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Niblo and Reeves [NR2] constructed a cubing for each Coxeter group using 

the hyperplanes of the Coxeter complex. In Part I Coxeter groups and 

cubings the natural action of the Coxeter group on this cubing is investi-

gated. In particular the cocompactness or not of this action is studied. Using 

the geometry of the Moussong complex (another complex for a Coxeter group 

introduced by Gabor Moussong in [Mou]) it is shown that hyperbolic and 

right-angled Coxeter groups act cocompactly and Euclidean Coxeter groups 

act non-cocompactly and that the action is non-cocompact if and only if there 

exists an infinite family of non-conjugate isomorphic triangle subgroups. 

In Part II Engulfing and subgroup separability for word-hyperbolic 

groups theorems of Darren Long [L] concerning fundamental groups of 

closed hyperbolic manifolds are generalised to word-hyperbolic groups. The 

main result is that if a torsion-free word-hyperbolic group has a certain en-

gulfing property then every quasiconvex subgroup is contained as a finite 

index subgroup in a separable subgroup. 
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Part I 

Coxeter groups 

and cubings 



Chapter 1 

Introduction 

My research has teiken me in two distinct directions, the hrst being the 

development of the area of Coxeter group actions on non-positively curved 

cube-complexes. The second is my work on the residual properties of word-

hyperbolic groups which is dealt with in Part II. 

A Coxeter group is a finitely presented group with a presentation in 

which every generator is an involution and the relations give the order of the 

product of two generators. The study of these groups was begun by Tits 

[Tl] who named them after Harold Scott Macdonald Coxeter who studied 

reflection groups of Euclidean spaces. (See for example [CI], [C2], [C3].) 

The book [DGS] is an excellent place to look for a wide range of applications 

of Coxeter's work. 

Coxeter groups are a beautiful class of groups that are particularly suited 

to geometric interpretation, as groups generated by reflections. There are 



several good introductions to the subject including [Br], [dlH], and [H]. 

In Chapter 2 we introduce Coxeter groups and define two complexes. 

The Cozener coT/ipZez Z of a Coxeter group is a simplicial complex introduced 

by Tits [Tl] in which the maximal simplices all have dimension equal to 

the number of generators. The action on E is generated by reflections in 

walls that are built out of codimension-1 faces of the maximal simplices. 

Secondly we define the Moussong complex M, a CAT(O) piecewise Euclidean 

cell complex introduced by Moussong in [Mou] and on which a Coxeter group 

acts cocompactly with an action generated by reflections in hyperplanes that 

each separate the complex into two halfspaces. We then define a third way 

of picturing Coxeter groups via a geometric representation as a linear group 

acting on a vector space with a given bilinear form. 

Niblo and Reeves [NR2] define a CAT(O), finite dimensional, locally 

finite cube-complex X, called the Coxeter cubing, associated to a Coxeter 

group, constructed from the intersection relations of hyperplanes in the Cox-

eter complex (or in fact the Moussong complex whose intersection relations 

are the same). The group acts on X by permuting halfspaces, the action 

being induced by the action on halfspaces of the Moussong complex. We 

define this cubing and the action in Chapter 3. The remainder of the work 

is dedicated to studying the geometry of X and the action of the group on 

it. In particular we seek to answer the question 'For which Coxeter groups 

is the action on X cocompact?'. 

There is much interest in the theory of cubings which have been referred 

to as higher dimensional analogues to trees (suggesting comparisons with the 

theory of groups acting on trees as in [Se]). Important work has been done in 



this area by: Sageev [Si], [82] on co dimension-1 subgroups and splittings of 

groups; Niblo and Reeves [NRl] where they prove that cocompact actions on 

cubings imply a biautomatic structure on the group; Roller [R] on poc sets 

(partially ordered sets with a complement), median algebras and cubings; 

and Mosher [Mos] on cubulated 3-manifolds. 

Cozener are a special family of Coxeter groups for 

which hyperplanes in the Moussong complex are either parallel or intersect at 

right angles and in Chapter 4 we prove that in this case X is identical to the 

Moussong complex with the same action and hence the action is cocompact. 

Moussong [Mou] proved the following theorem. 

Theorem 5.1. G — (S) is hyperbolic <=> neither of the following hold 

(i) There exists T = T1UT2 C S so that GT = GTI X GT^ with both factors 

inBnite. 

(a) There exists T C S so that GT is a Euclidean Coxeter group with 

| r |>3 . 

where a Euclidean Coxeter group is an irreducible a&ne reflection group 

on 

In Chapter 5 we introduce the notion of phantom vertices in X and show 

that X consists of levels each acted on cocompactly by the group and hence 

the action is cocompact if and only if there are finitely many of these levels. 

We show that the action is non-cocompact if and only if there is particular 

configuration of hyperplanes called an infinite ladder in M. These ladders 

are used to show that in the case of hyperbolic Coxeter groups the action 

must be cocompact. It is also shown that direct product Coxeter groups act 

cocompactly if and only if each factor does so on its associated cubing. We 



then show that Coxeter groups that contain a Euchdean Coxeter group as a 

(a subgroup generated by a subset of the generators) with 

three or more generators do not act cocompactly on their cubings. Finally 

using infinite ladders we prove that the action is non-cocompact if and only if 

the group contains infinitely many non-conjugate isomorphic infinite triangle 

subgroups. 



Chapter 2 

Preliminaries 

In this chapter we introduce Coxeter groups and define the Coxeter 

complex S and the Moussong complex M. We also mention a third way of 

picturing Coxeter groups via a geometric representation as a linear group 

acting on a vector space with a given bilinear form. Other introductions to 

Coxeter groups may be found in [Br], [dlH] and [H]. 

2.1 Coxeter groups 

A Coxeter group is a group with a presentation of the form (si, S2,... | 

= 1) where the mij E N U {00} satisfy 

(i) TTlii = 1 

(ii) mij = mj* 

and we interpret {sisj)°° as the empty relation. For the purpose of this thesis 

all Coxeter groups will be finitely generated (and hence finitely presented). 



The rriij then can be thought of as entries in a symmetric nxn matrix (where 

n is the number of generators) with all diagonal entries equal to 1 and entries 

in NU{oo}. This matrix is called the Cozener Throughout this work 

we will denote the Coxeter group under consideration, G and the (6nite) 

generating set, 5". 

Coxeter groups are often represented as labelled graphs called Cozener 

graphs which are defined as follows: The vertex set consists of a vertex Vi for 

each generator Sj G S. Two vertices Wj, VJ are joined by an edge if and only 

if rriij > 3 and this edge is labelled When rriij = 3, the label is usually 

omitted. 

Given T C 5", the apecmZ of a Coxeter group G is the 

subgroup generated by T; a special coset is a left coset of such a subgroup. 

The Coxeter graph of GT is obtained by deleting vertices corresponding to 

generators not in T and the edges that are incident with them. (See for 

example [H].) 

A Coxeter group is a direct product of the special subgroups generated 

by the generators corresponding to vertices in each connected component of 

its Coxeter graph. To see this take two connected components of the Coxeter 

graph with vertex sets Ti and Tg. These two components correspond to two 

special subgroups GI and G2 of G. Any two generators SI E TI and SJ G T2 

are not connected by an edge so (s^Sj)^ = 1 and since Sj and Sj are involutions 

we have SiSjSiSj = [g,, Sj] = 1 and hence every element of Gi commutes with 

every element of G2. Also Gi n G2 = {e} and hence G = Gi x G2-

A Coxeter group is irreducible if it does not split as a direct product in 

this way, i.e. it has a connected Coxeter graph. 



A right-angled Coxeter group is one for which niij 
Examples 

1. The Klein Viergruppe has presentation 

2 or oo for all 

T4 = (o, 6 I = 1) 

matrix f ^ ^ j , and graph 

2. The group DQ X D^O has presentation 

(a, b, c, d \ a'^ = = (ab)^ = (oc)^ = (ad)'^ = {bcY = (W)^ = 1), 

matrix 

^ 1 6 2 2 
6 1 2 2 
2 2 1 oo 

\ 2 2 00 1 

, and graph 

3. The group 

(a, b, c, d\a^ = b'^ = = d^ = (ab)"^ = (ac)^ = (ad)^ = (6c)^ = {bd^ = (cd)'^ = 1) 

has matrix 

/ I 4 2 3 \ 
4 1 3 2 
2 3 1 3 

\ 3 2 3 l / 

and graph 

A very natural way to think of Coxeter groups is as reflection groups. 

We define two complexes on which a Coxeter group acts by reflections. 
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2.2 The Coxeter complex 

Firstly we give a geometric 'hands on' deSnition. The Coa;eter comp/ar, 

denoted E, is a simplicial complex defined as follows: The top dimensional 

simplices are (n-l)-dimensional where G has n-generators and we call them 

chambers. We begin with one such simplex T and consider building up the 

complex 'by reflection' in codimension-1 faces of simplices. Assign bijactively 

the generators of G to the faces of T. The action of each generator on T is to 

reflect in its face carrying with it the labelling of faces with generators. We 

get n new chambers i = 1 , . . . , n glued isometrically along codimension-

1 faces to the first chamber. We repeat this process by reflecting in faces 

of these new chambers and so on to get chambers . . . Si^si^T. Clearly we 

get a chamber for each group element g, by using a word in the generators 

representing g and carrying out the reflections corresponding to the genera-

tors in order. By definition, as we are building the complex out of chambers 

that we can reach by reflections, the action is transitive on chambers. Loops 

of chambers correspond to relations. 

Note. To know when to glue up loops of chambers in this construction it 

is necessary to know when a word represents the identity element, that is, 

a solution of the word problem is required. It is well known that the word 

problem for Coxeter groups is solvable. See for example [T2] or [Br]. 

More formally E is the poset (partially ordered set) of special left cosets 

ordered by the opposite of inclusion. That is, if A and B are special cosets 

of G such that A C B then in E we have B < A. 

9 



We note the following facts. 

(i) The maximal simplices correspond to the cosets of minimal special 

subgroups, that is cosets of the trivial group {e}. Hence we have a maximal 

simplex Cg for each group element g. For each g we can obtain a sequence 

< . . . < of cosets of special subgroups with strictly 

increasing numbers of generators each containing ^ (for example p{e} < 

^(si) < g(si,g2) < . . . < This gives a sequence of 

simplices of strictly decreasing dimension contained in Cg of length n where 

n is the number of generators. Hence all maximal simplices have dimension 

n — 1 and as above are called chambers. 

(ii) Codimension-1 faces correspond to cosets of special subgroups gen-

erated by a single generator. Two chambers are joined via a codimension-1 

simplex if and only if the elements represented by the chambers are the two 

elements in the coset represented by the codimension-1 face. 

(iii) Codimension-2 faces correspond to cosets of special subgroups gen-

erated by two generators. Their links are 2mij-gons where the special sub-

group is and < oo, and R if mij = oo. See section 3.2 The 

CAT(O) property for the definition of the link. 

We define an action of the group on E by left multiplication on cosets. 

It is clear that the action preserves inclusion of cosets and therefore also the 

inclusion of simplices and therefore the poset structure. 

A wall in S is a codimension-1 sub complex built out of codimension-1 

faces of chambers glued together as follows. We define a relation, ~ 'belongs 

to the same wall as', on neighbouring codimension-1 faces of chambers. Two 

faces with a codimension-1 {codimension-2 in E) face in common are related 

10 



if and only if they correspond to opposite points in the link (definition in 

section 3.2) of that face. In the case of R links, the wall does not continue 

beyond the co dimension-2 simplex with that link. We then take the transitive 

closure of Walls are then equivalence classes of co dimension-1 faces. 

Brown (See [Br] III §4.) shows by way of 'folding maps', that each wall 

divides S into two half spaces and that the action is generated by automor-

phisms fixing a wall and interchanging its two halfspaces, that is reflections 

in walls of E. To see this, consider the chambers 1 and SI where SI E S. (We 

will label chambers by their corresponding group elements.) We will study 

the wall W containing their common face / . First note that Si acting on 

S fixes / and interchanges the chambers 1 and Sj. Now consider a cell C 

containing a simplex f of the wall W which is glued to / . By (i) above, 

G preserves adjacency of chambers and we know that SI fixes / n / ' . We 

work our way around the (polygonal) link (definition in section 3.2) of / n / ' 

pairing up chambers that are exchanged by Si until the final pair is C and 

the chamber adjacent to it via f . (See Fig. 2.1 below where this pairing 

is suggested by the shading of chambers.) Hence / ' is also fixed by s, and 

exchanges the two chambers containing it. In this way we see that the whole 

wall is fixed by s, which acts as reflection in it. 

Fig. 2.1 Extending walls in the Coxeter complex 

11 



Examples. 

1. The dihedral group of order 2n D2n — {s^t\s'^ = = (st)" = 1). Since 

D2n has two generators its Coxeter complex E is a 1-dimensional simplicial 

complex (i.e. a graph). We have a chamber (an edge) for each element of 

Dgn! each chamber has two faces (vertices) that correspond to a coset of (a) 

and a coset of {t). Two edges are joined if and only if the elements they 

represent are the two elements in the coset represented by their common 

vertex. Each vertex clearly has valency 2 and hence S is a 2n-gon. 

sts 

/ 
\ ^ 

t \ 

Fig. 2.2 The Coxeter complex for DQ = (s, t|s^ = = (st)^ = 1) 

2. The (3,3,3) triangle group v42 = (ai,52,5315^ = (^i^j)^ = l,Vz,i ^ 

is one of the three so called Euclidean triangle groups {A2, B2, G2 in Fig. 

5.13 on page 74) that act as reflection groups of the plane E^. The Coxeter 

complex is built out of triangles. The link of each vertex (see definition in 

section 3.2) is a hexagon and hence the Coxeter complex is the tiling of the 

Euclidean plane by equilateral triangles. Note that by a triangle group we 

mean a Coxeter group with three generators. This differs from the definition 

of triangle groups given in other literature in which they are the (index two) 

orientation preserving subgroups of our triangle groups. 

12 



2.3 The Moussong complex 

The Moussong complex M is a piecewise Euclidean complex introduced 

by Moussong in 1988 in his thesis [Mou]. We follow the definition given by 

Davis in [D] and define it first for finite groups and then for infinite groups 

where it is built out of copies of Moussong complexes for its finite special 

subgroups. 

So we start by defining the Moussong complex for a finite Coxeter group 

in which case it is actually a single cell and hence is called a Coxeter cell. In 

1935 Coxeter proved that every finite Coxeter group is isomorphic to some 

reflection group in whose elements have a common fixed point [C2]. (See 

Fig. 2.8 at the end of this chapter for a list of the Coxeter graphs for all 

irreducible finite Coxeter groups. See also [H] for the classification of the 

finite groups.) Hence a finite Coxeter group acts on a Euclidean space E^ for 

some r, by reflections in codimension-1 hyperplanes hi,h2, •.. ,hn through 

the origin. The connected components of — Uhi, are called chambers and 

are simplicial cones. The hyperplanes contributing to the boundary of a 

chamber are called its supporting hyperplanes. 

We construct the Coxeter cell as follows: Choose a point v — Uihi 

and label it by the identity. Then translate v by the group (by reflecting 

in hyperplanes) labelling each translate by the appropriate group element. 

