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We introduce the theoretical framework for analysing photon photon scat-
tering due to electron positron collisions. The structure function Fy is intro-
duced along with its corresponding evolution using the DGLAP equations.
The possible supersymmetric contributions to this evolution are introduced
with relevance to the next generation of high energy linear colliders.

We numerically evolve virtual photon parton densities up to the SUSY
threshold and higher using coupled inhomogeneous DGLAP differential equa-
tions. An effort is made to include the squark threshold effect in such a way
that both the renormalization group equations are satisfied and the perturba-
tive calculation is reproduced. The difference to Fy due to SUSY dependent
splitting functions is examined. Virtual SUSY corrections to this evolution
procedure are then examined below and above the squark threshold.

Finally a calculation of the amount events we might expect for chargino
production is carried out. The feasibility of this process as a signal for SUSY
can then be assessed.
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Chapter 1

(GGeneral Formalism

1.1 Introduction

The photon allows the electromagnetic interaction between charged particles.
In QED it can be thought of as a massless and structureless particle. However
during high energy processes it may fluctuate into charged fermion anti-
fermion pairs. If during this time one of the fermions interacts via another
gauge boson then the ‘structure’ of the photon can be said to have been
revealed. This ‘resolved’ photon can be thought of as consisting of quarks,

gluons, squarks or whatever our field theory model allows.

The main thrust of this discussion is to view the possible effects of incor-
porating supersymmetry (SUSY) into the theoretical framework of photon

structure. We do this by looking at cross sections but mainly by discussing



the structure functions of the photon. Structure functions are parameteriza-

tions of the cross section and give us a simple and consistent way of describing

photon structure.

In Chapter 1 we develop the necessary theoretical framework with which
to understand how what we are calculating is connected to what we can
measure in an accelerator. This part of the thesis is in no way original work
and reference has been made to the following sources [4], [5], [6], [7], [8] and
[12]. Chapter 2 explains the possible need for the introduction of SUSY and
in what way we propose to introduce it in the framework of photon structure.
Chapter 3 discusses the DGLAP evolution of the photon structure function
F; through the SUSY threshold and any changes to this evolution due to the
possible presence of SUSY particles. Chapter 4 deals with supersymmetric
virtual corrections to this evolution. Chapter 5 gives predictions for the
measurement of chargino production from electron positron collisions. We
finish up with a brief summary in Chapter 6. A brief discussion of the
C++ implementation used for modelling the DGLAP evolution equations

along with some more mathematical considerations have been relegated to

Appendices.

1.2 Preliminaries

Experimental data on photon structure is mainly obtained from the LEP
electron positron collider, the HERA electron proton collider and the SLD

detector at the SLC collider. We are going to concentrate specifically on the



electron positron collision process as a means of probing the structure of the

photon.

An electron® can undergo deep inelastic scattering via the emission of a highly
virtual photon, ;. This virtual photon acts as a probe of the other electron.
This is why the process is often referred to as photon electron scattering. It
is important to note that a Z° can be emitted instead of a photon and act
as the probe. This introduces an extra contribution to the process that we
neglect in this discussion. We will only be concerned with contributions due

to a virtual photon probe. To leading order in QED the target electron emits

a virtual photon. v;. This collision process is shown in Figure 1.1.

Thus the experimental process that gives rise to photon structure is
ee — eey"y" — eeX

where X is some final state eg. ¢g pair.

Note that there are two other types of process that can contribute to the
total cross section. These are the s-channel and t-channel bremsstrahlung
processes. Figure 1.2 shows an example of these processes where the final
state X is for example two quarks, ee — eeqd. These processes contribute

much less than the process in Figure 1.1 [3]. In the following discussion we

!For simplicity we do not distinguish between the electron and the positron. The

contribution is equivalent.
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Figure 1.1: Experimental setup for virtual photon photon scattering.

Figure 1.2: Examples of additional contributions to the total cross section.

(a) t-channel bremsstrahlung and (b) s-channel bremsstrahlung.



will only be concerned with the contribution of Figure 1.1 to the structure

functions and cross section.

With reference to Figure 1.1, we will use the following variables in our anal-

ysis,
The probe virtual photon momentum,

and its virtuality which is negative,

Q* = —¢
(1.2)
= 2FE{(1 —cosb)
Similarly for the target photon,
p =ky—k (1.3)
P? = —p? (1.4)
Bjorken z is given in terms of the two photon momenta ¢ and p,
2
T = @ (1.5)
2p-q
We have an internal invariant mass squared
S=(g+p) (1.6)

and a total invariant mass squared

Stot = (k1 + k2)2

5



For deep inelastic scattering @2 > P? ~ 0. However we derive some results

for the region P* # 0, so we define

r = P?/Q? (1.7)

At this point we need to know what is in principle perturbatively calcula-
ble. This involves a discussion of point-like and hadron-like processes. The

literature often refers to point-like as ‘direct’ and hadron-like as ‘resolved’.

Referring to Figure 1.3, we can organize the contributions to the cross sec-
tion into the perturbatively calculable point-like diagrams and the non-
perturbative hadron-like processes. (a) shows the tree-level point-like process
ee — eeqq. This is the most dominant contribution in deep inelastic photon
photon scattering. (b) and (c) are examples of higher order point-like contri-
butions which are in principle calculable using perturbative QCD. It is these
point-like contributions that are absent in the equivalent analysis of nucleon
structure. This fundamental difference stems from the point-like coupling
of the photon to quarks. Obviously there is no such point-like coupling be-
tween say a proton and a quark. (d) shows how a photon can fluctuate into
a hadronic state with the same quantum numbers as the photon. This type
of contribution is termed hadron-like and cannot be directly calculated us-
ing perturbative QCD. The ability to formally separate these two types of
contribution depends on P?, the virtuality of the target photon. As P? -+ 0,
one can factorize out the hadronic part of the structure functions. In this
limit and after factorization the structure functions of the photon can thus be
divided into the perturbatively calculable point-like part and the hadron-like

part. The vector meson dominance model (VMD) [9] can be successfully used

6
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Figure 1.3: Examples of point-like and hadron-like contributions. (a) is the
tree-level quark point-like contribution. (b) and (c) are examples of higher

order point-like contributions. (d) is a hadron-like contribution.

to describe the hadron-like part of the structure function Fy by considering

the vector mesons p, w and @.

In order to forge a link with what is experimentally measured and what we
discuss in the following we must show how the cross-section is related to the

relevant structure functions of the photon. The differential cross section for



the point-like contribution to ee — eeX is as follows [1],

fo - Thek o [((p-4)2~Q2P2 JUQ

E'Ey, 167°Q2P? | (ky - ks)? — m2Zm2

(1.8)

(40103 *orr + 206t ™1 |17 cos29 + 207 oms

+20003 Four + pp8 o1 — 81p7 03 l7rr, cos ¢)

In the ;, centre of mass frame, ¢ is the angle subtended between the scat-
tering planes of the electrons, the scattering plane being the plane made
by the spatial vectors of an incoming and outgoing particle. It is possible to
simplify this equation by removing the ¢ dependence, this being done by inte-
grating over ¢. orr, orr, o and ory, are total cross sections. Tpr and 77r
are interference terms. They correspond to helicity states of the two photons,

T being transverse and L being longitudinal. The various p/* are given as,

% -p—p-q)? 2
2k -p—p-a)® , ,me

2p++ —

S PR 7o) o7
v (2ky-p—p-g)? m2
S I e R

2
m
Pl = 205t — 2—1—4@——;

Py =205 — 24428



o =P -1

1pF0) =/ (p° + 1) |pi ]

where +, — and 0 refer to particular photon helicities.

There are three structure functions Fy/, £} and F7, though only two? of these

are needed to fullv parameterize the cross section. These are defined by the

following relations [2],

0> \/(p - q)2 — Q2P?

20 F(z, Q% P?) =

¥ e p-q
(1.9)
X iUTT(I,QQ,PQ) - 1or(z, Q% P?)
« . @ (g - Q2P
FQ’Y(‘IEJQQ:P) - 47r2a p-q
. {UTT(CE: Q2 P?) + orr(z, Q% P?) (1.10)

—%ULL(SC, QQ,PQ) - %UTL(ny2aP2)

2As mentioned previously, the Z° probe contribution has been neglected. The Z° gives

an extra structure function ¥y due to axial vector couplings.



Fl(e.Q% P?) = Fj(z,Q* P*) - 2F}(x,Q%, P?) L)

Note that the interference terms 70y and 7r; must be discarded in order to
define the structure functions. The contribution due to these interference
terms can be isolated experimentally and very much depends on the kine-
matical variables @2, P? and the invariant mass squared of what is produced,
M?%. In some regions they produce a difference in the cross section of only
a few percent while in other regions the contribution is large enough such

that the use of structure functions to parameterize the cross section becomes

meaningless.

We will mainly be concerned with the limit Q% > P? =~ 0. In this region
the target photon is almost real and hence cannot have a longitudinal po-
larization. The consequences of this are that the terms orr, orr, and 771
vanish because of their P? dependence as P2 — 0. Also the coefficient of 7p7

vanishes. This allows a simpler expression for the cross section

Ak dky o [ (p-0)? - Q*F* ]”2

dbo
E{EY 16m2Q%P?% | (ky - kp)? — m2m2
(1.12)
00
X 4py gt [UTT + “81:; O‘LT}
2p1

which can easily be seen to correspond to a probe photon of either transverse
or longitudinal polarization colliding with a real target photon of transverse

polarization. Obviously in an experiment the virtuality of the target photon

10



cannot be kept exactly zero. However the contributions from the longitudinal
terms and the interference terms are both of the order of a few percent and
actually almost cancel each other out such that Equation (1.12) gives an

accurate expression for the cross section.

In this limit the structure functions are also simplified,

2

22Fl(z, Q%) = 4§2QUTT(-T7Q2)

2

(2, Q%) = 43204 orr(2, Q%) + o1r(z, Q)]

(1.13)

2

F@,Q) = 1o ou(.Q)

The differential cross section can also be cast in a formm where the flux of

incoming target photons is explicitly seen.

Using the following variables,

where p = (E,,p) and (E; = Ey = E) in the centre of mass frame of the

electrons in Figure 1.1. In the limit P? — 0 the differential cross section can

be written as,

11



dio d? N?; 2’

drdQ?d:dP? —  dzdP? 2Q!

[1+(1=y)
(1.14)

22 F(z,Q%) + R(L/T)F(z, Q)]

X

where d?NT /dzdP? describes the flux of incoming transversely polarized
photons and R(L/T) is the ratio of the fluxes of longitudinal and transverse

incoming photons. R(L/T) = (d*NF/dzdP?)/(d*N /dz d P?).

Alternatively we can express Equation (1.14) as

4 dQN'T 2 ,
d*o L 4 2ma [1+(1"?JH
dz dQ)? dz d P? dzdP? z(Q*
(1.15)
< |00 - — Y Fi(z, Y
3 1 + (1 . y)Q 2 2

where the dependence on F) can be seen explicitly.

For the rest of the discussion we will be concerned only with the F, structure
function. This is because it is easily accessible by experiment. There are large
subtractive errors involved in extracting F} from experiment which renders

theoretical comparison very difficult.

Fy is thus a quantity that can be measured by experiment. What we mean
by Fy depends on whether we are tagging particular outgoing particles eg.
ee — eeqq or whether we are measuring the total cross section ie. ee — eeX.
What we can do is calculate certain contributions to F3'. We must keep

in mind though the assumptions that we have made, namely that certain

12



formulae are only valid for P? — 0 and that in certain kinematical regions
the use of structure functions does not correspond to the cross section because

the interference terms give a large contribution.

1.3 Parton Distribution Functions

After Witten [10] developed techniques using the operator product expansion
in the large Q% limit it was hoped that the point-like part of Fy could be be
calculated exactly including its normalization. This could in principle lead
to a direct measurement. of ;. However crucial terms have to be neglected
in this approach. Also this asymptotic solution is plagued by divergences at
small z that get worse at higher orders of perturbation theory. The idea of

calculating Fy exactly from perturbation theory thus had to be abandoned.

A less ambitious approach is to apply renormalization group methods which
allows the @? dependence Fy to be calculated. The cost is that the pre-
dictability of the overall normalization of Fy is lost. Essentially this means
that given F, at some @? we can calculate how it changes while moving
to a different Q2. The ‘input’ can come from experimental measurement or
theoretical models or a mixture of both. Various parameterizations of Fy

exist. They are different and depend on the models and assumptions used

to create them.

In terms of describing the actual Q2 evolution of Fy there are two essentially

equivalent approaches. Hereafter what we will refer to as the OPE picture

13



utilizes the operator product expansion (OPE) where the Q? dependence of
certain coefficient functions can be calculated using renormalization group
methods. Fy can be reconstructed at a different Q% using these coefficient
functions with inverse Mellin transforms. The References in [11] are an ex-

ample of using the (OPE) picture to describe the Q? evolution of F.

An equivalent technique that is perhaps more intuitive involves the evolution
of parton distribution functions from which F} can be constructed. Hereafter
will refer to this as the DGLAP picture. For the rest of our discussion we will
only be concerned with this technique. The quark parton model (QPM) is
well understood in relation to deep inelastic lepton nucleon scattering. As a
first approximation the nucleon is viewed as being made up of partons which
are identified as free quarks. Parton distribution functions (PDFs) can be
defined which are probability distributions for a particular parton to have a
certain fraction of the momentum of the particle of which it is a constituent.
In this picture. scattering off a nucleon is pictured as the sum of incoherent
scatterings off the constituent partons. Bjorken Scaling is seen to apply
which means that the scattering is independent of the probe virtuality Q.
The QCD improved parton model introduces corrections to the naive parton
model. Here gluonic emissions account for the violation of Bjorken scaling.
These ideas can be carried over to the analysis of photon structure where
we account for deep inelastic scattering by recognizing the parton content of
the photon and defining suitable PDFs accordingly. There are some major

differences between the approach taken to the nucleon and the photon.

As a naive parton model of the photon we can start by taking the tree level

14



Bethe-Heitler result for the process vy — ¢¢ in the limit Q? > mg,

:emixegi {[”62 +(1- 3:)2] Z'RM +8z(1 — ) — 1}

mgi:v
(1.16)

N,

Fy(z,Q%) =

where NN, is the number of colours, f is the number of quark flavours and ¢;

is a quark of flavour 7 with mass m,,.

We can then define quark and anti-quark PDF's,

gl (z,Q?) = 1}%}5@6;{[x2+(1~x)2}1nw+8$(1—x)—l}

mgix
(1.17)

such that,

2f
F(z,Q%) = Y weg ql(2,Q%) (1.18)
i=1

where the sum to 2f is because a photon does not distinguish between quarks

and anti-quarks, ie. §; = ¢;.

The QCD corrections to this naive parton model are due to the fact that
gluons can be emitted or absorbed by the strongly interacting quarks that
form the partonic structure of the photon. Also at a higher order we must
consider gluonic structure. The concept of splitting functions is introduced

in order to account for the various possible QCD corrections that can take

15



place.

q q

Y q
(a) ’ (b) !
q g

g 3 g
© ! (@) !

Figure 1.4: Vertices that give rise to splitting functions. (a) P,q, (b) Py, or
Py, (¢) Pyq and (d) Py,.

a9

We group the contributions that can arise according to Figure 1.4. The tar-
get photon =y, is viewed as consisting of partons, namely photons, quarks and
gluons and PDF's give the probability of these partons having a momentum
fraction z of the target photon. One can then assign a probability to the
process of ‘extracting’ one of these partons from the target photon. Once

extracted, the parton may then further split into other partons. One can cal-

16



culate contributions arising from these processes using the diagrams in Figure
1.4. P,,, arising from process (a), will give rise to a splitting function. This
function P,,(x) will eventually turn out to have an intuitive interpretation in
terms of the parton model. Given a photon v that has a momentum fraction
y. Py, (z/y) is proportional to the probability of finding or extracting a quark
of momentum fraction z from this photon. The same interpretation applies
for (b), (¢) and (d). For instance given a gluon ¢ that has a momentum frac-
tion y, Py (z/y) is proportional to the probability of finding or extracting
a quark of momentum fraction z from this gluon. This interpretation will

become clearer when we introduce the full evolution equations.

In Figure 1.5 we can see the lowest order processes that correspond to the
sub-processes in Figure 1.4. In (a), a photon parton being ‘extracted’ from
the target photon is described by the photon PDF. A quark being ‘extracted’
from this photon parton is described by the P,, splitting function. In (b),
a quark parton being ‘extracted’ from the target photon is described by the
quark PDF. A quark being ‘extracted’ from this quark parton is described

by the P, splitting function. The explanation of the other diagrams follows

by analogy.

In the OPE picture, each splitting function can be formally calculated as the
inverse Mellin transform of the relevant anomalous dimension. Although we
are not using this picture it is important to note that splitting functions are
well defined calculable quantities that have a more intuitive interpretation in

the DGLAP picture.
Given that we view F; as being described by PDFs, by imposing invariance

17
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N~

(d) (e

Figure 1.5: Lowest order processes that correspond to the splitting function

vertices of Figure 1.4. (a) Pyq, (b) Py, (¢) Pyy, (d) Pyq and (e) Py,.

of F) under scale transformations ie. the renormalization group, we obtain
the Q? dependence of Fy. This Q? dependence is given by the DGLAP
equations and is actually given in terms of the Q? dependence of the PDFs.
A complicatibn is that the evolution is flavour dependent. Given that we
have quark and anti-quark parton PDFs which are different for each flavour,
a flavour singlet ¥ and flavour non-singlets 7; must be defined. It must
be remembered that when dealing with the photon PDFs that each quark

distribution is equal to its anti-quark distribution ie. ¢;(z, Q%) = &(z, Q?).

