17) 

where â nd Since is not observed, its location has to 

be fixed. This is done by setting the constant /?o — 0 in Different distributions for 

Bij give different forms for G{—fiij^k — ^ij)- If is normal, then we have the ordered 

probit model; if the is logistic, then we get the ordered logit; if is extreme value 

distributed, then we get the ordered complementary log-log link model. 

Crouchley (1995) presents a random effects ordered response model for the com-

plementary log-log link; that is G(z) = 1 — exp{—exp(z)}. This hnk function has 

the advantage that it gives a closed-form expression for the model unconditional on 
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the random effect. Crouchley (1995) assumes that the distribution for the random 

effects belongs to the Hougaard family (Hougaard, 1986). The Hougaard family is 

characterized by the Laplace transform, from which many properties such as infinite 

divisibility and unimodality can be obtained. The density function of the Hougaard 

family is skewed to the right and in general it can only be presented as an infinite 

series. Estimation of parameters such as the cut-points ak. and the random effects 

variance can be done by maximizing the sample log-likelihood function. A quasi-

Newton algorithm is used for numerical approximations to the derivatives. 

Booth and Hobert (1999) proposed two new implementations of the EM al-

gorithm for maximum likelihood fitting of a generalized linear mixed model. One 

approach involves generating random samples from the exact conditional distribution 

of the random effects by rejection sampling. The second method uses a multinomial 

t importance sampling approximation. Both methods use random {i. i. d.) sampling 

to construct Monte Carlo approximation at the E-step. Monte Carlo approximation 

using random samples allow the Monte Carlo error at each iteration to be assessed 

by using standard central limit theory combined with Taylor series methods. A rule 

for automatically increasing the Monte Carlo sample size after iterations is suggested. 

The rule for automatically adjusting the size of sample (say) at the E-step is to 

construct an approximate 100(1 —a)% confidence ellipsoid for the parameter vector ip 

(say) at the (r -I- l)th iteration by using the normal approximation derived at section 

5 of their article. If the previous value lies in that region, then the EM step was 

swamped by Monte Carlo error, and m should be increased, e.g. m m -t- where 

k is a positive constant. Booth and Hebert (1999) claimed that their method has 

been successful using with a = 0.25 and k G {3, 4,5}. Empirical results in Booth and 

Hobert's (1999) article show that the methods proposed can be considerably more 

efficient than those based on Markov chain Monte Carlo algorithms. However the 

method may break down when the intractable integrals in the likelihood function are 

of high dimension. 

Pan and Thompson (1998) suggested a Quasi-Monte Carlo (QMC) EM algo-
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rithm for maximum likelihood estimates in generalized linear mixed models. In-

ferences for generalized linear mixed models (GLMMs) are often hampered by the 

intractable integrated likelihood function. The method of Pan and Thompson (1998) 

uses numerical integration based on Quasi-Monte Carlo method to approximate the 

integral in the EM algorithm. For generalized linear mixed models, the likelihood 

function of the regression coefEcient vector ^ and the variance of the random effects 

component, D, is of the form 

L{0,D) = Jf(y I b„§)f{k I D)dk ( 1 , 1 8 ) 

where f{y | 6,,^) is the conditional density of y given and /(6j | D) is the density 

of random effects which depends on D. In general, the maximum likelihood estimates 

(MLEs) of the parameter ^ and D, which maximize the likelihood with 

respect to /? and D, cannot be calculated analytically. Since the integral is intractable 

especially for high-dimensional random effects, the EM algorithm is one approach to 

calculate the MLEs iteratively. In the algorithm proposed by Pan and Thompson 

(1998), the E-step computes the conditional expectation of the log-likelihood 

Q([^,D] I = y log/(?/,6, I ^,D)y(& I (1.19) 

where / (y , 6,; | D) is the joint likelihood of y and y depending on ^ and D. /(^ | 

/), D) is the posterior density of 6̂  which only depends on a previously Hxed \^ue of 

and The estimate of ^ and D can be obtained by maximizing 0 ( ) at the present 

cycle. They claimed that QMC-EM approach can be viewed as an alternative to a 

Gauss-Hermite quadrature method, particularly for GLMMs with high dimensional 

random effects where the Gauss-Hermite quadrature method is less appropriate since 

the number of integration nodes required increases exponentially with the dimension 

of the random effects. 

In general statistical inferences for GLMMs are greatly hampered by the need 

for numerical integrations since the integrals involved have no anal}'tical forms in 

general. Breslow and Clayton (1993) review approaches for sohdng of the integrals. 

Many of the methods are quite laborious. 

12 



The Gibbs sampling approach to GLMs requires only a minor extension to accommo-

date the introduction of random effects. A particularly attractive feature is that the 

amount of computation depends only linearly upon the total number of parameters. 

This approach is most attractive for a Bayesian formulation of the model. 

1.2 Bayesian Statistical Modelling 

It was mentioned in section 1.1 that the approach taken in this thesis is essentially 

Bayesian. Therefore we now present the main ideas of Bayesian statistical modelling. 

Bayesian data analysis had become increasingly popular in 1990's. This is partly due 

to the widespread use of computers and introduction of Markov chain Monte Carlo 

methods for statistical inference. A brief description of Markov chain Monte Carlo 

methods is presented in the next section. 

Bayesian statistical data analysis uses probability distributions to make inferences 

in the form of posterior probability distributions of the unknown model parameters 

and predictive probability distributions of future events. The major characteristic of 

Bayesian methods is the use of probability for quantifying uncertainty in inferences. 

From a Bayesian point of view, there is no distinction between observables and pa-

rameters of a statistical model. That is to say all are considered random quantities. 

The process of Bayesian modelling can be summarized in the following four steps: 

1. Building up an appropriate joint probability distribution for observable and un-

observable quantities in a problem. The model should be realistic in relation to the 

underlying scientific problem and to the data collected. 

2. Forming the posterior distribution. Let X denote the data set observed and let 

denote the model parameters. Let the joint distribution of % and ^ be f 

Then 

= (1.20) 

where f (^) is often referred as the prior distribution and | is the likelihood 

function, or we can write 
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Full probability model = Prior distribution x Likelihood function 

By Bayes theorem, 

I = j p ( i ) p ( x l i d i 

This is called the posterior distribution P, and is the main object of Bayesian infer-

ence 

3. Evaluation of the final model. It is natural to ask the following questions after a 

final model is obtained: Does the final model fit the data ? What are the implications 

of the resulting posterior distribution ? Are the conclusions reasonable ? To answer 

these questions, one needs to check carefully the final model. If necessary, one can go 

back to step 1 to alter or expand the model. 

4. Inference-: After the probability model is accepted, one can draw inferences about 

the model parameters and make predictions if necessary about the probabilities of 

future events using the relevant probability distributions. 

(i)Probability Interval: One possible Bayesian inference summary is the (1 — a:)100% 

probability interval, or credible interval, for an unknown quantity of interest. The 

interval can be regarded as having a certain probabihty of containing the unknown 

quantity, in contrast to a frequentist (confidence) interval, which may strictly be in-

terpreted only in relation to a sequence of similar inferences that might be made. 

Increasing emphasis has been placed on interval estimation rather than hypothesis 

testing in areas of applied statistics. 

(ii) Predictions: Let /5 denote the unobservable vector quantities or population par am-

eters of interest, denote the observed data, and ^ denote unknown but potentially 

observable quantities. After the model is accepted, one can calculate the f | 

which is better known as the posterior predictive distribution where 

P{y Is) = f PiV'H I v)d!l 

Ply\0,v)P{Ply)dp 

P(y\i)P(P\y)dP (1,22) 
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To illustrate the meaning of f | ^), consider an example of recorded weights of an 

object weighed n times on a scale. The unknown true weight of the object may be 

// and the true variance is <7̂ . Then ^ is interpreted as the recorded weight of the 

object in a planned new weighing. 

1.3 Markov Chain Monte Carlo Techniques 

Markov chain Monte Carlo (MCMC) methodology provides enormous scope for re-

alistic statistical modelling. This method has gained popularity in aiding Bayesian 

analysis of complex statistical models, since the mid-eighties. MCMC is essentially a 

Monte Carlo integration method using Markov chains. Bayesians, and sometimes also 

frequentists, need to integrate over possibly high-dimensional probability distributions 

to make inferences about model parameters or to malce predictions. Bayesians need to 

integrate over the posterior distribution of model parameters given the data, and fre-

quentists may need to integrate over the distribution of observables given parameter 

values. Monte Carlo integration draws samples from the required distribution, and 

then forms sample averages to approximate expectations. The Markov Chain Monte 

Carlo approach draws these samples by running a cleverly constructed Markov chain 

for a long time. There are many ways of constructing these chains, but all of them, 

including the Gibbs sampler (Geman and Geman, 1984), may be thought of as spe-

cial cases of the general framework of Metropolis et al. (1953) and Hastings (1970). 

Many MCMC algorithms are hybrids or generalizations of the simplest methods: the 

Gibbs sampler and the Metropolis-Hastings algorithm. 

1.3.1 The Gibbs sampler 

Many statistical applications of MCMC use the Gibbs sampler, which is easy to im-

plement. Gelfand and Smith (1990) gave an overview, and suggested the approach for 

Bayesian computation. First, as in Smith (1991), we denote probability densities by 
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square brackets, i.e. [X] = F'{x), where F{x) is the cumulative distribution function 

(CDF) of X. Therefore, in the sequel, joint, conditional and marginal densities ap-

pear as [%, y], and [y] respectively. Now the Gibbs sampling algorithm is best 

described as follows: Let X = (%i,Xg, ...,Xk) be a collection of random variables. 

Given arbitrary initial values ...,Xk^^\ we draw from the conditional dis-

tribntion [Xi | then from [Xg I and so 

on until Xk̂ ^̂  which comes from [Xk | This scheme is a Markov 

chain, with equilibrium distribution [X]. After t such iterations we would arrive at 

(%/*), X2^^\ ..., Thus, for t large enough, can be viewed as a simulated ob-

servation from [%]. Provided we allow a suitable burn-in time, X^^\ . . . 

can be thought of as a dependent sample from [%]. 

Similarly, suppose we wish to estimate the marginal distribution of a variable Y 

which is a function g{Xi,X2, •••,Xk) of X. Evaluating g at each of the provides 

a sample of y . Marginal moments or tail areas are estimated by the corresponding 

sample quantities. The densities may be estimated using a kernel method. 

1.3.2 Monitoring Convergence in a Gibbs Sampler Scheme 

Markov chain simulation is a very useful tool in model parameter estimation. However 

there are certain risks of errors if the simulation scheme is not properly monitored 

in several aspects. The first aspect is the choice of an appropriate model to fit the 

data. The second is errors in calculation or programming and the last one is slow 

convergence or convergence to a false target distribution. In monitoring convergence 

we try to estimate the difference between results based on Markov chain simulation 

and the desired target distribution. There are two main methods of monitoring 

convergence in a Markov chain Monte Carlo scheme. 

(1) Method of calculating the potential scaling reduction factor (PSRF). This method 

was proposed by Gelman and Rubin (1992). Their approach is inspired by the method 

of analysis of variance. It involves forming an overestimate and an underestimate of 
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the variance of the target distribution with the property that the estimates will be 

roughly equal at convergence but not before. Suppose we have m parallel Gibbs 

sampler sequences of length 72 denoted as j = 1 ,2 , . . . , n; z = 1 ,2 , . . . , m. Let 

^ = Z — T ^'^Gre - E " Z 
77% - 1 =̂1 M ^=1 yn. 

1 1 " 

- E ^^Gre 5̂  = —— E (^u -
i=i n I 

The quantity B is the between-sequence variance and W is the within-sequence vari-

ance. Then we compute 

77 — 1 1 
= l y + _ B (1.23) 

where var{ip) is an unbiased estimate of the variance under stationarity. As n — o o , 

both var{ip) and IV approach var{il}), but from opposite directions. Finally, we 

calculate the quantity \fpi which called the estimated potential scale reduction factor 

where 

. (1.24) 

If the simulation has converged, R converges to a limit of 1. 

(2) The second method was proposed by Geyer (1992). This method is to calculate the 

batch means. It is relatively easy to implement. For each sufficiently long (n = 10, 000 

say) simulated Markov chain, we divide the whole chain into m batches. Each batch 

has n simulated values and in each batch the sample mean Xi,i = l , 2 , . . . , m is 

calculated. Then the variance a \ of the batch means is calculate where 

1 77% 

m - 1 

A measure of the overall mean variance is given by which accounts for dependence 

in the chain. This is an easy and attractive method for assessing variability, but care 

must be talcen to choose the size of each batch M large enough for the approximations 

involved to be valid. 
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1.3.3 Sampling Methods in Gibbs Sampler 

The Gibbs sampler involves sampling from full conditional distributions. It is essential 

that sampling from full conditional distributions is highly efficient computationally. 

Rejection sampling and the ratio-of-uniforms are two techniques for sampling inde-

pendently from a general density f{x) where f{x) is intractable analytically. A third 

method is the Metropolis-Hastings method as an MCMC method which produces 

dependent samples. 

(1) Rejection sampling method:-Rejection sampling requires an envelope function G 

of / {G{x) > f{x) for all x). Samples are drawn from density proportional to G, and 

each sampled point x is subjected to an acceptance/rejection test. 

(2) Ratio-of-uniforms method:-Ratio-of-uniforms method is to introduce two vari-

ables and V. Let D denote a region in {[/, V} space dehned b y O < [ / < 

Sample a point U, V uniformly from D. This can be done by enveloping the entire 

region of D by a region A. U and V can then be generated by rejection sampling. 

(3) Adaptive rejection sampling method:-The main method employed in this thesis is 

the adaptive rejection sampUng (ARS) method developed by Gilks and Wild (1992). 

In the rejection sampling and ratio-of-uniforms sampling methods, finding a tight 

envelope function G or a envelope region A is difficult. These can also be very time 

consuming in the sampling stage. However in many apphcations of Gibbs sampling, 

the full conditional densities /(a;) are often log-concave (that is < 0). In par-

ticular, this is true for all generalized linear models with canonical link function (see 

section 1.1). Gilks and Wild (1992) proposed the adaptive rejection sampling method 

to sample from a complicated full conditional density which satisfies the log-concavity 

condition. They showed that an envelope function for log/ (z) can be constructed by 

drawing tangents to log / at each abscissae for a given set of abscissae. An envelope 

between any two adjacent abscissae is then constructed from the tangents at either 

end of that interval (see Figure 1.1). Secants are drawn through log / at adjacent ab-

scissae. The envelope is piece-wise exponential for which samphng is straightforward. 
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Figure 1.1: Graphical representation of the adaptive rejection method 
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Since generalized linear models for ordered categorical data are considered in this 

thesis, we will use the adaptive rejection sampling method over the rejection sam-

pling or ratio-of-uniforms method as the ARS is more direct and efficient in terms of 

sampling from the full conditional density. One may refer to the article by Gilks and 

Wild (1992) for more theoretical details about their method. Also one may refer to 

the book by Devroye (1987) or to the book by Gilks et al. (1995) for more details 

on rejection sampling method, ratio-of-uniforms method and the Metropolis-Hastings 

method. 

1.4 A Brief Descr ip t ion of Work 

In Chapter 2, the generalized linear model with random effects is considered for 

modelling longitudinal binary data. Zeger et al. (1988) presented the modelling lon-

gitudinal data using a generalized estimating equation approach (GEE). A Bayesian 

approach is adopted to deal with this model. Markov chain Monte Carlo techniques 

are used for parameter estimation. Zeger and Karim (1991) used the Gibbs sam-

pler approach to estimate the model parameters. Their sampling method in the 

Gibbs sampler scheme is an approximate rejection sampling method. Here we use 
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the adaptive rejection samphng (ARS) method introduced by Gilks and Wild (1992). 

Simulation results are presented and the method is applied to experimental data from 

British Telecommunication (BT). Overall simulation results are promising. The con-

cept of latent residuals introduced by Albert and Chib (1995) is used for diagnostic 

model checking. 

Chapter 3 describes the modelling of categorical ordinal response data. The 

cumulative logit model with random effects is considered here. Again a Bayesian 

approach is adopted using the concept of latent variables. Gibbs samphng is the 

main tool for parameter estimation. The cumulative logit model using a logistic 

link function satisfies the log-concavity conditions. Therefore the adaptive rejection 

sampling (ARS) method can be used directly. This method is useful because on the 

one hand it can be used to estimate the regression coefficients in the model, and on 

the other hand it can also be used to estimate directly the random effects components 

as well as the latent variables. Results from simulations are promising. The model is 

also used to analyze the BT experimental data. It is found that random effects are 

quite large. Latent residuals are also examined at the &nal stage of model analysis. 

In chapter 4 a random effects cumulative logit model with a subject-specific 

scaling term is developed. The reason is that the response subjects in the British 

Telecom experiments seem to have their own ordering scale. That is to say, each 

subject in the experiments tends to have his/her own cut-points in mind. The dis-

tribution of response categories show that clusterings occur in the lower and upper 

ends of the scales. The model discussed in this chapter is largely based on the model 

developed by Kijewski oA (1989). It is found that the techniques used in chapter 

3 can be used again for the new model; but we need to employ a Metropolis-Hastings 

sampling scheme to generate the random scaling term. This new model is again 

applied to analyze British Telecom experimental data. 

Chapter 5 is devoted to the continuation-ratio logit model, an alternative model 

for ordinal data. This is a model for the probability of one particular category j given 
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that either category j or higher categories have occured. If the hnk function is other 

than the logistic link, we may have the continuation-ratio model with complementary 

log-log link and continuation-ratio model with probit link when the hnk function is the 

complementary log-log and probit respectively. The continuation-ratio logit model is 

easy to use since any continuation-ratio logit model can be reduced to a binary logistic 

regression problem for each category j (see Agresti, 1996). If the continuation-ratio 

link model is considered to have three levels, then each level models one of the binomial 

probabilities in the expanded likelihood. Therefore the results of chapter 2 for binary 

regression can be used in this chapter. Analysis of simulated data as well as BT data 

is presented in this chapter. 

In chapter 6 a random effects cumulative probability model with serial correla-

tion is considered. In a time dependent longitudinal study, it will often be necessary 

to assume that there exists serial correlation amongst the ordinal responses. That is, 

at any particular time point, the response depends on the previous ones. To model 

data of this nature, it is easiest to use the probit link instead of logit link, since esti-

mation work is easier to handle if the innovation term of the time series component 

in the model is driven by a Gaussian distribution. It is found that the ARS method 

can still be used for parameter estimation as the serial correlation model derived for 

ordinal response satisfies the log-concave conditions. A simulation study is carried 

out to veri^ the method. It is found that a vague prior distribution should be used 

rather than a non-informative prior distribution in order to obtain stable results for 

the model parameters. Finally chapter 7 contains some concluding remarks. 
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Chapter 2 

A Gibbs Sampling Approach for 

Modelling repeated Binary Da ta 

2.1 Introduction 

In this chapter a random effects generalized linear model is considered for modelling 

binary data. This serves as a starting point for more complicated models for ordered 

categorical data in later chapters. Perhaps the most widely used of generalized linear 

models are those for binary or binomial data. Suppose that observation y follows the 

Bernoulli distribution with parameter p. If one chooses the logit transformation of 

the probability of success, h{p) = log as the link function, then the resulting 

generalized linear model will be the logistic regression model. Other link functions are 

often used. In particular the probit link, is another popular choice. 

The probit model is commonly used in economic and social sciences. In practice, the 

probit and logit models are quite similar, differing mainly in the extreme of the tails. 

One advantage of the logit model is one can work out the log-odds ratio comparing 

two covariate patterns given the regression coefBcient vector The log-odds ratio 

is interpreted as the relative odds of success for one covariate pattern over the other. 

This advantage does not apply to the probit model. Further details can be found in 
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the article by McCullagh (1980). 

In the following consider the random effects generalized linear model with logit link 

function for repeated measures on binary data. By repeated measures, we mean that 

binary observations [yij], subjects, i — 1, 2 , . . . , n, occasions, j = 1,2, are 

obtained. The logit model with random effects is given by, 

logit (i"::];::) ^ ziyAi' (21) 

where 

(i) p X 1 vector of covariates associated with response 

(ii) p X 1 vector of regression coefBcients, 

(iii) g X 1 vector of random eEects component, is a subset of 

(iv) g X 1 vector of coefEcients of the random effects component. 

In this chapter a Bayesian approach is taken to model equation 2.1. The Gibbs 

sampler is employed to estimate the regression coefficient vector ^ and the variance 

of the random effects component Var{bi). 

2.2 General ized Linear Mode l wi th R a n d o m Ef-

fects in Bayesian Se t t ing 

We assume that 6, follows a multivariate normal distribution with mean 0 and variance-

covariance D and the likehhood function for the parameter vector ^ and D has the 

form 

m D , y ) ^ f l [ Y l f { y , , \ k ) i D \ - i e M - h ' D ^ ' b , ) d k (2.2) 
1=1 ;=1 ^ 

Further let F(/?, D) be the joint prior distribution for P and D, then the posterior 

distribution f i (^, D 11/) is given by 

„ n - . i I n ; , i /(y„- I fe, I D)P% D)db, 
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where | D) is the Gaussian density of 6,. The marginal posterior densities of (3 and 

D can be obtained from the joint posterior distribution in equation 2.3 by integrating 

out D and respectively. We can also derive important Bayesian summaries from 

the numerator alone since the denominator is a normalizing constant independent of 

^ and D. 

