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Abstract 
F/^3JLllfC#E&KID^EEBJNKj/J^DvVPPLIED SCIENCES 

rM3&AJnnVK%Vr(}FI%JECTTUIN]CSj\%%)CX}hO^JTI%lSC]E%K:E 

Doctor of Philosophy 

Automatic gait recognition by symmetry analysis 

by James Ben Hayfron-Acquah 

TTzẑ  worA: a mew/ 7Mg/̂ Ao(f ybr gaff recogMZ^om o/z a/za^fZMg 

fAe jymmgAy q/ AwmoM TMÔO/Z, Ay OM g^fa6/wAe(f jy/Mmg/zy operator 77zz\y 

operofor, m^/zgr f/zoM rg^zng on f/zg a ^A<^g or OM gg/zgraZ oppgara/zcg, w 

a6Zg fo Zocafg y^^zzray 6y fAezV" ĵ wz/Mg^ncaZ /propgrA'gg. ^̂ ^gMfzaZ^y, zf accẑ TMi/Zaf&y f/zg 

jy/M7Mg(rzĝ  6gAveg7z z7?zagg /?ozMty fo gzvg a jyyM7Me(?y 7?z<̂ . 7%iy i%proac/z w rgzT^rcgcf 

6y f/zg ^jycAoZogzlyfg' vzew f/zaf gazY iy a ay/MZMg '̂ca/ /;affg/7z q / TMofzo/z. /f zf ako 

.yzz;:porfg(f 6); w/or^ /Aa/ jz/ggg^f /)gn(fz^Zar /MoA'o/z iy a/z o ^ r o p n a k mo^fg/ ybr 

automatic gait recognition. 

This research is the first application of symmetry to images of moving objects. We have 

(fgvg/opg^y oppmacA&y /o fg/?^oraZ ay7?z7?zg<7y r^mg^/ gar/zgr o^rooc/ze; nof 

terms of temporal issues but also in terms of basic capability. Accordingly, the new 

approaches generate symmetry maps of moving subjects by extension and refinement of 

the earlier operator to include time. As such, the resulting maps obtain information 

concerning not only body shape, but also the way it moves. The Fourier transform is 

ztyg(/ fo (fgnvg fAg gazY jzgTzoA^yg^̂ 07?z fAg jy/MTMgf/y y/zopf, zn vzgw q/^z(; z/zvarza/zcg 

coafzTZg^rqpgrAg ,̂ <3M(f ako zt; (fg^ycr^fzvg cî a6zZzYy. 



^.9 a Mgw ĝc/zMzgfwg, a Zargg f/zg rg;;garcA cfgvofecf g^^gnrngMfoAoM. 7%e 

approach was applied to a number of disparate databases from different institutions. 

f p l z a / T p / W owr com/)are a/zzmak' gazY Âg/z fo (f^re/z^ q/̂  

of /ga;^ ŵgM(y :9w^gct;, w'zfA gacA ^Zygc^ z/z fAg (fa^oAaag Aavz/zg yowr or morg zmogg 

sequences. For all databases, we derive gait signatures for silhouette information. We 

also derive gait signatures from optical flow information as alternative inputs to our 

approach, for some of the databases. For the silhouette information four different 

approaches namely spatial, spatio-temporal, extended spatio-temporal and temporal 

symmetry are used. Two other forms of symmetry are also considered. Symmetry 

j)rq/gcA'oM i; w ĝ(f ZM j'garc/zzTzg /or jy/MyMg(ng.y zVz a gzvg/z ong/z^oAon or gfzrgcAo/z. 

zVz (fgfgcAVzg ôz/zZLy f/zar org AzgA^ fym/Tzg -̂zc zVz TMw/ÂZg 

distinct orientations, by emphasising contributions in the directions normal to the main 

jymmgAy. TTzg rĝ wZty ̂ /zow Âg jymmgAy jgrqpgrfig; q/a/z ZMcfzvzWẑ a/'a gazf (%pgor 

ô 6g uMzgwg oMcf can z/zafggâ  6g wjg(fo/zo^^yzj rgcogMzYzo/z. 

^ g Aavg fo yar acAz'gvgaf a Corrgc^ C/aŷ yẑ caAom j(a^g g%cgg(fzMg Âg /:-7zgaray^ 

7zgzgA6owr rw/g M̂zYA A = 7 a/zcf A: = J, w a vg?y jpro/Mz^zng 7%g g%/g/zfzvg 

gaygn/Tzgyẑ oAoM corrzW owf o/z fAg /pg^/TMa/zcg o/zô ẑ̂ y q/̂ ^Ae jy/M/Mĝ T}' qpgra^or aẐ vo 

Âaf ay/M/Mgfry g/̂ 'o)/̂  /^racfzcoZ aofvoMfagay z/z aw^oma^c gaz^ rgcog/zzYzoM :9wcA 

rg/oAvg zm7?zw7zz(y fo Mo^g o/zcf TMiŷ zng wzYA copaAzZzfy ̂ o Aamcf/g occZiiyzoM, 

and as such might prove suitable for applications such as video-clip database 

6rowfZMg. MzA/mZZy, Âg /zgw ^^roacA iy ggMgrzc, wzYA ^o^g/zAaZ (%pZzcaAo/z zVz 

domains other than behavioural biometrics. 
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Chapter 1 

1.1 Introduction 

Gait is an emergent biometric aimed essentially to recognise people by the way they 

walk. It is a basic requirement for daily activity [1] and is known to be one of the most 

universal and complex of all human activities [2]. It is determined by the muscular and 

the skeletal structure, thus a person can be seen as an individual comprising of several 

components. These components range &om a subject's thigh rotation and leg swing 

patterns. Gait as a biometric has a number of advantages. It requires no contact, like 

automatic face recognition, and that it is less likely to be obscured than other 

biometrics. It also has allied subjects including medical studies, psychology and human 

body modelling and tracking. All these subjects lend support to the view that gait has 

clear potential as a biometric. Gait in able-bodied people has received considerable 

attention. It is therefore not surprising that the Defence Advanced Research Projects 

Agency (DARPA) of the United States is currently providing funds to a number of 

institutions to research into Automatic Gait Recognition for Human Identification at a 

Distance. The participating institutions focussing specifically on gait are the University 

of Southampton (SOTON), Massachusetts Institute of Technology (MIT), Georgia 

Technical Research Institute (GTRI), University of South Florida (USF), University of 

Maryland (UM), Carnegie Mellon University (CMU) and the National Institute for 

Standards in Technology (NIST). 



1.2 Contributions 

The majority of current approaches to gait recognition analyse image sequences to 

derive a gait signature from human motion characteristics and then use them for 

recognition. Early results from the different approaches to gait recognition confirm that 

there is rich potential in gait recognition. However, only further development will 

confirm whether its performance can match or better that of other biometrics. 

Early tests from the different approaches were carried out on small number of subjects, 

usually up to 10 people. We have since generated a much larger database, which is 

currently the largest gait database of its kind consisting of over 100 subjects with each 

subject having at least four image sequences for each direction of walk (from left to 

right and vice-versa). We will use these databases to show that our approach can 

perform well on both smaller and larger databases. 

There is a literature supporting the notion of symmetry of gait. We started by reviewing 

in detail the current position for gait as a biometric and whether or not symmetry of gait 

can be used to recognise people. We have, since the start of this work, continued to 

show that symmetry can indeed be used in gait recognition. We started by first applying 

the discrete symmetry operator on a small gait database [3, 4] and the symmetry 

operation here is new to gait analysis. In both works, we showed that the symmetrical 

properties of an individuals' gait appear to be unique and that humans can be 

recognised by the symmetry of their gait. The results obtained were very promising. An 

extended version of this early work [4] was invited for the special issue of Pattern 

Recognition Letters on Multi-Modal Biometrics. We later extended our approach to 

analyse animal motions and showed that animals can equally be identified by symmetry 

of their movements [5]. The concern here was the distinction between quadrupeds. We 

then included temporal information in the spatial approach [6], the first such approach 

to include time within a symmetry operation. The inclusion of the temporal information 

in our symmetry calculation improved on our earlier results. The extension is a very 

new approach. Further modifications of our spatio-temporal approach include 

extensions to projection and radial symmetry, as well as novel reformulation of the 



temporal symmetry operator. These continue to confirm our earlier results and 

reaffirmed the appropriateness of symmetry as a cue for gait recognition. 

Comparisons of our approach with others working on gait recognition using the same 

databases have shown that our new approaches perform very well and in most cases 

better. 

1.3 Thesis overview 

The thesis is divided into eight chapters. The remaining chapters will be arranged as 

follows. 

Chapter 2: Introduction 

This chapter presents a brief introduction to gait recognition and some of its 

advantages over the other known biometrics. Some of the allied studies of gait are 

also discussed to show the importance of gait as well as how gait is perceived by 

psychologists as a symmetrical pattern of motion. 

Chapter 3: Approaches to automatic gait recognition 

This chapter reviews some of the approaches to automatic gait recognition. We 

show how early and current approaches have shown that it is possible to recognise 

people by their gait even though most of the approaches were tested on smaller 

databases. The main approaches considered include the spatio-temporal pattern of 

motion, holistic or statistical measurement and model based approaches, pointing 

out some of the advantages and disadvantages of the various approaches. We also 

look at how some of these approaches suggest that symmetry is an appropriate cue 

for gait recognition. 

Chapter 4: Gait and symmetry 

This chapter looks at the relationship between gait and symmetry. A review of 

literature that provides support for gait symmetry and gait asymmetry is also 

presented. We also introduce the symmetry operator as used in this work and justify 

its choice. The symmetry contribution depends on only two parameters. Here, we 

discuss the effects that these parameters have on the overall symmetry 

3 



contributions. The operator is also applied to human and animal silhouettes. Our 

main contribution of including temporal information in the symmetry calculation 

shows that people can be recognised not only by their body shape but also by their 

body dynamics. Other forms of symmetry computations are discussed. These 

include projection symmetry and radial symmetry. The symmetry projection is very 

useful in looking for symmetries in a given direction. It has been used to detect 

facial features. We show how the formulation can be modified to suit gait 

recognition as well as how the direction of symmetry should be selected to improve 

on subject recognition. Radial symmetry is also used to detect points that are highly 

symmetric in multiple distinct orientations by emphasising contributions in the 

directions normal to the main symmetry. This will be described briefly in this 

chapter. Results of the application of the radial symmetry and projection symmetry 

will be presented later. 

Chapter 5: Symmetry extraction 

This chapter provides an overview of how symmetry can be extracted 6om both 

silhouette and optical flow information as alternative inputs to our approach. We 

also show how a gait signature is derived and also observe the possibility of 

separating animal movements by symmetry analysis. The concluding part of this 

chapter explains how subjects are recognised by using the Fourier transform and the 

k-nearest neighbour rule. 

" Chapter 6: Results of Human gait recognition by symmetry 

Chapter 6 provides the results obtained from the different databases. The databases 

used include those captured at the University of Southampton, University of 

California San Diego and Carnegie Mellon University. A description of the 

processes involved in the data capture at University of Southampton as well as the 

chroma-key silhouette extraction is also provided. The appropriate number of 

Fourier descriptions needed for good recognition rates is also investigated. 

" Chapter 7; Performance analysis of the symmetry operator 

This chapter is on performance analysis of the symmetry operator. Here, we look at 

how our approaches perform with respect to missing frames, noise, occlusion and 

4 



low resolution images. These factors determine how practicable our approach can 

be, especially for visual surveillance, security applications or video-clip database 

browsing. We also compare our results with those obtained by other approaches on 

same databases. 

• Chapter 8: Conclusion and further works. 

We draw overall contributions and assess generalization capability for this new 

approach. 

1.4 Publications resulting from this work 

i. Hay&on-Acquah, J.B., M.S. Nixon, and J.N. Carter, GazY 

vza Operator BMVA Workshop 

Understanding Visual Behaviour, 2001. 

ii. Hayfron-Acquah, J.B., M.S. Nixon, and J.N. Carter, Automatic Gait 

Recognition by Symmetry Analysis. Proc. Audio-and-Video-Based Biometric 

Person Authentication, 2001: p. 272-277. 

iii. Hayfron-Acquah, J.B., M.S. Nixon, and J.N. Carter, Recognising Human and 

Animal Movement by Symmetry. Proc. IEEE International Conference on Image 

Processing, 2001; p. 290-293. 

iv. Hayfron-Acquah, J., M. Nixon, and J. Carter, Human Identification by Spatio-

Temporal Symmetry. 16th International Conference on Pattern Recognition, 

2002:p.632-635. 

V. Hayfron-Acquah, J.B., M.S. Nixon, and J.N. Carter, Automatic Gait 

Recognition by Symmetry Analysis. Pattern Recognition Letters on Multi-Modal 

Biometrics, 2003: 24(13), p. 2175-2183. 



Chapter 2 

INTRODUCTION 

Recently there has emerged a new application domain of computer vision dealing with 

the analysis of human images. This includes ear recognition, face recognition, body 

tracking and hand gesture recognition, just to mention a few. Recognising people 

automatically is of increasing interest, and recently, gait recognition has been added to 

this domain. For example, the Defence Advanced Research Projects Agency (DARPA) 

of the United States is currently providing funds to a number of institutions to research 

into Automatic Gait Recognition for Human Identification at a Distance. This 

programme concerns developing new technologies for recognising people at a distance. 

This is especially appropriate forum for identification by gait, as it allows not only for 

use of gait as a biometric, but also provides a capability for developing other biometrics 

once a human subject has been located. 

Gait recognition has recently generated a considerable amount of media interest (in 

national and international TV, radio and the press). As a biometric, gait concerns 

recognising people by the way they walk and the aim of gait recognition is to recognise 

people by the way they walk from the changes in the human body, regardless of the 

clothes worn or the differing backgrounds. Humans perceive gait by observing a 

person's overall shape and how the body changes as they walk. 

One major advantage of gait as a biometric over others (e.g. fingerprint recognition) is 

that it does not require contact with the subjects nor does it require the subject to be 

near sensors. There are a number of motivations for using gait as a biometric with the 

main one being that gait is less likely to be obscured. Moreover, it is very difficult to 

conceal or disguise gait whilst maintaining apparent normal movement. An increasing 



demand for research into automatic gait recognition may be illustrated by the following 

real time application scenario involving armed robbers (see Figure 2.1). They usually 

wear helmets, face-mask, spectacles and/or gloves thus making it very difficult to use 

most of the well established biometrics such as the fingerprint or face from their video 

footage. However, aiming not to attract attention by walking suspiciously or impeding 

their own gait in achieving their targets, the robbers will have to walk naturally thus 

exposing their own normal gait. 

Figure 2.1: An armed robber as captured on CCTV camera walking away from a crime 

scene [Discovery channel news, 25 January, 2000] 

Currently, gait is also the only biometric effective at a distance. This is because at a 

distance other biometrics will find the image quality or resolution to be too low to be 

perceived with any accuracy. However, given a sufficient view of the human subject 

video footage, the gait might be perceived and recognised. This would not be possible 

without motorised zoom cameras, but even this requires location of the human subject 

and this also could be achieved by automatic gait analysis. 

Even though it could be argued that physical condition factors such as drunkenness, 

pregnancy and injuries can affect an individual's motion, these factors are similar in 

principle to factors affecting other biometrics and most of these may have only a short 

7 



term effect. For example, face recognition, which is considered one of the most 

acceptable biometrics, suffers from the effects of ageing, facial expressions, facial hair, 

make-up, etc. 

From a psychological perspective, most people are able to recognise acquaintances 

from familiarity cues such as clothes, size, body shape, hair colour/style, or having seen 

a face before. The aim of gait recognition is to recognise people by the way they walk 

regardless of the clothes worn or differing backgrounds. 

There have been allied studies of gait, notably among these are medical studies, 

psychological studies, modelling human motion and tracking people. Psychologists, 

medical researchers and mathematicians suggest gait is a symmetrical pattern of motion 

[7-9] as well as suggesting that humans perceive gait as unique for human 

identification. This is also suggested by recent studies in Computer Vision. We 

capitalised on these to show that we can distinguish human and animal movement, and 

further use this to recognise people by the way they walk. 

It is worth mentioning that even though there is a substantial body of literature on the 

application of symmetry [10-14] and on gait recognition [15-19], no attempt has before 

been made to use the symmetrical properties of an individual's gait for recognition. 

This work, therefore, uses the Generalised Symmetry operator in deriving gait 

signatures from the symmetrical properties of human walk. The operator essentially 

aims to detect features that have spatially symmetric properties. It is considered to be a 

pre-attentive feature that enhances recognition and reconstruction of shapes and objects 

[20]. Symmetry detection is a low level operation and can be applied to shapes and 

objects without prior knowledge of their shape for recognition. 

2.1 Medical studies of gait 

Medical studies use gait as a clinical tool for the treatment of pathologically abnormal 

gait. For example, Murray et al. [21] conducted a research involving sixty 

pathologically normal men aged between 20 and 65 years. The men were placed in five 



age groups. The data collection system used required markers to be attached to the 

subject. This form of data collection is typical within the medical field and although 

practical in that domain, it is not suitable for identification or gait recognition. Each 

subject was filmed walking for a repeated number of trials. Murray et al. observed that 

the standard movement patterns of the men were strikingly similar for a repeated 

number of trials of the same subject. They suggested that if all gait movements are 

considered then gait is unique. However, some of the measurements are available from 

an overhead view, capable of reducing the apparent value of this observation. Gait was 

considered as 'a total walking cycle'. A gait cycle is the time interval between 

successive instances of initial foot-to-floor contact 'heel strike' for the same foot, that is 

a gait cycle starts and ends with the heel strike of the same foot {see appendix B). The 

results obtained [21] were used in Murray's later work [22] to compare the gait patterns 

of pathologically abnormal patients for treatment. Though there is an extensive 

literature on studies of gait for medical use, none is primarily concerned with 

biometrics. Nixon et al [23] are of the view that measurements by gait researchers 

could prove to be of benefit in biometrics, though there is concern that the system of 

data collection cannot be used in biometrics. 