18



The singlet is given by

f f
Sz, Q%) = Z[Qi(CU’Q?)JF(Ti(CEaQQ)] = QXZ:%'(%QQ) (1.19)

1

where 7 runs over the number of active flavours f.

The non-singlets are given by,

T3(z, Q%) = 2(ug—dy)

Te(2,0%) = 2(ug+d, — 2s,)

Ti5(2,Q%) = 2(ug+d,+ s, — 3c,) (1.20)
Toi(z, Q%) = 2(ug+d,+ 55+ ¢y — 4by)

Tss(2, Q%) = 2(ug+dy+ 8q+ ¢+ by — 5tg)

where ug, dg, Sq, Cq, bg and ¢, refer to the different flavour dependent quark
distributions which are all functions of (z, @*). The factor of 2 accounts for
anti-quarks. The amount of non-singlets depends on the number of active
flavours. Each 7; is zero until the relevant threshold has been crossed to
make the new quark flavour active. For example, only 73, T3 and 15 are

relevant below the b-quark threshold.

19



There is also a gluon distribution G(x, @?) which describes the gluonic parton

content of the photon.

The relevant splitting functions are given by F;; and /;. These splitting

functions have a perturbative expansion in the running coupling a;(Q?) such

that,

Pie@) = (S92 PP+ (M)Qaﬁ%mw (1.21)

Ki(z,Q%) = <-“-ﬂ) KO ) + (‘”’”) (“s(Q2)>J(§1>(x)+--- (1.22)

: 27 2T

—

ryl

where a,,, is practically constant as Q% changes.

The Pi(jk) are the standard set of quark and gluon splitting functions used in
the evolution of the proton structure function Ff. The Ki(k) are the photon
splitting functions. The difference between these two types of splitting func-

tion is discussed below when we give a more intuitive interpretation of the

DGLAP picture.

The Pig-k) and ka) are not necessarily functions of just x. However, their
@Q?* dependence only ever enters indirectly in terms of group theory factors.
These group theory factors are a function of the active number of quarks
which depends on @?. Henceforth when we refer to splitting functions we
mean the Pz-(jk) and K in the expansions (1.21) and (1.22) rather than the

generalised P,; and K;. The parameter k£ is used to refer to the order to
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which we are working. Using just £ = 0 terms is called leading order (LO).
Using both £ = 0 and & = 1 terms is called next to leading order (NLO). We

shall not go higher than (NLO) in this discussion.
The convolution ¥ is defined between a splitting function and a distribution,

Aen = [ Lo (2)pu.e) (1.23

Z

where F; can be either T;, ¥ or G.

The evolution of each non-singlet 7; is independent while the evolution of

the singlet ¥ and gluon G distributions require coupled equations.

The DGLAP equations are given by,

d1;
dx
m = PEZ®E+PEG®G+KZ
(1.25)
dG '
m = PG2®Z+PGG®G+KG

Here we can now see the interpretation of the splitting function explicitly.
If we drop the Kr term from Equation (1.24) for the moment and solve the
resulting differential equation using an Euler single step solution in (LO) we

obtain,
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Ti(z, (In@Q*) + A(In@*)) = Tz, (InQ*))

v [P e (5) swer] amey
(1.26)

This shows how partons with a momentum fraction y at Q2 contribute to
the distribution at z and at (In Q%) + A({n@Q?). This would be seen more
clearly still if 7; was split up into its constituent flavour structure. Then
(as(Q%)/27) P:(pOT)(I/y)A(Zn (%) corresponds to the probability change for
finding a quark with momentum fraction z inside a quark with momentum
fraction y. In fact if we drop all K; terms from Equations (1.24) and (1.25)
we end up with a homogeneous set of differential equations. This homoge-
neous set is exactly the required form of the DGLAP equations to evolve the
PDFs of the proton. In this sense we can say that the homogeneous part of
Equations (1.24) and (1.25) correspond to the hadron-like part of the photon
structure. The K; terms render the equations inhomogeneous and correspond
to the point-like structure of the photon. This is the fundamental difference
between photon and proton structure. There is no convolution involved with
the K; terms. Since the probability of extracting any other particle from a
photon is of order c.,, the PDF for photonic structure must be proportional
to 6(1 — z) with order e, corrections. This leaves the formal convolution,
Equation (1.23), as a trivial integral and the result is just the photon parton

splitting function Kj;.
We take @, to be constant at 1/137 for all Q*.
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The strong coupling a,(Q?) in (NLO) evolves according to

o, (Q?) 1 By In (InQ?*/A?) L 97
dr  BelnQ?/AZ B3 (InQ?/A2%)2 (1.27)

where fp = 11 — 2f/3 and §; = 102 — 38f/3. All expressions refer to the

ALS renormalization scheme hence we use Aj which depends f. In order to

evolve in (LO) we just set 8, = 0.

Thus given a set of PDFs ¢;(z, Q3) and G(z, QF) at some Qf, in principle we
can evolve these to a different Q2. In this QCD improved parton model of

the photon, F} is defined in terms of PDFs.

We define the following useful quantities,

(") = ?z-:zl er (1.28)
f
Ons = Z (egi - <62>) (@ + @) (1.29)

=1

where f is the number of active flavours.

In (LO),

%FQ’Y(I,QQ) = QNS(‘T?Q2) + <€2> Xz, QQ) (1.30)

23



and in (NLO),

I
2
z
&
R
+
£Y
=
,Cj
Q
=

1 5
;,'_ F;('I7 Qb)

(1.31)

2
s @2 pe 6 e

+ 3f(e) 12 B,(a)

The terms By(z). Bg(z) and B, (x) are given in Reference [12] and account
for contributions that do not have a In Q? dependence. They are calculated
directly in the OPE picture and receive a convolution on undergoing a Mellin
inversion from moment space to Bjorken z space. B, has no convolution by
the same reasoning that the K; terms in the DGLAP equations have no

convolution associated with them.

Equation 1.31 is to some extent arbitrary. Reference [13] introduces what is
called the DIS, factorization scheme. This involves removing the B, term
from F and absorbing it into the quark distributions. This is compensated
for by altering the Ki(l) splitting functions. We explain the relevance of
this more thoroughly in Chapter 3 when we discuss the specific splitting
functions that are used. However it is important to grasp that there is an
interplay between the splitting functions that are used successively at each

@? as the distributions are evolved and the terms required to construct £y at
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any particular Q. This idea is also relevant to our treatment of the squark

threshold as will also become apparent in Chapter 3.

Essentially we have defined a physically measurable quantity £, which is
related to the cross section involved in electron positron scattering. There
exist parameterizations of the parton distribution functions of the quarks and
gluons ‘inside’ a virtual photon. Given the PDF's at some Q32 we can evolve
them to a different Q2 using the inhomogeneous DGLAP equations. F, can

then be obtained at that Q? from the evolved PDFs.

QOur aim in the rest of the discussion is to introduce SUSY into the DGLAP
picture of photon structure. This is relevant for the next generation of high
energy colliders. The proposed e*e™ linear colliders (LCs) will initially have
a centre of mass energv of 500 GeV. Later it is hoped to extend this up to
1.5TeV. This may well be above the SUSY threshold for squark and gluino
production in which case there will be a supersymmetric contribution to Fy.
We also examine SUSY virtual corrections to the standard splitting functions

which are relevant below as well as above the SUSY threshold.



Chapter 2

Introduction of SUSY

2.1 Motivation

Supersymmetry is a popular candidate for physics beyond the standard

model. The simplest theory is the Minimal Supersymmetric extension of

the standard model (MSSM).

Essentially SUSY is an elegant symmetry between fermions and bosons.
Fermionic superpartners are introduced for the bosons present and bosonic
superpartners are introduced for the fermions present. There are several rea-
sons why people believe SUSY to exist in nature. Here we list some of the

major reasons. The following material is in no way original and has been

taken from [17].

Perhaps the most compelling argument for supersymmetry is the way in
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which it addresses the hierarchy problem. This is essentially to do with the
instability of the bosonic scalar Higgs mass due to quadratically divergent
radiative corrections in the standard model. In the standard model the Higgs
mass, My, is of the order of the W mass, My, and is proportional to a vacuum
expectation value. v. v? receives quadratically divergent radiative corrections
which means that the natural scale for the Higgs mass is of the order of the
Planck (Mp) or unification (Mgpr) scale. It is possible to adjust the relevant
counterterms so that they cancel the quadratic divergences and maintain the
required hierarchy My <« Mp. However this requires fine tuniﬁg of the
Higgs potential parameters to a ridiculously precise degree. Many consider
-this fine tuning to be unnatural. The bosonic quadratic divergences can
be cancelled by corresponding fermionic divergences in order to keep the
hierarchy My <« Mp. By introducing supersymmetry ( extra fermions for
bosons and vice versa ) this cancellation can be accomplished quite naturally

to all orders of perturbation.

Given the three couplings of SU(3)x SU(2)x SU(1) in the standard model,
we can evaluate these at Mz and run them up to the Planck scale. If one
uses the renormalization group equations of the standard model between My
and Mgpsy and those of supersymmetry between Mgygy and Mp then the
couplings will all meet at some M. This My is of the order of 106 GeV for
Msysy ~ 1TeV. If one does not introduce supersymmetry at Msysy then
the couplings do not meet. There is much contention as to the significance
of this unification. However for many people the fact that this unification

occurs with sensible values for Mgysy and My is deemed to be more than

just coincidental.

27



Non-supersymmetric grand unified models predict proton decay rates that
disagree with current experiment. This problem is fixed if one introduces
supersymmetry into the grand unified models since the conventional proton

decay modes become unobservable.

There is a significant portion of the total matter density of the universe that
cannot be made up of conventional baryonic matter. The lightest supersym-

metric particle is deemed to be an ideal candidate for this dark matter.

There is much current interest in superstrings which necessarily requires su-

persymmetry as an ingredient.

If supersymmetry is formulated as a local symmetry then a spin-2 graviton
field must be introduced. This leads to SUGRA models in which gravity is

unified with the other interactions. These SUGRA models reduce to general

relativity in the appropriate limit.

We have only briefly alluded to a few concepts that suggest supersymme-
try as a good theory to account for new physics. Given the possibility of
SUSY effects being seen in the next generation of high energy colliders it is

important to try to predict the measurable effects for photon structure.

In Chapters 3 and 4 we shall be concerned with introducing squarks and
gluinos. Squarks are the scalar bosonic supersymmetric partners of fermionic
quarks. Gluinos are the fermionic supersymmetric partners of gluons. In
Chapter 5 we look at the production of charginos by explicitly calculating
the relevant total cross section that arises from electron positron scattering.

The charged vector bosons W and the charged Higgs bosons H* have su-
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persymmetric partners called winos and higgsinos respectively. Charginos
actually arrange themselves into mass eigenstates which are in general su-

perpositions of these winos and higgsinos.

2.2 DGLAP Equations with SUSY

Essentially we allow the photon to have a squark and gluino partonic content
in addition to the quark and gluon content described in Chapter 1. PDFs

are defined for squarks and gluinos.

Some current lower limits for squark and gluino masses are given below [26].

In the following. with the exception of ¢ and b, all scalar quarks are assumed

to be degenerate in mass and mg, = mg, .

Massm > 250 GeV

Cey

scalar quark :

Mass m 40—75 GeV

S

scalar bottom quark :

scalar top quark : ¢ Massm > 86.4 GeV

Mass m > 190 GeV

e

gluino :

There are right and left handed squarks as well as anti-squarks for all six
different flavours. For our purposes we assume that right and left handed

distributions are equal and that squark and anti-squark distributions are
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equal. Thus for each flavour i, we define a generalised squark distribution

s;(x, Q%) such that

Si($:Q2> = SLL(QS:QZ) = S{E(x7Q2) = S_iL(:U7Q2) = gf(vaQ) (21)

This enables us to define flavour non-singlets S; for the squark by analogy

with Equation (1.20),

Si(z, Q) = 4(us—dy)

Se(z,Q%) = 4(us+ds — 2s;)

14

Sis(x, Q%) = 4(us+d, +s5s— 3cs) (2.2)
Soi(z,Q%) = 4(us+ds+ 55+ cs — 4b;)

535(2‘,Q2> = 4(us+ds+35+cs+bs‘_5ts)

where us, ds, Ss,¢5, bs and tg refer to the different flavour dependent squark
distributions which are all functions of (z,@?*). The factor of 4 accounts for
the equalities in Equation (2.1). Obviously the squarks have different masses
according to their flavours. This means that each of the non-singlets is only
relevant above the corresponding threshold. For example only Ss, Sg and Sis
are relevant below the b-squark threshold. However for simplicity in what

follows we assume that all six squark flavours enter at the same energy. We
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will henceforth refer to this energy as the squark or SUSY threshold. This
corresponds to all six flavours of squarks having the same mass which we

refer to as the squark mass M.

The squark singlet is given by

f
I(z,Q?%) = Z (z,Q%) + sf(z, Q% + 58(z,Q%) + 3%(z,Q%)]

=1

5,

!
= 4x > sz
i=1

(2.3)

This sum will essentially be over all six flavours of squarks since, as described

before, we will be introducing all squarks simultaneously at the squark thresh-

old corresponding to M.

Note that both the non-singlet distributions S; and the singlet distribution

I" start at zero at the squark threshold.

The gluino distribution is introduced as L(z,Q?) corresponding to a gluino

mass of M. In the analysis we take the gluino mass to be either greater than

or equal to the squark mass.

The DGLAP Equations (1.24) and (1.25) are sufficient only up to the squark
threshold. Immediately above the squark threshold we must include the
squark contribution to the evolution of the distributions. Then when we

pass through the gluino threshold both the squark and gluino contributions
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to the evolution must be included.

Essentially each of the quark and squark non-singlets couple together, ie. T3

with 53, Tg with 58: ete...

dT,
dlnéy = Pr®T + Prs® S + Kr

(2.4)
ds,
mb—z - PST®E+P55®S[+]{5

In the singlet sector the quark X, squark I', gluon G and gluino L distribu-

tions are coupled. Given that in general the gluino mass M, is greater than -

the squark mass .1/, the singlet sector evolution below the gluino threshold

is given by,

dx
leLQZ = Py @Y + P ®G + Pr®I" + Ky

dG -
danQ = PGZ®Z+PGG®G+PGT®F+KG’ (20)
dl’

and above the gluino threshold by,
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d¥

W = PSZ®E+PEG®G+PEF®P+PZL®L+I<Z

dG

W = PGZ@—S:+PGG®G+PGF®F+PGL®L+KG

(2.6)

ar

W = P[‘g@Z+Ppg®G+Ppr®F+PpL®L+KF

drL

W = PL2®Z+PLg®G+PLf®F+PLL®L+KL

Obviously if we take the squark and gluino masses to be equal ie. M, = M,
then Equation (2.5) is not needed and we only use Equations (2.4) and (2.6)

above the common squark gluino threshold.

The presence of SUSY particles affects the running of the strong coupling. In
(LO) the general @* dependence of the coupling is the same as in Equation
(1.27). However the change from the pure QCD beta function to the super-
symmetric beta function means that 5V5Y = 11-2f,/3 — 2 — f,/3, where f,
and f, are the number of active flavours of quarks and squarks respectively.
The new Agysy may be fixed by imposing continuity of the strong coupling

across the squark threshold at Q% = 4M2

4
(?CD In (QQ/AQCD)

as(Q* = 4M?) =

Q2=4M2

41
50SUSY In (QQ/ASUSY>

Q2=4M?2
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For our purposes this simply means that the coupling is continuous at Q% =
4M? and fy changes from 7 to 3 at this point. This means that although
still ‘small’; the coupling decreases less quickly above the SUSY threshold.

The splitting functions P;; and K; are now different above the squark thresh-
old. We have quark (Pr;, Pxj), squark (Ps;, Prj), gluon (Pg;), gluino (Pr;)
and photon (K;) splitting functions. There are small differences between
these splitting functions and the non-SUSY splitting functions for quarks
and gluons due to self-energy contributions from loops of squarks and gluinos,
these having been calculated in [16] and [18]. The new splitting functions
have a perturbative expansion as in Equations (1.21) and (1.22), however
we only work to (LO) in the SUSY regime. An (NLO) analysis of photon
structure above the SUSY threshold is beyond the scope of this discussion.
Essentially by the time we reach the SUSY threshold «; is sufficiently small

that the (NLO) corrections are unimportant.

Again these splitting functions have an intuitive interpretation in the DGLAP
picture. For example, given that a quark has been ‘extracted’ from the target
photon with a fraction of momentum y and that the quark PDF describes
the probability of this happening, Prs(z/y) describes the probability of then
extracting a squark of momentum fraction z from this quark. Likewise, given
that a photon has been ‘extracted’ from the target photon (or equivalently
that the photon remains a photon) and that the photon PDF of unity with
order a.m, corrections describes the probability of this happening, K (z)
describes the probability of then extracting a gluino of momentum fraction

z from this photon.
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We will talk more explicitly about the choice of these SUSY splitting func-
tions and especially how the squark threshold behaviour is treated in Chapter
3. However the framework for the evolution of the parton distributions is es-
sentially the same above the SUSY threshold as below, being described by
sets of inhomogeneous DGLAP differential equations. We can take parame-
terizations of quark and gluon distributions at some low energy Q3 and evolve
them through the SUSY threshold by including squark and gluon distribu-
tions that initially start at zero. Then at some Q? we can obtain F, from

the following expression by analogy with Equations (1.30) and (1.31),

%FQ(:C,QQ) = gus(2,@%) + (%) S(z, Q)

+ sns(7, Q%) + (e?)T'(z, Q?) (2.8)

2% 3f(et) %’-ng

where,

e

svs = (€5, = (e%) (s + 87 + 5 + 57) (2.9)
=1

and (e*) has already been given in Equation (1.28).

