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Orographic gravity waves have been the subject of active research for several decades. 
Their effects have been parametrized in global numerical weather prediction models 
since the 1980s, but our understanding of trapped lee waves remains incomplete. Other 
phenomena such as rotors are linked to trapped lee waves, and these represent a 
significant aviation hazard, as well as an aspect of the flow which is not well understood 
or well represented in numerical models. 

Most previous investigations into flow over topography have included the boundary 
layer over small scale hills, but neglected it for larger scale mountain-induced gravity 
wave flows. These two situations have traditionally been treated separately, but the 
boundary layer cannot be ignored in gravity wave cases, because it can significantly 
change the flow over complex terrain. The simulations presented in this thesis use a 
high resolution, non-hydrostatic numerical model, which was originally designed to 
simulate boundary layer flows over small scale hills. The work presented here consists 
of two-dimensional simulations, with no boundary layer, in order to test the model's 
ability to predict adequately both upwardly and horizontally propagating waves. The 
model is used to simulate several two-dimensional idealised cases of orographic gravity 
waves, without a boundary layer, using a larger mountain and a larger numerical 
domain than in previous work, and these have shown good agreement with published 
analytical results. These simulations are carried out with a view to providing a sound 
base for turbulent boundary layer simulations, including turbulent flow phenomena 
observed around mountains, such as rotors, in order to better understand the flow 
patterns involved and the conditions conducive to their formation. This will lead to 
improvements in parametrizations and NWP performance. In the long term, the work 
may lead to a more sophisticated local lee wave/rotor forecasting tool for aviation use, 
to reduce the hazard posed by these phenomena, which are currently very difficult to 
predict. The work described in this thesis lays further ground work for future studies of 
this nature. 

Various tests are carried out in order to obtain a robust numerical configuration for the 
model. Grid independence is investigated in both the horizontal and the vertical, using 
both uniform and stretched grids, and the boundary condition at the top of the model 
domain is tested. An option was introduced shortly before the start of this work to use 
inflow/outflow boundary conditions upstream and downstream of the mountain, and the 
formulation of these boundary conditions, particularly the radiative outflow boundary 
condition at the downstream edge, is tested. Other sensitivity tests were carried out into 
the model timestep, the surface boundary condition, the mountain shape, and the initial 
transience caused by growing the mountain into the model domain at the start of a 
simulation. 
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and ZÂ  levels (model half levels, shown by a dashed line), for a 500 m high mountain. 

Figure 5.1. Input profiles of wind speed and potential temperature for the four cases. 75 

Figure 5.2. Close-up view of input wind speed and potential temperature profiles for the 76 

troposphere-stratosphere cases, which were shown in figure 5.1. 

Figure 5.3. Input profiles of Scorer parameter (compared with the dominant horizontal 78 

wavenumber) fbr the four cases. 

Figure 5.4. Mountain shapes for the different cases. 79 

Figure 5.5. Horizontal gridlengths and expansion ratios for the grid described in the text 80 

Figure 5.6. The grid described in the text, shown for a partial domain centred on the 81 

mountain. 

Figure 5.7. Time series of the drag coefficient for all the cases. 82 

Figure 5.8. Time series of the drag coefficient for all the cases, with non-dimensional time on 83 

the horizontal axis, as defined in the text. 

Figure 5.9. Vertical velocity (contour interval 0.2 m s"') and potential temperature (contour 85 

interval 2 K) for case 1 after 100 NDTU. 

Figure 5.10. Vertical velocity (contour interval 0.2 m s"') and for case 2 after - 4 5 and 86 

- 2 5 NDTU (left and right hand plots respectively). 

Figure 5.11. Vertical velocity (contour interval 0.1 m s"') and for case 2 after 0 and 35 NDTU 87 

(left and right hand plots respectively). 



H. J. Hewsoii 2000 List of tables and figures Page ix 

Figure 5.12. Vertical velocity (contour interval 0.1 m s"') and potential temperature (contour 88 

interval 2 K) for case 2 after 135 NDTU. 

Figure 5.13. Vertical velocity (contour interval 0.2 m s' ') and for case 3 a f te r 0 and 35 NDTU 89 

(left and right hand plots respectively). 

Figure 5.14. Vertical velocity (contour interval 0.2 m s ') and potential temperature (contour 90 

interval 4 K) for case 3 after 115 NDTU. 

Figure 5.15. Vertical velocity (contour interval 0.05 m s"') and potential temperature (contour 91 

interval 4 K) for case 4 after 17.5 NDTU. 

Figure 5.16. (a) Durran (1986) figure 20.2b for a"'=l and 20.2c for a " ' « l , as described in the 92 

text, (b) Potential temperature for the BLASIUS case 1 simulation after 100 NDTU, shown 

for part of the model domain, with contour interval 3 K. 

Figure 5.17. Vertical velocity for case 2, the troposphere-only case, shown for part of the 94 

model domain to allow easier comparison with Keller's (1994) figure 3, which is shown on 

the left. 

Figure 5.18. Vertical velocity for case 3, the troposphere-stratosphere case, shown for part of 95 

the model domain to allow easier comparison with Keller's (1994) figure 5, which is shown 

on the left. 

Figure 5.19. Potential temperature for the BLASIUS case 4 simulation af ter 17.5 NDTU, 96 

shown for part of the model domain, with contour interval 1.5 K. 

Figure 6.1. Vertical velocity after 140 NDTU for a 100 m high Witch of Agnesi mountain of 99 

half width 10 km. 

Figure 6.2. Vertical velocity and potential temperature after 140 NDTU for a 500 m high 100 

Witch of Agnesi mountain of half width 10 km. 

Figure 6.3. Vertical velocity and potential temperature after 250 NDTU for a 500 m high 101 

Witch of Agnesi mountain of half width 5 km. 

Figure 6.4. Horizontal gridpoints at the surface over 500 m high Witch of Agnesi mountains 102 

of half width 10 km, 5 km and 2.5 km, using a uniform horizontal grid spacing of 1 km. 



H. J. Hewson 2000 List o f tables and figures Page x 

Figure 6.5. Vertical velocity and potential temperature after 250 (in the left hand plot) and 103 

230 (in the right hand plot) NDTU for a 500 m high Witch of Agnesi mountain of half width 

5 km. 

Figure 6.6. The 'one stretch grid' described in the text, shown here for a partial domain 106 

centred on the mountain. 

Figure 6.7. Vertical velocity plots for case 1 after 140 NDTU, using the uniform (500 m grid 107 

spacing) and one stretch grids. 

Figure 6.8. Horizontal gridlengths and expansion ratios for the one stretch grid (dashed line) 108 

compared with those for the additionally smoothed grid (solid line). 

Figure 6.9. Vertical velocity plot (contour interval 0.2 m s"') for case 3 a f t e r 140 NDTU, using 110 

the one stretch grid with halved resolution. The wave pattern was damped as it left the central 

region; the horizontal gridlengths are shown below for reference. 

Figure 6.10. Horizontal gridlengths and expansion ratios for the one stretch grid (dashed line) 111 

compared with those for the two stretch grid (solid line). 

Figure 6.11. Vertical velocity plots for case 3 after 140 NDTU, using the one stretch and two 112 

stretch grids. 

Figure 6.12. Vertical velocity plots for case 4 after 10 NDTU, using the one stretch and two 113 

stretch grids. 

Figure 6.13. Time series of the drag coefficient for the results presented in figure 6.11, with 114 

non-dimensional time on the horizontal axis, as defined in Chapter 5. 

Figure 6.14. Horizontal gridlengths and expansion ratios for the one stretch grid (dashed line) 115 

and the two stretch grid (dotted line), compared with those for the more smoothly stretched 

grid (solid line). 

Figure 6.15. The different grids for the two simulations presented in figure 6.16. The top plot 117 

shows the uniform vertical grid, and the lower plot shows the stretched vertical grid. 

Figure 6.16. Vertical velocity after 75 NDTU for a 100 m high Witch of Agnesi mountain of 118 

half width 10 km. The left hand plot has a uniform vertical grid spacing o f 350 m; the right 

hand one has a stretched vertical grid, as described in the text. 



H. J, Hewson 2000 List of tables and figures Page xi 

Figure 6.17. Vertical velocity after 140 NDTU for a 500 m high cosine-squared mountain of 120 

width 15700 m. The left hand plot has the stretched vertical grid described in the text, and the 

right hand one has the same grid but with approximately double the gridlength. 

Figure 6.18. Schematic representation of a wavelength in a discretised numerical model, 120 

using Ave gridpoints (four gridlengths). 

Figure 6.19. Vertical velocity after 250 NDTU fbr a 500 m high Witch o f Agnesi mountain of 122 

half width 5 km. The Rayleigh damping layer is between 20 km and 35 km in the leA hand 

plot, and between 25 km and 40 km in the right hand one. 

Figure 6.20. Vertical velocity after 250 NDTU for a 500 m high Witch o f Agnesi mountain of 123 

half width 5 km. The Rayleigh damping layer is between 20 km and 35 k m in all cases; the 

damping coefficient is 0.001 s"' in the left hand plot, 0.01 s"' in the centre plot and 0.1 s"' in 

the right hand plot. 

Figure 7.1. Vertical velocity after 80 NDTU (top plots) and 140 NDTU (bottom plots) for 128 

case 2. The left hand plots used inflow/outflow boundary conditions, and the right hand plots 

used periodic boundary conditions. 

Figure 7.2. Vertical velocity after 0 NDTU (at the end of mountain growth; top plots) and 130 

100 NDTU (bottom plots) for case 3. The left hand plots used inflow/outflow boundary 

conditions, and the right hand plots used periodic boundary conditions. 

Figure 7.3. Time series of drag coefficient for case 1, using inflow/outflow and periodic 133 

boundary conditions, and the original and wider horizontal domain. 

Figure 7.4. Vertical velocity after 80 NDTU for case 3. Both these simulations used 135 

inflow/outflow boundary conditions; the left hand plot used the original horizontal domain, 

and the right hand one used the wider one (as described in the text). 

Figure 7.5. Time series of drag coefficient for case 3, using inflow/outflow and periodic 135 

boundary conditions, and the original and wider horizontal domain. 

Figure 7.6. Vertical velocity plots after 7.5 NDTU (top plots) and 10 NDTU (bottom plots) 137 

for case 4. The left hand plots used the two stretch horizontal grid and the right hand plots 

used the wider domain described in the text. 

Figure 7.7. Vertical velocity plots (contour interval 0.05 m s"') for case 4 after 7.5 NDTU, 

using the original and modified outflow boundary conditions. 



H. J. Hewson 2000 Lisl of tables and figures Pagexii 

Figure 7.8. Vertical velocity plots for case 3 after 120 NDTU, using the original and modified 140 

outflow boundary conditions. 

Figure 8.1. Vertical velocity plots for case 3 after 0, 40 and 140 NDTU (top, middle and 150 

bottom rows respectively), using the flill and halved timestep (left hand and right hand 

columns respectively). 

Figure 8.2. Vertical velocity plots for case 4 after 7.5 NDTU, using the n o slip and quasi-fi-ee 153 

slip surface boundary conditions. 

Figure 8.3. Comparison of Witch of Agnesi and cosine-squared mountains of the same height 154 

(500 m in this example) and cross-sectional area. 

Figure 8.4. Vertical velocity after 140 NDTU for two 100 m high mountains of different 155 

shapes but equal cross-sectional areas. The left hand plot is a Witch of Agnesi mountain of 

half width 10 km; the right hand one is a cosine-squared mountain of width 62.8 km. 

Figure 8.5. Vertical velocity for case 2, the troposphere-only case, shown for part of the 156 

model domain to allow easier comparison with Keller's (1994) figure 3, which is shown on 

the left. 

Figure 8.6. Vertical velocity for case 3, the troposphere-stratosphere case, shown for part of 157 

the model domain to allow easier comparison with Keller's (1994) figure 5, which is shown 

on the left. 

Figure 8.7. Vertical velocity at the end of mountain growth (0 NDTU). T h e left hand plot is 158 

for the constant U, constant N case, with a 100 m high Witch of Agnesi mountain of half 

width 10 km; here the mountain grew over 12500 seconds; the Rayleigh damping layer started 

at 20 km. The right hand plot is for the troposphere-stratosphere case, with a 500 m high 

cosine-squared mountain of width 15700 m; here the mountain grew over 5000 seconds; the 

Rayleigh damping layer started at 60 km, so the vertical domain plotted is three times that 

shown in the left hand plot. There is far more initial noise in the latter case. 

Figure 8.8. The relationship between the time taken to grow the mountain, the maximum 160 

mountain slope and the maximum initial noise level throughout the model domain. 

Figure 8.9. The relationship between the time taken to grow the mountain, expressed as a 163 

percentage of the time it would be expected to take using the equation given in section 8.1, 

and the maximum mountain slope. 



Acknowledgements 

rd really like to thank absolutely everyone I can think of, but somehow I doubt that it 
would look very good if the acknowledgements were longer than the thesis itself, so Til 
settle for just picking out the biggest and brightest stars. 

Firstly, a big thank you to both my supervisors for their time, effort, support, 
encouragement and inspiration over the last few years: Adrian Broad at The Met. Office 
for his constructive criticism, helpful suggestions and welcome jokes; Ian Castro at the 
University of Southampton (and formerly at the University of Surrey) for helping me to 
see things 6om different angles, for his diligent proof-reading, and for always, always 
believing in me. I am, of course, very grateful to The Met. Office for making this 
possible financially, and for all the other training that they gave me before I embarked 
on this. In addition, I'd like to thank Nigel Wood, who has been an excellent mentor 
and tutor to me, and many other colleagues currently or formerly working in or with the 
Atmospheric Processes Research branch for their advice and for many useful 
discussions: they are too numerous to name here, but they know who they are. To 
Derrick Ryall and Alistair Manning, thank you for giving me a target that I really 
wanted to meet, rather than leaving me with a deadline that I couldn't afford to miss. 

This list would be incomplete without a big thank you to my family and friends for their 
moral support, and for putting up with me during the more difficult times. I would 
particularly like to thank my father for asking the most thought-provoking questions 
ever, and for stretching me beyond what I naively thought were my limits, as he has 
been doing throughout my entire life. Heartfelt thanks to my mother and my sister for 
always being there when I needed to talk through how I was feeling about my work, and 
for their unfailing faith in me. Words cannot express my gratitude to my wonderful 
fiance, Andy, who frequently knows me better than I know myself, and who has 
provided a fresh pair of eyes to proof-read every word you see before you; thank you, 
my love. To all the other friends who have repeatedly told me that I can do it, and 
listened to endless complaints when things weren't going well, a big thank you. I can't 
write this without thanking Zoe for not throwing me out of the car half way down the 
motorway after some of the more stressful days, AJ for always being prepared to spend 
his lunch break just listening, and Susan for understanding perfectly how utterly 
horrible and absolutely wonderful the whole thing has been. 

Unconventionally, perhaps, I'd also like to thank myself I 've had two Helens inside 
my head for the past six months: one saying that I've had enough and it's too stressful 
and I can't possibly finish it and it's not worth it, and the other standing silently and 
serenely in front of me every single day just holding up a big list entitled "Reasons Why 
You Are Choosing To Do This". I've never once felt, even on the hardest days, that I 
was doing this because I had to; I've done it because I wanted to do it and because I've 
enjoyed it. Thank you to everyone who gave their support to the me with the list, and 
quietly kicked the other me in the teeth while no one else was looking. 

Helen Hewson, Bracknell, September 2000. 



The mfluence of fine scenery, the presence of mountains, appeases our 

irritations and elevates our friendships. 

Ralph Waldo Emerson (1803-1882), Culture, Z/zg CoWwc/ q/Zz/g (1860) 

There's only us 

There's only this 

Forget regret 

Or life is yours to miss 

No other road 

No other way 

No day but today 

Jonathan Larson (1960-1996), TZgM/̂  (1996) 



List of acronyms, symbols and operators 

Acronyms 

ABL Atmospheric boundary layer 

BLASIUS Boundary Layer Above Stationary, Inhomogeneous Uneven Surfaces 

CFL Courant-Friedrichs-Lewy (refers to the CFL number or CFL criterion) 

CSO Centred second order 

GCM General circulation model 

GWD Gravity wave drag 

LES Large eddy simulation 

NDTU Non-dimensional time units 

NWP Numerical weather prediction 

SGSO Sub-grid scale orography 

LVD Total variance diminishing 

UQ Ultimate quickest 

Symbols 

a Half width of a Witch of Agnesi mountain 

Height of the vertical model levels 

b" Buoyancy 



H. J. Hewson 2000 List of acronyms, symbols and operators Page xvii 

CfZIOPFl 
> Lower and upper bounds on the CFL number in the model 

CFZWf J 

Cyj Drag coefficient 

c Phase speed 

c Vertically constant outflow phase speed in the model 

Cg Group velocity 

Specific heat capacity for air at constant pressure 

c Propagation speed of the wave head during model spin-up 

F Wave drag 

f g Drag force over the full domain 

Froude number (used to refer to the vertical Froude number) 

Body forces 

Surface pressure force per unit length in the model 

Horizontal Froude number 

/ Coriolis parameter 

g Gravitational acceleration (also appears as g = -gA) 

^ Vertical length scale 

Depth ofthe model domain 

Hj Turbulent heat flux 

Hp Density scale height 

h Mountain height 

Maximum mountain height 

/ Represents a model gridpoint in the x-direction 

IIP Number of model gridpoints in the x-direction 

Aiiax Maximum initial noise over the whole model domain 

i Unit vector in the x-direction 

J Represents a model gridpoint in the ̂ /-direction 

JJP Number of model gridpoints in the ̂ /-direction 

j Unit vector in the ̂ '-direction 

K Represents a model gridpoint in the z-direction 



H. J. Hewson 2000 List of acronyms, symbols and operators Page xviii 

Number of model gridpoints in the z-direction 

Eddy conductivity (also called heat difPusivity) 

Eddy viscosity (also called momentum diffiisivity) 

Represents either the eddy conductivity or the eddy viscosity 

k Unit vector in the z-direction 

k Dominant horizontal wavenumber 

L Horizontal length scale; width of a cosine-squared mountain 

Domain width 

/ Scorer parameter 

M Horizontally averaged vertical flux of horizontal momentum 

m Vertical wavenumber 

Related to the vertical wavenumber when m is imaginary: w, = im 

# Brunt-Vaisala frequency (also called buoyancy frequency or static stability) 

Number of timesteps used to grow the mountain into the model domain 

f Pressure (discretised in the model) 

p Pressure (in the continuous equations) 

Q Discretised moisture variable in the model 

R Universal gas constant for dry air; Rayleigh damping coefficient 

RHO Discretised density variable in the model 

Re Reynolds number 

Re Grid Reynolds number 

Re , Critical value of the grid Reynolds number for the artificial diffusion scheme 

Rossby number 

i?, Expansion ratio for the vertical model grid 

^ Non-dimensionalised outflow phase speed in the model 

S Entropy 

5"̂ ^̂  Maximum mountain slope 

T Temperature, normalised model temperature, or period 

ZW (773 Discretised model variable representing t, , 

t Time 

Expected time taken to grow the mountain into the model domain 



H, J. Hewson 2000 List of acronyms, symbols and operators Page xix 

Actual time taken to grow the mountain into the model domain 

Non-dimensional time 

Total simulation time 

Horizontal velocity scale; velocity in the x-direction (discretised in the model) 

w s Velocity in the x-direction (in the continuous equations); w = (w, v, w) 

F Velocity in the y-direction (discretised in the model) 

v = U2 Velocity in the ^/-direction (in the continuous equations) 

W Vertical velocity scale; velocity in the z-direction (discretised in the model) 

w = u-̂  Velocity in the z-direction (in the continuous equations) 

% Represent the staggered model grid levels in the x-direction 

Dovmstream fetch 

X 5 X, Horizontal Cartesian co-ordinate in the standard rotating frame of reference 

x_, x+ Ends of the horizontal model domain 

IW Represent the staggered model grid levels in the ̂ /-direction 

y s X; Horizontal Cartesian co-ordinate in the standard rotating 6ame of reference 

Represent the staggered model grid levels in the z-direction 

Z, Model surface height 

Z, Height of the lowest internal vertical model level 

z = x. Vertical Cartesian co-ordinate in the standard rotating frame of reference; 

transformed co-ordinate in the equation for the model grid 

z Cartesian co-ordinate in the equation for the transformed model grid 

Height of the base of the Rayleigh damping layer 

z, Height of the top of the Rayleigh damping layer 

a CFL number 

At Model timestep 

AX Model gridlength in the x-direction 

AY Model gridlength in the ^/-direction 

AZ Model gridlength in the z-direction 



H. J. Hevvson 2000 List of acronyms, symbols and operators Page xx 

Kronecker delta (equal to unity if z =y and zero otherwise) 

8 Potential temperature 

6„„, Initial potential temperature profile in the numerical model 

K Defined as — , where here ^ is the universal gas constant for dry air 

A,, Horizontal wavelength 

jU Dynamic viscosity 

V Kinematic molecular viscosity 

p Density 

<7̂  Stress tensor 

Reynolds stress tensor 

(j) Normally used to represent any field in a general equation or expression; also 

used to represent latitude in the discussion of the Coriolis force 

O Angular velocity of the earth, with magnitude Q = |^| 

m Angular frequency 

CO Intrinsic frequency 

Operators 

^ Non-dimensional variable (except w, the intrinsic 6equency) 

Mean state (may be a time, space or ensemble average) 

1̂0 Background profile, varies with height only 

Reference state 

(j)' Turbulent fluctuation from the mean state 

(j)" Perturbation from the mean state or background profile (non-turbulent) 

Eulerian derivative (the local rate of change, at a fixed point) 



H. J. Hewson 2000 List o f acronyms, symbols and operators Page xxi 

Gradient: 

Dt 

Dt 

^ 

2 , ^̂ 3 Divergence: V.<^s—^ + —!% + 
^ ^ 8z 

Laplacian (also referred to as del-squared): 
ac ^ &-

w.V(6 Advection term: w.V<6 = w — + v — + it;— 
8x: ^ 9z 

Lagrangian, material, total or substantive derivative (the rate of change 

following the motion of an air parcel): w.V(6 
Dr -

] Lagrangian derivative with advection by the mean flow: 



1 Introduction 

1.1 General background 

Meteorology is concerned with understanding and predicting weather patterns and their 

temporal and spatial evolution. Observations are made by various means in order to 

leam about the state of the atmosphere, but due to the high costs involved, they cannot 

provide detailed high resolution information on all the atmospheric variables over a 

wide area, so other methods are employed, such as analytical theory, numerical 

simulations, and laboratory experiments. Empirical rules derived from observations and 

experiments, and the physical laws of fluid motion, are used to obtain equations 

governing atmospheric flows, which can be used to investigate atmospheric motion 

using analytical methods and numerical models. These have a reduced observational 

requirement, as they only need observations to set up the initial conditions and 

boundary conditions. However, numerical models can be prohibitively expensive in 

terms of computing resources. A two-dimensional model, with no span wise 

(cross-flow) component, reduces these costs, but it has limitations and cannot deal with 

complex three-dimensional terrain and the resulting flow patterns. Shutts et al. (1994) 

noted that direct simulation of gravity waves over complex terrain is now becoming 

feasible due to advances in supercomputing technology. Such simulations can be used 

in place of observations, since they provide far more comprehensive datasets than can 

be obtained using observations, but clearly they need to be validated against available 

observations in order to give confidence in their results. However, the true atmosphere 

is far more complicated than can be modelled, so various assumptions and 
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approximations are applied. These are dependent on the type of flow being 

investigated, and those used in this work are discussed in Chapter 3. 

Motions in the atmosphere occur on a wide range of scales, from planetary waves down 

to molecular processes. Mason (1970) gives a useful overview of the different scales 

involved, and of where various weather phenomena fit in. Numerical Weather 

Prediction (NWP) models aim to forecast large scale weather patterns such as 

mid-latitude depressions and anticyclones, which are typically of order 500-5000 km. 

These are called synoptic scale processes. Mesoscale processes are typically of order 

20-500 km, and include lee waves (which are the subject of this thesis), fronts and 

squall lines. Other atmospheric processes, such as showers, tornadoes and boundary 

layer eddies, occur on even smaller scales. Stull (1988) gives an overview of typical 

time and space scales both for mesoscale processes and for these smaller microscale 

ones. In general, global NWP models only resolve synoptic scales, because of the 

computational cost involved in solving the governing equations on a fine enough grid. 

Limited area models are often used to allow the resolution of mesoscale features for a 

particular region: for example. The Met. Office uses a mesoscale forecast model 

covering the United Kingdom and part of northern Europe. However, global models 

still need to represent sub-grid scale features (that is, features which are not resolved on 

the model grid), because they can have an important effect on the evolution of the 

synoptic scale weather pattern. This is achieved by using parametrization schemes, 

which attempt to include the effects of processes such as gravity wave drag (GWD), 

convection, boundary layer and surface processes (such as turbulent mixing and 

friction), radiation, clouds, precipitation, sub-surface heat fluxes in soil, and vegetative 

canopy effects. The background to the GWD scheme, which represents the drag caused 

by mountains, is discussed in the next chapter. 
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1.2 Structure of the atmosphere 

The Earth's atmosphere is divided into several layers with different characteristics. 

Approximately 80% of the mass of the Earth's atmosphere is contained within the 

troposphere, with the troposphere and stratosphere between them accounting for 99.9% 

of the atmosphere. These two layers are described here. 

The mean temperature in the troposphere decreases with height, primarily because of 

solar radiation, which heats the Earth's surface. This heat is then released into the 

lowest levels of the atmosphere. The unstable temperature profile leads to vertical 

mixing by convection and turbulence, transferring heat up through the troposphere. 

These vertical motions, and the presence of water vapour in the air, mean that most 

weather phenomena happen in the troposphere. Because of this, and because it is the 

layer closest to the Earth's surface, it is the most easily observed and best known part of 

the atmosphere. 

The troposphere includes both the free atmosphere and the atmospheric boundary layer 

(ABL), a relatively shallow layer of the atmosphere whose depth varies from around 

100 m to around 2 km, depending on the stability of the atmosphere and on the nature of 

the surface below. The ABL has no precise definition, but Garratt (1992) defines it as 

"the layer of air directly above the Earth's surface in which the effects of the surface 

(friction, heating and cooling) are felt directly on time scales of less than a day, and in 

which significant fluxes of momentum, heat or matter are carried by turbulent motions 

on a scale of the order of the depth of the boundary layer or less." The ABL is a very 

important layer, since most human activity takes place within it, and many animals and 

plants exist within it. Although shallow, it has a significant effect on larger scales, since 

the surface exerts a frictional drag on these motions, providing a momentum sink, and 

since mixing within the ABL spreads moisture and heat up from the surface to drive 

weather systems in the free atmosphere. 
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The boundary between the troposphere and the stratosphere is called the tropopause. In 

radiosonde ascents the tropopause can usually be identified by a temperature inversion, 

which is sometimes accompanied by strong winds known as a tropospheric jet. The 

tropopause is also marked by a sharp drop in the water vapour content, and by an 

increase in the ozone content. These strong concentration gradients indicate that there is 

very little mixing between the troposphere and the stratosphere. The position and 

temperature of the tropopause are a result of the balance between the convective and 

turbulent heating of the troposphere, and the radiative heating of the stratosphere, and 

they vary with latitude and synoptic conditions. The high surface temperature in the 

tropics means that convective mixing takes place to great heights, and adiabatic cooling 

of air reaching these levels makes it very cold, despite the original high surface 

temperature. Because of this, the tropical tropopause is generally cold and high (the 

equatorial tropopause is typically 16 km high and has a temperature of -80°C), whereas 

at higher latitudes the tropopause is warmer and lower (typically it lies between 10 and 

12 km over the United Kingdom and Scotland during the winter months, whereas the 

polar tropopause has a typical height of 8 km, and a temperature of -40°C in summer or 

-60°C in winter). 

The temperature at the tropopause stops falling significantly, and it generally starts to 

increase with height into the stratosphere, where vertical mixing is very limited. The 

resulting strong static stability acts as a lid on the tropopause, strongly inhibiting 

exchange of air between the two layers. The stratosphere receives its heat by direct 

absorption of solar radiation. The temperature structure of the stratosphere is dominated 

by absorption of ultraviolet radiation by ozone, with a temperature maximum at around 

50 km above the surface, which defines the stratopause, marking the top of the 

stratosphere. This temperature maximum shows wide seasonal and latitudinal variation: 

it is approximately -30°C over the winter pole and +20°C over the summer pole. 

The horizontal wind generally increases with height throughout the troposphere, 

reaching a maximum just below the tropopause, which is called the tropospheric jet. 

This reinforces the 'lid' effect on the troposphere, limiting exchange of air with the 

stratosphere above. The wind drops in the lower stratosphere, then rises again to a 

maximum just above the stratopause. The wind direction is very variable with latitude 
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aiid season, but the prevaihng low level wind over the United Kingdom is westerly, and 

so the horizontally propagating wave trains described in the next chapter are most oAen 

observed to the east of mountain ranges such as the Pennines. 

1.3 Content of this thesis 

Chapter 2 gives a general introduction to the effects of mountains on the atmosphere, 

and presents the basic theory behind orographic waves. Other phenomena which are 

linked to lee waves, and their importance as an aviation hazard, are discussed. 

Chapter 2 also explains the representation of orographic waves in NWP models, and the 

motivation for this project. Chapter 3 covers the basic equations governing atmospheric 

flows, and some of the assumptions and approximations which are used in analytical 

and numerical modelling of these flows, as well as defining various parameters which 

are useful for the study of mountain waves. Chapter 4 describes the numerical model 

used for the simulations in this thesis. The results obtained using this model for several 

idealised cases are described in Chapter 5, with comparisons against published 

analytical results where possible. These are all two-dimensional simulations, with no 

boundary layer, in order to test the model's ability to predict adequately both upwardly 

and horizontally propagating waves. Although these simulations are designed to 

investigate inviscid flow, the numerical model requires viscosity, so a very low value is 

used, and this is explained further in Chapter 4. The next three chapters explain the 

various tests carried out in order to obtain a robust numerical configuration for the 

model. Grid independence issues are covered in Chapter 6, and the upstream and 

downstream boundary conditions are tested in Chapter 7. The remaining sensitivity 

tests are explained in Chapter 8; investigations were carried out into halving the model 

timestep, using a quasi-free slip surface boundary condition, changing the mountain 

shape, and reducing the initial noise caused by growing the mountain into the model 

domain at the start of a simulation. The results presented in these three chapters are 

drawn together and discussed in Chapter 9, along with suggestions and 

recommendations for future work. 



2 The effect of mountains on the atmosphere 

2.1 Introduction 

The weather in mountainous areas is often very complex, varying greatly in time and 

space, and it can be surprising even to experienced observers. As mentioned in the 

previous chapter, mesoscale processes such as these can have a significant effect on 

synoptic scale flow patterns. Smith (1979) suggests that "if the Earth were greatly 

reduced in size while maintaining its shape, it would be smoother than a billiard ball", 

illustrating that although mountains may seem large to someone standing on the Earth's 

surface, firom a global perspective they are a relatively small scale feature. However, 

they can affect the large scale flow, with mountain barriers such as the Rocky 

Mountains of North America causing changes to pressure patterns which can be 

observed up to thousands of kilometres downstream of the mountain, indicating the 

scale of influence. In addition, the drag exerted by mountains on the atmosphere is an 

important source of deceleration in the large scale atmospheric flow, and this is 

discussed in more detail in Chapter 3. 

Air can flow over mountains, generating gravity waves which propagate upwardly 

and/or horizontally, or around them, leading to features such as lee vortices, vortex 

shedding and lee cyclogenesis. The air can also be blocked by the mountain and remain 

stagnant or re-circulating upstream of the obstacle. Local wind regimes around 

mountains have various names such as fohn, bora, mistral or chinook. The fohn effect 

is commonly studied in school geography classes: the basic concept is that moisture is 

removed as rain on the windward side as the air rises, so the air descending the lee slope 

is drier and warmer, and the weather is sunnier. This effect is commonly observed to 
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the east of the Welsh mountains, the Pennines and the Scottish Highlands, and is 

particularly striking over the Alps, where the name originates. Other orographic effects 

include anabatic (upslope) and katabatic (downslope) winds, breaking waves and 

downslope windstorms. The latter, oAen seen in Boulder, Colorado, can cause damage 

to crops, trees and buildings, and even loss of life. Much research has been carried out 

into this phenomenon: well known examples are Peltier and Clark (1979) and Neiman ef 

a/. (1988). 

Rising air in waves can lead to condensation and formation of cloud bands parallel to 

and downwind of high ground, visible on satellite images, and to smooth lens-shaped 

clouds, known as lenticular clouds, which resemble flying saucers. Queney et al. 

(1960) and Carney aZ. (1996) are both good sources of orographic cloud images. 

Mountains can also remove cloud: satellite images often show clear patches in 

stratocumulus due to downward motion in lee waves. Even mother-of-pearl clouds, at 

typical heights of 20-30 km, are believed to be due to orography (Forchtgott, 1952, 

Corby, 1954 and Queney a/., 1960), indicating how far up into the atmosphere the 

effects are felt. Mountain ranges also have a profound effect on the distribution of 

precipitation, with windward slopes being wet and areas to the lee being dry. 

Orographic rainfall enhancement occurs when air rises over the windward side of the 

mountain, and this upward motion encourages convection, leading to an increased 

likelihood of rain, or heavier rain than over flat terrain nearby. The seeder-feeder effect 

is also very important, whereby the orographic cloud itself does not produce rain, but it 

acts as a seeder cloud because it is so moist, enhancing precipitation falling through it 

from a separate cloud (the feeder cloud) at upper levels. Mountains can also be 

responsible for flash flooding and landslides, and even storms. However, all the work 

in this thesis uses dry dynamics, and does not attempt to represent these moist effects, 

so the detail of the moist equations of motion is omitted in this work. Durran and 

Klemp (1982) examined the effects of moisture on trapped waves, and showed that in 

some situations it could have a significant impact on them, compared to those formed in 

a dry air stream with the same upstream wind and temperature profiles. The effects are 

complicated because condensation is not always reversible, but the presence of moisture 

can damp, amplify, untrap, or entirely destroy the trapped wave response. However, 

most analytical work in this field neglects moisture, partly because its effects are 
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difficult to include, but also due to the qualitative success of dry dynamics in 

reproducing lee wave flow (Shutts and Broad, 1993, for example, found that moisture 

was not a crucial factor in determining the lee wave structure for the cases they studied). 

The idealised cases presented in this thesis are designed to reproduce analytical results 

obtained using dry dynamics. 

The rest of this chapter explains the basic theory behind orographic gravity waves, and 

then describes some of the turbulent phenomena which can be observed around 

mountains and which can present an aviation hazard. The representation of gravity 

wave drag (GWD) in NWP models is discussed, and the motivation for the work 

presented in this thesis is explained. 

2.2 Orographic gravity waves 

Internal gravity waves can occur in any stably stratified fluid and can be generated by a 

variety of mechanisms. In the atmosphere the main sources are convection, shear and 

frontal instability, and flow over orography; the latter is the subject of this thesis, and 

will be explained here. Vertical displacements of air parcels may be caused by air near 

the ground, which rises as it moves over the windward side of the mountain and 

descends over the leeward side. The stable stratification means that buoyancy forces act 

to restore the parcel to its original position, but its momentum makes it overshoot, and 

the air parcels oscillate as they move downstream, creating the wave motion. 