2.2.1 Conditional Posterior Densit ies 

To derive the conditional posterior densities, we consider the full posterior density, 

including the random effects i.e. 

P,{l3.b„D) ^flflf{y,i\k,Qg(k\D)P{P,D) (2.4) 
i=l j=l 

where 6̂  | D ^ A^(0,D) and | = exp{[3/ij^^j - 0(6)̂ )̂ + c(%)]/<6}. Now 

for the logistic model, let follow Bernoulli distribution with parameter pij where 

0 < Pij < 1, i.e. 

/ ( W ) = W = 0 or 1. 

Also 
p^ij Vij 

/ ( W ) = 1 + 

= —ij§. -ij-i 

and % - Therefore the posterior density is given by (up to proportionality) 

c x n n , , I D (2.5) 

/ n-lz X e x p ( - - 6 / D - ' 6 j f 0 P ( D ) 

It is assumed that f (/), D) — f (^ ) f (D) in equation 2.3. If standard uniform non-

inforniative priors are used for P{P,D), i.e. P{/3,D) oc constant, then 

P , m . . D ) (2.6) 
i=l 'j=l J- I c 

x e x p ( - ^ ^ ' D 
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where C2 is also a constant and 6̂ , D) is intractable anal}4:ically. 

It can be shown that the conditional posterior density of (3 is 

(2.7) 

i.e. I I 6;], which is independent of D. 

Similarly the conditional posterior density of is 

I oc n X e x p ( - - 6 / D (2.8) 
1 + e-'^- / 

i.e. [6, I •] = [ki I P,D], which is a function of P and D. Further the conditional 

posterior density of D is 

[D I 6,] oc x | D [-(' /")exp(-l6/D-^6J (2.9) 

i.e. [D I P,b.i] oc [D | which depends only on bj. 

2.2.2 Log-concavity Conditions 

In order to use adaptive rejection sampling method to carry-out Gibbs samphng, we 

need first to check carefully whether the conditional posterior densities satisfy the 

log-concavity conditions. That is, for a conditional density for (say), we check 

whether < 0 and for a conditional density for 6,, we check whether < 0. 

In fact we can prove that, in general, the conditional posterior distribution /^(/)) is 

log-concave with respect to ^ and A(^) is log-concave with respect to ^ for any design 

matrix. The proof is stated as follows. 

Proof: 

Consider the log-conditional posterior distribution of /?, that is, 

ln/^(^) = c' + ^ ^ — ^(1 + . c' is a constant. 

i=i j=i 

To show this fimction is concave with respect to the coefficient vector it suffices 

to show that ln(l + j is convex with respect to (3 for each combination of i 
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and j; since is a linear function with respect to ^ which is concave. 

Now consider ln(l + let 

= ln(l + e (4WA))_ 

Then 

X. 
-V 

— UijX^j 

where 

<9̂ Fi 

(1 — Uij)uijK. 

(i+g(4f+4k)) and X = is a pxp symmetric matrix. It is straight-

forward to see that 0 < < 1 and the symmetric matrix X is non-negative deEnite. 

Therefore Fj is convex. 

Similarly, to show that the marginal posterior distribution of is log-concave with 

respect to 6̂ , let's consider equation 2.13 and taking the natural logarithm, we have 

In A(^) = A;' 4- ^ ln(l + eW;^+4^<)) -
j=i j=i ^ 

where A:' is a constant. Let ^2 = ln(l 4- To show that is 

log-concave with respect to 6,, it sufSces to show that fg is convex for hxed % and j. 

Along the above lines, it can be shown that 

(1 - -K D" 

(1 — uij)uij7i + D ^ 

where Z = is a qxq symmetric matrix. The symmetric matrix Z and the inverse 

of vEiriance-covariance D are non-negative deSnite. Therefore ^2 is also convex. This 

completes the proof of log-concavity condition for any design matrix of the model. 

The above results still hold if we include any log-concave prior for (3. 
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In fact, Wedderburn (1976) showed that generahzed linear models with many 

link functions , such as normal, logit, probit, Poisson and complementary log-log 

links, in the exponential family satisfy the concavity condition. 

As the conditional posterior densities for ^ and ^ satisfy the log-concavity condition. 

We can employ adaptive rejection sampling method to carry-out Gibbs samphng 

in the following simulation work. Generation of D can be obtained by using the 

algorithm of Odell and Feiveson (1966). 

2.3 Simulation Studies 

Zeger and Karim (1991) considered the following logistic regression model 

logitf (i/ij = 1 I 6,) = ,̂ 0 + 4- 6% -I- bnt; 

= + Zijhi (2.10) 

where = (1,^;),^' = (/)o, A,/)2,,03) and 6' = (6(K,6ii). In their 

simulation study, Zeger and Karim (1991) put = 0 for half the population and 

1 for the remainder and t = - 3 , - 2 , —1,0,1,2,3 for each subject. Each data set 

comprised of / = 100 clusters of size Ui = 7. The fixed effects coefficients were set 

at /3o = —2.5,/?! — 4-1.0, ,̂ 2 = —1.0, and = 4-0.5. The same set of figures is used 

here for the adaptive rejection sampling scheme and our random effects distribution 

was simulated with E{hi) = 0 and Var{b^ = D where 

D = 
1.0 0 .0 

0.0 0.001 
(2.11) 

The regression and random effect parameters caji be generated solely using the ARS 

method since each of the conditional posterior distributions of the model parameters 

satisfy the log-concavity condition. In Zeger and Karim's (1991) paper, their methods 

for carrying out the Gibbs sampler were rather cumbersome and time consuming. 

They use ordinary rejection samphng method to simulate the regression coefficient 

27 



vector 13. This part creates no problem, but generating the random effects from 

the conditional posterior distribution | D, i/) is the most time consuming step. 

Since 

ft(i, I P,D,y) (X h(y I I D)P{P,D) 

Denote h{bi | •) as To sample a value from using rejection sampling, it is 

necessary to find the mode and curvature of p(^). Finding the mode of involves 

solving a ridged regression by iterative weighted least squares and curvature must be 

obtained by iterating the equations for maximum value 5̂  of p(^) and its curvature 

^ where 

^ (2.12) 

= + % = yGr(^), Z, = yar(6j (2.13) 

One can refer to Section 5 of the paper by Zeger and Karim (1991) for more details. 

For the ARS approach, model parameters can be generated iteratively at one-go 

without employing any optimization techniques; e.g. to locate the mode and curvature 

of the parameter distributions of 6% and bu. This is the major advantage of ARS 

method over the ordinary rejection sampling. 

2.3.1 Simulation Results 

To perform Gibbs sampling, we run the chain for each parameter of interest for 11,000 

times and discard the initial 1000 values as burn-in. Table (2.1) shows the overall 

results of one typical run using one simulated data set. 
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Table 2.1: Simulation results of ARS method 

Parameters True Value Mean Median Std. Dev. 

^0 -2.5 -2.6236 -2.6031 0.3573 

A +1.0 1.1178 1.1089 0.1624 

A -1.0 -1.1251 -1.0351 0.6028 

A +0.5 0.4632 0.4232 0.3815 

yor(6o) +1.0 1.0879 0.9804 0.3293 

In Table 2.1, estimates using the ARS method are generally close to the true values. 

To monitor convergence, we use the method of batching for each individual series 

and we also calculated the estimated potential scale reduction factor (PSRF) R. In 

this simulation case R = 1.0113 for the regression parameters which indicates that 

the Gibbs sampler scheme converged very well. These results can be compared with 

those obtained by Zeger and Karim (1991) which are shown in Table 2.2 below. 

Table 2.2: Simulation results of Zeger and Karim 

Parameters True Value mean Std. Dev. 

Po -2.5 -2.67 0.36 

A +1.0 +1.07 0.15 

A -1.0 -0.96 0.56 

A +0.5 0.49 0.24 

yor(6o) +1.0 1.21 0.60 

As we can see in Table 2.1, estimates using the ARS method are generally close to 

the true values. Our results are similar to those obtained by Zeger and Karim (1991). 

However, our method is much more efEcient. 
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2.4 Telephone Connection Quality Data 

At the laboratories of British Telecom (BT) in Martlesham near Ipswich (UK), a series 

of experiments concerning the quality of telephone connections were conducted. One 

of their experiments is called conversation experiment. A conversation experiment 

consists of a number of pairs of subjects and each pair engages in a conversation over 

the telephone. The two subjects in each pair sit in two different cabinets; say cabinet 

A and B. In a conversation experiment a subject engages in conversation and then 

gives an opinion about the telephone connection. The duration of conversation is 

determined by the subjects. When the conversation is Enished the subjects hang up 

and are prompted by the experiment controller to give an opinion of the transmission 

condition. The opinion is typically given on a five point scale graded from 'Bad' 

to 'Excellent'. This is an ordinal response scale. The subjects also give a binary 

responses to a question on difficulty in hearing over the connection. In this chapter 

we use the methodology described in Section (1) and (2) to analyze the dependence 

between the factors and the binary response. The analysis of ordinal responses will 

be treated in next chapter. 

The order in which a subject hears the transmission conditions is determined 

by an experimental design. This design can be set out as a two-way layout in which 

each row corresponds to a subject and each column corresponds to a period. In each 

period there is a particular level of transmission conditions. The logit model is linear 

in two factors; namely (i) rows (random effects), and (ii) transmission conditions. 

For the experiments that we analyzed, one is called E199 experiment. This 

experiment has an unhmited duration in the conversation between the two subjects. 

There are 2 pairs of 16 subjects. Each subject (row) received 8 trials. In each trial 

one level of the 8 transmission conditions is set. Altogether, we have 1 + 32 + (8-

1)=40 parameters to be estimated as well as the random effect variance. The model 

is represented as follows: 
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logitf = 1 I 60J = A + A3I [cond. 2] -I 1- /̂ agl [cond. 8] + 6% (2.14) 

where I [-] is the indicator \'ariable. In the following we present the Anal results of 

our analysis. As in the simulation, we generated 10,000 random variates after 1000 

burn-in values for each parameter. In Table 2.3 we show the results of our estimates 

for experiment El99. 

Table 2.3. Results of the BT (E199) experiment. The estimates are reported along 

with the mean, the standard error, the standard error of batching mean, the lower 

2.5fA, (fb.025) and the upper 97.5^/i, (fb.975) percentiles. 

para. mean s.d. s.d.^ -Po.025 -P0.975 

intercept -1.5772 0.5026 0.0126 -2.1882 -1.2311 

Cond 1 0 (aliased) 

Cond 2 1.2916 0.6412 0.0440 0.5874 2.1638 

Cond 3 0.3734 0.6418 0.0505 -0.5007 1.1730 

Cond 4 1.3627 0.5875 0.0553 0.7773 1.9897 

Cond 5 0.4098 0.6289 0.0455 -0.4958 1.1329 

Cond 6 0.7003 0.6060 0.0530 -0.1223 1.3977 

Cond 7 0.5600 0.6131 0.0551 -0.1232 1.2833 

Cond 8 0.6741 0.6376 0.0516 -0.0735 1.3408 

(̂ 0 0.6369 0.3912 0.0762 0.3724 0.9732 

1: This is the standard deviation of the batching means. 

Figures in Table 2.3 show that the effects of condition 2 and 4 are significantly different 

from level 1. The rest of the conditions have insignificant effects (the 95% probabihty 

intervals contain zero values). The mean random effects variance is equal to 0.6369. 

The batching variances are small relatively to the overall sample variances in each 

chain. The number of sample points in each batch is 500. There are 20 batches. 
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The PSRF (R) value for the regression parameters is equal to 1.0238 for Table 2.3. 

These figures show that convergence is good in each of the Gibbs sampling scheme. 

For each parameter, we have a MCAIC sample from the posterior distribution of that 

parameter. A 100(1 — probability interval for a parameter may be estimated by 

taking any range which contains 100(1 — a)% of the MCMC sample. As usual, we 

take the 100^% and 100(1 — §)% quantiles of the sample, as the endpoints of the 

interval. The last two columns in each of the tables show the 2.5% and 97.5% quantile 

values. The probability intervals and the estimated mean values of the parameter in 

Table 2.3 are presented in Figure 2.1 

Figure 2.1 : Plots of Probability Intervals of Parameters 
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The empirical posterior distributions of the intercept term, effects of condition 2, 

condition 8 and random effect variance are shown the following graphs. The sample 

size in each histogram is equal to 2,000. These values are taken from the final portion 

of the original simulated chain (n=l0,000). A sample of 2,000 is used to summarize 

the true posterior distribution. 
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Figure 2.2; Empirical Posterior 

Distribution of Intercept 

Figure 2.3: Empirical Posterior 

Distribution of Condition 2 
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Figure 2.4: Empirical Posterior 

Distribution of Condition 8 
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Figure 2.5: Empirical Posterior 

Distribution of Random Effect Variance 
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2.4.1 Posterior-Predict ive Distributions 

One of the advantage of Bayesian statistics is the power of predicting future quantities 

based on the joint probability model. For this model, the predictive distribution is 

the probability of y* successes in a future experiment. The predictive distribution of 

the future observations for given ^ is given by 

/(%/* I / / (2 /Z I 372, 1 

where for an 'average' individual f{y*) is the binomial likelihood function and g{^ | y) 

is the posterior density of 

In practice, the posterior-predictive distribution can be computed via simulation. 

First we simulate = 1,2,. . . , m , and at each j we draw a binomial random 
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variable sample size n, and success probability A his-

togram estimate for the posterior-predictive distribution for each binomial observation 

can be constructed. 

For example in the E199 experiment, we compute the posterior-predictive distribution 

for subject 8 and subject 16 at each condition level. There are eight conditions. At 

each condition A:, the obser\'ation is binary = 1 for each k). Here the predictive 

distribution is given by E{jp | Condition), the posterior mean for p. The following 

Tables show the posterior- predictive distribution of subject 8 and subject 16. These 

5gures are calculated based on the simulated values of = 1,2, The 

sample size m is also equal to 2,000, taken from the last 2,000 values of the entire 

simulated Markov chain. 

Table 2.4. Results of Posterior-predictive distribution of subject 8 for given conditions 

(E199 experiment). 

Conditions Pr(2/* = 1 1 Cond.) s. d. fb.025 fo.975 

Cond 1 0.2251 0.3257 0.0690 0.4678 

Cond 2 0.4227 0.3843 0.1643 0.7183 

Cond 3 0.3077 0.3601 0.1019 0.6041 

Cond 4 0.4506 0.3898 0.1796 0.7485 

Cond 5 0.2715 0.3516 0.0855 0.5574 

Cond 6 0.3721 0.3748 0.1372 0.6706 

Cond 7 0.3244 0.3638 0.1185 0.6166 

Cond 8 0.3350 0.3679 0.1187 0.6333 
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Table 2.5. Results of Posterior-predictive distribution of subject 16 for given condi-

tions (E199 experiment). 

Conditions Pr(2/* = 1 1 Cond.) s.e. fb.025 fb.975 

Cond 1 0.3384 0.3694 0.1093 0.6439 

Cond 2 0.5587 0.3976 0.2394 0.8479 

Cond 3 0.4375 0.3895 0.1639 0.7368 

Cond 4 0.5868 0.3907 0.2778 0.8565 

Cond 5 0.3939 0.3852 0.1426 0.7034 

Cond 6 0.5075 0.3921 0.2141 0.7896 

Cond 7 0.4557 0.3896 0.1830 0.7520 

Cond 8 0.4679 0.3923 0.1812 0.7718 

Figures in Table 2.4 reveal that given all the conditions, subject 8 would have on the 

a\'erage 30% of the chance to give a positive response of having di&culty in hearing 

from the telephone connection. In Table 2.5, subject 16 would have a over 50% of 

the chance of giving a positive response that he is having difficulty in hearing given 

transmission condition 2 and 4. Transmission condition 2 and 4 are identified as 

having significant positive effects. This is the advantage of conducting a Bayesian 

statistical analysis. Also this is an important piece of information as far as the 

telecommunication engineers are concerned. 

Also we can get a predictive value for a 'random future subject' by simulating the 

random effect for that subject. Table 2.6 shows the predictive subject effects for an 

alternative sample of 32 random future subjects. 
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Table 2.6. Results of Posterior-predictive distribution of future subject effects (E199 

experiment). 

Subject Pred. subject effect s.d. -Po.025 

Subject 1 -0.2919 0.7570 -1.3736 0.8469 

Subject 2 -0.3200 0.7576 -1.5072 0.7668 

Subject 3 -0.2135 0.7758 -1.3665 0.9646 

Subject 4 -0.5640 0.7661 -L7075 0.5518 

Subject 5 0.7976 0.8024 -0.4220 2.0981 

Subject 6 -0.3876 0.7486 -1.5035 0.7449 

Subject 7 0.0384 0.7673 -L1204 1.1830 

Subject 8 -0.0282 0.7724 -1.2289 1.1210 

Subject 9 -0.0153 0.7366 -1.1007 1.0673 

Subject 10 -0.2683 0.7478 -1.3240 0.8145 

Subject 11 0.7547 0^^:61 0.1261 2.0035 

Subject 12 0.4624 0J^a2 -0.5981 1.5673 

Subject 13 -0.7922 0.7910 -L9874 -0x^45 

Subject 14 -0.0361 0.8598 -1.4648 1.4347 

Subject 15 0.6441 0J^#8 -0.5771 1.8393 

Subject 16 0.4769 0.7745 -0.6939 1.6608 

Subject 17 -1.0879 0.8651 -2.6257 -0.3366 

Subject 18 0.7926 0.75^ 0.1314 1.9138 

Subject 19 0.7572 0L7'652 -0.3515 1.9092 

Subject 20 -0.4979 0.7588 -1.6085 0.5976 

Subject 21 0.6597 0.8233 -0.7031 2.0403 

Subject 22 . -0.4202 (17367 -L4447 0.6355 
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Table 2.6. Results of Posterior-predictive distribution of future subject effects (E199 

experiment) (Continued). 

Subject Pred. subject effect s.d. -fo.025 -Po.975 

Subject 23 -0.1931 0.7688 -1.4083 0.9539 

Subject 24 0.1677 0.7965 -1.0904 1.3842 

Subject 25 -0.4903 0.7642 -1.5959 0.6956 

Subject 26 -0.7817 0.7683 -1.9186 -0.1170 

Subject 27 0.4511 0.7714 -0.7355 1.6562 

Subject 28 -0.4331 0.8879 -2.0609 0.9644 

Subject 29 0.3446 0.7543 -0.7866 1.4492 

Subject 30 0.2762 0.7877 -0.9538 1.5049 

Subject 31 0.4033 0.7694 -0.7160 1.5551 

Subject 32 j 0.3846 0.7689 -0.7960 1.5403 

2.4.2 Model Checking Using Latent Residuals 

Finally for model checking, we use the method of latent residuals introduced by Albert 

and Chib (1995). That is, if logitPr(?/ij = 1 | 6o) = + is the correct model 

for the data, then we can express this model as 

Vij — ^ [^ij ^ 0] , (2.15) 

where are the latent variables and I is the indicator variable. can be generated 

directly from a logistic distribution for given values of and at eaxzh stage of 

iteration of our Gibbs sampler scheme. Â - are positive if observation % is 1 and 

negative if observation % is 0. Therefore latent residuals are defined as 

— - u -
(2.16) 

Latent residuals are a priori a reindom sample from a standard logistic distribution. 

In our studies, a sample size of 10,000 mean latent residuals have been generated. 

To examine whether or not the generated latent residuals follow a standard logistic 
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distribution, a Kolmogorov-Smirnov test is used. To conduct the test a random 

sample of size 30 is being picked from the 10,000 generated latent residuals each 

time. We obtain the necessary test statistic as well as Pr(D < /}„). The test is 

repeated for 50, 100 and 1000 times. Table 2.7 shows the overall results for cabinet A. 

Table 2.7: Results of K-S Test of latent residuals of E199 experiment 

Sample size (n) No. of runs (m) Mean Mean Pr{D < Dn) 

30 50 0.1517 0.6021 

30 100 0.1502 0.5029 

30 1000 0.1487 0.5109 

The following histogram also show the distribution of the mean latent residuals and 

the probability plot of the mean latent residuals. The mean latent residuals are 

obtained at each simulation run. The last 2,000 values of the entire 10,000 are used 

for plotting the histograms. 