The B:? term is not an (NLO) term so much as a different way in which
we have treated the squark threshold. We discuss this term fully in Chapter
3. We only include Equation (2.8) at this point in order to make clear the

strategy involved in calculating F3 with and without SUSY contributions.
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However Equations (1.30), (1.31) and (2.8) are essentially our master equa-
tions. We can now do two things. Firstly, we can ignore any SUSY contribu-
tions and evolve the distributions using Equations (1.24) and (1.25). Then
by using Equation (1.30) or (1.31) we can predict values for F, at some @Q?
above the SUSY threshold. Secondly, we can fully include SUSY contribu-
tions and evolve the relevant distributions using Equations (2.4), (2.5) and
(2.6). Then by using Equation (2.8) we can predict values for F at the same
Q? above the SUSY threshold. This will allow us to asses the significance of
SUSY contributions to Fy and allow us to say whether such contributions

will be measurable in the next generation of high energy colliders.
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Chapter 3

DGLAP Evolution through the
SUSY Threshold

3.1 Theory and Formalism

We now have the DGLAP framework with which to examine the photon
structure function Fy at different energies. The energy Q?, is the virtual-
ity of the ‘probe’ photon in deep inelastic electron positron scattering from
Equation (1.2). The DGLAP equations are differential equations describing
the evolution of the relevant parton distribution functions in terms of the
differential variable In Q2. To utilize this framework the vast majority of
the work was numerical. The key procedures are the convolution given in
Equation (1.23) and the ‘stepped’ numerical solution of differential equations.

The most important aspects of implementing these procedures numerically
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are relegated to Appendix A. This Chapter introduces the specific theory

needed and the consequent results.

What we actuallv did was to take PDF's at the c-quark threshold and evolve
them upwards through the b-quark, t-quark and SUSY thresholds. We could

then compare F, at various energies with and without SUSY contributions.

We assumed the following quark masses,
M(c) = 15GeV
M) = 4.5GeV
M(t) = 174GeV.

In evolving the PDF's to the SUSY threshold we assume that the condition

to excite quarks of flavour ¢ is given by,

Q> > 4M} (3.1)

This corresponds to simplistic thresholds of 3 Gel, 9 Gel” and 348 GeV for
the ¢, b and t quarks respectively. We did not invoke the full theoretical
framework for dealing with heavy flavour quark contributions to the structure
function as described in [20] and [21] for example. This is primarily because
we were concerned with whether supersymmetry exhibits a measurable effect

on the structure function rather than exact numerical predictions in threshold

regions.

The parameterizations [14] that we used were functions of Q%, P? and Bjorken

7, given in Equations (1.2), (1.4) and (1.5) respectively. The @Q? evolution
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of the various distributions given by the DGLAP equations is independent
of P2. Since only u, d and s quark distributions are provided by [14] we had
to start evolving at the c-quark threshold, where the c-quark distribution
is zero. We could not find reliable parameterizations which included for
instance c-quark or b-quark distributions that were also dependent on P2
Essentially this is why we had to start evolving at such a ‘low’ Q? compared
to the SUSY threshold. The validity of the parameterizations that we used
were constrained by the relation Q% > 5P2. This limited P? to a maximum
of 1.8GeV? at the c-quark threshold which only gives a small ratio r =
P?/Q* ~ 107% at high @?* above the SUSY threshold. However even with
such a small value for r some limited P? dependence was to be observed. In
referring to the distributions we often only show the (z, Q?) dependence since
the P? dependence has nothing to do with the machinery of the evolution.
P? is fixed once at the beginning of the evolution at the c-quark threshold.
However we wanted to monitor the P? dependence of the evolution which is

really just using slightly different input parameterizations at low Q2.

Up to the SUSY threshold we used the standard QCD splitting functions
in order to evolve the distributions. We evolve in (NLO) up to the t-quark
threshold. We are going to take different values for the squark mass M, and
also we can only evolve in (LO) above the SUSY threshold. In order for us to
be able to compare Fy at high Q? for different values of i/, we must evolve
to the same order when in the same energy range. Basically this means that

we must evolve the distributions in (LO) above the t-quark threshold.

The P;; type splitting functions are well known and used in the correspond-
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ing evolution equations for the proton, these were obtained from [15]. The
K; type inhomogeneous splitting functions are also well known and were
obtained from [12] and [13]. In order to make sense of them, the ‘plus’ pre-
scription must be defined. Wherever (1 — z), appears in a P( ) splitting

function its effect is understood by the following integral.

/d 1-—33 /d 1—x ) | ,(3'2)

This integral will always be present when the ‘plus’ prescription is required

because each Pi(jk) always appears in an integral defined by the convolution

in Equation (1.23).

The colour SU(3) QCD group theory factors are

4
CF - '?—)
Cy = 3
(3.3)
1
TR - 5
Tf = TR X f
The (LO) splitting functions are,
2
PR) = PR) = Cr |4t s+ 24(1 - 2) (3.4)
(I-z)s 2
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Pid(a) = 2fTp[s* + (1 - )] (3.5)

PR = cr | (36)
P9 (z) = 20A[(1_xx)+ 1;$+x(1——x)}
(3.7)
+5(1~$)110A—6—4fTR
Kp'(z) = 3f () = (&)°) 22" + (1~ ) (38)
EP(2) = 3f () 2]+ (1 —2)? (3.9)
K(z) = ot (3.10)

The corresponding (NLO) formulae are very much longer and can be found

in Appendix B.

Up to the t-quark threshold the evolution was carried out in (NLO) using
the DIS, prescription as described in [13]. This is slightly different from

the straight MS scheme. The B, term in Equation (1.31) contains negative

IThe point-like gluonic contribution only enters in (NLO)
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divergences as r — 1. The point of the DIS, prescription is that it eradi-
cates these negative divergences that can push F; to unacceptable negative
values. By a slight redefinition of the Ki(l) terms, the 53, term becomes zero
and is not used at all. In some sense there is a problem with consistency here
since we evolve in (NLO) below the t-quark threshold and in (LO) above.
If one is evolving in (NLO) then one should include the (NLO) convolutions
that appear in Equation (1.31) when constructing Fy from the distributions.
However above the t-quark threshold and especially at high Q? above the
SUSY threshold. «; is sufficiently small that (NLO) contributions are less
important. Given the choice to evolve in (LO) or (NLO) below the t-quark
threshold, we chose to evolve in (NLO) where the coupling is larger and
(NLO) effects are more pronounced. Given the choice to use the DIS, pre-
scription or not, we chose to use it, primarily because it factors out the B,
term which we would not be using anyway since above the SUSY threshold
we would be only ever be constructing Fy from the distributions in (LO).
One further point is that we are most interested in whether supersymme-
try exhibits a measurable effect on the structure function, so in a sense we
just want to evolve the distributions in the most accurate way possible to

the SUSY threshold which is where supersymmetric contributions will take

effect.

So given u,(z, Q% P?), d,(z, Q% P?), s,(z, Q% P?) and G(z, Q% P?) at V@7 =
3GeV (the c-quark threshold) from the parameterizations we can construct
T3, Ty, T1s and ¥ from Equations (1.20) and (1.19) respectively. T3, T, 113,
Y and G are then numerically evolved from 3 GeV to 9 GeV (the b-quark
threshold). In this region Ajy = 200 MeV in Equation (1.27).
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At 9GeV, by(z.Q?, P?) is introduced at zero. This enables us to construct
154, which is actually equal to ¥ at the b-quark threshold. T3, T, 115, o4,
2 and G are then numerically evolved from 9GeV to 348 GeV (the t-quark
threshold). In this region A%y = 131 MeV in Equation (1.27).

At 348 GeV, t,(x, Q% P?) is introduced at zero. Ti; is constructed, which
again is equal to ¥ at the t-quark threshold. We are evolving the distributions
to the SUSY threshold, corresponding to M. T3, Tg, Tis, Tos, T35, & and G
are then numerically evolved in (LO) to 2M; GeV (the squark threshold). In

this region Af, =82 MeV and 8, is set to zero in Equation (1.27).

We took the squark mass in the range 175 GelV < M, < 300GeV. At the
squark threshold we can calculate F," using Equation (1.30). This will serve
as a base reference so that we can compare how much F3’ changes with and

without SUSY contributions above the SUSY threshold.

Above this energv we treat the squark threshold in a slightly different way.
For squark production we are going to use the full threshold condition that

squarks cannot be produced unless,
2 z 2 '
Q> (_——_-—> 4M (3.11)
l—z—2zr

where r = P?/Q?. Importantly, this full threshold condition is dependent on
both z and Q? whereas the condition @ > 4M? is wholly dependent on Q2.
We attempt to apply this condition above Q? = 4M2. At a particular Q?,
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there will be a value of z,

1

7,(Q%) = O (3.12)

above which squarks cannot be produced due to this condition. Similarly, at
a particular ‘low” value of @Q? there will always be a sufficiently low value of

z < z,(Q?%) such that squarks can always be produced.

There exist a set of SUSY splitting functions that are valid in the squark
region given by Equation (3.11) and indeed apply in general when consider-
ing squarks and gluinos. It is possible to incorporate the squark threshold
condition (Equation (3.11)) into each convolution (Equation (1.23)). Any
particular convolution evaluated at z and Q? is an integral in a dummy vari-
able y in the region y > z. Since all convolutions are done numerically,
SUSY splitting functions can be used for y < z,(Q?), where squarks can be
produced and standard splitting functions can be used for y > z,(Q?). where
squarks cannot be produced. This will ensure that there is no contribution
to the quark and gluon distributions due to squark or gluino effects below the
true SUSY threshold given in Equation (3.11). Likewise it will ensure that
there is no contribution to the squark and gluino distributions at all in any
region of z and Q? where squarks cannot be produced. This means that for
any Q% > 4M?, F, with SUSY contributions will coincide with F; without
SUSY contributions for z > z,(Q?). Fy is unaltered by SUSY contributions
in the region z > z,(Q?), as would be expected. As mentioned previously,
the running of the strong coupling is affected by the presence of SUSY par-
ticles and we use the condition in Equation (3.11) to decide whether to use

the SUSY altered coupling to calculate the change in each distribution at a
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particular z and Q*. This will ensure that the evolution is governed by the

correct coupling in any particular region of z and Q2.

Applying Equation (3.11) in this way to the splitting functions and the cou-
pling is not an ideal strategy for incorporating the squark threshold since
for Q* < 4M? there will always be an z < x,(Q?) such that squarks can
be produced and one might say that the technique should have been applied
for Q* < 4M?. However it is an improvement on just using Q? > 4M? as a

squark threshold condition.

In principle this tvpe of procedure could have been applied throughout the
whole evolution from the c-quark threshold. This would have meant starting
the evolution with all distributions present and continually applying a set
of threshold criteria like Equation (3.11) for all massive particles present.
This would essentially have been a programming exercise of immense dif-
ficulty and perhaps intractable. This is another example of where we have
been content to refrain from invoking every sophisticated method for treating
heavy flavour contributions to the structure function. We allude to some of

the programming techniques and difficulties in Appendix A.

The SUSY set of homogeneous (LO) splitting functions is taken from Refer-
ences [16] and [18]. They are used in Equations (2.4), (2.5) and (2.6).

P() = PR () = OF{ {-(-j—j—ﬂ +5<1—x>} (313)
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PR = B = oo { i - o] +su-n) ey

Prd(z) = P () = Crll] (3.15)
Pt (z) = Py = Crla] (3.16)
P (x) = 2Ty [2* + (1 — 2)7] (3.17)
P (z) = 2Ty [1 - 2] (3.18)
PR (z) = Cr {-1—1(—13—:_—33)—2} (3.19)

1l—z), z
) (3.20)
-+ [3CA — 2Tf} 5(1 - .’L‘)
PR (z) = Cp [}-Li_—x—)i —x} (3.21)



P (z) = Cu F—t%—:?—)iJ (3.22)

Pid(z) = 2Tp [1— (2% + (1 - 2)?)] (3.23)

By (z) = 2Tzla] (3.24)

P2 (a) = Crl—1] (3.25)

P{Q(z) = Cala®+(1-12) (3.26)

Y (z) = Crll] (3.27)

P (2) = OA[(llfj;J +[3C4 — 2Tx] 6(1 — @) (3.28)

The quark and gluon inhomogeneous terms Kr}o) (z), K 5(30) (z) and Kg) )(z) are
the same as before and given in Equations (3.8), (3.9) and (3.10). As with

the gluon term, the photon to gluino splitting function is zero in (LO),

K9 = 0 (3.29)
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The tree level squark contribution to F3 is important in determining the
photon to squark splitting function. K¢ and KT have the same functional
z dependence in (LO) and are obtained from the tree level contribution
to Fy for squark production. This contribution for a left or right handed

squark in deep inelastic scattering on a photon is calculated using ordinary

perturbation theory [19],

F, = 3ei, aim :c{ 1-8z(1—z)+7z(l—2a)]v

(3.30)

1 1 )

+ [2:0(1 —z)+7e(3x — 1)+ —723:2] In ( * L> }
2 11—
where,
T = 4M?/0Q?

/@ (3.31)

v = [1-r7z/(1-2)]"?

Neglecting squark masses we obtain Kg and Kt in the same way that the

photon to quark splitting functions are obtained from the tree level contri-

bution to Fy for quark production,
K (@) = 2x3f ((e*) — (¢%)?) 2[22(1 — )] (3.32)
S ‘ — .

K9) = 2x3f(e®)2[22(1 - z)] (3.33)

The factor of 2x accounts for left and right handed squarks. The other

coefficients are standard. The [2z(1 — z)] is the most dominant term propor-
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tional to In(@Q?*/4M?) in Equation (3.30) and accounts for the linear In Q?
evolution of the distributions in (LO). In a sense we can imagine expanding
Equation (3.30) in powers of In(Q?/4M?) and comparing this with naively
integrating the DGLAP equations in the variable In Q. On comparison we
would find that we had correctly accounted for the In @2 evolution of Fy
up to order (In(Q?/4)2))?. Any other contribution to Fy that is not linear
in In(Q?/4M?) we will incorporate when we actually construct Fy from the

distributions at a particular (J? which we discuss a little later in this section.

All the squark f,(r, Q?, P?) are taken to be zero at the squark threshold. The
distributions 7;. S;, . G and I' can then be evolved to the gluino threshold
at 2M, GeV using Equations (2.4) and (2.5). As explained previously, above
Q* = 4112 we impose the full squark threshold condition given in Equation
(3.11). In regions of z and @* where squarks cannot be produced we continue
to run the strong coupling with the same Agep and 55901’ parameters used
above the t-quark threshold. In regions of z and Q? where squarks can
be produced the strong coupling is determined by the continuity condition
in Equation (2.7). Aspsy is not fixed in the sense that it depends on M,
for which we take a range of values. At the gluino threshold, L(z, Q?, P?) is
taken to be zero. The distributions 7}, S;, ¥, G, I" and L can then be evolved
to any desired Q? using Equations (2.4) and (2.6). Alternatively, none of the
SUSY splitting functions can be introduced and the original 7;, ¥ and G
distributions can be evolved from the squark threshold to the same Q2 using

Equations (1.24) and (1.25).

We can then obtain Fy (z, Q?, P?) in (LO), without SUSY contributions using
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Equation (1.30),
Lo 2 2 2 2
CR5Q) = au(n, Q) + (&) (5, Q)
or with SUSY contributions using Equation (2.8),
SF(,QY) = au(e,0) + ()5, QY
+ sus(2,Q%) + () (7, Q%)

e
+ 2x3f(e*) == B¢
T
All that remains is to explain the origin of the B3¢ term above. This is

a slightly different way of treating the threshold behaviour than is in the

literature.

We calculated the squark contribution to Fy but for the case P? # 0, where
r = P?/Q? using the diagrams in Figure 3.1. The diagrams are squared
and may be paramterized by invariance arguments so that F3 or F; may be
projected out after the calculation. There are no Dirac matrices over which

to take a trace since squarks are scalar particles. The various scalar products ‘
that occur between the photon and squark momenta may be substituted for
the standard centre of mass kinematics that assume P? 3# 0 and massive
squarks. One can then integrate out the phase space of the squarks and

project out the required quantity F;.
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Figure 3.1: Diagrams contributing to Fy,, in (LO). The § are squarks.

2
Y’ M? 1 0
Fl, = 3esq—ﬁ-x{B<Q2> (5g) (1622)

A/[s? 1 4.2 3 2 2
+ B 02 <ﬁ—§)(—48mr +48:cr+4xr——8x)

1

F—G> (—-12:647'3 + 122372 — 23:2r>

+B<

+ B (1 — 62%r + 622 — 6a:>

(5 () ()

+ In (g) <g§2> (?) (24:1:47"2/1) + 22°r /b + 1227 — 2x/b — QI)
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B
+ In <—g—> (;) (—;— + 62'r? /b + 12z*% /b — 122372 /b

— 122%/b+ 112%r /b — 3z%r + 422 /b — 622 + %xr/b

1 1
— 5T = 3z/b+ 5z — 55) } (3.34)

where,

b = 1-—2zr
F = 1+n(1-2ar)

G = 1-n(1-2zr)

4M?2z
Q*(1 —z — ar)

B = 4/1-

- (B

In the above, Equation (3.30) is recovered for r — 0.

