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by Luke Weston 

We introduce the theoretical framework for analysing photon photon scat-
tering due to electron positron collisions. The structure function is intro-
duced along with its corresponding evolution using the DGLAP equations. 
The possible supersymmetric contributions to this evolution are introduced 
with relevance to the next generation of high energy linear colliders. 

We numerically evolve virtual photon parton densities up to the SUSY 
threshold and higher using coupled inhomogeneous DGLAP differential equa-
tions. An effort is made to include the squark threshold effect in such a way 
that both the renormalization group equations are satisfied and the perturba-
tive calculation is reproduced. The difference to due to SUSY dependent 
splitting functions is examined. Virtual SUSY corrections to this evolution 
procedure are then examined below and above the squark threshold. 

Finally a calculation of the amount events we might expect for chargino 
production is carried out. The feasibility of this process as a signal for SUSY 
can then be assessed. 
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Preface 

Chapter 1 does not contain original work and was put together using the 

sources referenced in that Chapter. Chapter 2 is merely an extension of the 

ideas in Chapter 1 and again no claim is made to originality. Chapters 3, 

4 and 5 contain original work. Much of the work contained in Chapter 3 is 

currently published in fAya. J. [25]. 
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Chap te r 1 

General Formalism 

1.1 Introduction 

The photon allows the electromagnetic interaction between charged particles. 

In QED it can be thought of as a massless and structureless particle. However 

during high energy processes it may fluctuate into charged fermion anti-

fermion pairs. If during this time one of the fermions interacts via another 

gauge boson then the 'structure' of the photon can be said to have been 

revealed. This 'resolved' photon can be thought of as consisting of quarks, 

gluons, squarks or whatever our Held theory model allows. 

The main thrust of this discussion is to view the possible effects of incor-

porating supersymmetry (SUSY) into the theoretical framework of photon 

structure. We do this by looking at cross sections but mainly by discussing 



the structure functions of the photon. Structure functions are parameteriza-

tions of the cross section and give us a simple and consistent way of describing 

photon structure. 

In Chapter 1 we develop the necessary theoretical framework with which 

to understand how what we are calculating is connected to what we can 

measure in an accelerator. This part of the thesis is in no way original work 

and reference has been made to the following sources [4], [5], [6], [7], [8] and 

[12j. Chapter 2 explains the possible need for the introduction of SUSY and 

in what way we propose to introduce it in the framework of photon structure. 

Chapter 3 discusses the DGLAP evolution of the photon structure function 

through the SUSY threshold and any changes to this evolution due to the 

possible presence of SUSY particles. Chapter 4 deals wi th supersymmetric 

virtual corrections to this evolution. Chapter 5 gives predictions for the 

measurement of chargino production from electron positron collisions. We 

dnish up with a brief summary in Chapter 6. A brief discussion of the 

C + + implementation used for modelling the DGLAP evolution equations 

along with some more mathematical considerations have been relegated to 

Appendices. 

1.2 Preliminaries 

Experimental data on photon structure is mainly obtained from the LEP 

electron positron collider, the HERA electron proton collider and the SLD 

detector at the SLC collider. We are going to concentrate specifically on the 



electron positron collision process as a means of probing the structure of the 

photon. 

An electron^ can undergo deep inelastic scattering via the emission of a highly 

virtual photon, This virtual photon acts as a probe of the other electron. 

This is why the process is often referred to as photon electron scattering. It 

is important to note that a can be emitted instead of a photon and act 

as the probe. This introduces an extra contribution to the process that we 

neglect in this discussion. We will only be concerned with contributions due 

to a virtual photon probe. To leading order in QED the target electron emits 

a virtual photon, y*. This collision process is shown in Figure 1.1. 

Thus the experimental process that gives rise to photon structure is 

ee — e e A " 

where X is some Anal state eg. gg pair. 

Note that there are two other types of process that can contribute to the 

total cross section. These are the s-channel and t-channel bremsstrahlung 

processes. Figure 1.2 shows an example of these processes where the final 

state ^ is for example two quarks, ee —> eegg. These processes contribute 

much less than the process in Figure 1.1 [3]. In the following discussion we 

^For simplicity we do not distinguish between the electron and the positron. The 

contribution is equivalent. 



t = ( E ) 

K; = (^2, K2) 

= {Eo • k-2 

Figure 1.1: Experimental setup for virtual photon photon scattering. 

(a) 

Figure 1.2; Examples of additional contributions to the total cross section, 

(a) t-channel bremsstrahlung and (b) s-channel bremsstrahlnng. 



will only be concerned with the contribution of Figure 1.1 to the structure 

functions and cross section. 

With reference to Figure 1.1, we will use the following variables in our anal-

ysis, 

The probe virtual photon momentum, 

9 = - A:i (1.1) 

and its virtuality which is negative, 

(1.2) 

= 2EiE[{l ~ cosOi) 

Similarly for the target photon, 

p = A;2 - A;2 (1.3) 

(1.4) 

Bjorken a; is given in terms of the two photon momenta g aiid p, 

We have an internal invariant mass squared 

^ = ( g + p)^ (1.6) 

and a total invariant mass squared 

Stot = (^1 + ^2)^ 



For deep inelaatic scattering ^ % 0. However we derive some results 

for the region f - ^ 0, so we deEne 

r = f "/Q" (1.7) 

At this point we need to know what is in principle perturbatively calcula-

ble. This involves a discussion of point-like and hadron-like processes. The 

literature often refers to point-like as 'direct' and hadron-like as 'resolved'. 

Referring to Figure 1.3, we can organize the contributions to the cross sec-

tion into the perturbatively calculable point-like diagrams and the non-

perturbative hadron-like processes, (a) shows the tree-level point-like process 

ee —eegg. This is the most dominant contribution in deep inelastic photon 

photon scattering, (b) and (c) are examples of higher order point-like contri-

butions which are in principle calculable using perturbative QCD. It is these 

point-like contributions that are absent in the equivalent analysis of nucleon 

structure. This fundamental difference stems from the point-like coupling 

of the photon to quarks. Obviously there is no such point-like coupling be-

tween say a proton and a quark, (d) shows how a photon can Huctuate into 

a hadronic state with the same quantum numbers as the photon. This type 

of contribution is termed hadron-like and cannot be directly calculated us-

ing perturbative QCD. The ability to formally separate these two types of 

contribution depends on f the virtuality of the target photon. As f ^ -4̂  0, 

one can factorize out the hadronic part of the structure functions. In this 

limit and after factorization the structure functions of the photon can thus be 

divided into the perturbatively calculable point-like part and the hadron-like 

part. The vector meson dominance model (VMD) [9] can be successfully used 
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nnriTBnrinnrTnrinr^ 
gyTrrTrzrTTBinrTnnr 
"inrrTrzrTnnnrTnnr^ 

(b) 

nrznnrrinnnnnrQ-^ 

(c) 

p, 9 . -

Figure 1.3: Examples of point-like and hadron-like contributions, (a) is the 

tree-level quark point-like contribution, (b) and (c) are examples of higher 

order point-like contributions, (d) is a hadron-like contribution. 

to describe the hadron-like part of the structure function F ] by considering 

the vector mesons /), w and 

In order to forge a link with what is experimentally measured and what we 

discuss in the following we must show how the cross-section is related to the 

relevant structure functions of the photon. The differential cross section for 



the point-like contribution to ge —> eeX is as follows [1], 

167r4Q2p2 

(p . - Q2p2 

(^1 ' A;2)̂  -

1/2 

+ 2 | p r / ) ^ " | 7 ^ cos 2^ + 2/o++p00aT^ 

+ 2jOg°p^+(7^,r + - 8 |p;^"p^"|7TI , COS nOO 0̂0 +0 _+0| 

In the 'yj'/p centre of mass frame, is the angle subtended between the scat-

tering planes of the electrons, the scattering plane being the plane made 

by the spatial vectors of an incoming and outgoing particle. It is possible to 

simplify this equation by removing the dependence, this being done by inte-

grating over (̂ . cTrr, crrz,, and CLf, are total cross sections. 7 ^ and Trz, 

are interference terms. They correspond to helicity states of the two photons, 

T being transverse and L being longitudinal. The various p{'' are given as. 

(p • ?)' - 0' 

(2A;2 - p - p g)' ,771: 
p2 

pOo = 2 p + + - 2 + 4 ,++ 

- 2p++ - 2 + 4 ^ 



Ipi I = p, ++ 

+1)1 A 

where +, — and 0 refer to particular photon helicities. 

There are three structure functions and though only two^ of these 

are needed to fully parameterize the cross section. These are dehned by the 

following relations [2], 

Q2 ^ ( p • QY - Q^P"-

47r̂ a! P 9 

X (7rr(a:, f - ? crrz,(a;, Q^, f 

(1.9) 

Q2 

47r^a P 9 

X crrr(a;, f ^) + cr2,r(:c, ^ (1.10) 

crz,z,(3;, f ^ (7rz.(:r, f 

"As mentioned previously, the probe contribution has been neglected. The Z° gives 

an extra structure function due to axial vector couplings. 



(1.11) 

Note that the interference terms Trr and Tri must be discarded in order to 

dehne the structure functions. The contribution due t o these interference 

terms can be isolated experimentally and very much depends on the kine-

matical variables f ^ and the invariant mass squared of what is produced, 

In some regions they produce a difference in the cross section of only 

a few percent while in other regions the contribution is large enough such 

that the use of structure functions to parameterize the cross section becomes 

meaningless. 

We will mainly be concerned with the limit ^ % 0. In this region 

the target photon is almost real and hence cannot have a longitudinal po-

larization. The consequences of this are that the terms crTL, and Tri, 

vanish because of their f ^ dependence as f ^ -4 0. Also the coefhcient of r r r 

vanishes. This allows a simpler expression for the cross section 

a 
167r2Q2f2 - A;2)̂  -

,++ ^ + + 
c r r + r, + + 

1/2 

(1 .12 ) 

which can easily be seen to correspond to a probe photon of either transverse 

or longitudinal polarization colliding with a real target photon of transverse 

polarization. Obviously in an experiment the virtuality of the target photon 

10 



cannot be kept exactly zero. However the contributions from the longitudinal 

terms and the interference terms are both of the order of a few percent and 

actually almost cancel each other out such that Equation (1.12) gives an 

accurate expression for the cross section. 

In this limit the structure functions are also simplified, 

~)2 

The diEerential cross section can also be cast in a form where the Aux of 

incoming target photons is explicitly seen. 

Using the following variables, 

P 9 

^ -P 

Ep 
E 

where p = , p) and = .gg = in the centre of mass frame of the 

electrons in Figure 1.1. In the limit —> 0 the differential cross section can 

be written as, 

11 



^ [ i + (1 _ 
(fa; (if: (ff ̂  c(z d f ^ 

(1.14) 

X [2i:F;((z, Q2) + E( i : /T)F2(z , Q')] 

where describes the Eux of incoming transversely polarized 

photons and ^ ( 1 / 7 ) is the ratio of the Euxes of longitudinal and transverse 

incoming photons. ^(Zr/T) = 

Alternatively we can express Equation (1.14) as 

oPTVT 27r(];̂  
1 + (1 - 2/)' 

(1.15) 

X 

where the dependence on can be seen explicitly. 

For the rest of the discussion we will be concerned only with the structure 

function. This is because it is easily accessible by experiment. There are large 

subtractive errors involved in extracting from experiment which renders 

theoretical comparison very difficult. 

is thus a quantity that can be measured by experiment. What we mean 

by ^2' depends on whether we are tagging particular outgoing particles eg. 

ee —> eegg or whether we are measuring the total cross section ie. ee —ee%. 

What we can do is calculate certain contributions to We must keep 

in mind though the assumptions that we have made, namely that certain 

12 



formulae are only valid for —> 0 and that in certain kinematical regions 

the use of structure functions does not correspond to the cross section because 

the interference terms give a large contribution. 

1.3 Part on Distribution Functions 

After Witten [10] developed techniques using the operator product expansion 

in the large limit it Wcis hoped that the point-like par t of 7^ could be be 

calculated exactly including its normalization. This could in principle lead 

to a direct measurement of However crucial terms have to be neglected 

in this approach. Also this asymptotic solution is plagued by divergences at 

small a; that get worse at higher orders of perturbation theory. The idea of 

calculating fg ' exactly from perturbation theory thus had to be abandoned. 

A less ambitious approach is to apply renormalization group methods which 

allows the dependence to be calculated. The cost is that the pre-

dictability of the overall normalization of is lost. Essentially this means 

that given at some we can calculate how it changes while moving 

to a different The 'input' can come from experimental measurement or 

theoretical models or a mixture of both. Various parameterizations of fg ' 

exist. They are different and depend on the models and assumptions used 

to create them. 

In terms of describing the actual evolution of there are two essentially 

equivalent approaches. Hereafter what we will refer to as the OPE picture 

13 



utilizes the operator product expansion (OPE) where the dependence of 

certain coefRcient functions can be calculated using renormalization group 

methods, can be reconstructed at a different using these coefficient 

functions with inverse Mellin transforms. The References in [11] are an ex-

ample of using the (OPE) picture to describe the evolution of 

An equivalent technique that is perhaps more intuitive involves the evolution 

of parton distribution functions from which can be constructed. Hereafter 

will refer to this as the DGLAP picture. For the rest of our discussion we will 

only be concerned with this technique. The quark parton model (QPM) is 

well understood in relation to deep inelastic lepton nucleon scattering. As a 

first approximation the nucleon is viewed as being made u.p of partons which 

are identified as free quarks. Parton distribution functions (PDFs) can be 

dehned which are probability distributions for a particular parton to have a 

certain fraction of the momentum of the particle of which it is a constituent. 

In this picture, scattering off a nucleon is pictured as the sum of incoherent 

scatterings off the constituent partons. Bjorken Scaling is seen to apply 

which means that the scattering is independent of the probe virtuality 

The QCD improved parton model introduces corrections t o the naive parton 

model. Here gluonic emissions account for the violation of Bjorken scaling. 

These ideas can be carried over to the analysis of photon structure where 

we account for deep inelastic scattering by recognizing the parton content of 

the photon and defining suitable PDFs accordingly. There are some major 

differences between the approach taken to the nucleon and the photon. 

As a naive parton model of the photon we can start by taking the tree level 

14 



Bethe-Heitler result for the process gg in the limit 

4 ^ i!2 ^ - i;) - 1 
TT ^ " I m^.3; 

(1.16) 

where TVc is the number of colours, / is the number of quark Savours and 

is a quark of Aa\ our z with mass m,.. 

We can then define quark and anti-quark PDFs, 

9/(3;, g2 ^ ^ _ 3;) _ % j 

(1.17) 

such that, 

^ (3 ; ,Q^) = Ea;eg.97(:c,0^) (118) 
i=l 

where the sum to 2 / is because a photon does not distinguish between quarks 

and anti-quarks, ie. ^ = g/. 

The QCD corrections to this naive parton model are due to the fact that 

gluons can be emitted or absorbed by the strongly interacting quarks that 

form the partonic structure of the photon. Also at a higher order we must 

consider gluonic structure. The concept of splitting functions is introduced 

in order to account for the various possible QCD corrections that can take 

15 



place. 

Figure 1.4: Vertices that give rise to splitting functions, (a) By,, (b) or 

^,9, (c) and (d) 

We group the contributions that can arise according to Figure 1.4. The tar-

get photon is viewed as consisting of partons, namely photons, quarks and 

gluons and PDFs give the probability of these partons having a momentum 

fraction a; of the target photon. One can then assign a probability to the 

process of 'extracting' one of these partons from the target photon. Once 

extracted, the parton may then further split into other partons. One can cal-

16 



culate contributions arising from these processes using the diagrams in Figure 

1.4. By,, arising from process (a), will give rise to a splitting function. This 

function will eventually turn out to have an intuitive interpretation in 

terms of the parton model. Given a photon that has a momentum fraction 

2/, is proportional to the probability of finding or extracting a quark 

of momentum fraction z from this photon. The same interpretation applies 

for (b), (c) and (d). For instance given a gluon gi that has a momentum frac-

tion 1/, (37/2/) is proportional to the probability of finding or extracting 

a quark of momentum fraction z from this gluon. This interpretation will 

become clearer when we introduce the full evolution equations. 

In Figure 1.5 we can see the lowest order processes that correspond to the 

sub-processes in Figure 1.4. In (a), a photon parton being 'extracted' from 

the target photon is described by the photon PDF. A quark being 'extracted' 

from this photon parton is described by the splitting function. In (b), 

a quark parton being 'extracted' from the target photon is described by the 

quark PDF. A quark being 'extracted' from this quark par ton is described 

by the splitting function. The explanation of the other diagrams follows 

by analogy. 

In the OPE picture, each splitting function can be formally calculated aa the 

inverse Mellin transform of the relevant anomalous dimension. Although we 

are not using this picture it is important to note that splitting functions are 

well defined calculable quantities that have a more intuitive interpretation in 

the DGLAP picture. 

Given that we view as being described by PDFs, by imposing invariance 

17 



m n n n r o m 

Figure 1.5: Lowest order processes that correspond to the splitting function 

vertices of Figure 1.4. (a) By,, (b) (c) (d) and (e) 

of under scale transformations ie. the renormalization group, we obtain 

the dependence of This dependence is given by the DGLAP 

equations and is actually given in terms of the dependence of the PDFs. 

A complication is that the evolution is Savour dependent. Given that we 

have quark and anti-quark parton PDFs which are different for each flavour, 

a Eavour singlet Z and flavour non-singlets 7] must be defined. It must 

be remembered that when dealing with the photon PDFs that each quark 

distribution is equal to its anti-quark distribution ie. 