2.2 Psychological studies of gait 

Psychologists [2, 7] have long suggested the ability of humans to recognise and 

distinguish between different types of human motion. For example, in Johansson's 

work [24], he attached reflectors at the major joints of his subjects and filmed them 

walking in a dark environment. These were then played to observers who immediately 

recognised the few moving dots as a human walking. The viewers initially failed to 

recognise the points when viewed in static images as they could not perceive them to be 

in the human form but rather as a picture of a Christmas tree. Later work by Dittrich 

[25] showed how by point light displays a human could be rapidly extracted to 

discriminate the different types of human motion including jumping and dancing. 

Bingham et al. [26], also used point light displays to confirm that they are sufficient for 

the discrimination of different types of object motion and that discrete movements of 

parts of the body can be perceived. Cutting et al. [16] later conducted a similar 



experiment. The aim of the research was to show how viewers can recognise 

themselves as well as others from an abstract display of human movements. The 

viewers were able to identify themselves and others. Most of the viewers admitted 

using familiarity cues such as body size, amount of arm swing, manner of walk. Cutting 

et al. [7] also suggest gait as a synchronous symmetric pattern of movement as such 

giving a pointer to the use of symmetry in automatic recognition by gait. In another 

work by Kozlowski et al. [27] from similar experiments involving six subjects; 3 males 

and 3 females, who knew each other, they were able to recognise the sex of a walker 

from the dynamic point light display. The six subjects were made to walk ten times. 

The same six subjects served as viewers a month later including one other person that 

knew the other six subjects. The walkers were referred to as Walker 1, Walker 2, etc. 

"Walkers 4, 5, and 6 were correctly identified as male on an average of 72% of trials, 

and walkers 2 and 3 were correctly identiGed as female on 67% of trials ... Walker 1 ... 

only 32% of trials." 

In a recent study by Stevenage oA [19], they concluded that it is possible to recognise 

people by they way they walk, and can learn their gait for recognition purposes from 

their video footage. They also observed that even under adverse conditions, humans can 

still perceive human gait as a cue to identity. 

From the above works and other related psychological studies of gait, it is clear that 

psychological studies clearly support gait as a potential biometric, with some 

suggesting that symmetry of human motion can be used to recognise individuals. 

2.3 Modelling the human body and its motion 

There are studies concerning human motion and extraction. The primary aim of these 

studies was not usually for biometric purposes. Different models are used to represent 

the human body; notable among these are stick model, blob model, cylinder model, etc. 

Stick figure models represent the human body by connecting sticks at various joints of 

the human body. It is the simplest representation of the human body. The motion of the 

joints gives the key to motion estimation and analysis. For example, Akita [28] used a 
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six segment model to represent the two arms, two legs, the torso and the head of the 

human body to model the movements of the body using a sequence of stick figures. 

Other works use different number of joints and segments. 

The walking model of Lee et al. [29] uses 14 joints and 17 segments while Guo et al. 

[30] used a ten stick model articulated with six joints to represent the human body 

structure in silhouette. Recently, Dockstader et al. [31] used the fusion of a fifteen-

parameter stick model and a ten-parameter bounding volume for the human body. Each 

component of the model is measured in 3-D, body centred coordinates. These 

measurements were used to obtain estimates of certain gait variables such as the stride 

length, arm swing, cadence, gait velocity and stance. 

Cylinders have also been used to represent the feet, legs, thighs, arms, upper-arms, head 

and torso to model the human body. The works by Hogg [32] and Rohr [33] use 14 

cylinders to represent the above listed human body parts in their walking models. 

Kurakake et al. [34] treated the human body as an articulated object having parts that 

can be considered as almost rigid and connected through articulations. They use a two 

dimensional version (ribbon) of the cylinder to represent the parts. 

The blob model was developed by Kauth et al. [35] and Azarbayejani [36] used this 

model in human motion tracking. Azarbayejani modelled the human body as a 

connected set of blobs, each of which serves as one class. 

Campbell et al. [37] proposed techniques for representing movements based on space 

curves in subspaces of a 'phase space', a symbolic description that translates the 

continuous domain of human motion into a discrete sequence of symbols. The phase 

space has axes of joint angles and torso location and attitude, and the axes of the 

subspaces are subsets of the axes of the space phase. 
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2.4 Tracking people 

Tracking people is an important aspect of visual surveillance or security applications. 

Body tracking basically involves finding and following the human body model in each 

frame of a video footage. This is usually achieved by defining a set of body features 

and finding those same features in each image frame of a sequence. By finding these 

features, it is possible to calculate changes between frames such as body shape, 

velocity, position, etc. 

Hogg [32] used a model based approach where images are mapped into a description in 

which a person was represented using a series of hierarchical levels. His model, the 

WALKER, was illustrated by superimposing the machine-generated picture over the 

original photographic images. Gavrila et al. [38] presented a 3-D model-based approach 

of tracking humans using multi-view images. On a large Humans-In-Action database of 

subjects the model successfully tracked some demanding postures. 

Most tracking approaches naturally lack the accuracy required for recognition as this 

was not their original purpose. However, it appears reasonable to assume that tracking 

procedures could be deployed to develop a gait signature or at least to derive a human 

silhouette for later recognition purposes. It is certainly evident that tracking approaches 

can deliver estimates of the human body for analysis by a recognition approach. 

2.5 Conclusions 

Each of the allied studies continues to support the notion that gait can be used as a 

biometric. The physical characteristics of gait are established and viewed as unique, 

humans can perceive gait and gait can be modelled and extracted by computer vision 

techniques. Equally, there are suggestions from many of these studies that symmetry is 

attributable to gait. Much of this work has been of benefit to the approaches to 

automatic gait recognition. 
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Chapter 3 
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Although gait recognition is a fairly new area of research, there are already several 

approaches to automatic gait recognition [16, 17, 23, 39-48]. The approaches that 

extract motion information from a sequence of images for recognition are said to be 

motion-based while the other approaches that extract features of images are known as 

feature-based. The two approaches are sometimes classified as the model-based 

approach and the holistic approach. Model-based approaches are those that use models 

such as the stick Ggure to represent the human body. Gait signatures are then derived 

from measurements such as the orientation of the human thigh. The holistic approaches 

on the other hand are those that use a set of measurements such as height and distance 

between two parts of the human body to distinguish between different people. 

3.1 Model based approaches 

The spatio-temporal approach is considered probably the earliest approach to automatic 

gait recognition. In this model-based approach, the gait signature was derived from the 

spatio-temporal patterns of a walking person [49]. The different patterns of the motions 

of the head and the legs in XY-translation and time were extracted. The patterns were 

then processed to determine the motion of the bounding contours to which a five-stick 

model was fitted. The gait signature was then derived by normalising the fitted model 

in terms of velocity, by linear interpolation. In [49], the approach was applied to a 

database of five subjects each having twenty-six image sequences. The recognition 
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rates obtained were between 60 percent and a little over 90 percent. The rates were 

dependent on the weighting factors in the Euclidean distance metric. 

Nash et al. [50] also developed another model-based approach that uses the simple 

pendulum model as a basis for searching a scene to locate a moving person using the 

Velocity Hough Transform (VHT). Cunado et al [41] developed a model-based 

approach in which the legs are considered as interlinked pendulums. Gait signatures are 

derived from the spectra of measurements of the orientation of the thigh accumulated 

from the image sequence using an extension of the VHT. This model provides enough 

information for recognition. Using Fourier weighted magnitude spectra, encouraging 

recognition rates were obtained on a small database of subjects. This approach suggest 

symmetry analysis to be an appropriate approach for gait recognition 

The idea of Cunado et al was later extended by Yam et al [48, 51] to include the 

motion of the lower leg thus producing a coupled oscillator gait model which they 

applied to a database of walking and running image sequences to give very promising 

recognition rates. The approach extracts leg motion during walking and running using 

temporal template matching, with a model defined by forced coupled oscillators. 

Fourier transform analysis of the variations in the leg (thigh and lower leg) is used to 

generate gait signatures. The k-nearest neighbour classifier is then used to classify the 

subjects. On a database of 25 subjects having 5 image sequences each, individuals' 

recognition rates of over 90% were obtained. This approach explicitly uses bilateral 

symmetry in its formulation. This is used primarily to derive a model from which leg 

data is derived from the angles. Again, this emphasises the notion that symmetry is an 

appropriate cue for recognition by gait. 

Bhanu et al [39] also adopted a model-based approach that models the various parts of 

the human body based on their geometrical representations. Using the least squares fit 

of the 3D kinematics model to the 2D silhouette extracted from image sequences, the 

walking parameters (cadence, step length, stride length, velocity, etc) are then extracted 

from the 3D silhouette. The main advantage of this approach is that it does not rely on 
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subjects walking normal to the plane view of the camera. On a database of 30 image 

sequences, a recognition rate of 77% was achieved. 

In [17], a new approach to automatic gait recognition that does not use a model of the 

human walking was presented. Rather, optical flow was used to derive the gait 

signature by analysing the motion content (shape of motion) of a human walking. The 

features of the motion were derived as the variation of the first and second-order 

moments of a dense optical flow. The periodic structure obtained from the gait features 

was described by using the relative phase of the spectral components. The approach 

was applied to a database of six subjects with seven image sequences each and a 

recognition rate exceeding 90 percent was obtained. Here also, the recognition rate was 

dependent on the type and the number of motion features considered. 

3.2 Holistic approaches 

Holistic or statistical approaches aim to find a set of measurements from a gait 

sequence to distinguish between subjects. Generic object-motion characterisation is 

also another approach where the gait signature is derived from a parametric eigenspace 

[52]. In terms of functionality, this approach is similar to spatio-temporal image 

correlation, but essentially reduces the computational requirement. Here, adjacent 

images are subtracted to obtain a body silhouette, which is then processed to reduce 

noise. The images are then projected onto eigenspace. Eigenvalue decomposition is 

then performed on the silhouette sequence. The order of the eigenvectors obtained 

corresponds to the frequency content. In [52], the approach was applied to a database of 

seven subjects with ten image sequences each. The recognition rates were 88 and 100 

percent for eight and sixteen eigenvectors, respectively for the spatio-temporal image 

correlation approach. 

The eigenspace approach was extended [43, 53] to use canonical analysis, a model-free 

approach. One of the major differences between the approach and the others is that the 

image sequence is described as a whole. It essentially combines the Canonical Space 

Transformation (CST) based on the canonical analysis with the Eigenspace Transform 
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(EST). The effect of combining the eigenspace transformation and the canonical space 

transformation is to reduce the dimensionality of the input data and also to optimise 

class separability of different gait sequences. The canonical space approach was applied 

to a database of five subjects with five image sequences each and a recognition rate of 

80% was achieved. When EST and CST were combined and applied to the same 

database, a recognition rate of 100% was achieved. The popularity of eigenspace 

approaches [23] is reflected in a recent approach [54] where Principal Component 

Analysis is applied to generate eigengaits. Supervised clustering then groups the 

training set into different classes. Similarity plots are then assigned to the various 

eigengaits for recognition, obtaining a recognition rate of 93% on a database of six 

subjects. 

Johnson aZ. presented a multi-view gait recognition method using recovered static 

body parameters (activity-specific biometric) of subjects [55]. The technique extracts 

some identifying properties of an individual's behaviour and is only applicable when a 

person is performing that action. The body parts are first labelled by analysing the 

binary silhouette of the subject in each video frame after background segmentation. A 

bounding box is placed around the silhouette and then divided into three sections 

namely head section, pelvis section and foot section. The static body parameters used 

for identification are the set of measured distances in pixels between the body parts 

locations, that is (i) the height of the subject, (ii) the distance between the head and the 

pelvis locations, (iii) the maximum distance between the pelvis and left foot location, 

and between the pelvis and the right foot location and (iv) the distance between the left 

and the right foot. These measurements are taken when the subjects' feet are maximally 

spread during walking action. Using these four measurements on a database of six 

subjects, individuals' recognition rate of over 90% was achieved. 

Recently, Shutler et al. extended statistical gait recognition via temporal (velocity) 

moments [46, 56]. Statistical moments were applied to image sequences resulting in a 

temporal shape descriptor. The advantage here is the temporal moments have an 

intimate relationship with gait itself, unlike earlier approaches. The velocity moments 

up to order four were computed, and successfully applied to a database of four subjects 
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with four image sequences each. More recently, Shutler et al. used the Zemike velocity 

moments [57] to describe motion for recognition. The approach aims to describe a 

shape by its motion from an image sequence by capturing independent descriptors. The 

statistical ANOVA technique is then used to classify the features selected as gait 

signature. Using the k-nearest neighbour approach, recognition rates of 100% were 

obtained on a small database of subjects. Performance analysis shows that the approach 

is good at handling occlusion. 

The approach to gait recognition by Foster et al. [42, 58, 59] involves deriving a gait 

signature from the area of the silhouette within a mask. Different masks are used 

depending on the area of the silhouette required. For example, the bottom half mask 

selects only the legs of the subject. For a given image sequence, the mask is applied to 

each image in a sequence. One of the main advantages of this method is that it is 

independent of the direction of motion. It is also relatively fast, however, whenever a 

new subject is added to the database, the entire process has to be run again. On a large 

database of subjects, the recognition rates obtained were very promising. 

Collins' et al. recent approach presented a baseline method for human identification 

based on the body shape and gait [60]. This is supposed to provide a lower bound 

against which to evaluate gait techniques. Their viewpoint dependent approach is based 

on template matching of body silhouettes. Cyclic gait analysis is then used to extract 

key frames from a test sequence which are later used to compare with training frames 

using normalised correlation. The template matching was done by using a test subject 

from a probe set with templates in the gallery set [61]. The subject is then classified by 

using the nearest neighbour matching among the correlation scores. Basically, their 

approach captures features such as body height, size, stride length and the amount of 

arm swing. The approach was applied to different databases of different viewing angles 

(0 and 45 degrees), background conditions (indoor and outdoor) and walking speeds 

(slow and fast) achieving recognition rates of 76 - 100% by considering up to the top 

10% of the matches. 
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Phillips et al. [61] developed a simple algorithm composed of three parts based on 

issues involved in gait recognition such as the effect of view, shoes and surface. The 

first part of the algorithm defines bounding boxes around the moving subject in each 

frame of a sequence. The second part begins with the background estimation from the 

mean and covariance of the RGB channels at each pixel, using the pixel values outside 

the bounding boxes. The silhouette of the subject in the bounding boxes is then 

extracted. The third stage involves the computation of the similarity between silhouette 

pairs of frames. This is done by computing the ratio of the number of pixels in their 

intersection to their union. The sum of the similarity measures throughout an entire 

sequence defines the correlation between two sets of silhouettes. These are then used 

for classification. On a database of 74 subjects, individuals' recognition correct 

classification rate of over 70% was obtained. 

3.3 Conclusions 

The model based approaches and the holistic approaches have their own merits and 

demerits. The model based methods are more open to re-deployment to different 

camera views, or even different applications. Most of the statistical approaches are not 

intimately related to gait as they just produce raw numbers to distinguish between 

different subjects. Moreover, most of them fail to take into account the temporal 

component of gait and instead focus on distinguishing between collection of silhouettes 

rather than a sequence as a whole. However, some of the holistic approaches have 

improved capability over application problems such as noise as they do use more 

subject information as compared with a model description of only the human legs. 

It is clear from the review of the existing approaches that most of the early techniques 

used databases usually containing up to 10 subjects with good recognition rates. Some 

of the recent techniques have used much larger databases. All these different 

approaches have been tried on different databases and the results have shown that it is 

possible to recognise people by their gait. However, in order to test new developments 

(such as different approaches or improvements in existing techniques), gait would 

benefit fi-om having an established database. 
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Chapter 4 

4.1 Support for gait symmetry 

Gait requires continuing ground reaction forces at each step and propelling the body 

forward in the direction of progression. Some researchers have defined gait symmetry 

in different ways. Herzog aZ. [62] and Soudan [63] deGned gait symmetry as a 

perfect agreement between the actions of the lower limbs. Hesse et al. [64], Gundersen 

et al. [65], Griffin et al. [9] and Gabbard [66] on the other hand suggest that the term 

'gait symmetry' be used when there are no statistical differences on parameters 

measured bilaterally during a human walk. Anatomical or physiological criteria have 

also been used to describe symmetrical or asymmetrical behaviour in able-bodied gait. 

What all these different definitions have in common is that the term 'gait symmetry' 

can be used when both limbs behave identically. 

Presently, there is a literature tliat provides support for gait symmetry. When the term 

was first used, it was assumed for the simplicity in data collection and analysis where 

direction of motion was ignored [2], and this provides one of the main reasons that 

many gait studies relied on unilateral data collection [20-22] or in some cases pooled 

right and left limb data [16, 23-26]. Moreover, the idea of gait symmetry was not tested 

in any of these works, since it was assumed. However, some experiments where both 

lower extremities were included in the observations confirmed the presence of gait 

symmetry. 

Giakas et al. [67] investigated variability and symmetry of ground reaction force (GRF) 

measurement during walking using time and frequency domain analysis. Means and 
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standard deviations of the selected ground force reaction time and frequency domain 

parameters for the left and right sides were calculated from 10 trials of each side and 

their results confirm the hypothesis of gait symmetry. 