The formation of gravity waves as a result of air flow over orography has been the 

subject of much observation and research over the last few decades, so what follows is a 

selective overview. Many measurements have been taken of gravity wave events, such 

as Shutts and Broad (1993), Shutts ef a/. (1994), or Vosper and Mobbs (1996). In-depth 

reviews of the topic can be found in Smith (1979) or Queney et al. (1960); the latter is a 

very comprehensive survey of work done up to that point, covering both observational 

and theoretical studies. Durran (1986) provides a general background overview of a 
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wide range of related subjects, and notes that despite the years of research already 

carried out, forecasting mountain waves is still far from easy. Wood (2000) provides a 

historical perspective of the progress and developments in modelling flow over complex 

terrain. 

Orographic gravity waves can propagate upwardly or horizontally, depending on the 

mountain and on the upstream airflow. The equations governing mountain waves are 

discussed in the next chapter, and a simple idealised example is given. Waves which do 

not penetrate above a certain height, and which propagate downstream, are referred to 

as trapped lee waves, because their energy is trapped at low levels in the lee of the 

mountain. In the atmosphere, trapped lee waves typically have horizontal wavelengths 

of between 6 km and 30 km, but the wave train can extend far downstream of the 

mountain (up to 500 km in favourable conditions), and the waves remain almost 

stationary. Although the most common lee waves are set off by long ridges, isolated 

peaks can set off 'wake waves' which propagate in a ' V shape rather like the wake of a 

ship (Bradbury, 1997). Lee waves develop when there is a strong wind component 

perpendicular to the ridge, which usually requires the mean wind direction to be within 

30° of perpendicular to the line of the mountain ridge unless the wind is very strong; for 

example, the presence of a tropospheric jet may cause the wave energy to be reflected, 

leading to trapped waves. The wind speed must be sufficiently strong and increase with 

height, and a stable air mass (meaning an inversion or very stable layer) must be present 

near the mountain top with a deeper, less stable layer above. These conditions imply a 

decrease with height of the Scorer parameter (defined in Chapter 3), and this is 

generally accepted to be the condition for formation of trapped lee waves. Lee waves 

are more common in autumn and winter because the air is more stable and the winds are 

stronger. If the wind direction changes with time, or with height, to be parallel to the 

ridge line, or if the mean wind is zero at some height, the waves are trapped below that 

level, known as a critical level (Bretherton, 1969). If this occurs at the level of the 

mountain crest, waves disappear altogether (Gerbier and Berenger, 1961). Although 

mountain waves are more commonly associated with the higher ranges such as the 

Rockies or the Alps, they can be induced by far lower ridges, in some cases as low as 

100 m (Allan, 1997). 
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Internal gravity waves can be observed in many ways, including radiosondes, wind 

profilers, lidars, microbarographs, satellite imagery, wind masts and constant volume 

balloons. All of these methods have advantages and disadvantages in terms of cost, 

accuracy and suitability to a particular situation. Radar observations, for example, are 

restricted by the location of radar sites, which are not always close to mountainous 

terrain, but they provide continuous measurements in time, so they can be useful for 

measuring travelling features. Vosper (1995) gives a discussion of several methods, 

and references much of the work done, including well known and comprehensive 

experiments such as ALPEX and PYREX (in the Alps and Pyrenees respectively). A 

disadvantage of intensive field experiments such as these is that they are restricted to 

one region and one period of time, so the results are unlikely to be representative of the 

mean global situation. However, the results of observational studies are usually 

reasonably consistent with gravity wave theory. Aircraft observations from commercial 

airline flights, such as those used by Nastrom er a/. (1987) and Jasperson gf aZ. (1990), 

are less useful for studying turbulent features than data obtained from flights planned 

speciGcally for observational purposes, because the air crews tend to modify their flight 

path wherever possible in order to avoid turbulence, so most of the turbulent episodes 

encountered on these commercial flights were close to airports, since the pilots have less 

choice of flight path on the ascent and descent. They also avoid areas of intense wave 

activity, where possible, so again, aircraft observations are more useful when obtained 

from field experiments designed with that in mind. Queney et al. (1960) mention some 

less obvious sources of observational data, such as crop damage and bird flight paths. A 

detailed review of observational studies is not covered here since this work is purely in 

numerical modelling; it is sufficient here to say that they are plentiful, and that it would 

be very useful to verify the results of work following on from this project (such as rotor 

simulations) by carrying out observational field campaigns in the region of interest. 
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2.3 Turbulent flow phenomena around mountains 

Glider pilots rely on vertical air currents, using not only thermal currents and the 

upslope lift on the windward side of mountains, but also the rising motion in 

atmospheric waves. Consequently they are able to provide practical evidence about 

mountain flows, observing and exploring waves and vertical wind patterns using 

instruments on board their aircraft, as well as giving visual descriptions of the 

phenomena they see. Flying conditions are remarkably smooth in waves, which are 

normally well above the ground, although occasionally they reach down to the surface 

and cause sudden strong gusts. 

While the smooth upward motion in lee waves can be beneficial to glider pilots, other 

mountain flow phenomena present a serious hazard to aviation, being turbulent and 

therefore harder to forecast than lee waves themselves. Queney g/ aZ. (1960) review a 

wide range of mountain effects from an aviation perspective. Knowledge of turbulence 

and vertical velocities is important to the aviation community, but these features are 

generally not resolved in NWP models, and although analytical theory gives a good 

representation of laminar steady flow, it is less good for unsteady turbulent flows 

(Corby, 1954). There is an extensive literature on these aviation hazards, most of which 

is made up of field studies, such as Kiittner's (1938, 1939) work in the Alps, Manley's 

(1945) detailed observational study of the Crossfell Helm wind, and Forchtgott's (1949, 

1952) observations of mountain ranges in the former Czechoslovakia. Queney ef a/. 

(1960) summarises all of these, and others. Forchtgott (1949, 1952) produced regime 

diagrams indicating which flow pattern is expected for given upstream conditions, and 

included lee waves as well as a range of re-circulating features, but Corby (1954) doubts 

the evidence for these stationary closed vortices, and dismisses Forchtgott's regime 

diagrams as a summary of the author's ideas rather than a useful forecasting tool, 

concluding that more work is required to give confidence in the results. However, the 

basic tenor of Forchtgott's (1949, 1952) results does fit with earlier findings, such as 
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Kuttner (1938, 1939), and with much of the work done since, as discussed below; it also 

confirms predictions obtained from perturbation theory. Corby (1954) gives a useful 

overview of early work on this topic, and Carney ef a/. (1996) is a comprehensive 

summary of the current state of knowledge from an aviation perspective. This section is 

merely an introduction to potential applications of the work which forms the main body 

of this thesis. 

There are many forms of mountain-induced turbulence which together represent a 

serious aviation hazard; in 1992 the United States General Accounting Office found that 

mountainous western states had a general aviation accident rate which was 

approximately 40% higher than that of all other continental states (Bedard and Neilley, 

1998). Carney et al. (1996) quote an even more alarming statistic: the accident rate for 

airports in mountainous areas, compared with similar airports in non-mountainous 

areas, was 155% higher in a similar survey. In addition, Lamb and Baker's (1998) 

analysis of National Transportation Safety Board data revealed that 91 out of 202 deaths 

in aircraft crashes in the Aspen, Colorado region between 1964 and 1987 were due to 

accidents caused by the effects of flying over mountainous terrain. Carney et al. (1996) 

noted that the accidents were not limited to one place, altitude, time of year or type of 

aircraft, but seemed simply to be a case of being in the wrong place at the wrong time. 

Pilots have a selection of guidelines developed from their collective experience of flying 

near mountains (referred to as "the aviation version of the mountaineer's code" by 

Allan, 1997) which can help them to avoid the hazardous air flow often present. For 

example, United Airlines has developed a reliable set of forecast rules for domestic 

mountain wave turbulence as a result of four decades' study, and weather forecasters in 

mountainous regions use a checklist on a daily basis to determine the likelihood of 

turbulence, and issue alerts as necessary (Knable, 1995). However, most of these 

guidelines rely heavily on visual clues for the crew such as cap, lenticular and roll 

clouds (see, for example, Carney et al., 1996), which are of course only present if the air 

is moist, which in itself is not a pre-requisite for lee waves or for turbulence of any 

description. Rotors can sometimes be made visible by dust or smoke movements they 

induce if they are very close to the ground (Scorer and Klieforth, 1959, and Queney et 

al., 1960) but even this is not entirely reliable as a detection mechanism, and local 

knowledge of typical flow patterns is invaluable. 
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Unfortunately, e\ en with appropriate training and with many hours' experience of 

mountain flying, pilots can still be taken by surprise by some of these phenomena, due 

to the difficulties involved in forecasting them. Improved guidelines and forecasting 

tools, based on scientific research and better communication of knowledge between 

meteorologists and the aviation community, would be an important contribution to air 

safety. Much work has been done to improve forecasting ability for various types of 

mountain-induced turbulence: for example, clear air turbulence and breaking waves 

have been extensively researched, and forecasting capability for these phenomena has 

improved. However, the difficulty in forecasting rotors remains, and so this 

phenomenon is discussed here in more detail. The work presented in this thesis forms 

further groundwork for future investigations into orographic features such as rotors. 

Although the rotor phenomenon is relatively widely discussed in the literature, much of 

this is in terms of observational studies either in the real atmosphere (such as Forchtgott, 

1952) or in the laboratory. Ho lets and Swanson (1988) observed a well-organised lee 

wave and rotor episode in California, which seemed to be a quasi-stationary feature, 

oscillating about 1 km in the along-wind direction and causing near-surface speeds to 

vary greatly within periods of 90 minutes or less, thus requiring averaging times of not 

more than 15 minutes for the wind field in order to follow the movements and dynamics 

of the wave and rotor. Another observation method which is potentially very useful for 

studying rotors is Doppler lidar, which can remotely measure radial velocity (towards 

and away from the instrument) at 1 minute intervals and at high spatial resolution, 

allowing the temporal evolution of the flow to be studied. Ralph and Neiman (1997), 

investigating the DC-8 crash over the Rockies in 1992, used lidar data to show that a 

region of reversed flow developed just above the tropopause due to overturning at a 

critical level, along with extreme vertical wind shear, at approximately the time and 

location of the incident. Lidar observations of flow reversal were also used by Ralph et 

al. (1998) when investigating stream-wise rolls, and Neiman et al. (1988) used lidar 

measurements to study a downslope windstorm event over the Rocky Mountains. 

Olivier and Poulos (1998) used them to show clearly the evolution and decay of a lee 

wave event and associated rotor flow near Colorado Springs Airport, with 

accompanying schematic diagrams. Bedard and Neilley (1998) hailed the lidar method 

as providing "some of the clearest documentation of rotors and flow reversals in the 
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vicinity of mountains" as well as giving a more detailed description of this and other 

observation methods appropriate to mountain flows. Real-time output such as lidar data 

would help aircraft controllers to respond to the evolution of these phenomena, but 

would be very expensive. However, lidar data could be useful in trials to validate 

forecast models. Most of the remaining work on rotors is idealised theoretical analysis 

(such as Scorer and Kliefbrth, 1959), and it appears that little work has been carried out 

into modelling and predicting realistic flows vyith a view to improving understanding of 

rotor formation. Poulos and Olivier (1998) discussed numerical simulations of the lee 

rotor event observed by Olivier and Poulos (1998) in the area of Colorado Springs 

Airport, but further investigation is still required. 

The word 'rotor' is used in the literature to refer to many different phenomena involving 

flow reversal or overturning of some kind. The rotors discussed here are defined as 

stationary closed circulations which form underneath the crest of a trapped lee wave, 

whose axis of rotation is horizontal and parallel to the crest of the ridge. Figure 2.1 

shows schematically the position of the rotor beneath the first lee wave crest, although 

of course the real situation is far more complex than the simplified version shown here. 

These lee rotors typically have a horizontal length scale in the range of 550 m to 3.2 km, 

and very strong vertical velocities between 10 and 25 m s ' (Knable, 1995). 

Whilst the lee wave flow is generally smooth, the associated rotor flow tends to be 

highly turbulent, making it more difficult to forecast accurately, and specialised 

knowledge of the local terrain is essential. According to Knable (1995), "most of the 

severe turbulence [caused by orography] occurs near the first wave crest and associated 

rotor, typically 3-9 miles downstream of the ridge line", as illustrated in figure 2.1, 

which shows the differing degrees of turbulence near the mountain. The twisted 

streamlines bring warm air under cold, leading to local convective instability with 

embedded cumulus clouds. As a warning sign, pilots frequently look out for this 

distinctive rough rotor cloud, which can resemble a cumulus cloud with its base at or 

below the ridge line, and often merges with the smooth lenticular clouds at the crest of 

the wave above, showing how narrow the boundary is between rough and smooth air. It 

is also called a roll cloud because it seems to rotate, with the top part moving forwards 

and the lower part moving back towards the mountains. As Knable points out, "rotors 
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can and do form in very dry, cloud free air", so clearly clouds alone are not a sufficient 

warning sign. In addition, Carney er a/. (1996) point out that one consequence of the 

progressive automation of observations is that cloud information is less readily 

available. Scorer and Kiiefbrth (1959) mention an occasion during the Sierra Wave 

Project when a sailplane fell apart in severe turbulence near the upwind edge of the 

rotor cloud. The pilot descended by parachute, and at lower levels he drifted in the 

opposite direction from the background wind. The authors called this "a unique 

observation of the rotor circulation" but it is unlikely that the pilot shared their 

enthusiasm! The severe turbulence found in a rotor frequently includes a sideways 

rolling motion, which can be the most hazardous part as it often comes as an unpleasant 

surprise to even the most experienced pilots. Rotors present a danger not only in the air, 

but also on the runway, since the flow reversal means that the wind direction on the 

ground may be the opposite from that measured at another nearby airport, or even by a 

wind sock at another point on the same runway. These conflicting observations are 

another warning sign to look out for (Bradbury, 1997 and Findlater, 1984). 

M M 
M M 

Lenticularis 

S' Rotor ; 
cloud ' S 

SI-. x- ,s 
Main rotor 

Figure 2.1. Schematic showing lee wave flow downstream of a mountain ridge, with position of rotor 

circulation and cloud formations, and different levels of turbulence (L = light, M = medium, S = severe). 

After Knable, 1995. 
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These rotors are a distinct phenomenon firom that of wave breaking, which has been 

extensively modelled and researched. Castro and Snyder's (1993) towing tank 

experiments showed that the two can occur in close proximity and even merge together 

in some cases, but these results were for finite depth flows, and their validity in the 

atmosphere has yet to be researched. Figure 2.2a shows possible mean streamlines for 

steady two-dimensional flow containing wave breaking, and figure 2.2b shows the same 

for rotor flow. Although both occur when the lee wave steepens, and at the crest of the 

wave, these two phenomena are quite distinct. The wave breaking region is above the 

ground, and the flow within it circulates in both directions. The rotor, on the other 

hand, is believed from observational evidence to be formed by separation (at point A in 

figure 2.2b) and reattachment (at point B) of the flow at the surface, and the rotation is 

entirely in one sense (clockwise in this example). It should be noted that the 

re-circulating flow in both cases is highly turbulent, and that figure 2.2 only shows 

mean streamlines, so it does not attempt to represent the detail of the turbulent flow. 

Figure 2.2. Postulated mean streamlines in two-dimensional steady flow containing (a) wave breaking; 

(b) rotor circulation. In the latter case, the flow separates from the surface at point A, and reattaches at 

point B. 
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In three dimensions the flow is more complex, since the streamlines are less restricted 

than in the two-dimensional case. For example, it becomes possible for the flow to 'roll 

up' in the plane perpendicular to the ridge, and then exit this roll along its axis of 

rotation, in the plane parallel to the ridge. Wave breaking in the atmosphere is very 

rarely observed, but is believed to be an unsteady phenomenon, since it breaks up the 

wave pattern, which then has to re-establish itself. Rotors, on the other hand, are 

postulated as a steady feature, linked to stationary, non-breaking, trapped lee waves. 

They will only vary in time if the wave pattern itself does so, and are unlikely to be 

unsteady when given steady upstream conditions. Further investigation will be needed 

to better understand the details of the flow patterns involved, and this is discussed in 

Chapter 9. 

The conditions under which rotors will form are not well known, but one pre-requisite is 

commonly understood to be a steep lee slope, giving rise to large amplitude lee waves. 

Examples of this are given by Forchtgott's (1952) work in the former Czechoslovakia, 

Manley's (1945) study of the Helm Bar cloud, which can be observed when an easterly 

wind blows across the Pennines, and Ktittner's (1959) work in the Sierra Nevada 

mountain range, which has a steep eastern escarpment favouring rotor formation in a 

westerly wind. The separation and reattachment mechanism of the rotor is similar to 

that of a separation 'bubble' on the lee side of the mountain, except that it occurs further 

downstream, underneath the first lee wave crest. Whether the flow separates on the 

slope or downstream depends on the relative wavelengths of the mountain and the lee 

wave. Hunt (1980) discusses the effect of both the Froude number and the steepness of 

the lee slope on the type of separation which occurs, and provides a useful background 

for exploring parameter space when attempting numerical simulations of rotors. This 

phenomenon is clearly important, and merits further investigation; Kuttner (1959) goes 

so far as to suggest that rotors actually play a primary role in the development of the 

wave field, rather than the other way round. 
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2.4 Gravity wave drag parametrizations 

As discussed in the previous chapter, mountain-induced gravity waves affect the global 

atmospheric momentum balance, so it is important to include their effects in NWP 

models. The waves can propagate to great heights, interacting with the mean flow and 

dissipating as they extract momentum &om it, and the drag on the atmosphere which is 

associated with this wave activity may be greater than the boundary layer frictional 

drag, especially at high latitudes. The distribution of momentum flux divergence and 

atmospheric drag is important in NWP in order to correctly model momentum budgets 

in global models and to forecast the progression of weather systems. However, the 

waves are generally sub-grid scale for NWP models, because it would be too 

computationally expensive to run these models on a small enough scale to resolve lee 

waves and their associated phenomena. 

Sawyer (1959) first recognised the importance of GWD in NWP models, noting that 

orographic gravity waves are able to transport momentum vertically downwards, 

decelerating the large scale motion at upper levels. He suggested a need to parametrize 

orographic gravity waves in large scale NWP models, since the wavelengths are 

generally too small to be accurately resolved. Since then there have been various 

attempts at GWD parametrization in NWP models and general circulation models 

(GCMs). These schemes can differ greatly from one model to another, but they all aim 

to diagnose the change with height of the vertical flux of horizontal momentum carried 

by the waves. Recently Mobbs (1994) has provided a review of the simple gravity 

wave theory related to current parametrization schemes, including features such as 

critical levels and breaking waves. Critical levels are not covered in any detail here, but 

they correspond to a singularity in the Taylor-Goldstein equation, discussed in the next 

chapter, and are an important aspect of parametrization schemes. They may absorb a 

large proportion of the wave energy and transfer it to the mean flow (see Booker and 

Bretherton, 1967, and Bretherton, 1969). In linear theory the wave energy is assumed 
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to be totally absorbed \\ ith no reflection, but in the real non-linear atmosphere, wave 

energy may also be trapped in the lower layers of the atmosphere, producing lee waves. 

The model surface height is usually derived from a high resolution data set by averaging 

onto the resolution of the model, so that the height of the model surface at a gridpoint is 

equal to the mean height of the real surface over the area of the grid square. Although 

orography has profound effects on the weather at both local and synoptic scales, this 

smoothing process leads to the loss of many meteorologically important features, such 

as irregularities on the mountain surface, or narrow isolated peaks. Some models 

alleviate the effect of smoothing, which reduces the peak height, by using envelope 

orography, which adds an increment proportional to the standard deviation of the 

sub-grid scale variance. This means that the scheme is resolution dependent, so finer 

resolution leads to a decrease in the envelope increment, as would be expected. This 

scheme is more realistic, including the effects due to sheltered valleys and basins, and 

increasing the effective height, as well as increasing the area covered by high terrain, 

thus representing more accurately the physical barrier which mountain ranges present to 

the atmospheric flow. The increment is largest for rough terrain, which is generally 

more poorly represented than smooth terrain. Wallace et al. (1983) give more details; 

they generally found that envelope orography reduced errors, although there was some 

suggestion that the beneficial impact might be limited to synoptic scales or larger, since 

these features are more important in longer range forecasts, which is where the most 

marked improvements were seen. Clark and Miller (1991) found that envelope 

orography improved the accuracy of pressure drag calculations, equivalent to almost 

doubling the model resolution, but that it was less impressive with respect to Reynolds 

stress predictions. This led them to conclude that GWD parametrizations still have a 

useful role to play in augmenting the resolved stress profile. Palmer et al. (1986) noted 

that enhanced orography and GWD parametrizations are complementary to some extent, 

and that some combination of the two techniques may be optimum. If the model has 

fine enough resolution, the GWD parametrization is not considered necessary: for 

example, it is not used in the mesoscale NWP model at The Met. Office. 

Since the introduction of GWD parametrizations in the mid 1980s, these schemes have 

improved the systematic westerly bias which was present in most forecast models, and 
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which was most marked over the northern hemisphere winter mountain ranges such as 

the Alps or the Rocky Mountains. There is less land in the southern hemisphere, so the 

circulation there is less affected by orography, which explains the lower impact seen in 

that region. Milton and Wilson (1996) showed evidence suggesting that deficiencies in 

orographic forcing cannot fully explain the en-ors seen in the mass and wind fields, but 

GWD parametrizations certainly play a large role in reducing those errors. Boer aZ. 

(1984) were the first to implement a GWD parametrization in a large scale model of the 

lower atmosphere. They described their scheme as "highly simplified and rather crude" 

but found it to be beneficial. Palmer et al. (1986) implemented a parametrization 

scheme in an NWP model and in a GCM, and found it to be generally helpful in 

alleviating a bias towards strong westerly winds in the Northern Hemisphere during 

winter. McFarlane (1987) implemented a similar scheme in a GCM and also found it to 

have a positive impact. The NWP models had a general tendency to over-forecast upper 

level westerly winds, so the jet streams were too strong, and low pressure systems were 

often too low and too mobile. The largest errors were close to where the jet stream 

crossed the mountain, and systematic errors increased with forecast interval (Wallace et 

a/., 1983). Palmer gf a/. (1986) noted that these errors only became serious when 

increased resolution stopped models from underestimating poleward flux of momentum 

by large scale motion, since this error had previously cancelled out the underestimation 

of surface drag. 

One problem with these parametrization schemes is that they tend to assume that the 

waves generated by the sub-grid scale orography (SGSO) are hydrostatic. Upwardly 

propagating waves are much better understood now than they used to be, but many 

questions remain on the subject of trapped waves, including where they dissipate, 

extracting momentum from the atmosphere and decelerating the mean flow. Keller 

(1994) obtained linear analytical results for gravity waves generated by idealised 

mountains, and demonstrated that non-hydrostatic effects can be very important when 

there is wind shear, even when the mountains are very broad. The assumption of 

hydrostatic flow can cause significant changes to the wave field and momentum fluxes, 

and non-hydrostatic flows such as those including trapped waves are now beginning to 

be represented in parametrization schemes. Two of the four cases simulated in this 
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thesis were specifically chosen to reproduce Keller's non-hydrostatic results; more 

details are given in Chapter 5. 

2.5 Motivation for this work 

Traditionally, boundary layer flows and gravity wave flows have been treated 

separately, but the boundary layer cannot be ignored in gravity wave cases, because it 

can significantly change the flow over complex terrain. Mountain-induced wave flows 

were always assumed to be fnctionless, and the ABL was only considered important for 

flow over smaller orography. A loose distinction between 'mountain' and 'hill' was 

often used to distinguish between the two cases, and a large roughness length was often 

used in boundary layer cases to account for the sub-grid scale orography. There was a 

lack of boundary layer observations over mountains, because it was simpler to use flat 

ground. The numerical model used here was designed to simulate boundary layer 

flows, and although previous studies have included lee side separation, little work has 

been done to simulate flows including both gravity waves and a boundary layer, and the 

interaction between these phenomena is not well understood. However, recent work 

with other models has begun to combine these two areas (e.g. Peng and Thompson, 

1998). The work presented in this thesis uses idealised cases without a boundary layer, 

as a test of the model, using a larger mountain and a larger numerical domain than 

before, with a view to providing a sound base for turbulent boundary layer simulations, 

including phenomena such as rotors. Upwardly propagating waves and wave breaking 

are relatively well understood and represented now, but work is ongoing to further 

understanding of the dynamics of trapped lee waves and associated phenomena, such as 

the rotors discussed above. This will lead to improvements in parametrizations and 

NWP performance. The simulations in this work are two-dimensional, because much of 

the analytical work is in two dimensions and because the computational cost is far lower 

than running in three dimensions. However, for the work following on from this, 

looking at rotors, three-dimensional simulations will be necessary, and some of the 

issues surrounding this are discussed in Chapter 9. This work does not attempt to 



H. J. Hewson 2000 Chapter 2: The e f fect of mountains on the a t m o s p h e r e Page 22 

simulate flow over a realistic mountain, for comparison with observational data; that 

will become important in future work. The simulations presented here aim simply to 

reproduce the impoi-tant processes within the flow for idealised conditions, and to 

compare the results obtained vyith analytical theory. The numerical model should be 

capable of simulating these idealised flows, as well as more realistic flows, and its use 

will enable an improved understanding of the formation of features such as rotors, with 

the potential to improve parametrizations and forecasts by including their effects. In 

addition, the work may lead to a local forecasting tool for aviation use, to reduce the 

hazard posed by these phenomena which are currently very difficult to predict. The 

work described in this thesis lays further ground work for future studies of this nature. 



3 Equations of motion 

3.1 Basic equations 

3.1.1 Introduction and notation 

This chapter explains the basic equations governing atmospheric flows, and some of the 

assumptions and approximations which are made in both analytical and numerical 

models of these flows. The atmosphere is regarded as a continuous fluid whose state 

can be specified in both space and time by unique values of the physical variables. The 

equations given in this chapter are all in the standard rotating frame of reference, 

denoted by Cartesian co-ordinates (x,}',z),or in tensor notation. Unit 

vectors in the X-, _y-and z-directions are denoted by respectively. The standard 

notation for the mathematical operators is used here and is explained below, where (j) 

represents any field. 

^ denotes the Eulerian derivative: the local rate of change, at a fixed point. 

8x;' ^ & y 
denotes the gradient of (j>. 

V.<̂  = denotes the divergence of 
- ^ 

+ —y 4 — y is the Laplaciau operator (sometimes referred to as 

del-squared). 
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w.V(̂  = w — + V — + w — is the advection term and represents the advective rate of ^ 

change at a fixed point, where w = (w, v, w) = (w,, ) is the velocity vector with 

components w, v, iv in the x-, y- and z-directions respectively. 

denotes the Lagrangian derivative: the rate of change following the 

motion of an air parcel. This is also known as the material, total or substantive 

derivative. 

The baac equations governing flow in the atmosphere arise from three fundamental 

physical principles: conservation of mass, momentum and energy. The equations 

arising from these laws are, respectively, the continuity equation, the Navier-Stokes 

equations and the thermodynamic equation. For a more detailed background to the 

theory and derivation of the equations than is given here, there are many good sources, 

such as Batchelor (1967) and Garratt (1992). 

3.1.2 Conservation of mass 

The mass continuity equation is given by 

+ pV.M = — + V.(pw) = 0 
Df ' - ar 

where p is the density. 

There are two approximations which are commonly applied to this equation. The first is 

the anelastic approximation, and eliminates all acoustic waves, which have no 

meteorological significance and are believed to have a negligible interaction with waves 

of interest. They are the fastest non-electromagnetic waves in the atmosphere, and their 

removal allows more economical use of certain numerical methods, by relaxing the 

stability restrictions on the timestep (Pielke, 1984). The local rate of change of density 

is assumed to be negligible, i.e. — = 0, and the continuity equation becomes 

V.(pw) = 0. Horizontal gradients of density are also assumed to be negligible, and then 

the anelastic approximation is valid if the depth of the circulations considered is much 
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less than the density scale height, given by ^ = 

8 km for the atmosphere. 

which is typically aiound 

The second approximation is one of incompressibility, and assumes that density 

variations from a constant background density profile are negligible in both time and 

space. Air is not an incompressible fluid, but if the flow is assumed to be 

approximately incompressible, the mass continuity equation reduces to 
^ ^ ^ _ 

\ .li = 1 1 — 0. 
" ^ 

This is more strict than the anelastic approximation, and density no longer appears in 

the continuity equation. This approximation is justified for boundary layer models with 

shallow domains, as the density variations are then very small within the region of 

interest. However, it becomes less accurate for deeper domains, in which vertical 

motion leads to compressibility associated with the height dependence of the 

background density profile, which must be taken into account. The incompressible 

approximation is used in the rest of this thesis, because it is simpler to implement 

numerically. Although not strictly applicable for the deep domains considered in this 

work, the results obtained for cases 2 and 3 (described in Chapter 5) are in broad 

agreement with recent results obtained at The Met. Office for the same cases using a 

fully compressible model (Smith, private communication). The results are 

quantitatively very similar at low levels, becoming less so above 10 or 20 km, but the 

qualitative agreement at higher levels remains good. This agreement is sufficient to 

justify the use of the incompressible approximation for this work, although future 

studies will continue to use compressible simulations. 

3.1.3 Conservation of momentum 

Newton's second law (e.g. Batchelor, 1967) gives 
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represents the body forces (gravity and the Eaith's rotation, in this case), and 

r 2 ^ 
^ is the stress tensor, where is the pressure, is the 

( 3 J 

Kronecker delta, is the dynamic viscosity and e, = — ^ . The standard 

du 
summation convention is used in terms such as —^ which contain a repeated index, so 

til3-t == 1 1 = 1 1 . 
^ & 

For an incompressible rotating fluid with constant viscosity, the momentum equations 

arising from Nevyton's second law, known as the Navier-Stokes equations, are 

: ^ = _ l v p - 2 ( Q x w ) + g+vV^w, 
Dr P 

where g = is the gravitational acceleration, v = — is the kinematic molecular 
P 

viscosity, and O is the angular velocity of the Earth, usually taken to have magnitude 

Q = |q | w 7.27x10"^ j'"'. The terms represent, from left to right, the acceleration of the 

air (due to inertial forces), the pressure gradient force, the effects of the Earth's rotation, 

the gravitational force (which includes a component due to the rotation of the Earth) and 

the viscous stresses. 

The term 2(Qxw) represents the effects of the Earth's rotation. Its expanded form is 

(-(2Qsin(^)v + (2Qcos(^)w)z + ((2Qsin(^)w)y-((2Qcos(^)M)^, where (^represents 

latitude here. Traditionally, the (20cos<^) w term in the x-component is neglected 

using scale analysis, since w<^u, and the z-component is neglected because it is much 

smaller than other terms in the w-momentum equation. However, these terms can be 

important, and are retained in some NWP models (e.g. White and Bromley, 1995). 

Since the simulations in this thesis are all two-dimensional, and Coriolis forces are 

neglected entirely (as discussed later), this issue will not be pursued here. The 

'traditional' approximation is used instead, where the terms in cos^ are neglected, and 

2Q sin (j) is denoted by/and called the Coriolis parameter, giving 
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2 (Q X w) - -/vz + ./wy. The f-plane approximation takes/as a constant (typically 

10"̂  s"' in mid-latitudes), and neglects the curvature of the earth. 

The Navier-Stokes equations are then reduced to 
. + 

Dw 1 ^ 2 

Dr p 

Dr p ^ 

ZW 1 ^ 2 
— [- ^ -j- \ / \ / 

Dr p g z 

and the equations are used in this form in the next section of this chapter. 

3.1.4 Conservation of energy 

Businger (1982) gives much more detail of the full thermodynamic equation than is 

covered here, and discusses the assumptions which are commonly made. The full 

equation for conservation of energy is complicated, so some simplifications are made 

here in order to arrive at the thermodynamic equation given below. In a gas, conduction 

is an extremely inefficient heat transfer mechanism in comparison with convection, and 

outside the boundary layer, radiative transfer (not to be confused with the use of the 

term 'radiative' to refer to the open downstream boundary condition later in this thesis) 

only becomes significant on time scales of days, so a useful and valid approximation is 

to assume that the processes responsible for temperature change in an air parcel are 

adiabatic. Given that the boundary layer is not included in the simulations presented 

here, and that condensation is not relevant (since, as discussed in the previous chapter, 

all these simulations use dry dynamics), this is a valid approximation. Entropy is 

denoted by 5" and defined as 5" = ln8 + , where is the specific heat capacity 

for air at constant pressure (usually taken as 1005 J kg'* K''). In the absence of radiative 

transfer or phase changes, the motion is adiabatic, so there is no change in entropy, and 

the flow is said to be isentropic. This means that potential temperature is constant along 

streamlines, and the thermodynamic equation can be expressed as the conservation of 

potential temperature, 0, following the fluid motion; 

^ = 0, 
Dt 
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Potential temperature is defined as the temperature a parcel of air would have if its 

pressure were altered adiabatically (meaning that no heat enters or leaves the system) to 

some reference pressure , which here is the surface pressure, usually taken to be 

1000 hPa: 

8 = r Pr 

V p J 

Here 7 is the temperature (in Kelvin), is the pressure (in hPa), and K is defined as —. 

where R is the universal gas constant for dry air (usually taken as 8.31 J mof ' K'^). 

If the gradient with height of the background potential temperature profile is greater 

than, equal to or less than zero, the flow is said to be statically stable, neutral or unstable 

respectively. The buoyancy frequency, or Brunt-Vaisala frequency, N, is defined as 

, so the stability condition can also be expressed in terms of where a 

larger buoyancy frequency means that the air is more stable. The atmosphere is always 

stably stratified on the synoptic scale, because unstable regions, where denser air is 

above less dense air, are quickly stabilised by mixing. In general, the faster the air cools 

with height, the less stable it is. A stable air mass resists vertical motion, so any vertical 

displacement will tend to return to its original position. This can set up an oscillation 

and lead to waves such as those discussed in section 3.5. 

3.2 Flow parameters 

3.2.1 Introduction 

The nature of the flow can be described using non-dimensional flow parameters, which 

represent the ratio of various terms in the basic equations. This allows some terms to be 

compared in magnitude, and the smaller terms discarded as not significant. 
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Non-dimensional notation is used, where represents a non-dimensional variable. 

Various scales are defined as follows: 

Z and / / are the horizontal and vertical length scales, so x = 2:0, = Zj), z = ; 

[/ and PF are the horizontal and vertical velocity scales, so w — C/w, v = L/v, w = PFw; 

L 
is the advective time scale, so r = — f . 

U 

The pressure scale is dependent on the type of flow considered. For steady flow with no 

viscosity, Bernoulli's theorem gives p ~ pu^. Another alternative is to use the 

geostrophic equations, which are obtained by neglecting the acceleration and viscous 
terms in the horizontal momentum equations, so the pressure gradient term is 

comparable to the Coriolis term: 

p p ^ 

The former is more relevant for the steady, laminar cases considered here, and the 

pressure scale arising from Bernoulli's equation is p[/^, giving = p[/^^. 