18 



The singlet is given by 

/ / 
= 2 x ^ g i ( x , Q ^ ] (1.19) 

i=l 2=1 

where z runs over the number of active Savours / . 

The non-singlets are given by, 

7^(3;, - d g ) 

7g(z, = 2('Ug4-C(g— 2gg) 

= 2(Mg4-(fg + ag —3c,) (120) 

T2I{X, Q") = 2 (tig + dg + Sq + Cg — 4 6g) 

Tsoi^, Q^) = 2 (Uq + dg + Sg + Cq + bq — 5tq) 

where ti,, d,, s,, c,, 6, and refer to the different flavour dependent quark 

distributions which are all functions of (z,Q^). The factor of 2 accounts for 

anti-quarks. The amount of non-singlets depends on the number of active 

Savours. Each 7/ is zero until the relevant threshold has been crossed to 

make the new quark flavour active. For example, only 7^, 7g and 7^3 are 

relevant below the b-quark threshold. 

19 



There is also a gluon distribution (?(];, which describes the gluonic parton 

content of the photon. 

The relevant splitting functions are given by and These splitting 

functions have a perturbative expansion in the running coupling such 

that. 

+ (1.21) 

K.ix.Q'') = ( ^ ) Af'(.T) + ( ^ ) + • • (1.22) 

where agm is practically constant as changes. 

The are the standard set of quark and gluon splitting functions used in 

the evolution of the proton structure function The are the photon 

splitting functions. The diEerence between these two types of splitting func-

tion is discussed below when we give a more intuitive interpretation of the 

DGLAP picture. 

The and are not necessarily functions of just a;. However, their 

dependence only ever enters indirectly in terms of group theory factors. 

These group theory factors are a function of the active number of quarks 

which depends on Henceforth when we refer to splitting functions we 

mean the and in the expansions (1.21) and (1.22) rather than the 

generalised and The parameter A is used to refer to the order to 

20 



which we are working. Using just A; = 0 terms is called leading order (LO). 

Using both A; = 0 and 6 = 1 terms is called next to leading order (NLO). We 

shall not go higher than (NLO) in this discussion. 

The convolution g) is defined between a splitting function and a distribution, 

(t) 

where f ) can be either 7^, Z or G. 

The evolution of each non-singlet T) is independent while the evolution of 

the singlet Z and gluon G distributions require coupled equations. 

The DGLAP equations are given by, 

+ (1-24) 
(Z InQ 

- ^ 2 ® Z -l- ® (? + 
d InQ^ 

dC 

d InQ^ 

(1.25) 

P|3S ® S + Pgg 0 0 + KQ 

Here we can now see the interpretation of the splitting function explicitly. 

If we drop the Kt term from Equation (1.24) for the moment and solve the 

resulting differential equation using an Euler single step solution in (LO) we 

obtain. 

21 



+ 4 P f 7 « G ) " « « A(ZnQ^) 

(1.26) 

This shows how partons with a momentum fraction ?/ a t contribute to 

the distribution at a; and at This would be seen more 

clearly still if 7] was split up into its constituent favour structure. Then 

corresponds to the probability change for 

finding a quark with momentum fraction a; inside a quark with momentum 

fraction In fact if we drop all JiT, terms from Equations (1.24) and (125) 

we end up with a homogeneous set of differential equations. This homoge-

neous set is exactly the required form of the DGLAP equations to evolve the 

PDFs of the proton. In this sense we can say that the homogeneous part of 

Equations (1.24) and (1.25) correspond to the hadron-like part of the photon 

structure. The .AT; terms render the equations inhomogeneous and correspond 

to the point-like structure of the photon. This is the fundamental difference 

between photon and proton structure. There is no convolution involved with 

the Ki terms. Since the probability of extracting any other particle from a 

photon is of order the PDF for photonic structure must be proportional 

to (̂ (1 — a;) with order Agm corrections. This leaves the formal convolution, 

Equation (1.23), as a trivial integral and the result is just the photon parton 

splitting function A',. 

We take agm to be constant at 1/137 for all 
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The strong coupling o;a(Q^) in (NLO) evolves according to 

1 ;giln(lnQ2/A2) 
(1.27) 

47r A l n Q V A " (lnQVA")2 

where /3o = 11 — 2 / / 3 and = 102 — 38y/3. All expressions refer to the 

717̂  renormalization scheme hence we use A]^ which depends / . In order to 

evolve in (LO) we just set = 0. 

Thus given a set of PDFs %(a;, Qo) G(];, at some Qg, in principle we 

can evolve these to a diEerent In this QCD improved pafton model of 

the photon, is defined in terms of PDFs. 

We define the following useful quantities, 

(<=')= T E 4 (1-28) 
•> i=l 

9\s — ^ — (e^)) (% + %) (1 29) 
2 = 1 

where / is the number of active flavours. 

In (LO), 

^ f ^ ( z , Q ^ ) = gNs(a;, Q^) + (e^)i:(z, Q^) (1-30) 
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and in (NLO), 

X 

(1.31) 
2) 

6a <?rT. 
Atx 

47r 

The terms .8,(z). and are given in Reference [12] and account 

for contributions that do not have a In dependence. They are calculated 

directly in the OPE picture and receive a convolution on undergoing a Mellin 

inversion from moment space to Bjorken a; space. B.y has no convolution by 

the same reeisoning that the terms in the DGLAP equations have no 

convolution associated with them. 

Equation 1.31 is to some extent arbitrary. Reference [13] introduces what is 

called the DIS^ factorization scheme. This involves removing the term 

from and absorbing it into the quark distributions. This is compensated 

for by altering the splitting functions. We explain the relevance of 

this more thoroughly in Chapter 3 when we discuss the specific splitting 

functions that are used. However it is important to grasp that there is an 

interplay between the splitting functions that are used successively at each 

as the distributions are evolved and the terms required to construct at 
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any particular Q-. This idea is also relevant to our treatment of the squark 

threshold as will also become apparent in Chapter 3. 

Essentially we have defined a physically measurable quantity which is 

related to the cross section involved in electron positron, scattering. There 

exist parameterizations of the parton distribution functions of the quarks and 

gluons 'inside' a virtual photon. Given the PDFs at some Qg we can evolve 

them to a different using the inhomogeneous DGLAP equations, can 

then be obtained at that from the evolved PDFs. 

Our aim in the rest of the discussion is to introduce SUSY into the DGLAP 

picture of photon structure. This is relevant for the next generation of high 

energy colliders. The proposed e+e" linear colliders (LCs) will initially have 

a centre of mass energy of 500 GeF. Later it is hoped to extend this up to 

1.5 T e y . This may well be above the SUSY threshold for squark and gluino 

production in which case there will be a supersymmetric contribution to 

We also examine SUSY virtual corrections to the standard splitting functions 

which are relevant below as well as above the SUSY threshold. 
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Chap te r 2 

In t roduc t ion of SUSY 

2.1 Motivation 

Supersymmetry is a popular candidate for physics beyond the standard 

model. The simplest theory is the Minimal Supersymmetric extension of 

the standard model (AfSSM). 

Essentially SUSY is an elegant symmetry between fermions and bosons. 

Fermionic superpartners are introduced for the bosons present and bosonic 

superpartners are introduced for the fermions present. There are several rea-

sons why people believe SUSY to exist in nature. Here we list some of the 

major reasons. The following material is in no way original and has been 

taken from [IT]. 

Perhaps the most compelling argument for supersymmetry is the way in 
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which it addresses the hierarchy problem. This is essentially to do with the 

instability of the bosonic scalar Higgs mass due to quadratically divergent 

radiative corrections in the standard model. In the s tandard model the Higgs 

mass, M/t, is of the order of the T'7 mass, M;,:, and is proportional to a vacuum 

expectation value, i;. receives quadratically divergent radiative corrections 

which means that the natural scale for the Higgs mass is of the order of the 

Planck (Mp) or unification scale. It is possible to adjust the relevant 

counterterms so that they cancel the quadratic divergences and maintain the 

required hierarchy M f . However this requires fine tuning of the 

Higgs potential parameters to a ridiculously precise degree. Many consider 

this fine tuning to be unnatural. The bosonic quadratic divergences can 

be cancelled b}' corresponding fermionic divergences in order to keep the 

hierarchy A/p. By introducing supersymmetry ( extra fermions for 

bosons and vice versa ) this cancellation can be accomplished quite naturally 

to all orders of perturbation. 

Given the three couplings of SU(3)x SU(2)x SU(1) in t he standard model, 

we can evaluate these at and run them up to the Planck scale. If one 

uses the renormalization group equations of the standard model between 

and and those of supersymmetry between and Mp then the 

couplings will all meet at some M;;. This M;/ is of the order of 10^^ for 

1 Tgy. If one does not introduce supersymmetry at then 

the couplings do not meet. There is much contention as to the signiAcance 

of this uniGcation. However for many people the fact t h a t this unification 

occurs with sensible values for and is deemed to be more than 

just coincidental. 
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Non-supersymmetric grand unified models predict proton decay rates that 

disagree with current experiment. This problem is fixed if one introduces 

supersymmetry into the grand unihed models since the conventional proton 

decay modes become unobservable. 

There is a significant portion of the total matter density of the universe that 

cannot be made up of conventional baryonic matter. The lightest supersym-

metric particle is deemed to be an ideal candidate for th is dark matter. 

There is much current interest in superstrings which necessarily requires su-

persymmetry as an ingredient. 

If supersymmetry is formulated as a local symmetry then a spin-2 graviton 

Held must be introduced. This leads to SUGRA models in which gravity is 

unihed with the other interactions. These SUGRA models reduce to general 

relativity in the appropriate limit. 

We have only briefly alluded to a few concepts that suggest supersymme-

try as a good theory to account for new physics. Given the possibility of 

SUSY effects being seen in the next generation of high energy colliders it is 

important to try to predict the measurable effects for photon structure. 

In Chapters 3 and 4 we shall be concerned with introducing squarks and 

gluinos. Squarks are the scalar bosonic supersymmetric partners of fermionic 

quarks. Gluinos are the fermionic supersymmetric partners of gluons. In 

Chapter 5 we look at the production of charginos by explicitly calculating 

the relevant total cross section that arises from electron positron scattering. 

The charged vector bosons and the charged Higgs bosons have su-
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persymmetric partners called winos and higgsinos respectively. Charginos 

actually arrange themselves into mass eigenstates which are in general su-

perpositions of these winos and higgsinos. 

2.2 DGLAP Equations with S U S Y 

Essentially we allow the photon to have a squark and gluiao partonic content 

in addition to the quark and gluon content described in Chapter 1. PDFs 

are dehned for squarks and gluinos. 

Some current lower limits for squark and gluino masses are given below [26]. 

In the following, with the exception of f and 6, all scalar quarks are assumed 

to be degenerate in mass and . 

scalar quark : g Mass m > 250 

scalar bottom quark : 6 Mass m 40 —75(7ey 

scalar top quark : f Mass m > 86.4 G e y 

gluino : g Mass m > 190 

There are right and left handed squarks as well as anti-squarks for all six 

diSerent flavours. For our purposes we assume that right and left handed 

distributions are equal and that squark and anti-squark distributions are 
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equal. Thus for each flavour z, we dehne a generalised squark distribution 

S:(z, such that 

(2.1) 

This enables us to define Havour non-singlets 5"/ for the squark by analogy 

with Equation (1.20), 

-^8(^,9^) = 4(ti^-t-da — 2ga) 

'̂ '10(3;, Q^) = 4(Mg-{-(f^-t-ga^3Ca) (2-2) 

S2i{^3 Q^) — 4 (ug + dg + Sg + Cg — 4bs) 

Ssoi^) Q^) — 4 (lis + dg + Sg + Cg + bg ~ 5tg) 

where 2/a,o(a,ga,c^,6a and refer to the different Havour dependent squark 

distributions which are all functions of (3;, Q^). The factor of 4 accounts for 

the equalities in Equation (2.1). Obviously the squarks have different masses 

according to their flavours. This means that each of the non-singlets is only 

relevant above the corresponding threshold. For example only '̂3, 6'g and 5'i5 

are relevant below the b-squark threshold. However for simplicity in what 

follows we assume that all six squark flavours enter at the same energy. We 
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will henceforth refer to this energy aa the squark or SUSY threshold. This 

corresponds to all six flavours of squarks having the same mass which we 

refer to as the squark mass 

The squark singlet is given by 

! = 1 

(2.3) 

This sum will essentially be over all six Savours of squarks since, as described 

before, we will be introducing all squarks simultaneously a t the squark thresh-

old corresponding to Mg. 

Note that both the non-singlet distributions S"; and the singlet distribution 

r start at zero at the squark threshold. 

The gluino distribution is introduced as Z,(T, corresponding to a gluino 

mass of Mg. In the analysis we take the gluino mass to be either greater than 

or equal to the squark mass. 

The DGLAP Equations (1.24) and (1.25) are sufficient only up to the squark 

threshold. Immediately above the squark threshold we must include the 

squark contribution to the evolution of the distributions. Then when we 

pass through the gluino threshold both the squark and gluino contributions 
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to the evolution must be included. 

Essentially each of the quark and squark non-singlets couple together, ie. Ta 

with 7^ with Sg, etc... 

Ptt ®TI + PXS ® SI + KI 
of In 

(2.4) 

cf In 
= f a r ® + fgg (g) 

In the singlet sector the quark 2, squark F, gluon G and gluino distribu-

tions are coupled. Given that in general the gluino mass Mg is greater than 

the squark mass .Ifj, the singlet sector evolution below t h e gluino threshold 

is given by, 

dG 

d r 

9 = f s z ® Z + fgG ® G + ® r + 

and above the gluino threshold by. 

f e z ® Z ® (? + f o r ® r -|- A'c (2.5) 

Pvt. ® S + PvG ® G + PTV ® F + K-p 
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d r 

dL 

-Pss ® S + Pdg ® G + Psr ® r + P'ZL ® Z/ + K^, 

Pgt, ® S + PQG ® G + PGT ® r + PQL ® L + Kg 

(2.6) 

PVT. ® S + PvG ® G P-^v ® F + P^z, ® L -\-

Pci: ® E + ig) G + f%,r ® T + <2)^4-

Obviously if we take the squark and gluino masses to be equal ie. = Mg 

then Equation (2.3) is not needed and we only use Equations (2.4) and (2.6) 

above the common squark gluino threshold. 

The presence of SUSY particles affects the running of the strong coupling. In 

(LO) the general dependence of the coupling is the same as in Equation 

(1.27). However the change from the pure QCD beta function to the super-

symmetric beta function means that = 1 1 — 2 / , / 3 — 2 — /a/3, where 

and fs are the number of active flavours of quarks and squarks respectively. 

The new Ag[/gy may be Hxed by imposing continuity of the strong coupling 

across the squark threshold at = 4M^, 

4M2) 
An 

In (QVAQCD) 

47r 

Q2=4M2 

(2.7) 
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For our purposes this simply means that the coupling is continuous at = 

and changes from 7 to 3 at this point. This means that although 

still 'small', the coupling decreases less quickly above t h e SUSY threshold. 

The splitting functions and are now different above the squark thresh-

old. We have quark (Pr j , squark ( fgj , gluon ( f c j ) , gluino 

and photon splitting functions. There are small differences between 

these splitting functions and the non-SUSY splitting functions for quarks 

and gluons due to self-energy contributions from loops of squarks and gluinos, 

these having been calculated in [16] and [18]. The new splitting functions 

have a perturbative expansion as in Equations (1.21) and (1.22), however 

we only work to (LO) in the SUSY regime. An (NLO) analysis of photon 

structure above the SUSY threshold is beyond the scope of this discussion. 

Essentially by the time we reach the SUSY threshold is sufBciently small 

that the (NLO) corrections are unimportant. 

Again these splitting functions have an intuitive interpretation in the DGLAP 

picture. For example, given that a quark has been 'extracted' from the target 

photon with a fraction of momentum y and that the quark PDF describes 

the probability of this happening, Prs(2;/7/) describes the probability of then 

extracting a squark of momentum fraction a; from this quark. Likewise, given 

that a photon has been 'extracted' from the target photon (or equivalently 

that the photon remains a photon) and that the photon P D F of unity with 

order agm corrections describes the probability of this happening, A';^(T) 

describes the probability of then extracting a gluino of momentum fraction 

a; from this photon. 
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We will talk more explicitly about the choice of these SUSY splitting func-

tions and especially how the squark threshold behaviour is treated in Chapter 

3. However the framework for the evolution of the par ton distributions is es-

sentially the same above the SUSY threshold as below, being described by 

sets of inhomogeneous DGLAP differential equations. We can take parame-

terizations of quark and gluon distributions at some low energy Qg and evolve 

them through the SUSY threshold by including squark and gluon distribu-

tions that initially start at zero. Then at some we can obtain F ] from 

the following expression by analogy with Equations (1.30) and (1.31), 

= g,,s(z,Q^) + (e^)S(a:,Q^) 

where. 

+ gNs(a;, 0^) + (e^)r(3;,Q^) (2.8) 

47r 

5^3 — ^ - (e^)) (s^ 4- 5^ + sf + a^) (2.9) 
2 = 1 

and (e*) has already been given in Equation (1.28). 