Figure 2.6: Histogram of the mean residuals superimposed by a standard logistic curve 
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Figure 2.7: Logistic Probability Plot of Mean Latent Residuals 

c 

i 
(D 
Dl 

As we can see from the above logistic probability plot, the majority of the mean latent 

residuals are close to the straight line. This agrees with the histogram of the in Figure 

2.6 which is superimposed by a standard logistic curve. The outliers mainly come 

from subject 7 and subject 23 where model fits for these two subjects are consistently 

bad. One difficulty in interpreting the posterior mean latent residuals is the loss of 

identification of the observations in the averaging process. The smallest and largest 

latent residual may vary over iterations. The smallest and largest residual did not 

always correspond to the same observations. The use of latent residuals is one of the 

tools in Bayesian model diagnostic checking. Another way to check the final model 

is to compute the so-called Bayesian residuals (Albert and Chib, 1993). For logit 

model, Bayesian residuals are defined as 

r,: = 
n,: 

= Pi 

-Pi 

(2.17) 

where pi denotes the observed proportion of success for observation i. The posterior 

distribution of (3 determines the posterior distribution of residuals r,. The posterior 

distribution of r, is not known analytically. However we can obtain the empirical 
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posterior distribution of r,; from the posterior distribution of p. That is, let = 

1, 2 , . . . , m be the sample values, is computed according to 

Mi 

If the mean values of are close to +1 or —1, this indicates that the fit is not good. 

This method also works when n = 1 where = yi — However this method 

has a drawback that the sampling distribution is not known exactly. It is difficult to 

rely on the Bayesian residuals to account for the sample variation of the data. To 

determine whether a residual is actually extreme or not can be difficult. The method 

of latent residuals provide a good alternative way of diagnostic checking of the model. 

2.5 Drawbacks of Adap t ive Re jec t ion M e t h o d 

Despite the usefulness of the ARS method, it has two major drawbacks. The first 

drawback is that this method generates random A'ariate only one at a time. Therefore 

for large models the computational speed is relatively slow. The second drawback is 

that for each output series, the serial correlation is rather high. That is the reason 

we use a sample size of 10,000. The following 6gure shows the sample autocorre-

lation functions up to lag 30 of parameter /)o used in simulation studies. These 

autocorrelations are calculated based on the first 2000 generated values. The sam-

ple autocorrelation functions of exhibited similar patterns of serial 

correlation. 
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Figure 2.8: Sample autocorrelation function of /3o 
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2.6 Conclusions 

In conclusion, our proposed methodology is sound and viable. It is easy to imple-

ment if the marginal posterior distribution is log-concave. Zeger and Karim (1991) 

used rejection sampling method for the estimation procedure. Their link function 

is also the logit link. In fact the most popular hnk function for binary data is the 

logit as the model parameters may be interpreted as conditional log-odds ratios. As 

stated in their paper, generating coefBcients of the random eSects is the most time 

consuming step. However, the random effects coeScients can be directly generated 

using the ARS method. This is the most difEcult part in the estimation. We use the 

ARS method in the Gibbs sampler scheme to generate the model parameters. The 

link functions are logistic. Albert and Chib (1996) used a probit link for analyzing 

binary longitudinal data. The probit link can also be generalized to multivariate 

responses ( Chib and Greenberg, 1998). Their paper provides a simulation-based 

and non-Bayesian analysis of correlated binary data using multivariate probit model. 

The posterior distribution is simulated by Markov chain Monte Carlo methods and 
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maximum likelihood estimates are obtained by a Monte Carlo version of the EM 

algorithm. The Metropolis-Hastings algorithm is used in the Markov chain Monte 

Carlo methods. The probit link leads to simpler calculations, but may require many 

univariate normal random variate generations. 

For practical purposes, probit and logistic regression curves look similar in many 

cases. It is not common to End examples, for which a logistic regression model fits 

well but the probit model fits poorly, or vise versa. Of course the parameter estimates 

differ for the two models, since their links have different scales. When both models fits 

well, the slope estimates in the logistic regression models are roughly about 1.6-2.0 

times those in probit models, (see Agresti, 1996). 

One further advantage of using ARS for Generalized linear mixed models is that 

this method can easily extend to deal with the general case where several mutually 

independent random effects 61, 6 2 , 6 c are incorporated simultaneously into the linear 

predictor 77 = + Z161 4 1- where 6/ = 1, - c ) . The simplest 

but most commonly used covariance structure for each E; is of the form E; = crf/g,, 

where af > 0 is unknown and /g, is a % x % identity matrix. This kind of model 

is known as GLMM Model I, GLMM Model II is where E; is unstructured. GLMM 

ModeZ 77 haa wide applications to statistical models for animal breeding experiments 

and biological sciences. Pan and Thompson (1998) used a quasi-Monte Carlo EM 

algorithm for parameter estimation based on maximum likelihood estimation (MLE). 

Their method is essentially numerical integration. Numerical integration becomes 

quite difficult if the dimension of the random component becomes very high. However, 

with a little more computational effort, our method can cope with this problem quite 

easily. 

In the situation when model settings do not yield log-concave fuU conditionals, 

we cannot use the ARS method. However, Gilks et al (1995) have extended this 

method to deal with distributions that are not log-concave. Their method is called 

the adaptive rejection Metropohs sampling (ARMS) method. Software developed 
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by the Medical Research Council Biostatistics Unit called "Bayesian inference Using 

Gibbs Scheme" (BUGS) can handle the simulation work in Section 2.3, but they 

do not use the Odell-Feivison (1966) technique to generate the variance-covariance 

matrix of the random effect component. Also BUGS does not automatically generate 

latent residuals. To analyze models with indicator variables such as the factor model 

for the BT data in the last section, it is more difficult to use the BUGS software. 
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Chapter 3 

Random Effects Cumulat ive Logit 

Model 

3.1 Introduction 

In this chapter we extend the methodology used in last chapter to model ordinal 

response data. Ordinal response variables are very common in many fields of applica-

tions. A typical ordinal scale is labelled with words 'Good', 'Fair', 'Poor', or 'Bad'. In 

a psychology experiment this scale might be used to record different subjects' opinion 

of a mood stimulus. In medicine the measurement of interest might be a patient's 

reaction to a prescribed drug. In telecommunications research the ordinal response 

might be a subject's opinion of a telephone connection quality. Ordinal response data 

are often referred to as ordered categorical data. 

An approach to modelling ordinal response data is to recognize explicitly that 

the responses are observations from a multinomial distribution. McCuHagh (1980) 

proposed a family of models based on the cumulative probabilities of each category. 

McCuHagh's approach is based on a generalized linear model. Generahzed linear mod-

els with a cumulative link function are an excellent statistical apparatus to analyze 
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the relationship between an ordinal response variable and the covariates. 

For each subject i we observe a response variable Yij at the j t h occasion, i = 

1,2, ...,n and j = 1,2, may take on any one of r ordered values labeUed 

1,2,....r. A cumulative link model (Agresti, 1996) for these data would be of the form 

I = 1 , 2 , . . . , r - 1 

= — ( 3 . 1 ) 

where G is the cumulative distribution function (CDF) of a continuous random vari-

able taking values in 3%; ah, h=l,2,...,r-l, are ordered cut-points dividing the real line 

into r bins. is a vector of p explanatory variables for each zjth observation . ^ 

is a vector of coefficients of the covariates. If G is the logistic cumulative distribu-

tion function, then the model is called a cumulative logit or proportional odds model 

(Agresti 1996). 

If the ordinal response data are in the form of repeated measures on the same sam-

pling units then the cumulative logit with random effects may be more appropriate. 

Hedeker and Gibbons (1994) have developed an appropriate methodology for the in-

clusion of random effects in cumulative link models. They propose a model for the 

continuous response underlying the repeated ordinal response. A similar approach is 

adopted in this thesis, but we regard the underlying continuous response as latent 

data. Hedeker and Gibbons (1994) assume that the distribution of the random effects 

is multivariate normal and the errors are assumed to be independent and normally 

distributed. This implies the cumulative probit model. If we use logit link then the 

errors assume a logistic distribution with mean 0 and variance Hedeker and Gib-

bons (1994) used maximum likelihood to estimate model parameters but this requires 

the evaluation of an integral as the random effect distribution needs to be integrated 

out of the likelihood. This integration is performed by Gaussian quadrature. Jansen 

(1990) applied the cumulative probit link model with random effects to an agricul-

tural experiment. The data are clustered ordinal data. For parameter estimation 

Jansen (1990) uses Gaussian quadrature to perform the integration in the likelihood 

function. Ezzet and Whitehead (1991) used a random effects probit model to analyze 
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longitudinal data from a cross-over trial. They also performed numerical integation 

to integrate the likelihood using FORTRAN. 

Pan and Thompson (1998) use a Quasi-Monte Carlo EM algorithm to estimate 

model parameters in called generalized linear mixed models (GLMMs). GLMMs 

(Breslow & Clayton, 1993) are simply the usual generalized linear models with ran-

dom eifects. Booth and Hobert (1999) implement a what they called an " automated 

Monte Carlo EM algorithm" to maximize generalized linear mixed model likelihoods. 

Booth and Hobert (1999) claimed that their methods can be considerably more effi-

cient than those based on Markov chain Monte Carlo algorithm. However, they also 

state that the methods proposed may break down when the intractable integrals in 

the likelihood function are of high dimension. In view of the difBculties in integrating 

out the likelihood when it comes to a very high dimensional problem, we propose that 

a Gibbs sampling approach provides a good alternative for parameter estimation. As 

in Chapter 2, the Gibbs sampler approach assumes a Bayesian formulation of the 

model. 

3.2 Bayesian Approach 

Albert and Chib (1993) present Bayesian implementations of the ordinal probit model. 

The link function G is the normal cumulative distribution function $(-). The Gibbs 

sampler is used to estimate the model parameters. Based on the work of Zeger and 

Karim (1991) and Albert and Chib (1993), we now present a Bayesian approach to a 

generalized model with random effects for ordered categorical data. Again the Gibbs 

sampler is used to estimate the regression parameters and Var(^). In particular, 

we use the Adaptive Rejection Sampling (ARS) method introduced by Gilks and Wild 

(1992). 

First of all, we rewrite equation 3.1 as 

lij.h = G{ah — m'ijP — (3.2) 
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where 6, is the coefficient vector of the random component for each subject i and 

is a subset of the explanatory variables x^j. 

Then, G is the logistic CDF 

logit(7jj-k) = at - x! , j0- (3.3) 

Often Q'/j is referred to as the cut-point and one can assume that there exists a 'latent' 

(unobserved) continuous random variable Xij such that Â - follows certain continuous 

distribution with mean + We observe the ordinal response Yij where Yij = 

h if ckk-i < Aij - - zjjbi < a/.. Also we define ag = -oo and = +00. Here, 

we assume follows the logistic distribution with mean and standard 

variance. The graphical representation of the latent variable model is shown in Figure 

3.1 below. 

Figure 3.1: Graphical representation of the latent variable model 

h(x) 

Latent Variable 

In Figure 3.1, the logistic distribution represents the distribution of a latent traits for 

particular individual. It is assumed that a random variable is drawn from this density, 

and the value of this random variable determines an individual's classification. 
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Now = 1 , 2 , r — 1, ^ and 6̂  are unknown parameters of our model. Assume 

that the random effects follow a multivariate normal distribution with zero mean 

and unknown variance-co\^iance matrix D. We focus on the use of the Gibbs sampler 

to estimate all the unknown parameters. 

3.3 The Model 

For the Bayesian analysis of the model in equation 3.3, we take a diffuse prior for 

Albert and Chib (1993) fitted the Bayesian ordinal probit model. They 

noted that one cut-point had to be fixed and they choose cti = 0. This is to ensure 

identifiability of the parameters. Nandram and Chen (1996) explain in detail the 

reason for fixing one cut-point. Without loss of generality, we also take a j = 0 and the 

joint posterior density of ^ (vector of coefficient parameters of explanatory variables), 

^ (vector of coeScients of random components of subject % ), (continuous latent 

random variable) and a (vector of cut-points) is then given by (up to proportionality) 

n(^,a , 12/̂ j) c x X n n 
1=1 j=i 

x 
1.(1+ e 

< a,.) 

x | D | - e x p ( - - ^ ' D - : W (3.4) 

where = (/3o, A , A , ), a' = (^o, a'l, a ' 2 , . ) , 6- = (6o,6i,62,...,6,_i) 

and g < p. I ( ) is the indicator function and is assumed to follow the logistic 

distribution with mean 4- and standard vajriaace. 
—UL_ —V—' 

The conditional posterior distribution of denoted as ^ | • , is then given by, 

n ( ^ , a , Aij,6^ I ?/ij) 

P 

P 
/ - - - / n ( ^ , & A ĵ,6^ I ' 

X 

c / X P ( ^ , & ^ ) X p %% 
i=l j=l 

(1 _|_ 

^ I(2/u - /^)I(av.-i < Â j < a,,) 
•h=l 
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where c\ is a constant and since the joint prior distribution is a diffuse prior; 0 \ • 

is given by 

i=l j=l 

1. e. 

(1 + 

^ I Z), ft, Aij, fej, yij ^ I A,J, 6j, yij 

(3.5) 

The conditional density of [Ai_, | D, , is given by 

[A 
/ " / n(^, a, Aij, ̂  12/ij)(̂ A 

7% t 
Aij I D, a, X P(^, a, X %% %% 

x 

i = l j=\ 

(1 + 

^ I(% = < Aij < a,i) 
.h—\ 

where Cg is also a constant and so we have 

i = l j = l Ui= l 

^ < Â j < a,,) 

X 
(1 + g:^;-4g-4Ai)2 

(3.6) 

(3/n 

1. e. [Aij I = [Â j I 

The conditional posterior distribution of 6^ [b^ | •], is given by 

n(^,a,Aij,6^ I 2/:;) 
fe / " - / n(^, a, Aij, 6, I %)c(6i(^62...(f6g' 

I - n n 
i = l j = l ( l 4 - e 

X exp( -^6 /D (3.8) 

Further it is easily seen that 

D I = [D I 
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Finally, the conditional density of a,, (the cut-point) given % and z/ 

^h, is given by Albert and Chib (1993) (up to proportionality ), 

n A; 

[a/, I '] n n [Kz/ij = /^)I(a'k_i < Aij < a/,) 
%=1 J = 1 

+ [I(% = h + 1)I(q/i < Xij < a/i+i)]! (3.9) 

where is also a constant. This conditional distribution can be seen to be uniform, 

i.e. 

ah ^ Unif [max{max{Ay : y-ij = h},ah-i}, 

niin{min{A,;j : 2/̂ ^ = A 4- l},a,i+i}] (3.10) 

After working out the necessary conditional densities, it is easy to draw up the Gibbs 

sampler scheme. 

3.3.1 Log-concavity Conditions 

To use the ARS method, it is necessary to check if the conditional posterior distribu-

tions satis:^ the log-concavity condition. That is, for any density, /z (say), we need 

to check whether < 0, where is the 2;th parameter of interest. First of all, 

consider the density of /), we let ^ | - = /i(^). Then 

/z(/)) 

x 

x p ( A Q . y x n n 
i = l j=l 

^ ' I(z/ij —1 Ajj ^ ct/j.) 
.h=l 

(1 + e 
(3.11) 

If we take natural logarithm on both sides of 3.11, then 3.11 becomes 

In h { ^ = In c'l + ^ ^ In 
i=l j=l 

+ f ] 
i=i j=i 

- 2 E E 
i=i j=i 

y ] ^{vij 1 ^ Ajj < ci'A) 
h=l 

(3.12) 
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and for Exed the Arst partial derivative becomes 

% 
n t n t 

2=1 j~\ i = \ Jl=l (1 + 

The second partial derivative is 

n /c 
- 2 E E 4 , , 

1=1 j=i 

i=l i=l 

. A,,—.-r'./9—^ -̂1 . \-̂ —x'..d—z'.b-̂  

(3.13) 

where , g_̂ , and it is easy to verify that 0 < < 1. 

Xij can be directly sampled from a truncated logistic distribution. 

To check the log-concavity condition of the coefficient of the random effects 

component, let's consider equation 3.8 and for fixed i, the natural logarithm of /?,(&,;) 

becomes 

^ < Aij < a/,) 
.h=l • . 

k 

In A (6 J = In Cg + ^ In 
j=i 

+ E ( ^ . j - - 4 & ) - 2 Z W i + 
j=i i=i 

(3,14) 

Taking the first partial derivative of In/?,(4;) with respect to b^, we have 

j=i ;=i 2 

where and are corresponding elements of D -1 

86?. 
— 2 ^ Uiĵ Ujj duu ^ 0, ^ 0. (3.15) 

i=i 

From the above results, the log-concavity condition is satisBed by each condi-

tional posterior distribution concerned. The ARS method can therefore be used in 
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the Gibbs sampler scheme. To sample Var(^), we use the Odell-Feivison (1966) tech-

nique. 

In general, it can also be proved that and are log-concave for any design 

matrix. The proof is stated as follows. 

Proof: 

Consider the log-conditional posterior distribution of /3, that is, 

^ 1 ^ ^ CV/i) In h{P) = In Cj + ^ ^ In 
1=1 j=l LA=1 

+ & 

i=i j=i 

i=i j=i 

To show this function is concave with respect to the coefhcient vector it sufBces to 

show that ln(l -t- is convex with respect to since is 

a linear function with respect to ^ which is concave. 

Now consider ln(l -t- let 

Fi(;0) = hi(l + 

Then it can be proved that 

7 — — Uij)X. 

where Ujj = and X : is a pxp symmetric matrix. It is easy 

to prove that for each z and j, 0 < < 1 and the symmetric matrix X is semi-

positive definite. Therefore Fj is convex. The calculus is the same as in the proof of 

Chapter 2. 

Similarly, to show that the conditional posterior distribution of 6̂  is log-concave with 

respect to 6̂ , let's consider equation 3.14, that is, 

lnA(6^ 
j=i 

^ I(?/̂ j = /i)I(a'a-i < 
.h= 1 
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+ - 2 E 
j=l j=l 

— 2- ' '^ 

Let f2 (^) = 21n(l + j = 1,2, ...A:. To show that ln/i(6j 

is concave with respect to 6̂ , it sufBces to show that is convex. Along the above 

lines, it can be shown that 

d^F 
g p | = 2 ( l - « „ ) « y Z + D - ' , 

where Z = is a q x q symmetric matrix. The symmetric matrix Z and the 

inverse of variance-covariance matrix D are semi-positive definite. Therefore F2 is 

also convex. This completes the proof of log-concavity condition for any design matrix 

for the model. 

3.4 Model Formulation Using Cumulative Proba-

bility 

There is another method of modelling ordered categorical data. In section 3 of this 

chapter, a full-likeUhood approach is being used. However, if we reconsider the joint 

posterior density of equation 3.4, that is, 

n(^, A, 6, I = A; X f A, X { I W = hu,/. - I'u.k-i]} 
i=l j=\ h=l 

x | D r ^ e x p ( - l ^ ' D - : W } (3.16) 

where A: is a constant and ' - / i j i s the cumulative probabihty as de6ned in Section 3.2. 

Then 

n{0,\,b, 1 y,i) = A-i X n n { E l{Vi, = A) 
i=l j=\ h=l 

Oh ^ /-ah-i ^ 
d-Ki — / — r—nr-TTTz 
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x\D\-iexp{-^b/D-'b,) 

A. X n n 
i=l j=l 

(1 + ^ - (1 + 

1 L / n-1] xP[^5exp(- -6 . 'D- ' i . . ) , (3.17) 

where ki = kx P{P, A, 6,) is a constant. In this way, we can see that X'-j, the so-called 

latent variable, vanishes after integration in this case. Therefore we do not need to 

estimate the unknowrn latent observations. We now have the foUowing conditional 

posterior distributions: 

(1) I a, 6̂ ,2/ 
71 t r 

« n n n 
2=1 j=l h=l 

1 11(2;̂ =̂ ) 

(1 + e ) (1 + e' 

(2) [a a I 
71 t r 

« n n n 
?'=1 j=l h=l 

^iVij— 

(l + e' 

(3) [6, l-I =[k\l,a„D,y] 

/c r 
« n n 

J = 1 /2,= 1 

1 L / 7~l-l! x e x p ( - - 6 / D 6{), 

(4) [D I .] = [D I 6,] 

ocniLi 1^1-2 e x p ( - W D - : W . 
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3.4.1 Checking of Log-concavity Conditions for the Alterna-

t ive Approach 

In this subsection we need to show if all the conditional posterior densities satis^ 

the log-concavity conditions (up to proportionality) using the approach of cumulative 

probabihty. First of all, starting from the marginal conditional posterior distribution 

of /?, we let h{f3) = (3 \ • and taking the natural logarithm we have 

In = A;' + Y] Z 
i=l j=l h=l 

= & Zi 12 Kz/u = In 
i=l j=l h=l 

1 1 

where k' is a constant. 

For any u and any fixed category h, we can show that 

a^lnA(^) _ " 

i=ij=i 
+ (3 18) 

where ^ = — ; ; — I t is easy to prove that 0 < 

u'l < 1 and 0 < t'l < 1. The proofs for h{h^ and h{ah) are similar. 

