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This thesis is concerned with the damage assessment of composite structures under
static loading case with geometric non-linearity. Both the finite element method and
the boundary element method are studied for this purpose. A finite element based com-
putational damage model is developed for predicting the nonlinear response, first-ply
failure and ultimate collapse strength of uni-directional laminated composite plates.
The damage model is implemened into the finite element program ABAQUS. It con-
tains theory of large deformation and large strain. The model is then extended to
laminated composite structures with woven fabric plies. A simplified model is devel-
oped for prediction of stiffness properties of woven fabric composite plates. In both
the cases numerical results are compared against test values. It is demonstrated that
excellent correlation with experimental results can be achieved. In the context of the
boundary element method (BEM) the present research focuses on stress analysis of
2-D orthotropic structures. A novel technique is proposed for accurately computing

the singular integrals in the 2-D boundary element method.
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Chapter 1

Introduction

1.1 Motivation

Composite materials are increasingly used in the construction of mechanical, aerospace,
marine and automotive structures, because of their outstanding strength, stiffness and
light-weight properties. Another advantage of composites is that stiffness and strength
can be tailored to specific design loads. In the last few years there has been a dramatic
increase in the usage of composite materials in non-aerospace products. Another class
of innovative composite materials are advanced textile composites (3-D woven, braided,
knitted, stitched) having complex reinforcement geometries. Textile Composites are
extensively used for structural applications in aircraft construction®? because of their
ease of handling, low fabrication costs and high impact resistance. Reference? reviews
the current research works on woven fabric composites at NASA as part of the Ad-
vanced Composites Technology(ACT) program. A principal opportunity to implement
the out-of-plane reinforcements with these composite materials provides a huge variety
of possible spatial orientations of substantially curved yarns. This can be realized in
the current manufacturing using modern textile machinery. Textile reinforced com-
posites have been considered promising materials for structural applications since the
1960s. The initial drive in the 1960s and 70s was for the perceived improvement in
damage tolerance compared to laminated composites. The fact that a three dimen-
sionally woven or braided reinforcement has no layers implies that delamination is not

a failure mode for these materials, whereas delamination is a critical design criteria for



laminated composites.

Under service conditions, composite structures develop matrix cracks, fiber-matrix
debonds, fiber fractures, and delaminations. These effects, which cause permanent
loss of integrity within the structure, are termed damage, and they result in the loss
of stiffness and strength of the material. Thus the load carrying capacity and the
service life of the structure is reduced. These local damage events which are typically
constrained from forming a major damage and are therefore nucleated under increasing
load at many sites distributed through the volume of the composite material. For
example the micro cracks observed within a structure constitute damage. As these
micro cracks grow in size and number, they coalesce and develop into debonds, resulting
in a reduction of the load-carrying capacity of the structure. In order to arrive at a
reliable load-deformation response of the structure, it’s load carrying capacity and
service life, it is necessary to include the damage parameters and their subsequent

effects in the numerical model.

1.2 Background

Damage assessment of composite structures is an aspect of design where there are few
design synthesis techniques available and one that is relevant to almost all engineer-
ing composite structures. This is an area where many traditional techniques have been
tried with relatively little success. Traditionally, in the analysis of laminated composite
structures, the uni-directionally reinforced lamina is considered the fundamental mate-
rial block. Hence both the tension and compression test methods for them have been
standardized by ASTM. The other experimental methods for composite materials are :
biaxial testing, short beam bending, rail shear test, off-axis tension test, Iosipescu test
etc.. However experimental methods for composite materials are not so reliable as are
for isotropic materials. For example phenomenon such as premature failure initiated
by local fibre-matrix debonding and fibre buckling, is typical for compressive loading,

though, is not observed in the case of tensile tests.

The other numerical methods for solving continuum mechanics problems are : the

finite difference (FD), the finite element (FE) and the boundary element (BE) ap-

[N}



proaches. The finite difference approach is the simplest of the three approaches and
is relatively easy to program. However, it’s main drawback in practical engineering
problems is that it is not suitable for problems with awkward irregular geometries.
Nowadays, finite difference methods are popular for heat transfer and fluid flow prob-

lems, rather than stress analysis problems.

The finite element method grew out of the need to solve accurately structural
analysis problems in the aerospace industry during the late 1950’s. Although the
mathematical ideas had been outlined in the appendix of a paper by Courant?, it
was not until advanced electronic computers were widely available that the method
could be effectively applied for engineering computations. Since this period, finite
element techniques have evolved rapidly and are now established as a basic method for
solving boundary and evolution problems in science and engineering. Applications of
finite element method for composite material analysis is quite large and the literatures

concerning them can be found in the subsequent review chapters.

One of the first finite-element-based failure analysis was performed by Lee!. Lee
performed a three-dimensional finite element analysis and used his own direct-mode
determining failure criterion to predict the failures. He determined the stresses at the
center of each element and the stresses at the center of the interface of each element to
identify failure. According to the modes of failure, the stiffness matrix of the element
with failures was modified. Equilibrium was then re-established to give a new stress
distribution and subsequent failure zones. The process was repeated until the ultimate
strength of the laminate was obtained. The literature concerning further applications
of the finite element analysis for failure prediction of composite plates can be found
in chapter 2. Recently Coats®® developed a nonlinear progressive failure analysis for
laminated composites that used a constitutive model in which damage accumulation
was predicted by damage evolution laws. The methodology was used to predict the

initiation and growth of matrix cracks and fiber fracture.

Boundary element method constitutes a recent development in computational me-

chanics for the solution of boundary value problems in engineering. Unlike the ‘domain



type' methods, e.g., the finite difference or the finite element methods, the order of
dimensionality of the problem reduces by unity in boundary element formulation, thus
simplifying the analysis and the computer code to a large extend by solving a small

system of equations.

One more important reason for choosing the finite element and the boundary ele-
ment methods in the composite failure analysis is their ability to solve computationally
intensive problems. With these two methods, most of the scientific and engineering
problems invariably reduce to solving systems of simultaneous equations. Currently,
the solution of linear systems of equations on advanced parallel-vector computers is a

key area of research with applications in many disciplines’ 5,

1.3 Objectives and Scope

The overall objective of this research is to develop computational models for failure
analysis of composite structures. The composites of primary interest are those best
suited to applications in aircraft structures. A progressive failure methodology is de-
veloped using the finite element program ABAQUS. Two important class of structures
are consider for application purposes. They are (i)uni-directional composite struc-
tures, and (ii) woven-fabric composite structures. The methodology is then validated

by comparing numerical predictions using nonlinear progressive failure analyzes with

experimental data.

Next the boundary element method is applied stress analysis of 2-D orthotropic
structures. Efficient computational procedures are developed for computation of the

singular integrals in the boundary element method. Numerical results are compared

against analytical results.

Specific goals of this research include:

1. Establish state-of-the-art perspective on computational models for failure analy-

sis of composite structures.



2. Develop and implement a finite element based failure analysis methodology which

accommodates various formulations for detecting failure and degrading material

properties.

3. Development of computational strategies for accurate stress analysis of 2-D or-

thotropic structures using the boundary element method.

4. Validation of the computational models against test data or analytical solutions.

1.4 Layout of the Thesis

This thesis consists of eight chapters addressing the numerical modeling of composite
structures. Each chapter starts with an extended introduction where the motivations
and objectives are formulated. The ultimate objective of the thesis is to present compu-

tational models which provide an accurate correlation with experimental/exact results

available in literatures.

After this introductory chapter, in chapter 2, an extensive review is made of the
damage modeling issues for uni-directional laminated composite structures. A review is
made of the past literatures on laminated plate theories. Summaries of some most rel-
evant literatures are elaborately outlined. Chapter 3 reviews the literatures concerning

the modeling issues for woven fabric composites.

The next two chapters are aimed at failure modeling of various composite structures.
A comprehensive failure modeling of uni-directional composite structures is presented
in chapter 4. An attempt has been made to systematically include all major composite
failure criteria, to discuss their assumptions and procedures, present final equations and
provide their mutual comparisons in the context of the damage prediction capability
for the composite structures. This allowed to distinguish the best (most accurate and

applicable) failure criteria which are recommended for practical applications.

Chapter 5 describes the failure analysis of woven fabric composite plates. This field
of research is in it’s infancy, as can be seen from the review of the existing publications.
Hence a simplified model is developed to be suitable for analysis of the type of weave

architecture, for which experimental results are available. Failure analysis is carried



out next. Numerical results are compared against experimental values.

Applications of the boundary element method for stress analysis of 2-D orthotropic
structures is addressed in chapter 6. First, a detailed discussion and literature review
on the fundamentals of the boundary element method and the associated singular
integrals, in the context of 2-D orthotropic elasticity is presented. The approach is
demonstrated on a number of specific plane stress, plane strain, cylindrical bending
problems, and shows a unique accuracy in comparison to the benchmark solutions.
The material of this chapter is supplemented by a short appendix on computation of
singular integrals. Finally discussions and future research are presented in chapter 7

and conclusions are presented in the last chapter.
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Chapter 2

Literature Review on Progressive
Failure Analysis of Composite

Structures

2.1 Background

Damage in composite materials has been and continues to be the subject of numerous
investigations. One important observation regarding the damage propagation in com-
posites is that the growth of an individual damage pattern such as a crack does not,
by itself, cause conditions of criticality, but the total effect of cracks in a representa-
tive volume, brought about by their individual growth and mutual interaction, lead

to degradation of the average properties, which eventually causes loss of integrity and

failure of the composite.

A variety of computational techniques have been developed and applied to study the
initiation and evolution of the damage mechanisms in these materials. The objective of
this chapter is to review these models in the context of damage evolution laws, failure
mechanisms and material property degradation schemes. However, one more important
factor in the computational modeling of composite structures is the shear deformation
theory used in the composite failure analysis. It has long been recognized that the
classical two-dimensional laminated plate theory, based on the Kirchhoff hypotheses of

straight in-extensional normals for the entire plate package yields sufficiently accurate



results only for thin composite plates.

This chapter is organized as follows. Next section reviews the various approaches
for developing two-dimensional shear deformation theories and makes an assessment
of the accuracy of the response predictions of these theories. Section 3 reviews the
computational damage models for laminated composite structures. Each review dis-
cusses the type of analysis (linear or nonlinear) used in performing the progressive
failure analyzes, failure criterion chosen, and prediction of progressive failure analyzes
compared to experimental results. Based on these reviews, conclusions are drawn in

the last section are drawn in the last section.

2.2 Assessment of Shear Deformation Theories for

Laminated composite Plates

Plate and shell structures made of laminated composite materials are often modeled as
an equivalent single-layer using classical laminate theory, in which the thickness stress
components are ignored. The classical laminate theory is a direct extension of classical
plate theory based on the kirchoff hypothesis for homogeneous plates. This theory is
adequate when the thickness (to side or radius ratio) is small. However, laminated
plates and shells made of such advanced filamentary composite materials as graphite-
epoxy are susceptible to thickness effects because their effective transverse moduli
are significantly smaller than the effective elastic modulus along the fiber direction.
Refined theories provide improved global response estimates for deflections, vibration

frequencies, and buckling loads of moderately thick composites when compared to the

classical laminate theory.

The Classical laminated plate theory is based on Kirchoft’s hypothesis and, in
general, provides good estimates of gross behavior of the laminate. In addition, it is
well known that the effect of transverse and normal strains is not negligible, as in the
classical plate theory. Shear deformation theories aim at incorporating these effects.
Reissener' and Mindlin? laid the foundations for such developments. In Reissener’s
approach assumptions are introduced concerning the variation of stresses, whereas in

Mindlin’s approach displacements are chosen in an appropriate form. Basically both



the approaches offer the possibility of further refinement by considering a more

general form of the field variables.

The first theory for laminated anisotropic plates is that of Yang, Norris, and
Stavsky3. Their work called the Yang-Norris-Stavsky (YNS) theory represents a gen-
eralization of Reissner-Mindlin plate theory for homogeneous isotropic plates to arbi-
trarily laminated anisotropic plates and includes shear deformation and rotary inertia

effects.

Lo et al.*, utilized a straight forward power series expansion of the displacement
to improve the laminate characteristics. Although the theory gives a much better
approximation to the behaviour of laminated plates as compared to that of CLPT, it
suffers from the same drawbacks as that of FSDT, namely: (i)it does not satisfy the
conditions of zero transverse shear stresses on the top and bottom surfaces of the plate,
(ii)it requires a shear correction factor to the transverse shear stiffnesses. Moreover it
contains more dependent unknowns as compared to other improved shear deformation

theories with equal accuracy.

Reddy®, used expressions for in-plane displacements satisfying the free-surface zero
shear conditions. The theory accounts not only for transverse strains, but also for a
parabolic variation of the transverse shear strains through the thickness, and conse-
quently there is no need to use shear correction coefficients in computing the shear
stresses. Moreover the theory contains the same number of dependent variables as in
first order shear deformation theory, but results in more more accurate prediction of
deflections and stresses. However this theory does not satisfy the continuity condition
of the transverse shear stresses at the interfaces.

Toledano and Murakami® used Legendre polynomials for the approximation of in
plane displacement distribution across the plate thickness. The theory gave accurate
results for in plane responses.

Levinson” and Murthy® presented third order theories that assume transverse in-
extensibility. However both authors used the equilibrium equations of the first order
theory in their analysis. In other words, the higher order terms of the displacement
are accounted for in the calculation of the strains but not in the governing differential

equations or in the boundary conditions.
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A recently proposed theory by Knight and Qi°® assumes physically that only in some
average sense does a straight line originally normal to the mid plane remain straight and
rotate relative to the normal of the mid-plane after deformation. Hence the in-plane
displacement is still approximated, in an average sense, as linear and the transverse
deflection as constant through the plate thickness. The associated nominal-uniform
transverse shear strain directly derived from these displacement field assumptions is
identified as the Weighted average transverse shear strain through the plate thickness
with the corresponding transverse shear stress as the weighting function, while the
actual transverse shear strain is permitted to vary through the thickness and satisfies
the constitutive law with it’s stress counter part. Likewise, the average rotation of
the line is identified as it’s weighted-average value, instead of the one evaluated from
a linear regression of the in-plane displacement with the least-square method. This
restated FSDT possesses the advantages of both equivalent single-layer theories and
layer-wise theories. It accounts for a variable distribution of transverse shear strain to
which higher-order theories are developed. It satisfies proper continuity requirement
of transverse shear stress at layer interfaces, which layer-wise theories are proposed

to achieve. The constitutive law and traction boundary conditions are automatically

satisfied.

The theory proposed by Whitney and Pagano®® is an extension of the theory pro-
posed by Yang and Norris® to laminated composite plates. The displacement assump-
tion is similar to that of first order shear deformation theory. However the stresses
calculated were identical to that of the CLPT, although the prime purpose of the

investigation was to predict gross laminate response characteristics.

Pagano'! has very successfully adopted Reissner’s approach for estimating inter-
laminar stresses by restating the variational principle to laminated body, composed of
several layers. In this theory both stresses and displacements are subject to variation.
Therefore (i)traction and displacement continuity conditions at interfaces between ad-
jacent layers are satisfied, (ii)it considers a region within the laminate that is arbitrarily
located except that it is bounded by any two of the parallel interfaces. Numerical re-
sults show that for laminates with free edge class of boundary value problems, in which
very steep stress gradient occurs, this theory gives more accurate results. However the

theory results in a mathematical model consisting of 23N partial differential equations
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in the mid-plane coordinates of the laminate and 7N edge boundary conditions; N is the
number of layers in the laminate. The storage and computational costs, especially for
geometrically nonlinear problems or transient analysis using the finite element analysis
precludes the use of such a theory. Because it gives as accurate a global response as the

three-dimensional theory, it is considered efficient for problems not involving regions

of acute discontinuities.

Three dimensional elasticity models have been applied to the stress, free vibrations,
and buckling problems of laminated orthotropic rectangular plates. Both the cylindrical
bending case and the simply-supported boundary conditions have been considered!*3.
In quasi-three dimensional models, simplifying assumptions are made regarding the
stress or strain state in the laminate, but no a priori assumptions are made about the
distribution of the different response quantities in the thickness direction.. However
the use of three- dimensional and quasi three-dimensional models for predicting the
response characteristics of laminated anisotropic plates with complicated geometry is
computationally expensive and, therefore, is not feasible for practical plates. On the
other hand two-dimensional models are adequate for predicting the gross response char-
acterics of medium-thick laminated plates, but they are not adequate for the accurate

prediction of the transverse stresses and deformations.

The conventional variational formulation of the classical lamination theory as well
as the third-order theory® involves higher order (i.e. second-order) derivatives of the
transverse displacement. Therefore, in the finite-element modeling of such theories
the continuity of not only the transverse displacement should be imposed but also it’s
derivatives along the element boundary. In other words, a conforming plate bending
element based on a displacement formulation of these theories requires the continuity
of transverse displacements and their derivatives across the inter-element boundaries.
The construction of such an element is algebraically complicated, requiring for example,

a quintic polynomial with 21 degrees of freedom for a six-node triangular element.