The term is not an (NLO) term so much as a different way in which 

we have treated the squark threshold. We discuss this t e rm fully in Chapter 

3. We only include Equation (2.8) at this point in order to make clear the 

strategy involved in calculating with and without SUSY contributions. 
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However Equations (1.30), (1.31) and (2.8) are essentially our maater equa-

tions. We can now do two things. Firstly, we can ignore any SUSY contribu-

tions and evolve the distributions using Equations (1.24) and (1.25). Then 

by using Equation (1.30) or (1.31) we can predict values for at some 

above the SUSY threshold. Secondly, we can fully include SUSY contribu-

tions and evolve the relevant distributions using Equations (2.4), (2.5) and 

(2.6). Then by using Equation (2.8) we can predict values for at the same 

above the SUSY threshold. This will allow us to asses the signihcance of 

SUSY contributions to fg ' and allow us to say whether such contributions 

will be measurable in the next generation of high energy colliders. 
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Chap te r 3 

D G L A P Evolution t h r o u g h the 

SUSY Threshold 

3.1 Theory and Formalism 

We now have the DGLAP framework with which to examine the photon 

structure function at diSerent energies. The energy is the virtual-

ity of the 'probe' photon in deep inelastic electron positron scattering from 

Equation (1.2). The DGLAP equations are differential equations describing 

the evolution of the relevant parton distribution functions in terms of the 

differential variable InQ^. To utilize this framework the vast majority of 

the work was numerical. The key procedures are the convolution given in 

Equation (1.23) and the 'stepped' numerical solution of differential equations. 

The most important aspects of implementing these procedures numerically 
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are relegated to Appendix A. This Chapter introduces the specific theory 

needed and the consequent results. 

What we actually did waa to take PDFs at the c-quark threshold and evolve 

them upwards through the b-quark, t-quark and SUSY thresholds. We could 

then compare at various energies with and without SUSY contributions. 

We assumed the following quark maases, 

M(c) = 1.5 Gey 

M(6) = 4.5 Gey 

M(() = 174 GeK 

In evolving the PDFs to the SUSY threshold we assume that the condition 

to excite quarks of flavour % is given by, 

0 ' > (3.1) 

This corresponds to simplistic thresholds of 3 Gey, 9 Ge l / and 348 GeF for 

the c, 6 and t quarks respectively. We did not invoke the full theoretical 

framework for dealing with heavy Savour quark contributions to the structure 

function as described in [20] and [21] for example. This is primarily because 

we were concerned with whether supersymmetry exhibits a measurable effect 

on the structure function rather than exact numerical predictions in threshold 

regions. 

The parameterizations [14] that we used were functions of f ^ and Bjorken 

z;, given in Equations (1.2), (1.4) and (1.5) respectively. The evolution 

38 



of the various distributions given by the DGLAP equations is independent 

of f Since only cf and 5 quark distributions are provided by [14] we had 

to start evolving at the c-quark threshold, where the c-quark distribution 

is zero. We could not End reliable parameterizations which included for 

instance c-quark or b-quark distributions that were also dependent on 

Essentially this is why we had to start evolving at such a 'low' compared 

to the SUSY threshold. The validity of the parameterizations that we used 

were constrained by the relation This limited f ^ to a maximum 

of 1.8 at the c-quark threshold which only gives a small ratio r = 

10"^ at high above the SUSY threshold. However even with 

such a small value for r some limited f ^ dependence was to be observed. In 

referring to the distributions we often only show the (a;, dependence since 

the dependence has nothing to do with the machinery of the evolution, 

f ^ is hxed once at the beginning of the evolution at the c-quark threshold. 

However we wanted to monitor the f ^ dependence of the evolution which is 

really just using slightly different input parameterizations at low 

Up to the SUSli' threshold we used the standard QCD splitting functions 

in order to evolve the distributions. We evolve in (NLO) up to the t-quark 

threshold. We are going to take different values for the squark mass M, and 

also we can only evolve in (LO) above the SUSY threshold. In order for us to 

be able to compare ^ at high for different values of Af, we must evolve 

to the same order when in the same energy range. Basically this means that 

we must evolve the distributions in (LO) above the t-quark threshold. 

The type splitting functions are well known and used in the correspond-
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ing evolution equations for the proton, these were obtained from [15]. The 

/ i ; type inhomogeneous splitting functions are also well known and were 

obtained from [12] and [13]. In order to make sense of them, the 'plus' pre-

scription must be defined. Wherever (1 — appears in a splitting 

function its effect is understood by the following integral. 

(32) 
0 (1 — ];)+ Vo 1 — r 

This integral will always be present when the 'plus' prescription is required 

because each always appears in an integral defined by the convolution 

in Equation (1.23). 

The colour SU(3) QCD group theory factors are 

C, F 
4 

3 

C;l = 3 

(3.3) 

T, R 
1 
2 

T/ = 

The (LO) splitting functions are. 
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(1 — z)+ 2 
+ - ^(1 — a;) (3.4) 



pW (x) = 2 / r « [x' + (1 - 1 ) " ] (3.5) 

Pi°i(x) = Cf 1 + (1 - z ) ' 

X 
(3.6) 

Pcc (x) 2C, 
z 1 — a; 

(1 — 2; 
4 1- x{l — x) 

(̂ (1 — 2:) 
IICA -

6 

(3.7) 

= 3 / ((e" )̂ - 2 [3;̂  + (1 - a;)^] (3.8) 

2\ n [<..2 (3.9) 

j r™(i) = 0' (3.10) 

The corresponding (NLO) formulae are very much longer and can be found 

in Appendix B. 

Up to the t-quark threshold the evolution was carried out in (NLO) using 

the DIS.y prescription aa described in [13]. This is slightly different from 

the straight MS scheme. The term in Equation (1.31) contains negative 

^The point-like gluonic contribution only enters in (NLO) 
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divergences as z —> 1. The point of the DIS-y prescription is that it eradi-

cates these negative divergences that can push to unacceptable negative 

values. By a slight redefinition of the terms, the term becomes zero 

and is not used at all. In some sense there is a problem with consistency here 

since we evolve in (NLO) below the t-quark threshold and in (LO) above. 

If one is evolving in (NLO) then one should include the (NLO) convolutions 

that appear in Equation (1.31) when constructing f rom the distributions. 

However above the t-quark threshold and especially a t high above the 

SUSY threshold. is sufficiently small that (NLO) contributions are less 

important. Given the choice to evolve in (LO) or (NLO) below the t-quark 

threshold, we chose to evolve in (NLO) where the coupling is larger and 

(NLO) effects are more pronounced. Given the choice to use the DIS.y pre-

scription or not, we chose to use it, primarily because it factors out the 

term which we would not be using anyway since above the SUSY threshold 

we would be onh" ever be constructing from the distributions in (LO). 

One further point is that we are most interested in whether supersymme-

try exhibits a measurable effect on the structure function, so in a sense we 

just want to evolve the distributions in the most accurate way possible to 

the SUSY threshold which is where supersymmetric contributions will take 

effect. 

So given 1 ,̂(3;, P^), ( ,̂(2;, P^), 5,(3;, f ^) and (9(a;, f ^) at = 

3 Ggy (the c-quark threshold) from the parameterizations we can construct 

7^, Tg, Tis and E from Equations (1.20) and (1.19) respectively. Ts, Tg, T15, 

E and G are then numerically evolved from 3 GeV to 9 GeV (the b-quark 

threshold). In this region A^o = 200 in Equation (1.27). 
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At 9 Gey, 6,(3;, is introduced at zero. This enables us to construct 

724, which is actually equal to E at the b-quark threshold. 73,78, T'lg, 724, 

Z and G are then numerically evolved from 9 to 348 GeV (the t-quark 

threshold). In this region = 131 M e ^ in Equation (1.2T). 

At 348Gey, is introduced at zero. 73s is constructed, which 

again is equal to E at the t-quark threshold. We are evolving the distributions 

to the SUSY threshold, corresponding to 7^, 7^, T15, 7̂ 34, 7^5, E and G 

are then numerically evolved in (LO) to 2Ma GeF (the squark threshold). In 

this region A^g = 8 2 M e y and is set to zero in Equation (1.27). 

We took the squark mass in the range 175 GeF < M; < 300 Gel/. At the 

squark threshold we can calculate using Equation (1.30). This will serve 

as a base reference so that we can compare how much 7 '̂̂  changes with and 

without SUSY contributions above the SUSY threshold. 

Above this energ}- we treat the squark threshold in a slightly different way. 

For squark production we are going to use the full threshold condition that 

squarks cannot be produced unless, 

where r = Importantly, this full threshold condition is dependent on 

both a; and whereas the condition is wholly dependent on 

We attempt to apply this condition above = 4M^. At a particular 
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there will be a value of z, 

^ (4M2/Q2) + 1 + r 

above which squarks cannot be produced due to this condition. Similarly, at 

a particular 'low' value of there will always be a suHiciently low value of 

T < such that squarks can always be produced. 

There exist a set of SUSY splitting functions that are valid in the squark 

region given by Equation (3.11) and indeed apply in general when consider-

ing squarks and gluinos. It is possible to incorporate the squark threshold 

condition (Equation (3.11)) into each convolution (Equation (1.23)). Any 

particular convolution evaluated at z and is an integral in a dumm}- vari-

able ^ in the region > z. Since all convolutions are done numerically, 

SUSY splitting functions can be used for < ^^(Q^), where squarks can be 

produced and standard splitting functions can be used for > a;a(Q^), where 

squarks cannot be produced. This will ensure that there is no contribution 

to the quark and gluon distributions due to squark or gluino effects below the 

true SUSY threshold given in Equation (3.11). Likewise it will ensure that 

there is no contribution to the squark and gluino distributions at all in any 

region of a; and Q- where squarks cannot be produced. This means that for 

any > 4M^, fg ' with SUSY contributions will coincide with fg ' without 

SUSY contributions for a; > a;a(Q^). is unaltered by SUSY contributions 

in the region a; > a;a(Q^), as would be expected. As mentioned previously, 

the running of the strong coupling is affected by the presence of SUSY par-

ticles and we use the condition in Equation (3.11) to decide whether to use 

the SUSY altered coupling to calculate the change in each distribution at a 
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particular z and This will ensure that the evolution is governed by the 

correct coupling in any particular region of a; and 

Applying Equation (3.11) in this way to the splitting functions and the cou-

pling is not an ideal strategy for incorporating the squark threshold since 

for there will always be an z < such that squarks can 

be produced and one might say that the technique should have been applied 

for < 4M^. However it is an improvement on just using > 4M^ as a 

squark threshold condition. 

In principle this type of procedure could have been applied throughout the 

whole evolution from the c-quark threshold. This would have meant starting 

the evolution with all distributions present and continually applying a set 

of threshold criteria like Equation (3.11) for all massive particles present. 

This would essentially have been a programming exercise of immense dif-

ficulty and perhaps intractable. This is another example of where we have 

been content to refrain from invoking every sophisticated method for treating 

heavy flavour contributions to the structure function. We allude to some of 

the programming techniques and difficulties in Appendix A. 

The SUSY set of homogeneous (LO) splitting functions is taken from Refer-

ences [16] and [18]. They are used in Equations (2.4), (2.5) and (2.6). 

pff(i) = Pi%{x) = Cf 
1 + 3^ 

(1 - z ) 
4 - g ( l - z ) ^ (3.13) 
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ps'Hx) = P f f ' w = Cf (0) 14-22 

.(1 -- %)-
( l - z ) 6 ( l - 2 ) > (&14) 

4 ° i W = f l r ' W = C f | l ] (0) 
(3.15) 

f # ( 2 ) = (0) 
(3.16) 

P(g (2) = 27} [2' + (1 - 2)2] (3.17) 

(3;) = 27} [1 - 2 ] (3.18) 

-̂ GE (^) — cp 
1 4- (1 --:c)' 

X 
(3.19) 

poa m C, 
1 + 2^ 1 + (1 — 2)" 

( 1 - 2 ) + X 
(2^ + (1 - 2)2) 

(3.20) 

+ [3Cyi - 27}] ( ^ ( 1 - 2 ) 

= C"; 
1 + (1 — 2)" 

— X 
X 

(3.21) 
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1 + (1 - x)' 

X 
(3.22) 

(^) — 27^ 1̂1 — + (1 — 3;)̂ ^ (3.23) 

P g ( T ) = 2T;;M (3.24) 

f ^ ^ ( z ) = C ^ r i - a ; ] (3.25) 

(^) — 4- (1 — a;) (3.26) 

(a;) = Cj. [1] (3.27) 

; ' i^( :r) = 
1 + 

(1 - ];)_ 
+ [3CA - 27^] (^(1 - :;) (3.28) 

The quark and gluon inhomogeneous terms ^ (a;), (a;) and 7(7̂ ^ (z) are 

the same as before and given in Equations (3.8), (3.9) and (3.10). As with 

the gluon term, the photon to gluino splitting function is zero in (LO), 

KH'ix) = 0 (3.29) 
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The tree level squark contribution to is important in determining the 

photon to squark splitting function, j ig and A'r have the same functional 

I dependence in (LO) and are obtained from the tree level contribution 

to 2̂̂  for squark production. This contribution for a left or right handed 

squark in deep inelastic scattering on a photon is calculated using ordinary 

perturbation theory [19], 

j [1 — 8a;(l — z) + — z)] -u 

(3.30) 

+ —T) + r3;(3a; — + I n ^ 

where, 

1 + f 

. 1 — f 

T = 

f = [1— 7-z/(l— 
(3.31) 

Neglecting squark masses we obtain and A3r in the same way that the 

photon to quark splitting functions are obtained from the tree level contri-

bution to for quark production, 

;r^°)(a;) = 2 x 3 / 2 [2];(1 - a;)] (3.32) 

= 2 x 3 / ( 6 ^ ) 2 [237(1-3;)] (3.33) 

The factor of 2x accounts for left and right handed squarks. The other 

coefficients are standard. The [2a;(l — a;)] is the most dominant term propor-
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tional to in Equation (3.30) and accounts for the linear InQ^ 

evolution of the distributions in (LO). In a sense we can imagine expanding 

Equation (3.30) in powers of ln(Q^/4Mg) and comparing this with naively 

integrating the DGLAP equations in the variable InQ^. On comparison we 

would find that we had correctly accounted for the In evolution of 

up to order (ln(Q^/4A/g))^. Any other contribution to ^ that is not linear 

in ln(Q^/4M^) we will incorporate when we actually construct from the 

distributions at a particular which we discuss a little later in this section. 

All the squark /̂ (-z:, f ^) are taken to be zero at the squark threshold. The 

distributions 7]. Sf, E. G and T can then be evolved to t he gluino threshold 

at 2MgGey using Equations (2.4) and (2.5). As explained previously, above 

= 4^1/̂  we impose the full squark threshold condition given in Equation 

(3.11). In regions of 2; and where squarks cannot be produced we continue 

to run the strong coupling with the same AgcD and parameters used 

above the t-quark threshold. In regions of 2; and where squarks can 

be produced the strong coupling is determined by the continuity condition 

in Equation (2.7). A^^/gy is not fixed in the sense that it depends on Mg 

for which we take a range of values. At the gluino threshold, ^ (̂a;, f ^) is 

taken to be zero. The distributions 7], 5'(, E, G, F and Z, can then be evolved 

to any desired using Equations (2.4) and (2.6). Alternatively, none of the 

SUSY splitting functions can be introduced and the original T), E and G 

distributions can be evolved from the squark threshold to the same using 

Equations (1.24) and (1.25). 

We can then obtain f ^ ( z , f ^) in (LO), without SUSY contributions using 
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Equation (1.30), 

or with SUSY contributions using Equation (2.8), 

1 

X 
f ; ' ( : r ,Q ' ) - gxs(3;,Q') + ( ^ 2 ( ^ , ( 9 ^ ) 

+ 5Ns(]:,Q^) + (e^)r(];, Q^) 

+ 2 x 3 y ( e ' ^ ) ^ g f ' ' 
47r ^ 

All that remains is to explain the origin of the te rm above. This is 

a slightly different way of treating the threshold behaviour than is in the 

literature. 

We calculated the squark contribution to but for the case f ^ ^ 0, where 

r = using the diagrams in Figure 3.1. The diagrams are squared 

and may be paramterized by invariance arguments so t h a t or may be 

projected out after the calculation. There are no Dirac matrices over which 

to take a trace since squarks are scalar particles. The various scalar products 

that occur between the photon and squark momenta may be substituted for 

the standard centre of mass kinematics that assume f ^ ^ 0 and maasive 

squarks. One can then integrate out the phase space of the squarks and 

project out the required quantity 
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t ; 

+ + 

7p 7p 

Figure 3.1: Diagrams contributing to in (LO). T h e g are squarks. 

a M ? V / 1 

TT Q 2 / 

-B I 1 48a;'̂ r^ + 483;^r 4- 4:r^r — 8a;̂  
Q2 / VFG 

4- B ^-12a;^r^ 4- 12a;^r^ - 2a;^rj 

4- B ^1 — 6z^r 4- — 6a;̂  

+ '"S)(f)'(i)(-'.) 

242;^r^/6 4- 2a;^r/6 4- 12a;̂  — 23;/6 — 2a;j 
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where, 

+ In j ^ — 12z^r^/6 

12z^r/6 + lla;^r/6 - 3a;^r + 4a;^/6 - 6a;̂  + ^Tr/6 

- - a ; r - 3 a ; / 6 + 5 a ; - — 1 j (3.34) 

6 = 1 — 2zr 

F = 1 + 77(1 — 2zr) 

G = 1 — 77(1 — 2xr) 

Q^(l — a; — zr) 

b' 
77 = y i - 42;^r 

In the above, Equation (3.30) is recovered for r ^ 0. 