In order to approximate the correct squark threshold behaviour we try to

isolate that part of Equation (3.30) or (3.34) that is not used in the squark
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splitting functions and introduce this contribution as B3?. Essentially what
we do is to take the squark contribution to F3 and subtract off the [2z(1 —z)]
part that accounted for the In Q? dependence in KéO) and KI(«O). Given that

the coefficient of B3 is (2 x 3f(e*) aem/4m) in Equation (2.8),

1 2
B";q = 4{ (m) X FQ’):S(] - 2:13(1 - 513) In (46\242> } (335)

sq w

where Fy,, is given in Equation (3.30) or (3.34), will give the correct contri-
bution. We also apply the squark threshold condition in Equation (3.11) to
the B2? term so that in regions of z and @Q? where squarks cannot be pro-
duced B3¢ = 0. The 2x factor in the coefficient of B3¢ accounts for left and
right handed squarks. We note that the difference between using Equation
(3.30) and Equation (3.34) is negligible in our case because we are limited to

P? < 1.8GeV? at the c-quark threshold, giving an 7 =~ 10~% above the SUSY
threshold.

However this is a different way of treating the threshold behaviour from that
in [12]. At Q% > 4M? it satisfies the Renormalization Group equations since
the dominant part is in the inhomogeneous term. In the region Q% ~ 4M?
this approach will reproduce the perturbative calculation with the correct
threshold behaviour up to (In(Q?/4M?))2. There should of course be a small
mismatch at large Q? and large z. However we have eradicated this by
incorporating the threshold condition from Equation (3.11) into both the
splitting functions and the B? term as explained above. Obviously Equation

(3.30) exhibits a functional dependence on Q? that is more complicated than
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just In @%. This means that our choice of inhomogeneous squark terms do not
fully describe the @? evolution of Fy and that our B3 term is also therefore
an approximation. This can result in a discontinuity in the region z,(Q?)

which is definitely not the result of a physical effect. We will show this effect

in our results in the next section.

It should be noted how quickly F; changes away from the threshold with

decreasing z. In Equation (3.30), the term
v=[1-4M?z/Q*(1 — z)]/?

moves rapidly away from zero in decreasing x, meaning that the coeflicients

of

1n<1+v> and v

1—w
in Equation (3.30) give rise to a real threshold contained in the B¢ term.

To briefly summarize the strategy, we take parameterizations of quark and
gluon distributions inside a virtual photon at the c-quark threshold. Using
DGLAP inhomogeneous differential equations we evolve the relevant non-
singlet, singlet and gluon distributions up to the SUSY threshold. From here
we run the distributions separately, including or not, the effects of squarks
and gluinos. At some /Q? we form F for the virtual photon in such a way

as to take account of the SUSY threshold condition.



3.2 Results

The variable parameters of the evolution are the P? (target virtuality), M
(squark mass), A/, (gluino mass), @? (incident virtuality) and Bjorken z. We

took these in the ranges,

0 < VP2 < 1300 MeV

175GeV < M, < 300GeV
175GeV < M, < 300GeV

500GeV < /Q? < 1500GeV

and in all cases Fy /e, is actually plotted.

Figure 3.2 shows a generalised evolution to 1000 GeV. The bottom graph
corresponds to F; evaluated at the SUSY threshold +/Q2 = 2M; = 350 GeV'.
This serves as a base reference since it is at this point that the SUSY effects
are included in the evolution. There is a considerable difference to Fy when
including supersvmmetric effects. We agree with the general conclusions
made in [19] that F with SUSY contributions is flatter and strongly increases
for decreasing values of z. Note that allowing the gluino mass to be greater
than the squark mass produces a negligible effect. Note also that the graphs
coincide above the squark threshold z,(Q?) given in Equation (3.12), this
being due to it being incorporated into the splitting functions and the B3¢

term, as described in the previous section.
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From here on we plot M, = M, since we have shown the M, > M, difference

to be negligible.

Figure 3.3 shows the Q? evolution of Iy from v/Q? = 500 GeV up to 1250 GeV.
As expected the structure function increases with increasing Q?. The main
point to note here is the appearance of discontinuities due to our approxi-
mate treatment of the squark threshold. For lower 2, closer to the squark
threshold 2M, = 350 GeV, the B3? term forces FJ below its trué value close
to the squark production condition z;(@?) given in Equation (3.12). For
higher @2, Fy is no longer forced below its true value rather than forced to
drop suddenly. These discontinuities are made clearer in Figure 3.4. Here at
a fixed /Q? = 1000 GeV, we isolate the contributions due to the DGLAP
evolution and due to the B3? term. The two ‘dashed’ graphs added together
give the full SUSY Fy. We can see that the SUSY graph without the B3?
term is higher than the other graphs at z,(Q?) = 0.89. This is to be expected
because the K and Kt terms that we obtained from the squark contribution
to Fy in Equation (3.30) are positive definite and cause F to increase. It is
by adding the rest of the squark contribution as B3¢ that the proper squark
threshold behaviour is obtained. In a sense B3? is an over-compensation in

low @? and an under-compensation in high Q?.

Figure 3.5 shows P? dependence up to 1300 MeV. We are limited by our
parameterizations in that they are restricted in P? at the c-quark threshold.

However non-negligible differences can be noted in low z even at v P? =

1300 MeV'.
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Figure 3.6 shows .}/, dependence between 175 GeV and 300 Gel”. The lowest
graph is without the SUSY contributions. As the squark mass M, incréases,
Fj approaches the non-SUSY limit as if the non-SUSY graph corresponds
to exciting squarks of infinite mass. Also the thresholds move to lower z
as the threshold condition Equation (3.11) requires higher Q? to produce
squarks of higher mass. We can see that for M; = 300GeV there is a
discontinuity around z, = 0.74. This is due to the fact that our treatment of
the squark threshold using the B3? term in Equation (2.8) is only approximate
as discussed in the previous section. The discontinuity is more apparent for

M, = 300 GeV than for M, = 175 GeV since the error increases as the ratio

4M?2/@Q?* approaches unity.

Figures 3.7 and 3.8 show how Fj varies with /Q? at two fixed values of
z. Both graphs show how the distributions must approach the non-SUSY
distribution for high 1/;. However for z = 0.66 we can see the gradual ap-
proach to a threshold in increasing M,. For M, = 275 GeV it is evident that
for low @Q? squarks cannot be produced and the distribution coincides with
the non-SUSY distribution. Then apart from the discontinuity mentioned

previously the distribution rises in higher Q2.
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Comparative DGLAP Evolution
P = 1.3 GeV, M, = 175 GeV, M, = 175, 300 Ge V, VQ" = 1000 GeV

----------- SUSY Threshold
— - — Without SUSY
—— With SUSY, M, = 175 GeV /
-~~~ With SUSY, M, = 300 GeV /
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Figure 3.2: Comparative Evolution of Structure Function with and without
SUSY splitting functions. Difference due to a higher gluino mass M, is

negligible.



\ Q2 Evolution with SUSY contribution
VP’ = 1.3 GeV, M, = 175 GeV

4 . T ‘ T ; T
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Figure 3.3: /Q? evolution of Fy with SUSY contribution showing disconti-

nuities for lower Q2.
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Figure 3.4: Graphs showing the effect of B39
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\P Dependence
M = 175 GeV, Q' = 1000 GeV
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Figure 3.5: v/ P? dependence of structure function for fixed squark mass M,
at a fixed probe virtuality /Q?.
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M_Dependence

VP* = 1.3 GeV, VQ’ = 1000 GeV
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Figure 3.6: Dependence of structure function on squark mass M; at a fixed

target virtuality v/ P? and probe virtuality /@2
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Q2 Dependence for fixed x = 0.33
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Figure 3.7: z = 0.33
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Figure 3.8: = = 0.66
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3.3 Conclusions

We see from Figures 3.2 - 3.8 that if one can build a machine for which
values of Q% approach 1 TeV? (about twice the squark production threshold)
there is a substantial increase in the value of Fy for the photon. Indeed, the
evolution between the SUSY threshold and 1 TeV is more than doubled if
SUSY particles, taken to have a mass of 175 GeV, are present. The difference

between the structure functions with and without SUSY in the middle range

of Bjorken-z is over 30%.

The effect at Q* = 1 TeV? is, of course, diminished if the SUSY threshold
is increased. However, we note that taking the squark masses to 300 GeV
only has a small effect on F. Conversely, if the squark masses turn out to
be substantially lighter than 175 GeV, (which is not currently ruled out),
there would be a significant effect on the structure functions at values of Q?

significantly below 1 TeV?Z,

The effect also diminishes if the target photon is off-shell, as will usually be

the case. However. we see from Figure 3.5 that this effect is modest.

The results are fairly insensitive to the mass of the gluino. This is not
surprising as the gluino contributes very indirectly in that it can only be
produced by a secondary emission from the target photon and then only
probed through a further interaction with squarks. Taking the mass of the
gluino below that of the squark, would have had a negligible effect as it is
clear that it is the squark threshold and not the gluino threshold that must

be crossed before there is any effect on the photon structure function. .
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There are two types of future experiments that would be relevant to prob-
ing the structure of the photon and measuring F,. Firstly a future ete”
linear collider would allow larger photon virtualities and larger photon pho-
ton centre of mass energies. Secondly there is the possibility of producing
an ey collider. In principle an existing eTe™ collider could be used with a
high intensity laser beam. The photons from the laser undergo Compton
backscattering with a beam of electrons already in the collider. The pho-
tons are scattered into a small cone around the initial electron direction and
receive a large fraction of the electron energy. The benefits of this design
are that the energyv of the photons produced can be known fairly precisely
and also high photon photon centre of mass energies can be produced for
scattering from the available electron energies. It must be remembered that
experimentally in all cases it is hard to get a sufficient rate for photon photon
scattering. This is because the centre of mass energy is limited by realistic

experimental considerations and thus Q2 is also limited by experiment.
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Chapter 4

Virtual corrections to

inhomogeneous terms

4.1 Theory and Formalism

In this section we consider supersymmetric virtual corrections to Fy. These
will stem from loops made up of squarks and gluinos. We are not considering
actual squark or gluino production but supersymmetric virtual contributions
to possible quark or gluon production. This means that these virtual loops

will contribute below the actual SUSY threshold as well as above it.

These contributions will be suppressed by the order of s compared to the
tree level contributions. For example the diagrams in Figure 4.1 would give

the tree level contribution to Fy for quark production. This contribution
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corresponds to (LO). If we take any virtual loops due to squarks and gluinos
then we obtain supersymmetric contributions suppressed by the order of
as. These contributions correspond to (NLO) and are relevant below and
above the SUSY threshold since they are virtual corrections. Now although
these corrections are suppressed by c; it is often the case [22] that (NLO)
corrections are enhanced close to the threshold of the relevant particles. This
means that the virtual squark and gluino loops could provide a signal for

supersymmetric particles just below and at the SUSY threshold.

There are two groups of diagrams that give the virtual supersymmetric con-
tributions to F. The first set occur due to the production of quarks. Figure
4.1 shows the tree level diagrams for quark production in photon photon
scattering. These must be used with the diagrams containing virtual super-
symmetric corrections in Figure 4.2. This will give contributions of order
a? ag, which corresponds to contributions of the same order as KZ-(I) in the
DGLAP picture discussed in the previous Chapters, see Equation (1.22). The
diagrams can also have the incoming photon lines crossed. Diagram (k) is

an example of Diagram (a) with crossed photon lines.

g S

o~

Figure 4.1: Tree level quark production diagrams to be used in conjunction

with the diagrams in Figure 4.2.
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Figure 4.2: (a) — (g) are Supersymmetric Virtual diagrams that contribute
to Fy due to quark production. Diagrams with ‘crossed’ photons must be

included, for example (k) is the ‘crossed’ photon diagram for (a).
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The diagrams shown in Figure 4.3 occur due to the production of gluons
in photon photon scattering. There are no tree level diagrams that form a
product with these to produce contributions of the same order as Ki(l). In
fact these diagrams must be squared and give a contribution of order o?,,o?
which is higher than (NLO) and beyond the order that we are considering.

Thus we ignore this gluon contribution to F/.

ﬁ;

Figure 4.3: (a) — (d) are Supersymmetric Virtual diagrams that contribute

to Fy due to gluon production.

If we designate the diagrams in Figure 4.1 by M and the diagrams in Figure

4.2 by N, then the contribution that we are interested in follows from,

M+ NJ?
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the actual contribution given by

M*N + N*M = 2Real [M*N]

The diagrams (a) to (f) in Figure 4.2 may be further simplified by using
the fact that dLips ( Lorentz invariant phase space ) is invariant under the
interchange of the external quark momenta. If the external quark momenta
are interchanged then each of the diagrams (a) to (f) is equivalent to another
of the diagrams (a) to (f) with the incoming photon lines crossed. For
example diagram (b) is equivalent to diagram (k) after this interchange. In
fact it will turn out that the contribution from diagram (g) is zero, so we

may write the required contribution as
4 Real [M*N];5 diagrams (4.1)

where ‘12 diagrams’ refers to the six diagrams (a) to (f) of Figure 4.2 allowing

for both left and right handed squarks.

The incoming photons carry Lorentz indices for actual calculative purposes.
The ‘probe’ photon 7, carries indices p (v) and the ‘target’ photon v, car-
ries indices p (o), where the bracketed indices refer to taking the complex

conjugate of a particular diagram. We may write two useful quantities as,

1 .y :
Fog = gu ("5 9p0> {4 Real [(‘]Wﬁ)*(Na):' 12 diagrams} dLips (42)

PuDy L o) [, N ~
Fpy = . <_§ 9° > {4 Real [(ZW;‘) (Ny )] 12 diagrams} dLips  (4.3)
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Since we carry out all the Dirac algebra and substitutions using the algebraic
manipulation program FORM, the above contractions make the calculation
more manageable since we then deal with scalar rather than vector quantities.
These contractions are arbitrary in the sense that we could have used other

equivalent pairs of contractions.

In order to regularize the divergencies that come up we work in 4 — 2e di-
mensions. The standard 4 dimensional dLips for two quarks of momenta &

and &' reduces as follows,

d*k d*k’

dLips = - §(k? —m?) ok §(K* —m?)(2r)*6(qg+p—k — o)

N 1 4z ¢ 1 ( )_6(1 ¢

— z - z
87 [(1-2)@?*/p2| T(1—¢)

(4.4)

where z = (1 — cos#)/2 and @ is the centre of mass scattering angle of the

quark. We also take the quark mass m to zero.

In order to actually calculate F) we must average over the target polariza-
tion of photon <, This averaging corresponds to the (———;— g”") factors in
Equations (4.2) and (4.3). We also take the target photon to be on-shell,
i.e. P? = 0. Given the actual definition of F and our particular choice of
contractions in Equations (4.2) and (4.3), the contribution to £y for each

flavour of quark ¢ is given by,
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- T Cem € o
FQC\"irtua[ = < et ) [6I (1 + g) FPQ - (1 + G)Fgg} (43)

where e is the charge on an electron and F),, and F, are given in Equations
(4.2) and (4.3) above. The colour and flavour dependent quantities such
as N, = 3 colours in SU(3) and E|, the fractional charge on each quark of

flavour 7 are hidden in Fp, and F,.

We wish to calculate numerical quantities that can be utilized in the DGLAP
analysis given in Chapter 3. We made use of Veltman-Passarino functions
[23] in order to calculate the internal loops that come about in the diagrams
from Figure 4.2. We used a C++ conversion of the Fortran subroutines in [24]
in order to actually obtain numbers for these Veltman-Passarino functions.
Since these loops are ultraviolet divergent we had to subtract off the pole
parts in a consistent manner. We used on-shell renormalization in order

subtract off the primitive divergences given in Figure 4.4.

One must be careful to extract the correct part of this calculation in order to
use it in the DGLAP picture discussed in the previous Chapters. Equation
(4.5) is a contribution to Fy due to quark production and is the lowest order
contribution due to virtual supersymmetric loops. From this expression we
want to extract the inhomogeneous K; part that can be used to calculate
the virtual supersymmetric contribution to the In Q? evolution of Fy. If we

expand Equation (4.4) in ¢ there will be a term,

—eInQ*/p?
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Q

forg> =0 for ¢> = p? = p2 =0

(a) (b)

Figure 4.4: Primitive Divergences that are subtracted on-shell, (a) self-energy

and (b) vertex.

and in calculating F,, and F,, from Equations (4.2) and (4.3) there will
be terms proportional to 1/e. If we multiply these terms together, the ¢
cancels out and we are left with terms proportional to In Q?/u?. These are
the very same coefficients that we used in Chapter 3 in order to calculate
the KZ-(D) squark terms. The net result of this is that we only require the
terms from F, and F,, that are proportional to 1/e. Apart from getting the
correct coefficients, this then gives us a K éi)wk term that we can use in the
evolution of the DGLAP equations below and above the SUSY threshold.

The main point of doing this is to see whether there are possible signals for

supersymmetry due to virtual corrections below the actual SUSY threshold.
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4.2 The Calculation

Each of the diagrams (a) to (g) in Figure 4.2 had to multiplied with the pair
of tree level diagrams in Figure 4.1. Also allowances had to be made for left
and right handed squarks and also crossed photon lines as in (h) of Figure

4.2.

