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An analysis of the dynamics of a series of hard-chine constant deadrise planing craft,
operating in calm water and in waves, is investigated through the development and
application of two numerical models. The basic equation for hydrodynamic lift is
derived from the consideration of an unsteady perturbed potential flow associated with
the motion of a rigid body moving without circulation in an infinite fluid. Through
a slender body strip theory analogy, the total vertical body forces and moments are
derived. The solution to these equations of motion are solved within the frequency
domain for the linear problem of time-invariant hydrodynamic coefficients, and within
the time domain for the non-linear hydrodynamic coefficients.

Both the linear frequency domain model and the non-linear time domain model are
validated against previous experimental and theoretical research. Both models are used
to investigate the effect of parametric variation on craft stability in calm water. The
non-linear model is applied to predict vertical craft response in regular and irregular
waves and to investigate the effect of varying design parameters. Frequency dependence
of added mass and damping is accounted for, and the consequences of this inclusion

investigated.
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Experimental tests were carried out to provide confidence in the application of previ-
ous experimental work to validate the numerical models. Furthermore, these tests pro-
vided insight into the difficult quantification of dynamic phenomena experienced by so
many experimenters in the past. A new technique in instrumentation is demonstrated
which aids repeatability of tests and the archiving of important planing phenomena,
thereby reducing the possibility of misinterpretation and disagreement amongst differ-
ent experimenters results.

It is concluded that a non-linear strip-theory approach allows accurate quantification
of planing craft responses in the vertical plane. The inclusion of frequency dependent
added mass and damping coeflicients is important in the areas where the added mass
and damping curves are removed from their asymptotic behaviour. The linear fre-

quency domain approach is useful in quantifying stability boundaries.
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Nomenclature

(1+) Splash-up factor
I} deadrise angle
A displacement
i peak acceleration
A wavelength
Aik added mass of a body in an infinite fluid (¢ and %k represent
body modes)
Am mean wetted length to beam ratio (A in Appendix B)
Ae critical mean wetted length to beam ratio (inception of por-
poising)
Wik, Mg added mass of a floating body

Q2 Angular velocity of the body in the zy-plane
w wave frequency
We wave encounter frequency
7l average peak acceleration
Qo conjugate of gqg
d Total velocity potential
) Velocity potential due to body motion with unit velocity in
heave
o1 Velocity potential due to incident wave field
¥, 1  stream function
p density
TR, zero speed transom immersion
T calm water running trim
To zero speed trim
Te critical trim angle (inception of porpoising)
0 Overall trim angle (6, + 6,,)
05 Calm water steady-state trim angle
6. Pertubation of trim due to waves
€ spectral width
¢ Pertubation of sinkage
(s Calm water steady-state sinkage
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Aspect ratio

half beam

full beam, 2b

Load coefficient, W/pgB*

Crossflow drag coefficient

stiffness coefficient for heave (3) and pitch (5) modes

lift coefficient, L/§pi2, B2

lift coefficient, L/3pa2, L3

Added mass coefficient up to level of chine immersion (point
of separation)

lift coefficient, L/3p42,S

Added mass coeflicient

velocity coefficient, .,/v/9B

Frictional drag

aspect ratio function to evaluate the added mass for 0 < A <
00 .

Buoyancy force

acceleration due to gravity

waveheight, 2rg

Pitch moment of inertia

wavenumber

radius of gyration

overall craft length

wetted chine length measured from transom (body fixed)
critical longitudinal postion of CG (inception of porpoising)
craft wetted keel length measured from transom (body fixed)
craft mean wetted length, (L + [.)