Then M is the convex hull of the finite set of translates of v. Since the 

connected component of E^ — \Jihi in which v sits is a simplicial cone, by a 

simple geometric argument it is possible to ensure that u is a distance 1/2 

from all of the supporting hyperplanes of this chamber and this implies that 

13 



all of the edges of M have length 1. 

Now for infinite groups we take a Coxeter cell for each finite special 

subgroup GT labelled as above and a cell for each finite special coset QGT 

with vertices labelled by elements of QGT in the obvious way. Coxeter cells 

for special subgroups are called special cells. M is defined as the union 

of these cells glued isometrically along faces which have the same group 

labellings. We will usually use the edge-path metric on although it is 

worth mentioning that the intrinsic metric defined by taking the infimum 

over all piecewise Euclidean paths is well defined and well behaved which is 

proved by Bridson in [B]. In fact, as Moussong showed in [Mou], with this 

geometry M is CAT(O). For the definition of CAT(O) see section 3.2. (See 

also Theorem 2.2.) There are no identifications between vertices of individual 

cells and each cell is a convex Euclidean polytope so each cell is isometrically 

embedded in the intrinsic metric on M. 

Examples. 

1. DQO X Doo generated by a, b, c and d as the following Coxeter graph 

suggests. 

a'--' 

The maximal finite special subgroups are isomorphic to Z2 x Zg and 

hence have squares as Coxeter cells. These fit together to form the Moussong 

complex which is the tiling of by squares part of which is shown below. 

14 



(e.b) e (Ĉ ) a 

{e,b,d,bd} -o {e,a,d,ad} 

bd d d{e,a) ad 

,9.5 f o/ (/le comp/er /or Doo x Doo 

2. The (3,3,3) triangle group. The maximal finite special subgroups 

are isomorphic to DQ for which the Coxeter cell is a solid hexagon. These 

fit together to give the tiling of by hexagons as shown below. Vertices 

are labelled by the group elements that they represent and two edges and a 

hexagon are labelled with the finite special cosets that they represent. 

aca ca 

/ \ 
ac/ <a,c I a'=ĉ  \c cb 

\ =(acf=l> / 
A 

ab/ \ b /be 
\ a b { l , a } / b{ l , a} 

aba ba 

Fig. 2-4 Part of the Moussong complex for the (3,3,3) triangle group 

As in the construction of the Coxeter complex we require a notion of 

hyperplanes (or walls). These are obtained by gluing hyperplanes of cells to 

hyperplanes of neighbouring cells when their intersection with the common 

15 



CO dimension-1 face is the same. It is clear that these gluings are local isome-

tries since hyperplanes exit cells 'at right-angles'. By an argument similar to 

Lemma 2.8 it can be shown that hyperplanes are isometrically embedded in 

M. 

We have the following result about how hyperplanes sit in M. 

Lemma 2.1. Every hyperplane in M separates M into exactly two con-

nected components. 

Proof: The proof uses cohomology theory and is similar to that of 

Lemma 2.3 of [NRl], Let h he a. hyperplane of M. Define a function 

/ : > Z2 = {0,1} by /(e) = 1 lieDh ^ 0 and /(e) = 0 otherwise. Then 

/ i s a cellular 1-cochain. Every 2-cell is a 2n-polygon and contains either 

no edges labelled by 1 or exactly two edges on opposite sides labelled with 

Is. This is by the definition of hyperplanes. Hence summing around 2-cells 

to obtain the coboundary map we see that d { f ) = 0 and hence / i s a (non-

zero) cocycle. Since M is contractible / is the coboundary of a 0-cochain. 

Let g : —» Z2 be such a cochain deSned by /(e) = p(&e) — ^(rg) where tg 

and Tg are the initial and terminal vertices of the edge e. Then g{x) = g{y) 

unless every path in M from x to y crosses h. Since g is non-zero, h must 

cut M into at least two pieces. 

Now we show that M — h has exactly two components. We have already 

noted that h is isometrically embedded in M and since every cell that h 

intersects is cut in half by h and is Euclidean with edge lengths all 1, there is 

an isometrically embedded neighbourhood N = hxI with a natural /-bundle 

structure. Since h is isometrically embedded in M and M is contractible it 

is a trivial bundle and hence N has two boundary components h x 1/2 and 

16 



h X —1/2. Every point of M — h can be joined to one of these boundary 

components by a path contained in M — h hence M — h has exactly two 

components, o 

There are clearly hnitely many cells incident with the identity vertex. 

These are precisely the cells of Snite special subgroups. Each of these Gnite 

cells intersects non-trivially only Enitely many hyperplanes of M. We call 

the hnitely many hyperplanes of these that are a distance 1/2 from the 

identity vertex eZemeMtan/ of Af. Note that when regarded as 

hyperplanes of the Coxeter complex these are the a,upporting hyperplanes of 

the identity chamber. Accordingly, we call the hyperplanes in M at a distance 

1/2 from a vertex the hyperplanes of t;. Wie call a hyperplane 

with respect to t; if there is no other hyperplane parallel to 

and lying between A and 2;. It is important to note the difference between 

minimal and supporting hyperplanes of a vertex. In Fig. 2.5 below all of the 

labelled hyperplanes are minimal with respect to the vertex t; but A,4, /ig. 

and are minimal but not supporting with respect i;. 

h. 3 / \ 

h. 

•V 

A, 

17 



We have the following theorem which can be found in [D]. 

Theorem 2.2, (Gromov, Moussong) M is a CAT(O) piecewise Euclidean 

cell complex on which the group acts isometrically and cocompactly by re-

flections in hyperplanes. • 

See section 3.2 for the definition of CAT(O). 

We define an action of G on the vertex set of M and then show that it 

extends to an action on M. Let % denote the vertex of M labelled by the 

group element k. Then define the action by g{vk) = Vg .̂ Now let C be a cell 

of M. By construction of M the vertices of C are elements of a finite special 

coset A;2 - - , /cn} say, of G. Then Hence the 

labels of the vertices are the elements of the finite special coset ggiK and 

hence are the vertices of a cell of M. Hence G takes cells to cells. 

To see that the action is generated by reflections in hyperplanes we 

consider the action of generators of the group on M. Let Si be a generator 

and Gt be a finite special subgroup containing Si with corresponding Coxeter 

cell CT in M. By the definition of Coxeter cells SI acts on CT by reflection 

in a hyperplane, h say, of CT- Now consider a cell C glued to CT along a 

CO dimension-1 face / intersecting h. Now Si preserves / and hence must take 

C either to itself or to CT- But g, preserves CT so it must also preserve C. 

The only isometry preserving C and / in this way is the reflection through the 

hyperplane that is the continuation of h as defined above. A simple induction 

argument now shows that Sj acts by reflection through the hyperplane of M 

containing h on the cells containing it. Since G acts freely on the vertex set 

of M there is a unique isometry that acts in this way, that is the reflection 

18 



through this hyperplane. Note that the generating elements of (? act as 

reflections in the elementary hyperplanes of M. 

Note: By definition of M there are bijections between the elements of G and 

the vertices of M, and between the finite special cosets of G and the cells of 

M. We will tend to abuse notation by referring to vertices as group elements 

or vice versa or referring to cells as finite special cosets or vice versa. 

We now prove some simple results about the Moussong complex. 

Lemma 2.3. The 1-skeleton of the Moussong complex M is a Cayley 

graph for G. Moreover the action of G on M by rejections in hyperpjanes 

is the same as the usual action of G on its Cayley graph. Hence the action 

is free and transitive on the vertex set of M. 

Proof: The vertices of M are in bijective correspondence with the 

elements of G as are the vertices of any Cayley graph for G. Two vertices 

g,g' are joined in a Cayley graph if and only if they differ on the right by 

a generator Sj, i.e., g = g'Si. Let e be an edge of M with vertices g and 

h. Translating e by g~^ we see that g^'^e has endpoints 1 and g'^h. But 

endpoints of edges at the identity are generators of G. Hence g~^h = Si for 

some i and so g = = hsi as required, n 

Corollary 2.4. Let 1 be the identity vertex in M and g E G with shortest 

word representative of length n. Then di{l, g) = n where di is the edge path 

metric. • 

Corollary 2.5. The star of the identity vertex in M, i.e., the union of all 

Coxeter cells in M incident with the identity vertex is a fundamental region 
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A)r t6e acdoiz. 

Proof: Each cell in the star of the identity vertex is a finite special 

subgroup. Any other cell in M is a left coset of one of these subgroups and 

is hence a translate of one of them. • 

Lemma 2.6. Every hyperplane is a translate of an elementary hyperplane. 

Hence there are finitely many orbits of hyperplanes in M. 

Proof: By Lemma 2.3 every vertex is a translate of the identity vertex 

which is a distance 1/2 from precisely the elementary hyperplanes by con-

struction of M. Since G acts by isometries, the hyperplanes a distance 1/2 

from any vertex are translates of some elementary hyperplane. Clearly every 

hyperplane is distance 1/2 from some vertex, o 

Lemma 2.7. 

(i) Hyperplanes are fixed pointwise by a unique element of G. 

(a) The stabiliser of a hyperplane h is the centraliser of the group element 

that acts by reflection in h. 

Proof: (i) We show that this is true for elementary hyperplanes hi. 

Then g' fixes ghi pointwise if and only if gg'g~^ fixes hi pointwise. 

Existence: The generator Si fixes hi pointwise by definition. 

Uniqueness: Consider the action of the pointwise stabiliser of hi on the 

edge with endpoints 1 and Sj. Either gl = Si g = Si ox gl = 1 g = 1. 

(ii) By Lemma 2.6 every hyperplane is a translate of an elementary 

hyperplane. Let ghi be a general hyperplane such that hi is fixed pointwise 

by the generator Sj. Then it is clear that ghi is fixed pointwise by gsig~^. For 
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Einy gi 6 G the element Gxes pointwise the hyperplane pipA,. 

Then 6 Cga.g-i(G) (the centraliser of in G) <=> = 

which Axes <=> by part (i). o 

Lemma 2.8. For any subset T of the generating set S of G the Moussong 

complex MT is isometrically embedded in M. 

Proof: First note that finite special subgroups of (T) are also finite 

special subgroups of (3 and Snite special cosets of (T) are also Snite special 

cosets of G so each cell of MT isometrically embeds in a cell of M. The 

gluings of all these cells are the same whether considered in M or MT- If T 

generates a finite subgroup then Mj- embeds isometrically as a single Coxeter 

cell of M as remarked at the beginning of this section. Thus we can assume 

that T generates an infinite subgroup. 

Let / : MT —> M be the embedding map sending cells of MT to their 

corresponding cells in M. We require that / is an isometry but given that M 

is CAT(O) the Cartan-Hadamard Theorem (Theorem 3.3) for such spaces, 

proved by Bridson and Haefliger in [BHa], means that it is only required to 

show that / is a local isometry, that is any point of MT lies in a neighbour-

hood N such that / restricted to N is an isometry. 

Let p be a point in MT and N be the open star of p in MT, that is 

the union of the interiors of open cells in MT containing p. Let x and y be 

points of N. It is required that the geodesic [x,y] in M is contained in N. 

We suppose, for a contradiction, that this is not the case. Then there exist 

two cells, ci and cg say, of MT which intersect (in the smallest dimension cell 

containing p) and a geodesic [x,y] joining the two which is not contained in 
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N. 

Suppose first that ci,c2 are contained in the same cell of M. Now ci 

and C2 'generate' a (convex) Coxeter cell C in which is isometrically 

embedded in M. 

Now suppose that ci C Ci and C2 C Cg where Ci and C2 are distinct 

maximal Coxeter cells of M. Let [a;, 2/]r be the geodesic in joining z to 

y be considered as a path in M. We have assumed that [x, y] ^ MT- First 

suppose that the geodesic [x, y] in M intersects exactly one other maximal 

cell C3 of M. Since Ci, C2, C3 have a vertex in common we can translate 

them by an element of G so that they are all special cells, i.e. Coxeter cells 

of special subgroups. Then there is a cell cg C MT in C3 generated by 

generators in Ci and C2 containing [z, ?/] and hence [z, 2/] is a shorter path in 

MT from x to y contradicting that [x, y]x is a geodesic in MT- Now suppose 

that p intersects maximal cells c^, c^, . . . where n > 2. All these lie in 

the 1-neighbourhood of Ci fl cg and hence all intersect ci Pi C2 in a (n — 2)-celL 

The smallest curvature around this cell is achieved when n = 2 and both 

cells are cubes. Homotoping [x,y]T into the boundary of these cubes and 

hence into the boundary of ci fi cg clearly reduces its length and hence it was 

not a geodesic in M. Other cells and more of them lead to more negative 

curvature which enables more reduction in the length of [x,y]T and hence 

leads to the same result. This completes the proof. • 
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2.4 Examples 

In this section we give some more examples of Coxeter groups and com-

pare their Coxeter and Moussong complexes. 

1. Zg * Zg * Z2 — (a, 6, c I = 1) 

Fig. 2.6 

f oyf 0/ (/le Cozeter compZez oTzd compZei /or Z2 * Z2 * Z2. 

2- Dqo X Ẑ oo 

= (a, h, c,d \ = iP' — = d?" = (ac)^ = (ad)^ = (6c)^ = (bd)'^ = 1) 

g.7 

f 0?̂  0/ t/ie Cozener compZea: a/id Mot&sao/ig compZec /or Doo x Doo. 

23 



In the Coxeter complex diagram four tetrahedra are glued along a com-

mon edge, thick edges have links isomorphic to E and thin edges have links 

isomorphic to a square as with the interior edge. See section 3.2 for the 

definition of link. 

The link of each vertex in the Coxeter complex is infinite. 

One of the advantages of the Moussong complex is that it is locally finite. 

This is due to the fact that cos in the Coxeter matrix, which signify that the 

product of two generators has infinite order, open up the Moussong complex 

but lead to the existence of infinite links in the Coxeter complex. In this 

work we will mainly be using the Moussong complex although sometimes the 

Coxeter complex is more helpful (notably in the case of Euclidean reflection 

groups). 

2.5 Geometric Representation 

In this section we introduce a third way of picturing Coxeter groups. It 

is not possible to represent a general Coxeter group by affine reflections in 

hyperplanes through the origin in E" but we can get close by considering 

the following action on a vector space and a notion of reflection similar to 

Euclidean reflection. 

Consider the vector space V over E with basis {ag|s G 5}, that is 

a basis vector for each generator of the group. We define a bilinear form 

B: VxV—^RonVas follows: 
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B(a!s, CKt) = —cog ( ) for iriij < oo eind — 1 if = oo 

Now we define a reflection Rg for each s G 5" by 

.Rs(7;) = 1; - 2B(a!g,?;)ag 

Note the similarity between this definition and the definition for reflec-

tion in a hyperplane in Euclidean space. 

Things to note 

(1) Aa(a:s) = 0!3-2B(cKg,a:a)a!3 = o:3-2(-cog('7r))a!s = a s - 2 a g = 

so CKg is normal to the reflection plane of Rg. 

(2) Reflection in hyperplanes leaves orthogonal vectors invariant i.e., if 

B(o!s, oi() = 0 then Ea(o:t) = ()!*- 2B(a:g, aif)a!a = at. 