Menard et al. [68] did not find significant asymmetry in any averaged ground reaction 

force patterns at natural walking speed in nine able-bodied subjects. This confirmed 

Hamil et al. [69] results that there are no significant differences between the limbs in 

eleven vertical, five anterior-posterior and four medio-lateral characteristics of the 

ground reaction forces during walking and running. Chou et al. [70] also reported 

perfect symmetry in energy efficiency between both limbs during walking. Hesse et al. 

[64] and Wall et al. [71] claim that normal gait is symmetrical. 

In a more recent work by Perthunen [72], the normal gait of twelve adults was 

examined. In his experiment, measurements were taken immediately after the 

familiarization on a 30m long walkway. The subjects were examined at target velocities 

of 4.0km/h, 5.5km/h and 7.0km/h. These correspond to slow, normal and fast walking 

respectively. The margin for accepting a trial was +2.5% of the selected speed. The 

subjects' walking speeds were measured and controlled by photocells. The order of the 

walking speeds was randomized. Each subject walked three times at each speed. All 

subjects were made to wear the same walking shoes to reduce the effect of footwear. 

He concluded that the foot loading patterns of healthy subjects demonstrated 

symmetrical gait in the natural walking conditions. No statistically significant 

differences were found between the left and the right ground reaction force in the 

vertical and the medio-lateral directions of the slow, normal and fast walking speeds. 

4.2 Support for gait asymmetry 

Sadeghi et al. [2] provides an intensive review on the support of gait asymmetry. Their 

review paper summarises the work done over the last few decades suggesting lower 

limb symmetry during able bodied gait. Though we have shown that there is good 

support for gait symmetry, there is actually far more support for gait asymmetry. Gait 

asymmetry is often considered to indicate gait pathology. In pathological gait, marked 
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differences have been identified between people with affected and unaffected limbs [2]. 

Some researches have shown that in able-bodied gait, there are differences between the 

right and the left limbs. For example, Singh [73] noted that during walking, the right 

and the left limbs are not used equally. Researchers have used a number of kinematics 

and spatio-temporal parameters such as velocity, stride, maximum knee flexion, foot 

placement angle, joint motion, step, etc to show the asymmetry in human gait. Rosenrot 

et al. [74], observed that the duration of the initial and terminal double support periods 

showed marked differences as expected in healthy asymmetry subjects. Gundersen et 

al. [65] also reported gait asymmetry in temporal and kinematic parameters. 

Wheelwright et al. [75] studied 134 normal children by looking at the spatio-temporal 

parameters of their gait. They reported asymmetrical behaviour of the lower limbs of 

their subjects aged between 3-18 years. 

Other works also found gait asymmetry in able-bodied subjects. Herzog et al. [70] 

conducted an experiment on 62 able-bodied subjects for peak vertical, anterior-

posterior and the medio-lateral components of the ground reaction force. Differences 

were noted between the right and the left lower limbs of the subjects. Later, Herzog et 

al. [4] found that asymmetry were much larger in 34 ground reaction force data of a 

control group than expected. Dickey et al. [76] identified an asymmetrical contribution 

in able-bodied subjects for the muscular work done at the hip level. Giakas et al. [67] 

confirm that human gait is a symmetrical movement based on harmonic analysis while 

substantial asymmetries characterised time domain variables in the medio-lateral 

component of ground reaction force. They carried out a study on the variability and 

symmetry of ground reaction force measurements during walking of ten healthy young 

male subjects. 

Sadeghi et al. [2], in summarising their review of support for gait symmetry, stated that 

gait symmetry has been reported in only a few studies using quantitative biomechanics, 

and that there are not enough studies where a substantial number of subjects 

participated. They are of the view that using a single gait parameter or applying simple 

statistical methods for comparisons, are additional limitations to studies on support for 

gait symmetry. On the support for gait asymmetry, they concluded from their review 
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that able-bodied gait seems to be naturally asymmetrical and this asymmetrical 

behaviour could be associated with the different contributions of the lower limb in 

carrying out propulsion and control task. Therefore, accepting that gait is asymmetrical 

in the able-bodied population is important for medical studies and the study of physical 

activities, gait analysis and evaluation, etc. It is clear from all the above that asymmetry 

is more potent for gait recognition. Pure symmetry (for example simple harmonic 

motion) is insufficient for recognition by gait. It implies a lack of forward movement as 

well. 

4.3 Symmetry Operator and the Discrete Symmetry 

Transform 

Symmetry is considered as a feature that enhances the recognition and the 

reconstruction of shapes and images. It is also said to be one of the basic features of 

shapes and objects. Every object, be it natural or artificial often gives rise to the human 

perception of symmetry [20] thereby suggesting symmetry as a fundamental principle. 

An object is said be to symmetric when the response to symmetry operators is invariant. 

An example is mirror symmetry. Boolean symmetry operators require the shape of the 

object to be known in advance to be able to extract its features, rendering them 

inefficient in most cases. A simple symmetry operator would return a true result when 

given a precisely symmetric figure. The discrete symmetry operator on the other hand 

can be used to estimate symmetricity without the knowledge of the object's shape. 

Unlike other feature extraction operators that find a shape by relying on the border of 

the shape, the symmetry operator locates shapes according to their symmetrical 

properties. It essentially performs local operations on the edges of the image to 

determine whether a given shape is symmetric or not. The symmetry transform assigns 

a continuous symmetry measure to each point in the image. The symmetry transform of 

a shape is determined with respect to a given point-symmetry group. It appears that the 

performance of the symmetry transform is not affected by the existence of several 

objects in the scene[20]. 
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In [23], gait signatures were derived from the frequency components of the variations 

in the inclination of the human thigh. Due to the periodic nature of the thigh during 

walking, a bi-pendular model was used. As pendular modelled the periodic motion of 

the thigh during walking, this again suggests that symmetry is suited to gait recognition. 

In [56], the moments derived from silhouettes had symmetry properties. These suggest 

the use of symmetry to be appropriate for automatic gait recognition. Symmetry has 

also been used to detect regions of interest for face recognition [77, 78]. Symmetrical 

shapes can be described on either a global or local scale. Global scale symmetry is 

normally used for true symmetrical shapes [79] and the most general shape description 

requires local symmetry evaluation [80, 81]. Symmetrical features of objects have been 

used for shape descriptions, shape matching, model-based object matching and object 

recognition [77, 82-84]. 

A symmetry operator extracts symmetrical properties of objects and shapes to describe 

and recognise objects. Bonneh et al. [13] used a generalised symmetry operator to 

distinguish between different textures. This was done by first applying the symmetry 

operator to the different textures and then using a discriminability measure to 

distinguish the different textures. In the same work, they also applied their symmetry 

operator to a person in portrait to detect the regions of interest. 

The choice of the discrete symmetry transform (DST) appears most appropriate for gait 

analysis and this is its first use here. Some of the main reasons for this are as follows. 

Its operation is very transparent since the parameters are related to the way image 

content is exploited. It is also discrete since it operates on pixel grids rather than an 

approximation calculated from image points. Most of the early low-level attentional 

mechanisms were based on either grey-level variance, rapid changes in grey levels or 

junctions [85]. However, the DST does not depend on object segmentation and does not 

need to be found a priori. It uses low-level edge data and it appears to generalise many 

of the existing cues such as image intensity used in computer vision models for 

detecting regions of interest in an image. It is also based on psychophysical observation 

PO]. 
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In [13], the performance of the DST was compared with the transforms proposed by 

Fogel [86], Krose [87], Rubenstein [88], Malik [89], Bergen [90], Buf [91], etc. The 

DST was found to perform much better than all these transforms. Recently, Loy et al. 

[92], inspired by the results of the DST, also evaluated the performance of most of the 

existing popular symmetry transforms for detecting regions of interest within a scene or 

an image. These transforms included that of Gesu [93], Lin [94], Minor [95], Reisfeld 

[20] and Sela [96]. The performance evaluation was carried out on a range of images. 

They concluded that of the existing transforms, the DST used in this work provided the 

best results. Moreover, they found that though the other existing transforms were able 

to highlight important regions they tend to highlight many other points, reducing their 

overall effectiveness. It is worth mentioning that though Gesu's transform was found to 

have lower complexity than that of Reisfeld, it did not appear as effective for locating 

points of interest. 

The popularity of the technique is reflected in the interest it has generated, with high 

volume of citations [13, 18, 97-104]. Moreover, the potency or appeal of Reisfield's 

technique is reflected in its frequent use as a baseline [13, 99] for comparison against 

new approaches. These new approaches have not been used here since skew symmetry 

or axis of symmetry is their common target and that is not an issue here. The DST lends 

itself to specific deployment as reflected in its original presentation, and here in moving 

object analysis. It also allows for the possibility of extension. For example, it was 

extended by Parsons et al. [18] by introducing a focus into the distance weighting 

function of the transform as will be used later. We have also extended the DST. These 

extensions are discussed in detail under the following sections. Also, Sun et al. [97] 

used a simplified version of Reisfeld's local symmetry measure to detect faces and 

facial features in 2D images using colour and local symmetry information. The colour 

was used to estimate the area of the image containing the face, and this in turn was used 

to set the window sizes for the symmetry detection and measurements. Also, Li et al. 

[98] to detect facial features in 2D images. As such, it appears well-suited to the basis 

of a new approach for recognising moving people using their shape and movement. 

Although the DST appears well-suited for our work, its main disadvantage is 

that it is computationally demanding. 
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4.3.1 Spatial Symmetry Calculation 

Let Pi and Pj be any two different points in the edge map of an image, where i, j s l..n 

with n being the number of pixels in the edge map; (xi,yi) and (x2,y2) are their 

respective coordinates. and 6j denote the orientation of the gradient at Pi and Pj 

respectively; Mi and Mj are their respective edge magnitudes, atj is the counter 

clockwise angle between the horizontal axis and the line passing through Pi and Pj. 

These are shown in Figure 4.1. 

COJ) 

X Pk= Pi + Pi 

Figure 4.1: The symmetry contribution of edge points Pi and Pj 

Reisfield's symmetry relation or contribution, C(i,j) between any two different points Pi 

andPy is defined as: 

C{iJ) = SD,jPh,jI,Ij C-i) 

where SDy and Phtj are the symmetry distance and the phase between the two points. /,• 

and Ij are the logarithm of the intensities at the points P,- and Pj respectively. The 

symmetry is accumulated at the centre or mid point of each pair of image points. 
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The function for SD is the symmetry distance weighting function. It reflects the 

distance between two different points = (xi,yi) and Pj = (xj.yj). Points that are closer 

have lower distance and hence give higher values while those that are further away give 

lower values. The symmetry distance, SDij between two image points Pi and Pj is 

calculated as follows: 

2a (4J) 

where a controls the scope of the function. Each value of o implies a different scale 

thus making it convenient for multi-resolution schemes to be implemented. A large 

value of cr implies large-scale symmetry which has the advantage of giving distant 

points similar weighting to those at small spacing. Figure 4.2(b) shows the effect of 

large value of a, that is c = 6. The distance weight drops less rapidly for points that are 

widely spaced and allows such points to contribute to the measured symmetry. On the 

other hand, a small value of a (shown in Figure 4.2(a), with a = 0.6) implies local 

operation and local symmetry. In other words, small values of a give closer points 

much higher values than the distant points. The distance weight in this case drops 

rapidly for points that are widely spaced and hence minimizing the contributions of 

such points to the measured symmetry. Thus, the value of cr essentially provides scaling 

possibilities. The reason for the use of the SD weighting function is that it is isotropic, 

that is, it has no preferred orientation, but we will also consider other forms of 

symmetry that use preferred orientation such as symmetry projection. 
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Distance between two points P. and P. 

(a) EHect of small sigma (a = 0.6) 

Distance between two points P. and Pj 

(b) ESect of large sigma (cr = 6) 

Figure 4.2. Effects of sigma on distance weighting. 

9 10 
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Recently, Parsons et al. [18] observed that increasing the value of a only increases the 

weighting given to the more distant points and does not decrease the influence of close 

points. A comparison with the Gaussian-like function showed that the mean of the 

distribution locates the function on the mean value of the sample. A focus, /i, was 

therefore introduced into the distance weighting function. The resulting function is 

called the focus weighting function. The value of [i controls the focusing capability of 

the function, hence, the value of fi essentially improves on the scaling possibilities of 

the symmetry distance function. The modified or focus-weighting function, FDy is 

defined as follows: 

It must be noted that the addition of the focus into the distance weighting function 

moves the attention of the symmetry operator from points close together to a selected 

distance. To incorporate this property, equation 4.1 is modified as follows: 

C{i,j) = FD,jPh,jI,Ij ("•") 

The logarithm intensity function, h, of the edge magnitude, Mk at the point k with the 

coordinate (x,y) is defined as follows: 

where 

4 = l 0 g ( l + M j W-S) 

(4.6) 

and Mx(x,y) and My(x,y) are the vectors given by the Sobel templates for the vertical and 

the horizontal edge detection respectively which together give the magnitude, Mk and 

the direction, 9k of an edge, Pk with coordinate (xk,y0- The reason for the use of the 

logarithm of magnitude rather than the magnitude itself is that it reduces the differences 
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between high gradients or symmetries resulting from weak edges. This makes the 

correlation measure less sensitive to very strong edges. 

Reisfield's weighting function between the two points P, and Pj is defined as follows: 

f A,, y = (l - cos(<9,. + y jXl - G o s k - <9; j ) v , ^ y , (4-7) 

and where 
M.8) 

a{i,j)= 

is the angle between the line joining the two points and the x-axis. 9i and 9j are the 

orientation of the gradient at Pi and Pj respectively. 

The phase weighting function attains its minimum when the edge direction at the two 

points is in the same direction (6', = 6j), and is maximum when the edge directions are 

away from each other {6i = 6j+ %) and along the line joining the two points 9j = ay. 

Figure 4.3(a) shows when the phase weighting function attains its maximum and the 

effect of on the symmetry measure. Figure 4.3(b) also shows the efkct of relative 

edge direction on the phase weighting. Figure 4.4 shows two different situations with 

the same phase value. 

From equation 4.7, the phase weighting function has two factors. The first factor, 

(l-cos(6i+6j-2aij)) makes it possible for maximum symmetry to be achieved when 

(6i - aij)+ (9j - aij) = n. This is when the two gradients at the points Pi and Pj are 

oriented in the same phase and towards each other. This situation corresponds to a dark 

object on a light background. The second factor, is introduced because 

the case (9i - aij) = (Oj-aij) = n/2 is included in (9i - aij)+ (Oj- Uij) = n when the first 

factor attains its maximum. This is when the edge directions are normal to the line 

joining the points and Pj. This situation also corresponds to a light object on a dark 

background. The combination of factors makes it possible to achieve the same measure 

for different object reflectance and lighting conditions. This definition of the phase 

weighting function therefore allows the symmetry map of a silhouette to be generated 

irrespective of the image colour and its background colour. This is illustrated in Figure 
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(a) when ^ = 0 and varying a. V 

(b) when 9, = Uy = 0, varying Oj 

Figure 4.3 Effect of relative edge direction on phase weighting 
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B a H a B B B B B H H a a a B B B H a 

Figure 4.4 Two different situations with same phase value which is maximal 

4.5. Figure 4.5(a) is a silhouette and (b) is its negative, (c) and (d) are their respective 

symmetry maps. These symmetry maps are generated with // = 27 and (7 =90. Evidently, 

the symmetry maps are identical, so the symmetry is invariant to the relationship of an 

object to its background. We see from the symmetry maps in Figure 4.5 that the legs 

and the arms are highlighted as the regions of high symmetry. These highlighted 

regions are those parts of the human body associated with gait. Regions between the 

legs are also highlighted as regions of high symmetry. We also see that a small part of 

the head and the torso are also highlighted as regions of interest. The brighter the pixel 

in a symmetry map, the higher the accumulated symmetry measure at that pixel. 

It must be noted that a large value for the product o f / , and Ij implies there is a strong 

correlation between the two large gradients. Note also that gradients are used instead of 

intensities since we are interested in edges that relate to objects' borders. 

The symmetry contribution value obtained is then plotted at the midpoint of the two 

points. Thus, the midpoint, r(p) of the two points P,- and Pj is given by; 

J _ 
(4 9) 

The total symmetry magnitude (or isotropic symmetry), Ma(p) of each point P is the 

sum of the contributions. The accumulated symmetry evidence for all pairs of points i 

and j having their midpoint at P is given by 
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(a) Original silhouette (b) Negative of (a) 

(c) Symmetry map of (a) (d) Symmetry map of (b) 

Figure 4.5 Same symmetry measures for white silhouette on black and black silhouette 

on white. 
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m m = <"») 

and the direction of contribution of P, and Pj is given by 

(4.11) 

The direction of symmetry at the point Pk is therefore defined as 

(412) 

such that C(i,j) is maximal for (i,j) er(P0. Hence the symmetry at the mid point Pk is 

given by 

s ( p , ) = [ M { p , m p , ) \ (4.13) 

From equation 4.13, the direction of symmetry at any point comes from only one pair 

of edge points. This may not necessarily give the best possible direction of symmetry 

for all pairs of points that contributed to the corresponding edge magnitude. We believe 

that by including the symmetry direction of all pairs of points that contributed to any 

particular symmetry magnitude should be the best option. For example using the 

average of the symmetry directions may be better than using the direction of symmetry 

of the pair of points that contributed most to the symmetry magnitude, i.e. it might be 

better to use a local average rather than a local maxima. This will be investigated in 

section 6.5. 