The various internal loops involved correspond to integrals in the internal
loop momenta. For example, in calculating diagram (c) of Figure 4.2, the

following integral crops up due to the loop that is present,

/ d*l 7+y-m

(2m)4 (12 = m?)(({ + t)? — m?)

where [ is the internal loop momentum and ¢ is the difference between the
incoming photon momentum ¢ and the external quark momentum k. Now

this integral may be written as

7
1672

(7 = m) By (2, m?, m?) + ¥ By (2, m?, m?)]

where By and By are the relevant Veltman-Passarino functions from [23] and
[24]. However these B; functions contain divergences corresponding to the
the self-energy diagram given in (a) of Figure 4.3. We must subtract off the
divergent value for these functions using the on-shell scheme. This means

that the actual value we use for the above integral is,
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(7/ - m) {BO(tQa m27 m2) - BO(m2= m27 mg)}

ok

D

=
(V)

+ ¢ {B1(*, m?, m?) — By(m? m? m?)}

such that the divergent pole parts of By and B; have been subtracted off
along with a finite part defined by taking the external legs of the primitive
divergence diagram to be on-shell. Here the on-shell momentum for #? is m?,
where m is the mass of an on-shell quark. As mentioned previously, we take
quark masses to be zero. In order to extract numbers from the Veltman-
Passarino function routines this means having m? = 0 or taking m? very

small compared to the other momenta present.

The contributions due to (a) and () in Figure 4.2 are zero. This is because of
the renormalization scheme. Since the external quarks are already on-shell,
when we subtract off the divergent parts for these diagrams, we subtract the

whole diagram leaving zero.

The contributions due to (¢), (d) and (e) in Figure 4.2 are obtained by using
B; and Cj; Veltman-Passarino functions from [23] and [24]. Basically the
B; functions correspond to loop integrals with two quadratic denominators
which stem from two propagators in the loop, for example the self energy
diagram (a) in Figure 4.3. The Cj; functions correspond to loop integrals
with three quadratic denominators which stem from three propagators in

the loop, for example the vertex diagram (b) in Figure 4.3.
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As mentioned previously the contribution due to (¢) in Figure 4.2 evaluates
to give zero. The most difficult contribution to calculate is that due to
(f), the ‘box’ diagram. There are four propagators giving four quadratic
terms in the denominator of the loop integral. We did not have routines
for the corresponding Veltman-Passarino D functions and had to calculate
them directly. By using a series of kinematic substitutions we cancelled out
as many numerator and denominator terms as was possible. This left us
with one scalar integral with four denominators, Dy say, along with many
B; and Cj; type integrals. There was a check that could be applied here
since the box integral is not divergent by power counting. In applying these
kinematic substitutions we had introduced many extra divergences which
were contained in the B; and Cj; functions that were introduced. These
divergences did indeed cancel out. A brief description of the scalar box

calculation of Dy is relegated to Appendix C.

In essence this allows us to calculate Fyy,;.,,,, from Equation (4.5) in a semi-
analytic manner. The relevant Feynman diagrams from Figure 4.2 are added
together and multiplied with the tree level diagrams from Figure 4.1. The
tensor algebra can be manipulated with FORM. The result is then contracted
using the relations in Equations (4.2) and (4.3) in order to produce Fy, and
F,q. At this point any integrals due to loops‘ present may be substituted for
the relevant Veltman-Passarino functions remembering that the divergences
must be subtracted off in a consistent manner as described above. The
phase space of the outgoing quarks may also be integrated over. Everything
must be multiplied by —e with e then subsequently being set to zero. As

explained previously, this enables us to extract the lowest order contribution
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due to the virtual supersymmetric loops that is proportional to the required
logarithmic term. Finally Equation (4.5) can be used in order to combine
Fyg and Fy into FYyj,p,q- The resulting expression for £y, . ., is lengthy
and is given in Appendix D but as Fyyg which is defined in Equation (4.6).
It appears as being analytic since the Veltman-Passarino functions appear
as functions of Q2. Bjorken z and the squark mass M,. However it must be
remembered that these are calls to routines that numerically evaluate these
loop integrals. However once we have F}'y,; .., in this form it can be evaluated
for any Q?, Bjorken z and M,. It can then be used directly to produce the
relevant inhomogeneous K; terms needed in the DGLAP evolution equations
as explained below. Since the DGLAP evoluﬁon is carried out numerically

we can utilize this semi-analytic form of Fyy.;.,,, directly.

In Chapter 3 we constructed the inhomogeneous Ki(o) squark terms in Equa-
tions (3.32) and (3.33) from the squark contribution to F3. They were ob-
tained by taking the coeflicient of the In(1 + v)/(1 — v) in Equation (3.30).
By analogy we have directly calculated the coefficient of the same logarith-
mic term but to a higher order and for the case of virtual supersymmetric

corrections to Fy for quark rather than squark production. We can do two

things now.

Firstly, there is a term in the tree level Bethe-Heitler result for quark produc-
tion, Equation (1.16), that is the coeflicient of In Q*(1 — z)/m?z from which

Ki(o) is obtained for the quark. This is
[z% 4 (1 — z)?]
We can compare this term and the one that we have calculated in order to
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get some idea of the relative magnitude of the effect of these virtual super-
symmetric corrections. To compare these two properly we must make sure
that they have the same coefficients. The correct expression is obtained by

dividing out some factors from Fyy, ., in Equation (4.5) to obtain Fyys,

. N.E* o
F:z’,vs = [1/ ("‘“:;““— x):’ FQ’):Virtual (4.6)

As mentioned previously Fyyg is given in Appendix D.

Secondly, we can obtain a Ki(l) that accounts for the contribution of these
virtual supersymmetric corrections to the InQ? evolution of the DGLAP
equations with the correct coefficients and use it directly in the equations
above and below the SUSY threshold. In this case we need to remove a
factor of («s/27) since this will be included in our calculation but has been
removed from the Ki(o) terms in the expansion definition given in Equation

(1.22). The correct quantities are,

Kfs(@) = 37 (€)= (%) 2 s Fs (4.7
KQs(x) = 3f <e2>2@;}§W—)FZW (48)
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4.3 Results

The Figures in this section show the properties of the contribution that we

have calculated. We have plotted

i
R F2,VS
F.

DS Ty X L00% (4.9)

which as mentioned in the previous section offers a direct comparison between
the virtual contribution that we have calculated and the tree level result for

quark production. At all times we have taken the squark mass M, to be

300 GeV'.

Figure 4.5 shows RF; plotted at Bjorken x = 0.5 for +/QQ? between 200 GeV
and 800 GeV. Rpy is smooth and small in magnitude, less than 0.25% for
z = 0.5. The full squark threshold production condition, Equation (3.11),

reduces to

Q = ( v )4;\/13 (4.10)

11—z

where there is no dependence on P? since it is assumed that P? = 0 in this
calculation. As mentioned previously, we might have expected some structure
as /@? approached this condition. Section D.2 in Appendix D shows how
individual terms in the solution can exhibit structure but that the sum of
all contributions gives a smooth curve. In this particular case the condition

coincides with /Q? = 600 GeV where there is only the smooth main curve

with no structure.
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Figure 4.5: Fyyg/[z® + (1 — £)?] x 100% for = = 0.5 and Squark mass M; =
300 GeV'.
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Figures 4.6 - 4.9 show Rpy plotted at /@7 = 300, 600, 800 and 1200 GeV
respectively for all Bjorken z. These are useful plots because it is easy to visu-
alise what is happening during the actual evolution of the DGLAP equations.
As the PDF's are evolved in InQ?, at each discrete step the inhomogeneous

terms are added with no convolution, see section A.3.

The contribution due to the continuous main curve is basically negligible
being never more than 1% until after /Q? = 1T¢eV is reached. There is
central negative portion which becomes narrower and eventually positive as
higher /@2 is reached. At low z the curve is initially negative for very low
v/Q7? but becomes positive and increases in intensity with increasing v/@Q2. At

high x the curve is positive and becomes increasingly more so with increasing

VQ*
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Figure 4.6: Fjyg/[z* + (1 — 2)?] x 100% for /Q? = 300 GeV and Squark
mass M, = 300 GeV.
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VO’ = 600 GeV
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Figure 4.7: Fyys/[z* + (1 — 2)?] x 100% for \/Q? = 600 GeV and Squark
mass M, = 300GeV.
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VO = 800 GeV
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Figure 4.8: Fyyg/[z? + (1 — )% x 100% for +/Q? = 800 GeV and Squark
mass M, = 300 GeV .
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VO = 1200 GeV
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Figure 4.9: Fyyg/[z? + (1 — 2)?] x 100% for \/Q? = 1200 GeV and Squark
mass M, = 300 GeV.

86



Figure 4.10 shows the result of a DGLAP evolution of £ to 800 GeV with

a squark mass 1/, of 300 GeV'. The quantity

(F;)vv’le{Y _ (F;)WITHOUT x 100%
(Fy )WITHOUT

has been plotted for all Bjorken z. WITH and WITHQUT refer to evolu-
tion with and without the virtual supersymmetric corrections. This gives a
measure of the percentage change that we might expect to any evolution by
including the virtual corrections. We have used the same machinery as in
Chapter 3 however we have only used (LO) QCD splitting functions and no
SUSY splitting functions at all. This means that the only (NLO) components
in this evolution are Krl(ﬂl,)vs and Kg,)vs from Equations (4.7) and (4.8). This is
so we can make clear any contribution due to the virtual supersymmetric cor-
rections. The difference is less than 0.05% for any Bjorken z and is entirely
negligible. The reasons for this are twofold. Firstly, as we have demonstrated
above, the contributions in general are very small. Secondly, over the range
of an evolution, up to about \/Q? = 1TeV, there will be a superposition of
positive and negative contributions which will tend to cancel out. For very
high v/@Q? the contribution will become positive and more significant however
in this energy range there will be a much larger contribution due to tree level

supersymmetric effects as we have shown in the previous Chapter.
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Figure 4.10: Percentage difference in F3 evolved to /QZ = 800 GeV due to

virtual supersymmetric corrections with a Squark mass M, = 300 GeV'.
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In conclusion we can say that the supersymmetric virtual corrections offer
a negligible contribution to the In Q? evolution of 3. Basically there is no
noticeable resonant structure due to the virtual corrections as the squark
threshold is approached. The contribution is negligible because it does not
effect the evolution of Fj in any appreciable way. In this respect the super-
symmetric virtual corrections do not offer a measurable signal for supersym-

metry below or in the region of the squark threshold.
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Chapter 5

Chargino Production

5.1 Motivation

The main thrust of this dissertation is to investigate processes that could be
measured in order to verify the existence of supersymmetry in nature. The
previous two chapters have dealt with ‘measuring’ supersymmetry indirectly
by evaluating its possible effects via the structure function of the photon.
In this chapter we concentrate on the production of actual supersymmetric

particles that could be detected in an accelerator.

Specifically we calculate the total cross section for chargino production in
electron positron collisions. As mentioned previously, charginos are actu-
ally mass eigenstates corresponding to superpositions of the supersymmetric

winos and higgsinos. Two distinct mass eigenstates corresponding to xi and
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X5 can occur. In principle mixing can occur between the charginos of differ-
ent mass. However we assume that the centre of mass energy is sufficiently
above the relevant mass thresholds so that we can treat the charginos as
charged particles of a given mass. Again we are also only looking at photon
photon interactions to produce the charginos. The coupling of the Z° to

charginos is very much more complicated.

The specific interaction we are looking at is

ete” — eTe vyt = efe YT

and the experimental setup for this interaction showing the relevant kine-

matic variables is shown in Figure 5.1.
A current lower limit on the chargino mass is [26]
lightest chargino : xf  Massm > 67.7 GeV

The point of the calculation is to see if the actual number of events corre-
sponding to this interaction would be enough to merit looking for charginos

in this experimental setup in order to verify the existence of supersymmetry.
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Figure 5.1: Experimental setup for the production of x*x~ in electron

positron scattering showing the relevant kinematic variables.

5.2 The Calculation

The basic definition of the cross section arising from the interaction in Figure

5.1 in terms of conventional factors is

a4z
(2m)®

1 et d'y
© fluz Q4P* (27)3

do 5(1%) S LY L@ e (5.1)

Here we take the mass of the leptons to zero. We have factored out the

kinematic contribution due to the electron and positron giving rise to the
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standard lepton tensors

L) = 20 1Y + 207l — Q% g
(5.2)

Lre(@) 20517 + 215715 — P? g%

fl

@? and P? are defined in Equations (1.2) and (1.4). F/ contains the internal

calculation for v*v* — x*x~.

F’ must be parameterized into four structure functions. Four rather than |
two since for this calculation we assume that P? # 0. The four structure

functions F}!, FZ. Fy and F} are defined as follows,

y . g DpDo
F:a_ = (g/“ -+ ) (ng' -+ "‘pp“z“‘> F11
q“q”) pq pq FY
_ 7%
(g —+ Q2 (Qp + P2 pﬂ) (qa' =+ P2 pa'> (p . q)
pq p-q pops\ Fo
. by Z Lok V+_qV>< J+_p__>
(p 2 )(p @1 )\% TP )5 g)

p-q , P q, pg pq F3
o)) i)

(5.3)

These structure functions are scalar functions of the kinematic variables @2,

P? and Bjorken 2. We need to be able to project them out from F%’. Four
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projectors P#7 (%) are defined such that

the projectors being

PE ()

i)

P ()

Pi )

PG Fle = Fj
_ r~"guu + 2T$2 Dubv
L2 (1 —4rz?) P?
y F_gpa 27"3;2 qpqa
2 (1 —4rz?) Q?
2
[—g,w n 2re®  pupy
2 (1—4rx2) P2

T

1 — 4rax?

—Z

12rz®  qPq°]
(1~ 4ra?) Q7 |

12rz®  p.p, |

[—gf? 2rx

(1 — 4ra:2)gw *

(1 —4rz?) P2 |

+

—TT

[ -

(1 — 4r$2)g“'/ *

2 qpqa}

2 T (1—drz?) Q?

1223 p,p,
(1 —4rz?) P?

(1 — 4rz?

94

g +
)

12723 qfq’
(1—4drz?) Q?



This means that we can do the following. Firstly, we can calculate F’, which
entails using the tree level Feynman diagrams for the process v*v* — x"x~
and integrating out the dLips for this internal process. This will result in
a tensor from which we can project out the structure functions FJZ using
Equations (5.4), (5.5), (5.6) and (5.7). We then have a definition of F in
terms of the F} as given by Equation (5.3) which we can contract with the
lepton tensors in Equation (5.2). This contraction is required for the main
cross section in Equation (5.1). It then remains to integrate out the phase
space of the electron and the positron in the variables I and ;. We shall

carry out this integration using numerical Monte-Carlo techniques.

The tree level matrix elements that must be squared in order to calculate

F1Y are given in Figure 5.2 along with the chargino-photon vertex Feynman

rule that is required.

| 2 3 ,
FrY is given by,

v B (1+n)/2 ) * : v s
o= <8m /(I_WQ dz) (M) + (Mol ) {[Mn]y + DB)) (5.8)

where a trace of the Dirac matrices present must be made. The first factor

is the dLips for massive charginos where P? # (. The remaining variables

are defined as



T M

(a) Xi = —iev* 52'_7‘
Xj
Vg M Vg M
X" X"
(6) +
J\/\/\‘ X X
Yps P Yp P

[My]

Figure 5.2: (a) Chargino-Photon vertex Feynman rule. (b) Squared matrix
elements needed for tree level y*y* — x*x~ process. We refer to these as

[M;] and [M,] respectively.

N = ——V1—4dra?
(1—2rx)

S =Q(—z—-rz)/z

r= PYQ:

z = (1—mncosh)/2
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where 0 is the centre of mass scattering angle for the charginos.

We used the algebraic manipulation program FORM to handle the Dirac
algebra and substitutions. We work in the centre of mass frame of the in-
coming photons. The various four-vector scalar products that appear may
be substituted out for the variables Q% P?, Bjorken z and the dLips in-
tegration variable z. These kinematic substitutions again assume massive
charginos and P? # 0. Having carried out the dLips integrations, the pro-
jectors from Equations (5.4), (5.5), (5.6) and (5.7) are used to obtain the
structure functions F; as defined in Equation (5.3). By using the lepton ten-
sors in Equation (5.2) and the parametrization of F in Equation (5.3) we

can obtain the tensor contraction needed for the cross section.

1 2 v 2M2 101
LY Lre® Frr = 4 P2Q*F

92
- 2 {4(l-q) (- q) + PQ*} F?

(p-q)
2P / 212 1
+ (p_q){4(ll'p)(ll'p)+PQ}FQ
u _1q)2 {ttn @D+ PR 0G0+ PR

(5.9)

The analytic expressions for the various F; are quite lengthy and are given

in Appendix E.
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This contracted quantity in Equation (5.9) is now a scalar function of the
kinematic variables @2, P? and Bjorken x and also of various vector products
between the vectors [y, [}, ls, I}, ¢ and p. Henceforth we shall refer to this as
[LLF] with the understanding that it is a function of these various variables.

This means that the cross section in Equation (5.1) can be written as,

I N
 fluz QP4 (2n)

d*l;
(27)

do = 0(11%) o5 6(15") [LLF] (5.10)

In order to obtain the amount of actual events we might expect in an accel-
erator we must integrate out the phase space of the leptons in the variables

[1 and [;,. We make the following parameterizations of the vectors ¢ and p.