The non-dimensional w-momentum equation is given below, with the terms labelled for 

fiiture reference: 

L 
— V = — + — r + U h V 1 W 

ac ^ [ / / f azy 
• + 

A B C D 

0 . 

The following subsections introduce different non-dimensional parameters based on this 

equation. 

3.2.2 The Reynolds number 

The viscous terms in the momentum equations represent molecular diffusion, the 

process by which contiguous fluids mix. The Reynolds number. Re, is the ratio of the 

advection terms, A, to the viscous terms, D, and is defined as Re = . For 

V 

atmospheric flows, typical values are U ~ lOms~',L -W^m and v ~ 1 0 ' ^ , where 

the length scale given is typical for the flows considered here (but there are atmospheric 
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flows on many different scales). This gives a typical Reynolds number of order 10'°, 

showing that the molecular viscosity term in the equations of motion can be neglected. 

For Reynolds numbers smaller than about 2000 (Acheson, 1990), turbulent flow is not 

sustained, and the flow is laminar, but typical Reynolds numbers in the atmosphere tend 

to be far larger than this, as discussed above. The molecular viscosity is thus negligible 

with respect to mixing by turbulent eddies (eddy diffusion), being too small to dissipate 

turbulence except at very small scales. The viscous terms are neglected in the rest of 

this thesis, although a very low viscosity ( w = 10'̂ f̂M .̂y"') is necessary in the numerical 

simulations, as discussed in Chapter 4. 

3.2.3 The Rossby number 

The Rossby number, Ro, is the ratio of the advection terms. A, to the Coriolis term, B, 

and is defined as = — . An alternative definition is to use instead of/j which is 
yz 

equivalent in both dimensional and scaling terms, since / = 2Q sin (p, as discussed 

above. This parameter indicates how important Coriolis effects are over the time scale 

of the flow being considered. For atmospheric flow at mid-latitudes, typical values are 

- lO/Mĵ '%/ - 10"̂  j'"' and 2 - 10''/M, giving a typical Rossby number of order 10. A 

large Rossby number, which is much greater than unity (Pielke, 1984), means that the 

time scale of the flow being modelled is so short that deflection of the flow due to 

Coriolis effects is negligible, and so terms involving/can be neglected from the 

equations. Although the numerical model used here retains them, as do the 

three-dimensional equations discussed in the rest of this thesis, the two-dimensional 

simulations and equations in this thesis neglect the Coriolis terms, since they deal with 

flow over an infinite ridge which is narrow enough that the Rossby nimiber governing 

the flow is large. 

3.2.4 The Froude number 

While not obtained from the w-momentum equation in the same way as the Reynolds 

and Rossby numbers, the Froude number is an important parameter in orographic flows. 
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It is defined as , where is the height of the mountain crest, and [/ and TV 

take typical near-surface values here. It is worth noting at this point that some authors 

define the Froude number as the inverse of that given above, sometimes referring to it 

as the non-dimensional mountain height, and that the parameter defined here is 

sometimes referred to as the 'inverse Froude number'. The definition given here, 

however, does seem to be the most widely used. Another potential source of ambiguity 

is that the Froude number defined here is sometimes referred to as the vertical Froude 

number; the horizontal Froude number is defined as F = , where k is the dominant 

horizontal wavenumber. This is discussed further in Chapter 5 for the four cases 

studied here. The term 'Froude number' in this thesis will be used to refer to the 

vertical Froude number, 7^, as defined at the start of this subsection. 

The Froude number provides a measure of linearity, and is used in the discussions of the 

four cases described in Chapter 5. In general, if the Froude number is greater than 

unity, the flow is linear and the air flows over the mountain, whereas if the Froude 

number is less than unity, the flow is non-linear and can be much more complicated, 

including features such as upstream blocking, wave breaking, vortex shedding and flow 

around the mountain. The division between these high and low Froude number flow 

regimes is, of course, not clear-cut. It should be noted that in the two-dimensional 

numerical simulations studied here, the air cannot flow around the mountain, but 

non-linear effects can still be seen in some cases. Smith (1989a) includes a review of 

analytical investigations into low Froude number flow, including the early non-linear 

theory of Drazin (1961). The dynamics are complex, so much of the research carried 

out has involved laboratory experiments and numerical modelling. Laboratory 

examples of investigations into the effect of Froude number on the character of flow 

over obstacles include Hunt and Snyder (1980), Castro et al. (1983), Baines and Hoinka 

(1985) and Boyer a/, (1987). Snyder e/'a/. (1985) and Smith (1989a, 1989b) discuss 

the concept of a dividing streamline between the flow over and around the mountain. 

High resolution non-linear simulations can be found in Hanazaki (1988), Smolarkiewicz 

and Rotunno (1990) and Miranda and James (1992). 
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3.3 Turbulent flow 

Turbulence is briefly covered here for completeness, because the numerical model 

described in the next chapter does include it, but the work described in this thesis 

simulates laminar flow, as discussed in Chapter 4. This section explains the main 

differences between laminar and turbulent flow, then derives the turbulent governing 

equations from those obtained in the previous sections. An introduction to the 

turbulence closure problem follows at the end of this section. 

Laminar flow is predominantly smooth, and small elements of fluid retain their identity 

without mixing with their surroundings. Momentum, heat and matter are transferred by 

the interaction of individual fluid molecules, and although the flow can be unsteady, a 

typical particle path is repeatable (i.e. stable to small perturbations). In turbulent flows, 

the particle paths become irregular, random oscillations, known as eddies, which 

typically occur on a range of different time and space scales. Because of the turbulent 

motions, momentum, heat and matter are transferred much more efficiently than in 

laminar flow, with an effective diffusivity which is usually many orders of magnitude 

greater than the molecular diffusivity of the equivalent laminar flow. It is turbulence 

which allows the boundary layer to respond rapidly to changing surface forcings, and 

most naturally occurring flows are turbulent. 

Direct numerical simulation aims to resolve all scales of turbulence by using a very fine 

grid. It can provide useful results for fluid flow problems at low Reynolds numbers, 

which cover a small range of scales. However, it becomes computationally impractical 

at Reynolds numbers approaching realistic atmospheric values, because the length 

scales of interest range from several kilometres to small scale turbulence. DNS results 

can be applied to high Reynolds number atmospheric flows in some cases, but this 

requires care (Coleman g/ a/., 1992). An alternative approach is large eddy simulation 

(LES), which allows the numerical model to resolve the larger energy-containing 

turbulent eddies within the flow, and parametrizes only the unresolved smaller scale 
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eddies (ideally those in the inertial sub-range). This produces flow fields which reflect 

the turbulent nature of the flow, due to the resolved eddies, and it can be veiy 

computationally expensive because of the high resolution and long simulation times 

required to obtain stable statistics. Stull (1988) and Garratt (1992) provide more 

information on this approach, and Wood (2000) provides an introduction to LES as the 

next major step in modelling flow over complex terrain. Dornbrack and Schumann 

(1994) compared DNS and LES results for breaking gravity waves below a critical 

level, and observed more efficient turbulent mixing in the latter case. In the numerical 

model described in the next chapter, all of the turbulence in the flow is parametrized, 

and this method is described below. The model does have an LES option, but this was 

not used in the work presented here. 

Turbulent profiles can be measured using anemometers, such as in the field campaigns 

of Mason and King (1985), and Mickle et al. (1988), but the non-linearity causes 

random motions, which make deterministic description difficult. The analytical 

solution is mathematically intractable, and so statistical methods are used. As discussed 

above, turbulent flows fluctuate on a wide range of length and time scales, and this large 

range means that all the scales of motion cannot be modelled explicitly, so averaging is 

required. The Reynolds averaging method used here assumes two peaks in the temporal 

and spatial distribution; the mean flow, on the scale of interest, and the turbulence, on 

much smaller scales. The 'spectral gap' is used to separate these two parts of the flow, 

but in reality it is not a clear split and the two do interact. More detail of this method is 

given in Garratt (1992). The process is independent of the quantity being averaged, so (j) 

is used to denote any one of w, v, vv, or 9. 

For an incompressible fluid, the continuity equation is Vm = 0 , and this means that the 

material derivative can be expressed in flux form as 

where a flux is defined as the transfer of a quantity per unit area per unit time. 

The averaging operator separates each field into a mean part, denoted by a bar, and a 

turbulent fluctuation, denoted by a prime: (j) = <j) + (f)'. By definition, the mean of the 
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turbulent fluctuation is zero, since ^ +<̂ ' = (̂  +<̂ % implying that = 0. The mean 

part can be a time average, a space average or an ensemble average. The latter is 

obtained by averaging data from a repeated set of experiments, observations or 

numerical simulations. It is still a function of both space and time, so it has an 

advantage over the other two. It is also preferable in the laboratory, because it 

minimises the impact of random experimental errors by allowing the experiment to be 

repeated several times. In the atmosphere, however, it is rare to observe reproducible 

vyeather events, so ensemble averages are more difficult to use (Stull, 1988). 

Substituting this decomposition into the above equation gives 

Df 

The whole equation is then averaged using the standard technique, of which details can 

be found in Garratt (1992), to give 

d{^') ^d{^') 

Dr Df ^ ^ 

The first term on the right hand side of this equation represents advection of the large 

scale flow by the large scale flow, where is the material derivative 

with advection by the mean flow. The remaining terms, called the Reynolds stress 

gradients, represent the contribution to momentum (or heat) transport by smaller scale 

turbulent fluctuations in velocity or temperature. These terms are also referred to as the 

shear stresses or the eddy fluxes. Turbulent flux covariances, that is terms such as ^ 'u ' , 

act as source terms, and they are a direct result of the non-linearity in the advection 

terms. 

Applying the above method to the incompressible equations of motion derived in 

section 3.1, neglecting the laminar viscous terms as discussed in the previous section, 

gives: 
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and a corollary of the mean continuity equation is that the divergence of the turbulent 

fluctuations is also zero: V.w' = 0. 

The turbulent momentum fluxes are often represented by — — p j, the Reynolds 

stress tensor, and the turbulent heat fluxes by 77̂  = - p ^. The momentum and heat 

equations can then be written as follows: 

D 1 - 1 — u = -=—+ fv + -= p p 9z 

— - / w + = 
D r / p P & 

D (—\ 1 dp 1 
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and the overbars will be omitted from the averaged quantities from now on, except in 

the turbulent covariance flux terms. 

These equations cannot be solved in their present form, because the turbulent flux terms 

are unknown. Although it is possible to construct equations for these second order 

terms, this process introduces further unknowns in the form of third order terms. The 

situation continues like this, and is known as the closure problem: in order to close the 
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equations it is necessary to stop at some point and parametrize the unknown higher 

order terms. This closure problem is associated with the non-linear characteristics of 

turbulence, and remains one of the unsolved problems of classical physics; Businger 

(1982) gives a more detailed discussion. The closure scheme described in Chapter 4 

and used in the numerical model presented in this thesis is first order, because it solves 

for the first order terms and parametrizes the second order terms. By analogy with 

molecular diffusion, the equations are closed using eddy diffusivities to relate the 

turbulent fluxes to the mean flow using flux-gradient relations of the form 

For momentum, is called the eddy viscosity or momentum diffusivity, and for heat, 

is called the eddy conductivity or eddy thermal diffusivity. It measures the rate of 

diffusion effected by atmospheric eddies. In contrast with the molecular case, the eddy 

diffusivity is not a property of the fluid, but of the flow, and may be a function of many 

quantities, including height, stability and flow velocity. The principle behind first order 

schemes is to derive from known quantities, so first order schemes are also known 

as A[̂ -closure schemes. There are various methods for calculating but no detail is 

given here, since there is no turbulence in the results presented in this thesis. Garratt 

(1992) and Stull (1988) give a more detailed overview of this type of scheme, and 

others. 

3.4 The Boussinesq approximation 

Various approximations and assumptions can be applied to make the equations less 

complicated and easier to solve, but which ones of these are appropriate depends on the 

nature of the flow being considered. This section explains the Boussinesq 

approximation, which is used in the simulations described in this thesis, and is attributed 

to Boussinesq (1903); more details of the assumptions made, and of their validity and 

limitations, are given by Mahrt (1986) and Businger (1982). 
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The mean values of the thermodynamic variables (pressure, potential temperature and 

density) used in the previous section, here represented generally by are separated into 

a background profile, , which is assumed to vary with height only, and a perturbation, 

, which is assumed to be of small amplitude such that : 

^ (z) z,r). It should be noted that ^ here represents the mean 

value (denoted by in the previous section), and that is not a turbulent fluctuation 

like in the previous section, but a perturbation from the background state. This 

perturbation is on an intermediate time and length scale, between the scales of the mean 

value and the turbulent fluctuation. 

In the vertical component of the momentum equation for the background state (but not 

for the main flow), the vertical acceleration terms are neglected, and this leads to the 

hydrostatic equation, which states that the background pressure is proportional to the 

weight of the fluid above: 

This is valid on synoptic scales, where perturbations vanish because of the large spatial 

scale and long time scale, and is a good approximation for wave modes with large 

horizontal wavelength, where the vertical accelerations can be assumed to be small. It 

is only used for the background profiles here; no assumptions have been made about the 

main flow. The hydrostatic approximation filters out upwardly propagating sound 

waves, which are of no meteorological interest; the remaining horizontally propagating 

acoustic waves, called Lamb waves, are eliminated by using the anelastic 

approximation, as discussed above. The hydrostatic approximation is used as a basis for 

computations of height from vertical soundings, and is usually sufficient for this 

purpose, since the horizontal scale of motion is much larger than the vertical scale. It is 

a good approximation to the vertical distribution of background pressure, and only 

breaks down for small scale phenomena such as thunderstorm updrafts, or some 

orographic flows, where the background vertical acceleration cannot be neglected. 

These phenomena, however, are not explicitly resolved in global NWP models, where 

the hydrostatic approximation is often used and is valid. 
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The Boussinesq approximation has many forms, and these are discussed by Spiegel and 

Veronis (1960), Dutton and Fichtl (1969) and Mahrt (1986), among others. The form 

used here is known as the shallow convection form, because vertical motion is limited 

by the buoyancy term; it requires the vertical scale of motions to be much less than the 

density scale height. For a compressible fluid, a better approximation is to use the 

continuity equation in the fbrm V.(pw) = 0, and this is the deep convection form of the 

Boussinesq approximation. 

In the shallow convection Boussinesq approximation, the f low is taken to be 

incompressible, and the background profile is taken to be hydrostatic. It is assumed that 

density variations from the constant background state can be neglected except in the 

buoyancy term, where they are coupled to the gravitational acceleration, since the 

buoyancy term is of approximately the same order of magnitude as the vertical 

acceleration term. The governing equations derived in the previous section then 

become 
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where the buoyancy variable, g , which now appears in the vertical momentum 

Po 

equation, involves density fluctuations, which are hard to measure. The ideal gas 

equation and the potential temperature equation can be linearised to give, to a good 

approximation. 

0 " f 

1 
V ^0 V 

- 1 . 

Dutton and Fichtl (1969) showed that in the shallow convection Boussinesq 

approximation, the relative pressure fluctuations from the mean state are much less than 
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p ' 8 ' p" 
the density and temperature fluctuations, and can be neglected: — <K —, — . In this 

Po 0̂ Po 

case the above equation gives an approximate buoyancy variable — , and the 

vertical momentum equation becomes 

1 ^ gO' 1 

Dr Po & Po Ac ^ & 

For ease of reference, the governing equations for turbulent, incompressible Boussinesq 

flow derived in this chapter are given below in full, and these are the equations which 

are used in the numerical model described in the following chapter. 
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3.5 Linear mountain waves for a simple idealised ease 

In general, the fully non-linear equations of motion governing flow over orography 

cannot be solved analytically. Under certain restrictive assumptions, the non-linear 

equations become linear even for finite amplitude disturbances (e.g. Long, 1953 and 

1955; Huppert and Miles, 1969), but generally the equations need to be linearised and 

reduced to a steady state. Examples of early analytical work are found in Lyra (1940, 

1943) and in Queney (1948), which is a summary of lee wave theory in stratified flow. 

Reviews of two-dimensional hydrostatic steady solutions include Miles (1969), Nicholls 
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(1973), Baines (1995) and Smith (1979, 1989a). The latter two reviews by Smith also 

discuss three-dimensional linear hydrostatic solutions, and Wurtele ef a/. (1996) provide 

an overall review of lee waves in the atmosphere. Analytical solutions using asymptotic 

methods for linear non-hydrostatic flows, such as those described by Crapper (1959) or 

Janowitz (1984), can provide solutions which are valid far from the mountain. 

In order to simpli^ the governing equations derived in the previous sections and allow 

their analytical solution for an idealised case, several assumptions are applied in 

addition to those described above. The first of these is that the flow is assumed to be 

two-dimensional in x and z, and the mountain ridges are assumed to be narrow, so that 

the Rossby number is large and Coriolis forces may be neglected, meaning that the flow 

is truly two-dimensional in x and z. Secondly, the flow is assumed to be in a steady 

state, so there is no time dependence. Next, the mountain ridges are assumed to be of 

small height, so that the Froude number is large and the flow is linear. The wind 

components are split into a background profile (dependent on height only) and a 

perturbation, in the same way as the pressure, potential temperature and density were 

treated for the Boussinesq approximation. As before, these perturbations are not 

turbulent fluctuations; the flow is assumed to be laminar for this example. The 

background horizontal wind, w,,, is assumed to be normal to the ridge, and the 

background vertical wind, , is assumed to be zero. Here, the static stability is given 

by ^ , which is a function of height only, since it depends on the background 

potential temperature profile, itself a function of height only. The perturbation 

quantities are assumed to be small when compared to the background values, which 

permits linearisation of the equations. This assumption is usually valid as long as 

H <s: L, so that the mountain slope is small. 

The following simple analytical example for two-dimensional steady flow is based on 

the working given in Durran (1986). Starting from the two-dimensional, steady state, 

laminar version of the equations derived at the end of the previous section, with the 

assumptions described above, linearising about the background wind profile gives 
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where b" = is the buoyancy. 
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Combining these equations gives 

where — i s the Scorer parameter (e.g. Scorer, 1949). This equation is 
UQ Z'/q dz 

known as the Taylor-Goldstein equation, and has numerous variations depending on the 

simplifications made to the basic equations and to the background flow. It is obviously 

more complicated in the three-dimensional unsteady case (e.g. Coulter, 1998) but this 

simple example is sufficient to illustrate the point here. 

For a background wind profile with constant shear, the horizontal Froude number, 

defined above as F = , is the ratio of the Scorer parameter to the dominant 

horizontal wavenumber. It also arises from the ratio of the advection terms to the 

buoyancy term in the vertical momentum equation, using a scale analysis similar to that 

carried out in section 3.2 for the w-momentum equation. 

Analytical solutions exist for some special cases, but generally if the background wind 

and stability profiles vary with height, then the equation is impossible to solve 

analytically, so numerical methods must be used. In the case of cosine-squared ridges 

(sometimes known as "corrugated iron" ridges) with height h{x) = /z„, cos(Ax), and 

where the background wind and static stability are uniform with height, there is an 
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analytical solution, and this is given here. For this case the Scorer parameter is reduced 

to = 
2 

Un 

In this simple case where the background wind speed and buoyancy frequency are 

independent of height, a dispersion relation can be easily found for the waves. The 

method used here follows Gossard and Hooke (1975), although the working here is in 

two dimensions rather than three, to fit with the examples given in this section, and with 

the work presented in the body of this thesis. In the unsteady version of the equations 

given above, each perturbation field which represents any one of or p", 

can be written as = Re ̂ 4̂ exp + /Mz - o f ) j , where is a complex constant, is 

2.71 
the horizontal wavenumber (defined as — where A,, is the horizontal wavelength) and 

K 

m is the vertical wavenumber (defined similarly). The angular frequency, co, is given by 

— , where T here represents the period. Then the dispersion relation is given by 

(0~ = 

where m = co - WgA: is the intrinsic frequency, that is the frequency of waves observed 

from a frame of reference moving with the background fluid motion. The phase speed, 

c, is given by (o/k, and is the rate at which crests and troughs move in the x-direction. If 

the phase speed is independent of the wavenumber, then the propagation speed is 

independent of the wavelength, and a disturbance of arbitrary shape will move at the 

phase speed without change of shape. The waves are then non-dispersive. If the phase 

speed depends on the wavenumber, then an arbitrary disturbance will disperse: its shape 

will change with time, since different Fourier components travel at different speeds. 

The waves are then dispersive, and the group velocity gives the speed and direction of 

the envelope (shape) of the resultant wave. 

For waves which have a steady forcing, such as the orographically generated waves 

considered here, co = 0, and the intrinsic frequency is given by 

do =—== 
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where the positive root has been discarded here, since m = —WgA: and w,, is positive in 

this example. 

Rearranging this gives an expression for the vertical wavenumber: 

(0 

2 7,2 
- r = 

This says that if then the vertical wavenumber is real, and waves can propagate 

upwards. If then the vertical wavenumber is imaginary, and the physically 

realistic solution is for disturbances to decay exponentially in the vertical direction, 

away from the source. The Taylor-Goldstein equation thus has two possible solutions, 

depending on the sign of -

When the solution is %'"(%, z) = -WoA^A:sin(̂  + /»%) . The vertical wavenumber 

is real, so these long wavelength hydrostatic waves are able to propagate &eely in the 

vertical. The solution for this case is long waves which are upwardly propagating, with 

phase lines slanting windward with height and energy transported upwards. These 

waves have non-zero vertical mean momentum flux and are shown in figure 3.1. They 

are favoured by strong stability, low wind speed and wide mountain ridges, such as the 

one in case 4, discussed in Chapter 5. 

Figure 3.1. Upwardly propagating waves for the case where . After Durran (1986). 
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Waves in the atmosphere transport httle heat, humidity and other scalais such as 

pollutants, but they are effective at transporting momentum and energy (Stull, 1988). 

Under the above assumptions, the wave energy propagates v^ith group velocity c given 

by c. = 
y 

and hence the vertical component of the group velocity is upvyards for the waves 

discussed here, vfith phase lines given by + mz = con&f. The alternative solution, 

with phase lines given by - /»% = , was rqected because the energy propagation 

is downwards in that case, towards the source, which is unphysical. 

For the solution is 14;'(x, z) = ^ siii(A%) where is now imaginary, 

and so is defined as % = %/» so that /»? = and /». is real. The imaginary 

vertical wavenumber means that the waves cannot propagate freely in the vertical. The 

solution for this case is short waves whose amplitude decays with height, with vertical 

phase lines, and group velocity arguments show that the wave energy is transported 

downstream. These waves have zero vertical mean momentum flux and are shown in 

figure 3.2. These are known as evanescent waves, because the wave amplitude decays 

exponentially with height. They are likely to occur in weak stability or strong winds, 

over narrow mountain ridges. 

Figure 3.2. Horizontally propagating waves for the case where l~ < k ^ . After Durran (1986). 
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It is also useful to construct a simple two layer model, where the background velocity 

and stability profiles have a two layer structure as shown in figure 3.3, so that the Scorer 

parameter decreases with height: in the lower layer and < A:" in the upper 

layer. This decrease in the Scorer parameter is a requirement for trapped lee waves, and 

in simple terms it can be achieved by strong wind shear or an inversion, both of which 

are common features in reported wave cases (Corby, 1954). 
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Figure 3.3. Potential temperature and wind profiles for the two layer case, showing the change in Scorer 

parameter with height. After Durran (1986). The left hand plot is a tephigram, which is a standard 

meteorological tool, with decreasing pressure (labelled in millibars, which are equivalent to hPa) on the 

left hand axis rather than increasing height. The dotted grid lines going from top left to bottom right are 

lines of constant potential temperature (isentropes or dry adiabats), labelled in Kelvin. The solid lines 

which are almost perpendicular to the isentropes are lines of constant temperature (isotherms), labelled in 

degrees centigrade. The dashed lines are the saturated adiabats (the same as dry adiabats, but for 

saturated air) and are not relevant for the dry cases considered here. Scorer (1978) gives a fuller 

description of the tephigram's construction and main uses. 
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In the upper layer, the wave amplitude decays with height. In the lower layer there are 

superimposed upwardly and downwardly propagating waves, where the latter are 

caused by reflection of the upwardly propagating waves at the layer boundary. This 

results in vertical phase lines, and the wave energy is trapped in the lower layer. This 

wave is known as a trapped lee wave, and in this idealised case, with no viscosity, it 

.extends an infinite distance downstream. The wave pattern is shown in figure 3.4. 

(km) 3 

Figure 3.4. Wave pattern for the two layer case, showing the trapped lee wave at lower levels. After 

Durran (1986). 

Because of the necessary assumptions and approximations involved, analytical methods 

produce conceptually simple results such as those described in this section. These are 

generally straightforward to interpret, because the set of parameters used in the 

simplified equations is relatively small. However, the obvious limitation is that these 

equations can only describe a simplified system, and cannot represent the more 

complicated, detailed aspects of the flow. Although analytical results can be obtained 

for more complicated cases (sometimes involving numerical integration to obtain 

solutions), more accurate modelling requires the solution of a more detailed non-linear 

set of equations, with no known analytical solution. In order to model these more 

complex cases, numerical simulation is required. The next chapter describes the 

numerical model used in this thesis. 
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3.6 Momentum fluxes and drags 

As mentioned earlier, orography exerts a drag on the flow which can be greater than the 

drag which would be present if the terrain was flat. A variety of methods have been 

used to investigate the drag over mountains and hills, including modelling work (e.g. 

Wood-and Mason, 1993), linear analysis (e.g. Belcher et al., 1993), towing tank 

experiments (e.g. Davis, 1969 and Castro et al., 1990) and field measurements (e.g. 

Smith, 1978 and Vosper and Mobbs, 1997). However, more work is required in this 

area in order to gain a better understanding of atmospheric drag, and to improve 

parametrization schemes. 

Orographic drag can be conveniently divided into two distinct parts, both of which 

result from perturbations to the surface pressure field. These are the drag due to 

turbulent non-wavy flow, known as the form drag, and the drag due to orographic 

waves, known as the wave drag. The mathematical detail of the form drag is not 

included here, since the simulations in this thesis do not include a boundary layer or 

turbulence, but it can be complicated, depending on wind shear in the upstream profile 

(Belcher et al., 1993) and on the mountain shape (Wood and Mason, 1993). In addition, 

it has been shown to be sensitive to the closure scheme used in numerical models 

(Sykes, 1980 and Wood and Mason, 1993). 

Mason (1985) and Wood and Mason (1993) suggest that the form drag due to the SGSO 

can be parametrized in large scale models via an effective roughness length for 

momentum, which includes form drag effects. Xu and Taylor (1995) review several 

proposals for parametrization of orographic form drag in turbulent flow over hills, 

including the significant impact of the turbulence closure scheme. 

When waves are present, the perturbation pressure lies out of phase with the mountain, 

and linear inviscid theory can give a good estimate of the wave drag. However, it does 

not include form drag, so it will under-predict the total drag when no or few waves are 
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present. In order to in\ estigate how the drag varies with the flow and the orography, it 

is essential to understand how the perturbation pressure behaves under these conditions. 

Miranda and James (1992) used a three-dimensional numerical model to examine wave 

breaking and flow splitting with a bell-shaped mountain at low Froude number, and 

found that for Froude numbers greater than about 2, the drags predicted by the linear 

and non-linear theory were very similar. For Froude numbers less than 2, non-linear 

effects became important, and the surface drag differed from that predicted by linear 

theory. Vesper (1995) also found that a linear model could accurately describe the 

wave field for Froude numbers greater than about 2, and that the linear drag was 

progressively smaller than the non-linear drag as the Froude number decreased. This 

indicates that linear theory is not sufficient to predict the drag in more complicated 

flows. 

There is still some discussion as to when the form drag is likely to dominate the wave 

drag, and vice versa. Belcher and Wood (1996) conducted experiments with the 

numerical model used in this thesis, for varying stratification, and found that the relative 

magnitudes of these drags were strongly dependent on the mountain shape and on the 

boundary layer depth. In the laminar simulations presented here, with no boundary 

layer, only the wave drag is significant. 

The linearised w-momentum equation for laminar, two-dimensional steady flow is, as 

derived in the previous section, 

6%/" ,6/WQ 1 
Uq h W — . 

Po ^ 

Following Bretherton (1969), the perturbation quantities are assumed to vanish at 

X = ±00, to permit integration by parts. Then if the surface is given by z = /z(x) , the 

dh 
horizontal force per unit area exerted on it is given by p"—. Averaging this 

expression over an infinite horizontal domain, the mean horizontal force per unit area 

exerted on the surface by the wave-induced pressure perturbations (known as the wave 

drag and denoted by is given by 
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Multiplying the w-momentum equation by PgA and substituting for the wave drag, F, 

gives 

r = A + Pn ^ ^ -
MO oji KO ^ j | 

dh 

At the surface, w/' = Wg — , so the second term vanishes, and a further integration by 

parts gives 
F=:-Po jwV6& = -pQwV 

where the bar here indicates the integral over an infinite horizontal domain. Note that 

the term -p^u'w" is not the same as the Reynolds stress, = - p ^ w W j , which was 

defined in section 3.3. That term involved the turbulent velocity fluctuations, and the 

bar did not necessarily represent a spatial average. The right hand side of this equation 

is the average vertical flux of horizontal momentum, so this equation says that the 

horizontal force on the surface is equal to the momentum transfer across that surface. 

, cZ/z 
Equating the two expressions for Fgives p"— = -pgu"w", which simply states 

Newton's third law; that the drag exerted on the orography must be of the same 

magnitude to and in the opposite direction from the force exerted on the atmosphere by 

the orography. This equation implies that one way of measuring the force exerted on 

the atmosphere is to directly measure the pressure perturbations at ground level, and this 

method has been used with some success. Vosper (1995) reports on drag measurements 

carried out this way, and gives an overview of work done by others using this method. 

In parametrization terms, represents the large scale (resolved) horizontal velocity, 

and u", w" the sub-grid scale motions. In an NWP model, the large scale flow is of 

course time-dependent, although the analysis here is steady state. Following Mobbs 

(1994), if a thin layer of fluid lies between two material surfaces which are a distance 5z 

apart, where the force exerted on the lower surface is F and that on the upper surface is 

F+5F, then the resultant force per unit area on this layer of fluid is 
^ ^ 

6^ 
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The mass of the layer per unit area is . and so if is the average acceleration 

per unit area of the layer of fluid, then the equation of motion for the layer is 

Eliassen and Palm (1960) showed that fbr a two-dimensional steady wave field in the 

absence of dissipation, and where the perturbation quantities decay to zero in the far 

d 
field, —I - 0 , except at levels where the mean wind is zero (critical levels). 

This states that the wave stress only causes a drag on the atmosphere (thus transferring 

momentum to the mean flow) near critical levels or where dissipative forces act. Broad 

(1995) extended tliis result to three dimensions, with fiirther work by Vosper and 

Mobbs (1998). Shutts (1995) pointed out that if the wind vector turns with height, the 

momentum flux ceases to be independent with height because the critical level 

absorption occurs at eveiy height fbr some part of the wave spectrum. The above 

equation states that in layers where the average vertical flux of horizontal momentum is 

divergent, there is a net transfer of momentum between the waves and the mean flow, 

and thus the mean flow is accelerated (or decelerated) by the orography. This is the 

equation used in most GWD parametrization schemes, and it is discussed further in 

Chapter 4. 

Trapped waves are excluded from the above analysis, because the assumption that 

perturbations vanish far upstream and downstream of the mountain is no longer correct. 

In cases where significant trapped lee wave activity is present, there is a noticeable 

decrease in the magnitude of the momentum flux with height in the low to mid 

troposphere. Bretherton (1969) carried out linear analytical investigations into the 

contribution made by trapped waves to the vertical flux of horizontal momentum, and 

found that the lee wave drag was much less than the drag induced by upwardly 

propagating waves. Durran (1995), however, found that trapped lee wave drag can be 

significant, with magnitude which may be equal to or greater than to the drag due to 

upwardly propagating waves, and these effects are now incorporated in some GWD 

parametrization schemes (e.g. Gregory ef a/., 1998). Trapped waves are a potentially 

important source of orographic wave drag, and the uncertainty remains as to where and 

how the waves are dissipated, and therefore where they deposit momentum. 



The numerical model 

4.1 Introduction 

The BLASIUS model (Boundary Layer Above Stationary, Inhomogeneous Uneven 

Surfaces) was developed in the Atmospheric Processes Research branch of The Met. 

Office. It can be used to simulate either laminar or turbulent air flow, over a flat surface 

or over topography of moderate slope. The model is described in more detail by Wood 

(1992), Wood and Mason (1993) and Wood er a/. (1999). 

In the cases studied here, the stratification prevented a boundary layer from growing 

into the model domain, even though the surface boundary condition remained no slip 

for all the velocity components. A quasi-free slip lower boundary condition was tested 

on the cases described in the next chapter, but although this solved a few of the minor 

problems present in the no slip simulations, the results were generally discouraging. 

Section 8.2 gives more details of these tests. Due to the nature of the numerical model, 

truly in viscid simulations were not possible, so a very low viscosity was used 

(V = ). This enabled the no slip condition to be used in the work presented 

here. 

BLASIUS was used initially to study neutral flow over hills (e.g. Wood and Mason, 

1993 or Wood, 1992). The simulations described here aim to reproduce flows on a 

larger scale than most boundary layer studies, so the model is being used for a higher 

mountain and larger computational domain than in most previous work. In addition, 

only limited investigations had previously been carried out into the model's capability 
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to simulate orographic gravity waves, so the work presented here tests this more 

thoroughly with a view to producing guidelines on dealing with the numerical issues 

involved. An important aspect of this is the formulation of the upstream and 

downstream boundary conditions, which is discussed fiirther below. 

4.2 Model equations and initialisation 

BLASIUS is a non-linear, three-dimensional, finite difference model which solves the 

ensemble-averaged time-dependent Navier-Stokes equations, simplified by applying 

either the anelastic or the Boussinesq approximation. For generality, BLASIUS is 

coded using the anelastic version of the governing equations, which allows for 

significant variation of background density with height over the depth of the domain. 

However, all the simulations presented in this thesis used the Boussinesq configuration 

of BLASIUS, which is described here. The starting point is the equations derived at the 

end of section 3.4; the assumptions and approximations described during that derivation 

will not be repeated here. The fiill three-dimensional equations are given here, but all 

the simulations discussed here are two-dimensional cases, where the background 

velocity is normal to the ridge. Taking ^ to represent any field, then is always a 

function of height only, but all the other model fields are functions of x, y, z and t unless 

stated otherwise. 

The equations used in the model are those obtained at the end of section 3.4: 

Dw 1 ^ 1 
= h rvH— 

A 

Dv 1 1 

I I 
^ 

8x ^ 
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where BLASIUS assumes that the variables are ensemble averages, and takes the 

Coriolis parameter as constant. 

There is a choice of two turbulence models in BLASIUS. The one used here is a first 

order mixing length closure, where the mixing length is representative of the scale of 

individual eddy motions in the boundary layer; the other is a 1.5 order closure, which 

carries the turbulent kinetic energy as a prognostic variable. A second order scheme 

would carry all six stress components, and would be expensive in terms of computation 

time and storage requirements. Although BLASIUS was designed to simulate boundary 

layer ftows, the work described in this thesis simulates laminar flows, without a 

boundary layer. Because of this, the detail of the closure schemes is not given here, but 

it can be found in Wood ef aZ. (1999), while Stull (1988) and Garratt (1992) provide a 

general overview of the various options. 