To overcome the stringent continuity requirements of the conventional variational
formulation, several alternative formulations and associated elements have been devel-
oped. These include hybrid finite elements, mixed finite elements, and shear flexible

elements based on the FSDT. Hybrid elements are based on variational statements
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that use independent variation of displacements inside the domain

Much of the research in the analysis of composite plates is limited to linear problems.
This is perhaps due to the complexity of the nonlinear partial differential equation as-
sociated with the large-deflection theory of composite plates. Approximate solutions
to the large-deflection theory (in the Von Karman sense) of laminated composite plates
have been attempted. Chandra'* and Chia'® employed the Galerkin method to reduce
the governing nonlinear partial differential equations to an ordinary differential equa-
tion in time for the mode shape; the perturbation technique was used to solve the
resulting equation. Zaghloul and Kennedy!® used a finite-difference successive itera-

tion technique in their analysis. In all of these studies the transverse shear effects were

neglected.

Many of the cited theories can be considered as special cases of a general theory

based on the following through-the thickness displacement assumptions!”:

U (2, 23) = uy (2) + Ua (24, 23) (2.1)

w(zg,x3) = w’ (zy) + W (zp, 73) (2.2)

Where 1 and w” are the displacement components of the reference plane of the
plate (z3 = 0), U, and W are the functions of z3 which vanish at z3 =0, ., 5 = 1,2.

The different theories can be identified by the assumed functional dependence of U,

and W on z3 (table 5.1). Also various models that are usually considered for numerical

analysis are presented in table 5.2.

2.3 Review of Progressive Failure Analysis of Com-

posite Structures

Reddy and Pandey'® developed a finite element procedure based on first-order, shear-

deformation theory for first-ply analysis of laminated composite plates subjected to
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Table 2.1: Displacement assumptions in different laminated plate theory

Theory Type Uy W Comments
Classical 510 0 C' Continuity
—230,W
theory for w
First-
order 5 o
C
shear Parameters $3¢g 0
Formulation
deformation Pagano!?
theory
Transverse stresses
Higher- 11-
m3¢g+ 0 5 do not satisfy
order Parameters - ; z3es + (23)" ¢ o
0 Lo (23)° 90 + (23)° 0 continuity at layer
eory )
interfaces
Higher 5-
—:Egaaw()-i-
order Parameters 0
, [1-3(%)%) 60
theory Reddy®
Discrete transverse (k1)
e -
. L B L. : ‘ ) o(k,1) =1fork #1
layer strain i1 U(ilphagb(k, 1) 1 W(’”)gb(k, 1) 3oy '
_ =S fork =1
theory included
For convenience,
the bottom surface
selected to be
Discrete transverse
| N Eoph L 0 the reference
ayer strain Zizl azpha¢5( 72) ;
surface
theory neglected

(only in the
discrete layer

theories)
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Table 2.2: Modeling Approaches

Through the

Total number

Constraint
Model thickness of generalized
Type conditions
number displacement displacement
) on stress
assumptions parameters
First-order
shear Linear u,,
1 o33 =0 5
deformation Constant w
theory
Higher-order
Cubic ug,
shear
2 quadratic w None 11
deformation
Lo*
theory
033=0 through
Simplified Cubic u,
and o3,=0 at
3 Higher-order constant w 5
3 top and bottom
theoory Reddy?”
surfaces
Piecewise linear
Discrete
Uq, constant w .
4 layer o33=0 2*NL+3
through out
theory
thickness
Simplified Piecewise linear o33=0
B discrete Uy, constant w continuity of .
5
layer through out O3q at layer
theory thickness interfaces
Predictor Phase:
Linear u,
Predictor
Constant w Predictor Phase
6 Corrector 5
Corrector Phase: o33 =10
approach
Matching
displacements




in-plane and/or transverse loads. The well established failure criteria including the
maximum stress, maximum strain, Hill’s, Tsai-Wu and Hoffmann’s are reviewed in the

context of first-ply failure.

Rosen?® presented a theoretical and experimental study of the failure of a composite,
consisting of a matrix stiffened by uni-axially oriented fibers, when subjected to a uni-
axial tensile load parallel to the fiber direction. The fibers were treated as having
a statistical distribution of flaws or imperfections that result in fiber failure under
applied stress. It was demonstrated that the statistical accumulation of the flaws or

imperfections within the composite was the cause of composite failure.

Reddy and Reddy?® developed a three-dimensional (3-D) progressive failure algo-
rithm for composite laminates under axial tension. The finite element analysis used
Reddy’s layerwise laminated plate theory (LWLT) and predicted both in-plane and
interlaminar stresses at the reduced integration Gauss points. A parametric study was
performed to investigate the out-of-plane material properties, 3-D stiffness reduction
methods, and boundary conditions on the failure loads and strains of a composite

laminate under axial tension.

Singh et al?' carried out a progressive failure analysis of symmetric thin square
laminates under in-plane shear. The finite element method along with first order shear
deformation theory was used for this purpose. Geometric non-linearity was included
in the analysis in the Von Karman sense. The paper discusses failure loads, associated
maximum transverse displacements and locations and modes of failure associated with

the laminates.

Chang and Chang?? developed a progressive failure model for laminated composites
containing stress concentrations. A non-linear finite element method was used for this
purpose. For fiber failure, both the transverse modulus Fs; and and Poisson’s ratio
v19 were set to zero, and the longitudinal modulus, £1; and shear modulus, G5 were
reduced according to the exponential Weibull distribution. For matrix cracking in a
lamina, the transverse modulus and the Poisson’s ratio were reduced to zero, whereas

the longitudinal and shear moduli remained unchanged.

Chang and Lessard®® conducted an analytical investigation to study the progressive

damage in laminated composites containing an open hole and subjected to compressive
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loading. A finite element analysis based on finite deformation theory, and with material
and geometric non-linearities was used for this purpose. Non-linear shear stress-strain
behavior was included in the analysis. The effect of the lay-up sequence and loading

direction on the strength of the laminate was studied.

Sleight®* developed a progressive failure model for predicting failure of laminated
composite structures under geometrically non-linear deformations. The progressive
failure analysis used C! shell elements based on classical lamination theory for cal-
culating the in-plane stresses. Stiffness reductions were carried out at the ply level.
Numerical results were presented for in-plane loading conditions. These results were

then compared against experimental values.

Sahid and Chang® developed a progressive failure model for predicting the accu-
mulated damage and the effect of such damage on the in-plane response of laminated
composites subjected to tensile and shear loads. The main focus of the paper was on
internal damage in composites induced by matrix cracking under in-plane tensile and
shear loads. The finite element method was used for this purpose. Predictions from

the analysis were compared against experimental results.

The failure analysis of composite laminates subjected to out-of-plane load causing
bending has not received as much as attention as in plane loading. It is complicated due
to both material and geometric non-linearities that come into play when the loads are
increased beyond the first ply failure. Material non-linearity results from the damage
mentioned earlier, and the geometric non-linearity is due to the large displacements

experienced by the structure during loading.

Reddy and Reddy?® used generalized layerwise plate theory and a progressive failure
model to determine first ply and ultimate failure loads of a three-point bend specimen.
Stiffness reduction was carried out at the reduced integration Gauss points of the finite
element mesh depending on the mode of failure. Geometric non-linearity was taken
into account in the Von Karman sense.

Kam and Sher?” studied progressive failure of centrally loaded laminated composite
plates. The Ritz method, with geometric non-linearity, in the Von Karman sense, was
used to construct the load displacement behavior. Echaabi and others?® presented a

theoretical and experimental study of damage progression and failure modes of com-
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posite laminates under three point bending. Linear CLPT was used for the stress
analysis.

Kim et al.?® carried out a progressive failure analysis for laminated composite beams
using a beam finite element. Maximum stress and T'sai-Wu failure criteria are used to
assess failure at the Gauss points. Stiffness reduction was carried out with material
property degradation factors. Distinct degradation factors were used for fiber failure
and matrix failure. Convergence of the finite element mesh and the load increment size

on the failure load was studied. The predictions correlated well with the experimental
data.

Tolson and Zabaras® studied the first and last ply failure loads of a laminated
composite plate subjected to both in-plane and sinusoidal transverse loads. A higher-
order shear deformation theory was used for this purpose. Stiffness reductions were
carried out at the Gauss integration points. However no comparison was made to test

results for the transverse load case.

Gummadi and Palazotto® used a geometrically non-linear finite-element formu-
lation based on the total Lagrangian approach, for predicting the onset of various
failure modes in laminated composite beams and arches. Failure modes such as matrix
cracking, fiber breakage, and delamination were included in the analysis. Large strain
effects on load displacement characteristics were studied. Load-carrying capabilities of

the composite beam and arch structures, were discussed.

2.4 Conclusion

On the basis of the above reviews, the following conclusions seem to be justified.

e The classical laminated plate theory yields sufficiently accurate results only for
thin composite plates. The first order shear deformation theory is more accurate
than the classical laminated plate theory. Higher order theories give still more
accurate results, with however, an increase in the computational cost. For the
present study, the composite plates considered were very thin, with aspect ratios
of order of more than 200. Therefore the first order theory was considered to

be the most suitable shear deformation theory to use in the composite analysis
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procedure.

e Most of the computational damage models have been developed for in-plane and
simple bending conditions. In the latter case, the state of stress was not strongly
bi-axial in nature. In these cases the numerical implementation becomes simpler.

However, it does not take into account the effect of the interaction between the

multi-axial stresses in a composite layer.

e In some literatures comparison with experimental results has not been reported.
For practical applications of a computational model, it is essential that it is
validated against standard test results. Correlation of numerical results(such as
deformations, strains and damage patterns) with the experimental values gives

an added robustness to the numerical model.

e In most of the literatures geometric non-linearity and large deformation effects
have been ignored. Inclusion of these effects significantly complicates the im-
plementation aspects. However, as can be seen later in this thesis the first-ply
failure load and the ultimate collapse loads of composite plates are found to be

strongly sensitive to the effect of geometric non-linearity.

The overall objective of the current research is to develop progressive failure anal-
ysis methodology for laminated composite structures under bending loading condi-
tions. The model contains large deformation and large strain theories. Geometric
non-linearity is included to simulate the experimental behavior. Most of the well es-
tablished failure criteria are included in the damage model. A simple post-failure
material property degradation scheme is proposed for carrying out the progressive
failure analysis. The numerical results are compared against test results. Numerical
damage predictions are compared and assessed against experimental observations. All

the failure criteria are assessed with respect to their prediction capability for damage

initiation and failure.
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Chapter 3

Review of Modeling Issues for

Woven Fabric Composite Structures

3.1 Background

Textile reinforced composites are fiber reinforced composites whose unit structures
are characterized by more than one fiber orientation. Figure 3.1 shows a schematic
illustration of the hierarchical nature of textile materials. As illustrated, the fiber is
the basic unit from which textile materials are formed. Fibers can be converted into
laminated tapes, yarns, or direct formed fabrics. Laminated tapes can also be cut into
thin strips called slit tape and used as a type of yarn. Yarns can then be converted into
a variety of fabric structures. These fabrics can be classified according to the processes

used in creating them. Some relevant ones are given below.

3.1.1 Woven Fabrics

A woven structure is characterized by the orthogonal interlacing of two sets of yarns,
called warp and weft warns. The warp yarns are aligned with the direction of the
fabric leaving the loom, which is also called the warp direction. The weft yarns run
perpendicular to the warp direction, and are sometimes called fill yarns. Weaves may
be classified by the pattern of interlacing. The simplest pattern is the plain weave

shown in figure 3.2. Another class of woven fabrics are the satin weaves and are shown
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in figure 3.3. The satin weave pattern is defined by the number of yarn widths between
exchanges. For example, the five harness satin weave shown in figure 3.3 has a 4-

over, l-under pattern. In addition, the exchanges are arranged so as not to connect

continuous diagonals.

3.1.2 Braided Fabrics

Braided fabrics are formed by the mutual intertwining, or twisting of yarns about each
other. Figure 3.4 shows the interlacing patterns for braided fabrics. In a 2D braid,
the designation "n x n” refers to the number of bias yarns between crossover points.
Longitudinal or axial yarns can be introduced into the braiding process to create a
triaxial braid. The axial yarns are trapped within the crossovers of the bias yarns.
Figures 3.4(b), (c), and (d) show three possible patterns for triaxial braids. These
figures show the braid patterns with gaps between the yarns for clarity; the actual

braid would normally have complete coverage.

3.1.3 Orthogonal Non-woven Composites

Orthogonal 3D materials are fabricated by fixing a series of yarns in one direction, and
then inserting planar yarns in the two orthogonal directions around the fixed yarns.
Figure 3.5 shows a typical arrangement of fiber bundles that might be obtained in this

process.

Among the above mentioned fabric structures, woven fabrics are by far the most
used textile system for composite applications. Woven composites provide an excel-
lent opportunity to radically improve the rather poor impact resistance and damage
tolerance of traditional laminates. They are able to survive a greater number of ma-
trix and debonding cracks without ultimate failure. Due to random crack orientation,
there are no obvious weak directions which would allow extensive crack propagation
and result ultimately in failure of the structural part. Also, the local breakage planes
of curved yarns, which are perpendicular to the corresponding local longitudinal yarn
axes, appear to be spatially dis-oriented. All of this leads to highly dispersed fracture

phenomenon in woven composites and, accordingly, allows one to increase tremendously
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both impact energy absorption and damage tolerance.

However, formulating a proper mathematical model for mechanical characterization
of these materials is a complex task. The intricate geometry of the weave combined
with geometrical and material irregularities poses a formidable problem in the model-
ing and analysis of such composites. The existence of the matrix pockets adds to the
complexity of the geometry. In the past, various approaches have been proposed in
literatures for developing homogenized (simplified) models and computing the equiva-
lent homogenized material properties for textile composites. This chapter reviews the
prominent ones which are relevant to this thesis. The next section explains the concept
of a unit cell (or RVE) in the context of woven fabric composite, which is extensively

used in the subsequent review sections.

3.2 Unit Cells (or RVEs)

Woven composite is a heterogeneous material. However, very often structural analysis
on woven and other textile composite materials is being carried out treating it as a
homogeneous material. In this case it is necessary to determine some set of elastic
properties which characterize the homogeneous material, mechanically equivalent to
the actual material. If there is a representative volume element (RVE) whose mechan-
ical response represents the response of the structural component, it will be sufficient
to concentrate on the mechanical characterization of such RVEs. RVE is also synony-
mously used as unit cell in textile nomenclature. The unit cell (or the RVE) is defined
by the requirement that the entire textile can be constructed from spatially translated
copies of it, without the use of rotations or reflections. Typical unit cells for a plain
weave and satin weave composites are shown in figures 3.2 and 3.3 respectively. Even
though, the weave pattern in figure 3.2 looks two dimensional, geometrically they are
three dimensional in nature. Figure 3.6 illustrates the actual 3-D geometry of a unit
cell. This is the actual shape of the unit cell marked as a dotted block in figure 3.2.
The geometry of a woven fabric composite plate can be obtained by simply translating
this unit cell in orthogonal directions. Figure 3.7 shows the schematics of an RVE with
the matrix pockets removed. This is necessary when one would attempt to analyze

the RVE with the finite element method, in which case, both the yarn system and the
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resin are modeled separately.

3.3 The Finite Element Approach

Woo and Whicomb! used a global/local finite element approach for analysis of textile
composite structures. At the global level, an initial global solution was obtained using

a coarse global mesh. At the local level, a small portion of the textile composite was

modeled with a refined local mesh.

Tan et al.? presented a unit cell model and a laminate model for predicting engineer-
ing elastic constants of 3D orthogonal woven composites. The effect of the geometrical

parameters on the elastic constants was studied. The results were compared against

experimental values.

Kollegal and Sridharan® analyzed the compressive behavior of a unit cell of a plain
weave fabric using three-dimensional finite elements. A detailed examination of the
internal stresses and strains was carried out. Geometric nonlinearity effects, arising
due to the the undulation of the yarns, and the material nonlinearity of the resin were

included in the analysis.

Marrey and Sankar? developed a finite element based micro-mechanical method for
computing the plate stiffness coefficients of a textile composite modeled as a homoge-
neous plate. The unit cell was modeled using eight-node brick elements. The effect of
inhomogeneity within a finite element was accounted by considering appropriate elas-
tic constants in the Gauss integration of the stiffness matrix. Numerical studies were
conducted on both plain weave and satin weave composites. Numerical results, such as
the plate stiffness coefficients are compared with those derived from the homogenized

elastic constants in conjunction with the classical plate theory.

