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An analysis of the dynamics of a series of hard-chine constant deadrise planing craft, 

operating in calm water and in waves, is investigated through the development and 

application of two numerical models. The basic equation for hydrodynamic lift is 

derived from the consideration of an unsteady perturbed potential flow associated with 

the motion of a rigid body moving without circulation in an infinite fluid. Through 

a slender body strip theory analogy, the total vertical body forces and moments are 

derived. The solution to these equations of motion are solved within the frequency 

domain for the linear problem of time-invariant hydrodynamic coefficients, and within 

the time domain for the non-linear hydrodynamic coefficients. 

Both the linear frequency domain model and the non-linear time domain model are 

validated against previous experimental and theoretical research. Both models are used 

to investigate the effect of parametric variation on craft stability in calm water. The 

non-linear model is applied to predict vertical craft response in regular and irregular 

waves and to investigate the effect of varying design parameters. Frequency dependence 

of added mass and damping is accounted for, and the consequences of this inclusion 

investigated. 
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Experimental tests were carried out to provide confidence in the application of previ­

ous experimental work to validate the numerical models. Furthermore, these tests pro­

vided insight into the difficult quantification of dynamic phenomena experienced by so 

many experimenters in the past. A new technique in instrumentation is demonstrated 

which aids repeatability of tests and the archiving of important planing phenomena, 

thereby reducing the possibility of misinterpretation and disagreement amongst differ­

ent experimenters results. 

It is concluded that a non-linear strip-theory approach allows accurate quantification 

of planing craft responses in the vertical plane. The inclusion of frequency dependent 

added mass and damping coefficients is important in the areas where the added mass 

and damping curves are removed from their asymptotic behaviour. The linear fre­

quency domain approach is useful in quantifying stability boundaries. 
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Splash-up factor 
deadrise angle 
displacement 
peak acceleration 
wavelength 
added mass of a body in an infinite fluid (i and k represent 
body modes) 
mean wetted length to beam ratio (A. in Appendix B) 
critical mean wetted length to beam ratio (inception of por­
poising) 
added mass of a floating body 
Angular velocity of the body in the xy-plane 
wave frequency 
wave encounter frequency 
average peak acceleration 
conjugate of qo 
Total velocity potential 
Velocity potential due to body motion with unit velocity in 
heave 
Velocity potential due to incident wave field 
stream function 
density 
zero speed transom immersion 
calm water running trim 
zero speed trim 
critical trim angle (inception of porpoising) 
Overall trim angle (() s + ()w) 

Calm water steady-state trim angle 
Pertubation of trim due to waves 
spectral width 
Pertubation of sinkage 
Calm water steady-state sinkage 
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Aspect ratio 
half beam 
full beam, 2b 
Load coefficient, W / pg B3 
Crossflow drag coefficient 
stiffness coefficient for heave (3) and pitch (5) modes 
lift coefficient, LdpX~gB2 
lift coefficient, L / !px~gL~ 
Added mass coefficient up to level of chine immersion (point 
of separation) 
lift coefficient, L/ !pX~gS 
Added mass coefficient 
velocity coefficient, Xeg/ VfilJ 
Frictional drag 
aspect ratio function to evaluate the added mass for 0 < A < 
00 

Buoyancy force 
acceleration due to gravity 
waveheight, 2ro 
Pitch moment of inertia 
wavenumber 
radius of gyration 
overall craft length 
wetted chine length measured from transom (body fixed) 
critical longitudinal postion of CG (inception of porpoising) 
craft wetted keel length measured from transom (body fixed) 
craft mean wetted length, !(Lk + Ie) 
Craft mass 
added mass coefficient for heave (3) and pitch (5) modes 
added mass of the craft at the stern 
Linearised rate of increase of pitch moment with increase in 
variable acceleration, velocity and displacement respectively 
unit normal 
damping coefficient for heave (3) and pitch (5) modes 
Origin of the body fixed axes (at the craft's CG) 
Origin of spaced fixed coordinate system 
Pressure relative to atmospheric pressure 
translational velocity 
Hydrodynamic lift 
ratio of positive minima to total minima, or negative maxima 
to total maxima, in an irregular signal history (Chapter 7) 
wave elevation 
added resistance 
wave amplitude 
calm water resistance 
resistance in waves 
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arbitrary length of body contour C 
plan area 
spectral energy associated with frequency w 
time 
modal period 
X-component of thrust 
Z-component of thrust 
Velocity of craft parallel to keel 
Velocity component in the x-direction of the translational ve­
locity qo 
Velocity of craft perpendicular to keel 
Velocity component in the y-direction of the translational ve­
locity qo 
component of fluid velocity normal to body boundary 
Craft weight 
complex fluid potential, 1> + z\f! 

vertical component of wave orbital velocity 
Longitudinal coordinate of a point on the body relative to CG 
(positive forwards) 
Translation in the direction of the free surface with respect to 
0 0 (positive in the direction of craft forward motion) 
Centre of pressure moment arm about CG 
Frictional drag moment arm about CG 
Thrust moment arm about CG 
Vertical coordinate of a point on the body relative to CG 
(positive towards keel) 
Translation in the direction perpendicular to the free surface 
with respect to 0 0 (positive downwards) 
chine submergence at the transom (space fixed) 
Vertical position of CG with respect to OoXoZo (( + (s) 
Linearised rate of increase of heave force with increase in vari­
able acceleration, velocity and displacement respectively 
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Chapter 1 

Introduction 

Seakeeping is of major interest and importance to a naval architect. The ability of a 

ship to perform well in the adverse and confused environment of the sea is the crux of a 

good design. The naval architect has the responsibility to consider structural, dynamic 

and personnel effects when producing that design. 

Over the last hundred years or so, theoretical and experimental methods for the evalua­

tion of the seakeeping ability of displacement ships have been developed. To date, most 

of the associated dynamic effects can be quantified and qualified to an accuracy useful 

enough for a naval architect's design methodology. Over time, however, advanced ma­

rine vehicles have been developed, such as hydrofoils, planing craft, SWATH and SES 

craft and hybrid combinations of these. They each have their own general characteris­

tic in form and different methods of seakeeping prediction need to be developed. This 

thesis will be focus on the study of planing craft. 

Planing craft are used in diverse fields. Their use can be seen in military roles, as 

fast attack craft, patrol vessels and rapid response craft. Commercially, they maybe 

used as pilot craft, tenders and inshore lifeboats. Planing craft are also prevalent in 

offshore powerboat racing, and semi-planing hulls are found in private boating. As 

this specialised form of transport develops, further studies in seakeeping are needed to 

achieve the maximum results that they can offer. 

Theories where planing is the predominant physical effect is not solely of modern 

interest. In the early 1930's, seaplane designers were aware of the importance of the 
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floats and the main hull on drag and aircraft takeoff speed and subsequent landing 

operations. They used a theory developed by Munk (1924) for airship hulls. In the 

1950's, designers were able to quantify the lifting forces acting on a planing craft. From 

the 1970's onward, the advancement in computer technology has seen diverse solutions 

to the planing problem and further understanding of the dynamics involved. 

Planing craft impose their own complications in the sense that the free surface has 

a pronounced effect on the craft's motions in this state. The dynamically supported 

planing hull generates complex surface flows, including spray jets and reentrant break­

ing waves. The effect of wave rise and impingement of the spray sheet on the hull cause 

changes in wetted length and trim angles. The stability offered by hydrostatic forces 

are negligible and the craft is almost fully supported by hydrodynamic forces, sensitive 

to perturbations in wetted length and trim. 

At present much high-speed craft design is based on heavy empiricism, trial and error 

and past experience. Although this approach has generally provided satisfactory de­

signs it is usually offset against high cost and time, for example producing prototypes 

for testing and the subsequent modifications necessary to improve the design. The 

power of modern computers allows more cost effective solutions to planing simulation, 

reducing the need for heavy empiricism. 

This thesis is presented and written to create a better understanding of the dynamic 

effects involved with high speed planing hull design and the influence of parametric 

variation on subsequent performance in calm water and in waves. 

1.1 Performance of Planing Craft in Calm Water 

Calm water performance is dominated by two areas of interest; resistance and stability. 

The resistance characteristics of planing craft are the fundamental reason that these 

type of craft are developed and utilised. The resistance advantage over round bilge 

forms does not come from reduced residuary resistance. Residuary resistance is pri­

marily made up of wavemaking resistance and induced drag from the dynamic lift. As 

the planing craft speed increases, the amount of wavemaking resistance falls. However, 

more lift is produced on the hull bottom and the amount of induced drag increases by 
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a similar order to the drop in wavemaking resistance. Therefore, the fairly constant 

residuary resistance, past the inception of planing, points to the loss in total resistance 

stemming from the reduction in wetted surface area and skin friction. So despite the 

transition to planing requiring a large amount of installed power to overcome the resis­

tance hump associated with increasing craft speed, the drop in post-hump resistance 

to a value less than that experienced by even the most efficient of displacement forms 

ensures that planing craft offer efficient performance in terms of high speed and cost. 

As with all types of ship, the ability to predict the amount of resistance that a plan­

ing craft will experience at all design speeds allows a minimum of installed power. 

With restrictions on powering requirements, the resistance predictions can highlight 

improvements in hull shape and weight distributions within the hull. There has been 

many an experimental investigation into planing hull performance in calm water with 

much emphasis on resistance evaluation1 culminating in useful design criteria for the 

evalution of planing resistance. 

Despite the huge benefits that high speed operations afford, there are drawbacks in 

terms of planing craft stability. The very high speeds associated with planing craft 

give rise to certain phenomena that can be parasitic in nature. At speed, a planing 

craft is almost solely reliant on dynamic effects with little damping from the negligible 

hydrostatic forces. Poor design can therefore lead to instabilities in pitch and heave 

motions resulting in a condition known as 'porpoising', and for perturbations in roll 

angle, dangerous transverse instabilities. These have led to many a serious accident. 

The accurate prediction of these phenomena is vital. Porpoising has been treated an­

alytically by a few authors, for example Perring and Glauert (1933), Lutowski (1973), 

Payne (1974), Martin (1978a). The experimental investigation of porpoising is ex­

tremely limited for planing boats although there exists many porpoising tests carried 

out on flying boats, Payne (1974), Martin (1978a). The dynamic roll instability has 

been treated recently by Lewandowski (1996) following observations by Savitsky (1995), 

Codega and Lewis (1987) and Blount and Codega (1995). Xu and Troesch (1999) also 

investigated the effect of planing assymetry on planing craft performance and the con­

sequence upon stability. 

ISavitsky (1964) cites many, for example Sottorf (1932), Shoemaker (1934), Sambraus (1938), 
Savitsky and Neidinger (1954), Shuford (1958), Clement and Blount (1963), and provides a useful 
appendix containing references to all the papers on planing published by the Stevens Institute of 
Technology upto 1964 
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1.2 Performance of Planing Craft in Waves 

The seakeeping qualities of a planing craft are, in general, based on three different 

factors; heave and pitch motions, resistance increment and accelerations. Heave and 

pitch motions, along with their associated effects, are known as vertical dynamic effects. 

Each of these aspects is discussed below. 

1.2.1 Heave and Pitch Motions 

In waves, the craft will move in all six degrees of freedom but commonly the most im­

portant of these motions to be examined is the pitching motion. The behaviour of pitch 

has significant implications on structural design (magnitude of impact accelerations) 

and stability (porpoising). Figure (A.2) shows that as the planing craft increases its 

speed, the amplitude of pitch motion per metre of wave height increases to a maximum 

value. As the speed is increased still further, the amplitude drops rapidly to a near 

constant value. 

The rough water heaving motions figure (A.l) follow essentially the same trends as the 

pitching motions of figure (A.2), reflecting strong coupling between these two actions. 

Heaving motion is at a maximum at low speed/length ratios and when the heave 

natural frequency of the craft is the same as the encounter frequency of the waves, 

demonstrated by the leftward movement in the peaks of the response with increasing 

speed and wavelength. After resonance, the motion reduces substantially from the 

peak values until the boat reaches speed:length ratios in excess of 4. At this speed and 

at particular wavelengths, the hull is capable of flying from wave crest to wave crest 

in head seas, even though the measured heaving motions are no larger than those for 

a speed:length ratio of 2 or 3 - a condition known as platforming. 

1.2.2 Resistance Increment 

Added resistance in a seaway for ships is normally observed in the need for an increase 

in engine power over and above that needed to propel the ship in calm-water. This 

increase in power is usually between 15 and 30 percent of the calm-water resistance. 
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For any vessel this requires a significant increase in fuel consumption and reduces the 

designed efficiency of that vessel. 

Figure (A.5) shows the relationship between the speed/length ratio and the rough 

water resistance characteristics of a planing craft in regular head seas. Figure (A.6) 

shows the increase in resistance in the following sea condition and demonstrates that 

the sea direction is only significant at low speed:length ratios (less than 3). 

1.2.3 Accelerations 

Accelerations provide a measure of a planing craft's seaworthiness. The higher accel­

erations lead to possible structural damage from slamming and an intolerable working 

environment for the crew; visibility and comfort both being compromised. 

The absolute value of the acceleration depends mainly on the hull form, trim, and sea 

condition. Figure (A.3) shows the impact acceleration as a function of speed and sea 

state for head sea conditions. 

In general the accelerations are not significant up to a speed/length ratio of 2 and are 

linearly proportional to speed. Thereafter, the accelerations increase as the square of 

the speed. If one was to compare the effect of wave height then one would see that for 

a sea state of 5 (average wave height 1. 7m) the acceleration is 5 times that of a sea 

state 3 (average wave height O.7m), suggesting that the accelerations also increase as 

the square of wave height. 

The following sea condition results in much lower accelerations overall, figure (A.4). 

The effect of wave height is less significant because the increase in relative wave speed 

due to the increase in wave height is less. In head seas, on the other hand, both 

wave height and wave speed increase with a larger sea state, increasing the impact 

acceleration. 
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1.3 Aims and Content 

The aims of this thesis are to investigate the planing craft dynamics associated with 

the craft's motions in calm water and also in regular and irregular waves. Considering 

the large number of investigations required to achieve an understanding of the dynamic 

phenomena, numerical models to assess the overall performance of a planing craft will 

be presented. Certain simplifications can be made in order to significantly reduce the 

mathematical problem whilst ensuring the physical model is not compromised. In this 

manner, a robust and quick method for accurately evaluating planing craft performance 

will be ensured. 

The importance of vertical dynamic effects has been demonstrated and a method for 

predicting these effects will be presented. This will allow an investigation into the effect 

of changing various planing craft parameters, such as beam, length, deadrise, trim angle 

and so on, resulting in an approach for the optimisation of seakeeping performance and 

calm water operations. 

In an attempt to validate the numerical models and reduce the problem of discrep­

ancies between different experimenters results, a new experimental technique will be 

presented. Furthermore, this technique aims to remotely capture information on typ­

ically hard to measure phenomena, such as wetted area and wetted lengths, spray 

generation and blister sheet formation. 

The literature review in Chapter 2 will describe theoretical methods that have been 

applied to the problem of planing and some experimental analyses of particular planing 

phenomena. In conclusion to this chapter, a choice of theoretical procedure will be 

made based upon the ability to fulfill the aforementioned objectives. 

Following the conclusions from Chapter 2, planing theory based upon the principles of 

impulsive motion is discussed in Chapter 3. The direct application of this theory to 

describe the generated lift of planing craft is described in the later sections. 

Chapter 4 applies the planing theory in a linear frequency domain analysis to describe 

the stability boundaries in calm water. Chapter 5 advances the theory to a non-linear 

time simulation of the craft's response to a disturbance in calm water and response to 

regular and irregular waves. 
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The results of the linear and non-linear analysis of an extensive range of hard-chine 

constant deadrise planing craft operating in calm water will be discussed in Chapter 6. 

Those crafts response to regular monochromatic head seas is discussed in section 6.2. 

An irregular sea model is presented in Chapter 7 and the performance of those planing 

craft operating within this environment theoretically analysed. 

The experimental investigation into planing craft dynamics in waves is described III 

Chapter 8, wherein is described the new experimental technique mentioned above. 

The final chapters conclude the presented research and point the way forward for a 

continued investigation into the analysis of planing craft dynamics in calm water and 

III waves. 



Chapter 2 

Literature Review 

2.1 Overview 

Previous work for ship seakeeping can be characterised into two classes. The first 

consists of vibrations of strip and slender body theories and are two dimensional (2D) 

in nature. 

Strip theories rely on the simplification of the three dimensional boundary conditions. 

The three dimensional (3D) free surface boundary condition can be reduced by assum­

ing that the frequency of sectional oscillation is of much higher order than the forward 

speed, resulting in the 3D problem being solved as a summation of 2D problems. The 

assumption of high frequency is important and could be considered to be invalid be­

cause the maximum craft motions are considered to occur at relatively low frequencies. 

However, the motions in this lower frequency range are dictated by hydrostatic forces 

and inaccuracies in the hydrodynamic coefficients will have little effect on the pre­

dicted motions (Salvesen et al 1971). The body boundary condition can be simplified 

by treating the vessel as a slender-body since the transverse disturbance is of a higher 

order than the longitudinal disturbance. In this manner, the outward facing 3D unit 

normals on the hull from the fluid-vessel interaction can be approximated by their 2D 

equivalents. 

The slender body theory assumes that the craft is again operating at a low forward 

speed but in this case the frequency of oscillation is low and therefore the effect of the 

8 
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generated waves on the craft response is not as small as that supposed by ordinary strip 

theory. The slenderness problem is typically treated in two domains - the near field 

and the far field. Neither of these problems is unique since nothing can be stated about 

their asymptotic behaviour either far away in the near field problem or close to the 

body in the far field problem. This non-uniqueness is therefore resolved by requiring 

the inner and outer problems to match in an intermediate region. 

A unification of these two methods leads to a treatment that is quasi-3D in nature with 

an allowance for forward speed, for example Newman (1978) and Zhao and Faltinsen 

(1992). These theories have practical limitations for their application such as the 

inability to model interaction between multiple hulls and are limited in aspect ratio or 

speed. 

The second class of theories is based upon a fully 3D representation of the wave flow 

and whilst most applications are restricted to moderate speeds, for example the wave 

Green function methods of Bingham et al (1993), and the Rankine methods such as 

the raised source desingularisation of Scorpio et al (1996), Kring et al (1996) describe 

a Rankine panel method (SWAN - Ship Wave Analysis) which could solve the full 

3D problem over the whole speed range. Additions to the linear frequency and time­

domain potential flow formulations are incorporated to model the non-linear behaviour 

and lift associated with high speed operation. 

2.2 High Speed Planing 

The theories used for predicting high-speed planing performance over the conventional 

theories employed for low to high speed non-planing craft are complicated by the free 

surface hydrodynamics. Complex flows are generated such as spray jets and reentrant 

breaking waves that can only be modelled accurately by fully non-linear boundary 

conditions. The presence of an encountered wave system complicates the mathematics 

even further. 

Planing hydrodynamics can be described in two or three dimensions. In two dimen­

sions, the governing theories can be categorised as high aspect ratio or low aspect ratio. 

Lai and Troesch (1995), give a concise summary of some of the more typical approaches 
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employed for the mathematical modelling of 2D planing craft dynamics. 

Wagner (1932) demonstrated that the lift experienced by an infinitely thin aerofoil 

(infinitely high aspect ratio) operating in an infinite fluid could be compared to a 

planing plate of equivalent profile. Payne (1982) extended the analogy by using added 

mass theory and showed that the acceleration terms for high frequency motions of 

an infinitely thin aerofoil and a planing plate are identical. Both Wagner and Payne 

removed the effect of gravity on the free surface by assuming that the planing plate 

was operating at very high Froude number. Also the agreement between the two cases 

was only valid at low trim angles and neither case considered a non-zero leading edge 

spray angle. 

Green (1935), (1936a), (1936b) expanded Wagner's solution to include large trim angles 

and to account for a non-zero spray angle, but the solution was determinable only if the 

spray thickness or spray angle was known a priori. Shen and Ogilvie (1972), overcome 

this non-uniqueness by applying Green's solution in the inner problem and matching 

to the far field solution formed from analogy with a lifting line solution in wing theory. 

Lamb (1932) established an integral equation relating pressure distribution along a 

2D planing surface to its slope. The forms of planing surface were not generalised 

but instead were derived from two simple pressure distributions for which the integral 

could be evaluated. Sedov (1937) also solved linearised 2D planing by assuming an 

infinite series could be used to describe the pressure distribution on the planing surface. 

Similarly, Maruo (1951), Squire (1957) and Cumberbatch (1958) related the unknown 

pressure distribution on a planing surface to its geometry by an integral equation. 

The low aspect ratio (slender body) planing problem was also investigated by Wag­

ner (1932) who treated the dynamics of a planing plate as a water impact problem. 

The added mass momentum flux provides the lift force and is based upon the sea-plane 

hull impact work of Munk (1924) and Von Karman (1929). This particular area forms 

the basis of the theory presented herein and will be discussed at length in Chapter 3. 

A theory to explain the effects of the spray-root was first proposed by Pierson (1950a), 

(1950b), (1954), and is analogous to added mass theory and a pressure distribution 

method. As with added mass theory, it relies on the 2D solution to the problem of a 

wedge impacting on a free-surface. But in this case, the pressure distribution along 
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the wedge is related to the stagnation line speed relative to the stationary water axes. 

However, while spray root theory describes all the forces developed during steady state 

planing and water impact problems of prismatic hulls, it does not give a complete 

picture of forces during transient motion and neither can it be used for non-prismatic 

forms without an additional added mass term, (Payne 1992). 

To provide treatment of three-dimensionality, Wagner, as well as his 2D investigation, 

extended the theory for low-aspect ratio and infinite Froude number by using an anal­

ogous treatment with thin wing theory. Maruo (1967), found the analogy between 3D 

planing and thin wing theory in the form of a circulation distribution. By using the 

type of approximations used in the two extreme cases for thin wing theory, i.e. at low 

and high aspect ratios, the complicated integral expressions Maruo originally formed 

could be solved. Unfortunately this method broke down for low-aspect ratios unless the 

Froude number remained high and was not applicable to rectangular planing surfaces. 

The methods described above all consider the influence of gravity on the free-surface 

to be neglected. The low aspect ratio problem at general Froude number was inves­

tigated by Wang and Rispin (1971), Tuck (1975), Tulin (1957) and Panchenkov and 

Zenovich (1989). Doctors (1974) may have been the first to consider the 3D planing 

problem without restriction on aspect ratio or Froude number. That approach involved 

finite elements of unknown pyramidal pressures combined to represent the planing sur­

face. The unknown pressure distributions and transom immersion were evaluated in an 

iterative process but the predicted pressure distributions were found to be highly oscil­

latory. By using constant pressure elements, Wellicome and Jahangeer (1978) removed 

the highly oscillatory behaviour. Tong (1989) also used constant pressure elements to 

investigate drifted flat plates. With constant pressure element formulation, the num­

ber of transverse elements need to be restricted to remove the unrealistic oscillatory 

pressure distributions found by Doctors. 

Lai and Troesch (1995) used a vortex-lattice technique based on Tulin (1957) to de­

velop a three-dimensional numerical model to solve the steady planing problem. Non­

linearities were examined and special attention given to the flow off the chines and the 

zero pressure condition on the free surface. Furthermore a simple model to describe 

the effect of gravity in the near field was also examined. 

In application to more realistic craft geometries in waves, Martin (1978a), (1978b), 
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from Wagner's expressions for lift force of impacting wedges, produced a linear 2D low 

aspect ratio strip theory to predict high speed planing craft performance in waves. A 

finite aspect ratio correction was employed to account for three-dimensionality, anal­

ogous to aspect ratio corrections used in wing lifting line theory. The success of this 

method was followed by Zarnick (1978) who produced a quasi non-linear 2D model 

which, importantly, included the time variation of the wetted surface. A combination 

of empirical and theoretical evaluation was used for the coefficients in the equations 

of motion. This method allowed a more in depth analysis of planing craft dynam­

ics and showed that the vertical accelerations at the bow and centre of gravity had 

favourable comparisons with experiment. The heave and pitch results also produced 

fair agreement with some of the experimental data produced by Fridsma (1969). Many 

variations on the strip theory method followed, for example Chiu and Fujino (1989), 

Akers et al (1999), Wu and Moan (1996), with encouraging amounts of success. Once 

again, the effect of gravity on the free surface is neglected. 

Experimental work on planing is extensive for calm water dynamics but extremely 

limited for dynamics in waves. Early experimental investigations were carried out 

by Sottorf (1932), Shoemaker (1934) and Sambraus (1938). These researchers accu­

mulated large amounts of information describing the hydrodynamic characteristics of 

constant deadrise prismatic planing surfaces operating at fixed trim, fixed mean wetted 

length and constant speed. The Davidson Laboratory of Stevens Institute of Technol­

ogy, based upon these data and their own theoretical and experimental investigations, 

developed a set of empirical equations for predicting the lift, drag, wetted surface area 

and centre of pressure of planing surfaces at various given speeds, trim angles, loading 

and deadrise angles. These equations were presented in papers by Korvin-Kroukovsky 

et al (1949), Savitsky and Neidinger (1954) and Savitsky (1964). Many other re­

searchers have carried out work on calm water planing dynamics and Payne cites them 

extensively in his papers. 

Flow characteristics in calm water including spray and blister sheet formation have 

been investigated by Latorre and Tamiya (1975), Latorre (1982), (1983), Savitsky and 

Breslin (1958), Latorre and Ryan (1990) and Payne (1984), (1993). Experimental tests 

were also conducted by Hirano, Uchida and Himeno (1974) for the measurement of 

pressure distributions on two prismatic planing hulls. 
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Only a few of the calm water systematic series of planing hull forms have been pub­

lished: 

1. Series EMB 50; Davidson and Suarez (1949) 

2. Series TMB 62; Clement and Blount (1963) 

3. Series NSRDC 65; Holling and Hubble (1974), Hadler and Hubble (1974) 

4. Series BK and MBK; Ergorov and Bunkov (1978) 

In waves, there is much more limited work available in the published domain. Fridsma 

(1969), (1971) carried out extensive tests on a variety of constant deadrise hard chine 

prismatic planing hulls and used the results to form a parametric investigation into 

the effect of loading, deadrise, speed, trim, inertia, length and beam on the seakeeping 

performance. Recently, there has been a series of tests to evaluate seakeeping charac­

teristics of more applicable hull forms but these are still incomplete, Grigoropoulos and 

Loukakis (1998). Rosen and Garme (1999) carried out full-scale trials on a high speed 

combat craft in order to investigate slam events and developed a simulation model 

based upon wedge impact theory. Akers et al (1999) produced experimental results for 

a full-scale high speed craft in artificially contrived seas by examining the response of 

the test vessel moving through another vessel's wake. 

2.3 Choice of Model 

The above literature review points out the diversity in tackling the planing problem 

and the assumptions which are made in order to simplify the mathematics. Basically, 

there are two approaches, 2D and fully 3D solutions which may be linear or non­

linear in nature. The full 3D solutions are mathematically complex and at present 

limited in application because of the demand in computation time. The inclusion 

of the free-surface and memory effect allows the problem to be modelled in a more 

rigorous mathematical way, but as yet the improvement in accuracy of the results over 

2D or quasi-3D methods still do not justify the large increase in computation power. 

As a practical design tool and in order to fulfill the requirements set out in Chapter 1, 
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section 1.3, the planing problem cannot be solved in full dimensionality. The focus then 

is on 2D or quasi-3D methods which can still fulfil the aims summarised in section 1.3. 

Two dimensional or a quasi-3D theory is based upon a strip theory with slender body 

approximations and simplifications to the free surface boundary condition. For high 

speed or planing applications, a provision for forward speed is required. 

Munk (1924) used a slender body strip theory to evaluate the motions of airships. 

Jones (1946) used a similar method for investigating the lift on low-aspect ratio wings. 

Martin (1978a) extended Munk's theory with a very high speed simplification of the 

free-surface boundary condition that allowed the effect of gravity to be neglected. 

The linearised planing problem was solved in the frequency domain and the results 

for the determination of stability boundaries were good. Payne (1974) had used a 

similar method of formulation in the frequency domain but did not solve the equations 

of motion explicitly. However, non-linearities typically associated with planing craft 

dynamics are missed when the solution is formed in the frequency domain. 

Troesch (1992) showed that non-linearities are not as small as originally identified. He 

proved that wetted length was strongly time dependent, the restoring force matrix is 

strongly amplitude dependent and the added mass and damping matrices are frequency 

dependent. Therefore the use of a theory is required that accounts for the non-linear 

dependency of dynamic effects, associated with high speed planing, upon the amplitude 

of the forcing functions. 

Solution in the time-domain provides a more in depth study of planing craft dynam­

ics by allowing for the inclusion of non-linearities. The solution of a fully non-linear 

problem is difficult and so quasi non-linear theories are generally employed. Quasi 

non-linear theory combines linearised boundary conditions together with non-linear 

dynamics or linear two-dimensional dynamic calculations with a non-linear free sur­

face boundary condition. An example of the former is Zarnick's (1978) method which 

evolved Martin's (1978a), (1978b) linear hydrodynamic coefficients into the time­

domain to develop a non-linear code for motions in regular head seas. Chiu and Fu­

jino (1989) included a hydro elastic response to Zarnick's theory. In essence, their final 

formulation was identical but the equations of motion had their second and higher 

order terms in body motions removed and they ignored the cross-flow drag associated 

with three-dimensional effects acting on low-aspect ratio bodies. By considering the 
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inertial effects, they included an elastic parameter. The sectional hydrodynamic coeffi­

cients were evaluated in the frequency domain for the oscillatory motion and at infinite 

frequency for the steady forward motion. Their results produced good agreement with 

experimental data. 

Akers et al (1999) included a wake model in their application of Zarnick's theory in 

order that their experimental tests (a full scale powerboat passing through the diverging 

wake created by another vessel) could be investigated. They concluded that in real 

terms, Zarnick's theory predicts transient behaviour well. 

In another approach, Troesch et al (1995) developed Zarnick's non-linear integro­

differential equations using a multi-variable Taylor series. This produced a highly 

coupled set of ordinary differential equations with constant coefficients which were 

valid through third order. The result was the ability to investigate the entire system 

response, identifying areas of critical dynamic response for further verification through 

the use of the simulator. Wu and Moan (1996) decomposed the total craft response 

into a linear and non-linear part to obtain a hydroelastic version of high-speed strip 

theory. Their linear part was solved using potential flow theory and the non-linear part 

from the convolution of the impulse response functions of the linear ship-fluid interac­

tion and non-linear hydrodynamic forces, thereby keeping an allowance for free-surface 

memory effects. In this way, not only was the final solution quasi-non-linear but also 

quasi-3D. 

In spite of the limitations of solving the equations of motion in the frequency domain, 

behaviour of planing craft motion in calm water can be modelled at little computational 

expense. Furthermore, the importance of including non-linear effects in a time-domain 

solution can be investigated by direct comparison with the frequency domain solution. 

Therefore two approaches are employed: a linear small perturbation analysis in the 

frequency domain based upon Martin's modified slender body strip theory and a non­

linear low aspect ratio strip theory in the time-domain. These two methods should 

provide an ability to model the entire system response in calm water and in waves, al­

lowing a parametric investigation to identify important planing characteristics, thereby 

fulfilling the numerical modelling requirements of section 1.3. 

