
UNIVERSITY OF SOUTHAMPTON

Parallel Processing Tools in Adaptive and Self

Tuning Control

David Matthew Brown

Doctor of Philosophy

January 2000

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING & APPLIED SCIENCE

SCHOOL OF ENGINEERING SCIENCES

Doctor of Philosophy

Parallel Processing Tools in Adaptive

and Self Tuning Control

by David Matthew Brown

The accuracy and eSectiveness of a control system depends greatly on the sam-

pling rate. Along with each individual plant comes a practical minimum sampling

period. If the accuracy of the control of a plant falls below certain criteria, two

options are available: either a more complex plant model can be chosen so that

it more accurately represents the plant trajectory; or the sampling rate can be

increased. However, a more complex model is only an option if the fault lies in the

model; and a faster sampling rate is only an option if the computational overheads

do not dictate the minimum length of the sampling period. Most control systems

will be working at the absolute limit with the sampling period dictated entirely

by how long it takes to calculate a set of control inputs from the sampled input

and output or state information.

Real-time solutions provide an alternative, through parallel processing, for in-

creased accuracy of control. By Ending solutions to run existing algorithms faster,

more complex plant models may be implemented and/or sampling rates may be

increased.

This thesis develops methods for parallelising existing adaptive control systems

before introducing novel solutions to the adaptive control of linear and nonlin-

ear plants through the use of multiple model switching schemes. Formerly non-

implementable due to the computational intensity involved, these novel methods

are made practical by the high degree of parallelisation that is possible in their

algorithms and the much faster calculations that are therefore possible through

the use of parallel processing. The parallel concepts of speed-up and scalability

are introduced and used for evaluation purposes throughout. Wherever relevant,

the parallel results are directly compared against the sequential ones.

Acknowledgements

I would like to thank the following people to whom I am forever grateful:

My supervisors Professor Eric Rogers and Dr Owen Tutty for their help and advice

throughout my Ph.D.

My Parents for their hnancial support, without which this thesis might never have

been finished.

Rich, Keith and Jules for the 'occasional' pint when I was really broke.

Contents

1 In t roduc t ion 1

1.1 Adaptive Control 1

1.2 Aims and Objectives 5

1.3 Conclusions 6

2 Background 7

2.1 Introduction 7

2.2 Adaptive / Self Tuning Control Schemes 8

2.2.1 Plant Modelling 9

2.2.2 Model Reference Adaptive Control (MRAC) - Basics 13

2.3 Neural Networks for Control Applications - Relevant Background . 16

2.3.1 Error Back Propagation 20

2.4 Conclusions 22

3 Paral le l Process ing 24

3.1 Introduction 24

3.2 A Use for Parallel Processing 28

3.3 Scalability 29

3.4 The Parallel Platform 31

3.4.1 Transputers 32

3.4.2 The PowerXplorer Architecture 33

3.4.3 The Parix Implementation 34

3.5 Conclusions 35

4 Arch i t ec tu res for Rea l -T ime Feedback Control lers 36

4.1 Introduction 36

4.2 An Heterogeneous Architecture for Digital Feedback Control 38

4.3 Validation 41

4.3.1 Transfer Function Validation 41

4.3.2 Tractability 43

4.3.3 Timing Considerations 45

4.4 Conclusions 46

5 Paral le l isa t ion of a Dynamic M a t r i x Control ler 48

5.1 Introduction 48

5.2 Dynamic Matrix Control (DMC) 50

5.3 Implementation and analysis 52

5.4 Conclusions 73

6 Imp lemen ta t i on of Mul t ip l e Model Based Adapt ive Cont ro l Sch-

emes - T h e Linear Mode l Case 75

6.1 Introduction 75

6.2 Model Reference Adaptive Control [MRAC] 77

6.2.1 Identihcation of the plant 79

6.2.2 Control of the Plant 86

6.3 Switching Scheme 91

6.3.1 A Scheme for an Adaptive Controller for Discontinuous

Time-varying Plants 91

6.3.2 Necessary Alterations 93

ii

. &4 95

6.4.1 Parallelisation of the Sequential algorithm 95

6.4.2 The Topology and Communications Strategy 97

6.5 y^Ex&mpki 99

6.5.1 Results and Discussion 100

6 ^]^%##nmna3AnMy&a 101

6.7 Optimisation Potential 103

6.8 Conclusions 105

7 T h e o r y of Neura l Ne twork Based Nonl inear Cont ro l 107

7.1 Introduction 107

7.2 Background 109

7.3 Neural Network Based Control of Nonlinear Systems 119

7.3.1 State Reconstruction 121

7\4 Condu&^ms 122

8 Imp lemen ta t i on of Neura l Ne twork Based Nonl inear Cont ro l 123

8.1 Introduction 123

8.2 Neural Network Based Control of Nonlinear Systems 124

8.SL1 Stf^ePk^oM^nKiiDn 124

8.2.2 Identification 138

8.2.3 Stabilisation and Tracking 148

8.3 A Multiple Model Based Adaptive Control Scheme Based on Neural

N^^mM^]Modds 163

8.4 Parallelisation of the Scheme 164

8.5 I ^ ^ ^ k s a a d D i a ^ ^ ^ o n 167

8.6 Performance Analysis 169

8.6.1 Results on the PowerPC network 169

8.6.2 Results on the Transputer Network 176

8.7 Optimisation 179

8.8 Conclusions 179

9 G e n e r a l Conclus ions and F u r t h e r W o r k 183

9.1 Conclusions 183

9.2 Further Work 187

List of Figures

2.1 An adaptive control system 8

2.2 A model-reference adaptive control scheme 14

2.3 A multi-layer network 17

3.1 The SISD architecture 25

3.2 The Distributed Array Processor (DAP) 26

3.3 Shared memory computers 28

3.4 The T800 Transputer 32

3.5 A 2 X 2 partition on the PowerXplorer array 33

4.1 Systolic architectures 37

4.2 T800 and AlOO Systolic/Wavefront architecture 38

4.3 Block diagram of the IMS AlOO 40

4.4 Type 1 cell of AlOO 41

5.1 Model architecture: Pipe 54

5.2 Division of the matrix vector calculation 58

5.3 Model architecture: Mesh 65

6.1 The basic structure of an indirect adaptive controller 77

6.2 The reference model 86

6.3 The basic control structure 87

6.4 A Model Reference Controller 89

6.5 Switching scheme involving multiple models, switching and tuning. 93

6.6 Parallelisation of the sequential algorithm 96

6.7 Tree topology. One Master processor is connected (via virtual links)

to all other processors 98

6.8 results 101

8.1 Training an observer 125

8.2 Estimation of states with a boundary set at E (—20,20) 128

8.3 Estimation of states with a boundary set at ?/ E (—20,20) with

origin bias 130

8.4 Comparison of error with boundary E (—20,20) 131

8.5 Estimation of states with a boundary set at ^ E (—5,5) 132

8.6 Estimation of states with a boundary set at ^ E (—5, 5) with origin

bias 133

8.7 Comparison of error with boundary E (—5,5) 134

8.8 Estimation of states with a boundary set at E (—3.5,3.5) 135

8.9 Estimation of states with a boundary set at ^ E (—3.5,3.5) with

origin bias 136

8.10 Comparison of error with boundary E (—3.5,3.5) 137

8.11 Comparison of error with boundary ^ E (—3.5,3.5) and E (—5,5) 139

8.12 Estimation of states with a boundary set at T/ E (—20,20) and state

input 140

8.13 Estimation of states with a boundary set at ^ E (—20,20) with

origin bias and state input 141

8.14 Estimation of states with a boundary set at ^ E (—5,5) and state

input 142

8.15 Estimation of states with a boundary set at E (-5 ,5) with origin

bias and state input 143

8.16 The hrst stage of training an identiher 146

8.17 Training the network using the network A/̂ AT,; 147

8.18 Identification of y(k+l) 148

8.19 Prediction of y(k+d) 149

8.20 Stabilization using input / output measurements 153

8.21 Training a direct stabiliser using state inputs 154

8.22 Training a direct stabiliser using input-output data 155

8.23 Training a stabiliser direct from the model state inputs 155

8.24 Stabilization using repeated points 157

8.25 Limitations of Stabilization using repeated points 157

8.26 Attempted stabilisation using repeated points and driving to zero . 158

8.27 Stabilization using a variable training parameter 159

8.28 Attempted Stabilization of points in W, W = {a;| ||x|| < 1.0} 161

8.29 Attempted Stabilization of points with reduced y 161

8.30 Stabilization of points in W, W = {x\ ||a;|| < 1.0} 161

8.31 Training the network Â Â c 162

8.32 Training the network A^Ac input output data directly 162

8.33 Controlling the system to follow a reference trajectory 163

8.34 A revised switching scheme incorporating neural networks 164

8.35 Tree topology with the communication strategy for the revised switch-

ing scheme 166

8.36 Control of a nonlinear plant with dynamic changes every 100 time

steps 170

8.37 Control of a nonlinear plant with dynamic changes every 100 time

steps 171

Vll

List of Tables

1.1 Number of computer controlled processes 2

3.1 Parallel computer architecture classiEcation 24

5.1 Square matrix x TVg, p = 1, double precision 60

5.2 Square matrix x jVo, p = 4, double precision 60

5.3 Square matrix TVo x TVo, p = 9, double precision 60

5.4 Square matrix x p = 1, single precision 62

5.5 Square matrix x jVo, p = 4, single precision 62

5.6 Square matrix x A^̂ , p = 9, single precision 62

5.7 Mesh, Square matrix A ôX No, p ^ l , single precision 65

5.8 Mesh, Square matrix Â ^ x p = 4, single precision 66

5.9 Mesh, Square matrix Â o x Â ,̂ p = 9, single precision 66

5.10 Mesh, Square matrix Â ^ x Ng, p = 16, single precision 66

5.11 Submesh, Square matrix Â ^ x A^̂ , p = 4, single precision 69

5.12 Submesh, Square matrix Â o x Â o, p = 9, single precision 69

6.1 Run times of a similar problem size distributed across a varied num-

ber of processors 102

6.2 Run times across a varied number of processors, keeping the number

of Axed models per processor constant 103

8.1 Training times for 6 networks over various partitions 173

viii

.2 Time taken to communicate trained networks to required processors 173

.3 Results of running the switching scheme over 600 time steps177

.4 Results of running the switching scheme over 12000 time steps . . .177

.5 Results of running the switching scheme over 54000 time steps . . .177

.6 Results of running the switching scheme over 90000 time steps . . .178

.7 Time taken to communicate trained networks to required processors

on the transputer array 178

.8 Results of running the switching scheme over 600 time steps on the

transputer array 178

Chapter 1

Introduction

1.1 Adapt ive Control

The concept of adaptive control was originally due to the requirement for control

systems to emulate nature by being able to adapt to their environments. Since

adaptive control is a vague term, the discipline covered a great diversity of areas

in control. As a result there have been a number of attempts to classify distinct

areas (Aseltine 1958; Levin 1958; Jacobs 1964; Astrom 1983). The two main

areas arising from this rehnement are the and Motfe/

TZe/erence STRs owe their past to stochastic systems

research and their parameter tuning methods come from statistical analysis; the

MRAS come from an engineering background and make use of gradient descent

methods such as the MIT Rule and Lyapunov method (see for example Harris

and Billings (1985)). However, as far as this thesis is concerned the two fields are

synonymous and no great distinction is drawn between them.

The applications of computers to control are limited by the raw processing

power available. This is rejected in table 1.1 which gives an idea of the areas

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 1

Date Gas. chemical
petroleum, cement

Power Metals Misc. Total

May 1961 16 11 10 0 37
May 1962 45 66 23 23 159
Sept 1963 92 117 55 76 340
Aug 1965 212 203 144 236 795
Sept 1966 336 289 242 485 1351
Mar 1967 386 324 260 601 1571
Jul 1968 - - - - 2890

Table 1.1: Number of computer controlled processes (Wismer and Wells 1972)

of control that computers were hrst applied to. It is no accident that the list

is largely made up of chemical and process industries. These applications were

possible because of the slow process dynamics involved in the processes to be

controlled. The shear size of computers in the early years also severely restricted

their use in portable applications, such as missile control or on board aircraft. The

Enal consideration was the cost of computers which made them practical only in

industries where improvements in control could justify the large initial expense (for

example by increasing the life of catalysts in a chemical process). The increase in

the number of applications over the time covered in the table (less than a decade)

gives an indication of the success of these early computer control based schemes.

With Moore's law stating that processing power approximately doubles every

eighteen months (Takeda oZ. 1999), computational speed requirements are not

as big a problem nowadays. However, top of the range computers are still expensive

and cheaper solutions can often be found through parallel processing involving a

small number of low cost commodity processors. Ultimately, an upper sequential

processor speed will be reached, and parallel processing solutions will offer the

main route to increased processing power beyond this limit. Therefore, deriving

parallel processing models for control schemes offers great future advantages.

Early examples of parallel processing applications in control came through so

called systolic architectures (described further in chapter 4) where a large number

Ph.D Thesis University of Southampton

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 1

of simple processors (cells) are linked together in pipelines for the purpose of

performing recursive calculations on a large amount of data. Common applications

were in the computation of difference equation models (for example see (Kwan

1987; Lin 1986)) and Recursive Least Squares (for example see (Gaston oZ.

1994; McWhirter and Proudler 1994)). Chisci and Zappa (1993) summarises the

objectives of the parallelisation of adaptive control systems aa the achievement of:

1. A sampling rate as fast as possible.

2. The shortest possible computation delay between sampling and the generation

of the control signal.

3. A parameter tuning rate as fast as possible.

4. The shortest possible delay between sampling and the generation of the reg-

ulator parameters.

Of course, points one and two are a universal set of goals for control systems. Most

systolic architectures for adaptive control concentrate on either the parallelisation

of the tuning method or the computation of plant model trajectories under control

actions.

Li (1990) showed some good results using a transputer (see section 3.4.1) as

a host to an AlOO digital hlter - a chip that in itself was a systolic architecture.

The advantage of the transputer was that it was a cheap and versatile processor.

The architectures in (Li 1990) were intended specihcally for the calculation of

controller output - the closed loop mode of operation - but a recursive least square

array could also have been attached to another link of the transputer for Recursive

Least Square calculations, making an all round architecture for adaptive control

purposes.

Ph.D Thesis University of Southampton 3

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 1

The transputer was a popular choice in parallel processing for a period of time

since it was cheap, had fast communications and a unique ability to communi-

cate with other transputers while simultaneously carrying out computations on its

own processor. In (Fleming 1988) the chapters are almost entirely dedicated to

transputer architectures for control with applications as diverse as Bight control

and real-time software fault tolerance. The transputer is now obsolete in terms

of current real world practical solutions, but transputer arrays are still useful for

demonstrating the potential of parallel tools for the various areas in control covered

in this thesis.

Another major parallel processing model is the neural network. A conventional

neural network is described in detail in section 2.3. There have been a number of

interesting developments as a result of research directly linked to control systems

applications. These have included the combination of fuzzy logic and a neural

network that makes up the architecture of the B-spline (Brown and Harris 1993)

and other fuzzy networks (see for example (Chen and Teng 1995)), and neural

networks that introduce transfer function models as node functions (see for exam-

ple (Goulding 1991)). However, as parallel processor models, the computation at

each node level is too low to make them practical for an implementation involving

low cost medium- or coarse-grain processors. Neural networks in this context are

viewed as models for nonlinear processes and parallelism is exploited in the control

system algorithm itself. The eEect of running low-grain calculations on processors

of this type is discussed more fully in chapter 5.

Computational advances have not just helped to increase the speed and ac-

curacy of existing real-world controllers, but have also helped make theoretical

control schemes practical. It took thirty years before the self-tuning and adaptive

control scheme built by Kalman (1958) became practical (see for example Good-

Ph.D Thesis University of Southampton 4

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 1

win and Sin (1984)). This is as prevalent with the advent of commodity processors

for parallelisation. For example, parallel processing makes the attractive multiple

model schemes of Middleton of. (1988) and later Morse aZ. (1992) practical

robust adaptive controllers (schemes like these are considered in chapter 6 and

chapter 8).

Other interesting applications of parallel processing to control have been in

the design and simulation of control systems. Research in this area has included

the attempt to generate parallel software from straight off a Simulink simulation

(see for example (Baxter aZ. 1994; Tully and Surridge 1993)). Much depends on

the efhciency of the Simulink model construction aa to the success of such systems.

1.2 Aims and Object ives

The following list summarises the aims and objectives of this thesis:

To verify existing parallel schemes in a control system context.

To identify areas of control system design or application suitable for paral-

lelisation.

To increase the usefullness of adaptive control by reducing/removing the lim-

itations of such systems to the control of slow-time varying plants.

To find and verify a general control system for the control of nonlinear plants

and to parallelise such a scheme.

To find methods through parallelisation to reduce the sampling period to

an absolute minimum with a view to increasing the accuracy of identifica-

tion and control of discontinuous plants (plants whose dynamics change in a

discontinuous step during run time).

Ph.D Thesis University of Southampton 5

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 1

The rest of the thesis is structured as follows: chapter 2 describes relevant

control theory; chapter 3 gives an introduction to parallel processing; chapter 4

is concerned with the verification of hardware for digital hlters; chapter 5 de-

tails the parallelization of several algorithms useful in Dynamic Matrix Control;

chapters 6 and 8 are concerned with the parallelization of switching and tuning

schemes for linear and nonlinear plants respectively with chapter 7 detailing essen-

tial background theory underlying the methodology of chapter 8; hnally, chapter 9

draws some general conclusions and gives some suggestions as to areas for further

research/development.

1.3 Conclusions

This chapter has introduced the historical background to the use of computers in

control with specific attention to the parallelisation of adaptive control methods.

In the early days, computers were only applicable to control processes with slow

process dynamics (i.e. the process industries), but increasing processor power haa

meant an explosion of computer usage in control. Only two existing classes of

parallel application have been identified historically - systolic architectures and

neural network based schemes. There is also a suggestion that parallel processing

has been set aside in control due to a very fast increase in raw sequential processor

speed. However, since an upper processor speed will inevitably be reached, there

is still a place in the near future for relatively cheap parallel solutions (using

commodity processors).