3.5 A d a p t i v e Rejec t ion Sampl ing (ARS) 

Again the adaptive rejection sampling method (Gilks and Wild, 1992) is used for 

parameter estimation . For our model, the log-concavity conditions are satisfied in 

the full-likelihood approach as well as in the alternative approach using cumulative 

probability. Therefore, to estimate model parameters using the Gibbs sampler, ei-

ther method can be used. Here we only report the results of augmented-hkelihood 

approach. Alternatively, for the second method we could employ the Quasi-Monte 

Carlo EM algorithm (Pan and Thompson, 1998) to estimate the regression coefficient 
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vector /? and gauss-quadrature numerical integration method to estimate the random 

effects component. 

Cowles (1996) and Nandram and Chen (1996) suggested modi6ed methods in im-

proving the convergence rate of generating the cut-point distribution in the case of 

ordinal probit model. Cowles (1996) presented a multivariate Hastings-within-Gibbs 

update step when generating latent data and bin boundary parameters jointly, in-

stead of individually from their respective full conditionals. Cowles claimed that to 

generate the latent variables and the cut-points, her algorithm substantially improves 

Gibbs sampler convergence for large data sets. In Cowles' algorithm, the model pa-

rameters are partitioned into two sets. The latent variables and the cut-points are 

in one set and the regression coefficient vector ^ is in the other. Gibbs sampling is 

used to sample ^ and a Metropohs-Hastings sampling is then used to simulate the 

cut-points given y (the observations) and Finally the latent variable is sampled 

also by using Metropohs-Hasting method given and the cut-points previously 

generated. The cut-points and latent variable are generated according to truncated 

normal densities over certain intervals. One may refer to the article by Cowles (1996) 

for more details. Nandram and Chen (1996) used Cowles' method, but reparame-

terize the cumulative-link generalized linear model to accelerate the convergence of 

Cowles' algorithm. They reparameterized the parameters by multiplying /? and the 

latent variable by the reciprocal of the second cut-point. Thereby the new ^ and new 

latent variable follow different conditional distributions. They claimed one important 

advantage is that for the three bins problem it does not require the Hastings algo-

rithm. Empirical results in their article show that their method improves Cowles' 

algorithm. 

Here by implementing the ARS scheme, we found that through simulation studies, the 

ARS method captured fairly quickly the true parameters of ^ and once converges, 

the cut-point distribution converges rapidly. The problem of slow mixing due to large 

number of categories and thus extreme narrow widths between cut-points does not 

happen in our situation. Convergence is not a problem in the ARS scheme for gen-

erating the random effects component and the cut-points. In each iteration, we 
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obtain updated values for these components. Therefore the problem of slow-mixing 

does not occur in the ARS scheme. 

3.6 Simulation Studies 

For simulation, we consider the following cumulative logit model with random effects: 

logit Pr(11j < A I - (/)o + + 6* + (3.19) 

where Xi = 0 for half of the population and 1 for the remainder and t = -3, -2, -1, 0, 

1, 2, 3. The hxed effects coe&cients were set at /?o = +3,/3i = —2.5,/)2 = +2.5 and 

/?3 = —1.0. The random effects distribution is simulated with 

Var(6j = D = 
1.0 0.0 

0.0 0.001 
(3.20) 

Ordinal response data are simulated according to equation 3.19 with h = 1,2,3 and 

cutpoints = 0.0,2.5,5.0. That is, this model has three cut-points and four ordered 

categories. Each data set comprised of n = 100 (subjects) clusters of size j = 7 for 

each 2th subject. To perform Gibbs sampling, we run the chain for each parameter 

of interest for 11,000 times and discard the initial 1000 values as burn-in. Table 3.1 

shows the overall results of a typical run using one simulated data set. The results 

in Table 3.1 indicate that the Gibbs sampler scheme gives reasonable inferences. The 

overall results are quite good. Only has shght negative bias and Var(6o) is a shght 

underestimate. 

57 



Table 3.1. Results of Simulation Studies 

Parameter True value Mean Median SD Min Max 

A 3.0 3.0781 3.0923 0.2753 2.3109 4.8921 

A -2.50 -2.6912 -2.7081 0.2017 -3.2910 -2.2451 

/?2 -k2.50 2.5807 2.4591 0.7906 1.1702 7.2156 

A -1.00 -1.0152 -0.9618 0.4378 -3.0871 0.0714 

Var(6o) 4-1.00 0.7231 0.5891 0.5723 0.0917 6.7619 

Cut2 2.5 2.3971 2.4201 0.2245 1.9092 2.9377 

Cuts 5.0 4.6658 4.7134 0.2835 4.0280 5.2948 

To monitor convergence, we use the method of batching for each individual series and 

we also calculated the potential scale reduction factor (PSRF) R. In this simulation 

case R=1.0083 which indicates that the Gibbs sampler scheme converged very well. 

Since this is a simulation study and the value of R is close to 1, we have not reported 

figures for batching. 

3.7 Analysis of Telephone Connection Quality 

In Section 2.6 of last chapter we discussed the BT experimental data. In this chapter 

we analyze the ordinal response of the experiment concerning telephone connection 

quality. A frequently used method of response in British Telecom experiments on 

transmission assessment is a Eve -point scale, graded subjectively from 'Excellent' 

to 'Bad'. This and very similar variations are the recommended scales of use in 

telecommunications work. The traditional British Telecom method of analysis for 

opinion score responses has been to perform an analysis of variance on the numerical 

scores assigned to the categories (0 to 4). From a practical view this has been done 

with success. One of the assumptions underlying the analysis-of-variance procedure 

is that the response variable follows a Normal distribution. The opinion score is 

constrained to one of five values, i.e., it is not a continuous response but rather a 
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discrete ordered one. Approximating a discrete response with a five values by a 

Normal curve is a rather crude approach. Also the scores attributed to different 

categories are arbitrary. These two considerations have the consequence of ine^cient 

estimation of parameters by the standard analysis-of-variance approach. 

In this Chapter, we analyze the E198 experiment by fitting the cumulative logit 

model with random effects based on a Bayesian approach. The E198 experiment has 

limited duration of conversation time for each subject. Wolfe (1996) has analyzed 

this data set by 6tting a random effects cumulative model. His approach is basically 

a frequentist approach. In his model, all the cut-points are directly estimated, but 

his model does not include the intercept term. In our latent variable model, the first 

cut-point has to be fixed at zero for model identifiability. The latent variables Xij are 

generated from the logistic distribution with mean x^-jS—aj and standard variance. An 

intercept term is included in our model. However the two models are equivalent. Only 

the methods of estimation are different. Therefore if we rescale our final estimates 

of the latent variable model, we should arrive at 'approximately' the same estimates 

that Wolfe (1996) has obtained in his Thesis. One has to remember that there are 

Monte Carlo errors in the Gibbs sampling scheme. In the following we present the 

final results of our analysis. The model setting is the same as in Wolfe (1996). As in 

the simulation study, we generated 10,000 random variates for each parameter after 

1000 burn-in values. In Table 3.2 we show the results of our estimates for the below. 
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Table 3.2. Results of random effects cumulative logit model for the BT (E198) ex-

periment 

para. mean s. d. s.d.^ fb.025 -Po.975 

Intercept 8.2943 0.6057 0.2872 7.5728 8.9803 

Cond 1 aliased - - - -

Cond 2 -0.0280 0.7190 0.0181 -0.9776 0.9144 

Cond 3 -0.3606 0.7186 0.0145 -1.3362 0.6664 

Cond 4 -6.8385 0.7159 0.0209 -7.7756 -5.8589 

Cond 5 -0.5684 0.7407 0.0178 -1.6063 0.4543 

Cond 6 -2.6649 0.6991 0.0167 -3.5526 -1.6952 

Cond 7 -6.1285 0.7074 0.0134 -7.0683 -5.1584 

Cond 8 -7.2762 0.6959 0.0161 -8.2016 -6.3235 

R.E. Var 1.5992 0.5568 0.0534 1.1200 2.1772 

Cut 1 set at 0 

Cut 2 3.8102 0.7209 0.0872 2.9375 5.2712 

Cut 3 6.6874 0.69087 0.0178 5.8420 7.9656 

Cut 4 9.1315 0.7192 0.0461 7.9064 10.4129 

l:This is the standard deviation of batching means 

The results in Table 3.2 can be compared with those obtained by Wolfe (1996). He 

used GLIM4 software to carry-out the fittings. The standard errors of the Monte Carlo 

results are generally smaller than those obtained from GLIM4 which used weighted 

least square method. The following table shows Wolfe's results 
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Table 3.3. Results of Wolfe's (1996) estimates (E198) experiment* 

Parameter. Parameter Standard 

estimate error 

Cut-point 1 0 -

Cut-point 2 3.31 -

Cut-point 3 6.11 -

Cut-point 4 8.75 -

Cond 1 0 -

Cond 2 -0.36 0.75 

Cond 3 -0.58 0.59 

Cond 4 -6.67 1.07 

Cond 5 -0.33 0.90 

Cond 6 -2.68 0.81 

Cond 7 -5.89 0.94 

Cond 8 -8.45 0.98 

R.E. Var 1.11 0.34 

*: This table is taken from Table E.2 in Appendix E of the Wolfe's (1996) thesis. 

The results obtained by Markov chain Monte Carlo method are similar to those 

obtained by Wolfe (1996). As we can see &om Table 3.2, the batching variances 

are very small relatively to overall sample variances in each chain. The number of 

sample points in each batch is 500. There are 20 batches. The PSRF R=1.0178 

for Table 3.2. This indicates that that convergences are good in each of the Gibbs 

sampling scheme. The last two columns in each of Table 3.2 show the 2.5% and 97.5% 

quantile values. In the following, we present the empirical posterior distribution of 

the intercept, condition 2 eSect, condition 8 effect and random effects \'ariance. 
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Figure 3.2; Empirical Posterior 
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Figure 3.3; Empirical Posterior 
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Figure 3.4; Empirical Posterior 

Distribution of Condition 8 
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Figure 3.5; Empirical Posterior 

Distribution of Random Effect Variance 
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Also the scatter plots of random effect variance against the intercept and condition 

8 effects are shown on Figures 3.6 and 3.7 respectively. These two graphs show the 

correlation between the random effect variance and mean location level and condition 

8 is negligible. 

Figure 3.6: Scatter Plot of Figure 3.7; Scatter Plot of 

Var(6o) vs Intercept Var(6o) vs Cond. 8 
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3.7.1 Posterior-Predictive Probabil ity Distributions 

As we have demonstrated in Chapter 2 we can compute the predictive probabilities for 

future events from the posterior-predictive density. For the cumulative logit model 

of E198 experiment, we compute the posterior-predictive distribution of scoring a 

bad telephone connection for subject 8 and subject 16 at each condition level. These 

are important Bgures because test-engineers would like to know which transmission 

condition is likely to cause a bad connection and the associated probabilities. There 

are eight conditions. At each condition k, the observation is binary (n^ = 1 for 

each k). The following Tables show the posterior- predictive distribution of subject 

8 and subject 16. These figures are calculated based on the simulated values of 

= 1,2,... ,m. Sample size m is also equal to 2,000. The sample is taken from 

the last 2,000 values of the entire simulated Markov chain. 

Table 3.4. Predictive probabilities of having a bad telephone connection of subject 8 at 

each given conditions (E198 experiment). 

Conditions Pr(j/* = 1 1 Cond.) s.d. -Po.025 -fo.975 

Cond 1 0.0147 0.1113 0.0024 0..0484 

Cond 2 0.0010 0.0344 0.0001 0.0041 

Cond 3 0.0013 0.0341 0.0001 0.0041 

Cond 4 0.4756 0.4472 0.1158 0.8337 

Cond 5 0.0011 0.0342 0.0001 0.0044 

Cond 6 0.0261 0.1588 0.0029 0.0994 

Cond 7 0.2697 0.4052 0.0443 0.6549 

Cond 8 0.5404 0.4431 0.1604 0.8711 
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Table 3.5. Predictive probabilities of having a bad telephone connection of subject 16 at 

each given conditions (E198 experiment). 

Conditions Pv{y* = 1 1 Cond.) s.e. -Po.025 Po.975 

Cond 1 0.0116 0.1085 0.0012 0.0455 

Cond 2 0.0008 0.0333 0.0001 0.0035 

Cond 3 0.0009 0.0326 0.0001 0.0036 

Cond 4 0.4093 0.4532 0.0696 0.8228 

Cond 5 0.0009 0.0372 0.0001 0.0043 

Cond 6 0.0206 0.1513 0.0017 0.0804 

Cond 7 0.2226 0.4006 0.0275 0.6309 

Cond 8 0.4709 0.4599 0.0979 0.8709 

Results in Table 3.4 and 3.5 both show that condition 4 and 8 are the most likely 

conditions that will give a poor connection. While condition 7 has about 20% chance 

of causing a bad line, the rest of the transmission conditions have very low chance of 

getting a bad connection. 

3.7.2 Latent Residuals Analysis 

Finally for model checking, we use the method of latent residuals introduced by Albert 

and Chib (1995). Their method is applied for models for a binary variable only; but 

it is not difficult to extend their method to models for ordinal categorical variable. 

That is if equation 3.3 is the correct model for the data, 

'ij (3.21) 

and Aij are the latent variables for the h category, < a/, 

where an-i and ah are the corresponding cut-points. As mentioned in Section 3.2, 

the latent variable foUows a logistic distribution with mean and unit 

variance. Â^ can be generated directly from the ARS method for given values of 
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and at the tth stage of iteration of our Gibbs sampler scheme as we have done in 

Section 3.5. Therefore latent residuals Eij are defined as 

u- (3.22) 

Latent residuals Sij are a priori a random sample from a standard logistic distribu-

tion. To show that the generated latent residuals of our model followed a standard 

logistic distribution, a Kolmogorov-Smirnov test is used to test whether Sij do follow 

a standard logistic distribution. To conduct the test a random sample of size 30 is 

being picked from the 5000 generated latent residuals each time and we obtain the 

necessary test statistic as well as Prob(D < Z)„). The test is repeated for 50, 100 

and 1000 times. Table 3.3 show the overall results for E198. 

Table 3.6: Results of K-S Test of latent residuals 

(E198 Experiment) 

Sample size (n) No. of runs (m) Mean Mean Pr(D < £)„) 

30 50 0.2025 0.2127 

30 100 0.2189 0.1650 

30 1000 0.2091 0.1979 

The histogram of mean residuals for each observation of each subject are shown in 

Figure 3.8 and in Figure 3.9 we show the mean latent residuals plot against each 

subject. The empirical distribution of the 256 mean latent residuals is superimposed 

by a standard logistic distribution curve. From looking at Figure 3.8, the empirical 

distribution is in close agreement with the underlying theoretical distribution. How-

ever if we inspect the mean residuals plot of Figure 3.9, there are quite a number of 

mean latent residuals fall outside the ± 3 limits. This suggests that a new model 

should be considered for improvement of model fitting. We will consider a new model 

for these data in next chapter 4. 
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Figure 3.8: Histogram of Mean Residuals 
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Figure 3.9; Plot of Mean Latent Residuals against Subject 
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Cumula t ive Rasch M o d e l 

It is well known that the cumulative Rasch model (Agresti and Lang, 1993) is a 

special case of the random effect cumulative logit model and the Rasch item response 

model (Rasch, 1960) is also a special case of the cumulative Rasch model. The Rasch 

item response model caters for repeated binary responses with subject-specific effects 

while the cumulative Rasch model caters for repeated ordered categorical responses. 
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To begin with the cumulative Rasch model, it is assumed that there are n subjects 

making A; repeated responses, % = A, z = 1,2, and j = 1,2, on the same 

ordered categorical scale. For subject i and response measure j, let denote the 

probabihty of response in category h, for h = 1,2,.... r and let H 

Now let's consider the cumulative logit model 

logit('y ĵ'k) = Ah + (3.23) 

where X^, h = 1,2, ...,r — 1 are the 'cutpoints'. a , and pj are respectively the subject 

and response effect parameters being independent of h. If the model holds, for each 

i and j, there is an underlying continuous response that has a logistic distribution 

with mean (3j — a , and the observed response falls in category h when the underlying 

response falls between Xh-i and Xh- It is necessary to set Aj = /5i = 0 for identifiability 

of the model. Using the Bayesian formulation and the Gibbs sampler approach one 

can in fact estimate (i) the various cutpoints Xh, h = 2, ...,r — 1, (ii) j = 2 , . . . , k 

and (iii) Var(a,:). Agresti and Lang (1993) used a maximum likelihood approach to 

estimate model parameters. The methodology that is employed for ordinal data in 

previous sections of this Chapter can be used for cumulative Rasch model. 

3.8.1 The Rasch Model 

The Rasch Model (Rasch, 1960) explains the occurrence of a data matrix containing 

the binary scored answers of a sample of n persons (the subjects) to a hxed set of 

k items. This model has been widely used in social and behavioural sciences. In 

a psychological test or attitude scale, one tries to measure the extent to which a 

person possesses a certain property such as intelligence, arithmetic ability etc. Such 

properties are often called latent traits'. The use of a test or scale presupposes that 

one can indirectly infer a person's position on a latent trait from his/her responses 

to a set of well-chosen items. A statistical model of the measurement process should 

allow us to make predictions of future behaviour when confronted with other items 

from the same domain. 
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In a Rasch model a n x k data matrix is obtained containing the binary scored 

answers, i.e. pij = 0 or l,i = 1, 2,..., n and j = 1,2,..., k. In other words, there are 

Si, % = 1,2,..., subjects and a Exed set of j = 1 , 2 , A ; items. Each item has 

a real-valued item parameter denoting the difBculty of that item. Further let 

be denoted as the latent trait variable which assumed to follow a logistic distribution 

with mean f3j — a-,; and standard variance, a* is the subject-specific effect. Therefore 

if we assume a diffuse prior, the joint posterior distribution for the logit model 

logit Pr(i/ij = 1) = Aij + cki - (3.24) 

is given by 

a t 
n(^, Aij, I %) = c X f (^, Aij, a:̂ ) X 

i = l j = l 

aij-ai-Pj 2 1 n? 
(325) 

1 

^ < 0 or Aî  > 0) 
.h=0 

The mathematics for deriving the various conditional posterior distribution and log 

concavity conditions follows from the cumulative Rasch model. In summing up, we 

have also provided a methodology to model the cumulative Rasch model which is 

used to model ordered categorical data in psychology and behavioural science. This 

method can be used for the ordinary Rasch model for binary responses. 

3.9 Conclusions 

Our proposed methodology for dealing with ordinal data which are commonly found 

in many practical situations is practicable. It is easy to implement if the conditional 

posterior distributions are log-concave. Convergence seems not to be a stumbling 

obstacle in the analysis. Often convergence is achieved at a very fast rate despite 

the drawbacks we mentioned in chapter 2. In the situation when model settings do 

not yield log-concave full condition, we can use the adaptive rejection Metropolis 

samphng (ARMS) method also introduced by Gilks eZ o/. (1995). 

The well-known Rasch Model (Rasch, 1960) in Psychology is simply a special case of 
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this model. Bayesian analysis with the Gibbs sampler provides a good alternative to 

the classical freqnentist approach. Lastly, concerning convergence rate, our method is 

a more direct method than those proposed by Nandram and Chen (1996) and Cowles 

(1996); in terms of samphng from various conditional posterior distributions. 

Furthermore, our method can easily be extended for the cumulative logit model 

with complicated random effect components. That is, it can fit models of the following 

form 

logit(%'/;) = Ak - - Zibi (3.26) 

where bi ~ A ĝ,(0, E;) (/ = 1 , c ) and E; is either an diagonal or unstructured matrix. 

This model is an extension of the GLMM Model II mentioned in chapter 2 for ordinal 

data. This is a research area which is worth further investigation. Again the BUGS 

software can handle the simulation work for the cumulative logit model, but again 

they do not use the OdeU-Feivison (1966) technique to generate variance-covariance 

matrix of the random effect component. To analyze a model with indicator variables 

such as the factor model for BT data in last section, it will be a good attempt to use 

the BUGS software. 
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Chapte r 4 

R a n d o m Effects Cumulative Logit 

Model wi th Subject-Specific 

Scaling Term 

4.1 Introduction 

In the E198 experiment, subject-differences in the scores (responses) are quite sig-

nificant. These phenomena are found firstly in the higher or lower scoring by the 

subjects on the response scale and secondly by clustering or spreading to the ex-

tremes of responses by the subjects. To show this phenomena, it is easiest to examine 

the histogram of the responses of those subjects who exhibit spreading in the extreme 

categories or clustering on one or two particular categories. For example subject 1, 

2, 8 and 15 have a tendency of scoring the highest category (see histograms below). 

Figure 4.1: Histogram of Scores (Sub. 1) Figure 4.2: Histogram of Scores (Sub. 2) 
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Figure 4.3: Histogram of Scores (Sub. 8) 
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Figure 4.4; Histogram of Scores (Sub. 15) 
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On the other hand, subject 3̂  9̂  12 and 13 have similar patterns (scoring more on 

category 3), but none has scored the highest category. Subject 14 also has not scored 

the highest category, but this subject is more likely to score the lowest category (see 

histograms below). 