It is necessary to be able to validate the numerical models and this requires the use of 

available experimental data. Whilst this has been shown to be abundant for calm water 
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planing, the volume of data in waves is scarce. Furthermore, Payne (1994), (1995) 

demonstrated clear anomalies between various experimenter's results given identical 

test conditions, and the effect of these discrepancies on their empirical formulations. 

In order to provide some validation for the numerical model results in waves, a series 

of experiments will be performed using a new data acquisition system that will give an 

inarguable and comprehensive set of experimental results. 



Chapter 3 

Problem Definition 

3.1 Coordinate System 

Consider the co-ordinate system of Figure(A.7). OoXoZo is fixed in space. Xo is 

positive forwards (direction of craft motion) and Zo is positive downwards. The Xo 

plane coincides with the undisturbed free surface. The body fixed axis system, oxz, 

originates at the craft centre of gravity. x is parallel to the keel and positive forwards 

and Z is normal to keel and positive downwards. The overall trim angle 0 is given as 

the sum of a perturbation trim angle in waves, Ow, and a steady state value reached in 

calm water of Os. All angles are positive anti-clockwise. The overall heave, Zcg is given 

as the sum of a perturbation in waves of ( and a steady state sinkage in calm water of 

The relationship between the body fixed co-ordinate system and the space fixed co­

ordinate system is 

Xo 

Zo 

I 0+ I . 0+ X cos Z sm Xcg 

z' cos 0 x' sin 0 + Zcg 

(3.1) 

(3.2) 

The velocities parallel and normal to the keel, U and V respectively, are therefore 

written as 

U 

V 

XocosO - ZosinO = xcgcosO ZcgsinO 

-XosinO + ZocosO - zcgcosO - xe + XcgsinO 

17 

(3.3) 

(3.4) 
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3.2 Equations of Motion 

Figure(A.8) shows the longitudinal forces and the moment arms acting on a typical 

planing hull, i.e. the degrees of freedom associated with surge, heave and pitch. 

Resolution of these forces and moments with respect to the fixed coordinate system, 

OoXoZo, yields, respectively, the heave force, Z, the surge force, X and the pitch 

moment, M, 

X mXcg = Tr - R sin e - D cos e - N sin e 
Z 

M 

micg = Tz - R cos e + D sin e - N cos e + W F B 

Ie = Rxc - DXD + NXN + Txp + FBxB 

m = craft mass 

I = pitch moment of inertia 

R = hydrodynamic lift force 

D = friction drag 

Tx = Thrust in X -direction 

Tz = Thrust in Z-direction 

x D = moment arm of CG to centre of friction 

Xp = moment arm of CG to centre of thrust 

(3.5) 

N = damping force 

W = craft weight 

FB = buoyancy force 

x N = moment arm of CG to centre of damping 

Xc = moment arm of CG to centre of pressure 

x B = moment arm of CG to centre of buoyancy 

These equations are exact, but their accurate solution depends upon the correct deriva­

tion of the separate contributions, in particular the hydrodynamic normal force (en­

compassing both hydrodynamic lift and buoyancy). 

3.3 Hydrodynamic Lift 

The literature review of Chapter 2 describes the two dimensional (2D) solution of the 

planing problem, the derivation of hydrodynamic lift, from two directions. Firstly, the 

planing surface can be considered low aspect ratio, or a slender body, where the length 

is much greater than the beam. In this case, the 2D problem is formed by a strip 

theory synthesis. The fluid flow in each individual transverse strip of fluid is affected 

only by the section of fluid in that strip. 
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Alternativley, the 2D solution maybe derived by considering that the planing surface 

has a very high aspect ratio. In this case, the solution has strong analogies with thin 

wing theory and is readily derived. 

Each of these approaches ideally describe the planing problem at the limiting conditions 

of infinitely low or infinitely high aspect ratio. Practically speaking, the conc!ition of 

planing will involve moderate aspect ratio. 

The approach used herein follows the 2D solution for the case of low aspect ratio 

planing. The dynamics of the planing craft in waves generally precludes the use of high 

efficiency (high aspect ratio) planing because of the large variation in wetted length. 

Furthermore, the low aspect ratio approach has strong analogies with strip theory 

which itself has provided very good answers to the seakeeping problem of displacement 

craft. 

If the problem of 2D planing is approached from the low aspect ratio direction then over 

each interval of time for a trimmed planing surface, for example a planing prism, an 

individual transverse slice in the fluid will experience a continuously immersing prism, 

or an impacting prism or wedge. Therefore the 2D low aspect ratio planing problem 

can be reduced to that of a 2D impacting problem, Payne(1988). 

3.3.1 2D Impulsive Motion 

From Sedov(1965), the two-dimensional impulsive motion of an inviscid, incompressible 

and irrotational fluid initially at a state of rest and induced into motion by a rigid body 

motion, is a potential flow. The coordinate system defined by Sedov follows a right­

handed sytem with x reflecting the beam-wise position and y reflecting the draft-wise 

position and is positive downwards. The velocity potential, <P, must satisfy the two­

dimensional Laplace equation throughout the fluid domain, 

(3.6) 

and the kinematic and dynamic boundary conditions on the free surface and body. 
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The linearised kinematic and dynamic boundary condition can be written, from N ew­

man(1977) and neglecting forward motion, as, 

82 <I:> 8 <I:> 18P 
-- - g- on the body 
8t2 8y p at ° on the free surface (3.7) 

where P is the impulsive pressure and is measured relative to atmospheric pressure. 

At the free surface P = 0, therefore, 

<I:> =0 at the free surface. (3.8) 

On the submerged portion of the body, provided there is no separation, the kinematic 

boundary condition is, 

on the body boundary, (3.9) 

where Vn is the normal component of velocity at a point on the body boundary, and 

the derivative :n denotes the derivative in the direction of the unit normal n directed 

out of the fluid. 

3.3.1.1 2D Impulsive Motion of a Floating Rigid Body 

Consider a rigid body vertically impacting onto a fluid surface, figure (A.9). The 

fluid occupies the lower half space and is at rest at infinity. Since <I:> = ° on the free 

surface then the velocity potential, <I:> , can be continued into the upper half plane by 

the reflection principle of Schwarz (Spiegel 1964). If the boundary of the free surface 

is considered as a plane of symmetry or reflectance, the vertical derivatives of <I:> in the 

upper half plane are equal in magnitude and sign whilst the horizontal derivatives are 

equal in magnitude but opposite in sign. 

To emphasize this principle, if two points, PI and P2 , lie symmetrically about the free 

surface, defined by <I:> = 0, and on the body L;I and its image 'L;2 respectively, then, 

(3.10) 

The derivative ~~ on 'L;I is given by, 

(3.11) 
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and on ~2 is given by, 

(3.12) 

If the body, as a result of impact, has a vertical translation or a rotation about the 

horizontal axis of the free surface, the resulting fluid motion defined by the potential 

<P in the region D, external to the body boundary, is represented by the absolute 

potential flow of the incompressible fluid around a rigid body bounded by the surface 

~l + ~2 (= C) and moving in the same manner. 

Consequently, the 2D problem of impulsive motion without separation for vertical 

translation or for rotation about a horizontal axis lying on the free surface is reduced to 

the problem of the motion of a rigid double body in an infinite fluid without circulation. 

Sedov(1965) succinctly describes the solution to this problem in pages 20-31 of that 

reference. Without questioning the validity of that described solution, the basic as­

sumptions will be described forthwith in order to provide insight into the mathematical 

basis behind the two dimensional impact problem presented herein. 

The complex potential of the unsteady perturbed fluid flow generated by a body moving 

in an infinite fluid without circulation, r = 0, is denoted by w(z) = <P + zW, where 

the complex variable z x + zy and x and yare the coordinates describing the body 

in the physical plane (x direction along the body's 'beam', and the y direction along 

the body's 'draft'). Uo and Vo denote the components of the translational velocity 

(Uo along x and Vo along y) and n the angular velocity of the system of rectangular 

coordinates fixed to the moving body. s describes a length of the body contour, C. 

Decomposition of the normal velocity, Vn acting on the body leads to, 

Vo--n x-+y-dx (dX dY ) 
ds ds ds 

(3.13) 

Since Vn = dw / ds then, 

n 2 2 
W = UoY - Vox - 2(x + y ) (3.14) 

The complex fluid potential, w(z), is linearly decomposed into three individual complex 

velocity components, weighted by component velocities, Uo, Vo and angular velocity, 
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D, i.e., 

(3.15) 

where, 

k = 1,2,3 (3.16) 

On the body boundary, from the above expressions, it can be shown that the stream 

functions 'l/Jk (k = 1,2,3) are, 

1 2 2 'l/J3 = --(x + y ) 
2 

(3.17) 

In real terms, the complex potentials of Wk (k 1,2,3) are therefore determined by 

the geometrical properties of the body boundary. WI (z) is the complex potential of 

the perturbed potential flow of the fluid when the body moves with unit velocity in 

the x-direction, W2(Z) is the complex potential of the perturbed potential flow of the 

fluid when the body moves with unit velocity in the vertical or y-direction, and W3 (z) 

provides the perturbed potential flow of the fluid when the body rotates about its 

origin with unit angular velocity. 

Sedov derives the force acting on a rigid body in the abscence of circulation as, 

d1 51 
Xo + zYo = dt = 5t + zD1 (3.18) 

where Xo is the component of force in the x-direction and Yo is the component of force 

in the y-direction and, 

The corresponding moment, 

where, 

and, 

1 = zp fa zdif! 

5N 
Mo = ~(-zqoI) + 5t 

qo = Uo zVo 

N - e i zzdif! 
2 c 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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and, 

z = x - zy (3.23) 

If the absolute perturbed potential flow of the fluid results from an impact due to a 

system of impulsive pressures, P = -pcIJ, suddenly applied along the body boundary 

contour C, then from equations (3.19) and (3.22), -I and -N can be rewritten through 

integration by parts as, 

-I -zp fa zdcIJ = zp fa cIJdz = -z fa Pdz (3.24) 

-N _£ 1 zzdcIJ = p 1 cIJ dzz = lR p 1 zif>dz = -lR 1 zPdz 
2fc fc 2 fc fc 

(3.25) 

The last two expressions in the above integrals are described by Sedov as equal to the 

momentum and angular momentum of the fluid. 

Reducing the momentum, I to its component terms in x and y, 

and, 

-I = -Ix - zIy = zp fa cIJdz = -p fa if>dy + zp fa cIJdx 

p fa cIJd'IjJl - zp fa if>d1/J2 

-N = p fa cIJd'IjJ3 

(3.26) 

(3.27) 

Letting fLik equal the added mass of the body defined by the contour ~ (= C /2) and 

Aik the added mass defined by that of the area enclosed by the contour C, then, 

fLik = -pi CPid'IjJk for a floating body 

and, 

Aik = -p fa CPid'IjJk for a fully submerged body 

Using the above substitutions, the equations (3.26) and (3.27) become, 

-Iy 

-N 

fLn Ua + fL12 Va + fL13 D 

fL21 Ua + fL22 Va + fL23 D 

fL31 Ua + fL32 Va + fL33 D 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 
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for a floating body, and, 

for a fully submerged body. 

-1 y 

-N 

AnUo + A12110 + A13n 
A21 UO + A22110 + A23n 
A31 Uo + A32110 + A33n 
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(3.33) 

(3.34) 

(3.35) 

Sedov shows that the added masses for a floating body are exactly half the added 

masses for the equivalent body and its reflection. That is, 

Aik 
/1ik = -

2 
(3.36) 

In the case of a vertically impacting rigid body, the vertical momentum flux will provide 

the vertical force experienced by the body, i.e., 

dVo 
Yo = -/122-

dt 
(3.37) 

The derivation of the added mass for a flat plate will not be repeated here but the pure 

vertical added mass of a flat plate is given as, 

(3.38) 

where a is the half width of the impacting flat plate. 

3.3.2 Wedge Impact 

So far equation (3.37) descibes the lift force on a flat plate vertically impacting into 

an incompressible fluid. To paraphrase Fabula(1957), the derivation is based upon the 

principle that the momentum given to the fluid up to any instant of impact is equal to 

that given if the body at rest in the fluid with penetration as of the instant considered, 

is impulsively set into motion with velocity as of the instant considered. 

It is unreasonable to expect that many planing craft will have completely flat hull 

bottoms, despite the maximum developed lift, since there are other dynamic phenom­

ena that need to be considered, such as stability and seakeeping performance, that 

will affect the choice of underwater hull design. Von Karman(1929) provided the first 

theoretical solution to forces on bodies other than impacting flat plates. He suggested 
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that the potential flow around a 2D impacting wedge could be approximated by the 

flow around an expanding flat plate, of half width equivalent to the half beam at the 

intersection of the hull with the undisturbed fluid surface. 

At this stage, it is convenient to change coordinate system to that more associated with 

seakeeping, i.e. the coordinates y and z (as opposed to x and y used above) lie in the 

plane of the paper, with the y origin passing through the plate centreline, following a 

right handed system with z postive downwards and y denoting the beam-wise position. 

If R(t) now denotes the lift force 10 and ma(t) the added mass J-l22, which is also now 

dependent on time since the width of the plate, 2y(t), is a function of the immersion 

of the wedge, z(t), then from equation (3.37), 

R(t) = 
d 
dt {ma(t)~(t)} (3.39) 

and ~(t) replaces 110 as the impact velocity. 

From figure (A.10), the added mass is dependent on the width of the equivalent plate, 

2y(t), at the intersection between the undisturbed fluid surface and the wedge, given 

by, 

where ,B is the deadrise angle. 

z(t)j tan,B 
1fpy(t)2 

2 
(3.40) 

Substituting equation (3.40) into (3.39) leads to an expression of dynamic lift force on 

an impacting wedge, 

R(t) (3.41) 

Returning to the analogy between planing and impact, if a planing plate is given a non­

zero angle of attack then to an observer in a fixed slice of fi uid transverse to the direction 

of the travelling plate, the passing of the inclined plate produces an impact. The same 

is true for any planing body provided there is some inclination to the direction of flow. 

The expression for the generated lift force is dependent on the transfer of momentum 



CHAPTER 3. PROBLEM DEFINITION 26 

from the impacting body into the surrounding fluid. The amount of fluid associated 

with that transfer is called the added mass and, seen by the boundary conditions of 

equation (3.17), is dependent on the geometry of the body. Consequently, many authors 

use the term added mass theory (Payne 1992). The analogy between impacting bodies 

and planing will be employed in the subsequent numerical analyses. 

3.3.3 Prismatic Planing 

By an impacting wedge analogy a prismatic hull planing on a calm free surface at a 

trim angle of () can be described. For a prismatic hull, the vertical and horizontal 

velocity components, normal and parallel to the keel respectively, can be written (from 

equation (3.4)) as, 

where, 

v 
u 

Xeg sin () 

Xeg cos () 

Xeg is the forward velocity of the planing prismatic hull, 

() is the hull trim angle, 

V is the vertical velocity component (impact velocity), and 

U is the velocity of the fluid flow parallel to the keel. 

(3.42) 

(3.43) 

Munk(1924) and Jones(1946) describe equation (3.39) for steady planing (calm water; 

Ii = 0) as, 

where, 

dR 
dx 

. . ()dma 
XegSln dt 
. . amadx 

Xeg sm ()----;::;--
uX dt 

.2 . () ()arna 
Xeg sm cos ax 

dx 
dt = Xeg cos () 

(3.44) 

and since the impact velocity and added mass are usually functions of distance along 

the body, x, and time, t, the following operator is used, 

D ax a a 
-=--+­
Dt at ax at 

(3.45) 
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Integrating equation (3.44) over the wetted length provides the total dynamic lift force 

acting on a planing prismatic hull in calm water, suffering from no small perturbations 

(due to waves or instability) in the moving coordinate system, 

Rsteady 1L X~g sin a cos a dma 

x~gma I stern sin a cos e (3.46) 

The above expressions are for the prediction of steady-state hydrodynamic lift in calm 

water. In waves, or in the presence of other small perturbations, the theory is the same 

but additional expressions exist due to the time dependency of the velocity components. 

The hydrodynamic lift equations in waves will not be enlarged upon until later. 

Equation (3.46) is accurate in the description of the total hydrodynamic lift force for 

a planing prism in calm water provided that the boundary conditions described in 

section 3.3.1.1 are not compromised. In practical terms, these boundary conditions are 

restrictive. The planing body is not two-dimensional and will have end-flow effects that 

require further quantification. The impact/planing theory requires that the flow does 

not separate from the body, but experiments and practice show that for a planing hull 

with a chine this is unrealistic. These factors will influence the accuracy of equation 

(3.46) in predicting hydrodynamic lift. 

3.3.3.1 Crossflow Drag 

Consider the distribution of lift force over the prismatic craft length given by equation 

(3.44), 

dR. dma 
-d = X~g sin a cos a--

x dx 

Now if the added mass of an impacting section of half beam b is given by, 

( ) _ C 7rpb(t)2 
ma t - m 2 

where Cm is the added mass coefficient (equal to 1.0 for a flat plate), then, 

dma 
dx 

(3.47) 

(3.48) 
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and equation (3.44) becomes, 

dR 7r db .2 . - = -C pb-x sm 2() dx 2 m dx eg 
(3.49) 

When the chines are dry, the variation of wetted beam over craft length is finite, but 

when the chines are wetl, 

db dma = 0 dR 
dx = 0, dx =} dx = 0 (3.50) 

This result suggests that when the chines are wet, the lift force is zero. However, 

consideration of the separation of fluid flow produces a crossflow term that accounts 

for the incremental lift, Payne (1988). 

Following from Payne (1992), the force acting on a prismatic form of beam, 2b and 

length L, held vertically in an infinite fluid with a free-stream velocity equal to Xeg , is 

given as, 

(3.51) 

which describes the drag experienced on the prism, where CD is the drag coefficient. 

However inclining the prism at an angle () to the flow direction gives, 

1 2 . 2 
R = "2P(2b)Luo sm ()CD,e (3.52) 

and CD becomes CD,e or the cross flow drag coefficient. 

Now when the chines are dry, from equation (3.44), 

dR 1 dma . 2 • 

dx = "2 dx x eg sm 2() (3.53) 

and when the chines are wet, 

dR 1 .2. 2 
dx = "2P(2b)xeg sm ()CD,e (3.54) 

The difference between equation (3.53) and equation (3.54) provides the increment in 

lift due to chine immersion, 

1 
"2P(2b) tan ()CD,e 

1 
"2P(2b). b..x· tan ()CD,e 

1 
"2 P(2b) ·le· tan ()CD,e 

1 Wetted chines are defined by the calm water intersection with the hull being over the height of 
the chine line 
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and demonstrates that CD,c is a function of the increment of added mass with chine 

immersion. 

Writing in non-dimensional form 

!.:lma 4 lc 
!.:lC = -- = - . - . CD tan e 

m i,pb2 7T 2b ,c 

If Zc is height of waterline measured above the keel and lc is the distance measured 

from point of chine immersion to the stern then Zc = lc sin e and, 

4 Zc 
!.:lCm = -. . CDc 

7T 2b cos e ' 

From Payne(1988) analysis of experimental data, he suggested that 

From equation (3.55) and equation (3.56), 

7Tk 
CD c = - . CmO cos e , 4 

(3.55) 

(3.56) 

(3.57) 

where CmO is the added mass coefficient up to the level of chine immersion. Now the 

total added mass coefficient can be written as, 

(3.58) 

where k is a factor representing the increase of incremental added mass with increase 

in immersion of the chine and is given by Payne(1995) as, 

(3.59) 

where j3 is the deadrise angle in radians. This equation gives k = 0 when j3 = i, at 

which point CmO - 4~~4 as shown by Taylor (1930) and Vim (1971). 

The discrepancy between theoretical and experimental lift on hull forms operating with 

wet chines has been treated by consideration of an additional crossflow drag term, for 

example Shuford (1958). If the added mass of the impacting section is considered 

to increase proportionally to the shape of the cavity produced by the separated free 

surface, the need for a crossflow term is not needed. 
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3.3.3.2 Aspect Ratio 

The equation of lift of a planing prism is given by equation (3.46), 

(3.60) 

Consider a planing prism of zero deadrise, effectively a planing plate, then mal,tern is, 

In an infinite fluid, 

Substituting equation (3.62) in (3.60) gives, 

1 
R,teady = "2 pi;~g 7rb2 sin 28 

Non dimensionalising, 

C
L 

= R(t)cos8 = ~(2b)2 cos8sin28 '" ~A8 
.!pi;2 S 4 S 2 
2 cg 

for small trim angles and where the aspect ratio, A = 1 (2b)2 s. 
p an area, 

(3.61) 

(3.62) 

(3.63) 

(3.64) 

Payne(1994) shows that this equation is accurate for low aspect ratio or slender wings 

in an infinite fluid. However as A -+ 00 then CL -+ 00 which is proven incorrect 

(e.g.Newman(1977), pages 168-172). Newman(1977) derives the lift coefficient for very 

high aspect ratio lifting surfaces from vortex distributions given as CL = 27r8 for 

A -+ 00. 

The two extremes for the lift coefficient, CL , of a moving plate in an infinite fluid can 

therefore be written as, 

A -+ 00 

(3.65) 

(3.66) 

Payne(1994) describes the development of Pabst(1931) work to determine a function 

which bridges the extremes of correct lift coefficient from very low aspect ratio plan­

ing surfaces to very high aspect ratio planing surfaces. The development will not be 
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repeated here, but the bridging function is validated from analysis of Sottorf's(1929) 

experimental data for planing plates and Shoemaker's(1934) and Pierson et al(1954) 

experimental data for chines-dry planing craft. Figure A.ll shows three curves of 

planing flat plate lift corrections against aspect ratio. The 'planing' curve is from 

Payne's(1992) equation (13) derived from Pabst's corrected work2 and is the bridging 

function used herein. The two other curves show the corrections to planing lift for 

general aspect ratio which have been commonly and incorrectly applied in the past 

(based upon Pabst; see footnote), namely Schnitzer(1953) and Shuford(1958). 

The bridging function used by Payne (1994), (1995) to describe the variation of lift 

coefficient, and therefore added mass, with aspect ratio is given thus, 

(3.67) 

where ma(A-+O) is that value of added mass defined in section 3.3.2. This equation can 

be altenatively written as, 

(3.68) 

Despite this derivation being based upon a flat plate, the effect of deadrise was shown 

by Payne's(1995) extensive analysis of experimental data to have a negligible effect on 

the aspect ratio correction for angles less than 40°. 

3.3.3.3 Splash-Up 

The described impact theory relies upon the analogy of impulsive motion, without 

separation, within an infinite fluid. Physically, for impacting wedges there exists a 

phenomenom of increased free surface elevation at the wedge boundary. Sedov(1965) 

and Von Karman(1929) ignore the effect of this wave rise, or splash-up, on the added 

mass and consider that the added mass is evaluated from the geometry defined by the 

undisturbed calm water/wedge intersection, figure A.10. Wagner(1932) showed that in 

fact the splash-up height is a factor, (1 + 'l/J), of 7r/2 more than the undisturbed draft, 

but this was based upon small deadrise angles. This modification has a profound effect 

on the subsequently evaluated added mass. The smaller the deadrise angle the larger 

the effect of splash-up on the evaluation of lift force. The use of Wagner's factor for 

2Pabst confused his derived added mass per unit length with total added mass 
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deadrise angles approaching 90° was shown by Payne(1981) to lead to over estimates 

of impact and planing forces. Zhao and FaItinsen(1992) showed that the splash-up 

factor actually varied from 1 to 7f / 2 for deadrise angles of 90° to 0°. Payne( 1994) uses 

Pierson's hypothesis (Band 1969) to provide a function for increasing importance of 

splash-up with diminishing deadrise angle, j3, 

(1+1j;) ~-j3(1 ~) 
7f 

for j3= 0° 
2 
1 for j3= 90° 

where 1j; is a fraction of splash-up height over keel immersion. 

(3.69) 

(3.70) 

(3.71) 

3.3.4 Effect of Added Mass Theory Corrections to Dynamic 

Lift 

The effect of the above considerations and modifications to Munk's original equation 

(3.46) for dynamic lift on a prismatic hull can be seen in figure (A.12) and follows from 

Payne(1994). This figure demonstrates the lift coefficient upon beam squared against 

craft with increasing deadrise angles. The chines are unwetted; the intersection of 

chine with the free-surface is at the transom. The trim angle for all craft is 12° which 

represents the trim angle for a large quantity of chines-dry planing data (Shuford(1958); 

Pierson et al(1954); Shoemaker(1934)). 

Clearly, the effect of the aspect ratio correction on the dynamic lift force given by 

Munk's equation is dramatic. Payne's one-sided flow correction also lowers the dynamic 

lift force but is shown to offer only a small reduction in comparison with the aspect 

ratio correction. The trend of corrected dynamic lift seems to contradict common-sense 

in that as the deadrise angle reduces, the lift reduces too. However, it is important 

to remember that this wetted length is subjected to the constraint of the chines just 

being wetted at the transom. In this case, as deadrise decreases so too does the wetted 

length and therefore the lift generated by the wetted surface. 

In summary, the following equation for steady-state hydrodynamic lift is written which 

combines the individual corrections (aspect ratio, splash-up and crossflow drag) to 
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equation (3.46), 

(3.72) 

3.3.5 Unsteady Hydrodynamic Lift 

So far the evolution of hydrodynamic lift has considered only that lift generated by the 

steady forward velocity of the planing hull, i.e the lift developed in ignorance of small 

perturbations in the moving coordinate system due to dynamic instabilities and waves. 

Returning to equation (3.39) and employing the operator of equation (3.45), the full 

equation for hydrodynamic lift consisting of both the steady-state part and the dynamic 

part, and acting over the whole planing body, can be written as, 

R(t) = 1L { aV Vama _ uamaV } d 
ma~ + ~ ~ x 

o ut ut ux 

1L {aV ama ama aV} - ma- + V-- - UV-- - Uma- dx 
o at at ox ox 

{ rL aV rL ama - Jo ma at dx + Jo Vat dx + UVmalstern 

1L aUV 1L aV} - ma--dx- Uma-dx 
o ox 0 ox 

(3.73) 

where the velocity components, U and V, affected by perturbations in the moving 

coordinate system and the influence of waves, are given as, 

U 

V 

Xeg cos () (zeg - w z ) sin () 

Xeg sin () + (zeg - w z ) cos () - ex 
(3.74) 

(3.75) 

The influence of incident waves is included by consideration of the vertical velocity com­

ponent, W z , of wave orbital velocity. The horizontal velocity component is considered 

to be small in comparison with the forward velocity of the planing craft. 

Now since the steady-state contribution to the total hydrodynamic lift force is given 

by equation (3.46), then equation (3.73) can be rewritten as, 

R( t) = Rsteady + Rdynarnic (3.76) 
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where, 

Rdynamic 

(3.77) 

3.4 Hydrostatic Force 

Apart from the hydrodynamic lift generated by a planing hull, there must exist a 

hydrostatic contribution to the overall lift experienced by a planing craft, otherwise at 

zero speed the craft would sink. However, hydrodynamic lift increases as the square of 

forward velocity, whilst the hydrostatic force decreases with reduced immersed volume, 

so that at high forward speed the majority of lift is provided by the hydrodynamic force. 

Payne(1988) used the term dynamic suction to describe the loss of buoyancy which 

occurs as a transom boat accelerates from rest. When the speed coefficient, Cv , is 

greater than 0.5, the flow at the transom corner and chines separates, reducing the 

pressure at these locations to atmospheric. To take into account this ventilation effect 

on the static pressure, an empirical correction factor, K" to Archimedes buoyancy is 

introduced. Hsu(1967) proposed a value of 0.7 for flat plates but a value of K, 0.624 

was found by Brown(1971) to agree better with experimental data. Zarnick(1978) uses 

Shuford's(1954) approximation of K, = 0.5. The obvious problems with any of these 

empirical fit coefficients is that they are not true at zero speed. There must be some 

kind of transition between the fully attached flow, full Archimedes buoyancy, and the 

value for buoyancy when the craft is planing and the flow has separated. Payne(1995) 

also pointed out that Shuford's determination of 0.5 was based upon the difference 

between experimental lift coefficients and his theoretical predictions. However the 

experimental results he used were for Cv = 3.87 where the buoyant contribution was 

extremely small, in which case the comparisons between theory and experiment are 

likely to be imprecise. 

Sedov(1939) actually presented an equation for the buoyant contribution to dynamic 

lift on a flat plate based upon wetted length and speed coefficient, Cv . Subsequently, 

Korvin-Kroukovskyet al(1949) altered this equation in order for it to fit specific exper­

imental data more closely. However the agreement with those particular experimental 
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results were questionable and the revised formulation also created singularities for buoy­

ant lift when the aspect ratios reached their infinite or zero limit. Savitsky(1964) also 

based his equations on Korvin-Kroukovsky et aI's work which makes his formulation 

questionable too, although his results for higher aspect ratio are in better agreement 

theoretically. Payne(1995) showed that the limits in aspect ratio to Sedov's formula­

tion were close to the theoretical result. Despite his criticisms of their work, Payne 

showed that in most cases, their formulations reflected the decrease in /'i, as aspect 

ratio increases. The problem of the limit of zero speed where /'i, should equal 1.0 is also 

addressed by Payne(1994). 

In conclusion, Payne suggested an equation for buoyant contribution to lift based 

upon an empirical approach derived from experiments. This approach is effectively 

a manometer model and assumes that there is little or no fluid motion in the transom 

wake. The subsequent drop in fluid level at the transom heel as the craft accelerates 

is then directly related to the decrease in pressure at this point. The loss in buoyancy 

as the craft accelerates is therefore treated as being entirely attributable to the loss 

of static pressure at the transom heel so that no contribution to buoyancy loss is at­

tributable to flow separation off the chines. Payne(1995) showed from Savitsky and 

Neidinger(1954) experimental results for low speed planing flat plates and low speed 

planing models with deadrise that the separated flow off the chine did little to affect the 

measured buoyancy in comparison with the effect of separation of flow off the transom. 

At low to zero speed, the transom is wet and the buoyant contribution is hypothesised 

as being affected by the factor, 

/'i, = 1- CDsct (~)2 
2 sin e l 

(3.78) 

where CDS is an empirical transom drag coefficient given by, 

CDS 
pgo 

-
~ 
2PXc9 

2go 
(3.79) • 2 

Xcg 

2 
(3.80) < F2 nz 

where 0 is the depression of the free surface at the transom, and Fnz is the transom 
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Froude number, 

F =~ 
nz JgZT 

(3.81) 

where ZT is the submergence of the transom relative to the undisturbed free surface. 

The limiting condition results from the fact that when the depression, 0, of the free 

surface at the transom is equal to the immersion ofthe transom, ZT, with respect to the 

undisturbed fluid surface then the fluid has fully separated from the transom corner 

and the transom is no longer considered wet. Consequently the empirical relation 

between buoyancy correction and beam/length ratio, which has proven agreement for 

fully separated flow, can be used. Therefore, when CDs.F;z = 2 then, 

B 
K=l-­

Lm 
(3.82) 

This equation represents the buoyant contribution when the flow is fully detached from 

the transom. 