The turbulent momentum and heat fluxes are modelled using a generalisation of the 

gradient transport theory, as discussed in section 3.3. Details of the theory are given by 

Smagorinsky (1963), among others. The momentum fluxes are modelled as 

+ 

and the normalised temperature fluxes are modelled as 

87 

where is the momentum diffusivity and is the heat diffusivity. The model 

carries a normalised temperature variable, T, defined as 

0, 

and so the normalised turbulent temperature fluxes are given by 

The reference temperature, 0^, has an arbitrary value, but it is required in order to 

convert physical quantities such as surface temperature into the corresponding 

normalised variables. The default value of 288.15 K was used in all the simulations 

presented here. 



H. J. Hewson 2000 Chapter 4: The numerical model Page 54 

The Brunt-Vaisala frequency profile, #, is input into the model and used to calculate the 

initial potential temperature profile, . In the simulations used here, it is either 

constant with height throughout the whole domain, or has a two layer profile; more 

details are given in the next chapter. It is defined as 

which gives the following equation for potential temperature, assuming that # is 

constant within a layer: 

^ . 

BLASIUS uses a first order approximation to this, defined as 

1 + -

which is equivalent to the approximation of defining ^ . This is acceptable 

in boundary layer simulations which have a relatively small domain depth, but not 

really suitable for the simulations described here. The scale height for a typical 

simulation with # = 0.02 s'̂  would be 

^8 = -Ar = r = 25km 
8 (6 0.0004^-" 

whereas these simulations have a vertical domain height between 35 and 60 km (not 

including the Rayleigh damping layer, which is explained later), so some improvement 

is needed here. Preliminary tests of an exponential potential temperature profile have 

been carried out, but further testing would be required before implementing this. 

Moisture can also be included in the model, but this option has not been used in any of 

the work described in this thesis, so it is not covered here. Details are given in the 

references at the start of this chapter. 

BLASIUS is initialised with input profiles of horizontal velocity and Brunt-Vaisala 

frequency, as well as other physical and numerical parameters. A one-dimensional 

simulation is run in order to grow a boundary layer into the profiles, and these new 

profiles are then used to initialise a two- or three-dimensional simulation. In the cases 
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described here, without a boundary layer, the one-dimensional simulation was run for a 

nominal length of time (one second), and the original input profiles were used to 

initialise the two-dimensional simulations. The one-dimensional simulation had the 

same physical parameters as the two-dimensional simulation, but a flat surface. 

In a two- or three-dimensional simulation, the initial domain is flat, with the input 

profiles of velocity and potential temperature used throughout. The mountain is then 

gradually grown into the domain, and this process is discussed further in section 8.4, 

which describes investigations into the sensitivity of results to the speed of mountain 

growth. The gradual introduction of the mountain is designed to minimise spurious 

noise in the initial fields; other methods of doing this include increasing the horizontal 

velocity gradually from zero to its initial value, and gradually increasing the 

gravitational acceleration &om zero to its constant value (e.g. Durran, 1995). The 

model surface is smoothed to remove any large discontinuities in the initial profile, 

because smooth terrain helps the pressure solver to converge more rapidly. This in turn 

makes the model run more quickly, since the majority of its time is spent in the pressure 

solver. The pressure equation is solved in BLASIUS by transforming in both horizontal 

directions to give a second order differential equation, which is then solved by matrix 

inversion. There are two complications to be overcome when doing this. The first is 

that the co-ordinate transformation introduces extra terms into the source term which are 

dependent on the pressure field itself These terms are described fully by Wood (1992). 

This problem is solved by iterating for the pressure until the maximum absolute 

difference between the new pressure field and the one obtained at the previous iteration 

is less than a prescribed tolerance value, chosen by the user. The accuracy of 

convergence in the pressure solver is measured by how accurately the model satisfies 

the continuity equation, which is an indicator of the overall accuracy of the model's 

numerical scheme, since it is effectively a conservation of mass condition applied over 

the entire numerical domain. A steeper slope means that the pressure solver takes 

longer, so accuracy must be sacrificed in order to reduce computational cost. BLASIUS 

is thus suited to simulations of topography with moderate slope. The second problem is 

that Fast Fourier Transforms cannot be used for a non-uniform grid, so the method 

described by Farnell (1980), which iterates for eigenvalues and eigenvectors, is used to 

overcome this. Farnell (1977) gives details of the theory involved, and complications 
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due to the horizontal boundary conditions and symmetry of the grids are covered in 

more detail by Farnell (1980). 

The model uses a curvilinear terrain-following co-ordinate system, so that the surface is 

a co-ordinate surface. The transformation of the vertical co-ordinate is 

where z is the transformed co-ordinate, z is the original Cartesian co-ordinate, the 

surface is denoted by Z, ( x , , and is the depth of the model domain. This means 

that the model surfaces are terrain-following near the surface, becoming flat (coincident 

with horizontal Cartesian surfaces) at upper levels, far from the surface, and mirrors 

what is done in many NWP models, simulating the fact that air motion tends to be 

terrain-following at low levels, but less so with increasing height. Uniform grids can be 

used, or stretching can be applied in one or more directions. More details of the 

stretching methods for both horizontal and vertical grids are given in Chapter 6. 

Figure 5.6 in the following chapter gives an example of the model grid, showing the 

bent mesh, and stretching in the horizontal; figure 6.6 shows a grid which is stretched in 

the vertical as well as the horizontal. It should be noted that a field which depends only 

on height in Cartesian co-ordinates becomes a fimction of all three co-ordinates on the 

transformed grid, and that only the co-ordinates are transformed, not the velocity 

components, whose directions remain horizontal and vertical. 

The model grids are staggered using an Arakawa C grid in the horizontal and a Lorenz 

grid in the vertical, so the variables are held on different points, and this reduces 

interpolation and simplifies the computations involved. The grid is shown in figure 4.1. 

Capital letters U, V, Wand P are used to represent the discretised model fields 

corresponding to the continuous variables u, v, w and p" in the equations. Pressure is 

held on -points', and P(I,J,K) represents the pressure at the point 

All scalars and normal components of stresses are stored on these 

f-points, and other fields are held on their natural points. For example, the horizontal 

velocity is held on points which are horizontally half way between the f-points, because 

its momentum equation involves the horizontal gradient of pressure, so U(1,J,K) 
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represents the [/-velocity at the point Similarly the vertical velocity 

is forward-staggered by a half^gridpoint from the main grid where the pressure is held, 

so represents the M/̂ velocity at the point All the other 

stress components are held on their natural points, so for example 

'13 - Po^g, 1 is represented by and held at the point 

Wood (1992) and Wood g/ a/. (1999) give more detail of the grid, 

including the transformed equations. 

The grid staggering means that not all fields are held at the physical surface. Figure 4.2 

shows the difference in the height of the lowest model level on Z levels and ZN levels, 

for a 500 m high mountain. The former are referred to in this thesis as full levels, since 

they include the physical surface as the lowest model level, labelled Z(l). The latter are 

referred to as half levels, because they lie half way between the full levels, and here the 

lowest level, is below the physical surface. This should be borne in mind when 

viewing plots of potential temperature later in this thesis, since this field is held on half 

levels, and so the 'surface' shown in those plots is actually below the physical surface, 

meaning that the mountain appears to be smaller than it really is, which can be 

misleading. Vertical velocity is held on full levels, so plots of that field show the true 

physical surface and the correct mountain height. 
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Figure 4.1(a). The upper diagram shows schematically the vertical grid used in BLASIUS, illustrating 

how the model fields are held on different levels. The shading represents the physical surface, and the 

solid line above represents the top of the numerical domain; the additional points are used for the 

boundary conditions. Q represents the moisture variable, which is not covered in this thesis; RNO 

represents the density. KKF is the number of vertical gridpoints in the model domain. The lower 

diagram illustrates the three-dimensional mesh arrangement. From Wood gf al. (1999). 
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Figure 4.1(b). Schematic diagram of the BLASIUS grid at the upstream and downstream edges of the 

numerical domain, showing how the model fields are held on different points. The shading represents the 

edge of the numerical domain; the additional points are necessary for the boundary conditions. IIP is the 

number of horizontal gridpoints in the x-direction in the model domain; JJP is defined similarly in the 

^/-direction. From Wood et al. (1999). 



H. J. H e w s o n 2000 C h a p t e r 4: T h e numer ica l mode l P a e e 6 0 

600 

400 

a 

- 2 0 0 

-20000 

-

1 1 

- Lowcsi full level surfacc,Z(l) 

1 

- — — — Lowest half level surface, ZN(lj / \ — 

(Zero line) / \ \ 
/ /' ^ \ 

_ 

-

(Zero line) / \ \ 
/ /' ^ \ -

-

/ / ̂  \ / / ^ \ / / ' \ y / ^ \ ^ ^ 
\ ^ 

— — — / \ 

-

-

/ \ 

/ \ 

/ \ 

-10000 0 
Distance from mountain crest (m) 

10000 20000 

Figure 4.2. Lowest model level surfaces on Z levels (full model levels, shown by a solid line) and ZN 

levels (model half levels, shown by a dashed line), for a 500 m high mountain. The dotted line indicates 

the zero level. As explained in the text, the lowest full model level surface (e.g. where vertical velocity is 

carried) is the mountain surface, and the lowest half level surface (where e.g. pressure, temperature and 

horizontal velocity are carried) is below the mountain surface. 

For the advection of momentum, the centred in time, absolutely conserving scheme of 

Piacsek and Williams (1970) is used, which conserves quadratic quantities (such as 

kinetic energy), whereas the other two schemes described below only conserve linear 

ones. This scheme is second order accurate and is known as the centred second order 

(CSO) scheme. For advection of the scalar quantities, BLASIUS gives the choice 

between this CSO scheme or two others, and the scheme chosen here is also used for 

temperature. The first alternative is the total variance diminishing (TVD) scheme 

described by Bull (1990), which is second order accurate where the solution is smooth, 

and first order accurate elsewhere. The second alternative is the third order accurate 

ultimate quickest (UQ) scheme described by Leonard et al. (1993). These three 

schemes were tested on the four cases described in Chapter 5, and the CSO scheme was 

preferred. Although the model fields were slightly smoother with the other two 

schemes, they both diffused the wave motion by an unacceptably large amount, and 

destabilised the solution. For case 4 (the case with the widest mountain: see Chapter 5 

for a full description of all the cases) the CSO simulation was the only one that worked 
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at all, with the other two failing in the pressure solver right at the beginning (because 

the different advection scheme means that different coefficients go into the pressure 

solver matrix). These results are counter-intuitive, because these more diffusive 

schemes would be expected to act as smoothers, producing a more stable solution. 

Since the CSO scheme produced acceptable results, the problems seen with the other 

two schemes were not thoroughly, investigated as part of this work. However, they may 

be explained by the instabilities which Bull (1990) discussed, where he concluded that 

the model should be set in a forward rather than a centred t ime differencing framework 

for best results. An alternative explanation has recently been suggested by Wood 

(private communication), who points out that the use of different schemes for the 

advection of momentum and of scalars means that in the cases studied here, diffusion is 

only applied to the temperature field. This could lead to a spurious phase shift of the 

temperature field with respect to the momentum fields, causing significant numerical 

distortion of the physical results. 

The diffusive terms are solved using a centred in space, forward in time, explicit 

scheme. Section 8.1 gives more information on how the model timestep is determined 

during a simulation, including the adjustments made for numerical stability. 

4.3 Upper and lower boundary conditions 

The boundary condition on the velocity components at the surface is the no slip 

condition, as discussed in section 4.1 above. The vertical velocity, W, is held on full 

levels, so it is simply set to zero at the surface. For the horizontal velocity components, 

U and V, held at half levels above and below the surface, the boundary condition is 

U(I,J,1) = -U(I,J,2) (and similarly for V) where ^ = 7 is the level just below the 

surface and K = 2 is the level just above. At the top of the domain the vertical 

component of velocity, W, is set to zero. For the horizontal components, in the 

simulations described here, the vertical derivative is set to zero at the upper boundary, 

so that U(I,J,KKP) = U(I,J,KKP-1) (and similarly for V) where IC = KKP-1 is the level 
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just below the top of the domain and AT = is the level just above. The full and half 

levels were illustrated in figure 4.1. 

There is a choice of lower and upper boundary conditions for the normalised model 

temperature. The simulations described in this document used a zero flux both at the 

surface and at the top of the domain. 

In analytical work for large or infinite vertical domains, asymptotic boundary conditions 

are used far from the mountain. However, these are not appropriate for numerical 

modelling, so BLASIUS includes a Rayleigh damping layer at the top of the domain in 

these cases, which acts to prevent reflection of upwardly propagating wave energy at the 

upper boundary by the inclusion of terms of the form -R ) in the model 

equations, where is a reference state for the generic variable and is taken to be the 

input profile. ^ is the damping coefficient, which has dimensions s'\ Artificial 

absorbing layers such as this one have been used to good effect in several models, e.g. 

Durran and Klemp (1982), Miranda and James (1992). Reflection at the top of the 

domain can be avoided if any upwardly propagating waves are sufficiently damped by 

the absorbing layer, but the damping process itself may cause reflection, so the variables 

are gradually relaxed back to the reference state in this layer, over a time scale given by 

the reciprocal of R. The coefficient is input as a constant at the start of a simulation, and 

then used in the form 

i ? ( l - c o s [ z - z J ) 

where z is the height of the gridpoint in question, and z* and z/ are the heights of the 

base and top of the damping layer respectively. This means that the damping effect 

increases from zero at the base of the layer to the full value of R at the top. The scheme 

needs tuning to minimise reflection from the base of the damping layer as well as from 

the top of the domain, and Chapter 6 describes the tests carried out. 
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4.4 Horizontal boundary conditions 

Recent work at The Met. Office has introduced an option for inflow/outflow boundary 

conditions in BLASIUS, to allow simulation of cases with horizontally propagating 

waves forced by an isolated mountain. Previously the only option at the upstream and 

downstream edges of the domain was to use periodic boundary conditions, which are 

perfectly acceptable in a global model, but not always appropriate in a limited area 

model, particularly in cases with trapped lee waves, which propagate out of the 

downstream edge of the domain. Both options are discussed further in Chapter 7. All 

the simulations discussed in this thesis are two-dimensional x-z cases, so periodic 

boundary conditions were used in the ̂ /-direction throughout. 

The inflow condition is relatively straightforward. A two- or three-dimensional 

simulation in BLASIUS is set up using initial profiles obtained from a one-dimensional 

simulation, as explained above. In the case of an inflow boundary, for the horizontal 

velocity components, these profiles are then simply fed in at the boundary for the entire 

simulation, representing a steady upstream flow. The same is true for passive scalars, 

whereas for the active field of temperature, a zero normal gradient condition is imposed. 

Pressure and vertical velocity have a zero normal gradient condition imposed. 

There are three options for the outflow boundary condition: zero normal gradient, zero 

normal second derivative, or radiative. The latter was used for the simulations 

described in Chapter 5, so it is explained here; details of the other two boundary 

conditions are contained in Guilbaud (1997) and Wood et al (1999). The aim of the 

radiative boundary condition is to allow disturbances to pass through the boundary 

without reflection. 

The formulation of the radiative boundary condition calculates the outflow phase speed 

at each model level following the Orlanski (1976) scheme. This is based on the wave 

equation, 
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^ + c ^ = 0, 

where is any variable and c is the phase speed of the waves. The details of how this 

equation is manipulated to give a finite difference equation for the outflow phase speed 

are given by Orlanski (1976), and this equation has been used in several models (see 

e.g. Durran and Klemp, 1982). Raymond and Kuo (1984) extended Orlanski's work to 

include the derivative of (j) in all three dimensions, rather than simply in the x-direction. 

For the two-dimensional test cases used, they found that their method was clearly 

superior to the various formulations of the one-dimensional version, as used here. 

Miranda and James (1992) used this three-dimensional scheme and found it to be very 

effective in preventing reflection at the boundaries. This method could be worth testing 

in BLASIUS, but would obviously increase the computational expense of the model. 

The equation for the downstream radiative boundary condition in BLASIUS is 

^ F O 
where is the non-dimensionalised outflow phase speed, obtained by applying this 

equation to interior gridpoints at preceding times: 

The subscripts indicate the horizontal gridpoint where the variable is held: b represents 

a boundary value, and subscripts less than b represent interior values. Similarly the 

superscripts indicate the timestep used, where n is the current timestep. The radiative 

boundary condition is only applied to the normal velocity, vertical velocity and 

temperature; a zero normal gradient condition is imposed for the other variables. 

Further information on the implementation of the scheme in BLASIUS is given by 

Wood aZ. (1999), and can also be found in Guilbaud (1997), along with details of 

tests carried out for this and the other two outflow boundary conditions mentioned 

above. Orlanski (1976) showed analytically that the boundary condition gives no 

reflection for a single wave component, and also tested it for numerical simulations of 

non-linear cases where there are different components. Further tests of the radiative 
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boundary condition have been carried out using BLASIUS as part of this project, and 

these are discussed in Chapter 7. 

The Orlanski boundary condition imposes a limit on the outflow phase speed for 

numerical stability, so that it lies between zero and , where AZis the horizontal grid 
At 

spacing and A/ is the timestep. The lower limit is imposed to ensure that the disturbance 

flows out of the domain, and the upper one arises from the CFL criterion, named after 

Courant, Friedrichs and Lewy (1928), and discussed further in section 8.1. The phase 

speed rs adjusted as follows: 

0 

c 

AZ 

At 

c<0 

0 < c < 
AZ 

At 

AZ 

At 
<c 

As part of the testing carried out in this work, the effect of this clipping was investigated 

to see whether it was linked to some of the problems experienced at the boundary. 

Further details of these problems, and of the tests, are contained in Chapter 7. Other 

formulations of the outflow boundary were tested, but all of these introduced problems 

in at least one of the cases studied, so the default scheme was retained. 

After imposing this stability limit on the phase speed, BLASIUS produces a single, 

vertically weighted average phase speed which replaces c in the above equation for 

subsequent model calculations. This vertically constant value, c , is defined by 

considering the vertically integrated wave equation. 

f - + J gr J 
c — = 0 . 

8% 

The average phase speed should ideally satisfy the equation 

^ dt ^ dx 

and comparing these two versions of the wave equation leads to the definition of c as 
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J c = ^ 

& 
The tests described in Chapter 7 included a modification where the outflow phase speed 

retained its vertical variation, but this was rejected. 

The outflow phase speed obtained above is used to calculate the outflow velocities at 

the next timestep. A mass flux correction is then applied to these outflow velocities, in 

order to conserve mass flowing into and out of the model domain. As an additional test 

of the outflow boundary scheme, a new phase speed was calculated from the a(^usted 

outflow velocities for all the cases in this work, and this was compared with the original 

phase speed. A large difference between these two values would indicate a problem 

with the implementation of the outflow boundary condition. Only very minor 

differences were found when using the original scheme, but larger differences were 

found with some of the alternatives described in Chapter 7. 

4.5 Momentum fluxes and drags 

The surface pressure force described in the previous chapter is diagnosed in BLASIUS. 

For the two-dimensional x-z case, the surface pressure force, averaged over the full 

horizontal domain per unit length, is given by 

where the domain is firom %+ to is the width of the domain, given by x+-x_, and the 

rest of the notation is as previously defined. It should be noted that the surface pressure 

dh 
force is only non-zero over the mountain, since — is zero where the surface is flat. 

This means that averaging over the full horizontal domain is the same as averaging over 

the mountain, except that the diagnosed surface pressure force in BLASIUS is divided 

by the domain width rather than by the mountain width. 



H. J. Hewson 2000 Chapter 4: The numerical model Page 67 

In the equation given above for the surface pressure force calculated in BLASIUS, 

is the surface pressure force per unit length in the x-direction, so it must be multiplied 

by the domain width to give the drag force for the full domain, denoted by . The 

non-dimensional drag coefficient, Cg, is defined in terms o f the drag force, , as 

r _ 
(-o - 1 

where Cg is dependent on the obstacle shape and on the Reynolds number (e.g. Baines, 

1995 or Smith, 1978) and /z„, is the maximum mountain height. For the simulations 

considered here, the density is unity eveiywhere, and is 10 m s ' at the surface (or 

slightly larger at the height of the mountain crest in cases 2 to 4, but this difference is 

not significant here; more details are given in the next chapter). 

Another important diagnostic to be considered is the horizontally averaged vertical flux 

of horizontal momentum, M which was defined in the previous chapter as 

M - -Pqu"W" 

where the bar indicates a horizontal average. Wave momentum flux diagnostics have 

been calculated from previous control simulations performed at The Met. Office using 

the BLASIUS model, without a boundary layer, for flow over an isolated 

two-dimensional ridge. Post-processing to obtain the momentum flux defined above 

was coded by Guilbaud (private communication), with the horizontal averages 

computed over the full model domain using linear interpolation. As part of this project, 

these calculations have been incorporated into the main code, and all horizontal 

averaging is now done in Cartesian co-ordinates, rather than in model co-ordinates or in 

a mixture of the two. Guilbaud's work included calculations of the momentum flux for 

sub-domains (limited area, upstream, above the mountain, downstream), but these were 

based on a specific horizontal grid, and have not yet been fully incorporated into the 

main code for the more general case. The limited area sub-domain removes a portion at 

the upstream and downstream edges of the domain, thus reducing the impact of any 

errors in the numerical formulation of the inflow/outflow boundary conditions. 
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In addition, further diagnostics have been coded as part of this project in order to 

investigate all terms in the full two-dimensional w-momentum budget. The 

w-momentum equation used in BLASIUS in two dimensions is 

1 1 
\-U hW = 1 

Pg 6% Pg 

9T,, 9T, 

dx; & 

and the continuity equation used in BLASIUS in two dimensions is -

— + — = 0 . 

The velocities are written as the sum of a background component (a horizontal average 

over any chosen domain from x_ to x+, indicated by a bar) and a perturbation (indicated 

by a double prime), so that 

w = w(z,r)+ «"(%, z,f) 

w = M;(z, r) + z, 

It should be noted that this is not the same as the decomposition into mean and turbulent 

parts in section 3.3, nor into background and perturbation parts in section 3.4, where the 

background profile was dependent on height only and was not a horizontal average. In 

analytical work with an infinite horizontal domain (and also in periodic model 

simulations) w must be zero at all vertical levels, otherwise mass would accumulate. 

However, in the inflow-outflow simulations discussed here, it is possible to have a 

non-zero value, corresponding to a large scale circulation which is removed in order to 

allow parametrization of the smaller scale flow which remains. 

Substituting these expansions into the two equations, after some algebra and horizontal 

averaging, gives the following equation, with each term labelled for future reference, i,-

is the length of the chosen domain, given by - x j . Some of the derivation is given 

by Durran (1991) with slightly different assumptions. 

5 / - r - ; \ 1 r 1̂ + . ^13 

8z ^ Z, 8z 

A B C D E F 

To minimise interpolation and differencing, which can amplify small errors, and to fit in 

with the rest of the code, the discretisation of this equation uses ' [/-points' on the model 
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grid, i.e. TTVjZA/). This seems intuitively to be the most logical way to proceed, as it 

will most closely reflect the actual momentum budget obtained by the model. This 

could in principle be explicitly evaluated, but in bent co-ordinates this is a highly 

complex procedure. The validity of this decision to use [/-points was verified by 

following through the analysis and discretisation methods for the basic model equations 

discussed earlier, and by experimenting with difkrent gridpoints for the calculations 

presented here. The horizontal averaging is done on Cartesian levels which are at the 

same height as the half levels (Z/V levels) over the flat parts of the domain, so 

interpolation is only required over the mountain itself. The lowest level used for 

averaging is equivalent to the first half level which lies above the height of the mountain 

crest, in order to avoid averaging through the mountain surface. 

As discussed in section 3.6, terms A and D are the only ones which feature in the 

equations used by most gravity wave drag parametrizations, where term D, the vertical 

gradient of the horizontally averaged vertical flux of horizontal momentum, is 

diagnosed and used to derive term A, the rate of change of the horizontally averaged 

momentum. Term B is neglected under the assumption that perturbations should vanish 

at the edges of the domain, and term C is assumed to be identically zero because 

should be zero. Terms E and F are neglected under the assumption that the effects of 

the turbulent terms are small. 

As discussed by Durran (1995), although the above assumptions are valid for the 

forcing of the globally averaged mean flow deceleration, where term A does generally 

mirror term D, not all of the other terms are necessarily negligible in analysing the 

results from high resolution limited area models such as BLASIUS. The perturbations 

do vanish at the edges of the domain in the periodic case, but not necessarily in the 

inflow/outflow case, where it is important to include term B in order to evaluate the 

local flow response correctly. As discussed above, w is not always equal to zero in the 

simulations considered here, so term C makes a non-zero contribution. Term D was the 

one coded in BLASIUS by Guilbaud, and as part of this project the code has been 

modified to diagnose terms B, C, E and F in order to assess their relative importance in 

the calculation of term A. It would be useful to diagnose term A directly in order to 

validate the results obtained by this method, but this has not yet been done, and the code 
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fbr these new diagnostics is still being tested, so they are not used in the analysis of the 

results presented here. Typically, large increases are seen in the Rayleigh damping 

layer, but these can be ignored since unphysical dynamical changes are induced by the 

damping scheme, which slows down the flow, and changes the pressure field. 

Preliminary results for cases 1 to 3 (see Chapter 5 for details of the test cases) are quite 

noisy, with the most pronounced noise in case 1 (with constant input wind speed and 

static stability), but tliis is unsurprising since there is no trapped lee wave and so the 

signal is expected to be small. This noise may be due to inadequate vertical resolution, 

so recent simulations with Gner vertical resolution are in progress, and early results 

show that the w-momentum diagnostics have smaller amplitude oscillations, which is 

encouraging. Another potential explanation is that the noise may indicate a need to 

introduce vertical diffusion, so investigations will also be carried out into this aspect. 

4.6 Artificially imposed horizontal diffusion 

BLASIUS is designed to have minimal numerical diffusion in the model itself, because 

that would interfere with turbulent simulations. The centred second order scheme is 

absolutely conserving, so simulations like those discussed here should conserve 

quadratic quantities such as 6 .̂ However, the centred timestep scheme means that the 

previous, current and next timesteps are all used, which can lead to numerical instability 

(computational modes), where the model flips between solutions from one timestep to 

the next. Time averaging is introduced to remove this, and in practice, this introduces 

some damping and numerical diffusion. In addition to this, previous work at The Met. 

Office has found that simulations without a boundary layer require some sort of 

artificially imposed horizontal diffusion in order to prevent the accumulation of energy 

at the grid scale (due to the downscale cascade of energy) and associated errors. 

Generally this is not required in boundary layer simulations as long as the horizontal 

grid spacing is small enough, but spurious noise was found in previous boundary layer 

simulations performed at The Met. Office with large horizontal grid spacing, and this 

was removed by introducing an artificial horizontal diffusion into the model, which is 

calculated at every timestep. Vichnevetsky (1987b) noted that imposed artificial 
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diffusion is significant only in motions with wavelengths which are smaller than the 

gridlength used in the model, and so it has little effect on the physical waves, damping 

out only the smaller scale numerical waves such as those caused by spurious reflection 

at the boundaries or as a result of a non-uniform grid. These reflections are discussed 

for the simulations studied here in Chapters 7 and 6 respectively. 

In the vertical, there is more coherence and coupling than in the horizontal, and the 

resolution is generally better, so for a boundary layer simulation the effects of diffusion 

are larger in the vertical than in the horizontal. For this reason, the artificial diffusion is 

only required in the calculation of the horizontal fluxes of scalar quantities, and in the 

calculation of the horizontal components of the Reynolds stress tensor. 

The aim of the artificial diffusion is to diffuse these grid scale signals before they are 

advected elsewhere in the domain, so the diffusion time scale needs to be smaller than 

the advection time scale, which gives the condition ^ ^ , leading to < 1. 
V V 

This is equivalent to requiring the computational cell Reynolds number, , to be 

V 

less than unity. This non-dimensional parameter is also known as the grid Reynolds 

number or the mesh Reynolds number, and is denoted by Rcg. If it is too large, then the 

viscosity is too small, so there is not enough grid scale diffusion to damp out any 

spurious noise, which can lead to spatial instabilities. Roache (1972) discusses the 

implicit artificial diffusion introduced by some finite difference schemes, which is 

separate from the explicit, imposed artificial diffusion discussed here. The grid 

Reynolds number also appears in the analysis of implicit artificial diffusion, and in a 

later work, Roache (1976) suggests that the practical situation is not as restrictive as the 

formal accuracy requirement derived above, quoting analysis by Runchal and 

Wolfshtein (1969) which gave good results for maximum cell Reynolds numbers of 

approximately 20. 

The scheme implemented in BLASIUS uses this value of 20 to provide a critical value, 

Rcgcrih and applies the condition v > . This serves the purpose adequately, 

diffusing the spurious noise mentioned above. The diffusion is along flat surfaces, as 
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are the horizontal fluxes. These intersect with the mountain surface, which is a 

disadvantage, but diffusing along the co-ordinate surfaces could produce artificial heat 

sources, by diffusing air to a level where the temperature is very different, for example. 

Ideally the diffusion would be along isentropes, but that would be very complicated to 

code, so flat surfaces are used instead. Clearly for fully three-dimensional simulations 

the artificial diffusion should depend on Fand AF, as well as on and so the 

BLASIUS scheme should be modified to take account of this for simulations which use 

the ̂ '-direction. The work in this thesis is all two-dimensional in the ;c-z direction, so 

this is not an issue here. 

The artificial viscosity works well in a flat case, but is more complicated on the bent 

mesh and requires further testing. The imposed value should be as small as possible 

while achieving the desired effect. The process is an artificial means of dealing with 

numerical issues, so there is no "correct" way to do the calculation physically, but using 

a horizontal velocity value obtained from the model fields would be better than hard 

coding a fixed representative value to be used throughout the model domain (as is done 

currently, taking [ /= 10 m s'̂ ). Possibilities include a maximum value, the value at the 

top of the domain, and an average value. If the imposed minimum viscosity is to be 

constant throughout the domain, the maximum horizontal grid spacing should be used. 

Tests should also be carried out into the sensitivity of ./(ggcMV to other numerical and 

physical parameters. 

The only test carried out in this work was on a case with constant input wind speed 

(10 m s"') and static stability (0.01 s"'), using a 500 m high Witch of Agnesi mountain of 

half width 5 km. (This is the same as case 1 described in Chapter 5, but with the 

mountain twice as wide.) A test was carried out using = 15, giving a stricter 

condition by imposing stronger diffusion. This change did not make a significant 

difference to the results obtained. Further investigations would provide a basis for 

recommendations on the optimum tuning of this scheme. An effective way to test the 

sensitivity of the results to the value chosen for Re^ .̂,, would be to try extreme values 

(e.g. 0, 1, 1000) where a significant impact would be expected. Tests should also be 

carried out for different velocity profiles, since the condition is dependent on horizontal 

velocity. 



Idealised test cases 

5.1 Introduction 

BLASIUS was designed to model boundary layer flow on smaller scales than those 

required to simulate lee waves and their associated phenomena, such as rotors. This 

work aims to test the code fbr mountain wave flows by perfbrming simulations vyithout 

a boundary layer for a range of simple idealised conditions, as a pre-cursor to more 

complicated cases investigating situations including a boundary layer, such as rotor 

formation. The aim here is simply to verify that BLASIUS can reproduce adequately 

these simple gravity wave flows, by comparing the numerical simulations with 

published analytical results for these cases. Some numerical issues were encountered 

during this testing process, and several modifications were tested on the different cases 

described below. These issues, the modifications tested, and the conclusions drawn 

from the tests, are introduced in section 5.4, and described in more detail in Chapters 6 

to 8. This testing procedure led to a satisfactory configuration of the code, which was 

used to produce the results presented in this chapter and is described below. This 

configuration seems to be reasonably robust numerically for the cases studied here, 

although there are some remaining problems with reflection at the outflow boundary in 

two cases. Potential solutions to these issues are discussed in the following three 

chapters and summarised in Chapter 9 with suggestions for future work. Further testing 

on other cases would help to verify the robustness of this configuration, but time 

constraints did not permit this. 
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Case 1, with vertically constant input profiles of static stability, (0.01 s"') and wind, 

[/, (10 m s'̂ ) was chosen as the simplest case to compare with results in the literature. 

The profiles chosen for case 1 represent typical atmospheric values. Cases 2 and 3 were 

chosen to correspond to the troposphere-only and troposphere-stratosphere cases in the 

analytical work of Keller (1994). Previous work at The Met. OfGce had begun to test 

BLASIUS on these two cases, and the basic flow pattern had been reproduced, but the 

code was not thoroughly tested (Guilbaud, private communication). Case 4 was chosen 

to investigate how well the model would cope with a wider mountain in the 

troposphere-stratosphere case, since this seemed to be a potentially interesting test. 

These four cases are described in section 5.2, and the first three are compared with 

published results in section 5.3. Their different physical parameters are shown in 

table 5.1, and the columns in table 5.1 are explained below. 

Case Input velocity (m s ') Static stability (s ') Mountain half width (m) Mountain height (m) 

1 10 0.01 2500 500 

2 Trop-only 0.01 2500 100 

3 Trop-strat Trop-strat 2500 500 

4 Trop-strat Trop-strat 20000 500 

Table 5.1. The four cases and their physical parameters (see text for an explanation of the columns). 

The first column gives the input horizontal velocity profile. A constant value of 

10 m s"' means that the input velocity had that value throughout the vertical domain. 

"Trop-only" means a troposphere-only profile, which started from 10 m s ' at the 

surface, rising with constant shear of 0.0025 s ' throughout the domain. "Trop-strat" 

means a troposphere-stratosphere profile, which started from 10 m s ' at the surface, 

rising with constant shear of 0.0025 s"' to a height of 10 km (the tropopause), then 

remaining at this constant value (just over 35 m s'') for the rest of the domain. 

Figure 5.1 shows the initial velocity profiles used in these different configurations. 

The second column gives the input static stability, or Brunt-Vaisala frequency (denoted 

by AO, used to determine the initial potential temperature profile by the method 

described in Chapter 4. A constant value of 0.01 s"' means that # had that value 
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throughout the domain. "Trop-strat" means that # was 0.01 s'' below 10 km and 

0.02 s ' above 10 km, to simulate a troposphere-stratosphere configuration. Figure 5.1 

shows the initial potential temperature profiles used in these two configurations. 
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Figure 5.1. Input profiles of wind speed and potential temperature for the four cases. See text for more 

details. The troposphere-stratosphere profiles are smoothed near the tropopause, as described in the text; 

this is illustrated more clearly in figure 5.2. 