In order to approximate the correct squark threshold behaviour we try to 

isolate that part of Equation (3.30) or (3.34) that is not used in the squark 
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splitting functions and introduce this contribution aa Essentially what 

we do is to take the squark contribution to and subtract off the [2];(1 — a;)] 

part that accounted for the InQ^ dependence in and Given that 

the coefficient of is (2 x 3/(e^) o;em/47r) in Equation (2.8), 

^ 7 = 4{ X - 2 . (1 - } (3.35) 

where is given in Equation (3.30) or (3.34), will give the correct contri-

bution. We also apply the squark threshold condition in Equation (3.11) to 

the term so that in regions of z and where squarks cannot be pro-

duced = 0. The 2x factor in the coefhcient of accounts for left and 

right handed squarks. We note that the difference between using Equation 

(3.30) and Equation (3.34) is negligible in our case because we are limited to 

f ^ < 1.8 at the c-quark threshold, giving an r 2̂  10"^ above the SUSY 

threshold. 

However this is a different way of treating the threshold behaviour from that 

in [12]. At 3> 4Mg it satisfies the Renormalization Group equations since 

the dominant part is in the inhomogeneous term. In the region 4M^ 

this approach will reproduce the perturbative calculation with the correct 

threshold behaviour up to (ln(Q^/4M^))^. There should of course be a small 

mismatch at large and large 37. However we have eradicated this by 

incorporating the threshold condition from Equation (3.11) into both the 

splitting functions and the term ag explained above. Obviously Equation 

(3.30) exhibits a functional dependence on that is more complicated than 
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just In This means that our choice of inhomogeneous squark terms do not 

fully describe the evolution of and that our t e r m is also therefore 

an approximation. This can result in a discontinuity in the region 

which is dehnitely not the result of a physical effect. We will show this e%ct 

in our results in the next section. 

It should be noted how quickly changes away from the threshold with 

decreasing a;. In Equation (3.30), the term 

f = [1 -

moves rapidly away from zero in decreasing z, meaning t h a t the coefBcients 

of 

In f IZLZ ) an j 

in Equation (3.30) give rise to a real threshold contained in the term. 

To brieSy summarize the strategy, we take parameterizations of quark and 

gluon distributions inside a virtual photon at the c-quark threshold. Using 

DGLAP inhomogeneous differential equations we evolve the relevant non-

singlet, singlet and gluon distributions up to the SUSY threshold. From here 

we run the distributions separately, including or not, the effects of squarks 

and gluinos. At some \ / ^ we form fg ' for the virtual photon in such a way 

as to take account of the SUSY threshold condition. 
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3.2 Results 

The variable parameters of the evolution are the (target virtuality), 

(squark mass), jl/g (gluino mass), (incident virtuality) and Bjorken 2;. We 

took these in the ranges, 

0 < < 1300 M e y 

175 Gey < M, < 300 G e y 

175 Gey < Mg < 300 G e y 

500 Gey < < 1500 Gey 

and in all cases 1̂2̂ /̂Ogm is actually plotted. 

Figure 3.2 shows a generalised evolution to 1000 Gey. The bottom graph 

corresponds to evaluated at the SUSY threshold — 2M, = 350 Gey. 

This serves as a base reference since it is at this point t h a t the SUSY effects 

are included in the evolution. There is a considerable difference to f2 when 

including supersymmetric effects. We agree with the general conclusions 

made in [19] that F2 with SUSY contributions is flatter and strongly increases 

for decreasing values of T. Note that allowing the gluino mass to be greater 

than the squark mass produces a negligible effect. Note also that the graphs 

coincide above the squark threshold a;a(Q^) given in Equation (3.12), this 

being due to it being incorporated into the splitting functions and the 

term, as described in the previous section. 
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From here on we plot Mg = M, since we have shown the difference 

to be negligible. 

Figure 3.3 shows the evolution of from \ / ^ = 500 G e y up to 1250 GeF. 

As expected the structure function increases with increasing The main 

point to note here is the appearance of discontinuities due to our approxi-

mate treatment of the squark threshold. For lower closer to the squark 

threshold 2Ma = 350 Gey, the term forces below its true value close 

to the squark production condition given in Equation (3.12). For 

higher is no longer forced below its true value ra ther than forced to 

drop suddenly. These discontinuities are made clearer in Figure 3.4. Here at 

a fixed = 1000 Gey, we isolate the contributions due to the DGLAP 

evolution and due to the term. The two 'dashed' graphs added together 

give the full SUSY We can see that the SUSY graph without the 

term is higher than the other graphs at = 0.89. This is to be expected 

because the and A'r terms that we obtained from the squark contribution 

to 7^ in Equation (3.30) are positive definite and cause ^ to increase. It is 

by adding the rest of the squark contribution as that the proper squark 

threshold behaviour is obtained. In a sense is an over-compensation in 

low Q'̂  and an under-compensation in high 

Figure 3.5 shows f ^ dependence up to 1300 Mey . We are limited by our 

parameterizations in that they are restricted in at the c-quark threshold. 

However non-negligible differences can be noted in low a; even at \ / ^ = 

1300 M e y . 
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Figure 3.6 shows dependence between 175 GeF and 300 GeF. The lowest 

graph is without the SUSY contributions. As the squark mass Ms increases, 

approaches the non-SUSY limit as if the non-SUSY graph corresponds 

to exciting squarks of in6nite mass. Also the thresholds move to lower a; 

as the threshold condition Equation (3.11) requires higher to produce 

squarks of higher mass. We can see that for = 300 GeF there is a 

discontinuity around Xs = 0.74. This is due to the fact t h a t our treatment of 

the squark threshold using the term in Equation (2.8) is only approximate 

as discussed in the previous section. The discontinuity is more apparent for 

A/g = 300 than for M, — 175 Gey since the error increases as the ratio 

approaches unity. 

Figures 3.7 and 3.8 show how varies with \ / ^ at two Axed values of 

a;. Both graphs show how the distributions must approach the non-SUSY 

distribution for high .1/,. However for 2; = 0.66 we can see the gradual ap-

proach to a threshold in increasing For Mg = 275 G e y it is evident that 

for low squarks cannot be produced and the distribution coincides with 

the non-SUSY distribution. Then apart from the discontinuity mentioned 

previously the distribution rises in higher Q"̂ . 
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CM 
LL 

VF = 1.3 GeV, M, = 175 GeV, M. = 175,300 GeV, Vq̂  = 1000 GeV 

0 

SUSY Threshold 

Without SUSY 
With SUSY, IVIg = 175GeV 
With SUSY, = 300 GeV 

0.2 0.4 0.6 

B j o r k e n x 

0.8 

Figure 3.2: Comparative Evolution of Structure Function with and without 

SUSY splitting functions. Difference due to a higher gluino mass Mg is 

negligible. 
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LL 
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0 
0 

VQ̂  Evolution with SUSY contribution 

Vp'=1.3GeV,M =175 GeV 

- VQ̂  = 500GeV 
VQ̂  = 750GeV 

- VQ^= 1000 GeV 
- VQ̂  = 1250 GeV 

0.2 0.4 0.6 

Bjorken x 

0.8 

Figure 3.3: evolution of F2 with SUSY contribution showing disconti-

nuities for lower Q^. 
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Dependence 

Vp' = 1.3 GeV, M = 175 GeV, VQ̂  = 1000 GeV 

CM 
LL 

0 

•1 

With SUSY and 

1 ' 

/ y/ 
Without SUSY 
With SUSY, Without B,'" % 

y 

\ 

i 1 , 1 , 1 , 

\ 

i 
0 0.2 0.4 0.6 0.8 1 

Bjorken x 

Figure 3.4: Graphs showing the effect of 5^^. 
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CM 
LL 

0 

VP" Dependence 
M. = 77JGg% VQ̂  = 1000GeV 

Vp' = 1.3 GeV 
VP̂  = 0.65GeV 
VP̂  = OGeV 

0 0.2 0.4 0.6 0.8 1 

Bjorken x 

Figure 3.5: \ / ^ dependence of structure function for fixed squark mass Mg 

at a Axed probe virtuality 
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CM 
LL 

0 

VP̂  = 1.3GeV, VQ'= 1000 GeV 

Without SUSY 
IVI, = 175GeV 

= 300 GeV 

0 0.2 0.4 0.6 0.8 

Bjorken x 

Figure 3.6: Dependence of structure function on squark maas M, at a fixed 

target virtuality \ / ^ and probe virtuality \ / ^ . 
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Figure 3.8: a; = 0.66 
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3.3 Conclusions 

We see from Figures 3.2 - 3.8 that if one can build a machine for which 

values of approach 1 TeV^ (about twice the squark production threshold) 

there is a substantial increase in the value of F2 for the photon. Indeed, the 

evolution between the SUSY threshold and 1 TeV is more than doubled if 

SUSY particles, taken to have a mass of 175 GeV, are present. The difference 

between the structure functions with and without SUSY in the middle range 

of Bjorken-a: is over 30%. 

The effect at = 1 TeV^ is, of course, diminished if the SUSY threshold 

is increased. However, we note that taking the squark masses to 300 GeV 

only has a small effect on Conversely, if the squark masses turn out to 

be substantially lighter than 175 GeV, (which is not currently ruled out), 

there would be a significant effect on the structure functions at values of 

signihcantly below 1 TeV^. 

The effect also diminishes if the target photon is off-shell, as will usually be 

the CEise. However, we see from Figure 3.5 that this effect is modest. 

The results are fairly insensitive to the mass of the gluino. This is not 

surprising as the gluino contributes very indirectly in tha t it can only be 

produced by a secondary emission from the target photon and then only 

probed through a further interaction with squarks. Taking the mass of the 

gluino below that of the squark, would have had a negligible effect as it is 

clear that it is the squark threshold and not the gluino threshold that must 

be crossed before there is any effect on the photon structure function. 
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There are two t} pes of future experiments that would b e relevant to prob-

ing the structure of the photon and measuring Firstly a future e+e" 

linear collider would allow larger photon virtualities and larger photon pho-

ton centre of mass energies. Secondly there is the possibility of producing 

an e'y collider. In principle an existing e+e" collider could be used with a 

high intensity laser beam. The photons from the laser undergo Compton 

backscattering with a beam of electrons already in the collider. The pho-

tons are scattered into a small cone around the initial electron direction and 

receive a large fraction of the electron energy. The benefits of this design 

are that the energy of the photons produced can be known fairly precisely 

and also high photon photon centre of mass energies can be produced for 

scattering from the available electron energies. It must be remembered that 

experimentally in all cases it is hard to get a sufhcient rate for photon photon 

scattering. This is because the centre of maas energy is limited by realistic 

experimental considerations and thus is also limited by experiment. 



Chap te r 4 

Vi r tua l corrections to 

inhomogeneous t e rms 

4.1 Theory and Formalism 

In this section we consider supersymmetric virtual corrections to These 

will stem from loops made up of squarks and gluinos. We are not considering 

actual squark or gluino production but supersymmetric virtual contributions 

to possible quark or gluon production. This means that these virtual loops 

will contribute below the actual SUSY threshold aa well as above it. 

These contributions will be suppressed by the order of CKg compared to the 

tree level contributions. For example the diagrams in Figure 4.1 would give 

the tree level contribution to for quark production. This contribution 
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corresponds to (LO). If we take any virtual loops due t o squarks and gluinos 

then we obtain supersymmetric contributions suppressed by the order of 

Q!;. These contributions correspond to (NLO) and are relevant below and 

above the SUSY threshold since they are virtual corrections. Now although 

these corrections are suppressed by it is often the case [22] that (NLO) 

corrections are enhanced close to the threshold of the relevant particles. This 

means that the virtual squark and gluino loops could provide a signal for 

supersymmetric particles just below and at the SUSY threshold. 

There are two groups of diagrams that give the virtual supersymmetric con-

tributions to The first set occur due to the production of quarks. Figure 

4.1 shows the tree level diagrams for quark production in photon photon 

scattering. These must be used with the diagrams containing virtual super-

symmetric corrections in Figure 4.2. This will give contributions of order 

which corresponds to contributions of the same order as in the 

DGLAP picture discussed in the previous Chapters, see Equation (122). The 

diagrams can also have the incoming photon lines crossed. Diagram (A) is 

an example of Diagram (o) with crossed photon lines. 

+ 

Figure 4.1: Tree level quark production diagrams to be used in conjunction 

with the diagrams in Figure 4.2. 
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(a) (b) 

(d) 

(f) 

Figure 4.2: (o) -4 (p) are Supersymmetric Virtual diagrams that contribute 

to due to quark production. Diagrams with 'crossed' photons must be 

included, for example (A) is the 'crossed' photon diagram for (o). 
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The diagrams shown in Figure 4.3 occur due to the production of gluons 

in photon photon scattering. There are no tree level diagrams that form a 

product with these to produce contributions of the same order as In 

fact these diagrams must be squared and give a contribution of order 

which is higher than (NLO) and beyond the order that we are considering. 

Thus we ignore this gluon contribution to F^. 

(b) 

,-nnnnnp 

Figure 4.3: (a) {d) are Supersymmetric Virtual diagrams that contribute 

to F ] due to gluon production. 

If we designate the diagrams in Figure 4.1 by M and the diagrams in Figure 

4.2 by jV, then the contribution that we are interested in follows from, 

iM + m ^ 
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the actual contribution given by 

+ = 2 Real [M* AT] 

The diagrams (a) to ( / ) in Figure 4.2 may be further simplified by using 

the fact that dZzpg ( Lorentz invariant phase space ) is invariant under the 

interchange of the external quark momenta. If the external quark momenta 

are interchanged then each of the diagrams (o) to ( / ) is equivalent to another 

of the diagrams (a) to ( / ) with the incoming photon lines crossed. For 

example diagram (6) is equivalent to diagram (A) after th is interchange. In 

fact it will turn out that the contribution from diagram (g) is zero, so we 

may write the required contribution as 

4EeG^M*]V]22 diagrams (4-1) 

where '12 diagrams' refers to the six diagrams (a) to ( / ) of Figure 4.2 allowing 

for both left and right handed squarks. 

The incoming photons carry Lorentz indices for actual calculative purposes. 

The 'probe' photon 'y, carries indices (%/) and the ' target ' photon '/p car-

ries indices p((7). where the bracketed indices refer to taking the complex 

conjugate of a particular diagram. We may write two useful quantities as, 

= ft.. ( - \ r ) {ireal limunk)],, 

^ { - h " ) diagrams) 
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Since we carry out all the Dirac algebra and substitutions using the algebraic 

manipulation program FORM, the above contractions make the calculation 

more manageable since we then deal with scalar rather than vector quantities. 

These contractions are arbitrary in the sense that we could have used other 

equivalent pairs of contractions. 

In order to regularize the divergencies that come up we work in 4 — 2e di-

mensions. The standard 4 dimensional dZ,zpa for two quarks of momenta A: 

and A' reduces as follows, 

dZ/zps = (27r)'̂  + p - A; - A;') 
\lti) 

- > 
47ra; 1 

r(l - e) 
w ( l - z ) - " d z 

(4.4) 

where z = (1 — cos^)/2 and ^ is the centre of mass scattering angle of the 

quark. We also take the quark mass m to zero. 

In order to actually calculate F ] we must average over the target polariza-

tion of photon 7p. This averaging corresponds to the ^ factors in 

Equations (4.2) and (4.3). We also take the target photon to be on-shell, 

i.e. = 0. Given the actual definition of and our particular choice of 

contractions in Equations (4.2) and (4.3), the contribution to ^ach 

flavour of quark i is given by, 
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- (1 + (4.5) 

where e is the charge on an electron and and are given in Equations 

(4.2) and (4.3) above. The colour and flavour dependent quantities such 

as A/c = 3 colours in SU(3) and Eg. the fractional charge on each quark of 

Havour % are hidden in and 

We wish to calculate numerical quantities that can be utilized in the DGLAP 

analysis given in Chapter 3. We made use of Veltman-Passarino functions 

[23] in order to calculate the internal loops that come about in the diagrams 

from Figure 4.2. We used a C + + conversion of the Fortran subroutines in [24] 

in order to actually obtain numbers for these Veltman-Passarino functions. 

Since these loops are ultraviolet divergent we had to subtract off the pole 

parts in a consistent manner. We used on-shell renormalization in order 

subtract off the primitive divergences given in Figure 4.4. 

One must be careful to extract the correct part of this calculation in order to 

use it in the DGLAP picture discussed in the previous Chapters. Equation 

(4.5) is a contribution to due to quark production and is the lowest order 

contribution due to virtual supersymmetric loops. From this expression we 

want to extract the inhomogeneous A'i part that can be used to calculate 

the virtual supersymmetric contribution to the In evolution of If we 

expand Equation (4.4) in c there will be a term, 

- 6 lnQ^/;i^ 
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Pi P2 

for = 0 for = 0 

(a) (b) 

Figure 4.4: Primitive Divergences that are subtracted on-shell, (a) self-energy 

and (b) vertex. 

and in calculating and from Equations (4.2) and (4.3) there will 

be terms proportional to l /e. If we multiply these terms together, the e 

cancels out and we are left with terms proportional to These are 

the very same coefBcients that we used in Chapter 3 in order to calculate 

the squark terms. The net result of this is that we only require the 

terms from and that are proportional to l /e . Apar t from getting the 

correct coeGicients, this then gives us a term tha t we can use in the 

evolution of the DGLAP equations below and above the SUSY threshold. 

The main point of doing this is to see whether there are possible signals for 

supersymmetry due to virtual corrections below the actual SUSY threshold. 
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4.2 The Calculation 

Each of the diagrams (o) to (^) in Figure 4.2 had to multiplied with the pair 

of tree level diagrams in Figure 4.1. Also allowances had to be made for left 

and right handed squarks and also crossed photon lines as in (A) of Figure 

4.2. 