Ph.D Thesis University of Southampton

Chapter 2

Background

2.1 In t roduc t ion

This chapter provides the essential background material (with references) to the

work reported in this thesis. It also gives an overview of some of the concepts and

problems of constructing models of plants from available information. The thesis

is mainly concerned with the construction of software models from mathematical

methods of modelling and controller design described in this section. It is assumed

that the control engineer is able to construct mathematical models from experi-

mental data or existing physical models. Also, specihc to each area of research in

each chapter, certain assumptions will be made about the plant, such as knowledge

of the order of the plant or boundedness of inputs and outputs. In chapters 6 and 8,

software based schemes to extend adaptive control methods to plants that undergo

large discontinuous changes during their run time are developed through the use of

parallel multiple models to identify the plant. Section 2.2 describes the adaptive

control viewpoint as it pertains to this thesis, where section 2.2.1 contains the

mathematical preliminaries required to understand the modelling work contained

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 2

within, and section 2.2.2 gives a basic overview of Model Reference Adaptive Con-

trol. Finally, section 2.3 outlines the principles behind neural networks as used in

control.

2.2 Adapt ive / Self Tuning Control Schemes

Figure 2.1 shows the general structure of an adaptive self-tuning control scheme

(Chisci and Zappa 1993). This is divided up into three loops:

Supervisor(S)

Estimator Design (D)

Estimator pms I/O filters (E)

Regulator (R) r T Gaa(s) A/D Gaa(s) A/D

Siunpled-0ata Plant (P)

Figure 2.1: An adaptive control system

The regula t ion loop (R 4- P)

This is the standard feedback control scheme consisting of digital to analogue

conversion, filtering of inputs and outputs into the plant (optional), a regulator

with tunable parameters and feedback and feedforward control action.

Ph.D Thesis University of Southampton

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

T h e adap t a t i on loop (E + D + R)

This loop consists of an on-line estimator that uses the control input (it) and

the plant output (^) to tune the parameters of an adaptive model closer to those

of the plant; while providing control actions by updating the regulator parameters.

This loop is further described in section 2.2.2.

T h e supervis ion loop (S + D)

This can be described as the self tuning control loop. Its role is mainly to

monitor the estimation of plant parameters undertaken by the estimation loop. If

the convergence rate of the adaptation algorithm becomes too slow, a 'kick' can

be provided (by resetting certain parameters in the adaptation algorithm). The

supervision block can also provide an interface to a human operator or external

devices.

2.2.1 P l a n t Model l ing

Control of a plant depends heavily on a good plant model - the closer the model

parameters are to those of the plant, the more accurate the control. In this thesis,

two main types of plant model will be used. These are briefly discussed in turn

below.

Different ia l and Discre te Linear Sys tems

The dynamics of a linear time invariant single-input single-output (SISO) sys-

tem are described in terms of the output (^(^)) and input (w(^)) by a differential

equation of the form:

y" + ^ + • • • + aou = 6m"W™ + ^ + • • • + bou (2.1)

Ph.D Thesis University of Southampton

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

where ?/" = = 2/(̂)- Given the input %(() and the initial conditions

{^(0),3/X0), ' ' ' and {11(0), w^(0), - - - the equation can (in prin-

ciple) be solved for the output So-called classical control systems analysis and

design for continuous-time systems is undertaken in the transfer function domain

using the Laplace transform and by the z-transform in the discrete time case.

Suppose, therefore, that F(s) denotes the Laplace transform of the variable

/(^) (assumed to exist). Suppose also that (2.1) operates under zero initial condi-

tions. Then applying the Laplace transform and rearranging gives:

y(g) G'(g)[/(a) (2.2)

where the system transfer function G(g) is defined by

G{s) = 4 4 = ^ ^ (2 . 3)
a,(s) s" + • • • + CLiS + q,q

The polynomial 6(s) defines the system zeros via 6(a) — 0 and a(a) dehnes the

system poles via o(g) = 0 and for physical systems M > m.

Although the transfer function representation of physical systems provides

an important tool for control systems analysis and design, it has certain basic

limitations and, in particular, it is only applicable to linear time invariant systems.

State space methods, however, do not have this restriction and are therefore more

general. In essence, the state of a system is the smallest set of numbers that must

be known in order that its future response to any given input can be calculated

from the dynamic equation. Thus the state is a compact representation of the past

history of a system which can be used to predict its future behaviour in response

to any external input.

The complete solution of a differential equation of order M - such as (2.1)

Ph.D Thesis University of Southampton 10

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

- requires precisely M initial conditions, hence it follows that the state of such a

system will be specified by the values of M quantities - known as the state variables.

Consider now a linear time invariant system with m outputs and / inputs - a

so-called multivariable (MIMO) system. Then the state equations can be written

as a set of coupled hrst order differential equations in the form

x{t) = = Ax{t) + Bu{t) (2.4)

where is the M x 1 state vector, is the / x 1 input vector, and A and B

are constant matrices of dimensions M x M and n x Z respectively. The output of

the system is given by

?/(^) = (2.5)

where ^(^) is the x 1 output vector and C and D are constant matrices of

dimensions m x % and m x Z respectively. Equations (2.4) and (2.5), together

with the initial state vector a;(0), constitute the system state space model. Setting

m = I = 1 recovers the SISO case.

Suppose now that a;(0) = 0. Then applying the Laplace transform to the state

space model yields the system transfer function matrix (or transfer function in the

SISO case) description

y(g) = (C (s 4 - + D) [/(g) = G(5)(7(a) (2.6)

Note also that the state vector is not unique - it is easy to see that w = Tz

with T nonsingular is an alternative choice for the state vector and that such a

transformation leaves the transfer function (matrix) invariant. Later in this thesis

properties of linear differential systems, eg controllability and observability, will

Ph.D Thesis University of Southampton 11

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

be introduced as they are needed.

As the name suggests, discrete time signals are deSned only at discrete time

values. Usually, the time values are equally spaced, i.e. at multiples of constant

period T where (= yiT with M an integer. Here discrete time signals are obtained

by sampling continuous-time signals or waveforms. The result of sampling a;(t) at

t = TiT is denoted by = a;(n,).

The z-transform for discrete time signals is the equivalent of the Laplace trans-

form for continuous time signals. In the usual unilateral form it is dehned (when

it exists) for a sequence {3;(M)} by

OO
A'(z) = ^ = 3;(0) -t- -I (2.7)

n=0

The mapping between the s and z domains is given by z — and under this

the stability region in the g plane, i.e. the open left-half of the complex plane, is

mapped into the open unit circle in the z plane. Note that this 'full' transformation

is multi-valued and hence in applications, such as the digital implementation of a

continuous-time feedback control schemes, rational approximations are used, e.g.

the well known bilinear transform.

It is also possible to model a discrete time system in state space form. The

discrete equivalent of (2.4) and (2.5) is:

a;(M 4-1) == Ada;(n) -t- B((M(M)

2/(n) = Cja;(M) + Dd^/(n) (2.8)

Applying the z-transform now yields the z-transfer function (matrix) description:

y(z) = (C (z 4 - + D,)[/(z) = G'(z)[/(z) (2.9)

Ph.D Thesis University of Southampton 12

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

In chapter 4, the SISO discrete unity feedback control scheme with forward

path controller will be considered, this links the error (^(z)) and the control input

([/(z)) dehned by

y Uiz'
u{z) t r

^ —i
(2.10)

i=l

or in di&rence equation terms:

u(^n + 1) = ciie(?7.) + 0.26(77. — 1) + • • • + (i^e{n + 1 — n)

+ hiuiji) + 62̂ 7(77. — !) + ••• + bjiuiji + 1 — 77.) (2.11)

Also it follows immediately that this computation is, in effect, equivalent to that of

an infinite impulse response (IIR) or ARMA filter. The only difference is that here

the hlter is embedded within the overall (or global) feedback loop of the scheme - a

fact which has major implications for the development of parallel implementation

architectures for such control schemes.

2.2.2 Mode l Reference Adap t ive Cont ro l (M R A C) - Basics

Chapter 6 of this thesis considers the application of parallel processing tools to

the implementation of multiple model based adaptive control schemes where the

basic control action is applied through a model reference adaptive control scheme

(MRAC). There is a very large volume of literature, both theory and applications,

on this approach and in this thesis only one particular form is considered. The

detail of this particular form will be given in chapter 6 and here a basic introduction

to the MRAC approach is given, which mirrors closely that given in (Slotine and

Ph.D Thesis University of Southampton 13

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 2

Li 1991).

Generally, a re/erence system can be represented schem-

atically by figure 2.2. It is composed of four parts: a containing unknown

parameters, a re/eremce mocfe/ specifying the desired output of the control sys-

tem, a feedback control law containing adjustable parameters, and an

for updating parameters.

estimated
parameters a

adaptation law

controller

reference

model

Plant

Figure 2.2: A model-reference adaptive control scheme (Slotine and Li 1991)

The is assumed to have a known structure, although the parameters

are unknown. For linear plants, this means that the number of poles and the

number of zeros are known, but that the location of these poles and zeros are not.

For nonlinear plants, this implies that the structure of the dynamic equations is

known, but that some of the parameters are not.

A modeZ is used to specify the ideal response of the adaptive control

system to an external command. Intuitively, it provides the ideal plant response

which the adaptation mechanism should seek in adjusting the parameters. The

choice of the reference model is part of the adaptive control system design. This

choice has to satisfy two requirements. On the one hand, it should reflect the

Ph.D Thesis University of Southampton 14

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

performance speciEcation in the control taaks, such as rise time, settling time,

overshoot or frequency domain characteristics. On the other hand, this ideal

behaviour should be achievable for the adaptive control system, i.e. there are

some inherent constraints on the structure of the reference model (e.g. its order

and relative degree) given the assumed structure of the plant model.

The is usually parameterised by a number of adjustable parame-

ters (implying that a family of controllers may be obtained by assigning various

values to the adjustable parameters). The controller should have

capacity in order to allow the possibility of tracking convergence. That is, when

the plant parameters are exactly known, the corresponding controller parameters

should make the plant output identical to that of the reference model. When

the plant parameters are not known, the adaptation mechanism will adjust the

controller parameters such that perfect tracking is asymptotically achieved. If

the control law is linear in terms of the adjustable parameters, it is said to be

Zmear/?/ Existing adaptive control designs normally require linear

parameterisation of the controller in order to obtain adaptation mechanisms with

guaranteed stability and tracking convergence.

The mechanism is used to adjust the parameters in the control

law. In MRAC systems, the adaptation law searches for parameters such that

the response of the plant under adaptive control becomes the same as that of

the reference model, i.e. the objective of the adaptation is to make the tracking

error converge to zero. Clearly, the main difference from conventional control lies

in the existence of this mechanism. The main issue in adaptation design is to

synthesize an adaptation mechanism which will guarantee that the control system

remains stable and the tracking error converges to zero as the parameters are

varied. Many formalisms in nonlinear theory can be used to this end, such as

Ph.D Thesis University of Southampton 15

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

the Lyapunov theory, hyperstability theory, and passivity theory Although the

application of one formalism may be more convenient than that of another, the

results are often equivalent.

2.3 Neura l Networks for Control Applicat ions - Relevant

Background

Neural networks have been the subject of intense research eEort over the years in

many disciplines. In the general control systems area, there hag been a high level

of interest in the laat 10-12 years. In chapter 8 of this thesis, the use of parallel

processing tools to implement a nonlinear multiple model adaptive control scheme

is considered. In this section, the relevant background in neural networks is given

and closely mirrors that in (Levin and Narendra 1993) and the cited references.

In this thesis the term neuron will denote an operator which maps ^ ^ .R

and is explicitly described by

3/ = + Wo) (2.12)

where = ['Ui, W2, " ' , is the input vector, = [wi, W2, - - - , is termed

the weight vector of the neuron, and wq is its bias. The function r(-) is monotone

and continuous as a map > (—1,1) and is commonly known as the 'sigmoidal

function'. A commonly used function here is tanh() .

A neural network is a set of interconnected neurons. Also if the neurons are

organized in layers / = 1,2, - - , Z, and if a neuron in layer Z only receives its inputs

from neurons in layer (— 1, the network is termed a feedforward neural network

(see figure 2.3).

Ph.D Thesis University of Southampton 16

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 2

hidden layers

input

layer

output

layer

Figure 2.3: A multi-layer network (Krose and Van der Smagt 1996)

The output of element i in layer I is given by

(2 13)

where — [w-Q, wj is the weight vector associated with neuron

i in layer I. The layer defined by / = 0 is commonly termed the input layer and

that defined by / = L the output layer. All other areas are referred to as hidden

layers. The biases can be treated as additional weights associated with a

neuron whose output is always equal to one.

In effect, the neural network defined here represents a specific family of pa-

rameterised maps. If there are uq input elements and ni output elements, the

network defines a continuous mapping NN : R^° -4- -R"'. Also to enable this map

to be subjective the output layer is chosen to be linear. Such a family of networks

with Hi neurons in layer I will be denoted by -^-^no,ni,-,nL- Hence, for example,

if there are 2 inputs, 3 neurons in the first hidden layer, 5 in the second, and 1

output unit, the resulting network will be described by .A/'jVg.s.s.i-

Multilayer feedforward neural networks are universal approximators which

Ph.D Thesis University of Southampton 17

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

make them very powerful tools in function approximation - it haa been shown

(Cybenko 1989; Hornik oA 1989) that any continuous mapping over a com-

pact domain can be approximated to arbitrary accuracy by a feedforward neural

network with one hidden layer. Hence given any e > 0, a neural network with a

sufficiently large number of nodes can be found such that

||/(a;) - <6 , Va; G D (2.14)

where / denotes the function to be approximated, and D is a compact domain of

a finite dimensional normed vector space with norm denoted by 11 11.

Suppose now that u E D is a given input. Then the network approximation

error for this input is given by

e W = / W - ArjV(M) (2.15)

and training A^Ar() to closely approximate / over D is equivalent to minimizing

7 = / ||e(M)||dM (2.16)
Jd

The training procedure for the network is implemented as follows where ^ E

denotes a generic parameter (or weight) of the network.

1. The network is presented with a sequence of training data in the form of

input-output pairs.

2. Following each training example, the weights of the network are adjusted

according to the rule

(̂A; + 1)=^(A;)—7y(A;) —|g=8(t) (^ l^)

Ph.D Thesis University of Southampton 18

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

Stochastic approximation theory (Ljung 1977) now guarantees that, if the step

size /;(/:) satisfies various conditions (e.g. that it a suSciently small step - unique

to each system - and if it is variable that it does not rise over time), 7 will converge

to a local minimum with probability 1. If the performance surface is unimodal

then this fact implies that the global minimum is achieved.

The so-called back propagation algorithm (see section 2.3.1) provides a recur-

sive method to calculate these gradients in recursive networks, i.e. the partial

derivatives with respect to the weights in layer Z — 1 can be calculated recursively

given the ones of layer Z (Narendra and Parthaaarathy 1991; Rumelhart

1986). Also weight adjustments can be performed at each time step or in a batch

mode. In the latter case, the error function depends on the errors due to a Gnite

set of input vectors.

Introducing feedback connections into the network makes it recurrent and in

this caae the behaviour cannot be described as a static mapping from the input

to output spaces. Instead, the output will exhibit complex temporal behavior

that depends on both the current states of the neurons and the input. To avoid

algebraic loops (and make such a feedforward connection physically meaningful),

a delay (i.e. z^^) must be added. Hence from the systems theory standpoint, the

states of the system (in its state space model representation) consist only of those

neurons which have a delay at their output.

A natural performance criterion for the recurrent network is

/(A) = E lls'W - #) l l ' = P-18)
A t

i.e. the sum of the squares of the errors between the plant output vector (̂ /(A:)) and

the network (^(/c)). Also a training algorithm, termed dynamic back propagation,

Ph.D Thesis University of Southampton 19

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

has been developed to train a recurrent network to follow a temporal sequence.

This algorithm is based on the fact that the dependence of the output of a dy-

namical system on a parameter is itself described by a recursive equation. The

latter, in turn, contains terms that depend both explicitly and implicitly on the

parameter. For a detailed treatment of this algorithm see, for example, (Narendra

and Parthasarathy 1991).

2.3.1 E r ro r Back P ropaga t i on

At the output layer the error function is calculated as:

^ (2.19)

k

where (ft is the desired output at output node A; and is the output at the

node of the output layer, i.e.

= r E - r s r ' i (2.20)

Here, r () is taken as the sigmoid function, i.e.

r w - 2 g-a; (2.21)

The object of back propagation is to calculate Awjf At the output level (Z/),

assuming a constant training rate this is:

Ph.D Thesis University of Southampton 20

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

or

(2.23)

or

(2.24)

with

4^^ — (2.25)

For the lower (hidden) layers it is necessary to calculate:

(f-i) _ ^7 _ (̂ 7

and at the last hidden layer (/ = n — 1) this is:

(0

J r " " "syf fe?-"

= < 7 - ^ = <7^ (2 - 2 7)

Swt"

and . is obtained from:

(Z,)x2
2

k

E ((4 - . r ' =< (r ' I - ' t " I I (2.28)

or

SI
(4 - ! / ! " ') X (r ' f e f V J ^ ")) (2 . 2 9)

Ph.D Thesis University of Southampton 21

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

51 _ y .

J k
((4 - (2.30)

then becomes:

= 7;
k

(2.31)

or

(2.32)

where

= (E 4 " - S - " j x y f - " (l - ! / f - ") (2..33)

Due to the recursive nature of the differentiation involved, this weight change for

lower layers is applicable for all layers (Z, — 1) - 0. (Simply replace Z, with / in

equations (2.32)-(2.33)).