The troposphere-stratosphere profiles of both wind speed and potential temperature had 

sharp discontinuities at the tropopause, as shown in figure 5.2. In order to avoid any 

numerical problems arising from this discontinuity, the profiles were smoothed near the 

tropopause using a 1-2-1 filter, which was applied ten times. The filter is defined for 

any field as 

* = ^ 

where the subscripts indicate vertical levels. Figure 5.2 shows both the unsmoothed and 

smoothed input profiles of wind speed and potential temperature. 
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Figure 5.2. Close-up view of input wind speed and potential temperature profiles for the 

troposphere-stratosphere cases, which were shown in figure 5.1. Here both the smoothed and 

unsmoothed profiles are shown for a smaller domain surrounding the tropopause. The lower of the two 

kinks in the unsmoothed velocity profile occurs because the 'tropopause' is at slightly different heights in 

different vertical grid configurations, depending on the height of the grid level closest to 10 km. In order 

to maintain the same constant velocity in the stratosphere for all the troposphere-stratosphere simulations 

in this work, the velocity profile in this case was artificially adjusted just below the tropopause. As 

shown in this plot, the smoothed profile, which is actually used by the two-dimensional model simulation, 

does not retain any evidence of either kink. 

The dominant horizontal wavenumber is given by a"', where a is the mountain half 

width as defined earlier, and represents a characteristic scale of the wavenumbers forced 

by the mountain (Durran, 1986). This value can be compared with /, the Scorer 

parameter, discussed in Chapter 3 and defined as 

r -

1 ( f V 

[/ ok" ' 

As discussed in Chapter 4, the input values of TV do not truly represent the potential 

temperature profile used in the model, because of the approximation which is used in 

the code. This is equivalent to defining 

N 
8̂  & 

where 8̂  is a reference temperature; more details are given in Chapter 4. In addition, 

the potential temperature profile in the troposphere-stratosphere case is smoothed, as 

discussed above. The Scorer parameter profiles plotted in figure 5.3 are calculated 
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directly from the input wind and potential temperature profiles used in the model (and 

plotted in figure 5.1), as follows: 

, 1 g 6̂ 9 W V 

Because of this, they reflect the change of potential temperature with height, and so they 

vary more with height than might be expected from a simple calculation using the input 

parameters. As an example, for case 1, U= 10 m s'̂  and A^= 0.01 s'\ so the Scorer 

parameter / is simply N/U-, however, the profile in figure 5.3 is not constant with height 

but has constant shear with height. Similarly, for case 2, the input parameters would 

give a Scorer parameter profile with constant shear, but there is more curvature in the 

actual profile. Vertical profiles of the Scorer parameter are shown in figure 5.3 for the 

four different cases, compared with the dominant horizontal wavenumbers. The ratio of 

horizontal wavenumber to Scorer parameter gives information on what type of wave 

pattern can be expected from the theory, and this is discussed below for each case in 

turn. 
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Figure 5.3. Input profiles of Scorer parameter (compared with the dominant horizontal wavenumber) for 

the four cases. See text for more details. 

The last two columns of the table describe the mountain. The shape was a Witch of 

Agnesi mountain for all of these cases, although a cosine-squared mountain was used in 

some of the tests described in later chapters. The equation for the cosine-squared 

mountain is given in section 8.3, which discusses the different results obtained using the 

two different mountain shapes. The equation for the Witch of Agnesi mountain is 

A(x) = . 

a 4-x' 

Here h(x) is the mountain height as a function of distance from the crest, h,„ is the height 

of the crest, and a is the half width of the mountain, as given in table 5.1, defined as the 

distance from the crest to the point at which the mountain height is h„/2. 

Figure 5.4 shows the motmtains produced by these different configurations. 
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Figure 5.4. Mountain shapes for the different cases. Note that the vertical scale is stretched for clarity. 

See text for more details. 

The structure of the grid used for these simulations was developed through 

consideration of the expected flow patterns, and through tests using grids with varying 

domain length, grid spacing and stretching. Details of the grid independence tests can 

be found in Chapter 6. The horizontal domain used here was 300 km wide, with the 

mountain crest in the centre of the domain. A stretched grid was used, with a total of 

270 points in the horizontal. The grid was calculated using input parameters so that 

35 points lay within 10 km either side of the mountain, and 60 points lay between 

10 km and 70 km either side of the mountain, leaving the remaining 40 points in the last 

80 km of the domain at either end. The grid was smoothed until the expansion ratio, 

defined as AX(1+1)/AX(I), was a maximum of 1.05. This quantity provides a measure 

of how fast the grid spacing changes, and is discussed further in Chapter 6. After 

smoothing, the grid spacing was just over 286 m in the centre of the domain, increasing 

gradually to just under 2000 m at the edges of the domain. For case 4, where the 

mountain was eight times as wide as in the other three cases, the horizontal grid was 

scaled so that the gridlengths and domain width were all eight times as large. The grid 

was symmetrical about the centre of the domain. Figure 5.5 shows that both the 

horizontal gridlength and the expansion ratio varied smoothly and slowly, although the 

two stretch points can still be seen. 
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Figure 5.5. Horizontal gridlengths and expansion ratios for the grid described in the text (as used for 

cases I to 3; the grid used for case 4 was eight times as wide, as discussed in the text). The mountain 

crest is in the centre of the domain, and the grid is symmetrical about the centre of the domain. The 

expansion ratios in the upstream half of the domain are less than one because the gridlength is decreasing 

from left to right rather than increasing, as it does in the downstream half of the domain. 

In the vertical, 127 gridpoints were used in a 50 km domain, with a constant grid 

spacing of 400 m. Two points are outside the physical domain due to the staggered grid 

and boundary conditions, of which more details were given in Chapter 4. The Rayleigh 

damping layer began at 35 km, so results are only presented up to that height. 

Figure 5.6 shows the grid described above for a section of the model domain centred on 

the mountain. The full domain is not shown, since the grid would be hard to see. The 

Witch of Agnesi mountain of height 500 ni and half width 2500 m, used in cases 1 and 

3, is shown in this example plot; the grid used in case 4 is the same relative to the 

mountain as this grid. The surface elevation of the Witch of Agnesi mountain never 
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truly becomes zero, but asymptotes towards zero. The cosine-squared mountain of the 

same height and cross-sectional area has width 15700 m (as discussed in section 8.3), 

and there are 59 horizontal gridpoints on the surface of the Witch of Agnesi mountain 

within this reduced horizontal domain. In the case of a 500 m high mountain, there are 

two vertical grid levels below the mountain crest height, at the surface and at 400 m. 

The third vertical grid level is at a height of 800 m, above the mountain crest. Case 2 

had a 100 m high mountain, so the Grst vertical grid level was at the surface, and the 

next one, at 400 m, was above the mountain crest in this case. The heights given for the 

vertical grid levels refer to the distance of the model level above the flat surface 

upstre^ and downstream of the mountain, and do not take account of the bent mesh. 
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Figure 5.6. The grid described in the text, shown for a partial domain centred on the mountain. The 

mountain of cases 1 and 3 is used here to illustrate the grid. The numbers on the contours indicate the 

vertical model levels. 

As discussed in Chapter 4, the simulations described here are all two-dimensional in the 

x-z plane, and Coriolis forces are neglected. The results for the four cases are presented 

below. The model diagnostics include time series of the horizontally averaged surface 

pressure force in the x-direction. Horizontal averaging was done in the x-direction only, 

since these are two-dimensional x-z simulations. Figure 5.7 shows the drag coefficient, 

which is obtained from the surface pressure force as described in Chapter 4, for all the 

cases. The time series show data collected at 125 second intervals throughout each 

simulation, up to the end of the simulation after 55000 seconds (approximately 15 

hours). The noisy signal seen at early times is due to the large perturbations caused by 
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the introduction of the mountain, since the simulation starts with a flat surface and 

gradually grows the mountain into the domain. This 'initial noise' is evident in contour 

plots of vertical velocity at early times, but is usually quickly advected out of the model 

domain. The process of growing the mountain into the domain, and the initial noise, are 

discussed further in section 8.4. 

10000 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 
T i m e (seconds) 

Figure 5.7. Time series of the drag coefficient for all the cases. 

The drag coefficient can be used to assess whether a simulation has reached steady 

state, since in that case the graph should flatten out to an approximately constant value. 

From figure 5.7 it is clear that cases 1 and 3 reached a reasonably steady state after 

approximately 30000 seconds. Case 2 was less steady, and possible reasons for this are 

discussed in Chapter 6. Its final value was approximately 20% of the final value in 

cases 1 and 3, which may be explained by the dependence of the drag coefficient on the 

reciprocal of the Froude number (Hanazaki, 1988). Since the near-surface values of 

wind speed and static stability are the same in all of these simulations, this result 

reduces to a dependence on the mountain height. Although Hanazaki's result was for 

flow past a sphere, it seems a plausible explanation for the difference seen in this case, 

since it relates the magnitude of the drag coefficient to the strength of the forcing, with a 

higher mountain providing a steeper forcing. The final value for case 4 was also lower 

than that for cases 1 and 3; this may be explained by a link to mountain width, since the 

wider mountain means the slope is more gentle, providing a weaker forcing. 
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Alternatively, this may be because this simulation is still spinning up, since case 4 did 

not nin for as long as the others in terms of non-dimensional time. Figure 5.8 shows the 

drag coefficient for the four simulations as a function of non-dimensional time, 

u 
which is defined as where r is the time in seconds, is the time (in 

seconds) taken to grow the mountain, is a velocity scale (given by the near-surface 

wind speed) and Z is a length scale (given by the half width of the mountain). This 

non-dimensional time is used instead of model time in the rest of the thesis, to enable 

easier comparisons between simulations with different physical parameters, and with 

mountains grown into the numerical domain at different speeds. These 

non-dimensional time units are denoted by 'NDTU' in the text. 
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Figure 5.8. Time series of the drag coefficient for all the cases, with non-dimensional time on the 

horizontal axis, as defined in the text. The vertical long-dashed line marks the point where the 

non-dimensional time is zero, at the end of mountain growth. It is clear that case 4, with the wider 

mountain, ran for far less non-dimensional time than the other three cases, and grew the mountain far 

more quickly. 

A simulation of case 4 using the same horizontal grid as cases 1 to 3 was unsteady 

throughout the original 55000 seconds, and when it was run on for longer to obtain a 

comparable non-dimensional time, it became very noisy. The time series of vertical 

velocity (not shovm here) indicated that this was most likely due to spurious noise at the 

outflow boundary, which was reflected into the domain and then reflected back and 

forth between the upstream and downstream boundaries. Growing the mountain more 

slowly (over a non-dimensional time which is comparable with the other 3 simulations) 
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and then mnning for a non-dimensional time which is comparable with the other 3 

simulations did not ease the problem; periodic boundary conditions helped 

considerably. However, scaling the grid seems the most logical solution, since the 

numerical grid is then the same relative to the mountain in some non-dimensional sense, 

and produced by far the best results over the original simulation time of 55000 seconds. 

This case 4 simulation, with the wider horizontal domain, was run for longer, and did 

remain steady for longer than the one with the smaller horizontal domain. However, 

after 150000 seconds (65 NDTU), noise began to appear at the outflow boundary, and 

the drag coefficient increased considerably as this spurious noise was reflected back and 

forth across the domain, so the problem was delayed rather than removed, which is not 

an unexpected result. This indicates a problem with the outflow boundary condition, 

which is discussed further in Chapter 7; it also suggests that the results for case 4 may 

need to be interpreted with caution, although they do provide a useful test for the 

investigations reported in subsequent chapters. 

In the descriptions below, contour plots of vertical velocity are used. These were 

produced at 5000 second intervals throughout each simulation, but only selected data 

are shown here, to illustrate the dominant features of each case. Potential temperature 

contours are used to represent streamlines, and this assumption of isentropic flow is 

valid for these steady state cases, as discussed in Chapter 3. The potential temperature 

plots are only shown for the lowest third of the model domain, to make the signal more 

visible in the plots. 
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5.2 Description of the results 

For case 1, with constant wind speed, (7, and static stability, TV, the horizontal 

wavenumber is less than the Scorer parameter, so the theory predicts an upwardly 

propagating wave. The BLASIUS simulation did indeed produce an upwardly 

propagating wave for this case, showing that the model is able to simulate this type of 

flow pattern. The flow appeared from the vertical velocity plots to be steady after 

60 NDTU, and this was confirmed by the drag coefficient, which settled to a constant 

value around the same time. The Froude number was 2 in this case, indicating that 

non-linear effects may be occurring, but there was no strong evidence of these in the 

results. Figure 5.9 shows the vertical velocity and potential temperature after 

100 NDTU, at the end of the simulation. 
Vertical velocity (in/s) 

35000 

30000 

25000 

20000 

15000 

10000 

-75000 -50000 

12000 

10000 

8000 

6000 

4000 

2000 

0 

-25000 0 25000 
Distance from mountain crest (m) 

Potential temperature (K) 

50000 75000 

- 2 ) 6 

- 2 9 2 

-75000 -50000 -25000 0 25000 
Distance from mountain crest (m) 

50000 75000 

Figure 5.9. Vertical velocity (contour interval 0.2 m s"') and potential temperature (contour interval 2 K) 

for case 1 after 100 NDTU. The vertical velocity plot has a base contour of 0.1 m s"'; the zero contour 

has been removed from this plot, but is very smooth both upstream and downstream of the wave. The 

solid contours represent positive values and the dashed contours represent negative values; this 

convention will be used for all vertical velocity plots unless stated otherwise. 
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Case 2 was the troposphere-only simulation, and gave a horizontally propagating wave 

with an irregular structure, which fits with Keller's (1994) description of two 

superimposed waves of different wavelengths. The horizontal wavenumber is less than 

the Scorer parameter below 5 km, and the reverse is true above that height, so the theory 

predicts that the upwardly propagating wave will be trapped at lower levels and 

propagate downstream. The main component of the flow is a horizontally propagating 

wave, so this does fit with the theory. This simulation was designed as a test of the 

model against Keller's (1994) analytical results, and a comparison with these follows in 

section 5.3 below. The Froude number is 10 in this case, so the flow pattern should be 

linear,"and the comparison with Keller's results indicates that this is so. 

The wave developed in a stable manner with no apparent problem until the wave head 

reached the outflow boundary, which was some time between -45 and -25 NDTU (with 

negative non-dimensional time values indicating that the data were produced during 

mountain growth), as shown in figure 5.10. 
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Figure 5.10. Vertical velocity (contour interval 0.2 m s"') and for case 2 after —45 and -25 NDTU (left 

and right hand plots respectively). The wave head reached the outf low boundary between these two 

times. 

It is clear from figure 5.10 that the wave became less well resolved as it entered the 

coarser outer region of the horizontal grid, which is a deliberate numerical damping 

effect as an attempt to minimise reflection problems at the outflow boundary, and is 

discussed further in Chapter 7. However, this simulation still suffered from some 
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reflection at the downstream boundary, and the flow was perturbed by this, with 

upstream noise appearing after 0 NDTU, at the end of mountain growth, which is 

presumably due to the arrival of the reflected signal in the upstream domain. This 

signal, shown in the left hand plot of figure 5.11, fits with a large peak in the drag 

coefficient just before 0 NDTU, which is likely to be because the reflected noise was 

passing over the mountain at that point and affecting the pressure field. 
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Figure 5.11. Vertical velocity (contour interval 0.1 m s"') and for case 2 after 0 and 35 NDTU (left and 

right hand plots respectively). Spurious noise is evident upstream and above the wave after 0 NDTU, at 

the end of mountain growth, but the noise is almost gone by 35 NDTU. 

From 35 NDTU the noise began to settle, and by the end of the simulation, after 

135 NDTU, the wave pattern was reasonably smooth again, as shown in the right hand 

plot of figure 5.11, although the damping after the second grid stretch was still evident. 

The drag coefficient signal was relatively noisy, which is explained by the perturbations 

discussed above, resulting from reflection by the outflow boundary condition. 

Figure 5.12 shows the vertical velocity and potential temperature after 135 NDTU. 
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Figure 5.12. Vertical velocity (contour interval 0.1 m s"') and potential temperature (contour interval 2 K) 

for case 2 after 135 NDTU. The vertical velocity plot has a base contour of 0.05 m s"'; the zero contour 

has been removed from this plot, but does show a small amount of spurious noise upstream of the wave, 

as discussed in the text. 

The troposphere-stratosphere simulation, case 3, was very noisy initially but settled by 

35 NDTU to give a horizontally propagating wave which faded downstream, with a 

weaker upwardly propagating wave above. Figure 5.13 shows the vertical velocity 

fields after 0 NDTU (at the end of mountain growth) and 35 NDTU. 
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Figure 5.13. Vertical velocity (contour interval 0.2 m s"') and for case 3 after 0 and 35 NDTU (left and 

right hand plots respectively). There is a lot of initial noise after 0 NDTU, at the end of mountain growth, 

but it is almost gone by 35 NDTU. 

The Scorer parameter profile is more complicated in this case than in the others, being 

greater than the dominant horizontal wavenumber below 5 km and above 10 km, but 

less in between. This indicates that upwardly propagating waves can be expected in the 

lowest layer. However, the tropopause acts to trap these waves, as discussed in 

Chapter 3, so that they propagate downstream, as evident in the model results for this 

case. When the dominant horizontal wavenumber is greater than the Scorer parameter, 

an evanescent wave with vertical phase lines is predicted, but above 10 km the reverse 

is true once more, and so the wave begins to propagate upwardly again, which explains 

the signal in the stratosphere. As in case 2, the second grid stretch is clearly marked in 

the vertical velocity signal because of the damping effect it had on both the initial noise 

and the actual solution. The damping region downstream worked well in this case, as 

both the upper and lower level waves stopped around 100 km downstream of the 

mountain, and there was no obvious sign of spurious reflection at the outflow boundary. 

The flow seemed reasonably steady after 75 NDTU, and the drag coefficient had settled 

to an almost constant value by then, with a slight oscillation. The Froude number is 2 

here, and there is some evidence of non-linear interaction between the two wave trains, 

as discussed in section 5.3 below, where the results are compared with Keller's (1994) 

analytical results. Figure 5.14 shows the vertical velocity and potential temperature 

after 115 NDTU. 
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Figure 5.14. Vertical velocity (contour interval 0.2 m s"') and potential temperature (contour interval 4 K) 

for case 3 after 115 NDTU. The vertical velocity plot has a base contour of O.I m s"'; the zero contour 

has been removed from this plot, but is smooth both upstream and downstream of the wave. 

The mountain width was multiplied by eight in case 4, giving a half width of 20 km and 

a hydrostatic upwardly propagating wave, as predicted by the theory, since the 

horizontal wavenumber is less than the Scorer parameter, as for case 1. Although the 

Rossby number is lower in this case than in the other three cases, Coriolis effects are not 

expected to be significant. The formulae given by Dombrack et al. (1999) suggest a 

vertical wavelength of around 11 km for this case (which fits well with the signal in 

figure 5.15), reduced by around 0.2% due to Coriolis effects. This change is small 

enough to justify the use of a two-dimensional simulation with a Coriolis parameter of 

zero. By the end of mountain growth, the vertical velocity signal showed no initial 

noise, and the wave was steady from then onwards. The Froude number in this case is 

2, so there could be some non-linear effects, but there is no clear evidence of these in 

the results. The wave had greater horizontal extent than in case 1, due to the wider 

mountain which took up around one third of the horizontal model domain. Figure 5.15 

shows the vertical velocity and potential temperature after 17.5 NDTU. 
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Figure 5.15. Vertical velocity (contour interval 0.05 m s"') and potential temperature (contour interval 

4 K) for case 4 after 17.5 NDTU. The vertical velocity plot has a base contour of 0.025 m s"'; the zero 

contour has been removed from this plot, but shows the same spurious noise both upstream and 

downstream of the wave as is already visible in this plot; this is discussed in the text. 

5.3 Comparison with published analytical results 

Case 1, with constant input wind speed, (7, and static stability, jV, is widely discussed in 

the literature, and details can be found in the reviews listed at the start of Chapter 2. 

The potential temperature plot for case 1 can be compared to figure 20.2 of Durran 

(1986), which shows the steady analytical solutions for an isolated bell-shaped ridge 

with constant background wind speed and static stability. Durran's solutions depend on 

the relationship between a ' and /, as discussed earlier. For the case 1 results presented 

here, the value of a is 2500 m, giving a value of 0.0004 m"'. The Scorer parameter 

for case 1 has a value of 0.001 m"' at the surface, decreasing linearly with height to 

approximately 0.00085 m"' at a height of 35 km, as shown in figure 5.3. Hence 
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a ' = 0.4/ at the surface and « ' = 0.47/ at 35 km, so these results fall between those 

presented by Durran in his figure 20.2b (for = / ) and 20.2c (for o"' <K /), which are 

reproduced as figure 5.16(i) here. The pattern of potential temperature for the 

numerical simulation of case 1 is shown again in figure 5.16(ii), with a smaller domain 

for ease of comparison with Durran's streamline plots. The numerical results should be 

closer to the a"' = / case, and in fact are qualitatively very similar to the analytical ones, 

showing that BLASIUS copes well with this simple case. It should be noted that some 

differences are to be expected between the inviscid analytical solutions and these low 

viscosity numerical simulations, which use different surface boundary conditions. A 

more thorough comparison could be carried out by working through Durran's analytical 

solution for the parameters of this simulation, but time did not permit this. 
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Figure 5.16. (i) Durran (1986) figure 20.2b for d'=l and 20.2c for d ' « l , as described in the text, (ii) 

Potential temperature for the BLASIUS case 1 simulation after 100 NDTU, shown for part of the model 

domain, with contour interval 3 K. 
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Linear two-dimensional steady state analytical solutions were derived by Keller (1994) 

for both hydrostatic and non-hydrostatic cases. The latter can be used as a test of the 

BLASIUS model, since it should produce similar qualitative results when given similar 

initial conditions. Cases 2 and 3 in this work are intended to reproduce Keller's results 

for the troposphere-only and troposphere-stratosphere cases respectively. 

A difference between Keller's work and the numerical simulations presented here is that 

the analytical study had no viscosity, so was truly inviscid. Corby (1954), reviewing the 

assumption of frictionless flow in perturbation theory, suggested that viscosity would 

merely exert a small damping effect on the disturbances, but would not alter the results 

qualitatively. The BLASIUS simulations have some viscosity, as discussed in sections 

4.1 and 4.6. However, this is for numerical purposes and has been shown not to have a 

significant physical or qualitative impact on the results, although as Corby suggested, it 

does act to damp the solution, as discussed below. 

For the troposphere-only case, Keller observed that the solution consists of two trapped 

waves propagating horizontally downstream, with wavelengths of 15.2 and 35.9 km. 

Figure 5.17 compares the results from the BLASIUS simulation with Keller's figure 3. 

Qualitatively the results compare well, with very similar wavelength, although the 

damping effect due to the second grid stretch means that the comparison is unfavourable 

to the model downstream of 70 km (where the agreement is less good, as would be 

expected). Quantitatively the wave has only 25% of the magnitude of Keller's results, 

in terms of the maximum vertical velocity in the peaks and troughs. This can be at least 

partly explained by the implicit and explicit (imposed) diffusion in BLASIUS (of which 

further details are given in section 4.6), because this exerts a damping effect on the 

flow. Also, the no slip surface boundary condition may be expected to artificially 

retard the low level flow far downstream of the mountain, but no significant impact is 

expected on the general results. The quasi-free slip modification to BLASIUS (which is 

explained more fully in section 8.2) proved unsatisfactory, so it was not possible to use 

it in the model simulations presented here. 
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Figure 5.17. Vertical velocity for case 2, the troposphere-only case, s h o w n for part of the model domain 

to allow easier comparison with Keller's (1994) figure 3, which is shown on the left. The contour interval 

in the numerical simulation is 0.1 m s ' \ half that used in Keller's plot. N o t e that in this case, all of 

Keller's contours are solid; the leftmost cell is negative in this plot. 

For the troposphere-stratosphere case, figure 5.18 shows the results 6om the BLASIUS 

simulation, and may be compared with Keller's figure 5, with the same contour interval 

used in both plots. As for the troposphere-only case, the qualitative agreement is very 

good, with the wavelength matching well at both upper and lower levels, and the tilt of 

the upper level wave train reproduced well. Note that Keller's plot only extends 60 km 

downstream of the mountain in this case, so the second grid stretch (at 70 km), with its 

resulting damped region, need not be taken into account when comparing the results on 

this reduced horizontal domain. The magnitude of the vertical velocity in the peaks and 

troughs is very close at upper levels, but less so at lower levels, up to 30% stronger in 

the numerical simulation than in the linear calculation directly above the lee slope of the 

mountain, and then becoming progressively weaker downstream. In the final wave 

trough shown in Keller's plot, 60 km downstream of the mountain, the vertical velocity 

is 50% weaker in the numerical simulation. As discussed for the troposphere-only case 

above, part of the weaker signal is due to the diffusion in the numerical model. The 

more marked decrease in magnitude downstream (Keller's signal does decrease too, but 

far less dramatically) is most likely caused by the effect of the no slip surface condition 

in BLASIUS, which acts to retard the flow downstream by pulling the horizontal 

velocity back to zero rather than allowing a non-zero value at the surface. Limited tests 

of the quasi-free slip surface condition for horizontally propagating wave cases have 

been carried out for BLASIUS as part of this thesis (see section 8.2 for more details of 
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the boundary condition), and these do show less downstream damping of the wave than 

in the conesponding no slip cases, supporting the above hypothesis. The larger vertical 

velocity magnitude close to the mountain may be explained by a non-linear interaction 

between the two wave trains, which overlap at this point. Since their wavelengths are in 

phase, they would be expected to interfere constructively with each other, increasing the 

perturbation, as seen here. Keller's analysis is linear, so her results will not include any 

additive effects due to non-linear interaction between the two wave trains (although they 

will include linear additive effects). The Froude number is 2 in this case, so non-linear 

effects may be playing an important role, and the fact that this constructive interference 

effect is not evident in Keller's solution suggests that it is likely to be a non-linear 

feature. Repeating the simulation with a reduced mountain height would test this 

hypothesis, since the Froude number would then be lower, and any non-linear effects 

would be reduced, if not removed. 
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Figure 5.18. Vertical velocity for case 3, the troposphere-stratosphere case, shown for part of the model 

domain to allow easier comparison with Keller's (1994) figure 5, which is shown on the left. The contour 

interval in the numerical simulation is 0.2 m s"', the same as that used in Keller's plot. 

For case 4, figure 5.3 shows that the dominant horizontal wavenumber was less than the 

Scorer parameter throughout the domain. The hydrostatic wave obtained in this case 

fits well with the theory. Although the input wind and potential temperature profiles 

were not constant with height here, a loose qualitative comparison with Durran's (1986) 

results, as shown in figure 5.16(i), indicates that the results are in reasonable agreement. 

Figure 5.19 shows the potential temperature for the numerical simulation of case 4, with 

a smaller domain for ease of comparison with Durran's streamline plots. 
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Figure 5.19. Potential temperature for the BLASIUS case 4 simulation a f t e r 17.5 NDTU, shown for part 

of the model domain, with contour interval 1.5 K. 

Despite the differences described above, for which explanations have been suggested, 

the qualitative agreement for these three cases was sufficient to validate the results 

produced by BLASIUS. 
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5.4 Introduction to the numerical issues encountered 

The results described in this chapter were produced after testing various different 

numerical configurations of BLASIUS. The aim of these tests was to find a 

configuration of the code which would produce stable results for all four cases, without 

the numerical problems encountered in the original simulations, and the tests are 

discussed in the following three chapters. Although the simulations should in theory be 

grid independent, there are some grid dependent changes in results, and these issues are 

discussed in Chapter 6. Sensitivity tests were carried out for both the horizontal and 

vertical grids, using stretched and uniform grids of different resolutions, as well as 

investigating the effect of changing the Rayleigh damping layer height and coefficient. 

Chapter 7 covers issues concerning the upstream and downstream boundary conditions, 

since many simulations had spurious noise at or near the outflow boundary, and it seems 

that the radiative outflow boundary condition described in Chapter 4 is not effective in 

all situations. The remaining issues are dealt with in Chapter 8: the model timestep, the 

surface boundary condition, the shape of the mountain, the initial noise caused by 

growing the mountain into the domain, and the formulation of the artificially imposed 

viscosity. Some cases produced reasonable results in the original configuration, with no 

numerical difficulties, and tests on those cases provided a control, to ensure that the 

changes did not introduce problems. For each modification, comparisons were made 

between pairs of simulations for the same case, to assess the impact of the change. 

Chapters 6 to 8 describe the modifications tested, and give illustrative examples of their 

impact. 



6 Grid independence 

6.1 Introduction 

One of the many unavoidable approximations in numerical models of the atmosphere is 

the use of a discrete grid to represent the continuous space in which the fluid motions 

take place. Discrete time steps are also used, and this process is discussed fiirther in 

section 8.1. The resolution of the discrete grid must be fine enough to resolve 

adequately the flow dynamics of interest, and the domain must be large enough to allow 

the flow to evolve. However, the amount of available computer memory and processing 

power can place limitations on the domain size and grid resolution which can be used. 

These competing issues need to be balanced in order to provide the best possible 

simulation of the flow in question. This chapter discusses investigations carried out, 

and results obtained, for different formulations of the horizontal and vertical grids in 

two-dimensional simulations using the BLASIUS numerical model. Plots of vertical 

velocity are used to illustrate most of the comparisons, since it is generally more 

sensitive to changes than is the potential temperature field. A uniform or stretched grid 

can be used in either direction, and both of these possibilities are considered, with 

varying gridlengths and different methods of stretching. In addition, the Rayleigh 

damping scheme described in Chapter 4 is tested for different damping coefficients and 

different layer heights. Upstream and downstream boundary conditions can also have 

an impact on the effectiveness of the grid and resolution used, and although these issues 

are mentioned here, they are discussed more fully in Chapter 7. 
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6.2 Horizontal grid dependence 

6.2.1 Uniform grid 

The simplest case considered was the case of constant input wind speed, (/, and static 

stability, TV, using a 100 m high Witch of Agnesi mountain with a half width of 10 km. 

A uniform grid was used in the horizontal with a grid spacing of 1 km. In the vertical, 

the uniform grid spacing was 350 m. The domain was 300 km wide (with the mountain 

in the centre) and the vertical domain was 35 km high with the Rayleigh damping layer 

starting at 20 km. The wave propagated upwards, so periodic upstream and downstream 

boundary conditions were used, and were not expected to have a significant impact on 

the flow pattern obtained. Figure 6.1 shows the vertical velocity field after 140 NDTU, 

although the simulation reached steady state much earlier. The horizontal resolution 

seems adequate here: the wave is smooth and well-resolved. 
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Figure 6.1. Vertical velocity after 140 NDTU for a 100 m high Witch of Agnesi mountain of half width 

10 km. The contour interval is 0.01 m s"' with a base contour of 0.005 m s" \ the zero contour has been 

removed from this plot, but is very smooth both upstream and downstream of the wave. 

The mountain height was increased to 500 m, so the slope was five times steeper. The 

vertical velocity signal, shown in figure 6.2, was very similar, but its maximum 

magnitude in the wave crests was slightly more than five times larger. Potential 
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temperature is also shown for this simulation, but there was barely any discernible 

signal in the case with the smaller mountain. Again, the wave in this case is well 

resolved and the resolution seems adequate. 
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Figure 6.2. Vertical velocity and potential temperature after 140 NDTU for a 500 m high Witch of 

Agnesi mountain of half width 10 km. The contour interval for the vertical velocity is 0.05 m s"' with a 

base contour of 0.025 m s"'; the zero contour has been removed from this plot, but is very smooth both 

upstream and downstream of the wave. The contour interval for the potential temperature is 2 K; note that 

potential temperature is plotted for half the vertical domain used for vertical velocity, in order to show the 

signal more clearly. 

The mountain width was halved relative to that in the simulation shown in figure 6.2, 

while keeping the height at 500 m, and the vertical velocity and potential temperature 

were compared for half the horizontal domain and double the contour interval (see 

figure 6.3). The flow pattern relative to the mountain was qualitatively very similar in 

both simulations, with the vertical velocity maximum in the wave crests approximately 

1.5 times larger. However, there was a small amount of noise in the vertical velocity 

signal for the wave induced by the narrower mountain, which did not amplify with time; 

one possible explanation for this may be that the horizontal resolution was not quite 
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good enough. The noise was not evident in the potential temperature plot, where the 

amplitude of the perturbation was the same as in the wider mountain case. Halving the 

mountain width fui-ther, to 2500 m, and keeping the horizontal grid spacing at 1 km, 

produced a very poorly resolved wave, demonstrating that a much smaller gridlength 

would be required for a mountain this narrow. Figure 6.4 shows how the resolution 

became less adequate as the mountain width decreased, at least by 'chopping off the 

peak of the mountain. 
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Figure 6.3. Vertical velocity and potential temperature after 250 NDTU for a 500 m high Witch of 

Agnesi mountain of half width 5 km. The contour interval for the vertical velocity is 0.1m s"' with a base 

contour of 0.05 m s"'; the zero contour has been removed from this plot, but is very smooth both upstream 

and downstream of the wave. The contour interval for the potential temperature is 2 K; note that potential 

temperature is plotted for half the vertical domain used for vertical velocity, in order to show the signal 

more clearly. 
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Figure 6.4. Horizontal gridpoints at the surface over 500 m high Witch of Agnesi mountains of half 

width 10 km, 5 km and 2.5 km, using a uniform horizontal grid spacing of 1 km. 

Reducing the horizontal grid spacing from 1 km to 750 m produced a generally similar 

signal in the vertical velocity and in the potential temperature, although there were 

differences. Some initial noise is created in the model fields due to the growth of the 

mountain into the domain starting from a flat surface, and this process is discussed in 

section 8.4 along with investigations into the effect of growing the mountain at different 

speeds. The initial noise is usually visible in both the vertical velocity and the potential 

temperature fields, and in this case it was more marked than in the original case, and 

persisted throughout the simulation, although it faded with time; this is illustrated in 

figure 6.5, which shows the fields after 250 NDTU. The disturbance on the downstream 

edge of the wave was also more marked than in the original simulation, with a larger 

maximum magnitude in the wave crests and more pronounced distortion of the wave 

pattern. The mountain was better resolved, especially around the peak, but the flow was 

more noisy. 

Reducing the horizontal grid spacing further, to 500 m, made the problem more 

noticeable, and a small wave became discernible on the potential temperature signal in 

the area affected by the noise. Horizontal profiles of vertical velocity showed a marked 

wave-like structure due to the downstream noise, with a wavelength of approximately 

6 km (which equates to around eight 750 m gridlengths or twelve 500 m gridlengths). 

This, too, increased in maximum magnitude in the wave crests (but kept the same 

wavelength) as the gridlength was decreased. 
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Figure 6.5. Vertical velocity and potential temperature after 250 (in the lef t hand plot) and 230 (in the 

right hand plot) NDTU for a 500 m high Witch of Agnesi mountain of ha l f width 5 km. The contour 

interval for the vertical velocity is 0.1 m s"' with a base contour of 0 m s"\ The left hand plot has a 

horizontal grid spacing of 1 km; the right hand one has a horizontal grid spacing of 750 m. Data are not 

available at exactly the same non-dimensional time for these two simulations, but the difference is small 

enough not to be significant. 

These results show that these simulations are not grid independent. Once the mountain 

and flow pattern are both adequately resolved, making the resolution finer should not 

change the solution, since the timestep is adjusted in order to keep the CFL number the 

same. The problems seen here could be due to initial noise, as discussed in section 8.4. 