Conversely, when the speed is low enough that CDs.F;z < 2, then Archimedes buoyancy 

is affected by the factor given by equation (3.78). At zero speed, Cv = 0, therefore 

K = 1.0 and the full Archimedes buoyancy is realised. 

The problem with this manometer model is that based upon the depression of the 

free surface at the transom for slow speed model tests, the values of CDS are between 

0.08 and 0.22 and at most between 0.5 and 0.6 for very slender deep draft craft. 

However the loss in buoyancy evaluated from model tests requires CDS values closer to 

unity. The manometer model therefore does not fully describe the cause of buoyancy 

loss. However, since the operations for planing craft generally exceed the condition of 

CDs.F;z < 2, equation (3.82) will be used. 

The buoyancy force can therefore be written as 

FE = -K(t).pg 1L A(x, t)dx (3.83) 

where A(x, t) is the sectional immersed area under the free surface and K(t) can be 

defined by equation (3.78), where CDS 1.0, and equation (3.82). 
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3.5 Added Mass and Damping 

The importance of added mass is evident in its extensive appearance in the equations 

for hydrodynamic lift. The derivation of added mass of a body is based upon the 

unsteady perturbed fluid flow as a result of the motion of that body within an infinite 

fluid, section 3.3.1.1. The presence of a free surface and the associative boundary 

condition, modified from equation (3.7) to account for the changed coordinate system, 

82 1> 81> 
8t2 - 9 8 Zo = 0 (3.84) 

allows the added mass for vertical motions to be half that of the corresponding value 

in an unbounded fluid provided that the velocity potential, 1> equals zero on the free 

surface. The associative damping is zero due to the lack of generated damping waves 

of a body motion in an unbounded fluid. 

Since 1> is generally a periodic function such that, 

(3.85) 

then the boundary condition on the free surface, equation (3.84), can be rewritten as, 

(3.86) 

Now the following limits apply, 

w --t 0, z: 0 --t 0 on the free surface (gravitational forces dominate) 

w --t 00, ¢ --t 0 on the free surface (inertial forces dominate) 

Therefore, the considered problem of wedge impact, leading to planing theory, as­

sumes that the frequency of motion of the body tends to infinity. In waves where 

the encountered wave frequency is low, the derivation of added mass will be based 

upon the condition that gio --t 0, which produces altogether different values for added 

mass (Newman 1977). Furthermore the neglect of generated damping waves due to 

the condition that the frequency of oscillation tends to infintiy is no longer appropri­

ate and a damping force component should be considered between the limiting values 

of 0 < w < 00 (Newman(1977); Chiu and Fujino(1989)). Appendix C describes the 

method adopted herein to evaluate frequency independent, and dependent, added mass 

and damping. 



Chapter 4 

Linear Model 

Linear theory assumes that the motions in waves could be considered to be small per­

turbations from the steady state calm water condition, i.e that the contribution of 

the dynamic part of the hydrodynamic lift, equation (3.76), is only slight, and that 

higher order effects are small. This, for planing craft in head seas, would seem to be an 

over simplification. However, Fridsma's (1969), (1971) non-dimensional transfer func­

tions for heave and pitch motions at moderate planing speeds(Vknots/ ~ = 2 to 4) 

demonstrated little variance over waveheight to beam ratios of 0.11 to 0.33 and plots of 

measured heave and pitch amplitude against waveheights (0.11 to 0.33 beams) showed 

distinct linearity. Furthermore, Troesch's (1992) experimental investigations of hydro­

dynamic coefficients showed some amplitude independence at low planing speeds and 

low forcing amplitudes. 

A linear solution to planing motions was described by Milton Martin(1978a), (1978b). 

In the same manner as described in the previous chapter, Martin based his method for 

the determination of lift force on a slender-body theory derived from Munk(1924) and 

Wagner's(1932) wedge-impact theory. The resulting equations of motion were then 

solved in the frequency domain. 

The main benefit of this linear analysis is not for motions in waves, although Mar­

tin's (1978b) results for moderate planing speeds were fair, but more in the evaluation 

of stability boundaries in calm water. The parasitic motions characterised by porpois­

ing instability can be evaluated with success (Martin 1978a) and, for example, the 

38 
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introduction of a control system such as trim tabs analysed (Wang 1985). 

The derivation of the linear model herein is based solely upon the approximations 

of Martin. For example, Martin's aspect ratio correction is based upon the work 

of Pabst(1931) (which, in its orginal form, has been shown by Payne(1994) to be 

erroneously applied, section 3.3.3.2). The crossfiow drag coefficient is based upon 

the work of Schnitzer(1953) and the theory of Bobyleff (Lamb 1932) who correctly 

attribute the crossfiow drag to chine immersion. The splash-up is assumed to be 

a factor of 7f /2 more than the undisturbed water surface, which is also erroneous, 

section 3.3.3.3. Furthermore, the correction to hydrostatic lift, /'1" is based upon the 

work of Brown(1971). These approximations have been included in the following linear 

analysis in order to reproduce Martin's stability boundaries, prior to the application of 

a non-linear model that incorporates the appropriate assumptions derived within the 

previous chapter. 

4.1 Construction of linear model 

To construct the linear model, consider the general equations of motion for planing craft 

in calm water. Neglecting second and higher order effects, the equations of motion are 

given by, 

(4.1) 

where the hydrodynamic coefficients of the motion variables are termed slow motion, or 

stability, derivatives and are independent of time1
. For example, the term Zz represents 

the linearised rate of increase of vertical force, Z, with increase in vertical acceleration, 

z. 

The surge degree of freedom has been uncoupled due to the insignificance of surge force 

in the planing state. This assumption is valid from numerous authors and experimen­

tally verified by Fridsma. Fridsma carried out constant velocity and constant thrust 

tests in waves and found negligible difference in subsequent heave and pitch responses. 

1 For the derivation of these see Appendix B which is reproduced from Martin (1 978a) 
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Martin's own investigation showed that the hydrodynamic coefficients for the surge 

degree of freedom are also negligible compared with the pitch and heave coefficients. 

The solution to these coupled equations of motion can be solved in the frequency 

domain by writing, 

where a = -iwe 

z = zoeO"t 

Z = azoeO"t 

Z = a2zoeO"t 

e eoeO"t 

e = aeoeO"t 

e = (]"2eoeO"t 

On substitution, equation (4.1) can be written as 

Zo [(Zz m) a 2 - Zia Zz] + eo Zea2 - ZiP Ze] 

Zo [Mza2 Mia - Mz] + eo [(Me - Iy) a 2 Mea - Me] 

where 

a (Z·· - m) w2 - Z + iZ·w z e z z e 

/3 Zew; - Ze + iZewe 

, Mzw; - Mz + iMiWe 

0 (Me -Iy)w; - Me + iMewe 

The solution of these equations of motion are such that, 

For the non-trivial solution, 

zo(ao - ,/3) 

eo(ao - ,/3) 

ao - ,/3 = 0 

o 
o 

zoa + eo/3 = 0 

zo, + eoo = 0 

(4.2) 

(4.3) 

( 4.4) 

(4.5) 

The solution of this equation defines the stability of the system. The expansion of 

equation (4.5) leads to the following quartic, 

( 4.6) 
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where 

B 

D 

E 

ZzMiJ + ZiMe - MzZiJ 

ZzMe + MzZe 

41 

M·Z·· z e 

(4.7) 

Solving for (J will give four roots and if the sign of any of the real parts is positive then 

the craft's response to any perturbation will increase without limit. 

It is possible upon examination of the hydrodynamic coefficients that the quartic equa­

tion may be approximated by a quadratic in (J - the high speed behaviour of a planing 

craft being domainated by inertial terms rather than the gravitational terms. However, 

for completeness, the quartic equation for stability is solved. 

If there exists a complex pair of roots then the craft's response is considered oscillatory. 

The real part may then be used to determine how stable or unstable the craft is by 

looking at the time it takes for the disturbance motion to either halve itself or double 

itself in magnitude (Martin, 1978a). The damping, ~, of the system can be expressed 

as 

(4.8) 

where (JR is the real part of the complex root and (Jj the imaginary part. 



Chapter 5 

Non .... Linear Model 

Planing hull operation in waves lead to strong non-linearities such as large changes 

in wetted surface area and the different associated flow regimes experienced by the 

hull. Theoretically, these conditions can be accounted for by considering the time­

dependency of the hydrodynamic coefficients and the inclusion of all second and higher 

order terms in motion variables. 

The linear model was solved within the frequency domain since the hydrodynamic 

coefficients were considered to be time-independent. As such, due to the presence 

of non-linearities in planing hull operations in waves, the application of the linear 

frequency domain model for predictions of planing motions in waves is questionable. 

For the solution to the equations of motion in waves, equations (3.5), a non-linear 

time-domain analysis is presented. 

In waves, the forces described in equation (3.5) are continually changing as the craft 

goes through several different flow regimes. Wave forces are introduced into the equa­

tions of motion by considering that the wave excitation is caused by both the geo­

metrical properties of the incident wave, altering the wetted length and draft of the 

craft, and by the vertical component of wave orbital velocity at the surface, altering 

the normal fluid velocity, V, experienced by the craft. 

42 
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5.1 Wave Excitation 

The incident wave, r, can be written in the space fixed system as 

r = ro cos(kXo + wt) (5.1) 

defined from the velocity potential of the incident wave field, cPl. 

The incident wave velocity potential, cP]' is represented in the equations of motion by 

its effect on the normal velocity, V, and the velocity component parallel to the keel, 

U. The vertical component of the wave orbital velocity, W z , will affect U and V such 

that the normal velocity, V, and the velocity parallel to the keel, U, can be rewritten, 

from equation (3.4) as 

(5.2) 

(The horizontal component of wave orbital velocity is assumed to be small compared 

to the forward speed. This assumption is also true in following seas.) 

The relative velocity components for the craft planing in calm water are 

Vo (5.3) 

5.2 Hydrodynamic Lift, R 

The hydrodynamic lift acting on a planing craft is described in Chapter 3. The flow 

over the craft length can be considered to occur in transverse planes which are fixed 

in space. The momentum of each layer of water transverse to the keel is ma (t). V (t), 

where ma(t) is the two-dimensional (2D) added mass per unit length and V(t) is the 

sectional vertical relative velocity between the hull and the water plane. The added 

mass in the space fixed axes is considered to be equal to that in the body fixed axes 

(Chiu & Fujino 1989). The sectional hydrodynamic lift force, dR(t)/dx, can therefore 

be written as the time rate of change of the momentum of the water. Upon integration 

over the wetted length, the total lift force, R(t), can be written from equation (3.73), 
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R(t) 

(5.4) 

Chiu and Fujino (1989) and Chou, Chiu and Lee (1991) include the effect of frequency 

dependency, section 3.5, by decomposing the hydrodynamic normal force into frequency 

dependent and independent terms. This is achieved by reducing the momentum flux, 

equation (3.39), into two terms made up of the momenta, 

ma( x, t).(V(x, t) - Vo(x)) 

which represents the momentum due to the incremental increase in vertical relative 

velocity from the waves (ma (x, t) is frequency dependent), and, 

which represents the momentum due to the steady planing in waves (m:(x, t) is fre­

quency independent). 

Substituting these momenta into equation (5.4) leads to, 

5.2.1 Damping Force, N 

The sectional damping force, dN / dx, is that experienced by the section from generated 

radiating waves in the heaving mode and is given by Chiu and Fujino (1989) as, 

dN 
= nz'V 

dx 

where nz(x, t) denotes the sectional heave damping coefficient. 

(5.6) 

Integrating over the wetted length gives an expression for the total damping force, 

(5.7) 
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Frequency dependency is included in much the same way as with the hydrodynamic 

force by decomposing the damping into two components relating to damping due to 

steady planing in waves and the increment due to oscillation in waves such that, 

nz(x, t).(V(x, t) - Va(x)) 

represents the incremental sectional damping force due to the presence of waves, nz (x, t) 

is frequency dependent and, 

n;(x, t).Vo(x) 

which represents the sectional damping force in steady planing in waves, n:(x, t) IS 

frequency independent. 

By substitution, equation (5.7) becomes, 

N = l L

[nz.(V - Va) + n;.VaJdx (5.8) 

5.3 Normal force resolved in Zo-direction, Z 

The total force acting in the Zo-direction is written, from equations (3.5), (5.5), (3.83), 

and including the damping force contribution from (5.8), as, 

Z -Rcos B - N cosB - FE 

-1 [ma.v +m:.Vo u !(ma(V - Va) m:.Va)] cosBdx 

-1 [nz.(V Vo) + n;.VaJ cosBdx -1 K,pgAdx (5.9) 

5.4 Normal force resolved in Xo-direction, X 

The total force acting in the Xo-direction is written, from equations (3.5), (5.5), (5.8) 

and (3.83) as: 

X -RsinB - NsinB 

-1 [ma.v + ma.(V Vo) + m:.Vo - u :x (ma.(V - Va) + m:.vo)] sinBdx 

1 [nz.(V - Vo) + n;.VoJ sinBdx (5.10) 
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5.5 Hydrodynamic pitch moment, M 

The total hydrodynamic pitch moment acting through the CG is written, from equa­

tions (3.5), (5.5), (3.83) and including the damping contribution from (5.8) with mo-

ment arm XD, 

M Rxc + NXN + FBxB 

- [ [ma.v + ma.(V Va) + m:.Va - u :X (ma.(V - Va) + m:.Va)].XdX 

- [[nz.(V Va) + n;.Va].xdx - [ x.t1,pgAcos (}dx (5.11) 

5.6 The Equations of Motion 

From the hydrodynamic forces and moments, the equations of motion in waves become: 

(m + Ma sin2 (})xcg + (Ma sin () cos (})zcg (Qa sin (})B 

(Ma sin () cos (})xcg + (m + Ma cos2 (})zcg (Qa cos (})B 

(Qa sin (})xcg (Qa cos (})zcg + (I Ia)B 

where 

Ma(t) [ ma(x, t)dx 

Qa(t) 1 ma(x, t)xdx 

and where 

Tx + Xl - Dcos() 

Tz + Zl + D sin B + W 

Txp + M' - DXD (5.12) 

Xl X {-(MaSin2 B)xcg - (MasinBcos(})zCg + (QasinB)B} 

Zl Z - {appropriate acceleration terms} 

M' M - {appropriate acceleration terms} 

The solution to these equations, following Zarnick (1978), can be accomplished by 

introducing the state vector, x where, 
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If matrix A represents the coefficients of the acceleration matrix f and matrix 9 rep­

resents the right-hand side of the equations of motion such that, 

then the acceleration matrix is written as, 

Using the Runge-Kutta integration method, the state vector x can therefore be deter­

mined. 

5.6.1 Equations of lVlotion for the Simplified Case of Constant 

Forward Speed 

The surge degree of freedom can be uncoupled since there is little effect on the pitch and 

heave motions ((Blake 1993); (Fridsma 1969); (Martin 1978a)). Also for experimental 

testing of models where the model is towed at constant speed, the examination of the 

theoretical case for constant speed is necessary. 

Zarnick also assumed that the thrust and drag forces are small in comparison to the 

hydrodynamic forces and that if their action was through the centre of gravity, the 

equations of motion could be simplified to, 

(m + Ma cos2 B)zcg - (Qa cos B)B 

(Qa cos B)zcg + (I + Ia)B 

o 
Z'+W 

M' (5.13) 

By neglecting second order perturbation terms and assuming that the pitch angle, B, 

is small, the simplified equations of motion can be written in matrix notation as, 
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The coefficients of the motion variables are given in Appendix D. The matrix notation 

is given in order to provide some analysis of the cross-coupling effects and frequency 

and amplitude dependency of the coefficients. The solution for Zcg and e from the 

above equation will differ from the solution for Zcg and e from equation (5.13) because 

of the neglect of the second order terms. 



Chapter 6 

Validation and Results 

This chapter will present the validation of the linear and non-linear models and the 

results of a parametric investigation into the vertical dynamic effects experienced by 

a series of hard chine monohull forms operating in calm water and in waves. The 

validation of a numerical model for planing hull performance in calm water is readily 

achieved by comparison with a large amount of experimental data that exists for steady 

state calm water planing. In waves however, there is little published planing data in 

existence. 

One published set of data for planing in waves comes from Fridsma(1969), (1971) who 

created a systematic series of tests on a hard chine, constant deadrise monohull form 

operating in regular and irregular seas. The craft lines are given in figure (A.13). 

Fridsma tested 16 configurations in total with changes in the following parameters: 

I Parameter I Variation 

L/B 4, 5, 6 
(3 10°, 20°, 30° 

et;,. 0.608, 0.631, 0.912 
LCG(%L) 52 - 68 

T 4°, 5°, 6° 
ky(%L) 20.0 26.5 

Vknots/ VLfeet 2, 4, 6 

Table 6.1: Hard Chine Parameters; Fridsma(1969), (1971) 

Fridsma used this simple series of constant deadrise models in order to study the effect 

49 
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of hull geometry, load conditions, running trim and craft speed on the craft response in 

calm water and in waves. The aim was to also investigate the linearity of the response 

in waves and the effect of the change in parameters on the rough water characteristics of 

resistance, heave and pitch motions and accelerations. Whilst the models are unsuitable 

for typical planing hull form design, their simplicity of construction allowed invaluable 

characterisation of the effect of systematically changing the parameters on calm and 

rough water performance. This provided much needed insight then as it does now; 

the size of his test matrix has not been repeated since, although a new semi-planing 

systematic series is under investigation (Grigoropoulos & Loukakis 1998). 

The previously described series will be primarily used to validate the non linear numer­

ical model, NoLiPCraMP, and in so doing supply a numerical parametric investigation 

that should be directly comparable with the experimental findings. From the experi­

mental tests, there exists some calm water performance data that will also be used to 

validate the linear numerical model, MOTIONS. Furthermore, the test matrix will be 

numerically expanded to investigate parametric changes on calm water stability and 

to cover the effect of gyradius on planing performance in waves. 

6.1 Calm Water Stability 

Martin(1978a), from which the linear theory is derived, uses the experimental work 

of Day and Haag(1952) to validate the theoretical model. Some of those results are 

repeated in the same format in order to verify the author's correct numerical imple­

mentation of Martin's theory. 

Day and Haag used a series of prismatic models described in Table 6.2 to explicitly 

investigate the porpoising phenomena. For a particular configuration at a particular 

speed, they moved the position of the LCG increasingly aft until the inception of 

porpoising. The subsequent trim angle at inception was taken to be the critical trim 

angle, T e , for the position of the critical LCG, LeGe' Curves of critical trim angle, or 

critical LCG, against speed provide porpoising stability boundary information. 

Numerically, the inception of porpoising can be predicted by analysis of the roots of 

equation (4.6). Approaching porpoising there exists a complex pair of roots which 
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I Parameter I Variation 

B 96.5mm 
(3 0°, 10.6°, 20.5° 

Cf:;. 0.36, 0.48, 0.72 

kylE 1.2 
Cv 2 to 5 

Table 6.2: Hard Chine Parameters; Day and Haag (1952) 

reflects the system's tendency to oscillate given a disturbance. The sign of the real 

part of any of the roots determines the system's stability. Hence if any of the roots 

have a positive real part then the system is considered unstable. A plot of the least 

stable real root, JR, against LCG is shown in figure(A.14) for (3 = 10.6° and Cf:;. = 0.48 

for three speeds Cv = 2.33, 2.67 and 3.17. The agreement with Martin's theoretical 

results is excellent for all three speeds. 

The non linear numerical model, N oLiPCraMP, can also be used to assess calm water 

performance. This is achieved in two ways. Firstly through the response of the craft 

(for a given LCG) to a set of unbalanced initial conditions. Generally, for a 1.143m 

model craft, the convergence time to calm water steady-state planing was no more than 

5 seconds. If the craft response to an unbalanced set of initial conditions, on changing 

the position of the LCG, fails to converge on a steady state solution after 20 seconds, 

the configuration is deemed unstable. The second approach is based upon the sign of 

the damping terms, which for all but one, n53, is always negative. When all the means 

of the damping terms become negative for a given LCG, or more specifically as the n53 

term just becomes negative, the craft is considered unstable. 

Figure (A.15), (A.16) and figure (A.18) show the comparison between predicted por­

poising boundaries, Tc against speed, for the range ofload coefficient, Cf:;., for deadrise of 

0°, 10.6° and 20.5°. The difference between the author's linear prediction and Martin's 

results are not large and show good comparison with experiment. Martin points out 

the fact that at higher speeds, larger deadrise and lighter loads there is more propen­

sity for the chine to become unwetted at the transom. This affects the dynamic lift 

force since there is no longer any separation and no cross-flow force. Theoretically, the 

cross-flow force is always considered since it is always different from zero for a non-zero 

trim angle, regardless of the fact that separation may have physically occurred. This 

is a short coming of the theoretical linear model. For unwetted chines, the lift force 
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will be over predicted, the craft will be more dynamically supported and the stability 

afforded by the hydrostatic force will be less. A smaller critical trim angle is therefore 

predicted for lighter craft at higher speeds. 

The stability boundaries for the 10.6° deadrise craft are shown in figure (A.17) for the 

non-linear theory. The results show much better agreement with experiment for all 

three load coefficients. This suggests that the distribution of lift force is much better 

predicted by the non-linear model without the need for such widespread empirical 

fits to established smooth water planing data used in the linear theory. Unlike the 

linear theory which considers three distinct regions of varying added mass, the non­

linear theory determines added mass in a consistent manner along the hull length; 

evaluated based upon the actual immersion and a splash-up quantity (which is a value 

between Von Karman's and Wagner's approach, section 3.3.3.3). Whether the non­

linear theory adopts a more realistic representation of the flow dynamics than that of 

the linear theory is open to question since the linear theory distribution of added mass 

is fundamentally based upon a physical observation and as such would be considered 

at first sight to be more applicable. 

Martin's expressions for steady state hydrodynamic force and moment (Appendix B; 

equations (B.34) and (B.36)) are well founded on empirical evidence from many sources 

of calm water planing experiments. Payne (1994), (1995) demonstrates the difficulty 

experimenters have in identifying regions of wetted surface, in particular wetted keel 

length and wetted chine lengths. Martin's expressions for wetted lengths are based 

upon those of Brown (1971), but although Brown's expressions fit his own data well, 

there is still some scatter on comparison with other experimenters results (Payne 1994). 

This scatter affects Martin's prediction of lift force since the added mass distribution is 

dependent on wetted surface. This source of error can be seen in figure (A.19), where 

the predicted position of LCGe is compared with the actual measured values from Day 

and Haag. The comparison forms some measure of the accuracy of the derivation of 

the steady-state equations and shows that because LCGe is predicted further aft to 

achieve the similar critical trim angles seen in experiment, the steady-state equations 

must under predict the running trim angle. 

As has been previously mentioned, the non-linear theory predicts the stability bound­

aries more accurately over the whole speed range. The predicted critical trim angle 

is very favourable with experiment and shown on figure (A.19), along with the linear 
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results and experimental values, is the distribution of critical LeG with speed. Where 

the linear theory under predicts the trim angle for a given LeG, the non-linear theory 

is a great improvement. This reflects a forward shift in the predicted centre of pressure 

which allows for a more forward location of LeG for a given trim angle. The reason 

for the improved fit of stability boundaries with the non-linear theory's distribution 

of added mass compared to the linear theory approach is now more clear. The for­

ward sections of the craft for the non-linear theory develop more lift for the same trim 

angle and LeG than the linear theory because of the generalisation of the evaluation 

of added mass. Subsequently the centre of pressure is more forward in the non-linear 

theory than the linear approach which results in an increased trim angle, countered by 

an appropriate forward movement in the LeG. 

The lack of spread of data in figure (A.19) shows that the effect of increasing hull 

loading on porpoising inception is small. Martin points out that this is accounted for 

by Day and Haag's respective decrease in gyradius. Both of these quantities affect 

the critical LeG. Figure (A.20) reflects this compensatory nature between ky/ Band 

CD. since Te is decreased with increasing load and gyradius for all values of speed. 

Furthermore, the curves of the last graph in figure (A.21) tend to reach a maximum 

value on increasing speed and then reduce again in magnitude with increasing speed. 

This is more obvious for the lighter models. It would seem that increasing speed can 

actually extricate the craft out of the porpoising condition provided the craft is only 

weakly unstable. 

Figure (A.21) shows the effect of increasing deadrise on critical LeG position. As 

deadrise increases LCGe can become further aft (increasing the critical trim angle) 

before porpoising occurs. This is true for all speeds and all loads. The porpoising 

boundaries produced as a function of deadrise show similar trends as the boundaries 

produced from functions of load when plotted against speed. Provided the craft is not 

too far over the limit for porpoising, increasing speed can actually remove the craft 

from the porpoising region. 

Fridsma published some calm water data on porpoising stability for the three deadrise 

angles of 10°, 20° and 30° and for three load coefficients CD. = 0.304, 0.608 and 0.912. 

The data is limited and so Table 6.3 is constructed to show the ratio of predicted 

critical LeG over the measured critical LeG and predicted critical mean wetted length 

to measured critical mean wetted length. The last two columns show the same two 
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quantities but with a different method of calculation of critical LCG and mean wetted 

length that follows directly from Savitsky (1964). 

{3 Cc,. C v Martin Savitsky 
( degs) Ac calculat~ ,irnc ca,lculil.te_cl ,ic ca eu ate ~rnc ca..!.c1!!.~ 

Ac measured Arne measured Ac measured Arne measured 

10 0.304 3.33 0.94 1.04 0.93 1.06 
0.304 2.00 0.85 0.95 0.94 1.00 
0.608 3.00 0.90 0.83 0.90 0.99 
0.912 3.83 1.06 0.90 0.86 0.94 

20 0.304 2.98 0.96 0.89 1.02 1.00 
0.304 2.66 0.98 1.02 1.00 1.12 
0.608 2.73 0.82 0.95 1.03 0.97 
0.608 3.89 0.95 0.93 1.07 1.17 

30 0.608 2.73 0.90 0.82 1.02 0.95 
0.912 3.85 1.03 0.93 1.07 1.00 

Table 6.3: Comparisons of critical data derived from Martin and Savitsky with exper­
iments of Fridsma 

The error from Martin's method is large in some instances which is a direct result of 

the under prediction of steady state-trim angle. Savitsky's equations relating trim and 

LCG generally predict the actual critical values from Fridsma's experiments to a much 

closer degree. 
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6.2 Validation and Results in Waves 

The aim of the theoretical investigation is to provide insight into the planing craft 

dynamics in calm water and in waves. In this respect, the following theoretical results 

are presented in a manner similar to the presentation of Fridsma's results. The ex­

ceptions are that no resistance information is given, although preliminary results for 

added resistance calculations are given in Appendix E, and only one length to beam 

ratio, equal to 5, was used. In total, 13 out of his 16 configurations were theoretically 

analysed. Furthermore, new theoretical configurations were introduced in order to as­

certain the effect of gyradius at Vknots/ VLfeet = 4 and calm water running trim angle 

for Vknots/ VLfeet = 6. 

6.2.1 Validation 

This section aims to validate the numerical model, NoLiPCraMP, by direct comparison 

with the experimental results outlined above. Effect of frequency dependence will be 

analysed and the effect of empirical corrections on the equations governing lift; Payne's 

dynamic suction, aspect ratio, and splash-up. The effect of second order terms in 

perturbation variables is also investigated. 

6.2.1.1 Effect of Frequency Dependency 

Appendix C describes the theory behind the evaluation of sectional added mass and 

damping required in the hydrodynamic coefficients. The two approaches are based on 

the assumption of frequency independence or frequency dependence. Typically, the 

added mass and damping coefficients are evaluated at an infinite frequency where both 

the added mass and damping coefficient have reached an asymptotic limit. Troesch (1992) 

has shown for low to moderate planing speeds that the hydrodynamic coefficients are 

frequency dependent, therefore it is prudent to include frequency dependence in the 

evaluation of added mass and damping. 

Figures (A. 23) to (A. 35) show the predicted response of the tested craft configurations 

against the experimental results in the form of response amplitude operators (RAO). 
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The predicted response is shown for frequency dependence and independence in each 

case. The accelerations are given in figures (A.70) to (A.82). 

The agreement between the frequency independent numerical model and experimental 

values for all 13 craft is fair. For at least 10 configurations, the comparisons in motion 

response magnitudes is very good with the slower craft, configurations C, Hand L, 

generally showing less agreement. The qualitative aspects of all 13 tested craft in 

respect to their vertical motions is excellent; peak response frequencies are well defined. 

Vknots / VLfeet = 2 
At this speed to length ratio, the predicted results would be expected to depart substan-

tially from the experimentally determined values. The craft at this speed are generally 

operating at or just below the onset of planing and as a result, their resistance is at or 

near a maximum. The viscous effects are not considered by the numerical model and 

there is no inclusion of the associated drag. Furthermore, the numerical model in this 

instance assumes that there is complete separation of flow off the transom corner and 

chines, which is not a physical representation at this speed. 

Configurations C, D, Hand L operate at this speed and their predicted motions are 

given in figures(A.25), (A.26), (A.30) and (A.34) respectively and the accelerations are 

given, respectively, in figures(A.72), (A.73), (A.77) and (A.81). Employing the fre­

quency indepedent approach, the actual agreement in magnitude and peak frequency 

response for all these configurations is fair, especially for pitch motions and at the lower 

encounter frequencies. For the encounter frequencies with comparable response magni­

tudes, the accelerations, too, show good agreement. At higher encounter frequencies, 

AI L < 2, the vertical responses are underpredicted. Also for configurations C, Hand 

L, the heave response at the lower encounter frequencies, AIL> 3, are over predicted. 

The frequency independent predicted heave and pitch phases tend to show similar 

characteristics to Fridsma's experimental results, with their maximum lag occurring at 

about half the resonant response frequencies. Agreement is best at either end of the 

frequency spectrum; at the very long wavelengths and at the very short wavelengths. 

Pitch phases show the most agreement with experiment, reflecting the better agreement 

in predicted pitch response. 

Making an allowance for frequency dependency would be expected to make a large 
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difference in the predicted responses. Figures (A.I50) and (A.I5I) show the added 

mass and damping curves against encounter frequency for a range of speeds and extreme 

drafts (just above the keel and at the chine line). At the low speed range, the added 

mass and damping could not be described as being asymptotic in nature. In fact 

the added mass values for the low encounter frequencies is well underpredicted by 

the asymptotic value typically used in planing analyses. Following Troesch (1992), the 

hydrodynamic coefficients show considerable frequency dependency at low to moderate 

planing speeds and better agreement in the numerical prediction of motions would be 

expected with this dependency in mind. Figures (A.25), (A.26), (A.30) and (A.34), 

show the inclusion of frequency dependent terms does little to improve the prediction of 

motions at the lower encounter frequencies but at the higher frequencies tends to remove 

the underprediction of motions. Although the agreement with experimental motion 

responses at longer wavelengths is worse in these configurations, the overprediction in 

response improves the agreement in acceleration magnitudes for the same encounter 

frequencies, figures (A.72), (A.73), (A.77) and (A.8I). For those higher frequencies 

with improved motion prediction, the predicted accelerations are noticeably improved 

too. 