2

¢ = o lf — %—Zé‘ +1/Q%*(1 — o) 11 * (5.11)

P2
g = ——§Zf+ﬁgl§‘+\/P2(l~ﬂg) [ (5.12)

The quantities 75 and 7iy are unit space vectors which ‘swivel’ around the
centre of mass axis defined by the incoming lepton momenta [; and {3. A
pictorial representation of these units vectors is given in Figure 5.3. 7, and

7y define the angles ¢, and ¢, around the centre of mass axis.
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Figure 5.3: Pictorial representation of the unit space vectors n; and ns.

This enables us to write the lepton phase space as

WA 2 a*ly, o 1 ) 1 ,
(27)? ol )———*(2/7)3 o(ly") = é@?dal d@Q?d¢, 3 By dP? dé
(5.13)

We may also take the sum and difference of ¢; and ¢,
b = o1+ ¢, ¢ = ¢1— P2

and integrate out ¢, since none of the required scalar products between the

vectors depend on ¢,.

The kinematic limits on these integration variables are given in terms of the

total invariant centre of mass squared, S;o; = (I; + l5)%.
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Q2

< < 1
Stot - “ -
PQ
< < 1
Stot T b <
0 < Q@ < S (5.14)
O S P2 S Stot

0 < ¢ < 2m

The fluz is given by 2S5i:. This leaves us with a quantity for the cross

section that we can work with,

1 et 1

55, 0Pt LLT] G5igpsy don 46:dQ° AP do- (5.15)

do =

5.3 The Monte-Carlo Integration

The required integral, Equation (5.15), that we have to perform is too com-
plicated to be done analytically. We choose to perform a Monte-Carlo type
integration in the five variables over the ranges given in Equation (5.14).

Hereafter whenever we write S we are referring to S;, given in the previous

section.
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S S 1 1 2m
aQ? [ ap? /
/0 Q /O d /Q oo [, 48 [ do-

We have an analytic expression for the integrand given in Equation (5.15).
The procedure is to sample the integrand N times. For each sample we
obtain five random numbers in the range 0 < z; < 1. From these z; we
obtain a set of randomly generated integration variables within the required
range. We can also define set of r; for each set of z; in order to make the
algebra more manageable. The relationship between the z;, the r; and the

set of randomly generated integration variables is given as

o = 2Ty = 2rr;
Q2 = S.’EQ = S’T’Q
P2 = Sxs = S'f’g (516)

Qp = Q2/5+(1*Q2/S)IL‘4 = T2+(1—T2)T4
ﬁg = P2/S+(1“‘P2/S)SL'5 = 7'3+(1*‘T'3)T5

Now in the centre of mass frame of the leptons we can show that

, S Q*\ (1 —costh) @

Zl . Zl = 5 (1 — o + -‘5-) —“——2——*— = "2—— (517)
. S P2\ (1 —cosfy) P? _

Iy - 12 = —2‘ (1 — By + *37‘) ——“'5—‘—*— = -—2— (018)

where 6; and #; are the scattering angles of lepton /; and lepton [y respec-

tively. Thus given a random set of integration variables from Equation (5.16)
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we can calculate the two scattering angles that this set belongs to. These

angles are given by

el 2Q* 3
g, = cos {1_S(l—a1+Q2/S)} (5.19)
0y = cos™'{1— 2P (5.20)
2T S(1— B, + P2/S) -

We can therefore divide each of 8, and &, into a number of bins into which
the cross section can fall. Into each bin we add the value
1 1 4 2 x S xS x(1-@Q*S) x (1 - P?%/9)]

e
25 (5127%) Q1P? [LLF] N

and keep a separate cumulative total of these values which will give the to-
tal cross section. The factor [27 x S x S x (1 - Q?/S5) x (1 — P?/S)] comes
from the standard Jacobian transformation required to enable Monte-Carlo

sampling. The factor of NV is required because we are using N samples.

It is possible to further simplify the quantity that goes into each bin by
factoring out certain dimensional quantities. Also it is more convenient to
have a dimensionless quantity within the mechanics of the computer program

used to carry out the integration. Given this simplification procedure we

obtain the following quantity

do — e® {(1-7”2)(1-73)}1{ [LLF) J (5.21)

128735 r2r? N [452(e*/7)
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There are two constraints that we must build into the integration. Firstly
there must be enough energy to create particles. The internal photon photon
invariant centre of mass squared (g+p)? must be sufficiently large to produce

charginos of mass M,. This constraint
2 72
(g+p)?* > 4M;

translated into the variables that we have defined is

a1fa + \/4r2r3(1 —a)(1=Ba) > ro+rs+4M/S (5.22)

If this constraint is not met then we can’t have an event and zero is entered

into the relevant Monte-Carlo bin.

Secondly we must take account of the inherent singularities produced by
either of the photons becoming on-shell. Equations (5.1), (5.15) and (5.21)
all show that the differential cross section is proportional to 1/(Q*P*) or
equivalently 1/(r2r2). This means that if either @? or P2 become very small
there is a singularity. @? = 0 or P? = 0 corresponds to either photon
becoming on-shell or real. In actual fact the singularity is only proportional
to 1/(QQP2). This is because the quantity [LLF] goes to zero like Q?P?,
hence we have an overall divergence proportional to 1/(Q%P?) or 1/(ra73).
We can also see from Equations (5.19) and (5.20) that Q* — 0 or P2 — 0
will produce leptons in the forward direction, i.e. 8; — 0 or 5 — 0. This is
a real singularity and is present in the equations. However it is impossible
to detect particles directly down the beam axis in an accelerator. In essence

one would have to tag one of the leptons after it had been scattered down
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the beam axis with & — 0. Since this type of detection is impossible and
it leads to singularities anyway we introduce an angular cut-off. This is a
‘small’ angle away from the beam axis that produces a cone around the beam
axis. If for any particular sample, either of the variables , or 6, given by
Equations (5.19) and (5.20), is less than this angular cut-off then the event
is discounted and not added to the cross section. In practise these angular

cut-offs tend to be of the order of milliradians up to about 100 milliradians.

We need to convert cross section quantities into actual numbers of events.
Equation (5.21) is dimensionless apart from the 1/S factor. Since we are en-
visaging the next generation of high energy linear electron positron colliders,
it is not unreasonable to assume a centre of mass energy corresponding to
S = 1TeV? The factor that we need to multiply by corresponds to

(he/2m)? 1
(TeV)2e? (pb per m?)

(0 — Events) = [Luminosity] x

[Luminosity] refers to the Integrated Luminosity measured in inverse pico-
barns ( pb~! ). This is a function of the flux of the experimental beam and
also the period of time over which measurements are made using the beam.
We might reasonably expect a luminosity of 5000pb~t. (hc/27)? accounts
for the practise in Quantum Field Theory of naturalising these quantities to
unity for simplicity. 1/TeV? allows for our choice of the TeV as our unit of
energy. 1/e* converts from electron-volts to Joules. 1/(pb per m?) allows for
the fact that theorists measure cross sections in m~2 and we require this to be

in picobarns since experimental luminosities are given in inverse picobarns.

Taking all these factors into account we obtain a cross section to events

104



multiplier of

(3.1616 x 107%6)2 1
(1012)2(1.6021 x 10-19)2 (10-40)

(0 — Events) = [5000] x
(5.23)

= 5000 x 389.39

5.4 Results

The final equation that we use in order to calculate the amount of events we

might expect for chargino production in an electron positron collider is

8 (1—m)(l—r;;)}_l_{[LLF}(Tl,TQ,Tg,m,Ts,MX)

500 389.39 - {
5000 x " 128758 372 N 4 5%(et/7)

(5.24)

As explained in the previous section this quantity is evaluated N times with
the set of random variables given in Equation (5.16). In practise we took 10°
Monte-Carlo samples. There was a check that we used to ensure confidence
in the results that were produced. As we ran through the N samples we
calcuiated the total amount of events as well as the amount that went into
each bin. Finally we compared the total amount events with the sum of the
events in each bin. If N was taken too high then these quantities would
disagree. This was expected and is due to rounding errors in the internal
workings of the computer processor. At N = 10° the agreement was to four

significant figures. Since the calculation was a Monte-Carlo one, we did not

105



produce the same answer with each run. The variance in results was greater
if the value for N was lower. The maximum variance in the total amount
of events was about 10% with N = 10°. Without going into exhaustive
Monte-Carlo error analysis we took N = 10° as being a satisfactory number
of samples to produce a reasonable answer. The reasoning behind this is that
if V is smaller a wider variance in events is produced and if V is larger then

rounding errors start to effect the result.

Figures 5.4 and 5.5 show the results for chargino masses of 100 GeV and
65 GeV respectively. These two masses correspond to currently accepted
probable higher and lower limits for the chargino mass. We took 18 equal
bins in which to divide up the 180° into which the incoming electron and
positron can scatter. This corresponds to tagging the leptons in 10° segments
away from the beam axis. Having calculated the amount of events expected

in each of the bins we used two ways of analysing the results.

Firstly we calculated the total amount of events. As discussed in the last
section, events within the angular cut-off, 10 milliradians or 0.6°, are dis-
counted since the scattered leptons cannot be tagged. As would be expected
there are more events for the lower chargino mass of 65 GeV. Less energy
is required to produce charginos of lower mass. This means that given the
same centre of mass beam energy more kinematic configurations correspond
to the production condition in Equation (5.22). There are 55.82 events in
total for a chargino of mass M, = 65GeV against 16.41 for a chargino of
mass M, = 100 GeV. We conclude that there are roughly 250% more events

in total for the lighter chargino mass.
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Secondly we concentrated on the angular dependence of the results. Figures

5.4 and 5.5 show two measures of this angular dependence.

As a first measure of angular dependence we take a value of § away from
the beam axis in order to construct a cone around the beam axis. A certain
amount of bins will fall into this cone. We take two such cones with the same
value of # but pointing in opposite directions, one for the electron and one for
the positron. We can say how many events will fall inside this ‘double cone’.
The quantity ‘Events in Double Cone’ gives the percentage of total events
that fall inside these two cones for 10°, 20°, 30° etc... For example, referring
to Figure 5.4, we can say that 85.42% of events fall within the 40° ‘double
cone’ for production of charginos with mass M, = 100 GeV/. This means that
85.42% of events will occur for configurations where both the electron and
the positron are tagged within 40° of the beam axis. It is clear that the vast
majority of events fall in the forward direction, i.e. where both the electron
and the positron are only scattered through a small angle relative to the beam
axis. Despite the difference in the total number of events, the percentages for
both chargino masses are very similar. A consistent trend that came out of
all samples is that the M, = 65 Gel” charginos are very slightly more packed
into the more forward bins than the M, = 100 GeV charginos. For example
we can see that 83.88% of the M, = 65GeV charginos are packed into the
first 30° against 77.53% of the M, = 100GeV charginos. This difference is

even more marked in just the first bin where there is almost a 10% difference.

As a second measure of angular dependence we have concentrated on just

one of the leptons. In Figures 5.4 and 5.5, ‘Percentage of Events in ¢; Bin’
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gives the percentage of the total number of events that fall into each of the
10° bins for just one of the leptons. The calculation is symmetric between the
incoming electron and the incoming positron, so it makes no difference that
we have picked 6; rather than 6;. For example, the second quantity of 17% in
Figure 5.4 between 10° and 20° refers to the percentage of the total amount
of events that correspond to one of the leptons being tagged in the second
bin. The other lepton may be tagged at any angle although this will be more
likely to be in the forward direction also. Again it is apparent that the vast
majority of events fall in the forward direction with over 60% of events falling
in the first bin for either chargino mass, i.e. under 10° from the beam axis.
Again we can see that the M, = 65GeV charginos are very slightly more
packed in the first three bins. The sum of the first three bars for the lighter
chargino is 93.5% against 90.5% for the heavier chargino. Indeed there is
a 7.5% difference if we just take the first bin. This again was a consistent
result over many different samplings. We have only given results for the first

ten bins up to 100° since thereafter the values are negligible at under 1%.

We carried out simulations for a higher centre of mass energy S = 1.5TeV?,
which is inside the possible higher energy limit for the next generation of
linear colliders. One would expect some increase in the amount of events,

however our results showed no appreciable difference from S = 1TeV?, so

we have omitted them.

The reason that most of the events fall in the forward direction has been
alluded to in the previous section while discussing the need for an angular

cut-off. As was explained, the cross section given in Equation (5.1) has an
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overall divergence proportional to 1/(Q?P?). This means that the greatest
contribution to the cross section will occur when @*> — 0 and P? — 0.

However from equations (5.19) and (5.20), this case corresponds to 6; — 0

and 92 — 0.

In conclusion we may say that given an accelerator with a centre of mass en-
ergy S ~ 1TeV?, it would be definitely feasible to look for chargino produc-
tion in electron positron collisions. It is clear from our results that increasing
the beam energy above 1 TeV? will not make an appreciable difference. How-
ever what is far more important is the amount of events that can be tagged
close to the beam axis. We used an angular cut-off of 10 milliradians or
0.6°. If however this cut-off had to be experimentally increased to 175 milli-
radians or 10° then the amount of events that could be measured would be
reduced drastically. From Figures 5.4 and 5.5 we can see that between 40%
and 50% of the total amount of events would be lost, more in the case of a
lighter chargino since the events are packed slightly closer to the beam axis
as discussed above. So in effect the precision of being able to measure close
to the beam axis is as important as reaching a high centre of mass energy.
Very much also depends on what the actual mass of the chargino is. The
amount of events is reduced by around 71% if the chargino mass increases
from 65 GeV to 100 GeV. It must be bourne in mind that the actual effi-

ciency of detection of charginos in the accelerator would be less than 100%

due to backgrounds.
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The chargino has a few characteristic decay modes that would actually be

seen in the accelerator,

T XPWE o P Ey

xT = XPWE = xqgq

T = viE o vy

where x° is any neutralino, [ is a lepton, § is a squark and § is a gluino. The
relative rates of these decay modes depend on supersymmetric masses in

general and also the mixing coefficients that determine the mass eigenstates.
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Events in Double Cone

Total Events = 16.41

10° 40.30%
S = 1.0Tel? 20° 64.42%

30° 77.53%
M, = 100GeV

40° 85.42%
Cut-Off = 10 mRad 50° 90.24%

6Q0° 93.41%
Samples = 10°

70° 95.50%

80° 96.95%

90° 97.96%

100° 98.65%

100% -

110° 99.12%

120° 99.43%

130° 99.65%

140° 99.80%

150° 99.90%
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160° 99.96%

170° 99.99%

180° 100.0%

0% — T
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Percentage of Events in 6; Bin

Figure 5.4: Monte-Carlo results for Chargino production of Mass M, =

100 GeV.
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Events in Double Cone

Total Events = 55.82 -

10° 49.20%
S = 1.0Tel? 20° 72.37%

30° 83.88%
M, = 65GeV

40° 89.95%
Cut-Off = 10 mRad 50° 93.44%

60° 95.67%
Samples = 10°
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110° 99.43%
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150° 99.94%
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|
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Figure 5.5: Monte-Carlo results for Chargino production of Mass M, =

65 GeV.
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Chapter 6

Summary

The title of this thesis is ‘Signals for Supersymmetry in Photon Photon Scat-
tering’. We have investigated three areas where the effects of supersymmetry
might be ‘measurable’ in a particle accelerator. The type of processes dis-
cussed are particularly relevant for the proposed next generation of high
energy linear electron positron colliders which should reach centre of mass

energies of between 500 GeV and 1.5TeV.

Photon photon scattering is a core process involved in electron positron cdl—
lisions and results in a measurable quantity called the photon structure func-
tion Fy. In the first two Chapters we introduced the theoretical framework
for analysing Fy in the arena of supersymmetric effects. In Chapter 3 we
showed that there is a significant contribution to F3 due to supersymmetry.
The effect is primarily due to the squark as the difference due to changing

the gluino mass is negligible. In practise the ‘target’ photon is not likely
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to be on-shell and the increased virtuality of this photon diminishes the ef-
fect but only modestly. Fy therefore offers a good way of either vindicating

supersymmetry or measuring its effects above the SUSY threshold.

In Chapter 4 we calculated the virtual supersymmetric contribution to the
evolution of F3'. This would be a useful effect to measure as it would be rel-
evant below the actual SUSY threshold. However this contribution exhibits

a negligible effect on the evolution of Fy and is hence of no use as a signal

for supersymmetry.

In Chapter 5 we calculated the actual amount of events that one might
expect for chargino production in an electron positron collider. There seems
to be a significant number of events. However the usefulness of such a signal
for supersymmetry depends on many experimental factors. The integrated
luminosity, the beam axis angular cut-off and the actual mass of the chargino
are all factors in determining how many events one could expect. However
if the mass isn’t too high and the angular precision of measurement is good

enough then detecting charginos offers a good indicator for supersymmetry.

In short we expect accelerators of the requisite energy to be functioning
during the next decade. If supersymmetry does indeed exist in nature then

much work will definitely go into the measurement of F} and possibly into

detecting charginos also.
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Appendix A

C++4 Program

A.1 Preamble

In this appendix we give some consideration to the programming procedures
and difficulties encountered in the numerical application of the DGLAP equa-
tions. The task was to produce a reliable and flexible program that would
accept parameterizations of parton distribution functions at some energy and
numerically evolve them through various thresholds and finally calculaté FJ
at some higher energy. The basic program was used extensively in the work
discussed in Chapters 3 and 4. The program that was used for the work in
Chapter 5 to calculate the total cross section for chargino production involved
a Monte Carlo evaluation of the multi-dimensional phase space integral. This

was was far less involved and does not merit any detailed explanation in an

appendix.
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We used C++ rather than Fortran to write the evolution program. This
meant that we could use classes to represent objects that appear in the
DGLAP framework in a very general way. The initial task of creating these
abstract classes was perhaps difficult and time consuming. However once
they had been tested it was much easier to generalise the application of the
program in the sense of varying parameters, introducing further complexities
and generally ‘tweaking’ the program. Actually most of the code resided in
the ‘class’ section of the program meaning that the ‘main’ portion of the
code which was changed regularly was actually quite small. Having had
experience of Fortran we feel that the task of implementing the DGLAP

equations accurately and reliably was in the end made very much easier by

using C++.