A potential solution could be to make the CFL criterion more strict, as discussed in 

section 8.1. Rayleigh damping could be having a negative impact due to reflection, and 

this is discussed further in section 6.3.2. It should also be noted that the increase in 

noise as the gridlength decreases is consistent with the associated decrease in numerical 

dispersion and diffusion: stronger evidence is required in order to locate the source of 

the problems, but the above issues are discussed further in subsequent sections of this 

thesis. Horizontal artificial viscosity was discussed in section 4.6, but needs further 

investigation. 
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Earlier tests were carried out on simulations using the full timestep (see section 8.1 for 

an explanation of this; the current code uses a halved timestep), with a cosine-squared 

mountain (see section 8.3 fbr a discussion of the two different mountain shapes) and a 

stretched grid in the vertical (of which more details can be found later in this chapter). 

The tests were only carried out fbr cases 1 and 3, using inflow/outflow boundary 

conditions, and a uniform horizontal grid spacing of 500 m seemed to generally produce 

noisy flow patterns. At first this was thought to be due to inadequate resolution over the 

mountain, but the mountain was 15700 m wide so there were over 30 horizontal 

gridpoints on its surface, indicating that this was not to blame. Simulations with a 

uniform grid of 285 m resolution were very slow, and the first data available in each 

case showed very pronounced noise at the outflow boundary, looking very similar to the 

500 m resolution simulations. This did not look likely to produce useful results, 

especially considering the increased computational cost, so the simulations were 

stopped at this point. Further tests using the halved timestep gave similar results, 

although the noise was less severe. Use of a very small horizontal gridlength does seem 

to create problems, but it is unclear why. The spurious noise seen in these simulations 

could be due to the initial conditions, or it could be a genuine instability which grows to 

a certain extent, but is then diffused by the artificial viscosity. One way to investigate 

this (which has not been done due to time constraints) would be to interpolate the steady 

state solution obtained for the 1 km horizontal grid onto a 750 m grid, for example, and 

then restart the 750 m simulation using these interpolated fields. Some transience in the 

fields would be observed due to the change in resolution, but if the noise is due to the 

initial conditions, it will not appear in this simulation; if, on the other hand, there is an 

instability, that will be seen in this case as well. 

Many of the problems seen here can be alleviated by using a stretched horizontal grid, 

providing fine resolution over the mountain and gradually coarsening resolution further 

away, and this is discussed in the next section. 

6.2,2 Stretched grid 

The need to use a fine enough grid to resolve the mountain and the flow of interest, 

while having a large enough domain to allow the flow to develop, means that the 
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uniform horizontal grid can be expensive in terms of computer memory and processing 

power. A stretched horizontal grid can fulfil this need using fewer gridpoints, thus 

reducing the computational expense. 

A stretched grid is less numerically accurate than a uniform one, because the stretching 

introduces errors (see Castro and Jones, 1987 for a discussion of these errors). As the 

wave moves into a less well-resolved region of the model domain, the loss of accuracy 

can act as a layer of artificial viscosity and damp the wave maximum magnitude in the 

wave crests; in some cases it can damp the wave motion completely. If the stretching is 

done too quickly, it can result in spurious reflection and/or noise. Vichnevetsky (1987a) 

carried out a detailed analysis of spurious reflections on irregular grids. These 

non-uniform grids generally lead to spurious wave-like solutions, which cannot escape 

from the computing domain, and which can only be eliminated by some form of 

artificial dissipation (Vichnevetsky, 1987b). Vichnevetsky's analysis suggests that as a 

sinusoidal wave propagates downstream and the grid becomes gradually coarser, the 

group velocity decreases. If the group velocity vanishes before the wave has left the 

computational domain through the downstream boundary, then the group velocity 

becomes negative, and there is internal reflection of the wave. Vichnevetsky also 

considers what he calls a "grid well", where the resolution is finest in the centre of the 

domain and coarser further from the centre, which is the type of stretched grid used in 

BLASIUS. He notes that waves can become trapped in this well if they are reflected at 

the same point both upstream and downstream of the centre, and suggests that waves 

trapped in an irregular grid may be removed by adding artificial dissipation, to eliminate 

smaller scale numerical waves while retaining the larger scale waves which form the 

physical solution. Some of these issues are investigated in the results presented here, 

and also in the following chapter. 

The first type of stretched horizontal grid to be tested was a relatively simple one, using 

a central region with higher resolution than the rest of the model domain. The full 

domain was 240 km wide, with the mountain crest in the centre of the domain. There 

were 290 points in the horizontal, and the grid was calculated using input parameters so 

that 70 points lay within a 20 km region centred on the mountain, giving 55 horizontal 

gridpoints on the surface of the mountain itself In order to make the jump from one 
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grid area to the next less abrupt, BLASIUS offers two options for smoothing the 

horizontal grid. The user can either specify how many times to apply the 1-2-1 

smoother, or specify a maximum expansion ratio, as described in Chapter 5. The 

former method was used for the grid described here, with the smoother applied 100 

times. This produced a grid spacing of 285 m in the centre of the domain, increasing 

gradually to 1 km in the outer region, more than 20 km from the mountain crest. The 

grid was symmetrical about the centre of the domain. 

Figure 6.6 shows the grid described above for a section of the model domain centred on 

the mountain. The full domain is not shown, since the grid would be hard to see, but the 

increased resolution in the central region is clearly visible. The cosine-squared 

mountain of height 500 m and width 15700 m is used in this example. This grid is 

referred to here as the 'one stretch grid'. 
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Figure 6.6. The 'one stretch grid' described in the text, shown here for a partial domain centred on the 

mountain. A cosine-squared mountain of height 500 m and width 15700 m is used here to illustrate the 

grid. The numbers on the contours indicate the vertical model levels for the stretched vertical grid 

described in section 6.3.1. 

The results presented here for the one stretch grid use inflow/outflow boundary 

conditions, a stretched vertical grid, the halved timestep and the cosine-squared 

mountain pictured in figure 6.6. They are compared with those using a uniform grid, as 

discussed at the end of the previous section. The tests were carried out for cases 1 to 3, 

and the results were encouraging: the reduced accuracy of the stretched grid seemed to 
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damp out the spurious noise found on the uniform grid. An example for constant and 

constant # is shown in figure 6.7. 
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Figure 6.7. Vertical velocity plots for case 1 after 140 NDTU, using the uniform (500 m grid spacing) 

and one stretch grids. The contour interval for the vertical velocity is 0.2 m s"' with a base contour of 

0 m s"'. The one stretch grid simulation does not have as much downstream noise as the uniform grid 

simulation. Both of these simulations used inflow/outflow boundary conditions upstream and 

downstream. 

In case 2 the flow patterns were quite similar on both grids, but the maximum 

magnitude of the vertical velocity in the wave crests on the one stretch grid was larger 

near the mountain (with finer resolution) and smaller far from the mountain (with 

coarser resolution). This suggests that finer/coarser resolution resolves more/less of the 

wave pattern respectively. The drag coefficient was less noisy on the one stretch grid, 

reflecting the evolving pattern in the uniform grid simulation compared to the steadier 

flow on the stretched grid. 

A comparison was carried out between these two grids for case 1 using periodic 

boundary conditions, to see how much of the spurious noise seen on the uniform grid 

was linked to the outflow boundary condition. The periodic simulations were far less 

noisy than their inflow/outflow counterparts, although the uniform grid simulation was 

still slightly noisier than the one stretch grid simulation. This indicates that the 

sensitivity to the horizontal grid was mainly, although not entirely, linked to the outflow 

boundary condition, and this is discussed further in Chapter 7. 
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The expansion ratio of a stretched grid was defined in Chapter 5 as The 

further this is from unity, the more rapid the stretching, and the more likely it is that 

there will be a negative effect on the accuracy of results, for example due to internal 

reflection. Castro and Jones (1987) have carried out analysis into the dependence of the 

magnitude of error terms on the expansion ratio. In the one stretch grid, the expansion 

ratio reaches a maximum of 1.15. Cases 1 to 3 were re-run with additional smoothing 

applied to the horizontal grid, so that the expansion ratio never exceeded 1.1. The 

expansion ratios and gridlengths for both these grids are shown in figure 6.8. The 

results were virtually identical, suggesting that the high expansion ratios are not the 

cause of the problems seen, although they may still be a contributing factor. 
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Figure 6.8. Horizontal gridlengths and expansion ratios for the one stretch grid (dashed line) compared 

with those for the additionally smoothed grid (solid line). The mountain crest is in the centre of the 

domain, and the grid is symmetrical about the centre of the domain. The expansion ratios in the upstream 

half of the domain are less than one because the grid length is decreasing from left to right rather than 

increasing, as it does in the downstream half of the domain. 
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A set of tests was performed where the stretch point was moved from 10 km to 20 km 

away fiom the mountain crest, so the central region was 40 km wide in this case. 

Generally the flow patterns obtained were very similar to those using the one stretch 

grid, with wavelengths remaining the same. However, the maximum magnitude of the 

vertical velocity in the wave crests was generally stronger in the better resolved region 

between 10 and 20 km away &om the mountain crest. This seems to indicate that there 

was a definite damping effect as the wave moved Aom the central region, where 

AiTwas 285 m, to the outer region, where AZwas 1 km. These results suggest that 

better resolution is required in order to adequately represent the wave motion in these 

cases, although the uniform grid simulations had more noise at higher resolution, so it 

does seem that the stretched grid damps the spurious noise vyhich is seen on a finely 

resolved uniform grid. This noise, as illustrated in figure 6.7, is believed to be spurious 

because in case 1 the wave is upwardly propagating, and no downstream signal is found 

in the analytical solution. 

In order to investigate further the effect of horizontal resolution, cases 1 to 3 were re-run 

with halved horizontal resolution relative to the one stretch grid, so AY was 2 km in the 

outer region and 570 m in the centre of the domain. Generally the signal was similar 

and weaker, but the wave pattern seemed noisier, which seems to be a grid scale feature, 

indicating insufficient resolution. It should be noted that the noise referred to here is 

not the spurious noise seen outside the wave on a fine grid (such as in figure 6.7), but 

appears in the wave signal itself, where the gridpoints are clearly visible in the wave 

signal in this case, indicating that the resolution is not fine enough. The horizontally 

propagating waves in cases 2 and 3 were clearly not resolved once they had left the 

central region, as shown in figure 6.9 for case 3. In case 2, for example, the wavelength 

is approximately 14 km, so it was reasonably well resolved on the 1 km grid but not so 

well on this 2 km grid. In both these cases, the drag coefficient was steadier, but 

generally the wave pattern did not seem to be resolved and was weaker. Results 

obtained on the one stretch grid were already weaker than Keller's (1994) analytical 

results for case 2, so perhaps this was due to inadequate resolution. 
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Figure 6.9. Vertical velocity plot (contour interval 0.2 m s ') for case 3 after 140 NDTU, using the one 

stretch grid with halved resolution. The wave pattern was damped as it left the central region; the 

horizontal gridlengths are shown below for reference. 

Both these sets of results indicate that the resolution needs to be better than the one 

stretch grid in order to represent the wave pattern adequately; the maximum magnitude 

of the vertical velocity in the wave crests increases and decreases with finer and coarser 

resolution respectively, and there is a marked change at the stretch point. 

Starting from the one stretch grid, a second grid stretching was applied 70 km from the 

centre of the domain, and /SX increased from 1 km to 2 km after this point. The domain 

size was unchanged, so only 240 horizontal gridpoints were required, instead of 290. 

This grid is referred to here as the 'two stretch grid'. The only significant differences 

between results obtained on the one stretch and two stretch grids were found in cases 3 

and 4. 

In case 3, noise was introduced in the upper level wave around the second grid stretch, 

which was not present on the one stretch grid. This noise at the second grid stretch may 

be due to stretching too quickly, but the expansion ratio is lower than in the first stretch, 

as shown in figure 6.10. 
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Figure 6.10. Horizontal gridlengths and expansion ratios for the one stretch grid (dashed line) compared 

with those for the two stretch grid (solid line). The mountain crest is in the centre of the domain, and the 

grid is symmetrical about the centre of the domain. The expansion ratios in the upstream half of the 

domain are less than one because the gridlength is decreasing from left to right rather than increasing, as 

it does in the downstream half of the domain. The expansion ratios at the second grid stretch are lower 

than those at the first stretch. 

Using the two stretch grid, the wave signal almost disappeared at the second grid 

stretch, whereas with the one stretch grid, this 'whiteout' was more gradual and looked 

less artificial, as if the wave had actually faded and failed to reach the boundary, rather 

than being damped out by some numerical process which acts over a very small area 

(the second grid stretch in this case). As discussed in Chapter 5, this gradual fading 

may be explained by the no slip surface botmdary condition. The waves had different 

wavelengths, and different maximum vertical velocity magnitudes in the wave crests. 

Figure 6.11 illustrates these differences in the flow pattern. For both case 2 and case 3, 
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a closer comparison showed that the flow patterns obtained using the one stretch grid 

were slightly closer to Keller's (1994) analytical results than those obtained with the 

two stretch grid, for the domain shown in her results. 
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Figure 6.11. Vertical velocity plots for case 3 after 140 NDTU, using the one stretch and two stretch 

grids. The contour interval for the vertical velocity is 0.2 m s"' with a base contour of 0.1 m s"'; the zero 

contour has been removed from these plots, but is very smooth both upstream and downstream of the 

wave. Noise is introduced in the wave pattern at upper levels around the second grid stretch (70 km 

downstream of the mountain crest), and the wave signal does not reach the outflow boundary (120 km 

from the mountain crest) in the two stretch grid simulation, seeming to 'whi te out' at the second grid 

stretch. The wavelength and maximum vertical velocity magnitude in the wave crests are slightly 

different in the two simulations. The one stretch grid solution is closer to Keller's (1994) analytical 

results. 

The simulation using the two stretch grid for case 4 had a 'bull's-eye' pattern in the 

vertical velocity at the outflow boundary after 7 to 10 NDTU. This noise was absent in 

the simulation using the one stretch grid, as shown in figure 6.12. In dimensional terms, 

these simulations ran for a similar length of time as the other cases, but because of the 

wider mountain, the non-dimensional time is far smaller. Time did not permit longer 

simulations of this case, but future work should take account of this factor, as discussed 

in Chapter 5. The results presented here for case 4 should be interpreted with caution, 

since they may well be less significant than those presented for the other cases, which 

ran for much longer in terms of non-dimensional time. 
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Figure 6.12. Vertical velocity plots for case 4 after 10 NDTU, using the one stretch and two stretch grids. 

The contour interval for the vertical velocity is 0.05 m s"' with a base contour of 0 m s"'. The 'bull's-eye' 

signal at the outflow boundary in the two stretch grid simulation is absent in the one stretch grid 

simulation. 

In some cases, the second grid stretch seemed to be causing spurious noise and/or 

numerical damping of waves. However, coarsening resolution, and reducing wave 

maximum magnitude in the wave crests, may be a useful device to mitigate problems at 

outflow, and this is discussed in Chapter 7. Figure 6.13 shows the drag coefficient for 

case 3 using different horizontal grids, and it is clear that the two stretch grid produced a 

much flatter, less noisy signal than the one stretch grid. This indicates that the 

simulation on the two stretch grid reached steady state, whereas the others did not. This 

may be because the second grid stretch seemed to act as a viscous layer, damping the 

wave so that it did not reach the outflow boundary, whereas on the one stretch grid, 

there may be a numerical reflection mechanism at the outflow boundary which causes 

the wave to come back to the mountain and alter the drag coefficient (since the surface 

pressure force is zero in the flat parts of the domain, so it only represents effects acting 

over the mountain itself). This is discussed further in Chapter 7. 
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Figure 6.13. Time series of the drag coefficient for the results presented in figure 6.11, with 

non-dimensional time on the horizontal axis, as defined in Chapter 5. T h e vertical long-dashed line 

marks the point where the non-dimensional time is zero, at the end of mountain growth. It is clear that 

the two stretch grid simulation was steadier than the one stretch grid simulation. The large oscillations at 

early times are most likely due to reflection of the initial noise by the outf low boundary condition, and 

this is discussed further in Chapter 7. 

The 500 m high Witch of Agnesi mountain of half width 10 km was used in a fiirther 

test, with constant U and constant N. This mountain is approximately four times wider 

than the cosine-squared mountain used above, so the central region of the one stretch 

grid was wider, extending 40 km either side of the mountain crest. Some noise 

appeared on the downstream edge of the wave, which seemed to be where the resolution 

changed, so this may indicate that the transition was not smooth enough and the 

expansion ratio should be smaller. Otherwise the flow was similar. 

In view of the problems sometimes encountered around the stretching region, the one 

stretch grid was modified to use a single smooth stretch rather than two more abrupt 

ones either side of the mountain. The second grid stretch was re-introduced, because of 

the beneficial damping effect, but smoothed further to minimise the spurious noise. 

This grid was used in the simulations described in the previous chapter, with a 300 km 

domain (see Chapter 7 for tests of a wider domain with respect to the outflow boundary 

condition), and details were given there. The expansion ratios and gridlengths of this 

grid are shown in figure 6.14, along with those for the one stretch and two stretch grids. 

In general this grid produced smoother results than were obtained on the other 

horizontal grids, with less spurious noise. 
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Figure 6.14. Horizontal gridlengths and expansion ratios for the one stretch grid (dashed line) and the 

two stretch grid (dotted line), compared with those for the more smoothly stretched grid (solid line). The 

mountain crest is in the centre of the domain, and the grid is symmetrical about the centre of the domain. 

The expansion ratios in the upstream half of the domain are less than one because the gridlength is 

decreasing from left to right rather than increasing, as it does in the downstream half of the domain. The 

new grid uses a wider domain (300 km) than either of the other two grids (240 km). 
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6.3 Vertical grid dependence 

6.3.1 Vertical resolution 

The vertical grid can be uniform or stretched. When stretching the horizontal grid, the 

focus IS on adequate resolution of the mountain. In the vertical, the boundary layer is 

the part which requires the finest resolution, since the flow there is on smaller scales 

and is more complex. Whilst this is not relevant in the simulations presented here, 

BLASIUS was intended to simulate these boundary layer flows, and so the vertical 

gridlength is smallest at the surface and largest at the top of the model domain. The 

input parameters, in addition to the domain height and the number of vertical gridpoints, 

are Z/, the height of the lowest internal model level, and j?/, the expansion ratio (defined 

in the same way as for the horizontal grid). The heights of the model levels are then 

determined using the fbllowing method: 

a, = —Z, 

<22 = 0 

ci-^ — Zj 

+ ^1 (^«-l - ) 

SO that the distance between successive vertical model levels increases in geometric 

progression 6om the bottom model gridpoint. This continues until the remaining 

distance from to the top of the domain can be filled using the rest of the levels with a 

constant grid spacing The Z/V levels are taken as when « is odd, and the Z 

levels as when n is even; more details of the staggered grid were given in Chapter 4. 

No smoothing is applied to the vertical grid. 

A test was carried out using the constant U and constant N case with a 100 m high 

Witch of Agnesi mountain of half width 10 km. One simulation used a uniform vertical 

grid with AZ = 350 m, and the other a stretched vertical grid with Zy = 15 m and 

Ri = 1.025, giving AZ = 30 m at the bottom of the domain and 633 m at the top. The 
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Rayleigh damping layer started at 20 km in both cases, and the horizontal grid had a 

uniform gridlength of 1 km. Figure 6.15 illustrates the two different vertical grids. 

2500 

2000 

1500 

5 1000 

500 

0 

2000 

1500 

Z 1000 

500 

-20000 

2500 

-20000 

-15000 - 1 0 0 0 0 - 5 0 0 0 0 5000 
Distance f rom mountain crest (m) 

Stretched vertical grid 

- 1 5 0 0 0 -10000 - 5 0 0 0 0 5000 
Distance f rom mountain crest (m) 

10000 

10000 

6 
6 

— 

6 
6 

— 

4 
4 

4 
4 

— 

2 
2 

2 
2 

— 

15000 20000 

15000 20000 

Figure 6.15. The different grids for the two simulations presented in figure 6.16. The top plot shows the 

uniform vertical grid, and the lower plot shows the stretched vertical grid. Note that these plots show a 

very small section of the vertical domain, so that the stretched grid levels are clearly visible. 

The results were very similar: both simulations reached steady state fairly quickly and 

had a fairly flat drag coefficient signal. The vertical velocity signal was similar in both, 

but there were clear differences where the vertical resolution was most different: 

figure 6.16 shows that the stretched grid simulation had less smooth contours at upper 

levels, and there were also small differences at the lowest vertical levels, very close to 

the mountain, although these are barely discernible in figure 6.16. The vertical 

wavelength is approximately 7 km, so the uniform gridlength of 350 m gives around 20 
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points per wavelength, whereas on the upper part of the stretched grid, where the 

spacing is 633 m, there are only around 11 points per wavelength. Although this means 

that the wave is still reasonably well resolved, there are small diHerences in the results. 
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Figure 6.16. Vertical velocity after 75 NDTU for a 100 m high Witch of Agnesi mountain of half width 

10 km. The contour interval for the vertical velocity is 0.01 m s"' with a base contour of 0.005 m s"'; the 

zero contour has been removed from these plots, but is very smooth both upstream and downstream of the 

wave. The left hand plot has a uniform vertical grid spacing of 350 m; the right hand one has a stretched 

vertical grid, as described in the text. These simulations ran for the same dimensional time as most of the 

others, but a shorter non-dimensional time, because they used a wider mountain. However, since they 

reached steady state fairly quickly, this should not be significant. 

Tests were also carried out using a 500 m high cosine-squared mountain of width 

15700 m for cases 1 to 3. In the vertical, for cases 1 and 3, 80 gridpoints were used in a 

75 km domain, and the grid spacing increased from 253 m at the surface to 1211 m at 

the top of the domain. This grid is depicted for part of the domain in figure 6.6, with 

the one stretch horizontal grid, which was used in these tests. The Rayleigh damping 

layer began at 60 km, so results are only presented up to that height. This grid gave two 

vertical levels below the mountain crest height, at the surface and at 253 m. The third 

vertical grid level was at a height of 519 m, just above the mountain crest. The vertical 

resolution of the mountain itself is less important here than in a boundary layer case, so 

there were few points below the mountain top. The heights given for the vertical grid 

levels refer to the distance of the model level above the flat surface upstream and 

downstream of the mountain, and do not take account of the bent mesh. 
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Case 2 had a different vertical grid from the other simulations, since it was intended to 

simulate the troposphere-only case of Keller, and had a smaller vertical domain. A total 

of 50 gridpoints were used in a 45 km domain, and the grid spacing increased from 

253 m at the surface to 1744 m at the top of the domain. The Rayleigh damping layer 

began at 35 km. This grid is not shown, since it was similar to the one shown in 

figure 6.6. The first vertical grid level was at the surface, and the next one, at 253 m, 

was above the mountain crest in this case. 

This vertical resolution was coarsened for these tests by doubling Z/ and squaring so 

that AZ was approximately twice as large throughout the domain. In case 1, the 

simulation with coarser vertical resolution had more marked noise in the vertical 

velocity, which grew with time. The wave pattern itself was similar, but individual 

vertical levels were visible in the wave pattern where it was only partially resolved. 

These can also been seen to a lesser extent in the original simulation (the two are 

compared in figure 6.17), indicating that even that resolution was not really good 

enough. The vertical wavelength was approximately 7 km, and the vertical resolution in 

the original grid increased to 1211 m, giving around six gridlengths (seven points) per 

wavelength at upper levels. This is close to the minimum required, which is generally 

considered to be five gridpoints (four gridlengths) per wavelength, as shown in 

figure 6.18. On the coarsened grid, the number of gridlengths per wavelength was 

reduced to three, which is clearly inadequate. 

The drag coefficient increased significantly towards the end of the simulation, whereas 

it had almost levelled out in the original, indicating that coarsening the vertical grid 

made the solution less steady. Cases 2 and 3 showed less marked differences, but the 

inadequacy of the vertical resolution at upper levels was clear. These results indicate 

that the original vertical resolution is required in order to represent the wave pattern 

adequately, and that better vertical resolution is certainly required for case 1, if not for 

the others. 
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Figure 6.17. Vertical velocity after 140 NDTU for a 500 m high cosine-squared mountain of width 

15700 m. The contour interval for the vertical velocity is 0.2 m s"' with a base contour of 0.1 m s"'; the 

zero contour has been removed from these plots, but is very smooth both upstream and downstream of the 

wave. The left hand plot has the stretched vertical grid described in the text, and the right hand one has 

the same grid but with approximately double the gridlength. 
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Figure 6.18. Schematic representation of a wavelength in a discretised numerical model, using five 

gridpoints (four gridlengths). The solid line is the true wave, and the dashed line is the resolved wave, 

with the gridpoints marked by asterisks. It is clear that using fewer gridpoints would not adequately 

resolve the basic structure of the wave. 
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6.3.2 Rayleigh damping scheme 

In order to simulate an infinite vertical domain, a Rayleigh damping layer is used at the 

top of the model domain to prevent reflection from the upper boundary. This layer 

gradually relaxes the model fields back to a reference state; more detail was given in 

Chapter 4. If the damping acts too quickly, it can lead to reflection from the base of the 

damping layer. Results presented in section 6.2.1 showed spurious noise in simulations 

with small AX, and one explanation for this may be reflection from the base of the 

Rayleigh damping layer, or indeed from the top of the domain. The vertical resolution 

was not varied between simulations in the tests of the horizontal grid, so it may be that 

any reflected signal was not resolved on the coarser horizontal grid. 

In the simulation with 500 m uniform horizontal grid spacing, earlier data dumps were 

obtained during the mountain growth, to see whether this helped to isolate the cause of 

the noise. The initial noise reached right to the top of the domain after -70 NDTU, and 

spread sideways with time, gradually reaching less high up as the Rayleigh damping 

took effect. The negative non-dimensional time indicates that the mountain was still 

growing at that point in the simulation. The structure of the noise became finer with 

time, with more upward and downward cells in the vertical velocity field. However, it 

was hard to judge what was causing the problems. 

In the tests of the coarsened stretched vertical grid described in the previous section, the 

Rayleigh damping layer took longer to damp out the wave motion when using a larger 

vertical gridlength. The Rayleigh damping scheme has no explicit dependence on AZ, 

but clearly the vertical resolution does have an indirect impact. A plausible explanation 

of this is that the coarser grid produced more marked noise in the vertical velocity field, 

meaning that the Rayleigh damping scheme had more work to do in order to damp out 

the signal. This implies that the Rayleigh damping scheme is implicitly dependent on 

AZ, due to the explicit dependence on AZ of the vertical velocity response. 

Since problems were seen even with a 1 km horizontal grid spacing for the 500 m high 

Witch of Agnesi mountain of half width 5 km (as discussed in section 6.2.1), tests were 

carried out using different damping layers for that case. First of all, the damping layer 
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was moved up by 5 km, so that its base was at 25 km and the domain height was 40 km. 

The number of vertical gridpoints was increased to 117 in order to keep the same 

vertical resolution. The wave obviously reached higher into the domain with a higher 

Rayleigh damping layer, but the basic pattern, wavelength and maximum magnitude in 

the wave crests were the same in both simulations. The potential temperature and drag 

coefGcient signals were also very similar. There was more initial noise in the higher 

Rayleigh damping layer simulation, but as it faded with time it looked more similar to 

that seen in the original simulation, and the noise on the downstream edge of the wave 

seemed more marked initially, but became less intense with time relative to the original 

simulation, and was more spread out, as shown in figure 6.19. 
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Figure 6.19. Vertical velocity after 250 NDTU for a 500 m high Witch o f Agnesi mountain of half width 

5 km. The contour interval for the vertical velocity is 0.1 m s"' with a base contour of 0.05 m s"'; the zero 

contour has been removed from these plots, but is very smooth both upstream and downstream of the 

wave. The Rayleigh damping layer is between 20 km and 35 km in the lef t hand plot, and between 25 km 

and 40 km in the right hand one. 

A further test with the damping layer moved up a further 10 km, and AZ = 400 m (a 

small increase on the original 350 m), gave generally a very similar wave pattern, 

except for the obvious difference that the wave extended higher up. Although there were 

some differences, they were not clearly positive or negative, so moving the damping 

layer still further away did not seem to change a great deal. 
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The Rayleigh damping coefRcient (explained in Chapter 4) is set to 0.01 s ' by default. 

Test simulations were carried out increasing and decreasing this value by an order of 

magnitude, and the results are shown in figure 6.20. In the case where the coefGcient 

was 0.1 s"\ the signal reached a little less into the damping layer but was basically the 

same. The noise on the downstream edge of the wave, present at all vertical levels 

below the height where the Rayleigh damping layer took effect, was less here than in 

the original. In the case where the coefGcient was 0.001 s ', the signal reached the 

upper boundary throughout, and the downstream wave edge noise was less pronounced. 

The drag coefficient was initially noisier in both these simulations than in the original, 

but it increased in the same way and had a similar pattern, although the magnitude was 

slightly lower in both cases. 

dap]* coeffideni h QjOOl Raylfifift aaniclngccgffidefll is 0.1 /: aaniBlnK coelndtOI » O.Ul /: 

Figure 6.20. Vertical velocity after 250 NDTU for a 500 m high Witch o f Agnesi mountain of half width 

5 km. The contour interval for the vertical velocity is 0.1 m s"' with a base contour of 0.05 m s"'; the zero 

contour has been removed from these plots, but is very smooth both upstream and downstream of the 

wave. The Rayleigh damping layer is between 20 km and 35 km in all cases; the damping coefficient is 

0.001s"' in the left hand plot, 0.01 s"' in the centre plot and 0.1 s"' in the right hand plot. 

Under certain circumstances partial reflection at the upper boundary can affect the 

surface drag. Vosper (1995) found that the upper boundary is truly radiative only when 

the mean wind does not vary with height for a considerable depth below the upper 

boundary. Although the upper boundary in BLASIUS uses an absorbing layer rather 

than a radiative boundary condition, a similar result may hold for the Rayleigh damping 

layer. This could explain why the drag coefficient in case 2 has larger amplitude 

variations than the other cases, as seen in figure 5.7, because the shear in the 

background wind speed continues all the way to the top of the model domain. A useful 

test (not done as part of this work because of time constraints) would be to relax the 
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background wind field to a constant profile in the Rayleigh damping layer, although this 

would make it more like a tioposphere-stratosphere profile than a troposphere-only one, 

so some care would be required to ensure that the resulting wave pattern was not altered 

as a result. The upper boundary condition has less effect in trapped wave cases like this 

one, because less wave energy reaches the top of the domain, so this may not have a 

significant impact in case 2, but it merits investigation. 

These sensitivity tests on the Rayleigh damping coefficient and on the height of the 

damping layer have so far proved inconclusive, so there may still be an issue with 

reflection from the base of the Rayleigh damping layer. Ideally further investigation 

will lead to a non-dimensional formula for choosing the heights of the damping layer 

and domain top, and the damping coefficient. The Rayleigh damping layer should, in 

theory, permit any domain height without affecting the solution, thus allowing good 

vertical resolution on a uniform grid, which can be prohibitively expensive in the 

horizontal due to the domain length required to resolve the wave motion. 

6.4 Summary 

These investigations have shown that a uniform horizontal grid with resolution fine 

enough to resolve the wave patterns studied here tends to introduce spurious noise into 

the flow. This noise seems to be linked to a sensitivity of the outflow boundary 

condition and/or the Rayleigh damping scheme to horizontal resolution, but further 

work is required to isolate the cause of the problem. Running the model for simulations 

like these but with no Rayleigh damping layer would be a good test. 

A stretched horizontal grid is numerically less accurate, and this acts to damp the 

spurious noise mentioned above, allowing adequate resolution of the centre of the 

domain, and gradually coarsening resolution far from the mountain. Care must be taken 

not to introduce noise by stretching too quickly, and not to damp the wave motion itself 
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as the gridlength increases (unless this is desirable in order to avoid reflection by the 

downstream boundary; this is discussed further in the next chapter). 

One way to reduce the computational cost of the horizontal grid would be to move the 

mountain from the middle of the domain. This is straightforward in the case of the 

uniform grid, although some testing would be required to assess sensitivity ta upstream 

fetch, and this is unlikely to be a solution to the spurious noise found at fine resolutions. 

On the stretched grid, substantial re-coding would be required in order to have the most 

finely resolved section off-centre, over the mountain, but this could be worthwhile. 

A uniform grid in the vertical presents fewer problems than in the horizontal. It seems 

possible to resolve the wave motion adequately without any of the spurious noise 

introduced by a fine horizontal grid. A stretched vertical grid can be used, and this will 

be more important in boundary layer simulations, where fine resolution is required at 

low levels. Care is required to ensure that the resolution remains adequate at upper 

levels, but no other problems have been found in these tests. 

The Rayleigh damping layer would benefit from further investigation to determine the 

optimum tuning (layer height and depth, and damping coefficient) for a given flow 

regime. It is possible that the scheme is causing some problems due to reflection, 

especially on a finely resolved uniform horizontal grid, but further work is required to 

test this hypothesis. 



7 Inflow/outflow boundary conditions 

7.1 Introduction 

The radiative outflow boundary condition was explained in section 4.4. This chapter 

describes the tests carried out to assess the accuracy of this boundary condition as 

implemented in BLASIUS. The inflow/outflow boundary conditions allow the model to 

simulate steady state cases with a single isolated mountain. Although in practice 

periodic boundary conditions can be used for some of these cases, the upstream flow is 

then not truly steady, and the problem being solved is one of an infinite series of widely 

spaced mountains, rather than a truly isolated one. Even in the case where the mountain 

excites a hydrostatic wave which does not propagate horizontally, and there is no 

discernible difference between the periodic and inflow/outflow solutions, the horizontal 

velocity profiles at the upstream boundary in the periodic case do show a slight wave 

pattern. Periodic boundary conditions are used in the ̂ /-direction for all of the 

two-dimensional x-z simulations in this thesis, so all mention of periodic or 

inflow/outflow boundary conditions in this chapter should be taken as referring to the 

upstream and downstream boundaries in the x-direction. 

The radiative outflow boundary condition is designed to allow waves to propagate 

freely out of the model domain without being disturbed. In some of the simulations 

described in this thesis, the flow seems to be held up at the boundary, and does not exit 

the domain cleanly. In some cases there is evidence to suggest that the outflow 

boundary may be reflecting the wave back into the domain. Vichnevetsky (1987a) 

discusses analysis of such spurious reflections at both the upstream and downstream 
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boundaiies. The strongest indication of this in the work presented here is seen with a 

horizontally propagating wave such as the one in the troposphere-stratosphere case, 

where a marked perturbation occurs in the drag coefficient during spin-up, shortly after 

the wave head reaches the outflow boundary. 

Section 7.2 describes tests of the accuracy of the outflow boundary condition, by 

comparing with results obtained using periodic boundary conditions, and with results 

obtained using a wider horizontal domain. Section 7.3 describes alternative numerical 

schemes for the outflow boundary condition and their impact on the test cases. 

Section 7.4 summarises these results and discusses possible further investigations, and 

ways to minimise the effects of the inadequacies in the outflow boundary condition as it 

stands. 