(3) This representation is faithful. In particular, the order of RsRt is 

nist whenever s t. (See [H].) 

This representation has been particularly useful in establishing results 

about the geometry of Coxeter and Moussong complexes. For example see 

[BHo] and Lemmas 3.3 and 3.4 of Niblo and Reeves in the next chapter. 
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Chapter 3 

Cubings for Coxeter groups 

In this chapter we define a space for each Coxeter group built out of 

Euclidean cubes on which the group has a natural action. The construction 

is due to Niblo and Reeves [NR2] and is inspired by the cubings of Sageev 

introduced in [Si] as a tool to study codimension-1 subgroups. 

3.1 Cube-complexes 

Let be a set with a partial order < and an involution * : H H, 

h* satisfying the following; 

(1) Given any a,b E H there are finitely many c £ H such that a < c < b. 

(2) Given a,b E H at most one of the following holds: a < b, a < b*, a* < b, 

or a* < b*. If one does hold we say that a and b are nested and are 
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TiOTZ-TiegW otherwise. 

We think of if as a set of halfspaces of a space arising from taking 

complementary components of codimension-l hyperplanes, the partial order 

< as inclusion and the involution * as taking the complementary halfspace. 

We define a hyperplane as an unordered pair of halfspaces h = {a, a*} and an 

oriented hyperplane by specifying a side of h and denote the two orientations 

of h by h'^ and h~. Oriented hyperplanes are in bijective correspondence 

with halfspaces and both are visualised by adding an arrow on one side of 

and normal to a hyperplane as in Fig. 3.1. 

We can build a cube-complex (that is a cell-complex in which each cell is 

a Euclidean cube and cells are glued along faces by isometries) X ~(H, <, *) 

as follows. A vertex u in X is defined to be a subset of H such that 

(i) a E V a* ^ V for all a E H. 

(ii) Whenever < aj, then ai E v => aj E v. 

This abstract definition of a vertex is also known as an ultra-filter. Prop-

erty (i) says that we choose exactly one halfspace from each pair defined by 

each hyperplane. Property (ii) says that the intersection of nested halfs-

paces in V must be non-empty. The allowable and not-allowable choices in 

this respect are given in the following diagram. 
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a b 

.AZZowW c/ioiceg o/nested /loZ/gpoceg 

We say that a halfspace a is minimal with respect to a vertex v if there 

is no a' E H such that a' < a and a' E v. We call a hyperplane minimal with 

respect to v if it is the boundary of a minimal halfspace of v. 

Two vertices are joined by an edge in X if and only if they differ as sets 

by exactly one element, i.e. exactly one minimal (in the sense of (ii) above) 

halfspace is swapped with its complementary halfspace. 

The A:-skeleton for A; > 2 is defined inductively by gluing in a A:-cube if 

and only if its boundary appears in the {k — l)-skeleton. This completes the 

definition of the cube-complex X arising from the triple {H, <,*). 

An alternative way of viewing vertices in X is as a choice of orientation 

of hyperplanes so that each hyperplane 'points to' the vertex. In this way 

we will sometimes refer to vertices as configurations of oriented hyperplanes. 

We describe the action *(a) = a* as switching the halfspace a or when 

using the oriented hyperplane terminology switching the oriented hyperplane. 

It can be shown (e.g. see Theorem 4.14 of [Si]) that for any set 

{di,02, - - , o f M pairwise non-nested elements of we have ^ 0 

and hence the set defines a (not necessarily unique) n-cube in X. 
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Usually we will be interested in a particular connected component X of 

^ deGned by choosing a vertex in and letting the vertex set of % be 

the vertices of % a Snite distance from The higher dimension cubes are 

added as before. A connected cube-complex then is defined by a quadruple 

(-H", <, 

Definition. A midplane of a cube c is a codimension-1 cube parallel to one 

of the faces of c and passing through its barycentre. A hyperplane of X is a 

cube-complex built from midplanes of cubes which are glued isometrically as 

follows. Two neighbouring midplanes belong to the same hyperplane if and 

only if their union is convex in X. 

3.2 The CAT(O) property 

We now give a brief introduction to the CAT(O) property which will be 

of great importance later. A comprehensive introduction is the book [BHa] 

by Bridson and Haefiiger. 

The CAT in "CAT(O)" stands for Cartan Alexandrov and Toponogov 

who each contributed to the idea of curvature in metric spaces. The CAT(O) 

condition is a very elegant way of expressing non-positive sectional curvature 

in Riemannian geometry that applies to the more general setting of geodesic 

metric spaces. It is very useful in the study of groups from a geometrical 

viewpoint. 

Definition. A comparison-triangle for a geodesic triangle A in a metric 

space X is the Euclidean triangle A with side lengths equal to those of A. 
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('A is iinique up to igometries.j Givez; two points p, g E A we can de&ie 

comparison points p,q E A in the obvious way. 

Fig. A geo(Zeg%c tnomgZe A(Z;?/, z) oW itg componaom A(a;, i/, z). 

Definition. A geodesic triangle satisfies the CAT(0)-inequality if for all 

p, g E A we iiave 

g) < g) 

Definition. A geodesic metric space is CAT(O) if all geodesic triangles sat-

isfy the CAT(0)-inequality. 

Examples. 

Examples of CAT(O) spaces are E" (in fact any convex subset of E"), 

R-trees, E^ — {x,y : x > 0,y > 0} considered as a length space, hyperbolic 

n-space 

CAT(O) spaces have many nice properties including contractibility, unique 

geodesies (for every pair of points x, y in the space there is a unique geodesic 

joining x and y), and convexity of balls (for every point x in the space and 

e > 0 and for any two points p, g E Bc{x) the unique geodesic [p, q] C B^{x)). 

The following theorem and its corollary are two examples of many powerful 
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theorems derived from the CAT(O) property. The idea of Theorem 3.1 is due 

to Serre and a proof may be found in [BHa]. 

Theorem 3.1. (Unique centre of a bounded set) Let A C X be a subset 

of a complete space. Then tiiere exists a umgue ce/itTie, cx of A 

such that A C B{cA,rA) where ta is the radius of A defined as inf{r \ A C 

€ %}. o 

Corollary 3.2. If X is a complete CAT(O) space and G is a group of isome-

tries acting on X with a bounded orbit, then the fixed point set of G is a 

non-empty convex subset of X. a 

The following theorem is a version of the Cartan-Hadamard Theorem, 

proved by Bridson and Haefiiger in [BHa], and tells us when a locally 

CAT{0) space is globally CAT{0). The original theorem was first proved 

in the context of surfaces by Hadamard and in the context of Riemannian 

manifolds by Cartan. 

Theorem 3.3. Let X be a complete, simply connected, locally-CAT(O) 

length space. Then X is CAT(O). • 

In certain circumstances one can glue CAT(O) spaces together to get 

other CAT(O) spaces and there are sufficient conditions for simplicial- and 

(more generally) polyhedral-complexes to be CAT(O) which are easy to verify. 

Definition. For each n-cell a of a polyhedral-complex X we define a simplicial-

complex called the link complex L{a) of a as follows. L{a) has a vertex for 

each n 1-cell of which a is a face and more generally a k-simplex for each 
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71 + A; 1-ceZ/ of Wucb <7 is a i^e. The gZuing maps are induced irom t ie 

giuing maps of the space. 

We regard the link complex as a spherical simplicial complex (that is a 

simplicial complex whose simplices are spherical) 

A natural metric on is the shortest path metric starthig from the 

angle metric on each simplex. (The angle metric is the natural metric on 

spherical simphces dehned by embedding the unit n,-sphere in with its 

centre at the origin and taking the distance between points on a simplex to 

be the angle between their position vectors.) 

0) / \ (n) 

A compZar (Ae Zmt comp/ez o/ its centre ivertea;. 

Definition. A geodesic metric space is CAT( 1) if all geodesic triangles with 

perimeter iess than 27r are not 'fatter' (see deimition of inequaZityj 

than comparison triangles taken from spherical space of constant curvature 

1 (that is the unit 2-spherej. 

Definition. A polyhedral complex X satisfies the link condition if the link 

compiex at every vertex is a CAT^l j space. 

J 

Theorem 3.4. [B] Let X be a Euclidean polyhedral complex with finitely 

many isometry (ypes of ce77s. Then jiT satis^es the iinjc condition if and onfy 

if it is locally CAT(O). 
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Theorem 3.5. [B] Let X be a Euclidean polyhedral complex with X locally 

and with many igometiy types of ceifs. Then tAe A)27owmg 

are equivalent: 

% is CAT^Oj. 

(jij X is mizquejly geodesic. 

(Hi) X satisGes the link condition and contains no isometrically embed-

ded circles. 

(iv) X is simply-connected and satisGes the link condition. 

In the case of cube-complexes the link condition is equivalent to the 

following two properties: 

(i) There are no bigons in the link of a vertex. 

(ii) Any triangle in a link of a vertex bounds a 2-siniplex. 

This is for the following reasons. A consequence of the CAT(l) condition 

is that any geodesic loops have length > 2tt (II Theorem 7.4 [BHa]). Since 

all cells in a cube-complex are cubes, all edges in the link are of length 7r/2. 

Hence any geodesic loops shorter than this must have length 37r/2 or TT. Such 

loops do not exist if and only if properties (i) and (ii) hold. 

Properties (i) and (ii) are collectively known as the flag condition which 

holds if and only if the link complex is a flag complex., that is a simplicial 

complex in which the presence of a boundary of a simplex implies that the 

simplex itself is present. 

Hence a cube-complex is CAT(O) if and only if it is simply-connected 

and satisfies the link condition above. CAT(O) cube-complexes are called 

cubings. 
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3.3 The Coxeter cubing 

The set of half-spaces in the Moussong complex or Coxeter complex 

of a Coxeter group is a set with a partial order given by inclusion and an 

involution defined by reflection in the appropriate hyperplane, and satisfies 

(1) and (2) in the definition of the cube-complex in section 3.1. Property (1) 

follows from the fact that M and S are connected. To see this, let a < 6 be 

two halfspaces and take two vertices v E a and w E b*. Since the space is 

connected there is a finite edge path from v to w. The boundary hyperplane 

of any halfspace c such that a < c < b is crossed by an edge of this path and 

hence there are finitely many such halfspaces. Property (2) is clear as a, b, 

a*, b* are all halfspaces. 

Hence given a Coxeter group we can define two cube-complexes 

and X s by the construction above using the Moussong complex and Coxeter 

complex respectively. 

We now give an illustration of how to construct the cube-complex in 

the case of the Moussong complex M. Each vertex in the cube-complex XM 

is defined as a choice of halfspace for each hyperplane. An edge joins two 

vertices if their halfspace choices disagree on only one minimal hyperplane 

(Recall that a halfspace h is minimal with respect to a vertex v if there is 

no h' E V such that h' < h.) We then glue in n-cubes if and when their 

boundaries appear in the n — 1 skeleta. 

Every vertex v of M corresponds to a vertex of X since the set of hy-

perplanes of M and X are the same by definition and we take the halfspaces 

of M that contain the vertex v. 

35 



The particular connected components of the cube-complexes that we are 

interested in are the ones containing the vertex corresponding to the identity 

vertex in M and the identity chamber in E. 

We now give a sufficient condition for cube-complexes to be isomorphic. 

Let and X2 = be two connected 

cube-complexes arising as described above and let 0 : —> i72 be a bijection 

preserving the partial order in both directions (i.e. ai <1 0,2 if and only if 

) <2 (̂ ((12)), and the involution (so that = ^(a)*^ and <̂ "̂ (6*̂ ) = 

0~^(6)*2) where a E Hi and 6 G % -

Lemma 3.6. Let Xi, X2 and (f) be as above. If d{4'{vi),v2) is finite then 

Xi is isometric (with respect to the edge path metric) to X2. 

Proof: For all ai E Hi and G2 € H2 we have ai < ag 4=^ ^(oi) < 

0(02) and = (f){ai)*^. We build up the cube-complexes Xi = (-ffi, <1 

, *i) and X2 = {H2, <2, *2) ignoring for the moment the ViS. 

Vertices: Clearly 4> preserves (i) and (ii) in the definition of vertices on 

page 28 and so sends vertices to vertices. 

Edges: Two vertices v,w m Xi are joined by an edge if they differ by 

switching one minimal halfspace. Clearly 0 preserves minimality and hence 

vertices in Xi are joined by an edge if and only if their corresponding vertices 

in X2 are joined by an edge. 

Cubes: We glue in cubes in Xi when their boundary appears. This is 

an inductive process and depends only on the 1-skeleton which we have seen 

is preserved by 0. 

(f) is clearly bijective on the vertex sets of Xi and X2 and so we have a 

cellular bijection from Xi to %2- Two vertices are a distance n apart in the 
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edge-path metric if as sets they differ by n elements. This is preserved by (p 

and hence (p is an isometry. 

Finally we note that the condition that d{4>{vi),v2) is finite ensures that 

Xi and X2 are the same connected component of = %2- ° 

Theorem 3.7. The cube-complex XM arising from the Moussong complex 

M is isomorphic to the cube-complex X^. arising from the Coxeter complex 

E. 

Proof: By Lemma 3.6 it is enough to show that there is a bijection 

4) between halfspaces of M and halfspaces of S preserving nesting and the 

involution on halfspaces. 

By Lemma 2.7 (and a similar result for Coxeter complexes - see e.g. 

[Br]) each hyperplane is fixed pointwise by a unique (non-trivial) element 

of G and no other hyperplane is fixed by that element. Hence we define a 

bijection 4> by mapping the halfspace A E M for which gh = h* and such that 

the identity vertex 1 e /i, to the unique halfspace in E containing the identity 

chamber and for which pA = A*, and by mapping /i* to the complementary 

halfspace of (^{h). 

Two hyperplanes hi, h j cross in the Moussong complex <=> (by Lemma 

2.6) we can translate their intersection by a group element g E G so that that 

ghi n ghj intersects a special cell. Now there exist elements, gi and gj say, 

whose action is to reflect in ghi and ghj respectively and whose product has 

finite order. The group elements that reflect in hi and hj are then ggig"^ and 

g9j9~^ whose product clearly also has order m,ij = n < 00. Hence nesting 

is preserved by 4> and since we have ensured that 1 e h <=> 1 G (p{h), it is 
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clear that the partial order is preserved. 

Similarly in E we can translate transversely intersecting hyperplanes 

back to hyperplanes intersecting the fundamental chamber where their link 

is a 2n-gon in the Coxeter complex if and only if the product of the corre-

sponding elements is finite order. 

The involution * is preserved by the bijection by definition. • 

Hence from now on we will refer only to one cube-complex X and usually 

assume that it is built from the Moussong complex. 

Theorem 3.8. X is CAT(O). 

Proof: We need to show that X is simply-connected and satisfies the 

link condition. 