The various internal loops involved correspond to integrals in the internal 

loop momenta. For example, in calculating diagram (c) of Figure 4.2, the 

following integral crops up due to the loop that is present, 

/" d'̂ Z ^ m 

(27r)^ 4- — 772̂ ) 

where / is the internal loop momentum and t is the difference between the 

incoming photon momentum g and the external quark momentum A. Now 

this integral may be written as 

16: - 2 

where BQ and Bi are the relevant Veltman-Passarino functions from [23] and 

[24]. However these Bi functions contain divergences corresponding to the 

the self-energy diagram given in (a) of Figure 4.3. We must subtract off the 

divergent value for these functions using the on-shell scheme. This means 

that the actual value we use for the above integral is, 
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IGTT̂  

such that the divergent pole parts of Bo and have been subtracted off 

along with a Gnite part defined by taking the external legs of the primitive 

divergence diagram to be on-shell. Here the on-shell momentum for is 

where 77i is the mass of an on-shell quark. As mentioned previously, we take 

quark masses to be zero. In order to extract numbers from the Veltman-

Passarino function routines this means having = 0 or taking very 

small compared to the other momenta present. 

The contributions due to (o) and (6) in Figure 4.2 are zero. This is because of 

the renormalization scheme. Since the external quarks are already on-shell, 

when we subtract off the divergent parts for these diagrams, we subtract the 

whole diagram leaving zero. 

The contributions due to (c), (d) and (e) in Figure 4.2 are obtained by using 

B; and Cij Veltman-Passarino functions from [23] and [24]. Basically the 

Bi functions correspond to loop integrals with two quadratic denominators 

which stem from two propagators in the loop, for example the self energy 

diagram (o) in Figure 4.3. The C,; functions correspond to loop integrals 

with three quadratic denominators which stem from three propagators in 

the loop, for example the vertex diagram (6) in Figure 4.3. 
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As mentioned previously the contribution due to (^) in Figure 4.2 evaluates 

to give zero. The most difhcult contribution to calculate is that due to 

( /) , the 'box' diagram. There are four propagators giving four quadratic 

terms in the denominator of the loop integral. We did not have routines 

for the corresponding Veltman-Passarino D functions and had to calculate 

them directly. By using a series of kinematic substitutions we cancelled out 

as many numerator and denominator terms as was possible. This left us 

with one scalar integral with four denominators, Dq say, along with many 

and Q j type integrals. There wag a check that could be applied here 

since the box integral is not divergent by power counting. In applying these 

kinematic substitutions we had introduced many extra divergences which 

were contained in the and Q j functions that were introduced. These 

divergences did indeed cancel out. A brief description of the scalar box 

calculation of Do is relegated to Appendix C. 

In essence this allows us to calculate Equation (4.5) in a semi-

analytic manner. The relevant Feynman diagrams from Figure 4.2 are added 

together and multiplied with the tree level diagrams from Figure 4.1. The 

tensor algebra can be manipulated with FORM. The result is then contracted 

using the relations in Equations (4.2) and (4.3) in order to produce and 

At this point any integrals due to loops present may be substituted for 

the relevant Veltman-Passarino functions remembering t h a t the divergences 

must be subtracted off in a consistent manner aa described above. The 

phase space of the outgoing quarks may also be integrated over. Everything 

must be multiplied by —e with e then subsequently being set to zero. As 

explained previously, this enables us to extract the lowest order contribution 
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due to the virtual supersymmetric loops that is proportional to the required 

logarithmic term. Finally Equation (4.5) can be used in order to combine 

and into The resulting expression for is lengthy 

and is given in Appendix D but as which is dehned in Equation (4.6). 

It appears aa being analytic since the Veltman-Passarino functions appear 

as functions of Bjorken a; and the squark mags A/^. However it must be 

remembered that these are calls to routines that numerically evaluate these 

loop integrals. However once we have this form it can be evaluated 

for any Bjorken z and It can then be used directly to produce the 

relevant inhomogeneous K, terms needed in the DGLAP evolution equations 

as explained below. Since the DGLAP evolution is carried out numerically 

we can utilize this semi-analytic form of directly. 

In Chapter 3 we constructed the inhomogeneous squark terms in Equa-

tions (3.32) and (3.33) from the squark contribution to 7 ^ . They were ob-

tained by taking the coefficient of the ln(l + ^ ) / ( l — 'u) in Equation (3.30). 

By analogy we have directly calculated the coefBcient of the same logarith-

mic term but to a higher order and for the caae of virtual supersymmetric 

corrections to for quark rather than squark production. We can do two 

things now. 

Firstly, there is a term in the tree level Bethe-Heitler result for quark produc-

tion, Equation (1.16), that is the coeSicient of lnQ^(l — from which 

is obtained for the quark. This is 

+ (1 - a;)^] 

We can compare this term and the one that we have calculated in order to 
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get some idea of the relative magnitude of the effect of these virtual super-

symmetric corrections. To compare these two properly we must make sure 

that they have the same coefhcients. The correct expression is obtained by 

dividing out some factors from Equation (4.5) to obtain 

-̂ 2,VS 1/ (4.6) 

As mentioned previously is given in Appendix D. 

Secondly, we can obtain a that accounts for the contribution of these 

virtual supersymmetric corrections to the InQ^ evolution of the DGLAP 

equations with the correct coe@cients and use it directly in the equations 

above and below the SUSY threshold. In this case we need to remove a 

factor of (o!a/27r) since this will be included in our calculation but has been 

removed from the terms in the expansion deRnition given in Equation 

(1.22). The correct quantities are, 

= 3 / ((e^) - ( e Y ) 2 (4.7) 

— 3 / (e^) 2 (4.8) 
ZTT) 
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4.3 Results 

The Figures in this section show the properties of the contribution that we 

have calculated. We have plotted 

which as mentioned in the previous section oFers a direct comparison between 

the virtual contribution that we have calculated and the tree level result for 

quark production. At all times we have taken the squark mass M, to be 

300 Gey. 

Figure 4.5 shows plotted at Bjorken a; = 0.5 for between 200 G e y 

and 800 Gey. 72^? is smooth and small in magnitude, less than 0.25% for 

X = 0.5. The full squark threshold production condition, Equation (3.11), 

reduces to 

Q ' = ( y ^ ) 4 . < (4.10) 

where there is no dependence on since it is assumed tha t = 0 in this 

calculation. As mentioned previously, we might have expected some structure 

as %/Q^ approached this condition. Section D.2 in Appendix D shows how 

individual terms in the solution can exhibit structure but that the sum of 

all contributions gives a smooth curve. In this particular case the condition 

coincides with = 600 Gey where there is only the smooth main curve 

with no structure. 
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Figure 4.5: + (1 " ^ 100% for T = 0.5 and Squark mass 

300 Gey. 
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Figures 4.6 - 4.9 show 72;?? plotted at = 300, 600, 800 and 1200 GeF 

respectively for all Bjorken a;. These are useful plots because it is easy to visu-

alise what is happening during the actual evolution of t he DGLAP equations. 

As the PDFs are evolved in InQ^, at each discrete step the inhomogeneous 

terms are added with no convolution, see section A.3. 

The contribution due to the continuous main curve is basically negligible 

being never more than 1% until after = 1 T e y is reached. There is 

central negative portion which becomes narrower and eventually positive as 

higher is reached. At low a; the curve is initially negative for very low 

but becomes positive and increases in intensity with increasing \ / ^ . At 

high z the curve is positive and becomes increasingly more so with increasing 
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Figure 4.6: + (1 - 3;)^] x 100% for \ / ^ = 300 and Squark 

mass M, = 300 GeV. 
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Figure 4.7: + (1 — x 100% for = 600 G e y and Squark 

mass Ma = 300 Gey. 
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V q ' = 800 GeV 
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Figure 4.8: + (1 — x 100% for \ / ^ = 800 Gel/ and Squark 

mass Mg = 300 Gey. 
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Figure 4.9: + (1 — x 100% for 

mass Ma = 300 Gey. 

1200 G e y and Squark 
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Figure 4.10 shows the result of a DGLAP evolution of to 800 Gey with 

a squark mass of 300 GeF. The quantity 

1-̂ 2 /w/rgo[/r 

has been plotted for all Bjorken a;. and refer to evolu-

tion with and without the virtual supersymmetric corrections. This gives a 

measure of the percentage change that we might expect to any evolution by 

including the virtual corrections. We have used the same machinery as in 

Chapter 3 however we have only used (LO) QCD splitting functions and no 

SUSY splitting functions at all. This means that the only (NLO) components 

in this evolution are and ATg yg from Equations (4.7) and (4.8). This is 

so we can make clear any contribution due to the virtual supersymmetric cor-

rections. The difference is less than 0.05% for any Bjorken z and is entirely 

negligible. The reasons for this are twofold. Firstly, as we have demonstrated 

above, the contributions in general are very small. Secondly, over the range 

of an evolution, up to about — 1 Tey , there will be a superposition of 

positive and negative contributions which will tend to cancel out. For very 

high the contribution will become positive and more significant however 

in this energy range there will be a much larger contribution due to tree level 

supersymmetric effects as we have shown in the previous Chapter. 
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Difference in Evolution to vQ = 800 GeV 

Bjorken x 

Figure 4.10: Percentage difference in evolved to \ / ^ = 800 G e y due to 

virtual supersymmetric corrections with a Squark mass = 300 Gey. 



In conclusion we can say that the supersymmetric virtual corrections offer 

a negligible contribution to the In evolution of Basically there is no 

noticeable resonant structure due to the virtual corrections as the squark 

threshold is approached. The contribution is negligible because it does not 

effect the evolution of in any appreciable way. In this respect the super-

symmetric virtual corrections do not offer a measurable signal for supersym-

metry below or in the region of the squark threshold. 
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Chap te r 5 

Chargino Produc t ion 

5.1 Motivation 

The main thrust of this dissertation is to investigate processes that could be 

measured in order to veri^ the existence of supersymmetry in nature. The 

previous two chapters have dealt with 'measuring' supersymmetry indirectly 

by evaluating its possible effects via the structure function of the photon. 

In this chapter we concentrate on the production of actual supersymmetric 

particles that could be detected in an accelerator. 

Specifically we calculate the total cross section for chargino production in 

electron positron collisions. As mentioned previously, charginos are actu-

ally mass eigenstates corresponding to superpositions of the supersymmetric 

winos and higgsinos. Two distinct mass eigenstates corresponding to and 
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can occur. In principle mixing can occur between the charginos of differ-

ent mass. However we assume that the centre of mass energy is sufBciently 

above the relevant meiss thresholds so that we can t rea t the charginos as 

charged particles of a given mass. Again we are also only looking at photon 

photon interactions to produce the charginos. The coupling of the to 

charginos is very much more complicated. 

The specific interaction we are looking at is 

and the experimental setup for this interaction showing the relevant kine-

matic variables is shown in Figure 5.1. 

A current lower limit on the chargino mass is [26] 

lightest chargino : Mass m > 67.7 G e F 

The point of the calculation is to see if the actual number of events corre-

sponding to this interaction would be enough to merit looking for charginos 

in this experimental setup in order to verify the existence of supersymmetry. 
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i'il) 

l'{p) 

e+(h) 

Figure 5.1: Experimental setup for the production of in electron 

positron scattering showing the relevant kinematic variables. 

5.2 The Calculation 

The basic definition of the cross section arising from the interaction in Figure 

5.1 in terms of conventional factors is 

d"Z 4/f 4 ; / 

Here we take the mass of the leptons to zero. We have factored out the 

kinematic contribution due to the electron and positron giving rise to the 
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standard lepton tensors 

= 2 /I' z;" + 2 

(5.2) 

= 2 4- 2 - f 2 g'''" 

and are deGned in Equations (1.2) and (1.4). contains the internal 

calculation for 'y*'/* —> 

must be parameterized into four structure functions. Four rather than 

two since for this calculation we aasume that f ^ 0. The four structure 

functions F / , ^ and are dehned as follows, 

9 ' . ] ( ' . ' W ' . ) 5 % 

fT + Q2 Q2 y / (p g) 

V + f p ^ + L + 
^ y Y y \ \ ^ - 9)^ 

(5.3) 

These structure functions are scalar functions of the kinematic variables 

f ^ and Bjorken z. We need to be able to project them out from Four 
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projectors are deAned such that 

-̂ 7 

the projectors being 

X 

2ra;^ 

2 ( l - W ) 

2ra;^ 9̂ 9"̂  
2 (1 — 4r2;^) 

(5.4) 

' 9 fily 2rz^ 

X 

2 ( l - 4 r z 2 ) 

—ra; __ 12rT^ qP"^ _| Z__H_ 
.(1 —4ra;^) (1 —4ra;^) 

(5.5) 

-X 

.(1 — 4ra;^)^^'' (1 — 4ra;^) f ^ 

12ra;^ 

X 
2ra;^ 

—r h (1 — 4rz^) 

(5.6) 

nt® 
-rT 12r^z^ 

(1 — 4ra;2)^^'^ ' (1 — Arx'̂ ) P"^ 

X 
-X 12r2;^ 

(1 — 4ra;^)^ ' (1 — 4rr^) 
y " + 

(5.7) 
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This means that we can do the following. Firstly, we can calculate which 

entails using the tree level Feynman diagrams for the process 

and integrating out the dZ,%ps for this internal process. This will result in 

a tensor from which we can project out the structure functions F- using 

Equations (5.4), (5.5), (5.6) and (5.7). We then have a deGnition of in 

terms of the as given by Equation (5.3) which we can contract with the 

lepton tensors in Equation (5.2). This contraction is required for the main 

cross section in Equation (5.1). It then remains to integrate out the phase 

space of the electron and the positron in the variables and We shall 

carry out this integration using numerical Monte-Carlo techniques. 

The tree level matrix elements that must be squared in order to calculate 

are given in Figure 5.2 along with the chargino-photon vertex Feynman 

rule that is required. 

is given by, 

where a trace of the Dirac matrices present must be made. The first factor 

is the dJLzps for massive charginos where f ^ ^ 0. The remaining variables 

are defined as 
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Figure 5.2: (a) Chargino-Photon vertex Feynman rule, (b) Squared matrix 

elements needed for tree level 'y*'/* %+%- process. We refer to these as 

[Ml] and [M2] respectively. 

b 
(1 — 2ra;) 

\ / l — Arx'̂  

5' — Q^( l—z —ra;)/a; 

z — (1 — ?;cos^)/2 
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where ^ is the centre of mass scattering angle for the charginos. 

We used the algebraic manipulation program FORM to handle the Dirac 

algebra and substitutions. We work in the centre of mass frame of the in-

coming photons. The various four-vector scalar products that appear may 

be substituted out for the variables Bjorken z and the dZ,zpg in-

tegration variable z. These kinematic substitutions again assume massive 

charginos and f ^ ^ 0. Having carried out the dZ,%p5 integrations, the pro-

jectors from Equations (5.4), (5.5), (5.6) and (5.7) are used to obtain the 

structure functions F? as defined in Equation (5.3). By using the lepton ten-

sors in Equation (5.2) and the parametrization of in Equation (5.3) we 

can obtain the tensor contraction needed for the cross section. 

o p2 

+ 
1 

{4 (I. - p ) {l[ . p ) + P ' Q ^ } {4 ( h • q) (4 • 9) + P ^ Q ' } F , 
(p-g) ' 

(5.9) 

The analytic expressions for the various Fj are quite lengthy and are given 

in Appendix E. 
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This contracted quantity in Equation (5.9) is now a scalar function of the 

kinematic variables f ^ and Bjorken 2; and also of various vector products 

between the vectors Zi. Zg, Z2, g and p. Henceforth we shall refer to this as 

with the understanding that it is a function of these various variables. 

This means that the cross section in Equation (5.1) can be written as, 

= (5.10) 

In order to obtain the amount of actual events we might expect in an accel-

erator we must integrate out the phage space of the leptons in the variables 

and Zg- We make the following parameterizations of the vectors g and p. 

— a i Z]̂  — ^ Zg + — o î) (5.11) 

9^ = — Z i ^ + Zg + y f ^(1 — ,̂ 2) 712̂  (5.12) 

The quantities 7^ and ^ are unit space vectors which 'swivel' around the 

centre of mass axis defined by the incoming lepton momenta li and i2. A 

pictorial representation of these units vectors is given in Figure 5.3. ^ and 

712 define the angles and 1̂2 around the centre of mass axis. 
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Figure 5.3: Pictorial representation of the unit space vectors zii and ng-

This enables us to write the lepton phase space as 

1 f 1 
i ^ d a . dQ' d,i» J I ^ dA d f ' d * 

(5.13) 

We may also take the sum and difference of and 1̂2 

i;6+ = + ^2 — — <̂2 

and integrate out since none of the required scalar products between the 

vectors depend on 

The kinematic limits on these integration variables are given in terms of the 

total invariant centre of mass squared, = (Zi + /2)^-
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< 1 
^tot 

p2 
< /)2 < 1 

0 < 

0 < < ,̂ tot 

0 < (̂ _ < Svr 

The is given by 25'tot. This leaves us with a quantity for the cross 

section that we can work with, 

^ ^ 

5.3 The Monte-Carlo Integration 

The required integral. Equation (5.15), that we have to perform is too com-

plicated to be done analytically. We choose to perform a Monte-Carlo type 

integration in the five variables over the ranges given in Equation (5.14). 

Hereafter whenever we write 5' we are referring to given in the previous 

section. 
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rS rS rl rl /•27r 

/ dQ" / dP" / da i / d^2 / 
/o Vo Vo 

We have an analytic expression for the integrand given in Equation (5.15). 