7.2 Tests of the radiative outflow boundary condition 

7.2.1 Periodic boundary conditions 

Periodic boundary conditions provide a test of the inflow/outflow boundary conditions, 

since the flow pattern should be the same in both cases until any horizontally 

propagating wave signal (or initial noise, which is discussed further in section 8.4) 

re-enters the periodic domain upstream and contaminates the solution. Differences in 

surface gridlength waves are ignored in the comparisons below, since the general 

tendency was for them to occur upstream in the periodic simulations rather than 

downstream in the inflow/outflow simulations. Tests were carried out for cases 1 to 3 

using the one stretch horizontal grid with a domain width of 240 km, and the stretched 

vertical grid described in Chapter 6, with a cosine-squared mountain of width 15700 m. 

In cases 1 and 3 the mountain height was 500 m, and in case 2 it was 100 m. As 

expected, the greatest differences were seen in cases 2 and 3, where there is a 

horizontally propagating wave. 
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In case 2 the flow was generally less noisy in the periodic simulation than in the 

inflow/outflow one. The periodic contamination reached the mountain after 80 NDTU, 

and by the end of the simulation, after 140 NDTU, the wave pattern at lower levels was 

similar, but in the periodic case it was weaker and with shorter wavelength, whereas the 

upper section of the wave had almost disappeared. These differences, illustrated in 

figure 7.1, are most likely simply due to the effect of the upstream contamination, which 

seemed to interact destructively with the wave as it passed through the domain, with the 

result that both the wave and the initial noise were reduced in magnitude. The 

qualitative agreement with Keller's (1994) results after 60 NDTU (just before the 

periodic contamination affected the flow) was slightly better for the periodic simulation 

than for the inflow/outflow one. 
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Figure 7.1. Vertical velocity after 80 NDTU (top plots) and 140 NDTU (bottom plots) for case 2. The 

contour interval is 0.1 m s"' with a base contour of 0.05 tn s"'; the zero contour has been removed from 

these plots, but the flow pattern is still clearly visible. The left hand plots used inflow/outflow boundary 

conditions, and the right hand plots used periodic boundary conditions. Af ter 80 NDTU, the periodic 

contamination in the upstream domain reached the mountain, and the wave signal was weaker in the 

periodic simulation after 140 NDTU, especially at upper levels. 
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The periodic simulation for case 3 was also less noisy than the inflow/outflow version. 

At the end of mountain growth, the initial noise had almost left the downstream domain 

in the peiiodic simulation, but was held up in the inflow/outflow simulation, as shown 

in figure 7.2. In the periodic simulation, the initial noise re-entered the domain at the 

upstream boundary and reached the mountain after 20 NDTU (sooner than in case 2, 

because of the stronger forcing from the higher mountain). The upper wave was 

disrupted by this throughout the simulation, as this contamination passed through the 

domain several times. After 100 NDTU, the upper level wave had almost no signal in 

places, as shown in figure 7.2, and although it settled slightly towards the end of the 

simulation, after 300 NDTU, it was still very weak. The lower level wave was similar 

in both simulations, with similar wavelength. It slowly entered the upstream domain in 

the periodic simulation from 60 NDTU, and seemed to be reasonably steady from then 

on, fading much more gradually downstream than in the inflow/outflow case with a less 

marked drop in amplitude with time, and only extending about 25 km into the upstream 

end. This can be seen in figure 7.2, which shows the vertical velocity fields after 

100 NDTU. The smaller wave amplitude at lower levels in the inflow/outflow case may 

be due to some form of interaction or reflection at the outflow boundary. The drag 

coefficient was very flat, without the large perturbation between 0 and 20 NDTU which 

was present in the inflow/outflow simulation; this flat signal is linked to the very steady 

lower level wave in this case. It was difficult to compare these results with Keller's, 

because the periodic contamination was significant in this case. 
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Figure 7.2. Vertical velocity after 0 NDTU (at the end of mountain growth; top plots) and 100 NDTU 

(bottom plots) for case 3. The contour interval is 0.2 m s"' with a base contour of 0.1 m s"'; the zero 

contour has been removed from these plots, but the flow pattern is still clearly visible. The left hand plots 

used inflow/outflow boundary conditions, and the right hand plots used periodic boundary conditions. 

The initial noise seems to be held up at the outflow boundary at the end o f mountain growth in the 

inflow/outflow simulation. After 100 NDTU , the wave signal at upper levels is weaker in the periodic 

simulation, and at lower levels the wave has a shorter wavelength and fades less downstream. 

Periodic simulations for case 1 were carried out using both the one stretch horizontal 

grid (as for cases 2 and 3 above) and a uniform horizontal grid, with a grid spacing of 

500 m. As for cases 2 and 3, the flow was generally less noisy in the periodic 

simulations than in the inflow/outflow ones, on both horizontal grids. In the one stretch 

grid case, there were only very small differences until 20 NDTU, when the upstream 

contamination began in the periodic simulation. The initial noise was different in the 

uniform grid simulations: by 20 NDTU it had entered the upstream periodic domain, but 

it seemed to be held up in the inflow/outflow simulation. The effect was similar to that 
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shown in figure 7.2 for case 3, although less marked. By 60 NDTU the upstream 

contamination was affecting the wave on both horizontal grids, and by 120 NDTU it 

had passed through the wave, and the wave looked similar in both the inflow/outflow 

and periodic simulations. The drag coefficient still increased slightly in the periodic 

simulations, but was generally flatter, without the large perturbation after 40 NDTU 

which was present in both the inflow/outflow simulations. 

In the case 1 tests described above, the initial noise was held up at the outflow boundary 

in the uniform grid inflow/outflow simulation, but this was not the case in the one 

stretcli grid inflow/outflow simulation, or in either of the periodic simulations. The 

uniform grid had a resolution of 500 m, whereas the one stretch grid had a resolution of 

1 km in the outer region. These results could indicate a sensitivity of the outflow 

boundary condition to horizontal resolution, a hypothesis which was discussed in 

Chapter 6 following grid sensitivities found there. There may also be some sensitivity 

to the grid formulation (stretched versus uniform), since the change 6om one to the 

other had more effect in the inflow/outflow case than in the periodic case, and these two 

factors may be interacting. 

The periodic simulations generally had a flatter drag coefficient signal than their 

inflow/outflow counterparts, indicating that they were more steady. The most notable 

thing about the drag coefficient is that the periodic simulations did not have the large 

amplitude perturbation after approximately 40 NDTU, shortly after the initial noise 

reached the boundary and was sometimes held up in the inflow/outflow simulations. 

This could indicate that the outflow boundary condition was causing the initial noise to 

reflect back into the domain, and a similar effect was seen when the horizontally 

propagating wave head reached the boundary in cases 2 and 3. This is discussed further 

later in this chapter. 

A test was also carried out for the constant U, constant tV case with a 500 m high Witch 

of Agnesi mountain of half width 10 km, and uniform grids in the horizontal and 

vertical direction with grid spacing 1 km and 350 m respectively. There was little 

difference between the inflow/outflow and periodic simulations for this case, which is 

unsurprising, since the forcing was quite weak and there was little initial noise. 
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7.2.2 Wider horizontal domain 

Orlanski (1976) performed tests of the outflow boundary condition formulation by 

running the model with a wider horizontal domain, and then comparing the results for 

the original, smaller, domain between this simulation and the original, to see whether 

the outflow boundary condition had caused any problems in the original simulation. 

The same procedure was followed here in order to assess the accuracy of the outflow 

boundary condition in the BLASIUS model. 

Tests were carried out for cases 1 to 3 in the same configuration as for the results 

described in the previous section. The wider horizontal domain, of width 300 km, was 

created from the one stretch horizontal grid, of width 240 km, by adding 30 km to each 

end, with a resolution of 1 km, so that the grid in the original domain was unchanged. 

Vertical velocity plots for the full domain gave information on whether the boundary 

condition was more effective for being further away from the mountain. 

Wider domain simulations were carried out for both inflow/outflow and periodic 

boundary conditions, in order to isolate any effects which were directly due to the 

increased domain size rather than to the boundary conditions. The only significant 

differences in these tests were due to the longer time interval before the initial noise 

re-entered the periodic domain upstream. In theory, the initial noise should be exactly 

the same irrespective of where the downstream boundary is located, since it is generated 

by the process of growing the mountain into the model domain. In the periodic 

simulations this was indeed the case. In order to be confident that the outflow boundary 

condition is coping adequately, a similar result is desirable in the inflow/outflow 

simulations. 

In case 1, using the wider domain, the inflow/outflow and periodic results were closer 

than they had been on the original domain, but the initial noise still seemed to be held 

up at the outflow boundary in both of the inflow/outflow simulations. They were also 

generally noisier than their periodic counterparts, and the noise at the outflow boundary 

seemed more severe on the original domain than on the wider domain (although it is not 

shown here, since it was generally restricted to the zero contour). The wave itself was 
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very similar in all the simulations, except when affected by periodic contamination. 

The downstream surface gridlength wave in the inflow/outflow simulations started later 

in the v^der domain simulation, indicating that it may be caused or amplified by the 

outflow boundary condition. After about 75 NDTU, the drag coefGcient signal levelled 

out far more in the periodic simulations than in the inflow/outflow ones, but still 

increased slightly, finishing at a lower value. The wider domain did not make a 

difference to the final value of the drag coefficient in either the inflow/outflow case or 

the periodic case, which is encouraging. Figure 7.3 shows the drag coefficient for all 

four simulations. 

8 
W) In8ow/outflow, origiiial domain 

Inflow/ouiAow, wider domain 

— — Penodic, ongmal domain 

. _ . _ Periodic, wider domain 

(zero line) 

50 75 
Nou-dimeusional time 

Figure 7.3. Time series of drag coefficient for case 1, using inflow/outflow and periodic boundary 

conditions, and the original and wider horizontal domain (as described in the text). The vertical 

long-dashed line marks the point where the non-dimensional time is zero, at the end of mountain growth. 

The large perturbation seen in the drag coefficient in the inflow/outflow simulations 

was later in the wider domain simulation than in the original domain simulation. An 

approximate calculation of the expected time delay in this perturbation, assuming that it 

is caused by the reflection of the initial noise by the outflow boundary condition, is 

given by 

5t 
U 

where here 5t is the time delay in the drag coefficient perturbation, 5 X 1 $ the extra 

distance travelled as a result of the wider domain (60 km, since the extra 30 km must be 

traversed once in each direction), and U is the propagation speed of the initial noise 
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(estimated by eye as 12 m s since the signal reached the edge of the original domain 

after approximately 10000 seconds). This formula gives an estimated time delay of 

5000 seconds, or 20 NDTU, which fits well with the delay seen in figure 7.3. This large 

perturbation is not evident in the periodic simulations, although it might be expected to 

appear at around the same time, since the initial noise travels the same distance to reach 

the mountain through the upstream domain in the periodic case as it does through the 

downstream domain when reflected in the inflow/outflow case. A possible explanation 

for this is that the reflection is quite likely to be distorted or incomplete, with some 

components of the noise passing through the boundary and others being reflected, so the 

signal reaching the mountain in the inflow/outflow case is probably not the same as the 

one which reaches it in the periodic case. 

In case 2 the results were all very similar, with the same wavelength and only small 

differences in wave amplitude. However, in case 3, the inflow/outflow simulations 

were generally noisier than the periodic simulations. At the end of mountain growth, 

the initial noise still seemed to be held up in the wider domain inflow/outflow 

simulation, but it had moved further downstream than in the original domain 

inflow/outflow simulation, indicating that the outflow boundary was acting to retard the 

flow, and was not allowing it to leave the model domain undisturbed. After 80 NDTU, 

the wavelength (measured along the wave train) at both upper and lower levels was 

shorter in the wider domain inflow/outflow simulation than in the original one, and the 

signal was generally weaker. The original simulation had an irregular structure in the 

upper wave downstream of the mountain, remote from both major wave trains. This 

was not noticeable in the wider domain simulation until a later time, and this delay may 

indicate that the phenomenon is due to reflection at the outflow boundary. These 

differences are shown in figure 7.4, and it is evident that the wave signal had not yet 

reached the outflow boundary in the wider domain simulation. 

The drag coefficient was flatter towards the end of the wider domain inflow/outflow 

simulation than in the original domain simulation, although still increasing, as shown in 

figure 7.5. Again, the large perturbation appeared at a slightly later time in the wider 

domain inflow/outflow simulation than in the original domain case, and the above 

calculation for the delay in the perturbation gives 1000 seconds this time, because the 
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initial noise propagates much faster. This is equivalent to 4 NDTU, which again fits 

well with the delay seen in the plot of the drag coefficient. 
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Figure 7.4. Vertical velocity after 80 NDTU for case 3. The contour interval is 0.2 m s"' with a base 

contour of 0.1 m s"'; the zero contour has been removed from these plots, but the flow pattern is still 

clearly visible. Both these simulations used inflow/outflow boundary conditions; the left hand plot used 

the original horizontal domain, and the right hand one used the wider one (as described in the text). The 

domain plotted here extends to the outflow boundary of the wider domain, 150 km downstream of the 

mountain crest. Note the irregular structure in the wave on the original domain, as if it is being reflected 

from the outflow boundary. 
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Figure 7.5. Time series of drag coefficient for case 3, using inflow/outflow and periodic boundary 

conditions, and the original and wider horizontal domain (as described in the text). The vertical 

long-dashed line marks the point where the non-dimensional time is zero, at the end of mountain growth. 
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Tests were also carried out using the two stretch horizontal grid, and here the wider 

domain simulations had 15 gridpoints added onto each end, with the same resolution 

(2 km) as the outer section of the existing domain, making the domain width 300 km as 

in the above tests. These tests were carried out on simulations using the full timestep. 

In case 3 the m^or difference between the two simulations was a clear improvement in 

the flow near the second grid stretch in the wider domain simulation, which became 

more noticeable with time as the spurious noise worsened in the original case. These 

results are not shown, since they are very similar to those shown in the bottom row of 

figure 1. The drag coefficient did not have the oscillation which was present at the 

end of the original simulation, showing that it was closer to a steady state. The full 

domain vertical velocity plots were similar at the boundaries; notably, the whiteout still 

occurred in the same place, indicating that this phenomenon is more likely to be due to 

the change in horizontal resolution at the second grid stretch than to the outflow 

boundary condition, and this was discussed further in Chapter 6. 

In case 4, the full domain vertical velocity plots showed very similar flow at both 

boundaries until 7.5 NDTU, then the original simulation developed outflow noise which 

did not appear in the wider domain simulation until 10 NDTU, as shown in figure 7.6. 

These results indicate that the boundary condition was coping badly in the original 

simulation, since the problem was still present in the wider domain simulation, but 

delayed because the flow had further to travel before reaching the boundary. It is more 

difficult to estimate an expected time delay for this case than for the delayed 

perturbations in the drag coefficient signals discussed above, because there is no clear 

signal in the earlier fields before the problem at the boundary becomes apparent. 

However, it is clear from figure 7.6 that the noise is very likely to be due to some sort of 

reflection issue at the outflow boundary. This case ran for much less non-dimensional 

time than the others, as already discussed in Chapters 5 and 6, so these results must be 

interpreted with caution. 
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Figure 7.6. Vertical velocity plots after 7.5 NDTU (top plots) and 10 N D T U (bottom plots) for case 4. 

The contour interval is 0.05 m s"' with a base contour of 0.025 m s"'; the zero contour has been removed 

from these plots, but the flow pattern is still clearly visible. The left hand plots used the two stretch 

horizontal grid and the right hand plots used the wider domain described in the text. The domain plotted 

here extends to the outflow boundary of the wider domain, 150 km downstream of the mountain crest. 

The noise at the outflow boundary occurs earlier in the smaller domain simulation. 
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7.3 Alternative schemes for the radiative outflow boundary condition 

7.3.1 Introduction 

Variations on the outflow boundary condition formulation explained in Chapter 4 were 

tested to see whether they produced more robust results, and these modifications are 

described below. All the simulations in this section had a halved timestep, and they all 

used the two stretch horizontal grid except where stated otherwise in the text. Case 4 

was used as a preliminary test, since its original configuration had the most severe 

problems at the outflow boundary; some of the modifications made these problems even 

worse, and those changes were not tested on any other cases, since the boundary 

condition needs to be robust for a range of different cases. All the changes were 

rejected, since the original configuration gave the most reliable results: all of the 

modifications degraded the solution for at least one of the cases tested. In the light of 

previous comments about the significance of case 4 test results in terms of 

non-dimensional time, it may be worth re-running some of these tests, and allowing the 

simulations to continue for longer. However, the non-dimensional time issue was not 

fully appreciated at the time these tests were carried out, and time constraints did not 

allow them to be re-investigated for inclusion in this thesis. 

7.3.2 Modifications to the restriction on the magnitude of the outflow phase speed 

The formulation of the outflow boundary condition was explained in section 4.4, and 

the constant phase speed used in the outflow boundary condition was defined there. 

This constant phase speed is discretised in the code as follows, where IIP is the number 

of horizontal gridpoints, the sums are over all vertical gridpoints, and the other notation 

is as previously defined: 
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C = 

r , 

J Av 

In the two-dimensional case, ^ is the horizontal velocity, [/. This calculation in the 

control code uses absolute values of the difkrence between ac^acent horizontal velocity 

values, presumably because negative phase speeds are clipped to zero. The first 

modification removed that restriction, but the flow pattern in case 4 was very noisy, as 

shown in figure 7.7. Overall this change degraded the solution and so was not tested 

further. 
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Figure 7.7. Vertical velocity plots (contour interval 0.05 m s"') for case 4 after 7.5 NDTU, using the 

original and modified outflow boundary conditions, as described in the text. The modified simulation is 

far more noisy than the original. 

In the control calculation, the outflow phase speed is clipped to lie between zero and 

AX/At (for numerical stability purposes; more details are given in section 4.4) before the 

vertically weighted average is obtained, although these bounds are coded as zero and 

unity because the phase speed held in the code is non-dimensionalised. The second 

modification did not clip positive values until after that average had been obtained, 

making the condition less strict. However, negative values were still clipped to zero at 

this stage, and the use of absolute values in calculating the vertically weighted average 

was retained. In case 4, this simulation failed after 700 seconds with no data dumps, 

because the pressure solver did not converge. No further tests were carried out. 



H. J. Hewson 2000 Chapter 7: Inflow/outflow boundary conditions Page 140 

The third modification did no clipping at all until after the vertically weighted average 

was obtained, then clipped that single value in the same way as before, relaxing the 

restriction still further. No absolute values were used in calculating the average. The 

results of the tests were very mixed, and it was hard to decide whether this change was 

positive or negative overall. Case 1 showed no significant differences, cases 2 and 3 

seemed more noisy with the modification, and in case 4 the change removed the outflow 

noise but introduced other minor problems. The spurious noise introduced in case 3 

was most noticeable around the second horizontal grid stretch, especially at upper 

levels, where it caused the whole wave pattern to disintegrate towards the end of the 

simulation, as shown in figure 7.8. The problem may be caused by reflection at the 

outflow boundary, which would explain why it is seen in the interior domain, rather 

than at the outflow boundary itself Whereas the signal in the original simulation was 

flat, the drag coefficient in the modified simulation became noisy at the same time as 

the spurious noise appeared in the vertical velocity signal. Since most of the difficulties 

seemed to be related to the second grid stretch, tests were carried out for all five cases 

with this modified outflow condition and the one stretch horizontal grid, but all of them 

failed before reaching 3000 seconds, because the pressure solver did not converge. This 

indicates that, overall, this modification was more negative than positive. 
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Figure 7.8. Vertical velocity plots for case 3 after 120 NDTU, using the original and modified outflow 

boundary conditions, as described in the text. The contour interval is 0.2 m s'% with a base contour of 

0.1 m s"'; the zero contour has been removed from this plot, but the flow pattern is still clearly visible. 

The modified simulation is far more noisy than the original. 
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7.3.3 Vertically varj ing outflow phase speed, with different mass flux corrections 

The restriction of using a constant phase speed (c , as defined above) for the whole 

vertical domain is not very logical in physical terms, since one would not normally 

expect the phase speed to remain constant along the whole boundary. This modification 

allowed the outflow phase speed used in the model to vary with height, rather than 

calculating one constant value for the entire vertical domain. However, the vertical 

variation in the outflow phase speed was not great in general, although there were a few 

peaks. The phase speed was clipped as in the original code, but at each model level. 

Overall this change caused a deterioration in the simulations, although there were some 

positive impacts as well. The basic flow pattern was the same for both simulations in 

case 3, but at later times the noise around the second grid stretch looked slightly worse, 

and by 140 NDTU the flow was starting to disintegrate both here and at the 

intersection of the Rayleigh damping layer and the outflow boundary, although less 

dramatically than in figure 7.8. The negative effects seemed to be linked to the second 

grid stretch, but a simulation using this outflow condition and the one stretch horizontal 

grid was even worse. The situation was similar in case 4, but the vertical velocity plots 

in the modified simulation were very noisy throughout, and never settled into a steady 

flow pattern. The drag coefficient signal oscillated right to the end of the simulation, 

after 17.5 NDTU, whereas the original was flat from around 5 NDTU. Overall this 

change made the simulation much worse. A simulation using the one stretch horizontal 

grid with this outflow condition was slightly better than the modified original 

configuration, but the results still indicated that the change had deteriorated the solution. 

A mass flux correction is applied in order to correct for differences in the mass flux into 

and out of the model domain. This is done by calculating the difference between the 

mass flux into the domain at the upstream boundary and the mass flux out of the domain 

at the downstream boundary, and then correcting for this by altering the outflow wind 

speed; this changes the effective outflow phase speed. Usually the effect on the outflow 

phase speed is small, but in cases where it is large, this may indicate a problem with the 

calculation of the outflow phase speed (that is, with the formulation of the outflow 

boundary condition). It is difficult to judge how best to apply the mass flux correction, 

since it is a numerical issue rather than a physical one. In the control code, the mass 
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flux correction is done by adding a constant increment to the outflow wind speed. This 

method was chosen because the outflow phase speed was constant, so it seemed a 

logical way to apply the correction. This method was used in all the tests described 

above. However, the use of a vertically varying phase speed opened up other 

possibilities for the method chosen for this calculation, and the results from testing 

some of these are presented below. 

The first change to the mass flux correction scheme was that instead of adding a 

constant amount to the outflow wind speed at each height, the amount added was 

weighted on the vertical profile of the outflow phase speed, so that the increment was 

larger at levels with a larger outflow phase speed. The results of these tests were 

compared with those obtained using a vertically varying phase speed and the original 

mass flux correction scheme, in order to assess the effect of changing the mass flux 

calculation. Generally the flow was far more noisy in these simulations, so this 

modification was rejected. 

The second change to the mass flux correction scheme was to apply a constant scaling 

factor to the outflow wind speed, rather than adding a constant amount. Since the 

horizontal velocity profile at the outflow boundary may have a wave-like structure with 

both positive and negative values, scaling those values makes more physical sense than 

simply increasing (or decreasing) them all by the same amount, as it preserves any 

wave-like structure present in the original profile. As above, the results of these tests 

were compared with those obtained using a vertically varying phase speed but the 

original mass flux correction scheme. Overall this was a negative change, introducing 

or amplifying spurious noise, and producing very large outflow phase speed values after 

the mass flux correction was applied. Using the two stretch horizontal grid, case 3 did 

improve slightly, but the results with the one stretch horizontal grid were less 

encouraging. The pressure solver failed to converge at the start of the two stretch 

horizontal grid simulation for case 4, and although the simulation using the one stretch 

horizontal grid did finish, the results were very discouraging. 
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7.3.4 Timestep adjusted to avoid clipping the outflow phase speed 

The control scheme clips the outflow phase speed in order to maintain numerical 

stability. Rather than alter the phase speed, which has a physical value and may be 

expected to affect the flow solution, this modification calculated the timestep which was 

required in order to avoid clipping the phase speed at all, and used that to adjust the 

model timestep where necessary. Section 8.1 explains when and how the timestep is 

monitored and adjusted in BLASIUS. Apart from this change, this outflow condition 

used the control scheme, so the phase speed did not vary in the vertical and the original 

mass flux correction calculation was used. 

The pressure solver failed to converge for both case 3 and case 4, and the vertical 

velocity plots were very noisy. The timestep was not changed many times by the 

stability condition on the phase speed, nor was it much smaller than in other 

simulations, but the drag coefficient was large and very noisy, and the mass flux 

correction had a marked effect on the outflow phase speed. 

7.4 Discussion and options for how to proceed 

The results presented in this chapter clearly indicate that the radiative outflow boundary 

condition does not always allow the flow to leave the model domain undisturbed. This 

indicates that there is a problem with the implementation of the Orlanski (1976) 

radiative boundary condition in BLASIUS. Some of the most marked difficulties are in 

dealing with initial noise, and these may be minimised by reducing the noise level, as 

discussed in section 8.4. After all, it is perhaps a little unfair to expect the boundary 

condition to deal with initial noise, which is not really a wave. However, problems 

have also been noted in dealing with a simple horizontally propagating wave, and 

attempts to find and fix such problems with the formulation of the boundary condition, 

as discussed in the previous section, have not proved successfiil. 
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Trying to find and fix inflow/outflow errors could be very time consuming, and may not 

have a high chance of success given the results presented in the previous section. One 

option could be to look for the optimal periodic configuration, which would avoid the 

problem of upstream contamination, but this does not solve the steady state isolated 

mountain problem, since there is a wave in the periodic horizontal velocity inflow 

profile. Although using a wider domain has proved to be of some use in reducing the 

impact of these problems, overall, these results indicate a need to fix, or at least find a 

way to minimise, problems with the outflow boundary condition formulation. 

The outflow boundary condition does seem to be sensitive to the horizontal grid spacing 

at the downstream edge of the domain, and/or to whether the horizontal grid is uniform 

or stretched, as suggested by results presented in this chapter and in Chapter 6. 

Although in some cases, the second grid stretch seemed to be causing spurious damping 

of waves, and forcing or amplification of noise, it is clear that the two stretch horizontal 

grid produced a much flatter, less noisy drag coefficient signal for case 3 than the one 

stretch horizontal grid, as shown in figure 6.13; the same was true of the comparison 

with the uniform grid. This indicates that the simulation on the two stretch horizontal 

grid approached a much better representation of a steady state, despite the spurious 

noise seen at the second grid stretch, than the other configurations. This may be 

because the second grid stretch seemed to act as a viscous layer, damping the wave as it 

moved into the less well resolved part of the domain, so that it did not reach the outflow 

boundary. Coarsening the resolution in this way may be a useful device to mitigate 

problems at the outflow boundary, where there may be a numerical reflection 

mechanism causing the wave to come back to the mountain and alter the drag 

coefficient. It should be noted that the surface pressure force (and hence the drag 

coefficient) is zero in the flat parts of the domain, so if there is a reflection at the 

outflow boundary, the drag coefficient signal will not show up any perturbation caused 

by that reflection until the effect acts over the mountain itself. The drag coefficient 

perturbations discussed above could be due to an outflow boundary problem, which 

may be causing a pressure wave to reflect into the domain when the wave head reaches 

the outflow boundary. Stationary waves such as those discussed here have zero phase 

speed, and the wave crests themselves do not move in the steady case, so the most 
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important factor is the propagation speed of the wave head during spin-up, as discussed 

earher. 

Another option is to have a viscous layer at the downstream boundary in which the 

equations are not solved, but the solution is relaxed back to the inflow conditions. This 

would be similar to the Rayleigh damping layer used at the top of the model domain, 

which was described in Chapter 4. This would permit the use of periodic boundary 

conditions, while still allowing the desired profiles to be fed in at the inflow boundary. 

The radiative outflow boundary condition would no longer be used, but this 

configuration would allow the solution of the steady state isolated mountain case. 

Orlanski (1976) gave a brief discussion of this option, noting that the method wastes a 

significant number of gridpoints close to the boundary, and that there could still be 

reflection issues at the start of the viscous layer. Investigations would be necessary in 

order to tune the viscous layer, similar to those described in Chapter 6 for the Rayleigh 

damping layer. Vosper (1995) used damping regions at the upstream and downstream 

boundaries, and found that 10 to 20 horizontal points were required in each damping 

region in order to prevent reflection and instability at these boundaries when the 

horizontal resolution was high. He found this to be more effective than simply applying 

the radiative boundary condition v îth relaxation at the edges of the domain. Clearly it 

makes the simulations more computationally expensive, due to the extra points added 

onto the numerical domain. 

Miranda and James (1992) used a variation of Orlanski's (1976) scheme, based on the 

work by Raymond and Kuo (1984), but with additional modifications to the numerical 

implementation, which substantially reduced spurious noise and reflection in their 

results. It could be worth investigating similar modifications to the implementation in 

BLASIUS. Orlanski (1976) suggested that the radiative boundary condition could be 

useful for cases where a weak mean flow is present and an initial inflow boundary 

condition could be changed to an outflow condition due to the presence of upstream 

propagating waves in the domain of integration. This merits further investigation for 

simulations such as those discussed here, since reflection of the upstream propagating 

waves (and initial noise present in the upstream domain) could well be having a 

detrimental effect on some of the solutions. Orlanski's scheme calculates the local 
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phase velocity at each time step, and then chooses an inflow or outflow condition 

depending on the sign of that phase velocity, but in BLASIUS either an inflow 

condition or an outflow conditions is imposed continuously at a particular boundary 

throughout the simulation, and not permitted to change character, which could explain 

some of the problems seen here. 

An alternative would be to continue to use the inflow/outflow boundary conditions, but 

with a much wider domain. Testing would be required in order to have confidence in 

the results and to be sure that the boundary was far enough away not to have an adverse 

impact. It may be possible to find a formula for the minimum value of some 

non-dimensional parameter which is necessary in order to remove or avoid outflow 

problems. Suggestions for these parameters include: 

U 
, where is the downstream fetch; 

the non-dimensional domain length —^, where is the horizontal wavelength; 

% 
, where c is the propagation speed of the wave head, and /y. is the total 

simulation time. 

Subject to tests of the effect of upstream fetch, the mountain could be moved from the 

centre of the domain, as suggested in Chapter 6, in order to provide a greater 

downstream fetch with minimal increase in computational expense. This is 

straightforward on a uniform horizontal grid, but for a long downstream domain with a 

stretched horizontal grid, coding would be required in order to construct the stretched 

grid as normal, and then add extra points on the downstream end. 

The drag coefficient signal is a useful indicator of how steady a simulation is. 

Figures 7.3 and 7.5, showing the signals for cases 1 and 3 respectively, are 

representative of the results obtained for these test cases. The large perturbation in the 

drag coefficient indicates a departure from the steady state. A steady solution does not 

necessarily exist for every case: Nance and Durran (1998), for example, have shown 

that non-linear dynamics can generate irregular, unsteady variations in a lee wave 

pattern even when the upstream flow is steady, which develop quite rapidly, and that 
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this variability increases with mountain height. However, cases 1 to 3 are designed to 

reproduce steady state analytical results, so numerical simulations of these cases should 

be expected to reach a steady state solution. 



8 Other sensitivity testing 

8.1 Halved timestep 

The stability of an explicit numerical model is linked to the Courant number (also called 

the CFL number after Courant, Friedrichs and Lewy, 1928), which fbr the 

one-dimensional case is where is a velocity magnitude, is the timestep and 

/IX is the gridlength. This can be extended to the three-dimensional case in several 

different ways. Three examples are: 

(7Ar F A r PFAf 
a = max 

AZ AF AZ 

/ F " PF" 
ex. — At.. :r 4 :r 4 ^ 

V A Z " A F " A Z " 

a = 
F PF ^ 

- 4 h 
A 1 ^ 

At 
AX AF AZ, 

where fU, V, W) are the magnitudes of the components of the three-dimensional velocity, 

and AZ are the gridlengths in the three directions respectively. Neglecting 

viscosity (since the simulations described in this thesis are all laminar, without a 

boundary layer, as discussed earlier), the third one of these is the form used in 

BLASIUS. More details of how the stability criterion is implemented in BLASIUS are 

given by Wood (1989). 

Depending on the numerical scheme used, the CFL number has an upper limit in order 

for the model to be stable. In BLASIUS, upper and lower bounds CFLUPP and 

CFLLOW are set, and the CFL number is calculated at each point in the model domain. 
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The maximum value is used to determine the timestep, which is changed if the 

maximum value of the CFL number, a, is outside the range < a < . 

In that case, the new timestep is calculated as follows: 

A ' „ = — — 
[ / F PF 

+ — + 
A / AZ, 

The default values are CFZ/Z,OPF= 0.2 and CFIC/Pf = 0.3, and if the CFL number 

lies outside this range then it is reset to 0.25 (aweiy) by using the above equation. 

The test described in this section halved the timestep compared to the way it was 

calculated in the original configuration, by halving the values of CfZZO^and 

CFLUPP to 0.1 and 0.15 respectively, and using a CFL number of 0.125 when 

adjusting the timestep. This might be expected to improve the numerical stability of the 

model. These simulations in theory go to steady state, so the timestep should not matter 

except for convergence to that steady state, and generally halving the timestep did speed 

up that convergence, with drag coefficient plots levelling out sooner and oscillating less. 

This modification was tested for various horizontal grids, as described in Chapter 6, and 

generally it reduced spurious noise in the vertical velocity signal, especially at the 

second grid stretch (where present) and near the outflow boundary. The smaller 

timestep meant that the outflow phase speed was subject to a less severe restriction, 

since it is not allowed to have a value greater than AX/At (more details can be found in 

Chapters 4 and 7). This may explain the benefits seen at the outflow boundary. This 

change had no impact on the interior flow pattern, and caused no adverse effects. In the 

descriptions which follow, 'full timestep' refers to the original configuration and 

'halved timestep' to the modified one described above. 

In case 3, using the horizontal two stretch grid, the introduction of the halved timestep 

meant that although the mountain grew over the same number of timesteps, it grew 

faster in the full timestep simulation (as discussed in section 8.4 below). Figure 8.1 

shows the vertical velocity fields at the end of the mountain growth, and there is more 

initial noise in the full timestep simulation, where the mountain grew faster. After 

40 NDTU, the initial noise had cleared, and the patterns were very similar, although the 

spurious noise around the second grid stretch was more noticeable in the full timestep 

simulation, and became even more so at later times, as shown in figure 8.1. 
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Figure 8.1. Vertical velocity plots for case 3 after 0, 40 and 140 NDTU (top, middle and bottom rows 

respectively), using the full and halved timestep (left hand and right hand columns respectively). The 

contour interval for the top two plots is 0.4 m s"' with a base contour of 0 .2 m s"', and for the remaining 

four plots, it is 0.2 m s"' with a base contour of 0.1 m s"'; the zero contour has been removed from these 

plots, but the flow pattern is still clearly visible. There is more initial noise in the full timestep 

simulation, and more spurious noise around the second grid stretch (70 km downstream of the mountain 

cresQ. 
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Using the one stretch horizontal grid, the fhll timestep simulation for case 3 was notably 

more noisy than the one using the two stretch grid. Halving the timestep greatly 

reduced this noise, but did not remove it completely. Both these simulations were 

significantly different from their two stretch grid counterparts, and this sensitivity to 

horizontal resolution was discussed further in Chapter 6. However, overall the halved 

timestep simulation was much less noisy than the fiill timestep simulation. The same 

was true of case 4, where both the initial noise and the outflow bull's-eye noise (as 

shown in the right hand plot of figure 6.12) were much reduced. 

This modification was retained in the final configuration, due to its positive impact in 

reducing spurious noise. 