Whicomb and Srirengan® conducted a three-dimensional finite element analysis to
study the effect of quadrature order, mesh refinement on the failure of plain weave
composites. The loading consisted of a nominal uniaxial stress along one of the fiber
tow directions. Sensitivity of the predictions to the tow waviness was also studied.
Other contributions on three-dimensional finite element models of textile composites

. S
can be found in references®-1°,
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3.4 Simplified Models for Structural Analysis of Tex-

tile Composites

3.4.1 Bridging Model

The bridging model of Ishikawa and Chou'® specifically focuses on satin woven com-
posites. The RVE of the composite is presented in five 'bricks’, as shown in figure 3.8.
Brick I1I represents an interlacing in the structure, while bricks I, II, IV are considered
equivalent to [0/90] laminates. The mechanical properties of brick III are calculated
using an analogy to the ’curved fibers model’, and the properties of the other bricks
through a reduced stiffness averaging approach, following the tradition of laminated
plate theory. This model has been extended to consider hybrid materials'” by intro-

ducing additional bricks in the RVE which belong to one or the other reinforcement

system.

3.4.2 Mosaic Model

Ishikawa and Chou'® developed the mosaic model (figure 3.9) in which the continuity of
fibers in the yarn direction is neglected and the woven lamina is idealized as two layers
with discontinuous fibers in orthogonal directions to form a mosaic pattern. In this
way the undulation of the fibers is also neglected. Thus the woven lamina is regarded

as an assemblage of pieces of asymmetric cross-ply ([0/90]) laminates.

3.4.3 Modified Matrix Method

The modified matrix method by Tarnopolskii et al'> was developed to predict the elas-
tic response of orthogonally cross-lapped XYZ type composites. The concept behind
this method is to reduce the complexity of the problem by solving each system of re-
inforcement, x, y, and z separately. For example, the yarns in the z direction may
be combined with the matrix material to create an effective medium in the sense of
unidirectional micro-mechanics. The structure is now considered to be composed of x

and y oriented fibers embedded in this modified matrix. This process may be repeated
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to eliminate an additional system of fibers.

3.4.4 Stiffness Averaging Approach

The stiffness averaging method for textile reinforced composites was initially presented
by Kregers and Melbardis®. In this method, as a first step, the elastic properties
for a unidirectional rod, presenting a yarn and an equal volume fraction of matrix
around it, are calculated using any acceptable micro-mechanics approach. From this
the local unidirectional compliance matrix is constructed. This compliance matrix is
now inverted to get the local stiffness matrix. The stiffness matrix is then transformed
to account for the individual yarn orientation. And lastly, the stiffness matrix of
all unidirectional elements are volumetrically averaged to obtain the total stiffness
matrix for the textile composite. Related information on this approach can be found

in references?22:23,

3.5 Conclusion
From the above review, the following conclusions seem to be justified.

e The simplified models are based on averaging material properties rather than
treating matrix and fiber as discrete components as is done in the finite element
method. However, these methods are easy to code and apply to simple textile
composite structures. Moreover, depending on the type of reinforcement and
the textile composite structure considered, they give very good precision at a

reasonably low computational cost.

e The finite element approaches consider detailed geometric descriptions of the
reinforcing system for prediction of material properties. Hence, they give detailed
information on the stress and strain fields throughout the representative volume
element (RVE). However, this involves defining the reinforcement geometry at
each point inside the composite, which is a complex task. Moreover, a realistic

textile structure might consist of a large number of (the order of hundred) unit

cells.

28



In this case, the finite element analysis may not be possible with conventional

computing power due to huge requirements in CPU time and memory.

e [or a yarn system with high curvature, in which case quantification of the rein-
forcement may not be well estimated by the simplified models, the finite element
method might be useful. However, from the scanning electron microscope (SEM)
results for the woven fabric plates, for which results are reported in this thesis,

it appears that the yarn reinforcement was nearly flat.
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Figure 3.1: Schematic Illustration of the Hierarchy of Fibers, Yarns, and Fabrics in

Textile Processes (after Bogdanovich?*)

Figure 3.2: Yarn Pattern in a Plain Weave Perform (Unit-Cell Boundary in Dotted

Lines) (after reference?)
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Figure 3.3: Yarn Pattern in a 5-Harness Satin Weave Perform (Unit-Cell Boundary in

Dotted Lines) (after reference®)
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Figure 3.4: Some Common 2D Braid Patterns (after reference®)
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Figure 3.5: 3D Orthogonal Composite (after reference®)

Figure 3.6: Schematics of Plain Weave Composite-Full RVE (Unit Cell)
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‘Figure 3.7: Schematics of Plain Weave Composite-Full RVE (Unit Cell) with Matrix
Pockets Removed
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Figure 3.8: Schematic Illustration of RVE Representation of a Satin Weave for the
Bridging Model of Ishikawa and Chou'® (after Bogdanovich?*)
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Chapter 4

Progressive Failure Analysis of
Uni-Directional Composite

Structures

From the review made in chapter 2, it was clear that damage modeling of cbmposite
structures, with (1) geometric nonlinearity, (2) material nonlinearity because of local
damage, and (3) presence of bi-axial stresses, has not been investigated. The objective
of this chapter is to develop a progressive failure analysis methodology for predict-
ing the failure of uni-directional laminated composite structures under geometrically
nonlinear deformations. The method is used to study the non-linear behavior, first
ply failure and ultimate collapse of laminated composite plates with clamped edges,
subjected to transverse pressure. The chapter is organized as follows. In the next sec-
tion, major steps for conducting a progressive failure analysis using the finite element
method, are discussed. Section 2 outlines the nonlinear analysis procedure that has
been adopted in this research. In section 3, the various failure criteria to be used in
the progressive failure analysis are presented. Section 4 reviews some of the existing
material property degradation models and suggests a suitable one for use in the pro-
gressive failure analysis. In section 5, the equilibrium aspects of the nonlinear solution
procedure are discussed. Section 6 discusses the numerical modeling aspects of pro-
gressive failure analysis using the finite element program ABAQUS. In section 7, the

experimental procedure which had been conducted on the composite plates, is briefly
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described. In section 8 numerical results are presented. Discussions are presented in

section 9 and conclusions are given in section 10.

4.1 Overview of Progressive Failure

A typical methodology for a progressive failure analysis is illustrated in figure 4.1.
At each load step, a geometrically non-linear analysis is carried out until a converged
solution is obtained. From this solution, stresses and strains at the Gauss integration
points are calculated. If failure is detected in an element, as indicated by a failure
criterion, the element properties are changed according to a particular degradation
model. Since in this process the material properties for some or all elements might have
changed, the displacement field corresponding to this load step does not correspond
to an equilibrium state. Therefore, equilibrium of the structure is re-established using
the modified material properties for the failed elements. Then the next load step is
applied on the structure and the above process is repeated. Progressive failure analysis

is continued until the structure fails.

Therefore, typical progressive failure analysis methods involve four key features.
First, a nonlinear analysis capability is used to establish equilibrium. Second, an
accurate stress recovery procedure is needed in order to establish the local element
stress state. Third, material degradation or damage models are needed in order to
propagate the failure and establish new estimates for the local material properties.

Finally, a procedure to re-establish equilibrium after modifying local element properties

is needed.

4.2 Nonlinear Analysis

After local failures at an element integration point, the element stiffness, and the
element’s contribution to the global stiffness changes. Therefore the tangent stiffness
matrix [Kr] is a function of the material properties and the unknown displacement D.

In this progressive failure analysis, a nonlinear analysis is performed until a converged
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solution is obtained for a constant set of material properties. The nonlinear analysis

involves solving the linearized finite element equations for the k* iteration

(K7]* 6D = R

(4.1)
DU+ = D& 4 6D

Where R is the force residual for the iteration. Both [KT](k) and R™ are functions
of the displacements D*). Solution of equation (4.1) involves an iteration process where
the k** step requires computing the displacement increment 6D for the k + 1 load step
using the k' tangent stiffness matrix. The displacement vector D in the k** load step is
then updated using 6D. With this new displacement, both the force imbalance vector
R and the tangent stiffness matrix [K7] are updated, and the process is continued for
the next iteration. If R is zero, then the structure is in perfect equilibrium. In a non-
linear problem, this is usually not the case. Hence R is compared against a tolerance
value. If R is less than the current tolerance value, the structure is considered to be
in equilibrium and D is a valid equilibrium configuration. Therefore the non-linear

analysis continues until the tolerance criteria are satisfied.

In the progressive failure analysis, at a given load step, this non-linear solution
method is used to calculate the element stresses. Failure criteria are then used to
assess whether any failures have occurred during this load increment. If no failures are
detected, then the applied load is increased, and the analysis continues. If failures are
detected in an element, it’s stiffness is reduced using the appropriate material property

degradation models. These models are discussed in the subsequent sections of this

chapter.

In the present progressive failure analysis methodology, this nonlinear analysis pro-
cedure is implemented using the finite element program ABAQUS. Appendix A outlines
the advanced computational capabilities (including the nonlinear features) available in
ABAQUS. In addition, the strain measure used here is the approximate Koiter-Sanders
theory, which includes both large rotation and large strain. The mathematical expres-
sions of this theory can be found in reference!. The Newton-Raphson method is used
to solve the set of equations at any load step. To achieve a good convergence in the

non-linear analysis a force and moment residual convergence of 0.5% and displacement
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correction convergence of 1 % were used.

4.3 Failure Analysis

The ultimate failure in a composite structure occurs as a result of accumulation of local
material failures. Initial failure in a composite material can be predicted by application
of a failure criterion. Prediction of ultimate failure requires an understanding of failure

modes and failure propagation.

Laminated composites may fail by fiber breakage, matrix cracking, fiber-matrix
shear or by delamination of layers. The mode of failure depends upon the loading,

stacking sequence, and specimen geometry. or curing or out-of-plane effects.

Failure criteria are needed to predict the macroscopic failures in a composite ma-
terial. In a progressive failure analysis, if a failure criterion in an element is exceeded,

the material properties corresponding to that particular mode of failure are reduced

depending on the material degradation model.

Failure criteria for composite materials are often classified into two groups: namely,

non-interactive failure criteria and interactive failure criteria.

4.3.1 Non-Interactive Failure Criteria

In a non-interactive failure criterion, there is no interaction between the stress or
strain components. These failure criteria are simple to apply and tell the mode of
failure. However, they neglect the interaction of stresses in the failure mechanism.
The maximum stress and maximum strain criteria belong to this category. The failure

surfaces for these criteria are rectangular in stress and strain space, respectively.

4.3.2 Interactive Failure Criteria

Interactive failure criteria include stress interactions in the failure mechanism, but they
do not tell the mode of failure. The Tsai-Wu and Tsai-Hill failure criteria belong to

this category. The failure surfaces in these cases may not be rectangle when plotted
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in the stress or strain space. Implementation of these failure criteria can be found in
-5

9
references”

Most of the failure criteria for composite materials are unable to predict all the
failure modes of a composite materials. Also, not all are computationally efficient
for implementation into finite element programs. The following subsection discusses

the failure criteria which have been used in the present progressive failure analysis
procedure.
4.3.3 Mathematical Representation of Failure Criteria

Most failure criteria for composite materials can be expressed in terms of a single tensor
polynomial failure criterion such as that proposed by Tsai. Failure is assumed to occur

if the following condition is satisfied®.

Figi+Ejain -f—FijkO'inO'k—*—.‘. 2 1 (42)

The two dimensional form of the above polynomial is expressed as:

Flal + FQO'Q + 2F120'10’2 + Fllaf + FQQU% + F66O-{él Z 1 (43)

Various forms of this general representation are given below. In the expressions, the
notations gy, 0, and o4 (05 = 012) are the in-plane stresses in the material coordinate

directions, X7, X¢, Y7, Yo and SC are the strength parameters as defined in table(4.1).

e Tsai-Wu Criterion:

The failure indices for the Tsai-Wu criterion are

(4.4)

. 1 ___ 1 — 1
Fll—XTXc’ F...Q— Yove ! F66‘““ g2

e Maximum Stress Criterion:
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The failure indices for Maximum Stress criterion are

1 1 1 1 _ FPR
FI*E_YEaFQ‘“Y_T_%’Fli’—_—lQ)
(4.5)
1 1 1
Fll—XTXc’ FQQ— VovYe? F66 5C*
e Hoffmann Criterion:
The failure indices for Hofffmann criterion are
1 1 1 1 1
Fl_X—T—X—C’FQ—?;_Y—C’FIQ X1 X
(4.6)
_ 1 1 1
Fll - m, 22 YoYe? FGG — S¢?
e Tsai-Hill Criterion:
The failure indices for Tsai-Hill criterion are
1 1 1
Fy =0, F2 =0, F12:“§§> FIIZX;EFZQ—‘}‘;‘:; (4.7)

where

If o1 >0, X = Xp; otherwise, X = X¢. If 00 > 0, Y = Y7, otherwise, ¥ =Y.

e Azzi-Tsail-Hill Criterion:

The Azzi-Tsai-Hill failure theory is the same as the Tsai-Hill theory, except that

the absolute value of the cross product term is taken as

F10’1 -+ FQO’Q -+ 2F12 [ g109 ] —*—FllO'% -+ FQQO’% -+ F66Ug 2 1 (48)

The F; coeflicients are the same as those of the Tsai-Hill criterion.

e Hashin’s Criterion



7

The two dimensional Hashin’s criterion’ is expressed in a different form as follows:

Fiber failure

g1 Oia
%) Tgez=h >0 (4.9)
oy = _—XC7 o < 0 (410)
Matrix Failure
oo\2 g2
(7) *g@=1  @>0 o
1 Yo \2 2 2
Yo [<QSCC> - 1} et et =L 1< (4.12)

4.4 Material Property Degradation

If failure is detected in a particular element of the composite material, the properties of
that element must be adjusted according to a material property degradation model. A
survey of some post-failure theories for laminated composites is presented in reference®.
Most of these material degradation models belong to one of the three general categories:

instantaneous unloading, gradual unloading, or constant stress at ply failure. Figure

4.2 illustrates these three categories.

For the instantaneous unloading case, the stiffness and strength of a failed ply are
reduced to zero, although the ply is physically present. This approach may lead to an
underestimation of the laminate strength, because it does not recognize that ply-failure

is localized, and that the remaining stiffness of a failed ply is not necessarily zero. This

approach therefore has limited applicability.

In the constant stress category, it is assumed that the failed layer can carry no
further load in the failed direction. For example, if a lamina fails in the resin cracking
mode, the value of the Young’s modulus in the direction perpendicular to the fiber

direction, becomes zero. Implementation of this property degradation model can be

found in reference®.
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In the gradual unloading model, it is assumed that after failure in a lamina, the
material elastic properties are gradually reduced depending upon the extent of damage
within the lamina. Implementation of this property degradation model can be found

in references!?—12,

Chang and Chang!! used a stiffness reduction model in which after matrix fail-
ure(due to either tension or compression), the ply in the damaged region was assumed
to lose all its transverse strength. For fiber failure, stiffness of the failed layer was
assumed to depend upon the extend of the damage, which was determined using a
micro-mechanics approach. Chang and Lessard!® used a similar approach, but fiber
breakage was not included in the degradation model. Sahid and Chang'* used the

crack density as a parameter to characterize the ply stiffness, which is complicated for

macro-numerical modeling.

In addition to the above methods of material property degradation, another method
is the residual property method, in which continuum damage models are used to predict
progressive damage and the stiffness drop in the laminate!®. Damage accumulation
during loading is predicted by damage evolution laws, which are too complicated and

therefore will not be discussed here.

This brief review indicates that some methods, such as the ply-discount method,
underestimate the laminate strength, while others are too complicated to implement,
without any significant improvement in the prediction capability of the failed ply prop-
erties. In this research, a simple, yet effective, stiffness reduction model(similar to

reference!! and reference!®) based on the experimental observations, is proposed.

For matrix cracking at a material integration point, the transverse modulus E,,
and Poisson’s ratio vy, are reduced to zero. However the longitudinal modulus £, and
the shear modulus G,, remain unchanged. When fiber-matrix shearing is predicted at
a material point, the transverse modulus G,, and the Poisson’s ratio v, are reduced
to zero. However the longitudinal modulus £, and the transverse modulus F, remain

unchanged. If fiber failure is detected, then the material is deemed to have lost its

stiffness at the integration point.

Hashin’s criterion as discussed in the previous section, directly gives the mode of

failure. For the other interactive polynomial criteria, if failure occurs the following
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expressions are used to determine the failure mode:

Hy = Fioy + Fllo'%
Hg = FQO’Q -+ FQQUS

Hs = Fgeop (4.13)

The largest H,; term is selected as the dominant failure mode and the corresponding
modulus is reduced to zero. Thus H; corresponds to fiber failure, Hy corresponds to

matrix crack and Hy corresponds to fiber matrix shearing failure.

The contribution of each stress component towards the failure index(H;) is com-
puted and the stress component which contributes the maximum is identified. De-
pending on the largest H; term the failure mode is determined and the corresponding

material properties are degraded as mentioned above.

4.5 Re-establishment of Equilibrium

In a progressive failure analysis, once failures are detected in a ply, the corresponding
material properties are degraded. However, the structure may not be in equilibrium
with these degraded material properties and the present deformation configuration.
Therefore, it is necessary to carry out some more iterations to establish equilibrium.
However, if the load steps chosen in the non-linear analysis are sufficiently small, such

a procedure may not be needed.

