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This thesis is concerned with the damage assessment of composite structures under 

static loading case with geometric non-linearity. Both the hnite element method and 

the boundary element method are studied for this purpose. A Hnite element based com-

putational damage model is developed for predicting the nonlinear response, first-ply 

failure and ultimate collapse strength of imi-directional laminated composite plates. 

The damage model is implemened into the finite element program ABAQUS. It con-

tains theory of large deformation and large strain. The model is then extended to 

laminated composite structures with woven fabric pHes. A simplified model is devel-

oped for prediction of stiSiess properties of woven fabric composite plates. In both 

the cases numerical results are compared against test values. It is demonstrated that 

excellent correlation with experimental results can be achieved. In the context of the 

boundary element method (BEM) the present research focuses on stress analysis of 

2-D orthotropic structures. A novel technique is proposed for acciurately computing 

the singular integrals in the 2-D boimdary element method. 
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C h a p t e r 1 

In t roduc t ion 

1.1 Motivation 

Composite materials are increasingly used in the construction of mechanical, aerospace, 

marine and automotive structmres, because of their outstanding strength, stiShess and 

light-weight properties. Another advantage of composites is that stiffness and strength 

can be tailored to speciAc design loads. In the last few years there has been a dramatic 

increase in the usage of composite materials in non-aerospace products. Another class 

of innovative composite materials are advanced textile composites (3-D woven, braided, 

knitted, stitched) having complex reinforcement geometries. Textile Composites are 

extensively used for structural applications in aircraft construction^'^ because of their 

ease of handling, low fabrication costs and high impact resistance. Reference^ reviews 

the current research works on woven fabric composites at NASA as part of the Ad-

vanced Composites Technology(ACT) program. A principal opportimity to implement 

the out-of-plane reinforcements with these composite materials provides a huge variety 

of possible spatial orientations of substantially curved yams. This can be realized in 

the ciurent manufacturing using modem textile machinery. Textile reinforced com-

posites have been considered promising materials for structural appHcations since the 

1960s. The initial drive in the 1960s and 70s was for the perceived improvement in 

damage tolerance compared to laminated composites. The fact that a three dimen-

sionaUy woven or braided reinforcement has no layers implies that delamination is not 

a failure mode for these materials, whereas delamination is a critical design criteria for 



laminated composites. 

Under service conditions, composite stmctm-es develop matrix cracks, Eber-matrix 

debonds, Gber fractures, and delaminations. These effects, which cause permanent 

loss of integrity within the structure, are termed damage, and they result in the loss 

of stiffness and strength of the material. Thus the load carrying capacity and the 

service hfe of the structure is reduced. These local damage events which are typically 

constrained from forming a major damage and are therefore nucleated under increasing 

load at many sites distributed through the volume of the composite material. For 

example the micro cracks observed within a structiure constitute damage. As these 

micro cracks grow in size and number, they coalesce and develop into debonds, resulting 

in a reduction of the load-carrying capacity of the structure. In order to arrive at a 

rehable load-deformation response of the structure, it's load carrying capacity and 

service life, it is necessary to include the damage parameters and their subsequent 

effects in the numerical model. 

1.2 Background 

Damage assessment of composite structures is an aspect of design where there are few 

design synthesis techniques available and one that is relevant to almost all engineer-

ing composite structures. This is an area where many traditional techniques have been 

tried with relatively httle success. Traditionally, in the analysis of laminated composite 

structures, the uni-directionally reinforced lamina is considered the fundamental mate-

rial block. Hence both the tension and compression test methods for them have been 

standardized by ASTM. The other experimental methods for composite materials are : 

biaxial testing, short beam bending, rail shear test, oS-axis tension test, losipescu test 

etc.. However experimental methods for composite materials are not so rehable as are 

for isotropic materials. For example phenomenon such aa premature failure initiated 

by local fibre-matrix debonding and fibre buckhng, is typical for compressive loading, 

though, is not observed in the caae of tensile tests. 

The other numerical methods for solving continuum mechanics problems are : the 

finite di&rence (FD), the Snite element (FE) and the boundary element (BE) ap-



proaches. The finite difference approach is the simplest of the three approaches and 

is relatively easy to program. However, it's main drawback in practical engineering 

problems is that it is not suitable for problems with awkward irregular geometries. 

Nowadays, finite difference methods are popular for heat transfer and fluid flow prob-

lems, rather than stress analysis problems. 

The finite element method grew out of the need to solve accurately structural 

analysis problems in the aerospace industry during the late 1950's. Although the 

mathematical ideas had been outlined in the appendix of a paper by Courant^, it 

was not until advanced electronic computers were widely available that the method 

could be effectively applied for engineering computations. Since this period, finite 

element techniques have evolved rapidly and are now established as a basic method for 

solving boundary and evolution problems in science cind engineering. Applications of 

finite element method for composite material analysis is quite large and the literatures 

concerning them can be found in the subsequent review chapters. 

One of the first finite-element-based failure analysis was performed by Lee"̂ . Lee 

performed a three-dimensional finite element analysis and used his own direct-mode 

determining failure criterion to predict the failures. He determined the stresses at the 

center of each element and the stresses at the center of the interface of each element to 

identify failure. According to the modes of failure, the sti&ess matrix of the element 

with failures was modified. Equilibrium was then re-established to give a new stress 

distribution and subsequent failure zones. The process was repeated until the ultimate 

strength of the laminate was obtained. The literature concerning further applications 

of the finite element analysis for failure prediction of composite plates can be foimd 

in chapter 2. Recently Coats°'® developed a nonlinear progressive failure analysis for 

laminated composites that used a constitutive model in which damage accumulation 

was predicted by damage evolution laws. The methodology was used to predict the 

initiation and growth of matrix cracks and fiber fracture. 

Boundary element method constitutes a recent development in computational me-

chanics for the solution of boundary value problems in engineering. Unlike the 'domain 



type' methods, e.g., the Enite difference or the 6nite element methods, the order of 

dimensionality of the problem reduces by unity in boundary element formulation, thus 

simplifying the analysis and the computer code to a large extend by solving a small 

system of equations. 

One more important reason for choosing the finite element and the boundary ele-

ment methods in the composite failure analysis is their ability to solve computationally 

intensive problems. With these two methods, most of the scientific and engineering 

problems invariably reduce to solving systems of simultcineous equations. Currently, 

the solution of linear systems of equations on advanced parallel-vector computers is a 

key area of research with applications in many disciplines'""®. 

1.3 Objectives and Scope 

The overall objective of this research is to develop computational models for failure 

analysis of composite structures. The composites of primary interest are those best 

suited to applications in aircraft structures. A progressive failure methodology is de-

veloped using the 6nite element program ABAQUS. Two important class of structures 

are consider for application purposes. They are (i)uni-directional composite struc-

tures, and (ii) woven-fabric composite structures. The methodology is then validated 

by comparing numerical predictions using nonlinear progressive failure analyzes with 

experimental data. 

Next the boundciry element method is applied stress analysis of 2-D orthotropic 

structures. Efficient computational procedures are developed for computation of the 

singular integrals in the boundary element method. Numerical results are compared 

against analytical results. 

Specific goals of this research include: 

1. Establish state-of-the-art perspective on computational models for failure analy-

sis of composite structures. 



2. Develop and implement a finite element based failure analysis methodology which 

accommodates various formulations for detecting failure and degrading material 

properties. 

3. Development of computational strategies for accurate stress analysis of 2-D or-

thotropic structures using the boundary element method. 

4. Validation of the computational models agciinst test data or analytical solutions. 

1.4 Layout of the Thesis 

This thesis consists of eight chapters addressing the numerical modeling of composite 

structures. Each chapter starts with an extended introduction where the motivations 

and objectives are formulated. The ultimate objective of the thesis is to present compu-

tational models which provide an accurate correlation with experimental/exact results 

available in literatures. 

After this introductory chapter, in chapter 2, an extensive review is made of the 

damage modeling issues for uni-directional laminated composite structures. A review is 

made of the past literatures on laminated plate theories. Summaries of some most rel-

evant literatures are elaborately outlined. Chapter 3 reviews the literatures concerning 

the modeling issues for woven fabric composites. 

The next two chapters are aimed at failure modeling of various composite structures. 

A comprehensive failure modeling of uni-directional composite structures is presented 

in chapter 4. An attempt has been made to systematically include all major composite 

failure criteria, to discuss their assumptions and procedures, present final equations and 

provide their mutual comparisons in the context of the damage prediction capability 

for the composite structures. This allowed to distinguish the best (most accurate and 

applicable) failure criteria which are recommended for practical applications. 

Chapter 5 describes the failure analysis of woven fabric composite plates. This field 

of research is in it's infancy, as can be seen from the review of the existing pubhcations. 

Hence a simplified model is developed to be suitable for analysis of the type of weave 

architecture, for which experimental results are available. Failure analysis is carried 



out next. Numerical results are compared against experimental values. 

Applications of the boundary element method for stress analysis of 2-D orthotropic 

structures is addressed in chapter 6. First, a detailed discussion and literature review 

on the fundamentals of the boundary element method and the associated singular 

integrals, in the context of 2-D orthotropic elasticity is presented. The approach is 

demonstrated on a number of specific plane stress, plane strain, cylindrical bending 

problems, and shows a unique accuracy in comparison to the benchmark solutions. 

The material of this chapter is supplemented by a short appendix on computation of 

singular integrals. Finally discussions and future research are presented in chapter 7 

and conclusions are presented in the last chapter. 
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C h a p t e r 2 

L i t e ra tu re Review on Progressive 

Failure Analysis of Composi te 

S t ruc tu res 

2.1 Background 

Damage in composite materials has been and continues to be the subject of munerous 

investigations. One important observation regarding the daznage propagation in com-

posites is that the growth of an individual damage pattern such as a crack does not, 

by itself, cause conditions of criticality, but the total eSect of cracks in a representa-

tive volume, brought about by their individual growth and mutual interaction, lead 

to degradation of the average properties, which eventually causes loss of integrity and 

failmre of the composite. 

A variety of computational techniques have been developed and apphed to study the 

initiation and evolution of the damage mechanisms in these materials. The objective of 

this chapter is to review these models in the context of damage evolution laws, failure 

mechanisms and material property degradation schemes. However, one more important 

factor in the computational modehng of composite structures is the shear deformation 

theory used in the composite failure analysis. It has long been recognized that the 

classical two-dimensional laminated plate theory, based on the KirchhoS hypotheses of 

straight in-extensional normals for the entire plate package yields suGiciently accurate 



results only for thin composite plates. 

This chapter is organized as follows. Next section reviews the various approaches 

for developing two-dimensional shear deformation theories and makes an assessment 

of the accuracy of the response predictions of these theories. Section 3 reviews the 

computational damage models for laminated composite structures. Each review dis-

cusses the type of analysis (linear or nonlinear) used in performing the progressive 

failure analyzes, failure criterion chosen, and prediction of progressive failure analyzes 

compared to experimental results. Based on these reviews, conclusions are drawn in 

the last section are drawn in the last section. 

2.2 Assessment of Shear Deformation Theories for 

Laminated composite Plates 

Plate and shell structures made of laminated composite materials are often modeled as 

an equivalent single-layer using classical laminate theory, in which the thickness stress 

components are ignored. The classical laminate theory is a direct extension of classical 

plate theory based on the kirchoff hypothesis for homogeneous plates. This theory is 

adequate when the thickness (to side or radius ratio) is small. However, laminated 

plates and shells made of such advanced Slamentary composite materials as graphite-

epoxy are susceptible to thickness effects because their effective transverse moduli 

are significantly smaller than the effective elastic modulus along the fiber direction. 

Refined theories provide improved global response estimates for deflections, vibration 

frequencies, and buckling loads of moderately thick composites when compared to the 

classical laminate theory. 

The Classical laminated plate theory is based on Kirchoff's hypothesis and, in 

general, provides good estimates of gross behavior of the laminate. In addition, it is 

well known that the effect of transverse and normal strains is not negligible, as in the 

classical plate theory. Shear deformation theories aim at incorporating these effects. 

Reissener^ and Mindlin^ laid the foundations for such developments. In Reissener's 

approach assumptions are introduced concerning the variation of stresses, whereas in 

Mindlin's approach displacements are chosen in an appropriate form. Basically both 

9 



the approaches offer the possibility of further refinement by considering a more 

general form of the field variables. 

The first theory for laminated anisotropic plates is that of Yang, Norris, and 

Stavsky^. Their work called the Yang-Norris-Stavsky (YNS) theory represents a gen-

eralization of Reissner-Mindlin plate theory for homogeneous isotropic plates to arbi-

trarily laminated anisotropic plates and includes shear deformation and rotary inertia 

effects. 

Lo et utilized a straight forward power series expansion of the displacement 

to improve the laminate characteristics. Although the theory gives a much better 

approximation to the behaviour of laminated plates as compared to that of CLPT, it 

suffers from the same drawbacks as that of FSDT, namely: (i)it does not satisfy the 

conditions of zero transverse shear stresses on the top and bottom surfaces of the plate, 

(ii)it requires a shear correction factor to the transverse shear stiSnesses. Moreover it 

contains more dependent unknowns as compared to other improved shear deformation 

theories with equal accuracy. 

Reddy^, used expressions for in-plane displacements satisfying the free-surface zero 

shear conditions. The theory accounts not only for transverse strains, but also for a 

parabolic variation of the transverse shear strains through the thickness, and conse-

quently there is no need to use shear correction coeScients in computing the shear 

stresses. Moreover the theory contains the same number of dependent variables as in 

first order shear deformation theory, but results in more more accurate prediction of 

deflections and stresses. However this theory does not satisfy the continuity condition 

of the transverse shear stresses at the interfaces. 

Toledano and Mursikami^ used Legendre polynomials for the approximation of in 

plane displacement distribution across the plate thickness. The theory gave accurate 

results for in plane responses. 

Levinson^ and Murthy® presented third order theories that assume transverse in-

extensibility. However both authors used the equilibrium equations of the first order 

theory in their analysis. In other words, the higher order terms of the displacement 

are accounted for in the calculation of the strains but not in the governing di%rential 

equations or in the boundajy conditions. 

10 



A recently proposed theory by Knight and Qi^ assumes physically that only in some 

average sense does a straight line originally normal to the mid plane remain straight and 

rotate relative to the normal of the mid-plane after deformation. Hence the in-plane 

displacement is still approximated, in an average sense, as hnear and the transverse 

defection as constant through the plate thickness. The associated nominal-uniform 

transverse shear strain directly derived from these displacement field assumptions is 

identified as the weighted average transverse shear strain through the plate thickness 

with the corresponding transverse shear stress as the weighting function, while the 

actual transverse shear strain is permitted to vary through the thickness and satisfies 

the constitutive law with it's stress counter part. Likewise, the average rotation of 

the line is identified as it's weighted-average value, instead of the one evaluated from 

a linear regression of the in-plane displacement with the least-square method. This 

restated FSDT possesses the advantages of both equivalent single-layer theories and 

layer-wise theories. It accounts for a variable distribution of transverse shear strain to 

which higher-order theories are developed. It satisfies proper continuity requirement 

of transverse shear stress at layer interfaces, which layer-wise theories are proposed 

to achieve. The constitutive law and traction boundary conditions are automatically 

satisfied. 

The theory proposed by Whitney and Pagano^° is cin extension of the theory pro-

posed by Yang ajid Norris^ to laminated composite plates. The displacement assiunp-

tion is similar to that of first order shear deformation theory. However the stresses 

calculated were identical to that of the CLPT, although the prime purpose of the 

investigation was to predict gross laminate response characteristics. 

Pagano^^ has very successfully adopted Reissner's approach for estimating inter-

laminar stresses by restating the variational principle to laminated body, composed of 

several layers. In this theory both stresses and displacements are subject to variation. 

Therefore (i)traction and displacement continuity conditions at interfaces between ad-

jacent layers are satisfied, (ii)it considers a region within the laminate that is arbitrarily 

located except that it is bounded by any two of the parallel interfaces. Numerical re-

sults show that for laminates with free edge class of boundary value problems, in which 

very steep stress gradient occurs, this theory gives more accurate results. However the 

theory results in a mathematical model consisting of 23N partial diSerential equations 
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in the mid-plane coordinates of the laminate and 7N edge boundary conditions; N is the 

niunber of layers in the laminate. The storage and computational costs, especially for 

geometrically nonlinear problems or transient analysis using the Enite element analysis 

precludes the use of such a theory. Because it gives as acciurate a global response as the 

three-dimensional theory, it is considered efficient for problems not involving regions 

of acute discontinuities. 

Three dimensional elasticity models have been apphed to the stress, free vibrations, 

and buckling problems of laminated orthotropic rectangular plates. Both the cyhndrical 

bending case and the simply-supported boundary conditions have been considered^^'^^. 

In quasi-three dimensional models, simplifying assumptions are made regarding the 

stress or strain state in the laminate, but no a pfjori assiunptions are made about the 

distribution of the different response quantities in the thickness direction.. However 

the use of three- dimensional and quasi three-dimensional models for predicting the 

response characteristics of laminated anisotropic plates with complicated geometry is 

computationally expensive and, therefore, is not feasible for practical plates. On the 

other hand two-dimensional models are adequate for predicting the gross response char-

acterics of medium-thick laminated plates, but they are not adequate for the accurate 

prediction of the transverse stresses and deformations. 

The conventional variational formulation of the classical lamination theory as well 

as the third-order theory^ involves higher order (i.e. second-order) derivatives of the 

transverse displacement. Therefore, in the finite-element modehng of such theories 

the continuity of not only the transverse displacement should be imposed but also it's 

derivatives along the element boundary. In other words, a conforming plate bending 

element based on a displacement formulation of these theories requires the continuity 

of transverse displacements and their derivatives across the inter-element boundaries. 

The construction of such an element is algebraically compHcated, requiring for example, 

a quintic polynomial with 21 degrees of freedom for a six-node triangular element. 