Simply-connected: We follow the proof that Sageev's cube-complexes are 

simply-connected. This can be found in [SI]. Let a = {vo,vi,... ,Vn = vq) 

be a shortest non-contractible edge-loop in Let = /lo) 

be the list of halfspaces swapped to move along a so that Vi+i is the vertex 

obtained after introducing hi. Since vertices are a choice of halfspace for each 

pair (h, h*) all swaps of halfspaces must be swapped back again. Consider the 

earliest swap back, that is the earliest occurrence of hi,... ,hi,... ,hj — h* 

in the list of halfspaces. Now h* is minimal in Vi so h*_^i ̂  h* and hence 

hi ^ hi+i. Hence hi+i is minimal in Uj-i. Since hi and /ij+i are both 

minimal in Vi-i there is a square in X with vertices Vi^i,Vi, vi^i,v[. We can 

define a new loop in X with vertices [vq.vi, . . . . . . ,Vn = vq) and halfspace 

sequence (/IQ, hi,..., hi-i,hi+i, hi, hi+2, • • • ,hn = ho). We can repeat this 

process until the sequence of halfspaces is {ho, hi,... ,hj,h*). Now the loop 
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contains an edge traversed one way and then back again immediately. This 

loop can clearly be shortened contradicting the fact that a was a shortest 

loop. 

Suppose there exists an 7%-cube so that the hnk of cr 

contains a bigon. This means that there exist two n + 1-cubes ai and a2 

that are glued along two adjacent faces (which intersect in a). This leads 

to two hyperplanes intersecting once in a codimension-2 hyperplane of ai 

and £72 and hence in the Moussong complex we have a similar configuration 

of hyperplanes in neighbouring cells. This contradicts the fact that Coxeter 

cells are glued along at most one face. 

Suppose that there is a triangle {vi,V2,vs) in the link of an n-cube a in 

X. The three vertices correspond to three n + 1-cubes each with cr as a face 

and the three edges correspond to three n 4- 2-cubes. There are n pairwise 

intersecting hyperplanes in cr and the three n 4-2-cubes contribute three more 

hyperplanes which pairwise intersect and intersect all hyperplanes of a so we 

have a set of n -h 3 pairwise intersecting hyperplanes and hence an n -t- 3-cube 

which appears as the solid triangle hi the link of a. • 

Recall that CAT(O) cube-complexes are known as cubings. We call X 

the Coxeter cubing for G. Sageev proves in [81] that each hyperplane is itself 

an isometrically embedded cubing and cuts X into exactly two halfspaces. 

Recall that is the Cayley graph for G = (5). 

Lemma 3.9. can be isometrically embedded in X. 

Proof: We construct an embedding p : > X. Recall that a vertex 

in X is defined by a choice of halfspace for each hyperplane. If % is a vertex 
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in M de&ne p(?;) to be the vertex in % de&ned by taMng 6 p(̂ ;) if E A 

in M. Two vertices in M are adjacent if and only if they are separated by 

exactly one hyperplane in M which is true if and only the corresponding 

vertices in X are separated by exactly one hyperplane and hence if and only 

if they are joined by an edge in X. • 

Lemma 3.10. (Niblo, Reeves) X is Unite dimensional. [NR2] 

Lemma 3.11. (Niblo, Reeves) X is locally Gnite. [NR2] 

We end this section with some more comments on the geometry of X. 

Recall that traversing an edge in X corresponds to switching a hyper-

plane, that is changing the orientation of one minimal hyperplane. 

Any geodesic edge path in X crosses each hyperplane at most once. 

Otherwise it can be shown that the path can be shortened by bringing a 

section of the path to one side of the double-crossed hyperplane. See [Si]. 

3.4 The group action on the cubing 

The group action on X is defined as follows: G acts on the set of half-

spaces i? of M or E. H is also the set of halfspaces of X and so the action 

on X is defined by the action on H. 

We need to prove that this action is well defined. First we show that G 

takes vertices to vertices. Let u be a vertex. Then v satisfies conditions (i) 

and (ii) for vertices in the definition of X on page 28. (i) A vertex contains 

exactly one from each pair of halfspaces and since G acts by isometries on 
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M this property is preserved. Similarly condition (ii) is clearly preserved by 

isometries and hence G takes vertices to vertices. 

Two vertices f and are joined by an edge if they diEer as sets by 

exactly one element. Let h ^ v and h* E v'. Now v — {h} — v' — {h*} so 

— {/i}) = — {/i*}). Then since we have that and 

gv' also differ by exactly one element and hence G takes edges to edges. 

Since the n-skeleta for n > 2 are completely determined by the one 

skeleton we see that G also takes cubes to cubes. 

At this stage we prove that the action is by isometries with respect to the 

edge path metric. Let z, ?/ G , c((z, ?/) = m and ro = z, ui, ?;2, - -, = 2/ 

be a sequence of vertices in a shortest edge path from a: to i/. Now consider 

gvo,gvi,gv2,. •. ,gvm- This is also an edge path from gx to gy of length 

m since G takes edges to edges. Hence c((ga;,p2/) < = (̂37,2/). Now let 

WQ = gx,wi,w2,..., Wm' = gy he a shortest length edge path from gx to 

gy. Then g~^wo, g''^wi, g~^W2,.. .g~^Wm' is also an edge path of length m' 

from 2; to y so d(x,y) < m' = d(gx,gy) and hence d{x,y) = d{gx,gy) as 

required. 

Lemma 3.12. (Niblo, Reeves) The action of G on X is properly discontin-

uous. [NR2] 

Proof: It is sufficient to prove that the stabiliser, stab{v), of any vertex 

V is finite. Let u be a vertex of X. By definition d{v, VQ) is finite where VQ is 

the image of the identity vertex of M. The orbit stab{v) • VQ is finite since X 

is locally finite by Lemma 3.11 so stab(v)nstab{vo) is a finite index subgroup 

of stab{v). But since G acts freely on vertices of M we have stabivo) is trivial 

and hence stab{v) is finite as required. • 
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Lemma 3.13. A Coxeter group is finite if and only if its cubing is finite. 

Proof: A Coxeter group is finite if and only if there are finitely many 

hyperplanes in M if and only if there are finitely many hyperplanes in X if 

and only if X is finite, o 

Lemma 3.14. The embedding p of (i.e. the Cayley graph of G) in X 

as in Lemma 3.9 is equivariant with respect to the group action on X. 

Proof: First consider the action of G on X. G acts on M by reflection 

in hyperplanes. This induces an action on halfspaces of M. Let f be a vertex 

of M and g ^ G. Now gv is another vertex of M. It is clear that g takes the 

halfspaces defining v to those defining gv. Now we consider the same action 

on halfspaces but now considered as halfspaces of X. By the above, g sends 

in to /3((ru). o 

To show that we do indeed have an action on X it remains to prove 

that G preserves the connected component X. It suffices to show that any 

element of G moves vertices by only a finite distance. Let u be a vertex in X 

and g E G. By Lemma 3.14 and Corollary 2.4 g takes the identity vertex VQ 

to a vertex a distance equal to the length of a minimal word for g', n say. v 

is a finite distance, m say, from VQ. Then d{v,gv) < d{v,gvo) 4- d(gvo,gv) < 

%) + = 2m + n < oo aa required. 

Note Since G acts without fixed points on a finite dimensional cubing, by 

the main theorem of [SI] we have that each hyperplane stabiliser quotiented 

out by the group generated by reflection in it, i.e. an index 2 subgroup of it, 

is a CO dimension-1 subgroup. 
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3.5 Examples 

1. The cubing for DQ is the 3-cube since the set of hyperplanes of the 

Moussong complex consists of three pairwise intersecting hyperplanes. By 

Lemma 3.9 which is a hexagon, is isometrically embedded in 

This embedding is shown in Figure 3.4 below. 

The action of a generator of G on X is to 'reflect' the hexagon in X and 

swap the two opposite non-hexagon vertices. The isometry of X reahsing 

this action is a rotation of TT through a line joining midpoints of a pair of 

opposite (parallel) edges as shown in the diagram. 

2. The Moussong complex for S4, is the 3-permutahedron shown below. 

Fig. 3.5 The 3-permutahedron 
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This has six (pairwise intersecting) hyperplanes and hence the cubing is 

a 6-cube. M is embedded in the cube as shown below where the edges of the 

permutahedron are labelled by the index of the coordinate axis with which 

they are parallel. 

Note that all finite groups have an n-cube for their cubing since the 

Moussong complex for every finite group is a cell with all hyperplanes meeting 

at the centre. 

3. Doo — O—2!—o 

In this case there are infinitely many hyperplanes none of which intersect 

and the Coxeter cubing is the same as the Moussong complex. In fact this 

is true for all right-angled Coxeter groups which will be proved in chapter 4. 

Fig. 3.7 The cubing for Dc 
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The 'maximal' finite special subgroups in this case are all '̂4 and hence 

the maximal cells in the Moussong complex are all 3-permutaliedra. (See Fig 

3.4 above.) Four of these permutahedra fit around each vertex in M. Each 

permutahedron is embedded in a 6-cube aa described in example 3 and the 

cubing is 6-dimensional. 

Having described the main objects of our study we now turn to our 

main task, that is to decide which Coxeter groups act cocompactly on their 

Coxeter cubings. 
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Chapter 4 

Right-angled Coxeter 
groups 

In our search for cocompact actions the easiest case to deal with is 

when the Coxeter group G is right-angled. We begin this chapter with a few 

comments about the geometry of the Moussong complex M in this case. 

(1) Finite special subgroups of G are isomorphic to for which the 

Coxeter cell is an r-cube. Hence by Theorem 2.2 the Moussong complex 

is a CAT(O) cube complex. 

(2) Elementary hyperplanes h i ,h j fixed pointwise by generators Si and Sj 

cross if and only if < oo, i.e. rriij = 2. 

(3) In the star of the identity vertex there is an edge (incident with 1) 

for each generator, and a k-cube for each set of k pairwise commuting 

generators. 

The main theorem for this section is the following. 
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Theorem 4.1. Let G be a right-angled Coxeter group. Then the Moussong 

complex M ig jgometric to the cubing % and the G-action is the same, ffence 

G acts cocompactJy on %. 

Let and be hyperplanes of %. By Lemma 2.6 = pi/i; and 

= ^2/̂ ; for some group elements ^1, 2̂ elementary hyperplanes A, and 

hj in which Si and s j (respectively) are the reflections. Then = giSig^^ 

and Tj = giSjQi^ are the reflections in hi and hj respectively. 

Lemma 4.2. With the above notation riVj has infinite order if and only if 

hi and hj do not intersect. 

Proof: TiTj has infinite order hiHhj = 0 otherwise by Lemma 2.6 

we could translate a cube containing hi and hj back to a cube in the star of 1, 

i.e. a special subgroup, by a group element p say. Then by remark (2) 

and grjg~^ are generators that commute, i.e. grig~^grjg~^ = 

and hence ViVj = rjVi, a contradiction. • 

Proof of Theorem 4.1: By Lemma 4.2 hyperplanes intersect in M if 

and only if they intersect in X so we have a bijection from hyperplanes of M 

to hyperplanes of X preserving intersections and so by Lemma 3.6 M and X 

are isometric. The action on X was defined by the action on its hyperplanes 

induced from the action on the hyperplanes of M and so is clearly the same. 

By Theorem 2.2 G acts cocompactly on M and hence on X. o 

Examples. 

1. NIIJ = 2 for all In this case G is isomorphic to the finite group 

Z2 and M = X is an n-cube. 
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2. rriij = 00 for all z, j . M = X is an n-valent tree where n is the number 

of generators of G. See Fig. 2.6. 

3. G = (Doo)"- M — X = E'^ cubed in the normal way. See Fig. 2.3. 
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Chapter 5 

Cocompact actions 

In this chapter we begin to build up a picture of when Coxeter groups act 

cocompactly on their Coxeter cubings. The following theorem of Moussong 

suggests a starting point. 

Theorem 5.1. (Moussong) G — (S) is hyperbolic if and only if neither of 

the following hold 

(ij There exists T = C 5" so that = Gri x with both factors 

infinite 

(a) There exists T C S such that GT is a Euclidean Coxeter group with 

|T| > 3 

where a Euclidean Coxeter group is an irreducible afiine reflection group 

on E". (There is a well known classification of Euclidean Coxeter groups. A 

table of their graphs is included at the end of this chapter for the convenience 
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of the reader.) In this context we use the term Cozener to 

mean a Coxeter group that is word-hyperbohc in the sense of Gromov. (See 

for example [A] for an introduction to word-hyperbohc groups.) 

In sections 5.3, 5.4 and 5.5 we prove results about hyperbolic Coxeter 

groups, direct products and Euchdean Coxeter groups but hrst we derive 

results from the pattern of hyperplanes in the Moussong complex. 

f 

5.1 Phantom Vertices 

In this section we define the notion of phantom vertices in X. 

/ 

J L _ 3 
(+,-,+) 

(+,+,+) 

(+,+,-) 

i Ftp. Two 

Figure 5.1 shows a section of a Moussong complex with three hyper-

planes 1,2,3 and the corresponding 3-cube in the cubing. Hyperplanes 1, 2 

and 3 oriented (-I-, -I-, -k) as above, considered as hyperplanes in a Moussong 

complex define a vertex in the complex (shown by the shaded region) whereas 

the orientation (—, +, +) does not define a vertex in M. However, all orien-
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tations deAae vertices in the cube by choosing the appropriate hal6paces. 

Definition. Vertices in X corresponding to vertices in M will be called 

chamber vertices. Vertices defined by orientations of hyperplanes in M that 

do not define a vertex in M will be called phantom vertices. 

The two phantom vertices in the cube in Fig. 5.1 are shown by heavy 

dots. 

Note that, in general, not every orientation of the hyperplanes of M 

defines a vertex in %, for example given two non-intersecting hyperplanes hi 

and h2, the half spaces must be chosen to intersect as shown in Fig. 3.1 on 

page 29. This is a consequence of rule (ii) for vertices in the construction of 

the cubing in Chapter 3. 

Definition. (Levels of phantomness) A vertex v in X is said to be phan-

(om o/ Zet;eZ M denoted = ?% iforjezitatjozis of hyperpjaneg miigt be 

reversed to obtain a chamber (non-phantom) vertex. Equivalently the level 

of a phantom vertex is equal to its distance in the 1-skeleton from the set of 

chamber vertices, i.e. M in X. 

Lemma 5.2. There are no phantom vertices if and only if G is right-angled. 

Proof: First suppose that G is right-angled. Then by Theorem 4.1 

M = X and hence and there are no phantom vertices. 

Now suppose that there are no phantom vertices and assume, for a 

contradiction, that G is not right-angled. Then there are two generators, 

Si, Sj say, such that the order of SjSj, is not 2 or oo. Then there is a 2n-

polygon in M with n > 2. Let hi and hj be the hyperplanes corresponding to 

Si and Sj and let h be another hyper plane intersecting the polygon. Starting 

51 



with the vertex in X corresponding to the identity vertex in M and switching 

gives a vertex in % which does not correspond to a vertex in M, that is a 

phantom vertex, which is a contradiction. • 

We subdivide the vertex set of X by the level of phantomness of vertices. 

Let Vj C be the set of vertices of phantom level %. Then we have 

= l/oLlViLn/2U"-. Note that l/Q = and that may be empty. 

The following Lemma shows that the levels of phantom vertices form layers 

i n X . 