2.4 Conclusions

This chapter has introduced some essential theory used throughout the thesis. It

has described the general idea of adaptive and self-tuning control, distinguishing

the regulation, adaptation and supervision loops. Various plant modelling tech-

niques were then introduced developing the underlying differential equations into

transfer function and state-space representations. The general concept of Model

Ph.D Thesis University of Southampton 22

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 2

Reference Adaptive Control was also introduced. Finally the theory of neural

networks was described in a control system environment.

Ph.D Thesis University of Southampton 23

Chapter 3

Parallel Processing

3.1 In t roduc t ion

Parallel processing is the concept of applying more processors to a task with the

aim of computing that task more quickly. Parallel computers may be classified into

four architecture types based on the combination of whether they work on multiple

or single data streams; and whether they perform multiple or single instructions

on the data. This is summarised in table 3.1.

The SISD computer is the original sequential Von Neumann architecture which

includes few of the currently used computers - with most sequential computers

containing parallel components as part of their normal operation (e.g. instruction

pipelining). The architecture is shown in figure 3.1. The basic Von Neumann

architecture had no cache, which was introduced to alleviate the Von Neumann

Single Instruction Multiple Instruction
Single Data SISD MISD

Multiple Data SIMD MIMD

Table 3.1: Parallel computer architecture classification (Trew and Wilson 1991)

24

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 3

cache

CPU

main memory

Figure 3.1: The SISD architecture (Dowd 1993)

bottleneck - a limit on speed related to processing time and memory access time.

The cache is made up of a small amount of faster (more expensive) memory which

data is loaded into if not in the cache already. Programs can be optimised by

making maximum usage of data in the cache. It should be noted that the Cen-

tral Processing Unit (CPU) is a redundant concept in parallel processing and is

renamed the Processing Element (PE).

The MISD computer is not thought to be of much practical use and no com-

puter of this type has been built. It basically runs multiple programs on the

same datum. The SIMD architectures are formed from a large number of pro-

cessors which all perform the same instruction on different data. These might be

hardwired computers that are specifically designed for one purpose - for example

the systolic architectures discussed in chapter 4, or fine grain architectures that

perform small logical operations. The extremes of this type are the Distributed

Array Processor (DAP) (Hunt 1989) - made up of a few thousand 1 bit processors

linked by a single control unit (the MCU onto which the program is loaded) -

and the Connection Machine made up of many thousands of DAP-like processing

Ph.D Thesis University of Southampton 25

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 3

M C U

M e m o r y

32

Figure 3.2; The Distributed Array Processor (DAP) - an SIMD architecture (Hunt 1989)

elements with a random routing component that helps to eliminate communica-

tion bottlenecks (Trew and Wilson 1991). The basic DAP architecture is shown

in figure 3.2 with each processor allocated either 32kbits or 64kbit8 of memory

each - a total of 4Mb or 8Mb for the whole array. SIMD architectures can be

extremely efficient when applied to applications such as image processing where

the same calculation is performed on each pixel of an image; but become less efE-

cient in applications where computational load is not uniformly distributed (such

as resolutions of shadow and reflection in ray-tracing algorithms).

The MIMD architectures are a course/medium grain approach. A relatively

small number of processors (compared to SIMD architectures) run individual pro-

grams on different data streams. In practice, these programs can be the same

for each processor, but with no requirement of synchronisation or master control

outside of communications between processors. As each processor can hold whole

programs, it is possible to recycle large quantities of software that are already in

existence - provided the compiler for the software concerned exists on the machine.

This is the great advantage of the Cray T3D computers that link at least 32 pow-

Ph.D Thesis University of Southampton 26

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 3

erful vector computers together (scalable to 2048 vector processors) and implicitly

parallelise loops in Fortran code. Another option is to produce cheap processors

that can be linked together via fast communication buses and thereby produce

faster cost-eHective machines (e.g. linked NT PC clusters). The individual pro-

cessor architectures are of the type shown in figure 3.1 with the CPU replaced

with a PE and some form of communication link that allows message routing to

other processors.

An implicitly parallel machine automatically parallelises code as part of the

compiler process. An explicitly parallel machine provides parallel coding compo-

nents ag part of the computing language (e.g. Occam - the native language to the

transputer - and the parallel C libraries provided with Parix (Parsytec 1993)).

The architecture types can be further classified as either shared memory or

distributed memory systems. Shared memory systems (see figure 3.3) allow all

processors to read and write to the same memory blocks. This can cause allocation

problems since it is not possible to stop processors changing the values of data from

one processor to another in mid-calculation. This is solved by the introduction

of where processors still share the same memory but are not

allowed to share variables (or specific bytes in memory). This essentially sub

divides memory amongst processors on demand. Distributed memory systems

provide individual memory on each processor. This allows whole programs to be

run on each processor with no further latency problems caused by checking memory

access requests as in shared memory machines (the conventional Von Neumann

bottleneck normally associated with single processors still exists).

Ph.D Thesis University of Southampton 27

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 3

P E P E P E P E

Memory

Figure 3.3: Shared memory computers

3.2 A Use for Parallel Processing

This thesis is concerned with the development of cost effective real-time solutions

to various areas of control. Faster and faster sequential machines are being devel-

oped all the time, but in a world in which high performance computing is talked

about in terms of gigaAops^, the technology to achieve this on a sequential machine

can be too expensive. This points to solutions involving a number of cheap proces-

sors running in parallel. Massively parallel computers are ignored here. Instead

attention is focused on the development of tools with many uses (users) which

implies a relatively (compared to hugely expensive massively parallel machines)

cheap set of solutions in many cases of practical interest.

Parallel processing is specihcally useful in control engineering because the time

between sampling periods is greatly limited. Between consecutive samplings, plant

models have to be updated and control inputs have to be calculated. A parallel

solution can reduce the computation time, allowing more complex plant models

to be included in the scheme at no extra cost in time; or, if need be, to reduce

the time between sampling periods, i.e. to increase the sampling rate. The key is

real-time solutions. An algorithm may work in simulation, but if computational

overheads are too high to make the solution practical in the real world it is useless.

' FLOPS - Floating Point OPerationS

Pb.D Thesis University of Southampton 28

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 3

An extremely important point to note at this stage is that not all algorithms

are suitable for parallelisation. Parallel algorithms that are suitable for some

massively parallel computers are too hne grain (requiring a very small amount of

computation per processor) to be suitable for commodity MIMD processors. An

example of this is the DMC work in chapter 5. The communication overheads

to distribute the required data across the processor topology is extremely high

and as a result speed-up was only achieved after communication waa minimised

and the topology was optimised. However, in this case if a calculation required

double precision data, the communication message lengths are nearly double and

speed-up is no longer possible. An algorithm that is inherently sequential may

still beneht from parallelisation if some or all of the sequential steps are suitable

for parallelisation. The general rule in ascertaining whether an algorithm is likely

to be parallelisable on medium- or coarse-grain processors is to look at the ratio

between communication overheads and computation per processor. If this ratio is

too high speed-up will be low or, if communication is too high, the process will

take longer in parallel than on a single processor. These concepts are discussed in

the next section.

3.3 Scalability

The basic concept of scalability is: How many processors can be applied to a prob-

lem before no further speed-up can be achieved? This depends on the parallelism

of the problem. If an algorithm is easily decomposable into a number of subtasks,

which require little global data to begin work, then the scalability of an algorithm

is likely to be good. Scalability simply describes how close to an n-times speed-up

an algorithm is when more processors are added to a solution. Normally there

Ph.D Thesis University of Southampton 29

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 3

will be a point at which speed-up begins to tail off, as individual subtasks become

smaller, and communication overheads, as a result, become more significant.

Numerically, the perfect speed-up can be expressed as:

7}/ = ^ (3.1)

where 7i is the time taken to complete an algorithm on a single processor and

T/v is the time taken to complete the same algorithm on N processors. There are

several reasons why can be much more than

(i) resottrcea. If the network of processors is controlled by a single master

processor, then a bottleneck will occur while message data is constructed

and routed through the network. Competition for external (input/output)

devices can also slow times down signihcantly (it is standard to return data

to a single processor and record it there).

(ii) (zme. This is the time taken to communicate the required

data to processors before computation can start (including time taken to

synchronise processors, if needed). It is important to note that the transputer

is unusual in its ability to overlap communications and computations, most

processor types will have to receive all data before computation can start.

(iii) Message This is the time taken to set up messages before they can be

sent. This can be quite substantial. For example, an MPI linux cluster (con-

nected by a fast ethernet connection capable of transmitting 100M6%^s/aec)

has a latency of about 150//5. With the maximum bandwidth of about

llM6?/te5/aec, this amounts to a minimum message size (to minimise de-

lays caused by latency) of 1 which is greater than 100 double precision

numbers (at 8 bytes each) (Takeda aZ. 1999).

Ph.D Thesis University of Southampton 30

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 3

(iv) Parts of the algorithm that must be performed se-

quentially limit the overall speed-up. The maximum possible speed-up can

be expressed numerically as:

T + T
Sn = ' (3.2)

where 71, is the total time taken to compute the parts of the algorithm that have

to be performed sequentially, and 7^ is the total time taken to compute the parts

of the algorithm that can be performed in parallel.

Scalability can now be thought of as an efficiency term:

= T ^ (< (3.3)

Scalability should always, where possible, be calculated using the original sequen-

tial code before it has been parallelised. The sequential code should also be in an

optimised state since an optimised sequential algorithm can run much faster than

an equivalent sequential algorithm in an unoptimised state.

3.4 The Parallel P l a t fo rm

The software simulations in this thesis (i.e. all work except chapter 4) have been

implemented on an array of 16 T800 transputers (see section 3.4.1). It should

be noted that these processors are slow by current standards but allow an easy

comparison between parallel and sequential results. The array is divided into

boards of 2 processors each, with each board connected to a back plane, forming

a network that is fully reconEgurable, allowing the modelling of any topology^,

topology is a graph (or tree) of processors, in which the usual aim is to minimise the relative distance
between processors and/or avoid communication 'bottlenecks'.

Ph.D Thesis University of Southampton 31

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 3

within the bounds of the 16 nodes. Timing studies have shown that communica-

tion between processors on the same board takes less time than communication

between processors on different boards. As a result, section 5.3 includes an inves-

tigation into optimising topologies by minimising across-board communication.

The simulations in chapter 8 were run on a PowerXplorer array (which is also

fully reconfigurable) with direct comparisons made with the transputer array in

the performance analysis in section 8.6.

All code is compiled within the Parix Environment (which is described in sec-

tion 3.4.3). As far as the programmer is concerned, Parix is a parallel form of Unix

which provides standard compilers (C and Fortran) but with additional libraries to

support communication between processors, 'virtual' topology construction, and

positional identification of processors within a network.

3.4.1 Transpu te r s

C P U

Links

Moating Point Unit

Memory Interface

RAM

Figure 3.4: The T800 Transputer

The transputer (figure 3.4) is a RISC^ implementation built around the CSP

^Reduced Instruction Set Computers

Ph.D Thesis University of Southampton 32

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 3

EC-next

(Host Link 1) (Entry 2 }

Board B
Board A

[Host Link 0) [Entry 0

EC-prev

1 node 0 0 1 node 1 0

1 node 2 0 1 node 3 0

Figure 3.5: A 2 x 2 partition on the PowerXplorer array (Parsytec 1994)

model concept (Hoare 1978). The native language of the transputer is Occam

which, like CSP, is constructed from the fundamentals of assignment (a = 1 etc),

and input and output communication. However, since this research is concerned

with the development of generic tools, software portability is more important,

and programming in a version of C (Parix) lends itself more conveniently to this.

The transputer (at the machine code level) still aims to complete the three most

common operatives {load, store and add constoni combinations of which account for

60 - 80% of instructions) in one clock cycle (May and Shepherd 1990). Transputers

can also communicate with one another (via four bi-directional communication

links) while simultaneously carrying out computations.

3.4.2 T h e PowerXplore r Arch i t ec tu r e

The basic PowerXplorer array component is shown in figure 3.5. In similar manner

to the transputer array, processors appear two to a board and are connected to

other processors via four bi-directional communication links. The communication

in the system is provided by T805 transputers (a close relative of the T800) while

Ph.D Thesis University of Southampton 33

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 3

processing power is provided by an MFC 601 chip. Prom the results provided in

section 8.6 and the 1 x 1 partitions in tables 8.3 and 8.8 it can be seen that the

MFC 601 is approximately 15 times faster than the T800. Larger arrays can be

built from these components which are connected via the EC-next, EC-prev and

the entry points (Parsytec 1994).

3.4.3 T h e Pa r ix I m p l e m e n t a t i o n

P a r i x and t he T800 T r a n s p u t e r (Parsytec 1993)

The Parix implementation (Parsytec 1993) uses a software router (when deal-

ing with T800'8) to emulate a T9000/C104 network when interpreting the virtual

links, which aims to produce an optimal routing between processors. The T9000

was a proposed upgrade of the T800, and the C104 is a routing chip that can be

connected to 32 transputer links. As far as the programmer is concerned, this

means that the same functionalities exist for application purposes. The only dif-

ference depends on how the software router interprets communications (which are

already slower on the T800 than on the T9000).

T h e P a r i x P r o g r a m m i n g Mode l (Parsytec 1993)

Static qualities:

(i) The main program is duplicated on all processors.

(ii) Processors can be identified by a number giving their individual position in

a network.

(ill) A library of pre-programmed topologies is available.

Ph.D Thesis University of Southampton 34

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 3

Dynamic qualities:

(i) Allows the creation of 'virtual links' between arbitrary processes and proces-

sors.

(ii) Supports the object-oriented concept (C4-+) of threads (a communication

between objects)

(iii) Supports synchronous and asynchronous communication.

(iv) User defined virtual topologies can be created

Links to external devices:

(i) External devices can be accessed via a host processor

Also:

(i) No network description language is required. Topologies are created using

graph modelling.

3.5 Conclusions

This chapter has introduced those concepts common to parallelisation: data and

instruction parallelisation through the description of SIMD and MIMD computer

models; explicit and implicit parallelisation; and shared and distributed memory

machines. Where possible, example machines of each type were described. The

use of parallelisation was then discussed in a control theory context before the

concept of scalability was introduced mathematically and discussed. Finally, the

machines speciBcally used for the implementations of the methods in this thesis

are described together with a brief outline of the Parix operating system model.

Ph.D Thesis University of Southampton 35

Chapter 4

Architectures for Real-Time

Feedback Controllers

4.1 In t roduc t ion

The work in this chapter is primarily concerned with verifying systolic/wavefront

architectures described in (Li 1990). Systolic architectures are dehned as follows

((Kung 1988) and (Li 1990)):

A systolic architecture is a network of computer processors exhibiting (a) syn-

chronisation of data Eow with computation (the processors are controlled by a

global clock); (b) modularity and regularity (there are a limited number of cell

types which appear often); (c) spatial and temporal locality; (d) the speed-up in-

creases at a linear rate. For example, N cells will give a near N-times speed-up -

the only losses are due to the communication of data to the next cell in the array

(see figure 4.1).

The wavefront architecture differs from the systolic array only in that the

36

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 4

control of dataEow is self-timed and data-driven, rather than by a global clock.

This eliminates the need for temporal locality as data operations are triggered by

the arrival of data from neighbouring elements.

The main advantage of systolic/wavefront architectures is that multiple com-

putations are permitted for each memory access. This is particularly advantageous

for problems where multiple operations are carried out on the same data inputs. A

good deal of control problems belong to this category. The general idea is shown

in hgure 4.1.

Memory

PE PE PE PE PE PE PE PE

Figure 4.1: Systolic architectures (Kung 1988)

The benehts of these systolic/wavefront architectures, when compared with

other special purpose architectures are as follows (Kung 1988):

(i) high-level parallelism and pipelining.

(ii) multiple use of data which need only be accessed once per sample.

(iii) high speed operation.

(iv) simple timing circuitry.

(v) an ability to map high-level algorithms onto VLSI architectures.

(vi) cost effectiveness

Ph.D Thesis University of Southampton 37

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 4

T 8 0 0

Uc - y

U
T212

u
AlOO T 8 0 0

Uc - y
e

T212

11, e

AlOO T 8 0 0

Uc - y

T212 AlOO

Figure 4.2: T800 and AlOO Systolic/Wavefront architecture

These architectures have been applied to many areas of research including, of

most interest to this work, Digital Signal Processing and Recursive Least Squares

((Kwan 1987), (Gaston et al. 1994)). In effect, the controller in the digitally

implemented feedback control scheme considered here can be viewed as a Digital

Signal Processing filter embedded in a global feedback loop. Also, Recursive Least

Squares is a classic approach in system identification (see section 6.2).

4.2 An Heterogeneous Archi tec ture for Digital Feedback

Control

Several architectures are developed in (Li 1990) but ultimately, through Li's own

research, the architectures evolved into that shown in figure 4.2. This architecture

involves transputers supervising the operation of a DSP chip (the AlOO chip).

For the purpose of verification, attention is focused on one relatively simple

case; that of a discrete unity negative feedback control scheme where the forward

Ph.D Thesis University of Southampton 38

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 4

path controller is described by:

^ (4 = 1 \ (4.1)

which in difference equation terms is:

ui^k + I j = (li6{k^ + Cl2c(̂ — 1) + . . . + CLjiCi^k — 77. -t-1) +

hiu{k^ + b2u(̂ k — 1) + . . . + bjjiu(̂ k — ttt. + 1) (4.2)

where

e(A;) = r(A;) — ^(/r) (4.3)

and r(/i;) is the reference signal that the output ^(/c) is required to follow. The AlOO

DSP chip has a traversal Glter structure. In other words it is designed to execute

the calculations dehned by a hnite impulse response (FIR) Alter. Equation (4.2)

is an infinite impulse response filter, which can be regarded as being constructed

from two sections of an FIR filter.