To overcome the stringent continuity requirements of the conventional variational 

formulation, several alternative formulations and associated elements have been devel-

oped. These include hybrid hnite elements, mixed finite elements, and shear Sexible 

elements based on the FSDT. Hybrid elements are based on variational statements 
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that use independent variation of displacements inside the domain 

Much of the research in the aneilysis of composite plates is limited to linear problems. 

This is perhaps due to the complexity of the nonlinear partial differential equation as-

sociated with the large-deSection theory of composite plates. Approximate solutions 

to the large-deHection theory (in the Von Karman sense) of laminated composite plates 

have been attempted. Chandra^^ and Chia^^ employed the Galerkin method to reduce 

the governing nonlinear partial differential equations to an ordinaiy diSerential equa-

tion in time for the mode shape; the perturbation technique was used to solve the 

resulting equation. Zaghloul and Kennedy^^ used a hnite-di&rence successive itera-

tion technique in their analysis. In all of these studies the transverse shear e&cts were 

neglected. 

Many of the cited theories can be considered as special cases of a general theory 

based on the following through-the thickness displacement assumptions^^: 

ifa (a:/), 2:3) = 3:3), (2.1) 

w(a;;),a;3)=w°(z^)-|-M^(a;^,Z3), (2.2) 

Where and are the displacement components of the reference plane of the 

plate (2:3 = 0), [/a and W are the fimctions of 3:3 which vanish at 0:3 = 0, a, /) = 1,2. 

The diS'erent theories can be identified by the assumed functional dependence of [7^ 

and W on za (table 5.1). Also various models that are usually considered for numerical 

analysis are presented in table 5.2. 

2.3 Review of Progressive Failure Analysis of Com-

posite Structures 

Reddy and Pandey^^ developed a hnite element procedure based on hrst-order, shear-

deformation theory for Hrst-ply analysis of laminated composite plates subjected to 
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Table 2.1: Displacement assumptions in diSerent laminated plate theory 

Theory Type Ua w Comments 

Classical 

theory 
0 

Continuity 

for w 

First-

order 

shear 

deformation 

theory 

5 

Parameters 

Pagano^^ 

0 
Formulation 

Higher-

order 

theory 

11-

Parameters 

Lo^ 
(2:3)^ ̂ "2 + (3:3)^ 

2=3̂ 3 + (3:3)^ V'S 

Transverse stresses 

do not satisfy 

continuity at layer 

interfaces 

Higher 

order 

theory 

5-

Parameters 

Reddy^ 

- 2 3 8 0 ^ ° + 
0 

Discrete 

layer 

theory 

transverse 

strain 

included 

= l /orA ^ % 

Discrete 

layer 

theory 

transverse 

strain 

neglected 

0 

For convenience, 

the bot tom surface 

selected to be 

the reference 

surface 

(only in the 

discrete layer 

theories) 
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Table 2.2: Modeling Approaches 

Model 

number 
Type 

Through the 

thickness 

displacement 

assumptions 

Constraint 

conditions 

on stress 

Total number 

of generalized 

displacement 

parameters 

1 

First-order 

shear 

deformation 

theory 

Linear 

Constant w 
(733 = 0 5 

2 

Higher-order 

shear 

deformation 

theory 

Cubic 

quadratic w 

Lo^ 

None 11 

3 

Simplihed 

Higher-order 

theoory 

Cubic 

constant w 

Reddy^ 

(7'33=0 through 

and cr3a=0 at 

top and bottom 

surfaces 

5 

4 

Discrete 

layer 

theory 

Piecewise linear 

constant w 

through out 

thickness 

<733=0 2*NL-+-3 

5 

SimpHfied 

discrete 

layer 

theory 

Piecewise linear 

t/a, constant w 

through out 

thickness 

0-33=0 

continuity of 

cTSa at layer 

interfaces 

5 

6 

Predictor 

Corrector 

approach 

Predictor Phase: 

Linear 

Constant w 

Corrector Phase: 

Matching 

displacements 

Predictor Phase 

<733 = 0 
5 
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in-plane and/or transverse loads. The well established failure criteria including the 

maximum stress, maximum strain, Hill's, Tsai-Wu and Hoffmann's are reviewed in the 

context of first-ply failure. 

Rosen^^ presented a theoretical and experimental study of the failure of a composite, 

consisting of a matrix stiffened by uni-axially oriented fibers, when subjected to a uni-

axial tensile load parallel to the fiber direction. The fibers were treated as having 

a statistical distribution of Haws or imperfections that result in fiber failure under 

applied stress. It was demonstrated that the statistical accumulation of the flaws or 

imperfections within the composite was the cause of composite failure. 

Reddy and Reddy^° developed a three-dimensioncil (3-D) progressive failure algo-

rithm for composite laminates under axial tension. The finite element analysis used 

Reddy's layerwise laminated plate theory (LWLT) and predicted both in-plane and 

interlaminar stresses at the reduced integration Gauss points. A parajnetric study waa 

performed to investigate the out-of-plane material properties, 3-D stiffness reduction 

methods, and boundary conditions on the failure loads and strains of a composite 

laminate under axial tension. 

Singh et al?^ carried out a progressive failure analysis of symmetric thin square 

laminates under in-plane shear. The finite element method along with first order shear 

deformation theory was used for this purpose. Geometric non-linearity was included 

in the analysis in the Von K arm an sense. The paper discusses failure loads, associated 

maximum transverse displacements and locations and modes of failure associated with 

the laminates. 

Chang Eind Chang^^ developed a progressive failure model for laminated composites 

containing stress concentrations. A non-linear finite element method was used for this 

purpose. For fiber failure, both the transverse modulus E22 and and Poisson's ratio 

;/i2 were set to zero, and the longitudinal modulus, E'n and shear modulus, G12 were 

reduced according to the exponential Weibull distribution. For matrix cracking in a 

lamina, the transverse modulus and the Poisson's ratio were reduced to zero, whereas 

the longitudinal and shear moduli remained unchanged. 

Chang and Lessard^^ conducted an analytical investigation to study the progressive 

damage in laminated composites containing an open hole and subjected to compressive 

16 



loading. A finite element analysis based on 6nite deformation theory, and with material 

and geometric non-linearities was used for this purpose. Non-linear shear stress-strain 

behavior was included in the analysis. The e&ct of the lay-up sequence and loading 

direction on the strength of the lajninate was studied. 

Sleight^^ developed a progressive failure model for predicting failure of laminated 

composite structures under geometrically non-hnear deformations. The progressive 

failure analysis used shell elements based on classical lamination theory for cal-

culating the in-plane stresses. Stiffness reductions were carried out at the ply level. 

Numerical results were presented for in-plajie loading conditions. These results were 

then compared against experimental values. 

Sahid and Chang^^ developed a progressive failure model for predicting the accu-

mulated damage and the eEect of such damage on the in-plane response of laminated 

composites subjected to tensile and shear loads. The main focus of the paper was on 

internal damage in composites induced by matrix cracking under in-plane tensile and 

shear loads. The Snite element method was used for this purpose. Predictions from 

the analysis were compared against experimental results. 

The failure analysis of composite laminates subjected to out-of-plane load causing 

bending has not received as much as attention as in plane loading. It is complicated due 

to both material and geometric non-linearities that come into play when the loads are 

increased beyond the hrst ply failure. Material non-linearity results from the damage 

mentioned earher, and the geometric non-linearity is due to the large displacements 

experienced by the structure during loading. 

Reddy and Reddy^^ used generalized layerwise plate theory and a progressive failure 

model to determine first ply and ultimate failure loads of a three-point bend specimen. 

Stiffness reduction was carried out at the reduced integration Gauss points of the finite 

element mesh depending on the mode of failure. Geometric non-linearity was taken 

into account in the Von K arm an sense. 

Kam and Sher^^ studied progressive failure of centrally loaded laminated composite 

plates. The Ritz method, with geometric non-linearity, in the Von Karman sense, waa 

used to construct the load displacement behavior. Echaabi and others^^ presented a 

theoretical and experimental study of damage progression and failure modes of com-

17 



posite laminates under three point bending. Linear CLPT was used for the stress 

analysis. 

Kim et al?^ carried out a progressive failure analysis for laminated composite beams 

using a beam finite element. Maximum stress and Tsai-Wu failure criteria are used to 

assess failure at the Gauss points. Stiffness reduction was carried out with material 

property degradation factors. Distinct degradation factors were used for fiber failure 

and matrix failure. Convergence of the finite element mesh and the load increment size 

on the failure load was studied. The predictions correlated well with the experimental 

data. 

Tolson and Zabaras^^ studied the first and last ply failure loads of a laminated 

composite plate subjected to both in-plane and sinusoidal trEinsverse loads. A higher-

order shear deformation theory was used for this purpose. Stiffness reductions were 

carried out at the Gauss integration points. However no comparison was made to test 

results for the transverse load case. 

Gummadi and Palazotto^^ used a geometrically non-linear finite-element formu-

lation based on the total Lagrangian approach, for predicting the onset of various 

failure modes in laminated composite beams and arches. Failure modes such as matrix 

cracking, fiber breakage, and delamination were included in the analysis. Large strain 

effects on load displacement characteristics were studied. Load-carrying capabilities of 

the composite beam and arch structures, were discussed. 

2.4 Conclusion 

On the basis of the above reviews, the following conclusions seem to be justified. 

• The classical laminated plate theory yields sufficiently accurate results only for 

thin composite plates. The first order shear deformation theory is more accurate 

than the classical laminated plate theory. Higher order theories give still more 

accurate results, with however, an increase in the computational cost. For the 

present study, the composite plates considered were very thin, with aspect ratios 

of order of more than 200. Therefore the first order theory was considered to 

be the most suitable shear deformation theory to use in the composite analysis 
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procedure. 

• Most of the computational damage models have been developed for in-plane and 

simple bending conditions. In the latter case, the state of stress was not strongly 

bi-axial in nature. In these cases the numerical implementation becomes simpler. 

However, it does not take into account the effect of the interaction between the 

multi-axial stresses in a composite layer. 

• In some literatures comparison with experimental results has not been reported. 

For practical applications of a computational model, it is essential that it is 

validated against standard test results. Correlation of numerical results (such as 

deformations, strains and damage patterns) with the experimental values gives 

an added robustness to the numerical model. 

• In most of the literatures geometric non-linearity and large deformation effects 

have been ignored. Inclusion of these effects significantly complicates the im-

plementation aspects. However, as can be seen later in this thesis the first-ply 

failure load and the ultimate collapse loads of composite plates are found to be 

strongly sensitive to the effect of geometric non-linearity. 

The overall objective of the current research is to develop progressive failure anal-

ysis methodology for laminated composite structures under bending loading condi-

tions. The model contains large deformation and large strain theories. Geometric 

non-linearity is included to simulate the experimental behavior. Most of the well es-

tablished failure criteria are included in the damage model. A simple post-failure 

material property degradation scheme is proposed for carrying out the progressive 

failure analysis. The numerical results are compared against test results. Numerical 

damage predictions are compared and assessed against experimental observations. All 

the failure criteria are assessed with respect to their prediction capability for damage 

initiation and failure. 
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C h a p t e r 3 

Review of Model ing Issues for 

Woven Fabric Compos i te S t ruc tu res 

3.1 Background 

Textile reinforced composites are fiber reinforced composites whose unit structures 

are characterized by more than one fiber orientation. Figure 3.1 shows a schematic 

illustration of the hierarchical nature of textile materials. As illustrated, the fiber is 

the basic unit from which textile materials are formed. Fibers can be converted into 

laminated tapes, yarns, or direct formed fabrics. Laminated tapes can also be cut into 

thin strips called slit tape and used as a type of yarn. Yarns can then be converted into 

a variety of fabric structures. These fabrics can be classified according to the processes 

used in creating them. Some relevant ones are given below. 

3.1.1 Woven Fabrics 

A woven structure is characterized by the orthogonal interlacing of two sets of yarns, 

called warp and weft warns. The warp yarns are aligned with the direction of the 

fabric leaving the loom, which is also called the warp direction. The weft yarns run 

perpendicular to the warp direction, and are sometimes called fill yarns. Weaves may 

be classified by the pattern of interlacing. The simplest pattern is the plain weave 

shown in figure 3.2. Another class of woven fabrics are the satin weaves and are shown 
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in Egure 3.3. The satin weave pattern is de6ned by the number of yarn widths between 

exchanges. For example, the Sve harness satin weave shown in figure 3.3 has a 4-

over, 1-under pattern. In addition, the exchanges are arranged so as not to connect 

continuous diagonals. 

3.1.2 Braided Fabrics 

Braided fabrics are formed by the mutual intertwining, or twisting of yams about each 

other. Figure 3.4 shows the interlacing patterns for braided fabrics. In a 2D braid, 

the designation "n x n" refers to the number of bias yams between crossover points. 

Longitudinal or axial yarns can be introduced into the braiding process to create a 

triaxial braid. The axial yarns are trapped within the crossovers of the bias yams. 

Figures 3.4(b), (c), and (d) show three possible pattems for triaxial braids. These 

Rgiures show the braid pattems with gaps between the yams for clajity; the actual 

braid would normally have complete coverage. 

3.1.3 Orthogonal Non-woven Composi tes 

Orthogonal 3D materials are fabricated by hxing a series of yams in one direction, and 

then inserting planar yarns in the two orthogonal directions around the Axed yams. 

Figure 3.5 shows a typical arrangement of 6ber bundles that might be obtained in this 

process. 

Among the above mentioned fabric stmctures, woven fabrics are by far the most 

used textile system for composite apphcations. Woven composites provide an excel-

lent opportunity to radically improve the rather poor impact resistance and damage 

tolerance of traditional laminates. They are able to survive a greater number of ma-

trix and debonding cracks without ultimate failure. Due to random crack orientation, 

there are no obvious weak directions which would allow extensive crack propagation 

and result ultimately in failure of the structural part. Also, the local breakage planes 

of curved yams, which are perpendicular to the corresponding local longitudinal yam 

axes, appear to be spatially dis-oriented. All of this leads to highly dispersed fracture 

phenomenon in woven composites and, accordingly, allows one to increase tremendously 
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both impact energy absorption and damage tolerance. 

However, formulating a proper mathematical model for mechanical characterization 

of these materials is a complex task. The intricate geometry of the weave combined 

with geometrical and material irregularities poses a formidable problem in the model-

ing and analysis of such composites. The existence of the matrix pockets adds to the 

complexity of the geometry. In the past, various approaches have been proposed in 

hteratiures for developing homogenized (simplified) models and computing the equiva-

lent homogenized material properties for textile composites. This chapter reviews the 

prominent ones which are relevant to this thesis. The next section explains the concept 

of a unit cell (or RVE) in the context of woven fabric composite, which is extensively 

used in the subsequent review sections. 

3.2 Unit Cells (or RVEs) 

Woven composite is a heterogeneous material. However, very often structural analysis 

on woven and other textile composite materials is being carried out treating it as a 

homogeneous material. In this case it is necessary to determine some set of elastic 

properties which characterize the homogeneous material, mechanically equivalent to 

the actual material. If there is a representative volume element (RVE) whose mechan-

ical response represents the response of the structural component, it wiU be sufBcient 

to concentrate on the mechanical characterization of such RVEs. RVE is also synony-

mously used as unit cell in textile nomenclature. The unit cell (or the RVE) is deSned 

by the requirement that the entire textile can be constructed from spatially translated 

copies of it, without the use of rotations or reflections. Typical unit cells for a plain 

weave and satin weave composites are shown in figures 3.2 and 3.3 respectively. Even 

though, the weave pattern in figure 3.2 looks two dimensional, geometrically they are 

three dimensional in nature. Figure 3.6 illustrates the actual 3-D geometry of a unit 

cell. This is the actual shape of the unit cell marked as a dotted block in figure 3.2. 

The geometry of a woven fabric composite plate can be obtained by simply translating 

this unit cell in orthogonal directions. Figure 3.7 shows the schematics of an RVE with 

the matrix pockets removed. This is necessary when one would attempt to analyze 

the RVE with the finite element method, in which case, both the yam system and the 
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resin are modeled separately. 

3.3 The Finite Element Approach 

Woo ajid Whicomb^ used a global/local finite element approach for analysis of textile 

composite structures. At the global level, an initial global solution was obtained using 

a coarse global mesh. At the local level, a small portion of the textile composite was 

modeled with a refined local mesh. 

Tan et presented a imit cell model and a laminate model for predicting engineer-

ing elastic constants of 3D orthogonal woven composites. The effect of the geometrical 

parameters on the elastic constants was studied. The results were compared against 

experimental values. 

Kollegal and Sridharan^ analyzed the compressive behavior of a unit cell of a plain 

weave fabric using three-dimensional Enite elements. A detailed examination of the 

internal stresses and strains was carried out. Geometric nonlinearity eEects, arising 

due to the the undulation of the yams, and the material nonlinearity of the resin were 

included in the analysis. 

Marrey and Sankar^ developed a Snite element based micro-mechanical method for 

computing the plate stiGhess coeScients of a textile composite modeled as a homoge-

neous plate. The unit cell was modeled using eight-node brick elements. The eSect of 

inhomogeneity within a finite element was accounted by considering appropriate elas-

tic constants in the Gauss integration of the stiGness matrix. Niunerical studies were 

conducted on both plain weave and satin weave composites. Numerical results, such as 

the plate sti&ess coefScients are compared with those derived from the homogenized 

elastic constants in conjunction with the classical plate theory. 

Whicomb and Srirengan^ conducted a three-dimensional finite element analysis to 

study the effect of quadrature order, mesh refinement on the failure of plain weave 

composites. The loading consisted of a nominal uniaxial stress along one of the fiber 

tow directions. Sensitivity of the predictions to the tow waviness was also studied. 

Other contributions on three-dimensional Gnite element models of textile composites 

caji be found in references^"^^. 
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3.4 Simplified Models for Structural Analysis of Tex-

tile Composites 

3.4.1 Bridging Model 

The bridging model of Ishikawa and Chou^^ speciScally focuses on satin woven com-

posites. The RVE of the composite is presented in five 'bricks', as shown in figure 3.8. 