Figure 4.5: Histogram of Scores (Sub. 3) Figure 4.6: Histogram of Scores (Sub. 7) 
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Figure 4.7: Histogram of Scores (Sub. 9) 
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Figure 4.8: Histogram of Scores (Sub. 12) 
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Figure 4.9; Histogram of Scores (Sub. 13) Figure 4.10; Histogram of Scores (Sub. 14) 

4 — 

h 
i 

0 -

3 -

I -

0 1 2 3 0 1 2 3 

Subject 13 Subject 14 

Therefore we suspected that a model with a random scaling term should be used to 

explain this phenomenon as each response subject tends to have his/her own ordering 

scale in mind. There are two forms of model with a scaling term. These are 

io§(Y 
lij,h -) = ah 

exp(^^ 
(4.1) 

which is presented by McCullagh (1980). The quantity xJjP is called the "location" 

for the 2th row and r, is called the "scale" for the zth row. In general, such a model 

is appropriate only when the number of response categories is at least three. 

The other model is 

losf lij,h 
• 1 - lij,h 

) = a/, exp(7^) - (4.2) 

which is discussed by Kijewski et al. (1989). The scaling term quantifies how much 

responses are spread out (or concentrated) across the ordinal scale. Hence a subject-

specific scaling term quantifies the type of difference between different subjects. The 

difference between models by McCullagh (1980) and Kijewski et al. (1989) can be 

illustrated by the following two examples. 

Consider the McCullagh's (1980) model without random effects and imagine a set of 

data which can be divided into 2 groups according to the values of a binary charac-
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teristic. Further, consider a cumulative logit model with a scaling term 

/?i = 0 Ti = 0. 

The binary explanatory variable has both a location and scale parameter associated 

with it. The responses are split into 2 groups according to the value of the binary 

covariate. The responses in these 2 groups are assumed to be observations from 

2 underlying distributions. The difference between the underlying distributions is 

described via the cumulative logit model in two ways. The first way is by the difference 

in their location, described by and the second way is by the difference in their 

dispersion, described by T2-

Now consider the model discussed by Kijewski oZ. (1989). Also a simple example 

of the cumulative logit model with only scaling term with continuous covariate is 

considered. That is 

= a'kexp(Ti) - /?i, 

logit = o.'kexp(7-2) -

with Ti = 0. 

The exp(Ti) term has a multipHcative effect on the cut-point parameters a,;. The 

value of r2 has the effect of either clustering the cut-points on the underlying contin-

uum (if T2 < 0) or spreading them out (if T2 > 0). 

The inclusion of a scaling term in the cumulative logit model (Kijewski a/.; 1989) 

is more straightforward than in the model introduced by McCullagh (1980). This is 

because the cumulative logit model can be developed by assuming that the ordinal 
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response is a manifestation of an underlying continuous response and that the thresh-

old parameters indicate cut-points on the underlying continuum between categorical 

responses. Necessarily the threshold parameters are ordered in this case. 

Wolfe (1996) proposed a cumulative logit model with form: 

log I I = a,, exp(Co-() -
\ 1 -

where Wg is a random eEect describing subject location, is a random effect de-

scribing subject scaling and these two random effects are assumed to come from two 

independent standard normal distributions. The amount of random dispersion is 

measured by cr̂  and cr̂ .̂ However Wolfe (1996) did not do any work on simulation 

or on practical data analysis. He wrote on page 115 of his thesis, " Unfortunately 

time ran out before this could be attempted as a contribution to this thesis. The 

development of general purpose software to fit the cumulative logit model with both 

random location and scale effects would be of practical use". 

4.2 Bayesian Mode l Formula t ion 

We now present a Bayesian approach to modelling ordinal data with a random effects 

cumulative logit model with random scaling term. This model is based on the form 

developed by Kijewski a/. (1989). 

First of all, consider the cumulative probability, for the response categories 

less than or equal to h, i.e. Prob(}^j < h) 

= G(a!;,exp(T{)-n;^^-zgbJ (4.3) 

where Tj is a scaling effect random variable and 6,; is the coefficient vector of the 

random component for eax:h subject z and is a subset of the explanatory variables 

x^j. Furthermore 

logit('y^j'k) - a/i exp(Ti) -

= a l - = IV, exp(T^). 
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av, is referred to as the cut-point for the whole population and is the tth individual 

cut-point. It is already assumed that there exists a "latent" (unobserved) continuous 

random variable such that follows a logistic distribution with mean + 

for each individual. For the scaling effect random variable r^, we assume that r,; follows 

a normal distribution with mean 0 and variance For the random component 

coefficient vector 6,, we also assume that it follows a multivariate normal distribution 

with zero mean and unknown variance-covariance matrix D. Ordinal responses are 

observed where = A if a),,] < Â^ < a:%. Our objectives are focused on the use of 

Gibbs sampler to estimate all the unknown parameters. That is we need to estimate 

(1) (2) 6̂ , (3) Var(6i), (4) and (5) In this model, each individual subject % 

is assumed to have his/her own set of cut-points = ah exp(Ti), /?, = l , 2 , . . . , r — 1. 

There are r categories of responses in the model. 

4.3 Condi t iona l Pos te r io r Dis t r ibu t ions 

For the Bayesian approach to the model in equation 4.3, we take a diffuse prior for 

(^, a, Atj, 7i). Then the joint posterior density is given by (up to proportionality) 

n(^ , a, Â j, 6^ ,0-^ I ?/̂ j) = c X f (^, a, 6̂ , T̂ ) 

71 t 
- n n 

i=l j=l 

x 

^I( i / i j := /i)I(o;;,_ie^' < Â ê̂ * < a^eT) 
A—1 

(1 + 

x | D | - i e x p ( - ^ 6 / D - : ^ ) 

1 1 / T, 2 
X — e x p - - ( — ) x e \ 

O't 2i (7f 
(4.4) 

where g = (A, A , f t , a = (qo, a, , a2,...,Qv & = (60,61,62, ....4,_i)'' 

and g < p. !(-) is the indicator function. The conditional posterior distribution of 

denoted as 

P I D, a, Xjj, 6j, tj, (T^, l/ij 
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is then given by 

/5| 

/ - - - / n(^, a, Aij, 6̂ , Ti, 0-2 I -c(/)p-i' 
71 t 

-nn 
i = l j = l 

x 

^ I ( % = A)I(a,,_ie^' < < a/̂ eT) 
A=1 

(1 + 

The conditional density of A;̂ , [Aî  | ^, a, 6̂ , D, T̂ , cr̂ , ?/ij] , is given by, 

(4.5) 

[A u 
n(^,a , A;j,^, 7-̂ ,0-̂  

v/ ^ / n(^, a, A^j,T^, 0-2 I 
T 

= /z)I(a;,,_ie''' < Aij^' < a/̂ eT 
7% t 

« n n 
i=ij=\ 

e 
x 

h=l 

(1 + e 
(4.6) 

[A, u Ay I D,f3,bi,Ti (4.7) 

Hence Aij|^,a,6i,D,7^,0-2,?/^^^ = Aij|D,^,6^,7^,i/ijj. The conditional posterior 

distribution of 6̂ , a, 6̂ , D, T̂ , o-̂ , , is given by 

% 

Ik 

n(^, a, Â ,̂ 6̂ ,7-̂ ,0-2 I 

/ - " / n(^, a, Â j, 6̂ , T̂ , 0-2 I ^^j)(f6id62...(f6g 
k 

«n 
j=i 

x 

^ I ( % - A)I(a;;,_ie^' < Â ê"'' < 
.h=l 

b.\2 (1 + e 

X exp( -^6jD-^^) , 

9 < P 

(4.8) 

[6 i | - ]= 6^|^,a,A^j,Ti,D,?/ij (4.9) 
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The conditional posterior density of 6̂  does not depends on The conditional 

posterior density of Var(^) = D, i.e. [D | is given by 

P I - ] 

where Cij, z, j = 1, 2,..., g are the elements of D. Again we have 

(4.10) 

[ D | . ] o c | D | - : e x p ( - ^ ^ : " D - ' W . (4.11) 

Therefore the distribution of D only depends on i.e. [D | ] = [D | 

For the scaling parameter 7̂ , the conditional posterior density is given by, 

m 

\Ti 

n(^,a , I t/ij) 
J n(^, a, Aij, 6̂ , T(, 0-2 1 
k 

o ^ n 
i = i 

Y^I(% = /^)I(a!,,_ie^' < Â jeT < 
Lft,=l 

X 

(1 + e 
X X exp (4.12) 

h I •] = T. I D,l l ,a, \[ , ,bi ,a%yij (4.13) 

Lastly the conditional posterior density of cr̂  is given by, 

^ n(^, 0,^1^,6^,7^,(7211/^j) 

/ n(^, a, A,j, Ti, 0-2 I ?/î )(fo-: 
1 ^ 

oc — e x p - - ( — ) , 
O^T 2d CT 'T 

(4.14) 

That is, [0-2 I .] = [0-2 I T̂ ]. 

77 



For the conditional posterior density of given { 6 ^ , D, T,, } and Â ,, z/ ^ /i, 

is given by (up to proportionality ), 

n k 

I '] n n P W = < a,,e]')]. 
i=lj = l 

+ [I(% = /̂  + 1)1 We""' < < a'k+iej')], (4.15) 

This conditional distribution of the cut-points for each subject is also uniform. That 

is, 

a,! ^ Unif[max{max{Aij : 2/ij = 

min{min{Aij : + 1}, . (416) 

4.3.1 Log-concavity Condi t ions 

In order to use adaptive rejection sampling method (ARS) to carry-out Gibbs sam-

pling, we first need to check carefully whether the conditional posterior densities sat-

isfy the log-concavity conditions. That is, for any density, h (say), we check whether 

< 0 where Py is the wth parameter of interest. The conditional posterior dis-

tributions in the random effects cumulative logit model with random scaling term 

satisfy the log-concavity conditions, except the posterior distribution of the random 

scaling term (Ti). We caa prove that for each 

...'-pi.. 
(4.17) 

(4.18) 

< 0. (4.19) 

The proofs are almost identical to the one given in Chapter 3. It is unnecessary to 

repeat the proofs in this Chapter. 
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To check the log-concavity conditions for the scaHng effect parameter 7̂ , we consider 

equation 4.12 and let 

h I'] 

= ^ 4 x n n 
i=lj=l .h=i 

x 
(1 + e 

1 , T,- 2 

Again for hxed %, 

ln/i(7i) 

xe ' X e x p - - ( — j , 
li (J-r 

- lnA;4 + ^ In < avie]") 
j = l .h=\ 

+ jZ{K,e" - 3^,0 - zlb,) - 2 X:in(l + 
i=i i=i 

1 , T , 2 
+ r,-

2 ar' 

(4.20) 

(4.21) 

and 

l̂n/z(Ti 

i=i 
- 2 ^ 

j=i 1 + 
+ 1 

Ti 

0"̂  

^ln^/i(T; 

j=i i=i 

j=i 

1 + 

J=1 

gA ĵê i-zg.̂ -zT.̂  

e' 

(1 + at 

(4.22) 

(4.23) 

The log-concavity condition does not hold in this case. Therefore to generate a sample 

A Eiriate of we should use the Metropolis sampling method or alternatively we could 

well use the 'Adaptive Rejection Metropolis Sampling' method (ARMS) by Gilks 

et al. (1995). The ARMS method deals with a distribution g when g is nearly log-

concave. Lastly, the Odell-Feivison (1966) technique is used to generate elements of 

random matrix D and wiU be generated by using an inverse gamma distribution. 
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It, is not di&cult to prove log-concavity conditions of h(^) and h(^) for any 

design matrix. The proofs are identical to the one gi\'en in the previous two chapters. 

4.4 Simulation Studies 

To carry out a simulation study for our proposed model, we consider the following 

cumulative logit model with random effects: 

logit Pr(]1j < I = a/, exp(T )̂ - (/)o + + 6% -H 6^^) (4.24) 

where = 0 for half of the population and 1 for the remainder and t = -3, -2, -1, 0, 1, 

2, 3. The fixed effects coefficients were set at /?o = +3, (3i = —2.5, = +2.5 and — 

— 1.0. The random scaling terms is simulated according to the normal distribution 

with mean 0 and unit variance. The random effects distribution is simulated with 

Var(6,) = D = 
1.0 0.0 

0.0 0.001 
(4.25) 

Ordinal response data are simulated according to equation 4.24 with three cut-points. 

Each data set was comprised of n = 100 (subjects) clusters of size j = 7 for each %th 

subject. 

To perform Gibbs sampling, we run the chain for each parameter of interest 

for 11,000 times and discard the initial 1000 values as burn-in. Table 4.1 shows the 

overall results of one typical run using one simulated data set. The results in Table 

4.1 indicate that the Gibbs sampler scheme gives satisfactory results. 
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Table 4.1. Results of Simulation Studies 

Parameter True value Mean Median SD Min Max 

/?o 3.00 2.9671 2.9523 0.2801 2.1563 5.0371 

Pi -2.50 -2.5937 -2.6735 0.1978 -3.1378 -2.0674 

A 2.50 2.4965 2.5271 0.7239 1.0935 6.9673 

A -1.00 -1.0916 -1.0734 0.4109 -2.9067 0.1532 

Var(6o) 1.00 0.9323 0.5925 0.5815 0.1734 5.9362 

Var(T )̂ 1.00 0.8975 0.6946 0.6012 0.0938 6.9015 

In Table 4.1, estimates using the ARS method are generally close to the true values. 

The potential scale reduction factor (PSRF) R=1.0097 which indicates that the Gibbs 

sampler scheme converged very well. Since this is a simulation study and the value 

of R is close to 1. Therefore we assumed with confidence that each individual series 

is well converged. 

4.5 Analysis of B T Ordinal Data 

As we have mentioned earlier in section 3.6 concerning the BT experimental data, 

the data that we analyze in this chapter are typically of a five point scale graded 

from 'Bad' to 'ExcellentThis belongs to the ordinal response scale. In the following 

we present the final results of our analysis for E198 experiment using random effects 

cumulative logit model with subject-specific scaling term. As in the simulation study, 

we generated 10,000 random variates for each parameter after 1000 burn-in values. We 

need to estimate the intercept term, parameters for the 32 subject effects, parameters 

for the 7 condition effects (condition 1 is aliased), random effects variance and variance 

for the random scaling effects. There are altogether 42 parameters to be estimated. 

The cut-points are of less interest since we are focusing on the estimation of the 

regression parameters for the random scaling model and the variance of the random 

scaling effects. In Table 4.2 we show the results of our estimates. 
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Table 4.2. Results of the BT (E198) experiment. The estimates are reported along 

%dth the mean, the standard error, the standard error of batching mean, the lower 

2.5f/i, (fo.025) a,nd the upper 97.5^A, (fb.975) percentiles. 

para. mean s. d. s. d.^ -Po.025 fb.975 

Intercept 7.8262 0.6343 0.0452 7.0977 8.5378 

Subject 1 -0.5872 0.7903 0.0562 -1.8921 0.7823 

Subject 2 -0.4781 0.7599 0.0265 -1.6418 0.6448 

Subject 3 -0.5198 0.8904 0.0301 -2.0999 1.0593 

Subject 4 0.4961 0.8478 0.0451 -0.9315 1.9253 

Subject 5 -1.0840 0.8794 0.0339 -2.6304 0.4088 

Subject 6 0.8884 0.7821 0.0278 -0.3232 2.1049 

Subject 7 -0.9763 0.8229 0.0421 -2.2704 0.3104 

Subject 8 -1.2185 0.8308 0.0329 -2.6200 0.1212 

Subject 9 0.2185 0.9226 0.0420 -1.4239 1.9904 

Subject 10 0.8725 0.8077 0.0297 -0.3988 2.1941 

Subject 11 1.2014 0.8303 0.0411 -0.0768 2.5283 

Subject 12 -1.4146 0.8188 0.0388 -2.7351 -0.1184 

Subject 13 -1.3004 0.8132 0.0225 -2.6423 -0.0268 

Subject 14 1.5976 0.8887 0.0261 0.0131 3.1558 

Subject 15 0.1183 0.8348 0.0391 -1.2359 1.5233 

Subject 16 -0.6576 0.7705 0.0203 -1.8659 0.5127 

Subject 17 2.3406 0.8466 0.0318 0.9110 3.7070 

Subject 18 0.8946 0.8418 0.0460 -0.5468 2.2594 

Subject 19 0.8963 0.8313 0.0433 -0.4327 2.3083 

Subject 20 -1.3037 0.7896 0.0308 -2.5749 -0.0897 

Subject 21 -2.5688 0.9356 0.0486 -4.1598 -0.8066 

Subject 22 0.5520 0.8115 0.0453 -0.7673 1.8607 

Subject 23 -2.8102 0.7768 0.0329 -3.9664 -1.6266 

Subject 24 0.0877 0.8394 0.0214 -1.2664 1.4608 
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Table 4.2. (Continued) Results of the BT (E198) experiment. The estimates are 

reported along with the mean, the standard error, the standard error of batching 

mean, the lower 2.5fA, ( P 0 . 0 2 5 ) and the upper 97.5th, ( P 0 . 9 7 5 ) percentiles. 

para. mean s. d. s. d.^ f0.025 -P0.975 

Subject 25 3.7748 0.8877 0.0327 2.2505 5.3246 

Subject 26 -0.0814 0.8158 0.0221 -1.3977 1.2331 

Subject 27 3.0671 0.8658 0.0331 1.5785 4.5042 

Subject 28 -0.0026 0.8329 0.0402 -1.3369 1.3784 

Subject 29 -1.4563 0.8232 0.0403 -2.7404 -0.1160 

Subject 30 -0.7020 0.8060 0.0392 -1.9663 0.5572 

Subject 31 -0.2009 0.8167 0.0365 -1.4259 1.2204 

Subject 32 -7.4838 0.7826 0.0289 -8.7121 -6.2673 

Cond 1 0 (ahased) 

Cond 2 -0.3327 0.7181 0.0301 -1.3103 0.6919 

Cond 3 -0.1603 0.7386 0.0288 -1.2079 0.8585 

Cond 4 -6.8902 0.7231 0.0231 -7.8772 -5.9009 

Cond 5 -0.0968 0.7770 0.0403 -1.2380 1.0788 

Cond 6 -2.8247 0.7204 0.0392 -3.7741 -1.8361 

Cond 7 -6.3403 0.7158 0.0457 -7.3050 -5.3472 

Cond 8 -7.3907 0.7211 0.0313 -8.3408 -6.4186 

Var(6o) 0.9418 0.4581 0.0521 0.6245 1.5617 

Var(T )̂ L8987 0.5572 0.0539 1.1425 2.3527 

1: This is s tandard deviation of the batching means 

As we can see from Table 4.2, the batching standard deviations are very small relative 

to overall sample standard deviations in each chain. The number of sample points in 

each batch is 500. There are 20 batches. The PSRF R—1.0056 for Table 4.2. This 

indicates that that convergence is good in each of the Gibbs sampling scheme. The 

last two columns in each of Table 4.2 show the 2.5% and 97.5% quantile values. In the 
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following, we present the empirical posterior distribution of the intercept, condition 

8 effect, random effect variance and variance of the random scaling terms (ri). 

Figure 4.11: Empirical Posterior 

Distribution of Intercept 
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Figure 4.13: Empirical Posterior 

Distribution of R. E. Variance 
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Figure 4.12: Empirical Posterior 

Distribution of Condition 8 
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Figure 4.14: Empirical Posterior Distribution of 

Variance of Random Scaling Term 
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The random scaling term is generated by the Metropolis scheme which differs from 

the rest of the other parameters. All the other parameters are used the adaptive 

rejection sampling (ARS) scheme. The ARS scheme is proved to be converged in 

previous chapters. It will be of interest to show a time series plot of the variance of 

the generated random scaling terms using the Metropolis scheme. The series is taken 

from the last 2,000 values of the original series of size n = 10, 000. 
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Figure 4.15: Time Series Plot of the Generated Random Scaling Variance 
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To show that the series is indeed convergent, we further show the batch mean plot 

of the series in Figure 4.16. The batch means are calculated from the last 2,000 

generated values. Each batch is of size 100 and there are 20 batches. As we can see 

from Figure 4.16 that batch mean indeed fluctuats around the mean level of 1.90. 

c 
CO 
0 

Figure 4.16: Time Series Plot of Batch Means of Random Scaling Variances 

3 -4 

0 

Batch no. 



4.5.1 Poster ior-Predic t ive Probabi l i ty Dis t r ibu t ions 

In this section we show further the predictive probabilities for future events from 

the posterior-predictive density using the random scaling model. Again we compute 

the posterior-predictive distribution of scoring a bad telephone connection of subject 

8 and subject 16 at each condition level. The following Tables show the posterior-

predictive distribution of subject 8 and subject 16. These figures are calculated based 

on the simulated values of = 1,2,... ,m. The sample size m, is also equal to 

2,000 and the sample is taken from the last 2,000 values of the entire simulated Markov 

chain. 

Table 4.3 Predictive probabilities of having a bad telephone connection for subject 8 at each 

given conditions (E198 experiment, random scaling model). 