The symmetry transform as discussed here detects reflectional symmetry and we will 

discuss radial and projection symmetry in the following sections. Note that the 

symmetry of most interest when analysing humans is bilateral symmetry because the 

human body is approximately bilaterally symmetric. The symmetry is available best in 

fronto parallel views, but affects limb disposition in the fronto normal views used in 

this research. This transform reflects the fact that each of its components modulates the 

other ones. It is invariant under 2D rotation and translation transformations. It is also 

invariant under change in scaling (similarity transformation) [20], which is of potential 
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advantage in automatic gait recognition. Equation 4.10 gives isotropic symmetry as it 

has no preferred orientation, that is, the direction of symmetry is not used. 

In Figure 4.6 we show the symmetry maps derived for an image of an elephant. The 

selection of parameters (CT and p) by experimentation can highlight the overall 

symmetry around the centre of mass as shown in Figure 4.6(c), or local symmetry about 

the legs (as clearly seen in between the legs and even between the tusks) as shown in 

Figure 4.6(d). A combination of these is used in studying the symmetry of motion. 

It is possible to include the direction of symmetry contribution in our symmetry 

calculations (see equation 4.13). This gives either projection symmetry, radial 

symmetry or radial projection symmetry depending on how the symmetry magnitude 

and the symmetry direction are combined (see equations 4.14, 4.15 and 4.16). 

4.3.2 Symmetry projection 

Symmetry projection is very useful in looking for symmetries in a given direction. 

Reisfeld et al. [80] used this type of symmetry to detect facial features. The symmetry 

projection, PS(p, xj/) at a pointp and an orientation yj is defined as 

C0s(^(j7) - (4.14) 

where M(p) is the symmetry magnitude as defined by equation 4.10 and ^{p) as 

defined by equation 4.12. For gait analysis, we will be interested in emphasising 

symmetries that point either north or south, that is y/ = ±-7i/2. In this case maximum 

contribution is achieved when ^{p) = xjj = ni l or ^(/>) = ^ = -7t/2. Since the latter 

points in opposite direction to the former, it means that the latter will yield a minimal 

contribution according to equation 4.14. The two situations are as shown in Figure 4.7. 

If this happens, then the above equation will distinguish between a dark object on a 

light background and a light object on a dark background. Figure 4.8(c) and 4.8(d) are 

symmetry maps obtained from equation 4.14. It is clear that the two symmetry maps are 
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(a) Original image (b) Sobel edge map 

H i * , I ' • 

(c) Far-symmetry map (d) Close-symmetry map 

Figure 4.6: Controlling the action of symmetry operator 
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different. This is because a white object on a black background has the same edge-map 

as a black object on a white background but the edge directions are turned by 180 

degrees. Thus, equation 4.14 may not be suited for our gait recognition because some 

researchers prefer to extract their silhouettes as black on white background and others 

as white on black background and if that happens then the same subject extracted in the 

two different ways will be considered or classified as different subjects. Moreover, 

there will be no need to ensure that all images in a database are all white on black or 

black on white. The symmetry maps generated by Reisfield's formulation do not really 

show the symmetrical properties of the original image. To turn the above equation into 

a more useful feature extractor will mean modifying the PS(p, ifj) such that it gives a 

preferred symmetry axis rather than only a preferred direction. Hence equation 4.14 

will be replaced as follows: 

f 5 ' ( p , M (p) |cos((z)( ;7) --W| (4.15) 

Pi Pi 
J 

Figure 4.7: The two situations where the symmetry contribution is maximal 

This will also ensure that a light object on a dark background and a dark object on a 

light background will generate identical symmetry maps (see Figure 4.8(e) and (f) 

generated by equation 4.15). Comparing Figure 4.8(c) and (e), it is clear that the latter 
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(a) white image on black 

background 

(a) black image on white 

background 

(c) symmetry of (a) using (d) symmetry of (b) using 

equation 4.14 equation 4.14 

(e) symmetry of (a) using (f) symmetry of (b) using 

equation 4.15 equation 4.15 

Figure 4.8: Symmetry maps generated from equations 4.14 and 4.15 with \j/ = 90, that 

is, using symmetry projection. 
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shows areas where the image is more symmetrical than the former. Hence for projective 

gait recognition, we will use equation 4.15 rather than equation 4.14. Further, in 

comparison of Figure 4.8e with Figure 4.5 it can be seen that the use of projection has 

filtered out some erroneous information found by the basic form of the DST. 

(a) Original image (b)Symmetry map 

Figure 4.9; An image silhouette and its radial symmetry map 

4.3.3 Radial symmetry 

Radial symmetry is used to detect points that are highly symmetric in multiple distinct 

orientations rather than a principal one [77] by emphasising contributions in the 

directions normal to the main symmetry. The radial symmetry, RS(p, y/) at a point P is 

defined as 

W = s i n - ^ ( ; ? ) ) (4.16) 

where is the direction for which C(i,j) is maximal and , the symmetry 

direction at the point P. For human identification, this type of symmetry can be useful 

in face and iris (eye) recognition. Radial symmetry has been used to detect facial 

features and regions of interest in a scene [77, 80]. Note that an object is said to have 

radial symmetry if there are many planes that divide it into two mirror images. Figure 
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4.9 shows an image silhouette and its corresponding radial symmetry map. The major 

axes of interest remain after some of the extraneous information has been removed, but 

now appears much more fragmentary. 

4.3.4 Spatio-temporal symmetry 

This new approach is an extension of the spatial approach discussed under section 

4.3.1. By including temporal information in our symmetry calculations we are not 

recognizing people by just their body shape but also by their motion. We are the first to 

include time in a symmetry formulation. There are doubtless several variations 

possible, but here we have taken an approach that appears by results to offer some 

performance advantage. This naturally includes a fundamental property of motion, i.e. 

time. We consider the distance between points that are separated spatially (within an 

image) and temporally (between images) to be components of a Euclidean distance 

metric to give a new distance weighting function. Figure 4.10 shows two images (one 

2},, displaced g 6ames from where and are not necessarily at the same 

spatial position). 

The distance metric is the symmetry distance between two points separated in time and 

in space and can be used to replace the spatial symmetry weighting distance FD, 

described earlier. This gives 

where w is a time/space weighting function. This makes it possible to evaluate the 

individual contributions of spatial and temporal information in a symmetry map. When 

the value of w is greater than one, it implies the symmetry map will be dominated by 

temporal information whilst a value less than one means there is more spatial 

information than temporal information. Equal contributions are obtained when the 

value of w is 1. 
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A 
(c) Symmetry map 

Figure 4.10: Generating Spatio-temporal Symmetry 

Equation 4.17 can be re-written as follows: 

/ / 

'J27ta( 
exp 

-Mt 

lut 
V V 

+ 
7ZCJ o 

-exp 

f / I I „ II 

Ti^t-T/,; 
2cr„ 

V V /y 

(4.18) 

Here, we assume variance and focus are the same for time and space = cr, = c and [is 

= Ht= fJ., and q=l [6], so 

-exp 
¥j,t 

2a 
V V J J 

f rw II A A 
Vu-TjA-M 

(4.19) 

-exp 
2cr 

V V 

This replaces the distance metric FDij in Equation 4.3 whilst the phase relationship 

remains unchanged. As such, we evaluate the symmetry relationship in time and in 

space. Now, recognition is based on body dynamics as well as on body shape. Figure 

4.10 shows two image frames and their corresponding spatio-temporal symmetry map 

using the same values of a and |i. Comparing Figures 4.5(c) and 4.10(c), it can be seen 
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that the spatio-temporal map shows a distribution which is centred more around the 

moving legs and arm, those parts of the human body that are associated with gait. 

4.3.5 Extended Spatio-temporal (EST) symmetry 

This approach is an extension to the spatio-temporal symmetry and as such we will 

refer to it as the extended spatio-temporal approach. With the spatio-temporal approach, 

each symmetry map is derived from two image frames. With EST, each symmetry map 

is derived from three image frames. Figure 4.11 shows three consecutive images from 

an image sequence. 

(d) symmetry map 

Figure 4.11: Three consecutive image frames and their extended spatio-temporal 

symmetry map 

Here, the distance metric is the symmetry distance between points separated in time and 

in space to replace the FD in equation 4.3. For each point in the symmetry map, we 

average the spatial and the temporal symmetry contributions. The spatial symmetry is 
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calculated for each of the three spatial templates and the temporal symmetry from the 

pairs Tiĵ i and T^, and then and leading to a new distance weighting function. 

Let FDa be the spatial distance metric from spatial template a, and FDa,b be the 

temporal distance metric from spatial templates a and b. Thus, the new distance metric 

for the extended spatio-temporal symmetry can be written as: 

F D = W ^ ( F D p + F D p + F D j ' ) + Wj{FDp ^ + F D p j: ) (4.21) 
fj-1 fj+l fj-1 fJ 'J ^ 

where Ws and Wt are the weighting for the spatial and the temporal components 

respectively. Thus, the Ws and W, make it possible to give different weights to the 

spatial and the temporal components to evaluate their contributions, if necessary. For 

simplicity, we shall assume Ws= Wi= I as before. This therefore reduces the equation 

as follows. 

The above formulation shows an increasing averaging associated with the symmetry 

computation which is likely to make it less sensitive to missing frames, occlusion and 

probably noise. Figure 4.11(d) shows a symmetry map obtained by using equation 4.22 

slightly increasing the prominence of the legs. 

4.3.6 Temporal symmetry 

The computation of the temporal symmetry is very similar to the spatio-temporal 

approach discussed under section 4.3.4. The same distance weighting function is used 

with a little modification. In equation 4.19, we omit the w and the spatial component of 

the formula. This reduces the equation as follows. 

- 1 / 

\ / 2 ;rcr 
e x p 

( - ( 

2cr 

/ j ) ) 
4 J 3 

where symbols have usual meanings. 
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4.4 Conclusions 

This chapter shows that there is more support for gait asymmetry than gait symmetry. 

This means that during walking both legs are not used equally suggesting that 

symmetry of motion can indeed be used for recognition. The studies and uses of 

symmetry in computer vision also provide a strong support for the use of symmetry in 

gait recognition. We have formulated a set of metrics that can be used to determine 

symmetry by the first application of symmetry analysis for automatic gait recognition. 

The Discrete Symmetry Transform is a basic operation with several advantages. 

Amongst these is the ability to extend its formulation to give specificity to time and 

orientation, as likely to be of advantage in application scenarios. We have shown that 

by novel inclusion of temporal information in our symmetry calculation, subject 

recognition will not only be by body shape but also body motion. We have also shown 

that the spatial component of our extended spatio-temporal symmetry can be omitted to 

leave only the temporal information and still produce good recognition rates. We have 

also suggested how the original formulation of symmetry projection can be modified to 

be useful in gait recognition. 
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Chapter 5 

To extract the symmetry of a walking human subject, image silhouettes are extracted 

&om each gait sequence to give a template sequence. The symmetry operator uses an 

edge map of images in an image sequence with edge magnitude and direction as input 

to generate a symmetry map. It must be noted that there is a great advantage in 

computing symmetries using edges rather than grey levels [102] and most of the studies 

on symmetry analysis have been using that approach [104-108], Edge symmetry is 

more significant than the region symmetry due to the importance of edges in human 

vision [102]. Since the symmetry computation is of the order 0(n) where n is the 

image size, computing symmetries on edge points will make the computations more 

attractive, especially for images of very large size. The symmetry map assigns 

symmetry magnitude and symmetry orientation to each pair of pixels or image points. 

These properties are derived from a distance weighting function, a phase weighting 

function and edge magnitudes, as given by equation 4.4. 

5.1 Methods of Symmetry Extraction and gait 

In this work, we extract symmetry by two different methods as alternative inputs to our 

approach. The main difference between these two inputs is the form in which the image 

frames are converted before we apply the symmetry operator. Note that in each of the 

forms described below, an image sequence of a subject consists of at least one gait 

cycle. 
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From similar work done by Huang et al. [53], combining the silhouette and optical 

flow information will allow better recognition rates than is achieved using the two 

modalities separately but our aim here is to establish whether human gait has distinct 

symmetrical properties that can be extracted for gait recognition. 

5.1.1 Symmetry Extraction from Silhouette 

Symmetry extraction from silhouettes is carried out as follows. With the SOTON 

database, first, the image background as in Figure 5.1(b) is computed, using a median 

operator. This is done by selecting at least five of the image frames such that when they 

are superimposed on each other no part of the subject overlaps. The median of the 

selected frames are then computed and the result is the image background. This is 

possible because the cameras used to capture the image sequences in all the databases 

used in this work and in most research works on gait are static and hence there is no 

translational motion. The computed background is then subtracted from the original 

image, Figure 5.1(a) to obtain the image silhouette. Figure 5.1(c). It must be noted that 

the image in Figure 5.1(c) has been cropped and resized to 64 x 64 pixels so as to 

reduce the computational requirement of the symmetry operator. The images in our 

databases were normalised for height and as such removes height from recognition 

enabling scale/distance invariance of the recognition process. Note also that each 

silhouette is placed in the 64 x 64 template such that the silhouette's centroid is at pixel 

location 32 x 32. This is then followed by the steps given under section 5.2 below. For 

the other databases used in this work from other institutions different techniques were 

used to extract the silhouettes. These methods will be covered in later chapters where 

appropriate. 

5.1.2 Symmetry Extraction from Optical flow 

The steps involved in extracting symmetries from optical flow images are not much 

different from that of extracting silhouettes. Here also, the optical flow images are 

derived from at least one gait cycle. First, the image silhouettes are extracted as given 

in the section 5.1.1 above to give the spatial templates. The optical flow information 
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used in this work, based on the algorithm proposed by Bulthoff et al. [109] to compute 

the dense optical flow field, was generated by minimising the sum of the absolute 

differences between image patches. The underlying assumption of the optical flow 

extraction algorithm is that the optical flow is due locally to a first approximation to 

front-to-parallel translation of the Lambertian surface. Here, the images are first filtered 

to remove any special effect such as changes in lighting, shadows and reflections. This 

is done by taking the logarithm of the brightness and then applying the Laplacian of 

Gaussian filter or a band pass filter. The corresponding patches for the various pixels 

are then compared with a finite number of shifted versions of the original image to 

produce a voting space. The shifted patch with the highest correlation with the (n-^1) 

image's equivalent patch determines the motion of that pixel. Thus, two consecutive 

spatial templates (see Figure 5.2) are used to obtain one optical flow image. The images 

are then reversed and the process repeated. The results from the two passes are then 

summed so as to cancel correct results leaving only the required pixels. This helps to 

remove or eliminate any incorrect estimates. These processes then produce the dense 

optical flow fields for both the x and the y directions [110]. The magnitudes of x + y 

flow (jx + _y|) are then used. 

Figure 5.2 shows samples of the optical flow images. The white pixels in the optical 

flow image correspond to areas where no movements were detected while light grey 

pixels represent an area of high amounts of motion. The darker areas on the other hand 

show large amounts of motion. In our case, we used the magnitude of both components 

IX + y I as suggested by Huang et al. [53] that this improves the descriptive capabilities 

than using either the x or the y flow 

Having obtained all the optical flow images of an image sequence, we then applied the 

symmetry operator directly to each of the images generated from spatial templates. The 

gait signature is then obtained by averaging all the symmetry maps of the optical flow 

images in an image sequence. 
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(aj Image from sequence 

(c) Spatial template (cropped) 

(b) Computed background 

Symmetry 

operator 

E SymmetryMap • 
/=! 

(d) Sobel edge map (e) Symmetry map of (d) ( f ) Gait signature 

Figure 5.1: Generating a gait signature from silhouette information 
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A A A A A 

Figure 5.2; Part of optical flow images extracted from an image sequence. Two spatial 

templates are used to produce one optical flow image. 

5.2 Deriving the Gait Signature 

To extract symmetry, we need edge magnitude and direction at each image point. These 

can be derived by Sobel operator. We can also extract symmetry straight from optical 

flow images. Figure 5.1 shows how symmetry is extracted from Sobel. Note that here, 

for binary silhouettes, the perimeter information could be derived more easily than 

using the Sobel operator. However, this could remove the gradient information as 

needed for symmetry. We shall continue to deploy the Sobel operator acknowledging 

that other approaches could be used. After removing the image background and the 

result windowed, the Sobel operator is then applied to the image silhouette as in Figure 

5.1(c) to derive its edge-map, Figure 5.1(d). The symmetry map, Figure 5.1(e), is then 

obtained by applying the symmetry operator to the edge map. 
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Similarly, in extracting symmetry from optical flow images, we apply the symmetry 

operator directly to the optical flow images to obtain their corresponding symmetry 

maps as shown in Figure 5.3. 

Deriving symmetry maps from pairs of silhouettes for the spatio-temporal, temporal 

and the extended spatio-temporal approaches, also require that we first obtain the Sobel 

edge maps of the images in a sequence. For each pair of spatial templates say A and B, 

the Pi(x,y) and P2(x,y) are taken to be image points from A and B respectively. Thus 

equation 4.3 is modified as follows: 

2<j (51) 

It must be noted that before the symmetry operator is applied to the Sobel edge map, it 

is normally semi-thresholded. The rationale for this is to reduce noise or remove edges 

with weak strength, which may be due to the background removal, if any. The threshold 

also has the effect of reducing computational requirement of the symmetry operator 

since computations are only performed on non zero pixels. The higher the threshold 

value the fewer the number of non-zero pixels in the edge map and hence the smaller 

the computational times. Having said this, care must be taken in choosing a good 

threshold value since a very high value will result in losing vital information. 

In semi-thresholding, a reasonable minimum and maximum threshold values are 

chosen. All pixel values between the minimum and the maximum values inclusive are 

retained while all others are set to zero. Let Tmin and Tmax, be the minimum and the 

maximum threshold values respectively, then. 