An individual AlOO chip is capable of computing a difference equation involv-

ing up to 32 coefhcients (i.e. % = 16) or, perhaps more importantly, of computing

several subtasks in parallel. Each processing cycle is triggered by an external 'GO'

signal which allows the operation of the AlOO to be program controlled - in the

architecture in hgure 4.2, the signal is to be generated by the host transputer. The

AlOO also provides two coefhcient registers (the current coefficient register (OCR)

and the update coefhcient register (UCR)) which allow the host transputer to up-

date the hlter coefhcients every 'GO' cycle. This is important in an application

such ag adaptive/self-tuning control where controller coeScients are changing con-

tinuously and need to be updated on-line. The architecture of the AlOO is shown

Ph.D Thesis University of Southampton 39

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 4

asynchronous functions

control

lode
32 stages

reset

MA array

24/36 Bi t

l̂ector

cascad*

32-cyclc delay
output

synchronous hmctions

Figure 4.3: Block diagram of the IMS AlOO

in figure 4.3.

The AlOO expects all coefRcients to be multiplied together with the incoming

data (in control terms it is more specifically designed for an FIR filter) so it is

necessary to calculate one half of the difference equation first (i.e. the 6's triggered

by the arrival of w). This means interleaving the coefficients in the AlOO registers

as shown in figure 4.4, with the o's awaiting the arrival of the error data (e) in the

UCR. When the other half of the difference equation calculation is triggered by the

arrival of e, the coeScients are swapped. They are swapped every cycle, triggered

by the arrival of new data, and in order to ensure the correct timing, and a correct

transfer function, the coefficients are interleaved with zeros. An alternate solution

is to use two AlOO chips in the architecture, with one chip calculating each half of

the difference equation.

Ph.D Thesis University of Southampton 40

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 4

a 0

0 b.

"4 "6 "S
V. ,

^ "4 2̂ "2 %

- e -

UCR

CCR

AlOO

core

Figure 4.4: Type 1 cell using two stages of AlOO processing core

4.3 Validation

4.3.1 Transfer Func t ion Validat ion

This verification was demonstrated in previous work, and appears in (Li and

Rogers 1993) and (Brown aL 1995), but is duplicated here for convenience.

It is necessary, before any further investigation, to check that the new archi-

tecture (hgure 4.2) has the transfer function H(z). One method of verification,

used by (Lin 1986) among others, is the snap shot method to check the behaviour

of the implementation either after every cycle, or after several cycles. This can

prove di@cult to use in practice and a new method was developed in (Li 1990).

The basics of which can be summarised as follows:

(a) By inspection, write the difference equations that describe the signal flow

properties of the cell.

(b) Each cell in the array is identical, hence iterate these equations M-times, where

M is the number of cells.

Ph.D Thesis University of Southampton 41

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 4

(c) The transfer function is correct if this iteration converges to the difference

equation describing the input/output behaviour of the controller.

(d) To check the expandability of the array, repeat (c) with M replaced by M + 1.

This is, however, intended for a Ene grain approach (i.e. where all the cells

are the same). For the purpose of this verihcation, Arst consider a single cell in

the homogeneous architecture shown in figure 4.4. The time domain behaviour is

described by the diSFerence equation

+ 1) = (4.4)

Iterating n-times produces:

Vo{k -h 1) = Vji(̂ k — Ti) -|- ci2c(A) — 1) + CL̂ eî k — M -|- 1) -I-

4" 626(A) — 1) + . . . + bjiuî k — 77, + 1) (4.5)

which is the same as equation (4.2) since fq = it and % = 0. Expandability is also

easily proved.

It is also possible to apply these techniques to figure 4.2. However, since it

is inherently time varying, the verihcation must be applied to two complete 'GO'

cycles.

The data corresponding to e(A;) are delayed by one cycle before input to the

array. Hence, in transfer function terms, a single cell or hlter section is governed

by where denotes the state of the error delayed by one GO cycle.

Ph.D Thesis University of Southampton 42

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 4

This yields the following equation, when applied to the cell architecture:

E^ 1

^ - 1 OiZ

U 0

0 0

0 1

K;

u

(4.6)

Expanding this to n-cells, for a complete description of the architecture gives:

(using = z~^E)

E' 1 0 0 E^

U = (4.7)

U 0 0 1 U

which can be rewritten aa:

U = Y,a.C'E + Y,t>.C"U (4.8)

where Providing the plant output is sampled and the controller output

is collected at every even cycle, this equation corresponds to equation (4.2). The

time domain analysis yields:

Vi—i(2k) — Vi(̂ 2k — 2) + ciie(2k — 2) + biu(2k — 2) (4.9)

which corresponds to equation (4.2) provided 2A;' = A;, where A;' is the new discrete

time scale for the interleaved data streams.

4.3.2 Trac tabi l i ty

A problem is described as being tractable if its run time is a polynomial function of

the input size. A problem is intractable if its run time is no less than exponentially

Ph.D Thesis University of Southampton 43

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 4

related to the input size. This is an important consideration because if a problem

is intractable it will take as long to perform a calculation on a sequential computer

regardless of increases in processor speed. In short, intractability is a property of

the problem and its solution and not the computing model - therefore, there is no

point in parallelising it. If the relationship between the run time and the input

size is represented by P(n), this can be reduced down to the question:

Doeg f (n) = (Zo + + 03^2 + . . . +

The input size in this case is the number of coefficients + the number of inputs

of and e, i.e.

2A; + A; + A; = 4A;.

If the process time for 16-bit real multiplication is m (as the process time for

32-bit addition is the same as 16-bit multiplication on the AlOO, this is also m)

and the time for assignment then the process time is:

f (») = 2m.2A; -t- a

i.e. froceaa = 2m. gzze + a

which is a polynomial of order 1. Therefore the problem is tractable, and, in theory,

speed-up is possible on the architecture. It should be noted that this equation is

valid only because each data item need only be accessed once from memory. Since

one new value of u and e appears each sampling period, the equation complexity

(which would be intractable if all previous values of M and e had to be accessed

every sampling period) is greatly reduced.

Ph.D Thesis University of Southampton 44

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 4

4.3.3 T iming Considera t ions

The purpose of this part of the investigation was to determine the answer to two

questions:

(a) What is the minimum possible length of a 'GO' cycle?

(b) How much data can be extracted in the sampling period (limited by the length

of the 'GO' cycle)?

Three assumptions have been made in order to answer these:

(a) The AlOO is always going to communicate its results after the completion of

the calculation, which allows any communication between the AlOO and the

transputer to be declared dead-lock free.

(b) The plant is assumed to be always available for sampling.

(c) As long as two parties are ready for communication, the actual transmission

time between them is assumed to be negligible.

The minimum period of the 'GO' cycle can be expressed as:

2L = 2(2^ + 7 ; 4-71) (4.10)

where 7 ^ and 7^ are the word level multiplication and addition times respectively

and 7], is the transmission time (including program overheads).

The AlOO takes the same time to calculate a 16-bit multiplication as a 32-

bit addition at 80 Million FLoating point Operations a second (MFLOPS). This

means for a controller of order M < 16, the processing time of the AlOO is therefore

(2M—1)/(8x 10^) (sec) and on an even cycle the transputer used requires M(7'i4-7^4-

Ph.D Thesis University of Southampton 45

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 4

73+74) (sec), where Ti and 72 are the times for input and output communications

with the plant respectively, 73 is the time required for assignment, and 74 is the

time required to access the reference signal. In Occam, the native language of

the transputer, T î, Tlz and 7^ are all fundamentals and require one clock cycle to

perform since the plant is always open to communication.

On an odd 'GO' cycle the minimum length of the 'GO' cycle is n(7^+7^)+Bc,

where 71, is the time required for integer addition / subtraction, and Be denotes

the time before communications can take place after the previous step. Under the

given assumptions, Be is negligible. Which leaves the minimum length of the 'GO'

cycle, and hence the sampling period, as

moa;((n(7^ + 7^)); (2n - l) / (8 x 10^)) (411)

Unless the calculation speeds of the T800 transputer and the AlOO chip vary

considerably, the significant term will arise from the AlOO term. This time is an

absolute minimum time, based on manufacturing guide lines, and hence the actual

length of the 'GO' cycle will depend on efhciency of coding.

4.4 Conclusions

This chapter has been concerned with the development of verihcation techniques

for the parallel architectures introduced in Li (1990). These architectures are of

use in key elements of generic feedback control schemes based on adaptive / self-

tuning controllers. If these parallel architectures prove viable it will be possible

to use them in the computations required within critical length sampling periods.

Ph.D Thesis University of Southampton 46

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 4

Quicker calculation of plant models means shorter sampling periods (and hence

more plant information can be gathered) and / or more computationally complex

plant models can be constructed.

The timing cycles have been modelled and theoretical minimum length sam-

pling periods have been presented.

The parallel architectures have proved to be highly parallel and scalable. The

software controls of the process are a potential pitfall and success depends on the

efficient coding of the problem - paying particular attention to communication

overheads - a common problem in parallel processing.

Any control system that controls a plant that can be modeled by an order

difference equation could beneht from the architectures in Li (1990).

Ph.D Thesis University of Southampton 47

Chapter 5

Parallelisation of a Dynamic

Matrix Controller

5.1 In t roduc t ion

This chapter continues the investigation into the development of cost effective

solutions for the parallelisation of control schemes. Where the previous chapter

investigated systolic architectures whose cost effectiveness came from their simplic-

ity; this section looks at software implementations for situations where a limited

number of general purpose processors is available.

A desire to create plant models of increased size and complexity has begun to

push sequential machines to their limits. The ultimate performance limitation in

control is often the length of the sampling period and practically this needs to be

reduced to a minimum, to provide the most accurate control possible. This ideal,

coupled with the greatly increased computation required for more complex models,

can easily push the computation overheads beyond the capabilities of sequential

machines.

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

Dynamic Matrix Control can suffer from these problems, particularly when at-

tempting control of multiple input multiple output (MIMO) systems where mod-

elling requires the computation of many linear di&rential equations (in the form of

discrete/difference equations as a result of sampling). One result of this has been

limited 'real world' applications in the multiple-input multiple-output (MIMO)

case.

Cost effective solutions (with only a limited number of processors available) in

this area have largely been ignored. The software implementation investigated uses

a simple dynamic matrix control algorithm which, in processing terms, reduces to

matrix vector multiplication.

DMC has been used extensively in the chemical industry, for example in the

control of high-purity distillation columns (Chien 1996). Chien uses empirical

data to develop a simple 1st order nonlinear model of a distillation column, where

nonlinear functions depend on operating systems (where processing measurements

are taken) and upper and lower temperature bounds. There has been a good deal

of research into robust design of Model Predictive Control algorithms (MPC of

which DMC is a member) which, because most chemical processes are nonlinear,

leads to the solving of complex programming problems. (Sarimveis oZ. 1996)

is one example of such work. Cenceli and Nikalaou (1995) found that in order to

provide rigorously designed MFCs for nonlinear processes with ensured stability

and performance robustness, a high model accuracy is required. Finally, (Lee oA

1994) was able to extend the conventional step response model, to systems with

white measurement noise - via state estimation techniques - without increaaing

algorithm complexity.

Ph.D Thesis University of Southampton 49

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

5.2 D y n a m i c M a t r i x Cont ro l (D M C)

This section gives an overview of the basic ideas behind Dynamic Matrix Control

when applied to MIMO systems.

Basic DMC involves the prediction of the response of each system output to

inputs, constructed by feedback control, over the 'prediction horizon' using discrete

convolution models. These predicted responses can than be compared with the

actual responses once the sampling period has elapsed, and used to calculate a

vector of prediction error across the prediction horizon (TV). Here N denotes the

number of convolution models, i.e. outputs.

These prediction errors (if available) can then be used to compute control

inputs such that the next predicted response approaches the desired set point

trajectory. Suppose that at inatant A:, [/(A;) G ^ denotes the vector of control

inputs, y(A;) E the vector of outputs, j((A;) E ^ the vector of reference

trajectories, the subscript ^ indicates a particular channel in the corresponding

vector; and

e = [ei(/c + 1),... , ei(A; + jV), 62(A: + 1), • • • , 62(A; + TV),... ,

6m(A; + 1),... , em(A: 4- Â)] (5-1)

the vector of predicted errors over the prediction horizon # . Then the control

input vector for the next sampling period is computed as:

[/(A; + Z) = (5.2)

Ph.D Thesis University of Southampton 50

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 5

where (p =

K

"11 I'lp

k ml k

(5,3)

is the m X p matrix of feedback control gains. The computation of e is based on

fast control actions and does not include current and future control inputs. The

elements of the vector e are computed thus:

ej(A; + Z) = ej(A;) — j < TV, (< % < m (5.4)

where, in effect, includes future predictions of based on previously imple-

mented control signals and

E(A;) ^(A;) - y(A;) (5.5)

The formula for calculating is

M'u = E - ' f "
6=1

where

T

=1 c=6—1

(5.6)

(5.7)

With ^i(f(c) denoting the coefEcient of the open loop impulse response of the

ith output channel to the dtA input channel, and w((f. A; + 1 — c) is the sample

of the (ft/i input channel at sampling instant A; + 1 — c. The open loop impulse

can be obtained from a step response test on the (assumed open loop stable)

Ph.D Thesis University of Southampton 51

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

process to be controlled. Here the values of the unit step response are denoted

by with a sampling period of and it is assumed that

— 0, A; < 0. The integer T is termed the model horizon and the settling time

of the process is taken to be TAt. Finally,

= ^ (c) — }((c — 1), 1 < c < T
(5.8)

= 0

Computation time of this scheme can be seen to be most dependent on the

calculation of all quantities. This computation reduces to a simple matrix

vector multiplication:

R = S.M (5.9)

where the matrix S is of dimension mTV x Zt whose elements are all the coefRcients

of the impulse responses of the outputs to each input, also the vector M has the

structure:

M = [u I (^i — 1) , . . . , Ml (i 4-1 — T) , 'U((z — 1) , . . . ,'Uf(i + l — T)]^ (5.10)

5.3 Implementa t ion and analysis

(This section is adapted from (Brown oZ. 2000))

To produce a model of parallel matrix-vector multiplication, it is necessary to

assume a model architecture. Since the machine used for the test calculations is

transputer based, the model is a transputer-like model, but the primary results

can be applied to other parallel architectures as, in the baaic model, features

which are not available on most parallel architectures (e.g. the ability to overlap

Ph.D Thesis University of Southampton 52

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

communications and calculations on a single processor) are not employed. In

particular, the following assumptions are made.

1. The processor array can be conhgured so that any two processors can com-

municate directly.

2. The speed of communication is the same between all directly connected pro-

cessors.

3. There are no overlaps of communication on a single processor - i.e. if there

are more than one (set of) link(8) on a processor, only one can be in operation

at a time.

4. There are no overlaps between communications and computation.

5. Data packages between processors are of sufhcient length so that latency

e&cts are negligible.

These are of course a set of idealised conditions, but allow the construction of a

simple 'best case' model which is not tied specifically to any particular architecture,

and so should have general applicability. Note that here the reference to a link is

to a physical link; and that a block of data will be specifically tracked through a

processor array, without the assumption of a routing harness - in which much of

the cost and timings would not be under direct control.

In addition it is assumed that:

6. If there are p 'worker' processors then the problem can be broken into p

subproblems of equal size.

This last assumption, is not strictly necessary, but it ensures load-balancing, and

simplihes the analysis that follows.

Ph.D Thesis University of Southampton 53

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 5

0 1 2 0 1 2

master

' workers '

Figure 5.1: Model architecture: Pipe

In terms of the machine architecture, it is assumed there is a master processor

(processor 0) which assembles the matrix and vector - and p worker processors

(processors 1 to p) - which perform all calculations. Further it is assumed that all

elements of the matrix and vector are assembled by the master processor before

any data is transferred to the workers, and that there is only one link between the

master and the workers (the effects of relaxing these assumptions will be discussed

below). The last assumption has the eEect that, in terms of the behaviour of the

conhgurations of the worker processors, the architecture is equivalent to a simple

pipe (hgure 5.1).

With a single worker, the total time taken to perform the calculation, T, can

be split into the time taken for communications, (which includes the time taken

to return the results to the master), and the time for the computations, 7^, with

T = 7 ^ + 7^. Suppose now that there are p (> 1) workers. Breaking the problem

up into p subproblems of equal size (assumption 6), the hrst step in the algorithm

is to transmit the hrst block of data from processor (proc) 0 to proc 1; the second

step is to transmit this data from proc 1 to proc 2; and, on the third, to transmit

it from proc 2 to proc 3, while simultaneously transmitting the second block of

data from proc 0 to proc 1, etc.

Ph.D Thesis University of Southampton 54

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

In tabular form:

1 : 0 ^ 1

step 2 : 1 2

step 3 : 0 ^ 1 , 2 ^ 3

step 4 : 1 2, 3 ^ 4

step 2p—1: 0 ^ 1 , , p — l ^ ^ p

where D, denotes the %tA block of data and the arrow a transfer of data between

processors. Computations are then performed on all workers simultaneously, fol-

lowed by the transmission of the results back to the master by a procedure which

is essentially the reverse of that given above. Ignoring any overheads in the com-

munications from sending p 'small' sets of data rather than a single 'large' set

(assumption 5) the total elapsed time for the calculation is now:

= (2 p - l) ^ + ^
p p

= ^2 1 Tm H Tc (5.11)
\ py p

With this model, there will be a gain from using multiple workers if 2] < 4-%):,

which reduces to:

< T, (5.12)

i.e. the time for communications should be less than for the computation when

there is a single worker. Perhaps more realistically, if 7] < T); is required, i.e. that

the cost of performing the calculations on the master processor is greater than

Ph.D Thesis University of Southampton 55

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

distributing the calculations, the following equation is obtained:

I <

assuming that the master processor is of the same speed as the workers, and that

it does not perform any of the calculations. Trivially, equation (5.13) gives < 0

for p = 1, but in practice T^/Tc varies from 1/3 when p = 2 to 1/2 as p tends to

infinity. In all cases it is signiAcantly more restrictive than equation (5.12), and

for a range of values of there is a minimum number of processors required

to achieve speed-up from distributing the calculation.