The procedure is to sample the integrand times. For each sample we 

obtain five random numbers in the range 0 < z, < 1. From these a;, we 

obtain a set of randomly generated integration variables within the required 

range. We can also define set of for each set of a;, in order to make the 

algebra more manageable. The relationship between t he azi, the r, and the 

set of randomly generated integration variables is given aa 

= 27ra;i = 27rri 

= 5'r2 

= ^7-3 (5.16) 

Oil ~ Q~/5" + (1 — Q'^/S) ^4 = rg + (1 — rg) r4 

A = -P^/5 + (1 — P'^/S) X5 — rs + (1 — rg) rs 

Now in the centre of maas frame of the leptons we can show that 

, ,, ( l - c o s ^ i ) Q ' 
= 2 + T 2 = T (5.17) 

= + (5.18) 

where 01 and 62 are the scattering angles of lepton and lepton (2 respec-

tively. Thus given a random set of integration variables f rom Equation (5.16) 
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we can calculate the two scattering angles that this set belongs to. These 

angles are given by 

(5.19) 

r 1 
2̂ = COS j (^ 20) 

We can therefore divide each of and 02 into a number of bins into which 

the cross section can fall. Into each bin we add the value 

± 1 e ' rr pi [27r X 5" X ^ X (1 - x (1 - f 2/^)] 
2^ (5127r5) Q4p4 jY 

and keep a separate cumulative total of these values which will give the to-

tal cross section. The factor [27r x ^ x 5" x (1 — x (1 — f comes 

from the standard Jacobian transformation required to enable Monte-Carlo 

sampling. The factor of is required because we are using samples. 

It is possible to further simplify the quantity that goes into each bin by 

factoring out certain dimensional quantities. Also it is more convenient to 

have a dimensionless quantity within the mechanics of the computer program 

used to carry out the integration. Given this simplification procedure we 

obtain the following quantity 

da = e" r ( l - r 2 ) ( l - 7 - 3 ) 1 1 
1287r55'l 7-2 j jV 
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There are two constraints that we must build into the integration. Firstly 

there must be enough energy to create particles. The internal photon photon 

invariant centre of mass squared must be sufRciently large to produce 

charginos of mass This constraint 

(9 + p)^ > 

translated into the variables that we have defined is 

ai/^2 + y4r2r3(l - - /)2) > r2 + rg + 4^/^/5" (5.22) 

If this constraint is not met then we can't have an event and zero is entered 

into the relevant Monte-Carlo bin. 

Secondly we must take account of the inherent singularities produced by 

either of the photons becoming on-shell. Equations (5.1), (5.15) and (5.21) 

all show that the differential cross section is proportional to l/(Q'^f'^) or 

equivalently 1/(^2 r^). This means that if either or become very small 

there is a singularity. = 0 or = 0 corresponds to either photon 

becoming on-shell or real. In actual fact the singularity is only proportional 

to l / (Q^f^ ) . This is because the quantity [IrZ/F] goes to zero like 

hence we have an overall divergence proportional to 1/(Q^P^) or l /(r2r3). 

We can also see from Equations (5.19) and (5.20) that ^ 0 or > 0 

will produce leptons in the forward direction, i.e. di 0 or 62 0. This is 

a real singularity and is present in the equations. However it is impossible 

to detect particles directly down the beam axis in an accelerator. In essence 

one would have to tag one of the leptons after it had been scattered down 
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the beam axis with ^ 0. Since this type of detection is impossible and 

it leads to singularities anyway we introduce an angular cut-off. This is a 

'smair angle away from the beam axis that produces a cone around the beam 

axis. If for any particular sample, either of the variables or ^2 given by 

Equations (5.19) and (5.20), is less than this angular cut-off then the event 

is discounted and not added to the cross section. In practise these angular 

cut-offs tend to be of the order of milliradians up to about 100 milliradians. 

We need to convert cross section quantities into actual numbers of events. 

Equation (5.21) is dimensionless apart from the 1/5" factor. Since we are en-

visaging the next generation of high energy linear electron positron colliders, 

it is not unreasonable to assume a centre of mass energy corresponding to 

S = 1 The factor that we need to multiply by corresponds to 

/ IT f \ rr - -4. 1 (W2^)^ 1 
(cr —> Events) = [Lummosityj x (T'ey)^e^ (p6perm^) 

[Luminosity] refers to the Integrated Luminosity measured in inverse pico-

barns ( ). This is a function of the flux of the experimental beam and 

also the period of time over which measurements are made using the beam. 

We might reasonably expect a luminosity of 5000p6"^. (Ac/27r)^ accounts 

for the practise in Quantum Field Theory of naturalising these quantities to 

unity for simplicity. 1/TeV'^ allows for our choice of the TeV as our unit of 

energy. 1/e^ converts from electron-volts to Joules. l /(p6per7n^) allows for 

the fact that theorists measure cross sections in and we require this to be 

in picobarns since experimental luminosities are given in inverse picobarns. 

Taking all these factors into account we obtain a cross section to events 

104 



multiplier of 

( . ^ E v e n t s ) = [5000] x x 1 0 - p 
(1012)2(1.6021 X 10-19)2 (lO-'to) 

(5.23) 

= 5000 X 389.39 

5.4 Results 

The Anal equation that we use in order to calculate the amount of events we 

might expect for chargino production in an electron positron collider is 

5000 X 389.39 x 
(1 - r 2 ) ( l - r 3 ) l 1 

1287r^5'l T-gTa jTV 
[Z,I,f](ri, 7-2,̂ 3,7-4, 7-5, 

4 6'2(e^/7r) 
(5.24) 

As explained in the previous section this quantity is evaluated times with 

the set of random variables given in Equation (5.16). In practise we took 10® 

Monte-Carlo samples. There was a check that we used to ensure confidence 

in the results that were produced. As we ran through the N samples we 

calculated the total amount of events as well as the amount that went into 

each bin. Finally we compared the total amount events with the sum of the 

events in each bin. If JV was taken too high then these quantities would 

disagree. This was expected and is due to rounding errors in the internal 

workings of the computer processor. At N = 10® the agreement was to four 

signidcant figures. Since the calculation was a Monte-Carlo one, we did not 
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produce the same answer with each run. The variance in results was greater 

if the value for A' was lower. The maximum variance in the total amount 

of events was about 10% with = 10^. Without going into exhaustive 

Monte-Carlo error analysis we took N = 10^ as being a satisfactory number 

of samples to produce a reasonable answer. The reasoning behind this is that 

if is smaller a wider variance in events is produced and if is larger then 

rounding errors start to effect the result. 

Figures 5.4 and 5.5 show the results for chargino masses of 100 G e y and 

65 GeF respecti\ ely. These two masses correspond to currently accepted 

probable higher and lower limits for the chargino mass. We took 18 equal 

bins in which to divide up the 180° into which the incoming electron and 

positron can scatter. This corresponds to tagging the leptons in 10° segments 

away from the beam axis. Having calculated the amount of events expected 

in each of the bins we used two ways of analysing the results. 

Firstly we calculated the total amount of events. As discussed in the last 

section, events within the angular cut-off, 10 milliradians or 0.6°, are dis-

counted since the scattered leptons cannot be tagged. As would be expected 

there are more events for the lower chargino mass of 65 Less energy 

is required to produce charginos of lower mass. This means that giveii the 

same centre of mass beam energy more kinematic configurations correspond 

to the production condition in Equation (5.22). There are 55.82 events in 

total for a chargino of mass = 65 Gel/ against 16.41 for a chargino of 

mass = 100 GeF. We conclude that there are roughly 250% more events 

in total for the lighter chargino mass. 
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Secondly we concentrated on the angular dependence of the results. Figures 

5.4 and 5.5 show two measures of this angular dependence. 

As a hrst measure of angular dependence we take a value of ^ away from 

the beam axis in order to construct a cone around the beam axis. A certain 

amount of bins will fall into this cone. We take two such cones with the same 

value of ^ but pointing in opposite directions, one for the electron and one for 

the positron. We can say how many events will fall inside this 'double cone'. 

The quantity 'Events in Double Cone' gives the percentage of total events 

that fall inside these two cones for 10°, 20°, 30° etc... For example, referring 

to Figure 5.4, we can say that 85.42% of events fall within the 40° 'double 

cone' for production of charginos with mass = 100 Ge l / . This means that 

85.42% of events will occur for configurations where b o t h the electron and 

the positron are tagged within 40° of the beam axis. It is clear that the vast 

majority of events fall in the forward direction, i.e. where both the electron 

and the positron are only scattered through a small angle relative to the beam 

axis. Despite the difference in the total number of events, the percentages for 

both chargino masses are very similar. A consistent t rend that came out of 

all samples is that the = 65 GeF charginos are very slightly more packed 

into the more forward bins than the = 100 GeV charginos. For example 

we can see that 83.88% of the = 65 GeF charginos are packed into the 

Arst 30° against 77.53% of the = 100 GeF charginos. This difference is 

even more marked in just the Erst bin where there is almost a 10% difference. 

As a second measure of angular dependence we have concentrated on just 

one of the leptons. In Figures 5.4 and 5.5, 'Percentage of Events in Bin' 
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gives the percentage of the total number of events that fall into each of the 

10° bins for just one of the leptons. The calculation is symmetric between the 

incoming electron and the incoming positron, so it makes no difference that 

we have picked rather than 2̂- For example, the second quantity of 17% in 

Figure 5.4 between 10° and 20° refers to the percentage of the total amount 

of events that correspond to one of the leptons being tagged in the second 

bin. The other lepton may be tagged at any angle although this will be more 

likely to be in the forward direction also. Again it is apparent that the vast 

majority of events fall in the forward direction with over 60% of events falling 

in the hrst bin for either chargino mass, i.e. under 10° from the beam axis. 

Again we can see that the = 65 Gel/ charginos are very slightly more 

packed in the hrst three bins. The sum of the hrst three bars for the lighter 

chargino is 93.5% against 90.5% for the heavier chargino. Indeed there is 

a 7.5% difference if we just take the Grst bin. This again was a consistent 

result over many different samplings. We have only given results for the Srst 

ten bins up to 100° since thereafter the values are negligible at under 1%. 

We carried out simulations for a higher centre of mass energy 6" = 1.5 

which is inside the possible higher energy limit for the next generation of 

linear colliders. One would expect some increase in the amount of events, 

however our results showed no appreciable difference from S = ITeV^, so 

we have omitted them. 

The reason that most of the events fall in the forward direction has been 

alluded to in the previous section while discussing the need for an angular 

cut-o& As was explained, the cross section given in Equation (5.1) has an 

108 



overall divergence proportional to This means that the greatest 

contribution to the cross section will occur when ^ 0 and f ^ ^ 0. 

However from equations (5.19) and (5.20), this case corresponds to > 0 

and 02 —y 0. 

In conclusion we may say that given an accelerator with a centre of mass en-

ergy 5" 2:̂  1 it would be dehnitely feasible to look for chargino produc-

tion in electron positron collisions. It is clear from our results that increasing 

the beam energy above 1 will not make an appreciable difference. How-

ever what is far more important is the amount of events that can be tagged 

close to the beam axis. We used an angular cut-off of 10 milliradians or 

0.6°. If however this cut-off had to be experimentally increased to 175 milli-

radians or 10° then the amount of events that could be measured would be 

reduced drastically. From Figures 5.4 and 5.5 we can see that between 40% 

and 50% of the total amount of events would be lost, more in the case of a 

lighter chargino since the events are packed slightly closer to the beam axis 

as discussed above. So in effect the precision of being able to measure close 

to the beam axis is as important as reaching a high centre of maas energy. 

Very much also depends on what the actual mass of the chargino is. The 

amount of events is reduced by around 71% if the chargino mass increases 

from 65 G e y to 100 GeV. It must be bourne in mind t h a t the actual eSi-

ciency of detection of charginos in the accelerator would be less than 100% 

due to backgrounds. 
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The chargino has a few characteristic decay modes t h a t would actually be 

seen in the accelerator, 

-4 ^ 

-> z/ F -> 

where is any neutralino, / is a lepton, g is a squark and ^ is a gluino. The 

relative rates of these decay modes depend on supersymmetric masses in 

general and also the mixing coefficients that determine the mass eigenstates. 
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E v e n t s i n D o u b l e C o n e 
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F i g u r e 5.5: M o n t e - C a r l o r e su l t s fo r C h a r g i n o p r o d u c t i o n of M a a s 

G o G e F . 
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Chap te r 6 

S u m m a r y 

The title of this thesis is 'Signals for Supersymmetry in Photon Photon Scat-

tering'. We have investigated three areas where the effects of supersymmetry 

might be 'measurable' in a particle accelerator. The type of processes dis-

cussed are particularly relevant for the proposed next generation of high 

energy linear electron positron colliders which should reach centre of mass 

energies of between 500 and 1.5 Tey . 

Photon photon scattering is a core process involved in electron positron col-

lisions and results in a measurable quantity called the photon structure func-

tion In the hrst two Chapters we introduced the theoretical framework 

for analysing in the arena of supersymmetric effects. In Chapter 3 we 

showed that there is a signiEcant contribution to due to supersymmetry. 

The eEect is primarily due to the squark as the difference due to changing 

the gluino mass is negligible. In practise the 'target' photon is not likely 
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to be on-shell and the increased virtuality of this photon diminishes the ef-

fect but only modestly, therefore offers a good way of either vindicating 

supersymmetry or measuring its effects above the SUSY threshold. 

In Chapter 4 we calculated the virtual supersymmetric contribution to the 

evolution of This would be a useful effect to measure as it would be rel-

evant below the actual SUSY threshold. However this contribution exhibits 

a negligible effect on the evolution of ^ and is hence of no use as a signal 

for supersymmetry. 

In Chapter 5 we calculated the actual amount of events that one might 

expect for chargino production in an electron positron collider. There seems 

to be a signiRcant number of events. However the usefulness of such a signal 

for supersymmetry depends on many experimental factors. The integrated 

luminosity, the beam axis angular cut-off and the actual mass of the chargino 

are all factors in determining how many events one could expect. However 

if the mass isn't too high and the angular precision of measurement is good 

enough then detecting charginos offers a good indicator for supersymmetry. 

In short we expect accelerators of the requisite energy to be functioning 

during the next decade. If supersymmetry does indeed exist in nature then 

much work will definitely go into the measurement of and possibly into 

detecting charginos also. 

114 



Append ix A 

CH—h P r o g r a m 

A . l Preamble 

In this appendix we give some consideration to the programming procedures 

and difficulties encountered in the numerical application of the DGLAP equa-

tions. The task was to produce a reliable and Eexible program that would 

accept parameterizations of parton distribution functions at some energy and 

numerically evolve them through various thresholds and Hnally calculate 

at some higher energy. The basic program was used extensively in the work 

discussed in Chapters 3 and 4. The program that was used for the work in 

Chapter 5 to calculate the total cross section for chargino production involved 

a Monte Carlo evaluation of the multi-dimensional phaae space integral. This 

was was far less involved and does not merit any detailed explanation in an 

appendix. 
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We used C + + rather than Fortran to write the evolution program. This 

meant that we could use classes to represent objects that appear in the 

DGLAP framework in a very general way. The initial task of creating these 

abstract classes was perhaps difRcult and time consuming. However once 

they had been tested it was much easier to generalise t he application of the 

program in the sense of varying parameters, introducing further complexities 

and generally 'tweaking' the program. Actually most of the code resided in 

the 'class' section of the program meaning that the 'main ' portion of the 

code which was changed regularly was actually quite small. Having had 

experience of Fortran we feel that the task of implementing the DGLAP 

equations accurately and reliably was in the end made very much easier by 

using C + + . 

There are two main processes that need to be implemented, the convolution 

integral and the 'stepped' numerical solution of differential equations. We 

divide the rest of this appendix accordingly. 

A.2 The convolution 

The convolution integral is given in Equation (1.23), 

and is defined between a splitting function and a distribution 
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As we solve the differential equations that form the DGLAP framework, 

at any particular we must perform many convolutions between differ-

ent splitting functions and different distributions as in Equations (1.24) and 

(1.25) for instance. The range of the dummy integration variable ?/ in these 

convolutions is given by, 

0 < a; < ?/ < 1 

which means that we must sample all distributions in th i s range. 

We created a class called Xrange which contained all t he information about 

this sampling. Since there were inherent divergences t h a t appear when one 

moves from an analytical to a numerical framework we could never evaluate 

integrands a t z = 0,2/ = a ; o r ^ = l. This Xrange class used a lower limit 

o just above zero, a higher limit 6 just below 1 and split the range into W 

steps. All other classes were defined in terms of this class which only had to 

be Axed once at the beginning of any particular program run. 

A general PDF class was created to model parton distribution functions. 

As a function of a;, each PDF would have numerical values at particular 

values of a; determined by the Xrange class, also at a particular The 

object orientated nature of C+-I- meant that these PDFs were very easy to 

manipulate. The mathematical operators , x and were overloaded 

in the implementation so that operations like addition, scalar multiplication, 

etc... could be performed very easily on PDFs. The + and — operators 

were overloaded so that PDFs could be added and subtracted. The x and 4-

operators were overloaded so that scalar multiplication and division could be 

performed with PDFs. If you imagine that each distribution might contain 
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hundreds of discrete values then the operation, 

^5(2;, 0^) = 2 + 5(3;, + 0(3;, + 6(z, - 5f(z, 

becomes as easy to perform as it is written above. If one was dealing with 

many arrays and loops as one might be in Fortran the above operation might 

take a page of code. All the arrays, loops and operations are written down 

only once, inside the inner workings of the PDF class methods and once they 

have been tested one can be sure of not making errors by typing out many 

lines of code. 

A general SF class waa created to model splitting functions. Splitting func-

tions are essentially analytic but can be subject to the threshold condition in 

Equation (3.11) for instance. There were many splitting functions involved 

and we found it useful to write them all out as analytical return functions in a 

separate Ale. Once an SF object had been associated with the relevant split-

ting functions there were two main considerations that t h e object orientated 

approach made easier. Firstly, it was possible to overload the * operator 

so that a convolution could be performed as eeisily as it could be written 

out. For example (gi 73(2;, defined by the convolution integral above 

could be written out in code as PTTO * T3. All the machinery of integration 

was hidden inside the class methods and again once it had been tested one 

could be sure of not making mistakes from re-writing many lines of code. 