Brick III represents an interlacing in the structure, while bricks I, II, IV are considered 

equivalent to [0/90] laminates. The mechanical properties of brick III are calculated 

using an analogy to the 'curved fibers model', and the properties of the other bricks 

through a reduced stiShess averaging approach, following the tradition of laminated 

plate theory. This model has been extended to consider hybrid materials^^ by intro-

ducing additional bricks in the RVE which belong to one or the other reinforcement 

system. 

3.4.2 Mosaic Model 

Ishikawa and Chou^^ developed the mosaic model (figiure 3.9) in which the continuity of 

fibers in the yam direction is neglected and the woven lamina is idealized as two layers 

with discontinuous fibers in orthogonal directions to form a mosaic pattern. In this 

way the undulation of the fibers is also neglected. Thus the woven lamina is regarded 

as an assemblage of pieces of asymmetric cross-ply ([0/90]) laminates. 

3.4.3 Modified Mat r ix M e t h o d 

The modified matrix method by Tarnopolskii et was developed to predict the elas-

tic response of orthogonally cross-lapped XYZ type composites. The concept behind 

this method is to reduce the complexity of the problem by solving each system of re-

inforcement; x, y, and z separately. For example, the yams in the z direction may 

be combined with the matrix material to create an effective medium in the sense of 

unidirectional micro-mechanics. The stmcture is now considered to be composed of x 

and y oriented fibers embedded in this modified matrix. This process may be repeated 
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to eliminate an additional system of fibers. 

3.4.4 Stiffness Averaging Approach 

The stiffness averaging method for textile reinforced composites was initially presented 

by Kregers and Melbardis^®. In this method, as a first step, the elastic properties 

for a unidirectional rod, presenting a yarn and an equal volume fraction of matrix 

around it, are calculated using any acceptable micro-mechanics approach. From this 

the local unidirectional compliance matrix is constructed. This compliance matrix is 

now inverted to get the local stiffness matrix. The stiffness matrix is then transformed 

to account for the individual yarn orientation. And lastly, the stiffness matrix of 

all unidirectional elements are volumetrically averaged to obtain the total stiffness 

matrix for the textile composite. Related information on this approach can be found 

in references^^'^^'^^. 

3.5 Conclusion 

From the above review, the following conclusions seem to be justified. 

® The simplified models are based on averaging material properties rather than 

treating matrix and fiber as discrete components as is done in the finite element 

method. However, these methods are easy to code and apply to simple textile 

composite structures. Moreover, depending on the type of reinforcement and 

the textile composite structure considered, they give very good precision at a 

reasonably low computational cost. 

• The finite element approaches consider detailed geometric descriptions of the 

reinforcing system for prediction of material properties. Hence, they give detailed 

information on the stress and strain fields throughout the representative volume 

element (RVE). However, this involves defining the reinforcement geometry at 

each point inside the composite, which is a complex task. Moreover, a realistic 

textile structure might consist of a large number of (the order of hundred) unit 

cells. 



In this case, the finite element analysis may not be possible with conventional 

computing power due to huge requirements in CPU time and memory. 

# For a yam system with high curvature, in which case quantification of the rein-

forcement may not be well estimated by the simpli6ed models, the Enite element 

method might be useful. However, from the scanning electron microscope (SEM) 

results for the woven fabric plates, for which results are reported in this thesis, 

it appears that the yam reinforcement was nearly flat. 
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Figure 3.1: Schematic Illustration of the Hierarchy of Fibers, Yams, and Fabrics in 

Textile Processes (after Bogdanovich^^) 
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Figure 3.2; Yarn Pattern in a Plain Weave Perform (Unit-Cell Boundary in Dotted 

Lines) (after reference^^) 

32 



Figure 3.3: Yarn Pattern in a 5-Harness Satin Weave Perform (Unit-Cell Boundary in 

Dotted Lines) (after reference^^) 
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Figure 3.5: 3D Orthogonal Composite (after reference^®) 
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Figure 3.6: Schematics of Plain Weave Composite-Full RVE (Unit Cell) 

34 



Figure 3.7: Schematics of Plain Weave Composite-Full RVE (Unit Cell) with Matrix 

Pockets Removed 
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Figure 3.8: Schematic Illustration of RVE Representation of a Satin Weave for the 

Bridging Model of Ishikawa and Chou^^ (after Bogdanovich^"^) 
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C h a p t e r 4 

Progressive Failure Analysis of 

Uni-Direct ional Compos i te 

S t ruc tu res 

From the review made in chapter 2, it was clear that damage modeling of composite 

structures, with (1) geometric nonlinearity, (2) material nonlinearity because of local 

damage, and (3) presence of bi-axial stresses, has not been investigated. The objective 

of this chapter is to develop a progressive failure analysis methodology for predict-

ing the failure of uni-directional laminated composite structures under geometrically 

nonlinear deformations. The method is used to study the non-linear behavior, Erst 

ply failure and ultimate collapse of laminated composite plates with clamped edges, 

subjected to transverse pressure. The chapter is organized aa follows. In the next sec-

tion, major steps for conducting a progressive failure analysis using the Gnite element 

method, are discussed. Section 2 outlines the nonlinear analysis procedure that has 

been adopted in this research. In section 3, the various failure criteria to be used in 

the progressive failure analysis are presented. Section 4 reviews some of the existing 

material property degradation models and suggests a suitable one for use in the pro-

gressive failure analysis. In section 5, the equilibrium aspects of the nonlinear solution 

procedure are discussed. Section 6 discusses the numerical modeling aspects of pro-

gressive failure analysis using the finite element program ABAQUS. In section 7, the 

experimental procedure which had been conducted on the composite plates, is brieSy 
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described. In section 8 numerical results are presented. Discussions are presented in 

section 9 and conclusions are given in section 10. 

4.1 Overview of Progressive Failure 

A typical methodology for a progressive failure analysis is illustrated in figure 4.1. 

At each load step, a geometrically non-linear analysis is carried out until a converged 

solution is obtained. From this solution, stresses and strains at the Gauss integration 

points are calculated. If failure is detected in an element, as indicated by a failure 

criterion, the element properties are changed according to a particular degradation 

model. Since in this process the material properties for some or all elements might have 

changed, the displacement field corresponding to this load step does not correspond 

to an equilibrium state. Therefore, equihbrium of the structure is re-established using 

the modified material properties for the failed elements. Then the next load step is 

applied on the structure and the above process is repeated. Progressive failure analysis 

is continued until the structure fails. 

Therefore, typical progressive failure analysis methods involve four key features. 

First, a nonlinear analysis capability is used to establish equilibrium. Second, an 

accurate stress recovery procedme is needed in order to establish the local element 

stress state. Third, matericil degradation or damage models are needed in order to 

propagate the failure and establish new estimates for the local material properties. 

Finally, a procedure to re-establish equilibrium after modif^ng local element properties 

is needed. 

4.2 Nonlinear Analysis 

After local failures at an element integration point, the element stiffness, and the 

element's contribution to the global stiShess changes. Therefore the tangent stiffness 

matrix is a function of the material properties and the unknown displacement D. 

In this progressive failure analysis, a nonlinear analysis is performed until a converged 
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solution is obtained for a constant set of material properties. The nonlinear analysis 

involves solving the hnearized &nite element equations for the iteration 

(4.1) 
^(6+1) _ ^2) 

Where is the force residual for the iteration. Both and are functions 

of the displacements Solution of equation (4.1) involves an iteration process where 

the step requires computing the displacement increment for the A; + 1 load step 

using the A;*̂  tangent stiffness matrix. The displacement vector D in the A;̂ '' load step is 

then updated using With this new displacement, both the force imbalance vector 

R and the tangent stiffness matrix [KT] are updated, and the process is continued for 

the next iteration. If R is zero, then the structure is in perfect equilibrium. In a non-

linear problem, this is usually not the case. Hence R is compared against a tolerance 

value. If R is less than the current tolerance value, the structure is considered to be 

in equilibrium and D is a valid equilibrium configuration. Therefore the non-linear 

analysis continues until the tolerance criteria are satisfied. 

In the progressive failure analysis, at a given load step, this non-linear solution 

method is used to calculate the element stresses. Failm-e criteria are then used to 

assess whether any faikures have occurred during this load increment. If no failures are 

detected, then the applied load is increased, and the analysis continues. If failures are 

detected in an element, it's stiSness is reduced using the appropriate material property 

degradation models. These models are discussed in the subsequent sections of this 

chapter. 

In the present progressive failure analysis methodology, this nonlinear analysis pro-

cedure is implemented using the finite element program ABAQUS. Appendix A outlines 

the advanced computational capabilities (including the nonlinear features) available in 

ABAQUS. In addition, the strain measure used here is the approximate Koiter-Sanders 

theory, which includes both large rotation and large strain. The mathematical expres-

sions of this theory can be found in reference^. The Newton-Raphson method is used 

to solve the set of equations at any load step. To achieve a good convergence in the 

non-hnear analysis a force and moment residual convergence of 0.5% and displacement 
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correction convergence of 1 % were used. 

4.3 Failure Analysis 

The ultimate failure in a composite structure occurs as a result of accumulation of local 

material failures. Initial failure in a composite material can be predicted by application 

of a failure criterion. Prediction of ultimate feiilure requires an understanding of failure 

modes and failure propagation. 

Laminated composites may fail by Rber breakage, matrix cracking, fiber-matrix 

shear or by delamination of layers. The mode of failure depends upon the loading, 

stacking sequence, and specimen geometry, or curing or out-of-plane effects. 

Failure criteria are needed to predict the macroscopic failures in a composite ma-

terial. In a progressive failure analysis, if a failure criterion in an element is exceeded, 

the material properties corresponding to that pcirticular mode of failure are reduced 

depending on the material degradation model. 

Failure criteria for composite materials are often classified into two groups; namely, 

non-interactive failure criteria and interactive failure criteria. 

4.3.1 Non-Interac t ive Failure Cri ter ia 

In a non-interactive failure criterion, there is no interaction between the stress or 

strain components. These failure criteria are simple to apply and tell the mode of 

failure. However, they neglect the interaction of stresses in the failure mechanism. 

The maximum stress and maximum strain criteria belong to this category. The failure 

surfaces for these criteria are rectangular in stress and strain space, respectively. 

4.3.2 Interact ive Failure Cri ter ia 

Interactive failure criteria include stress interactions in the failure mechanism, but they 

do not tell the mode of failure. The Tsai-Wu and Tsai-Hill failure criteria belong to 

this category. The failure surfaces in these cases may not be rectangle when plotted 
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in the stress or strain space. Implementation of these failure criteria can be found in 

references^^^. 

Most of the failure criteria for composite materials are unable to predict all the 

failure modes of a composite materials. Also, not all are computationally e@cient 

for implementation into finite element programs. The following subsection discusses 

the failure criteria which have been used in the present progressive failure analysis 

procedure. 

4.3.3 Mathemat i ca l Representa t ion of Failure Cri ter ia 

Most failure criteria for composite materials can be expressed in terms of a single tensor 

polynomial failure criterion such as that proposed by Tsai. Failure is assumed to occur 

if the following condition is satisGed^. 

+ ... > 1 (4.2) 

The two dimensional form of the above polynomial is expressed aa: 

+ FgCTg + 2Fi20'l0'2 + -̂ 11(̂ 1 + ^22^2 ^6^6 — ^ (4 3) 

Various forms of this general representation are given below. In the expressions, the 

notations cri,(72 and erg (erg = 0-12) '̂̂ e the in-plane stresses in the material coordinate 

directions, SC are the strength parameters as defined in table(4.1). 

# Tsai-Wu Criterion: 

The failure indices for the Tsai-Wu criterion are 

t - j k ' -̂ 2 - 3%: - F12 - - ]V-^l l f22, 

# Maximum Stress Criterion: 
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The failure indices for Maximum Stress criterion are 

# Ho&nann Criterion: 

The failure indices for Hofffmann criterion are 

(4.5) 

-̂ 11 = M F ' -̂ 22 = ^66 = ^ 

# Tsai-HiU Criterion: 

The failure indices for Tsai-Hill criterion are 

. ) 

(4.6) 

f l = 0, ^2 = 0, f i2 = -̂ 11 = ^ -^22 = ^ (4 7) 

where 

If O"! > 0, X = otherwise, X — %c. If 0-2 > 0, Y = Yri otherwise, Y = y^. 

# Azzi-Tsai-Hill Criterion: 

The Azzi-Tsai-Hill failiure theory is the same as the Tsai-Hill theory, except that 

the absolute value of the cross product term is tciken as 

FiO"! -|- _p20'2 + 2Fi2 I 0'l0'2 | +fllCr^ + ^22^2 "t" -^6^6 ^ 1 (^-8) 

The coelBcients are the same as those of the Tsai-Hill criterion. 

# Hashin's Criterion 
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The two dimensional Hashin's criterion^ is expressed in a different form as follows: 

Fiber failure 

<7l 
Xx 

+ "12 = 1, (Ti > 0 (4.9) 

Matrix Failure 

0"! = —Xc, 0"! < 0 (4.10) 

0-2 '12 

a 
= 1, O"! > 0 (4.11) 

1 

2 ^ C 
- 1 0-2 + (To '12 

4^C2 
= 1, a i < 0 (4.12) 

4.4 Material Property Degradation 

If failure is detected in a particular element of the composite material, the properties of 

that element must be adjusted according to a material property degradation model. A 

survey of some post-failure theories for laminated composites is presented in reference®. 

Most of these material degradation models belong to one of the three general categories: 

instantaneous unloading, gradual unloading, or constant stress at ply failure. Figure 

4.2 illustrates these three categories. 

For the instantaneous unloading case, the stiffness and strength of a failed ply are 

reduced to zero, although the ply is physically present. This approach may lead to an 

underestimation of the laminate strength, because it does not recognize that ply-failure 

is localized, and that the remaining stiffness of a failed ply is not necessarily zero. This 

approach therefore has limited applicability. 

In the constant stress category, it is assumed that the failed layer can carry no 

further load in the failed direction. For example, if a lamina fails in the resin cracking 

mode, the value of the Young's modulus in the direction perpendicular to the fiber 

direction, becomes zero. Implementation of this property degradation model can be 

found in reference^. 
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In the gradual unloading model, it is assumed that after failure in a lamina, the 

material elastic properties are gradually reduced depending upon the extent of damage 

within the lamina. Implementation of this property degradation model can be found 

in references^®"^^. 

Chang and Chang^^ used a stiffness reduction model in which after matrix fail-

ure(due to either tension or compression), the ply in the damaged region was assumed 

to lose all its transverse strength. For fiber failure, stiffness of the failed layer was 

assumed to depend upon the extend of the damage, which was determined using a 

micro-mechanics approach. Chang and Lesseird^^ used a similar approach, but fiber 

breakage was not included in the degradation model. Sahid and Chang^^ used the 

crack density as a parameter to characterize the ply stiffness, which is complicated for 

macro-numerical modehng. 

In addition to the above methods of material property degradation, another method 

is the residual property method, in which continuum damage models are used to predict 

progressive damage and the stiffness drop in the laminate^^. Damage accumulation 

during loading is predicted by damage evolution laws, which are too comphcated and 

therefore will not be discussed here. 

This brief review indicates that some methods, such as the ply-discount method, 

underestimate the laminate strength, while others are too complicated to implement, 

without any significant improvement in the prediction capability of the failed ply prop-

erties. In this research, a simple, yet effective, stiffness reduction model(similar to 

reference^^ and reference^^) based on the experimental observations, is proposed. 

For matrix cracking at a material integration point, the transverse modulus Ey, 

and Poisson's ratio are reduced to zero. However the longitudinal modulus and 

the shear modulus G^y remain unchanged. When fiber-matrix shearing is predicted at 

a material point, the transverse modulus Gxy and the Poisson's ratio Vŷ  are reduced 

to zero. However the longitudinal modulus E^ and the transverse modulus Ey remain 

unchanged. If fiber failure is detected, then the material is deemed to have lost its 

stifikess at the integration point. 

Hashin's criterion as discussed in the previous section, directly gives the mode of 

failure. For the other interactive polynomial criteria, if failure occurs the following 



expressions are used to determine the failure mode; 

-^1 = + -Fiiof 

% = + ^22(̂ 2 

^6 = (4.13) 

The largest term is selected as the dominant failure mode and the corresponding 

modulus is reduced to zero. Thus Hi corresponds to fiber failure, H2 corresponds to 

matrix crack and ffg corresponds to Aber matrix shearing failure. 

The contribution of each stress component towards the failure index(ffi) is com-

puted and the stress component which contributes the maximum is identified. De-

pending on the largest Hi term the failure mode is determined and the corresponding 

material properties are degraded as mentioned above. 

4.5 Re-establishment of Equilibrium 

In a progressive failure analysis, once failmres are detected in a ply, the corresponding 

material properties are degraded. However, the structure may not be in equilibrium 

with these degraded material properties and the present deformation conGguration. 

Therefore, it is necessary to carry out some more iterations to estabhsh equilibrium. 

However, if the load steps chosen in the non-linear analysis are sufficiently small, such 

a procedure may not be needed. 

In the present research, equilibrium is re-established in the non-linear analysis pro-

cedure, in the sense that the failure index is kept within a tolerance of 0.01. The first ply 

failure load reported here is the lowest pressure at which the failure index(f^cr^-l-FijCricrj) 

first reached a value of unity at any material integration point. At some point in the 

analysis a dramatic change in slope of the load deflection graph indicates inability to 

support additional load. This location is identified as the failure load. 
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4.6 Numerical Modeling Using ABAQUS 

The classical (e.g. KirchoE-Love) shell theory is based on an assumption of i n f i n i t e 

rigidity in the transverse direction (i.e. neglect of transverse strains), and hence is 

not used in the present analysis. The first order theory considering shear deformation, 

which is by far the most efhcient theory (i.e., increased accuracy without an increase in 

computational eSFort) is used in this research. The finite element formulation aspects of 

a shell element are discussed extensively elsewhere^^'^^'^^'^^, and therefore not covered 

here. 