The scenario presented above, in which one of the processors controls the

procedure with the others performing the calculations, is common in distributed

processing. However, here it is possible to make more efficient use of the processor

array by including the master processor in an equal share of the computation. In

which case the total elapsed time becomes:

Requiring this to be less than 7^ produces:

I < ^

which again varies from 1/3 (p = 1) to 1/2 (p —> oo).

The second scenario with 7] < 7^ may seem more realistic, but the first is also

of interest as it models the situation in which the data is gathered externally to

a processor array before being passed along for the calculations, particularly in a

situation in which the data can be assembled at least as fast as it can be processed.

The case in which processor 0 has more than one link will be considered below.

Ph.D Thesis University of Southampton 56

Parallel Processing Tools in
D.M.Brown Adaptive and Self Timing Control Chapter 5

A key feature in the model presented above is that processor 1 is always active,

from which it follows that any configuration of the worker processors will produce

the same (model) processing time as a simple pipe. However, in practice, if the

worker processors have more than one link it would be sensible to configure the

processor array as a mesh, for example, and send successive blocks of data down

different links as there will be natural idle periods in any route used which should

make the algorithm more tolerant to communication bottlenecks.

Prom the above, it is clear that in theory signihcant gains from using multiple

processors will not be achieved unless the computation time 7^ is significantly

greater than the communication time T^. The results are likely to be worse than

those predicted. The estimate for the computation time of each processor will be

reasonably accurate. However, the communications time is a 'best case' minimum

estimate which ignores the e%cts of overheads and latency.

Now these predictions are to be compared with test calculations. The ma-

chine used for all calculations is a Parsytec Multicluster II with 16 25Mhz T800

transputers, each with 4Mb memory. The operating system of the array is Parix,

Parsytec's parallel version of Unix, and is coded in C, with communications imple-

mented using routines supplied with Parix. For reference, during the largest runs,

the data transfer rate along a single link was 8.0 Mbits / sec, and the computa-

tions were performed at 0.38 Mfiops in single precision (32-bit) and 0.33 Mflops in

double precision (64-bit). These figures are in line with the machine specihcations.

To proceed further, the decomposition of the algorithm onto the processor

array must be specified. The obvious ways of doing this are to split the matrix

5" by rows or by columns. Here the latter is chosen, and each row is split so that

each processor performs part of each inner product for every row, before returning

the values to processor 1 - which completes the summation, and Anally returns

Ph.D Thesis University of Southampton 57

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 5

Nn

SI So

L

% 5,

Ml

— + SpAfp

Ma Lo

Mp

Nr,

Figure 5.2: Division of the matrix vector calculation

the result to the master processor. If the matrix 5" is of dimension Âo x Z,o, and

the vector M is x 1, (^o = is assumed where Z, is an integer) then 5" is

decomposed thus:

1) ' ' ') Sr. (5.16)

where each of the 5"; is an x Z, matrix, with M similarly decomposed into

pZ, X 1 vectors, M i , . . . ,Mp. Processor % will calculate the Âo x 1 vector

and processor 1 will sum these vectors to obtain S'M. The division of the matrix

vector calculation is shown in hgure 5.2.

When estimating the total elapsed time for the calculation for the parallel

algorithm, it has been assumed, in effect, that the number of arithmetic operations

and the total data transfer through the processor array is the same, regardless

of the number of workers. This is not strictly true. For the algorithm described

above, with a single worker, proc 1 receives A^Z,o+Z,o values and returns Âo values.

Thus, if CK is the average time for transmission of a single value, equation (5.17) is

obtained.

Tm — Ct{LoNo + Lq + No) (5.17)

Ph.D Thesis University of Southampton 58

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

However, if p > 1, then processor 1, which controls the procedure, will receive

^0^0 + -̂ o values from processor 0, forward (p — + 1) values to the other

workers, receive (p — l)A^o in return and hnally return values to processor 0.

Hence, the total time for communications can be estimated as

^2 — —̂ Tm + ct — 2 + —̂ No (5.18)

rather than (2 — l /p)T^ as used above. However, the relative increase given by

equation (5.18) is 8((p—1)/Z,(,), which, for the type of problem of interest here, will

be small. There is a similar small increase in the computational work performed

by proc 1 (an extra (p — l)No additions).

There are a number of reasons why a simple model is used (as represented

by equations (5.11) (5.15), and (5.17)) to analyze the numerical results rather

than the exact model as given by equation (5.18). Firstly, the errors will be

small since problems in which and are large and p relatively small are

primarily of interest. Secondly, the simple model can be used for any sensible

parallel decomposition of the model, whereas the deviation from it will depend on

the details of the parallel algorithm. Thirdly, the errors should be much less than

the variation which can arise from differences in the conhguration of the hardware

used for the calculation.

The Parsytec machine is reconhgurable, and any two processors can be linked

together, but the time taken for communications between any two processors will

depend on the routing. In particular, the machine has eight boards, each with two

processors, and there can be a significant difference in the time taken to transmit

the same amount of data between two processors on the same board and those

on different boards. For example, a test calculation waa performed using single

precision arithmetic for a square matrix with = 576, a single worker, and

Ph.D Thesis University of Southampton 59

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 5

using processors 0 and 1 in the array, which are on the same board, the complete

calculation took 3.2 seconds, while using processors 0 and 6, the calculation took

4.2 seconds. This was the worst case encountered in this calculation, all other

combinations tried gave better agreement. In the results given below for the pipe,

no attempt has been made to optimise the conhguration to minimise the effects

on the algorithm of the different rates of data transfer. Communication in the

test calculation and all examples presented here is and sent a row of the

matrix at a time.

A'o Run time (sees) % Time on computation
18 0.0058 35.0
36 0.0203 39.1
72 0.0760 41.4
144 0.2972 42.1
288 1.1762 42.4
576 4.6650 42.7
1152 18.5828 42.9

Table 5.1: Square matrix x ATg, = 1, double precision.

NQ Run time (sees) % Time on computation
18 0.0104 4.9
36 0.0274 7.6
72 0.0981 8.2
144 0.3675 8.6
288 1.4234 8.8
576 5.6903 8.8
1152 22.7529 8.8

Table 5.2: Square matrix x jVo, p = 4, double precision.

No Run time (sees) % Time on computation
18 0.0205 1.4
36 0.0445 2.2
72 0.1145 3.2
144 0.4005 3.6
288 1.5672 3.6
576 6.2199 3.6
1152 24.7817 3.6

Table 5.3: Square matrix x TVo, p = 9, double precision.

Tables 5.1 - 5.3 give representative times for runs with a master processor

Ph.D Thesis University of Southampton 60

Parallel Processing Tools in
D.M.Brown Adaptive and Self Timing Control Chapter 5

and one, four and nine workers respectively, using double precision arithmetic

and the original scenario in which the master processor does not perform any of

the computations. The results show that for small values of as expected,

start-up and overheads are significant, but aa TVo increases, the proportion of total

time spent on the numerical computations asymptotes to a constant value with

+ T):) = 0.43. Since > 7^, the analysis above predicts that total time

for the calculation will increase if more workers are used. Using the values given

in table 5.1 , equation (5.11) predicts that the total time for JVo = 1152 will be

20.5 seconds with p = 4 and 20.9 seconds if p = 9. The values given in tables 5.2

and 5.3 for these cases are larger than the predicted values (22.8 seconds and 24.8

seconds respectively), not surprisingly since the model is a best case analysis, but

clearly the trend is as predicted.

There is no point in considering this case further, as the results demonstrate

unequivocally that, with the processor array employed, the quickest way to perform

the calculation for any size of matrix is to use a single processor, and not try to

distribute the calculation.

Better results would be expected for the single precision case, where the time

spent on arithmetic computations will decrease by roughly 10% while, for su9i-

ciently large problems, the communications time should halve. Tables 5.4 - 5.6

are similar to 5.1 - 5.3, except that single precision arithmetic has been used. For

a single worker, the proportion of the time spent on the computations now con-

verges to approximately 0.58 seconds, and hence the model predicts a marginal

decrease in the total time taken as p increases. From table 5.5, there is a small

decrease in the total time when p = 4 for TYg > 288, but there is a small increase

when p = 9 (table 5.6), which is almost certainly associated with delays in the

communications.

Ph.D Thesis University of Southampton 61

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 5

No Run time (sees) % Time on computation
18 0.0039 47.8
36 0.0143 50.4
72 0.0525 54.3
144 0.2012 56.4
288 0.7948 57.0
576 3.1590 57.3
1152 12.5694 57.6

Table 5.4: Square matrix ATg x p = 1, single precision.

NQ Run time (sees) % Time on computation
18 0.0087 5.4
36 0.0205 9.3
72 0.0562 13.0
144 0.2043 14.0
288 0.7775 14.7
576 3.0328 14.9
1152 12.1601 14.9

Table 5.5: Square matrix Wg x p = 4, single precision.

NQ Run time (sees) % Time on computation
18 0.0192 1.4
36 0.0392 2.3
72 0.0877 3.9
144 0.2306 5.6
288 0.8164 6.3
576 3.2090 6.3
1152 12.7738 6.3

Table 5.6: Square matrix TVo x jVg, p = 9, single precision.

Ph.D Thesis University of Southampton 62

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

Even with single precision, there is a drastic increase in the total time taken

aa p increases when is small. This highlights the detrimental effects of the

overheads in the communications with small problems, and the need to transmit

the data in sufficiently large packets so as to minimise the effects of these over-

heads, in accordance with assumption 5. A simple test in which each value in the

matrix and vector was transmitted separately further illustrated this point. With

p = 1, and No = 576, the total time for the calculation was now 68.1 sees for

single precision, and 69.8 sees for double precision, as compared with 3.2 and 4.7,

respectively, as given in tables 5.4 and 5.1, when each message between processors

0 and 1 consisted of a complete row of the matrix (or the vector).

It is clear that with the present model, essentially a simple pipe, where commu-

nications and computations cannot be overlapped, with the hardware and software

employed for the calculations, the fastest way to perform the matrix-vector mul-

tiplication is to use a single processor. However, if the restrictions placed on the

model are relaxed to take advantage of some of the features of transputers, then

a more efhcient parallel algorithm can be derived. In particular, by dropping the

assumption of a master processor with a single link to workers, the processors can

be configured into a two-dimensional mesh in such a way that the total commu-

nication time for the parallel algorithm can be almost halved. For convenience,

assume that the processors have been conhgured into a square mesh (e.g. 2 x 2 ,

3 x 3) with the top left processor designated as proc 0, which sends the data to

the other processors, assembles the hnal results, and performs an equal share of

the matrix-vector multiplication. Then, providing successive blocks of data are

sent down different links, e.g. the hrst through the 'east' link the second through

the 'south' link, the third 'east' etc (see figure 5.3), the total communications

time will reduce to ((p — l)/p)T^, while the computation time can be estimated

Ph.D Thesis University of Southampton 63

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

as 7^/p, where p is the total number of processors in the mesh. As before, there

will be errors in these estimates due to decomposition of the algorithm, but again,

these will be insignificant if the problem is sufficiently large. A routing strategy

must be derived to distribute data for any particular mesh and this can be done

in a number of ways. The only general rule to be applied is the obvious one that

the nodes on the mesh furthest from proc 0 should be populated hrst. A sample

routing strategy for a 3 x 3 mesh is shown in figure 5.3. With this model, there

will be a gain if

1 H—Tf. < Tc
\ py p

i.e. if

7;^ < 7; (5.19)

For double precision 7^ > 7^, and hence it will, once again, be less eSicient to

parallelise the algorithm. However, for single precision 7^ < 7), and some modest

gains might be achieved from parallelisation. Tables 5.7 - 5.10 show results for

a single processor, and 2 x 2, 3 x 3, and 4 x 4 grids, respectively. There are a

large number of entries in table 5.7, to provide a reasonable number of cases for

comparison on the other grids. For small values of Â o, the time spent on the

computation is less than 100% because of overheads in initiating the calculation,

but this time soon becomes insignificant. As expected, for small values of the

total time increases with the number of processors.

Assuming 7| . /(7^ 4-7^) = 0.58 (see Table 5.4), the model predicts that there

will be gains of 21%, 25% and 26% with p = 4, 9, 16, respectively, when compared

with the computation time on a single processor. For p = 4, there is a slight

Ph.D Thesis University of Southampton 64

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 5

5:D3 4: D6

8:D1

3 :D8

7:D2

2 : D 5

6:D4

0: D9 1:D7

Figure 5.3: Model architecture: Mesh. Inside each box is the processor number and the block of
data processed on each node, e.g. processor 4 processes the sixth block sent by processor 0.

No Run time (sees) % Time on computation
16 0.0015 96.9
18 0.0018 97.5
32 0.0056 99.2
36 0.0070 99.4
64 0.0219 99.8
72 0.0277 99.8
128 0.0871 100.0
144 0.1102 100.0
256 0.3476 100.0
288 0.4398 100.0
512 1.3887 100.0
576 1.7574 100.0
1024 5.5520 100.0
1152 7.0265 100.0
4096 88.7974 100.0
4608 112.3823 100.0

Table 5.7: Mesh, Square matrix TVo x p = 1, single precision.

Ph.D Thesis University of Southampton 65

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 5

A'"o Run time (sees) % Time on computation
16 0.0044 9.1
32 0.0103 14.1
64 0.0297 19.0
128 0.1087 20.3
256 0.3885 22.51
512 1.4667 23.74
1024 5.6948 24.41
4096 89.8204 24.72

Table 5.8: Mesh, Square matrix ATg x jVo, p = 4, single precision.

No Run time (sees) % Time on computation
18 0.0132 1.9
36 0.0270 3.2
72 0.0648 5.0
144 0.1801 7.0
288 0.7638 6.5
576 2.6351 7.5
1152 9.7188 8.1
4608 148.1125 8.4

Table 5.9: Mesh, Square matrix No x No, p = 9, single precision.

No Run time (sees) % Time on computation
16 0.0146 1.0
32 0.0286 1.5
64 0.0607 2.5
128 0.1466 4.0
256 0.4138 5.4
512 1.4439 6.1
1024 5.0232 7.0
4096 71.6002 7.8

Table 5.10: Mesh, Square matrix x Wg, p = 16, single precision.

Ph.D Thesis University of Southampton 66

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

increase in total time for the two largest values of 1024 and 4096, but a 10%

and 19% decrease, respectively, with p = 16. However, with p = 9, there is a

significant increase for all values of A'o (greater than 30% for the largest values

used). Thus, while the results for p = 16 are broadly in line with expectations

(some gain but not aa much as predicted) those with p = 4 and p = 9 are not. The

obvious explanation for this is delays in transmission of data due to a suboptimal

configuration of the mesh. As shown above, there can be significant differences in

the time taken to transmit a block of data between different pairs of processors in

the array, and a test was performed comparing processors 0 and 1 with processors

0 and 3 for the master-single worker scenario with = 576. The former took 3.2

sec and the latter 4.2 sec, close to the worst case found (0 and 6). Since the link

from 0 and 3 is one of the two most active when p = 9, (sending four blocks of

data, the same as the link from 0 to 1) this delay will clearly cause a significant

degradation of the algorithm as a whole.

The relatively good agreement between the predictions and the results for

p = 16 suggest that this mesh is a good, if not optimal, configuration for the

machine, and that better results might be obtained for p = 4 and p = 9 by using

a submesh of the 4 x 4 mesh used with p = 16. To be precise, for p — 16, the

processors were labeled from 0 to 15 and processors 0 — 3, 4 — 7, 8 — 11 and 12 —15

were used for rows 1 — 4 in turn, providing a natural mapping between the mesh

and the processor array and using all processors in the array. In generating tables

5.8, and 5.9, processors 0 — 3 and 0 — 8 were used, respectively, with the first 2/3

for the first row of the mesh etc. Instead, the top left part of the 4 x 4 mesh

could be used for the smaller mesh, i.e. processors 0, 1 (row 1) and 4, 5 (row 2)

for p = 4, and 0 — 2 (row 1), 4 — 6 (row 2) and 8 — 10 (row 3) for p = 9. The

results of these calculations are given in tables 5.11 and 5.12, which show much

Ph.D Thesis University of Southampton 67

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

better agreement with predictions. For p = 4 (table 5.11), there is a 16% gain

with = 1024 and 17% with TVo = 4096, as compared with the predicted 21%

gain. For p = 9, the gains are 15% for TVo = 1152 and 19% for jVo = 4608, against

25% from the theory. In general, given the simplicity of the model, the agreement

between the predictions of the model and the test results is good.

From tables 5.10-5.12 it is possible to deduce a minimum desirable message

length. With TVo = 1024 there is a gain in speed (as compared to the single

processor version, table 5.7) of 16% for p = 4 and 10% for p = 16. In comparison,

with = 4096, the gains were 17% for p = 4 and 19% for p = 16, which indicates

that by this stage the communications are reasonably efficient. With No = 1024

and p = 4, each packet of data is 1024 bytes long, but only 256 bytes long for

p = 16. With No = 4096 the packets are 4096 and 1024 bytes for p = 4 and

p = 16 respectively. Also for p = 9 and Âo = 4608, the gain is 19% and the packet

length 2048 bytes. From the results, the conclusion is that a data packet needs

to be at leaat 1Kbyte long for efEcient communications using the Parix message

passing routines. The largest problem considered had A^ = 4608, which would

require approximately 85Mbytes memory to store the matrix on processor 0, far

more than the 4Mbytes available. However, this case was easily simulated by

overlapping rows of the matrix - the numerical results are of course meaningless,

but the timings produced are valid. In a similar manner to that for the mesh, the

conEguration for the pipe could clearly be improved to produce better agreement

with the theory. This has not been done as the results presented above show

clearly that, even in the best case, there would be little gain when using a pipe.