There are two main processes that need to be implemented, the convolution
integral and the ‘stepped’ numerical solution of differential equations. We

divide the rest of this appendix accordingly.

A.2 The convolution

The convolution integral iskgiven in Equation (1.23),

, ld

e

and is defined between a splitting function P and a distribution Fj(z, Q2).
g ] J
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As we solve the differential equations that form the DGLAP framework,
at any particular Q? we must perform many convolutions between differ-
ent splitting functions and different distributions as in Equations (1.24) and
(1.25) for instance. The range of the dummy integration variable y in these

convolutions is given by,

0<z<Ly<l1

which means that we must sample all distributions in this range.

We created a class called Xrange which contained all the information about
this sampling. Since there were inherent divergences that appear when one
moves from an analytical to a numerical framework we could never evaluate
integrands at © = 0, y = x or y = 1. This Xrange class used a lower limit
a just above zero, a higher limit b just below 1 and split the range into NV
steps. All other classes were defined in terms of this class which only had to

be fixed once at the beginning of any particular program run.

A general PDF class was created to model parton distribution functions.
As a function of z, each PDF would have numerical values at particular
values of x determined by the Xrange class, also at a particular Q2. The
object orientated nature of C++ meant that these PDFs were very easy to
manipulate. The mathematical operators +, —, x and <+ were overloaded
in the implementation so that operations like addition, scalar multiplication,
etc... could be performed very easily on PDFs. The + and — operators
were overloaded so that PDFs could be added and subtracted. The x and +
operators were overloaded so that scalar multiplication and division could be

performed with PDFs. If you imagine that each distribution might contain
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hundreds of discrete values then the operation,
Tys(2, Q%) = 2 [u(z, Q) +d(z,Q) + s(z, Q) + c(z,Q?) + b(z, Q%) — 5t(z, Q%)

becomes as easy to perform as it is written above. If one was dealing with
many arrays and loops as one might be in Fortran the above operation might
take a page of code. All the arrays, loops and operations are written down
only once, inside the inner workings of the PDF class methods and once they
have been tested one can be sure of not making errors by typing out many

lines of code.

A general SF class was created to model splitting functions. Splitting func-
tions are essentially analytic but can be subject to the threshold condition in
Equation (3.11) for instance. There were many splitting functions involved
and we found it useful to write them all out as analytical return functions in a
separate file. Once an SF object had been associated with the relevant split-
ting functions there were two main considerations that the object orientated
approach made easier. Firstly, it was possible to overload the % operator
so that a convolution could be performed as easily as it could be written
out. For example P}OT) ® T3(z, Q?) defined by the convolution integral above
could be written out in code as PTT0xT3. All the machinery of integration
was hidden inside the class methods and again once it had been tested one
could be sure of not making mistakes from re-writing many lines of code.
Secondly, the operation SF ® PDF was aware of the Q2 dependence of the
PDF and how the Xrange class was sampling the integral. This meant that
any threshold condition that required a run-time choice of splitting functions

could be incorporated into how the integral was performed. In relation to
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the actual method used to numerically integrate we actually tried several
different ways in an effort to reduce the error. In the end a Simpson like
method that sampled the range of z in 4-steps with evaluation at 5 separate
points was chosen. Some interpolation was needed towards the z — 1 region

however the error introduced by this was minimal.

The DGLAP equations can be written out in matrix form. For example

Equations (2.6) can be written out as

d—% =j§i:lpij®Fj+Ki {forizl—ﬂl}
We created a vPDF class that was essentially a vector of PDFs. This would
correspond to a column of F;. Again the 4+, —, x and -+ operators were
overloaded in order to facilitate addition, subtraction, scalar multiplication
and scalar division with these vPDFs. Also we created a vSF class that was
essentially a row of splitting functions. This would correspond to a row of
F;; for a particular 7. This meant that we could overload the * operator so
that the operation vSF ® vPDF could be performed. At each particular Q2
if the K is turned into a vPDF the whole of the above equation can be coded
as Pijx F'j+ K. This again makes the implementation very simple, reliable

and free from typing errors.

A.3 Differential Equations

The simplest way to numerically solve ordinary differential equations is by

using Euler steps. Thus given Equation (1.24),
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dT;

m — PTT@CT[ + KT

the evolution in In Q? is given by

Ti(z,InQ*+ AlnQ*) = Tj(z,InQ?*) + AlnQ? x {PTT QT + KTJ
z,In Q2

In order to produce more accuracy we can use Runge-Kutta methods. If we

take a generalised DGLAP equation as

ar
—d—{—-P®F+K

where t = In Q?. Then a more accurate evolution is given by

dt
F(f‘f‘dt) = F(t)+—é—X(Hl+2HQ+2H3+H4)

where

H, = P@t)®F+ K(1)
Hy, = P(t+dt/2)® (F+ H,/2) + K(t+ dt/2)
Hy; = P(t+dt/2)® (F+ Hy/2) + K(t+ dt/2)

Hy = P(t+dt)® (F+ H;3) + K(t+dt)

where we must remember that each P and K is actually an expansion of

individual splitting functions in the strong coupling as given in Equations
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(1.21) and (1.22). In the above for example P(t+dt/2) actually means

P(t+dt)2) = (%%.@)F(o)+ (Q%ﬂa)zpm

so that the coupling, which is analytic, is evaluated at three values of Q2

corresponding to t. t + dt/2 and ¢ + dt.

Also we must remember that the DGLAP equations are actually generalised
n X n matrix equations. This means that the expressions H;, H,, H3 and H,
above give rise to up to four matrix convolutions that have to be evaluated
at any particular Q2. The algebra involved in calculating the H; above was
handled with the algebraic manipulation program FORM. The full expression

involves sixty multiple convolutions that have to be evaluated in matrix form.

An example is,
PP o PR ® Py ® BY ® Iy,

where the Pi(j“ are vSF splitting function rows and the F; are vPDF parton

distribution function columns.

A class called AP was designed to incorporate all these ideas. Each AP object
was designed to run the distributions in a particular range, for instance from
the t-quark threshold to the SUSY threshold. It would contain the relevant
vPDF's, vSFs, the correct couplings and again was dependent on the Xrange
class in order to determine the amount of = values that were sampled. Both
the Buler method and the more involved Runge-Kutta method for numeri-

cally running the distributions was incorporated. It was a general class in
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the sense that it was designed to take an n x n set of DGLAP equations.
Basically the distributions were evolved within the AP class and could be

projected out at any desired Q? so that Fy could be calculated from the

distributions.

It turned out that using the full Runge-Kutta machinery was an ‘overkill’ in
the sense that the evolution would take much more computer time and the
end results were negligibly different from using the Euler step method. In

the end we just decreased the ¢ = In Q? steps and used the Euler method.
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Appendix B
(NLO) Splitting Functions

In this appendix we give the (NLO) splitting functions that are used in
Equations (1.24) and (1.25). The Pi(jl) were obtained from [15]. The Ki(l)
were obtained from [12] and [13].

Given that

2
Se(z) = —2Lig(——x)+%ln2x—~21nxln(1+:v)—% (B.1)

where Liy(z) is the dilog function

3

i=1
that ¢(n) is the Riemann zeta function,
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1
n

=2

and that the ‘plus’ prescription, (1 — z),, is understood as,

/dl—a: /d 1—:5)

the (NLO) splitting functions are,

PR (@) = C%{—Plnxln(l—x)—i—glnxJ ((*_2_):_1%)

l1—=2z

3 7 1
~(-2—+5x> 1nx—5(1+x)ln2x—5(1——x)}

1 11 67 w2 2
/ ~In? —1 — | -1-
+C’FCA{[2nx+6 nx+18 6J((1—x)+ x)

+(1+:c)1na;+—2—39(1—x)}

rorty{- [ s 0] (2 -1-2) - S0
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1+=zx

+Cr (Cr - %) {2(—3—-1”) S (z)

+2(1+2z)lnx +4(1 —:c)}

— CpTr {1 + @—QH 5(1 - ) (B.4)

1 1
Pz(zlz%(i’?) = CIQW{"1+5E+('2‘“‘2‘111)111:13—"2“(1*1‘33)11’12:13

- [g lnx+21nx1n(1—x)] (———2————1—x)+2 (————;—1+x> Sz(x)}

2 2
+C’FCA{—1—%(1—:E)+ F—l—lnx-kllnzx%—gz— ZLJ (———————— —-1—:5)
3 6 ( )+



—<1-{2—x—1+$) SQ(x)}

16 40 16
+CFTf{ - ‘g-—f* -3—.73—!* <1OI+-3—.’132+2> Inz

112 , 40 9 {10 2 } 2
S A2 914 n)ntr— | 2 S
5 ¥ tyn (1+z)ln“z 9+31n3: A=, 1—x

+[C§{§—

1\3[:3
o
~
—~
=

[ ——

—-CFTF{6+—$9—2}J 5(1 - z) (B.5)
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+CATy —+ —z+—+(—a— =

&wzé Aam me
9 T 9" oz 3 3 )"

—4In(l1-2) ~ (2+8z) In*z +2 (2” + (1 + 2)?) Sy(x)

—In?z + ml%. Inz —2In*(1 - z) + 41n(1 — 2)
w2 2181, , 5
sTlmw..l.l@l AP nTAHI&vv Qw@v

1+ (1—1)?

—2z1n(l —z) — T In(1 ~z) +In*(1 - &L =

28 65 44 8
+QMQ>A@|+HM&+-©|Hm| Aww+m&+w.&.wv Inz

14+ (1 +a)?

+ (@A +z)In*z +2z1n(1 — z) + Sy(z) =
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1 1. 11
+ —2——21nxln(1~x)+§lnzx+—3—ln(1 — )

20 4
PR (z) = CFTf{ —16+83:+—3—a:2—f— =

—(6+10z)Inz — (2 + 22)In? r}

26 1 4 20 1 1
CrTy{2—-2 ——(2———>—— mr—">(—m— + 22 1—
o f{ v o \" Tz 3(l+x) BT ((1—:v)++$c + 2 I))}

27 67 1 25 11 44
20201 —2) 4+ — 2——)—<—-—- ~——2)1
+CA{ ( :E)-}-g(x " 3 3x+3x nz

lia:—i——Q—:U(l—f—x)\) Sy(z)

+4(1+x)1n2x+2(
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67 9 w2 1 1
+[—9——41n$1n(1—x)+1n z———3—J ((1—x)+ +;~2+$(1—I)>}

[CE, {g + 3g(3)} _CrTy - gcATfJ 5(1 — z) (B.8)
(1) 4 2\2 1

K@) = 37 ((e') = (€)7) [ k@) = 5ka(o)] (B.9)

K@) = 34 [k(@) + Sha(2)] (B.10)

where

ki(z) = CF{4— 9z — (1 —4z)Inz — (1 - 2z)In® z + 4In(1 — z)
+[4ln$——41nzln(1 —z)+2In*z — 4In(1 — z)

+21n2(1“33)—32-7r2+10} [:U-i—(l——z)Q:, }

and
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\\ﬂm

ky(z) = 2Cp7— 101 — = (6 — 12z + 162%) + (1 — 16z + 322°%) Inz

+(1 -2z +42?)In®z — (5 — 362 + 322?) In(1 — z)

+ (4 — 8z + 8z?%) Tzwﬁ —z)—Inzln(1 - HL + (2 -4z + &JENA&VW

10 2
K(z) = 3f(e?)2Ck Tm+§+wm+wm;a+§_ixaizgi

2 20 2 16 4
+w!|ws+wa+m‘aml AHITU@,{WHMV Inz — (1+z)ln*z

+ mn.TH z 4 meﬁl ) —2(1 +z) |Li A&vtmw
" 37 z x) |Liy 5

(B.11)
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Appendix C

Scalar Box Calculation

A =~
5

l+q 1 itk
> k/
frﬁj l+qg+p

Figure C.1: Scalar Box Feynman Diagram.
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The diagram shown in Figure C.1 gives rise to the following integral.

d*l 1
C.1

T (et (e e s e B
As explained in Chapter 4 we wish to extract the part of the calculation for
virtual supersymmetric corrections that is proportional to 1/e. This corre-
sponds to taking t = (¢ — k)? = —Q?/z whenever we need to evaluate this

scalar box integral. Using Feynman parameters we can write this integral as,

)
1672

~

[ = /dadﬁdn, 9(1—a—5—7)513

where,
D = (B+7)°Q° = (B+7)1(S+Q*)+S7-Q*B-m*—S(B+7)(1—a—B—7)

given that,

Q* = —q-q

and m is the squark mass.
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D is linear in « for which we may solve.

We can then make the substitution,

g = p(l-w)

and solve for w giving,

1
= ey T - -1 - (@)
where,
_ o, Inf{l—zp(l—p)}
Je) = /o 4 p(1 - p)
and

T = Q?/m?
U o= (S+QY/m?
¢ = S/m?

The solution for J(z) depends on the range of z,

z < —4
-4 <z < 4
4 < =z
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if |z] < 4

R )

ifz < —4

J(@) = z{-m(l/po) § Lig(1 - po) — 2Lis(~1) + %hﬂ(po—l)} (C.6)

and if z > 4
4 2 2 2 .
J(z) = — 37 + In%pp + In?(1 — po) + 2Lis(po)

+2Li3(1 — po) — 2imIn[ps(1 — po)] }

where
14+4/1—4/x
Po= =5

and Liy(z) is given in Equation (B.2).

The solution for I may be imaginary if z > 4. However as is made clear
in Equations (4.2) and (4.3) we only need the real part of the two matrix
elements that are multiplied together. This always corresponds to taking the

real part of / in Equation (C.2).
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Appendix D

FZ g for Quark Production

D.1 Explicit form for £}y

x  Real {A(Q?, z, M?) + B(Q?, z, M?) + C(Q?, z, M?) + D(Q? z, M?)}

where Cy = 4/3, the squark mass is M, and A(Q? z, M?), B(Q* z, M?),
C(Q? z, M?) and D(Q? z, M?) are defined below.

2

In the following m* is the quark mass which is taken to zero or as close to

zero as the Veltman-Passarino routines will allow,
S = Q(1-2)/z
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and Dy is given by I in Appendix C. It is the scalar box integral.

In actual fact the functions A(Q? z, M?), B(Q* z, M?), C(Q? z, M?) and
D(Q?, x, M?) above are the contributions arising from diagrams (c), (d), (e)
and (f) of Figure 4.2 respectively. These contributions allow for crossed

incoming photon lines and both left and right handed squarks.

The Veltman-Passarino functions B; and Cj; are standard functions which

may be found in [23].

1
A(Q* z, M?) = Z“TQ(Z —1)[Zy = Zy+ Z3 — Z4]

Z, = By(0, M? M?)
Zy = Bo(—Q*/z, M?, M?)
Zs = Biy(0,M?* M?)

Zy = Bi(~Q%/z, M? M?)

1
B(Q% z,M?) = 5{(2:53 — 222 +2) 7 + (—1° + 2% — 1) Zy + (—2° +x2)Z3}

136



Z1 = Chy(m? 0,0, M? M? M?)

ZQ - 024(0,07 ——Q21A127A/[27M2)

Zy = Coy(0,—Q*/z, —Q* M?, M?, M?)

22(z —1 ¥z — 1
Qz(z —1) (Zy— 71) + ez —1) (Zy — Zy)
4 2
Zy = Cyp(0,—Q*/z,0,M?* M? M?)
Zy = Cy3(0,—-Q%/z,0, M?, M*, M?)
Zy = Coy(0, —Q?/z,0, M* M? M?)

Zy = Cou(m?0,0, M2 M?, M?)

o =

D(Q? z, M?) = { (622 M?/Q? — 62 — 220) 7, + (—6a® + 102? - 4z) 2,

+ (=923 +1022~27) Z3 + (62° —182?+4x) Z4 + (92°—62% M? | Q*—822) Z5 + (—22) Zs
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+ (1223 — 82% —42) Z7 + (—22%) Zg + (—122° — 122 +22) Zy + (6% —62) Z10

+ (—42°+42-2)Q*Z1;1 + (62°Q%) Z1z + (—62°+62)Q°Z13 + (—22+2)Q* 714
+(—2Q%) Z1s + (—22+2)Q*Z15 + (42Q*) Z17 + (622 +62) Q> Z15 + (42°—4z) Z19
+ (122%) Za + (22M® = Q) Zy + (—62° + 13z — 5)Q° Zay + (92°Q°) Z2s

+ (623 =122+ T2 -1)Q* Zoy + (623 —152%4+92)Q? Zps + (—322Q*+22Q*+25M?) Zog

— (z4+1)Q*Zyr + (—62° +122% — T2+ 1)Q%Zog + (322 — 32)Q? Zag
+ (32°Q%* 222 M —42Q?* +3z M?) Zag + (—82°Q*+42> M> +122Q* 20 M*—4Q%) Z3;
+ (322Q% = 2°M*) Z3y + (—32°Q? + 72%Q* — 2> M? — 53Q* + 1z M?* + Q%) Zs3
+ (92% — 1622 + 8z — 1)Q*Zs4

+ (32%Q* —222Q* M2 — T2 Q* +32Q* M? - Q* /2 +5Q* —Q* M*) Do (Q?, =, M?)}
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Zy = By(0, M? A7)

Zy = By(S, M? M?)
Z3 = By(—Q*/z, M? M?)
Zy = By(—Q? M? M?)