With the frequency dependent approach, at wavelengths AIL 2: 3, the predicted phase 

lag in heave and pitch is much more comparable to experiment, despite the poorer 

prediction in motion responses for these wavelengths. In fact, where the predicted 

motion responses show better agreement at AIL < 1.5, the predicted phase lag is 

generally less comparable, with pitch phase lag at AIL = 1 significantly different. 

For this low craft speed, drawing conclusions for the discrepancy in predicted motions 

with experimental results solely from predicted responses would be unwise. Too many 

assumptions are made which are unwarranted at this speed and although the predicted 

responses are fair, compromises between hydrostatic and hydrodynamic phenomena 

are uncertain. It can however be tentatively proposed that at this speed, the effect of 

frequency dependence on predicted vertical responses is important. 

Vknots / /Lfeet = 4 
This speed to length ratio represents the moderate post resistance hump planing speed. 

There is still some hydrostatic force contributing to the overall lift but, predominantly, 

the lift is hydrodynamic. Configurations A (figures(A.23), (A.70)), E (figures(A.27), 

(A.74)), F (figures(A.28), (A.75)), I (figures(A.3I), (A.78)) and K (figures(A.33), 
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(A.80)) operate at this speed. The agreement in predicted (frequency independent) 

and experimental vertical motion responses is very good in all cases and always at the 

higher encounter frequencies. At high encounter frequencies, the predicted added mass 

terms which govern the hydrodynamic lift are in less mathematical error. At lower 

frequencies though, the added mass will depart from the asymptotic value, affecting 

the predicted lift. However the accelerations, which do not show such favourable com­

parison as the predicted motions, are generally better predicted at the lower encounter 

frequencies. This can be explained by the relatively low accelerations experienced 

by the craft at longer wavelengths which are not so sensitive to inaccuracies in the 

numerical modelling. 

Predicted heave and pitch phases at all wavelengths for all the configurations are ex­

tremely good, with two exceptions. Configuration F (figure(A.28)) has poor agree­

ment in heave phase lag at AIL:::;: 2 and in pitch at AIL:::;: 1.5. Configuration K 

(figure(A.33)) shows less agreement with experiment, especially in pitch, at AIL:::;: 1.5. 

What is significant, given the overall agreement in pitch and heave responses and phase 

angles, is the error in predicting accelerations, especially at the bow and at the higher 

frequencies of AI L :::;: 2. 

Figures (A. ISO) and (A.ISI) show that for VlvIL = 4, the added mass is still very 

much frequency dependent. The effect of adding this dependency for this speed is to 

generally reduce the predicted motions at high frequencies, AIL < 2, and increase the 

predicted motions at AIL> 3. Except for configurations E and G, at lower frequencies 

the agreement is improved for pitch response. No configurations show an improvement 

in predicted heave motions on considering frequency dependency. Including frequency 

dependent added mass does not improve the predicted phase angles either, except for 

pitch phase of configuration F. In fact for AIL::; 3, for all configurations except F, the 

pitch phase agreement is worse and for AIL::; 4, the heave phase agreement is poorer. 

The generally poor agreement for phase angles just reflects the poor agreement in 

motion predictions. 

Surprisingly, given the poor agreement in motion responses and phase angles, the pre­

dicted accelerations are generally improved by considering frequency dependent added 

mass, except for configuration I. Configuration E, figure (A.74), shows marked im­

provement in prediction of bow accelerations over the whole frequency range, although 
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the CG accelerations are not so well predicted in the high frequency range. Configura­

tions F, figure (A.75), and I, figure(A.78), are more comparable in the low frequency 

range but well underpredicted in terms of magnitude and trend at wavelengths less 

than 3 craft lengths. Configuration K, figure(A.80), has improved acceleration predic­

tions on considering frequency dependency over the whole frequency range but the CG 

accelerations, whilst exhibiting the correct trend, are underpredicted. 

Vknots/ VLfeet - 6 

This speed to length ratio represents the fully planing regime, where hydrodynamic lift 

is the predominant physical effect and buoyancy forces are negligible in comparison. 

Configurations B (figures (A.24), (A.7I)), G (figures (A.29), (A.76)), J (figures (A.32), 

(A.79)) and M (figures (A.35), (A.82)) operate at this speed. More so than the lower 

speed to length ratios, the added mass exhibits more frequency independence. Indeed 

the results from the frequency independent approach at this speed are very good, with 

only the more heavily loaded configuration G underpredicting heave and pitch motions 

across the whole frequency range. Experimentally, configuration J demonstrates a 

second resonant peak which reflects the onset of the craft leaping from crest to crest. 

This second resonant peak is successfully picked up by the numerical model for the 

frequency independent approach. 

The predicted accelerations are generally comparable with experiment. Configuration 

B, figure (A.71), shows good agreement in CG accelerations at the high frequency and 

low frequency ends but fails to predict the peak CG acceleration at )..1 L = 3. The bow 

accelerations on the other hand seem to be fairly predicted. Configuration G, figure 

(A.29), has underpredicted heave and pitch responses. The predicted accelerations, 

figure (A.76), however show good agreement across the whole frequency range. Con­

figuration J shows poor agreement in CG accelerations except between 1.5 ~ )..1 L < 2, 

figureA.79. The bow accelerations however demonstrate extremely favourable com­

parisons with experiment. Predicted accelerations for configuration M, figure (A.82), 

are only comparable for high frequency CG accelerations, although a similar trend is 

evident at lower frequencies despite being of lower magnitude. 

The added mass and damping curves, figures (A.I50) and (A.I5I), demonstrate only 

some frequency dependence at the very long wavelengths and it is expected that in­

cluding frequency dependence will result in an under prediction of motions at high fre­

quencies and an over prediction at lower frequencies. This is correct for configurations 
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J and M and in all the configurations the heave and pitch response is under predicted 

at high frequency. Consequently, the lack of predicted lift force at high frequency leads 

to the failure to define the second resonant peak exhibited by configuration J. The 

predicted accelerations are generally poor except at longer wavelengths. 

Summary 
At this stage, it is clear that the frequency independent approach shows very favourable 

comparisons with experimentally determined results for heave and pitch. Generally 

for the frequency dependent approach, the predicted motions are too small at higher 

frequencies (VI VL 2: 4, AIL:::; 3 and too large at lower frequencies, AIL> 3 for 

VI VL 2: 4. Taking the asymptotic value for added mass at high frequency leads 

to better predictions of motions despite the fact that mathematically the asymptote 

has not yet been reached. Using the correct value of added mass at high frequency 

significantly reduces the predicted motions. There would appear, at high frequencies, 

to be some loss in the theoretical prediction of lift that is compensated by the over 

prediction of added mass. 

6.2.1.2 Effect of Second Order Perturbation Terms 

Chiu and Fujino (1989) removed all the terms O(vn
) n 2': 2 where v is any motion 

perturbation variable in the equations of motion. Zarnick (1978) considers all the 

second (and higher) order terms in the equations of motion. The difference between 

these methods can be seen in figure (A.107) and figures (A.108), (A.109). Figure 

(A.107) plots the absolute error in motion response for three speed to length ratios, 2, 

4 and 6, over the frequency range of AIL = 1 to 6 for the 10° deadrise models. The 

maximum error does not exceed 10%. At the lower speed, VIVL = 2, the error in 

neglecting higher order terms is not as significant as at the higher speed, VI VL = 6. 

This is expected due to the increase in non-linearity in the craft response with increasing 

speed, hence the neglect of non-linear terms will be more obvious. At the higher speeds, 

the maximum errors occur at the resonant frequencies (two in the case of configuration 

J), figures (A.108) and (A.109). This also is not unlikely since the accurate prediction 

in magnitude of these resonant peaks requires the inclusion of the non-linear effects. 

Despite these discrepancies, the error in neglecting second order and higher terms in 

the hydrodynamic coefficients is usually less than 10%. A consequence of this is that 
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the equations of motion maybe reduced to first order terms in motion perturbation 

variables and the individual behaviour of the hydrodynamic coefficients investigated. 

6.3 Parametric Investigation 

The theoretical model is justified in its use ultimately because of the overall agreement 

between the predicted and experimental vertical responses. One of the aims of the 

theoretical model was to allow a parametric investigation into the performance of a 

series of hard chine constant deadrise hulls by systematically changing and analysing 

the effect of individual parameters, Table 6.4. The results of this investigation are 

described in the following sections. 

Vknots I V L feet 

Parameter 2 4 6 

Deadrise V V V 
Trim V V 

Gyradius V 
Load V 

Waveheight V V V 
.j = Heave, Pitch, Accelerations (Bow and CG), Hydrodynamic Coefficients 

Table 6.4: Test Matrix for Parametric Investigation 

6.3.1 Linearity 

Configurations H, A and B are used to test the linearity of the system and represent 10° 

deadrise craft at VI VL 2, and 20° deadrise craft at VI VL = 4 and 6, respectively. 

Heave and Pitch Motions 
Figure(A.38) and figure(A.47) show the effect of waveheight on the heave and pitch 

motions for HIE = 0.111, 0.222,0.333 for VIVL = 2. The responses are clearly linear 

over the whole tested frequency range. 

With increasing speed VI VL = 4, the motions depart from their linear behaviour, 

figure(A.36). Figure(A.45) shows the motion responses to be linear only at the extreme 

ends of the encounter frequency spectrum and the non-linear behaviour lies in the region 
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2 < AIL::::: 3. In this region for a unit increase in waveheight, the motions increase as a 

fraction of unity so that the non-linear behaviour is damped with increasing waveheight. 

For VIVI = 6, the non linear motions, figure(A.37), which increase at a similar rate 

of increase with waveheight to that of VIVI = 4, are exhibited at AIL = 2 and 4, 

figure (A.46). The pitch response grows at a much lower rate of increasing waveheight 

at AIL = 2. 

Fridsma also applied a spectral analysis to the motion response in irregular seas. Since 

spectral techniques can only be applied with meaning to linear systems, the agreement 

between a RAO derived from a spectral analysis and the RAG for motions in regular 

seas will provide a measure of the system's linearity. The results can be seen in figure 

(A.48) and (A.49) for configurations H and I for operations in irregular seas of H 1/ 31 B = 
0.222 and To = 1.5 seconds, where the modal period is chosen so that the wave spectrum 

is bounded by similar frequency limits used in the regular sea analysis. Configuration 

H operates at V I VI = 2 and as such the reponses in waves would be expected to 

vary linearly with waveheight. In fact there is very good agreement with the predicted 

response in regular waves. Configuration I on the other hand is operating at twice 

the speed:length ratio as configuration H and the agreement between the response 

in regular waves and the linear decomposition of response in irregular waves would be 

expected to be different due to the increased non-linearity ofthe system. However, even 

at this speed, the comparison is still very good and demonstrates that the response of 

configuration I is apparently linear over the whole frequency range. Spectral analysis 

is covered in section 7.5.1. 

Accelerations 

Figures(A.39), (A.42), and figures(A.40), (A.43), and figures(A.41), (A.44), show the 

effect of waveheight on the accelerations experienced at the bow and centre of gravity. 

For VIVI = 2, figure (A.44) shows that increasing the waveheight tends to linearly 

increase the accelerations experienced at the CG and bow except in the very short 

wavelengths, AIL < 1.5. 

For the intermediate tested speed of V I VI = 4, figure (A.42) shows that the region of 

linear response of bow and CG accelerations with waveheight is reduced to AIL> 3. 

In very short wavelengths and in the highest waves, AIL::::: I, the maximum bow and 
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CG accelerations reduce in magnitude. 

At the highest speed VI VL = 6, the region of linear behaviour is further reduced to 

wavelengths equal to, and in excess of, six craft lengths. In the highest waves and in the 

shorter wavelengths there is a tendency for the accelerations to reduce in magnitude. 

Hydrodynamic Coefficients 
Figure A.110 and figure A.111 show the behaviour of the hydrodynamic coefficients 

with increasing waveheight for Vknotsl VLfeet = 4. The pure heave and pitch added mass 

and inertia coefficients increase with increasing waveheight over the whole frequency 

range. Also, increasing the encounter frequency increases the magnitude of m33 and 

m55 until a maximum value is reached at AIL = 2. From this point on these two 

coefficients reduce again in value with increasing encounter frequency, with attenuation 

in higher encountered waves. The cross-coupling coefficients reflect the same trends 

but in a reciprocal fashion; increasing waveheight reduces the coefficient magnitudes 

whilst increasing the frequency also reduces the magnitudes until AIL = 2 whereupon 

the coefficients start to increase again in value. For all frequencies there is strong linear 

behaviour with increasing waveheight, with the exception of the very high frequencies 

and waveheights for the pure heave coefficient, m33. 

The damping terms are affected by waveheight significantly at higher encounter fre­

quencies and for HI B > 0.222. In fact where the change in added mass and inertia 

terms were if anything attenuated in magnitude with increasing waveheight, the change 

in magnitude of the damping terms of n33, n35 and n55 are increased. The absolute 

magnitude of all the damping coefficients increase with increasing waveheight, except 

for the cross-coupling term of pitch induced heave, n35 where in very high waves and 

at high frequency, AIL:::; 2, the absolute value decreases. In terms of linearity with 

waveheight, all coefficients show this behaviour for low frequencies, AIL?: 3. 

Generally, the absolute magnitudes of the stiffness coefficients increase with waveheight 

for all encounter frequencies. However there is an exception in C35 for the very high 

encounter frequency of AIL = 1 and a waveheight of HI B = 0.222 where the abso­

lute stiffness reduces. The waveforcing terms reflect the same trends with increasing 

waveheight. 

Figure A.112 and figure A.113 shows the variation of the hydrodynamic coefficients 
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with increasing waveheight at the highest speed of Vknotsl JLfeet = 6. The trend in 

hydrodynamic coefficient values with waveheight are similar to the lower speed trends. 

However, there is a pronounced non-linear behaviour at AIL = 4 for all the coefficients, 

except for the wave-forcing coefficients, e3 and e5, which are linear for all frequencies. 

The added mass and inertia coefficients reflect an increase in the frequency range of 

non-linear behaviour, from the very high encounter frequencies of AIL = 1 to AIL = 

4. Furthermore, there is increasing non-linear behaviour with decreasing encounter 

frequency until the maximum non-linear behaviour at AIL = 4. After this point, at 

very long wavelengths, the trend becomes more linear. 

The damping coefficients of n33 and n53 show strong linear behaviour at all frequencies 

except for AIL = 4. The trend of pitch induced heave damping, n35, and pure pitch 

damping, n55, is non-linear and becomes increasingly more non-linear towards AIL = 4. 

The stiffness and wave-forcing terms shown in figure A.113 demonstrate strong linearity 

with increasing waveheight for all wavelengths except for AIL = 4. 

Summary 

Motions show marked non-linear behaviour with increasing waveheight except at the 

very high and very low encounter frequencies. CG and bow accelerations demonstrate 

linear behaviour with increasing waveheight for a frequency range that diminshes to­

wards the longer waves with increasing speed. For VI JL = 2, despite non linear 

accelerations at AIL < 1.5, the motions linearly increase with wave height over all 

wavelengths. For low wave heights HI B :::; 0.111, the motions could be described as 

generally linear with wave height. 

The hydrodynamic coefficients reflect the linear trends associated with increasing wave­

height, and the movement of this linear trend towards longer wavelengths as speed is 

increased. 

6.3.2 Effect of Speed and Deadrise 

Three speed to length ratios, vIJL = 2, 4 and 6 were tested for configurations with 

10°, 20° and 30° deadrise cross-sections at HI B = 0.111. 
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Heave and Pitch Motions 
For all deadrise configurations, the increase in speed not only increases the resonant 

motions but shifts the resonant response to longer wavelengths, AIL 2: 3, and reduces 

the frequency bandwidth for maximum motions, figures (A.50), (A.51), (A.52), and 

figures (A.54), (A.55), (A.56). The effect of increasing speed though is to reduce the 

motions at short wavelengths, except for the case of configuration J (which represents 

the highest speed and smallest deadrise angle). 

Phase angles show expected contouring behaviour at very long wavelengths, i.e. the 

motions at the CG show no phase lag1
. Phase lag increases with increase in wave 

frequency until wavelengths reach from 1.5 to 2 craft lengths. Phase lag then appears 

to remain constant or decrease with higher wave frequency. The size of the maximum 

lag increases with increasing craft speed. 

Accelerations 

Accelerations increase with increasing speed for all deadrise variants over the whole 

frequency range, figures (A.60), (A.61), (A.62) and figures (A.63), (A.64), (A.65). The 

effect of deadrise is to reduce the peak accelerations throughout the speed range. At 

longer wavelengths, AIL> 3.5 the accelerations tend to increase more linearly with 

speed for increasing deadrise angles. 

Hydrodynamic Coefficients 

Figures (A.95), (A.96) and (A.97), (A.98) and (A.99), (A.100) show the effect of in­

creasing deadrise on the hydrodynamic coefficients whilst (A.10l), (A.102) and (A.103), 

(A.104) and (A.105), (A.106) show the effect of increasing speed. Generally, the values 

of pure heave, m33, and pitch, m55 decrease with increasing speed. The absolute mag­

nitudes of the cross-coupling terms, m35 and m53, are equal and remain very similar 

in magnitude with increasing speed, although for the 10° deadrise configurations, the 

cross-coupling terms reduce to zero for AIL = 3. The effect of deadrise on these terms 

is negligible for Vknotsl VLfeet = 2. For Vknotsl VLfeet = 4, increasing deadrise reduces 

the added mass and inertia terms, whilst at Vknotsl VLfeet = 6, although the magnitudes 

are smaller to start with, the added mass and inertia terms increase with increasing 

deadrise. 

1 Pitch phase is plotted relative to waveheight and so is 900 out of phase with waveslope. Contouring 
condition therefore corresponds to 90 0 pitch phase lead 
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Increasing speed generally reduces the amount of damping in the system. This change 

becomes more obvious on increasing the deadrise angle. The n53 term which was most 

important in calm water stability remains the only positive term and on increasing 

speed this value tends to zero. At AIL = 3 for Vknotsl vfLfeet = 6, this term signifi­

cantly increases above the value at all other encounter frequencies, which is true for all 

increasing deadrise angles, although attenuated in magnitude. At this wavelength, the 

other damping terms become more negative. 

As the speed increases, the craft's absolute hydrodynamic stiffness reduces and so too 

the magnitude of the wave forcing terms. Increasing deadrise has a smaller opposite 

effect in that the absolute magnitudes of the stiffness and waveforcing terms increases. 

Summary 
The effect of speed on motions and accelerations is dramatic. With increasing speed 

the vertical dynamics increase and the motions and accelerations exhibit highly tuned 

responses over the input frequency range, which are reflected in the behaviour of the hy­

drodynamic coefficients, especially in the added mass and inertia cross-coupling terms 

(m35 and m53) and the heave induced pitch damping term (n53). These effects of 

increased speed are attenuated by increasing deadrise angle. 

6.3.3 Effect of Radius of Gyration 

Two new configurations were theoretically constructed in order to investigate the ef­

fect of increasing gyradius at Vknotsl vfLfeet = 4. Configuration Q was tested with a 

gyradius of 30% of the craft length whilst configuration R with a 20% gyradius. Both 

configurations have 30° deadrise and were compared to configuration K which has a 

gyradius of 25% of the craft length. 

Heave and Pitch Motions 

Figure (A. 53) shows that the heave and pitch responses and phase angles are barely 

affected by increasing the gyradius. However, for this deadrise angle and at this speed, 

the effect of increasing the gyradius is to increase the motions at longer wavelengths, 

AI L 2: 2.5 and reduce the motions in shorter waves, AIL < 2.5. Increasing the gyradius 

results in increased lag of the respective motions at the CG with respect to wave 

elevation across the whole frequency range. 
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Accelerations 
Following from the negligible impact on the heave and pitch responses and phase angles, 

the accelerations at the CG are only marginally affected, figure (A.69). The manner 

in which they are affected is the same with increasing gyradius in the sense that at 

A/ L 2': 2.5 the accelerations are slightly increased and in shorter waves, A/ L < 2.5, the 

accelerations are reduced. The bow accelerations are significantly more influenced by 

the increased gyradius and show identical trends as with the other vertical responses. 

The reduced bow accelerations at A/ L = 1 are about 0.5g's less with a 10% increase 

in gyradius. 

Hydrodynamic Coefficients 
Figures (A.87) and (A.88) show that the variation of the gyradius has a negligible effect 

on all the hydrodynamic coefficients except for pure pitch added mass coefficient, m55. 

However the slight variation in magnitude can be characterised. Increasing the gyradius 

increases the absolute magnitude of all the hydrodynamic coefficients at wavelengths 

6 > A/ L 2': 1.5. For the very high frequencies where A/ L < 1.5 the absolute magnitude 

decreases. Apart from the pure pitch added mass coefficient, m55, the only exception 

to this behaviour is with the pure pitch wave forcing term, e5, which always remains 

less than the absolute magnitude of coefficient values for smaller gyradii. 

Summary 

Increasing the gyradius for a 30° deadrise configuration increases the motions in longer 

waves, A/ L 2': 2.5, and reduces the motions in shorter waves, A/ L < 2.5. Increasing 

the gyradius also reduces the bow accelerations in the very short waves, A/ L ::; 1. 

The hydrodynamic coefficients also show limited variation on increased gyradius, except 

for the pure pitch added mass/inertia coefficient, m55. This is not suprising since a 

10% increase in gyradius will produce 100% increase in inertia. 

6.3.4 Performance at Vknots/ VLfeet - 2 

The effect of trim was analysed indirectly by investigating the effect of the movement 

of the LCG whilst keeping the gyradius the same. The tests were carried out in waves 

of H/ B = 0.111. 
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Effect of Deadrise 
Configurations H, C and L represent the 10°, 20° and 30° deadrise models respectively. 

The calculated calm water running trim for these configurations is 4.3°, 4.27° and 4.93° 

compared to 4.00° for the same position of LCG used in the experiments, approximately 

62% of the craft length aft of the stem. Gyradius is fixed at 25% of the craft length. 

To reduce the disagreement in calm water running trim between configuration Land 

the others, the LCG is moved forward to provide a revised running trim of 4.27°. 

For this speed and waveheight, the heave and pitch motions are unaffected by the 

increase in deadrise angle for this speed, figure (A.50), although Fridsma does report 

a slight increase in heave response at higher deadrise angles. Figure (A.60) shows that 

accelerations also remain independent of deadrise. 

The 100 deadrise hydrodynamic coefficients show strong frequency dependency for 1 < 
AI L < 3. Increasing the deadrise angle from 100 to 300 reduces the dependency of the 

magnitude of the hydrodynamic coefficients upon the frequency of oscillation. The pure 

heave and pitch added mass and inertia terms reduce in absolute magnitude. However, 

whilst the symmetric cross-coupling terms do increase in absolute magnitude from 100 

to 200
, there is little if no change in value by increasing the deadrise angle further from 

200 to 300
• The absolute magnitude of all the other hydrodynamic coefficients reduces 

fairly linearly (with the exception of the high frequency dependent region for the 10° 

deadrise configuration) with increasing deadrise angle. 

Effect of Trim 

Configurations C and D represent 200 deadrise craft operating with two distinct LCG 

positions of 62% and 67.5%, respectively, of the craft length aft of the stem. The 

numerical model predicts a calm water running trim of 4.270 for configuration C and 

8.100 for configuration D. This compares with Fridsma's calm water running trim of 

4.000 for configuration C and 6.000 for configuration D. Gyradius is 25% of the craft 

length for each configuration. 

Figure (A.57) and figures (A.25), (A.26) show that whilst Fridsma's experiments demon­

strate negligible difference in heave motions at resonance when increasing the calm 

water running trim angle, there is a predicted decrease in heave motions from the non­

linear frequency independent numerical model. The effect of increasing trim angle on 

resonant pitch response is better predicted, but has less effect than demonstrated by 
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Fridsma's experiments where there was an increase in the order of 20% at resonance. 

The pitch phase lag for the 8.10° craft is less than that for the 4.27° craft. 

Fridsma's experiments show that the maximum bow and CG accelerations, occuring 

between 1 < AIL::; 2, increase by around 40% (figures (A.72) and (A.73)). The 

frequency independent results for CG accelerations show little change with increase in 

trim but bow accelerations show a marked increase in magnitude, approximately 70%, 

with the 8.10° configuration. The accelerations are so poorly predicted however, that 

there is little benefit in extracting information relating to parametric variation. 

All the hydrodynamic coefficients show little frequency dependence at this speed and 

for this deadrise angle. Doubling the trim angle at this speed:length ratio reduces the 

absolute added mass and inertia terms by a value between 15% and 50%, which usually 

indicates an increase in motion response, as will become clearer in the later tests. The 

absolute value of the damping coefficients is reduced with the exception of pure heave 

damping, n33' The pitch induced heave damping, n53, was shown in operations m 

calm water to be the most influential coefficient in terms of vertical craft stability. A 

reduction in magnitude of this term, coupled with an increasingly negative pure heave 

damping term, n33, might explain any increase in vertical motions. Whilst this is true 

for pitch, the decrease in resonant motions for heave is still not clear. 

The stiffness term, C35 increases in absolute value by approximately 20% whilst the 

heave induced pitch stiffness is decreased by a similar amount. The wave forcing term, 

e3, is reduced approximately 20% and the wave moment increased by approximately 

40%, which also helps explain the increase in pitch motions. 

6.3.5 Performance at Vknots/VLfeet = 4 

Fridsma conducted most of his parametric studies at this speed to length ratio and 

found a function C).. that could collapse the motion data for varying load and length to 

beam ratios. Although the motion responses exhibit non-linearity around 2 < AIL::; 3, 

the very long and short wavelengths still have a linear relation to waveheight. 

Effect of Deadrise 

Configurations I, A and K refer to deadrise angles of 10°, 20° and 30° respectively. 
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They have calculated calm water running trims of 5.68°, 5.77° and 6.43° respectively 

compared to 4.00° used by Fridsma for the same LCG positions. In order to isolate 

the effect of changing the deadrise on the vertical dynamics, the position of the LCG 

for configuration K is moved approximately 4% of the craft length further forward. 

This produces a calm water running trim of 5.67° which is much closer to the other 

configuration's calm water trim values. 

The disagreement in theoretical calm water running trim given the same location for 

LCG used by Fridsma is a likely cause of discrepancy between the experimental and 

theoretical vertical responses; the theoretical values are around 30% higher. However, it 

is clear to see that by increasing deadrise the effect on the motions is just as insignificant 

at this higher speed as at VI JL = 2, figure (A.51). For AIL:; 2, the increasing 

deadrise sees the motions lag less. For AIL> 2 there is no change in motion phases. 

Increasing deadrise angle though does reduce the size of the accelerations, figure (A.61). 

Although accelerations are not as well predicted as the motions, the same trends seen 

experimentally are clear. For AIL> 2, the increase in deadrise has no effect on the 

magnitude of the CG accelerations. However, for AIL < 2, the CG accelerations 

are reduced dramatically by increasing the deadrise from 10° to 30° and by a similar 

amount experienced experimentally, approximately 50% for AIL = 1.5 and 1. 

Bow accelerations show similar patterns to the CG accelerations although the influence 

of change in deadrise becomes more important from AIL < 3. Bow accelerations are 

reduced by approximately 50% at AIL 1 by increasing the deadrise angle from 

10° to 30°. 

Figure (A.97) and (A.98) show the effect of changing the deadrise on the hydrodynamic 

coefficients. Varying the deadrise angle from 10° to 30° results in only a marginal 

change in the magnitude of the hydrodynamic coefficients, an absolute variation in 

magnitude of no more than 10%. However it is possible to observe that the largest 

variations in absolute magnitude occur when increasing the deadrise angle from 20° 

to 30°, with the exception of the pure heave added mass I inertia term, m33 and the 

symmetric cross-coupling terms, m35 and m53. 

Effect of Trim 
To test the effect of altering the position of the LCG and therefore the influence of 
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trim angle on vertical responses, the 20° deadrise configurations A and E were used. 

Configuration A has a LCG position of 59% and a calm water running trim of 5.77°. 

Configuration E has a LCG position of 65.5% and a calm water running trim of 7.05°. 

Otherwise they are identical. 

The effect of this 6.5% increase in LCG position is to increase the heave motions at 

resonance, 3 < AIL < 4, by approximately 20%, figure (A.58), and the pitch motions 

at resonance by approximately 40%. However, the phase angles for 3 < AIL < 4 

remain unchanged. For AIL < 3, the increased trim (i.e. increased distance of LCG 

from stem, configuration E) results in increased lag in motion responses compared to 

wave elevation. 

The accelerations are also affected by the increased movement of the LCG aft. As 

with Fridsma's findings, the increase in accelerations at the CG and at the bow, from 

AI L < 3, range from 50% to 100% by increasing the calm water running trim angle, 

figure (A.67). 

The added mass and inertia hydrodynamic coefficients show approximately a 15% 

decrease in magnitude on increasing the trim angle across the whole frequency range. 

However, this loss of lift is complimented by a decrease in hydrodynamic damping. 

The most significant reduction in damping comes from the n53 term where there is 

a 50% loss. There is also a 20% loss in damping from the other cross-coupling term 

and a 30% loss in pure pitch damping. The damping in pure heave is reduced by only 

4%. Furthermore, the hydrodynamic stiffness is also reduced and significantly so in 

respect to the heave induced pitch term, C53; approximately 50% for all wavelengths. 

Waveforcing terms are also reduced; 33% reduction for e3 and 40% for e5. However the 

waveforcing terms are typically small in magnitude constituting only about 5% of the 

total lift. 

Effect of Load 
Configurations E and F represent the two different loadings of C t::,. = 0.608 and C t::,. = 
0.912 respectively. Otherwise they are identical. 

The effect of increasing the load, is to reduce the heave motions at resonance by 

approximately 20% and pitch motions by 25%, figure (A.59), which is 5% less in each 

case than Fridsma's findings. Maximum phase lag is increased for the heavier load, 
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configuration F. 

Accelerations are slightly reduced with increased load. The frequency independent 

results predict that whilst the bow accelerations remain very much unchanged over the 

whole frequency range, the CG accelerations are reduced by 30% at AIL = 1 for the 

higher load, figure (A.68). 

Figure (A.89) and (A.90) shows the effect of load on the hydrodynamic coefficients 

for Vknotsl JIfeet = 4. The effect of increasing the load is seen in the fairly constant 

increase in added mass and inertia coefficients across the whole frequency range. The 

cross-coupling terms are only increased by around 8% in magnitude, whilst the pure 

heave and pitch terms are increased by about 30% at all wavelengths. 

The hydrodynamic damping terms all become more negative on increased load except 

for n53 which becomes more positive. Increasing the load also increases the absolute 

size of the restoring force and wave-forcing terms. 

6.3.6 Performance at Vknots/ VLfeet = 6 

At this speed the craft motions are extremely non-linear with increasing waveheight. 

Because the momentum of the craft at very high speed allows a platforming condition 

at higher encounter frequencies, the motion response is actually less than for lower 

speeds. At resonant frequency, the motion and acceleration responses show highly 

tuned behaviour and little damping exists. For low deadrise craft, the magnitude of 

the accelerations prohibit practical use. 