So far, although a transputer array has been used for test calculations, generic

processor arrays have been modelled, ignoring specific features available on few

other (if any) general purpose microprocessors. Now the effect of using all the

Ph.D Thesis University of Southampton 68

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 5

No Run time (sees) % Time on computation
16 0.0038 10.4
32 0.0092 15.8
64 0.0260 21.5
128 0.0918 24.0
256 0.3230 27.1
512 1.2077 28.8
1024 4.6659 29.8
4096 73.7713 30.3

11: Submesh, Square matrix x ATg, p = 4, single p

No Run time (sees) % Time on computation
18 0.0092 2.8
36 0.0188 4.7
72 0.0466 7.0
144 0.1318 9.6
288 0.4616 10.7
576 1.6080 12.2
1152 5.9677 13.1
4608 90.7798 13.8

Table 5.12: Submesh, Square matrix No x Ng, p = 9, single precision.

facilities of the transputer are considered. First, it has been shown that there

are significant differences in the data transfer rates between different pairs of pro-

cessors in the machine used in the calculations reported above. These variations

could be eliminated by using a hard-wired processor array with direct communi-

cations between the processors. Also, by coding in Occam, it would be possible

to get close to the maximum speed of 20Mbits/sec on each link, rather than the

7.7Mbits/sec achieved using Parix. With Occam, there would be a similar in-

crease in the computation rate, not to the nominal speed of 2Mflops, but at least

to IMSop with the type of calculations performed in this study. Since the ex-

pected proportional increase is roughly the same for both communications and

computations, the arguments above on the merits or otherwise of parallelising the

algorithm are not aEected. However, by making use of the ability of transputers

to overlap communications on diEerent links and to overlap communications and

computations, significant speed-ups can be achieved.

Ph.D Thesis University of Southampton 69

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

On the T800, it is possible to run all four links and the arithmetic unit simul-

taneously, but due to bottlenecks on the dynamic memory access, full efficiency

can not be expected when running more than three processes simultaneously, e.g.

three links or two links and the arithmetic unit. While detailed tests would be

necessary to determine exactly how much the performance is degraded from the

theoretical maximum when, for example, sending data along three links and per-

forming computations simultaneously, models using three and four processors can

be developed to estimate the bounds for gains that can be made using multiple

transputers. The success of the models developed above in predicting the be-

haviour of the pipe and the mesh, particularly the latter, suggests that such an

analysis will produce reliable results.

First, take the case in which 7 ^ > 7^. One example of a three process model is

that of a master processor, which performs no computations, connected externally

via one link, and to three worker processors on the other three links. Data can be

sent simultaneously to all three workers, from the master, while the workers can

perform computations on the first data packets received while subsequent packets

arrive. Ignoring overheads, (primarily the times of the computations performed

by workers after they have received their last packets of data) the total elapsed

time for the calculation is T^/3, and hence there will be a gain if T^/S < T̂ ., i.e.

this model requires

Tc < < 3T, (5.20)

Another three process model which will always show a gain is one in which the

master processor performs a proportion of the computations while simultane-

ously sending data to two workers which each perform a proportion 'y of the

Ph.D Thesis University of Southampton 70

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

computations. Load balancing requires which produces

since /) + 2'y = 1, where = A four process model would have the

master performing ^ of the computation and each of three workers e, which gives

« = ^ (S 22)

Since /) < A;/3 for all A; > 1, the second and third models both predict shorter total

elapsed times for the calculation than the hrst, which can therefore be ignored. If

A; = 1.38, as for the double precision calculation (table 5.1), then = 0.41 and

^ = 0.32, and hence it should be possible to reduce the calculation time to roughly

1/3 of that on a single processor, a significant gain.

The case with 7^ > is considerably more complicated, since maximum

eSciency requires more than one layer of worker processors. Taking hrst a three

process model, then pipes of worker processors can be hung off each of the links on

the master. The length of each pipe will depend on Suppose the time

taken to send all the data from the master to the hrst processor in a pipe is 7],,

then the time to perform all computations on this data on a single processor would

be and to balance the load on the first processor requires that it performs a

proportion, of the computations where = 1/A;i. Thus, if 1 < < 2, then at

least half the computations can be performed on the first processor in the chain,

and the rest on a second processor. If 2 < < 3 then the chain would need to

be three deep to obtain maximum efhciency. Here, in addition to ignoring the

overheads, it has been assumed that it is possible to synchronise the data transfer

and computations along the chain in such a way that near maximum efficiency is

Ph.D Thesis University of Southampton 71

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

achieved. The latter may be difhcult without some complicated coding and data

management, but the relative high efhciency of Occam with 'short' messages, due

to low latency, should help.

Full three process models can now be constructed. With a master processor

which does not perform any computations and three chains, total elapsed time is

? ^ / 3 , i.e.

r = | - (5.23)

A second three process model with two chains and the master performing a pro-

portion of the calculation can also be constructed, but since its estimated time is

worse than that of equation (5.23) no details are given. A four process model is

possible with a group of processors on each of three links, and one external link

with a proportion ^2 of the computations performed on the master processor. The

detailed conhguration (and total number of processors) will depend on A:i, but the

total time is easily estimated. If each group of workers performs a proportion

of the total computation, then ^2 + 3'y2 = 1, and since load balancing requires

= l ' 2 ^ , A = 1/(1 + S/cf) is obtained and the total elapsed time is

Note that the time predicted for the four process model (equation (5.24)) is always

less than that for the best three process model (equation (5.23)). For = 1.27,

as for the single precision calculation (equation (5.23)) gives 0.267^ and equation

(5.24) gives 0.217^. The models suggest that it may be possible to reduce the total

time for calculation to a quarter of that for a single processor.

Ph.D Thesis University of Southampton 72

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

5.4 Conclusions

Dynamic Matrix Control, in processing terms, can often be reduced to matrix

vector multiplication. The work discussed in this chapter has been concerned

with developing cost elective (a limited number of processors available) parallel

solutions to the computations involved. Considerable effort has been directed at

developing methods of assessing the effectiveness and performance of the parallel

architectures.

The T800 transputers have a comparatively (with other commercially avail-

able processors) high communication to computation rate, and yet, little speed up

was achieved even with problems that provided the most efficient communications

rate (where message lengths are all close to the optimum). This would suggest

that matrix vector multiplication is not suited to parallelisation. Problems that

are most suited to parallelisation are those which have a high computation to com-

munications ratio, i.e problems which require a minimum amount of information

to be communicated to them, while a large amount of computation is carried out

from that information. Following this, extra speed up would be achieved if it was

possible to construct matrix elements from minimal data (e.g. when dealing with

sparse or symmetrical matrices). Another route might lie in a transputer specific

implementation which takes advantage of the ability to overlap communications

and computations; or on machines where data can be loaded directly to multiple

processors in the array (say the boundary processors).

With processor speeds increasing at least as fast as communication speeds,

it is not easy to envisage future processor arrays providing more speed up on

the architectures presented in this chapter. This conclusion is important since it

highlights that the DMC problem is not a practical problem for parallelisation on

Ph.D Thesis University of Southampton 73

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 5

commodity processors.

Ph.D Thesis University of Southampton 74

Chapter 6

Implementation of Multiple

Model Based Adaptive Control

Schemes - The Linear Model Case

6.1 In t roduc t ion

This chapter describes the development of a parallel processing platform for the

implementation of a class of multiple model adaptive control schemes which are

known to yield superior performance over alternatives in cases of practical inter-

est. This scheme, using multiple models, switching and tuning, is described in

section 6.3. Certain necessary alterations and additions to the original version

are then discussed before the scheme is parallelised and fully analysed. Finally,

a brief overview of certain optimization strategies is presented. First it is neces-

sary to expand on the MRAC approach which was described in general terms in

section 2.2.2.

Conceptually, (Middleton oZ. 1988) can probably claim the hrst (renewed)

75

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

investigation into this area. The aim is to improve adaptive control systems by

increasing the domain 'covered' by the adaptive system. However, the limitations

of adaptive control to slowly time-varying plants remains.

There has been continued interest in multiple model switching schemes. -

(Morse a/. 1992) introduced hysteresis into the switching scheme of Middleton's

multiple adaptive model scheme. Morse had earlier shown that multiple model

schemes had limited capabilities without hysteresis switching. Hysteresis switching

has been applied to multi-variable control by Weller and Goodwin (1994). The

systems are limited to those with the same number of inputs 85 outputs. The

process still involves parallel adaptive models. It was proved that all switching

stops after a finite time (due to hysteresis) however, this is only applicable to the

identihcation of time invariant plants.

Narendra oZ. (1995) suggested that instead of distributing parallel adaptive

models, a single adaptive model should be run alongside several fixed models

distributed across a known parameter space. This method is described in greater

detail in section 6.3.1. Note also that this approach also raises the possibility of

achieving 'high performance' control of 'fast-varying' systems with the possibility

of large discontinuous changes in the plant dynamics. A proof of closed loop

stability of the scheme is presented in (Narendra and Balakrishnan 1997) which

revolves around the boundedness of inputs and states of the system. A final novel

approach to the field has been in the adaptive control of overmodelled plants

(Kreisselmeier and Lozano 1996). Over modelling of plants is a problem since there

will exist uncontrollable modes if exact matches of the input output mappings

of the plant are achieved. The solution presented is to run adaptive models of

different order (from the lowest possible order to the highest) in parallel. On the

whole, smooth adaptation can be achieved.

Ph.D Thesis University of Southampton 76

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 6

6.2 Model Reference Adapt ive Control [MRAC]

As discussed in section 2.2.2, MRAC is an area for which there exists a vast litera-

ture on both theory and applications. In this chapter one particular form of MRAC

is considered for which the following is the necessary theoretical background. The

results given are essentially from (Sastry and Bodson 1989) and the relevant cited

references and before introducing the MRAC scheme considered, it is necessary to

give some basic ideas/results from so-called indirect adaptive control.

There are two main approaches to the design of adaptive control schemes:

direct and indirect. Direct adaptive controllers use a direct update law for the

controller parameters, whereas the control action of indirect adaptive controllers is

divided into two steps. In particular, parameters are first estimated and then used

to select the controller parameters. Here an indirect approach must be chosen to

derive a model of the plant, which can then be used in the overall control strategy

considered there.

The basic structure of an indirect adaptive controller is shown in figure 6.1.

The plant is assumed to have a known structure, as dehned below, although its

parameters are unknown.

Controller

Parameters

e
Identification

Controller

Parameters Identification

T
Cymoller

u
Plant Cymoller Plant

Up

Figure 6.1: The basic structure of an indirect adaptive controller

The controller is parameterised by a number of adjustable parameters. When

Ph.D Thesis University of Southampton 77

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

the plant parameters are exactly known, the corresponding controller output

should force the plant output to exactly meet the control objectives. When

the plant parameters are not known, the adaptation mechanism will adjust the

controller parameters in such a way that the control objective is asymptotically

achieved. Existing adaptive control designs normally require that the control

law is linear in terms of the adjustable parameters in order to obtain adaptation

mechanisms with guaranteed stability and parameter convergence.

As noted above, the adaptation mechanism of an indirect adaptive controller

is divided into two parts: the identification of a plant model and the derivation

of the controller parameters. The adaptation law of the identifier searches for

model parameters 8 such that the model output becomes the same aa the plant

output when the same input is applied. From these estimates 8 of the plant

parameters the controller parameters are derived according to the chosen control

strategy, by MRAC here but alternatives exist such as pole placement (Elliott o/.

1985). Clearly, the main difference from conventional control lies in the existence

of this adaptation mechanism. The main issue in adaptation design is to synthesise

an adaptation mechanism which will guarantee that the control system remains

stable and fulfills the objective of the chosen control strategy. Many formalisms

can be used to this end, such as the Lyapunov theory and hyperstability theory

which can, for example, be found in (Follinger 1993a) and (Follinger 1993b).Next

the necessary background for controller design is given where, in keeping with the

two step control action, the description is divided into two parts, starting with the

identification of the plant model. Following this, the derivation of the controller

(by MRAC) parameters is described.

Pli.D Thesis University of Southampton 78

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

6.2.1 Ident i f ica t ion of t h e p lant

The identihcation strategy for the continuous time linear SISO systems considered

here is now summarised (adapted from (Autenreith 1996)). The task is to esti-

mate the parameters of a plant that can be represented by the transfer function

description

where }^(a) and [/(g) denote the Laplace transforms of the output yp(^) and the

input i^(^) of the plant, and A(g) and B(g) are two monic, coprime polynomials

of degrees n and m respectively. Also the plant is assumed to be strictly proper,

i.e. m < n — 1, and minimum phase, i.e. no right-half plane zeros. Note also that

the plant is not assumed to be stable and the sign of the so-called high frequency

gain is assumed to be known. No loss of generality arises from assuming that

> 0. Finally, the input M(̂) is assumed to be piecewise continuous for t > 0.

In this work the so-called (Ljung and Soderstrom (1983)) equation error iden-

tification structure is used. The plant transfer function here can be explicitly

written as

«(')=

where the 2^ coefhcients a i , - - - , a,! and /)i, - - , are unknown. This is a pa-

rameterisation of the unknown plant, i.e. a model in which only a hnite number

of parameters are to be determined.

For identification purposes, it is convenient to find an expression which depends

Ph.D Thesis University of Southampton 79

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

linearly on the unknown parameters. For example, the expression

^ + - - - + ^ + - - ' + (6.3)

is linear in the parameters and but would require explicit differentiations if

it were to be implemented. To avoid this problem, introduce the arbitrary monic

Hurwitz polynomial

A(s) = s" + A„s" ^ + • • • + Ax (6.4)

Then, using (6.1),

A(g)};(5) = A;pB(5)[/(5) + (A(g) - ^(g))};(5) (6.5)

and hence use of (6.2) gives the following new representation of the plant:

l-p(s) = ^ (6.6)
A(g) A(g)

where

G,*(s) = cxjiS^ ^ + • • • + ôx = kpI3(s)

b*(s) = (A„ — (3n)s'^ ^ + • • • + (Ai — /?i) = A(s) — v4(g) (6.7)

The transfer function from [/(a) ^ ^ (a) is given by

^ (g) _ o*(^)

(7(a) A(g)-6*(g)
(6.8)

and it is easy to verify that this transfer function is (9(a) when Q*(a) and 6* (a) are

given by (6.7). Also the assumption that A(s) and B(g) are coprime guarantees

that this choice is unique. In e&ct, the output of the plant can now be calculated

Ph.D Thesis University of Southampton 80

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 6

without explicit differentiation of

A state space realisation of the above transfer function representation can be

obtained by choosing the M x n matrix A^at and the x 1 column vector in

controllable canonical form, i.e.

0 1 0 . . . Q 0

0 0 1 0

^mat — 0 bx =

0 0 1 0

_ -Ai — An 1

From which it easily follows that

A(5)

1

5

^n — 1

(6 . 9)

(6.10)

Now introduce

.T [0!i, - - - , Ofn]

6* — [Al — ^1, ' " , An — (6.11)

and the n x 1 column vectors and as

= AmatWp(^)+6A^/W

(6.12)

Pli.D Thesis University of Southampton 81

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

with initial conditions 'u;p(0) and Wp(0). Then in Laplace transform terms

— (5/ —Amat) + —Amat)

= (g/ — Amat) ^^(5) + (5/ — Amat) (6.13)

and with this notation, the plant description (6.6) becomes

}^(g) = oIwp(5) + 6rwp(g) (6.14)

The plant parameters here are constant and hence this last equation also holds

in the time domain, i.e.

2/p(̂) = + 6rw^(^) := ^rwp(t) (6.15)

where

:= K , 6^] e A"'' (6.16)

:= ^^I(^),'»;^p(^) (6.17)

These last four equations dehne a realisation of the new parameterisation where

Wp(t) is the generalised state vector for the plant. This has dimension 2n and

hence this realisation is not minimal but the unobservable modes are those of A(g)

and are all stable.

The vector is a vector of unknown parameters which is linearly related to the

original parameters a,, through (6.11)-(6.17). Knowledge of one set is equivalent

to knowledge of the other. Also in the last form, the plant output depends linearly

on the the unknown parameters and hence standard identification algorithms can

be used.

Ph.D Thesis University of Southampton 82

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

In essence, the purpose of the identifier is to produce a recursive estimate

of the nominal parameter Since and 2/p(̂) are available, deEne the observer

(6.18)

to reconstruct the plant states where the initial conditions in this observer are

arbitrary. Also define the identifier signals

:= (6.19)

It now follows that the observer error w(t) — Wp(f) decays exponentially to

zero for even unstable plants. Also Wp(̂) is such that it can be reconstructed from

available signals without knowledge of the plant parameters. The plant output

can be written as

%(^) = ^ri(;(t) + e(() (6.20)

where e(t) denotes the presence of an additive exponentially decaying term given

by

G(̂) = 6'r(^/;p(^) - w(^)) (6.21)

and it is due to the initial conditions in the observer. Also it is possible to neglect

the presence of this term since it does not affect the properties of the identifier.

Pli.D Thesis University of Southampton 83

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

The identifier output is dehned to be

(6.22)

and the parameter error is defined as

(6.23)

Also the identifier error is dehned as

ei(^) := %/i(t) - 2/p(;() = i/'^(t)w(t) + e(t) (6.24)

These signals are used by the identifier algorithm.

Many identihcation algorithms rely on a linear expression of the form detailed

above, i.e. i/p(^) = ^r^(^) where it is only the so-called regressor vector that is

unknown. Associated with 2/p(() here is the linear error equation ei(t) = i/)^(t)w(t).

In effect, here the identiher has been separated into an identiher structure and an

identification algorithm. The identiher structure constructs the regressor w(t) and

the other signals related by the identifier error equation. Also the identification

algorithm is defined by a differential equation - termed the update law - of the

form

g(^) ^ '^(() = F(%(^), ei(<), l9(^), w(<)) (6.25)

where F is a causal operator which is explicitly independent of ^*((), and defines

the evolution of the identifier vector 9{t).

The Least-Squares algorithm is one of the update laws that can be used for

this purpose and the essential steps in this algorithm are now summarised. A

Ph.D Thesis University of Southampton 84

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

detailed treatment can, for example, be found in (Sastry and Bodson 1989). The

hrst key step in the Least-Squares algorithm is that the derivative of the vector

0(t) develops as a function of the output error. Based on this the normalised

Least-Squares algorithm is given by

•» -

where f (^) is the so-called covariance matrix and ^ is a constant positive gain to

be selected.