Zs = By(0, M?, M?)

Zg = By(0, M? M?)

Zy = By(S, M? M?)
Zs = Bi(—Q*/z, M? M?)
Zy = By(~Q* M? M?)
Zw = Bi(0,M? M?)

Zn = Cu(—Q% 0,8, M? M? M?)
Zyy = Cy(—Q% 0,0, M? M?, M?)
Zg = C(0,0,8, M?, M?* M?)
Zyy = Cxn(0,0,—-Q%*/z, M? M? M?)
Zis = Con(—Q% 0,5, M?, M? M?)
Zs = Cp3(0,0,—Q%/z, M? M? M?)
Zy = Cu(—Q% 0,8, M? M? M?)

Zlg - 023(0, O, S, MZ, [V[z, Mz)
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Zig = C24(0,0,—Q%/z, M? M? M?)
Zyy = C24(0,0, S, M? M? M?)
Zyn = Cn(0,0,—Q%*/x, M? M? M?)
Zyy = COn(—Q%0,8, M?* M? M?)
Zy = Cn(—Q% 0,0, M? M? M?)
Zyy = Cu(-Q% —Q%/z,0, M? M? M?)
Zos = C11(0,0,S, M?, M?, M?)
Zas = C12(0,0,—Q%/x, M?, M?, MQ)
Zyr = Cn(—Q%0,8, M? M? M?)
Zog = Cro(—Q% —Q*/z,0, M? M? M?)
Zhy = C12(d2,0,0,8, M? M? M?)
Zyo = Co(0,0,—Q%/x, M?*, M?, M?)
Zy = Co(—Q%0,S, M?, M?* M?)
Zy = Co(—Q% 0,0, M? M? M?
Zys = Co(—Q% —Q?/z,0, M?, M?, M?)

Zsy = Co(0,0,5, M? M? M?)
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D.2 Absence of Structure

As was mentioned in Chapter 4, it was thought that the virtual supersym-
metric corrections would exhibit some structure around the squark threshold.
In fact the contribution produces a smooth curve. The purpose of this section

is to show how individual terms can show structure around the threshold but

that the total contribution is in fact smooth.

In order to do this we utilize the contribution D(Q?, =, M?) from the previous
section. This is made up from a Dy(Q?, z, M?) term and 34 other terms all
with coefficient terms in @2, M? and z. In Figures D.1, D.2 and D.3 we
have separated out the D(Q?, z, M?) contribution to RF; given in Equation
(4.9). This is a purely arbitrary choice the important point being the ability
to show the functional dependence around the squark threshold. We have

taken Bjorken z = 0.5 and a squark mass M = 300 Gel/ .

Figure D.1 shows the contribution due to Do(Q? z, M?) and its accompa-
nying coefficient terms. There is clearly a positive peak at /Q% = 600 GeV
which corresponds to the squark threshold given by Equation (4.10). Figure
D.2 shows the contribution due to the remaining 34 terms Z; — Zs4 and
their accompanying coefficient terms. There is clearly a negative peak at
V@Q? = 600 GeV. These two contributions very neatly cancel each other out
to give the smooth curve given in Figure D.3. Thus we have shown that the
total contribution due to diagram (f) of Figure 4.2 is in fact smooth with
no structure around the squark threshold. The same is true of diagrams (c),

(d), and (e) of Figure 4.2 leading to an overall smooth contribution to Fj.
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D,/ [x* + (1-x)°] x 100%

O : ! : . ! .
400 500 600 700 800

o}

Figure D.1: Dy contribution to Ry for Bjorken z = 0.5 and squark mass

M = 300GeV.
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Do/ X + (1-%)%] x 100%
Iy
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Figure D.2: D,z contribution to Rgy for Bjorken z = 0.5 and squark mass
2

M = 300GeV.
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Dtotal / [X2 + (1 "X_)Z] % 100%

5 l ' ' ‘
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Figure D.3: Dipq contribution to RF; for Bjorken z = 0.5 and squark mass

M = 300GeV.
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Appendix E

F? for Chargino Production

In this appendix the four structure functions FJZ defined by Equation (5.3)

are given explicitly. The following variables are used to show them,

AmPz

B = \}1—Q2(1—$—T:€)

a =rr , b=1-2rz
B
n = —b—\/l——47‘:1c2

F = 2a+b(1+n)
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G = 2a+b(1-n)

Bjorken z and r are given in Equations (1.5) and (1.7) respectively. The

chargino mass is given by m.

Rl e*B 8614 _ 82812 162°r3 4datrd
L 7 \rFG [1— 4rz?]? [1— 4rz?)? [1— 4rz?)? [1—4rz?]

. 8ztr? N 8xir? 16x%r m? N dxr N 45372 dx3r
1—4rz?]  [1—4rz?? [1—4rz? \ Q? [1—4rz? [1—4rz? [1-4rz?

1 — 4rz?]? - [1— drz?)? +[1 —drz2]2 (1 —4rz?]? 0 [1 — 4ra?)?

(€4B> { 1 443 8xr? 4ztr 8x3r? 8x3r
-+
T 2 ]

N z2r? N 2x%r N dx?r z2 xr N x
[1—4rz?]  [1—4rz?]  [1—4rz?]2 [1—4rz?] [1—4rz?] [1-—4rz?]

N e'B I (F) 3 N 42874 N 8573 N A
" 2 b[1—4rz?)?  b[l—4rz?2 b1 — 4rz?2 B[l — 4rz?]?
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4z°73 12212 4z5r? 4ztrd 8zir? m?
+ - —+ + + =
(1 —drz?]2 [l —4ra?2  [1—4ra?? [l —4rz?] = b[l — 4r2?] \ Q2

443 4drtrs 2x4r3 datr? 2x4r? 2x4r?

- b[1 — 4rz?] * b1 —dra?2  [1—4rz?? b1 — 4rz?] * b[1 —4ra?? |1 — 4ra?)?

4dztr N 2xtr dztr 142373 N 2233
b[1 — 4rz?] b[1 — 4rz?)? [1 — 4rz?)? b[l — 4rz?] [1— drz?]

B 81372 zzf B 6312 N 25372 N 42372 _77}3
b[1 — 4raz?] \ Q? b[1 — dra?] b[1 — 4ra?)? (1 —4rz?] \ Q?

. 22312 N 22312 8z3r m? N dz3r N 4z3r _m__Q_
1 —drz?]  [1—4rz?]? B[l — 4rz?] \ Q2 b1 — 4rz?] 1 — 4ra?] \ Q?
N 4z3r N 102272 x?r? 62r? N dz?r m*\ 212y
1 —4rz?)2 b1 — 4ra?] b 1—drz?]  b[1 — 4rz?) \ Q? b[1 — 4raz?)?

2z (m? 2z%r m? 22%r 422 (m2\? 22 222 (_77_1_2)
b (@) B [1—4rz?] (@) B [1 —4rz?] B T(@E) + b [1—4rz?) \ Q?

2zr +3:z:7"+ 2xr —:m“+§£ 22\_33_722_ ——ac—l
b[1 — 4rz? b [1— 4rz?| b Q2) Q? b
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o (e“B){ 48xr® 482773 962674 8zort
b O

nFG 1 —4rg?)3 * [1—drz?)3 N L —drz?p — [1 - 4rz?)?

6433 zn_:’ 162573 4815r3 N 322572 m? 242572
[1—4ra?]? \ Q2 [1—4rz?]?  [1—4rz?3  [1— 4rz2]2 \ Q2 [1— 4rz?)?
8ztr3 64zir? m? N 24xtr? N 832 m? 4z37?
1—4rz?]?  [1—4rz?]?2 \ Q2 1—4rz?)?  [1— 4rz?] \ Q2 [1— 4ra?]
16237 (m?2\° N 8z  [m?
[ —4ra7] \ 02 =422 \ Q2
N _cf_Bi B 24154 482573 B 241572 N 48743 N 48242
T 1—4rz?]® [1—drz?pP [1—4rz?P  [1—4rz?P  [1—4r2?P?

6373 42372 241372 2x37
[1— drz?? (1 — 4rz?]? 1 — 4ra?)3 [1—4rz?)?

. 6z%r? N 2z%r zr
[1 — 4rz?)? [1—4rz?2 [l - 4rz?]

e'B n (F) 247775 4827r* 2413 N 247575
G b1 — 4rz?]®  b[1 —4rz?]®  b[1 — 4rz?]® B[l — 4ra?)3
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241574 N 722513 24673 242515 481514 m?

1 —4rz?]® b1 —4re?]®  [1—4rz?]® B[l —4rz?]2 b1 — 4rz2)2 \ Q?
402574 24154 N 122574 321573 m? 8573

1 —4rz22 B[l — 4rz?P " (1 —4dra?]3 B[l —4rz2]2 \ Q2 ) B[1 — 4ra?]?
122573 . 122573 324572 m? 8512 122572

b1 —4ra?]3 [l —4ra?]d B[l — 4ra?]?2 \ Q2 b1 — 4rz?]?2  b[1 — 4ra?]3
241572 N 84x4rt 12244 N 48z4r3 m? 682473

[1—drz?® b1 —4rz?]?  [1—4rz?? B[l —4rz?]2 \ Q? b[1 — 4rz?)?
122478 24473 m? 2843 12243 N 48x*r? m?

b1 —4rz?P [l —4rz?)? \ Q? 1 —dre?)?  [1—4rz?® b1 —4ra?)? \ Q2

N 8zir? 24142 m? 163472 242412 22373
b1 —4drz?)?2  [1 —4rz?)2 \ Q? [1—4rz??2  [1—4rz?]® D[l — 4rz?

60z373 . 362373 473712 m? 241372 m?
b[1 — 4ra?]? [1—4rz?]? bl1 — 4rz?] \ Q2 b1 — 4rz?]2 \ Q2

32232 122372 N 122372 m? N 282372 8z3r m2\ 2
b[1 —4ra?]? =~ b1 —4rz?) |1 — 4rz?]? \ Q3 [1—4rz?]?2 B[l —4rz?] \ Q?
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2x3r 4737 (m2> 6212 12222 212r?

* b1 —drz?]  [1—4rz?2\ Q%) " b[l — 4rz?] * W1 — 4rg?2  [1 — 4ra?]

B 122272 . 622 _77_23 B 2zt m? 2x%r
[1— drz?]? b[l —4rz?] \ Q2 [1—4rz?) \ Q2 [1—4rz?]

2zr N 3zr
b[1 — 4rz?] [1—drz?]

oo (€8 48z rt . 48z 7r? N 962°r? 242°r°
* 7 \nFG 1 —dr2?]® 1 —4r2?PP  [1—-4rz?P |1 - 4ra?)?
64z°r®  [(m? 162572 48z°r? 32z5r m?
[1—4rz?]?2 \ Q? [1— drz?)? (1 — 4rz?]3 (1 —4rz?]? \ Q?
8z°r N 24zr? 64z'r  [m? 8x*r N 8z°r  [(m?
1—4rz?)2  [1—4rz?]2  [1—4ra?2 \ Q? 1—4rz?]?2 [l —4rz?] \ Q?
I 162°  [(m?\’ N 8z°  (m?
[1—4rz?] [1—4rz?] \ Q2 [1— 4rz?] \QQ
N e'BY [ 2d4z%° 48z°r? 2457 N 48zr? N 48z"r
T 1 —4rz?? [1—4rz?P [1—-4rz?P  [1—4rz?P  [1—4rz?)®

150



21372 . 4z3r B 24z3r B 623 N 22°r
[1— dra?]? [1 — 4rz?)? [1—4rz?]? [1— drz?)? [1 —drz?]?

N 622 T
[1 — 4rz?)? [1— 4rz?]

N e'B | (F) 24z 7r? 482773 24x7r? N 247574
e n — — e —
™ G b1 —drz?® b1 —4rz?® B[l — 4rz?]® B[l — 4rz?)?
242573 N 722012 242572 8z°rt 16573 m?
[1—4ra?]3 b1 —drz?®  [1—4rz?]® b1 —4rz?]2 b1 — 4rz?? \ Q2
242573 242573 N 122573 322512 m? 24572
bl —4drz?)? B[l —4ra?PP  [1—4drz?P B[l — 4rz?]2 \ Q2 b1 — 4ra??
122572 N 12572 32z°r m? 8x°r 1257
b1 —drz?]®  [1—4rz?]P bl — 4rz?)2 \ Q2 b[1 — 4rz?2 B[l — 4rz?)?
N 2457 . 28zr? 4zr® N 16zr? m? 447472
[1—4rz?]® bl —4rz??  [1—4rz?? b1 — 4rz?]2 \ Q2 b[1 — 4rz?)?
12z4r? 8xir? m? 20zr? 12z4r2 N 16z4r m?
b1 —4rz?]3 1 — 4rz?)? \ Q2 [1—4rz?]2  [1—4rz?]? b1 — 4rz?]? \ Q2
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24z 8zir m? 16x%r 2474 22372
b1 —4rz?)? |1 — 4rz?)?

@) [N —4rz?2 [1—4ra?P B[l — 4ra?

20372 N 122372 dadr m? 8z3r m? 32137
b[1 —4rz?]?2  [1—4ra2]? B[l — 4rz?] \ Q2 b1 — 4rz?]?2 \ Q2 b[1 — 4rz?]?
127%r 4z3r m? 2037 8z3 m?\’ 223
+ + |+ - ) =
b1 —4rz?]®  [1 — 4ra?]? \ Q? 1—4rz?]?2  b[l — 4rz?] \ Q? b[1 — 4ra?|
_124° m? N 6z2r N 4z%r 22%r 4z’r
[1—drz?]? \ Q? b1 —4rz?] b1 —4rz?)?  [1—4rz?] [1—4rz?]?
N 622 m?\ 222 (m? 222 2z N 3z
b[1 — 4rz?] \ Q2 [1—4rz?] \Q?) [1—4rz? b[1 —4rz?] [1-—4rz?

288870 28883 5767 r% 48254

4
s [ €'B B
B = (WFG){ T araf | I—ara?f [ dra?f [l 4ra?

1922873 /m? 2882573 48512 N 482°%73
(1 —4rz?]® \ Q? (1 — 4rz?]t 1 —4ra?? (1 —drz?]?
1922572 m?‘\ N 48257 N 16242 m2 8xir?
[1—4rz?3 \ Q2]  [1—4rz?p [1—drz?2 \ Q? [1 —drz?)?
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32t (m? 2 16z%r m?
122\ Q2) T T arap 22“2)}

N (e‘*B) { 144874 288513 1441572 28853 2881572

T (1 —4rz?]*  [1—4rz?t [1 - drz?]? + [1— drz?)* N (1 — 4rz?]*

12473 144772 12z%r . 122372 N 12z3r 2z2r }
1 —4r2?)® 1 —drz?)* [1—4rz?P  [1—4rz?]d  [1—4rz?®  [1—4ra2?)?

J

e'B In (f_) 1442879 2887811 1442873 N 144z 7r®
) G b1 —4rz?* B[l —4rz?* b1 — 4rz?*  b[1 — 4rz?)?
144z7r? N 432277 144g7r3 482570 962674 m?
1 —4rz?)t bl —4drz?)t  [1—4rz?]t b1 —4rz?)d B[l — 4rz?)® \ Q2
962074 144254 N 72574 96573 m? 48z°r3
b1 —4rz?]3 B[l —4ra?]t  [1—4rz?]t b1 — 4rz?]3 \ Q2 b[1 — 4rz?]?
72573 . 722573 963572 m? 722572 N 1447572
b1 —drz?)* (1 —drz?]t b1 — 4rz?]P \ Q2 b1 —4rz?)* 1 —4rz?t
N 168z°r4 242574 N 96z°r3 m? 168z°r3 722573
b1 —4drz?]®  [1—4ra?]? B[l — 4ra?]® \ Q2 b[1 — drz?)® B[l — 4ra?)t
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481573 (mﬁz) B 722573 722573 96572 m? 482572
[ b

1= 4rz?p \ Q? 1—4rz?P [l — drz2)? * B[l — 4rz2P \ Q? 1 —drz?)3

48272 m? 48572 1442572 443 120243
(1 — 4rz?)? \ Q2 1 —4rz??  [1—4rz?* B[l — 4rz?2 B[l — 4rz?)3
N 72243 8xtr? m? 48z%r? m? 96242 N 72242
[1—4rz?]® b1 — 4r2?)? \ Q2 b[1 — 4rz?]P \ Q2 b[1 —4rz?P B[l — 4rz?*
. 24472 Lni 72z4r? 16x%r m2\ 2 Axir
(1 —4rz?]® \ Q2 [1—4rz?? b[1 — drz?]2 \ Q2 b[1 — 4ra?]?
24zr m? . 12yz3r? N 247312 4%r? 241312
(1 —4rz?? \ Q2 b1 —4rz?2 =~ b[1 —4rz?PP  [1 —4rz?? [l -4rz??

N 1223 m? 43y m? 4237 472y N 62%r
b[1 — 4rz?]? \ Q2 [1—4rz?? \Q? [1—drz?2 b1l —4rz?]? [l —4rz??
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