Effect of Deadrise 
Configurations J, Band M represent craft of 10°, 20° and 30° deadrise respectively 

operating at this speed to length ratio in waveheights equal to 0.111 beams. Their 

calculated calm water running trim angles are 4.35°, 4.19° and 4.27° respectively com­

pared to 4.00° used by Fridsma for the same LCG positions. 

Figures (A. 52) show the effect of deadrise on the motions. Increasing the deadrise 

makes a dramatic reduction in the craft's resonant response at around AIL = 4. An 

increase in deadrise from 10° to 30° sees a predicted 35% decrease in heave motions 

and 48% decrease in pitch motions at resonance, compared with respective 25% and 
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50% decreases seen experimentally. 

As with all the other tested configurations, the peak accelerations at the bow and CG, 

occurring at AIL = 3, do not coincide with the peak motion responses, occurring at 

AI L = 4. CG accelerations are reduced by approximately 75% over the whole frequency 

range by increasing the deadrise from 10° to 30°, figure (A. 62). The peak acceleration 

exhibited by the 10° deadrise craft is removed almost entirely by increasing the deadrise 

to 30°. The same is true for the bow accelerations; the peak acceleration is significantly 

reduced to a level comparable with the rest of the frequency range, which in general is 

about 75% less than the bow accelerations experienced by the 10° deadrise craft. 

Figures (A.99) and (A.lOO) show the effect of increasing deadrise upon the hydrody­

namic coeffcients. The frequency dependence of the coefficients is evident at this high 

speed:length ratio and highly tuned for AIL = 3. The magnitude of the peak variation 

is attenuated by increasing the deadrise angle. 

The cross-coupling terms of the added mass and inertia coefficients approach zero for 

small deadrise angles and at AIL = 3, whilst the pure heave and pitch terms rapidly 

increase in value at this wavelength. The change in the value of these terms is most 

obvious by increasing the deadrise angle from 10° to 20°. Further increase in deadrise 

only attenuates the peak magnitudes. 

Increasing the deadrise angle from 10° to 20° also has a dramatic effect upon the damp­

ing coefficients of pitch induced heave, n35 and pure pitch, n55, with approximately a 

15% increase absolute magnitude. With increasing deadrise thereafter, there is lit­

tle variation. Pure heave damping varies little in magnitude despite the variation of 

deadrise, approximately only 5%. There is little variation of the heave induced pitch 

damping, n53, except for a large increase (approximately 50%) for AIL = 3. 

The stiffness terms reduce in absolute magnitude with increasing deadrise, with obvious 

changes in C53 at AIL = 3 for the 10° deadrise configuration. Vertical wave force and 

wave induced moment increase in absolute magnitude with increasing deadrise angle. 
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6.4 Conclusions 

The non-linear theoretical model, NoLiPCraMP , has been employed in order to analyse 

the effects of parametric changes upon the vertical dynamics of various hard-chine 

constant deadrise planing craft. The confidence in this model's ability to accurately 

quantify the vertical dynamic effects has been achieved by comparison with the previous 

experimental work of Fridsma (1969) and theoretical results of Chiu and Fujino (1989), 

Zarnick (1978) and Troesch (1992). 

The effect of frequency dependent added mass and damping coefficients upon the pre­

dicted vertical responses of the various craft configurations was investigated. It is 

concluded that in the areas of high curvature of the added mass and damping versus 

frequency curves, better predictions of vertical responses is achieved by considering the 

frequency dependency of the added mass and damping. 

At very high wave encounter frequencies, at speeds higher than V I Vi = 6 andlor 

in very short wavelengths (AIL « I), the frequency independent and dependent ap­

proaches would be expected to predict the same vertical responses. The rounding 

of the extracted polynomial coefficients (employed in the NoLiPCraMP algorithm for 

evaluating added mass and damping coefficents at a prescribed draft and oscillation 

frequency) cause an underprediction of the added mass and damping at the very small 

drafts, typically found near the bow regions. A consequence of this is an inaccuracy in 

the trimming moment due to loss of predicted lift at the forward end of the craft and 

therefore a discrepancy between the two approaches despite the theoretical equivalence 

in hydrodynamic coefficients for high encounter frequency. This could be remedied by 

having separate polynomial fits to model added mass and damping at very low drafts. 

Linearising the equations of motion by neglecting second and higher order effects, as 

in the case of Chiu and Fujjino (1989) and Chou et al (1991), has a small effect on 

the predicted vertical responses, with larger errors occuring at high speeds and larger 

encounter frequencies (VI Vi 2: 6, AI L ~ 1.5). This allows the investigation into 

dynamic effects by consideration of the hydrodynamic coefficients. 

A parametric investigation was carried out that fulfilled the test matrix of table 6.4. 

The investigation was centred around the speed:length ratio of V I Vi = 4 (which 

corresponds to a Froude number of 1.2) and is a typical operational planing speed for 
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which a large proportion of data exists (eg. Fridsma (1969)). 

For all speed:length ratios, the effect of increasing deadrise angle is to reduce the accel­

erations significantly at the bow and CG, especially in high frequency waves (A/ L < 3). 

The amount of difference increasing deadrise angle makes is more profound the higher 

the speed:length ratio becomes. Although there are significant benefits upon reduced 

accelerations with increasing deadrise angle, the effect on motions only becomes more 

obvious for V/ VI > 4, whereupon the resonant motions decrease by around 30% for 

heave and 50% for pitch. For V/ VI :::; 4, pitch and heave motions increase slightly 

with increasing deadrise. 

The effect of increasing calm water running trim by about 20% is to increase the 

resonant motions by approximately 35%. The CG accelerations increase from 10% at 

A/ L = 4 to 20% at A/ L = 1. Bow accelerations follow a similar trend. The increase of 

all these quantities is exacerbated by increasing speed. 

Increasing speed from V/ VI = 2 to 6 increases motion and acceleration responses and 

shifts the maximum motion response to waves of two to four times the craft length. 

Increasing load by about one half again reduces the heave and pitch motions at res­

onance by about 20% and reduces the accelerations experienced at the CG and bow, 

most significantly (between 20% to 40%) in higher frequency waves (A/ L < 4). 

Increasing gyradius was found to slightly increase the motions and accelerations from 

A/ L 2': 2.5 and reduce the motions and accelerations in waves of length A/ L < 2.5. 

The accelerations seem to correlate strongly with the behaviour of the hydrodynamic 

coefficients. Peak accelerations or increase in rate of change of acceleration with fre­

quency occur where the hydrodynamic coeffcients experience well defined minima or 

maxima. Furthermore, the variation in magnitude of the maxima or minima of pure 

heave added mass/inertia, m33, and pure pitch added mass/inertia, m55, compare with 

the percentage change in magnitude of the resonant heave and pitch motions respec­

tively. Usually these quantities are the largest of the hydrodynamic coefficients, given 

that they contain the craft mass and inertia. 

The behaviour of the pure added mass and inertia terms for V / VI 2': 4 is opposite 

to the symmetric cross-coupling terms, whilst the absolute values of all the damping 
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terms follow the same trend as the pure added mass and inertia terms. On changing 

a parameter's value, the subsequent increase in pure added mass/inertia coefficients, 

m33 and m55, corresponds to a decrease in resonant heave and pitch response, and 

conversely there is an increase in resonant motion response on a decrease in pure heave 

and pitch added mass/inertia coefficients. The relation between the respective increase 

in added mass/inertia terms with a decrease in resonant response does not preclude 

the importance of the damping and stiffness behaviour, but is mentioned in favour of 

those other terms behaviour because of the usually comparable percentage change of 

added mass/inertia with the change in resonant response. 



Chapter 7 

Irregular Seas 

The sea-keeping performance of a planing craft in regular waves has been examined. 

However, to expect a vessel to operate in a wave environment that is purely regular 

is unreasonable. Unfortunately, the prediction of craft motions in an irregular sea is 

complicated by the randomness of the input forcing function. Therefore, to predict 

vessel motions, an irregular or confused sea needs to be rationalised. The method by 

which this rationalisation can be achieved is through the use of statistical analysis. 

Typical parameters used in the statistical analysis of any irregular time history are 

quantities such as mean wave amplitude, mean wave height, mean period between 

peak values, mean zero crossing period, variance of wave elevation about the mean, 

standard deviation about the mean and so forth. 

For the purpose of investigating solely vertical motions, only long crested irregular head 

seas will be considered, i.e. those that are one-dimensional (frequency dependent) and 

have direction opposite to that of the craft forward motion. There are problems asso­

ciated with the Doppler Shift, or encounter frequency, for example a vessel travelling 

in following seas may be travelling faster than the wave group velocity so that, to an 

observer on the vessel, the sea appears to be a head sea. Restricting to head seas, these 

problems are avoided. 

77 
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7.1 Fourier Series 

The construction or decomposition of an irregular sea surface can be brought about by 

the principle of superposition. If a sea surface can be treated as an addition of waves 

of varying frequency, amplitude and phase then an irregular sea can be represented by 

a Fourier series, 

00 

((t) = LAn cos(wnt) En sin(wnt) (7.1) 
n=l 

where, 

21fn 
Wn =--

TH 
(7.2) 

(7.3) 

(7.4) 

Equation (7.1) may be written as, 

00 

((t) L (nO cos(wnt + En) (7.5) 
n=l 

where the coefficients are, 

(7.6) 

and the phase angles are given by, 

(7.7) 

7.2 Wave Energy Spectrum 

Another fundamental concept behind irregular sea analysis is in relation to the amount 

of energy stored in the wave system. If one was to take a unit area of the sea surface, 

one could define in that area the proportion of energy contributed by a frequency band 
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from a total frequency range. The wave energy spectrum is then defined so that the 

area bounded by the frequency range wand w + bw, the hatched area of figure (A.114), 

is proportional to the total energy of all the wave components within that range of 

frequencies. 

Summing all the areas from w = 0 to w 

energy contained in that unit area of sea, 

00 provides a total proportional to the 

area under spectrum = 100 

S(w)dw (7.8) 

In this manner the relative importance of the component sine waves that make up an 

irregular sea can be quantified. The wave energy spectrum therefore provides frequen­

cies required for the Fourier series and the corresponding amplitudes from the wave 

energy spectral ordinates. 

The wave energy spectrum can also provide details such as the variance and standard 

deviation of the surface elevation from the mean and a spectral width parameter, c, 

which describes the general spread of component frequencies. If c = 0 then the spread 

of frequencies is narrow and the distribution of maxima and minima about the mean 

is Rayleighian, with few positive minima and few negative maxima. On the other 

hand, if c = 1, then the wave energy spectrum is termed as being broad banded with 

more negative maxima and positive minima due to the increased number of frequency 

components. If a spectrum is broad banded then the distribution of maxima and 

minima about the mean is Gaussian. 

The variance is described as being equal to the area enclosed by the wave energy 

spectrum, and as such is the zeroth moment of area of the wave energy spectrum, 

termed mo, i.e., 

mo = 100 

S(w) dw (7.9) 

Cartwright and Longuet-Higgins show that the significant waveheight, H 1/ 3 , is equal 

to 4 times the standard deviation for a Rayleighian distribution of wave amplitudes, 

1.e. , 

(7.10) 
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or for E > 0, 

~ 
HI/3 = 4vmoy 1- 2 (7.11) 

In more general terms the nth moment of the wave energy spectrum about w = ° can 

be written as, 

(7.12) 

7.2.1 Choice of Wave Spectra 

By a suitable choice of spectrum, S (w), a specific sea state can be created from which 

the distribution of maxima (or minima), (max(min), should follow a random probability 

density distribution if it is truly representative of the sea surface. Depending upon 

the spectral width parameter, E, and the non-dimensional maxima (or minima) of 

(max(min), the statistics associated with the probability distribution are known to be 

represented by the limits of a Gaussian (broad-banded, E = 1) or Rayleighian (narrow-

banded, E 0) distribution. Various spectra have been developed, each with their 

own characteristics and a brief outline of some are given in the subsections below, 

for example, Pierson-Moskowitz (1964), ITTC (1978), Bretschneider (1952, 1957) and 

JONSWAP (Hasselman, 1973 and Ewing, 1975). 

7.2.1.1 Pierson- Moskowitz Spectrum 

Pierson and Moskowitz (1964) selected certain measured spectra based upon a large 

amount of oceanographic records and then grouped those spectra into a family of five 

wind speeds. From this spectral family, an idealised sea spectra representing fully 

developed seas was formed with no frequency elements associated with swell generated 

from far off sources. 

This method loses its applicability in ship design since it is based on a single parameter 

of wind strength and fully developed seas created by very high winds are known to be 

rare (Lewis 1988) as duration and fetch are insufficient for spectral stability. 
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7.2.1.2 Bretschneider Spectrum 

The Bretschneider (1952), (1957) spectrum is based on two parameters which allow 

significant wave period and waveheight to be assigned separately. These two parameters 

can be directly related to the extensive data available on observed waveheights and 

periods. 

The Bretschneider spectral form is assumed to adequately represent any seaway but 

in reality multi-modal spectra are commonly found. Also, swell from distant storms 

is found in measured data, the components of which are limited in high frequency 

since those components take longer to arrive at the observation point. The Bretschnei­

der spectra however have very well defined high frequency limits so that there is a 

significant contribution to the total energy within the system supplied by high fre­

quency components. This could lead to ship high frequency responses greater than 

that which would physically occur (St Denis 1980). If the deviations in form between 

the Bretschneider and measured spectra are collectively small, then the Bretschneider 

spectra can lead to a good measure of ship performance. 

7.2.1.3 Ochi 6-Parameter Spectrum 

In an attempt to improve the Bretschneider spectra in its basic form, Ochi and Hub­

ble (1976) introduced a shape parameter, ). (which when equal to 1.0 produced the 

Bretschneider form). The uni-modal spectrum thus formed had three parameters based 

upon frequency, waveheight and),. Adding this spectrum to another which covered 

higher frequency components led to a 6-parameter multi-modal spectrum which could 

have much better agreement with real sea spectra depending on the assignment of 

values to the parameters. 

7.2.1.4 JONSWAP 

The limited fetch conditions found in areas such as the North Sea led to the need for a 

better representation of sea states currently offered by other spectra. The Joint North 

Sea Wave Project was set up to provide extensive oceanographic measurements in the 

attempt to meet this need. The subsequent spectral fit found that the sort of spectrum 
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created is simply of a Bretschneider form. 

7.2.1.5 ITTC Spectrum 

The 15th International Towing Tank Conference recommended the use of a form of the 

Bretschneider spectrum for average rather than fully-developed seas since this allowed 

for a more realistic representation of the sea surface when more specifically appropriate 

spectral forms are unknown. 

7.3 Theoretical Treatment 

The choice of wave spectrum used is at this stage based upon one which whilst simple 

to employ in a computer algorithm is also a justifiable representation of a sea surface. 

The Pierson-Moskowitz spectrum is not considered because of its over simplicity, being 

based on one parameter and its applicability to only fully-developed seas with very high 

wind strengths. The JONSWAP spectrum is probably the most realistic environment 

for high speed planing since it is unlikely that that sort of craft will find use in trans­

oceanic journeys; planing craft operations are usually restricted to areas with limited 

fetch. Since the JONSWAP spectrum is based upon the Bretschneider form, it is the 

Bretschneider form that will be used or more specifically, the ITTC form; it allows a 

more generalised, yet still a realistic approach, to sea surface representation. 

The ITTC spectrum can be represented by the spectral energy density function S (w ), 

A 
S(w) - -5 exp(-B/w4

) 
w 

(7.13) 

This is the basic Bretschneider spectrum but with, 

487 H{/3 1949 mo 
A = 4' B - -4-' To = 21f-, H I / 3 = 4vmo 

To To mI 
(7.14) 

Usual practice is to construct the spectrum S (w) and then divide into strips of equal 

frequency intervals, ow. Taking the centre ordinate of each strip defines the average 

frequency component for that interval and a corresponding average energy value Sn (w). 

The average component wave amplitude for that interval, (n, is then, 

(7.15) 
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Taking the centre ordinate was subsequently found to be erroneous (Faltinsen 1990) 

in producing realistic sea states. Faltinsen described an alternative method by picking 

random centre frequencies but Payne (1995) suggests this method does not fulfil the 

randomness criteria described by Cartwright and Longuet-Higgins (1956) either. 

Payne (1995) describes Pierson's (1961) approach for defining the random frequencies 

as those which form the boundaries to n equal energy strips, figure (A.lI5). Since 

mOn is equal for all n, then the component amplitudes must necessarily be equal. 

Payne proposed that this method means that a constructed sea meets the necessary 

randomness criteria proposed by Cartwright and Longuet-Higgins (1956). 

A separate module has been incorporated into the program that allows for an irregular 

sea surface to be constructed from an ITTC wave energy density spectrum. The 

spectrum is defined by significant waveheight, H 1/ 3 , and modal period, To. Table 7.1 

characterises typical most probable modal periods found in the eastern Atlantic (Sea 

Area 9) for various significant waveheights. By appropriate scaling, corresponding 

model values for H1/ 3 and To can be derived. 

H 1/ 3 To 
(m) (secs) 

2 11.00 
4 13.00 
6 13.90 
8 14.20 
10 14.30 
12 14.45 

Table 7.1: Significant Waveheight vs Modal Period 
Sea Area 9; All Seasons; All Directions (Hogben, Dacunha and Olliver(1986)) 

The NoLiPCraMP program models the craft response to an irregular sea in two distinct 

ways. Firstly, the frequency dependent approach is complex to apply because of the 

multiple frequency components present in the encountered irregular sea. The sectional 

added mass and damping are therefore evaluated for only one frequency component, 

the modal encounter frequency from the modal wave period, To. The second approach 

assumes that regardless at which frequency a sectional strip may be oscillating, the 

added mass and damping are assumed to be equivalent to their asymptotic values, i.e. 

the sectional added mass and damping are evaluated at infinite encounter frequency. 

The difference between these two approaches is obvious, but the consequence of each 



CHAPTER 7. IRREGULAR SEAS 84 

approach on the motions is not. For the frequency independent approach, the damping 

coefficient approaches zero and the only motion damping terms which exist are from 

the added mass terms, the added mass coefficients themselves being finite and con­

stant. The 'frequency dependent' approach assumes that for a finite significant wave 

amplitude, the modal frequency will always be finite and the damping coefficient will 

invariably be greater than zero. More damping terms exist as a result but their effect 

on the motion predictions are countered by the change in the added mass terms. 

7.4 Results Analysis 

For linear systems, spectral analysis can be used. The product of the square of the 

craft response in regular waves with the irregular wave energy spectrum provides a 

irregular sea response spectrum. This technique is the primary method for describing 

craft motion behaviour and is the basis for comparing one configuration with another. 

For non-linear systems though, this method cannot be readily applied since the mo­

tions are no longer linearly related to waveheight. Instead, what is required are the 

statistical properties of the craft response which can then allow direct comparison 

between different configurations. For example, an irregular sea surface time history, 

assumed to be derived from a narrow banded wave energy spectrum, can have its wave 

elevations described by a zero mean Gaussian distribution and its wave amplitudes 

by a Rayleighian distribution. By knowing the standard deviation, both distributions 

are uniquely defined by mathematical expressions. Differences between sea states can 

therefore be made on the basis of their average or significant waveheights. 

7.4.1 Wave and Motion Amplitude Distributions 

It is commonly assumed that wave amplitudes measured from an irregular time history 

follow a Rayleighian distribution whilst the wave elevation is distributed normally 

(Gaussian). However, the broadness of the frequency spectra, [max, is rarely equal 

to the limiting values of one or zero and so the distributions can more generally be 

cast as generalised Rayleigh distributions which account for broadness in the frequency 

spectra. The generalised Rayleigh distribution used by Fridsma (1971) follows from 
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Rice (1945) from whence it was derived in connection with determining the distribution 

of maxima, (max, arising from a broad frequency spectrum and is given as, 

1 100 

x
2 

Q(Z, cmax) =!CL. exp (--) dx 
V 27r Z/cmax 2 

z~ 
Z2 j <max +V1 - c~ax exp( --) exp( 
2 -00 

where, 

Z = (max - (max 

Jmos 

x 2 

-)dx 
2 

(7.16) 

(7.17) 

and the mean, (max of the maxima (max, and Jmos' or standard deviation, is known. 

Note that when Cmax ----+ 0 then, 

Q(Z,O) = { 1 Z2) 
Zexp(-2 

Z<O 

Z2:0 
(7.18) 

which is equal to the Rayleigh distribution. If Cmax is small but larger than zero, then 

the distribution can be described as a distorted Rayleigh distribution. 

When Cmax ----+ 1 then, 

1 100 

x
2 

Q(Z, 1) =!CL. exp (--) dx 
V 27r Z 2 

(7.19) 

which is equal to the Gaussian distribution. The value Cmax can be evaluated from the 

proportion, r, of negative maxima to total maxima in the time history, 

C~ax = 1 - (1 - 2r)2 (7.20) 

The smaller the value of r, the less broad is the probability distibution which is indica­

tive of fewer frequency components within the measured signal. The above equations 

are identical for the distribution of minima with the subscript min replacing max. 

All motion time histories will be described theoretically as having their maxima and 

minima distributed in a generalised Rayleigh fashion, whether the time histories are 

experimental or theoretical in origin. Actual experimental or theoretical maxima and 

minima occurring within the time histories are sorted in ascending order of magnitude 

and grouped in 15 equal intervals or classes. Within each class, the frequency of a max­

ima or minima occurrence is noted and the probability distribution and the cumulative 

probability distribution, Q( Z, cmax/min), formed. From these measured distributions, 

the theoretical fit to generalised Rayleigh distributions can be compared. 
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7.4.2 Accelerations 

Following from Fridsma (1971) and Zarnick (1979), the distribution of impact acceler­

ations (negative minima) can be assumed to follow an exponential distribution. The 

probability distribution function, f(TJ), is, 

1 -TJ 
f(TJ) = = exp( -=-) 

TJ TJ 

where fj = average peak acceleration 

(7.21 ) 

Therefore the corresponding cumulative distribution function, Q( TJ) = Jooo 
f( TJ) dTJ, is, 

(7.22) 

As with the wave and motion amplitude data, the negative(impact) peak accelera­

tion data is sorted and classed in ascending order, from which the experimentally or 

theoretically measured distributions are formed. The correlation with an exponential 

distribution can then be found by applying equation (7.22). 

7.5 Theoretical Results 

7.5.1 Spectral Analysis 

The theoretical generated wave elevations at the craft CG were fast Fourier transformed 

in order to check that the input waveform contained the correct frequency components 

and that no aliasing was occurring through too Iowa sampling rate. A typical wave 

energy spectra is given in figure (A.116) with 10 component frequency values, calcu­

lated through equal energy divisions. The FFT results are plotted on the same graph 

and demonstrate that the frequency components are being correctly identified within 

the program. The individual peaks from the FFT are well defined and the overall 

magnitudes are relatively equal. With more samples, i.e. a smaller integration interval 

or larger run time, the definition improves and the peak magnitudes reach very sim­

ilar values, close to the individual input component amplitudes. This is as expected 

since the basis of equal energy division of the wave energy spectrum should produce 

component waves of equal amplitude. 
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The motion response spectra in the frequency domain were formed from FFTs of the 

individual motion time histories, which were then normalised by the RMS or standard 

deviation of the respective time series. Since the encountered wave spectrum is known, 

the derivation of the motion transfer functions can be obtained by the square root of 

the ordinates of the motion response spectra divided by the equivalent ordinate of the 

wave encounter spectra. In this manner, transfer functions for craft behaviour which 

is considered generally linear (Vkt!.JL!t ~ 4) can be constructed from irregular sea 

motion histories. Two examples of spectral analysis applied to speed:length ratios less 

than 4 are given in figure (A.48) and figure (A.49) and discussed in section 6.3.1. 

7.5.2 Statistical Analysis 

As described in section 7.4.1, the maxima and minima of all motions and accelera­

tions were stored, sorted and classed and the probability and cumulative probability 

distributions calculated along with the mean maxima or minima values and RMS of 

maxima or minima values. The cumulative probability distribution was then plotted 

against motion class values, normalised by removing the offset (mean) and dividing by 

the standard deviation, equation (7.17). 

7.5.2.1 Frequency Independent Hydrodynamic Coefficients 

NoLiPCraMP was run with frequency independent hydrodynamic coefficients for con­

figuration J in a sea state of H 1/ 3 / B = 0.222. The cumulative probability distribution 

of heave maxima from the heave motion response is plotted in figure (A.1I8). The 

line graph plotted on the same axes is a generalised Rayleigh distribution based on the 

frequency broadness, Cmax, and the mean value of all the heave maxima (CG down). 

The length of the simulation is 50 seconds with an integration interval of 0.01 seconds 

which corresponds to 5000 samples. The comparison between the measured and theo­

retical distributions is very fair, but with the exception that the probability of higher 

heave magnitudes are over predicted by the theoretical distribution. 

Figure (A.120) shows the comparison of the measured cumulative distribution of pitch 

maxima (bow up) against the theoretically assumed distribution. Once again, the 

agreement is good but as with the heave maxima, the probability of higher pitch 
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values is overpredicted by the theoretical distribution. 

Figure (A.122) to figure (A.123) show the agreement between the cumulative probabil­

ity distribution of the measured accelerations and the exponential distribution. Once 

again, agreement is fair but the higher peak accelerations are overpredicted by the 

exponential distribution, figure (A.124) and figure (A.125). 

It is likely that the higher peak values, whose probability of occurrence is obviously low, 

may be picked up by a longer run time, increasing the chance of higher peak values 

occurring, thereby providing better correlation between measured and theoretically 

determined probabilities. 

7.5.2.2 Frequency Dependent Hydrodynamic Coefficients 

The modal encounter frequency was used to approximate the effect of the observed 

frequency content on the hydrodynamic coefficients. The consequence of this approach 

on the applicability of various theoretical probability distributions to describe motion 

responses is demonstrated by figure (A.119) for the distribution of heave maxima, 

figure (A.121) for pitch maxima distribution. This is in direct comparison with the 

frequency independent approach with identical craft configuration J operating in the 

same environment 

The correlation between measured and theoretical distributions remain fair for all the 

distributions of motion maxima and minima, albeit with more scatter of the measured 

probabilities about the theoretically predicted probabilities. However the agreement 

between the predicted and measured probability distributions for the accelerations is 

greatly improved compared with the frequency independent approach, figures (A.126) 

and (A.127) compared with figures (A.124) and (A.125), for frequency dependency. 

7.5.2.3 Effect of Significant Waveheight 

The effect of waveheight has already been shown in the results of the regular wave tests 

to be considerable at higher planing speeds, Vkt! vr;; > 4. Looking at the significant 

l/lOth highest heave and pitch motions for a Vkt! jLj; - 6 with significant waveheight, 

H 1/ 3 / B = 0.222, 0.444, 0.666, figures (A.128) and (A.129), the expected trend is born 
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out. Likewise, the accelerations at the bow and CG increase with increasing waveheight, 

figure (A.130). 

Although it has already been shown that the extraction of information from regular sea 

results can be erroneous, the natural frequency of the craft, or A/ L, varies little with 

waveheight. From the results for regular seas, it is apparent that the peak motions for 

high speed planing occur from wavelengths around 3 to 4 boat lengths. A cause of the 

increased motions with waveheight can therefore be attributed to the shape of the wave 

energy spectra. As waveheight increases, the modal frequency reduces providing more 

energy to excite the craft nearer the craft's own natural frequency, figure (A.134). 

7.5.2.4 Effect of Deadrise 

Also shown in figures (A.128), (A.129) and (A.130), is the effect of deadrise on the 

vertical motions and accelerations for the same speed to length ratio, where deadrise, 

/3, takes the values of 10°, 20° and 30°. It is immediately obvious that the heave 

and pitch motions are reduced significantly when the deadrise angle is greater than 

10°. However, increasing the deadrise from 20° to 30° does not improve the motion 

response much more until H I / 3 / B is greater than 0.444. In higher sea states, the 30° 

deadrise configuration exhibits less motion. 

The effect of increasing deadrise on craft accelerations is very pronounced. The bow 

accelerations almost seem to follow a linear trend with increasing deadrise angle, so that 

tripling the deadrise angle reduces the bow accelerations by two-thirds at Vkt/ vr;;, 
6. The accelerations at the CG are less effected, only reducing by 50% for the same 

increase in deadrise. 

7.5.2.5 Effect of Speed 

Speed is a prime factor dictating planing craft performance in rough water. Three speed 

to length ratios are tested, Vkt/ vr;;, = 2, 4 and 6. These relate to three distinct 

dynamic environments. For Vkt! vr;;, = 2, the planing hull behaves much like a 

displacement craft where the buoyancy forces dominate over the hydrodynamic lift. 

The mean heave and pitch motions are equivalent to their steady state running values 
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in calm water, which tends to suggest that the effect of the encountered waves on the 

vertical motions is purely to deflect the craft from its calm water attitude with no 

secondary (non-linear) dynamic effects; the craft almost contouring the waves, except 

at very high wave frequency (A/ L < 2). If the craft is fully contouring the waves, the 

distribution of motion maxima and minima would be expected to follow a Rayleighian 

distribution equivalent in broadness to the Rayleigh distribution representing wave 

amplitude, with r values close for each distribution. In fact, the r values for heave 

and pitch maxima and minima are zero, implying that whilst the wave amplitude 

distributions are 'broad' in nature, the craft response is not and that the inertia present 

in the response does not allow the craft to fully contour the waves. 

The peak accelerations at the bow and CG are lowest at this speed as would be expected 

from the low pitch and heave excursions as the craft is almost contouring the waves. 

At Vkt! .,fLit = 4, the craft is considered to be past the hump associated with maximum 

resistance and is now considered to be almost fully planing, with its rise in the height of 

CG in calm water approaching a maximum. There is still some significant hydrostatic 

force, but the predominant lift is hydrodynamic in origin. From figure (A.132) the 

l/lOth significant heave motions (i.e the difference between maxima and minima) have 

increased as would be expected since the craft is likely to impact into the infrequent 

large waves without necessarily riding over them. As a result the sudden increase in 

hydrostatic force produces a large increase in the total lift acting on the craft. For 

this particular 10° configuration, though, the significant l/lOth highest pitch motion 

actually reduces which does seem to be rather unusual given the increase in expected 

heave motion. 

With the greater likelihood of impact, the average peak bow and CG accelerations have 

increased dramatically. 

At Vkt!.,fLit = 6, the craft's CG in calm water would have reached its maximum 

position and the running trim will have dropped back to an optimum level. Efficient 

planing is now the key, with the aspect ratio of beam to wetted length increasing 

to a maximum. The craft's significant l/lOth highest heave motion is not greatly 

increased beyond the condition at Vkt!.,fLit = 4, figure (A.132). However the l/lOth 

highest pitch motion is nearer what would be expected as the craft leaps from wave 

crest to wave crest, suffering the effects of impact into the less frequent larger waves. 
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Accordingly, the average peak accelerations increase again as a direct consequence of 

the violent motions experienced. 

Ultimately, the effect of speed is to increase the 1/10th highest motions above those 

motions experienced at low speeds with a corresponding increase in average peak accel­

erations. What is interesting though is the change in average motion with increasing 

speed. The average heave and pitch motions actually reduce with increasing speed. 