The elements of the covariance matrix f (^) can be interpreted as update gains

for each parameter and must be initialised, i.e. starting values for its entries must

be specified. A commonly employed method is to set f (̂ o) equal to a diagonal

matrix with non-zero elements in the range 1000 — 10000. A problem that can

arise during adaptation is that the elements of f (t) are decreasing and hence the

adaptation process becomes very slow when the gains for the adaptation tend to

zero. Numerous, essentially ad-hoc, solutions to this problem have been proposed.

Commonly used ones include covariance resetting or the use of a constant trace

algorithm (Goodwin and Mayne 1987). In the results in this chapter the former

has been employed to emulate the results produced in (Narendra aZ. 1995).

It consists of resetting the entries in the covariance matrix to their initial values

when its trace is less than a certain prespecihed bound.

Once the vector 6{t) containing the parameters a* and 6* is estimated, the

plant parameters CKi and are calculated using (6.11).

Ph.D Thesis University of Southampton 85

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

6.2.2 Con t ro l of t he P l an t

When an estimated model of the plant is known, a deterministic strategy can be

used to derive an appropriate controller. There are many control strategies that

can be used, such as pole placement or model reference control. In the following,

a version of the latter approach will be described.

Der iva t ion of t h e control ler

In keeping with the MRAC strategy, the reference model is represented by the

transfer function

M(g) = (6.28)

where the polynomials f (s) and Q(s) have the same degrees as j4(g) and B(g)

respectively. Since an unstable reference model makes no sense _P(s) must be a

Hurwitz polynomial.

r
M(g) — Vm M(g) —

Figure 6.2: The reference model

The objective of MRAC can be achieved by using a controller consisting of

three parts, a feedforward gain a cascade compensator and a feedback

compensator as shown in hgure 6.3. The closed-loop transfer function of

the whole system is

\ ^ / g gqx

where A(g) is the Laplace transformation of r(^). To simplify the overall scheme,

Ph.D Thesis University of Southampton

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 6

controller

Kin («)

(4

(«)

4

B(')
A(a)

! / p

Figure 6.3: The basic control structure

the choice of = ^2^(5) = A(s) is made. It is necessary to choose A(s)

as a Hurwitz polynomial in order to ensure that common roots can be cancelled

without the introduction of undesirable effects^. Without loss of generality A(g)

can be chosen as a monic polynomial. To match 6'(g) and M(s), the numerator

of 5'(g) must contain 0(5). Thus a choice of

A(g) = A(g)Q(g) (6.30)

is made and, to ensure that A(s) is a Hurwitz polynomial, A(s) and Q(s) must

also be Hurwitz polynomials. These requirements lead to

S{s) = kr
f (5)

(6.31)

The last factor of this equation must the identity. To achieve this, the controller

parameters are dehned as

^ ^ ^id(5) = B(g)T(g) ^2^(5) = (6.32)

where T'(g) and j?(g) are two polynomials still to be determined. Now (6.29)

•-Pole-zero cancellations of unstable roots do not take into account possible internal instabilities

Ph.D Thesis University of Southampton 87

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

becomes

S i s) = B { S) A (S) P { S)

' ' B(s).4(s)A(s) + B{s)R{s) * '

and the polynomial B(a) can be cancelled if it is a Hurwitz polynomial. Finally,

the controller polynomials can be calculated from the equation

A(s)f (g) = + ^(a) (6.34)

Using this last result, the cascade and the feedback compensator are given respec-

tively by:

_ A Ar2,(g) _ 2 ^ , _
;rw(a) B(g)T(g) 7^2,(5) A;pA(g) ^ ^

It is now necessary to consider the degrees of the controller polynomials in

order to complete its specihcation. Consequently, the orders of A(g) and A(a) are

defined to be Z and [respectively. Then it follows from (6.30) that / = 1 + m.

Equation (6.34) can be viewed aa a polynomial division of A(a)f (g) by ^(a). This

means that the quotient T'(g) has degree T and the remainder j((g) haa degree

M — 1. Since only proper transfer functions (i.e. m < n,) can be implemented,

it follows from the feedback compensator's transfer function that I > n — 1. To

ensure the simplest possible controller, Z — m — 1 is chosen and this implies that

I = n — TTi — 1.

The cascade compensator of (6.35) can be unstable. To ensure a stable transfer

function, write

W , - r i

Ph.D Thesis University of Southampton

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 6

where C(s) = A(g) — B(g)T'(5). This expression corresponds to a feedback loop

with a compensator that replaces the cascade compensator in the above anal-

ysis. Since C(g) is the difference between two monic polynomials of order M — 1,

its degree is M — 2 and hence, the new feedback compensator is strictly proper

and stable. Figure 6.4 shows the structure of the Gnal controller of the MRAC

scheme. The gain p and the polynomials A(g) and C(g) are those from above and

D (s) =

controller

Plant

Figure 6.4: A Model Reference Controller

Calcula t ion of t h e Contro l ler ' s O u t p u t

The above controller can be transformed into another structure which has

the advantage that the command is expressed as a linear combination of a

coefEcient vector n(() and a regression vector Wc(̂)-

By analogy with (6.9) and (6.10) the output of the strictly proper compensator

can be written as
A (a)

y^(g) = (6.37)

where the vector Tr̂ . contains the coefhcients of C(a) and the regression vector

is obtained by a stable filtering of 2/(^) with a hlter of the form (6.9). The only

difference here is that the dimensions of the matrix and the vector are reduced

Ph.D Thesis University of Southampton 89

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

from n to n — 1.

The transfer function is not strictly proper, but can be written as

do-5" ^ + (i i S " ^ + • • • + + C?n~l 7 d i S " ^ + " " ' + d n - 2 S + ^ n - l

AW AW

(6.38)

The Erst term on the right hand side of this equation represents a direct feed-

through of the output yp{t). The second term is a strictly proper transfer function

with an output given by

= (6 39)

where Trj contains the coeSicients c(i, . . . ,dn-i aiid is obtained by a stable

Altering operation on the plant output.

From hgure 6.4 it follows that the output %/(t) of the model reference controller

can be calculated as

= + + (6.40)

Using the vectors

7r^ = [co,ci,...,c^_3,c,i_2] (6.41)

and

TT; =[(^1,^2,. . . , (6.42)

Ph.D Thesis University of Southampton 90

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 6

enables two new vectors n(() and 'Wc(̂) to be deBned as:

n(()
Tic

4

TTJ

Now (6.40) can be written aa

WcW =

r(<)

(6.43)

2^(t) = n (f:)wc(^) (6.44)

These definitions enable the coefficients and the states of the model reference

controller to be decoupled.

6.3 Switching Scheme

This section describes a scheme for an adaptive controller for dynamic systems,

presented in (Narendra a/. 1995). This scheme is particularly novel since,

conventionally, adaptive controllers have only been applied to slow-time-varying

systems with no large discontinuous changes. Such systems allow the tuning pro-

cess for the adaptive model to 'keep up' with the changes.

6.3.1 A Scheme for an Adap t i ve Control ler for Discont inuous Time-

varying P l an t s

The scheme involves distributing a number of fixed models across a known param-

eter space to aid an adaptive controller in applications where the plant parameters

are prone to large discontinuous changes; or where external disturbances that ef-

Ph.D Thesis University of Southampton 91

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

feet the plant dynamics can change suddenly. These hxed models operate along

side the adaptive model and are evaluated using a cost function based on their

identihcation errors. This cost function is defined as:

(6.45)
Jo

where the positive constants a and dictate the relative importance of the current

error (ei(^)) and past errors (^((T)) respectively, and A affects the length of

'memory' of the second term. The controller corresponding to the model with the

minimum cost function is then switched to with a certain hysteresis to prevent

arbitrarily fast switching between similar models. That is if Jnew is the minimum

cost function, Jcur is the cost function of the model corresponding to the current

controller, and is the hysteresis constant; then a switch will occur if:

Jnew "H Jcur (6.46)

Now that there is a method to assess the current best model, a hnal aid to the

free-flowing adaptive model is added: a second resettable adaptive model which

is reset to the parameters of the best model at the beginning of each sampling

period. The system is shown, diagrammatically, in hgure 6.5.

It was decided to distribute the Axed models uniformly across the parameter

space. A border of models (one model thick - equivalent to lengthening the param-

eter space down each side by the distance between each model) was distributed

around the parameter space - this improves the performance of the scheme with

plants that lie on the edge of the parameter space. The distribution is kept simple

by taking the MA root (n being the number of parameters) of the number of global

Ph.D Thesis University of Southampton 92

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 6

r(t) CONTROLLERS MODELS

- o

- o

Plant

Figure 6.5: Switching scheme involving multiple models, switching and tuning.

Axed models required by the designer. A primitive 'intelligence' is then built in

where more models are distributed down the longest side of the parameter space

at the expense of those down the shortest side of the parameter space. The aim

of this is to make the distance between the models as close to equal as possible.

6.3.2 Necessary Al te ra t ions

An investigation into the scheme described in the previous section has been carried

out using MATLAB (Autenreith 1996) and, as a result certain alterations have

been made to improve performance:

Averaging

The cost functions are used to produce a mean average model of all Axed

Ph.D Thesis University of Southampton 93

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

models using:

^ 1

0 . . = (6-47)
N

•S.—- 1

n=0

and a corresponding controller is produced from these mean parameters. The

underlying switching scheme is still maintained, since it is still necessary to identi^

the current best model (see (6.47)) for the detection of changing plant dynamics

(when a new model is switched to).

Rese t t ing t h e Sta tes

^,(^) = (6.48)
/to

Equation (6.48) shows the output calculation for each model (this should be

compared with the state-space representation of (2.8) and (2.9)). The scheme

works on the assumption that the initial state vector (â o) term will converge to

zero; leaving the model output dependent solely on its parameters. This means

that should the parameters of a model match the plant parameters, their outputs

will converge towards one another. However, this is only true for stable plants.

With unstable plants the initial state vector term becomes the dominant term and

even if models share the plant's parameters their outputs will not converge. To

remove this problem it is necessary to reset all model states to those of the plant

whenever the plant parameters change. As it is not possible to identify when the

plant dynamics change directly (it is the job of the scheme to detect these changes

when they arise), the states are reset whenever a new model is switched to.

Ph.D Thesis University of Southampton 94

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

Biased Switching

When a large number of hxed models are used in a simulation, rapid switching

between models can occur, which causes a continual resetting of states as above.

This has the additional effect of not allowing the resettable adaptive model to tune

to the plant parameters properly. A solution to this is to remove the hysteresis

condition from the adaptive models, forcing the switching scheme to switch to an

adaptive model when its cost function becomes the minimum. Once an adaptive

model is switched to, the hysteresis constant is multiplied by a positive con-

stant (^ > 1) in an attempt to prevent the scheme from switching to another

model (see (6.49)). This affects the detection of changes in the plant dynamics

(as described above). However, the hrst adaptive model to be chosen will be the

resettable model, therefore, as soon as the cost function of the free-Eowing adap-

tive model becomes the minimum it is switched to, and the hysteresis constant is

reset to its initial value, once more increasing the scheme's sensitivity to changes

in plant dynamics.

Jnew + K5 < Jcur (6.49)

6.4 Parallel isat ion of scheme

6.4.1 Para l le l i sa t ion of t h e Sequent ial a lgor i thm

In considering whether parallel processing would lend itself easily to this switch-

ing scheme, the sequential process needs to be examined in more detail (see fig-

ure 6.6a). This division of the parameter space could be carried out by a master

and forwarded to the workers; or, if the parallel harness allows it, the workers can

Ph.D Thesis University of Southampton 95

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 6

Division of

Parameter

Space

Division 01

Parameter

Space

Calculation

of Plant

Output

Calculation

of Plant

Output

Calculation of

Fixed Model

Outputs

Calculation of

Fixed Model

Outputs

Feedback using

Best Model as

Model for plant

Feedback using

Best Model as

Model for plant

(a) The Sequential Algorithm (b) The Parallel Algorithm

Figure 6.6: Parallelisation of the sequential algorithm

calculate their own sub-section from global knowledge of the parameter space. The

calculation of the model outputs is the most computationally intensive part of each

sampling period (involving a Runge-Kutta step to be performed on each model).

This also corresponds to the most parallel part of the algorithm. Using parallel

processing, not only could the same number of models be processed in a shorter

time period, but also, if desired, more models could be processed in the same

sampling period, providing a more robust controller than its sequential counter-

part. Sandwiching this is an inherently sequential section where the plant output

must be sampled and control inputs computed. However, in large simulations,

with many fixed models per processor, this sequential component will become less

significant. Figure 6.6b shows the parallel equivalent of the flow diagram.

Ph.D Thesis University of Southampton 96

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

6.4.2 T h e Topology and Communica t ions S t ra tegy

The parallel platform to be used (for more information see section 3.5) is a net-

work of sixteen T800 transputers, divided into boards of two processors. Each

board is connected to a back plane, forming a network that is fully reconSgurable,

allowing the modelling of any topology, within the limits of the sixteen nodes.

This allows a master processor (which is to be put in charge of simulating the

plant, communicating data to other processors and calculation of control inputs)

to be connected to all other processors (which are to be used to calculate model

outputs). The most notable feature of the transputer is that it can communicate

with other transputers, via four two-way links, simultaneously with computation

(i.e. at the extreme a transputer could be communicating down all four of its links

while performing an unrelated computation).

The processors are connected in a tree structure at the software level, with

virtual links connecting the workers to the master (see Sgure 6.7). Virtual links

allow communication to be carried out between processors without a concern for

how messages are to be routed through the actual network (at the hardware level).

The PARIX implementation (Parsytec 1993) (see 3.4.3 for more information) uses

a software router (when dealing with TSOO's) to emulate a T9000/C104 network

when interpreting the virtual links, which aims to produce the optimal routing

between processors. The T9000 was the planned upgrade of the T800, and the

C104 is a routing chip that can be connected to 32 transputer links.

No communication occurs between workers (as would be expected in a conven-

tional process farm). In order to take full advantage of the parallel components of

the scheme, communication has been kept down to three main packets.

P l an t D a t a - from the master to the workers - containing the control input and

Ph.D Thesis University of Southampton 97

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 6

Proc 0

Reset? States Reset? States

Average model + cost

Best Model Number

Min cost function

Best model

switching value

Plant output

+ input

Fixed models Fixed models Fixed models

Master

Plant

+ feedback

Adaptive

Models

Proc 1 Proc 2 Proc 3 Proc n

Figure 6.7: Tree topology. One Maater processor is connected (via virtual links) to all other
processors.

plant output.

M o d e l D a t a - from the workers to the master - containing the averaged model

parameters, an averaged cost function, the best model number, and the minimum

cost function (to allow the master to determine if a new model has been switched

to under the old scheme). The averaged cost function is simply:

1

Jar

7 1 = 0 .771

N
(6.50)

Bes t M o d e l D a t a - From the master to the resettable adaptive model - containing

the best model parameters (whether averaged or adaptive). No effort is made to

determine whether the resettable model is the best model.

One further communication is necessary, the master needs to inform the work-

ers whether the states of all models need to be reset, and if so, communicate the

states of the plant to all processors.

The maater has to perform the top level switching scheme once all commu-

Ph.D Thesis University of Southampton 98

Parailel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

nications are received from the workers. With each worker processor calculating

a small subset of the global switching scheme, hysteresis switching is only neces-

sary on the processor from where the best model has come, and so the master

communicates the best processor number as well as the best model number to

all processors. The worker processors calculate a weighted average of the model

parameters (with the weighting provided by each model cost function), the best

model and best cost function is also communicated to allow the master to calculate

the switching scheme for the purpose of detection of changes in plant dynamics.

As the packets are of a Hxed size, the larger the simulation (i.e. the more hxed

models distributed across the parameter space), the less significant the communi-

cation time will become. In fact, the larger the problem, the more significant the

computation of model output becomes, and the closer the parallel harness moves

to an n-times speed up (n being the number of processors).

6.5 An Example

The following example is a variation of an example first presented in (Narendra

a/. 1995).

It is known that the plant can be modelled by the transfer function %(g) =

that the parameters (/cp, ai, Go) lie in the parameter spaces: [0.5 2.0],

[0.25 2.0], and [-1.0 2.0] respectively. The plant output is to be made to follow

the output of the model of reference „ which accepts a square wave

input with a period of 10 time units. The plant dynamics change every 50 time

units, in the following sequence;

Ph.D Thesis University of Southampton 99

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

1.25 0.5 0.5

4- 2.0g + 1.0 + 2.08 — 0.8 ^ + g + 1.5

The Covariance matrix, f (0), is initialised to a diagonal matrix with non-zero

elements of 10000. A hysteresis constant of (̂ = 0.5 is used with a biasing of

jiT = 3. The following cost function is used for evaluation:

J^M = 1006^(() + 200 / (6.52)

6.5.1 Resul t s and Discussion

Figures 6.8a and 6.8b show the results. The reference model is shown as a dashed

line, with the plant output shown as a solid line. Figure 6.8a should be used as

a comparison when viewing hgure 6.8b and shows control using a single adaptive

model and no hxed models. It manages reasonably well with the stable regions.

However, when the plant goes unstable (at the 50th sample/time unit) it oscillates

badly. The controller is slowly gaining in authority as it approaches a stable region

again, but the inaccuracy of control is unlikely to be satisfactory in any practical

sense.

Figure 6.8b shows the improvement when 112 fixed models are introduced

into the parameter space. The plant is almost immediately forced back into line

after the change in dynamics (where the plant becomes unstable). Improvement

can also be seen in the stable region, where the reference model is followed more

smoothly. In both results, the last region (from 100 to 150 time units) the plant

output is slightly overdamped. This is most probably due to the particular choice

Ph.D Thesis University of Southampton 100

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 6

(a) A single adap t i ve m o d e l

(b) 112 fixed m o d e l s d i s t r i b u t e d across t h e p a r a m e t e r space

Figure 6.8: results

of design parameters (Ai and Ag in (6.9)).