Secondly, the operation SF (g) PDF was aware of the dependence of the 

PDF and how the Xrange class was sampling the integral. This meant that 

any threshold condition that required a run-time choice of splitting functions 

could be incorporated into how the integral was performed. In relation to 
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the actual method used to numerically integrate we actually tried several 

different ways in an effort to reduce the error. In the end a Simpson like 

method that sampled the range of a; in 4-8teps with evaluation at 5 separate 

points was chosen. Some interpolation was needed towards the z — 1 region 

however the error introduced by this was minimal. 

The DGLAP equations can be written out in matrix form. For example 

Equations (2.6) can be written out as 

rfW " + | f o r > = 1 ^ 4 } 

We created a vPDF class that was essentially a vector of PDFs. This would 

correspond to a column of Again the , x and 4- operators were 

overloaded in order to facilitate addition, subtraction, scalar multiplication 

and scalar division with these vPDFs. Also we created a vSF class that was 

essentially a row of splitting functions. This would correspond to a row of 

for a particular %. This meant that we could overload the * operator so 

that the operation vSF ig) vPDF could be performed. At each particular 

if the TiTi is turned into a vPDF the whole of the above equation can be coded 

as f f j + .fTz. This again makes the implementation very simple, reliable 

and free from typing errors. 

A.3 Differential Equations 

The simplest way to numerically solve ordinary differential equations is by 

using Euler steps. Thus given Equation (1.24), 
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^ = P r r m + K , 

the evolution in In is given by 

7z(3;,lnQ^ + AlnQ") = 7](z,lnQ^) + A l n Q ^ x PTT ® TJ + KT 

x,lnQ^ 

In order to produce more accuracy we can use Runge-Kutta methods. If we 

take a generalised DGLAP equation as 

= P ® F + K 

where ^ = InQ^. Then a more accurate evolution is given by 

+ dt) = f (^) + y X + 2^2 + 2^73 + ^4) 

where 

H2 = P{t + dt/2) 0 ( f + Hi/2) + K(t + dt/2) 

jYs = f ( ^ + ( f ( / 2 ) ® ( f + j:f2/2) + ; r (( + cf^/2) 

where we must remember that each P and K is actually an expansion of 

individual splitting functions in the strong coupling as given in Equations 
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(1.21) and (1.22). In the above for example P( t+dt /2) actually means 

P(t + dt/2) = + pm 

so that the coupling, which is analytic, is evaluated a t three values of 

corresponding to f, ^ + c(^/2 and ( + dt. 

Also we must remember that the DGLAP equations are actually generalised 

n, X n, matrix equations. This means that the expressions jifi, 7^2, ^ 3 and 

above give rise to up to four matrix convolutions that have to be evaluated 

at any particular The algebra involved in calculating the .ffi above was 

handled with the algebraic manipulation program FORM. The full expression 

involves sixty multiple convolutions that have to be evaluated in matrix form. 

An example is, 

4 ° ' ® 4 ° ' 8 4 " ® 4™ ® 

where the are vSF splitting function rows and the Fi are vPDF parton 

distribution function columns. 

A class called AP was designed to incorporate all these ideas. Each AP object 

was designed to run the distributions in a particular range, for instance from 

the t-quark threshold to the SUSY threshold. It would contain the relevant 

vPDFs, vSFs, the correct couplings and again was dependent on the Xrange 

class in order to determine the amount of a; values that vyere sampled. Both 

the Euler method and the more involved Runge-Kutta method for numeri-

cally running the distributions was incorporated. It was a general class in 

121 



the sense that it was designed to take an M x n set of DGLAP equations. 

Basically the distributions were evolved within the AP class and could be 

projected out at any desired so that could be calculated from the 

distributions. 

It turned out that using the full Runge-Kutta machinery was an 'overkill' in 

the sense that the evolution would take much more computer time and the 

end results were negligibly different from using the Euler step method. In 

the end we just decreased the ^ = In steps and used the Euler method. 
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Append ix B 

(NLO) Spli t t ing Funct ions 

In this appendix we give the (NLO) splitting functions that are used in 

Equations (1.24) and (1.25). The were obtained f rom [15]. The 

were obtained from [12] and [13]. 

Given that 

5*2(3̂ ) — — 2 Li2(—37) + — In^ X — 2I11X ln(l -i- x) — (B.l) 

where Li2(x) is the dilog function 

:=1 " 
^12(2;) - 1 ] ;;2 (B.2) 

that ({n) is the Riemann zeta function, 
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C(«) = E S 
1 = 1 

and that the 'plus' prescription, (1 — 3;)+, is understood as, 

(B.3) 

•dx / W 
0 (1 — x ) + Vo 1 — X 

the (NLO) splitting functions are, 

p S W = c l l - 2 In 2; ln(l — z) + - In 2; 
.(1 - :c)+ 

1 - a; 

- + ^2;^ Inz - ^ ( 1 + 3;)ln^a; - 5(1 - a ;) j 

4- Cf j 
1 2 111 67 TT̂  
_ l n ^ + _ i n z + - - - .(1 - :^ ) -

1 — a; 

20 
+ (1 + a;) Ina; + — (1 — a;) 

+ C f T f 
2 , 10 2 \ 4 

l - a ; j - - ( 1 - a ; ) 
.(1 - :^)+ 
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+ C F [ C r - ~ ) l 2 ( ^ j ^ - l + x ] S , 4 x } 

+ 2(1 + x) Inx + 4(1 — x) 

( o " IT + 6((3) 

— CpTp < % + 
1 27r 

6 9 
^(1 — z) (BxO 

-^ss (^) — C|>| — 1 + 2; + ^ - - - I n a ; - - ( 1 + x) In^ a; 

Inz + 21n3;ln(l — a;) 

+ C j r C A { y ( l - a ; ) + 
11, 1 , 2 67 TT̂  
_ , „ ^ H . _ 1 „ x + - - - (1 - a ; )+ 

1 — X 
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1+ X 
1 + 5'2(z) 

+ ( 7 ^ 3 / j —— + — a; + ^10% + — + 2^ In a; 

112 2 40 9 
-7—X + 2(1 + z) In X 

9 9z 
10 2 , 
y + 3 ' " (1 — a;)+ 

1 — z 

3 TT̂  
8 " y C F { ; - : : 7 + 6C(3) 

#(1 — z) (13.5) 

^ c W = 2 / C r 7 } ^ 4 - 9 2 - ( l - 4 z ) l n % - ( l - 2 z ) l n 2 z + 4 1 n ( l - z ) 

21n 
2 ^ 1 - z 

X 
— 41n 

1 — x\ 2 

X 
# 4-10 

.(1 - :c)+ 
1 — z 

126 



to 
-a 

o 
H + 
l\J 

I 

+ 

t o 
H 

CO 

H 

I 

I 
t o I en 

t o I 

CO 00 

H 

03 

C3 
K 

H 

CO 

» 

I 
t o 

o' 
to 

t—' 
I 

+ 
B' 

H 

•fi 
o' 
I—' 
I 

H 

t o 

+ 
GO 

B" 

H + 
tsD 

1?^ 

't? 

CD 4̂  

g | S 

CO CO 
I 05 

CO CO 
00 



1 1 . 11 
- — 21n3;ln(l — a;) + - In^z + — ln(l — a;) 

+ ln^(l — a;) TT 1 + (1 - a;)' 

X 

+ CfT} j " g ^ 
2 0 ^ 4 
y 4- - ln(l - a;) 

1 + (1 — x)' 

X 
(B.7) 

p S I (^) 
r 20 

- 1 6 + 8a; + —a;^ + 
4 

3a; 

(6 4- 10a;) In a; — (2 + 2a;) In^ a; 

j 2 — 2a; + ^ (x"^ — — ^(1 + a;) Ina; — ^ ~ ^ h - — 2 + a;(l - x ) 

1\ /25 11 44 2 , , 
l y - y a ; + — a ; | lna; 

4- 4(1 4- a;) In^ a; 4- 2 - 2 - a;(l 4- a;)^ 'S'2(a;) 
\ 1 4- z a; / .1 4- z a; 
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"67 ^2 
— 4 In 3; ln(l — a;) + In^ a; — ^ 

1 1 , 
H 2 + x(l — x) (1 — %)+ r 

C f T , - ^ C ^ T , d(l - x) (B.8) 

4 " W = 3f{{e'}-{eY} ^ i ( x ) — - k 2 ( x ) (B.9) 

4 " { i ) = 3/(e=> (B.IO) 

where 

Au(z) Cf ^4 — 9a; — (1 — 4a;) In a; - (1 — 2a;) In^ a; + 41n(l — a;) 

+ 41na; - 41nzln(l - a;) + 21n^a; - 41n(l — a;) 

+ 2 ln^(l — x) — - TT̂  + 10 z + (1 — a;)' 

and 
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Append ix C 

Scalar Box Calculation 

i k 

/ + g + p 

k 

k' 

P 

Figure C.l; Scalar Box Feynman Diagram. 
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The diagram shown in Figure C.l gives rise to the following integral. 

5 ( C D 

As explained in Chapter 4 we wish to extract the part of the calculation for 

virtual supersymmetric corrections that is proportional to 1/e. This corre-

sponds to taking f = (g — = —Q^/2; whenever we need to evaluate this 

scalar box integral. Using Peynman parameters we can write this integral as, 

' / 
167r̂  

(C.2) 
1 

/ = ^0(0! d/3 (f-y ^(1 — a — — 'y) 

where, 

given that, 

= - g g 

5" = (p + g)' 

and m is the squark mass. 
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D is linear in a for which we may solve. 

We can then make the substitution, 

""y = pw 

= p ( l - w ) 

and solve for w giving, 

^ = S (S + Q2) - " '(®)} (C.3) 

where, 

and 

T = 

$ = s/rn^ 

The solution for J{x) depends on the range of x, 

a; < —4 

—4 < % < 4 

4 < a; 
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if \x\ < 4 

if z < —4 

J{x) — 2 — Z/i2(l/po) +-^^2(1 ~ Po) ~ 2L22(—1) + — ln^(/9o — 1)|' (C.6) 

and if z > 4 

J{x) — I — -TT^ + In^Po + ln^(l — po) + 2Z,%2(po) 

+ 21/22(1 — Po) — 2i7rln[po(l — po)] 

(C.7) 

where 

1 + V i - 4 / 1 
" " = 2 

and 2^22(3;) is given in Equation (B.2). 

The solution for I may be imaginary if a; > 4. However as is made clear 

in Equations (4.2) and (4.3) we only need the real part of the two matrix 

elements that are multiplied together. This always corresponds to taking the 

real part of f in Equation (C.2). 
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Append ix D 

^2VS Quark P r o d u c t i o n 

D . l Explicit form for 7 

27rz 

X 3;, M^) + a;, M") + C ( Q \ a;, + D ( Q ^ %, M^) 

where C/ = 4/3, the squark mass is and A(Q^,2;, M^), 

C(Q^,a;, M^) and are deSned below. 

In the following is the quark mass which is taken to zero or as close to 

zero as the Veltman-Passarino routines will allow, 

6" = - a;)/2; 
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and Do is given by / in Appendix C. It is the scalar box integral. 

In actual fact the functions and 

M^) above are the contributions arising from diagrams (c), (d), (e) 

and (f) of Figure 4.2 respectively. These contributions allow for crossed 

incoming photon lines and both left and right handed squarks. 

The Veltman-Passarino functions and Q j are s tandard functions which 

may be found in [23]. 

X, — -3:^(3; — 1) [Zi — Z2 + Zs — Z4] 

Z3 = 

Z4 = 

= ^ j ( 2 r ^ - 2 a ; ^ + a ; ) Z i + (-3;^ + z ^ - z ) Z 2 + (— 
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-̂ 1 = 

Z3 = C 2 4 ( 0 , - Q " / z , - Q ^ M ^ M ^ M ^ ) 

c(q\xar-) = + E % p l ) ( z , _ z . ) 

Zi = C 2 2 ( 0 , - Q " / 3 ; , 0 , M \ M ^ M ^ ) 

Z2 = C 2 3 ( 0 , - Q " / 3 ; , 0 , M ^ M \ M ^ ) 

Z3 = C24(0 , -Q"/a ; ,0 ,M^M",M^) 

Z4 = C24(m^0,0,M",M",M^) 

D(Q^,a;, + (—6z^ + 103;^-43;)Z2 

+ (-937^+102;^—2z)Z3 + (6a;^—182;^+43;)Z4 + (9z^-6z^M^/Q^—8a;^)Z5 + (—2a;)Z6 
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+ ( 1 2 x ^ — 8 x ' ^ — 4 . T ) ^ 7 + (—2x '^ )Zg + ( — \ 2 x ^ — 12%^ 4- 2a ; ) + (62;^ — Qx^Z-10 

+ {—ax'^-^4Lx — 2)q'^zII + {qx'^q'^)zi2 + (—6x^+6a:)(3"^i3 + (—2a;+2)Q^2'i4 

+ (—2(5^)2'I5 + (—2X+2)Q'^ Zi6 + (4XQ^)Ziy + (—6x^-i-6x)Q^Zi3 + (4z^—4a;)Z^ 19 

+ (12X )̂2^20 + (2xiV/^ — Q^)Z2I + (—6x^ 4- 13x — 5)Q^^22 + (9x^Q^)Z-23 

4" ( 6 x ^ — 12x^4"7X—1)Q~-Z'24 4- ( 6 x ^ — 1 5 x ^ 4 ~ 9 x ) ( 5 ^ ^ 2 5 4- (— 3 a ; ^ Q ^ 4 - 2 x Q " 4 - 2 a ; i V / ~ ) ^ ; 26 

(x + 1 ) Q ^ ^ 2 7 4^ (—6x^ 4- 12x'^ — 7x 4- 1 ) Q ^ ^ 2 8 (Sx"^ — 3x)Q^Z[ 29 

4- ( 3 a ; ^ Q ^ — 4 z Q ^ 4 - 3 2 ; M ^ ) Z 3 o 4- (—8z^Q^+4a;^M^+122;Q^—4Q^)Z3i 

4- - a;^M^)Z32 + (-3a;^Q^ + 7a;^Q^ - + Q")Z: 33 

4- (9^^ — 163;̂  4- 82; — 1)Q^Z; 34 

4-(32;^Q'^-2 :c"Q^M^-7a;Q^+3a;0V-Q' ' / z+5Q'^-Q^M^)Do(Q^a7,M^) 
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= Bo(0, 

Z2 = ^0(6", A/") 

Z4 = 

Z5 = Bo(0,M",A/") 

Ze = gi(0,M",A/") 

Zy = 

Zg = ^ i ( -Q^/a ; , M^) 

Zg = 

Zio = Bi(0,M^,M^) 

Zii = C2i ( -Q^0 , ;9 ,M" ,M",M^) 

Z12 = C 2 i ( - Q " , 0 , 0 , M ^ , M ^ M ^ ) 

Zi3 - C2i(0,0 ,5 ' ,M",M^M") 

Zi4 = C22(0,0,-Q^/2;, 

Zi5 - C 2 2 ( - Q \ 0 , ; 9 , M " , M \ M " ) 

Z16 = C23(0,0, 

Zi7 = C23(-Q^,0,5', 

^18 = C23(0,0,6 ' ,M",M^M") 
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^19 = C24(0,0, 

Z20 = C24(0,0,^,M2,M",Af") 

^21 = Cii(0,0,-Q^/a;, 

Z22 = 

^23 = C n ( - Q ^ 0 , 0 , M ^ M ^ M " ) 

Z24 - Gii(—Q^,—Q^/z,0, 

Z25 = Ci i (0 ,0 ,^ ,M2,M",M") 

Z26 = Ci2(0,0,-Q^/3; ,M",M^,M^) 

'̂ 27 — Cii(—Q^,0,5", 

Z28 = Ci2( -Q" , -Q^/3 ; ,0 ,M" ,M^,M^) 

Z29 = Ci2(d2,0,0, ;9,M",M^M") 

Z30 = Co(0 ,0 , -Q^ /a ; ,M\M" ,M^) 

Z31 = 

Z32 = Co(-Q^O,0 ,M^,M",M") 

Z33 = C o ( - 0 \ - Q " / a ; , O , M ^ , M \ M ^ ) 

Z34 = Co(0,0 ,^ ,M",M",M") 
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D.2 Absence of Structure 

As was mentioned in Chapter 4, it was thought that t h e virtual supersym-

metric corrections would exhibit some structure around t h e squark threshold. 

In fact the contribution produces a smooth curve. The purpose of this section 

is to show how individual terms can show structure around the threshold but 

that the total contribution is in fact smooth. 

In order to do this we utilize the contribution a;, from the previous 

section. This is made up from a term a n d 34 other terms all 

with coefhcient terms in and z. In Figures D . l , D.2 and D.3 we 

have separated out the a;, contribution to given in Equation 

(4.9). This is a purely arbitrary choice the important poin t being the ability 

to show the functional dependence around the squark threshold. We have 

taken Bjorken a; = 0.5 and a squark mass M = 300 G e y . 