Lemma 5.3. U Vi+i = {w G X\d{v, %)} = 1}. 

Proof: For the purpose of the proof we define = 0 for i < 0. 

(C) Each phantom vertex of level 2 + 1 and i — 1 is obtained by switching 

one minimal hyperplane from a vertex of level i. 

(D) Let u G {f G X\d{v^Vi) — 1} and suppose v' G Vi such that 

d{v,v') = 1. Moving from v' to v must increase or decrease the level of 

phantomness otherwise v G Vi. Also the increase or decrease must be exactly 

one since we only switch one hyperplane. • 

Note that since X is connected if Fj = 0 then for all j > i we have 

V, = 0. 

Now we show that each G acts equivariantly and cocompactly on Vt in 

X for all i 

Lemma 5.4. G acts equivariantly on Vi in X for all i. 

Proof: The proof is very similar to that of Lemma 3.14. The phantom-

ness of a vertex of X is the minimum number of hyperplanes that need to be 
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switched to get to a vertex of Vo in %. We can think of any vertex of % as 

a set of choices of halfspaces in M. Then the phantonmess can be thought 

of as the minimum number of halfspaces needed to be switched before the 

set defines a vertex in M. This number is clearly not affected by cellular 

isometries of M. • 

Lemma 5.5. G acts cocompactly on Vi for all i. 

Proof: We use induction on i. The Lemma is true for % — 0 since 

VQ = Now suppose that G acts cocompactly on Vi. 

Each vertex v of level i has finitely many minimal hyperplanes since 

X is locally finite by Lemma 3.11, and therefore neighbours finitely many 

vertices of phantom level z + 1. Let T{v,h) denote the vertex obtained by 

switching the orientation of h, where A is a minimal hyperplane of v. We 

first note that if h is minimal in v then gh is minimal in gv, moreover 

p(T(%;,/i))=T(^%;,pA) (*) 

Assume that there are finitely many orbits of vertices of phantom level i. 

Choose a representative from each orbit, say. Let 'uj, r? , . . . , 

be the finitely (by local finiteness Lemma 3.11) many vertices of level i + 1 

distance 1 from Vj. Now given Wj, a vertex of phantom level z + 1, neigh-

bouring a vertex Wj in the orbit of Vj, there is an element g E G taking wj 

to Vj and w'j to a Vj (given by (*)). Hence the finite set {Vj} is a set of 

representatives of orbits of z + 1 level phantom vertices and hence G acts 

cocompactly on • 
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Corollary 5.6. G acts cocompactly on X if and only if the level of phantom 

verdcea is bounded above. 

Proof: Vertices of phantom level 0 are vertices of the Moussong complex 

p(M) C ^ on which (3 acts cocompactly. 

(=») Suppose that the level of phantom vertices is unbounded. Then we 

can find a sequence of phantom vertices of strictly increasing level. Level of 

phantomness is preserved by the action of G hence there must be infinitely 

many orbits of vertices and so G does not act cocompactly on X. 

(<=) By Lemma 5.3 each Vi/G is finite and if there are finitely many of 

them then is finite, o 

5.2 P h a n t o m rays and Ladders 

Definition. A phantom ray of length n in X is a geodesic (in X^^^) edge 

path with vertices X0,Xi,... ,Xn where Xi has phantomness i. In particular 

Zo is the image of a vertex of the Moussong compie^r M ic 

Lemma 5.7. The following are equivalent. 

(i) G acts non-cocompactly on X. 

(a) There is no bound on the length of phantom rays in X. 

(Hi) There is an infinite phantom ray in X. 

Proof: Taking a vertex in X of phantomness n we can find a shortest 

edge path joining it to a vertex of VQ (the image of in X). Hence by 

Corollary 5.6 we have (i) <=> (ii). The implication (Hi) => (ii) is clear. 
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Now suppose that there is no bound on the length of phantom rays. 

Let {r,} be a sequence of phantom rays such that r, has length i. Since G 

acts transitively on the vertices of Vo, preserves phajitomness and acts by 

isometries on X we can assume that each ray begins at the same vertex XQ. 

We define an inhnite phantom ray, that is a map r : N —̂  such that 

r(2) haa phantomness i and emd + 1) are the endpoints of an edge in 

X for all i. Define r(0) = XQ and r(i + 1) to be a vertex which is the next 

vertex for infinitely many of the rj . Such a vertex exists since X is locally 

finite. • 

Definition. Given a set of halfspaces H of a space, let H. be the correspond-

ing get of oriented hypeipjanes. We de5ne a 0/ size 71 to be a gubget 

L of H consisting of two hyperplanes ki, k2 called uprights and a finite se-

quence of pairwise non-intersecting hyperplanes {/ii, /12, • • •, ^n) called rungs 

such that 

(ij /ji n ̂=2 n ^ 0 

(a) if a, b and c are the open halfspaces corresponding to the oriented hy-

pejpJaneg A:i, A:2 azzd regpective^y; then a D 6 n c = 0 

(Hi) hi intersects ki and A2 for 1 < i <n 

(iv) hi^i separates hi from hi+2 for 1 < i < n — 2 

(v) there are no hyperplanes in M parallel to and between hi and /ij+i for 

1 < i < n - 1 

Definition. An infinite ladder in M is a ladder with a countable infinite set 

of rungs {/ii, A2, /13, - - } gatigj^ing for ajU % > 1. 
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hs| 1̂ 1 

o/A /̂peT^ZoTiea o/gzze 6' 

Note that there may be hyperplanes between /i; and Aj for |j — %| > 1 

(as shown in grey in Fig. 5.2). 

Lemma 5.8. G actg nozz-cocompact/y or % if ancf oziTy if there is an m/ynfte 

ladder contained in t6e get of Ayperpjaneg of M. 

Proof: (<=) Let {Ai, /cg, /ii, / i2, . . .} be an infinite ladder in M. We will 

show that there are inGnitely many orbits of 3-ciibes in %. Recall that a 

3-cube in ^ imiqnely determines a set of 3 pairwise intersecting h^^perplanes 

in M. We dej&ne a o/ /lyperp/ariea to be a set of three pairwise 

intersecting oriented hyperplanes {Ao,/ii,A2} such that the corresponding 

halfspaces of M have the following property n /i]"" n = 0. We define 

the diameter of such a triangle to be D /li+i, /li+s} for % = 1,2,3 

where subscripts are taken modulo 3. Consider the triangles {/ji, A;2, /li}. The 

distances H in M strictly increase with % so there is no bound 

on the diameter of triangles of hyperplanea in M. Since G acts by isometries 

on Af the diameter of triangles is constant within an orbit. Therefore there 

are inSnitely many orbits of such triangles and hence infinitely many orbits 

of 3-cubes in %. 

56 



(=>) Suppose that G acts non-cocompactly on X. Then by Lemma 5.7 

there is an infinite phantom ray 20,21,22,--- in X. We show that such a ray 

implies the existence of an infinite ladder. Let /z,, be the hyperplane crossed 

to get from Xi^i to Xi. It is clear that hi is minimal but non-supporting 

for XQ in M. Let ki,... ^k-r be the supporting hyperplanes of XQ in the same 

Coxeter cell as hi in M. First we show that there are no i,j for which 

= /cj. Suppose for a contradiction that this is not the case and let ( be 

the smallest number for which hi is a supporting hyperplane of XQ- Let y 

be the vertex obtained by switching hi from XQ and consider the edge path 

{y,XO,... ,XI). Since {XQ, ... ,XI) is geodesic, the hyperplanes hi are distinct 

and so must cross hi. We can now switch the order of the hi bringing hi 

to the front which gives an edge path XQ,. .. ,xi whose second vertex is a 

chamber vertex and hence xi has phantomness less than 1, a contradiction. 

By the Infinite Ramsey Theorem (see for example [Gr]), infinitely many 

of the hi must be pairwise parallel otherwise there are infinitely many that 

pairwise intersect contradicting the finite dimensionality of X. We denote 

these hyperplanes , hn^, • • • ordered so that hm is closer to Xo than h^. 

whenever i < j. We claim that any two of ki,... .kr together with the h^ 

form an infinite ladder. We check the desired properties; 

(i) A:i n A:2 n h^^ ^ 0. Clearly H A;2 H ^ 0 since they are all hyperplanes 

intersecting a cell in M. If hi = then we are done. Otherwise let 

i be the smallest number such that hi is parallel to . Then the set 

ki ,k2,hi, hrn,hni+^,-.. is an infinite ladder with the required property. 

If hi intersects every then we claim that h^^ is minimal but non-

supporting for XQ and consider the ladder {^1,^2, , - - -} which has the 
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required property. 

Proof of claim: First we note that if (z, t/, z) is an edge path in a cubing 

and the hyperplanes crossing edges (x, y) and {y. z) intersect, then x, y and 

z are three vertices of a square in Now we can assume that for all % < yii 

we have ^ 0. Using the observation above repeatedly we deduce that 

there are square all along (zo, . . . , as the following diagram suggests 

so that we see that is minimal with respect to XQ. We have already noted 

that all of the hi are non-supporting. 

h 

i 

% 

K 

% 
ho 

X 1-1 

(ii) A;]*' n =̂2 n = 0 otherwise would be a supporting hyperplane of zo-

(iii) Each hi intersects ki and k2 otherwise switching hm would break rule 

(ii) for vertices (page 27) in 

(iv) Each /?,„. separates hrn_^ from /ini+i for 2 < i < n — 1 by the definition 

of the hm • 

(v) There are no hyperplanes parallel to and between hi and hi+i for 1 < 

i < n — 1 by definition. • 
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In the Moussong complex of each of the three Euclidean triangle groups 

it is easy to spot ladders of hyperplanes. Is it true that every infinite ladder 

contains an infinite subladder whose hyperplanes belong to a triangle group? 

If so, then this triangle group must be Euclidean as hyperbolic triangle groups 

do not contain infinite ladders as proved in section 5.3. These observations 

lead to the following conjecture for which an outline of a proof is given. 

Conjecture 5.9. Let G be a Coxeter group and X its cubing. G acts 

non-cocompactly on X if and only if G contains a Euclidean triangle group 

generated by reflections in three hyperplanes of X. 

The following is an outline of a suggested attack on the conjecture. 

(<=) Consider the set of hyperplanes H in M generated by reflections 

in the three hyperplanes. The intersection pattern of the hyperplanes of if 

must essentially be the same as the standard pattern in E^, i.e. there are 

three infinite families of parallel hyperplanes so that each intersects every 

hyperplane from another family. Choosing one hyperplane from each of two 

of these families together with infinitely many of the third family gives an 

infinite ladder in M and hence by Lemma 5.8 the action is non-cocompact. 

(=*-) By Lemma 5.8 there is an infinite ladder in M. Since ki and k2 are 

any two supporting hyperplanes of xq we can assume that hi is generated 

by ki and k2. We now define a new ladder with /ci, k2 and hi the same and 

the sequence of parallel hyperplanes defined as gihi where g is the infinite 

order element of G which is the reflection in hi followed by the reflection in 

/i2- Now consider the group generated by reflections in ki, k2 and /i2- This 

is a triangle group. The problem is to prove that its hyperplanes contain an 

infinite ladder. Infinite triangle groups are either hyperbolic or Euclidean 
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and hyperbolic groups act cocompactly on their cubings and hence do not 

contain an infinite ladder. Hence G must be a Euclidean triangle group. 

5.3 Hyperbolic Coxeter groups 

In this section we prove the following theorem. 

Theorem 5.10. ByperboJic Coxeter groups act cocompacdy on tAeir Cox-

eter cubingg. 

Proof: The proof is a corollary of Lemma 5.^. Let C be a hyperbolic 

Coxeter group with Moussong complex M and Coxeter cubing AT. Suppose, 

for a contradiction, that C acts non-cocompactly on By Lemma 5.8 

there is an infinite ladder of hyperplanes {A:i, /cg, /ii, - } hi M as in 

the diagram below. By a theorem of Moussong (Theorem 8.1 in [D]) M can 

be given a CAT(-l) metric by replacing all cells by cells in 

hi, hg) hg hgt hgi 

: : / / m M 

fig. !r/ieWder{A;i,A;e,/ii,/i2,/^3,-"} 

Let CKi and 0=2 be two geodesic rays in the hyperplanes /ci and /cg respec-

tively starting at a common point To of A;i H A;2 so that ea<:h a; crosses each 
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/li- Consider the geodesic triangles where is the point where 

CKj crosses the hyperplane /i,. 

r/ie m (/le OTicf 

Since these triangles all have the same angle at xo this is also true for 

all of the comparison triangles in Since the distance between any non-

intersecting hyperplanes is at least 1 then the distance of XQ to the side 

[xjjxf] increases by at least 1 for each increase in i whereas this distance 

in the comparison triangles in reaches an upper limit. Hence there are 

geodesic triangles that don't satisfy the CAT(-l) triangle condition, a con-

tradiction. • 

Example. 

1. For the Moussong complex and Coxeter cubing of PGL2{1) 

see Fig. 3.8 on page 43. 
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5.4 Direct products 

In this section we will use the edge path metric on the Coxeter cubing 

X, that is d(x,y) is equal to the minimum number of hyperplanes crossed 

in a path in from x to y. The direct product of two cubings Xi and 

with edge path metrics and dg is then deSned as the cubing % with 

X and edge path metric d(z,?/) = (^((a;i,]:2),(2/i!2/2)) = 

(3:1, m) + (^2(2:2,2/2). 

Lemma 5.11. Let X = {H, <, *, v) be a cubing. Then X is a direct product 

of the two cubings = (̂ "1, < , ?;i) and ^2 = (^2, < 1̂ %, *|g2, %) 

if and only if H = Hi U H2 and hi ^ A2 for all hi 6 Hi and /12 E 

Proof: (=>) Suppose, for a contradiction, that there exist hi G Hi and 

h2 E H2 such that hi < Ag. It is possible to choose vertices v = ("Ui, %), w = 

{wi,w2) E X%2 so that hi is minimal with respect to v and h^ is minimal 

with respect to w and so that v and w are separated by both hyperplanes. 

This is because each hyperplane separates X into two non-empty halfspaces. 

Let v' = {v'i,V2) and w' = (w^, be the vertices obtained from v and w 

respectively by switching these minimal halfspaces hi and h^ as in Fig. 5.6 

below. Note that V2 = ^nd wi = w'l-

Let di,d2,d be the edge path metrics in Xi, X2, and X respectively. 