Craft mass

added mass coefficient for heave (3) and pitch (5) modes
added mass of the craft at the stern

Linearised rate of increase of pitch moment with increase in
variable acceleration, velocity and displacement respectively
unit normal

damping coefficient for heave (3) and pitch (5) modes
Origin of the body fixed axes (at the craft’s CG)

Origin of spaced fixed coordinate system

Pressure relative to atmospheric pressure

translational velocity

Hydrodynamic lift

ratio of positive minima to total minima, or negative maxima
to total maxima, in an irregular signal history (Chapter 7)
wave elevation

added resistance

wave amplitude

calm water resistance

resistance in waves
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ZE,(?? 4

g
HNS/N\%?F

Ic
D
Ip

2,6 Zz,(?

arbitrary length of body contour C'

plan area

spectral energy associated with frequency w

time

modal period

X-component of thrust

Z-component of thrust

Velocity of craft parallel to keel

Velocity component in the z-direction of the translational ve-
locity qq

Velocity of craft perpendicular to keel

Velocity component in the y-direction of the translational ve-
locity qq

component of fluid velocity normal to body boundary

Craft weight

complex fluid potential, ® + ¥

vertical component of wave orbital velocity

Longitudinal coordinate of a point on the body relative to CG
(positive forwards)

Translation in the direction of the free surface with respect to
Oy (positive in the direction of craft forward motion)

Centre of pressure moment arm about CG

Frictional drag moment arm about CG

Thrust moment arm about CG

Vertical coordinate of a point on the body relative to CG
(positive towards keel)

Translation in the direction perpendicular to the free surface
with respect to Oy (positive downwards)

chine submergence at the transom (space fixed)

Vertical position of CG with respect to OgXoZg (¢ + ()
Linearised rate of increase of heave force with increase in vari-
able acceleration, velocity and displacement respectively
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Chapter 1

Introduction

Seakeeping is of major interest and importance to a naval architect. The ability of a
ship to perform well in the adverse and confused environment of the sea is the crux of a
good design. The naval architect has the responsibility to consider structural, dynamic

and personnel effects when producing that design.

Over the last hundred years or so, theoretical and experimental methods for the evalua-
tion of the seakeeping ability of displacement ships have been developed. To date, most
of the associated dynamic effects can be quantified and qualified to an accuracy useful
enough for a naval architect’s design methodology. Over time, however, advanced ma-
rine vehicles have been developed, such as hydrofoils, planing craft, SWATH and SES
craft and hybrid combinations of these. They each have their own general characteris-
tic in form and different methods of seakeeping prediction need to be developed. This

thesis will be focus on the study of planing craft.

Planing craft are used in diverse fields. Their use can be seen in military roles, as
fast attack craft, patrol vessels and rapid response craft. Commercially, they maybe
used as pilot craft, tenders and inshore lifeboats. Planing craft are also prevalent in
offshore powerboat racing, and semi-planing hulls are found in private boating. As
this specialised form of transport develops, further studies in seakeeping are needed to

achieve the maximum results that they can offer.

Theories where planing is the predominant physical effect is not solely of modern

interest. In the early 1930’s, seaplane designers were aware of the importance of the
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floats and the main hull on drag and aircraft takeoff speed and subsequent landing
operations. They used a theory developed by Munk (1924) for airship hulls. In the
1950’s, designers were able to quantify the lifting forces acting on a planing craft. From
the 1970’s onward, the advancement in computer technology has seen diverse solutions

to the planing problem and further understanding of the dynamics involved.

Planing craft impose their own complications in the sense that the free surface has
a pronounced effect on the craft’s motions in this state. The dynamically supported
planing hull generates complex surface flows, including spray jets and reentrant break-
ing waves. The effect of wave rise and impingement of the spray sheet on the hull cause
changes in wetted length and trim angles. The stability offered by hydrostatic forces
are negligible and the craft is almost fully supported by hydrodynamic forces, sensitive

to perturbations in wetted length and trim.

At present much high-speed craft design is based on heavy empiricism, trial and error
and past experience. Although this approach has generally provided satisfactory de-
signs it is usually offset against high cost and time, for example producing prototypes
for testing and the subsequent modifications necessary to improve the design. The

power of modern computers allows more cost effective solutions to planing simulation,

reducing the need for heavy empiricism.

This thesis is presented and written to create a better understanding of the dynamic
effects involved with high speed planing hull design and the influence of parametric

variation on subsequent performance in calm water and in waves.