The progressive failure analysis methodology uses the four node shell element 

S4R of the ABAQUS element library based on first order shear deformation theory, due 

to its better performance in large deformation anEilysis. The element has six degrees of 

freedom(three displacement and three rotation components). To avoid shear locking'^ 

the element uses reduced (lower order ) integration to form the element sti&iess. The 

element has one in-plane integration point and three through-the-thickness integration 

points for each layer. Gauss quadrature is used to calculate the shell behavior. 

Since the damage initiation was observed along all the edges of the specimen, a 

uniform mesh size of 20x20(400 elements) was used. A standard user subroutine 

USDFLD in ABAQUS was written, which allows the user to define material properties 

as functions of the held variables at a material point, which instead can be function of 

any of the available material point quantities. The material properties of the laminated 

plate were defined to be dependent upon three field variables. The hrst held variable 

was the contribution of ai towards the failure index (Hi)- The second and third field 

variables were the contributions of era and (Tig respectively (ff2, ^e) to the failure index. 

The computing work was done on a single node of the IBM SP2 parallel computer 

running under the AIX 4.1.4 operating system. It has a 66Mhz Power2 processor, 256 

Mbyte RAM and 32 Kb instruction cache. On average the CPU time taken for one 

complete analysis with one failure criterion was about 50 hours . 
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4.7 Experimental Background 

The experiments for the composite plates had been conducted by Moy et aJ. (see 

reference"^). Thirty four fiber reinforced composite plates were tested to failure to in-

vestigate the effects of material composition, method of manufacture and panel aspect 

ratio on strength and stiffness under transverse pressure loading. The panels relevant 

to this research were of an E-Glass/polyester type. The weight density of the reinforce-

ment was 620 the matrix was isophthalic polyester, Scott Bader Crystic-489. 

The panels were made up of five unidirectional plies, each with about 90% of the fibers 

concentrated in the fiber direction. The fiber weight fraction was 0.415. The material 

properties for this lay-up, taken from ref^^, are shown in table 4.1. The plate specifica-

tions are given in table 4.2. All the test specimens reported here were fabricated using 

the hand lay up method. In this the dry reinforcement was placed on a flat mould 

and the appropriate quantity of resin was applied. The wet composite was then rolled 

by hand to distribute the resin evenly. Another layer of reinforcement was then laid 

on the top and more catalyzed resin was poured and roUed over the reinforcement. 

This sequence was then continued until the desired thickness was reached. The layered 

structure was then left to harden and cure under normal laboratory conditions. The 

test rig (figure 4.3) consists of identical upper and lower steel &ames. The specimen 

is sandwiched between the &ames which are then bolted tightly together by two lines 

of bolts all round. The heavy steel frames give in-plane and rotational restraints to 

the edges of the panel to simulate fixed boundary conditions. Water pressure is pro-

vided through a synthetic bag placed between the specimen and the lower steel frame 

(figure 4.4). During a test the bag is filled with water from a rigid pressure vessel. 

Pressure is increased by introducing compressed air into the top of the pressure vessel 

and is controlled manually and measured by a pressure transducer and a mechanical 

pressure gauge. Strain gauges and displacement transducers were mounted on all of 

the panels. Some selected panels were heavily strain gauged. The test procedure was 

the same for all the panels. Initial readings were taken on all instruments and pressure 

was then increased in small increments. At each increment pressure and deformations 

were allowed to settle down before readings were taken. Pressure load was increased 

continuously up to failure. 
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The geometry and coordinate system used for the present analysis is shown in 6gure 

4.5. All the plates considered here were clamped on all the edges, and were loaded 

by water pressure apphed to the bottom surface. Each specimen was instrumented 

with displacement potentiometers placed at hve locations on the surface. Although 

deformation data was available at more than one point, only the central defection is 

compared with the analytical result. 

The three panels considered here, referred to as A, B, and C, had aspect ratios 

of 1, 1.5 and 2 respectively. Typical load-de8ection curves are given in Hgiue 4.6. 

The progression of failure for the panels was observed visually. A typical sequence of 

damage progression is given below. Initial damage was due to resin cracking along the 

edges. This was characterized by noise emitted during loading. When cracking started 

the resin lost its sheen and appeared dull. These cracks started from the loaded face 

where the edge was in tension. Up to aspect ratio 1.5, there were cracks parallel to the 

edges and also at 45° to the edges. At aspect ratio 2 there were cracks only parallel 

to the long edges. At higher load there was visible damage with considerable resin 

cracking. Failure occurred at the edges of the panels and usually along a long side. 

There was little warning of failure in terms of rapid increases in deflection, but it was 

obvious when failure was imminent. At failure the break-up of fibers along edges was 

accompanied by very loud noises, different from the resin cracking noises. Figure 4.7 

shows a typical failure pattern at final collapse for plate C of aspect ratio 2. 

4.8 Numerical Results 

Figure 4.8 shows the load-central deflection graph for plate A. As can be seen the 

progressive failure results (using Tsai-Wu) agree very well with the test results. The 

load-central deflection data using other failure criteria are also available. However they 

are almost identical to the Tsai-Wu curve and are not presented to maintain clarity. 

Summaries of the first ply failure loads, dominant failure mode type and the failure 

location, using dlEerent failure criteria are presented in tables(4.3 to 4.5). Table 4.3 

summarizes the first ply failure results for plate A, having aspect ratio 1. Pressure 

at which the failure index first reached one, according to different failure criteria, is 
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listed and compared with the test pressure at which Srst audible crack was heard. The 

numerical procedure could provide the exact location, where failure initiated, i.e. top, 

middle or bottom of a ply. Since bending dominated in the initial stage of loading, 

the stress state was high in the bottom of a ply, at which the ply failed Erst. Due to 

the low transverse lamina strength, first ply failure was invariably due to matrix crack. 

For increased aspect ratio ( | in figure 4.5), the bending stresses being higher along 

the long edges, the initial failure was even less for plates B and C, eis can be seen in 

tables 4.4 and 4.5. However the central deflection at first ply pressure was higher as 

the aspect ratio increased. 

Summaries of the ultimate failure loads, dominant failure mode type and the failure 

deflection, using difl'erent failure criteria are presented in tables(4.6 to 4.8). Table 4.6 

summarizes the ultimate collapse load results for plate A. The failure load corresponds 

to the pressure at which there was rapid large increase in deflection with a small 

increase in pressure. The dominant failure mode presented in the table is that which 

was responsible for the collapse of the structure. For plate A failure was due to fiber-

breakage, which indicates that the in-plane normal stress was responsible. However 

for increased aspect ratios, as can be seen in tables 4.7 and 4.8, the dominant failure 

mode was fiber-matrix shear, which means the bond between the matrix and the fiber 

was lost. This indicates that at higher aspect ratios the in-plane shear stress caused the 

final collapse of the structure. Additional discussion on the first ply failure, ultimate 

failure and damage propagation is given in the next section. 

Internal damage and failure modes predicted by the model for all the plates are 

presented graphically in figures 4.9 to 4.24. In these figures a solid sphere indicates 

a matrix crack at that location, a cube indicates fiber-matrix shear, and a triangular 

prism indicates fiber breakage. 

# Plate A 

The first ply failure was due to matrix cracking. Almost all the failure criteria 

predicted the same ply and same location for failure initiation.The predicted first ply 

failure pressure does not agree well with the test pressure at first audible crack. This 

may be due to the fact that the background noise in the test laboratory, made it difficult 

to identify when the crack started^"^. The first crack started almost at the middle of 
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the edge(Y=15). Immediately after, cracks also penetrated through the depth from 

the bottom surface. As shown in hgures 4.9 to 4.14 at 0.1 MPa cracks started on top 

surface along the edge(y=45mm). With further increase in pressure cracks advanced 

towards the center. At 0.30 MPa about 67 percent of the material points failed by 

matrix cracking. Just before failure about 75 percent of the material points had failed 

by matrix cracking and about 8 percent of the material points had failed by Hber 

breakage. Fiber breakage first began at a pressure of 0.15 MPa in the second ply. 

With further increase in pressure it propagated to the fourth ply. Gradually it was 

advancing towcirds the center, although the damaged region due to hber breakage was 

narrow(width of 90mm) and ran parallel to the x axis. In each ply the damage was 

symmetric. The damage in the bottom two plies was always more than that of the 

upper two plies. Tsai-Hill criterion predicts the failure pressure most accurately, with 

plate failure mainly due to fiber failure. 

# Plate B 

The Erst ply failure was again due to matrix cracking. Almost all the failure 

criteria predicted the same ply and same location for failure initiation.The inaccuracy in 

predicting hrst ply failure pressure may be attributed to the same reason as mentioned 

for plate A. After the hrst crack, cracks penetrated through the depth from the bottom 

surface. With fiu-ther increase in pressure cracks advanced towards the center and 

towards the top surface. As shown in hgures 4.15 to 4.19 at 0.30 MPa about 67 

percent of the material points failed by matrix cracking. For plate B fiber Matrix 

shearing hrst begaji in the second ply at a pressure of about 0.10 MPa. With further 

increase in pressure it propagated to the fourth ply, although damage in the second ply 

was always higher. Gradually it advanced towards the center, at a rate greater than 

that of plate A. The damaged region due to liber-matrix shear was also more than that 

of plate A. Just before failure more than 75 percent of the material points had failed by 

matrix cracking and about 15 percent of the material points had failed by fiber matrix 

shear. Tsai-Wu criterion predicts the failure pressure most accurately, although it over 

estimates the failure deflection. The plate failure was mainly due fiber matrix shear. 

* Plate C 
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The first ply failure was invariably due to matrix crack. The propagation of damage 

for plate C was similar to that of plate B, with more damage occurring at an early 

stage. As shown in Sgures 4.20 to 4.24 the damage zone due to hber-matrix shear was 

wider and more in the second and fourth phes than that of the other two plates. Almost 

aU the failure criteria predicted the same ply and same location for failure initiation. 

Tsai-Hill criterion predicts the failure pressure most accurately. The plate failure was 

mainly due Eber matrix sheaz. 

4.9 Discussion 

# Choice of Failure Criterion 

There was httle diSerence in prediction of first ply failure load from aU the failure 

criteria, which indicates that at ply level it is immaterial which failure criterion is used. 

This can be explained as follows. 

Referring to eqs. 4.4 to 4.8 and table 4.1, it can be seen that the expression for 

the coefficient F22 is the same for most of the failure criteria and the expression for 

the coeGicient is the same for Tsai-Wu's, maximum-stress and HoSmann's criteria, 

which makes the contribution of erg towards failure (ffg) almost equal by most of the 

failure criteria. This means that most of the failure criteria predict the same load 

for matrix: failure. The coeScient ^2 is about 40 times larger than and is 

about 80 times larger than Fn, although for Tsai-Hill criterion, Fi and F2 are zero. 

In the very initial stage of loading, the in-plzme stresses in the first ply are of the 

same order of magnitude. Along the long edges, F2 and F22 are much higher than the 

other coeGicients. Consequently, the contribution of (72 (jif2 = ^2(73-1- ^220^) towards 

failure was much higher and the contribution of the other two in-plane stresses towards 

failure was neghgible. This meajis that with the transverse lamina strength being much 

less than the corresponding longitudinal ones, and the transverse lamina stresses in the 

initial loading stage being of the same order of magnitude as the other in-plane stresses, 

it is the trajisverse stress (T2(&nd hence ^^2), which determines the onset of initial failure. 

_ff2 is almost the same for most of the failure criteria. Hence they predicted nearly same 

first-ply pressure. 
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The load defection curve due to all the failure criteria was almost the same for 

each of the panels. The ultimate load and ultimate defection were better predicted by 

the Tsai-Hill criterion for all the panels in contrast to Tsai-Wu or the maximum stress 

criterion predicting better for beam bending cases as reported in ref^^'^^. The reason for 

this may be as follows. The maximum stress criterion does not take stress interaction 

into account(i.e. rectangle in two-dimensional stress space). Furthermore, in beam 

bending cases, the state of stress is not strongly bi-axial in nature, and therefore could 

predict failure load more accurately. Plates, however curve in two directions. Stresses 

along the two in-plane axes could both become signi6cant. This implies that coupling or 

interaction effects would become significant. Although Tsai-Wu and Tsai-Hill include 

stress interaction (both are ellipses), Tsai-Wu is more close towards the maximum stress 

criterion. Therefore the failure pressure for the present plate bending case was better 

predicted by Tsai-Hill criterion. 

# Load Increment 

The progressive(ultimate) failure loads in the non-linear failure analysis were found 

to be sensitive to both load increment size and hnite element mesh size. The Erst 

ply failure load and ultimate load were strongly dependent on the load increment size 

chosen. In a test the load and displacement increase continuously, but in a numerical 

simulation discrete load increments are used for failure prediction. A large load step will 

not represent damage progression well, and a very small load step will require significant 

computational effort. In the present analysis a load increment size of approximately 

0.2 percent of the first ply failure load (or about thirty thousand load steps) and a 

mesh size of 20 by 20 (or 400 elements) was chosen, after conducting a convergence 

study for a fixed failure criterion. 

# Dcimage in the Panels 

The initial bending at the edges of the panels caused cracks in the resin, which ran 

along, particularly, the long edges of the loaded surface of the panel. Cracks propagated 

from bottom to top and advanced towards the center. Fiber failure in the form of fiber-

matrix shear or fiber breakage started in the second and fourth phes, along the edges 
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and gradually propagated towards the center. The width of the damage zone due to 

Hber failure mode was larger for plates having larger aspect ratio. In each case the 

middle ply remained un-damaged up to a pressure of 0.10 MPa. In addition to matrix 

crack, the hnal dominant failure mode was either Sber-matrix shear or Hber breakage. 

As shown in figure 4.9 in the initial stage, fiber content being more in the x-direction, 

ply 1 and ply 5 were stressed more than the others. Cracks formed in these plies 

when the transverse tensile or compressive strain reached its limit. However since the 

transverse compressive strength(Yc) of the ply is significantly more than its transverse 

tensile strength, more cracks appeared in the first ply. The middle layer acted as a 

neutral layer and remained unstressed, up to 0.10 MPa. With further increase in load, 

there was redistribution of stresses in two ways as follows: 

(a) The damaged materials lost some of their stiffness, and consequently their con-

tribution to global stiffness decreased. The undamaged material points,being 

stiffer than the damaged ones, carried a larger portion of the additioneil load and 

therefore were stressed more. In this way stress transfer occurred both in-plane 

and through the thickness. Therefore as shown in figure 4.10, there was sudden 

transfer of stress to the middle layer, which eventually cracked at several material 

points. In the other layers more in-plane material points cracked as stresses were 

transferred between material points as damage occurred. 

(b) The damaged material points could not carry any more load in the failed mode, 

but still might carry some load, if not completely failed. For example if a ma-

terial point fails in matrix cracking mode it cannot take additional stresses in 

the transverse direction, but it can stiU carry some load due to its longitudinal 

stiffness which is not necessarily zero. This results in increase in stress level in 

the fiber direction. As shown in figure 4.10 some of the materials points, which 

had failed by matrix cracking, failed in fiber mode. 

With further increase in load there was continuous stress transfer, due to which 

there was increase in the number of cracked material points and the number of material 

points with fiber failure, the former occurring more rapidly as shown in figure 4.11. 

When about three quarter of the material points had lost their transverse strength and 
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about 15% of the material points had lost their longitudinal strength, the structure 

behaved as if plastic hinges had formed along the long edges as shown in figures 4.14, 

4.19 and 4.24. At this stage there was a rapid increase in deflection and the plate was 

assumed to fail. 

® Basic Panel Behavior 

The panels studied were very thin, with a short span to thickness of ratio of approx-

imately 175. Tables(4.6,4.7,4.8) show that for the same material and same lamination 

sequence, the larger the aspect ratio, the larger the deflections and the lower the failure 

load. As would be expected, the plates behaved non-hnearly under transverse pres-

sure(6gure 4.8). At very low pressures the panels were very Sexible, and there was 

rapid increase in deflection (figure 4.8), which confirms the nonlinear load-deflection 

curves obtained in the tests, as shown in figure 4.6. As the aspect ratio increased, 

the contribution of shear stress towards failure was greater than that of the normal 

stresses, so that plates B and C finally failed in the fiber-matrix shear mode(tables 4.7 

and 4.8) , while the failure in plate A was mainly due to breakage of the fibers (table 

4.6). 

Figure 4.24 shows the failure pattern of plate C just before failure and figure 4.7 

is a photograph of plate A taken in the laboratory at final failure. The deep black 

damage lines ruiming parallel to the long edges (figure 4.7) show where the fibers were 

broken. They are in agreement with the predictions of the numerical results as shown 

in figure 4.24, which indicates that fiber failure in the form of fiber-matrix shearing was 

dominant along the long edges, leading eventually to the final coUapse of the plate. 

4.10 Concluding Remarks 

A progressive failure methodology for uni-directional composite plates has been de-

veloped and successfully implemented. It accommodates various formulations in pre-

dicting failure such as the maximum stress criterion, Tsai-Wu criterion and Hashin's 

criterion and others.These different formulations are compared and assessed by per-

forming analyzes on laminated composite panels. The results show improvement in ac-

curacy with the progressive degradation model. The contribution of transverse stresses 
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towards failure was found to be negligible and hence is not included in the failure cri-

terion. The progression of damage is shown graphically for easy understanding. The 

model can provide the following information: the type and extent of damage at a given 

load, the residual stiffness and strength of the laminated composite plates, the first 

ply failure load, the final collapse load, and the complete response of the composite 

plates from initial loading to final failure. The progressive (ultimate) failure loads in 

the non-linear failure analysis were found to be sensitive to both load increment size 

and finite element mesh size. In a test the load and displacement increase continuously, 

but in a numerical simulation discrete load increments are used for failure prediction. 

A large load step will not represent damage progression well, and a very small load 

step will require significant computational eSFort. In the present analysis about thirty 

thousand load steps and a mesh size of 20 by 20 (or 400 elements) were chosen, after 

conducting a convergence study for a fixed failure criterion. 
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Table 4.1: Mechanical Properties of glass/polyester unidirectional Lamina. 