Then 

= (fi('!;^,tU^)+0(2(^2,'^2) + 2 

And using the triangle inequality for the triangle {v,w,v') in Fig 5.6 we 
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have 

= o(i('Ui,'Ui) + d2('U2,i;D + + d2('u^,W2) 
= 1 + 0 + + ^2(^2,^2) 

The < comes from the fact that there may be other hyperplanes sepa-

rating t;, lu and 1;'. Therefore from the above we have 

1 + 6(2(̂ 2, tU2) < 6̂ 2(̂ 2) ^2) but this is an equality by the dehnition of lu 

and Hence there are no hyperplanes in X between and A2. Since this 

is true for any nested hi, A2 there can be no non-nested halfspaces in either 

Xi or X2 and so Xi and X2 are finite dimensional cubes so X is a finite 

dimensional cube and hence hi ^ h2, a contradiction. 

hz 

^ w \ 
wlC 

v V -

Fig. 5.6 hi < A2 and the triangle (v,'w,v') 

(<=) d{x,y) = mm(number of hyperplanes of Hi crossed +- number of 

hyperplanes of H2 crossed to get from x to y) = mw (number of hyperplanes 

of Hi crossed in Xi to get from xi to 2/1) + mm (number of hyperplanes of 

^̂ 2 crossed in "̂2 to get from 3:2 to 1/2) = (̂ 1(2:1,̂ 1) + (̂ 2(3:2,2/2). ° 

Theorem 5.12. Let G = Gi x G2 be a Coxeter group such that Gi and G2 

are infinite. Then the Coxeter cubing X of G is the direct product Xi x X2 
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of the Coxeter cubings of Gi and G2- Moreover G acts cocompactly on X if 

and only if Gj and G2 act cocompactly on Xi and %2-

Proof: Let Mi and M2 be the Moussong complexes of Gi and G2 

respectively. First we show that every hyperplane in Mi crosses every hy-

perplane in Mg. Let hi,h2 be hyperplanes in Mi.Ma respectively. The 

reflections Si and gg in hi and Ag satisfy (sis2)^ = 1 so in M there is a 

square cr with vertices 1, ai, gg, gig2, hence and Ag intersect in cr. 

The cubing X is obtained from the list of hyperplanes in M and their in-

tersection information along with a choice of fundamental vertex. Therefore 

by Lemma 5.11 X = Xi x X2. 

Now G = Gi X G2 has the diagonal action on X, i.e. the action on 

hyperplanes is defined by {gi,g2)hj — Qjhj where h j is a hyperplane of Xj. 

To see this we look at the action of the generators (s%, 1) for Sj E Ti and (1, s,) 

for Si e T2. Since every hyperplane in H2 intersects every hyperplane of Hi 

and moreover since % is a cubing does so orthogonally, we have (sj, l)/i2 = ^2 

for all /i2 E H2. It is clear that (sj, l)/ii = Sihi for all hi G Hi. For 

generators of G2 the argument is the same. 

To show that this action is cocompact it is enough to show that there 

are finitely many orbits of maximal cubes in X where a maximal cube is 

defined as a cube which is not the face of any higher dimensional cube. 

This is equivalent to showing that there are finitely many orbits of maximal 

pairwise intersecting sets of hyperplanes. Each such set is a union of such 

a maximal set of hyperplanes from Xi with such a maximal set from X2 

and the size of maximal sets in both is bounded above. Hence the size of 

maximal sets in X is bounded. Since the action of Gi on Xi is cocompact, 
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the number of orbits of maximal sets in Xi is finite, say, so the number of 

orbits of maximal sets in ^ is yiing. 

Conversely suppose that G acts cocompactly on % and assume, for 

a contradiction, that there are infinitely many -orbits of A;-cubes in Xi 

for some k. In X, Gi preserves the set of hyperplanes of Xi and G2 fixes 

pointwise all of these hyperplanes. Since Gi and G2 together generate G, the 

number of G-orbits of A;-cubes in X is also infinite, a contradiction. Hence 

Gi acts cocompactly on Xi. The proof is identical for Gg acting on %2- o 

5.5 Euclidean Coxeter groups 

A Euclidean Coxeter group is an irreducible affine reflection group on 

£"• for some n. Such Coxeter groups were classified by Coxeter in 1934 

[CI]. A list of all their graphs is included at the end of this chapter for 

the convenience of the reader. In this section we show that Coxeter groups 

containing a Euclidean special subgroup with at least three generators do 

not act cocompactly on their cubings. 

First we remark that Euclidean Coxeter groups with n generators act 

on and the reflection hyperplanes in divide the space into (n — 1)-

simplices in such a way that the resulting simplicial complex is isomorphic to 

the Coxeter complex. There are finitely many classes of hyperplanes under 

the relation of parallelism. See [Br] for the details. Also the Moussong 

complex for every Euclidean Coxeter group is a cell decomposition of E""^. 
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This can be seen as follows. Consider the action of a special subgroup. 

This is a finite group and therefore has a fixed point by Corollary 3.2. The 

orbit under this subgroup of any point not fixed defines a Coxeter cell for 

the subgroup. The Coxeter cells fit together as in the construction of the 

Moussong complex but from this point of view, within Euclidean space. Since 

a fundamental region for the action of the group is contained within the 

special cells, all of the space is filled. See [C3] Chapter XL This leads to 

some interesting tesselations of space, for example, the Moussong complexes 

of the three-dimensional Euclidean Coxeter groups on pages 69 and 70. 

Lemma 5.13. Euclidean Coxeter groups with at least three generators act 

non-cocompactly on their cubings. 

Proof: Let G be a Euclidean Coxeter group with n generators. Then 

G acts on by reflections in codimension-1 hyperplanes. By the remark 

in the previous paragraph, is divided up into simplices by the reflec-

tion planes and is isomorphic to the Coxeter complex when considered as a 

simplicial complex. Each chamber has n supporting hyperplanes, one from 

each infinite parallel family of hyperplanes. 

Given a set {h i ,h2 , . . . , hn} of pairwise intersecting codimension-1 hy-

perplanes in then any set {h[ ,h2 , . . . , hn} where h'̂  is parallel to hi 

also has the property that every pair of hyperplanes intersect. 

By Lemma 3.10 there is a bound on the number of hyperplanes that can 

pairwise intersect. Hence choose hyperplanes hi, h\ that do not intersect (i.e. 

are parallel in E^) and a chamber for which hi,h2, • • • ,hn are the supporting 

hyperplanes with h[ ^ hi, and let {h\} be an infinite sequence of distinct 

hyperplanes parallel to hi generated by reflection in hi and h[. Hence the set 
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Y = {{hi, h2,. •., hn}} is an infinite set of collections of pairwise intersecting 

hyperplanes. We need to show that Y intersects infinitely many orbits of 

collections of pairwise intersecting hyperplanes. 

We claim that each set of hyperplanes , A2,..., /in} encloses a finite 

region in called Ri. The hyperplanes h2,- . . ,hk bound a biinfinite 

simplicial double cone and any h\ intersects each hj and hence defines a 

finite region. Assign a number to each collection /ig, - - , equal 

to the maximum number of hyperplanes parallel to one of the supporting 

walls intersecting Ri non-trivially. Passing to a subsequence and reordering 

if necessary we get a sequence mo < mi < m2 < . Clearly within an orbit 

mi is preserved hence for z ^ j we have {/zi, /12, - -, {/ij, A2,..., 

lie in different orbits. Hence there are infinitely many orbits of collections of 

pairwise intersecting hyperplanes and so the action is not cocompact. • 

Corollary 5.14. Any Coxeter group G containing a Euclidean Coxeter 

group GT with at least three generators as a special subgroup acts non-

cocompactly on its cubing. 

Proof: As in the proof of Lemma 5.13 there exists an infinite order 

element g E GT and hyperplane h in S t so that {{g)h} is an infinite family 

of pairwise non-intersecting hyperplanes in MT- (TO see this choose any two 

non-intersecting hyperplanes h, h' in MT and let a, a' be the group elements 

that act by refiection in h and h' respectively. Then let g = aa'.) By 

Lemma 2.8 the Moussong complex of a special subgroup is isometrically 

(and invariantly) embedded in M. Let h' be a hyperplane in M such that 

h' n MT = h with respect to the embedding constructed in Lemma 3.9. 
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We wish to show that {{g)h'} contains an infinite family of pairwise non-

intersecting hyperplanes. 

First suppose that there exists n e N so that g'^h' fl /i' = 0. Let gn = 

and consider the hyperplanes Nowpn/^'n/i' = 0 => = 

0. We will now show that for any r we have n = 0. Wis denote 

the hyperplanes respectively, = 0 and 

/ii n /i2 = 0 but restricting to MT we see that ho and /i2 lie on different sides 

of Ai hence they do not intersect in M. The set then an inSnite 

set of pairwise non-intersecting hyperplanes. 

Fig. 5.7 g'^h' nh' 

Now suppose that for all n we have g'^h' C\h' ^ 0. Now since G acts 

by isometries g'^h' 0 h' ^ g But from this, for 

any r the set of hyperplanes {h', gh', g'^h',... ,g'^h'} is pairwise intersecting 

contradicting the local finiteness of the cubing (Lemma 3.11). 

So we now have an infinite family of pairwise non-intersecting hyper-

planes in M. Relabel and orientate to get a family of halfspaces {hi,h2,...} 

with hi < hj whenever i > j. 
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Now by Theorems 5.8 and 5.13 there is an infinite ladder in MT- We 

can assume that the family {(p)A} of hyperplanes de&ied at the beginning of 

the proof is a subset of the rungs of this ladder. (We can do this because MT 

is isometric to a Euclidean space and so any two uprights in MT crossing 

one of this set of parallel hyperplanes will cross them all.) The previous 

paragraphs of this proof have established a family {/ii, /ig,. . .} of pairwise 

nested hyperplanes of M each containing a. g'^h for some n. Choose two 

hyperplanes of M containing the one each of the two uprights of the ladder 

in MT- Then filling in more rungs, if necessary, we get an infinite ladder of 

hyperplanes in M and hence by Theorem 5.8 the action is not cocompact. o 

Examples 

1. The (3,3,3) triangle group: Ag = (gi,52,a3|g? = (siSj)^ = 1) 

Coxeter graph: 

Fig. 5.8 Part of the Moussong complex of A2 

Cubing: with the integer lattice cubing. In M there are clearly 

three families of parallel hyperplanes each of which intersects every hyper-

plane from a distinct family. The cubing for each family is M and hence by 
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Lemma 5.11 the cubing is E^. Different orbits of 3-cubes are realised in M 

as different sized triangles formed by hyperplanes showing that the action is 

non-cocompact. 

2. The three-dimensional Euclideaji Coxeter groups. 

There are precisely three Euclidean Coxeter groups whose Moussong 

complexes are isometric to E^. These are A3, Bs, C3. (See graphs on page 

73.) Below are pictures of part of their Moussong complexes. Each Mous-

song complex has a fundamental region consisting of four cells incident with 

a single common point (i.e. four special cells with the identity vertex in 

common). The pictures show three out of four of these cells. The missing 

cell is the same as the others in A3 case and is the same as the largest cell 

in the other two cases. 

Fig. 5.9 Part of 
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Fig. 5.10 Part of M-
Bz 

Fig. 5.11 Part of M~^ 

The Coxeter cubings of these groups are E®, E® and E^ respectively. 

The fact that they are cubings of Euclidean space is proved by the same 

reasoning as for A2 above. As above, the dimension is determined by the 

number of families of parallel hyperplanes in M. 

3. The Coxeter group T with graph contains four special sub-

groups isomorphic to A2 and hence by Corollary 5.14 acts non-cocompactly 

71 



on its Coxeter cubing. 

¥ 
Fig. 5.12 The special cells of the Moussong complex for T 

5.6 Triangle subgroups 

Theorem 5.16. Let G be a Coxeter group and X its Coxeter cubing. Then 

G acts non-cocompactly on X if and only if G contains infinitely many non-

conjugate isomorphic infinite triangle groups. 

Proof: (<=) Let the triangle subgroups be (<3%, 6%, q) , with aihi of order 

p, hiCi of order q, and Qa, of order r for each i. Then the 2-generator 

subgroups {ai,bi) are all finite dihedral groups and each one is conjugate 

to a special subgroup {Ai,Bi) of rank 2, where the conjugacy takes a, to 

Ai and 6% to Bi. Since G is finitely generated there are only finitely many 

such special subgroups, and so by the pigeonhole principle, infinitely many 

ai and bi are conjugate to each other and to some fixed special subgroup 

{A,B). Now discard the others and consider this infinite set. Let gi be 

the element conjugating to A and bi to B, and let Q be Cj conjugated 

by gi- Then (A, B, Q ) is a special subgroup conjugate to (and therefore 
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isomorphic to) {ai,bi,Ci). Since the subgroups (a,, 6%, c j are not conjugate 

neither are the subgroups {A, B,Ci). Let and hc^ be the hyperplanes 

in which A, B and Q respectively are reflections. We will show that the 

hyperplanes /ig, Aci, Acg,...} contribute to an infinite ladder in M. 

The two uprights are Ha and hs and the rungs will include the hci • By the 

definition of infinite ladder on page 55 there are five things to check. 

Properties (i) and (ii) are left to the end of the proof. 

Property (iii) states that hCi must intersect Ka and hs for all i, which 

is clearly satisfied. 

For (iv) it is required to show that infinitely many of the hc^ are pairwise 

non-intersecting in M, then these will be rungs for our ladder. Roughly 

speaking there are only finitely many ways that the hc^ can intersect HA 

and h s and so by the pigeonhole principle infinitely many will be parallel. 

To prove this let a : [0, oo) —> M be a geodesic ray with q:(0) 6 HA^HS 

and crossing infinitely many of the hci- Let an be the geodesic that is the 

restriction of a to the interval [0, n]. For any n we can assume that an avoids 

by slightly moving the endpoints if necessary. Since M is a Euclidean 

complex Qn has a Euclidean neighbourhood, N say. Within N each hci cuts 

HA at the same angle and there are only finitely many ways it can do so. 

Since the metric on M is convex (a result of the CAT(O) property) planes that 

are parallel in N cannot meet in M. Hence there is no bound on the size of 

sets of pairwise non-intersecting hc^s. Now we discard the other hyperplanes 

and relabel this set of pairwise nested hyperplanes hc^, hc^, hc^ ,•• • with Ac-

closer to n /is than hc^ for all i < j. 

For property (v) we note that if there are any such 'sandwiched hyper-
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planes' we may include them as rungs in the ladder. 

Finally it is required to find a hyperplane h in M that satisfies prop-

erties (i) and (ii). Such a hyperplane always exists in the hyperplanes of 

any triangle group. Take h to be such a hyperplane in the triangle group 

(O/j, fej, Ci). 

(=>) If there is an infinite ladder then we get an infinite family of triangle 

groups (A, Q) but the orders of 4̂(7; and .BQ may vary with Q, so the 

triangle groups defined by the ladder are not all isomorphic. However there 

are only finitely many possibilities for the orders, so we may pass to an 

infinite subsequence where they are all the same. Hence we have an infinite 

family of isomorphic non-conjugate triangle subgroups. • 
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Chapter 1 

Introduction 

A group is subgroup separable if all of its finitely generated subgroups 

are closed in a certain topology (the profinite topology) on the group and is 

residually finite if the trivial subgroup is closed in this topology. Subgroup 

separability is a very strong condition known only for a small class of groups. 

It is very useful in geometric topology where it can be used to pass from 

immersions to embeddings in some finite cover. Scott's paper [Sc] gives a 

good outline of this connection between subgroup separability and geometric 

topology. 

A group has the engulfing property if every finitely generated proper 

subgroup is contained in a proper subgroup of finite index. The engulf-

ing property is, in general, weaker than subgroup separability. However, in 

[L] Long proves that for any closed hyperbolic 3-manifold M, the engulfing 

property for tti (M) implies residual finiteness, and if additionally a subgroup 
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H < G is geometrically finite then H is finite index in a separable subgroup 

of G. This then leads to the following result. 