1.1 Performance of Planing Craft in Calm Water

Calm water performance is dominated by two areas of interest; resistance and stability.
The resistance characteristics of planing craft are the fundamental reason that these
type of craft are developed and utilised. The resistance advantage over round bilge
forms does not come from reduced residuary resistance. Residuary resistance is pri-
marily made up of wavemaking resistance and induced drag from the dynamic lift. As
the planing craft speed increases, the amount of wavemaking resistance falls. However,

more lift is produced on the hull bottom and the amount of induced drag increases by
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a similar order to the drop in wavemaking resistance. Therefore, the fairly constant
residuary resistance, past the inception of planing, points to the loss in total resistance
stemming from the reduction in wetted surface area and skin friction. So despite the
transition to planing requiring a large amount of installed power to overcome the resis-
tance hump associated with increasing craft speed, the drop in post-hump resistance
to a value less than that experienced by even the most efficient of displacement forms

ensures that planing craft offer efficient performance in terms of high speed and cost.

As with all types of ship, the ability to predict the amount of resistance that a plan-
ing craft will experience at all design speeds allows a minimum of installed power.
With restrictions on powering requirements, the resistance predictions can highlight
improvements in hull shape and weight distributions within the hull. There has been
many an experimental investigation into planing hull performance in calm water with

much emphasis on resistance evaluation® culminating in useful design criteria for the

evalution of planing resistance.

Despite the huge benefits that high speed operations afford, there are drawbacks in
terms of planing craft stability. The very high speeds associated with planing craft
give rise to certain phenomena that can be parasitic in nature. At speed, a planing
craft is almost solely reliant on dynamic effects with little damping from the negligible
hydrostatic forces. Poor design can therefore lead to instabilities in pitch and heave
motions resulting in a condition known as ’porpoising’, and for perturbations in roll
angle, dangerous transverse instabilities. These have led to many a serious accident.
The accurate prediction of these phenomena is vital. Porpoising has been treated an-
alytically by a few authors, for example Perring and Glauert (1933), Lutowski (1973),
Payne (1974), Martin (1978a). The experimental investigation of porpoising is ex-
tremely limited for planing boats although there exists many porpoising tests carried
out on flying boats, Payne (1974), Martin (1978a). The dynamic roll instability has
been treated recently by Lewandowski (1996) following observations by Savitsky (1995),
Codega and Lewis (1987) and Blount and Codega (1995). Xu and Troesch (1999) also
investigated the effect of planing assymetry on planing craft performance and the con-

sequence upon stability.

'Savitsky (1964) cites many, for example Sottorf (1932), Shoemaker (1934), Sambraus (1938),
Savitsky and Neidinger (1954), Shuford (1958), Clement and Blount (1963), and provides a useful
appendix containing references to all the papers on planing published by the Stevens Institute of
Technology upto 1964



CHAPTER 1. INTRODUCTION 4

1.2 Performance of Planing Craft in Waves

The seakeeping qualities of a planing craft are, in general, based on three different
factors; heave and pitch motions, resistance increment and accelerations. Heave and

pitch motions, along with their associated effects, are known as vertical dynamic effects.

Each of these aspects is discussed below.

1.2.1 Heave and Pitch Motions

In waves, the craft will move in all six degrees of freedom but commonly the most im-
portant of these motions to be examined is the pitching motion. The behaviour of pitch
has significant implications on structural design (magnitude of impact accelerations)
and stability (porpoising). Figure (A.2) shows that as the planing craft increases its
speed, the amplitude of pitch motion per metre of wave height increases to a maximum

value. As the speed is increased still further, the amplitude drops rapidly to a near

constant value.

The rough water heaving motions figure (A.1) follow essentially the same trends as the
pitching motions of figure (A.2), reflecting strong coupling between these two actions.
Heaving motion is at a maximum at low speed/length ratios and when the heave
natural frequency of the craft is the same as the encounter frequency of the waves,
demonstrated by the leftward movement in the peaks of the response with increasing
speed and wavelength. After resonance, the motion reduces substantially from the
peak values until the boat reaches speed:length ratios in excess of 4. At this speed and
at particular wavelengths, the hull is capable of flying from wave crest to wave crest
in head seas, even though the measured heaving motions are no larger than those for

a speed:length ratio of 2 or 3 - a condition known as platforming.

1.2.2 Resistance Increment

Added resistance in a sea