8.2 Quasi-free slip surface condition 

Because the BLASIUS model was originally intended to simulate turbulent boundary 

layer flows, rather than laminar flows such as those described in this thesis, the surface 

boundary condition used is a no slip condition, as described in Chapter 4. Roache 

(1972) found that the surface boundary condition was the most important factor to take 

into account when attempting to simulate flows such as those in this work, which 

require a free slip condition. Modifications can be made to use a free slip surface 

boundary condition in BLASIUS, so that the velocity at the ground is everywhere 

tangential to the orography. This may be expected to remove the downstream surface 

gridlength wave (described below) seen in some simulations, and could have an impact 

on the flow elsewhere. The no slip boundary condition on the velocity sets all three 

components to zero at the surface. In the free slip case, the gradient of each horizontal 

velocity component perpendicular to the surface is set to zero, and the boundary 

condition on the vertical velocity component ensures that the velocity perpendicular to 

the surface is zero. The surface boundary condition tested here is referred to as the 

'quasi-free slip' boundary condition, because the pressure solver still has a no slip 

boundary condition at the surface. Whilst this produces an inconsistent boundary 

condition, which may have a detrimental effect on the results, changing the pressure 
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solver would require a lot of coding and is not worthwhile since this modification is 

only used for laminar simulations without a boundary layer, which form a very small 

part of the overall work done with BLASIUS. A constant viscosity was used for the 

quasi-free slip simulations, rather than the first order closure described in Chapter 4, 

which was used for no slip simulations. This constant viscosity should be set to zero for 

a truly inviscid simulation, but as discussed in Chapter 4, a very low viscosity is 

necessary in the model in order to satisfy the no slip condition. 

In some configurations, the vertical velocity plots for cases 1 and 4 showed a 

downstream surface gridlength wave in the vertical velocity plots, which was visible as 

a very shallow layer of noise near the surface downstream of the mountain, with peaks 

which matched exactly onto the horizontal gridpoints used in the model. It did not seem 

to have any detrimental effect on the solutions, with no obvious impact on the main 

flow solution. In general, the quasi-free slip surface condition removed the downstream 

surface gridlength wave, where present. In case 4, for the fiill timestep case, it also 

improved the spurious noise at the outflow boundary, as shown in figure 8.2. (The 

previous comments regarding the non-dimensional simulation time for case 4 should be 

borne in mind here.) However, using the halved timestep, the quasi-free slip simulation 

for case 4 crashed when the pressure solver failed to converge at the start of the 

simulation. In both the full and the halved timestep simulations, the quasi-free slip 

modification did sometimes have adverse effects, introducing noise both at the outflow 

boundary and at the base of the Rayleigh damping layer. This could be to do with the 

lack of a free slip modification in the pressure boundary condition at the surface, since 

any problems due to this would be likely to feed into the pressure solver, which is where 

these simulations failed. On balance, the quasi-free slip modification was rejected. 
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Figure 8.2. Vertical velocity plots for case 4 after 7.5 NDTU, using the n o slip and quasi-free slip surface 

boundary conditions. The contour interval is 0.05 m s"' with a base contour of 0.025 m s"'; the zero 

contour has been removed from these plots, but the flow pattern is still clearly visible. The 'bull's-eye' 

signal at the outflow boundary in the no slip simulation is much reduced in the quasi-free slip simulation, 

and the downstream surface gridlength wave (visible as a very shallow layer of noise in the left hand plot) 

is removed. 

8.3 Tests of different mountain shapes 

The BLASIUS model offers a number of different mountain shapes, as well as the 

option to import a data set of terrain height values. Most analytical studies, including 

those presented by Durran (1986) and Keller (1994) which were discussed in Chapter 5, 

use a Witch of Agnesi mountain, because this has a straightforward Fourier transform. 

This mountain shape can be used in BLASIUS, or alternatively a cosine-squared 

mountain can be used to approximate the Witch of Agnesi one. Figure 8.3 shows an 

example of how the two mountain shapes compare for a mountain height of 500 m. The 

width of the cosine-squared mountain is chosen so that the cross-sectional area is the 

same as that of the Witch of Agnesi mountain. 
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Figure 8.3. Comparison of Witch of Agnesi and cosine-squared mountains of the same height (500 m in 

this example) and cross-sectional area. In this case the Witch of Agnesi mountain has half width 2500 m, 

and the cosine-squared mountain has width 15700 m. 

The equation for the Witch of Agnesi mountain is 

A(%) 
a +%-

where is the mountain height as a function of distance from the crest, is the 

height of the crest, and a is the half width of the mountain, defined as the distance from 

the crest at which the mountain height is h„/2. This gives a cross-sectional area of 

The equation for the cosine-squared mountain is 

A(x) = cos^ 
v T y 

for -Z/2<%<Z/2, and zero elsewhere. Here and are as previously defined, and Z 

is the width of the mountain. This gives a cross-sectional area of hmL/2. For a Witch of 

Agnesi mountain of half width 10 km, a cosine-squared mountain of the same area has a 

width of 62.8 km. It is clear from figure 8.3 that the cosine-squared mountain has a 

much steeper slope than the Witch of Agnesi at the base, and that the Witch of Agnesi 

has the steeper slope of the two at the peak, although the difference in slope is less at the 

peak than at the base. 

Tests were carried out using two Witch of Agnesi mountains of half width 10 km, with 

heights 100 m and 500 m, and their cosine-squared equivalents (i.e. those of the same 
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cross-sectional area), for the case with constant background wind speed and static 

stability. These simulations used a uniform grid in both the horizontal and the vertical 

directions, and periodic boundary conditions. Figure 8.4 shows the vertical velocity 

fields for the 100 m high motmtain after 140 NDTU. In changing from a Witch of 

Agnesi mountain to a cosine-squared mountain, the maximum slope was reduced, and 

the wave signal became wider with smaller vertical velocity magnitude. The vertical 

velocity contours had more noticeable noise and the drag coefficient was larger (and 

less steady in the 500 m case). A further investigation, using a narrower mountain of 

height 500 m, whose Witch of Agnesi half width was 5 km, giving a cosine-squared 

width of 31.4 km, gave similar results to those described above for the wider mountain. 
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Figure 8.4. Vertical velocity after 140 NDTU for two 100 m high mountains of different shapes but equal 

cross-sectional areas. The contour interval for the vertical velocity is 0.01 m s"' with a base contour of 

0.005 m s"'; the zero contour has been removed from these plots, but is very smooth both upstream and 

downstream of the wave. The left hand plot is a Witch of Agnesi mountain of half width 10 km; the right 

hand one is a cosine-squared mountain of width 62.8 km. 

Tests were also carried out for the troposphere-only and troposphere-stratosphere cases 

used in Keller's (1994) work. Figure 8.5 shows the results from the troposphere-only 

numerical simulation using a cosine-squared mountain, compared with Keller's 

figure 3, but note that the contour interval used in this plot is half that in Keller's. A 

quantitative comparison shows that the maximum vertical velocity values in the wave 

pattern produced by the simulation were at least 75% weaker than those obtained in the 

analytical results. This may be partly explained by the presence of numerical viscosity 
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in the simulation, which damps the wave motion (as discussed in Chapter 5), and partly 

by the result found above, that the cosine-squared mountain gives a smaller magnitude 

wave signal than the corresponding Witch of Agnesi mountain. 
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Figure 8.5. Vertical velocity for case 2, the troposphere-only case, shown for part of the model domain to 

allow easier comparison with Keller's (1994) figure 3, which is shown on the left. The contour interval in 

the numerical simulation, which uses a cosine-squared mountain, is 0.1 m s ' \ half that used in Keller's 

plot. Note that in this case, all of Keller's contours are solid; the leftmost cell is negative in this plot. 

For the troposphere-stratosphere case, figure 8.6 shows the results from the BLASIUS 

simulation using a cosine-squared mountain, compared with Keller's figure 5, with the 

same contour interval used in both plots. Again, there was a difference in the intensity 

of the wave, but this time the vertical velocity signal near the mountain was much 

stronger in the numerical simulation than in the analytical result, increasing by over 

80% at later times. This does not fit with the above observations about the 

cosine-squared and Witch of Agnesi mountains, or with the results found for the 

troposphere-only case. The peak in vertical velocity magnitude is in the trapped wave 

rather than in the upwardly propagating wave, and the above results indicate that the 

magnitude of the trapped wave should be smaller in the numerical simulation than in the 

analysis. This is the case further from the mountain, where the flow was slightly 

(15-30%)) weaker, and the most likely explanation for the increase close to the mountain 

is that there is a non-linear interaction between the two propagating wave trains, as 

discussed in Chapter 5. 
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Figure 8.6. Vertical velocity for case 3, the troposphere-stratosphere case, shown for part of the model 

domainlo allow easier comparison with Keller's (1994) figure 5, which is shown on the left. The contour 

interval in the numerical simulation, which uses a cosine-squared mountain, is 0.2 m s"\ the same as that 

used in Keller's plot. 

It was decided to use a Witch of Agnesi mountain rather than a cosine-squared 

mountain, since the results are less noisy and more robust. Much of the noise seen in 

the cosine-squared tests can be explained by the steep slope at the base of the mountain, 

which provides a strong initial forcing. Care is required in order to resolve adequately 

the sharp peak of the Witch of Agnesi mountain, as discussed in Chapter 6, but its use 

allows easier comparison with analytical results. 

8.4 Initial noise and mountain growth 

A two- or three-dimensional BLASIUS simulation starts with a flat surface and grows 

the mountain into the domain over a given number of timesteps; this number is input as 

a parameter. As discussed in section 8.1, the timestep is determined from the velocity 

components and the grid spacing, so the time taken to grow the mountain will not 

necessarily be the same in two simulations with different physical parameters, even if 

the number of timesteps chosen is the same. For example, a simulation where the 

background wind is constant with height, such as case 1, will have a larger timestep 

than one where the background wind increases with height, such as case 2. In reality, 
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the timestep can be quite different from what might be intuitively expected from the 

calculation described in section 8.1, and this is discussed below. 

The process of growing the mountain introduces a forcing into the simulation, and in 

most cases the early vertical velocity data shows 'initial noise' due to this forcing. 

Figure 8.7 shows examples of this for two very different cases, where the mountain was 

grown over 1000 timesteps in each case. The left hand plot is for the constant [/, 

constant N case, with a 100 m high Witch of Agnesi mountain of half width 10 km. 

There is hardly any initial noise in this case, which is what one would intuitively expect, 

since the mountain has a very shallow maximum slope of 0.0065, and grows relatively 

slowly, over 12500 seconds. The right hand plot is for the troposphere-stratosphere 

case, with a 500 m high cosine-squared mountain of width 15700 m. The initial noise 

in this case is much stronger, as one would expect, with the larger mountain (five times 

as high, and with a maximum slope of 0.1) providing a far stronger forcing, and also 

growing much faster, over 5000 seconds. 
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Figure 8.7. Vertical velocity at the end of mountain growth (0 NDTU). T h e left hand plot is for the 

constant U, constant # case, with a 100 m high Witch of Agnesi mountain of half width 10 km; here the 

contour interval is 0.01 m s"' and the mountain grew over 12500 seconds; the Rayleigh damping layer 

started at 20 km. The right hand plot is for the troposphere-stratosphere case, with a 500 m high 

cosine-squared mountain of width 15700 m; here the contour interval is 0 .4 m s"' and the mountain grew 

over 5000 seconds; the Rayleigh damping layer started at 60 km, so the vertical domain plotted is three 

times that shown in the left hand plot. There is far more initial noise in the latter case. 
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The right hand case in figure 8.7 is an inflow/outflow simulation, so the initial noise 

flows out of the downstream domain and does not reappear upstream of the mountain. 

The left hand case is periodic, but since the initial noise is very slight and there is no 

horizontally propagating wave, no ill effects are seen. Using periodic boundary 

conditions in the right hand case, however, caused the strong initial noise seen in 

figure 8.7 to re-enter the domain upstream and destroy the upper level wave as it passed 

through, and this effect was discussed in the previous chapter. Durran and Klemp 

(1982) pointed out that a radiative outflow boundary condition downstream should 

allow the initial transients to pass out of the domain, so the model should not be highly 

sensitive to the initialisation procedure. They found that this was true for their model, 

but in BLASIUS the initial noise can cause problems at the outflow boundary, as 

discussed in Chapter 7. In any case, it is desirable to minimise this noise as far as 

possible, and one would expect to achieve this by growing the mountain more slowly. 

Investigations for the constant U, constant N case have revealed some simple formulae, 

linking the maximum mountain slope, the horizontal velocity and the horizontal grid 

spacing, which calculate with sufficient accuracy how many timesteps should be used to 

grow the mountain in order to keep the initial noise below a chosen level. Further 

investigations will need to include other cases, in order to produce a more general result. 

The first of these empirical formulae relates the maximum initial noise (in terms of the 

magnitude of the vertical velocity signal), the maximum mountain slope, and the time 

taken to grow the mountain. The maximum initial noise over the whole model domain, 

Aiiax (m s"'), is non-dimensionalised by U, and this quantity is plotted on the 

horizontal axis of figure 8.8. The time (in seconds) taken to grow the mountain, , is 

non-dimensionalised by — , since the mountain height is a more relevant length scale 
K 

here than the half width, as used to non-dimensionalise the simulation times elsewhere 

in this thesis. The vertical axis of figure 8.8 shows — , where 5"̂ ^̂  is the maximum 

mountain slope. Results are plotted for 24 simulations, which differ in mountain shape, 

height and width, in vertical domain height, in Rayleigh damping layer height and 

coefficient, in vertical and horizontal grid, in upstream and downstream boundary 
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conditions, and in the number of timesteps used to grow the mountain. The average 

point and the line of best fit exclude the simulations which produced no initial noise: 

these used gently sloping mountains (of maximum slope 0.005 or less), which provide a 

very weak forcing, so the mountain could be grovm more quickly in these simulations 

and no initial noise would be expected until r became very small. A useful test would 

be to investigate the limiting case where the mountain is grown over one timestep: 

initial noise would be expected for any mountain in this case, and it would be 

interesting to see how quickly the flow would adjust to the instantaneous appearance of 

the mountain. The average point and the line of best fit also exclude the simulation with 

a very steep Witch of Agnesi mountain (of maximum slope 0.13), since this simulation 

was unrepresentatively noisy due to its inadequate horizontal resolution (which was 

discussed in Chapter 6). 

200000 

150000 

w 100000 

OB 
soooo 

-t- ' ' 20000 1 1 1 
4-

- -

1 
15000 + 

-h 
-

- -

s g 

5 

10000 
-t- + 

- - 6 5000 ++ 
-

J. . — t 
, J. 0 1 1 1 

-0.01 0.00 0.01 0.02 0.03 0.04 0.05 
I m a x / U 

-0.01 0.00 0.01 0.02 
I m a x / U 

0.03 0.04 

Figure 8.8. The relationship between the time taken to grow the mountain, the maximum mountain slope 

and the maximum initial noise level throughout the model domain, as described in the text. Results are 

shown for 24 different simulations. Crosses indicate simulations using a Witch of Agnesi mountain; 

asterisks indicate those using a cosine-squared mountain. The average (excluding four simulations, as 

described in the text) is denoted by a diamond, and the line of best fit is marked for the same subset of 

simulations. The right hand plot is a close-up of the left hand one, to show the region of interest more 

clearly; it excludes the simulations which are not used in calculating the average or the line of best fit. 

The line of best fit plotted in figure 8.8 has the equation 

=8950-84025-^""^ 

The total time taken to grow the mountain is then given by the following formula: 
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This can be used to calculate how many seconds should be used to grow the mountain 

in order to achieve a chosen level of initial noise for a particular mountain slope. 

Although a goal of no initial noise is desirable, in many cases this is not 

computationally practical, since it can require up to 40000 seconds to grow the 

mountain. In practice a non-zero initial noise level (up to around 0.1 m s"') can still 

provide satisfactory results. 

The results shown in figure 8.8 used different numbers of timesteps to grow the 

mountains, ranging from the default value of 1000 up to 10836 timesteps in one case. 

Some of these simulations were carried out in order to test the formula obtained from 

earlier results, and they fitted in well with the pattern. Generally there was no 

difference between a pair of otherwise identical simulations where the mountain grew at 

different speeds, except that the spin up was slower in the one where the mountain was 

grown more slowly. This slower spin up was evident in the vertical velocity signal, 

which was weaker at earlier times, and in the drag coefficient signal, which took longer 

to climb initially. The initial noise was reduced as expected, and after the mountain had 

finished growing, the results were the same in both simulations. 

Once this formula has been used to determine the number of seconds desired to grow 

the mountain, another relationship is required to calculate how many timesteps this will 

take. The timestep is not easily determined in advance of starting the simulation, 

because it can be different from what would be obtained by using the equation given in 

section 8.1. That equation, for the two-dimensional case, gives 

a 
Ar 

AZ 

where a is 0.125 here. For the purposes of this calculation, the above equation was 

reduced to one dimension by neglecting the term, since the vertical velocity is 

identically zero in the basic state. Although this may not be strictly justified on a scale 

analysis of the two terms in the wave motion itself, consideration of the basic state is 

sufficient for the purpose here, since the calculation does not need to be highly accurate. 
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This gives an expected timestep of , but in practice the timestep is often much 
SU 

smaller than this. The expected time taken to grow the mountain, , is defined as 

8C/ 

where » is the number of timesteps taken to grow the mountain. The actual time taken 

to grow the mountain, f , can be expressed as a percentage of the expected time taken 

to grow the mountain as follows: 

C 800CC/ 
= 100 

This percentage gives a measure of how much the actual timestep differed from what 

was expected. 

Figure 8.9 shows a graph of this percentage against the maximum mountain slope for 

the same range of simulations as figure 8.8. For simulations using a stretched 

horizontal grid, the smallest grid spacing was used, since that leads to the smallest (i.e. 

most restricted) timestep. The average excludes the same values as before, as does the 

linear line of best fit, which has the equation 

800r[/ 
— = 795"̂ ^ - 2 1 9 . 

However, in this case it is appropriate to include the simulations with the gentle 

mountain slopes, since one would intuitively expect the percentage to be close to 100 

for these cases, which fits with the results obtained. A curve has been fitted by eye to 

all but the remaining excluded point, with the equation 

800r[/ 1 
percenfage = ^— = + 51.25. 

0.8^_+0.02 

This demonstrates how a steeper mountain leads to a non-linear decrease in the 

timestep, compared to what was expected. A plausible explanation of this is that there 

is a non-linear feedback process whereby the steeper mountain causes larger 

perturbations, leading to larger velocity values and hence a smaller timestep, and so the 

mountain grows faster. 
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Figure 8.9. The relationship between the time taken to grow the mountain, expressed as a percentage of 

the time it would be expected to take using the equation given in section 8.1, and the maximum mountain 

slope. The vertical axis starts at 45% rather than at zero, to make the results easier to see. Results are 

shown for the same 24 simulations as in figure 8.8. Crosses indicate simulations using a Witch of Agnesi 

mountain; asterisks indicate those using a cosine-squared mountain. The average (excluding four 

simulations, as described in the text) is denoted by a diamond, and the line of best fit (solid line) is 

marked for the same subset of simulations. The dashed line is a curve fitted by eye to all simulations 

except for one extreme value considered unrepresentative. More details are given in the text. 

The above equation can be rearranged to give the following formula for the number of 

timesteps used to grow the mountain: 

^ 640i,{/(40S.,„ +1) 

AA'(1640S,.„+81) 

In order to calculate how many timesteps are needed to grow the mountain for a chosen 

maximum initial noise level 1 , this formula is combined with the one obtained earlier 

for initial noise, to give; 

n„ =16000 & 
1640^__+81 

^ 1 ^ 
358-3361 ^ 

V U J 

This should be tested for other cases with varying upstream wind and temperature 

profiles, but it does hold to an acceptable degree of accuracy for a wide range of 

simulations with constant values of U= 10 m s"' and N= 0.01 s~'. 



9 Discussion and suggestions for future work 

9.1 Summary and recommendations 

Several numerical issues have been investigated in this thesis: grid independence, 

inflow/outflow boundary conditions, the model timestep, the surface boundary 

condition, the mountain shape, and the initial transience caused by growing the 

mountain into the model domain at the start of a simulation. No numerical model can 

provide a perfect representation of the real atmosphere, because there are always 

approximations involved, so it is inevitable that numerical issues such as those 

encountered here will arise to some extent. However, the results presented in Chapter 5, 

obtained after completion of the above investigations, show that the effects of these 

issues have been minimised adequately to allow satisfactory simulation of the cases 

studied here. In addition, suggestions have been made for further investigations where 

appropriate. This section summarises recommendations for future work using 

BLASIUS to simulate this type of flow. 

It should be emphasised here that BLASIUS has been used successfully for boundary 

layer flows over hills for several years, and that there is confidence in the model; 

references for this type of work were given in earlier chapters of this thesis. The 

investigations presented here have tested the model for cases which go beyond its 

original intended purpose: as discussed in Chapter 2, BLASIUS was not designed with 

this type of gravity wave flow in mind. Because of this, some teething problems are to 

be expected during this preliminary testing phase. The main issue revealed by the 

present study is a sensitivity of the model results to the formulation of the upstream and 
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downstream boundary conditions, and the grid independence issues are not obviously 

unrelated to this. However, it should be borne in mind that other models have been 

used to simulate two-dimensional orographic gravity wave flows such as those 

considered here, without such problems (e.g. Durran and Klemp, 1982, among many 

others), which suggests that the issues raised here are simply linked to recent model 

changes and are not insurmountable. 

The dominant issue by far is the outflow boundary condition, and several options for 

further investigation were suggested in section 7.4. More testing is required, but in the 

meantmie recommendations for using the present code are given here. Clearly care is 

required in order to resolve the mountain adequately, especially any smaller scale 

features such as the relatively sharp peak on a Witch of Agnesi mountain. However, 

small horizontal gridlengths can cause spurious noise, especially in the downstream 

domain and most notably near the outflow boundary. The reasons for this are not 

entirely clear, and further investigation is required, but the problem does seem to be 

linked to the outflow boundary condition. Pending further testing, the recommendation 

for the model as it currently stands, with the outflow boundary condition coded in its 

present form, is to use the largest horizontal gridlength which will resolve both the 

mountain and the wavelength of the resulting flow pattern, and to use stretching so that 

the gridlength can become larger near the boundaries, to minimise problems there. The 

stretching needs to be done slowly and smoothly (maximum expansion ratios of 1.05 

seem to produce satisfactory results) in order to minimise spurious internal reflections. 

The wave signal will obviously become less well resolved as the horizontal resolution 

decreases, so care is required to maintain adequate resolution in the region of physical 

interest, and the rest of the domain should be regarded as a numerical damping region, 

similar to the Rayleigh damping layer at the upper boundary. The domain needs to be 

wide enough for the mountain and the expected wave signal: whilst a horizontally 

propagating wave should leave the numerical domain undisturbed (whether through the 

downstream boundary or by numerical damping due to decreasing resolution), a 

vertically propagating wave should really be contained within the confines of the 

horizontal numerical domain. 
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Similar comments apply for the vertical resolution: the minimum should be four 

gridlengths (five gridpoints) per wavelength, but preferably more. A uniform vertical 

grid is satisfactory for laminar simulations such as those discussed here, but stretching 

will become necessary when a boundary layer is introduced, in order to obtain adequate 

resolution at low levels. This is discussed further in the next section, but one thing to 

bear in mind is the expansion ratio: the resolution can easily become too coarse at upper 

levels, and this can have a detrimental effect on the Rayleigh damping scheme, which is 

explicitly dependent on the vertical gridlength. The Rayleigh damping scheme itself 

could be more effective after further testing and tuning for gravity wave cases such as 

these, and suggestions for how to do this were given at the end of Chapter 6. 

When comparing different simulations, non-dimensional time should be used in order to 

remove differences due to the speed of mountain growth, and in order to compare 

physically different simulations in a consistent non-dimensional manner. The formula 

derived in section 8.4 gives an idea of how quickly to grow the mountain. This needs 

testing for cases other than the constant [/, constant # case for which it was derived 

(case 1), but provides a useful method to minimise the initial noise, thereby minimising 

reflection at the outflow boundary and general spurious noise during the simulation. 

The drag coefficient is a good indicator of whether a simulation has reached steady 

state; large perturbations can often be explained by looking for signs of reflection at the 

outflow boundary and calculating how long the initial noise or propagating wave head 

would take to reach the mountain in that case. 

9.2 Suggestions for further work 

Work is currently underway at The Met. Office (Smith, private communication) to 

reproduce cases 2 and 3 of the results presented here, which were based on Keller's 

(1994) analytical work, using a fully compressible model, and the results from that 

study are in broad agreement with those presented here, as discussed in Chapter 3. The 

next step in order to build on this groundwork is to introduce a boundary layer into 

these gravity wave simulations. Recent simulations at The Met. Office of flow over 
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mountains using the BLASIUS model have included a realistic representation of the 

boundary layer. In addition, preliminary simulations similar to case 3 described in 

Chapter 5, but with different generic types of boundary layer, have shown a sensitivity 

of the lee wave structure to the presence of the boundary layer (Guilbaud, private 

communication). Peng and Thompson (1998) demonstrated that the boundary layer on 

the lee slope acts to effectively change the terrain profile, and concluded that this caused 

the changes which they observed in the downstream flow in their results compared to 

the case with no boundary layer. 

Future work using two-dimensional model simulations for three different boundary 

layer types (neutral, stable and convective) would be useful, in order to investigate 

interactions between the boundary layer and the free atmosphere. Following on from 

this, investigations into the effect of variations in the relative heights of the mountain 

and the boundary layer could be carried out, to assess differences in the flow when the 

mountain is not wholly contained within the boundary layer. Including the boundary 

layer requires better vertical resolution at low levels, and before commencing these 

simulations, the simulations described in Chapter 5 should be repeated with this 

'boundary layer grid', to ensure that the increased resolution itself does not change the 

solution. The boundary layer simulations will be more computationally expensive than 

the ones discussed in this work, due to the increased resolution and the representation of 

turbulence. 

One of the first tasks when commencing turbulent boundary layer simulations of 

phenomena such as rotors (i.e. separation and reattachment of the downstream flow) 

should be to examine which turbulence closure is most appropriate for this work, since 

it can affect the details of the separation which occurs in the model for a given case. 

Wood (1995) discusses this aspect, as well as giving a more general overview of 

separation for neutral turbulent flow over hills. Although stable stratification is required 

for the gravity wave flows studied here, the same broad principles are likely to apply, 

and will certainly provide a starting framework. Hunt (1980) provides a discussion of 

the various regimes, including lee side separation and rotor formation. 
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The issue of how to diagnose flow separation in the model simulations will need to be 

addressed. Coulter (1998) simply followed the streamline close to the surface, and if it 

detached, diagnosed separation. In two dimensions she found that this was usually 

dramatic, with a large detachment of the streamline from the surface, and a distinct 

closed separation bubble. In three dimensions the diagnosis of separation is more 

difficult than in the two-dimensional case, since the streamfunction cannot be defined, 

and Coulter (1998) describes two techniques. The first uses path tr^ectories as 

streamlines, following particles from close to the surface from different horizontal 

locations over the domain, looking for a significant increase in distance from the 

ground. An alternative method uses flow visualisation, tracing particles using the 

tangential surface stress field to represent the velocity, and looking for singularities 

where is zero at the surface. These appear as strong divergence or convergence of & 

the particle paths, but are not a necessary condition for flow separation in three 

dimensions, so Coulter used both methods. 

Investigations aimed at gaining an improved understanding of rotors should include the 

effect of variations in mountain shape, height, width and slope, to find out which lead to 

rotor formation, including using an asymmetric mountain to achieve the steep lee slope 

which is believed to be preferential for rotor formation. Preliminary work using an 

asymmetric mountain, where the downstream part was half the width of the upstream 

part, was carried out in this project, but much more investigation is required. In 

addition, the effect of variations in upstream basic state profile should be studied in each 

of these situations, to explore the parameter space further and find out which situations 

are most likely to lead to rotor formation. The next step will be to combine these and 

investigate the interaction between the two factors, as well as investigating the effects of 

boundary layer stability. Surface roughness can also change results, with a smoother 

surface acting to retard separation (Hunt, 1980), so this is another area worthy of 

investigation. 

Idealised initial profiles have been used for the basic state in this thesis, but for rotor 

simulations, suitable basic state profiles from observed and documented cases of rotors 

should be given particular attention. Examples of these can be found in Dent and 

Dyson (1963), Bedard and Neilley (1998) and Olivier and Poulos (1998). The use of 
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realistic terrain profiles would also be beneficial, since these are usually very different 

from an isolated idealised ridge or mountain, and interaction between wave trains 

excited by neighbouring orography frequently becomes important. 

After the two-dimensional investigations, three-dimensionality should be explored. 

Miranda and James (1992) used a three-dimensional numerical model to examine wave 

breaking and flow splitting with a bell-shaped mountain at low Froude number, and 

found that the results were not the same as those obtained in two dimensions. Htmt 

(1980) also found differences in lee side separation in two and three dimensions: the 

two-dimensional separation had closed streamline loops and reattachment at the 

downvyind end of the separation, whereas the three-dimensional flow was much more 

complicated. He noted from both experimental and theoretical evidence that an isolated 

mountain tends to produce a longer separated region than a mountain followed by 

another mountain. Once rotor simulation has been achieved in two-dimensional 

simulations, and parameter space explored to find out when rotors form, validation of 

these results using three-dimensional simulations will be crucial. These simulations 

will be very computationally expensive and it may prove necessary to reduce the model 

domain and/or the resolution, performing tests similar to those carried out in this thesis, 

in order to find a suitable configuration. Initial three-dimensional simulations should 

include an infinite two-dimensional ridge, to compare the results with those obtained for 

the same case in two dimensions, and validate the model. Queney et al. (1960) reported 

that both theory and observations have shown that individual mountains are much less 

effective in exciting trapped lee waves than are long ridges. The waves tend to have 

smaller amplitude and less downstream extent, which is partly explained by the 

possibility for air flow around the mountain as well as over, and means that forecasters 

and pilots can afford to pay less attention to these isolated mountains than to long ridges 

of similar height. This finding may go some way towards explaining why discussions 

of rotor observations mainly talk of ridges, and the distinctive roll cloud which marks 

the rotor along the length of the ridge. However, even with seemingly two-dimensional 

orography such as this, three-dimensional flow effects can and do appear. Inclusion of 

moisture in the model might also be useful, as it would provide some indication of 

whether clouds are likely to be formed, and therefore whether the visual warning signs 

upon which pilots depend are likely to be present. Castro and Snyder's (1993) results 
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also indicate that emphasis on mountain slope can be misleading, and that spanwise 

width may be equally, if not more, important in determining the flow regime, so this is 

worth investigating. However, it should be noted that those results were obtained for a 

towing tank, and may not be directly applicable to the atmospheric simulations in this 

work. 
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f A/b(jg/Zmg (ed. F.T.M. Nieuwstadt and H. Van Dop), D. Reidel Publishing 

Company, Dordrecht, Holland: 1-36 



H. J. Hewson 2000 References Page 173 

Camey, T.Q., Bedard, A.J., Jr., Brown, J.M., McGinley, J., Lindholm, T. and Kraus, 

M.J. (1996) aW TTzgzr Handbook, Dept. 

of Commerce, NOAA, Boulder, Colorado [Recently republished as US Federal 

Aviation Administration Advisory Circular 00-57] 

Castro, LP. and Jones, J.M. (1987) Studies in numerical computations of recirculating 

flows, W. J! ybr 7: 793-823 

Castro, LP. and Snyder, W.H. (1993) Experiments on wave breaking in stratified flow 

over obstacles, Jbwma/ AfecAaM/cj 255: 195-211 

Castro, LP., Snyder, W.H. and Baines, P.G. (1990) Obstacle drag in stratified flow, 

f q / f / z e ZoWoM A429 (1876): 119-140 

Castro, LP., Snyder, W.H. and Marsh, G.L. (1983) Stratified flow over 

three-dimensional ridges, Journal of Fluid Mechanics 135: 261-282 

Clark, T.L. and Miller, M.J. (1991) Pressure drag and momentum fluxes due to the 

Alps. IL Representation in large-scale atmospheric models, q/"fAg 

.RoyaZ MgfeomZog/caZ 117: 527-552 

Coleman, G.N., Ferziger, J.H. and Spalart, P.R. (1992) Direct simulation of the stably 

stratified turbulent Ekman layer, Journal of Fluid Mechanics 244: 677-712 

Corby, G.A. (1954) The airflow over mountains: A review of the state of current 

knowledge, JbwrMaZ TZqyaZ Mgfeoro/ogzcaZ 80: 491-521 

Coulter, S.C. (1998) Flow Over Forested Hills, Ph.D. thesis. Environment Centre, 

University of Leeds (unpublished) 

Courant, R., Friedrichs, K. and Lewy, H. (1928) Uber die partiellen 

Differenzengleichungen der mathematischen Physik, Math. Ann. 100: 32-74 



H J. Hewson2000 References Page 174 

Crapper, G.D. (1959) A three-dimensional solution for waves in the lee of mountains, 

Jowrna/ q/MwzWMzcAanzcj' 6: 51-76 

Davis, R.E. (1969) The two-dimensional flow of a stratified fluid over an obstacle, 

JbwA-Ma/ F Z w z c / 3 6 ( 1 ) : 127-143 

Dent, L. and Dyson, B. (1963) Rotor Streaming Over the Pennines, 

Mzgazmg 92: 358-363 

Dombrack, A., Leutbecher, M., Kivi, R. and Kyro, E. (1999) JWownrazM x/orrg 

record/ Zow a6ove A'brfAgrM Institut fiir Physik 

der Atmosphare Report No. 115 

Dombrack, A. and Schumann, U. (1994) Numerical simulation of breaking gravity 

waves below a critical level, in fo r A e w o r A i y A q p OM 

MarcA 2 ^ ^ - e d s . P. 

Voke, J.-P. Chollet and L. Kleiser, Institut fur Physik der Atmosphare Report No. 17 

Drazin, P.G. (1961) On the steady flow of a fluid of variable density past an obstacle, 

ZeZ/wj 13: 239-251 

Durran, D.R. (1986) Mountain Waves, MzfeoroZog}' ant/ (Ed. 

P.S. Ray), American Meteorological Society, Boston, Mass.: 472-492 (Chapter 20) 

Durran, D.R. (1991) Orographic Wave Drag on the Lower Troposphere: The 

Importance of Trapped Waves, freprm/j, EzgAfA 

OceaMzc PFavgj' aW (American Meteorological Society, 14-18 October 1991, 

Denver, Colorado): 377-380 

Durran, D.R. (1995) Do Breaking Mountain Waves Decelerate the Local Mean Flow? 

u/owmaZ 5'cfgMcgj' 52 (22): 4010-4032 



H. J. Hewson 2000 References Page 175 

Durran, D.R. and Klemp, J.B. (1982) The effects of moisture on trapped mountain lee 

waves, Joz//Tza/ 5'czgMcg.y 39 (11): 2490-2506 

Dutton, J. A. and Fichtl, G.H. (1969) Approximate equations of motion for gases and 

liquids, o/fAe 26: 241-254 

Eliassen, A. and Palm, E. (1960) On the transfer of energy in stationary mountain 

waves, 22 (3): 1-23 

Famell, L. (1977) A'wTMg/'fca/ q/yZoM; m a TE 5'o/ŵ oM q/ 
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