Theorem. (Long) Let T be the fundamental group of a closed hyperbolic 

3-manifold. Suppose that F has the engulfing property for those finitely 

generated subgroups H with < 5^. IfT contains a surface group then 

E ^ / r is virtually Haken. 

(Recall that 3-manifold is Haken if it is compact, orientable , irreducible 

and contains a two sided incompressible surface.) 

The following result is proved about the engulfing property. 

Theorem. (Long) Let Fi, F2 be fundamental groups of closed hyperbolic 

3-manifolds such that Fg is a Unite index subgroup of Ti. Then Fj has 

the property that it engulfs all its finitely generated subgroups H such that 

A{H) < 5^ if and only if F2 also has this property. 

In fact Long conjectures the following. 

Conjecture. (Long) Let F be the fundamental group of a closed hyperbolic 

3-manifold. Then F has the engulfing property for all subgroups H with 

A(^) < 

In his important and influential article 'Hyperbolic groups' [G] Gromov 

introduces the notion of a 6-hyperbolic or negatively curved space, a metric 

space with a simple condition requiring geodesic triangles to be 'thin', giv-

ing a generalisation of classical hyperbolic space. A word-hyperbolic group is 

a finitely generated group whose Cayley graph is (5-hyperbolic. Hyperbolic 

group theory is a very rich and interesting area of mathematics with still 
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many unsolved problems. Among these, the question of subgroup separabil-

ity and residual finiteness for word-hyperbolic groups is still open. 

In this part we investigate these residual properties of word-hyperbolic 

groups adapting tools introduced by Long in [L]. 

The two main theorems are the following. 

Theorem 3.5. Let G be a non-elementary word-hyperbolic group and sup-

pose that G engulfs all of its finitely generated free subgroups. Then G is 

almost residually finite, i.e. {e} ( the closure of {e} in the proGnite topology) 

is finite. If G is also torsion-free, then G is residually finite. 

Theorem 3.11. Let G be a non-elementary torsion-free word-hyperbolic 

group with the engulfing property and H a quasiconvex subgroup. Then H 

is finite index in a separable subgroup (H) of G. 

Note that if G is elementary then it is virtually cyclic by [G] and 

'almost'-residual finiteness and -separability of H are easy to prove. 

This work can be seen as part of the tradition of taking results in the 

theory of Kleinian groups and adapting the proofs to fit the more general 

notions of word-hyperbolic groups. It also could be seen as providing more 

evidence for Thurston's hyperbolisation conjecture [T] that 3-manifolds with 

word-hyperbolic fundamental groups are in fact hyperbolic as well as giving 

another class of groups that satisfy Thurston's virtually Haken conjecture 

that says that if M is a closed orientable irreducible 3-manifold with infinite 

fundamental group, then M has a finite sheeted cover which is Haken. (See 

[AR].) 

In [Gi] Rita Gitik constructs a large family of hyperbolic 3-manifolds 
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that are subgroup separable (and hence also have the engulfing property). 

In more recent work, Ilya Kapovich and Dani Wise [KW] prove that 

the following are equivalent: 

(i) Every word-hyperbolic group is residually finite. 

(ii) Every word-hyperbolic group has at least one finite quotient. 

(iii) Every word-hyperbolic group is virtually torsion-free. 
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Chapter 2 

Preliminaries 

In this chapter we give a brief introduction to word-hyperbolic groups, 

introduce the profinite topology on a group and define the notion of separa-

bility. 

2.1 Word-hyperbolic groups 

This section is a brief introduction to word-hyperbolic groups. There 

are many books and articles giving a full treatment of this area including 

[A], [CDP], [CP], [G] and [GH]. 

Let G be a finitely generated group and let 5 be a finite generating set. 

Recall that the Cayley graph G{S) for G (with respect to the generating set 

S) is the connected graph with vertex set VQ{S) = {g\g G G} and edge set 

EQ{S) = {{g,h)\g,h G VQ,g = hs.s e We metrise Q by giving each 
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edge length 1. 

Let be a geodesic metric space. A geodesic triangle in is 

if each edge is contained in the (^-neighbourhood of the other two edges. X 

is 6-hyperbolic if there exists <5 > 0 so that every geodesic triangle in X is 

(5-thin. 

X 

Fig. 2.1 A 5-thin triangle 

Definition. G is word-hyperbolic if ^(5) as metrised above is a 6-hyperbolic 

space for some <5 > 0 and for some finite generating set S. 

It can be shown that Cayley graphs arising from different finite gen-

erating sets are quasi-isometric, i.e. geometrically 'very similar' and that 

(5-hyperbolicity is a quasi-isometry invariant. (See for example [GH] Chap-

ter 5 §2.) Hence the definition above is independent of the generating set. 

Prom now on we fix a generating set S and write 0(3) = G-

Definition. Gromov's inner product on G is defined as 

(3:.2/) = 1) -I- 1) - ?/)) 

where d is the metric on G- We say that a sequence of vertices of 

G converges to infinity if lirriij^ooi^i-Xj) = oo. We define an equivalence 

of sequences as follows. Two sequences {xj} and {%} are defined to be 

equivalent if limi^cc{xi.yi) = oo. The boundary at infinity dG of G is defined 
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as the space whose points are equivalence classes of sequences converging to 

infinity. 

The Gromov inner product extends naturally to the boundary and de-

fines a metric on the boundary. A topology on ^ U 5^ is defined by the basis 

consisting of the sets = {%/ E ^ U > A;} for A; > 0 for z € 9G 

(known as AoroWk) and the usual open balls Bt(T) = {2/ E G|d(a:,i/) < A;} 

for z E G. With this topology ^ U is compact and is closed in G U 8^. 

Given a subgroup H of G, the limit set of H which is denoted A{H) is 

defined as the subset of dG attainable by sequences of elements of i7. H acts 

properly discontinuously on dQ — A(H). 

The following describes the action of infinite order elements on the 

boundary. If g is an infinite order element of G it acts on the Cayley graph 

Q by translation along a quasi-geodesic line, a say, (obtained by joining p' 

to for all z G Z by a geodesic in Q). Denote by dg = {dg'^,dg~} = 

{limi-^ood^ the endpoints of a in dQ (which are fixed by g). 

There exist disjoint neighbourhoods U+ and U- of dg'^ and dg" respec-

tively such that for all z E — ((/+ U [/_) we have ga; E [/+ and E . 

We say that the pair {U+, U-) is absorbing for g. In fact any pair of disjoint 

neighbourhoods of dg^ and dg^ is absorbing for g^ for sufficiently large k. 

(See [GH] Chapter 8.) 

A word-hyperbolic group is called elementary if it is finite or contains 

a finite index infinite cyclic subgroup and is non-elementary otherwise. Ele-

mentary word-hyperbolic groups have either no boundary at infinity (if and 

only if the group is finite) or a boundary consisting of two points. Non-

elementary word-hyperbolic groups have infinite boundaries. 
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A subgroup iJ of a group G with generating set S is quasi-convex if 

there exists C > 0 such that every geodesic in the Cayley graph lies 

within a C neighbourhood of H. 

Examples. 

1. Finite groups 

Let G be a finite group. Any Cayley graph ^ of G is finite. Let 6 be 

the diameter of Q. Then every geodesic triangle is 5-thin. G clearly has no 

boundary at infinity. 

2. The Cayley graph for Z is isomorphic to M and has boundary 5Z = 

{—oo, +oo}. 

T/ie /or Z 

3. Finitely generated free groups 

The Cayley graph of a rank n free group G is a 2n-valent tree. Any 

geodesic triangle in a tree is 0-thin. If n > 2 the boundary of G is a Cantor 

set (e.g. isomorphic to the set {0,1}^). 
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4. Discrete groups of isometries of EI"' with proper discontinuous co compact 

actions. In fact if G is a group acting properly discontinuously and co com-

pactly on a geodesic space X then G is word-hyperbolic if and only if X is 

(5-hyperbolic. 

5. Hyperbolic Coxeter groups 

A Coxeter group as described in Part I is word-hyperbolic if and only if 

it contains no subgroup isomorphic to Z x Z [Mou]. 

6. Free products of hyperbolic groups 

One can think of the Cayley graph of a free product of hyperbolic groups 

as a tree of hyperbolic graphs. Let G = * (̂ 2 and and ^2 be Cayley 

graphs of Gi and G2 respectively such that Qi is <5i-hyperbolic and Q2 is 

62-hyperbolic. To see what the Cayley graph of G looks like take Qi and 

attach a Q2 at every vertex. Then attach a Q\ to each vertex of the attached 

graphs and so on. Any geodesic triangle can be decomposed into triangles 

contained in a or a ^2- Hence G is (5-hyperbolic where <5 = 62). 
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Fzg. ,2.̂  T/ie Co?/Ze%/ 0/ Z2 * Z3 

2.2 Separability 

Given any group G we define a topology on G (different to that described 

in 2.1) called the profinite topology. A basis of closed sets is defined as the 

cosets of finite index normal subgroups of G. Hence G is a topological group 

as the actions of group elements are continuous. 

Note that, in this topology, finite index subgroups are closed. To see 

this, let -ft' be a finite index subgroup of G. Consider the group K' = 

r]{gKg~^\g 6 G]. K has finitely many distinct conjugates in G and hence 

K' is a finite index normal subgroup. K' has finite index in K hence iiT is a 

finite union of closed sets (the cosets of K' in K) and hence is closed. 

Definition. Given a group G, a finitely generated subgroup H is separable 

in G if it is closed in the profinite topology on G. A group G is residually 

finite if {e} is closed and G is subgroup separable or LERF (locally extended 

residually finite) if every finitely generated subgroup H is separable in G. 
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We compare these definitions with the more standard definitions of sep-

arabihty, residual finiteness and subgroup separability: H is separable in G 

if for any g E G — Tif there exists a finite index subgroup if < jPT < G so that 

g is not in K] as above G is residually finite if {e} is separable in G and is 

subgroup separable if every finitely generated subgroup H is separable in G. 

For the purpose of the following lemma we call these two definitions 

of separability separabilityi (profinite topology definition) and separability2 

(standard definition). 

Lemma 2.1. Let H be a finitely generated subgroup of a group G. H is 

separablei in G if and only it is separable2 in G. 

Proof: Let H denote the closure of H in the profinite topology on 

G and let H* denote the intersection of all proper finite index subgroups 

containing H. It is clear that H = H if and only if H is separablei and 

that H* = H if and only if H is separableg. We will show that H* = H. 

Clearly H* C H. Suppose that H* C H. Then there exists h E H not in 

jif*. A general closed set is of the form U^2-̂ 2 U. . . where eeich 

is an intersection of finite index normal subgroups. H* is closed and hence 

we set U U . . . U so we can assume that each 

Xi is a finite index normal subgroup. Now let X = fiXj and consider the 

group HX. It is a finite index subgroup containing H and hence contains 

h. h = hx for some h £ H and x E X. But h = giXi for some g E G and 

Xi E Xi- Hence h G H*, a contradiction. • 

A useful corollary of residual finiteness is that given any finite list of non-

trivial elements xi,x2, • • • ,Xn of G there is a finite index normal subgroup 
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containing none of them. To see this, take a finite index subgroup Ki not 

containing Xj. This is possible because G is residually finite. Let K[ be the 

intersection of all conjugates of Ki which is a finite index normal subgroup 

not containing Xi. The intersection of the K[s is the required group. 

Definition. (The enguISng property) A group G is said to engulf a subgroup 

H if H is contained in a proper finite index subgroup of G. G is said to have 

the engulfing property if G engulfs all of its finitely generated subgroups. 

Note that if a group is subgroup separable then it certainly has the 

engulfing property. 

Examples. 

1. Free groups are subgroup separable. This was first proved by Hall in [H]. 

2. Surface groups are subgroup separable. This was proved by Scott in [Sc] 

using 'the geometry of the hyperbolic plane and simple facts about groups 

generated by reflections'. 

3. Finite extensions of subgroup separable groups are subgroup separable. 

Proof: Let G be subgroup separable and a finite index normal subgroup 

of G'. First note that any closed (in the induced topology from G') subgroup 

of G is also closed in G' since G is closed in G'. Now let if be a subgroup of 

G'. if n G is closed and is finite index in H and hence H is closed in G'. o 

4. Fuchsian groups are subgroup separable. 

This is a consequence of Examples 2. and 3. above since any Fuchsian 

group is a finite extension of a surface group. 
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Chapter 3 

Results 

Let iy be a subgroup of a group G and H denote the closure of H in 

the profinite topology. 

Lemma 3.1. For any H < G, H = H. 

Proof: Clearly a closure is closed. • 

Corollary 3.2. H is separable for any H < G. a 

The following well known fact can be viewed as an alternative definition 

of the limit set of a subgroup. A proof taken from [GH] is included for the 

convenience of the reader. 

Lemma 3.3. Let H be a non-elementary subgroup of a word-hyperbolic 

group G. Then A(H) is the smallest non-empty closed H-invariant subset of 

ac;. 
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Note that 'closed' in the statement of the Lemma refers to the standard 

topology on ^ U as mentioned in Section 2.1. 

Proof: We prove that ii dQ is closed and ff-invariant then A(i?) C 

A. Firstly, let B C dQ. Denote by I{B) the set of points of Q lying on 

geodesies between points of B. Suppose that 5 7̂  0 and \B\ ^ 1. Then 

7(B) ^ 0. Let {z,} C / (B) be a sequence such that 2;; ^ 2; E We 

claim that x £ B. To see this, for each i choose a geodesic k = [b'^^b'-] 

with b[,b'- G B. Passing to a subsequence if necessary we get b'^ b' E B, 

h'l b" E B, li I. Xi X e lU {b', b"} and hence x 6 {b', b"}. 

Now let A Q dQ he closed and i?-invariant. Let I{A) be as above. 

Then I {A) is J?-invariant. First suppose that 1 E I {A). Then H C I {A). 

Let x G A(iJ) and {xi} C H so that Xi —> x. By the first paragraph of 

the proof x E A = A and hence A{H) C A. Now suppose that 1 ̂  1(A). 

Then 1(A) fl if = 0 and 1(A) is a union of right cosets of H. Suppose that 

Hg C 1(A). Let x E A(H) and {xi} C H with Xi x. Then since Xig and 

Xi are a distance exactly |p| apart for all i we have XiQ x E A(H) and 

hence by the previous paragraph x E A = A and A(H) C A as required. 

It is clear that A(H) is iJ-invariant so it remains to prove that A(H) is 

closed. We show that dQ — A(H) is open. Let y E dQ ~ A(H) and let 

be a sequence converging to y. Let ai be geodesies realising the distances 

d(yi,H). There is no bound on the lengths of the ai. Let z, lie on ai so that 

there is no bound on the distances d(yi,Zi) and d(zi,H). Let {zi} converge 

to z E dQ then the horoball N^y^z)(y) is an open set containing y and disjoint 

from A(H) as required. • 
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Corollary 3.4. Let H be a non-elementary subgroup of a word-hyperbolic 

group G. Then A(J^) is the dosure of the set 

{{h^jlh e H, h has infinite order} C dQ. 