Moduli Parameters Symbol(units) 

Longitudinal modulus E,(GPa) 23.6 

Transverse Modulus ^ , (GPa) 10.0 

Shear Modulus G,^(GPa) 1.0 

Poisson's ratio 0.23 

Strength Parameters Symbol(units) 

Longitudinal tension XT(MPa) 735 

Longitudinal Compression %c(MPa) 600 

Transverse tension y^(MPa) 45 

Transverse Compression }c(MPa) 100 

Inplane Shear ^C(MPa) 45 
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Table 4.2: Laminated Plate Speci6cations(refer to 6gure 4.5) 

Length(a) Width(b) Thickness 
Plate Lay-up No. of Plies 

mm 

59 

(mm) (mm) 

A [0/45/90/-45/0] 5 600 600 3.43 

B [0/45/90/-45/0] 5 900 600 3.43 

C [0/45/90/-45/0] 5 1200 600 3.43 



Table 4.3: First Ply Failure Analysis of Plate A 

Failure 

Criterion 

Failure Central Failed 

Pressure DeEection(mm.) Ply 

Failed Location Dominant 

(x,y-coordinates) Failure 

(mm) Mode 

Maximum Stress 0.0218 10.64 
(bottom) 

315 ,15 
Matrix 

Crack 

Tsai-Hill 0.0218 10.64 
1 

(bottom) 
315 ,15 

Matrix 

Crack 

Tsai-Wu 0.0221 10.69 
1 

(bottom) 
315,15 

Matrix 

Crack 

Hoffmann 0.0219 10.65 
1 

(bottom) 
315 ,15 

Matrix 

Crack 

Hashin 0.0218 10.64 
1 

(bottom) 
315 ,15 

Matrix 

Crack 

Azzi-Tsai-Hill 0.0218 10.64 
(bottom) 

315 ,15 
Matrix 

Crack 

Test result; 

Pressure at 

first audible 

Crack 

0.035 
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Table 4.4: First Ply Failure Analysis of Plate B 

Failiire 

Criterion 

Failure Central Failed 

Pressure DeSection(mm) Ply 

Failed Location Dominant 

(x,y-coordinates) Failure 

(mm) Mode 

Maximum Stress 0.01615 11.67 
1 

(bottom) 
465,15 

Matrix 

Crack 

Tsai-Hill 0.01615 11.67 
(bottom) 

465,15 
Matrix 

Crack 

Tsai-Wu 0.0164 11.74 
1 

(bottom) 
465 ,15 

Matrix 

Crack 

Hoffmann 0.0162 11.69 
1 

(bottom) 
465,15 

Matrix 

Crack 

Hashin 0.01615 11.67 
(bottom) 

465 ,15 
Matrix 

Craxzk 

Azzi-Tsai-Hill 0.01615 11.67 
(bottom) 

465,15 
Matrix 

Crack 

Test result; 

Pressure at 

first audible 

Crack 

0.035 
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Table 4.5: First Ply Failure Analysis of Plate C 

Failure 

Criterion 

Failure Central Failed 

Pressure Deflection(mm) Ply 

Failed Location Dominant 

(x,y-coordiiiates) Failure 

(mm) Mode 

Maximum Stress 0.01545 11.80 
(bottom) 

615,15 
Matrix 

Crack 

Tsai-Hill 0.01545 11.80 
1 

(bottom) 
615,15 

Matrix 

Crack 

Tsai-Wu 0.015675 12.00 
(bottom) 

615,15 
Matrix 

Crack 

Hoffmann 0.01550 11.90 
1 

(bottom) 
615,15 

Matrix 

Crack 

Hasliin 0.015425 11.80 
1 

(bottom) 
615,15 

Matrix 

Crack 

Azzi-Tsai-Hill 0.01545 11.80 
1 

(bottom) 
615,15 

Matrix 

Crack 

Test result: 

Pressure at 

6rst audible 

Crack 

0.040 
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Table 4.6: Ultimate Failure Load for Plate A 

Failure 

Criterion 

Failure Central Dominant 

Pressure Deflection Failure 

mm mode 

Maximum Stress 0.612 41.0 Fiber-Failure 

Tsai-Hill 0.608 40.90 Fiber Failure 

Tsai-Wu 0.610 40.90 Fiber-Failure 

Hoffmann 0.611 41.0 Fiber-Failure 

Hashin 0.600 41.0 Fiber-Failure 

Azzi-Tsai-Hill 0.608 40.90 Fiber-Failure 

Test Results 0.605 41.70 Fiber-Failure 
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Table 4.7: Ultimate Failure Load for Plate B 

Failure 

Criterion 

Failure Central Dominant 

Pressure Deflection Failure 

(mm) mode 

Maximum Stress 0.5450 54.40 
Fiber-Matrix 

Shear 

Tsai-Hill 0^1520 54^0 
Fiber-Matrix 

Shear 

Tsai-Wu 0^)530 55.20 
Fiber-Matrix 

Shear 

Hof&iarm 0.5490 54.60 
Fiber-Matrix 

Shear 

Hashin 0.5450 56.20 
Fiber-Matrix 

Shear 

Azzi-Tsai-Hill 0.5520 54.40 
Fiber-Matrix 

Shear 

Test Results 0.550 53.30 
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Table 4.8: Ultimate Failm-e Load for Plate C 

Failure 

Criterion 

Failure Central Dominant 

Pressure Defection Failure 

(TV/ (mm) mode 

Maximum Stress 0.455 56.30 
Fiber Matrix 

Shear 

Tsai-HiU 0.462 56.50 
Fiber Matrix 

Shear 

Tsai-Wu 0.461 56.50 
Fiber Matrix 

Shear 

Hoffmann 0.441 55.70 
Fiber Matrix 

Shear 

Hashin 0.455 55.90 Fiber Feiilure 

Azzi-Tsai-Hill 0.462 56.50 
Fiber Matrix 

Shear 

Test Results 0.480 51.0 
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—X X )}(̂ Pô an:ag0nrodei 

10 20 30 40 50 
Deflection (mm) 

Figure 4.8: Central Deflection for Plate C 



Oi 

wu WW 

-,%/ y / / ' / ' / / z 
>4> ^/6, i$m" 

' J j # wm wm Wia w y "' 

z : 

3P" 



Figure 4.10: Damage Pattern for Plate A at 0.20 MPa 
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Figure 4.11: Damage Pattern for Plate A at 0.30 MPa 
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Figure 4.12: Damage Pattern for Plate A at 0.40 MPa 
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Figure 4.13: Damage Pattern for Plate A at 0.50 MPa 
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Figure 4.14: Damage Pattern for Plate A at 0.60 MPa (Just Before Failure) 

75 



]V[atri3c C r a c k 
F i b r e — I M a t r i x S h e a r 

Fibre Breakage 

Figure 4.15: Damage Pattern for Plate B at 0.10 MPa 
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Figure 4.16: Damage Pattern for Plate B at 0.20 MPa 
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Figure 4.17; Damage Pattern for Plate B at 0.30 MPa 
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Figure 4.18: Damage Pattern for Plate B at 0.40 MPa 
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Figure 4.19: Damage Pattern for Plate B at 0.50 MPa (Just Before Failure) 
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Figure 4.20: Damage Pattern for Plate C at 0.10 MPa 
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Figure 4.21: Damage Pattern for Plate C at 0.20 MPa 
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Figure 4.22: Damage Pattern for Plate C at 0.30 MPa 
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Figure 4.23: Damage Pattern for Plate C at 0.40 MPa 



Figure 4.24: Damage Pattern for Plate C at 0.50 MPa (Just Before Failure) 
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C h a p t e r 5 

Failure Analysis of Woven Fabric 

Compos i t e S t ruc tu res 

5.1 Introduction 

In the previous chapter, a progressive failure methodology was developed and imple-

mented into the general purpose finite element program ABAQUS. Damage propaga-

tion of three uni-directional composite plates was studied. Another class of composites 

which are extensively used in aerospace structures, is plain weave fabric composites. 

A thorough discussion of these composites and their numerical modelling aspects have 

been discussed in the third chapter. The objective of this chapter is to study the 

damage propagation and failure of laminated plates made of plain woven composite 

materials. 

Few research projects have been done on damage modehng of woven fabric com-

posite structures. Blackketter et studied the damage development in plain weave 

fabric reinforced composite laminates subjected to tension and shear loadings using 3-

D finite element analysis. Whiteomb and Srirengan^ studied the effects of quadrature 

order, mesh re&nement and choice of material degradation model on the progressive 

failure of plain weave composites. Naik^ in his work included non-linear shear response, 

yam bending and straightening/wrinkhng in woven materials. The stiShess reduction 

scheme used by Blackketter^ was used in the cinalysis. Vandeurzen et studied the 

failure process in woven fabric composites in which the homogenization technique^ was 



used. The aim of this chapter is to study the failure behavior of woven fabric composite 

plates in bending, in contrast to the in-plane conditions considered in the Hteratures. 

For studying the damage propagation of a woven fabric composite layer, detail 

Snite element modehng of the reinforcement and the surrounding resin is often neces-

sary. Analysis in this way is often called a micro-mechanics analysis. However, from 

the review made in chapter 3, it is clear that, if the woven fabric composite plate con-

sists of large number of unit cells, the hnite element method becomes computationally 

expensive. The woven fabric plate considered in this chapter consists of luiit cells of 

order of thousands. Moreover, the progressive failure methodology developed in the 

previous chapter was developed for uni-directional composites. It cannot be directly 

apphed to woven fabric composite structures. 

In this chapter the progressive failure analysis of woven fabric composite plates 

are carried out as follows. A simpliSed model is developed in which a woven ply is 

simphhed as a combination of two resin layers and two imi-directional composite layers. 

This is explained in the next section. Section 3 outhnes the procedure for determining 

the mechanical properties of a composite plate with woven plies. Even though this 

section is not necessary for carrying out the progressive failure analysis, this is useful 

for validating the accmracy of the simplified model. Section 4 gives a brief description 

on the experiments on these plates. In section 5, the extension of the damage model 

developed in the previous chapter as apphcable to the present simpliSed model is 

discussed. Niunerical results are presented in section 6, and conclusions are drawn in 

the last section. 

5.2 Simplified Model for a Woven Fabric Lamina 

In the simpli6ed model, a repeating unit element with width d in a single layer woven 

fabric composite (referred to as woven lamina) is simphSed as a four-layer laminate 

which consists of upper and lower layers of pure resin and two orthogonal fiber/resin lay-

ers sandwiched between the two pure resin layers as shown in Sgiu-e 5.1. The pure resin 

layers represent the coverings on the top and bottom of the rovings. The fiber/resin lay-

ers represent the warp roving and the weft roving, in which the fiber and the remainder 
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of the resin are mixed together. 

The following notations are used. 

# Notations for the composite plate as a whole: 

t = overall thickness 

Vf = Overall fiber content by volume 

, E™ are Young's moduh of fiber and resin respectively 

are Poisson's ratios of fiber and resin respectively 

G™ are Shear moduli of fiber and resin respectively 

gy = 1 — and 

# Notations for the woven lamina: 

h = thickness of lamina 

hmi = thickness of top or bottom pure resin layer 

are thickness of fiber/resin (warp and weA) 

Sfi = fiber content in fiber/resin (warp and weft) 

Smi = resin content in fiber/resin (warp and weft) 

S-mi — 1 S fi 

= fraction of resin (by volume) in pure resin layer 

— lamina fiber fraction 

2̂i = warp fiber fraction 

If /d is the proportion of the resin that lies in the uni-directional layers, which can be 

estimated &om the scanning electron microscope(SEM) photograph of the composite 

plate, then the thicknesses of various layers in the simplified model can be calculated 

as follows. Total thickness of pure resin is /i(l — Vf)t. The amount allocated to each 

lamina is Hence the thickness of the top or bottom pure resin layer is 

Here t is the total thickness of the composite plate and n is the number of woven fabric 

layers. 



# Equivalent thickness of Sber in 6ber/resin layer (warp or weft) 

Equivalent thickness of all fibers is 

The amoimt allocated to each hber/resin layer (warp or weft) is 

for (warp Gber/resin layer) 

&i(l " for (weft fiber/resin layer) 

# Equivalent thickness of resin in fiber/resin layer (warp or weft) 

Equivalent thickness of resin in all the fiber/resin layers is (1 — /i)(l — Vf)t. 

The amount allocated to each Gber/resin layer (warp or weft) in lamina is 

— ^)(1 — ^ ) ^ for (warp hber/resin layer) 

&:(! — for (weft fiber/resin layer) 

# Equivalent thickness of fiber/resin layer (warp or weft) 

This can be obtained by adding the equivalent thicknesses of the fiber and the 

resin together. 

= (1 — /u(l — l^))iCn^2i^ for (warp fiber/resin layer) 

= (1 — /^(l — y^))(^i;(l — ,^2:)i for (weft hber/resin layer) 

Once the thicknesses of the resin layers and the uni-directional composite layers 

have been determined, the next step is to determine the equivalent material properties 

for them. The resin layer is a homogeneous layer and hence it's material properties are 

those for pure resin, which are known from experiment and are given in the table 5.2. 

5.2.1 Stiffness Proper t ies for t h e Uni-Directional Composi te 

Layers 

This section illustrates the calculation of the gross material properties for the uni-

directional composite layer based on rule of mixture formula"^. In the rule of mixtures 

approach, it is assumed that there is no interaction between the two phases. There 

are only two types of material response; parallel (in which apphed strain is the same 

in both the phases) and series (in which the apphed stress is the same in both the 
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phases). The models developed are rudimentary from this point. However, despite 

this shortcoming, in the case of longitudinal modulus, rule of mixtures gives very 

reasonable results. 

Longi tudinal modulus , E i 

In the case of unit displacement apphed in the x direction, the ends of all the hbers 

are gripped tightly and move one luiit. Similarly the ends of the matrix move with the 

ends of the fibers in the x direction. Thus if there is perfect bonding between the two, 

it is reasonable to aasume that the strain held is uniform in the x direction: 

4 = 4 = C (5.1) 

where refers to the normal strain experienced by material i in the x direction, 

and subscript c, refers to the composite, f, to fiber , and m, to matrix. 

Rule of mixtures assumes that there is no interaction between fiber and matrix. 

Combining this assiunption with the homogeneity of the composite as a whole, it can 

be concluded that in the case of longitudinal loading, all of transverse stresses for hber, 

matrix and composite are exactly zero. With all the assumptions the final equation 

for can be written as. 

+ (1 - y f ) E - (5.2) 

The longitudinal modulus obtained in this case is not the same as that in the case 

of iso-strain approach. If, however, = z/'", in which case there is no interaction 

between the phages, than the iso-strain approach and the rule of mixtures approach 

give identical results. 

Transverse elastic modulus , ET 

In the rule of mixtiu-e approach the transverse elastic modulus prediction is built upon 

the assumption that each phase experiences the same stress level in the applied load 

direction, i.e. = cr̂  = cr^. By assuming no interaction between the fiber and 

90 



matrix, the total deformation in the system will be given by the volmnetric average of 

the strain on the Sber and the strain on the matrix. If there are negligible stresses in 

the other directions (no ejects of different Poisson's ratios or interaction of hber and 

matrix), then the transverse modulus can be calculated as 

(5.3) 

Longi tudinal Poisson's rat io, UTL 

When there is no fiber-matrix interaction it can be stated that the total transverse 

contraction of the body is the sum of the contractions of the individual elements. This 

leads to the relationship 

[E^(l - Vf) + + (1 - + (1 -
^TL — 

Transverse shear modulus , Gq 

(5.4) 

The rule of mixture approach to transverse shear modulus is to consider the stress Seld 

identical in both hber and matrix in the plane perpendicular to the hbers, leading to 

the result that the transverse shear modulus can be expressed as: 

CT = r (5.5) 
+ (1 - yf)G^ 

Transverse Poisson's rat io, 

Transverse Poisson's ratio can be extracted from the rule of mixtures approach 

using the conditions of transverse isotropy to de&ie this value. Hence 

— gg, — 1 (5.6) 

With respect to the present computational work table 5.2 gives the elastic properties 

of the constituents such as fiber and resin. Using the above simple model the material 
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properties for a single layer woven fabric composite plate are calculated and shown in 

table 5.3. 

5.2.2 Predic t ion of S t reng th Proper t i e s for t he Uni-Directional 

Composi te Layers 

Inspite of developments of elastic and stress analyzes, there are few techniques for pre-

diction of strength properties of composite materials. Dow and Rammath^ developed 

a strength analysis model using finite element method. They assumed sequential fail-

ure of matrix and fiber. After the matrix had failed, the contribution of the matrix 

to the composite strength was reduced. In the strength analysis, stress redistribution 

due to cracks or yarn debondings need to be considered. Boundary conditions should 

take into account the assumed defects. PoUock^ investigated the tensile strength of 

carbon/carbon composites. Based on the microscopic observation of damage, yam and 

matrix were modeled by a curved beam with supporting springs after crack initiation. 

This model is limited to the specific crack condition and thus, not suitable for other 

failure modes. 

Chamis^° presented strength formulas based on micro-structural analysis for uni-

directional composite materials, which is adopted in the present work, and can be 

written as follows. 

Longitudinal Tension ; 

(5.7) 

Longitudinal Compression 

(a) Fiber Compression 

Xc = (5.8) 

(b) Delamination/Shear 

= lOS -f- (5.9) 
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Transverse Tension 

Yt = [1- - E^jEf)] S,„, (5.10) 

Transverse Compression 

In-Plane Shear 

'5'mc (5-11) 

g = [l - - Vf)(l - (5.12) 

Where S are the strength parameters of the composite material, 

and S/c are the tensile and compressive strengths of the hber. S'^candSma are 

tensile, compressive and shear strengths of the matrix material. Ef and Gf are the 

elastic moduli of the hber material, and Gm are the elastic modnh of the matrix 

material and Vf is the fiber content by volume of the composite material. 