Conditions Pr(y* = 1 1 Cond.) s.e. •Po.025 -Po.975 

Cond 1 0.0014 0.0419 0.0002 0.0043 

Cond 2 0.0019 0.0393 0.0003 0.0063 

Cond 3 0.0017 0.0376 0.0003 0.0054 

Cond 4 0.5087 0.4112 0.1926 0.8277 

Cond 5 0.0016 0.0371 0.0002 0.0053 

Cond 6 0.0228 0.1359 0.0040 0.0727 

Cond 7 0.3890 0.4009 0.1205 0.7101 

Cond 8 0.6174 0.4023 0.2853 0.8845 
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Table 4.4 Predictive probabilities of having a bad telephone connection for subject 16 at 

each given conditions (E198 experiment, random scaling model). 

Conditions Pr(y* — 1 1 Cond.) s.e. -Po.025 -Po.975 

Cond 1 0.0005 0.0277 0.0001 0.0017 

Cond 2 0.0007 0.0249 0.0001 0.0023 

Cond 3 0.0006 0.0221 0.0001 0.0019 

Cond 4 0.2815 0.3779 0.0701 0.6096 

Cond 5 0.0006 0.0236 0.0001 0.0020 

Cond 6 0.0079 0.0811 0.0013 0.0257 

Cond 7 0.1925 0.3381 0.0395 0.4697 

Cond 8 0.3805 0.4028 0.1068 0.7063 

The figures in Table 4.3 and 4.4 are different from those calculated using the random 

effects cumulative logit model. Again one of the advantage of Bayesian statistical 

modelling is one can easily obtain the predictive probabilities of certain events. 

4.5.2 Latent Residuals Analysis 

Finally for model checking, we use again the method of latent residuals introduced 

by Albert and Chib (1995). Latent residuals are generated in the same way as in 

Chapter 3. Latent residuals are generated for each subject i. That is if 4.4 is the 

correct model for the data, then for each response category h, 

+ e (4.26) 

where are the latent variables for the h category and < Â  < 

a'^_i and are the corresponding cut-points for each subject i. Latent variable 

Â j follows a logistic distribution with mean and unit variance. Â , can 

be generated directly from the ARS method for given values of and 6/̂ ^ at the 

tth stage of iteration of our Gibbs sampler scheme as we have done in Section 5. 
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Therefore latent residuals are defined as 

% = K j " nlji - Sjki (4.27) 

Latent residuals Sij are a priori a random sample from a standard logistic distribution. 

To show that the generated latent residuals of our model followed a standard 

logistic distribution, a Kolmogorov-Smirnov test is being used again to test whether 

Eij do follow a standard logistic distribution. To conduct the test a random sample 

of size 30 is being picked from the 5000 generated latent residuals each time and we 

obtain the necessary test statistic as well as Prob(Z) < £)„). The test is repeated 

for 50, 100 and 1000 times. 

Table 4.5. Results of K-S Test of latent residuals 

(El98 Experiment, random scaling effects model) 

Sample size (n) No. of runs (m) Mean Mean Pr(D < £>„) 

30 50 0.1508 0.5789 

30 100 0.1496 0.5134 

30 1000 0.1531 0.5543 

The histogram of mean residuals for each' observation for each subject are shown 

in Figure 4.7. The empirical distribution of the 256 mean latent residuals is super-

imposed by a standard logistic distribution curve. From looking at Figure 4.7, the 

empirical distribution is in close agreement with the underlying theoretical distribu-

tion. 



Figure 4.17: Histogram of Mean Residuals of Random Scaling Model 
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We further show the logistic probability plot of the mean latent residuals in Figure 

4.18. The logistic probability plot shows that in that the residual scores are scattered 

around a straight line in the middle 90% of the data. This strongly indicates that the 

residuals follow a standard logistic distribution which agrees with our basic assump-

tion. 

Figure 4.18: Logistic Probability Plot of Mean Residuals of Random Scaling Model 
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A plot of mean latent residuals plot against subject is shown in Figure 4.19 below. 

This plot also indicates that the E198 data are better fitted by the random scaling 

model. Majority of the mean latent residuals are within the ±3.0 limits. No particular 

trends or patterns are found in this plot. 

Figure 4.19: Mean Latent Residual Plot against Subject of Random Scaling Model 
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4.6 Conclusions 

The random effects cumulative logit model with subject-specific scaling effects is 

an extension of the cumulative logit model with random effects. This model caters 

for the experiments involved with repeated measurement where the data observed 

are ordinal categorical data. It is assumed that each subject under investigation may 

have their own scale of cut-points. Our empirical results have shown that this method 

of modelling ordinal data of this nature is possible. The BUGS software package has 

not yet developed programs to cater for problems of this kind. It is possible that most 

practitioners do not realize that the subjects under investigation has its own scale of 

cut-points. One advantage of using ARS is that latent data and associated residuals 

can be computed within an ARS-based sampler for the ordinal logistic random effects 

model. 

Estimation of the parameters in the cumulative logit model with random effects 
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can be done by using generalized estimating equations (GEE). Zeger aZ. (1988) 

demonstrate how this is done in fitting the logistic regression model for binary re-

sponses. Using GEE to fit the model involves the use of a working correlation matrix. 

Details of the GEE approach may be found in Zeger et al. (1988). 
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Chap te r 5 

Cont inuat ion-ra t io Logit Model 

5.1 Introduction 

Models for the cumulative probability of category h, = P r ( }^ j < h), have already 

been introduced in Chapter 3. The cumulative logit model is defined in equation (3.1). 

In this thesis models based on the cumulative probability are referred to as cumulative 

link models. When we discuss a particular member of the class of cumulative link 

models, the word link is replaced by the name of the particular link function being 

used. However, McCullagh (1980) proposed the name " proportional odds" for the 

cumulative logit model and "proportional hazards" for the cumulative complementary 

log-log model. 

All models based on cumulative probability and cumulative logit imply stochas-

tic ordering. The cumulative logit and cumulative probits are invariant due to a 

combination of the symmetric nature of the link functions and the simple form of the 

cumulative probability. All the cumulative link models are invariant to contiguous 

category collapsing. 

Another probability that has been discussed in the hterature (Agresti, 1996) is 
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the continuation-ratio probability. 

I > /i) 

^ij,h 
{h = 1, 2, ...r) (5.1) 

'^ij,h + • • • + 

Any appropriate link function may be used to form a model with the continuation-

ratio probability. The continuation — ratio logits contrast each category with a group-

ing of categories from higher levels of the response scale; that is, 

log TTl 
• + TTr. 

, log 
TTs + • * • + TTy, 

, . . . , log r̂—1 
TT,. 

(5.2) 

For example, what will be referred to as the continuation-ratio logit model of the 

second type for ordinal response with regression parameter vector ^ is of the following 

form: 

log 
l^ij,h+l + + TT, %j,r 

Ah -

or equivalently 

log — —ij§_ 

(5.3) 

(5X0 

Similarly there are the continuation-ratio complementary log-log and continuation-

ratio probit models when the link function is the complementary log-log and pro-

bit respectively. The continuation-ratio link models do not have the same appeal 

to an underlying continuum as in the case with the cumulative link models. All 

continuation-ratio link models define strict stochastic ordering but they are not, in 

general, invariajit to the collapsing of the contiguous categories. 

5.2 Relationship between Continuation-ratio Model 

and Mode l for B inary D a t a 

To estimate the parameters of a continuation-ratio logit model using the Gibbs sam-

pler, we can use the estimation method of chapter 2 again here. It is easy to show 
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that the likelihood function for continuation-ratio hnk models can be split into r — 1 

independent binomial likelihood functions. To demonstrate, consider the case of an 

ordinal response having four categories (r =4). The likelihood Z, for the ijth obser-

vation is proportional to 

oc (5.5) 

where yiĵ h = 1 if the ordinal response yij = h and % = 0 otherwise. This may be 

written as 

X ( V " ' X ( + V'"'""" 
\ TTij.z + 4- y 7rij_2 + / 

X X f (5.6) 
\ / \ + 7rij,4 / 

Since Ylh=i = 1, this is also the joint likelihood for one observation from each of 

the three independent binomial distributions, 

(i) Bin(l,7r^j,]) 

(ii) Bin [ ̂ ^,2 + %,3 + 2/ij,4, 
+ TTij.S + 7rij,4 ^ 

(iii) Binf%,3 + %,4, 

A continuation-ratio link model is in this case 

Link(7r^j,i) -

Linkf I = 

Link f I = 03 -

\;r^j,3 4-7r ;̂,4y 

So if the continuation-ratio link model is considered to have three levels then each 

level models one of the binomial probabilities in the expanded likelihood. This means 
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that we can use the method described in chapter 2 for fitting logistic regression 

models to fit continuation-ratio link models at each level. However, due to fact that 

the parameters of the continuation-ratio model are not invariant to the collapsing 

of the contiguous categories, therefore it is difEcult to estimate the random effects 

components. The structure of the original random effects affecting each category has 

been severely distorted by the collapsing of the contiguous categories. That is, if we 

let i/ij ,1 = 1 if the ordinal response and = 0 if > /?,. However we 

could easily includes random effects if required. 

5.3 Simulation Studies of Continuation-Ratio Model 

To carry out simulation work for the continuation-ratio model, it is not appropriate 

to simulate a certain set of ordinal data (as we did in Chapter 3 and 4) with a set 

of Sxed parameters because we know that the parameters of the continuation-ratio 

model at each level will be different and it is difficult to guess the expected values of 

the parameters in the model at each level; 

One way to demonstrate the estimation works is to consider the simulation model in 

Chapter 3 where the ordinal data are generated according to the following cumulative 

logit model with random effects; 

logit(%j < h I bj) = A/i — (/3o + Pit + l32Xi 4- P^tXi -I- 6oi + but) (5.7) 

where Xi = 0 for half of the population and 1 for the remainder and t = -3, -2, -1, 0, 

1, 2, 3. The fixed effects coefficients were set at = 4-3,/3i = —2.5, = +2.5 and 

= —1.0. The random eSFects distribution is simulated with 

Var(6j = D = 
1.0 0.0 

0.0 0.001 
(5.8) 

This model has three cut-points (A = 1,2,3) and four ordered categories. As in 

Chapter 3, each data set comprised of n = 100 (subjects) clusters of size j = 7 for 

each 7th subject. To perform the Gibbs sampler, the second, the third and the fourth 
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categories are merged into one category. This is a continuation-ratio on its own right. 

The estimated parameters will be close to the original parameters. The underlying 

structure of the model is a random effects cumulative logit model. Now the ran-

dom effects which are used to generate the ordinal data are buried as 'noises' in the 

continuation-ratio model. So the final estimates will not get as close as to the origi-

nal parameters. Some errors in estimation are bound to occur due to random effects 

superimposed in the model. The following is the final results of our estimates by the 

ARS method. As usual each chain in the Gibbs sampler is run for 11,000 times and 

we discard the initial 1000 values as burn-in. Table 5.1 shows the details of the overall 

results of one typical run using one simulated data set. 

Table 5.1. Results of Simulation Studies of continuation ratio model 

Parameter True value Mean Median SD Min Max 

A 3.0 3.4509 3.4650 0.4391 1.0407 5.3380 

Pi -2.50 -2.3171 -2.3075 0.2581 -3.2602 -0.8935 

P2 2.50 2.1877 2.1221 0.9522 1.1531 5.8204 

A -1.00 -0.9190 -0.8918 0.5154 -2.6930 1.0873 

The potential scale reduction factor (PSRF) R=1.0149 in this simulation case. That 

means the Gibbs sampler scheme converged well. As expected, there is an average 

about 10% underestimates for all the parameters. This confirmed the fact stated at 

the beginning of this section. 

We could well perform another simulation for merging other categories. However 

as this is only a small chapter in illustrating continuation-ratio model, the above 

simulation work will suffice to show parameter estimation of continuation-ratio model. 

96 



5.4 Continuation-Ratio Model to Fit The Telephone 

Connection Quality Data 

As we have mentioned in Chapter 3, the response in British Telecom experiments on 

transmission assessment is a five-point scale, graded subjectively from "Excellent " 

to "Bad" (see Figure 5.1). This and similar variations are the recommended scales 

being used in telecommunications work (CCITT 1992). 

Figure 5.1: Response Scale of Ordinal Data 

TTl 

Bad (0) Poor (1) Fair (2) Good (3) Excellent (4) 

In Figure 5.1, TTr, r = 0,1,2,3,4, is the probability of Yij = r and is the 

cumulative probability of Yij < r. 

In this chapter a continuation-ratio model is used to fit the BT telephone connection 

quality data. The continuation-ratio model is a model which, in general, models any 

response of an ordered categorical nature. This implies that the model would be 

suitable to cope with many other ordered categorical scales. 

The response is not continuous but rather discrete with only five possible values. 

More information is contained within the ordered structure of the categories. The 

categories are strictly increasing from "Bad" to " Excellent". Also relevant is the fact 

that these categories are not fixed but may be thought of as arbitrary coding of some 

underlying continuum. This underlying continuum is the unmeasurable subjective 
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response such as "standard of transmission". 

As a result of these considerations, it is the probability of a response falling into a 

certain category {iti) which is the focus of the modelling procedure. Associated with 

this are the cumulative probabilities the probabilities of the response faUing 

in a certain category or below it. 

Here we propose to use the continuation-ratio model to model the the E198 data set 

using the expanded likelihood with one common set of regression parameters, but 

different intercepts (outpoints). In the following we present the final results of our 

analysis. As in simulation, 10,000 random variates are generated for each parame-

ter after 1000 burn-in values. The results of the final estimates are shown in Table 5.2. 

Table 5.2. Results for Continuation-ratio model of E198 experiment. The estimates are 

reported along with the mean, the s tandard error, the standard error of batching mean, the 

lower 2.5th, ( F 0 . 0 2 5 ) and the upper 97.5th, ( P 0 . 9 7 5 ) percentiles. 

para. mean s. e. s. e.̂  Po.025 -P0.975 

Intercept -8.9036 0.6313 0.0074 -9Ja85 -8.3079 

Cond 1 aliased - - - -

Cond 2 0.2835 0.7280 0.0106 -0.6140 T1834 

Cond 3 0.3856 0.7130 0.0208 -0.6078 -1.3223 

Cond 4 7.3293 G17301 0.0116 6.3213 8L3255 

Cond 5 0.1846 0L73O2 0XW17 -0.8195 1.1492 

Cond 6 2.6563 0.7195 0.0301 1.6598 3.5756 

CondT 6.4176 0.7195 0.0113 5.4333 7.3969 

Cond 8 8.0449 0^511 0.0205 7.0102 8.9981 

C u t l 0 - - - -

Cut 2 3.3255 0.6902 &0753 2.4298 5.9761 

Cut s 6.7925 0.6384 0.0114 5.4651 7.8235 

Cut 4 9.3560 (17098 0.0374 7.5261 10J382 

1: This is the standard error of the batching means. 
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As we can see &om Table 5.2, the standard errors of batching means are very small 

relatively to overall standard errors of the sample means in each chain. The number 

of sample points in each batch is 500. There are 20 batches. The value of PSRF for 

Table 5.2 is equal to 1.0217. This indicates that convergence is good in each of the 

Gibbs sampling schemes. The last two columns of Table 5.2 give the usual 2.5% and 

97.5% quantile values as shown in the last three chapters. 

We can in fact compare our results with those obtained by Lewis et al. (1992) who 

used the GLIM software package to fit the continuation-ratio model to the E198 data. 

However, they only included 16 subjects in the model whereas we used 32 subjects 

and they included further covariates in addtion to those that we have used here. Table 

5.3 is extracted from their results. It is noted that the estimates for the cut-points 

and transmission conditions are similar to our results. 

Table 5.3. Results Continuation-ratio model of E198 experiment by Lewis et al. (1992)^ 

parameter estimate s. e. 

Intercept -12.68 1.488 

Cond 1 aliased -

Cond 2 0.5848 0.7317 

Cond 3 1.067 0.7392 

Cond 4 8.924 1.043 

Cond 5 0.9571 0.7349 

Cond 6 4.427 0.7999 

Cond 7 7.506 0.9487 

Cond 8 10.24 1.125 

Cut 1 0 -

Cut 2 3.764 0.5271 

Cut 3 6.992 0.7302 

Cut 4 10.27 0.8831 

2:This table is extracted from Table C.l of Lewis et al. (1992). 
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The probability intervals and the estimated mean values of the parameter in Table 

5.2 are presented in Figure 5.2 

Figure 5.2 : Plots of Probability Intervals of Parameters 
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The empirical posterior distributions of the intercept term, effects of condition 2, 

condition 4 and condition 6 are shown in the following graphs. The sample size in 

each histogram is equal to 2,000. These values are taken from the last portion of the 

original simulated chain (n=10,000). Hopefully a sample of 2,000 is good enough to 

show the true posterior distribution. 

Figure -5.3: Empirical Posterior 

Distribution of Intercept 

Figure 5.4: Empirical Posterior 

Distribution of Condition 2 
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Figure 5.5: Empirical Posterior 

Distribution of Condition 4 

Figure 5.6: Empirical Posterior 

Distribution of Condition 6 
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5.4.1 Poster ior-Predict ive Dis t r ibu t ions 

For the continuation-ratio model of the E198 experiment, we compute the posterior-

predictive distribution of the first level for subject 10 and subject 12 at each condi-

tion level. There are eight conditions. This is the posterior-predictive distribution 

of having a bad connection. Here 'bad' is defined to be the lowest of the ordinal 

categories. The following Tables show the posterior- predictive distribution of sub-

ject 10 and subject 12. These figures are calculated based on the simulated values of 

= 1 ,2 , . . . , m. The sample size is also equal to 2,000 taken from the last 2,000 

values of the entire simulated Markov chain. 

Table 5.4. Results of Posterior-predictive distribution of subject 10 for given con-

ditions (E198 experiment). 

Conditions Pr(y* = 'Bad' | Cond.) s.e. •Po.025 •Fb.975 

Cond 1 0.0002 0.0163 0.0001 0.0010 

Cond 2 0.0003 0.0163 0.0001 0.0010 

Cond 3 0.0004 0.0169 0.0001 0.0011 

Cond 4 0.2459 0.3513 0.0718 0.5325 
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Table 5.4. (Continued) Results of Posterior-predictive distribution of subject 10 for 

given conditions (E198 experiment) . 

Conditions Pr(?/' = 'Bad' | Cond.) s.e. •Po.025 -Po.975 

Cond 5 0.0003 0.0152 0.0001 0.0008 

Cond 6 0.0035 0.0535 0.0006 0.0100 

Cond 7 0.1179 0.2792 0.0261 0.3254 

Cond 8 0.3799 0.3918 0.1308 0.6748 

Table 5.5 Results of Posterior-predictive distribution of subject 12 for given conditions 

(E198 experiment). 

Conditions Pr(3/' = 'Bad' | Cond.) s.e. -Po.025 -Po.975 

Cond 1 0.0001 0.0107 0.0000 0.0004 

Cond 2 0.0002 0.0115 0.0001 0.0005 

Cond 3 0.0002 0.0122 0.0001 0.0006 

Cond 4 0.1544 0.3066 0.0281 0.3934 

Cond 5 0.0002 0.0120 0.0001 0.0005 

Cond 6 0.0019 0.0373 0.0003 0.0060 

Cond 7 0.0676 0.2214 0.0130 0.1968 

Cond 8 0.2564 0.3611 0.0571 0.5594 

The figures in Table 5.4 and 5.5 reveal that given condition 4, 7 and 8, subject 10 and 

12 are likely to give a response of having a bad connection. These figures are con-

sistent with the results in Table 5.2, where parameters for these three conditions are 

highly significant. This is a straightforward calculation when conducting a Bayesian 

statistical analysis. As far as the telecommunication engineers are concerned, this is 

an important piece of information . 
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5.4.2 Mode l Checking Using Latent Residuals 

Finally for model checking, we use again the method of latent residuals introduced 

by Albert and Chib (1995) in the continuation-ratio logit model. That is, if equation 

5.3 is the correct model for the data. 

Aij — 2lij§ + £• (5.9) 

and \ i j are the latent variables for the h category, au-i < Xij — ̂  where an-i 

and ctft are the corresponding cut-points. As mentioned before, the latent variable Xij 

follows a logistic distribution with mean x!ijP_ and unit variance. can be generated 

directly from a logistic distribution for given values of and at the t th stage 

of iteration of our Gibbs sampler scheme. Therefore, latent residuals Sij are defined 

as 

— ^ij — ^ijP (5.10) 

Latent residuals Sij are a priori random samples from a standard logistic distribution. 

In our studies, a sample size of 10,000 latent residuals have been generated from the 

model. To test whether or not the generated latent residuals follow a standard logistic 

distribution, a Kolmogorov-Smirnov test is used. In conducting the test a random 

sample of size 30 is sampled from the 10,000 generated latent residuals each time. We 

obtain the necessary test statistic as well as Pr(D < D„). The test is repeated 

respectively for 50, 100 and 1000 times. Table 5.6 shows the overall results. 