In the present research, equilibrium is re-established in the non-linear analysis pro-
cedure, in the sense that the failure index is kept within a tolerance of 0.01. The first ply
failure load reported here is the lowest pressure at which the failure index(F;o;+F;; Uin)
first reached a value of unity at any material integration point. At some point in the
analysis a dramatic change in slope of the load deflection graph indicates inability to

support additional load. This location is identified as the failure load.
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4.6 Numerical Modeling Using ABAQUS

The classical (e.g. Kirchoff-Love) shell theory is based on an assumption of infinite
rigidity in the transverse direction (i.e. neglect of transverse strains), and hence is
not used in the present analysis. The first order theory considering shear deformation,
which is by far the most efficient theory(i.e., increased accuracy without an increase in
computational effort) is used in this research. The finite element formulation aspects of

a shell element are discussed extensively elsewhere!?171819 and therefore not covered

here.

The progressive failure analysis methodology uses the C four node shell element
S4R of the ABAQUS element library based on first order shear deformation theory, due
to its better performance in large deformation analysis. The element has six degrees of
freedom (three displacement and three rotation components). To avoid shear locking®
the element uses reduced ( lower order ) integration to form the element stiffness. The
element has one in-plane integration point and three through-the-thickness integration

points for each layer. Gauss quadrature is used to calculate the shell behavior.

Since the damage initiation was observed along all the edges of the specimen, a
uniform mesh size of 20x20(400 elements) was used. A standard user subroutine
USDFLD in ABAQUS was written, which allows the user to define material properties
as functions of the field variables at a material point, which instead can be function of
any of the available material point quantities. The material properties of the laminated
plate were defined to be dependent upon three field variables. The first field variable
was the contribution of o; towards the failure index (H;). The second and third field

variables were the contributions of o5 and oo respectively (Ha, Hg) to the failure index.

The computing work was done on a single node of the IBM SP2 parallel computer
running under the AIX 4.1.4 operating system. It has a 66Mhz Power2 processor, 256
Mbyte RAM and 32 Kb instruction cache. On average the CPU time taken for one

complete analysis with one failure criterion was about 50 hours .
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4.7 Experimental Background

The experiments for the composite plates had been conducted by Moy et al. (see
reference?®). Thirty four fiber reinforced composite plates were tested to failure to in-
vestigate the effects of material composition, method of manufacture and panel aspect
ratio on strength and stiffness under transverse pressure loading. The panels relevant
to this research were of an E-Glass/polyester type. The weight density of the reinforce-
ment was 620 g/mm?, the matrix was isophthalic polyester, Scott Bader Crystic-489.
The panels were made up of five unidirectional plies, each with about 90% of the fibers
concentrated in the fiber direction. The fiber weight fraction was 0.415. The material
properties for this lay-up, taken from ref?!, are shown in table 4.1. The plate specifica-
tions are given in table 4.2. All the test specimens reported here were fabricated using
the hand lay up method. In this the dry reinforcement was placed on a flat mould
and the appropriate quantity of resin was applied. The wet composite was then rolled
by hand to distribute the resin evenly. Another layer of reinforcement was then laid
on the top and more catalyzed resin was poured and rolled over the reinforcement.
This sequence was then continued until the desired thickness was reached. The layered
structure was then left to harden and cure under normal laboratory conditions. The
test rig (figure 4.3) consists of identical upper and lower steel frames. The specimen
is sandwiched between the frames which are then bolted tightly together by two lines
of bolts all round. The heavy steel frames give in-plane and rotational restraints to
the edges of the panel to simulate fixed boundary conditions. Water pressure is pro-
vided through a synthetic bag placed between the specimen and the lower steel frame
(figure 4.4). During a test the bag is filled with water from a rigid pressure vessel.
Pressure is increased by introducing compressed air into the top of the pressure vessel
and is controlled manually and measured by a pressure transducer and a mechanical
pressure gauge. Strain gauges and displacement transducers were mounted on all of
the panels. Some selected panels were heavily strain gauged. The test procedure was
the same for all the panels. Initial readings were taken on all instruments and pressure
was then increased in small increments. At each increment pressure and deformations

were allowed to settle down before readings were taken. Pressure load was increased

continuously up to failure.
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The geometry and coordinate system used for the present analysis is shown in figure
4.5. All the plates considered here were clamped on all the edges, and were loaded
by water pressure applied to the bottom surface. Each specimen was instrumented
with displacement potentiometers placed at five locations on the surface. Although

deformation data was available at more than one point, only the central deflection is

compared with the analytical result.

The three panels considered here, referred to as A, B, and C, had aspect ratios
of 1, 1.5 and 2 respectively. Typical load-deflection curves are given in figure 4.6.
The progression of failure for the panels was observed visually. A typical sequence of
damage progression is given below. Initial damage was due to resin cracking along the
edges. This was characterized by noise emitted during loading. When cracking started
the resin lost its sheen and appeared dull. These cracks started from the loaded face
where the edge was in tension. Up to aspect ratio 1.5, there were cracks parallel to the
edges and also at 45° to the edges. At aspect ratio 2 there were cracks only parallel
to the long edges. At higher load there was visible damage with considerable resin
cracking. Failure occurred at the edges of the panels and usually along a long side.
There was little warning of failure in terms of rapid increases in deflection, but it was
obvious when failure was imminent. At failure the break-up of fibers along edges was
accompanied by very loud noises, different from the resin cracking noises. Figure 4.7

shows a typical failure pattern at final collapse for plate C of aspect ratio 2.

4.8 Numerical Results

Figure 4.8 shows the load-central deflection graph for plate A. As can be seen the
progressive failure results (using T'sai-Wu) agree very well with the test results. The
load-central deflection data using other failure criteria are also available. However they

are almost identical to the Tsai-Wu curve and are not presented to maintain clarity.

Summaries of the first ply failure loads, dominant failure mode type and the failure
location, using different failure criteria are presented in tables(4.3 to 4.5). Table 4.3
summarizes the first ply failure results for plate A, having aspect ratio 1. Pressure

at which the failure index first reached one, according to different failure criteria, is
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listed and compared with the test pressure at which first audible crack was heard. The
numerical procedure could provide the exact location, where failure initiated, i.e. top,
middle or bottom of a ply. Since bending dominated in the initial stage of loading,
the stress state was high in the bottom of a ply, at which the ply failed first. Due to
the low transverse lamina strength, first ply failure was invariably due to matrix crack.
For increased aspect ratio ({ in figure 4.5), the bending stresses being higher along
the long edges, the initial failure was even less for plates B and C, as can be seen in

tables 4.4 and 4.5. However the central deflection at first ply pressure was higher as

the aspect ratio increased.

Summaries of the ultimate failure loads, dominant failure mode type and the failure
deflection, using different failure criteria are presented in tables(4.6 to 4.8). Table 4.6
summarizes the ultimate collapse load results for plate A. The failure load corresponds
to the pressure at which there was rapid large increase in deflection with a small
increase in pressure. The dominant failure mode presented in the table is that which
was responsible for the collapse of the structure. For plate A failure was due to fiber-
breakage, which indicates that the in-plane normal stress o; was responsible. However
for increased aspect ratios, as can be seen in tables 4.7 and 4.8, the dominant failure
mode was fiber-matrix shear, which means the bond between the matrix and the fiber
was lost. This indicates that at higher aspect ratios the in-plane shear stress caused the
final collapse of the structure. Additional discussion on the first ply failure, ultimate

failure and damage propagation is given in the next section.

Internal damage and failure modes predicted by the model for all the plates are
presented graphically in figures 4.9 to 4.24. In these figures a solid sphere indicates

a matrix crack at that location, a cube indicates fiber-matrix shear, and a triangular

prism indicates fiber breakage.

e Plate A

The first ply failure was due to ’matrix cracking. Almost all the failure criteria
predicted the same ply and same location for failure initiation.The predicted first ply
failure pressure does not agree well with the test pressure at first audible crack. This
may be due to the fact that the background noise in the test laboratory, made it difficult
to identify when the crack started?®. The first crack started almost at the middle of

49



the edge(Y=15). Immediately after, cracks also penetrated through the depth from
the bottom surface. As shown in figures 4.9 to 4.14 at 0.1 MPa cracks started on top
surface along the edge(y=45mm). With further increase in pressure cracks advanced
towards the center. At 0.30 MPa about 67 percent of the material points failed by
matrix cracking. Just before failure about 75 percent of the material points had failed
by matrix cracking and about 8 percent of the material points had failed by fiber
breakage. Fiber breakage first began at a pressure of 0.15 MPa in the second ply.
With further increase in pressure it propagated to the fourth ply. Gradually it was
advancing towards the center, although the damaged region due to fiber breakage was
narrow(width of 90mm) and ran parallel to the x axis. In each ply the damage was
symmetric. The damage in the bottom two plies was always more than that of the
upper two plies. Tsai-Hill criterion predicts the failure pressure most accurately, with

plate failure mainly due to fiber failure.

e Plate B

The first ply failure was again due to matrix cracking. Almost all the failure
criteria predicted the same ply and same location for failure initiation. The inaccuracy in
predicting first ply failure pressure may be attributed to the same reason as mentioned
for plate A. After the first crack, cracks penetrated through the depth from the bottom
surface. With further increase in pressure cracks advanced towards the center and
towards the top surface. As shown in figures 4.15 to 4.19 at 0.30 MPa about 67
percent of the material points failed by matrix cracking. For plate B fiber Matrix
shearing first began in the second ply at a pressure of about 0.10 MPa. With further
increase in pressure it propagated to the fourth ply, although damage in the second ply
was always higher. Gradually it advanced towards the center, at a rate greater than
that of plate A. The damaged region due to fiber-matrix shear was also more than that
of plate A. Just before failure more than 75 percent of the material points had failed by
matrix cracking and about 15 percent of the material points had failed by fiber matrix
shear. Tsai-Wu criterion predicts the failure pressure most accurately, although it over

estimates the failure deflection. The plate failure was mainly due fiber matrix shear.

e Plate C
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The first ply failure was invariably due to matrix crack. The propagation of damage
for plate C was similar to that of plate B, with more damage occurring at an early
stage. As shown in figures 4.20 to 4.24 the damage zone due to fiber-matrix shear was
wider and more in the second and fourth plies than that of the other two plates. Almost
all the failure criteria predicted the same ply and same location for failure initiation.
Tsai-Hill criterion predicts the failure pressure most accurately. The plate failure was

mainly due fiber matrix shear.

4.9 Discussion
e Choice of Failure Criterion

There was little difference in prediction of first ply failure load from all the failure

criteria, which indicates that at ply level it is immaterial which failure criterion is used.

This can be explained as follows.

Referring to eqs. 4.4 to 4.8 and table 4.1, it can be seen that the expression for
the coefficient Foo is the same for most of the failure criteria and the expression for
the coefficient F5 is the same for Tsai-Wu’s, maximum-stress and Hoffmann’s criteria,
which makes the contribution of oy towards failure (H») almost equal by most of the
failure criteria. This means that most of the failure criteria predict the same load
for matrix failure. The coefficient F5 is about 40 times larger than F; and Fi is
about 80 times larger than Fii, although for Tsai-Hill criterion, F; and F5 are zero.
In the very initial stage of loading, the in-plane stresses in the first ply are of the
same order of magnitude. Along the long edges, F; and [, are much higher than the
other coefficients. Consequently, the contribution of oo (Hy = Foop + Faos) towards
failure was much higher and the contribution of the other two in-plane stresses towards
failure was negligible. This means that with the transverse lamina strength being much
less than the corresponding longitudinal ones, and the transverse lamina stresses in the
initial loading stage being of the same order of magnitude as the other in-plane stresses,
it is the transverse stress o,(and hence Ha), which determines the onset of initial failure.

H, is almost the same for most of the failure criteria. Hence they predicted nearly same

first-ply pressure.
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The load deflection curve due to all the failure criteria was almost the same for
each of the panels. The ultimate load and ultimate deflection were better predicted by
the T'sai-Hill criterion for all the panels in contrast to Tsai-Wu or the maximum stress
criterion predicting better for beam bending cases as reported in ref'®?2. The reason for
this may be as follows. The maximum stress criterion does not take stress interaction
into account(i.e. rectangle in two-dimensional stress space). Furthermore, in beam
bending cases, the state of stress is not strongly bi-axial in nature, and therefore could
predict failure load more accurately. Plates, however curve in two directions. Stresses
along the two in-plane axes could both become significant. This implies that coupling or
interaction effects would become significant. Although Tsai-Wu and Tsai-Hill include
stress interaction(both are ellipses), Tsai-Wu is more close towards the maximum stress

criterion. Therefore the failure pressure for the present plate bending case was better

predicted by Tsai-Hill criterion.

e Load Increment

The progressive(ultimate) failure loads in the non-linear failure analysis were found
to be sensitive to both load increment size and finite element mesh size. The first
ply failure load and ultimate load were strongly dependent on the load increment size
chosen. In a test the load and displacement increase continuously, but in a numerical
simulation discrete load increments are used for failure prediction. A large load step will
not represent damage progression well, and a very small load step will require significant
computational effort. In the present analysis a load increment size of approximately
0.2 percent of the first ply failure load (or abbut thirty thousand load steps) and a
mesh size of 20 by 20 (or 400 elements) was chosen, after conducting a convergence

study for a fixed failure criterion.
e Damage in the Panels

The initial bending at the edges of the panels caused cracks in the resin, which ran
along, particularly, the long edges of the loaded surface of the panel. Cracks propagated
from bottom to top and advanced towards the center. Fiber failure in the form of fiber-

matrix shear or fiber breakage started in the second and fourth plies, along the edges



and gradually propagated towards the center. The width of the damage zone due to
fiber failure mode was larger for plates having larger aspect ratio. In each case the
middle ply remained un-damaged up to a pressure of 0.10 MPa. In addition to matrix

crack, the final dominant failure mode was either fiber-matrix shear or fiber breakage.

As shown in figure 4.9 in the initial stage, fiber content being more in the x-direction,
ply 1 and ply 5 were stressed more than the others. Cracks formed in these plies
when the transverse tensile or compressive strain reached its limit. However since the
transverse compressive strength(Y) of the ply is significantly more than its transverse
tensile strength, more cracks appeared in the first ply. The middle layer acted as a
neutral layer and remained unstressed, up to 0.10 MPa. With further increase in load,

there was redistribution of stresses in two ways as follows:

(a) The damaged materials lost some of their stiffness, and consequently their con-
tribution to global stiffness decreased. The undamaged material points,being
stiffer than the damaged ones, carried a larger portion of the additional load and
therefore were stressed more. In this way stress transfer occurred both in-plane
and through the thickness. Therefore as shown in figure 4.10, there was sudden
transfer of stress to the middle layer, which eventually cracked at several material
points. In the other layers more in-plane material points cracked as stresses were

transferred between material points as damage occurred.

(b) The damaged material points could not carry any more load in the failed mode,
but still might carry some load, if not completely failed. For example if a ma-
terial point fails in matrix cracking mode it cannot take additional stresses in
the transverse direction, but it can still carry some load due to its longitudinal
stiffness which is not necessarily zero. This results in increase in stress level in
the fiber direction. As shown in figure 4.10 some of the materials points, which

had failed by matrix cracking, failed in fiber mode.

With further increase in load there was continuous stress transfer, due to which
there was increase in the number of cracked material points and the number of material
points with fiber failure, the former occurring more rapidly as shown in figure 4.11.

When about three quarter of the material points had lost their transverse strength and
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about 15% of the material points had lost their longitudinal strength, the structure
behaved as if plastic hinges had formed along the long edges as shown in figures 4.14,

4.19 and 4.24. At this stage there was a rapid increase in deflection and the plate was

assumed to fail.
¢ Basic Panel Behavior

The panels studied were very thin, with a short span to thickness of ratio of approx-
imately 175. Tables(4.6,4.7,4.8) show that for the same material and same lamination
sequence, the larger the aspect ratio, the larger the deflections and the lower the failure
load. As would be expected, the plates behaved non-linearly under transverse pres-
sure(figure 4.8). At very low pressures the panels were very flexible, and there was
rapid increase in deflection(figure 4.8), which confirms the nonlinear load-deflection
curves obtained in the tests, as shown in figure 4.6. As the aspect ratio increased,
the contribution of shear stress towards failure was greater than that of the normal
stresses, so that plates B and C finally failed in the fiber-matrix shear mode(tables 4.7
and 4.8) , while the failure in plate A was mainly due to breakage of the fibers(table
46).

Figure 4.24 shows the failure pattern of plate C just before failure and figure 4.7
is a photograph of plate A taken in the laboratory at final failure. The deep black
damage lines running parallel to the long edges (figure 4.7) show where the fibers were
broken. They are in agreement with the predictions of the numerical results as shown
in figure 4.24, which indicates that fiber failure in the form of fiber-matrix shearing was

dominant along the long edges, leading eventually to the final collapse of the plate.