P = 
Px,y Tmin,— Px.y — Pmax 

(5.2) 
0 otherwise 
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Figure 5.4 is a graphical representation of the semi-thresholded method. All pixels to 

the left of Tmin (minimum threshold value) and those to the right of Tmax (maximum 

threshold value) are set to zero. In this work, the maximum threshold value is set to 

255, hence only the pixel values less than the minimum threshold value are set to zero 

while those greater than or equal to the minimum threshold value are retained. The 

minimum threshold value is manually selected depending on the range of values of the 

symmetry contributions within the gait signatures. 

For each image sequence, the gait signature, GS is obtained by averaging all the 

symmetry maps, that is for an image sequence i, its gait signature GSi is given by 

G S , = L T S J (5.3, 

where n is the number of symmetry maps in the sequence i and Sj, a symmetry map. 

Figure 5.1(f) is an example gait signature. The gait signature reveals the regions where 

the symmetry information are contained and the brighter the pixel the greater is its 

symmetry measure. Figure 5.1(f) shows that most of the symmetry information is 

contained in the region around the legs of the subject. Comparing Figures 5.1(e) and 

5.3(c), the symmetry maps appear to be quite similar in terms of the area distribution of 

symmetry but the lines of symmetry are more conspicuous in the former than the latter. 
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Ima^e n 

(b) Temporal template 
Imagen+1 

(a) Extracted subject 

Figure 5.3: Deriving a gait signature from optical flow information 

(c) Symmetry map 

I 
C7 
I 

Pixel values 

Figure 5.4: The semi-threshold technique 

5.3 Separating Animal Movement 

The spatial technique was first applied to demonstrate that animal movement could be 

separated using their symmetrical properties. This has already been reported in [5]. As 
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such the test sequence used comprises of three animals namely an elephant, a zebra and 

a bulldog. There were two image sequences for the zebra and one image sequence each 

of the bulldog and the elephant. Each image sequence had one walking cycle. The 

concern here is the distinction between quadrupeds. The symmetry operator is arranged 

specifically to analyse the motion of pairs of legs. As such, this indicates whether 

symmetry can be used to separate animals by gait. 

The spatial gait signatures of these animals are shown in Fig. 5.5. Here, it can be seen 

visually that each of these animals is distinct and the signatures, by comparison with 

Figure 5.2, different from that of a human. The signatures have two for the same zebra, 

taken at different times. In one, the tail is moving rapidly but this did not affect the 

resulting symmetry map by the speed of movement and the averaging used. In fact, the 

Euclidean distance classification separated each of these sequences perfectly; in terms 

of structure, the zebra signatures, 
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(a) elephant (b) gait signature for (a) 

(c) Bulldog (d) Signature for (c) 

(e) Zebra 1 (f) Signature for (e) 

(g) Zebra 2 (h) Signature for (g) 

Figure 5.5: Symmetry signatures for different animals 

53 



Figures 5.5(f) and 5.5(h) are much closer to each other than the other animals. It can be 

seen from the symmetry maps in Figure 5.5 that each of the different animals shows 

symmetry peaks at different locations within the maps. These are peaks are the regions 

circled. The peaks in the symmetry map of the Elephant, Figure 5.5(b) are around the 

legs or the lower part of the body. For the Bulldog, Figure 5.5(d) two mushy peaks are 

found around the legs and also at the centre of the upper body. For the zebras, Figure 

5.5(f) and (h), the two focused peaks are between the centre of the legs and the upper 

part of the body. Though the Zebras and the Bulldog appear to have the peaks in the 

symmetry map around the same regions, the distributions of the peaks are completely 

different for the two animals. 

5.4 Gait recognition 

Here, steps were taken to ensure that the recognition rates are not dependent on the 

different speeds of movement of the subjects, noise and/or the strong edges in the 

images. 

To ensure that the subjects are not recognised by the speed at which they walked, the 

image sequences were normalised before applying the symmetry operator. The 

normalisation was done by making each image sequence to contain one gait cycle of 

image frames. Gait was considered by Murray [18] as "a total walking cycle". 

Having derived all gait signatures, the Fourier transform (F ) is then applied to each of 

the gait signatures for reason of shift invariance and its descriptive capabilities; that is, 

where GS is a gait signature. 

To ensure that the recognition rates are not dominated or influenced by noise and/or 

strong edges in the original images a low pass filter is then applied to the Fourier 

transform. This is achieved by selecting only the low frequencies within a circle of a 

specified radius, R with the DC at the centre. That is 
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(z / ,v) = 

fT(w,v) i/- (M2+/)3a2 

(5.5% 

0 otherwise 

where the elements of the Ft are the Fourier descriptions of the gait signatures after the 

low pass filtering. Equation 5.5 assumes shift of FT by (-1)"^^ where x and y are the 

coordinates of an image pixel. Note that this is usually done for display purposes. 

Different radii were used to determine the effect of selecting part of the Fourier 

coefficients. For purposes of classification or recognition, the similarity differences 

between the magnitudes of the Fourier coefficients of the gait signatures are then 

calculated using the Euclidean distance. The similarity difference of gait signatures i 

and j, SMDij is defined as 

smd,j=Y. (5.(0 

where j, and are the Fourier coefGcients of the gait signatures z and y at 

coordinate respectively. 

Using equation 5.6, we expect the gait signatures belonging to the same subject to give 

the lowest similarity difference values. The best match of subject i, Matchj is therefore 

obtained as follows: 

Jldbzfc&i == Z if / (5.7) 

where N is the number of gait signatures in the database. 

The technique was first applied to the animal database of four image sequences 

belonging to four animals; two zebras (referred to as zebral and zebral), one bulldog 

and one elephant. For the purpose of distinguishing between the different animals using 

the Euclidean distance measure, the image sequence belonging to zebral is used as the 

test subject and the remaining three, one each of the second zebra (zebral), elephant 

and the bulldog, are used as the training set. The result obtained is as shown in Table 
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5.1(a). The figures shown in the table are the similarity differences between the training 

and the test subjects obtained after Equations 5.4 and 5.6 have been applied to the gait 

signatures. It can be seen that taking out the DC coefficient, using all the Fourier 

coefficients or applying a low pass filter, the animals can be separated perfectly: zebra 1 

and zebra2 are the closest whilst the elephant and bulldog appear different. These show 

that the separation does not depend on the animal sizes or the strong edges of the 

images but rather the symmetry of their movement. Table 5.1(b) shows how each 

animal compares to the other. The best match of the elephant is to the zebras whilst that 

of the bulldog is to the elephant. Naturally, these results are only introductory and only 

on a very small dataset. We will later aim to qualify how human motion can be 

separated (not just from similar animal movement), and also how it might be deployed 

in, for example, database browsing. 

Table 5.1(a): Similarity differences between the Zebra 1 and the other animal and the 

effect of low pass filtering 

Animal AUFTs AUFTs DC 
Low pass filter 

(radius = 20 pixels) 
Zebra2 

11106 11098 9556 

Elephant 
16458 15773 14502 

Bulldog 
24940 23560 23003 

Table 5.2(b): Similarity differences between the different animals 

Zebra 1 Zebra 2 Elephant Bulldog 

Zebra 1 0 11858 16685 22322 

Zebra 2 11858 0 16104 22579 

Elephant 16685 16104 0 20823 

Bulldog 22322 22579 20823 0 
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5.5 Conclusions 

This chapter presents how gait signature can be derived from silhouette and optical 

flow information to be used as alternative inputs to the different approaches discussed 

in the earlier chapter. Also, the process of recognising the different subjects is 

presented. We have demonstrated that it is possible to analyse animal movement and to 

distinguish between different types of animals. We used the Fourier transform and the 

nearest neighbour approach for classification of subject resulting in the use of large 

number of feature vectors. However, we hope to consider other approaches such as 

ANOVA, Principal Component Analysis, etc. In the next chapter, we will present 

results on sensitivity analysis/testing. Naturally, there are other factors that benefit fine 

tuning such as parameter set with different approach. We have shown that symmetry 

can be used to describe gait. Later, we shall examine this in detail. 
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Chapter 6 

iBLic^siiiLirs; l E n r p w s j p f ( Z j A i n r laj icict t iGiisr iTri icypsr B k 

S l f R / C M l S T r R l f 

A number of databases are used in this work. Some of them were used to enable us 

make comparisons of our results with those that were obtained by others using a 

different approach, others enabled us to carry out performance analysis related to gait. 

The main sources of the databases are University of Southampton, hereafter referred to 

as SOTON, Carnegie Melon University (CMU) and University of California San Diego 

(UCSD). The SOTON data is used to evaluate the performance of the symmetry 

operator as the number of subjects is increased. The CMU database consists of subjects 

filmed front-parallel and at two different view angles. It also consists of subjects filmed 

walking at different speeds, slow and fast, and these will enable us to investigate the 

effect of walking speed on gait. Since the author was directly involved in the data 

capture and some of the pre-processing of the most recent version of the SOTON 

database, we shall consider mostly the data capture and the pre-processing of this 

database. Where necessary, a short description will be given concerning the other 

databases. 

The analysis here was designed to show that symmetry is potent in gait recognition. It 

will also enable us to compare the performance of the different symmetry measures, to 

know the clustering of the gait signatures and the recognition rates on different 

databases. The potency is examined primarily by the correct classification rate, for this 

is the ultimate performance factor by which any biometric is evaluated (we have not 

included verification, only recognition). The correct classification also examines 

several factors unique to gait, such as the influence of direction of movement, speed, 

and different view angles on recognition capability, together with analysis investigating 
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choice of parameters used in application. The other aspect of research, the performance 

factors, aims to investigate capability with respect to current surveillance technology. In 

this, missing frames, addition and omission of spatial data, noise and different 

resolutions are used to simulate a typical surveillance camera. The results presented 

here were obtained from carefully selected databases from different sources. These 

databases have improved very much recently, both in terms of data quality and the 

number of databases available. The increasing sizes of the databases enable us to 

evaluate the effects that larger databases may have on our techniques. The same 

databases will later be used in investigating the performance of our techniques on gait 

factors. 

Unless otherwise stated, the same values of cr and // (i.e. cr =21 and // = 90) are used 

so that results can be compared where necessary. It is worth mentioning that the above 

values of a and // were arrived at by extensive experimentation but we hope this can be 

tuned further to improve on subjects recognition. Also, for symmetry projection, unless 

otherwise stated, the projection angle used is 90° and the definition of symmetry 

direction is as given by equation 4.12. 

The following sections give a brief description of the databases and the results obtained 

from the different symmetry calculations. 

6.1 University of Southampton (SOTON) and University of 
California San Diego (UCSD) databases 

In section 1.2, we described how we started by first applying the discrete symmetry 

operator on a small, but then state-of-the-art, database [3, 4]. We applied the spatial 

method described in section 4.3.1 to two different databases of spatial templates. The 

old SOTON database has four subjects with four image sequences each and that of 

UCSD six subjects with forty-two image sequences in total. 

The UCSD database used here is the same one used by Little [17] and Huang [43]. 

Figure 6.1 shows sample image sequences from the two databases. Figure 6.1(a) shows 
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an image frame from an image sequence in the SOTON database and Figure 6.1(c) 

shows its corresponding extracted windowed silhouette. Similarly, Figure 6.1(d) is an 

extracted windowed silhouette of Figure 6.1(b), an image frame from an image 

sequence in the UCSD database. The subjects in the UCSD database are all walking at 

similar speeds. The distance between the camera and the subjects varies between some 

sequences thus the need for scale invariance in our computations. However, we did not 

want to make any adjustments in the image sequences so that our results can be 

compared with those that have used the same database. The subjects in the SOTON 

database are all walking at similar speeds. The direction of walk is from left to right for 

two image sequences and right to left for the remaining two of each subject. The USCD 

database was filmed outside while the SOTON was filmed indoors (in a laboratory). 

Figure 6.1; (a) and (b) are images frames from SOTON and UCSD databases 

respectively, (c) is the extracted and windowed silhouette of (a) with the background 

removed . (d) is obtained in a similar manner from (b). 
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For both the SOTON and the UCSD databases, we derived gait signatures for silhouette 

and optical flow information. These provide alternative versions of the input data for 

our new techniques to process. Figure 6.2 shows the gait signatures of the sixteen image 

sequences in the SOTON database. It can be seen that while signatures belonging to a 

particular subject appear very similar they differ significantly from one subject to 

another. 

It must be noted that for the SOTON database, all gait signatures that were derived 

from image sequences in which the subjects were walking from left to right were all 

mirrored so that all gait signatures have the subject facing (walking) in the same 

direction before taking the Fourier Transform. This is necessary because the similarity 

differences are computed from the Fourier components. The mirroring would not have 

been necessary if the human body is vertically (perfectly) symmetric. 

A low pass filter is then applied to the Fourier Transform of the gait signatures (derived 

from the symmetry operator). For the low pass filtering, different radii from 1 to 45 

pixels inclusive were used to investigate the appropriate number of Fourier components 

that can be used. These values range from 0.1% to 100% of the total Fourier 

coefficients. 

The ^-Nearest Neighbour (K-NN) rule is then applied to the low pass filtered Fourier 

components for classification using k = \ and k = ?>. For a given database of subjects, 

unless otherwise stated, the same database is used as test set and as the search set. Note 

that for all databases used in this work, each subject has at least four image sequences. 

For each image sequence, T",- in the test set, we compute similarity differences between 

Ti and the image sequences in the search set excluding J", (in the search set) using the 

Euclidean distance measure. For k=\, the image sequence in the search set with the 

lowest similarity difference is chosen as the match of Tu If this match belongs to the 

same subject as the 7} then there is a correct classification of 7}. For k = 3, the three 

image sequences in the search set with the lowest similarity difference values are 

selected. The subject with the greater number of image sequences from the three 

sequences selected as having the lowest similarity differences are then considered as 
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the match for Ti. If more than one of the matches belongs to the same subject as Ti then 

there is a correct classification. The recognition rate is therefore the number of image 

sequences of correct classifications divided by the total number of image sequences in 

the test or the search set. 

It must be noted that we could have used ANOVA or other classifiers but here k-NN is 

a good basic technique offering capability for comparison with other classifiers. It is 

worth mentioning that all those with whom we compared our results used the K-NN for 

classification. 

The correct classification rates (CCRs) were 100% for both k = \ and A: = 3 for the 

SOTON database. For the UCSD database, the same approach was used for the 

classification. Six image sequences of each of the six subjects were used as the training 

set, and the seventh from each as the test data. The recognition rates for silhouette 

information were 97.6% and 92.9% for A: = 1 and A: = 3 respectively. A CCR of 92.9% 

was obtained for the optical flow information, for both k = I and&=3. 

It is worth mentioning that the lower recognition rates from the UCSD database as 

compared to the SOTON database was due to three of the image sequences, two &om 

subject 5 and one from subject 3 in the UCSD database. Five of the image sequences of 

subject 5 appear to have been taken under the same conditions as those of the other 

subjects in the database. However, two of the image sequences appear to have been 

taken with the camera much further away from the subject than all the other image 

sequences. This resulted in the two image sequences being scaled down. For subject 3, 

in one of the image sequences, the subject's clothing was very similar to the 

background. This resulted in dense black spots around the legs after the segmentation. 

It must be noted that all image sequences of a particular database were taken under the 

same conditions such as lighting. This eliminates the possibility of factors such as 

lightning, the position of the camera, etc influencing the recognition rates. Even though 

some of the image sequences in the UCSD database were taken under slightly different 

conditions we assumed the same conditions for all the image sequences in the database 

for this work. 
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Figure 6.2: Gait signatures from the SOTON database 
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Table 6.1 - Initial results obtained from two disparate databases. 

Database Number of Data Type CCR (%) 

Subjects t = l k = 3 

SOTON 4 Silhouette 100 100 

Optic flow 100 100 

UCSD 
6 Silhouette 97.6 92.9 

Optic flow 92.9 92.9 

Even though recognition rates of 100% were achieved for all radii values greater than 2 

using the SOTON database, it was observed that selecting much smaller numbers of the 

Fourier coefficients may affect the recognition rates on a larger database of subjects. 

This is shown in Figure 6.3 from which we see that at a radius of one pixel (that is five 

components) the recognition rates are much higher for A:=l than for A?=3. For a radius of 

two pixels (i.e. thirteen components) this position is reversed. The rate approaches 

100% at a radius of four, in both cases. This is where more components are used. Table 

6.1 shows a summary of the results obtained. 

We also investigated the effect of the DC component on the recognition rates. We first 

applied the low pass filter to the Fourier coefficients and later removed the DC 

component. Note that removing the DC is a high pass filtering but this we did to 

investigate its effect on subject recognition. The result obtained shows that the removal 

of the DC component did not influence the recognition rates. This then suggests that the 

recognition rates obtained are not dependent on the area of the subjects. Figure 6.4 

shows the trend of the calculated similarity difference values using the Euclidean 

distance measure of the test subject against the training subjects. The subll, subl2, 

sublS and subl4 are the image sequences of subject 1. The last digit in the names is the 

sequence number. Similarly sub2x, sub3x and sub4x are the image sequences for 

subjects 2, 3 and 4 respectively. It is clear that the shape of both curves {k= \ and k = 

3) is very similar, that is, by including or excluding the DC component has barely no 
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effect on the similarity difference values as there are no crossings on the graph to affect 

recognition rates. This was carried out on a small database of four subjects. We will 

investigate further on much larger databases under performance analysis of the 

symmetry operator in chapter 7. 