Table 5.6. Results of K-S Test of latent residuals 

Continuation-ratio model (E198 Experiment) 

Sample size (n) No. of runs (m) Mean Mean Pr(Z? < Dn) 

30 50 0.1653 0.4682 

30 100 0.1738 0.4325 

30 1000 0.1802 0.4190 
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The following histograms also show the distribution of the mean latent residuals and 

the plot of the mean latent residuals against each observation. There are altogether 

256 mean latent residuals for the data. The latent residuals are obtained at each 

simulation run. The last 2.000 values of the entire 10,000 are used for plotting the 

histograms. 

Figure 5.7: Histogram of the mean latent residuals superimposed 

by a standard logistic curve, n=256 
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Figure 5.8: Plots of mean latent residuals against subjects 
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As we can see from Figure 5.7, the histogram is in close agreement with the super-

imposed standard logistic curve and there is no particular pattern exhibited in the 

scatter plot of mean latent residuals against the subjects. 

5.5 Conclusions 

In this chapter, we have only presented the estimation results of continuation-ratio 

model for the E198 data using the expanded likelihood. We assumed common pa-

rameters for each continuation ratio, apart from the intercept (cutpoint). This model 

could be extended to fitting a model for each level so there are four separate models. 

However, our experience indicates that after converting the data into binary form, 

that is, letting Yij = 1 if Yij — h and Yij = 0 if Yij > h, the ARS estimation proce-

dure failed to converge in each of the four cases due to the sparseness of "1" for each 

subject. Similar situations are encountered when we use the BUGS program for the 

same data set. 

The interpretation of the continuation-ratio model is different from the model for 

strictly binary data in chapter 2. However, the estimation technique is the same. The 

proposed continuation-ratio model is a model which, in general, models any response 

of an ordered categorical nature. This implies that the model would be suitable to 

cope with the many other ordered categorical scales used in historical experiments. 

The traditional British Telecom method of analysis for opinion score responses has 

been used to perform an analysis-of-vajiance on the numerical scores assigned to the 

categories ( 0 to 4 ). One of the assumptions underlying the analysis-of-variance 

procedure is that the response variable follows a Normal distribution. The opinion 

score is constrained to one of five values, i.e., it is a discrete response rather than 

a continuous one. Approximating a discrete response with five values by a Normal 

curve is rather a crude approach. Also the scores attributed to different categories 

are arbitrary. The two considerations have the consequence of inefhcient estimation 

of parameters by the standard analysis-of-variance approach. 
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Wolfe (1996) also used continuation-ratio model to fit the BT experimental data. He 

found that the residual sum of squares of the continuation-ratio models are in general 

smaller than the residual sum of squares as minimised in the analysis-of-variance 

approach. Thus the continuation-ratio logit model fitted the data better than the 

analysis-of-variance approach. The proposed residual sum of squares (Wolfe, 1996) 

for the continuation-ratio logit model {RSSCR) is calculated as follows; 

RSScr = f l i y , - y.) ' (8.11) 
i=l 

with yi given by 

(5.12) 

i=o 

The fitted value % is calculated by multiplying the fitted probabilities from the 

continuation-ratio logit model by the scores j = 0 to 4 as used in the ANOVA 

model for the data, giving a fitted mean score for the continuation-ratio logit model. 

The Bayesian method of modelling the continuation-ratio logit model using 

Markov chain Monte Carlo (MCMC) technique provides a good alternative way to 

model ordinal data. However, it is difficult to compare directly model fits via residual 

sums of squares. We use the concept of " latent residuals ". By inspecting the 

empirical posterior distribution of the mean latent residuals in Figure 5.7, we are 

confident that the model satisfies our basic assumption. That is, the distribution of 

the model error is distributed as standard logistic distribution. Also by inspecting the 

scatter plot of mean latent residuals against ea;Ch subject, we note that no particular 

pattern is found in this plot. In the Bayesian approach, one can identify immediately 

those parameters which have significant effects by conveniently inspecting whether 

zero value is contained in the (1 — a) x 100% probability intervals. 95% probability 

intervals are adopted here. 

Another advantage of Bayesian modelling is that we are able to compute the 

predicted probabilities of future events for given generated parameter values. When 

one uses Markov chain Monte Carlo (MCMC) technique for parameter estimation, one 
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can also obtain the (1 — a) x 100% probability intervals for the predicted probabilities 

of future events. More information about model prediction is incorporated naturally 

in the Bayesian approach. The model parameters and future value of the observations 

are random variables in the full probability model under discussion. 
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Chap te r 6 

R a n d o m Effects Cumulat ive Prob i t 

Model wi th Serial Correlat ion 

6.1 Introduction 

The purpose of this chapter is to consider models for ordinal observations with serial 

correlation. There has been a large amount of published work in recent years on 

the topic of repeated measures. Most of the published work has used a frequentist 

approach. Therefore it would be worthwhile to model these data using a Bayesian 

approach. Markov chain Monte Carlo method plays an indispensable role in model 

parameter estimation. 

Suppose % E%), % = (subject), ^ = 1 , 2 , ( T observations for 

each subject %), is a set of longitudinal data. To model these data collected over time 

for each member of a group of experimental units, one must recognize the possibility 

of correlation between serial observations on the same experimental unit. Several au-

thors such as Potthoff and Roy (1964), Rao (1965, 1967) and Grizzle and Allen (1969) 

have analyzed balanced and complete longitudinal data using multivariate analysis 

of ANOVA models. However longitudinal data are often, in practice, unbalanced or 
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incomplete, that is all individuals are not observed at the same number of time points 

or with the same design matrix. Chi and Reinsel (1989) consider the following model 

for longitudinal data that contain both individual random components and within-

individual errors that follows an (autoregressive) AR(1) time series process. Their 

model for individual i is 

yi = Xi^ + Zi^+2^, z = l ,2, ..,n (6.1) 

where y, is a 7̂  x 1 vector of observations, is the Tli x p design matrix for the mean 

vector of individual i, /? is the p x 1 population fixed effect parameter vector, Z, is 

the Ti X q design matrix for the random effects of individual i, 6, is a g x 1 vector 

of unobservable random effects assumed to be sampled from a multivariate normal 

distribution with mean 0 and qx q covariance matrix F and Wj is the Ti x 1 vector of 

within-individual errors whose components are assumed to follow the AR(1) model, 

A (̂0, 0"̂ ) (6.2) 

<p is the coefficient of the AR(1) process. For individual i, it is assumed that obser-

vations are taken at integer time points, which are not necessarily con-

secutive, so the " missing data" situation is accommodated. Let cr̂ Qt denote the 

covariance of so 

Cot;(yi) - Z;rZ( + (6.3) 

One may refer to the article by Chi and Reinsel (1989) for more details. 

6.2 Modelling Longitudinal Ordinal Response 

in a Bayesian Perspec t ive 

If the longitudinal data for individual z is measured on an ordinal scale such as the 

BT ordinal response data in Chapter 3, then the above model will be invahd. Instead, 
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we shall model the cumulative probability of the response category up to and including 

category A. A suitable hnk function should be used. Let < /%). Then 

Link{Pr(} ; ( < /z)} = Link{%,; i} z = 1 , ^ = 1 , 3 1 (6.4) 

= Xi^4- + Mi. 

Xi, Z;, ^ and are the same as defined in section 1 of this chapter. 

6.2,1 R a n d o m Effects Cumula t ive P rob i t Mode l wi th Serial 

Corre la t ion 

To answer the above question, we now propose a Bayesian approach to model data 

of this nature. This model is a random effects cumulative probit model with serial 

correlation. This model is also based on the concept of " latent variable", but instead 

of using the logit link, we use the probit link function. A random effects cumulative 

probit model with serial correlation would be of the form 

Probit = a/, - (6.5) 

where is assumed to be an autoregressive process of order one 

( AR(1) ) and is the AR(1) process parameter, z = 1,2,..., ( = 1,2,..., A;, A = 

1,2, ...r. are assumed to be Gaussian innovations with mean 0 and variance 

Equation 6.5 can be rewritten as 

Probit {%,/,} — — ( ^ ( ^ + + a,f), (6 6) 

As in chapter 3, it is assumed that there is a continuous 'latent' variable In this 

case Ait is assumed to follow a Gaussian distribution with mean and 

variance cr̂ . The observed ordinal data Ya = h, h = 1, 2,..., r whenever Qft-i < Xu < 

Qlfi. 

Now for ^ > 2 
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= (Aif — (6-7) 

P is the regression coefficient vector (p-dimension) in the model and 6, is the (q-

dimension with q < p) coefficient vector for the random component, is also assumed 

to follow a multivariate normal distribution with mean 0 and variance-covariance 

matrix D. In next section we shall present the Bayesian approach to formulate the 

model so that we can employ the Gibbs sampler to estimate various parameters in 

the model, such as Var(D), and 

6.2.2 Bayesian Mode l Formulat ion 

It is assumed that au's are Gaussian innovations with mean 0 and variance a^. Let 

r2 - 1 T > 0. Oi/s are z. %. variates. Then the likelihood function /?, 6̂ , T, D 

is given by 

i = nn 
i=l t=2 

.h=l 

T T 
/— exp ——{(Aif — 

x] D j'" exp(-^b/D '&) (6.8) 

If a non-informative prior distribution is used, that is, 

1 
P{<Pii,0,i.i,T, D) cx (6.9) 

Then the joint posterior distribution is given by 

m & . B i K j ) = ; n n 
= 1 t=2 

^ I(% - /i)I(a,,_i < < a,,) 
.h=l 

—1= exp — 
VZTT z 

x | D |^exp(-^^^D-^^) 

X 

(6.10) 
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6.3 Conditional Posterior Distributions 

The conditional posterior distribution of denoted as ^ | , is given by ( up to 

proportionality), 

/?l 
/ " - / n ( a , Ai(, / ) , D , | 'p-i 

71 A; 
= c . n n 

1 = 1 ( = 2 

^ Kz/ij = < Ait < 
./l=l 

T T 
X Gxp - -{(Ait — ^iiAi,(_i) 

VJTT Z 

(6.11) 

where Cj is a constant. That is 

^ I '] = [^ I & Ait, 6̂ ,(̂ ,-1, 

For fixed i, the conditional marginal posterior distribution of 6̂ , denoted as [6, | •], is 

given by ( up to proportionality), 

n ( a , A ^ ( , ^ , 6 ^ , D , < ; 6 n | i / u ) 
[k 

/ - - - / n ( a , Ai(,/),6^,D,(^,1 I ^^j)(f6od6i...d6, 

= <^11 
(=2 

T T 
/— exp ——{(Ait — ^:iAi,(_i) 

V/TT z 
^ ' ^ivij — '̂)I(ctfe—1 ^ Aji < A/?,) 

.h~l 

- (^Ai + x exp(-^6/D-^6j (6.12) 

where cg is a constant. That is 

I -] = [6, I a, Ai(,^,(^a,2/u] 

For fixed i and t, 

[Ai 

That is. 

C3 X y ' ^{Uij — h)l(̂ Qfi—l A,;t ^ CV/,,) 
_/l=l 

t t 
exp—-{(Ait — ^nAi,f_i) 

TT / 

(6.13) 

[A it M — Ait I & /), Ai, ̂ il 

112 



cg is also a constant. It can be shown further that 

[^1-] = 

Finally the full conditional distribution for each of the cutpoints ah, /i = 2, 3 , r — 1 

(&! is being Gxed at 0) is again given by, (upto proportionahty ), 

I -] oc < Ait < a/i) 
1=1 3=1 

+ [liVit = h + l)I{ah < Ait < ck/i+i)]) (6.14) 

6.4 Adap t ive Re jec t ion Sampl ing 

As in the previous chapters, the adaptive rejection sampling method is employed to 

generate all the parameters in this probit model with serial correlation. It is not 

difficult to prove that the conditional posterior distributions, h{^), h{bj), h{Xit) and 

h{(j)i) are all log-concave. The proofs are shown as follows. To estimate D, again the 

Odell-Feiveson (1966) algorithm is used. 

6.5 P roof s of Log-concavity Condi t ions 

To check whether the conditional marginal posterior distribution of (3 satisfies the 

log-concavity condition, we first consider equation 6.11 and let 

7% t 
h{^ - U JJ 

1=1 f=2 
53 1 Ai( < Ctft) 

- / ! , = 1 

t t 
Gxp - -{(Ait — Ai_t_i) 

- ( ^ t ^ + " W A + (6.15) 

If natural logarithm is taken on both sides of equation 6.15, then equation 6.15 be-

comes 

lnA,(^)= c - H ^ ^ l n 
= 1 ( = 2 

^ 1(^0 = /))I(ak_i < Ait < a,,) 
.h= 1 
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^ 71 k 
+M(A: - l ) l n T - % 

^ i=l t=\ 

(6.16) 

where c is a constant. Then 

— c l 5 — — ""^2^ - Pi] Ai,f_i) 

- W ( + - W( + (6.17) 

a^liiA(^) m A; 

i—1 t = 2 

= - T E i : 2 / . . L 
2=1 t = 2 

= — "J" X] X] (6.18) 
2=1 t=2 

where 2^ = ^(4- a,nd is a s}iiimetric matrix for each % and f. 

Aiatrix .4̂ ^ is necessarily positive-semi deEnite. Thus /i(^) is log-concave. 

Similarly, for Gxed %, we can prove that 

i=2 
k 

~ — D ,̂ (6.19) 
t—2 

where -|- &nd Bi* = and .0"^ are q x q symmetric matrices. 

Matrix and are also positive-semi definite. Therefore /i(6i) is log-concave. 

To show whether the conditional posterior distribution of the coefficient, of 

the AR(1) process is log-concave, consider 

n(a , | ?/;j) 
A((^n) 

/ n(a , Â t, 6̂ , D, 12/u)(̂ (6,i 
= /),(<;;!'n | a, Ai(,^,^,D,?/(j) 

k ~ T 

t=2 .h~\ 

T T 
GXp — % {(A,( — < .̂lA,:.(_i) 

V2^ 4 

— — (&L6, 4- (6.20) 
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where C4 is a constant. Taking natural logarithm on both sides of 6.20, we have 

In ) = In C4 + ^ In 
t=2 

T ^ 

^ t=2 

k ~ r 

^ < a,;) 
.h~\ 

Then 

— (6 21) 

= +T Ai,t_l) — (^( + 
f=2 

- Wf + (6.22) 

f = 2 

^ln/z((/>n) 

2 

< 0 ; 

since r = ^ > 0. So the conditional posterior distribution of (pn is log-concave. 

Lastly, for the latent continuous variable Xa, it is not difficult to show that the 

conditional posterior distribution h{Xit) is log-concave where for fixed i and t, 

OAit 

^^In A(Aif) 

since - = cr̂  > 0. 

= —r < 0, 

The results in this section also confirmed the results stated by Wedderburn 

(1976) that the generalized linear models with many link functions , such as normal, 

logit, probit, Poisson and complementary log-log links, in the exponential family 

satisfy the concavity condition. In the next section the ARS method is used in a 

Gibbs sampling scheme to generate all the model parameters. 
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6.6 Simulation Studies of Probit Model with Serial 

Correlation 

Having proved the log-concavity conditions for the conditional posterior distributions 

of the model parameters, simulation work is presented in this section. The main 

purpose is to demonstrate the viability of the proposed probit model with serial cor-

relation for ordered categorical data. As in chapter 3 and 4, the following cumulative 

probability model with serial correlation using a probit link function is considered: 

probitf < h \ bj) — oth — (/?o + PiT + + 6% + buT) 

+ (It (6.23) 

where Xi — 0 for half of the population and 1 for the remainder and T = —3, —2, —1, 

0,1,2,3. The fixed effects coefEcients were set at = +3, /)i = —2.5, /)2 = +2.5 and 

/?3 = —1.0. The random effects distribution is simulated with 

Var(6j) = D = 
1.0 0.0 

0.0 0.001 
(6.24) 

and et = + at is an order one autoregressive time series (AR(1)). at is a 

Gaussian innovation with mean zero and variance r = ^ > 0. In this simulation, 

(pii, the AR(1) coefficient is set equal to +0.5. The AR(1) time series with (pn is 

generated using the NAG-FORTRAN subroutines library. 

The simulation work is carried out using non-informative prior and r = 1. However, 

past experience of other researchers such as Palmer and Broemeling (1993) and Chib 

(1993) indicated that if a Gibbs sampling approach is adopted, there are certain risks 

in using a non-informative prior distribution to estimate the regression coefficients and 

autocorrelation parameter. Palmer and Petit (1995) gave an numerical example using 

simulated data to show that the final estimates were far away from the original values 

of the parameters. The problem will get worse if the autocorrelation parameter is 

close to +1.0 or -1.0. A unit root nonstationary phenomenon will occur which leads 

to a so-called 'black-hole' problem in the estimation procedure. Chib (1993) has 
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suggested that an improper prior can be used to implement a solution using Gibbs 

sampling when moderate-to-high positive autocorrelation was presented. However, 

Palmer and Petit (1995) recommended that by using a fairly 'vague' proper prior, the 

difBculty caa be resolved. They also gave an numerical example with simulated data 

to support their recommendation. 

6.6.1 Resul t s of Simulat ion 

Similar difBculties are also encountered in the simulation work here if a non-informative 

prior with r = 1 is used. The final results are shown in Table 6.1. The overall results 

are based on one typical run using one simulated data set. A sample size of n=l l ,000 

is generated and we discard the first 1,000 values as burn-in. 

Table 6.1. Results of Simulation Studies for Probit Model 

using non-informative prior 

Parameter True value Mean Median SD Min Max 

3.0 -0.8407 -0.8395 1.5078 -5.2536 4.3467 

A -2.50 -4.5156 -4.5108 1.3911 -7.6542 -0.5467 

P2 +2.50 4.3811 4.4431 3.4462 1.1702 8.2156 

A -1.00 -0.7062 -0.7045 -1.6210 -3.0156 4.5891 

Var(6o) +1.00 4.8851 4.1509 1.8272 0.9263 9.5663 

+0.5 0.2324 0.2311 0.1164 0.0034 0.6651 

The final estimates of the parameters using a non-informative prior are not good. Only 

/?3 is closer to the true value. The worst estimate is the random effects component 

and there is about 50% underestimate for the autocorrelation coefficient. The value 

for PSRF is about 2.7815 which indicates the whole Gibbs sampling scheme does not 

converge well. Therefore there is reason to believe that a vague proper prior should 

be used in order to obtain a better estimate from the ARS-Gibbs sampling scheme. 

Here a multivariate normal distribution for the regression coefficient vector (3 is chosen 
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as the 'vague' proper prior. That is, the density of the prior distribution is given 

by, 

1 
W ) = ,g e x p { ( ^ - ^ y y XA-zio) , (6.25) 

where F = Diag(<Tg, , (7-2_ J and cr? = 

In this simulation study, erg is set equal to 0.5 for the mean location parameter /)o 

and a1 — 1.0 for all other parameters of ^ (Palmer and Petit, 1995) . 

Since this is a simulation work and all the true parameters are known, the mean vector 

^ is set at the values which generated the data for simulation. It is not di&cult 

to prove that the conditional posterior distributions also satisfy the log-concavity 

conditions if a multivariate normal prior distribution is chosen for /?. The results of 

the ARS-Gibbs sampling scheme is shown in Table 6.2. 

Table 6.2. Results of Simulation Studies for Probit Model 

using vague proper prior 

Parameter True value Mean Median SD Min Max 

A 3.0 3.0040 3.0043 0.1633 2.5994 3.3952 

A -2.50 -2.5157 -2.5151 0.0505 -2.8394 -2.2086 

A +2.50 2.4901 2.4885 0.0651 2.2302 4.0685 

A -1.00 -0.9677 -0.9829 0.1008 -2.1657 -0.4906 

Var(6o) +1.00 1.1998 1.1273 1.2153 0.0440 4.1998 

+0.5 0.4165 0.4203 0.0991 -0.1558 0.7221 

The results in Table 6.2 show a remarkable improvement over those in Table 6.1. 

All the estimates are close to the original parameters except the AR(1) coeScient 

which is a slight underestimate. This is largely due to the short length of the series 

for each subject i. However, in real practical situations, this is often the case. Long 

series of observations for a single subject are rare. 
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6.7 Applications of Probit Model with Serial Cor-

relation 

The problem of choosing probzf or models for analyzing practical data has been 

discussed in previous chapters. The main conclusion is that in many situations both 

models would fit well. The main difference is the measurement scales of the model 

parameters. However if one wishes to fit a model to a set of repeated measure data 

which contains serial correlation within each individual subject under observation, 

then a probit model will be easier to handle than a logit model. The innovations in 

the probit model are assumed to follow the Gaussian distribution. It is not the case in 

cumulative logit model. If a time series model is driven by non-Gaussian innovations, 

it is difficult to conduct statistical inference on the model parameters. 