4.10 Concluding Remarks

A progressive failure methodology for uni-directional composite plates has been de-
veloped and successfully implemented. It accommodates various formulations in pre-
dicting failure such as the maximum stress criterion, T'sai-Wu criterion and Hashin’s
criterion and others.These different formulations are compared and assessed by per-
forming analyzes on laminated composite panels. The results show improvement in ac-

curacy with the progressive degradation model. The contribution of transverse stresses
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towards failure was found to be negligible and hence is not included in the failure cri-
terion. The progression of damage is shown graphically for easy understanding. The
model can provide the following information: the type and extent of damage at a given
load, the residual stiffness and strength of the laminated composite plates, the first
ply failure load, the final collapse load, and the complete response of the composite
plates from initial loading to final failure. The progressive(ultimate) failure loads in
the non-linear failure analysis were found to be sensitive to both load increment size
and finite element mesh size. In a test the load and displacement increase continuously,
but in a numerical simulation discrete load increments are used for failure prediction.
A large load step will not represent damage progression well, and a very small load
step will require significant computational effort. In the present analysis about thirty
thousand load steps and a mesh size of 20 by 20 (or 400 elements) were chosen, after

conducting a convergence study for a fixed failure criterion.
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Table 4.1: Mechanical Properties of glass/polyester unidirectional Lamina.

Moduli Parameters Symbol(units)

Longitudinal modulus E.(GPa) 23.6
Transverse Modulus E,(GPa) 10.0
Shear Modulus G,y (GPa) 1.0
Poisson’s ratio Vay 0.23
Strength Parameters Symbol(units)

Longitudinal tension Xr(MPa) 735

Longitudinal Compression Xc(MPa) 600

Transverse tension Yr(MPa) 45
Transverse Compression Yo (MPa) 100
Inplane Shear SC(MPa) 45

58



Table 4.2: Laminated Plate Specifications(refer to figure 4.5)

_ Length(a) Width(b) Thickness
Plate Lay-up No. of Plies
A [0/45/90/-45/0] 5 600 600 3.43
B [0/45/90/-45/0] 5 900 600 3.43
C  [0/45/90/-45/0] 5 1200 600 3.43
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Table 4.3: First Ply Failure Analysis of Plate A

Failed Location Dominant
Failure Failure Central Failed
(x,y-coordinates) Failure
Criterion Pressure Deflection(mm) Ply
(mm) Mode
) 1 Matrix
Maximum Stress 0.0218 10.64 315,15
(bottom) Crack
1 Matrix
Tsai-Hill 0.0218 10.64 315, 15
(bottom) Crack
1 Matrix
Tsai-Wu 0.0221 10.69 315, 15
(bottom) Crack
1 Matrix
Hoffmann 0.0219 10.65 315, 15
(bottom) Crack
1 Matrix
Hashin 0.0218 10.64 315, 15
(bottom) Crack
1 Matrix
Azzi-Tsai-Hill 0.0218 10.64 315, 15
(bottom) Crack
Test result:
Pressure at
0.035 - - - -

first audible
Crack
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Table 4.4: First Ply Failure Analysis of Plate B

Failed Location Dominant
Failure Failure Central Failed
(x,y-coordinates) Failure
Criterion Pressure Deflection(mm) Ply
(mm) Mode
1 Matrix
Maximum Stress 0.01615 11.67 465, 15
(bottom) Crack
1 Matrix
Tsai-Hill 0.01615 11.67 465, 15
(bottom) Crack
1 Matrix
Tsai-Wu 0.0164 11.74 465, 15
(bottom) Crack
1 Matrix
Hoffmann 0.0162 11.69 465, 15
(bottom) Crack
1 Matrix
Hashin 0.01615 11.67 465, 15
(bottom) Crack
1 Matrix
Azzi-Tsai-Hill 0.01615 11.67 465, 15
(bottom) Crack
Test result:
Pressure at
0.035 - - - -

first audible
Crack
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Table 4.5: First Ply Failure Analysis of Plate C

Failed Location Dominant
Failure Failure Central Failed
(x,y-coordinates) Failure
Criterion Pressure Deflection(mm) Ply
(mm) Mode
1 Matrix
Maximum Stress 0.01545 11.80 615, 15
(bottom) Crack
1 Matrix
Tsai-Hill 0.01545 11.80 615, 15
(bottom) Crack
1 Matrix
Tsai-Wu 0.015675 12.00 615, 15
(bottom) Crack
1 Matrix
Hoffmann 0.01550 11.90 615, 15
(bottom) Crack
1 Matrix
Hashin 0.015425 11.80 615, 15
(bottom) Crack
1 Matrix
Azzi-Tsai-Hill 0.01545 11.80 615, 15
(bottom) Crack
Test result:
Pressure at
0.040 - - - -

first audible
Crack

62



Table 4.6: Ultimate Failure Load for Plate A

Failure Central Dominant
Failure
Pressure Deflection Failure
Criterion

(N/mm?) (mm) mode
Maximum Stress 0.612 41.0 Fiber-Failure
Tsai-Hill 0.608 40.90 Fiber Failure
Tsai-Wu 0.610 40.90 Fiber-Failure
Hoffmann 0.611 41.0 Fiber-Failure
Hashin 0.600 41.0 Fiber-Failure
Azzi-Tsal-Hill 0.608 40.90 Fiber-Failure
Test Results 0.605 41.70 Fiber-Failure
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Table 4.7; Ultimate Failure Load for Plate B

Failure Central Dominant
Failure
Pressure Deflection Failure
Criterion
(N/mm?) (mm) mode
Fiber-Matrix
Maximum Stress 0.5450 54.40
Shear
Fiber-Matrix
Tsal-Hill 0.5520 54.40
Shear
Fiber-Matrix
Tsal-Wu 0.5530 55.20
Shear
Fiber-Matrix
Hoffmann 0.5490 54.60
Shear
Fiber-Matrix
Hashin 0.5450 56.20
Shear
Fiber-Matrix
Azzi-Tsai-Hill 0.5520 54.40
Shear
Test Results 0.550 53.30
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Table 4.8: Ultimate Failure Load for Plate C

Failure Central Dominant
Failure
Pressure Deflection Failure
Criterion
(N/mm?) (mm) mode
Fiber Matrix
Maximum Stress 0.455 56.30
Shear
) Fiber Matrix
Tsai-Hill 0.462 56.50
Shear
Fiber Matrix
Tsai-Wu 0.461 56.50
Shear
Fiber Matrix
Hoffmann 0.441 55.70
Shear
Hashin 0.455 55.90 Fiber Failure
Fiber Matrix
Azzi-Tsai-Hill 0.462 56.50
Shear
Test Results 0.480 51.0
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Figure 4.10: Damage Pattern for Plate A at 0.20 MPa
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Figure 4.11: Damage Pattern for Plate A at 0.30 MPa
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Figure 4.12: Damage Pattern for Plate A at 0.40 MPa
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Figure 4.13: Damage Pattern for Plate A at 0.50 MPa
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Figure 4.14: Damage Pattern for Plate A at 0.60 MPa (Just Before Failure)
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Figure 4.15: Damage Pattern for Plate B at 0.10 MPa
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Figure 4.16: Damage Pattern for Plate B at 0.20 MPa
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Figure 4.17: Damage Pattern for Plate B at 0.30 MPa
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Figure 4.18: Damage Pattern for Plate B at 0.40 MPa
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Figure 4.19: Damage Pattern for Plate B at 0.50 MPa (Just Before Failure)

80



€& DMatrix Crack
&7 Fibre—Matrix Shear

Fibre Breakage
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Figure 4.21: Damage Pattern for Plate C at 0.20 MPa
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Figure 4.22: Damage Pattern for Plate C at 0.30 MPa
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Figure 4.23: Damage Pattern for Plate C at 0.40 MPa
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Figure 4.24: Damage Pattern for Plate C at 0.50 MPa (Just Before Failure)
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Chapter 5

Failure Analysis of Woven Fabric

Composite Structures

5.1 Introduction

In the previous chapter, a progressive failure methodology was developed and imple-
mented into the general purpose finite element program ABAQUS. Damage propaga-
tion of three uni-directional composite plates was studied. Another class of composites
which are extensively used in aerospace structures, is plain weave fabric composites.
A thorough discussion of these composites and their numerical modelling aspects have
been discussed in the third chapter. The objective of this chapter is to study the

damage propagation and failure of laminated plates made of plain woven composite

materials.

Few research projects have been done on damage modeling of woven fabric com-
posite structures. Blackketter et al' studied the damage development in plain weave
fabric reinforced composite laminates subjected to tension and shear loadings using 3-
D finite element analysis. Whitcomb and Srirengan? studied the effects of quadrature
order, mesh refinement and choice of material degradation model on the progressive
failure of plain weave composites. Naik?® in his work included non-linear shear response,
yarn bending and straightening/wrinkling in woven materials. The stiffness reduction
scheme used by Blackketter’ was used in the analysis. Vandeurzen et al* studied the

- . - . . . . > . =4
failure process in woven fabric composites in which the homogenization technique® was

86



used. The aim of this chapter is to study the failure behavior of woven fabric composite

plates in bending, in contrast to the in-plane conditions considered in the literatures.

For studying the damage propagation of a woven fabric composite layer, detail
finite element modeling of the reinforcement and the surrounding resin is often neces-
sary. Analysis in this way is often called a micro-mechanics analysis. However, from
the review made in chapter 3, it is clear that, if the woven fabric composite plate con-
sists of large number of unit cells, the finite element method becomes computationally
expensive. The woven fabric plate considered in this chapter consists of unit cells of
order of thousands. Moreover, the progressive failure methodology developed in the
previous chapter was developed for uni-directional composites. It cannot be directly

applied to woven fabric composite structures.

In this chapter the progressive failure analysis of woven fabric composite plates
are carried out as follows. A simplified model is developed in which a woven ply is
simplified as a combination of two resin layers and two uni-directional composite layers.
This is explained in the next section. Section 3 outlines the procedure for determining
the mechanical properties of a composite plate with woven plies. Even though this
section is not necessary for carrying out the progressive failure analysis, this is useful
for validating the accuracy of the simplified model. Section 4 gives a brief description
on the experiments on these plates. In section 5, the extension of the damage model
developed in the previous chapter as applicable to the present simplified model is

discussed. Numerical results are presented in section 6, and conclusions are drawn in

the last section.

5.2 Simplified Model for a Woven Fabric Lamina

In the simplified model, a repeating unit element with width d in a single layer woven
fabric composite (referred to as woven lamina) is simplified as a four-layer laminate
which consists of upper and lower layers of pure resin and two orthogonal fiber /resin lay-
ers sandwiched between the two pure resin layers as shown in figure 5.1. The pure resin
layers represent the coverings on the top and bottom of the rovings. The fiber/resin lay-

ers represent the warp roving and the weft roving, in which the fiber and the remainder
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of the resin are mixed together.

The following notations are used.

e Notations for the composite plate as a whole:
t = overall thickness
Vs = Overall fiber content by volume
Ef, E™ are Young’s moduli of fiber and resin respectively
v, U™ are Poisson’s ratios of fiber and resin respectively
G*, G™ are Shear moduli of fiber and resin respectively

gf:1——yf2amdgm:1——1/m2

e Notations for the woven lamina:
h = thickness of lamina
h.m; = thickness of top or bottom pure resin layer
t1, t2 are thickness of fiber/resin (warp and weft)
S;; = fiber content in fiber/resin (warp and weft)
Sm: = resin content in fiber/resin (warp and weft)
Smi=1—Sg
p = fraction of resin (by volume) in pure resin layer

&1; = lamina fiber fraction

&,; = warp fiber fraction

If 1 is the proportion of the resin that lies in the uni-directional layers, which can be
estimated from the scanning electron microscope(SEM) photograph of the composite
plate, then the thicknesses of various layers in the simplified model can be calculated
as follows. Total thickness of pure resin is (1 — V¢)t. The amount allocated to each

lamina is Eg—;ly-’c)—t Hence the thickness of the top or bottom pure resin layer is “(I;Xf)t.

Here t is the total thickness of the composite plate and n is the number of woven fabric

layers.
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e Equivalent thickness of fiber in fiber/resin layer (warp or weft)
Equivalent thickness of all fibers is Vit.
The amount allocated to each fiber/resin layer (warp or weft) is
£1:&; Vst for (warp fiber/resin layer)

&1i(1 — &) Vit for (weft fiber/resin layer)

e Equivalent thickness of resin in fiber/resin layer (warp or weft)
Equivalent thickness of resin in all the fiber/resin layers is (1 — u)(1 — V)t.
The amount allocated to each fiber/resin layer (warp or weft) in lamina is
£1i€2:(1 — p)(1 — V)t for (warp fiber/resin layer)

£1i(1 — &2,)(1 — p)(1 — Vi)t for (weft fiber/resin layer)

e Equivalent thickness of fiber/resin layer (warp or weft)

This can be obtained by adding the equivalent thicknesses of the fiber and the

resin together.
t; = (1 — (1 — Vy))€ribai s for (warp fiber/resin layer)

7= (1— (1 — Vp)ér(1 — &) % for (weft fiber/resin layer)

7

Once the thicknesses of the resin layers and the uni-directional composite layers
have been determined, the next step is to determine the equivalent material properties
for them. The resin layer is a homogeneous layer and hence it’s material properties are

those for pure resin, which are known from experiment and are given in the table 5.2.

5.2.1 Stiffness Properties for the Uni-Directional Composite

Layers

This section illustrates the calculation of the gross material properties for the uni-
directional composite layer based on rule of mixture formula®. In the rule of mixtures
approach, it is assumed that there is no interaction between the two phases. There
are only two types of material response; parallel (in which applied strain is the same

in both the phases) and series (in which the applied stress is the same in both the
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phases). The models developed are rudimentary from this point. However, despite
this shortcoming, in the case of longitudinal modulus, £, rule of mixtures gives very

reasonable results.

Longitudinal modulus, £,

In the case of unit displacement applied in the x direction, the ends of all the fibers
are gripped tightly and move one unit. Similarly the ends of the matrix move with the
ends of the fibers in the x direction. Thus if there is perfect bonding between the two,

it is reasonable to assume that the strain field is uniform in the x direction:

€ =c = (5.1)

where €, refers to the normal strain experienced by material i in the x direction,

and subscript c¢, refers to the composite, f, to fiber , and m, to matrix.

Rule of mixtures assumes that there is no interaction between fiber and matrix.
Combining this assumption with the homogeneity of the composite as a whole, it can
be concluded that in the case of longitudinal loading, all of transverse stresses for fiber,
matrix and composite are exactly zero. With all the assumptions the final equation

for E; can be written as,

EL=V;EL + (1= V,)E™ (5.2)

The longitudinal modulus obtained in this case is not the same as that in the case
of iso-strain approach. If, however, I/%L = ™, in which case there is no interaction
between the phases, than the iso-strain approach and the rule of mixtures approach

give identical results.

Transverse elastic modulus, Er

In the rule of mixture approach the transverse elastic modulus prediction is built upon
the assumption that each phase experiences the same stress level in the applied load

direction, ie. o, = O'?J; = 0,'. By assuming no interaction between the fiber and
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matrix, the total deformation in the system will be given by the volumetric average of
the strain on the fiber and the strain on the matrix. If there are negligible stresses in
the other directions (no effects of different Poisson’s ratios or interaction of fiber and

matrix), then the transverse modulus can be calculated as

B EfE™
ViEm + (1 — V) Ef

Er

Longitudinal Poisson’s ratio, v
s YTL

When there is no fiber-matrix interaction it can be stated that the total transverse

contraction of the body is the sum of the contractions of the individual elements. This

leads to the relationship

(B4 = Vy) + B™VY] [Vivdr + (1= Vo] [VeEL + (1= Vp)E™]

Vpp = 5o E (5.4)

Transverse shear modulus, Gr

The rule of mixture approach to transverse shear modulus is to consider the stress field
identical in both fiber and matrix in the plane perpendicular to the fibers, leading to

the result that the transverse shear modulus can be expressed as:

B GLG™
ViGm 4 (1 - V3) G4

Gr

Transverse Poisson’s ratio, vpr

Transverse Poisson’s ratio vpr can be extracted from the rule of mixtures approach

using the conditions of transverse isotropy to define this value. Hence

E+T
Vpp = —
TT 2

1 (5.6)

With respect to the present computational work table 5.2 gives the elastic properties

of the constituents such as fiber and resin. Using the above simple model the material
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properties for a single layer woven fabric composite plate are calculated and shown in

table 5.3.

5.2.2 Prediction of Strength Properties for the Uni-Directional

Composite Layers

Inspite of developments of elastic and stress analyzes, there are few techniques for pre-
diction of strength properties of composite materials. Dow and Rammath” developed
a strength analysis model using finite element method. They assumed sequential fail-
ure of matrix and fiber. After the matrix had failed, the contribution of the matrix
to the composite strength was reduced. In the strength analysis, stress redistribution
due to cracks or yarn debondings need to be considered. Boundary conditions should
take into account the assumed defects. Pollock® investigated the tensile strength of
carbon /carbon composites. Based on the microscopic observation of damage, yarn and
matrix were modeled by a curved beam with supporting springs after crack initiation.