100 

8 85 

Figure 6.3; Low pass filtering result 
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similarity Difference Effect of DC on Subject Recognition 

) * without DC 

With DC 

sub 11 sub12 sub13 sub14 sub21 sub22 sub23 sub24 sub31 sub32 sub33 sub34 sub41 sub43 sub44 

Image sequences of four different subjects 

Figure 6.4: Effect of DC on subject recognition 

We also investigated whether the low pass filter results in a loss of information. This 

was done by reconstructing the original image from the Fourier coefficients. Figure 6.5 

shows some of the reconstructed images for some of the radii values used. It can be 

seen from the reconstructed gait signatures that not much information is lost as a result 

of the removal of the high frequencies in terms of structure. The only effect that this 

had was that the resulting signatures were blurred for smaller radii values (as expected). 
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i I 
(a) 5 pixels (b) 10 pixels (c) 20 pixels (d) 30 pixels (e) 40 pixels 

Figure 6.5: Reconstructed gait signatures after low pass filtering 

6.2 Carnegie Mellon University (CMU) database 

CMU had databases in which the subjects were made to perform four different walk 

patterns namely slow walk, fast walk, inclined walk and walking with a ball [111]. The 

databases contain the same twenty five (25) subjects filmed walking on an indoor 

treadmill. Six different cameras at six different positions were used in filming the 

subjects thus giving six different walking views. At the time of this work, not all the 

databases from the different walk patterns have been processed. As such, we used 

databases from two different views; fronto-parallel and oblique (at 45 degrees to the 

camera view) and at two different walk patterns (slow walk and fast walk) as these 

were the only ones ready for use. This means four different databases fi-om CMU are 

used here. For the slow walk, the treadmill was adjusted to an average walking speed of 

2.06 miles per hour and that of the fast speed was on the average 2.86 miles per hour 

for the subjects. We used four image sequences of each subject in each database. Each 
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image sequence contains one gait cycle. The descriptions of the four databases are 

summarised in Table 6.2. Figure 6.6 shows image frames from the two different views. 

Figure 6.6(a) shows a silhouette of a subject filmed fronto-parallel. Figure 6.6(b) also 

shows the same silhouette in Figure 6.6(a) but filmed by the camera recording at view 

angle of 45°. Note that the silhouettes have been windowed. From now on, we shall 

refer to the four databases as slow37, slow45 for slow walking filmed fronto-parallel 

and at 45 degrees to the camera respectively. Also, fast37 and fast45 refer to the fast 

walking for filming fronto-parallel and at 45 degrees to the camera respectively. 

Table 6.2; The four different CMU databases. Normal means a view angle of 0 degrees 

and oblique refers to a view angle of 45 degrees 

Name of database Camera Walking speed View angle 

CMU_037_s 037 Slow Normal 

CMU_037_f 037 Fast Normal 

CMU_045_s 045 Slow Oblique 

CMU_045_f 045 Fast Oblique 

I 

(a) Normal view (b) Oblique view 

Figure 6.6: The same image frame as captured by two different cameras at two different 

viewing angles. 
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The essence of using the four databases was to investigate how well our approach 

performed with different walking speeds and to what extent can it tolerate different 

view angles. Tables 6.3 shows the recognition rates obtained from the CMU databases. 

Table 6.3: Recognition rates from the fronto-parallel slow and fast walks using the 

various methods 

Method 
Slow walk 

k = 1 k = 3 

Fast walk 

k = 1 k = 3 

Spatial 100.0 100.0 9 9 ^ 9&0 

Spatial-Temporal lO&O lO&O 9 9 ^ 9&0 

Temporal lO&O lO&O 9 9 ^ 9&0 

EST lO&O 99.0 9 9 ^ 9&0 

Projection 100.0 lO&O 9&0 96.0 

Radial 95^ 9&0 96.0 88.0 

It appears from table 6.3 that if all subjects in a database are filmed at roughly the same 

walking speeds then walking speed has barely a statistically significant effect on the 

recognition rates. However, this needs to be investigated further on different databases. 

It is also clear from the table that all the four approaches performed equally well with 

recognition rates exceeding 95%. 

6.3 The Human Identification database (HumanID) 

The HumanID database was captured at the University of Southampton for the Human 

ID at a distance research program sponsored by DARPA. The database consists of 50 

subjects, with 4 sequences of each subject giving a total of 200 image sequences. The 
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silhouettes numbered 1 to 50 inclusive in appendix A shows the 50 subjects in the 

HumanID database. The label below each silhouette is the number used to uniquely 

identify the subjects. The silhouette extraction is the same as described in section 6.4.2. 

Thus, the HumanID database is just a subset of the most recent version of the 

Southampton database we started with. This we observed returned good results. We 

used the HumanID database so that we can offer results on the 50 subjects comparable 

to other approaches. The results summarised in Table 6.4 are from the temporal 

templates. These templates were obtained in the same manner as summarised under 

section 5.1.2. 

Table 6.4: Recognition rates of the HID database using only the temporal templates 

Metric distance 
Recognition Rates (%) 

k = 1 k = 3 

Spatial 9&0 920 

Spatio-Temporal 95^ 93^ 

Temporal 9 5 j 93^ 

EST 94^ 925 

In [110], Zemike velocity moments were applied to the same temporal templates 

(optical flow images). The recognition rate obtained from using 5 moments and a much 

higher image resolution (690 x 400 as against our low resolution of 64 x 64) was 

55.5%. However, a recognition rate of 96.0% was achieved using the Zemike velocity 

moments by combining the spatial templates and the temporal templates. By combining 

the spatial and temporal templates, better recognition rates can be achieved [53]. Thus, 

by using only temporal information to obtain the same recognition rate (see Table 6.4) 

as combining spatial and temporal templates using the Zemike velocity moments show 

that by performance comparison our techniques perform better. 
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6.4 The most recent version of the SOTON database 
(SOTON'02) 

6.4.1 The Data capture 

Most existing databases on gait contain very few subjects, usually between 4 and 25 in 

number. One of the objectives of the work was to establish and use a database of over 

100 subjects. Each subject will have at least four image sequences and each image 

sequence will have at least one gait cycle, together with background and other 

supporting data. Given that Digital Video (DV) is now an established technology at 

reasonable cost we chose DV. As such, we chose to acquire imagery via good quality 

progressive scan and interlaced DV camcorders [112]. The database construction 

software was Python (and XML was used for labelling). 

anappnadnmhonto gnxmd b u A a n d ^ acqdms inmge^ fw 

application analysis, the subjects were filmed indoors and outdoors. However, only the 

indoor databases are used in this work due to time constraints. For the indoors, we also 

used treadmills as well as the track as these are most convenient for acquisition though 

there is some debate as to their effect on gait. Some studies suggest that kinetics are 

affected rather than kinematics, but our experience with using untrained subjects and 

limitations on footwear and clothing motivated us to consider the track as the most 

suited for full analysis. The track was prepared with the chroma-key (green, as this is an 

unusual clothes' colour) background illuminated by photoflood lamps, viewed normally 

and at an oblique angle. The design of the track was such that subjects had to walk 

constantly in both directions. For this work, we used the databases 6om the camera that 

filmed the subjects in fronto-parallel view. To mimic a conventional walking pattern, 

we set the treadmill at a constant speed and an inclination. The imagery for the large 

database was done with high resolution. The track data was initially segmented into 

background and walking and further labels were introduced for each heel strike and 

direction of walking. This allowed for basic analysis including manually imposed gait 

cycle labels. We will refer to this larger database from now on as SOTON'02, the '02 

just shows the year the database was created. For further details please refer to [112]. 
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6.4.2 Chroma-key silhouette extraction 

The chroma-key approach was used to extract the silhouettes to produce the 

SOTON'02 database. The use of chroma-key extraction depends on the nature of data 

capture and the colour. The chroma-keying is the process where a subject is filmed in 

front of an evenly lit, bright pure coloured backdrop. For the extraction to be possible, 

the subject's clothing colours must be different from that of the background. Any pure 

colour can be used as the backdrop. With the SOTON'02 database, bright green was 

used as the backdrop colour as it is unlikely colour for subjects to wear. Moreover, 

video cameras are usually more sensitive in the green channel, and often have the best 

resolution and the detail in that channel due to having twice as many green pixels as red 

and blue in an attempt to match human vision colour sensitivity. 

The powerful flood lightning in the laboratory was such that the effect of shadows was 

reduced to minimum with an evenly lit backdrop. To extract the subject, a luminance 

key is used. All pixels in the image with brightness colour over or below a chosen 

brightness level are replaced by another colour from a colour generator. Thus, in our 

case the bright green colour was replaced to remove the backdrop and the floor. An 

absolute error image is added around the selected colours to allow for the lightning 

variations due to the image backdrop. Noise is usually introduced as isolated pixels 

within the backdrop and these can be removed by shrink and expand operation. This 

leaves large objects relatively untouched. 

The background subtraction applied to the SOTON'02 database is as follows. A 

background image is first obtained by applying a temporal-mode filter to the image 

sequence. By subtraction and region growing, a silhouette can be extracted by first 

isolating the computed background image. The background subtraction often leads to 

the introduction of noise or holes in the silhouette. The noise is removed by region 

growing. Pixels are then merged by a homogeneity criterion. The region growing 

algorithm is a variant of the basic split and merge method. Merging is achieved by 

considering pixel distribution, a variation of the algorithm proposed by Duboisson et al. 

[113]. The region growing image is then thresholded to obtain a binary silhouette which 

is then windowed to reduce computational time. 
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6.4.3 The Results obtained 

The most recent versions of the SOTON databases now have at least 114 subjects each 

(i.e. the 50 from the HumanID version plus at least 64 new ones). Each subject has 

about four image sequences. In one database, 115 subjects were walking from left to 

right. In another database, the 114 subjects were walking from right to left while in the 

third database the 114 subjects were walking in both directions; left to right and right to 

left. In fact, the third database is just the combination of the left to right and the right to 

left walk databases. All the three databases mentioned here contain the same subjects 

(people). Appendix A shows the silhouettes of the people/subjects in the databases. The 

number below each silhouette is the label used to uniquely identify the different 

subjects. 

Tables 6.5, 6.6 and 6.7 summarize the recognition rates. For both values of k, the rates 

are about the same for the different approaches. However, the results appear to show 

that more image sequences per person in a database can slightly improve the 

recognition rates. This is shown in Table 6.7 where each subject has eight image 

sequences in the database as compared to Tables 6.5 and 6.6 where each subject has 

four image sequences. Since we did not correct for radial distortion in the left to right 

and right to left walks, there is the chance that the results from the two databases would 

differ and this is reflected in the rates in Tables 6.5 and 6.6. 
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Table 6.5: Recognition rates of the left to right walk. 

Method 
Recognition Rates (%) 

k = 1 k = 3 

Spatial 95^ 8&9 

Spatio-Temporal 952 9&8 

Temporal 928 85^ 

EST 95^ 9&8 

Table 6.6: Recognition rates of the right to left walk. 

Method 
Recognition Rates (%) 

K = 1 k = 3 

Spatial 914 8&0 

Spatio-Temporal 928 8&0 

Temporal 9Z1 8 5 j 

EST 94^ 8%5 

Table 6.7: Recognition rates of the database in which subjects walked in both directions 

Method 
Recognition Rates (%) 

k = l k = 3 

Spatial 946 8&6 

Spatio-Temporal 944 8&5 

Temporal 927 854 

EST 95^ 9^7 
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6.5 Symmetry projection results 

The symmetry projection as described in section 4.3.2 was applied to the SOTON'02 

and the CMU databases. We first investigated the effect of y/ (the different orientations) 

by considering values of y/ between 0 and k inclusive. Note that the use of 

|cos(^zS(/') - y/)\ in equation 4.15 allows for the same recognition rates to be achieved for 

the same positive and negative values of y/, that is, the rate for y/=-7t is the same as that 

of Figure 6.7 shows the recognition rates for the different values of \|/ using the 

SOTON'02 database in which subjects walked in both directions and fox k = 1. As 

expected, the recognition rates are higher for orientations closer to the vertical axis than 

those closer to the horizontal axis since the human motion is vertically skewed 

symmetrically. The asymmetry is inherent in the formulation of the symmetry operator 

as depicted by the graph. Tables 6.8 and 6.9 show a summary of the results obtained. 

RO 9 2 

Preferred orientation (angle) 

Figure 6.7: Effect of the preferred angle of orientation on projection symmetry and 

recognition rates 
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Table 6.8: Recognition rates using symmetry projection with a projection angle of 90 

degrees on the SOTON database of 114 subjects 

Direction of walk 
Recognition rates 

k=l k=3 

Left to right 9 3 j 873 

Right to left 9L7 829 

Both (left to right and right to left) 925 85^ 

Table 6.9; Recognition rates using symmetry projection with a projection angle of 90 

degrees on the four CMU databases of 25 subjects each 

Database 
Recognition rates (%) 

k=l k=3 

Slow37 lO&O loao 

Slow45 lO&O 100.0 

Fast37 lO&O 9&0 

Fast45 lO&O 9%0 

The results so far in this section were obtained using the original definition of ^(Pi^ in 

equation 4.12 and 4.13, that is, the direction of symmetry at the point f * is given by 

« > « ) = !»(!, 7 ) < " ) 

such that C(i,j) is maximal for (i,j) er(Pk), and the symmetry at the mid point Pk given 

by 

S ( P , ) = [ M { P , U { P ^ ) ] (6.2) 

We now show by experimental results that by modifying equation 6.1 as follows gives 

a better representation of (j)(Pi^ from the different (p(i,j) and hence better recognition 

rates. 
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1 m 
(6j) 

where m is the number of pairs of edge points contributing to the symmetry magnitude, 

MfPt) ^ ™ equation 6.2. 

Table 6.10; Recognition rates using equation 6.3 instead of equation 4.12 

Direction of walk 
Recognition rates (%) 

k — 1 k = 3 

Left to right 95.4 89.9 

Right to left 93.4 86.0 

Both (left to right and vice-

versa) 
94.7 89.6 

(a) Recognition rates using the SOTON'02 database 

Database 
Recognition rates (%) 

k = 1 k = 3 

Slow37 100.0 100.0 

Slow45 100.0 100.0 

Fast37 99.0 96.0 

Fast45 100.0 99.0 

(b) Recognition rates from the CMU databases 

Comparing Table 6.10(a) and Table 6.8, we can see that recognition rates are much 

higher in Table 6.10(a) than in Table 6.8 for all the SOTON'02 databases for both 

values of k. The increase of about 2% is very significant as the recognition rates are 

already high. However, from Table 6.9 and 6.10(b) there are no significant differences 
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in recognition rates using the CMU databases. This may be due to the fact that most of 

the rates (100%) cannot be improved and the others are also already very high. 

6.6 Radial symmetry results 

The radial symmetry as described in section 4.3.3 was applied to the SOTON'02 

database and the recognition rates are shown in Table 6.11. Comparing results of radial 

symmetry with the other symmetry approaches presented in this work, it appears the 

radial symmetry does not work very well. It might work better on performance analysis 

which addresses whether the technique can handle practical concerns, to be analysed in 

the following chapter. 

Table 6.11: Recognition rates using radial symmetry. 

Direction of walk 
Recognition rates 

k =1 k=3 

Left to right 844 65^ 

Right to left 7&1 592 

Both (left to right and right to left) 8&9 65J 

6.7 Conclusions 

We have applied the different approaches to different databases of different sizes. The 

results presented show that the symmetry of human motion can indeed be used to 

recognise people by the way they walk. Most of the existing approaches were tested on 

smaller databases usually containing up to 30 subjects. On much larger databases from 

different sources, the performances of the different approaches were very good. The 

results also show that by including temporal information in the symmetry calculations 

improvements in performance have been realised. There was no statistically significant 

effect from using a larger database. Recognition rates of over 95% were achieved from 

using smaller databases and from two different larger databases from two different 
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institutions. It is also clear that the modification to the symmetry projection 

ccwiqyutatkHis ccnibi pttrve iiasful in gfut recojgnitkHi as \veU. IFurdier tests oii iimch 

larger databases will still be required to really appreciate the use of symmetry in gait 

recognition. We have also shown that by changing the definition of equation 6.3, 

subject recognition can be improved. 

In this chapter, we have shown how we have been using increasing database sizes. 

When this work first started, most of the contemporary database had up to 5 subjects. 

With time, this has increased to about 30 subjects. At present, the SOTON'02 is the 

largest gait database of its kind. We have found that using these different databases as 

the number of subjects has increased, the recognition rates from our new techniques 

have remained very much the same. This indicates that the performance of our new 

techniques has not really been affected by the increasing size of the database which is 

very encouraging if the techniques are to be used in real life applications. From the 

results obtained from the SOTON'02 and the CMU databases, the recognition rates for 

A: = 1 is always greater than that of ^ = 3. This suggests that the distribution of the gait 

signatures is not well clustered and this may require further analysis. 
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Chapter 7 

v4JsL4JL /y !S i s ( ]Wf s r Y i M i w c E r r i R r y 

OPERATOR 

For symmetry approaches to assist in the advancement of this research, they need to 

perform well under different environments and conditions. In this regard, many 

published recognition approaches address few factors of practical consequence. It is 

important to know the conditions under which the gait recognition problem is solvable, 

the important factors afkcting a person's gait and the research approaches that appear 

promising for improving the performance of gait-based recognition [45]. We also need 

to know how well our approaches compare with some of the existing approaches, using 

a common database. With these points in mind, we have evaluated the performance of 

the Symmetry operator by looking at (i) gait factors such as the effect of walking 

speeds and the direction of walking and (ii) performance factors or generalisation 

capabilities such as addition/missing spatial data, missing image frames, noise, different 

image resolutions, direction of walk and different view angles. Different databases are 

used here depending on the type of analysis being considered. 