Proof: By Lemma 3.3 A(iJ) is the minimum non-empty closed H-

invariant subset of dQ. Clearly {{h'^]\h e H, h has infinite order} C A{H) 

and is iJ-invariant. Hence its closure must be A{H). o 

For the duration of Part II let N = {e}, the closure of the identity 

element in the profinite topology. 

First, we show that the engulfing property implies 'almost' residual 

finiteness. Recall that G is residually finite if and only if {e} is closed in 

the profinite topology, i.e. N = {e}. 

Theorem 3.5. Let G be a non-elementary word-hyperbolic group and sup-

pose that G engulfs all of its finitely generated free subgroups. Then G is 

almost residually finite, i.e. N is finite. If G is also torsion-free, then G is 

residually finite. 

Proof: Suppose that G is not residually finite. Then we have N / {e}. 

We claim that N = n{K\K is a proper finite index normal subgroup of G} 

is a non-trivial normal subgroup of G with A(iV) — dQ or N \s clearly 

normal. Let A(N) = X. Then NX = X and since N is normal g~^NgX = 

NX = X and hence NgX — gX for all ^ G G so gX is jV-invariant. By 

Lemma 3.3 X is either empty or is the minimal non-empty closed A^-invariant 

subset of dQ so we have X C gX for all ^ G G and hence g~^X C X for 
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all g E G. Hence gX = X for all g E G which implies that either X = 0 or 

Suppose that % = Let {gi,P2, - ,gTi} be a generating set for G. 

Since G is non-elementary and hence dQ is infinite we can choose infinite 

order elements G TV so that the are distinct from each 

other and the dgi. Since dQ is metrisable (with metric d, say) we can choose 

2n mutually disjoint neighbourhoods of the dxi (e.g. open balls of 

radius r = centred on By taking su&ciently high 

powers of the Xi and relabelling we can ensure that these neighbourhoods 

satisfy the following: 

(i) ([/^, UL) is absorbing for xf, 

(ii) [ / i )np:(((7j . , [ / i )) = 0 for a l i i 

Let and consider the group 6" = (gi, 52, - - , 5^). We prove 

that S is free by the usual 'ping-pong' argument. First note that ([/^, C/1) is 

absorbing for s^. Let p be a point of dQ — Ui{U^ U U"L) and s = 

a reduced word in the generators of S and their inverses. Since p E dQ — 

we have g(p) = (pi) where pi is a point in UL/lr 

and so on until we see that s{p) € C/+ U U"!^ and hence p is not fixed by s so 

s e. Hence S is free. 

Next we prove that A{S) is contained in the closure of the absorbing 

pairs {U\,, Ut). Let h = Si^Si^ • • • ^in be an infinite order element of 5. By 

Corollary 3.4 the closure of the set of fixed points of such elements is the 

limit set of S hence it is enough to show that dh is contained in the union of 

the U±. Let dh = {x, y] and suppose that x is not in any U^. and consider 

h{x). By a similar argument to above we see that h{x) G U U]]; but h 
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fixes z, a contradiction. Exactly the same argument applies to y. 

By the above A(6') C U (71) C so 5" is a proper subgroup (of 

infinite index) in G. Since G engulfs its free subgroups, there exists a proper 

finite index subgroup jiT with 5' < jiT < G. All of the generators s, = 

are in A" and jV C by definition of TV and hence Zi,2;2 - E 

therefore Qi E K contradicting the fact that K is a proper subgroup of G. 

Hence A(N) — X = 0 and so N is finite. In particular if G is torsion 

free N is trivial and G is residually finite as required. • 

Now we turn our attention to subgroup separability. First we deal with 

finite subgroups. 

Lemma 3.6. Let G be a non-elementary word-hyperbolic group with the 

engulfing property and let H be a finite subgroup of G. Then H is finite 

index in a separable subgroup of G, namely H. 

Proof: Let H = {hi,h2,.... hn}. By Theorem 3.5 N is finite. H = 

Uf^ihi{e} and hence H = = Uf^^hiN, a finite union of finite sets, 

hence H is finite as required. • 

Theorem 3.7. Let G be a non-elementary torsion-free word-hyperbolic 

group. Suppose that G has the engulSng property. Then for all finitely 

generated infinite quasi-convex subgroups H < G we have A{H) = A{H). 

Proof: We have H < H and therefore A(i?) C A{H). If A(H) = dQ 

then the result is clear so suppose that A{H) < dQ. Let {gi,g2, • • •,Qn} be a 

finite generating set for G. Assume, for a contradiction, that A{H) C A{H). 

In particular H is non-elementary. 
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Claim. A{H) — A{H) is inSnite. 

Proof of Claim: Suppose, for a contradiction, that A(H) — A{H) = 

{21,22, • • • ,2n} C dQ. Each {xi} is a closed set and since by Lemma 3.4 

A(H) is the closure of the set {dh\h G H, infinite order} each Xi must be a 

fixed point of an infinite order element /i* € .Tif. Now let ((7^+, [/^_) be an 

absorbing pair for Aj and let ?/ E A(Jir) — By taking sufiiciently 

large j we can ensure that (y) (which is clearly in A{H)) lies in the horoball 

^kixi) = {26 dG\(x.Xi) > k} for any k > 0 but Xi is a non-zero distance 

from A{H) and hence there exists a k for which Nk(xi) fl A{H) = 0, a 

contradiction. • (Claim) 

Now choose 2/1, %/2, - - -, 2/n E .8̂  so that 2̂/1, ̂ ^2, - -, E A(j?) — A(J?) 

and dyi ^ dgj for any i,j. Let C C. dQ — A(H) be a compact set containing 

the yi in its interior. Since ^ U 5^ is compact and dQ is closed in QU dQ, 

C = ki{dyi) n dQ will suffice for suitably large ki. H acts properly 

discontinuously on dQ — A{H) so there are finitely many non-trivial elements 

of H, hi,h2,.. .hm say, taking C to intersect itself. By hypothesis G has 

the engulfing property and hence Theorem 3.6 proves that G and hence H 

is residually finite. Thus there exists a finite index normal subgroup A<iH 

containing none of the hi. 

We now need the following technical Lemma. 

L e m m a 3.8. Let G and H be as above and suppose that A<\H is a normal 

subgroup of finite index in H. Then there is an integer t so that if h e H 

then E A. 

Proof : We will show that the result holds for t = \H : A\. Let K be 
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a finite index subgroup of G containing A. Then we need to prove that for 

any h e H we have € K. 

Let K' = r\{hKh^^\h G H}. Since K is finite index in G, K' is the 

intersection of finitely many finite index subgroups and is hence of finite 

index in G. Also hK'h~^ = K' for all h ^ H, i.e. K' is normalised by H. 

Moreover since A was normal in H we have A < K' < K. 

Since K' is normalised by iT, the subgroup generated by K' and H is 

the group HK' . Now by the standard isomorphism theorems we have 

Thus the order of the group HK'/K' divides \H : A\, and any element 

of the quotient group has order dividing \H : A\. 

If now h e H, then h G HK' since HK' is a subgroup of finite index 

which contains H. Hence & K' < K as required. • (Lemma 3.8) 

By Lemma 3.8 we can take powers and relabel to ensure that yi E A. 

Since dQ is metrisable we can choose n mutually disjoint pairs of neighbour-

hoods {U]_, U1) for the dyi so that the closure of each is contained in the 

interior of C. Ensure that Ul_) is absorbing for % by taking sufficiently 

large powers and relabelling. 

Now let gi = for each z and consider the group .9 = (gi, 52, - -, an)-

S is free by the same argument to that given in Theorem 3.7. 

Now consider the group B generated by S and A. We claim that its 

limit set is contained in the closure of (71) U dQ — C. To prove this 

consider an element b e B of infinite order. Write b as sl^ais^^a2 . . . s^^ak 
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where E A. By Corollary 3.4 the closure of the set of 6xed points of such 

elements is the limit set of B hence it is enough to show that db is contained 

in (71) U — C. Let and suppose that a; is not in any 

U dG — C and consider b(x). Each moves points out of C 

and hence out of the [/j. and each generator moves points from without into 

these absorbing sets. Hence b{x) € Ui(?7^, Ul,) U dQ — C but b fixes x, a 

contradiction. The same argument applies to y. The claim now follows from 

Lemma 3.4. 

Now A is finitely generated because it is a finite index subgroup of H 

and hence B is finitely generated. The engulfing property then implies there 

exists a proper finite index subgroup K containing B. K is finite index 

and contains A so A < K and hence K contains the elements yi,y2,.. • ,yn-

But K also contains the elements Si — yiQiyi and hence contains all of the 

generators of G and so K = G contradicting the fact that K is a. proper 

subgroup, o (Theorem 3.7) 

Corollary 3.9. Let G be a non-elementary word-hyperbolic group with the 

engulfing property and H an infinite quasiconvex subgroup. Then H is finite 

index in a separable subgroup of G (namely H). 

Proof : This follows from Theorem 3.7 and the following Lemma which 

was proved by Kapovich and Short in [KS] and Swenson in [Sw]. We follow 

the proof given in [GH]. 

L e m m a 3.10. Let H be a quasiconvex subgroup of a word-hyperbolic group 

G. If H < L < G with A(H) = A(L) then \H : L\ < oo. 

Proof : Let G denote the union of all geodesies in Q joining points 
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of A(H) (= A(-L)). Since H is quasiconvex diam(C/H) = M < oo. Since 

A(7f) = A(Z,), 2/ acts on C. Let Z E Z,. For any point p E C we have ZQ?) E C. 

There exists a point A(p) E C with A E such that < 2M 

and hence d(h, I) < 2M. We have shown that for any I E L there is a 

gi{= l~^h) E G such that d{l,gi) < 2M and Igi E H. There are clearly 

finitely many such elements p, so that for alH G L, / E Hgi for some i. • 

For completeness it is necessary to deal with the case when G is ele-

mentary. We have already dealt with the finite case so it remains to deal 

with G and H both containing an infinite cyclic subgroup of finite index, i.e. 

dQ — A(H) and \dQ\ = |A(iJ)| = 2. It is well known that G is residually 

finite since it contains a subgroup of finite index which is residually finite. 

Clearly A(iJ) = A(i?) and hence by Lemma 3 . 1 0 | i J : i I | < o o . 

In conclusion we state our main theorems. 

T h e o r e m 3.5. Let G he a non-elementary word-hyperbolic group and sup-

pose that G engulfs all of its finitely generated free subgroups. Then G is 

almost residually finite, i.e. {e} ( the closure of {e} in the prohnite topology) 

is finite. If G is also torsion-free, then G is residually finite. 

T h e o r e m 3.11. Let G be a non-elementary torsion-free word-hyperbolic 

group with the engulfing property and H a quasiconvex subgroup. Then H 

is finite index in a separable subgroup (H) of G. 

It would be very interesting to know more about the engulfing property 

for word-hyperbolic groups as at present very little seems to be known. The 

following is a brief survey of work that has been done in this area. 
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Graham Niblo and Dani Wise [NW] have found examples of (non-

hyperbolic) 3-manifold groups that do not satisfy the engulfing property. 

Rita Gitik has found a large family of hyperbolic 3-manifold groups that 

are subgroup separable. 

Dani Wise [W] has a construction which yields word-hyperbolic groups 

which are subgroup separable with respect to every quasiconvex subgroup but 

are not subgroup separable with respect to every finitely generated subgroup. 

The construction is as follows; For every finitely presented group Q, he gives 

an exact sequence: 

1 

such that 

(i) G is word-hyperbolic, and every quasiconvex subgroup of G is separable 

in G 

(ii) N is finitely generated. 

In particular, if we choose Q to be infinite with no finite quotients, then 

the only finite index subgroup containing N is G itself. 

He has also proved the following and conjectures that the same proof 

will work for every prime alternating link group. 

Theorem. (Wise) The figure 8 knot group is subgroup separable with re-

spect to its geometrically finite subgroups, o 

Theorem. (Wise) Negatively curved n-gons (with n > 3) of finite groups 

are subgroup separable with respect to their quasiconvex subgroups, o 

The following theorem is from joint work of Dani Wise with Ilya Kapovich 
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[KW]. 
Theorem. (Kapovich, Wise) The following are equivalent: 

(i) Every word-hyperbolic group is residually finite. 

('iij Eveiy word-iiyperbojjc group Aag at jeast one guotiect. 

(iii) Every word-hyperbolic group is virtually torsion-free. 

102 



References 

A R I.RAitchison, J.H.Rubinstein,"Incompressible surfaces and the topol-

ogy of 3-dimensional manifolds', Journal of the Australian Mathematical 

Society: Series A - Pure Mathematics and Statistics 55 (1993), Pt 1, 

1-22 . 

A J.M.Alonso, T.Brady, D.Cooper, V.Ferlini, M.Lustig, M.Mihalik, M.Shapiro, 

H.Short, 'Notes on word-hyperbolic groups', in Group theory from a ge-

ometric viewpoint, World Scientific, Trieste, Italy 1990. 

C D P M.Coornaert, T.Delzant, A. Papadopoulos, 'Geometric et theorie des 

groupes', Lecture notes in Mathematics, 1441, Springer Verlag, 1990. 

C P Michel Coornaert, Athanese Papadopoulos, 'Symbolic Dynamics and 

Hyperbolic groups'. Lecture Notes in Mathematics, 1539, Springer-Verlag 

1993. 

Gi Rita Gitik,'Doubles of groups and hyperbolic LERF 3-manifolds', MSRI 

Preprint No. 1996-090. 

G H E. Ghys, P. de la Harpe editors, 'Sur les groupes hyperboliques d'apres 

Mikhael Gromov', Progress in Mathematics, 83, Birkhauser, 1990. 

103 



G M. Gromov, 'Hyperbolic groups', in Essays in Group Theory, edited by 

S.M.Gersten, MSRI, Publ.8, Springer, New York, 1987, 75-264. 

H M. Hall, 'Coset representatives in free groups'. Transactions of the Amer-

ican Mathematical Society, 67 (1949), 421-432. 

KS I. Kapovich, H.Short,'Some remarks on Quasiconvexity', Preprint. 

K W I.Kapovich, D.Wise,'The equivalence of some residual properties of word 

hyperbolic groups', Preprint. 

L D.D.Long,'The engulfing property and subgroup separability for hyper-

bolic groups'. Transactions of the American Mathematical Society, 308 

No. 2 (1988), 849-859. 

Mou G.Moussong, 'Hyperbolic Coxeter groups', Ph.D. thesis. The Ohio State 

University, 1988. 

N W G.A.Niblo, D.T.Wise,'The engulfing property for 3-manifolds',Preprint, 

University of Southampton (1997), to appear in the Proceedings of 

EpFest, Geometry and Topology. 

Sc Peter Scott,'Subgroups of surface groups are almost geometric'. Journal 

of the London Mathematical Society (2) 17 (1978), 555-565. 

Sw E. Swenson,'Limit sets in the boundary of negatively curved groups'. 

Preprint. 

T W.P.Thurston,'Three-dimensional manifolds, Kleinian groups and hy-

perbolic geometry', o/ (/le AmencoTi 6 

(1982), 357-381. 

W D.T.Wise, private communication. 

104 