This model is limited to the specific crack condition and thus, not suitable for other
failure modes.

Chamis'® presented strength formulas based on micro-structural analysis for uni-

directional composite materials, which is adopted in the present work, and can be

written as follows.

Longitudinal Tension :

Longitudinal Compression
(a) Fiber Compression
Xo = ViSye (5.8)
(b) Delamination/Shear
Xe =105 + 2.55,, (5.9)
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Transverse Tension

Yr = [1=(/V; = VA)(1 = En/Ep)] S (5.10)

Transverse Compression

Yo =[1= (Vs = V)1 = B/ Ey)] Sme (5.11)
In-Plane Shear
S =1~ (Vi = Vy)(1 = Guu/G)] Sums (5.12)

Where X;, X¢, Y7, Yo and S are the strength parameters of the composite material.
S¢ and Sy, are the tensile and compressive strengths of the fiber. S,,;, Sy.andsS,,, are
tensile, compressive and shear strengths of the matrix material. E; and Gy are the
elastic moduli of the fiber material, F,, and G,, are the elastic moduli of the matrix

material and V; is the fiber content by volume of the composite material.

5.3 Stiffness Characterization of a Woven Fabric

Ply

Until now, in the simplified model, the thicknesses and material properties of each resin
layer and each uni-directional layers have been determined. From this, the stiffness
properties of the woven ply can be determined using the first order shear deformation
theory. Extension to a composite plate with more than one woven fabric plies is
straight forward; same first order shear deformation theory can be used to determine
the stiffness properties. The simplified model for a typical composite plate with five
woven fabric composite layers is shown in figure 5.2. Even though the present step
1s not necessary for carrying out a progressive failure analysis, the procedure outlined
here has been used in the subsequent sections for obtaining the material properties for
a composite plate with five woven fabric plies. The predicted material properties are

then compared against test results to validate the correctness of the simplified model.
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5.4 Experimental Background for Woven Fabric Com-

posite Plates

The experiments for the woven fabric composite plates had been conducted by Moy
et al. (see reference!!). The experimental procedure remains the same as that for
uni-directional composite plates as described in section 4.7. T'wenty five woven fabric
composite plates were tested to failure to investigate the effects of material composi-
tion, method of manufacture and panel aspect ratio on strength and stiffness under
transverse pressure loading. The woven fabric panels relevant to this research were
plain woven with 0/90 degrees rovings. The weight density of the reinforcement was
800 g/mm?, the matrix was isophthalic polyester, Scott Bader Crystic-489. The panels
were made up of five woven fabric plies, each with equal amount of fibers in the warp
and weft directions. The fiber weight fraction was 0.27. The mechanical properties of

the constituent materials are as shown in table 5.2.

The three plates relevant to this research referred as plate D (size 600mm x 600),
Plate E (size 1200mm x 600mm) and plate F (size 1800 mm x 600mm) had aspect
ratios of 1.0, 1.50 and 2.0 respectively. All the plates had a thickness of 2.83mm. All
plates were produced using a vacuum-assisted resin injection-moulding technique. Here
the reinforcing fabrics were cut to size and placed in the flat mould. The mould was
then vacuum-sealed with a flexible covering and catalysed resin was sucked into the
mould using a vacuum pump. After the correct quantity had been injected the vacuum
was maintained until the laminate had cured. The vacuum seal was then removed and
the edges trimmed as necessary. Panels produced in this way are often called scrimp
panels. Typical load-deflection curves are given in figure 5.3. Typical damage pattern

of plate D from the photograph taken in the laboratory is shown in figure 5.4.

5.5 Extension of the Damage Model

In section 2, a woven fabric ply was simplified as a combination of resin layers and uni-
directional composite layers. In section 3, the simplification procedure for a composite

plate with woven fabric plies was discussed. With these simplifications, the progressive
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failure methodology developed in the last chapter for uni-directional composite mate-
rials can be applied to a composite plate with woven fabric plies. Several aspects of a
progressive failure analysis, such as material property degradation scheme, ABAQUS
implementation and the equilibrium aspects have already been discussed in the last
chapter in detail. Progressive failure analysis is based on the assumptions that (a) the
damage is localized in nature and (b) the damaged material can be substituted with an
equivalent material with degraded properties. Three forms of damage and their possi-
ble combinations are considered in this research. They are (i) matrix crack, (ii) fiber
breakage and (iii) fiber matrix shear. Since the plates considered were very thin, of
short-span to thickness ratio of as large as 200, delamination was unlikely to occur and
hence was not considered. The properties of the damaged material are adjusted as the
loading and progression of damage continues. Because of the large aspect ratio of the
plates out-of -plane stresses are assumed to be in-significant and hence are neglected in
the progressive failure analysis. The stress analysis is done using the general purpose
finite element program ABAQUS!2. A uniform mesh size of 20 x 20 (400 elements) was
used. The progressive failure analysis methodology uses the C° four node shell element
S4R of the ABAQUS element library based on first order shear deformation theory,
due to its better performance in large deformation analysis. The element has six de-
grees of freedom(three displacement and three rotation components). The element has
one in-plane integration point and three through-the-thickness integration points for
each layer. In a numerically integrated finite element method, material properties are
selected at Gauss integration points. Therefore in the present analysis at each Gauss
point, damage or failure was determined by comparing the current stress state with
a specified failure criterion. To simulate damage, material properties at each failed
Gauss point were reduced to values representing the particular type of damage that
had occurred as shown in table 5.1; In this table the FV(variables in ABAQUS) quan-
tities specify whether failure has occurred or not. FV1 corresponds to matrix crack;
FV1=1 indicates failure due to matrix crack and FV1=0 indicates no matrix crack at

an integration point. Similarly FV2=1 represents failure due to fiber/matrix shear and

FV3=1 indicates failure due to fiber breakage.
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5.6 Numerical Results

5.6.1 Material Properties Results

Table 5.2 shows the mechanical properties for the fiber and resin which had been used
as constituent materials for the woven fabric composite plates. The simplified model
developed earlier in this chapter was used to calculate the material properties of the
equivalent uni-directional composite plates. They are listed in table 5.3. To confirm the
validity of the simplified model, the material properties are compared with test results.
However, experimental material properties are available only for the entire woven fabric
composite plate. Therefore the simplified model was then extended to calculate the
material properties of the five layer woven fabric composite plate. This was performed

using the finite element program ABAQUS. First order shear deformation theory was

used for this purpose.

The results for the longitudinal Young’s modulus £y are listed in table 5.4. The
table gives predictions for £y at different orientations to the warp directions along with
the test results for them. In addition, the present model is compared against those pre-
dicted by Feng!®. In Feng’s work, the uni-directional composite layer is first subjected
to in-plane strain components individually. For each individual case the constitutive
relationship is derived. These are then super-imposed to obtain the constitutive rela-
tionship for the general strain state of the composite material. The classical laminated
plate theory is then used for obtaining the stiffness properties of a woven fabric ply.
It can be seen that the present method gives more accurate results than those given
in reference'®. Comparison against other simplified models in literature has not been
shown in this table since they appear in reference'®. Also the main focus of this chapter
is to carry out a progressive failure analysis for woven fabric composite plates, rather
than material property predictions for them. The sole purpose of developing the sim-
plified model was to extend the progressive failure model developed in the last chapter
to woven fabric composite plates. Table 5.5 compares the predicted shear modulus and

13

Poisson’s ratios for the woven fabric composite plate with those obtained in reference*”.

For this case experimental results were not available.

The marginal improvement in property predictions as compared to Feng'®'s results
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can be attributed to the fact that in the later case classical lamination theory was
used for predicting the plate properties in contrast to the first order shear deformation
theory used in the present case. Also the expressions used for predicting the material
properties for the equivalent uni-directional composite plates in reference'® are more
involved as compared to the rule of mixtures approach adopted in the present proce-
dure. Presently, the implementation of the rule of mixtures approach can be found in

many commercial finite element programs including ABAQUS.

5.6.2 Central Deflection Results

Figure 5.5 compares the central deflection results due to the progressive failure model,
finite element method (with out any damage) with the experimental results. The
progressive failure results give better predictions when compared to the finite element
results. The error in the later case was more towards the upper end of the load-
deflection curves. In the initial stage the load deflection curve (from experiment)
was highly nonlinear. This justifies the assumption of geometric nonlinearity in the
progressive failure model. The progressive failure results were always below those of
the finite element model (no damage). This is because damage in the former case

reduced the structural stiffness and therefore there was more deformation at the same

load level.

5.6.3 Damage Patterns and Final Failure

Figures 5.6 to 5.14 show the damage pattern obtained using the progressive failure
model for plate D at different loads. The resin cracking pattern was different to that
obtained in the uni-directional case (plate A). The first ply failure was due to matrix
cracking. It occurred at a load of 0.02 MPa. For this no experimental value is avail-
able. However, this value seems reasonable, when compared to the first ply failure
load for plate A (table 4.3). At 0.05 MPa, about 5 percent of material points had
failed by matrix cracking. Unlike the uni-directional case, all the layers of the woven
fabric composite plate had damage in the form of matrix cracking. At this load the
crack was already advancing towards the center in the last ply. When the load was

increased further, cracks started advancing towards the center in all the plies (figure
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5.7). At aload of 0.10 MPa cracks also appeared along the remote transverse directions
(x=0,x=600). Failure due to fiber-matrix shear first appeared at a load of 0.14 MPa
in the first ply. With further increase in pressure, it propagated to the second and
fifth ply. Gradually it was advancing to the center, although the damaged region due
to fiber-matrix shear was concentrated in the corner regions. This is in contrast to
the uni-directional case, where the damaged region due to fiber matrix breakage ran
parallel to the x axis. In each ply the damage was symmetric. At 0.30 MPa about 28
percent of the material points had failed by matrix cracking. Just before failure about
58 percent of the material points had failed by matrix cracking and about 4.7 percent
material points had failed by fiber-matrix shear. The failure occurred at a load of 0.45
MPa. The test failure was 0.424 MPa. This is because of the simplification of the wo-
ven fabric composite plate as a stacking sequence of uni-directional composite plates.
At this stage the fourth ply had substantial number of material points failed due to
matrix cracking. Unlike the uni-directional case, there was no clear indication of the
failure load for woven fabric composite plates. The damage pattern predicted in these
figures correlate well with the experimental observations. For example, the deep black
lines parallel to the x axis in the experimental damage pattern (figure 5.4) correspond
to the resin crackings in figure 5.14. In this case, the ultimate failure was due to the
effect of both the matrix cracking failure and fiber-matrix shearing failure, whereas the
ultimate failure in the uni-directional case was due to fiber failure. This shows that

the weave architecture does contribute to increasing resistance to fiber failure.

5.7 Conclusion

In this chapter a simple theoretical model is presented for prediction of elastic properties
of woven fabric composite plates. The model can estimate the stiffness properties of
the woven fabric composite plate from the knowledge of the material properties of
the constituents. A progressive failure analysis has been carried out on the simplified

model. Comparison with experimental data has shown to be satisfactory.

The response of a woven fabric composite material is dependent on the constituent
material properties, and physical location and orientation of the fiber. Therefore the

quantification of the geometrical structure of the reinforcement affects the distribution
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of stresses in a woven fabric composite plate. In the present case, the total quantity of
fiber in the plain weave composite layer is distributed in two uni-directional composite
layers. This method has been seen to work well for this particular type of woven fabric
composite material, where the curvature was too small. However in the event that
the curvature increases, there will be the effect of stress concentrations, which have

to be take into account while estimating the strength quantities of the woven fabric

composite materials.
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Table 5.1: Material Property Degradation Scheme

Failure Mode Material Properties FV1 FV2 FV3
No Failure E, B, vy Gg 0 0 0
Matrix Failure E, 0 0 Guy 1 0 0
Fiber/Matrix Shear Failure E, E, 0 0 0 1 0

Matrix Failure and
E, 0 0 0 1 1 0
Fiber/Matrix Shear Failure
Fiber Breakage 0 O 0 0 0 0 1
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Table 5.2: Mechanical Properties of E-glass(Yarn)/polyester(Resin)

Yarn Properties Resin Properties

Stiffness(MPa) E¢=70000 E,,=3500

G§=26923 G,,=1346

Strength(MPa) S=2400 S,,+=65

Strength(MPa) St.=2160 Sme=130
Sins=065

Table 5.3: Stiffness and Strength Properties of Each Layer in the Equivalent Uni-

Directional Composite Plate

Stiffness Properties Strength Properties

E,(MPa) = 39875  X7(MPa)=1050
E,(MPa) = 14181  X(MPa)=950
Vpy= 0.3 Y7 (MPa)=55
G, (MPa) = 5127 Ye=110

S(MPa)=55
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Table 5.4: Comparison of Longitudinal Young’s Modulus Ep,

Inclination to

E " E
the warp direction E (Feng™)
(Present Model) (Test)
(in degrees)

0 27.17 27.2 27.1

22.5 20.1 19.8 19.2

45 15.77 15.6 15.6

67.5 20.6 19.8 20.7

90 27.17 27.2 27.0
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Table 5.5: Comparison of Overall Shear Modulus and Poisson’s Ratio

Inclination to

G 1 Vay o
the warp direction G (Feng'?) Vay (Feng'?)
(Present Model) (Present Model)
(in degrees)
0 5.02 5.1 0.156 0.157
225 7.0 7.1 0.156 0.157
45 11.7 11.8 0.156 0.157
67.5 7.0 7.1 0.156 0.157
90 5.23 5.10 0.156 0.157
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Figure 5.12: Damage Pattern for Plate D at 0.35 MPa
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Figure 5.14: Damage Pattern for Plate D at 0.45 MPa (Just Before Failure)
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Chapter 6

Stress Analysis of 2-D Orthotropic
Structures Using the Boundary
Element Method

6.1 Introduction

In the last two chapters the progressive failure methodology based on the finite element
method was applied to uni-directional and woven fabric composite structures. The
other available numerical method of stress analysis is the boundary element method.
An important feature of the BIE method is that instead of attempting to find an
approximate solution for the governing differential equation throughout the relevant
solution domain, as in domain methods such as finite element or finite difference ap-
proaches, the equation is converted into an integral form, often involving only integrals
over the boundary of the solution domain. Consequently, only the boundary has to be
discretized in order to carry out the integrations. The dimensionality of the problem
is thereby effectively reduced by one: a three dimensional volume problem becomes
a two-dimensional surface one, while a two-dimensional plane problem involves only
one-dimensional line integrations. Also, because the interior of a solution domain is

not discretized, there is much less approximation involved in representing the solution

variables.

In the analysis of complex problems created by the use of composite materials a de-
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tailed and accurate calculation of stresses in the regions of rapid stress variation is often
required for general design purposes. For these cases where the resolution of high stress
gradients and complex geometries is required, the boundary element method is particu-
larly well suited. The literature available on BIE implementation in isotropic elasticity
is largem?®. However it is only comparatively recently that numerical implementations
for anisotropic problems have been reported. Rizzo and Shippy* presented the first ap-
plication of the BEM to plane anisotropic problems, while Vogel and Rizzo® presented
an integral representation for three-dimensional problems. Deb and Banerjee® have
applied the method of particular integrals to the case of two-dimensional anisotropic
problems in the case of inertial and centrifugal loads where a closed form solution is
available. Deb et, al’ presented a BEM formulation for two and three-dimensional
anisotropic thermo-elasticity using particular integrals. A more general formulation

has been presented by Grundemann® based on Fourier series expansions.

In this chapter, stress analysis of 2-D orthotropic structures is carried out using
the boundary element method. Computational accuracy of different element types,
such as quadratic, linear and constant, are assessed. The deformation, and gradient
quantities such as stresses and strains obtained, can be used in the stress-based or
strain-based failure criteria for carrying out a failure assessment for them. An attempt
is made to keep this chapter as self-contained as possible. The next section reviews the
two distinct approaches for the integral equation formulation in orthotropic elasticity.
Section 3 outlines the necessary fundamental solutions for carrying out a boundary
element analysis. The numerical implementation aspects are discussed in section 4.
The core of this chapter is section 5 , in which a novel method is developed for compu-
tation of singular integrals. Numerical examples are presented in section 6 and finally,

concluding remarks are given in the last section.

6.2 Integral Equation Approaches for 2-D Orthotropic

Plane Problems

Various approaches to the numerical implementation of BIE in anisotropic elasticity

can be found in the literature. Broadly they can be grouped into two categories.
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In the first, the isotropic fundamental solution (Kelvin’s solution) is still used. This
results in a volume integral term associated with the anisotropy of the material, which
is numerically treated by discretizing the domain into internal cells®. In the second
category, anisotropic fundamental solutions similar to Kelvin’s solution for isotropic

elasticity are used. These fundamental solutions can be based on functions of either

the real variable or the complex variable.