In most of the analysis, the test will be carried out on both a smaller and a larger 

database to enable comparisons with other techniques and also to ascertain how an 

increase in database size can affect our results. With the smaller database, the test 

analysis will be applied only to the image sequence being used as the test sequence. 

This will answer questions such as how will the techniques perform given for example 

a noisy image sequence to be recognised from a database of clean image sequences. For 

the larger database, the test will be applied to all image sequences in the database. 

The results of these experiments are as presented in the following sections. It must be 

noted that the tests on performance and generalisation capability were carried out after 
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the extraction of the silhouette from the sequence. This is because it is difficult to add, 

for example real noise to an image; hence what we did was an attempt to look at noise 

and occlusion in the worse case. With powerful noise removal algorithms, noise can 

easily be reduced to minimum in most cases to eliminate its effect. Moreover, the issue 

of noise is not really to do with signal noise but may be due to the poor performance of 

segmentation/detection algorithms under less favourable illumination conditions. 

Therefore carrying out the performance analysis on the extracted silhouette appears to 

be reasonable. 

7.1 Gait factors 

7.1.1 Effect of speed on gait by symmetry analysis 

We investigated the effect of speed on gait by our methods using the CMU data. To do 

this we use a gaZZe/y and a set. A gallery is set of gait signatures representing 

subjects in a database to be used to recognise from unknown gait signatures. The 

unknown gait signatures constitute the probe set. The unknown signatures need not 

necessarily have to have a corresponding signature in the gallery set, but here, every 

signature in the probe set has a corresponding signature in the gallery set and that these 

will represent gait signatures from different image sequences of the same subject. 

For example, we used slow37 to probe fast37 and vice versa as these two databases 

contain image sequences for which the subjects were filmed fronto-parallel. Similarly, 

slow45 is used to probe fast45 and vice versa as both of these databases contain image 

sequences the subjects were filmed walking at an oblique of 45° to the camera. In each 

table, the number of classification tests performed is 10000 (the 100 image sequences 

in gallery multiplied by the 100 image sequences in probe). Tables 7.1 to 7.4 show the 

recognition rates obtained by applying the spatial, spatio-temporal, temporal and the 

extended spatio-temporal approaches respectively. 
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Table 7.1; Recognition rates using the spatial approach 

Probe and Gallery 
Recognition rates 

k=l k=3 

Slow37 and fast37 75^ 764 

Slow45 and fast45 7L0 704 

Fast37 and slow37 7&0 684 

Fast45 and slow45 764 734 

Table 7.2: Recognition rates using the spatio-temporal approach 

Probe and Gallery 
Recognition rates 

k=l k=3 

Slow37 and fast37 754 744 

Slow45 and fast45 704 694 

Fast37 and slow37 714 674 

Fast45 and slow45 754 724 

Table 7.3: Recognition rates using the temporal approach 

Probe and Gallery 
Recognition rates 

k=l k=3 

Slow37 and fast37 684 654 

Slow45 and fast45 704 654 

Fast37 and slow37 674 654 

Fast45 and slow45 764 694 
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Table 7.4: Recognition rates using the extended spatio-temporal approach 

Probe and Gallery 
Recognition rates 

k=l k=3 

Slow37 and fast37 70.0 68.0 

Slow45 and fast45 69.0 69.0 

Fast37 and slow37 73.0 67.0 

Fast45 and slow45 77.0 68.0 

From the results shown in Tables 7.1 to 7.4 for the different approaches, it can be seen 

that the performance of the symmetry operator is not affected by the speed at which 

subjects walk. This is due to the averaging within the symmetry calculations. This may 

be very useful in real application as people do not normally walk at constant speeds in 

carrying out their daily activities. It must be noted that here we cannot compare 

recognition rates &om different databases but only performances of different 

approaches. This also explains why we did not evaluate performance rates between 

different databases such as slow45 and SOTON'02. 

7.1.2 Effect of direction of movement on symmetry analysis 

Here we used the SOTON'02 databases as we have two databases in which for one the 

subjects were walking from left to right and in the other from right to left. From Tables 

6.5 and 6.6, it can be seen that the recognition rates are quite similar for the different 

values of k for the four different approaches, suggesting that the direction of walk has 

no significant effect on the recognition rates if all subjects in the database are filmed 

walking in the same direction. However, further tests carried out appear to suggest that 

the direction of walk to some extent affects gait recognition. This may be due to the fact 

that as we walk in front of a camera, different parts of our body are occluded from the 

camera's view depending on which side of the body faces the camera, thus affecting the 

symmetry of motion. As such, we now record different leg (from different side. 
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left/right of the individual), introducing concepts of asymmetry discussed earlier. Here, 

we use the right to left gait database to probe the left to right gait database and vice-

versa. In Table 7.5, 'Left and Right' means the left to right gait database was used as 

the probe and the right to left database as the gallery. It must be noted that in using a 

left to right walk database to probe a right to left walk gait database and vice-versa 

requires that all gait signatures in one of the databases be mirrored so that subjects in 

both databases will have the same direction of walk. 

Table 7.5: Recognition rates on direction of motion 

Left and Right 

K = 1 k = 3 

Right and Left 

k = 1 k = 3 

Spatial 65^ 511 6&0 47^ 

Spatio-temporal 6&6 5 5 j 6 3 3 4&3 

Temporal 5&4 45^ 5L1 3&9 

Extended Spatio-temporal 6&4 5 7 j 66 6 54J 

The results in Table 7.5 are not as good as one would have expected by comparing 

them with those of Tables 6.5 and 6.6. One of the reasons may be the fact that after 

mirroring gait signatures from one of the databases we did not do any radial correction. 

If this is done then we will not be able to make correct comparisons with others who 

have used the same databases without any pre-processing or modifications. A test 

carried out on a small database of subjects has confirmed that radial correction can 

improve recognition rates. 

7.1.3 Effect of different view angle on symmetry analysis 

To investigate the effect of different view angles, we used the CMU database. Here, for 

both walking speeds, we used the fronto-parallel (Slow37 and Fast37) database as the 

probe and the oblique view (Slow45 and Fast45) database as the gallery. It must be noted 

that at the time of this work, we could not get databases in which the subjects were filmed 
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at smaller view angles. The only database we could use to carry out this test was the CMU 

database in which the subjects were filmed fronto-parallel and at a view angle of 45 

degrees. The results obtained from the tests are shown in Table 7.6(a). The recognition 

rates are less than 15% for the different approaches. It is therefore clear from the table that 

at a view angle of 45 degrees, it is almost impossible to recognise a subject from his/her 

fronto-parallel video footage by symmetry without viewpoint correction. Further tests will 

be required to ascertain the view angle at which a subject can still be recognised from a 

fronto-parallel video footage. 

Even though the recognition rates in Table 7.6 (a) are very low, they are just more than 

chance rate for correct subject classification (4.0%) and also the chance rate for correct 

sequence classification (far less than 1%). On a database of N subjects the chance rate for 

correct subject classification is l/N, and for m (independent) sequences of N subjects the 

chance rate of 100% correct classification is l/AT". 

However, it is clear from Table 7.6(b) that if all subjects in a database are filmed 

walking from the same view angle then the view point has no statistically significant 

effect on the recognition. Comparing the results in Tables 6.3 and 7.6(b), it can be seen 

that the recognition rates for the fronto-parallel slow walk and that of the oblique view 

are about the same. However, there are only slight differences in the corresponding 

rates for the fast walk. The similarities in the overall rates show that for a complete gait 

cycle, gait is invariant to speed. In future, we will apply the techniques to databases of 

smaller view angles and make the approaches view invariant. 
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Table 7.6; Recognition rates using the CMU databases 

Symmetry approach Slow37 and Slow 45 

k = l k = 3 

Fast 37 and Fast 45 

k = l k = 3 

Spatial 7.0 6.0 6.0 7.0 

Spatio-temporal 7.0 4.0 9.0 7.0 

Temporal 8.0 5.0 120 8.0 

Extended Spatio-temporal 5.0 4.0 8.0 5.0 

(a) From different view angles 

Method 
Slow walk 

K = 1 k = 3 

Fast walk 

k = 1 k = 3 

Spatial lO&O lO&O 100^0 9&0 

Spatio-Temporal 100.0 lO&O 100^ 9&0 

Temporal 100.0 lO&O 100^0 98 0 

EST 100.0 lO&O lO&O 9&0 

Projection(l) lO&O loao 9&6 9&0 

Projection(2) lO&O lO&O 99 0 9&0 

Radial 95^ 9&0 9&0 8&0 

(b) From view angle of 45 degrees 
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7.2 Performance factors and generalisation capability 

7.2.1 Missing frames 

The evaluation, aimed to simulate time lapse, was done by considering a consecutive 

number of frames as missing, i.e. by omitting them from the computation of symmetry. 

This was applied to both the old and the SOTON'02 databases. For the old SOTON 

database, the missing frames approach was applied to only the test data. Figure 7.1(a) 

shows the gait signature when every other frame was considered missing starting with 

image frame 2 using the old SOTON. Figure 7.1(b) shows the gait signature when 

every other two consecutive frames were considered missing, that is frames (2, 3), (5, 

6), (8, 9), etc were treated as missing. This means only frames 1, 4, 7, 10, etc from 

image sequences are used. Similarly, considering 3 consecutive frames as missing 

means we used only frames 1, 5, 9, 13, etc. This was repeated for 4, 5, 6, 7 and 8 

consecutive frames being considered as missing. The percentages in Figure 7.1 are the 

corresponding percentages of image frames considered as missing. 

The results showed no effect on the recognition rates for both /c=l and A=3 using the 

CCR. This is due to the averaging associated with symmetry operator's evidence 

gathering. Figure 7.2 shows the general trend of deviation of the best matches of each 

subject from the test subject. The sub 1, sub 2, sub 3 and sub 4 are the best match of 

subject 1, subject 2, subject 3 and subject 4 of the test data respectively. Figure 7.3 

shows that as more frames are omitted, the resulting gait signature tends to deviate from 

all other gait signatures by approximately the same margin and is still closest to other 

gait signatures of the same subject. 

Carrying out the same evaluation using the SOTON'02 database, the missing frames 

approach was applied to all image sequences in the database. Figures 7.3 and 7.4 show 

the recognition rates obtained from the different techniques using k = I and A: = 3 

respectively. The figures show that by having similar image frames missing in all 

image sequences, recognition rates are not much affected depending on the percentage 

of frames missing. From Figures 7.3 and 7.4, it is clear that by considering up to 75% 
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of the image frames (that is using about 3 image frames on average) as missing 

recognition rates of over 60% are obtained for both k=l and k = 1> except for radial 

symmetry. We also see that by increasing the number of missing frames from 50% to 

about 85% does not lead to drastic fall in recognition rates. The average number of 

image frames in a sequence is about 28. It appears radial symmetry is very much 

affected by having missing frames in a sequence. For example, by considering 50% of 

the frames as missing, the recognition rates from the radial symmetry fell by about 24% 

whilst that of the other forms of symmetry fell by less than 3% for A: = 1, and about the 

same for A = 3. 

4 I u 
(a) 50.0% 

I 
(e) 80.6% 

(b) 64.5% (c) 74.2% (d) 77.4% 

(f) 86.7% (g) 87.1% (h) 87.1% 

Figure 7.1: Gait signatures from missing frames using old SOTON database 
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Figure 7.3: Effects of missing frames on recognition rates using A: = 1 
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Figure 7.4: EHects of missing frames on recognition rates using A: = 3 

7.2.2 Addition or removal of spatial data 

The evaluations were done on both the old SOTON and the SOTON'02 databases by 

masking with a rectangular bar of different widths of up to 35 pixels in steps of 5 in 

each image frame at the same position. These tests were done to see the effect of 

removing or adding spatial data on the recognition rates. If the object has the same 

colour as the bar, then that illustrates addition of spatial data whilst an object with a 

different colour from the bar illustrates omission of data. By omitting spatial data, we 

reduce the effect of the main axis of symmetry resulting from the human body with the 

resulting symmetry map being derived mainly from the legs and the arms which are the 

main parts of the human body associated with gait. 

For the old SOTON database, the masking was applied to only the test subject with bar 

sizes of 5, 10 and 15. The area masked was on the average, 13.2, 26.3 and 39.5% of the 
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image silhouette in each image frame. The bar either had the same colour as the image 

silhouette or as the background. The masking was applied before the Sobel operator. 

These are shown in Figure 7.5. In both cases, recognition rates of 100% were obtained 

for a bar size of 5 pixels for both k = I and A=3. For a bar size of 10 pixels, Figure 

7.5(g) failed but 7.5(b) gave correct recognition for ^ = 3 and not k=\. For bar sizes of 

15 and above, the test data could not be recognised as the subject is occluded in almost 

all the image frames in the sequence. Here we used the spatial symmetry approach. 

For the SOTON'02 database, the masking was applied to all image sequences in the 

database. The results obtained were very encouraging as recognition rates of over 70% 

were obtained for all techniques except the radial symmetry, with bar sizes of up to 25 

pixels, that covers up to about 80% of the silhouette in most of the image frames. Here, 

we used spatial, spatio-temporal, extended spatio-temporal, temporal, projection and 

radial symmetry approaches. The results are shown in Figures 7.6 and 7.7 for missing 

and addition of spatial data respectively. Apart from radial symmetry, the fall in 

recognition rates is gradual with increasing bar width showing how the approaches can 

tolerate addition and removal of spatial data. For radial symmetry, the recognition rate 

approaches that of chance with increasing bar width. Appendix C and D show a gait 

cycle of a subject with image frames masked with black and white rectangular bars of 

widths 25 pixels respectively. 
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(a) 5 pixels (b) 10 pixels 

(f) 5 pixels (g) 10 pixels 

Figure 7.5: Addition or removal of spatial data 

(c) 15 pixels 

(h) 15 pix êls 
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Figure 7.6: Effect of missing spatial data on recognition rates 
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Figure 7.7: Effect of adding spatial data on recognition rates 
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Table 7.7 shows the recognition rates obtained by using equation 6.3. Again, it is clear 

from the results that better recognition rates are obtained as compared to the 

corresponding rates (for projection symmetry) shown in Figures 7.7. 

Table 7.7: Recognition rates obtained from different noise levels using equation 6.3 

Rectangular bar width (in pixels) 

1 o o 
5 

10 15 20 25 30 35 1 o o 
5 k = 1 k = 3 k = 1 k = 3 k = l K = 3 k = 1 k = 3 K = 1 k = 3 k = 1 k = 3 

Black 93^ 8%7 9&6 792 84^ 7&0 726 5&1 5%7 394 37J 2L5 

White 925 8 5 j 893 7&8 803 6L4 734 5&1 59J 3^5 428 2&8 

7.2.3 Noise 

The symmetry operator is able to handle noise by the averaging associated with its 

evidence gathering and our experimentation has confirmed that using symmetry can 

tolerate some, but naturally not excessive, additive salt and pepper noise as consistent 

with silhouettes. We added 10% to 70% (inclusive) of salt and pepper noise to each 

image frame of the test subject and compared the resulting signature with those of the 

training subjects in the database. The noise is added before the Sobel operator. Figure 

7.8 shows samples of the first six noise levels used. The evaluation was carried out 

under different two conditions. 

For the first condition, we used the same values of a and p, (see equation 4.3) as earlier. 

With a noise level of 5%, the recognition rates for both k = I and k= 3 were 100%. 

With 10% added noise, the test subject could still be recognised correctly for k^l but 

not for A=3, i.e. CCR of 100% and 0% respectively. With added noise levels of 20% 

and above, the test subject could not be recognised for both k - \ and&=3. 

95 



For the second condition, the values of o and p, were made relatively smaller (2 and 10 

respectively). The recognition rates were not affected for both k=\ and A: = 3 for added 

noise levels even exceeding 60% Figure 7.9 shows how the best matches of each 

subject deviated from the test subject as more noise is added using the second 

condition. The reduction in the values of a and n was to ensure that closer points are 

given higher distance values than the distant points. This is because the distribution of 

the noise resulted in having most pairs of the noise as the distant points. 

The above test showed that if we have noisy subjects to recognise from a database of 

'clean' subjects, then we can achieve very good recognition rates. A ftirther test was 

earned out by adding different noise levels to all image sequences in the SOTON'02 

database. Appendix G shows a pseudo code of the algorithm used for adding the 

artificial noise. Table 7.8 shows the recognition rates on the different approaches by 

adding different amounts of noise to the image sequences. 

(a) 10% 

(d) 40% 

Figure 7.8; Noisy data 

(b)20% 

(e) 50% 

r - r 1̂ 

(c) 30% 

i 

(f)60% 
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Figure 7.9: Effect of noise using the old SOTON data. This figure shows the similarity 

differences between each subject's best match and the test data. 