5.3 Stiffness Characterization of a Woven Fabric 

Ply 

Until now, in the simplified model, the thicknesses and material properties of each resin 

layer and each uni-directional layers have been determined. From this, the stiffness 

properties of the woven ply can be determined using the &rst order shear deformation 

theory. Extension to a composite plate with more than one woven fabric plies is 

straight forward; same first order shear deformation theory can be used to determine 

the stiffness properties. The simplified model for a typical composite plate with five 

woven fabric composite layers is shown in figure 5.2. Even though the present step 

is not necessary for carrying out a progressive failure analysis, the procedure outlined 

here has been used in the subsequent sections for obtciining the material properties for 

a composite plate with five woven fabric plies. The predicted material properties are 

then compared against test results to validate the correctness of the simphfied model. 
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5.4 Experimental Background for Woven Fabric Com-

posite Plates 

The experiments for the woven fabric composite plates had been conducted by Moy 

et ai. (see reference^^). The experimental procedure remains the same as that for 

uni-directional composite plates as described in section 4.7. Twenty five woven fabric 

composite plates were tested to failure to investigate the effects of material composi-

tion, method of manufacture and panel aspect ratio on strength and stiffness under 

transverse pressure loading. The woven fabric panels relevant to this research were 

plain woven with 0/90 degrees rovings. The weight density of the reinforcement was 

800 g/mm'^, the matrix was isophthalic polyester, Scott Bader Crystic-489. The panels 

were made up of five woven fabric plies, each with equal amount of fibers in the warp 

and weft directions. The fiber weight fraction was 0.27. The mechanical properties of 

the constituent materials are as shown in table 5.2. 

The three plates relevant to this research referred as plate D (size 600mm x 600), 

Plate E (size 1200mm x 600mm) and plate F (size 1800 mm x 600mm) had aspect 

ratios of 1.0, 1.50 and 2.0 respectively. All the plates had a thickness of 2.83mm. All 

plates were produced using a vacuum-assisted resin injection-moulding technique. Here 

the reinforcing fabrics were cut to size and placed in the flat mould. The mould was 

then vacuum-sealed with a flexible covering and catalysed resin was sucked into the 

mould using a vacuum pump. After the correct quantity had been injected the vacuum 

was maintained until the laminate had cured. The vacuum seal was then removed and 

the edges trimmed as necessary. Panels produced in this way are often called scrimp 

panels. Typical load-deflection curves are given in figure 5.3. Typical damage pattern 

of plate D from the photograph taken in the laboratory is shown in figure 5.4. 

5.5 Extension of the Damage Model 

In section 2, a woven fabric ply waa simplified as a combination of resin layers and uni-

directional composite layers. In section 3, the simplification procedure for a composite 

plate with woven fabric plies was discussed. With these simplifications, the progressive 
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failure methodology developed in the last chapter for uni-directional composite mate-

rials can be applied to a composite plate with woven fabric plies. Several aspects of a 

progressive failure analysis, such as material property degradation scheme, ABAQUS 

implementation and the equihbrium aspects have already been discussed in the last 

chapter in detail. Progressive failure analysis is based on the assumptions that (a) the 

damage is localized in nature and (b) the damaged material can be substituted with an 

equivalent material with degraded properties. Three forms of damage and their possi-

ble combinations are considered in this research. They are (i) matrix crack, (ii) fiber 

breakage and (iii) 6ber matrix shear. Since the plates considered were very thin, of 

short-span to thickness ratio of as large as 200, delamination was unlikely to occur and 

hence was not considered. The properties of the damaged material are adjusted as the 

loading aad progression of damage continues. Because of the large aspect ratio of the 

plates out-of -plane stresses are assumed to be in-significant and hence are neglected in 

the progressive failure emalysis. The stress analysis is done using the general purpose 

Gnite element program ABAQUS^^. A uniform mesh size of 20 x 20 (400 elements) was 

used. The progressive failure analysis methodology uses the four node shell element 

S4R of the ABAQUS element library based on first order shear deformation theory, 

due to its better performance in large deformation analysis. The element has six de-

grees of freedom(three displacement and three rotation components). The element has 

one in-plane integration point and three through-the-thickness integration points for 

each layer. In a numerically integrated 6nite element method, material properties are 

selected at Gauss integration points. Therefore in the present analysis at each Gauss 

point, damage or failure was determined by comparing the current stress state with 

a specified failure criterion. To simulate damage, material properties at each failed 

Gauss point were reduced to values representing the particular type of damage that 

had occurred as shown in table 5.1. In this table the FV(variables in ABAQUS) quan-

tities specify whether failure has occurred or not. FVl corresponds to matrix crack; 

FV1 = 1 indicates failure due to matrix crack and FV1=0 indicates no matrix crack at 

an integration point. Similarly FV2=1 represents failure due to fiber/matrix shear and 

FV3=1 indicates failure due to fiber breakage. 
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5.6 Numerical Results 

5.6.1 Material Properties Results 

Table 5.2 shows the mechanical properties for the Gber and resin which had been used 

as constituent materials for the woven fabric composite plates. The simplified model 

developed earlier in this chapter was used to calculate the material properties of the 

equivalent uni-directional composite plates. They are listed in table 5.3. To confirm the 

vahdity of the simpliSed model, the material properties are compared with test results. 

However, experimental material properties are available only for the entire woven fabric 

composite plate. Therefore the simplified model was then extended to calculate the 

material properties of the five layer woven fabric composite plate. This was performed 

using the finite element program ABAQUS. First order shear deformation theory was 

used for this purpose. 

The results for the longitudinal Young's modulus are listed in table 5.4. The 

table gives predictions for at diEerent orientations to the warp directions along with 

the test results for them. In addition, the present model is compared against those pre-

dicted by Feng^^. In Feng's work, the uni-directional composite layer is first subjected 

to in-plane strain components individually. For each individual case the constitutive 

relationship is derived. These are then super-imposed to obtain the constitutive rela-

tionship for the general strain state of the composite material. The classical laminated 

plate theory is then used for obtaining the stiffness properties of a woven fabric ply. 

It can be seen that the present method gives more accurate results than those given 

in reference^^. Comparison agciinst other simplified models in literature has not been 

shown in this table since they appear in r e f e r e n c e A l s o the main focus of this chapter 

is to Ccirry out a progressive failure cinalysis for woven fabric composite plates, rather 

than material property predictions for them. The sole purpose of developing the sim-

phfied model was to extend the progressive failure model developed in the last chapter 

to woven fabric composite plates. Table 5.5 compares the predicted shear modulus and 

Poisson's ratios for the woven fabric composite plate with those obtained in reference^^. 

For this case experimental results were not available. 

The mcirginal improvement in property predictions as compared to Feng^^'s results 



Ccin be attributed to the fact that in the later case classical lamination theory was 

used for predicting the plate properties in contract to the 6rst order shear deformation 

theory used in the present case. Also the expressions used for predicting the material 

properties for the equivalent uni-directional composite plates in reference^^ are more 

involved as compared to the rule of mixtures approach adopted in the present proce-

dure. Presently, the implementation of the rule of mixtures approach can be found in 

many commercial hnite element programs including ABAQUS. 

5.6.2 Central Deflection Results 

Figure 5.5 compares the central deflection results due to the progressive failure model, 

fhiite element melhod (with out any damage) with the experimental results. The 

progressive failure results give better predictions when compared to the finite element 

results. The error in the later case was more towards the upper end of the load-

deSection curves. In the initial stage the load deflection curve (from experiment) 

was highly nonlinear. This justifies the assumption of geometric nonlinear!ty in the 

progressive failure model. The progressive failure results were always below those of 

the finite element model (no damage). This is because damage in the former case 

reduced the structural stiffness and therefore there was more deformation at the same 

load level. 

5.6.3 Damage P a t t e r n s and Final Failure 

Figures 5.6 to 5.14 show the dcimage pattern obtained using the progressive failure 

model for plate D at different loads. The resin cracking pattern was different to that 

obtained in the uni-directional case (plate A). The first ply failure was due to matrix 

cracking. It occurred at a load of 0.02 MPa. For this no experimental value is avail-

able. However, this value seems reasonable, when compared to the first ply failure 

load for plate A (table 4.3). At 0.05 MPa, about 5 percent of material points had 

failed by matrix cracking. Unlike the uni-directional case, all the layers of the woven 

fabric composite plate had damage in the form of matrix cracking. At this load the 

crack was already advancing towards the center in the last ply. When the load was 

increased further, cracks started advancing towards the center in all the phes (figure 
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5.7). At a load of 0.10 MPa cracks also appeared along the remote transverse directions 

(x=0,x=600). Failure due to fiber-matrix shear first appeared at a load of 0.14 MPa 

in the first ply. With further increase in pressure, it propagated to the second and 

fifth ply. Gradually it was advancing to the center, although the damaged region due 

to fiber-matrix shear was concentrated in the corner regions. This is in contrast to 

the uni-directional case, where the damaged region due to fiber matrix breakage ran 

paj-allel to the x axis. In each ply the damage was symmetric. At 0.30 MPa about 28 

percent of the material points had failed by matrix cracking. Just before failure about 

58 percent of the material points had failed by matrix cracking and about 4.7 percent 

material points had failed by fiber-matrix shear. The failure occurred at a load of 0.45 

MPa. The test failure was 0.424 MPa. This is because of the simplification of the wo-

ven fabric composite plate as a stacking sequence of uni-directional composite plates. 

At this stage the fourth ply had substantial number of material points failed due to 

matrix cracking. Unlike the uni-directional case, there was no clear indication of the 

failure load for woven fabric composite plates. The damage pattern predicted in these 

figures correlate well with the experimental observations. For example, the deep black 

lines parallel to the x axis in the experimental damage pattern (figure 5.4) correspond 

to the resin crackings in figure 5.14. In this case, the ultimate failure was due to the 

eEect of both the matrix cracking failure and fiber-matrix shearing failure, whereas the 

ultimate failure in the uni-directional case was due to fiber failure. This shows that 

the weave architecture does contribute to increasing resistance to fiber failure. 

5.7 Conclusion 

In this chapter a simple theoretical model is presented for prediction of elastic properties 

of woven fabric composite plates. The model can estimate the stiffness properties of 

the woven fabric composite plate from the knowledge of the material properties of 

the constituents. A progressive failure analysis has been carried out on the simplified 

model. Comparison with experimental data haa shown to be satisfactory. 

The response of a woven fabric composite material is dependent on the constituent 

material properties, and physical location and orientation of the fiber. Therefore the 

quantification of the geometrical structure of the reinforcement affects the distribution 



of stresses in a woven fabric composite plate. In the present case, the total quantity of 

fiber in the plain weave composite layer is distributed in two uni-directional composite 

layers. This method has been seen to work well for this particular type of woven fabric 

composite material, where the curvature was too small. However in the event that 

the curvature increases, there will be the effect of stress concentrations, which have 

to be take into account while estimating the strength quantities of the woven fabric 

composite materials. 
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All Failure Modes 0 0 0 0 1 1 1 
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Table 5.2: Mechanical Properties of E-gla5s(Yarn)/polyester(Resin| 

Yam Properties Resin Properties 

Sti&iess(MPa) Ey=70000 ^^,^.=3500 

G/=26923 G^=1346 

Strength(MPa) Sy(=2400 

Strength(MPa) 5'/c=2160 5'mc=130 

5'm. = 65 

Table 5.3: StiSFness and Strength Properties of Each Layer in the Equivalent Uni-

Directional Composite Plate 

StiGhess Properties Strength Properties 

^ , (MPa) - 39875 XT(MPa)=1050 

E^(MPa) = 14181 Xc(MPa)=950 

^xy— 0-3 }^(MPa)z=55 

Ga;^(MPa) 1 = 5127 ^^=110 

S(MPa)=55 
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Table 5.4: Comparison of Longitudinal Young's Modulus 

Inclination to 

the warp direction 

(in degrees) 

E 

(Present Model) 
E (Fengi^) 

E 

(Test) 

0 27.17 27.2 27.1 

22.5 20.1 19.8 19.2 

45 15.77 15.6 15.6 

67.5 20.6 19.8 20.7 

90 27.17 27.2 27.0 
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Table 5.5: Comparison of Overall Shear Modulus and Poisson's Ratio 

Inclination to 

the warp direction G (Feng^^) (Feng^^) 
(Present Model) (Present Model) 

(in degrees) 

5X% EU &156 &157 

22.5 ^ 0 &156 0J^7 

45 11/7 11J3 &156 &151 

6^5 ^ 0 ^ 1 &156 &157 

90 5/% 5.10 (1156 0.157 
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Figure 5.1: A Woven Lamina in the Simplified Model 

w o v e n fabr i c lamina 
un id i rec t iona l l am ina 
(nomina l un id i r ec t i ona l compos i t e ) 

Figure 5.2: A Five-Layer Woven Fabric Composite Plate is Simplified as 10-Layer 

Cross-Ply Uni-Directional Composite Plate 
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Figure 5.3: Load-Central Deflection Graphs : Test Results 
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Figure 5.4: Detail of Failure Mechanism for Plate D (From Experiment) 
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Figure 5.5: Central Deflection for Plate D 
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Figure 5.6: Damage Pattern for Plate D at 0.05 MPa 
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Figure 5.12: Damage Pattern for Plate D at 0.35 MPa 
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Figure 5.14: Damage Pattern for Plate D at 0.45 MPa (Just Before Failure) 
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C h a p t e r 6 

Stress Analysis of 2-D Or tho t rop ic 

S t ruc tu re s Using t h e Bounda ry 

Element M e t h o d 

6.1 Introduction 

In the laat two chapters the progressive failure methodology baaed on the finite element 

method was applied to uni-directional and woven fabric composite structures. The 

other available nmnerical method of stress analysis is the boimdary element method. 

An important feature of the BIE method is that instead of attempting to find an 

approximate solution for the governing diEerential equation throughout the relevant 

solution domain, as in domain methods such as 6nite element or Snite di&rence ap-

proaches, the equation is converted into an integral form, often involving only integrals 

over the boundary of the solution domain. Consequently, only the boundary has to be 

discretized in order to carry out the integrations. The dimensionality of the problem 

is thereby eEectively reduced by one: a three dimensional volume problem becomes 

a two-dimensional surface one, while a two-dimensional plane problem involves only 

one-dimensional line integrations. Also, because the interior of a solution domain is 

not discretized, there is much less approximation involved in representing the solution 

variables. 

In the analysis of complex problems created by the use of composite materials a de-
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tailed and accurate calculation of stresses in the regions of rapid stress variation is often 

required for general design purposes. For these caaes where the resolution of high stress 

gradients and complex geometries is required, the boundary element method is particu-

larly well suited. The hterature available on BIE implementation in isotropic elasticity 

is large^'^'^. However it is only comparatively recently that numerical implementations 

for anisotropic problems have been reported. Rizzo and Shippy^ presented the first ap-

plication of the BEM to plane anisotropic problems, while Vogel and Rizzo^ presented 

an integral representation for three-dimensional problems. Deb and Banerjee^ have 

applied the method of particular integrals to the case of two-dimensional anisotropic 

problems in the case of inertial and centrifugal loads where a closed form solution is 

available. Deb et, af presented a BEM formulation for two and three-dimensional 

anisotropic thermo-elasticity using particular integrals. A more general formulation 

has been presented by Grundemann® based on Fourier series expansions. 

In this chapter, stress analysis of 2-D orthotropic structures is carried out using 

the boundary element method. Computational accuracy of different element types, 

such as quadratic, linear and constant, are assessed. The deformation, and gradient 

quantities such aa stresses and strains obtained, can be used in the stress-baaed or 

strain-baaed failure criteria for carrying out a failure assessment for them. An attempt 

is made to keep this chapter as self-contained as possible. The next section reviews the 

two distinct approaches for the integral equation formulation in orthotropic elasticity. 

Section 3 outlines the necessary fundamental solutions for carrying out a boundary 

element analysis. The numerical implementation aapects are discussed in section 4. 

The core of this chapter is section 5 , in which a novel method is developed for compu-

tation of singular integrals. Numerical examples are presented in section 6 and finally, 

concluding remarks are given in the last section. 

6.2 Integral Equation Approaches for 2-D Orthotropic 

Plane Problems 

Various approaches to the numerical implementation of BIE in anisotropic elasticity 

can be found in the literature. Broadly they can be grouped into two categories. 
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In the hrst, the isotropic fundamental solution (Kelvin's solution) is stiD used. This 

results in a volume integral term associated with the anisotropy of the material, which 

is numerically treated by discretizing the domain into internal cells^. In the second 

category, anisotropic fundamental solutions similar to Kelvin's solution for isotropic 

elasticity are used. These fundamental solutions can be based on functions of either 

the real variable or the complex vajiable. 

Rizzo ajid Shippy"^ first used the two-dimensional anisotropic fundamental solution 

presented by Green^° in a real variable direct boundary integral equation formulation. 

Constant elements were used in modeling the geometry and approximating the field 

variables such as displacements and tractions. Mahajerin and Sikarskie^^ used BIE 

based on real variables for calculating stress concentration factors in double lap joints 

for different hole sizes. Constant elements were used in the numerical implementa-

tion. Vable and Sikarskie^^ presented analytical expressions for integrals of Green's 

fimctions for BIE based on real variables. BIE based on the real variable approach 

was also used by Benjumea and Sikarskie^^. Snyder and Cruse^^ were the first to use 

the complex variable anisotropic fundamental solution for determining stress intensity 

factors in hneaj elaatic, finite ajiisotropic plates under conditions of plaae stress or 

plane strain and containing a single traction free crack. This spurred fiurther work 

based on the complex variable fundamental solutions. Tan et, used the BIE based 

on complex variable fundamental solutions for solving some inclusion problems. Tan 

and Gao^^ used the BIE method to solve stress concentration problems. Lee and Mal^^ 

presented a complex-variable approach, where the integral equations were discretized 

in the complex plane. Perez and Wrobel^ developed an alternative integral-equation 

formulation for the numerical analysis of homogeneous anisotropic linear elastostatic 

problems. This led to a form of Somigliana's identity which included a domain term 

that accounts for anisotropy of the material. 
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6.3 The BIE Method For Plane Orthotropic Elas-

ticity 

The development of the boundary element method for orthotropic materials under 

plane stress follows the same steps as in isotropic elasticity^'^'^. It is based on unit load 

solutions in an in&nite body known as the fundamental solutions. Use of these solutions 

with the Betti-Rayleigh reciprocal work theorem and carrying out the appropriate 

mathematical limiting operations will result in the BIE for the displacements at an 

interior point p due to tractions and displacements on the surface at a boundary point 

Q. In the absence of body forces it can be written as follows: 

(p) + ^ ^ Q)4(0)c(r(0) (6.1) 

where 'Uk(p) are the displacements in the directions at the interior point p, 

and the displacements and tractions respectively at the boundary point Q, 

and the kernel functions UU and TM are unit load solutions in an infinite domain and 

are as given in the next two subsections. Prom the expressions for the fundamental 

solutions it can be inferred that the first integral in equation (6.1) has ^ singularity 

and the second integral has log ^ singularity when p approaches the boundary of the 

domain. 