Rizzo and Shippy* first used the two-dimensional anisotropic fundamental solution
presented by Green!? in a real variable direct boundary integral equation formulation.
Constant elements were used in modeling the geometry and approximating the field
variables such as displacements and tractions. Mahajerin and Sikarskie!! used BIE
based on real variables for calculating stress concentration factors in double lap joints
for different hole sizes. Constant elements were used in the numerical implementa-
tion. Vable and Sikarskie'? presented analytical expressions for integrals of Green’s

functions for BIE based on real variables. BIE based on the real variable approach

was also used by Benjumea and Sikarskie'®. Snyder and Cruse'* were the first to use

the complex variable anisotropic fundamental solution for determining stress intensity
factors in linear elastic, finite anisotropic plates under conditions of plane stress or
plane strain and containing a single traction free crack. This spurred further work
based on the complex variable fundamental solutions. Tan et, al*® used the BIE based
on complex variable fundamental solutions for solving some inclusion problems. Tan
and Gao'6 used the BIE method to solve stress concentration problems. Lee and Mal'”
presented a complex-variable approach, where the integral equations were discretized
in the complex plane. Perez and Wrobel® developed an alternative integral-equation

formulation for the numerical analysis of homogeneous anisotropic linear elastostatic

problems. This led to a form of Somigliana’s identity which included a domain term

that accounts for anisotropy of the material.
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6.3 The BIE Method For Plane Orthotropic Elas-
ticity

The development of the boundary element method for orthotropic materials under
plane stress follows the same steps as in isotropic elasticity™??. It is based on unit load
solutions in an infinite body known as the fundamental solutions. Use of these solutions
with the Betti-Rayleigh reciprocal work theorem and carrying out the appropriate
mathematical limiting operations will result in the BIE for the displacements at an
interior point p due to tractions and displacements on the surface at a boundary point

Q. In the absence of body forces it can be written as follows:

ulp) + [ Tulp, Qui(Qdr(Q) = [ Un(p, Q)t:(@)ar(Q) (6.1

where u(p) are the displacements in the z;, directions at the interior point p, u.(Q)
and ;(Q) are the displacements and tractions respectively at the boundary point Q,
and the kernel functions Uy and Tj; are unit load solutions in an infinite domain and
are as given in the next two subsections. From the expressions for the fundamental
solutions it can be inferred that the first integral in equation (6.1) has % singularity

and the second integral has log% singularity when p approaches the boundary of the

domain.

6.3.1 The Real Variable Approach

For a homogeneous orthotropic body under plane stress, use of Hooke’s law, the equa-

tions of equilibrium and the compatibility conditions result in the governing equation
as,
(94 / 34 84
4 ¢ °_y (6.2)

O (2815 + Se) =2 4 S 2L =
8“26501‘+( 12 + 66)am%ax%+566

Where S,,, are the elastic compliances of the material. In terms of engineering

constants, these compliances may be expressed as:

511 = 1/E1; 522 = 1/E2
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Ses = 1/Gha; S12 = —112/Ey (6.3)

If equation 6.2 is re-written as:

52 @2 52 (92
(8m%+a18m%> (5 +aoa )qﬁzO (6.4)

then it can be shown that the «; satisfy the following equations:

a1+ ag = (2512 -+ 566) /5’22 (6.5)

10y = 511/522 (66)

Here the «; are taken to be real and positive which is true for a large number of

materials including those materials for which results are reported.

Thus, the solution of a two-dimensional problem reduces to finding a solution of

equation (6.4) that satisfies the boundary conditions of the problem.

The stress function which satisfies equation (6.4) and corresponds to an isolated
force at the origin in an infinite sheet can be found in (equation. 4.1 of) Green’s work??.
The displacement field corresponding to this stress function has been derived by Rizzo

and Shippy* and is written as:

QJ_EAZQB IOg Ty — ngl% log T9 —AlAQ(Gl - 92)
U = K, (6.7)
— A1 Ay (6 — 65) a;TA% logr — oz;i_Ag log ry
Here K, f and [ is the magnitude of the force components, associated with

the stress function, at the origin, acting in the positive z; direction , as identified by

Green'®, and is given by:

B = 2m(cy — 3)Sas (6.8)

Other constants are given by:

Az‘ = 512 — aiSQQ <69)
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ri=af+ ol (6.10)

0; = arctan(za/+/a;z1) (6.11)

Differentiation of the above displacement field with respect to z; and 25 and sub-
stitution in Hooke’s law results in the fundamental traction fields due to concentrated

loads at the origin of the coordinate system. These can be written as follows:

TRy, ( 4 Az ) (Ml—;% - M2—4$>

Ty = K, Vet v (6.12)
where
M; = Jogzing — L Tom (6.13)

1

and n; are the two components of the unit outward normal.

6.3.2 The Complex Variable Approach

This approach also originates from equation (6.2). By introducing operator Dy, (s =

1,2,3,4), as
0 9]
D, = - U=
8222 N@xl
equation (6.2) becomes

and p, are the four roots of the characteristic equation

511[1,4 — SlG/J,g -+ (2512 -+ S@@),Mz — Sagit + Sg2 = 0 (6.15)

Where Sig = Sa¢ = 0 for an orthotropic material.

Lekhnitskii®' has shown that the four roots of this equation are never real and are

always distinct so long as the material is not isotropic. They may be denoted by
py = aj +1f;
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m=a;—if  j=1,2 (6.16)

Where ¢ = y/(—1) and §; > 0 from thermodynamic considerations. Thus the

characteristic directions may be denoted by

Z; = T + M52 j = 1, 2 (617)

and their complex conjugates.

With this background and following the usual definitions of the fundamental so-
lutions; point source solution in an infinite sheet, the explicit expressions for the dis-
placement and traction kernel functions can be derived. These expressions have been

derived in reference'®. They are given below.

U = 2Re[piiar1 Log(z1) + proare Log(22) k,l=1,2 (6.18)

Ti1 = 2ny Re[plag /21 + paare/za] — 2noRelpiag /21 + poak/ 2] (6.19)

Tro = 2naRefpiag /21 + poara/ 20] — 2naRefap /21 + ara/ 2] k=12  (6.20)

Where the first subscript refers to the direction of the displacement of the boundary
point Q caused by a unit load at the interior load point p in the direction given by the

the second subscript.

6.4 Numerical Implementation

To solve the BIE, equation (6.1) numerically, the boundary of the solution domain
may be divided into a series of line elements, each with three nodes. The boundary
geometry, displacements and tractions over each of these elements may be assumed to
vary, as in the present work, in a quadratic manner. Substitution of these isoparametric
representations into equation (6.1) will result in a set of linear algebraic equations for
the unknown displacements and tractions at the nodes on the boundary of the solution

domain. These linear algebraic equations may then be solved by standard matrix

solution techniques.
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6.5 Numerical Integration

The accuracy of the boundary element method for elastostatics problems is critically
dependent upon the proper evaluation of the boundary integrals. These integrals,
which involve the fundamental solution and element shape functions, present, in two-
dimensional elasticity, a singular behavior of the order log % and % for the displacements
and tractions fundamental solutions respectively, where r is the distance from a source

point to the element under evaluation.

The use of the Gaussian quadrature integration rule has been shown to give sat-
isfactory results when the source point is far from the field element over which the
integration is being carried out. For the case when the source point and the field point
are coincident (singular integrals) or they are at a short distance in comparison with
the size of the element (nearly singular integrals) various numerical integration schemes
have been used over the years in order to limit the error of the numerical integration
required. It was found that accuracy can be maintained with some degree of com-
putational efficiency by methods that test the relative proximity of source points and
boundary elements being integrated, and strategically assign the number and location
of integration points to be employed in the integrations. Generally, algorithms that
exploit this concept have relied on either an element subdivision such as the works
of Lachat and Watson'® and Jun et al'® or a co-ordinate transformation technique as

presented by Telles?.

The use of Taylor series expansion proposed originally for singular integrals by
Aliabadi et al.?! have been receiving a great deal of attention lately with the works of
Guiggiani and Gigante?? and Guiggiani et al.?® on a general formulation for singular

and hyper-singular integrals and Cruse?® for near singular integrals.

The earliest approach for calculating the strongly singular integrals has been the
use of the rigid body motion technique® that indirectly gives the sum of these integrals
and the free term coefficients. Another approach has been to regularize the singular
integral equations in which the strength of the highest singularity is reduced by order
one. The literature available on regularization techniques is too extensive to discuss
here. For weakly singular integrals, numerical techniques, including special weighted

quadratures and mapping methods have been reported in the literature. Tanaka et al?®
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have summarized the regularization procedures for both singular and hyper-singular
integral equations that have appeared in the literature and therefore no attempt is
made here to discuss these techniques. It is evident that mathematical similarity often
exists in these techniques. In a series of papers Guiggiani et al?>27-28.22 have tried to
evaluate the strongly singular and hyper-singular integrals directly. In these papers
the original boundary is recast with an exclusion zone e, and a spherical boundary
bump S, (figure 6.1). Integration over S, is performed analytically, independent of
discretization. For calculating the limit of the integral over I' — e, , the exclusion
zone is mapped on to the intrinsic coordinate space and the singular integrands are
expanded into Laurent series about the singular point. The singular integrals in the

series expansion are evaluated analytically with canceling of the divergent terms, the

limit is taken.

The rest of this section briefly describes the computational methodology adopted

for computing the singular integrals in 2-D BEM. For more details, reference can be

made to Padhi et al.®®.

Because of the singular nature of the fundamental solutions, equation (6.1) has
to be set up in a limiting form to obtain the boundary integral equation suitable for
numerical implementation. Assuming the body can be represented as shown in figure
6.1 with the point P (which is really a boundary point) as an internal point surrounded

by part of a spherical surface S, of radius ¢, equation (6.1) can be written as

w(P)+ [ TuPQu@d@= [ UuPOu@dQ  (621)
P—ee+S. T—e.+8.

As discussed in references®?’ | the surrounding zone S, need not be a spherical
surface. To arrive at the boundary integral equation, the limit of equation (6.21) has
to be found as € — 0. If the integrals in equation (6.21) are broken into summation of
integrals over the regions I' — e, and S, and their limits as lim._,( are studied, it can

be shown that the limit quantity which often needs special treatment is

I=tim [ Tu(P.Qu(Q)r(Q) (6:22)

€e
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6.5.1 Direct Numerical Evaluation of the Limit

The limiting integral is evaluated using Euler’s transformation technique as follows.
Even though the individual integrands in the right hand side of equation (6.21) are not

defined at € = 0, the integral quantity I exists and can be evaluated without evaluating

the integrands at the singular point.

A sequence of values of ¢ decreasing in magnitude and approaching but not equal to
zero are chosen. These values can be represented as €, €1, €3...€,, and the corresponding
finite integral values can be represented as Iy, 1, I5...I,,. The limit of this sequence,

lim,, o I,,, is the desired quantity, and is calculated as follows. If a new sequence is

formed as
L—1yh—1, - I, — I, (6.23)
then
Lll;l’l L, =1+ 1_1r>n (Lh—Ip+L—L+ - I,—1I,) (6.24)

The second part of the right hand side can be approximated from n difference
quantities using Euler’s transformation technique (see appendix) which gives an infinite

sum through finite sampling as

nlinolo (L—Io+L—L+-I,—I,1) = EulerSum (I; — Ip+ I — Iy + -sI, — I,_1)
(6.25)
Once the approximated infinite sum is calculated, it is back substituted in equation

(6.24) and the limiting value of the integral is found.

6.5.2 Computer Implementation

The above algorithm for obtaining the limit of a function has been implemented in the
symbolic computer program Mathematica 3.0 %" as a standard AddOn Package. The
corresponding function is NLimit. All the limit integrals are evaluated directly using
the Euler’s transformation technique. No unbounded terms arise when the singular

point p is taken to the boundary, since the unbounded divergent terms cancel each other
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out. The implementation of Euler’s transformation technique for finding an infinite sum
makes no assumptions regarding the strength of singularity or dimensionality of the
problem. Therefore it can be extended to more complicated 3-D and hyper-singular
formulations. The number of finite terms to choose in the Euler’s transformation
technique depends on rate of convergence of the function for which the limit is to be

evaluated. In the present analysis, five terms were satisfactory.

The computing work was done on a Silicon Graphics Work Station running under

Irix 6.0 operating system with an 195 MHZ IP28 Iris processor with 128 Mbytes of

main memory.

6.6 Numerical Examples

Four examples are considered for illustration purposes. In all cases three different
element types; constant, linear and quadratic are studied for comparison purposes.
Furthermore, in each problem, the number of nodes is kept constant for all the three
element types, so as to attain a realistic comparison of numerical efficiencies. No units
have been chosen so that any compatible set of units, whether SI or Imperial, can be
used provided they are consistent. Also in the examples whenever boundary stresses are
determined, the stresses along the tangential direction to the boundary are determined

from differentiation of the shape functions and use of the constitutive equations.

Example 1: This deals with an infinite plate with a circular hole, at the boundary

of which uniform hydrostatic pressure is applied. The material properties are
E, =12 E, =06
Gay = 0.7, Vyy = 0.071

This problem is solved using 12 quadratic boundary elements along the hole bound-
ary. Following usual boundary element discretization, since the domain is infinite, the
node numbering is done in reverse (clockwise) direction. To compare the numerical
efficiency of the present approach with the results obtained in literature, the same prob-

lem is solved with 24 linear elements and 24 constant elements, so that the number of

nodes remains same.
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Figure 6.2 shows the numerical results for hoop stress (ogy) obtained using the
present approach along with the analytical results due to Lekhntiskii®!. The error is
found to be less than 0.5 % when quadratic elements are used, whereas it is about
3% with linear elements and more than 10% with constant elements. It may be noted
that although accurate results were obtained by Rizzo and Shippy*, considerably more
nodes were used (24 nodes for one quarter of the hole), which will increase both the

computational time and the computer storage space significantly.

Figure 6.3 compares the deformed shape of one quarter of the hole boundary of
unit radius with the exact one, which is an ellipse3!. A’ and B’ represent the deformed
positions of the corresponding points A and B on the hole boundary. The deformed
shape obtained using quadratic, linear and constant elements are shown in the same

figure, with the average error being 0.5%, 3% and 10% respectively.

Example 2: This deals with an infinite orthotropic plate containing a circular hole
at the surface of which tangential stress is applied(figure 6.4). The boundary element
mesh and the material properties remain the same as in example 1. Figure 6.4 shows
the hoop stress distribution along the boundary of the hole. Results are given for one
quarter of the hole, at 7.5° intervals proceeding counterclockwise around the edge of

the hole starting at the x-axis. As can be seen, the present approach gives an error

less than about 0.5%.

Example 3: Here the infinite plate, with a circular hole at the center is subjected to
remote tension in the x-direction. Again the boundary element discretization remains
the same as in example 1. Two cases are considered. First the grains(fibers) are
oriented in the x-direction(E, > E,). Figure 6.5 shows the numerical results for the
hoop stress ogy for this case. In the second case the grains(fibers) are oriented in the
y-direction(£, < E,) and the corresponding numerical results for hoop stress oy at
the hole boundary are shown in figure 6.6. In both cases exact solutions are taken from
Lekhntiskii®!. For both cases the error when using quadratic elements was less than

1%, while it was about 3% and 10% respectively when linear and constant elements

were used.

Example 4: This considers an infinitely long(in z direction) orthotropic plate

simply supported along the long edges(x=0, x=L) and subjected to sinusoidally dis-
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tributed load at the top surface of the form ¢(z) = gysin(nz/L). It is assumed to be

under plane strain condition.

The material parameters for this problem are as follows:

E,=25%x10° E,=E, =10°
Gay = Go. = 05 x 10° G, = 10°

Vpy = Vaz = Vy, = 0.25

To compare the present results with Pagano’s 3-D elasticity solution®? the stresses

and displacements are normalized in the form of Pagano and are written as:

100E,h3w(L/2,0) Y ey (0, Y)
M P d = _ lay\Y 9
7 ; y= an Ty T (6.26)

W =

where w is the maximum central deflection, h is plate thickness and ¢ is the max-
imum amplitude of the sinusoidally distributed load at the top surface. This problem
is solved using 8 quadratic elements(for aspect ratio L/h=4), although more elements

were added for higher aspect ratios. Since the problem is one of plane strain modified

compliances were used.

Figure 6.7 compares the normalized maximum deflection obtained by the present
approach using quadratic, linear and constant elements with the results given by the
3-D elasticity solution®? for different L/h ratios. As can be seen present BEM results
with quadratic elements closely follow the elasticity solution with less than 0.5% error,

while the errors using linear and constant elements are 3% and 10% respectively.

Figure 6.8 compares the normalized shear stress across the depth of the plate ob-
tained by the present approach with that given by the 3-D elasticity solution®?. Again
present numerical solution shows an error of less than 0.5% when quadratic elements
are used. However in this case constant elements gave more accurate results(error 10%)

than the linear ones(error 25%)
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6.7 Conclusion

In this chapter Euler’s transformation technique has been successfully used for stress
analysis of 2-D orthotropic structures using the boundary element method. A compar-
ative study has been made of the BIE procedure using constant, linear and quadratic
elements in the discretization. For problems involving bending, in which a rapidly vary-
ing traction field is prescribed as the boundary condition, it was found that both con-
stant and linear elements gave highly in-accurate results, while the error with quadratic

elements was less than 1%.