This is not so unusual when one considers the craft transcending through a contouring 

to a plat/arming condition. Whilst the craft is contouring, the average excursions of 

motions about the mean will be of the same order as the wave amplitude. However, 

at higher speeds, the craft's inertia will restrict response to waves of relatively small 

waveheight and the craft will effectively leap from crest to crest with little excursion 

from its average position. When a larger wave is encountered, however, the craft's high 

speed and inertia will act against it producing 1/10th significant motions higher than 

at lower speeds. 



Chapter 8 

Experimental Investigation 

Much of the previous theoretical and experimental work on planing has been centred 

around calm water performance (see Chapter 2 for a discussion of these works). The 

complex surface flows generated by the hull lead to complications in the theoretical 

prediction of lift. Experimental work has been undertaken to identify the various 

components of lift and the effect of hull geometry parameters and speed. The dynamic 

lift of a planing hull has been shown to be strongly dependent on wetted surface and 

theory shows that the lift force is governed by the craft speed and distribution of added 

mass along the length (itself a function of wetted surface). Payne (1995) describes the 

difficulty that experimenters have in relating the lift force to individual parameters, 

especially wetted lengths which are difficult to measure consistently. Indeed the amount 

of scatter between individual experimenters results is high. Consequently any efforts 

to curve-fit the data results in a misinterpretation of the physical effect the very curve 

fits are trying to identify. Theorists relying on empirical curve-fits to relate specific 

lift components to their derived expressions discover that their theories have general 

exceptions as to their applicability, figure (A.135). The problem of identification of 

specific qualities is even more complicated by the craft's operation in a seaway. 

An experimental investigation was carried out herein in order to achieve two aims. 

Firstly, to verify the vertical responses measured by Fridsma for a particular craft 

configuration to further justify using his data and validate the theory. Secondly, to 

apply a new technique to measure specific quantities, such as wetted surface, in a 

consistent manner which is repeatable from test to test, in this way enabling the degree 

92 
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of scatter discussed above to be reduced. 

8.1 Computer Vision Data Acquisition 

For craft travelling at high speed, the amount of generated spray reduces the ability 

of resistance and capacitance probes to accurately quantify wetted length and surface 

values. Techniques to avoid this problem and to investigate underwater surface flows 

have involved the use of still photographs, e.g. Savitsky (1964), Brown (1971), and 

limited video analysis, e.g. Fridsma (1969). 

More than just those physical effects mentioned above can be analysed by video though. 

All displacements, velocities and accelerations can also be measured. The benefits of 

accurately acquiring information by video are enormous. Video data which is acquired, 

converted to digital form and digitally analysed is effectively a computer vision system. 

Conventionally, large amounts of instrumentation and equipment are required to ac­

quire all the necessary data from tank testing. This results in added weight to the 

model, more calibration and the increased possibility of noisy cross-talk in multiplexed 

signals. Computer vision avoids these problems by capturing all the data at once with­

out any interference with the model and the effects it is trying to measure. Video 

capture has no influence on the objects in question. There is no added damping due to 

moving mechanisms that would ordinarily be monitoring displacement, velocities and 

accelerations; these can all be measured remotely. The system is self-calibrating since 

all the calibration information is contained within each fmme l of information. The 

equipment required with this technique is reduced to a power source, high definition 

video cameras and a powerful computer. 

Once the data has been recorded, it can be reviewed at any time with focus on any 

particular phenomenon desired. Provided the video analysis hardware and software 

are capable enough, any video footage of any object moving in any environment (from 

a stationary viewpoint) could be analysed. This information can be archived, then 

analysed and critically re-evaluated at any point. 

The restriction on this type of data acquisition is at present large since the hardware 

1 Standard video records 25 snapshots, or frames, of an event it is capturing every second. 
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and software required for accurate automatic identification of points of interest? from 

frame to frame is expensive. The final extraction of the points of interest are carried 

out herein by the human eye. So although one of the main advantages is the amount 

of information that can be captured simultaneously, the actual amount of information 

that can be processed at present is limited to a few frames, equivalent to a couple of 

seconds of data. 

8.2 Experimental Set-up 

Only one craft configuration based upon the same lines as Fridsma's constant deadrise 

mono hulls was constructed and tested. The testing facility was the towing tank at 

Southampton Institute. The maximum tow speed of the carriage is 4.2ms-l which 

because of scaling problem restricts the size of the model to 1.25m and if towed at 

maximum speed is equivalent to Fridsma's speed to length coefficient, Vkl/Ltt, equal 

to 4. A 30° deadrise angle was chosen making the model equivalent to Fridsma's 

configuration K. 

LIB 
BID 
kylB 

LCGIB 
C£:,. 

VeG (above keel) 
Model Length 

Beam, B 
Depth, D 

Deadrise, {3 
Displacement, .6. 

5 
1.6 

1.235 
1.95 

0.608 
0.35m 
1.25m 
0.25m 

0.15625m 
30° 

93.2N 

Table 8.1: Experimental Model Particulars equivalent to Fridsma's Configuration K 

The craft is towed at the centre of gravity and is free to roll, pitch and heave. Following 

Fridsma (1969), the tests are carried out at constant speed and the effect of surge is 

neglected. Craft heave and pitch are measured in the standard way with translational 

and rotational transducers. Acceleration is extrapolated at the centre of gravity and 

2Points of interest are specific Ioactions within the frame for which coordinate information is 
required 
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measured at the bow using an accelerometer. Resistance is measured from the dy­

namometer. Wave elevation is measured approximately one metre abeam of the CG 

using a sting-type wave probe. All data is acquired and output using the Wolfson Unit 

Data Acquisition software suite. 

For the benefit of computer vision data acquisition, a grid is defined on one side of the 

model in 8cm by 1cm blocks and below the chine in 1cm by 1cm blocks. A black and 

white self-illuminating underwater camera is mounted just above the waterline normal 

to the direction of tow and opposite the centre of gravity. The camera is connected 

to a standard VHS video recorder and a monitor. The lighting is on-axis to remove 

shadows. 

At this stage, it is unimportant for the recorded images to be horizontal. As previously 

mentioned, the computer vision system is self-calibrating and as long as there exists 

a known horizontal datum in the image then that can be used as the reference. Also 

depth of field and known reference points provide a constant calibration for any point 

at any distance away from the camera. 

The trigger point for electronic data acquisition was automatic and data was acquired 

over 15m which equates to around 3 seconds for a tow speed of 4.2ms-I. The computer 

vision data acquisition was triggered manually after the electronic acquisition had 

started and stopped before the electronic acquisition stopped. This enabled the video 

capture of purely steady-state planing and not the capture of information as the craft 

decelerated at the end of its run. 

The VHS information was then digitised using standard Silicon Graphics Media Recorder 

and Converter software and decomposed into individual JPEG-compressed frames so 

that 25 frames corresponded to 1 second of real-time data. Each frame was analysed 

by eye using the image editor XV-3.10a for about a third of the total data acquisition 

time, around 25 frames. Coordinate information from each digitised frame was taken 

regarding the deck profile, carriage rail profile, keel/water intersection point and spray 

sheet / chine intersection. The calibration was taken from the known grid size on the 

model hull, and the camera orientation from the carriage rail profile. Problems wih 

parallax is readily checked for and negligible. The coordinate data was then converted 

into real quantities and output in the form of heave and pitch displacements and wetted 

length data. Obviously any other required information can be readily extracted. 
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An example sequence is shown in figure (A.142). This sequence is for an experimental 

run into waves twice the boat length. Two points of interest have been highlighted on 

the deck edge and the outline of the spray area overlaid onto each image. 

Calm water tests were carried out initially before towing the craft into regular head 

waves ranging in wavelength from 1 to 6 boat lengths. 

8.3 Experimental Results - Calm Water 

8.3.1 Sinkage and Trim 

Figure (A.136) shows the sinkage and trim of the craft from zero to full speed. The 

broken lines are Fridsma's results. The results are comparable although it appears that 

the new model requires a higher speed for the centre of gravity to rise. The new model 

sits lower in the water at full planing speed than Fridsma's with a slightly increased 

trim angle. 

8.3.2 Resistance 

The resistance results are also shown in figure (A.136) and show that the new craft 

has a slightly larger resistance hump and the final resistance is also higher. This is 

accounted for by the model sitting lower in the water at full planing speed and with a 

higher trim angle, adversely affecting the lift vector angle. 

8.3.3 Wetted Data 

Wetted keel data is measured from the computer vision data acquisition for the range 

of speeds from zero to full planing speed of Vh / ~ = 4. Comparison with Fridsma's 

result is good but does show a slight increase in magnitude over the whole speed range, 

which further helps explain the inc·reased resistance. 
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8.4 Experimental Results - Regular Waves 

For a discussion of this particular craft configuration's performance in waves, see sec­

tion 6.2.1. 

8.4.1 Heave and Pitch Motions 

Figure (A.137) and figure (A.138) shows the heave and pitch responses ofthe craft in 

regular waves ranging from wavelengths of 1 to 6 craft lengths. The solid lines relate 

to the measured response through the standard electronic data acquisition whilst the 

squares correspond to the computer vision data acquisition approach. The error bands 

represent a 5% error in visual measurement and will be discussed subsequently. The 

test results varied little on repetition and discrepancies are not presented. The results 

shown herein are for one particular experimental set which is used as a benchmark. The 

reason for this is so that the CVDA can be compared directly to the standard electronic 

data acquisition results, which would be impossible if an average result measured from 

all the experimental test runs was used. 

The magnitude of the peak responses and the frequencies at which they occur agree very 

well with Fridsma's results for both the standard and computer vision data acquisition 

approaches. However, at longer wavelengths, the boat responses are larger especially for 

pitch. This is an interesting result since it tends to make the agreement with theory for 

both pitch and heave much closer at the longer wavelengths, shown by the circles in the 

aforementioned figures, where previous comparison with Fridsma's results for the same 

configuration are less favourable. However, the calm water discrepancies in running 

trim and sinkage will affect the overall motions enough to explain these differences 

and the theory's improved agreement is purely incidental. The phase behaviour of the 

motions relative to the wave elevation at the centre of gravity agree well with Fridsma's 

results. 

The computer vision data acquisition is limited at present by the time required to 

analyse each digital frame by hand and identify all the points of interest. The time 

histories for heave and pitch response for durations no longer than 1.5 seconds are shown 

in figure (A.143) to figure (A.147). These time-histories show the correct frequency and 
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for the part of the run recorded very similar magnitude in response to the corresponding 

time history from the electronic data acquisition. However, using these limited time 

histories to extract heave and pitch RAO's would be unwise since there is too little 

information to make a direct comparison with the results from the analysis of data 

through the standard electronic data acquisition. To circumvent this, a simple test was 

carried out which involved the original video footage of the test runs. The analogue 

footage was quickly run frame by frame over the whole recorded run length and the 

maximum heave and pitch position marked onto a television monitor. In this manner, 

all the peak motions were recorded and the results are those shown by the squares 

on figures (A.137) and (A.138). The error bands mentioned previously are due to the 

inaccuracy in pinpointing to one pixel3 the specific points of interest because of the 

ability of the video playback device to freeze each individual frame. This problem does 

not exist with digital images. 

8.4.2 Accelerations 

The accelerations at the bow and centre of gravity were found to have very good 

agreement over the whole frequency range with Fridsma's results. This is expected due 

to the good agreement with heave and pitch responses and phase information. The 

larger motions at longer wavelengths, AIL> 4, does little to affect the peak impact 

accelerations which are small in magnitude anyway. 

8.4.3 Added Resistance 

Figure (A.140) shows the rough water resistance of the craft over decreasing encounter 

frequencies. At longer wavelengths, the craft resistance approaches the calm water 

value shown in figure (A.139). However, as with the calm water resistance, the resis­

tance in waves is larger than Fridsma's results. 

The resistance increment or added resistance is shown in figure (A.14I). This describes 

the reduction in added resistance with decreasing encounter frequency and in fact at 

the longer wavelengths, the resistance drops below the calm water value. 

3 A recorded image is made of individual pixels. In the images described herein, an image is 
constructed from l024x760 pixels 
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8.4.4 Wetted Data 

Wetted keel length data is shown in figure (A.143) to figure (A.147). The maximum 

wetted values occur when heave is a minimum; the pitch angle attenuates the size of the 

wetted length change. The mean wetted keel length does not change significantly with 

change in encounter frequency and is approximately 3.75 craft beams in magnitude4
. 

The mean wetted keel lengths are comparable to the calm water wetted keel length at 

the same speed, figure (A.136). 

The mean wetted keel length does seem to increase slightly with decreasing encounter 

frequency. The implication of this alone would seem to be that the resistance in waves 

increases slightly with decreasing encounter frequency which is the opposite of what 

is shown in figure (A.140) and figure (A.141). However, resistance for planing craft is 

not a function of wetted keel length but a function of mean wetted length. At longer 

wavelengths, the mean wetted length (an average of the chine and keel wetted lengths) 

will approach the calm water running value, this requires a slight reduction in the mean 

wetted chine length to compliment the slight increase in mean wetted keel length. 

As the magnitude of the wetted surface approaches the calm water running value, the 

resistance would be expected to as well. However it has already been seen that the 

resistance at longer encountered wavelengths reduces the resistance below the calm 

water value. Consequently, for a slightly increasing wetted keel length, the wetted 

chine length must reduce fairly significantly for the resistance to be less in long waves 

than in calm water. 

This rather involved discussion of wetted lengths demonstrates the importance they 

play in the resistance and lift of the planing craft. A method for predicting these two 

quantities based upon the wetted lengths would be advantageous which requires the 

prediction of the wetted lengths in the first instance. In calm water, Savitsky (Sav­

itsky 1964) describes an expression for wetted lengths based upon trim angle, beam 

and deadrise and from these expressions relates the subsequently generated lift and 

resistance. If these expressions for wetted lengths could be applied dynamically for use 

in waves then lift and resistance in waves could be predicted. 

4Wetted length in figure (A.146) has a value of 2 added to all the amplitudes. This is purely to 
improve visual comparisons on the graph. 
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Savitsky's expression for wetted keel length in calm water planing is given as 

btan(3 
Lk =Lm +

2 
(8.1) 

1f tan T 

where T is the steady-state trim angle and Lm is the mean wetted length and b is the 

chine beam 

Lk is not a function of time, but if it were then a dynamic equation could be hypothe­

sised as 

btan (3 
Lk(t) = Lm(t) + 21ftan(8(t)) (8.2) 

where 8(t) is the instantaneous pitch angle and is a function of time. Since chine wetted 

lengths have not been measured, Lm(t) is replaced by an arbitrary constant, in this 

instance equal to the calm water mean wetted keel length of 3.75 craft beams. For small 

pitch angles then the variation in wetted length is in phase with pitch which as noted 

earlier is not so. Introducing heave into the above equation and fitting coefficients so 

that the expression matches measured results leads to, 

{ ( 
btan(3) } 

Lk(t) = A B + Le + 21ftan(8(t)) - D.z(t) + C 

where z(t) is the instantaneous heave. Fitting the coefficients A, Band C and D to 

data indicated that D = B hence, 

{ ( 
btan(3) } 

Lk(t) = A B + Le + 21ftan(8(t)) - B.z(t) + C (8.3) 

This equation is not explicit, has no rigorous mathematical basis and merely represents 

curiosity on the part of the author to relate calm water predictions of wetted data to the 

dynamic wetted data in waves. The solid lines in figure (A.143) to figure (A.147) show 

the predicted wetted keel lengths from equation (8.3) with actual measured wetted keel 

length. The results show very good agreement as expected since the coefficients are 

varied until the predicted results match. However, figure(A.149) shows the variation of 

the coefficients with wavelength and demonstrates a positive linear relationship for the 

coefficients with increasing wavelength. This implies that despite the simple approach 

outlined above, the calm-water time-independent wetted keel length predictions can 

be manipulated into evaluating the dynamic wetted keel length in waves. It therefore 

seems possible to predict the dynamic wetted lengths given only limited data of beam 

and deadrise and the time data of heave and pitch and from there a tentative hypothesis 

for the evaluation of dynamic lift and resistance. 
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Troesch (1992) employed a similar technique in investigating the dynamic variation 

of wetted lengths of craft undergoing forced perturbations in either heave or pitch. 

Equation (4) of that paper was plotted against the measured values from analogue 

video tape analysis and showed excellent agreement in terms of predicted wetted keel 

lengths. Chine lengths were not as well predicted, but again correct identification of 

water/chine intersection was difficult due to the obtrusive prescence of the spray jet. 

8.5 Conclusions 

One of the aims of the experimental program was, in a limited way, to verify the 

results of Fridsma's experiments thereby providing some justification in the use of his 

data for comparison with the numerical models described herein. To this end, the new 

experimental results compared very well with those of almost thirty years ago, although 

slight discrepancies in calm water steady-state running conditions were found and, in 

waves, discrepancies in the heave and pitch responses at the longer wavelengths. These 

discrepancies actually increase the theoretical models agreement with experiment for 

this configuration. 

The use of a computer vision data acquisition technique demonstrated its importance 

in being able to identify specific points of interest and remotely capture large amounts 

of data. Unfortunately, this approach is limited at present by available hardware and 

software. 

The computer vision data acquisition allowed the capture of wetted keel length data. 

Analysing this data and applying a tentative dynamic variation to Savitsky's calm 

water equations suggests an ability to predict forces of lift and drag in waves. Indeed, 

Troesch (1992) reached a similar conclusion, surmising that whilst the wetted chine 

lengths are heavily influenced by the free surface behaviour, the wetted keel lengths 

are well predicted by assuming a dynamic variation of calm water equations. Although 

this technique is not rigorously founded, or proven in terms of force prediction, it is an 

interesting hypothesis that requires further investigation. 



Chapter 9 

Discussion 

The aim of the work carried out herein was to provide a theoretical means with which 

to evaluate planing craft performance in calm water and in waves. The complexity 

of planing craft dynamics and its associated effects meant that within the scope of 

this work, the problem was reduced to the vertical plane motions and the neglect of 

resistance components. 

Chapter 1 described the important characteristics of pitch and heave instability, or 

porpoising, in calm water and the vertical response in waves, namely heave, pitch, ac­

celerations and added resistance. The understanding of these phenomena would provide 

an efficient and consistent approach to planing hull design. This can be achieved by 

investigating the effect of perturbations in the design variables upon specific responses 

of interest. 

A parametric investigation of the effect of planing hull design variables requires an accu­

rate and efficient numerical technique. Previous approaches were reviewed in Chapter 2 

and the final approach chosen was based upon a slender body strip-theory. This strip 

theory is based upon the sea-plane float impact research initiated by Munk(1924). The 

hull is decomposed into transverse sections which enable the three dimensional prob­

lem to be reduced to a summation of two dimensional problems for which solutions can 

be readily derived. This strip theory approach provides results which are comparable 

with experiment and often exceed the accuracy of the results of full three dimensional 

solutions and panel methods. 

102 
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Chapter 3 described the manner in which the two dimensional problem is solved and 

is based upon impact theory. To an observer in a fixed slice of fluid normal to the 

direction of planing craft forward motion, the passage of the hull through that fixed 

transverse slice produces the same effect as an impacting body of the same section 

would upon the surrounding fluid. This impact is directly analogous to the impulsive 

motion of the rigid double body moving in an infinite fluid without circulation. 

Attempts to remove some of the effects of various approximations required to achieve 

the above analogies have been presented. The effect of aspect ratio, a three dimensional 

correction, has a significant effect upon the predicted hydrodynamic lift of planing 

bodies. The assumption of no circulation around the double body in an infinite fluid is 

analogous to the condition that there is no separation of the fluid flow when the body 

is impacting upon the interface. A crossflow drag term is added which allows for the 

incremental lift for when the flow separates off the chines. This cross flow drag term is 

equal to the added mass increase due to chine immersion. 

At lower planing speeds, there is a more obvious compromise between hydrostatic 

and hydrodynamic contributions to the overall lift experienced by the planing hull. 

Applying a manometer model for the drop in localised wetted draft at the transom 

increases the applicability of the calculated total lift experienced by the planing hull 

at lower speeds. 

The frequency domain linear model was presented in Chapter 4 and is based upon 

the theory proposed by Martin(1978a, 1978b) which is in an abstracted form in Ap­

pendix B. This model is used to evaluate the stability boundaries of the planing craft 

in calm water and to demonstrate the neccesity, even in calm water performance, of 

the inclusion of time-dependent wetted lengths in improving the prediction of craft 

response. 

The neglect of the time-dependency of the wetted area in the linear model certainly 

precludes the use of this approach in accurately identifying the vertical responses in 

waves. A time-domain model was presented in Chapter 5 that considers the variable 

wetted length for the planing craft undergoing heave and pitch motion. 

The specific results of parametric variation upon the porpoising boundaries and the 

effect upon planing craft motions in waves will not be repeated here. The results 
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from the linear model developed herein is very comparable to Martin(1978a, 1978b) 

own published results. Any differences are attributed to the extraction of data from 

Martin's graphically presented results and rounding errors within the program. The 

conclusions of Martin's investigation into the parametric variation of design parameters 

will be the same. However, the main point is in the application of the non-linear model 

to establish much more accurate boundary conditions for porpoising, which shows the 

benefits of including the effect of time-varying wetted lengths and providing further 

validation to the approximations of crossflow and aspect ratio. 

The application of the non-linear time-domain numerical model, with frequency inde­

pendent added mass and damping terms, provided generally good agreement with the 

experiments of Fridsma(1969, 1971). Furthermore, the removal of second and higher 

order terms from the equations of motion had a limited effect upon the accuracy of the 

predicted motions in waves and also in calm-water. Removing the higher order terms 

provides an ability to investigate the response of the craft in terms of the behaviour of 

the hydrodynamic coefficients, isolating specific terms that dictate craft perfomance. 

For example, the heave induced pitch damping term, n53, was discovered as being 

indicative of the craft's porpoising boundary in calm water, being the only damping 

term remaining positive for stability. The frequency domain approach shows a similar 

characteristic for the equivalent damping term, M Z, which tends to zero as the stability 

boundary is approached. All the other damping terms become increasingly negative 

for both the time-domain theory and the frequency domain theory. The implication 

of this is that the influence of specific parametric changes could be understood by the 

effect of changes upon the magnitude and behaviour of the hydrodynamic coefficients. 

The added mass and damping terms employed in the hydrodynamic coefficients of the 

equations of motion are typically considered to be independent of frequency. Within the 

framework of wedge impact theory, this is dependent upon the free surface boundary 

condition being described by equation (3.8). If the frequency of oscillation is considered 

low, then the value of added mass for the same immersed section is different, equation 

(3.87). An investigation into the effect of frequency dependence upon the vertical 

responses was described in Chapter 3, section 3.5, and initiated in Chapter 5. 

Frequency dependence of the added mass and damping terms has been shown to be 

most significant for craft operations at low speeds and in waves of low encounter fre­

quencies which reflects the findings of Troesch(1992). This does not suggest that the 
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inclusion of this dependency increases, in all cases, the accuracy of the predicted verti­

cal responses for these conditions. In fact, whilst the pitch response and accelerations 

are usually better predicted, the heave response tends to be in considerable error. The 

theory is developed around the accurate prediction of hydrodynamic lift force, so an 

attempt to improve the model in the low speed/low encounter frequency region of plan­

ing by solely examining of the effect of frequency dependent added mass and damping 

terms may be somewhat unjustified. 

The general tendency to overpredict motion responses at low frequency and lead to 

underpredictions at high frequency may point to the failure of NoLiPCraMP in applying 

the damping coefficient correctly at a given encounter frequency. Figure A.ISI shows 

that at low frequency the damping force is significant and if not modelled correctly will 

result in the overprediction of lift force. 

The inclusion of frequency dependence has produced no significant improvement in the 

vertical motions expected from the work of Troesch(1992), Chiu and Fujino(1989) and 

Chou et al(1991) which points to the breakdown ofthe computer program in the correct 

application of the theory. The general improvement in the prediction of accelerations 

is considered incidental. 

The behaviour of planing craft in irregular seas was investigated in Chapter 7. An ITTC 

spectrum was constructed from significant waveheights and modal periods associated 

with conditions in the eastern Atlantic, table 7.1. Linearity of system response was 

found, by the use of spectral analysis and in seas with enountered frequency content 

comparable to regular wave tests, to be applicable upto speed:length ratio of 4 and for 

3 < A/ L < 2 at Vkt/ ;r;; = 4. 

The application of the frequency independent approach led to good agreement in the 

expected comparisons of heave and pitch motion probability distributions with gener­

alised Rayleigh probability distributions. Accelerations agreed well with the expected 

probability distributions at high probability of exceedence, however the higher numeri­

cally predicted accelerations were less likely to occur than those theoretically predicted 

by the exponential distribution. The inclusion of frequency dependence by considera­

tion of the modal encounter period resulted in negligible improvement in probability 

distribution fits for heave motions, and generally worse agreement in pitch maxima 

and minima distributions, but increased accuracy in the prediction of the occurance of 
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bow accelerations. 

An experimental investigation into the vertical motions of one particular craft configu­

ration, configuration K, was carried out in order to compare the direct time-histories of 

experiment with theory. The experiments also allowed the application of a new tech­

nique in data acquisition using a computer vision system to acquire large amounts of 

visual data simultaneously. The use of a Computer Vision Data Acquisition (CVDA) 

system has a number of advantages in that the system is easy to use, self-calibrating, 

unintrusive, able to capture large amounts of visual data simultaneously and allows the 

analysis of particular phenomena at will. Unfortunately, automation of the capture of 

points of interest was outside the scope of this thesis, but human eye measurements 

from the digitised images provided extremely good agreement with standard electronic 

data acquisition results. 

The wetted data, fundamental in planing craft performance, could be captured easily 

and discrepancies in the percieved boundaries of wetted area are reduced. It was 

also found there was a strong argument for the application of a dynamic variation to 

calm water wetted length predictions in accurately predicting the time-varying wetted 

lengths. As a result it is hypothesised that a dynamic application of calm water planing 

equations can provide valuable insight into the lift and drag components of planing craft 

operation in waves. 



Chapter 10 

Conclusions 

Theoretical and experimental investigations have been carried out which improve the 

understanding and performance prediction of the complex behaviour of planing craft 

in calm water and in waves. 

A modified strip theory analysis is successfully applied for evaluating vertical motions of 

planing craft in calm water, regular and irregular seas. The shortcomings of solving the 

equations of motion in the frequency domain for calm water performance are identified 

and agreement with experimental results improved with solution in the time domain. 

For example, the hull wetted surface, which has significant implications on generated 

lift, is very sensitive to perturbations in heave or pitch, requiring this particular problem 

to be solved in the time domain. 

The time domain analysis allows investigation into the vertical dynamic effects of heave 

and pitch motions and accelerations in waves which are important to structural sur­

vivability and crew operability. Furthermore, the analysis allows examination of the 

behaviour of the hydrodynamic coeffcients used in the equations of motion and identi­

fication of the important terms, such as n53 for craft stability. 

The developed theories allow the effect of parametric changes upon planing craft per­

formance to be examined with confidence, allowing optimisation and further under­

standing of planing craft design. Preliminary investigation, for example, demonstrates 

the importance of deadrise upon planing craft stability and seakeeping in calm water 

and in waves. 
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Experiments were carried out in calm water and in waves over a range of speeds to 

provide data for validation purposes. These data were found to correlate well with 

earlier published data for a similar hullform, providing confidence in the experimental 

base. 

As part of the experimental programme, a new computer vision data acquisition system, 

CVDA, is investigated. This system's benefits over standard electronic data acquisi­

tion techniques include being a remote system, easy to set-up and reduced set-up time, 

self-calibrating and able to capture and process large amounts of information, thereby 

allowing investigation of specific phenomena at leisure. This system's importance is 

demonstrated by the ability to measure wetted surface area which has allowed a rela­

tionship between calm water predictions and the dynamic wetted area in waves to be 

formed. 

The overall research programme has provided important insight into the vertical dy­

namic effects associated with high speed planing craft in calm water and in waves. 

Furthermore, the developed theoretical tools, supported by the experimental work, 

provide a sound basis for predicting these effects. 



Chapter 11 

Future Work 

The work described herein demonstrates that there is much scope for future investi­

gation of planing craft dynamics using simple wedge impact theory. Although the full 

physical effects are not modelled rigorously, this two-dimensional approach lends itself 

to efficient evaluation of planing craft performance. Consequently, as an extension to 

the parametric investigation, a statistical reliability analysis may be applied that can 

aid optimisation of planing craft design. For example the effect of changing a particular 

parameter upon the subsequent physical response may lead to a statistical distribu­

tion from which optimal criteria can be extracted. The use of a full three-dimensional 

model is at present time-consuming and in order to achieve the best use of reliability 

methods, large numbers of different parameters need changing, which tends to preclude 

full dimensionality. 

Although the motions in head seas have been investigated, following seas can be readily 

applied by altering the influence of the vertical orbital velocities. Furthermore, an ex­

tension to account for surge would be trivial but informative for operations in following 

seas. The use of impact theory upon the transverse stability of planing craft has also 

shown promising results (Lewandowski 1996), (Xu & Troesch 1999), (Zhao et al 1997) 

allowing the coupling into roll to be investigated and possible extension to the other 

degrees of freedom. 

Experimental tests are required to further test the validity of the numerical models. 

Towing tank testing in irregular seas is required. Also with the application of a vertical 
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planar motion mechanism to conduct forced oscillation tests in heave and pitch, the 

associated hydrodynamic coefficients can be determined and directly compared with the 

numerical simulations, highlighting the shortcomings of the numerical model. Further 

validation of the numerical model can be accomplished by consideration of the predicted 

responses of hull forms that are more likely to be physically representative of modern 

planing hull design. Data for these hulls is currently being collated by the Department 

of Naval Architecture and Marine Engineering at the National Technical University of 

Athens. 

The use of a computer vision data acquisition system (CVDA) has been shown to offer 

many advantages. However in terms of efficiency, the technique at present is limited. 

What is required is the automation of the system and eventually real-time processing. 