6.3.1 The Real Variable Approach 

For a homogeneous orthotropic body under plane stress, use of Hooke's law, the equa-

tions of equilibrium and the compatibility conditions result in the governing equation 

+ (6.2) 

Where are the elastic comphances of the material. In terms of engineering 

constants, these compliances may be expressed as: 

5 ' i i ^ l / E i ; 5'22 = 1/-B'2 
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6'66 = 1/Gi2; = (6.3) 

If equation 6.2 is re-written as: 

92 

then it can be shown that the satisfy the following equations: 

52 
^ = 0 (6.4) 

«! + 0:2 — (25̂ 12 + <5̂66) /'5'22 

aia2 = 'S'ii/'S'22 

(6.5) 

(6 .6) 

Here the a,; are taken to be real and positive which is true for a large number of 

materials including those materials for which results are reported. 

Thus, the solution of a two-dimensional problem reduces to finding a solution of 

equation (6.4) that satisfies the boundary conditions of the problem. 

The stress function which satisfies equation (6.4) and corresponds to an isolated 

force at the origin in an infinite sheet can be found in (equation. 4.1 of) Green's work^°. 

The displacement field corresponding to this stress function has been derived by Rizzo 

and Shippy^ and is written as: 

log ri - log 7-2 1^21(71 

2) cti" log ri - 0:2' ^2 ^og ̂ 2 

(6.7) 

Here ^ ajid is the magnitude of the force components, associated with 

the stress function, at the origin, acting in the positive direction , as identified by 

Green^^, and is given by: 

= 2'7r(ai - a2)S22 (6.8) 

Other constants are given by: 

— 5'l2 — )22 (6.9) 
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Tj" — + Q!j $2 (6.10) 

= arctan(z2/\/^a;i) (6-11) 

Di&rentiation of the above displacement Held with respect to zi and ^2 and snb-

stitution in Hooke's law results in the fundamental traction fields due to concentrated 

loads at the origin of the coordinate system. These can be written as follows: 

71, - (6.12) 

where 

= y^a;iM2 y=a;2ni (6.13) 

and Tii are the two components of the miit outward normal. 

6.3.2 T h e C o m p l e x Variable A p p r o a c h 

This approach also originates from equation (6.2). By introducing operator D,,,(a 

1,2,3,4), as 

822 

equation (6.2) becomes 

DiD2D3D4(^) = 0 (6.14) 

and are the four roots of the characteristic equation 

— SiQfx̂  + (2512 + SQQ)/!̂  — S'26/̂  + S22 = 0 (6.15) 

Where Sig = = 0 for an orthotropic material. 

Lekhnitskii^^ has shown that the four roots of this equation are never real and are 

always distinct so long as the material is not isotropic. They may be denoted by 

— (Xj "f" 
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; = 1,2 (6.16) 

Where i = y (—1) and Pj > 0 from thermodynamic considerations. Thus the 

characteristic directions may be denoted by 

Zj = zi + J = 1,2 (6.17) 

and their complex conjugates. 

With this background and following the usual definitions of the fundamental so-

lutions; point source solution in an infinite sheet, the explicit expressions for the dis-

placement and traction kernel functions can be derived. These expressions have been 

derived in reference^''. They are given below. 

[/w = + Pz2at2^o^(z2) A, / = 1, 2 (6.18) 

Tj;;! = + //20t2/z2] - 2n2.Re[;Uia&i/zi + A'2at2/z2] (6.19) 

7i.2 — +)U2at2/^2] ^ 2n2-^6[ati/^i + ^^2/^2] A: — 1,2 (6.20) 

Where the 6rst subscript refers to the direction of the displacement of the boundary 

point Q caused by a unit load at the interior load point p in the direction given by the 

the second subscript. 

6.4 Numerical Implementation 

To solve the BIE, equation (6.1) numerically, the boundary of the solution domain 

may be divided into a series of line elements, each with three nodes. The boundciry 

geometry, displacements and tractions over each of these elements may be assumed to 

vary, as in the present work, in a quadratic manner. Substitution of these isoparametric 

representations into equation (6.1) will result in a set of linear algebraic equations for 

the unknown displacements and tractions at the nodes on the boundary of the solution 

domain. These linear algebraic equations may then be solved by standard matrix 

solution techniques. 
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6.5 Numerical Integration 

The accuracy of the boundary element method for elastostatics problems is critically 

dependent upon the proper evaluation of the boundary integrals. These integrals, 

which involve the fundamental solution and element shape functions, present, in two-

dimensional elasticity, a singular behavior of the order log ^ and ^ for the displacements 

and tractions fimdamental solutions respectively, where r is the distance from a source 

point to the element under evaluation. 

The use of the Gaussian quadrature integration rule has been shown to give sat-

isfactory results when the soiurce point is far from the field element over which the 

integration is being carried out. For the case when the source point and the held point 

are coincident (singular integrals) or they are at a short distance in comparison with 

the size of the element (nearly singular integrals) various numerical integration schemes 

have been used over the years in order to hmit the error of the numerical integration 

required. It was found that accuracy can be maintained with some degree of com-

putational efficiency by methods that test the relative proximity of source points and 

boundary elements being integrated, and strategically assign the number and location 

of integration points to be employed in the integrations. Generally, algorithms that 

exploit this concept have rehed on either an element subdivision such as the works 

of L achat and Watson^^ and Jun et or a co-ordinate transformation technique as 

presented by Telles^°. 

The use of Taylor series expansion proposed originally for singular integrals by 

Aliabadi et have been receiving a great deal of attention lately with the works of 

Guiggiani and Gigante^^ and Guiggiani et on a general formulation for singular 

and hyper-singular integrals and Cruse^'^ for near singular integrals. 

The earhest approach for calculating the strongly singular integrals has been the 

use of the rigid body motion technique^^ that indirectly gives the sum of these integrals 

and the free term coefficients. Another approach has been to regularize the singular 

integral equations in which the strength of the highest singularity is reduced by order 

one. The literature available on regularization techniques is too extensive to discuss 

here. For weakly singular integrals, numerical techniques, including special weighted 

quadratures and mapping methods have been reported in the hterature. TanaJca et af ^ 
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have summarized the regularization procedures for both singular and hyper-singular 

integral equations that have appeared in the literature and therefore no attempt is 

made here to discuss these techniques. It is evident that mathematical similarity often 

exists in these techniques. In a series of papers Guiggiani et a7̂ 3,27,28,22 tried to 

evaluate the strongly singular and hyper-singular integrals directly. In these papers 

the original boundary is recast with an exclusion zone and a spherical boundary 

bump Se (figure 6.1). Integration over is performed analytically, independent of 

discretization. For calculating the limit of the integral over F — , the exclusion 

zone is mapped on to the intrinsic coordinate space and the singular integrands are 

expanded into Laurent series about the singular point. The singular integrals in the 

series expansion are evaluated analytically with canceling of the divergent terms, the 

limit is taken. 

The rest of this section briefly describes the computational methodology adopted 

for computing the singular integrals in 2-D BEM. For more details, reference can be 

made to Padhi et 

Because of the singular nature of the fundamental solutions, equation (6.1) has 

to be set up in a limiting form to obtain the boundary integral equation suitable for 

numerical implementation. Assuming the body can be represented as shown in figure 

6.1 with the point P (which is really a boundary point) as an internal point surrounded 

by part of a spherical surface of radius e, equation (6.1) can be written as 

y rw(P ,Q)« t (Q) ( f r (Q)= y (6.21) 
r-BF+Se r—E.f+Sf 

As discussed in references^^'^^ , the surrounding zone need not be a spherical 

surface. To arrive at the boundary integral equation, the limit of equation (6.21) has 

to be found as e —)• 0. If the integrals in equation (6.21) are broken into summation of 

integrals over the regions F — and and their limits as limg^o are studied, it can 

be shown that the limit quantity which often needs special treatment is 

7 = lim y rw(f ,Q)«t(Q)c^r(Q) (6.22) 
r - e . 
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6.5.1 Di rec t N u m e r i c a l Eva lua t ion of t h e Limit 

The limiting integral is evaluated using Euler's transformation technique as follows. 

Even though the individual integrands in the right hand side of equation (6.21) are not 

deSned at e = 0, the integral quantity I exists and can be evaluated without evaluating 

the integrands at the singular point. 

A sequence of values of e decreasing in magnitude cind approaching but not equal to 

zero are chosen. These values can be represented as Go, ei, 62...En and the corresponding 

finite integral values can be represented as Iq, Ii, The limit of this sequence, 

hmn-^oo is the desired quantity, and is calculated as follows. If a new sequence is 

formed as 

A — ^0, ̂ 2 — A, ' ' " -^n-1 (6.23) 

then 

lim 1„ — IQ + lim — IQ + I2 — h + • • • In — In-I) (6.24) 
n—>00 n—>30 

The second part of the right hand side can be approximated &om n di&rence 

quantities using Euler's transformation technique (see appendix) which gives an infinite 

sum through finite sampling as 

lim ill — I2 ~ Ii In ~ In-i) — EulerSum (Ii — IQ I2 — Ii 'sln — In-i) 
n—>-00 ^ ^ 

(6.25) 

Once the approximated infinite sum is calculated, it is back substituted in equation 

(6.24) and the hmiting value of the integral is found. 

6.5.2 C o m p u t e r I m p l e m e n t a t i o n 

The above algorithm for obtaining the limit of a function has been implemented in the 

symbolic computer program Mathematica 3.0 as a standcird AddOn Package. The 

corresponding function is NLimit. All the limit integrals are evaluated directly using 

the Euler's transformation technique. No unbounded terms arise when the singular 

point p is taken to the boundary, since the unbounded divergent terms cancel each other 
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out. The implementation of Euler's transformation technique for Ending an infinite sum 

makes no assumptions regarding the strength of singularity or dimensionality of the 

problem. Therefore it can be extended to more complicated 3-D and hyper-singular 

formulations. The number of finite terms to choose in the Euler's transformation 

technique depends on rate of convergence of the function for which the limit is to be 

evaluated. In the present analysis, Hve terms were satisfactory. 

The computing work was done on a Silicon Graphics Work Station running under 

Irix 6.0 operating system with an 195 MHZ IP28 Iris processor with 128 Mbytes of 

main memory. 

6.6 Numerical Examples 

Four examples are considered for illustration purposes. In all cases three diSerent 

element types; constant, linear and quadratic are studied for comparison purposes. 

Furthermore, in each problem, the number of nodes is kept constant for all the three 

element types, so as to attain a realistic comparison of numerical eSciencies. No units 

have been chosen so that any compatible set of units, whether SI or Imperial, can be 

used provided they are consistent. Also in the examples whenever boimdary stresses are 

determined, the stresses along the tangential direction to the boundary are determined 

from differentiation of the shape functions and use of the constitutive equations. 

Example 1: This deals with an infinite plate with a circular hole, at the boundary 

of which uniform hydrostatic pressure is applied. The material properties are 

E'z = 1.2; 7̂̂  = 0.6 

— 0.7; = 0.071 

This problem is solved using 12 quadratic boundary elements along the hole bound-

ary. Following usual boundary element discretization, since the domain is in&nite, the 

node numbering is done in reverse (clockwise) direction. To compare the numerical 

eHiciency of the present approach with the results obtained in hterature, the same prob-

lem is solved with 24 hnear elements and 24 constant elements, so that the number of 

nodes remains same. 
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Figure 6.2 shows the numerical results for hoop stress (crg@) obtained using the 

present approach along with the analytical results due to Lekhntiskii^^. The error is 

found to be less than 0.5 % when quadratic elements are used, whereas it is about 

3% with linear elements and more than 10% with constant elements. It may be noted 

that although accurate results were obtained by Rizzo and Shippy'^, considerably more 

nodes were used (24 nodes for one quarter of the hole), which will increase both the 

computational time and the computer storage space signiScantly. 

Figure 6.3 compares the deformed shape of one quarter of the hole boundary of 

unit radius with the exact one, which is an elhpse^^. A' and B' represent the deformed 

positions of the corresponding points A and B on the hole boimdary. The deformed 

shape obtained using quadratic, linear and constant elements are shown in the same 

figure, with the average error being 0.5%, 3% and 10% respectively. 

Example 2: This deals with an infinite orthotropic plate containing a circular hole 

at the surface of which tangential stress is applied(hgure 6.4). The boundary element 

mesh and the material properties remain the same as in example 1. Figure 6.4 shows 

the hoop stress distribution along the boundary of the hole. Results are given for one 

quarter of the hole, at 7.5° intervals proceeding counterclockwise around the edge of 

the hole starting at the x-axis. As can be seen, the present approach gives an error 

less than about 0.5%. 

Example 3: Here the inhnite plate, with a circular hole at the center is subjected to 

remote tension in the x-direction. Again the boundary element discretization remains 

the same as in example 1. Two cases are considered. First the grains (fibers) are 

oriented in the x-direction(E'a; > E^). Figure 6.5 shows the numerical results for the 

hoop stress CJQO for this case. In the second case the grains (fibers) are oriented in the 

y-direction(Ez < ^^) and the corresponding numerical results for hoop stress crgg at 

the hole boundary are shown in hgure 6.6. In both Ccises exact solutions are taken from 

Lekhntiskii^^. For both cases the error when using quadratic elements was less than 

1%, while it was about 3% and 10% respectively when hnear and constant elements 

were used. 

Example 4: This considers an infinitely long(in z direction) orthotropic plate 

simply supported along the long edges(x=0, x=L) and subjected to sinusoidally dis-
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tributed load at the top surface of the form g(z) = %sin(7rz/Z,). It is assumed to be 

under plane strain condition. 

The material parameters for this problem are as follows: 

- 25 X 10^ Ey = = lO'' 

= 0.5 X 10^ = 10^ 

x̂y — '̂J:Z — ŷz — 0.25 

To compare the present results with Pagano's 3-D elasticity solution^^ the stresses 

and displacements are normalized in the form of Pagano and are written as: 

w ~ — : y = T and = 
90^" ' ^ A " g o 

where w is the maximum central defection, h is plate thickness and go is the max-

imum amphtude of the sinusoidally distributed load at the top surface. Tliis problem 

is solved using 8 quadratic elements(for aspect ratio L/h=4), although more elements 

were added for higher aspect ratios. Since the problem is one of plane strain modlEed 

compliances were used. 

Figure 6.7 compares the normalized maximum defection obtained by the present 

approach using quadratic, Hnear and constant elements with the results given by the 

3-D elasticity solution^^ for different L/h ratios. As can be seen present BEM results 

with quadratic elements closely follow the elasticity solution with less than 0.5% error, 

while the errors using linear and constant elements are 3% and 10% respectively. 

Figure 6.8 compares the normalized shear stress across the depth of the plate ob-

tained by the present approach with that given by the 3-D elasticity solution^^. Again 

present numerical solution shows an error of less than 0.5% when quadratic elements 

are used. However in this case constant elements gave more accurate results(error 10%) 

than the hnear ones(error 25%) 
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6.7 Conclusion 

In this chapter Euler's transformation technique has been successfully used for stress 

analysis of 2-D orthotropic structures using the boundeiry element method. A compar-

ative study has been made of the BIB procedure using constant, linear and quadratic 

elements in the discretization. For problems involving bending, in which a rapidly vary-

ing traction field is prescribed as the boundary condition, it was found that both con-

stant and linear elements gave highly in-accurate results, while the error with quadratic 

elements was less than 1%. 

In general, the use of the Euler' transformation technique requires the choice of a 

number of terms to use in the limit evaluation process. Despite having been developed 

for two-dimensional anisotropic elasticity, this technique is completely general and can, 

therefore, be applied to a wide range of problems from potential theory to elasticity. 

To the author's knowledge there is no other scheme with similar approach available 

in the BEM literature, making this technique a completely original approach to tackle 

the problem of computation of singular integrals in boundary element method. 

The stress measures obtained from the present boundary element procedure, can 

be post-processed for various purposes. For example, composite failure criteria can be 

applied to these quantities and a failure assessment for 2-D orthotropic structures can 

be made. However, presently no results are presented in this regard, since the ziim of 

this chapter was to develop a computational methodology for computation of singular 

integrals. 
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Figure 6.1: Exclusion of the singular point P by a vanishing neighbourhood 5'; 
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Figure 6.2: Normahzed Tangential Stress at the Hole Boundary-(In6nite Plate With a 

Circular Hole)-Subjected to Hydrostatic Stress 
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Exact Solution 

* 12 Quadratic Elements 

X 24 Linear Elements 

0 24 Constant Elements 

Figure 6.3: Deformed Shape of One Quarter of the Inner Boundary with Unit Radius 

(Infinite Plate With a Circular HoIe)-Subjected to Hydrostatic Stress 
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Figure 6.4: Normalized Tangential Stress at the Hole Boundary (Infinite Plate With a 

Circular Hole)-Subjected to Tangential Stresses 
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Figure 6.5: Normalized Tangential Stress at the Hole Boundary-(Infinite Plate With 

a Circular Hole)-Fibers Oriented Along the X-Direction-Subjected to Remote Tension 

in X-Direction 
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Figure 6.G: Normalized Tangential Stress at the Hole Boundary-(In6nite Plate With 

a Circular Hole)-Fibers Oriented Along the Y-Direction-Subjected to Remote Tension 

in X-Direction 
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Figure 6.7: Normalized Maximimi Defection Vs. Length/Span Ratio, Infinitely Long 

Plate Under Sinusoidally Distributed Load 
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Figure 6.8: Normalized Transverse Shear Stress Distribution Across the Depth, at 

L/h=4, Infinitely Long Plate Under Sinusoidally Distributed Load 
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C h a p t e r 7 

Discussions and Fu tu re Pro jec t ions 

7.1 Discussions 

A finite element based progressive failure methodology has been developed for predict-

ing the nonlinear response, first ply failure and ultimate collapse strength of composite 

plates when loaded in bending. This progressive failure methodology is baaed on large 

deformation theory and contains most of the well established composite failure criteria. 