Figure D.l shows the contribution due to and its accompa-

nying coefEcient terms. There is clearly a positive peak a t = 600 

which corresponds to the squark threshold given by Equation (4.10). Figure 

D.2 shows the contribution due to the remaining 34 t e rms > .̂ 34 and 

their accompanying coeHicient terms. There is clearly a negative peak at 

= 600 Gey . These two contributions very neatly cancel each other out 

to give the smooth curve given in Figure D.3. Thus we have shown that the 

total contribution due to diagram (f) of Figure 4.2 is in fact smooth with 

no structure around the squark threshold. The same is t r u e of diagrams (c), 

(d), and (e) of Figure 4.2 leading to an overall smooth contribution to 
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(\l 

O 

% = 0.5 

Vq^ 

Figure D.l : DQ contribution to Rp7 for Bjorken a; = 0.5 and squark mass 

M = 300 GeV. 
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o 
o 
r=4 
X 

CM 

X 

+ 
J 
X (M 

CO m 

% = O . J 

Figure D.2: Dre^t contribution to 72^? for Bjorken a; = 0.5 and squark mass 

M = 300 Gey. 
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"X -0 .4 

O 

Figure D.3: D^ota/ contribution to for Bjorken a; = 0.5 and squark mass 

M = 300 Gey . 
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Appendix E 

F j for Chargino P r o d u c t i o n 

In this appendix the four structure functions defined by Equation (5.3) 

are given explicitly. The following variables are used to show them, 

B = 
Q^(l — a; — ra;) 

a = rx , 6 = 1 — 2rx 

b 
jy — _ \ / l — 

f = 2a + 6(1 + T]) 
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G — 2(z + 6(1 — T]) 

Bjorken i and r are given in Equations (1.5) and (1.7) respectively. The 

chargino mass is given by m. 

8z r 6^2 
f l = ( L _ - -

\ 7 r f G y ( [1 — 4r3;^]^ [1 — 4rz^]^ [1 — 4ra;^]^ [1 — 4ra;^] 

+ 
8a;'̂ r^ 16a;^r / 4a; r 42; r 3^2 4z^r 

[1 —4ra;^] [1 —4?-a;̂ ]̂  [1 —4r2;^]\Q^y [1 —4ra;^] [1 —4r2;^] [1 —4r];^] 

/ 2 \2 , . 
. y , o 0 / ttx \ g / ttl 

+ 43; r I - 23;^r - 82;̂  + 42;̂  , 
' ' \ Q / \ V 

1 42;^r^ 82;̂ /"̂  42;^r 82;̂ /"̂  82;̂ r 
+ TT y [ 2 [1 — Arx'̂ Y [1 ~ 4rz^]^ [1 — Arx'^Y [1 — Arx^Y [1 — 4rx^]^ 

22;^r 4i^r 2; r 2: 2:r a; 
+ [1 — 4rz^] [1 — Arx'̂ ] [1 — Arx'̂ Y [1 — Arx"̂ ] [1 — Arx"̂ ] [1 — Arx^ 

- m - i s . 
g^6y.3 42;^r^ 

+ 
3 42;̂ /-'̂  

2 '^6[1 — Arx'̂ Y 6[1 — 4r2;^]^ ' 6[1 — Arx'̂ Y 6[1 — Arx'̂ Y 
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43:5/2 42*r4 

^ [1 — 4r2;^]^ 6[1 — 4ra;^]^ [1 — 4rT^]^ ^ 6[1 — 4r%2] 6[1 — 4rz^] 

4z4r3 224r3 42:4r2 224r2 224r2 
+ 77z : — ~ 7z :—::t7: — :—— + 

6[1 — 4ra;^] 6[1 — 4ra;^]^ [1 — 4ra:^]^ 6[1 — 4rT^] 6[1 — 4rz^]^ [1 — 4rz^]^ 

42;^r 23;^r 4];'̂ r 14a;^r^ 2a;^r^ 

6[1 — 4ra;^] 6[1 — 4ra;^]^ [1 — 4rz^]^ 6[1 — 4r2;^] [1 — 4ra;2] 

Sz^r^ 2z3r2 423r2 

6[1 — 4ra;^] 6[1 — 4ra;^] 6[1 — 4r];^]^ [1 — 4rT^] 

2a;^r^ 2z^r^ 8z^r 4z^7- 4a;^r 

^ [1 — 4rz^] [l — 4rz^]^ 6[1 — 4ra;^] \Q^y 6[1 — 4rz^] ^ [1 "" 4rT^] \Q^ , 

+ 
43;^r lOz^r^ Gr^r^ 4a;^r / 2a;^r 

[1 —4r3;^]^ 6[1 —4ra;^] 6 [1 —4ra;^] 6[1 —4ra;^] \ Q ^ / 6[1 —4rz^]^ 

2a;^r /?7i^ \ 2];^r / \ 2z^r 4z^ / \ ^ 2a;̂  / 
+ 

6 \ Q ^ / [1 —4ra;^] \ (9^ / [1 —4r2;^] 6 \ Q ^ / ^ [1 —4ra;^] 

2a;r S^r 22;r Sa; / \ / \ 1 

6[1 - 4ra;2] ^ T [1 - 4ra;2] " T " 6, 

147 



f f / \ r 96a;^r'^ 8z^r'^ 

^ \7rFGy } [1 — 4ra;^]^ [1 — 4r2;̂ ]^ "*"[! — 4ra;^]3 [1 — 4ra;^]^ 

+ 
642^r3 IGz^r^ 483'^r3 32z^r^ / 772̂  \ 24z^r^ 

[1 — 4ra;^]^ \ Q ^ / [1 "" 4ra;^]^ [1 — 4ra;^]^ [l — 4ra;^]^ \ 0 ^ 7 [1 " 4r22]2 

6424r2 242^r* 42^r2 
+ [1 —4ra;^]^ [1 —4rz^]^ \Q^7 [1 —4rz^]^ [1 —4rz^] \ Q ^ 7 [1 —4rz2] 

IGa^r EkrY / n r ' 

[1 — 4rz^] \(3^y [1 - 4rz^] \Q^ 

+ 
r 242°r4 48i:5r3 243^r2 48z4r3 48i:*r^ 

TT [1 — 4rz^]^ [1 — 4ra;^]^ [1 — 4ra;^]^ [1 — 4ra;^]^ [1 — 4r22]3 

6%r 3*.3 42^r2 24z^r2 223r 

[1 — 4ri^]^ [1 — 4r3;̂ ]^ [1 — 4ra:^]^ [1 — 4ra;^]^ 

^ I 
[1 — 4rz^]^ [1 — 4r2;̂ ]^ [1 — 4ra;^] j 

22^r rrr 
+ 

/ F ' 

TTT/ / \ U , 

24%: r 7^5 483^^4 242/r3 24zGr5 
+ 6[1 — 4rz^]^ 6[1 — 4rz^]^ 6[1 — 4ra;^]^ 6[1 — 47-3;̂ ]̂  
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242Gr3 242^r5 48z^r4 

[1 —4ra;^]^ 6[1 —4ra;^]^ [1 —4rz^]^ 6[1—4ra;^]^ 6[1 —4ra;^]^ 

402^r4 24i^r4 322^r3 m 8 z r 5^3 

6[1—4rz^]^ 6[1 —4ra;^]^ [1 —4rz^]^ 6[1 —4rar^]^ \Q^7 6[1 —4ra;2]2 

122:5r3 1225r3 3225r2 
+ + 

1225r2 

6[1 — 4ra;^]^ [1 — 4rz^]^ 6[1 — 4ra;^]^ \Q^7 ^ 4ra;^]^ 6[1 — 4ra;2]3 

242^r2 84z^r* 123^r4 482:4r3 68%*/^ 

[1 — 4ra;^]^ 6[1 — 4ra;^]^ [1 — 4ra;^]^ 6[1 — 4ra;^]^ \ 0 ^ 7 ^ 4rz2js 

12z4r3 242^r3 282^r3 122^7^ 482^r2 
+ 

6[1—4ra;^]^ [1 —4r2;^]^\Q^y [1 —4ra;^]^ [1 —4ra;^]^ 6[1 —4rz^]^\Q^y 

+ 
82^r2 24z4r2 22^r3 

6[1 — 4r];^]^ [1 — 4ra;^]^ \ 0 ^ 7 [1 ^ 4ra;^]^ [1 — 4ra;^]^ 6[1 — 4rz2] 

S&z^r^ 423/^ 242^r2 

6[1 —4r3;^]^ ^ [1 —4ra;^]^ 6[1 —4rz^] \ Q ^ / 6[1 —4rz^]^ \Q^ , 

3223r2 123^^2 12z3r2 /?7^! 
+ 

28a;^r^ 82;^r ^ ^ 

6[1—4r];^]^ 6[1 —4ra;^]^ [1 —4ra;^]^^Q^y [1 —4ra;^]^ 6[1 —4rz^]\Q^ 

149 



+ 
22 r 42:3r 62 r 2-2 22:2r2 

6[1 —4r2;^] [1 —4rz^]^ \Q^y 6[1 —4ra;^] 6[1 —4r];^]^ [1 —4ra:^] 

+ 
6 z r /7% 23; r / ?7&2 22 ' r 1232/2 

[1 — 4rz^]^ 6[1 — 4r2;^] ^ [1 — 4ra;^] ^ [1 — 4rz2] 

22r 3zr 1 

h[l — Arx'^] 4rz2] J 

2 / \ r 48a;^r^ 48a;^r^ 96a;^r^ 24a;^r^ 

^ \ 7 r f G y { [1 —4rz^]^ [1 —4r2;^]^ ^ [1 —4rz^]^ [1 —4rj;^]^ 

g^g.5^2 / ^ 2 \ 16T^r^ 48a;°r 5^2 32a;^r / 
[1 — arx'^y \q^ j [1 — 4ra;2]2 [1 — arx'^y [1 — 4ra;^]2 

8a;^r 24a;^r^ 64a;^r 8a;'^r 8i:^r 
+ [1 — [1 — 4rx^]^ [1 — arx^]"^ \q^ j [1 — 4rx^]^ [1 — 4ra;^] \q'^ 

43^ r 162;̂  / .^2 \ 2 m ' \ 8x^ / m 
+ [1 — 4r3;^] [1 — 4ra;^] \ <3̂  / [1 — 4ra;^] \ Q 

r 24z^r^ 48a;^r2 242;^r 

TT / ( [1 — 4ra;2]^ [1 — 4ra;^]^ [1 — 4rz^)^ 
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+ [1 — 4rz^]^ [1 — 4r3;2]^ 



22.3^2 4z3r 24T3r 
+ t: : — ^ — — : — + [1 — 4rz^]^ [1 — 4ra;^]^ [1 — 4rz^]^ [1 — 4ra;^]^ [1 — 4ra;^]^ 

+ 
62^ ; I 

[1 — 4r2^]^ [1 — 4ra;^] j 

24%^/* 482^r3 24a^r^ 242fr4 

TTTy y \ G / [ 6[1 —4ra;^]^ 6[1 — 6 [ 1 — 4 r z ^ ] ^ 6[1 —4rz2]3 

24zGr3 72zGr2 242^7^ Sz^r* 16ifr^ 

[1 — 4r2;^]^ 6[1 — 4r2;^]^ [1 — 4ra;^]^ 6[1 — 6[1 — 4r2;^]^ 

2425r3 242^r3 122°r3 3225/^ / f n ? \ 242^/2 

6[1 —4r2^]^ 6[1 —4rz^]^ [1 —4ri^]^ 6[1 —4ra;^]^\Q^y 6[1 —4rz2]s 

122^r2 3225r /?7^^ 8a^r 1225r 

6[1 — 4r2^]^ [1 — 4r2^]^ 6[1 — 4r2^]^ \ 0 ^ 7 4r2^]^ 6[1 — 4r22]2 

243^^ 282*r3 424r3 442:4^2 
+ 

[1 — 4r2^]^ b[l — 4r2^]^ [1 — 4rx^]'^ b[l — Arx'^Y \Q^J 6[1 — 4r2^]^ 

1224r2 82^r^ / 202^r^ 122^r^ IGz'^r 771 
6[1 — 4r2^]^ [1 — 4r2^]^ \Q^7 " 4r2^]^ [1 — 4r2^]^ 6[1 — 4r2^]^ \Q^, 
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+ 
2424r 8a;'̂ r 16a;'̂ r 24a;4r 22'^r 3^2 

6[1 —4r3;^]^ [1 —4rz^]^\^Q^y [1 —4rT^]^ [1 —4ra;^]^ 6[1 —4r22] 

20z3r2 1223r2 
+ 

4a;^r / 8z^r / m* 3223r 

6[1 —47-2;̂ ]̂  [1 —4rz^]^ 6[1 —4rz^] \Q^y 6[1 —4ra;^]^\Q^y 6[1 —4rz^]^ 

12z^r Ax'^r f m?'\ 20x^r 8x^ 771'" 
+ 

2a;̂  

6[1 — 4rz^]^ [1 — 4rz^]^ \ 0 ^ 7 [1 " 4r2;^]^ 6[1 — 4rz^] 6[1 — 4ra;^] 

12a;̂  / m ̂  ^ 62;^r 4a;^r 
+ 77- %7 + 

2z^r 4z^r 

[1 —4r2;^]^ \ 0 ^ / 6[1 —4r3;^] 6[1 —4r];^]^ [1 —4r2;^] [1 —4r3;^]^ 

+ 
g^2 / ^ 2 ' m 2z^ / 2a; 3a; 

6[1 — 4r2;^] [1 — 4rz^] [1 — 4rz^] 6[1 — 4rz^] [1 — 4r3;^] 

fir 
/ e'^B \ f _ 288a;»r5 288a;^r3 576a;'̂ r'̂  483;̂ /-̂  

\7rFGy I [1 — Arx'̂ Y [1 — Arx'̂ Y [1 — Arx~Y [1 ~ 4rz^]^ 

+ 
192];^r^ / 288z^r^ 48a;^r^ 48z^r^ 

+ [1 — arx"^]^ \q^ j [1 — 4rx2]4 [1 — 4rx^]^ [1 — 4rx^y 

1922;5r^ / 48z5r^ 16a;^r^ / 
+ 7: ^—;rnr + 

8z r 4,.2 

[1 —4ra;^]^ \Q^7 [1 —4ra;^]^ [1 —4ra:^]^ \ Q ^ 7 [1 —4r3;^]^ 
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323:4r / 
+ -

772'' 
[1 — \ 0 ^ 7 [1 ^ 4r2;^]^ \ Q ^ 

^ ^ 1442:Gr4 QBSi^r^ 1442Gr2 ^ 28825r3 2882fr2 

TT [l — 4ra;^]^ [1 — 4r3;̂ ]^ [1 — 4ra;^]^ [l — 4rz^]'^ [1 — 4r22]< 

IZz^r^ 144z4r2 1224r 122;3r 
+ 1- ^ ^ + [1 — 4ra;^]^ [1 — 4ra;̂ ]'* [1 — 4ra;^]^ [1 — 4ra;^]^ [1 — 4ra;^]^ [1 — 4ra;^]^ 

/e '^B\ ^ f 1443;^r^ 288z^r^ 144a;^r^ 1443;^r^ 

Try; y \ G / [ 6[1 — 4rz^]'^ 6[1 — 4rz^]^ 6[1 — 4rz^]'^ 6[1 — 4rz2]'* 

1442?/* 4322^r3 1442^r3 482^r^ QGa^r* 

[1 —4r2;^]^ 6[1 —4ra;^]^ [1 —4r3;^]^ 6[1 —4r3;^]^ b[l —4ra;^]^ 

962^^4 1442^^4 722:6^4 962^^3 / 7 n f \ 482^r3 
+ 6[1—4r2;^]^ 6[1 —4r2^]'^ [1 —4r2^]'* 6[1 —4r2;^]^ \ 0 ^ / 6[1 —4r22]" 

722:Gr3 TZz^r^ 962^r2 722^r2 1442^r* 

6[1 — 4r2:̂ ]'̂  [1 — 4r2;^]^ 6[1 — 4r2;^]^ \Q^7 ^ 4r2;̂ ]'̂  [1 — 4r22]'3 

IGS^^r* 242^r4 ICSz^r^ 722^r^ 

6[1 — 4r2;^]^ [1 — 4r2;^]^ 6[1 — 4r2;^]^ \ Q ^ / 4r2^]^ 6[1 — 4r2^]^ 
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482^r3 72i'5r3 
+ 

48z'5r ,5_2 

[1 —4ra;^]^\Q^/ [1 —4rz^]^ [1 —4rz^]'^ 6[1—4ra;^]^^Q^y 6[1 —4r22]3 

482^r2 483:5r2 1442^/^ 42:4r3 ISlOa^r^ 

[1 — 4ra;^]^ \ 0 ^ 7 [1 " 4rz^]^ [1 — 4ra;̂ ]'* 6[1 — 4ra;^]^ 6[1 — 4rT^]^ 

+ 
[1 —4ra;^]^ 6[1 —4ri^]^ 6[1 —4r3;^]^ 6[1 —4r2;^]^ ' 6[1 —4ra;^]^ 

Sar'̂ r̂  / 77Ẑ  \ 48a;^r^ / \ 96a;^r^ 72z^r^ 
+ 

24a;^r^ / m 72z:4r2 162*r 4k^Y 

[1 — 4r3;^]^ \ Q ^ / [1 ^ 4ra;^]^ 6[1 — 4ra;^]^ \ Q ^ y 6[1 — 4r];^]^ 

24%'̂ r \ 12^z^r^ 24z^r^ 4];^r^ 24z^r^ 

[1 —4ra;^]^ \ 0 ^ / 6[1 —4?"^ ]̂̂  6[1 —4r2;^]^ [1 —4ra;^]^ [1 —4ra;^]^ 

12T^r / m" 423r /?%:* 4i:3r 422r 6b/T 
+ 

6[l —4rz^]^ \ 0 ^ / [1 —4ra;^]^ \ Q ^ / [1 —4ra;^]^ 6[1 —4ra;^]^ [1—4ra;^] 
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