With the advancement in computer technology and software, the realisation of this 

may not be too far distant. 
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Figures 
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Configuration 

IUBJ3 (deg) CA 

A 5 20 0.608 
B 5 20 0.608 
C 5 20 0.608 
D 5 20 0.608 
E 5 20 0.608 
F 5 20 0.912 
G 5 20 0.912 
H 5 10 0.608 
I 5 10 0.608 
J 5 10 0.608 
K 5 30 0.608 
L 5 30 0.608 
M 5 30 0.608 
N 6 20 0.608 
0 6 20 0.912 
P 4 20 0.631 

Figure A.22: 

LeG (%L) t (deg) k (%L) v~-.ILa Cv , k21i3 TO (<leg) 'tRo (%B) RIA 

59 4 25.1 4 2.66 0.29 0.86 8 
62 4 25.5 6 3.99 0.29 1.5 10 

61.5 4 25.3 2 1.33 0.29 104 10 
67.5 6 26.5 2 1.33 0.29 2.7 16.7 
65.5 6 26.2 4 2.66 0.29 2.3 13.3 
58 6 2004 4 2.66 0.33 1 14.5 
58 5 2004 6 3.99 0.33 1 14.5 
62 4 25.6 2 1.33 0.29 1.36 15.6 

59.5 4 25 4 2.66 0.29 0.84 13 .3 
68 4 26.2 6 3.99 0.29 2.9 20.6 
61 4 24.7 4 2.66 0.29 104 4.5 

62.5 4 24.9 2 1.33 0.29 1.64 6.7 
60.5 4 24.8 6 3.99 0.29 1.2 4.5 
64.5 4 24.8 4 2.91 0.26 1.56 10 
60 4 20 4 2.91 0.29 1.1 13.3 

52.5 4 23.7 4 2.38 0.34 -104 5.5 

Hard Chine, Constant Deadrise, Craft Configura­

tion Parameters (Fridsma 1969) 

0.158 
0.206 
0.113 
0.125 
0.156 
0.15 

0.178 
0.111 
0.147 
0.156 
0.177 
0.118 
0.264 
0.166 
0.149 
NA 
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Figure A.26 : Heave and Pitch Transfer Functions for Configuration D 
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Figure A. 27: Heave and Pitch Transfer Functions for Configurat ion E 
VIv'L = 4, f3 = 20°, Ct:. = 0.608, L I B = 5, HI E = 0,111 
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Figure A.28: Heave and Pitch Transfer Functions for Configuration F 
VI v'L = 4, f3 = 20°, Ct:. = 0,912, L I B = 5, HIE = 0,111 
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Figure A.29: Heave and Pitch Transfer Functions for Configuration G 
VIVL = 6, j3 = 20°, Ct:. = 0.608, L I B = 5, H I E = 0.111 
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Figure A.3D: Heave and Pitch Transfer Functions for Configuration H 
VIVL = 2, j3 = 10°, C t:. = 0.608 , LIB = 5, HIE = 0.111 
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Figure A.31: Heave and Pitch Transfer Functions for Configuration I 
vl vL = 4, {3 = 10° , Ct:. = 0.608, LIB = 5, HIB = 0.111 
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Figure A.32: Heave and Pitch Transfer Functions for Configuration J 
Vl vL = 6, {3 = 10°, C t:. = 0.608, LI B = 5, HIB = 0.111 
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Figure A.33: Heave and Pitch Transfer Functions for Configuration K 
Vlv'L = 4, {3 = 30°, Ct:>. = 0.608 , L I B = 5, H I E = 0.111 
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Figure A. 34: Heave and Pitch Transfer Functions for Configuration L 
Vlv'L = 2, {3 = 30°, Ct:>. = 0.608, LIB = 5, HIE = 0.111 
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Figure A.35: Heave and Pitch Transfer Functions for Configuration M 
VI...;L = 6, /3 = 30°, Ct:. = 0.608 , LI B = 5, HI B = 0.111 

129 



APPENDIX A. FIGURES 

-IOn 

1.50 

2.' 

~ .O 

15 

::t: 
'N 

UI 

05 

0.0 

• 

• H/B=O.III 

. ... H/8=O.222 

• H/B=n.333 

.. - - -.. 

)J L 

I I .7 

15() 

~ \fX) 

" ~ 
j '0 

51 
~ () 

I .~ 
0: 

J, .'0 

.1()0 

" 

2.0 

l.5 

::t: 
g t - · 

1.0 

05 

0.0 

iJL 

Figure A.36: Linearity of Heave and Pitch Responses for Configuration A 
VlvL = 4, f3 = 20°, C.6,. = 0.608, LIB = 5, HIE = 0.111, 0.222, 0.333 
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Figure A.142: Frame Sequence of Configuration K 
vI"fL = 4, f3 = 30° , Ct:>. = 0.608, LIB = 5, HI B = 0.111, AIL = 2 

Each frame shown relates to every 5th frame captured or 0.1 seconds. 

White squares show points of interest. White boundary at bow I water 

intersection shows the spray area. 

202 



APPENDIX A. FIGURES 

1.25 

1 '. • .. , 
0.75 .'. 

~ 

---~ 
0.5 ' Ii 

0.25 li ~ . '-JI!I_ ~ 0 
:I: 

·0.25 
0.4 0.5 0.6 0.7 

0.4 0.5 0.6 0.7 

~ 
4.25 

'" 4 :;: 
. ~/ .... 

~ 3.75 
/ 

/ 

oJ ~ .., . .' 
B 

~ 
3.5 

3.25 

0.4 0.5 0.6 0.7 

/ tl .-.-..... . 
0.8 

TUllC. sees 

0.8 

Time. sees 

. . "-"-

0.8 

Timc.!iCcs 

• 
• / 

~ • 
A/L=3 

0.9 1.1 1.2 

.• 
.. 

. ''"', . 

.IJL=3 .. . ...... . 

0.9 1.1 1.2 

. 
':&-'" • . • 

0.9 1.1 1.2 

- _. . . - - ---.- ._-

• CVDA 

Standard 

• CVOA 

Standard 

eVOA 

Dynamic 
SavItsky 

Figure A.143: Comparison between Computer Vision Data Ac­
quisition and Standard Instrumentation 
vlv'L = 4, {3 =: 30°, CA =: 0.608, L I E = 5, H I E =: 0.111, AIL =: 3 

4.5 

WCIlI .. 'dLcngth 

4 •••. 11 ••• . - f1 · ' .1111 , .. , .:~.j \ , 

3.5 -'- .... .. 

0.5 

0.5 

-0.5 

Time (sees) 

• ••• • 
• 
• 

• • 

Theory 

Experiment 

Figure A.144: Comparison between Experiment and Theory 
vlv'L =: 4, {3 = 30°, CA = 0.608 , L I E = 5, H I E = 0.111 , AI L =: 3 

203 



APPENDIX A. FIGURES 

1.25 

f 0.75 • 
~ ~' 05 

~ . 
-~ 0.25., 
a 0 .. .. , • 
:I: • . 

-0.25 
D .• 0.5 0.6 0.7 

~ 
~ .. , • . 2.75 . ,~ 

.' 

~ 2.5 . . 
~ 2.25 • 

2 .. - • :;, 

" 0: 1.75 

1.5 

D .• 0.5 0.6 0.7 

4.25 .. 

3.5 

3.25 
0 .4 0.5 0.6 0.7 

... . .' . • 

O.B 0.9 

Timc, sccs 

• ...... -..! . 
'-. .. .. 

O.B 0.9 

Timc.sccs 

O.B 0.9 

Timc, sccs 

)'/L=4 . 
.. · ..• 

1.1 1.2 

AlL=4 

. • · 
1. 1 1.2 

- . - ~ --- -- -I 

1.1 1.2 

. CVDA 

Standard 

. CVDA 

Standard 

.. CVDA 

Dynamic 
Savitsky 

Figure A.145: Comparison between Computer Vision Data Ac­
quisition and Standard Instrumentation 
vl../L = 4, {3 = 30°, CA = 0.608, LIB = 5, H IE = 0.111, AIL = 4 

6 

~.... . ... 
••••••••• . ' . 

4 

Theory 

• Experiment H~lv~ •••• • •• .. .. .. . 
. / .... .,. . 

.~/ • , . ' III ., 
• ' • .. • · ·iI .• 0.···· •••..• • ••• ·Ii 

0.5 

- I 

Figure A.146: 

0.7 0.9 1.1 1.5 1.7 1.9 

Time (sees) 

Comparison between Experiment and Theory 
vl../L = 4, {3 = 30°, CA = 0.608, LIB = 5, H IE = 0.111, >'IL = 4 

A value of 2 has been added to all wetted length amplitudes 

204 



APPENDIX A. FIGURES 

1.25 
.g, 1 . • • 2 0.75 . "--. --' " -;..-"' . 
~ " . ...... . CVDA 

~ 
0.5 .... 

a. 
1- ..-- ')JL=6 Standard 

0.25 -. • II-~-. -' 
> • il 

:I: 
-0.25 

0'< 0.5 0.6 0.7 0.8 0.9 1.1 1.2 

Timc.sccs 

3 
~ 2.75 .. . --g- . .. 
~ 2.5 . - -._.J. 

o • :--~t·. - ,..-,ollt-:'· 

~ 2.25 ~ -::" "'--. :: . • __ AlL=6 • CVOA 
I .. .. . .. --' Standard 

:;, 2 

'" c: 1.75 

1.5 
O. 

~ 
4.25 

OJ 
:;, 

~ 3.75 ... ..:..- ... . 
...J 
-0 

'" 3.5 . ... _-
I 

~ 
3.25 -

0.4 

Figure A.147: 

4.5 

.. 
-- I 

0.5 0.6 0.7 0.8 0.9 1.1 1.2 

Timc.sccs 

.. .. . .. j, ' . ~ '--a . . £ : £ £ . ". - ,. CVDA '£ : £ -
£ 

r 
I 

0.5 

~ .... .. 
I 
I 

" - 1 -- ---- Dynamic 

I 
Savitsky 

.. 1.. 

0.6 0,7 0.8 O.g 1.1 1.2 

Time, sec. .. 

Comparison between Computer Vision Data Ac­
quisition and Standard Instrumentation 
vl v'L == 4, f3 == 30° , C t;,. == 0.608, LI B == 5, H I B == 0.111, AIL == 6 

Welled Leng1h 

-. ,. • • • .• • • • . ' • .... ., ••• II •• • '. -. ' .... • .... -II ' ...... . 

~ 
.~ 
0-

3.5 

~ 2.5 

-a 
.~ 
OJ 

§ 
Z 1.5 

0.5 

Figure A.148: 

ThcOlY 

• Expcri ment 

0.7 0.9 1.1 1.5 1.7 1.9 

Time (sees) 

Comparison between Experiment and Theory 
vlv'L == 4,!3 == 30°, C t;,. == 0.608, LIB == 5, HIB == 0.111, AIL == 6 

205 



APPENDIX A. FIGURES 

4.0 

3.5 

3.0 

2.5 

v 
0 2.0 c:J 

a~----~B~-----&B------~B~-----&B------~~ 

<. B = 2 

1.5 

1.0 

0.5 A = ·0.056JJL + 0.41 
R'=0.9686 

0.0 

0 4 6 

AIL 

Figure A.149: Behaviour of Fitted Coefficients with Wavelength 

(Coefficients employed in the dynamic variation of 

Savitsky's wetted length equation) 

206 



APPENDIX A. FIGURES 

E 
U 

E 
OJ 

2.5 " 

2 

'u 1.5 
IE 

OJ 
o 

U 

0.5 

o . 
o 

Figure A.1S0: 

0.018 

0.016 

0.014 

Z : 
• 0.012 • 

5 
'u 
E 0.01 

~ 
U 
bIJ 0.008 . 
c 
.~ 

8 0.006 

0.004 . 

0.002 

o . 
o 

Figure A.1Sl: 

10 15 20 25 30 35 40 45 

Encounter Frequency, roc (rads) 

Added Mass Coefficient versus Frequency and 

Draft for 10° Deadrise 

10 

V/~L=4 0 ,~ 
~ o 

15 20 25 30 

Encounter Frequency, roc (rads) 

·1 
. ... t;. 

35 40 45 

Damping Coefficient versus Frequency and Draft 

for 10° Deadrise 

207 



APPENDIX A. FIGURES 

Added Resistance 

O~ f 
Configuration A 

--Theory .. 
0025 • Fndsma (1969) 

.. .. 
0020 

J""L • 
0010 

0.005 • .. 

0000 I I I 

7 5 4 2 

AI L 

Added Resistance 
0.060 Configuration J 

--Theory 
0.050 ... . Fridsma (1969) 

0.040 • 
.s 
~ 0.030 

a: • 
0.020 

• 0.010 

0.000 
7 5 4 3 2 0 

All 

Added Resistance 
0.025 Configuration K 

--Theory 
0.020 ..•. . Fridsma (1969) .. . . 
0.Q15 

. . 0 - - Experiment • 
.s 
~ 0.010 

a: 

0.005 
. •. 'e- • . -E) '. ' E> 

0.000 .. ; 
I I 

&. 5 4 2 0 
.0.005 i 

i.1 L 

Figure A.152: Experimental (Fridsma (1969) ) and Theoret ical 

Added Resist ance of Various Craft Configurations 

208 



APPENDIX A. FIGURES 

0.025 

.0.020 

~ 0.015 

~ 
a: 0.010 

0.005 

--Theory 

. . •. . Fridsma (1969) 

Added Resistance 
Configuration G .. 

-.....---- ... 

0.000 +----_t_---+-- - --+-- ---.,f----+-----f-----i 

7 

0.025 J 

0.020 1 
~ 0.015 

~ 
a: 0.010 

0.005 

- - Theory 

. . • . . Fridsma (1969) 

4 

AIL 

Added Resistance 
Configuration M 

2 

• • • 

o 

0.000 ~--+---_t_---+---_+_--_+_--__1f---____j 

~ 

0.035 

0.030 

0.025 

0.040

1 
0.010 

0.005 

6 5 

- - Theory 

.. •.. Fridsma (1 969) 

.. 

4 3 

AIL 

Added Resistance 
Configuration B .. . 

• 

o 

' .. .. 
J ~'~~~ I 

0.000 '1_---1--- -+----+-- --+-- ---+---1------1 

7 

Figure A.153: 

5 4 

i.1L 

Experimental (Fridsma (1969)) and Theoretical 

Added Resistance of Various Craft Configurations 

209 



APPENDIX A. FIGURES 

loa deadrise Section 20° deadrise Section 

0.00 0.25 0.50 0.15 0.00 0.25 0.50 0.15 

Hu m Ik. m 

30° dead rise Section 40° deadrise Section 

" 
I' iO 

10 

o ~--~~---+----______ +-________ ~ 

0.00 0.25 0.50 0.75 0 .00 0.25 0.50 0 .75 

Beanl 

Figure A.154: Added Mass of Lewis Vee-forms (Lewis 1929) and 

Payne's(1995) em = (1 __ ~)2 

210 



Appendix B 

Linear Theory for Planing Craft in 

Waves 

B.l Equations of Motion 

The non-dimensional equations of motion for a planing craft in waves are given by, 

(m - Zz)Z - ZzZ - ZzZ - zefJ ZefJ - ZoB 

-Mzz - Mzz Mzz + (Iy Mij)i3 MiJB - MoB 

(zt e-iwet 

(Mt e-iwet 

(B.l) 

(B.2) 

where (Z)w is the complex amplitude of the wave excitation force and (M)w is the 

complex amplitude of the wave excitation moment. The coefficients of the motion 

variables are the stability derivatives of the craft. 

The calm water forces of figure (A.8) are resolved by Martin (1978a) such that the 

steady-state force and moment equations are as follows. The forces are related to a 

right-handed body fixed axis system with the origin at the craft centre of gravity and 

o X positive forwards (parrallel to calm water surface), OY positive to starboard and 

o Z positive vertically down. 

Resolving the forces vertically, 

W = (FDS + FBs ) COST - Fps sin T = -Zs (B.3) 

211 
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where Zs is the non-dimensional lift component. 

Resolving the forces horizontally, 

Ts = (FDS + FBS ) sin T + Fps COST + Fws = -Ds (B.4) 

where D s is the non-dimensional drag component 

Summing moments about centre of gravity, 

Mws + MTS + MDS + MBS + Mps = 0 = Ms (B.5) 

B.1.l Determination of Steady State Force and Moment Con­

tributions 

B.1.1.1 Hydrodynamic Normal Force, FD , and Hydrodynamic Moment, 

MD 

Martin's theory is based upon a strip theory where the flow over the hull is considered 

to occur in transverse planes which are fixed in space and orientated normal to the 

keel. The momentum of each layer of water transverse to the keel is peds, where p 

is the two-dimensional added mass of the section of the hull at a point s, interacting 

with the section of the flow plane of length ds, and ( is the component of the velocity 

of the body normal to the keel at that point. The coordinate s is measured from the 

foremost immersed station along the keel. The normal force on the section ds of the 

hull is the time rate of change of the momentum of the layer of water ds at s, 

(B.6) 

Both p and ( will in general be functions of the longitudinal position coordinate x and 

time t. The time derivative is therefore, 

where U is the steady state speed. 

d _ -U~ ~ 
dt - ax + at (B.7) 

The normal hydrodynamic force over the entire hull is obtained by integrating equation 

(B.6) along the wetted length of the huIllk and multiplying by a correction factor ¢(A) 
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to account for the three-dimensionality of the flow, 

(B.8) 

where ). is the mean wetted length to beam ratio. The integral may be expressed as 

the sum of a velocity term and an acceleration term, 

(B.9) 

The longitudinal and heave perturbation velocities and accelerations are, respectively, 

denoted by u, u, z, i. The pitch angle perturbations are 0, O. Martin (1978a) obtained 

the following relationships, 

o( 
ot 

ds 
- = -COST 
dx 

o( . - = -SInT ox 

u sin T + i cos T iJ (a - s) 

(B.lO) 

(B.ll) 

(B.12) 

where T is the equilibrium trim angle of the boat and a is the value of s at the transverse 

flow-plane through the boat centre of gravity. From these equations and equation (A.6) 

we have to the first order in the perturbations, 

( = U sin T + u sin T + i cos T iJ (a - s) (B.13) 

( = U sin T + u sin T + i cos T - iJ (a - s) (B.14) 

(B.15) 

On substituting these equations into equation (B.9), dropping the second order per­

turbation terms, and integrating, Martin obtained, 

(B.16) 

where 

(B.17) 
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-- u + icotT + -._9-(
2FDS) ( BZ ) 

[1 SlnT 

+¢ (A) [(it sin T + Z cos T) folk f1ds (B.18) 

FDS represents the steady state hydrodynamic normal force 6.FD represents the lin­

earised force contributions from surge, heave and pitch perturbations in velocity and 

acceleration. Horizontal and vertical components of 6..FD yield the force stability 

derivatives. 

Similarly, the hydrodynamic moment is obtained by the product of the normal force 

and moment arm from the centre of gravity, (a - s), such that, 

and from similar substitutions to produce FD , we find, 

where, 

(2~DS) (u + i COtT) 

(A) 2[1 cos T [f1sZ~ + folk f1 (a - s )dS] e 

+¢ (A) (it sin T + Z cos T) folk f1 (a - s) ds 

-¢(A)B folk f1(a s)2ds 

(B.19) 

(B.20) 

(B.21) 

(B.22) 

Again, the coeffiecients of the perturbation terms are the moment stability derivatives 

with respect to velocity and acceleration perturbations. 

B.1.1.2 Sectional Added Mass Distribution 

In order to solve equations (B.16) and (B.20), expressions for sectional added mass 

need to be derived. 
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Martin considered the variation of f1 with s along the keel length. In order to do this, 

Martin employed Wagner's (1932) expression for added mass upto chine immersion, 

(Wagner1932) (B.23) 

where if (3 is the deadrise angle in radians, 

7r 
f((3) = 2(3 1 (B.24) 

and an expression for added mass over the chine, 

(B.25) 

where B is a function of deadrise and b is the boat beam. 

The first term in equation (B.25) comes from the value of added mass at the point of 

chine immersion where z = Zc = b/2. tan (3. The second term comes from an estimate 

of the effect of chine depth based on Schnitzer (1953) and Bobyleff (Lamb 1932) for 

infinite chine immersion. Martin tried to show that the point of chine immersion is 

not as obvious as the above equations suggest because of the complexity of the flow. 

To circumvent this problem, Martin fitted the steady state normal force equation to 

available steady state data. 

Shuford (1958) assumed that the planing hull normal force, FDS , at high speeds was 

made up of the sum of low aspect ratio wing lift and a crossflow drag term. The 

resulting expression fitted well with data obtained by many experimenters, enveloping 

a range of trim angles between 2° and 30°, wetted lengths from 1 to 7 beams and 

deadrise angles between 0° and 50°, 

1 2 [ 7rA 
FDS = "2 PU S 2(1 + A) sinTcosT(1 (B.26) 

where C D,c is the crossflow drag coefficient, S is the planform area of the wetted portion 

of the hull (;"b2
) and A is the aspect ratio (b2 

/ S = 1/;") 

If Sel decribes the distance s from the point of keel-calm water intersection to the point 

of effective chine immersion and Sc2 describes the distance s from the point of keel­

calm water intersection to the point at which the effect of chine immersion begins to 

grow, then from these limits for variation in added mass along the hull length, Martin 
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improved the simple equations (B.23) and (B.25) so that, 

{ 

E?}(f((3)stanT)2 0 < S < Sel 

J-la = ~(f((3)Sel tanT)2 Sel < s < lk 

~BbtanT(s Sc2) sc2<s:::;lk 

(B.27) 

where ( = stan T. The sectional added mass at any section, J-l, is therefore the sum of 

the contributions at that section. 

Finally, from equation (B.27), one can write, 

so that the steady state hydrodynamic normal force is, from equation (B.17), 

FDS = p~2 [¢(A)1f (f((3)Sel tan T)2 sin T cos T + ¢(A )Bb sin2 T (lk - Sc2) ] 

(B.28) 

(B.29) 

In order to fit Shuford's equation (B.26), Martin showed that they are identical if, 

A.(A) _ A_I 
'P -1+A-1+A (B.30) 

p1f 2 p1fb2 
2 (f((3)Sel tanT) = -4- (1- sin (3) (B.31) 

(B.32) 

(B.33) 

By substitution of equations (B.30) to (B.33) into equation (B.29) and non-dimensionalising, 

A 1f 
FDS = 1 + A"2 sin T cos T(1 - sin (3) + CD,c A sin2 

T cos2 T cos (3 (B.34) 

Also, from equation (A.24), 

(B.35) 

so, with the aid of equations (B.30) through to (B.33) and equation (B.35) into equation 

(B.21), the non-dimensional steady state hydrodynamic moment is, 

A 1f . . 2 
M Ds = 1 + A 2 smTcosT(l- sm(3)(Ak - "3 Aq - Ag) 

. A 
+CD,cA sm2 T cos2 T cos (3("2 - Ag) (B.36) 
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where, 

Ael 
Sel 

(B.37) 
b 

Ac2 
Sc2 

(B.38) 
b 

Ag 
19 

(B.39) 
b 

Ak 
lk 

(B.40) -
b 

B.1.1.3 Determination of Ael, Ac2' Ak 

Wagner found that the effective depth of an impacting V-bottom, before chine immer­

sion, is greater by a factor of 7r /2 to the depth relative to the calm water free surface. 

This is because of wave rise on impact. 

The equivalent semi-circular section that represents /-la is defined by an effective radius, 

c, such that, 

7r tan T 
c= -s--

2 tan{3 

Combined with equation (B.27) for 0 < S < Sel gives, 

(B.41) 

for s:S Sel (B.42) 

Shuford found that the term in brackets was better at representing the data if it was 

replaced by (1 - sin (3). Substituting into equation (B.42) and equating to equation 

(B.31) produces the following expression for c, 

c = h.(b/2) for S = Sel 

Substituting back into equation (B.41) gives, 

J2 tan{3 
Sel = ---b = Aelb 

7r tan T 

(B.43) 

(B.44) 

Now from extensive photographic evidence obtained by Brown (1971), the mean wetted 

length to beam ratio can be written as, 

(BA5) 
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where Ac , the ratio of wetted length of chine to beam, is, 

Ac = Ak - (0.57 + 0.001tJ) (tan/3 - 0.006/3) 
2tan T 

(B.46) 

provided Ac > 1.0. The last term in equation (B.45) is due to stagnation line curvature. 

Since Ak = A + AC2 then 

AC2 = 0.5 (0.57 + 0.001/3) 0.006/3 - 0.03 (B.47) ( 
tan/3 ) 

2tanT 

So all added mass distribution ranges are defined by equations (B.44), (B.46) and 

(B.47). 

B.1.2 Buoyancy Force and Moment 

With a high speed craft, there is a phenomenon where the pressure at the transom 

corner reaches atmospheric pressure and as a result the transom runs dry. This usually 

only occurs over a speed coefficient, Gv , greater than 0.5. In this case the usually 

vertically acting buoyancy force is considered to act normal to the keel. 

The non-dimensional steady state buoyancy force can be written as, 

(B.4S) 

where K, is an empirical correction factor to take into account the ventilation effect on 

the static pressure. Hsu (1967) proposed a value of 0.7 but a value of K, = 0.624 was 

found by Brown (1971) to agree better with data. 

Assuming that the buoyancy force acts one third of the wetted length from the transom 

corner, the steady state buoyancy moment can be written as, 

(B.49) 

B.1.3 Skin Friction 

Skin friction is considered to act tangential to the keel and midway between the keel 

and chine line. 
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Savtsky (1964) gives it as a function of mean wetted area, 

F - ACf 
FS--­

cos (3 

where Cf is defined as the ITTC value, Cf = 0.075/(ln(Rn) 

The steady state skin friction moment is, 

tan{3 
M FS = -FFS(Av - --) 

4 

B.1.4 Towing and Aerodynamic Forces 

(B.50) 

2) 

(B.51) 

The towing and aerodynamic forces are considered to act in a direction parallel to the 

steady state part of the straight line motion. 

The tow force, Ts , is set equal to the drag or sum horizontal component of all the 

steady state forces. The aerodynamic force, Fws , acting against the tow carriage was 

measured and non-dimensionalised to give, 

F~s = 0.0032 

The moments about the centre of gravity for tow force and wind force respectively are, 

where, 

(B.52) 

(B.53) 

(Akn - Av) cos T + (Aen - A9 ) sin T 

non-dimensional coordinates of the towpoint to transom corner 

coordinates of the resultant wind force 

perpendicular distance from the keel to the CG 
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B.2 Solution of Steady State Forces for Equilibrium 

Substitution of equations (B.34), (B.4S) and (B. 50) into equation (B.3) gives the steady 

state lift equation, 

w=-zs _A_ ~ sin 7 cos2 7( 1 - sin 13) + CD c sin2 7 cos3 7 cos 13 
1+A2 ' 

0.624A
2
sin7cos7 ACf . (B.54) + C2 - -13 SIll 7 

v cos 

which gives, as a cubic equation in A, 

where, 

DA3 + (C + D + E)A2 + (B + C - E - W)A - W = 0 

B 

C 

D 

E 

A 1r 
--- sin 7 cos2 7(1 - sin 13) 
1 + A 2 

CD,c sin2 7 cos3 7 cos 13 
0.624 sin 7 cos 7 

C2 
v 

Cf sin 7 

cos 13 

(B.55) 

Substitution of equations (B.36), (B.49), (B.51), (B.52) and (B.53) into equation (B.5) 

gives the overall steady state moment equation, 

Ms = 

where, 

h(7) = AC2 
2 
-A 1 3 c 

(B. 56) 

Now for a given value of trim angle, 7, we have three solutions for mean wetted length­

to-beam ratio, A, from the cubic equation (B.55). Each of these pairs of A and 7 must 

be substituted into equation (B.56), for successive values of 7, until Ms = O. When 

this is satisfied, the trim angle and mean wetted length for the steady state equilibrium 

are found. 
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B.3 Stability Derivatives 

The stability derivatives are needed to determine the craft's response to force and 

moment perturbations. The velocity and acceleration stability derivatives are derived 

from the linearised dynamic normal force and moment perturbations in surge, heave 

and pitch, namely llFD and llMD. 

Resolving llFD vertically and non-dimensionalising (by dividing by 1j2pb2U2
), 

llZD = -2FDS cos T (u + i cos T + ~A9) 
smT 

-¢(A) { (usin TCOS T + i cos2 
T) lAk f1ds + (j lAk {L(a - S)dS} 

and resolving llFD horizontally and non-dimensionalising, 

llX~ = llZ~ tan T 

it is possible to derive the stability derivatives such that, 

X· u Zu tan T 

Xu Zu tan T 

X·· z Zz tan T 

X· z Zi tan T 

X·· e Z··tanT e 

X· e ZiJtan T 

Z· u -¢(A) sin T cos T / f1ds 

Zu -2¢(A){Ls sin T cos2 
T 

Z·· z -¢(A) cos2 
T / {Lds 

Z· z 2¢(A){Ls cos3 
T 

Z·· e -¢(A) / {L(a s)ds 

Z· e -2¢(A){LsAg cos2 
T 

(B.57) 

(B.58) 

(B.59) 

(B.60) 

(B.61) 

(B.62) 

(B.63) 

(B.64) 

(B.65) 

(B.66) 

(B.67) 

(B.68) 

(B.69) 

(B.70) 
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The stability derivatives from the moment equation (B.22), are obtained in the same 

manner as, 

Mil ¢(>.) sin T / /-l(a - s)ds (B.71) 

Mu 2¢(>') sin T cos T (/ /-lds - >,g/-ls) (B.72) 

Mz ¢(>.) cos T / /-l(a s)ds (B.73) 

Mi 2¢(>') cos2 T (/ /-lds - >,g/-ls) (B.74) 

M .. e -¢(>.) / /-l(a-s)2ds (B.75) 

M· e -2¢(>') cos T (/-ls>'; + / /-l( a - s )dS) (B.76) 

The remaining stability derivatives are the static stability derivatives and can be readily 

obtained from equations (B.54) and (B.56). Since for a given deadrise, these equations 

are functions only of >. and T, it can be written that, 

Zz 
oZ oZso>. 

(B.77) --
oz a>. oz 

Xz 
AX oXso>. 

(B.78) --
oz a>. ax 

Mz 
aM oMs a>. 

(B.79) ---
oz a>. oz 

Ze 
oZ oZs oZs 0>. 

(B.80) -=-+--
of) aT a>. OT 

Xe 
aX oXs oXs 0>. 

(E.81) -=-+--
of) aT a>. OT 

Me 
aM oMs oMs 0>. 