Table 7.8: Effect of noise using SOTON'02 database 

Symmetry approach 

Recognition rates (%) 

Symmetry approach 
10% 20% 30% 40% 

Symmetry approach 

k = 1 k = 3 k= 1 k = 3 k = 1 K = 3 K = 1 k = 3 

Spatial 754 616 4&9 327 2%4 1&8 143 3.3 

Spatio-temporal 714 6L8 484 3&3 2&8 lOj 15.1 4.4 

Temporal 728 5 5 j 44.7 283 3L6 143 145 5 4 

EST 7L3 544 425 24J 23^ 6.6 1L8 4.0 

Projection 5L8 344 184 7.5 3.7 0.0 1.5 0.0 

Radial 4.8 0.9 1.5 0 4 0.7 0 4 0 4 0.0 
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Table 7.9 Recognition rates from projection symmetry using projection angle of 90° 

equation and different noise levels 

Recognition rates (%) 

10% 20% 30% 40% 

k = 1 k = 3 k = l k = 3 k = 1 k = 3 k = 1 k = 3 

75.2 61.2 47.6 33.1 26.8 10.8 14.7 2.9 

The results in Table 7.9 show the recognition rates obtained by using equation 6.3 in 

place of equation 4.12. It can be seen that the recognition rates are higher than the 

projection symmetry rates in Table 7.8. For noise levels up to 30%, the increase in 

recognition rates is on average about 20% for both values of k which is very 

encouraging. This confirms our earlier observation that using equation 6.3 rather than 

equation 4.12 improves the perfbnnance of the symmetry projection. It is clear that this 

modiGcation makes the symmetry projection to perform just as well as the best 

approaches (that is spatio-temporal symmetry and the extended spatio-temporal) in 

Table 7.8. 
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Figure 7.10: Different resolution images. Images have been enlarged to the same size to 

reveal loss of detail as resolution decreases 
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7.2.4 Low resolution and Scaling 

Investigation was also conducted on low resolution images using the SOTON'02 

database in which the subjects were walking from right to left. For each image 

resolution, all image frames in the database were resized to the same size. This was 

done to simulate both poor images and scaling. We did this by resizing (scaling) the 

original image sequences before deriving the corresponding gait signature. Figure 7.10 

shows the three different image sizes used, that is 32x32, 16x16 and 8x8 pixels. The 

images in the figure have been enlarged to the same size to reveal the loss of detail. It 

can be seen that as the images are made smaller, a considerable amount of information 

is lost. In Figure 7.10(d), the gait signature showed no resemblance to the other gait 

signatures in the figure. In [4, 6], only the test subject was resized. This showed that 

even in that case, recognition rates of over 95% could still be achieved for image sizes 

up to 16 X 16 pixels. Table 7.10 shows the results presented in [4, 6]. 

Table 7.10; Recognition rates from low resolution images using spatial approach 

Image size #subj.(#seq.) 
Classification rate (%) 

Image size #subj.(#seq.) 
k = 1 k = 3 

64*64 28(4) 973 9&4 

32x32 28W 973 929 

16x16 28(4) 844 67^ 

8x8 28(4) 5%1 33^ 

Images are usually normalised to 64*64 to reduce computational demand. Reduction in 

resolution by half to 32*32 changes recognition performance little. Using the same 

values of a and //, except for the radial symmetry, recognition rates of over 90% were 

obtained for ^ = 1 and over 80% for A; = 3 for the 32 x 32. In fact, further reduction to 

16x16 is where no other biometric could be perceived, but where recognition by gait 

still occurs to some extent (one far better than random performance). For the 16 x 16 

images, recognition rates of over 80% and 70% were obtained for ^ = 1 and k = ?> 
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respectively. For the 8 x 8 images, the recognition rates were below 50% for both 

values of k. Looking at the image quality in Figure 7.10(c), it could be argued that the 

symmetry operator is able to handle low resolution images or scaling to a large extent. 

This is due to the averaging associated with the symmetry operator. Table 7.11 shows 

the results obtained after applying the different image resolution to all image sequences 

in the SOTON'02 database. Again, we see an increase (of about 2.5% on average) in 

the recognition rates obtained from the projection symmetry approach using equation 

6.3. 

Table 7.11: Recognition rates (%) on low resolution images using SOTON'02 database 

Symmetry approach 3 2 i 3 2 16 X 16 8 x 8 

k = 1 k = 3 k — 1 K = 3 k = 1 K = 3 

Spatial 93^ 8&2 87.9 752 39J 1&2 

Spatio-temporal 943 88.2 87.9 75J 3&8 193 

Temporal 9T7 84.9 85T 728 393 1%8 

EST 914 88.2 88.4 76T 3&8 2&4 

Projection 928 86.0 82.0 7&8 40T 1&6 

Radial 5 5 j 35.6 23^ 8.6 13^ 4.0 

Projection (equation 6.3) 93^ 88.2 87J 763 4&6 193 

7.2.5 Appropriate number of Fourier components 

The investigation into the appropriate number of Fourier components (feature vectors) 

to be used for recognition was carried out using the CMU databases. In selecting the 

appropriate number of components, we first define a circle of radius, R. This circle has 

the same centre as that of the Fourier components matrix. Thus, for our 64 x 64 Fourier 

components matrix, the centre of the circle will be at (32 x 32). We know that for 
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Fourier components, the low frequencies are at the comers with the high frequencies 

around the centre of the mattix. Having defined our circle, we then select all 

frequencies that lie outside the circle from the components matrix. This is illustrated in 

Figure 7.11. 

Radius, R 

Figure 7.11: How Fourier components are selected 

The shaded part shows the Fourier components that are selected for a circle of radius R. 

The components that lie outside the circle must satisfy the following expression. 

.2 > S -

where x and y are the row and column of a component, w and h are the number of rows 

and columns of the Fourier component mafrix respectively 
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Figures 7.12: The effect of the percentages of the Fourier components selected on the 

recognition rates using the CMU slow walk databases. 
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Figures 7.13: The effect of the percentages of the Fourier components selected on the 

recognition rates using the CMU fast walk databases. 

As we can see from Figures 7.12 and 7.13, selecting as few as 4% of the Fourier 

components gives a recognition rate of at least 
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7.2.6 Comparison with other techniques 

As mentioned earlier, gait would benefit from an established database on which to 

compare different approaches and new developments. In the absence of such an 

acceptable standard database, we compared our techniques with some of the current 

approaches that have used the same databases as used in this work. The results are as 

follows. 

(i) Velocity Moments: In [57], velocity moments were applied to both the UCSD and the 

old SOTON data. Recognition rates of 100% from both the spatial and the optical flow 

information were obtained using Velocity moments from the old SOTON database. The 

spatial symmetry approach used in this work also gave the same recognition rates from 

using the same classifier. The recognition rates from the USCD database were also very 

similar. However, whilst we considered image size of 64 x 64, that is at very low 

resolution, [57] used silhouette size of 128 x 128 pixels to achieve the same results. 

(ii) Mb/Men̂  In [114], the two techniques; Area Masks 

and Moment based descriptors were applied to the SOTON'02 databases. In both 

techniques, recognition rates of approximately 70% were obtained as against recognition 

rates of over 90% fr'om our new techniques using the same classifier for our feature 

vectors. The tables below show how our techniques and that of [114] fell in performance 

analysis from noise and low resolution images as well. From Table 7.12, it is clear that 

though recognition rates from our approaches appear to fall slightly faster as more noise is 

added, the recognition rates are still better for all noise levels considered. Also from Table 

7.13, it is clear that for image resolutions of 16 x 16 and above, our approach performed 

better. 
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Table 7.12: Comparison of our techniques, Area Masks and Moment based descriptors 

using different noise levels of up to 40% 

Percentage noisi 
added 

Spatial Spatio-tempors Area Masks Moments 

0 95^ 952 7L9 68.3 

10 75^ 714 6&0 4%6 

20 4&9 4&0 4&1 24^ 

30 2%4 2&8 2 5 2 ILl 

40 143 15^ 6.0 -

Table 7.13: Comparison of our techniques, Area Masks and Moment based descriptors 

using different image resolutions 

Image size Spatial Spatio-temporal Area Masks Moments 

64 X 64 952 952 7L9 6&3 

32x32 934 94J 6 9 2 64.4 

16x16 87.9 8%9 6&3 521 

8 x 8 39.7 3&8 4%3 27^ 

(iii) Zernike Velocity Moments: In [115], the Zemike Velocity moment was applied to the 

HumanID database. The recognition rate was 55.5% percent using the temporal templates 

and k='i while we obtained recognition rates of over 90% for both values of A:. Again, our 

image resolution was by far lower than that used in [115]. 

(iv) The institutions involved in the DARPA project (Automatic Gait Recognition for 

Human Identification at a Distance) focussing specifically on gait, tested their respective 

techniques on the CMU databases. Table 7.14 shows the recognition rates from some of 
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the institutions. Here, the slow walk database was used as the gallery and the fast walk as 

the probe. All institutions used the nearest neighbour approach for classification. 

Table 7.14; Results from institutions involved in the DARPA project focussing 

specifically on gait [116] 

Institution Recognition rate (%) 

CMU 76 

MIT 65 

GT 45 

UM 32 

The CMU approach [60] involves extracting key frames from a walking sequence. First, 

the silhouette in each key frame is extracted and normalised. They are then compared to 

the training silhouette of each subject using a template inatching algorithm. MIT's 

approach [117] uses shape information to extract feature vectors for recognition. For each 

frame in a sequence, the silhouette is first extracted and then segmented into seven 

regions. Statistics such as the centroid, aspect ratio and orientation are then computed and 

averaged over a sequence. The gait signature is therefore the concatenation of the mean 

features for each region. The GT approach [55] uses four static and stride parameters that 

are recovered from a gait cycle. The UM technique [118] is a dynamic approach that uses 

the changes in the contour of the human body during walking to train a Hidden Markov 

Model for each subject in a database. 

Our new techniques; spatial and temporal gave recognition rates of up to 76% (see Table 

7.1 and Table 7.3 respectively). The temporal approach gave 75% recognition rate. 

However, our extended spatio-temporal symmetry gave a recognition rate of 77% (see 

Table 7.4), thus, on average, we obtained recognition rate of 76% which equals that of 

CMU and better than that of the other institutions indicating that our new techniques have 

good performance. It must be noted that while we used image sequences of low 

resolutions (64x64), the other institutions used higher resolution images. 
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A recent review of current advances in automatic gait recognition [119] stated "It is of 

note that symmetry has the most potent performance,...." suggesting that the use of 

symmetry has a great potential in automatic gait recognition. 

7.3 Conclusions 

The analysis on performance factors or generalisation capability shows that the 

symmetry operator has the capability to handle noise, occlusion, missing frames and 

poor resolution images. Much of this ability derives from the averaging processes 

inherent in the operator. The most potent performance appears to be derived by 

extended spatio-temporal symmetry approach whereas the radial symmetry approach 

appeared to have the least generalisation capability for both values of k. The analysis on 

gait factors such as direction of walk and walking speed gave encouraging results. 

However, more work needs to be done to improve on view point invariance. Comparing 

our main approaches with other existing approaches also showed that our approaches in 

most cases perform very well. 

The results show that some of the subjects (image sequences) in the SOTON'02 

databases failed to be recognized correctly. There are a number of reasons for this, 

notable among these are subjects scratching their heads, stopping during filming, 

turning to face the camera, etc during filming. Appendix F shows some of the image 

sequences that failed to be recognized by our techniques. Each row is 5 successive 

image frames taken from an image sequence of the subject whose number is indicated 

below the sequence(s). It can be seen that for subject 067 apart from stopping most of 

the time, she was not swinging the arms (row 1) as she does in her normal walk and in 

some sequences she was found to be scratching and holding the head (rows 2 and 4) 

and also halting at times during the filming (row 4). None of the image sequences of 

this subject did match any of the others of the same subject. It can also be seen that for 

subject 054, in some sequences he had blobs (row 1) around the feet and in other 

sequences he appears to have a carrier bag on his back (row 2). Subject 110 appears to 

be dancing, stopping and walked at an angle the camera plane of view. Subject 29 

stopped walking and turned to face the camera for a while. Some of these sequences 
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could have either been removed from the database or could have been corrected 

manually (where possible, for example the blobs) but then we needed to compare our 

results with those who have earlier on used the same databases without any 

modifications or removals. These problems will be looked at in the future. 

We also see that starting with small databases and then moving on to much larger 

databases did not significantly affect the performance of our new techniques. It is 

therefore clear that symmetry has practical advantages and further testing on much 

larger databases and improvements in performance is necessary. 
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Chapter 8 

Conclusions and further work 

8.1 Overall Conclusions 

The aim of this work is to determine whether the view from psychological literature 

concerning the symmetry of human motion can be applied to automatic recognition. We 

have therefore presented, as a starting point, a new approach to automatic gait 

recognition. The extensive experimentation using various-sized databases from 

different sources has shown that both animal and human gait in particular appears to 

have distinct symmetrical properties that can be extracted for recognition. 

The symmetry operator, essentially, forms an accumulator of points, which are 

measures of the symmetry between image points to give a symmetry map. By using the 

symmetry operator, the Fourier Transform and a simple nearest-neighbour approach, 

the results have produced very good recognition rates for both k = I and A = 3 on a 

small database of four subjects. Using the same databases as in other works, we have 

achieved very comparable recognition rates. Also, using the largest database of its kind 

(the SOTON'02 database) gave recognition rates of over 95%. We started with the 

spatial approach at a time when symmetry analysis was completely new to gait analysis 

and then a novel extension to include temporal information so that subject recognition 

is not based on the body shape but also by human motion. The spatio-temporal 

approach was further enhanced to give the extended spatio-temporal approach. All 

these approaches gave very promising and comparable results on both smaller and 

larger databases, the largest analysis yet on gait databases. 

We have also shown that symmetry projection, in particular, can be used to good effect 

in gait recognition. With symmetry projection, we have shown that by modifying the 
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symmetry magnitude formulation and also by redefining the corresponding symmetry 

direction, subject recognition can be improved greatly. Further analysis and parameter 

tuning may improve the performance of the symmetry projection and radial symmetry. 

The symmetry operator has been shown able to handle missing spatial data, missing 

image fi-ames, and to some extent noise. Thus, it will prove very useful when applied 

to poorly extracted sequences, partially occluded and missing frames in image 

sequences for gait recognition. Moreover, unlike other more standard approaches where 

adding an additional subject to an existing database requires that the entire database be 

reprocessed, our approaches only require a gait signature to be generated for the new 

addition and then be classified thus saving a considerable amount of time in generating 

feature vectors all over. 

The development of symmetry has therefore, continued to support the contention that 

human walking can indeed be used for gait recognition. Performance analysis shows 

that the formulation of the symmetry operator can be arranged to recognise people from 

low-resolution imagery where other biometrics are obscured. 

8.2. Further Work 

The results presented in this work show that the symmetry operator appears to have 

considerable potential in automatic gait recognition. It has also been shown to enjoy 

support and practical advantages. However, the computational cost associated with the 

operator is very high. It would therefore appear appropriate to devote some effort to 

reducing computational demand, perhaps by using a frequency domain implementation 

of the symmetry operator. Naturally we also aim to increase the size of the database of 

subjects and also carry out more evaluation on the performance analysis. 

At the time of thesis, most of the existing databases contain video footage of subjects 

filmed walking normal to the cameras plane of view. For practical applications we will 

need to consider subjects walking at different angles to the cameras plane of view. A 

test carried out suggests that it may be possible to describe subjects walking at small 
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angles towards the camera and not at high angles. Further analysis will be needed to 

prove this and also to make our approaches view invariant. We will investigate the 

effect of subjects walking at different inclinations. This is useful for recognising people 

walking up or down on a hill, etc. We will also investigate the effect of different 

conditions such as load carrying, clothing, shoes, etc. The databases used in this work 

were mostly captured under controlled environment such as lighting, background, 

walking path, etc. Further tests will be required to investigate the potential of our 

techniques in an uncontrolled environment. Also, most of the databases used in this 

work were captured indoors, future work will concentrate more on outdoor databases. 

We will also look at other types of time formulation of our approaches. The 

recognition rates obtained by using a left to right walk to probe a right to left walk and 

vice versa were lower than recognition rates obtained from using databases in which the 

direction of walk is the same for all subjects. This is not peculiar to our techniques and 

needs to be investigated further so as to improve subject recognition for different 

directions of walk. Currently, the main suspicion is that this concerns radial distortion 

correction, and we shall work on this in the future. 

The methods of subject classification also need further consideration. Performance 

analysis showed that using about 4% of the feature vectors is just enough to give the 

same recognition rate as using the entire feature vectors (4096 for 64 x 64 images). By 

using an approach such as Principal Component Analysis, it is possible to reduce the 

dimensionality of the feature space. As such, it might prove beneficial to deploy 

methods of feature set selection to prune the symmetry features. As this is the first use 

of symmetry for spatio-temporal image classification, these factors (amongst others) 

await refinement by application in a greater range of scenarios. 

(gc UBRARY 
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Appendix 

Appendix A - Database Overview 

The table below shows a spatial template for each of the subjects in the SOTON'02 

database. The number below each silhouette refers to the label used to uniquely 

identify each subject. Numbers 82 and 93 are missing from the database because of 

insufficient numbers of sequences were captured for both subjects. 
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Appendix B - A gait cycle 

A gait cycle is the time interval between successive instances of initial fbot-to-floor 

contact 'heel strike' for the same foot, that is a gait cycle starts and ends with the heel 

strike of the same foot 
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Appendix C - Image frames masked with a black rectangular 

bar of width 25 pixels 
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Appendix D - Image frames masked with a white rectangular 

bar of width 25 pixels 
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Appendix E - A gait cycle with about 75% missing frames 

This is a gait cycle with about 75% missing frames. The above shows the situation 

where every seven consecutive image Grames as missing. The numbers under the image 

frames are the frame numbers within the sequence. 
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Appendix F -Some image sequences that failed recognition 
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(c) Subject 110 
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Appendix G - Noise algorithm 

The following pseudo code defines the algorithm used in adding artificial noise to image 

frames for evaluating performance of the symmetry operator with respect to noise. 

NoiseLevel defines the percentage of noise to be added to the image frames. A NoiseLevel 

of 50% means that half the pixels in image are flipped from their previous binary value. 

Rand 1 and rand2 are random numbers. 

For gacA z / M o g g m a 

For gacA m f/Moge; 

Generafe ranc/o/M 

.y <= JVb^gZeveZ 

<= 0. J 

f - 0 / 

z/Magg .yggz/g/zce; 
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