The progressive failure analysis uses sheU elements based on hrst order shear defor-

mation theory to calculate the in-plane stresses. The Snite element program ABAQUS 

is used for this purpose. The different failure criteria are compared and assessed by 

performing analyzes on uni-directional and woven fabric composite structures. The 

model gives the exact location of occurance of the Erst ply failure. It Ccin provide the 

information about the extent of damage and residual strength at any stage of loading. 

The first class of laminated composite structures to be analyzed was uni-directional 

composite structures. Studies were performed to examine the effect of aspect ratios, 

load increment size and choice of failure criterion on the first ply failure load, non-

hnear response and the ultimate collapse strength of these composite structures. The 

deformation results and the damage patterns obtained in the munerical model were 

compared against experimental results. Large number of load steps is taken to predict 

the Erst ply faihu-e load correctly. Based on the numerical studies, most suitable 

faihu-e criteria for predicting the first ply failure load and the ultimate collapse loads 

are suggested. 
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The next class of composite structures analyzed was woven fabric composite plates. 

A simpliEed model was developed for analyzing this class of structures. The correctness 

of the simpliEed model was first demonstrated by comparing the material properties 

predicted by this model with those predicted by other models and with experimental 

results. The rule of mixtures approach and the first order shear deformation theory have 

been used while developing the simplified model. The model can provide the elastic 

material properties for a laminated composite plates with any number of woven fabric 

plies. The material properties results in this case closely followed the experimental 

values for longitudinal Young's modulus, shear modulus and the Poisson's ratio. The 

progressive failure methodology developed for uni-directional composite plates was then 

extended to the woven fabric composite plates. The propagation of damage for a square 

woven fabric composite plate was studied. This was compared against the experimental 

observations and contrasted against the damage patterns of the uni-directional ones. 

The simplified model is very simple to code in contrast to the finite-element-based 

micro mechanics approach which is computationally too expensive. 

Lastly stress analysis of 2-D orthotropic structures was carried out using the bound-

ary element method. A novel technique was developed for computation of the singular 

integrals in the BEM. The primary advantages of this technique are that the singular 

integrals are computed directly and numerically, without any analytical computations, 

and that corners and edges present no difficulties. These three features should make 

this approach attractive for most apphcations. The limit to the boundary provided 

a mathematically sound and physically sensible definition of the singular integrals, 

and leads to a direct, and completely general, evaluation algorithm. In the authors 

opinion, this is much simpler, conceptually and computationally, than 'regularizing' a 

non-existent integral (e.g., an 'exclusion zone' analysis). The task of carrying out the 

limiting process, admittedly onerous by hand, is conveniently automated with symbolic 

computation. The development of this method was motivated by the application of the 

boundary element method for complex laminated composite structures. Although this 

application involved the computation of singular integrals in two-dimensional elesto-

statics, there is no difficulty in extending this work to three dimensions. Once the 

procedures have been worked out for one apphcation, it is relatively easy to modify the 

Matjiematjca scripts to generate the needed formulaa for another application. This is 
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due to the fact that the nature of the corresponding kernel singularity, can be found, 

identical in other engineering applications. Thus, in creating a 3-D code, the existence 

of the 2-D script could be exploited to considerably shorten the development time. 

The stress measures, obtained from using the boundary element method, can be 

postprocessed for carrying out a failure analysis for 2-D orthotropic structures. How-

ever, in this research, this was not investigated since the focus of the research related 

to the BEM was on the computational aspects rather than failure studies. The aim 

was to develop computational methodologies for efficient computation of singular in-

tegrals. Failure analysis for these 2-D orthotropic structures could be carried out very 

efficiently using the finite element method. However, again no attempt was made for 

failure analysis in this caae, since more complex structures have already been analyzed 

in chapters 3 and 4. 

The novelty aspects of this research are as follows. 

# A computational damage model was developed for progressive failure analysis 

of laminated composite structures in bending with (1) geometric non-linearity, 

(2) large strains and large rotations, (3) material non-linearity because of local 

damage, (4) presence of bi-axial stresses. The numerical results are validated 

against test values. To the author's knowledge, there had been no similar work 

in the past literatures. 

# The damage model was extended to laminated composite plates with plain woven 

fabric plies. A simplified model was developed in which a woven ply could be 

represented as a combination of pure resin layers and uni-directional composite 

layers. Even though this kind approach for woven fabric structures is not new, 

according to the author's view, the present simplified model is the simplest to 

code. 

# A novel technique was developed for the computation of singular integrals in 

the two-dimensional boundary element method (BEM). In the author's opinion, 

this was the first attempt for directly and numerically computing the singular 

integrals in the boundary element method. 
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7.2 Future Research 

7.2.1 A Novel F in i te E lemen t for Progress ive D a m a g e Anal-

ysis of L a m i n a t e d C o m p o s i t e S t r u c t u r e s 

In an experiment the damage development is an evolution process. In the present 

numerical model (chapter 4) this was approximated with a set of discrete damage 

quantities. The present computational damage model was developed using the 6nite 

element program ABAQUS. The damage parameters were computed as a function of 

stress measures. The stress measures, however, are calculated from the other indepen-

dent quantities (degrees of freedom) such as displacements and rotations. However, 

truly speaking damage development in a continuum is more of an independent process. 

Therefore just hke displacements and rotations, it needs a unique presence of it's own 

in a finite element analysis. In other words, a true damage analysis caji be performed 

if damage can be interpreted as a new degree of freedom, which the traditional 5-

nite elements do not have. The usual element development processes and the relevant 

numericcd tests (patch tests) can be performed. The quantlGcation of this degree of 

freedom will depend upon the appropriate damage quantities obtained from standard 

experiments. 

7.2.2 Micro-Mechanics Based Progress ive Fai lure Analysis of 

Woven Fabr ic C o m p o s i t e S t r u c t u r e s 

In chapter 5, a simplified model was developed for the analysis of woven fabric compos-

ite plates. However the model cannot carry out a detailed stress analysis at the micro 

level. For this a finite element based micro-mechanic model of woven fabric composite 

plates can be developed. The sohd modelling program PATRAN can be used for this 

purpose. In this case the model involved will be three dimensional in nature. Once the 

6nite element model is generated, the damage model developed in chapter 4 can be 

appHed to the finite element model for studying the damage propagation and failure 

analysis of woven composites. However, in this case the damage model also has to 

be three-dimensional in nature and there has to be separate damage models for the 
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Gber and resin. The computational cost in this case is expected to be much higher. 

However, with the availability of the parallel computers, this task seems to be within 

the reach of research engineers. 

7.2.3 E x p e r i m e n t a l Cha rac t e r i za t ions of L a m i n a t e d Compos -

ite S t r u c t u r e s 

From chapter 5, section 5.6.1, it was clear that there were insufficient experimental 

data on material properties for comparison purposes. Test results are important for 

validation purposes, especially for composite materials, for which, &n specific cases, 

analytic results are not available. This is true for composite materials with complex 

reinforcements, such as woven fabric composites. Model tests, such as uniaxial tension 

tests, pure shear tests and biaxial tension tests have been standardized and are common 

for composite materials. Certain test procedures such as the acoustic emision energy 

methods are used for detecting damage in a composite material. However, these are 

not enough. More experiments, especially for woven fabric composite materials are 

necessary for an efficient validation of computational models. 

7.2.4 I m p r o v e d Stress C o m p u t a t i o n of Compos i t e S t r u c t u r e s 

Using t h e Advanced I m p l e m e n t a t i o n of t h e B o u n d a r y 

E lemen t M e t h o d 

In chapter 6, a novel technique of computing the singular integrals in 2-D BEM was 

presented. Using this technique, primary quantities such as displacements for 2-D 

orthotropic structures were determined. The gradient quantities such as strains and 

stresses were determined with differentiation of the shape functions and use of the 

Hooke's laws. This process introduces extra errors associated with the shape functions 

in the discretization procedure. In the hyper-singular formulations of the boundary 

element method, stresses are computed more accurately. However, traditionally, just 

like singular integrals, computation of hyper-singular integrals involve somekind of an-

alytic procedures. According to the author's opinion, the method developed in chapter 

6, can be extended to hyper-singular integrals for a direct numerical computation of the 
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integral quantities. It is expected that in this case, the direct numerical computation 

procedure will provide more meaningful interpretation of the hyper-singular integrals. 

7.2.5 Integration of the Finite Element Method and the Bound-

a ry E l e m e n t M e t h o d for Efficient N u m e r i c a l C h a r a c t e r -

izat ion of C o m p o s i t e Ma te r i a l s 

In the present research, the finite element method was applied for failure prediction of 

laminated and woven fabric composite plates. The boundary element method was used 

for computation of deformations and stresses in 2-D ortho tropic structures. The logicaJ 

extension to this research is to integrate FEM and BEM for computationally efficient 

damage model development for laminated composite structures. The main advantage 

off'ered by the FEM is it's ability to solve complex three dimensional problems more 

efficiently in the nonlinear deformation range. The main advantage off'ered by the BEM 

is it's superior numerical computational capability for simple domains and for the linear 

material behavior. The integration of the two methods will exploit the advantages 

offered by both the techniques. Since most practical problems have complex geometries 

and boundary conditions, the finite element method can be used for arriving at a global 

response. The structure can be divided into certain subdomians. The locations of these 

sub-domains can be strategically chosen. From the global finite element solution, the 

nodal force and displacement vectors can be transformed to the boundary of the sub-

domains. The sub-domain is now ready with all the informations necessary to carry 

out a boundary element analysis. In this way the state of stresses and the subsequent 

damage parameters in the sub-domain can be computed more accurately using the 

BEM. Even though sub-domain techniques are not knew as such, the application of 

the BEM at the sub-domain level can be a novel approach. In the event of a damage 

analysis with geometric nonlinear!ty, the load history can be split into several sub-steps. 

The linearized sub-step can be analyzed as described above. 
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C h a p t e r 8 

Conclusion 

This research was concerned with the numerical computation aspects of deformations, 

stresses, failure loads and damage patterns for laminated and two dimensional compos-

ite structures including plain woven fabric composite plates. In each cage, numerical 

results were compared with experimental values or analytical solutions. 

From the research carried out the following conclusions seem justiSed. 

# Numerical failure modeling of composite structures could give much more infor-

mation on the stress, damage and failure patterns of composite structures. No 

other existing techniques including the experimental methods would have been 

able to carry out such a rigorous study. 

# For laminated composite structures in bending, in general, the ultimate failure 

load was found to be much higher than the first ply failure load. There was 

a pronounced e&ct of geometric nonlinearity, especially in the initial stage of 

loading. 

# The curvature of the weave pattern in the woven fabric composite plates consid-

ered in this research was not significant. Therefore it is difEcult to make con-

clusive comments on the effect of weave on the stiffness and strength for them. 

However, from the present research, it seems that there is an improvement in 

resistance to fiber failure for woven fabric composite plates. 

# The method developed in chapter 6, for computation of singular integrals, was 
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novel, conceptually simple and easy to implement in a computer. It gave an 

added contribution towards the physical interpretation of the singular integrals. 
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A p p e n d i x A 

In t roduc t ion to A B A Q U S / S t a n d a r d 

A.0.6 Overview 

ABAQUS/Standard is a general-purpose finite element program designed specifically 

for advanced structural analysis applications. A wide variety of problems can be ad-

dressed with the available modeling tools. ABAQUS/Stajidard is designed to run 

effectively on computers ranging from desktop systems running Windows NT or UNIX 

to departmental servers and supercomputers. Structures and continua can be modeled. 

One, tow and three-dimensional continuum elements are provided, as well as beams, 

membranes and shells. ABAQUS/Standard is a modular code: any combination of 

elements, each with any appropriate material model, can be used in the same analysis. 

A. 0.7 Fea tu res 

ABAQUS/Standard uses a high-performance, sparse, multi-front equation solver to 

solve both symmetric and unsymmetric systems of equations and automatically uses 

the unsynnnetric solution scheme when the physics of a problem demands it. 

A.0.8 Nonl inear Analyses 

In nonlinear problems the challenge is to provide a convergent solution at minimum 

cost. This challenge is addressed by automatic control of the time incrementation, 

which is provided for all relevant analysis procedures. The user defines a "step" ( a 
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portion of the analysis history). ABAQUS/Standard then automatically selects the 

convergence tolerances and the increments required for the step. This approach is 

highly e&ctive for nonlinear problems because the model's response may change dras-

tically during an analysis step. Automatic control allows nonlinear problems to be run 

with confidence without extensive experience with the problem. 

The user divides the loading histories into steps solely on the basis of convenience. 

For a purely linear analysis each step is essentially a load case. In a nonlinear analysis 

each step is typically one stage in the overall loading history. A Single analysis type is 

specihed within each step. 

In a nonlinear analysis the initial condition for each step is the state of the model 

at the end of the previous step. This dependency provides a convenient method 

for following complex loading histories. Each step is subdivided into increments ; 

in each increment ABAQ US / Standard iterates for equilibrium, using the full New-

ton method in most cases. The convergence criteria are determined automatically by 

ABAQ US/Standard, although the user can override these tolerances. 

A.0.9 S ta t ic Analysis 

Two approaches for static analysis are available. One is for cases in which a prescribed 

loading history must be followed. With this approach there is an option for ABAQUS 

to control localized unstable behavior automatically. The alternative is an arc-length 

(modified Riks) method, which is provided for globally unstable static problems such 

as post-collapse or post-buckhng cases. 

A.0.10 A B A Q U S E lemen t s 

For three-dimensional apphcations 3- and 6-node triangular and 4-, 8-, and 9-node 

quadrilateral shells are available. All shell elements can model layered composites. 

The reference surface of the element, defined by the position of the nodes, can be 

placed at any location through the thickness of the shell. 
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A.0 .11 N u m e r i c a l In t eg ra t i on 

Full-integration triangular shells and full- or reduced- integration quadrilateral shells 

aje available. The shell section stiShess can be recalculated throughout an analysis 

to capture nonlinear material behavior, or it can be integrated once for economic 

solutions involving material response. In either case nonlinear geometric e&cts can be 

included. The shell elements in ABAQUS are true doubly curved shells. Both shear 

flexible ("thick") and "thin" shell elements are provided. The initial thickness can be 

provided on an element or nodal basis, and the Anal thickness distribution can be 

recovered. 

A.0.12 Solut ion Techniques 

By default, ABAQUS/Standard uses a multi-frontal, block elimination technique, avail-

able only for both symmetric and unsymmetric matrices. This solver is highly opti-

mized to minimize the CPU time and disk space required for sparse problems. It takes 

full advantage of parallel capabilities on high performance computers. 

The user can also access a frontal solver that includes an automatic, internal, wave-

front minimization algorithm. The user can choose any node and element and node 

numbering without invoking a solution time penalty. 

A.0.13 G e o m e t r i c Nonl inea r i ty 

ABAQUS/Standard uses complete, consistent kinematics for finite-strain calculations. 

Lagrangian and updated Lagrangian formulations are used for finite-strain elastic and 

elastic-plastic problems, respectively. ABAQUS/Standard generally uses the fuU New-

ton method for the solution of nonlinear equations. This approach is especially elective 

for the highly nonlinear cases that are commonly modeled with the program. Modihed 

Newton methods are also available. 
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A.0.14 P r o b l e m Size and P e r f o r m a n c e 

ABAQUS/Standard has no built-in limits on problem size. Smaller problems run en-

tirely in main memory. Buffering to secondary storage occurs automatically as the 

problem size increases. ABAQUS/Standard performs efficiently on a wide range of 

computers and is particularly effective for large problems running on advanced com-

puter circhitectTires. 
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A p p e n d i x B 

Summat ion of an Infini te Series via 

F in i te Sampling Using Euler ' s 

Transformat ion Technique 

Given any series 

6* = O-o + + <22 + <̂3 + • ' • (^n-1 4" (̂71 4" ' ' ' (B.l) 

de6ne z — so that the series can be re-written as 
"n-l ' 

S = + + + • • • (B.2) 
CC KC 2/ ^ ^ 

where n is the number of Snite terms used to give an approximation to the infnite 

sum. The series can be re-written as 

S — UQ + Uix + U2X^ + • • •, (B.3) 

where uo = Oo,'(̂ i = ^,^2 = ^ so on. Using the relationships Eiiq = 

— 1(2, ^^^0 = ^3 ; then symbohcally 

g - ( l -t- E z -k 

where E is a shift operator such that = / ( z -I- A) and h is the interval length. 

Using ^ = A -I-1, equation (A.4) can be re-written ag 
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— ( ( T T ^ I ( B . ) 

where A is the digerence operator such that A/(a;) = / ( z + /:,) — / (z ) , or Aî o — 

Ui — uq, /\^uq = U2 — 2ui + uq etc. 

The summation formula in equation (A.5) can now be re-written as 

1 / T \ ^ 
5" = X ^ f j A^tio ^-6 

Using the difference quantities in the terms of the original sequence, equation (A.6) 

can be re-written as 

1 °° / 1 \ ^ 
S = - x ^ | - A'oo (B.6) 

l - z 

This is Euler's transformation of the origincil series which is found to converge faster 

than the original series. It is not necessary to sum to inanity in equation (A.6); it will 

be suSciently accurate to use a finite number of terms, (say, p), thus requiring the first 

p di&rences obtained from the terms starting at %o-
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