(B.82) -=--+---
of) aT a>. OT 
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where, 

where, 

Also 

( )

2 . 
COST sm T 

-GsinT --, -HSin2 TCos3 T-2JsinTCOSTA+Cf -{3 (B.83) 
I+A COO 

A . 
-G--, (COS3 T - 2Sm2TCOST) HA (2sinTCOS4 T - 3sin3 TCOS2 T) 

I+A 
2 COST 

-2JA COS 2T + Cf A-{3 
COS 

oZs oFps 1 oZs 
-tanT + ----::::; -tanT 
OA OA COST OA 
oZs Zs Fps tan T oZs Zs 
- tan T + -- + ::::; - tan T + --
OT cos2 T COS T OT cos2 T 

GsinTcosT [(_1_)2 (A h(T) - Ag) + _A_] 
I+A I+A 

+ H sin 2 T cos2 T (A - Ag) + J sin T A (A - 2Ag) 

Cf (tan{3 ) (OZs Cf ) +-{3 -4- - Av + ;:), tan T {3 f(k1 , el) 
cos UA cos T cos 

G 1 ~ A [cos 2T (A + h( T) Ag) + (0.157 - 0.00025{3) :::~] 

+ H A (~ - Ag) sin 2T cos 2T + J A2 (~ - Ag) cos T 

(
OZs Zs CfA tan T) 

+ -tanT+-- f(kllel) 
OT cos2 T cos T cos {3 

(B.84) 

(B.85) 

(B.86) 

(B.87) 

- (Zs tan T - CfA FWs) g(kl' er) Fwsg(k2, e2) (B.88) 
cos T cos {3 

OA 
OZ 
OA 
OT 

G 
7[(1- sin{3) 

2 
H CD,c cos{3 

J 
0.624 

C2 
v 

1 

smT 

- 9 + Av + (0.57 + O.OOI{3) . 2 (
Ak - A) tan{3 
tan T 4sm T 

(B.89) 

(B.90) 

(B.91) 

(B.92) 

(B.93) 
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B.4 Hydrodynamic Normal Force and Moment in 

Waves 

The method for deriving the hydrodynamic normal force and moment has already been 

discussed in section B.1.1.1 which leads to, 

(B.94) 

for the hydrodunamic normal force and, 

(B.95) 

for the hydrodynamic moment. In calm water, the derivatives for (are given (equations 

(B.13) and (B.14)). However, in waves there will be an added component, (w, so that, 

(= stanT + (w (B.96) 

and, 

( UsinT + (w (B.97) 

( (w (B.98) 

SInce, 
as 
- = -COST 
AX 

N ow the sectional distribution of added mass must allow for the variation in draught 

due to wave elevation so that equation (B.27) becomes, 

( 

Tf(tJ)2(stanT + (w)2 0 < s::::: Sel 

/-la = T f(tJ)2(Sel tan T + (w)2 Sel < S ::::: lk 

~Bbtan T(S Sc2) Sc2 < S ::::: lk 

(B.99) 

Substitution of equations (B.99), (B.98) and (B.96) into (B.9) and discarding second 

order terms in the wave disturbance gives, 

(B.100) 
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where, 

FI ¢()..)P7rf(f3)2U2sin2
T l Sel 

(stanT + (w)ds (B.lOl) 

F2 2¢()..)p7r f(f3)2U sin T tan T l Sel 

s(wds (B.102) 

11k F3 ¢()..) BbpU sin T (wds (B.103) 
Sc2 

F4 ¢()")BbEU2 sin2 
T ds 11k 

2 Sc2 

(B.104) 

F5 - ¢()..) 11k p(w ds (B.105) 

By multiplying each of these forces by a moment arm (a-s), the hydrodynamic moment 

about the centre of gravity is, 

where, 

(B.106) 

(B.107) 

(B.108) 

(B.109) 

(B.llO) 

(B.lll) 

(B.1l2) 

B.4.1 Relative Fluid Displacement, Velocity and Acceleration 

To determine the hydrodynamic force and moment equations, expressions are required 

for the contribution to section immersion from the waves, (w, and its derivatives. 

Let ¢w represent the velocity potential of a deep water wave such that, 

(B.113) 
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where, 

i3h angle of wave crests from boat x-axis; 

i3h = 0 and rr in head and following seas respectively 

h wave amplitude, waveheight/2 

c wave celerity 

k 2rr / Lw wavenumber 

Lw wavelength 

t time 

In head and following seas only, 9w reduces to, 

9w = ihce -kz .e'fik[x+(U ±c)t] (B.114) 

The upper sign refers to head seas and the lower to following seas. 

Encounter frequency, We, is, 

We = k (U c) (B.1l5) 

The wave elevation rJ(x, t) is, 

rJ(x,t) = ~ (d(9w )) = he'fi(kx+we t ) 

g dt z=o 
(B.1l6) 

since c2 = g/k. 

The horizontal and vertical components of the orbital velocity are given respectively 

by, 

(B.1l7) 

(B.1l8) 

where the circular frequency of the orbital motion is W = kc. Taking the sum of the 

vertical components of wave orbital velocity, 

-Vw SIn T - Ww cos T 

-iwhe-kz e'f(kx-r+wet) 

(B.1l9) 

(B.120) 
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The contibution to immersion from the wave can now be written as, 

(B.121) 

Using equation (B.7) and differentiating equation (B.120), 

(B.122) 

B.5 Normal Force and Moment Due to Ambient 

Pressure 

The force due to local pressure effects, namely buoyancy and wave perturbation pres­

sure can be written as, 

Fp = 11k P [9Z + d~w)l ds (B.123) 

The first term is due to buoyancy and can be evaluated from equation (B.48). The 

second term is from the wave perturbation pressure and can be evaluated from equation 

(B.114). 

Assuming that the buoyancy force acts one-third of the mean wetted length forward of 

the transom corner gives good agreement with experimental data (Brown 1971). The 

moment can therefore be written as, 

(B.124) 

B.6 Wave Excitation Force and Moment 

From equations (B.2), the wave excitation force can now be represented by the sum of 

the separate force contributions, namely equations (B.105) and (B.123) such that, 

(B.125) 

FBS and FDs are subtracted because of the interest only in the motions about the 

steady-state equilibrium condition. 
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Likewise, the wave excitation moment can be written as 

(B.126) 

B.7 Solution of the Equations of Motion 

The equations of motion can now be solved. The solution to equations (B.2) is a steady 

state simple harmonic motion in the perturbations. 

Let, 

(B.127) 

(B.128) 

Substituting the above equations and their derivatives into equations (B.2) gives, 

[(ZE - m) w; - Zz iZiWe] Zo + [Zew; - Zo ± iZoWeJ eo = (zt 
[MEw; Mz iMiweJ Zo + [(Me Iy) w; - Mo ± iMowe] eo = (M)w 

(B.129) 

The surge equation has been omitted because of its insignificance, but the inclusion 

can be readily done. Surge has been shown by a number of authors and experimenters, 

e.g. Fridsma (1969) to be insignificant; the difference between "constant-velocity" tests 

and" constant-thrust" tests being negligible. 

The solutions to equations (B.129) give the complex amplitude of the boat motions, 

Zo = ZR + iz] Izol eiaz 

eo = eR + ie] = leal eiae 

Subscripts R and I refer to real and imaginary parts. 

The displacement amplitudes and phase angles are given as, 

Izol = Jz~ + zJ 

leal Je~ + eJ t -1 (OJ) C\:Z = an OR 

(B.130) 

(B.131) 

(B.132) 

(B.133) 
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Nomenclature 

a 

B 
b 

Cv 
Cf), 
C).. 

C)"R 

C 

FBS 

FD 
FDS 

Fps 
(Fh)w 
(Fp)w 
(F1)w 
(F2)w 
(F5)w 
/((3) 

9 
H 
h 
Iy 
k 

ko 
ky 

LCG 

value of s at transverse plane through boat centre of gravity 
(CG) 
Bobyleff's function of deadrise 
beam of boat 
cross flow drag coefficient 
hydrodynamic friction coefficient 
boat lift coefficient non-dimensionalised by beam, 
2CDelta/C~ 
speed coefficient, U / Viib 
load coefficient, ~/ pgb3 

modified version of wavenumber 
value of C).. at resonant encounter frequency 
wave celerity 
steady-state buoyancy force (equal to F B in figure (A.8)) 
dynamic part of hydrodynamic normal force on hull 
steady state part of FD (equal to R in figure (A.8)) 
frictional force parrallel to keel (equal to FD in figure (A.8)) 
normal force due to wave elevation 
force on hull due to perturbation pressure from wave 
normal force due to slope of wave 
normal force due to wave orbital velocity 
normal force due to wave orbital acceleration 
deadrise function of Wagner 
acceleration due to gravity 
wave height, 2h 
wave amplitude 
pitch moment of inertia about CG 
wavenumber, 21f / Lw 
modified wavenumber 
radius of gyration 
distance from transom to longitudinal CG, measured parallel 
to keel 
wavelength 
overall length of boat (m) 
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19 
lk 
1m 
M 

M BS 

MD 
M DS 

Ms 
M z , A1e, M u , etc 

(Mh)w 
(A11 )w 
(M2 )w 
(M5)w 
RAO 

S 

u, u, U 

Vk 

W 
X 
XD 

Xs 
Xu, X z, X e, etc 

Xel 

Xd 

Z 
ZD 
Zs 

Zz, Ze, Zu, etc 

z 

IZ~I 

LCG 
length of wetted portion of keel 
mean wetted length of hull 
hydrodynamic pitch moment relative to CG 
steady-state pitch moment due to buoyancy 
dynamic part of hydrodynamic pitch moment 
steady state part of MD 
total steady state pitch moment 
partial derivative of pitch moment with respect to motion 
variables z, B, u etc, respectively 
pitching moment due to wave elevation 
pitching moment due to wave slope 
pitching moment due to wave orbital velocity 
pitching moment due to wave orbital accn 
response amplitude operator 
coordinate measured along keel from foremost immersed sta­
tion of keel 
see equation (A.37) 
see equation (A.40) 
time 
steady reference speed of boat, ms-l 
perturbation in surge displacement, velocity and accelaration 
steady reference speed of boat, knots 
boat weight 
hydrodynamic force component in direction of positive x 
dynamic part of hydrodynamic X-force 
steady state part of X 
partial derivative of pitch moment with respect to motion 
variables u, z, B, etc, respectively 
horizontal coordinate in direction of U 
horizontal distance from CG to formost immersed point on 
keel, where s=O 
Sell cos T 

see equation ( ) 
hydrodynamic force component in direction of postive z 
dynamic part of hydrodynamic Z-force 
steady state part of Z 
partial derivative of pitch moment with respect to motion 
variables z, B, u etc, respectively 
vertical coordinate, postive down; perturbation in heave at 
CG 
non-dimensional amplitude of vertical displacement of CG 
from steady calm water position 
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ax, a z , ao phase angle of surge, heave and pitch motion, respectively, 
with respect to wave height 

13 deadrise angle 
13h wave heading angle 
~ boat weight in kg 

(, ( components, normal to keel, of relative velocity and accelera­
tion, respectively 

e pitch angle perturbation, positive bow up 
leol amplitude of boat pitch angle perturbation from steady, calm 

water trim angle, in radians 
A mean wetted length to beam ratio 

Ac length of wetted chine to beam ratio 
Ac1 non-dimensional value of Sel, Sel/b 

AC2 non-dimensional value of Sc2, Sc2/b 

Ag non-dimensional value of LCG, LCG /b 
Ak non-dimensional value of lk' lk/b 
f.1 total sectional added mass 

f.1a contribution to sectional added mass 
f.1s sectional added mass at the transom 
v kinematic viscosity of water 
( boat damping ratio 
p density of water 
()" stability root 

()" I imaginary part of ()" 
()" R real part of ()" 
T steady state trim angle measured from keel line to calm water 

free surface at reference speed U (equal to e in figure (A.S)) 
Tc calculated value of T 

T w average wave slope near bow 
¢( A) three-dimensional or aspect ratio correction factor 

W circular frequency of waves 
We circular encounter frequency with waves 



Appendix C 

Added Mass and Damping 

Coefficient 

C.l Introduction 

The accurate solution of the governing equations of motion are very much dependent 

on the accurate evaluation of the hydrodynamic coefficients. The hydrodynamic coef­

ficients themselves require the evaluation of the added mass terms. 

As a body oscillates within or on a fluid, the fluid velocities adjacent to the body 

changes. The additional force required to accelerate this fluid is obtained by consid­

eration of an appropriate increase in apparent mass of the body, added mass. For a 

ship-shape section oscillating in the free surface, it is a quantity that is dependent on 

the wetted surface area and the frequency at which it oscillates (Ursell 1949). 

The sectional damping coefficient is a measure of the section's ability to dissipate 

energy. As the section oscillates in the free surface, waves are generated that radiate 

outwards, the amplitude of these generated waves in comparison with the amplitude 

of the heaving motion determine the value of sectional damping. 

In linear frequency domain analyses where oscillations are typically small, the added 

mass and damping coefficients can be considered to be independent of time. For planing 

hulls undergoing large motions in waves this is obviously an over simplification. The 

232 
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wetted surface area is constantly changing and as a result the solution of the equations 

of motion need to be solved in a time-domain fashion. 

C.2 Multi-parameter Conformal Mapping, N > 2 

Ship-shape sectional added mass and damping coefficient are derived from the known 

hydrodynamic coefficients of a semi-circular section of unit radius oscillating in a fluid 

at infinite depth. Lewis (1929) mapped the semi-circular section into a ship section by 

the use of a conformal transformation: 

z X 'iY 

where ( = ie-iB describes the semi-circle which is mapped into the ship section de­

scribed by the co-ordinates (x, y) in the z-plane and a is a scale factor having the 

dimension of length. The coefficients al and a3 are constants which must be deter­

mined for a given section. The family of forms produced by this transformation are 

commonly called 'Lewis forms'. This is effectively a 2-parameter transformation since 

the section is defined by two coefficients, as a result the Lewis forms, whilst convenient 

to apply, limited in application to those of more simple shape. 

Typically, added mass for planing craft is evaluated using a Lewis method (Payne 

1988), thereby neglecting the influence of the free surface and treating the hull section 

to be oscillating at an infinite frequency. This is not necessarily inappropriate provided 

that on treatment of the planing hull in waves, the underwater section is not complex in 

shape and the encounter frequency of the waves is high. But what if these assumptions 

cannot be made? 

Bishop et al (1978) provide a concise summary and comprehensive reference list of 

the development of conformal transformation theory. They also demonstrate a multi­

parameter technique that provides added mass and damping coefficients for more com­

plex hull forms, which will be briefly described later. The benefits of applying this 

multi- parameter method is that discontinuities possibly associated with planing hull 

underwater shape, such as spray rails and stepped hull forms, can be included in the 

evaluation of hydrodynamic coefficients which may also be frequency dependent. 
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C.3 Lewis Added Mass Approximation, N = 2 

From Bishop and Price(l974), consider an infinitely long circular cylinder of diameter 

B moving in a direction perpendicular to its axis in an infinite, incompressible, inviscid 

liquid of density p which is at rest at infinity. Let the velocity of the cylinder at any 

instant be U, so that the kinetic energy per unit length is mU2/2. Now as the cylinder 

moves it displaces liquid particles such that they are moved "astern". The liquid 

thus acquires kinetic energy that at any instant in time, per unit length, is given as 

p7r B 2U2 18. Thus the total kinetic energy per unit length of the cylinder is given by: 

(m + ma)U2 mU2 p7r B 2U2 
2 = -2- + 8 (C.l) 

where 

m mass per unit length of cylinder 

ma mass of displaced liquid from unit length of cylinder. 

In order to determine the magnitude of an external force F acting on the cylinder in 

the direction of U, and assuming no change in potential energy, we can write: 

FU = d(mU2/2 + maU2/2)ldt (G:2) 

so that F = (m + ma)U 

The kinetic energy method for a moving cylinder can now be compared to the potential 

flow method around an accelerating cylinder such that the two coefficients Cv and Ch 

for a ship floating at a free surface can be found, where 

C (added mass per unit length of body in 2D flow) () 
m,h - (added mass per unit length of comparable cylinder) C.3 

and Cm is the coefficient for vertical motions (symmetric motions of heave, surge and 

pitch) Chis the coefficient for horizontal motions (asymmetric motions of sway, roll 

and yaw) 

hence 

Cm mal(7rpB2/8) 

C h mah / ( 7r pT2 I 2) 
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where B = sectional beam, T 

horizontal plane. 

sectional draught and mah is added mass III the 

Lewis assumed that the flow around a circular cylinder floating half immersed in the 

water surface is identical to that around a deeply submerged cylinder. By conformal 

transformation of an infinitely long ship section half submerged in an infinite depth 

fluid, oscillating at high frequency, to that of a deeply submerged cylinder of unit 

radius, he could determine the added mass. The conformal transformation used is: 

(C.4) 

where rJ = ei8 describes the cross section of the original half immersed circular cylinder 

of unit radius which is in effect mapped onto the ship shaped equivalent section de­

scribed by the co-ordinates (~, v). The coefficients al and a3 depend on the geometry 

of the section. [A more general conformal transformation leads to the Tasai-Porter 

close fit method and is given by: 

/.<" = ~ a n-(2p-l) 
Iv L.....t 2p-I·', 

where the values of a2p-1 are the transformation variables and a_I = 1. For the 

Lewis method N 2, in the Tasai-Porter method N is varied to give the appropriate 

accuracy.] 

Substitution of rJ = et /3 = cos f3 + 1. sin () leads to 

hence rc 

therefore x 

and v 

cos f3 + 1. sin f3 + al cos j3 - WI sin j3 + a3 cos 3f3 - a3 sin 3f3 

~ + zv = (1 + al) cos f3 + a3 cos 3f3 + 1.[(1 - ad sinf3 - a3 sin 3f3] 

(1 + al) cos f3 + a3 cos 3f3 

(1- al)sinf3 - a3sin3f3 

Now we know that when f3 = 0, ~ = B/2 and v = 0 and j3 = K/2, ~ = 0 and v = 0 

therefore B/2 = 1 + al + a3 and T = 1 - al + a3' 

The coefficients al and a3 are related to the sectional area coefficient o"s and beam-to­

draught ratio As of a ship section such that 

o"s Ax/(BT) = K(l - ai -3a~)/4[(1 + a3)2 ail 
As B/T = 2(1 + al + a3)/(1 al + a3) 
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Solving these equations simultaneously leads to solutions for a1 and a3 such that: 

and 

where E = B/2T, (B = 2b) 

and 

(E -1) 
a1 = E + 1 (1 + a3) 

( 
4Ax ) ( 4Ax ) (E - 1) 2 C1 = 3+- + 1-- -
7fBT 7fBT E + 1 

Ax is the sectional area and is given by 2 f07r/2 ~dv = 7f /2.(1 - ai - 3a~). 

At high frequencies, the potential flow solution for added mass reaches an asymptotic 

value so, from Bishop and Price (1974), the added mass of a symmetrical sectional hull 

shape in vertical oscillatory motion given by: 

rna 7f; (1 + 2a1 + t(2P 1)(a2P _ d2 ) 
p-o 

where, for Lewis forms, N = 2. 

Hence we have 

[(1 + a1)2 + 3a~1 
(1 + a1 + a3)2 

(C.5) 

Equation (C.5) describes the added mass coefficient from a 2-parameter conformal 

mapping, valid for infinite encounter frequency. Payne (1995) simplifies this expression 

for wedge forms into a dependency upon the deadrise angle, (3. 

Cm = (1 £)2 (C.6) 
27f 

The applicabiity of this is shown in figure (A.154) where it is clear that increasing the 

deadrise angle increases the accuracy of equation (C.6). 

C.4 Frequency Dependency of the Hydrodynamic 

Coefficients 

Figures (A.150) and (A.151) show typical plots of the variation of added mass and 

damping with frequency, whence it can be seen that the evaluation of the coefficients 
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is very much dependent on the frequency when the frequency of oscillation is a small 

finite value. As the frequency of oscillation increases, an asymptote is reached for both 

the added mass and damping values. 

High speed planing theory typically makes the assumption that the added mass and 

damping coefficients can be taken at their asymptotic value, i.e. where the frequency 

of craft oscillation is infinitely high. At first hand, this may seem to be a reasonable 

assumption since the high speed problem involves large forcing encounter frequencies 

and this approach reduces the complexity of evaluating the hydrodynamic coefficients. 

However, there is a considerable range of frequencies, associated with low speed plan­

ing or low encounter frequency, where this assumption will lead to the under or over 

prediction of the added mass and damping terms, which in turn can be expected to 

have a significant effect on the accuracy of the final solution. 

Troesch (1992) carried out a series of experimental tests whereby the hydrodynamic 

coefficients were evaluated for various frequencies and amplitudes of motion in pure 

heave or pure pitch. A 20° deadrise form was tested with Lwet/ B = 3,4 and Cv = 

1.5,2.0,2.5. The results showed that the hydrodynamic coefficients are relatively ampli­

tude independent especially in heave, for Cv < 2.5 and small amplitude perturbations, 

z/ B < 0.12 and e < 2.2°. However, the added mass coefficients, and to a lesser extent, 

the damping coefficients, are frequency dependent for low to moderate speed planing 

conditions. 

In order to demonstrate the effect of frequency and amplitude dependency on the 

hydrodynamic coefficients, NoLiPCraMPwas run under pure heave and pure pitch tests 

with constant restoring force coefficients and the frequency dependent terms neglected. 

The craft tested were not the same as Troesch's craft 1 but a qualitative comparison 

could still be reached. Figures (A.83) to (A.86) show the non-dimensional values ofthe 

hydrodynamic coefficients against non-dimensional amplitude or frequency. For the low 

planing speed of Cv = 1.33, the coefficients are amplitude independent with significant 

dependency for very high speed planing, Cv = 4.00. This reflects Troesch's results and 

at the higher planing speed demonstrates the significant non-linear characteristics of 

the coefficients. The frequency dependency graphs though show poor agreement with 

the results of Troesch, but this is as expected since the program is considering the 

added mass and damping terms to be frequency independent. The consequence of this 

1 Fridsma's configuration Hand J with Cv = 1.33,4.00, L / B = 5, f3 = 10° 
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is to show the importance and validity of modelling the frequency dependency in the 

hydrodynamic coefficients, especially for lower planing speeds; an approach that has 

not been commonly used in planing theory. 

The inclusion of frequency dependence in a time-simulation is, however, computation­

ally expensive. The added mass is dependent on the instantaneous underwater shape 

of the hull so a method for reducing the problem is presented forthwith. Firstly, the 

added mass for each defined section is calculated for a range of frequencies and drafts 

using a six-point conformal mapping technique. A quadratic spline is then fitted to 

the values of added mass and damping for each frequency value. Linear interpolation 

can be used for frequencies in-between. The coefficients of the quadratics are then the 

only required information for the evaluation of instantaneous added mass. 



Appendix D 

Added Resistance 

Vossers (1961) and Hanaoka et al. (1963) suggested that the added resistance in waves 

for a vessel heaving and pitching may consist of three components: 

1. A resistance force, resulting from interference between incident waves and waves 

generated by the ship when heaving and pitching. This component would be the 

same as the so-called drifting force. 

2. A component which would be equivalent to the damping force associated with 

forced heaving and pitching in calm water, for example, under the excitation of 

some external mechanism such as an oscillator. 

3. An added resistance due to wave reflection against the ship - commonly called 

the diffraction effect. 

These are all inter-related and interactive which makes division into three measurable 

areas very difficult. Although the waves produced by the separate force components 

can be superimposed, the actual force components themselves cannot because of their 

relation to the square of the wave height. 

These three categories help the understanding of the mechanisms for added resistance 

and measurements and special experimental techniques, such as forced oscillation, have 

shown that, in general, the drifting force would make the largest contribution to the 

added resistance whereas diffraction effects would be the least significant. 

239 
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Havelock (1945) formulated an equation for the added resistance in regular waves as a 

function of heave amplitude, Za, and pitch amplitude Oa, as follows: 

(D.1) 

where k is the wave number, Fa and Ma are the exciting force and moment amplitudes, 

and tZF and tOM are the phase angles between the exciting function and the response 

for heave and pitch, respectively. 

More commonly the above equation is shown as 

(D.2) 

where We is the wave-encounter frequency and Nz and No are the damping coefficients 

for heave and pitch respectively. 

The lack of coupling in these equations between heave and pitch does not remove 

the fundamental concept shown by these equations. Gerritsma and Beukelman (1972) 

and Hanaoka et al. (1963) discussed these equations pointing out that the source of 

added resistance is the phase relationship between the ship motions and the forcing 

functions. A phase lag can only exist when there are non zero damping terms in the 

equations of motion. The energy loss associated with the damping is related to the 

work done in keeping the ship motions in a constant phase relationship with the forcing 

functions. This energy is supplied by the ship and is dissipated in the form of fluid 

friction and radiation of the waves produced by the ship oscillation. These 'damping 

waves', indirectly generated by the damping characteristics of the ship, contain the 

major portion of the wave energy dissipated by the ship. If we can compute the energy 

stored in these radiated damping waves then we can evaluate the added resistance. 

Analytical considerations tell us the nature of added resistance in waves: 

1. Added resistance is proportional to the square of the wave height. 

2. Added resistance in a seaway is independent of calm-water resistance. 

3. Added resistance depends upon the craft motions and their phase relationship to 

the wave field. 
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In general it can be assumed that the maximum wave resistance will occur around 

the point of maximum relative motion (heave and pitch resonance) because of the 

dependency of added resistance on the square of relative motions. Strom-Tejsen et 

al. (1973) also pointed out that because of the direct heave and pitch relationship, the 

hull characteristics that lead to poor motion response behaviour will also produce a 

large added resistance. 

The added resistance has been shown to be related to the energy flux radiated away 

from the craft to the water. Little of this energy is consumed in viscous effects since 

viscous damping is shown to be insignificant compared to hydrodynamic damping. 

Objectively it can be assumed that added resistance is therefore a non-viscous phe­

nomenon, almost exclusively determined by inertial and wave effects. Model testing 

can then be Froude-scaled up to full scale. The ship added resistance can be evaluated 

by using the product of the model resistance and scale ratio cubed. 

Added resistance in irregular waves can be determined by applying the principle of 

superposition to equation (D.1). This assumes that the added resistance is proportional 

to the square of the wave height and that Froude Law dynamic scaling is carried out. In 

regular wave cases it is necessary to justify the application of the wave height squared 

assumption and the principle of superposition. Strom-Tejsen et al. (1973) give a good 

history to the validity of applying these assumptions with the result being that " .. the 

linear relationship between added resistance and wave height square, at constant speed 

and wave length, can be considered a very good approximation for practical purposes." 

and the principle of superposition " ... was valid as long as the added resistance could 

be considered a purely second-order function of wave height.". 

Gerritsma and Beukelman (1972) looked at the added resistance of a ship in waves as 

a result of the radiated damping waves created by the motions of a ship relative to the 

water. They worked on Joosen's variation, equation (D.2), of Havelock's expression 

for added resistance, equation (D.1). This allowed for forward speed of the ship by 

including the encounter frequency in their equations. 

Gerritsma and Beukelman give the radiated damping energy, P, of the oscillating ship 

during a period of encounter, Te , as, 

(D.3) 
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where V is the sectional impact velocity and the sectional damping coefficient for a 

ship at speed is, 

b' - N' dma - -Uo--
dx 

(DA) 

As V is a harmonic function with amplitude Va and a frequency equal to the frequency 

of encounter, We, then, 

(D.5) 

Following Maruo (1963), the work done by the towing force, RAW, required to pull the 

ship through waves is given as, 

(D.6) 

where c is wave celerity. 

From equation (D.5) and (D.6) it follows that, 

(D.7) 

The theory behind added resistance is mathematically sound such that any errors in 

added resistance values are more likely to stem from the error in predicting hydrody­

namic coefficients than added resistance theory. The added mass and damping which 

lead to expressions found in Gerritsma-Beukelman's theory for added resistance need to 

be accurately determined, especially since the vertical relative motions are required to 

second order. Salvesen (1978) showed the importance and extreme variation in results 

due to different methods of calculation of the hydrodynamic coefficients. He suggested 

that as a result of the added resistance being a second order non-linear phenomenon, 

an accuracy of pitch and heave motions to within 10-15% would give at best an added 

resistance prediction with 20-30% accuracy. 

D.I Application to Planing Craft 

The very notion of operating a planing craft is to develop the highest possible lift:drag 

ratio, bearing in mind other design criteria. The resistance of a planing craft is consid­

erably less than that experienced by a displacement craft of similar specification. Calm 
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water resistance is usually not larger than 20% of the craft weight, whilst the incremen­

tal increase in resistance due to operation in waves is an order lower, around 2% of the 

craft weight. This means that from a design perspective, added resistance is usually 

accounted for by tolerance in powering requirements. From a theoretical point of view, 

inaccuracies in numerical application would be likely to produce uncertain added re­

sistance results. However, the above methodology, namely equation (D.7), is imposed 

within the program NoLiPCraMPto investigate the prediction of added resistance in 

waves. 

The results of this investigation are presented in figures A.152 and A.153. It is quite 

obvious that the predicted results are extremely encouraging. The magnitude of the 

quantities that are being predicted in comparison with the magnitude of the quantities 

(vertical velocity and damping coefficient) from which they are derived is small and 

therefore, as mentioned above, extremely sensitive to errors in those values. This does 

not seem to affect the theoretical agreement with the experiments of Fridsma (1969). 

However, given the results of figure A.141, which shows obvious discrepancy between 

two different experimenters results for added resistance, any conclusions as to the com­

parability between predicted and experimental added resistance must be approached 

with caution. 



Appendix E 

Hydrodynamic Coefficients 

Listed herein are the hydrodynamic coefficents used in the equations of motion. All 

second and higher order terms in motion perturbations are neglected. The frequency 

independent stiffness coefficients related to steady planing in waves c;j are identical to 

Cij except that ma is replaced by the frequency independent term, m:. CD,c represents 

damping and crossflow drag. 

244 
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m33 M + cos2 e 1£ ma dx 

m35 - cos e 1£ maX dx 

mS3 cos e 1L maX dx 

mS5 I + cos e 1£ m ax2 dx 

n33 cos e 1£ ma dx - 2pCD ,c X cg cos e sin e 1£ b dx - Xcg cos2 emalstern 

+Xcg sin2 emalstern + 2 cos2 e 1L bwz dx + 2 sin () cos ewzmalstern 

-2cosesine 1£ ~~madX 
n35 -Xcg cos e 1£ ma dx + 1£ maX dx + 2pCD ,c X cg sin e 1£ bx dx 

+Xcg cos exmalstern - sin e 1L maWz dx - 21L bxwz dx + sin ewzxmalstern 

1£ awz 
+ sin e 0 ax maX dx 

n53 COS e 1£ maX dx + 2pC D,cXcg cos () sin e 1£ bx dx + Xcg cos2 exma Istern 

-Xcg sin2 exmalstern + Xcg cos2 e 1£ ma dx - Xcg sin2 e 1£ ma dx 

2 cos e sin ewzxmalstern - 2 cos e sin () 1£ wzma dx 

+2 cos e sin e 1£ ~~ maX dx 

n55 1£ m ax 2 dx - 2pCD ,cX cg sin e 1£ bx2 dx - Xcg cos ex2m a Istern 

+2 cos e 1£ bxw; dx - sin ewzx2malstern - sin () 1L awz m ax 2 dx 
o 0 ax 
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C33 0 

C35 -Xeg 1£ madx - X~gcosBXmalstern 2pCD,eX~gsinB 1£ bdx 

+2pCD,e Xeg cos B 1£ bwz dx - Xeg sin Bwzmalstern + cos Bw;malstern 

-Xeg sin B 1£ ~~z ma dx + 2cos B 1£ ~~z wzma dx 

C53 0 

C55 -Xeg 1£ maX dx + X~g cos Bxmalstern + X~g cos B 1£ ma dx 

+pCD,eX~gsinB 1£ bxdx + Xeg sin Bwzxmalstern - cos Bw;xmalstern 

+xeg sin B 1£ mawz dx - cos B 1£ maW; dx + Xeg sin B 1£ ~~ maX dx 

r£ oWz 
-2 cos B Jo ox wzmax dx 

e3 cos B 1£ O~z ma dx + cos B 1£ maWz dx - cos2 B 1£ bW; dx 

+Xeg cos2 Bwzmalstern + Xeg cos B 1£ ~~ ma dx - pg 1£ KA dx 

e5 - cos B 1£ o;z maX dx - cos B 1£ mawzx dx + cos2 B 1£ bW;x dx 

. 2 B I . 2 B 1£ oWz -Xeg cos wzmax stern - Xeg cos --maX dx 
o ox 

- 2Xeg cos B sin B 1£ bxwz dx Xeg cos2 B 1£ maWz dx + 2pg 1£ KAx dx 
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