In general, the use of the Euler’ transformation technique requires the choice of a
number of terms to use in the limit evaluation process. Despite having been developed
for two-dimensional anisotropic elasticity, this technique is completely general and can,
therefore, be applied to a wide range of problems from potential theory to elasticity.
To the author’s knowledge there is no other scheme with similar approach available
in the BEM literature, making this technique a completely original approach to tackle

the problem of computation of singular integrals in boundary element method.

The stress measures obtained from the present boundary element procedure, can
be post-processed for various purposes. For example, composite failure criteria can be
applied to these quantities and a failure assessment for 2-D orthotropic structures can
be made. However, presently no results are presented in this regard, since the aim of

this chapter was to develop a computational methodology for computation of singular

integrals.
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Chapter 7

Discussions and Future Projections

7.1 Discussions

A finite element based progressive failure methodology has been developed for predict-
ing the nonlinear response, first ply failure and ultimate collapse strength of composite
plates when loaded in bending. This progressive failure methodology is based on large
deformation theory and contains most of the well established composite failure criteria.
The progressive failure analysis uses C shell elements based on first order shear defor-
mation theory to calculate the in-plane stresses. The finite element program ABAQUS
is used for this purpose. The different failure criteria are compared and assessed by
performing analyzes on uni-directional and woven fabric composite structures. The
model gives the exact location of occurance of the first ply failure. It can provide the

information about the extent of damage and residual strength at any stage of loading.

The first class of laminated composite structures to be analyzed was uni-directional
composite structures. Studies were performed to examine the effect of aspect ratios,
load increment size and choice of failure criterion on the first ply failure load, non-
linear response and the ultimate collapse strength of these composite structures. The
deformation results and the damage patterns obtained in the numerical model were
compared against experimental results. Large number of load steps is taken to predict
the first ply failure load correctly. Based on the numerical studies, most suitable

failure criteria for predicting the first ply failure load and the ultimate collapse loads

are suggested.
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The next class of composite structures analyzed was woven fabric composite plates.
A simplified model was developed for analyzing this class of structures. The correctness
of the simplified model was first demonstrated by comparing the material properties
predicted by this model with those predicted by other models and with experimental
results. The rule of mixtures approach and the first order shear deformation theory have
been used while developing the simplified model. The model can provide the elastic
material properties for a laminated composite plates with any number of woven fabric
plies. The material properties results in this case closely followed the experimental
values for longitudinal Young’s modulus, shear modulus and the Poisson’s ratio. The
progressive failure methodology developed for uni-directional composite plates was then
extended to the woven fabric composite plates. The propagation of damage for a square
woven fabric composite plate was studied. This was compared against the experimental
observations and contrasted against the damage patterns of the uni-directional ones.
The simplified model is very simple to code in contrast to the finite-element-based

micro mechanics approach which is computationally too expensive.

Lastly stress analysis of 2-D orthotropic structures was carried out using the bound-
ary element method. A novel technique was developed for computation of the singular
integrals in the BEM. The primary advantages of this technique are that the singular
integrals are computed directly and numerically, without any analytical computations,
and that corners and edges present no difficulties. These three features should make
this approach attractive for most applications. The limit to the boundary provided
a mathematically sound and physically sensible definition of the singular integrals,
and leads to a direct, and completely general, evaluation algorithm. In the authors
opinion, this is much simpler, conceptually and computationally, than ‘regularizing’ a
non-existent integral (e.g., an ’exclusion zone’ analysis). The task of carrying out the
limiting process, admittedly onerous by hand, is conveniently automated with symbolic
computation. The development of this method was motivated by the application of the
boundary element method for complex laminated composite structures. Although this
application involved the computation of singular integrals in two-dimensional elesto-
statics, there is no difficulty in extending this work to three dimensions. Once the
procedures have been worked out for one application, it is relatively easy to modify the

Mathematica scripts to generate the needed formulas for another application. This is

141



due to the fact that the nature of the corresponding kernel singularity, can be found,
identical in other engineering applications. Thus, in creating a 3-D code, the existence

of the 2-D script could be exploited to considerably shorten the development time.

The stress measures, obtained from using the boundary element method, can be
postprocessed for carrying out a failure analysis for 2-D orthotropic structures. How-
ever, in this research, this was not investigated since the focus of the research related
to the BEM was on the computational aspects rather than failure studies. The aim
was to develop computational methodologies for efficient computation of singular in-
tegrals. Failure analysis for these 2-D orthotropic structures could be carried out very
efficiently using the finite element method. However, again no attempt was made for

failure analysis in this case, since more complex structures have already been analyzed

in chapters 3 and 4.

The novelty aspects of this research are as follows.

e A computational damage model was developed for progressive failure analysis
of laminated composite structures in bending with (1) geometric non-linearity,
(2) large strains and large rotations, (3) material non-linearity because of local
damage, (4) presence of bi-axial stresses. The numerical results are validated

against test values. To the author’s knowledge, there had been no similar work

in the past literatures.

o The damage model was extended to laminated composite plates with plain woven
fabric plies. A simplified model was developed in which a woven ply could be
represented as a combination of pure resin layers and uni-directional composite
layers. Even though this kind approach for woven fabric structures is not new,

according to the author’s view, the present simplified model is the simplest to

code.

e A novel technique was developed for the computation of singular integrals in
the two-dimensional boundary element method (BEM). In the author’s opinion,
this was the first attempt for directly and numerically computing the singular

integrals in the boundary element method.
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7.2 Future Research

7.2.1 A Novel Finite Element for Progressive Damage Anal-

ysis of Laminated Composite Structures

In an experiment the damage development is an evolution process. In the present
numerical model (chapter 4) this was approximated with a set of discrete damage
quantities. The present computational damage model was developed using the finite
element program ABAQUS. The damage parameters were computed as a function of
stress measures. The stress measures, however, are calculated from the other indepen-
dent quantities (degrees of freedom) such as displacements and rotations. However,
truly speaking damage development in a continuum is more of an independent process.
Therefore just like displacements and rotations, it needs a unique presence of it’s own
in a finite element analysis. In other words, a true damage analysis can be performed
if damage can be interpreted as a new degree of freedom, which the traditional fi-
nite elements do not have. The usual element development processes and the relevant
numerical tests (patch tests) can be performed. The quantification of this degree of

freedom will depend upon the appropriate damage quantities obtained from standard

experiments.

7.2.2 Micro-Mechanics Based Progressive Failure Analysis of

Woven Fabric Composite Structures

In chapter 5, a simplified model was developed for the analysis of woven fabric compos-
ite plates. However the model cannot carry out a detailed stress analysis at the micro
level. For this a finite element based micro-mechanic model of woven fabric composite
plates can be developed. The solid modelling program PATRAN can be used for this
purpose. In this case the model involved will be three dimensional in nature. Once the
finite element model is generated, the damage model developed in chapter 4 can be
applied to the finite element model for studying the damage propagation and failure
analysis of woven composites. However, in this case the damage model also has to

be three-dimensional in nature and there has to be separate damage models for the
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fiber and resin. The computational cost in this case is expected to be much higher.
However, with the availability of the parallel computers, this task seems to be within

the reach of research engineers.

7.2.3 Experimental Characterizations of Laminated Compos-

ite Structures

From chapter 5, section 5.6.1, it was clear that there were insufficient experimental
data on material properties for comparison purposes. Test results are important for
validation purposes, especially for composite materials, for which, én specific cases,
analytic results are not available. This is true for composite materials with complex
reinforcements, such as woven fabric composites. Model tests, such as uniaxial tension
tests, pure shear tests and biaxial tension tests have been standardized and are common
for composite materials. Certain test procedures such as the acoustic emision energy
methods are used for detecting damage in a composite material. However, these are
not enough. More experiments, especially for woven fabric composite materials are

necessary for an efficient validation of computational models.

7.2.4 Improved Stress Computation of Composite Structures

Using the Advanced Implementation of the Boundary
Element Method

In chapter 6, a novel technique of computing the singular integrals in 2-D BEM was
presented. Using this technique, primary quantities such as displacements for 2-D
orthotropic structures were determined. The gradient quantities such as strains and
stresses were determined with differentiation of the shape functions and use of the
Hooke’s laws. This process introduces extra errors associated with the shape functions
in the discretization procedure. In the hyper-singular formulations of the boundary
element method, stresses are computed more accurately. However, traditionally, just
like singular integrals, computation of hyper-singular integrals involve somekind of an-
alytic procedures. According to the author’s opinion, the method developed in chapter

6, can be extended to hyper-singular integrals for a direct numerical computation of the
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integral quantities. It is expected that in this case, the direct numerical computation

procedure will provide more meaningful interpretation of the hyper-singular integrals.

7.2.5 Integration of the Finite Element Method and the Bound-
ary Element Method for Efficient Numerical Character-

ization of Composite Materials

In the present research, the finite element method was applied for failure prediction of
laminated and woven fabric composite plates. The boundary element method was used
- for computation of deformations and stresses in 2-D orthotropic structures. The logical
extension to this research is to integrate FEM and BEM for computationally efficient
damage model development for laminated composite structures. The main advantage
offered by the FEM is it’s ability to solve complex three dimensional problems more
efficiently in the nonlinear deformation range. The main advantage offered by the BEM
is it’s superior numerical computational capability for simple domains and for the linear
material behavior. The integration of the two methods will exploit the advantages
offered by both the techniques. Since most practical problems have complex geometries
and boundary conditions, the finite element method can be used for arriving at a global
response. The structure can be divided into certain subdomians. The locations of these
sub-domains can be strategically chosen. From the global finite element solution, the
nodal force and displacement vectors can be transformed to the boundary of the sub-
domains. The sub-domain is now ready with all the informations necessary to carry
out a boundary element analysis. In this way the state of stresses and the subsequent
damage parameters in the sub-domain can be computed more accurately using the
BEM. Even though sub-domain techniques are not knew as such, the application of
the BEM at the sub-domain level can be a novel approach. In the event of a damage
analysis with geometric nonlinearity, the load history can be split into several sub-steps.

The linearized sub-step can be analyzed as described above.
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Chapter 8

Conclusion

This research was concerned with the numerical computation aspects of deformations,
stresses, failure loads and damage patterns for laminated and two dimensional compos-
ite structures including plain woven fabric composite plates. In each case, numerical

results were compared with experimental values or analytical solutions.

From the research carried out the following conclusions seem justified.

e Numerical failure modeling of composite structures could give much more infor-
mation on the stress, damage and failure patterns of composite structures. No
other existing techniques including the experimental methods would have been

able to carry out such a rigorous study.

e For laminated composite structures in bending, in general, the ultimate failure
load was found to be much higher than the first ply failure load. There was

a pronounced effect of geometric nonlinearity, especially in the initial stage of

loading.

e The curvature of the weave pattern in the woven fabric composite plates consid-
ered in this research was not significant. Therefore it is difficult to make con-
clusive comments on the effect of weave on the stiffness and strength for them.
However, from the present research, it seems that there is an improvement in

resistance to fiber failure for woven fabric composite plates.

e The method developed in chapter 6, for computation of singular integrals, was
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novel, conceptually simple and easy to implement in a computer. It gave an

added contribution towards the physical interpretation of the singular integrals.
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Appendix A

Introduction to ABAQUS/Standard

A.0.6 Overview

ABAQUS/Standard is a general-purpose finite element program designed specifically
for advanced structural analysis applications. A wide variety of problems can be ad-
dressed with the available modeling tools. ABAQUS/Standard is designed to run
effectively on computers ranging from desktop systems running Windows NT or UNIX
to departmental servers and supercomputers. Structures and continua can be modeled.
One, tow and three-dimensional continuum elements are provided, as well as beams,
membranes and shells. ABAQUS/Standard is a modular code: any combination of

elements, each with any appropriate material model, can be used in the same analysis.

A.0.7 Features

ABAQUS/Standard uses a high-performance, sparse, multi-front equation solver to
solve both symmetric and unsymmetric systems of equations and automatically uses

the unsymmetric solution scheme when the physics of a problem demands it.

A.0.8 Nonlinear Analyses

In nonlinear problems the challenge is to provide a convergent solution at minimum
cost. This challenge is addressed by automatic control of the time incrementation,

which is provided for all relevant analysis procedures. The user defines a ”step” ( a
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portion of the analysis history). ABAQUS/Standard then automatically selects the
convergence tolerances and the increments required for the step. This approach is
highly effective for nonlinear problems because the model’s response may change dras-
tically during an analysis step. Automatic control allows nonlinear problems to be run

with confidence without extensive experience with the problem.

The user divides the loading histories into steps solely on the basis of convenience.
For a purely linear analysis each step is essentially a load case. In a nonlinear analysis
each step is typically one stage in the overall loading history. A Single analysis type is

specified within each step.

In a nonlinear analysis the initial condition for each step is the state of the model
at the end of the previous step. This dependency provides a convenient method
for following complex loading histories. Each step is subdivided into increments ;
in each increment ABAQUS/Standard iterates for equilibrium, using the full New-
ton method in most cases. The convergence criteria are determined automatically by

ABAQUS/Standard, although the user can override these tolerances.

A.0.9 Static Analysis

Two approaches for static analysis are available. One is for cases in which a prescribed
loading history must be followed. With this approach there is an option for ABAQUS
to control localized unstable behavior automatically. The alternative is an arc-length

(modified Riks) method, which is provided for globally unstable static problems such

as post-collapse or post-buckling cases.

A.0.10 ABAQUS Elements

For three-dimensional applications 3- and 6-node triangular and 4-, 8-, and 9-node
quadrilateral shells are available. All shell elements can model layered composites.
The reference surface of the element, defined by the position of the nodes, can be

placed at any location through the thickness of the shell.

149



A.0.11 Numerical Integration

Full-integration triangular shells and full- or reduced- integration quadrilateral shells
are available. The shell section stiffness can be recalculated throughout an analysis
to capture nonlinear material behavior, or it can be integrated once for economic
solutions involving material response. In either case nonlinear geometric effects can be
included. The shell elements in ABAQUS are true doubly curved shells. Both shear
flexible(” thick”) and ”thin” shell elements are provided. The initial thickness can be

provided on an element or nodal basis, and the final thickness distribution can be

recovered.

A.0.12 Solution Techniques

By default, ABAQUS/Standard uses a multi-frontal, block elimination technique, avail-
able only for both symmetric and unsymmetric matrices. This solver is highly opti-
mized to minimize the CPU time and disk space required for sparse problems. It takes

full advantage of parallel capabilities on high performance computers.
The user can also access a frontal solver that includes an automatic, internal, wave-
front minimization algorithm. The user can choose any node and element and node

numbering without invoking a solution time penalty.

A.0.13 Geometric Nonlinearity

ABAQUS/Standard uses complete, consistent kinematics for finite-strain calculations.
Lagrangian and updated Lagrangian formulations are used for finite-strain elastic and
elastic-plastic problems, respectively. ABAQUS/Standard generally uses the full New-
ton method for the solution of nonlinear equations. This approach is especially effective

for the highly nonlinear cases that are commonly modeled with the program. Modified

Newton methods are also available.
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A.0.14 Problem Size and Performance

ABAQUS/Standard has no built-in limits on problem size. Smaller problems run en-
tirely in main memory. Buffering to secondary storage occurs automatically as the
problem size increases. ABAQUS/Standard performs efficiently on a wide range of

computers and is particularly effective for large problems running on advanced com-

puter architectures.
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Appendix B

Summation of an Infinite Series via
Finite Sampling Using Euler’s

Transformation Technique

Given any series

S=ay+a1+a+az+- - ap1+a,+--- (B.1)
define z = ;*—, so that the series can be re-written as
a a a an— an
S:ao—i—x-—l—}—azQ—z+$3—-§i+---x’z_l———~i—+m"———+-~ (B.2)
z T T " zn

where n is the number of finite terms used to give an approximation to the infinite

sum. The series can be re-written as

S = ug 4w + usz® + - - -, (B.3)
where uy = ag,u1 = %,uy = % and so on. Using the relationships Euy =
w1, B?ug = ug, E3ug = us......; then symbolically
S:(l—{-Ea:—i—EQxQ—i»-u)uO: = Ug (B.4)
1—- Ez

where E is a shift operator such that Ff(z) = f(z+ h) and h is the interval length.
Using £ = A + 1, equation (A.4) can be re-written as
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e b (( ( ))) (B:5)

where A is the difference operator such that Af(z) = f(z +h) — f(z), or Auyp =

Uy — ug, AUy = uy — 2u; + ug etc.

The summation formula in equation (A.5) can now be re-written as

1 & s
S = XZ<19: ) Aug A6

1—z o -z

Using the difference quantities in the terms of the original sequence, equation (A.G)

can be re-written as

X Z (1 __x>SASaO (B.6)

This is Euler’s transformation of the original series which is found to converge faster
than the original series. It is not necessary to sum to infinity in equation (A.6); it will
be sufficiently accurate to use a finite number of terms, (say, p), thus requiring the first

p differences obtained from the terms starting at ug.
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