As far as applications of the random effects probit model with serial correlation is 

concerned, this type of model has wide applications in many field of studies. Like the 

cumulative logit model for ordinal data, one can use the random effects probit model 

with serial correlation to model ordinal data whenever the investigator suspects that 

the data might exhibit serial correlations. However, the observed ordinal data should 

be taken from approximately equally-spaced time periods. For the BT experimentaJ 

data, it is not sure that the successive observations are obtained over equally-spaced 

time periods given the covariates. Some of their experiments are of limited durations 

and some are of unlimited duration. Therefore it would be inappropriate to use a 

probit model with serial correlation to model their data. The BT data may best be 

modelled by the cumulative logit model with carry-over effects. By carry-over effects, 

we mean that in an experiment, each of s subjects receives a sequence of t treat-

ments in a series of p consecutive time periods. A response is measured at the end of 

each period. In planning such an experiment, and analyzing the results, the extent 

to which each treatment influences the responses in periods following the period of 

application should be considered. The existence of such corri/ — o'uer or 

effects depends on the particular problem under investigation. For example, in some 
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pharmacokinetic studies it may be possible to employ washout periods of sufficient 

length to allow dissipation of any residual treatment period effects before the next 

treatment period begins; see for example Senn (1993). In other areas, an assumption 

of negligible carry-over effects at the design stage may be inappropriate, particularly 

if psychological carry-over is hkely; see Jones and Kenward (1989). Also it is gener-

ally assumed that a carry-over effect hrom the current treatment period into the next 

period may occur, but effects persisting for more than one period are believed to be 

much smaller, and are therefore neglected. Effects persisting for only one period after 

the period of application are usually called first order carry-over effects. 

The approach to modelling carry-over effect that is now introduced involves investi-

gating an interaction between current response and previous response. This may be 

done by altering the formulation of the continuation-ratio model in equation 5.5 of 

Chapter 5, that is. 

log 
1 

(6.26) 

to 

log '^ij.hr 
A'k + Oihr — ^ij§ (6.27) 

_1 '^ij,hr _ 

where r denotes the previous response. Fitting this model will give a matrix of 

parameters with elements ahr and of dimension (i? — 1) x i? where R is the number of 

categories. The cut-point parameters (a,i) are also in the model. There wiU be .R — 1 

redundant parameters among the A Bayesian approach to model a carry-over 

effect model in equation 6.27 using MCMC method is not difficult. However in the 

findings of Wolfe (1996), the suspected carry-over effects in the BT experimental data 

might well be explained by the subject scaling term in the model. It is possible that 

what has been attributed to carry-over of response could in fact be a subject-specific 

effect. Therefore we do not pursue further research on the carry-over effect model 

here. 
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6.8 Conclusion 

Past experiences by other researchers (Pahner and Broemehng (1993), Palmer and 

Petit (1995), Chib (1993)) showed that it is risky to use non-informative prior for 

Bayesian parameter estimation in a model with serial correlation. Also there is diffi-

culty in using Gibbs sampling to estimate the autocorrelation coeScient in a linear 

regression model when moderate-to-high positive autocorrelated errors are present. 

This phenomenon is also found in the probit model with serial correlation when a 

non-informative prior is used. Results showed by Palmer and Petit (1995) and also 

results from the simulation work of this chapter confirmed the fact that this diffi-

culty may be resolved when a 'vague' proper prior distribution is used. The problem 

only occurs where there is an intercept in the model and if there is no intercept, as 

described by Palmer and Petit (1995), the problem does not arise. 

The same problem could also occur when using an AR(p) model in the time 

series representation when using a non-informative prior if the sum YZLi Pi were close 

to 1. The distribution of the intercept would become singular. A so-called unit-root 

non-stationary problem would arise regardless of the dimension of the problem and 

the higher the order of the AR model, the more difficult this problem will be to solve. 

In summary, it can very risky to rely on an improper prior as an automatic choice 

in estimation using Gibbs sampling. These findings have important implications in 

solving practical problems. Trevino-Villarreal (1999) has analyzed a large set of 

ordered categorical data using the TSPACK package. The results are obtained via 

maximum likelihood estimation. The observed data {Yu) are the credit ratings of a 

certain country 2 over a certain period f. The observations for each country have a 

time dependence structure with very high correlations. The associated covariates, Xu, 

are a set of economic indicators such as annual economic growth rate, GNP, Balance 

of Trade, etc. In her thesis, she has not calculated the first order correlation coefficient 

of credit rating for each country over the observed time period. This is mainly because 

TSPACK package does not contain any program to calculate this AR(1) coefficient. 
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One needs either to write a special program within TSPACK package or resort to the 

methods developed in this chapter. The Bayesian way of modelling suggested in this 

chapter will be a very useful tool in modelling such data set. This model also has 

potentially wide applications in many fields of studies, such as in medical research, 

psychological research etc. 
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Chap te r 7 

Concluding remarks 

The purpose of this chapter is to conclude some of the main points from the thesis 

and to point to further work. There has been a large amount of published work in 

recent years on the topic of repeated measures either in the frequentist or Bayesian 

approach. The ordinal responses of the BT experiments as well as the rating data of 

chapter 6 are longitudinal in nature. A discussion of how the approach taken in this 

thesis to modelling these responses relates to other methods of modelling repeated 

ordinal responses is worth mentioning here. 

7.1 Conclus ions 

The main tools used in this thesis are primarily Bayesian methods with the application 

of Gibbs sampling. One main reason of using a Gibbs sampling approach to fitting 

the cumulative logit and probit model is because it can deal with random effects quite 

easily. The methodologies discussed in the thesis are versatile in their own right. Pan 

and Thompson (1998) pointed out that if a numerical integration scheme is used to 

estimate the random effects component; serious difficulty will be encountered if the 

dimensions of the integration are high. This situation will not happen if one uses the 

123 



Gibbs sampling scheme (ARS method) discussed in the thesis. Markov chain Monte 

Carlo (MCMC) methods make possible the use of flexible Bayesian models that would 

otherwise be computationally infeasible. 

In chapter 2, we have discussed the use of ARS method to model longitudinal 

binary data using a Bayesian approach. Simulation work shows that the method 

works well even though it can be handled quite easily by a software developed by 

Biostatistics Unit of Cambridge University called "BUGS". But by writing our own 

code, we have confidence to solve more complicated problems such as the model for 

the BT binary data. The BT binary case requires more computational skills. Having 

successfully solved this problem, we are in a position to solve the problem stated 

in the article by Pan and Thompson (1998). The research will focus on the use of 

MCMC method to solve generalized linear mixed models. These models are widely 

used to model animal breeding experiments where either binary or binomial data with 

within-cluster correlation are concerned. Statistical inferences for generalized hnear 

mixed models, however, are greatly hampered by the need for numerical integrations. 

In chapter 3, a cumulative logit model for repeated ordinal responses is dis-

cussed. The Bayesian way of modelling cumulative logit model is presented. There 

are a large amount of work which have been published about this topics in recent 

years. The Bayesian approach with the use of MCMC method is now becoming more 

popular as a realistic way of statistical modelling. It has gained wide applications in 

many areas recently. It is also due to a great leap forward in computer technologies in 

the past decades. Computing nowadays is cheap. Bayesian statistical modelhng rehes 

heavily on statistical computations. So it is easy to do Bayesiaii statistics because of 

the wide availabihty of computers in academic environments. 

In chapter 3, we presented a simulation study on modelling repeated ordinal 

responses using the ARS method. The results are satisfactory. Albert and Chib 

(1993) use the probit link model. We use the cumulative logit link model. In fact to 

model categorical data using either logit and probit will give similar results except 
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in extreme cases. A defense for the use of cumulative logit link is given in chapter 2. 

We also use the method to analyze the BT experimental data with reasonable results. 

The empirical results show that our method can apply to the so-caUed Rasch models 

which are widely used in the Seld of Psychological studies. The ARS method can 

also be used to estimate the parameters in the Rasch model. It is our conjecture that 

cumulative logit model with random effects using ARS method can solve generalized 

linear mixed models with repeated ordinal responses; a rich research area waiting to 

be exploited. 

It is suspected that the BT experimental data may be modelled with a so-

called carry-over effect. A carry-over effects cumulative logit link model should be 

considered for further modelling. However, the finding by Wolfe (1996) suggested 

that it is possible what is being called a carry-over effect of response can alternatively 

be explained by the model with a subject-speciGc scaling eSect. These considerations 

lead to the analysis in chapter 4 where in addition to a subject-specific location 

effect, a subject-specific scaling effect is investigated. The need for a subject-specific 

approach to longitudinal ordinal response data as suggested in chapter 4 has been 

recognized at least since Torgerson (1958). The model used to perform these subject-

specific analyzes is also a cumulative logit model. The inclusion of a scaling term 

in the cumulative logit model is straightforward. ' Although not all the parameters 

in the new models satisfied the log-concave condition; it is a good effort to use the 

Metropolis scheme to generate the subject-specific scaling term in the model. 

The discussion of scaling terms in this thesis makes it clear that there is more 

than one possible formulation of the cumulative logit model when a scahng term is 

included. Two formulations are considered. One is the form considered by McCullagh 

and the other is the Kijewski's form. Both forms have a place in the analyst's toolkit. 

Kijewski's form of a subject-specific scaling term implies that the dispersion of the 

underlying distributions are the same for all subjects but that the subjects differ in 

the way they interpret the scale. 
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As mentioned in chapter 2, the ARS method has its drawbacks. For large models 

the computational speed is relatively slow and the serial correlation is rather high for 

each output series. For future research, it is also our conjecture that the methodology 

proposed in chapter 4 can solve similar problems if the random components have more 

complicated structure, such as those in generalized linear mixed models. However the 

computational efforts will be considerable. 

In chapter 5, the continuation-ratio model is discussed. Again a Gibbs sampler 

is used to estimate the model parameters. We employed the techniques used in 

estimating model parameters for binary data in chapter 2. Therefore technically 

modelling the continuation-ratio model posed no problem here. The ways that we 

interprete model parameter are more important. This is because continuation-ratio 

model is to model probabihty of category j given that categories ji, j + 1 , . . . , A" have 

ocurred. We presented a simulated example and a real application on BT telephone 

experimental data. 

Throughout chapter 3 to 5, we use ARS method in the Gibbs sampler scheme to 

generate model parameters. The link functions are logistic. In fact we can either use 

a logit or probit model. The hnal analyses are quite similar. The only differences are 

in the scale of estimation. 

In chapter 6, a cumulative probit model with serial correlation is considered. This 

kind of model involves a time series representation for one component in the model. 

Therefore the use of probit hnk in this model will facilitate parameter estimation in 

the time series component. This is because other than probit link (the time series 

is driven by Gaussian innovations), estimation will become very difBcult. Also we 

proved in this chapter that the log-concave condition is satisfied for any design matrix 

in this model. We can use ARS method to estimate the coefficients of the time series 

component. Results in simulation work show that the method work well. Finally 

our work can be summarized by the following list of models starting from model for 

binary data, 
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j = = 1) = Pu 

log ( 1 I = - z- 6̂ , Pr(y:j < /i) = 3/̂ ,̂,̂  
\ 1 - 7 u , a / 

log = 0.̂ 6̂ ' - Pr(y:j < /i) = 7̂ ,̂̂  
\ l - 7u,k/ 

$ X7 t̂,k) = a!k - + <6uei,(_i, Pr(y;f < /i) = 7̂ ^ 

7.2 Suggestions for future work 

The thesis so far only examines models for longitudinal binary and ordinal data in a 

Bayesian perspective. There is a wide scope for future research. Firstly, the present 

methodology can be further developed to cater multivariate logit and probit models. 

Chib and Greenberg (1998) present an article on a practical simulation-based Bayesian 

and non-Bayesian analysis of correlated binary data using the multivariate probit 

model. The multivariate logit model using ARS method would be worth examining 

further. 

As mentioned earlier, our method can be extended to solve GLMM Model II 

problems suggested by Pan and Thompson (1998). GLMM Mode/ 7 is simply GLM 

models with random effects. GLMM Model II is a more general case where several 

mutually independent random effects 61,62, - , incorporated simultaneously into 

the linear predictor rj = X(5 + Zihi-\ h Zc^c, where hi ~ Nqi (0, E;) (/ = 1,..., c). 

In GLMM MocZeZ the variance-covariance matrices S / s are not diagonal. That 

is, correlations may occur amongst the random effects components. This situation 

often found in many scientiAc investigations such as animal breeding experiments in 

biological sciences, where either binary or binomial data within-cluster correlation are 

commonly concerned (see Thompson, 1990). A Gibbs sampler using the ARS method 
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is a good alternative to the quasi-monte carlo EM algorithm suggested by Pan and 

Thompson (1998). Their method often encounters computational difficulties when 

the dimension of integration of the likelihood function is high. 

Lastly, it is worth mentioning that the computer programs used in this thesis are 

entirely written in FORTRAN running on Unix workstations. This is to hnk with the 

ARS source program supplied by Dr. Gilks of Cambridge University. The Medical 

Research Council Biostatistics Unit at Cambridge University developed a software 

called the "BUGS" which has been mentioned earlier, BUGS is a useful software for 

MCMC. However the early versions of the program could handle mostly just "toy" 

problem, and were fairly buggy (comments by Carlin, Kass, el at., 1998). The most 

updated (1998) new window version of BUGS software package called "WinBUGS" 

has improved quite a lot. Therefore in the future we can use "WinBUGS" software 

on a PC platform to carry out our research in modelling ordinal data or to perform 

Bayesian statistical analysis when MCMC methodology is required. 
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MIT Press, Massachusetts. 

Francom, S. F., Chuang, C and Landis, J. R. (1989). A log-linear model for ordinal 

data to characterize differential change among treatments. m, Metficme. 

8, 571-582. 

Gelfand, A. E. and Smith, A. F. M. (1990). Sampling Based Approach to Calculating 

Marginal Densities. J. Am.. Statist, ^ss., 85, 398-409. 

Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and 

the Bayesian Restoration of Images . IEEE Trans. Pattn. Anal. Math. IntelL, 6, 

721-741. 

Geyer, G. (1992). Practical Markov chain Monte Carlo. 5'cz., 7, 437-482. 

Gilks, W. R. (1992). Derivative-free adaptive rejection sampling for Gibbs Sampling. 

In 4, (eds J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. 

F. Smith), pp 642-649. Oxford: Oxford University Press. 

Gilks, W. R.,Be8t, N. G. and Tan, K. K. C. (1995). Adaptive Rejection Metropohs 

Sampling within Gibbs sampling. Appl. Statist. 44, 455-472. 

Gilks, W. R. and Wild P. (1992). Adaptive Rejection Samphng for Gibbs Sampling. 

41, 337-348. 

131 



Gilmour, A. R., Anderson. R. D. and Rae A. L. (1985). The Analysis of Binomial 

Data by a Generalized Linear Mixed Model. 72, 593-599. 

Grizzle, J. E. and Allen, D. M. (1969). Analysis of Growth and Dose Response Curves. 

25, 357-381. 

Haber, M. (1985). Log-hnecir models for correlated marginal totals of a contingency 

table. ond 14 2845-2856. 

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov Chains and 

their applications. Biom,etrics 40, 393-408. 

Hedeker, D. and Gibbons, R. D. (1994). A Random Effects Ordinal Regression Model 

for Mutlilevel Analysis. Biom,etrics 50, 933-944. 

Hougaard, P. (1986a). Survival Models for Heterogenous Populations Derived from 

Stable Distributions. Biom.etrika 73 387-396. 

Jansen, J. (1990). On The Statistical Analysis of Ordinal Data when Extravariation 

is present. Applied Statistics 39, 75-84. 

Jones, B. and Kenwajd, M.G. (1989). orncf o/ Crogs-ofer THak. 

Chapman and Hall, London. 

Kass R. E., Carlin B. P., Gelman, A. and Neal R. M. (1998). Markov Chain Monte 

Carlo in Practice: A Roundtable Discussion. The Am.erican Statistician 52, 2, 

93-100. 

Koch, G. G., Landis, J. R., Freeman, J. L., Freeman, D. H. Jr. and Lehnen, R. 

G. (1977). A general methodology for the analysis of experiments %dth repeated 

measurement of categorical data. Biom,etrics 33, 133-158. 

132 



Kijewski, M.F., Swensson, R.G. and Judy, P.P. (1989). Analysis of Rating Data from 

Multiple -alternative Tasks. Journal of MathemMical Psychology, 33 945-953. 

Laird, N. M. and Ware, J. M. (1982). Random effects models for longitudinal data. 

Biom.etrics 38, 963-974. 

Landis, J. R., Miller, M. E., Davis, C. S. and Koch, G. G. (1988). Some general 

methods for the analysis of categorical data in longitudinal studies. Statistics in 

Medicine 7, 109-137. 

Lewis S., Firth D. and Russell (1992). Carry-over effects in speech-transmission 

experiments. Progress Report, Dept. of Mathematics, University of Southampton. 

Liang, K. Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized 

linear models. Biom.etrika 73 13-22. 

Liang, K. Y., Zeger, S. L. and Qaqish B. (1991). Multivariate Regression Analyses 

for Categorical Data. J. R. Statist. Soc. B, 54, 1, 3-40. 

Lindstrom, M. and Bates, D. (1988). Newton-Raphson and EM algorithms for lin-

ear mixed-effects models for repeated measures data. o/ (Ae v4mer%con, 

Statistical Association, 83, 1014-1022. 

McCullagh, P. (1977). A logistic model for paired comparisons with ordered categor-

ical data. Biom.etrika, 64, 449-453. 

McCullagh, P. (1978). A Class of Parametric Models for the Analysis of Square 

Contingency Tables with Ordered Categories. 65, 413-418. 

McCullagh, P. (1980). Regression Models for Ordinal Data. J. R. Statist. Soc. B, 

42, 109-142. 

133 



McCuUagh, P. and Nelder, J. A. (1989). Mode/a. 2iid Edition. 

Chapman and Hall, London. 

Metropolis, N, Rosenbluth, A. W., Rosenbluth, M. N. Teller, A. H. and Teller, E. 

(1953). Equations of state calculations by fast computing machine J. CAem. 

fAi/s., 21, 1087-1091. 

Nandram, B. and Chen, M. H. (1996). Reparameterizing The Generalized Linear 

Model To Accelerate Gibbs Sampler Convergence. J. Statist. Comput. SimuL, 

54, 129-144. 

Nelder, J. A. and Wedderburn, R. W. M. (1972). Generalized Linear Models. J. of 

the Royal. Statist. Society, Ser. A. 86, 370-384. 

Odell, P. L. and Feiveson, A. H. (1966). A Numerical Procedure to Generate a Sample 

Covariance Matrix. Journal of the American Statistical Association, 61, 198-203. 

Palmer, J. L. and Broemeling, L. D. (1993). Regression models with autocorrelation 

related errors: a Gibbs sampling approach. .Amencon 

f of on, Bai/eszom 5'c%en,ce, 91-95. 

Palmer, J. L. and Petit L. L (1995). Risks of Using Improper Priors with Gibbs 

Sampling and Autocorrelated Errors. Technical Report, Dept. of Biomathematics, 

The University of Texas M. D., Houston. 

Pan, J. X. and Thompson R. (1998). Quasi-Monte Carlo EM Algorithm for MLEs in 

Generalized Linear Mixed Models. In: frocee(imgs m Comptf^o-

%̂onoZ ;SWM(%c5(ed. R.Payne and P. Green), 419-424. Heidberg: Physica-Verlag. 

Potthoff, R. F. and Roy, S. N. (1964). A Generalized Multivariate Analysis of Variance 

Model Useful Especially for Growth Curve Problems. 51, 313-326. 

Rasch, G. (1960). fro6o67&f%c MocfeZa /or ,9ome ancf Teats. 

134 



The Danish Institute of Educational Research. Copenhagen. 

Rao, C. R. (1965). The Theory of Least Squares When the Parameters Are Stochastic 

and ITS Application to the Analysis of Growth Curve. Biom.etrika, 52, 447-458. 

Rao, C. R. (1967). Least Squares Theory Using an Estimated Dispersion Matrix and 

Its Application to Measurement of Signals. Proceedings of the Fifth Berkeley Sym-

on Berkeley: University 

of California Press. 355-372. 

Rubin, D. (1987). Comment on Paper by Tanner and Wong. J. Am,. Statist. Ass., 

82, 543-546. 

Senn, S. (1993). . Crossover Trials in. Clinical Research, Chichester: Wiley. 

Smith, A.P.M. (1991). Bayesian Computational Methods. Phil. Trans. R. Soc. 

loncf. A. 337, 369-386. 

Strajn, D. O., Wei, L. J. and Ware, J. H. (1988). Analysis of repeated ordered categor-

ical outcomes with possibly missing observations and time dependent covariates. 

J. Am,. Statist. ^S5. 83, 3631-637. 

Ten Have, T. and Uttal, D. (1994). Subject -speciGc and population-average continuation-

ratio logit models for multiple discrete time survival proEles. , 

43, 371-384. 

Thompson, R. (1990). /zmear mode/s ancf (o onzmoZ 

.Afffomces m /or /mprofemen.^ o/ Kt;eg(ocA; , (ed. D. 

Gianola and K. Hammond) Berlin:Springer-Verlag, 312-327 
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