6.6 Per fo rmance Analysis

A limited performance analysis has been carried out on the example given in the

previous section. Table 6.1 shows relative computational times of similar prob-

lems (those with the same number of fixed models globally). In the time column,

the numbers in the parentheses are projections based on the time achieved by 16

processors given an n-times speed-up. The results show that there is no significant

loss of processing time due to communication (i.e. comparing the projection of the

three processor problem and the actual result, there is only about a 3% variation)

Ph.D Thesis University of Southampton 101

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 6

Number of Processors
(fixed models on n - 2)

Processor
Partition

Number of fixed models
globally (per processor)

Average run time (s)
^rojec^e(f 6aaed on
16 processor result)

16 [4 X 4] 112 (g) 164.55
12 [4 x 3] 110 223.30 (g&g.gg)
9 [3 x 3] 108 (Jg) 242.52 (g^g.gg)
8 [4x2] 114 (^g) 381.69
6 [3 x 2] 112 (gg) 560.62
4 [2 x 2] 112 (J6) 1118.47
3 [3 X 1] 112 (jJg) 2234.68 (ggOg.70)

Table 6.1: Run times of a similar problem size distributed across a varied number of processors

which is a sign that the problem is scaling well. No attempt has been made to

ascertain any loss in performance due to the translation from a sequential program

to a parallel one, since no sequential program exists for the transputers. Currently,

the three processor partition is the minimum sized problem. Table 6.2 compares

problems where the number of fixed models per processor remains constant. Again,

there is a good correlation, with a less than 1% variation between results. Both

tables demonstrate that this application has good scalability, i.e. there is a lin-

ear relation between problems size and the number of worker processors. These

results are particularly impressive since the ability of the transputer to overlap

communication and computation has not been implemented in this scheme.

It is important to note, however, that there is a practical limit to the scalability

of the problem. The analysis assumes a lower limit of Axed models per processor.

Also, there exists a practical limit in terms of how effective the algorithm can be to

a given problem; i.e. there will be an upper bound of global fixed models, beyond

which no extra performance will be gained by adding more models. The existence

of a lower limit (or fineness of granularity) requires a little more explanation. One

of the reasons why the loss of computational speed-up in the first table 6.1 is greater

than that of the second (table 6.2) is almost certainly due to the granularity falling

below the perfect level. Since the communication size is constant, the further losses

Ph.D Thesis University of Southampton 102

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 6

Number of Processors
(6xed models on n - 2)

Processor
Partition

Number of hxed models
per processor

Average run time (s)

16 [4 X 4] 27 543.44
12 [4 x 3] 27 542.30
9 [3 x 3] 27 541.46
8 [4 x 2] 27 541.19
6 [3 x 2] 27 540.69
4 [2 x 2] 27 540.12
3 [3 x 1] 27 539.87

Table 6.2: Run times across a varied number of processors, keeping the number of Sxed models
per processor constant.

(the 2%) could be due to the hxed model processors waiting to communicate the

results to the master. However, 2% is such a small factor it could just as easily

be due to communication bottlenecks in the routing process. There will be a

lower limit of granularity (i.e. the point at which the adaptive model calculations

become dominant). This will be greater than one since the adaptive model has to

perform the Runge Kutta calculation as well as a Least Squares tuning process.

The minimum granularity could be reduced slightly by introducing an im-

proved communication system into the topology. If processors are polled^ the

master would be able to skip over the adaptive model processor, receive all re-

sults from the other workers, before returning to the adaptive model processor.

However, this strategy would conflict with the idea of moving the adaptive model

onto the master processor (see section 6.7), which has advantages in course grain

problems.

6.7 Opt imisat ion Potent ia l

The performance analysis was carried out on a computer program on which no

attempts at optimisation have been carried out. This section describes areas that

^Polling is where a communication times out 'immediately' if no response is received from a communicating
partner.

Ph.D Thesis University of Southampton 103

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

could beneSt from optimisation. They are as follows:

Move t h e adap t ive model compu ta t i on onto t he mas t e r processor

If the algorithm and the topology diagram are examined (Section 6.4.1 and

Figure 6.6), it can be seen that the master processor is idle between the communi-

cation of plant data and receiving results from the workers. The hrst worker will

usually (except for very small problems) have less work than the other workers (a

Least Squares calculation, compared to Runge-Kutta steps for each fixed model).

If the computation is moved onto the master processor, then this will free up an-

other processor for hxed model computation and eliminate some of the idleness of

the master.

Load Balancing

Load Balancing is the art of attempting to divide up the computational work

between processors equally. However, this could be considered irrelevant in this

case since a good choice for the number of hxed models globally will achieve this

automatically (Section 6.3).

Topology Opt imisa t ion

This describes an area of study concerned with reducing the relative distance

between processors that need to communicate. The parallel algorithm has been

implemented with out much concern for the actual hardware conhguration. It

has been assumed that the software router will And the optimal route between

communicating processors and that a topology made up of virtual links connecting

all worker processors to the master would be suScient. It is possible that the router

might benefit from a more intelligent 'virtual topology'.

A simple approach would be to move the maater processor to a central position

in the processor partition which would reduce the average distance between pro-

Ph.D Thesis University of Southampton 104

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

cessors. This makes the assumption that the communication between processor

boards varies. Some of the research in this thesis (c.f. section 5.4) has suggested

that this is indeed so.

Another approach, which makes the same assumption in relative distance as

above, is to create a completely new topology. Several have been suggested as

candidates for processor arrays (for example Meshes, Hypercubes, Binary trees -

see (Leighton. 1992) - among others) or specific topologies for transputer networks

(for example see (Baude 1989)).

Note, however, that this research deals in generic tools, and any topology

optimisation will almost certainly make the algorithm architecture dependent.

6.8 Conclusions

This chapter has presented a novel parallel implementation of a multiple model

switching scheme for robust adaptive control - Erst described in (Narendra, Bal-

akrishnan, and Ciliz 1995). It has been demonstrated that the scheme works

well under testing conditions where the plant dynamics are allowed to change in

comparatively (compared to conventional adaptive controllers) large steps.

The scheme is highly parallelisable and it has been shown that overheads

in communication are small making the scheme highly scalable within certain

'natural' boundary determined by the plant to be controlled. There exists an upper

limit of fixed models for each problem, above which no further improvement in

control will be obtained. There also exists an upper limit of processor scalability,

beyond which no further processors can be added to achieve speed-up. The lower

limit of granularity is with one model running on each processor with the achieved

speed-up of running at a hne granularity perhaps not justifying the added cost

Ph.D Thesis University of Southampton 105

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 6

compared to a coarser grain approach. At this granularity the adaptive model will

be the dominant process and this could raise the lowest granularity at which speed-

up can be achieved. It should be noted that the adaptive model is computationally

more intensive than a single hxed model because the adaptive model haa to perform

a Runge Kutta step and a Leaat Squares tuning of its parameters; it is not possible

to deduce the lowest granularity without hrst knowing which algorithm is more

computationally intensive, the Runge Kutta or the Recursive Least Squares.

Ph.D Thesis University of Southampton 106

Chapter 7

Theory of Neural Network Based

Nonlinear Control

7.1 In t roduc t ion

The last two decades, in particular, has seen an explosive growth in research (pure

and applied) related to neural networks and their applications. During this period

the multilayer feedforward network was introduced (HopAeld 1982; Rumelhart

1986) and has since been applied in many fields. In particular, it has

been particularly successful in areas of the general held of pattern recognition, i.e.

static systems. This, in turn, naturally led to interest in its application to dynamic

systems and, in particular, control systems.

Research into neural network (and related techniques such aa fuzzy logic) baaed

control systems has been a very active research area in recent years with literally

thousands of publications in the open literature. One clear fact that has emerged

is that such (often termed 'intelligent control') approaches have little extra to offer

in the control of a process for which an adequate linear approximate model (or

107

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

models) is available. The domain of interest must therefore be nonlinear processes

(with or, more likely, without detailed structural knowledge).

In the nonlinear control systems area, numerous models for the practical iden-

tification of nonlinear dynamical systems have been reported and later used for

the design of controllers. A very large section of this work is of a heuristic nature,

i.e. not underpinned by a rigorous theoretical base. Indeed many papers in this

area follow a pattern of claiming that 'intelligent control' is far superior to control

theory rigorous approaches. A large number of them even claim that 'you simply

do not need to know anything at all about the plant dynamics' - all that is needed

is input/output data used to train, for example, a neural network to model the

plant. Such claims are then supported by 'one-oE' empirical (i.e. non-repeatable)

designs supported by simulation studies. Even when these techniques are applied

to examples (usually from the open literature) where alternative designs are avail-

able, there is a marked lack of comparative performance studies.

The facts of the previous paragraph have led to 'intelligent control' in this con-

text being dismissed by large sections of the community at large but has prompted

others to attempt to answer the question.

Is it possible to embed 'intelligent control' techniques within a rigorous control

theory for nonlinear systems?

The next chapter will implement the schemes which were presented in (Levin and

Narendra 1993; Narendra oZ. 1995; Levin and Narendra 1996), this chapter is

concerned with the establishment of some essential theory.

Ph.D Thesis University of Southampton 108

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

7.2 Background

From a mathematical viewpoint, the control of known nonlinear dynamic sys-

tems is a formidable taak (for example, all of the bene&ts of the transfer func-

tion/frequency response methods in the linear case are almost always not appli-

cable). This problem becomes substantially more complex when the underlying

description of the plant dynamics is only partially known. In such cases, very

strong assumptions have to be made if neural network (or related structures such

as neuro-fuzzy networks) are to be employed in the identification and control of

such plants. The work reported in this chapter is in the spirit of Narendra o/ -

see, for example, (Levin and Narendra 1993; Levin and Narendra 1996) - where the

objective is to use and/or develop neural network based theory which can then be

used in the practical synthesis of identihcation based control schemes for partially

known nonlinear systems. (For an alternative viewpoint on the rigorous use of

neural network/fuzzy logic based techniques in nonlinear control see, for example,

the work of French et al (French et al. 2000; French and Rogers 1998; French and

Rogers 1997)).

The particular contribution is on software implementation/processing of the

resulting schemes for which the following is the essential theoretical background.

The text mostly follows (Levin and Narendra 1993) in presenting these results.

Consider the nonlinear discrete time system state space model

a;(A;-t-l) = /[2;(A;),it(A;)]

2/(A;) = /̂ [a;(A;)] (7.1)

where a;(A;) E 7^", ?/(A;) E (̂A;) E E' are the state, output, and control input

vectors respectively at sample A;. The basic control problem is (as always) to

Ph.D Thesis University of Southampton 109

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

choose the control inpnt vector such that the system behaves in a desired

manner. It is a well known fact that this problem is 'very challenging' even in

the (ideal) case when the nonlinear functions / and are known. For example,

for solutions of (7.1) to exist, / and A must satisfy various conditions which could

well be quite involved and difEcult to verify (see, for example, (Isidori 1989)).

In adaptive control, / and are assumed to be unknown and hence the problem

is signiScantly more complex. To obtain a tractable problem, it is necessary to

introduce assumptions concerning the controllability and observability properties

of the plant/system to be controlled and hence on / and /i. Even in the much

simpler case of adaptive control of linear time-invariant systems, prior assumptions

about the dynamics must be introduced to obtain a solution, eg system order,

relative degree and high frequency gain. One means of progressing the nonlinear

case is to first introduce similar assumptions to get a 'baseline' solution and then

seek to relax them.

The general control problem can be decomposed into the so-called tracking

and regulation problems respectively, where in the former the main objective is

to stabilize the plant around a hxed operating point. In the latter, the aim is to

force the output to follow a specified, or reference or target, signal asymptotically.

The most general case is to determine the control input w based only on output

measurements (?/) for both regulation and tracking. A more restricted, but still

highly relevant, version of this problem arises when the state (z) of the system is

available and in this case the first equation in (7.1) need only be considered.

The following definitions and results are fundamental in nonlinear control sys-

tems theory.

DeSnition 1 v4 f za am o/z(A: 4- 1) =

Ph.D Thesis University of Southampton 110

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

Every system considered is assumed to have at least one equilibrium state and,

without loss of generality, both f and M can be chosen to be zero. Hence from this

point onwards the origin is considered to be the equilibrium state.

D e f i n i t i o n 2 A dynamical system is said to be controllable i f , for any two states

yrom 2:2.

In effect, controllability relates to the ability to inSuence the state of a dynamical

system through the application of inputs. As such, it is a basic concept in systems

theory. Also in the nonlinear case, conditions for global controllability are very

difficult to establish and verify. Hence attention here is confined to local concepts

as in the next definition.

D e f i n i t i o n 3 A system is locally controllable around an equilibrium state x = 0

/ o r e n e n / y 0 / o n g m , (A e r e F ' 0 / (Ae

on^m ami/ (wo 37%,2:2 E (Aere an gegi/ence 0/

WZ (rona/er (Ae /rom a;: (o a;2 tuẑ Aoŵ /ecfmp y .

Controllability simply guarantees that a control input vector u exists which

can transfer the system from one state to another in a finite number of steps and

can either be a function of A; or a function of the state at time A;. The former

caae here is termed open loop control, and if a;(A;o) = and = 3:2, the open

loop control input t6(A;) is computed only from a knowledge of Zi, 3:2,^0 and Ar-

Since such a control input at A; : A;o < A; < is not explicitly determined by

the actual state of the system at that instant, it follows that open loop control

can be sensitive to noise and external disturbances. The second option - so-called

Ph.D Thesis University of Southampton 111

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

closed loop control - chooses u as a function of the system state and is robust with

respect to such disturbances.

Suppose now that feedback control is used, i.e. w = ^(3;). Then the system

(2;(A; + 1) = w(A;)]) becomes autonomous and is described by

a;(A; + 1) = (7.2)

The choice of the (state) feedback control law depends on the behaviour expected

of the controlled system (7.2).

DeSnition 4 a; = 0 0/ ^7.^/ TAezi (Ae onpm a

6/e (/"/or ewer^ y 0/ (Ae onpm zs o

y C y o/zero aucA eiien/ 3;(A;) 3;(0) G y m y /or aZ/ A; > 0.

If y can be chosen such that, in addition to the properties defined above,

limk_».oo 3;(A;) = 0, then the origin is asymptotically stable. If this can be achieved

in a hnite number of steps (?%) then y is hnitely (M-step) stable with respect to the

origin. When y equals the whole space, then the origin is globally asymptotically

stable.

As a follow on from the definition of stability, the following fundamental system

property can be defined.

DeGnition 5 J/" (Aere a /eedbocA Zow maA;eg am a; = 0

Some well known theorems from functional analysis are central to the un-

derlying theoretical results considered here. In particular, the inverse function

theorem, the explicit function theorem, and the contraction mapping theorem are

used. The first two theorems can be found, for example, in (Lang 1983), and in

Ph.D Thesis University of Southampton 112

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

this context are used to determine the control input explicitly 35 a function of

the state. For convenience, the contraction mapping theorem is stated below for

which the following definition is an essential preliminary.

DeGnition 6 % and Y noTmed uec^or apocea ancf C %. Consider

oko OM operator T : Z, —> Y. T/ien ^Aere a c aucA

| |r(a;i) - T(a:2)|| < c| |zi — a;2||, /or aZ/ a î, Z2 G Z, (7.3)

c < 1. (^j7ere || - || (femo^eg (Ae norm on Z, ontf

Theorem 1 Z, 6e a cZoaed o/ (Ae norme(f %;ec(or apace X . T : % ^

% 6e a con^roc^wn on Z,. TAen ^Aere e3;%â a a pom(^ E Z, a^/c/t (Aa(

T(^) = I . v4Zao /or off a; e Z,, limt_^ooT'^(3:) =

Lyapunov theory is a key tool in the stability analysis of dynamical systems

and is treated in most advanced control systems texts. The dehnitions and results

required here are given next.

DeGnition 7 A /unc^zon ^(a:) %a aoW ^o 6e poaz^zwe m a re^zon con-

ongim %/;

(1). y (0) = 0, and

^(a;) > 0 /or a// a; E ly, a; ^ 0.

DeBnition 8 Ze(IV 6e any aê m ZZ" con^ommp (Ae onpm on(f y : ZZ" —> ZZ.

TAen y %a (ermeff o Zyapt/nof /unc^zon o/ (Ae a!/a^em z(A; 4-1) = /[a;(A;)] on l y %/.-

y z'a con^mtfowa on ZZ",

(̂ ,8̂ y %a poaz^^fe (fe/zn%(e reapec^ (o ^Ae on^m m

Ph.D Thesis University of Southampton 113

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

(̂ ,9̂ A y (A;) := y[3;(A; 4-1)] — < 0 a/ong! o/ (/le /or

a/f a; 6

The next result shows that the existence of a Lyapunov function guarantees sta-

bility.

Theorem 2 o o/(Ae a;(A;4-l) = /[3:(A;)] m gome

Me2 /̂i6oi/rAoo(f o/ (/le a; — 0 za g^o6/e.

7/ m ad(f%^%on, —Ay reapec^ ô a; = 0 (Aen onpm za

ag!/mp(o^%ca/(!/ 5(a6/e.

These definitions of stability and asymptotic stability are given in terms of

perturbations of initial conditions but here a neural network will be used to model

a 'real world' process and therefore an exact (or perfect) model will not exist.

Instead if the 'real' process is described by a:(A; + 1) = then the resulting

neural network based model will be given by

f (A + 1) = + e[a;(A;)] (7.4)

where e[a;(A;)] = /[a;(A:)] — /[a;(A:)] is the modelling error and for the system a;(A; +

1) = /[3;(A;)], e = e[A;,a;(A;)] and depends explicitly on

The basic premise here is that if e is 'small', then the behaviour of the original

system will be (at least qualitatively) similar to that of the model, i.e. (7.4). To

formalise this, the concept of stability under perturbations is required.

DeGnition 9 i^e^a;(a;o,A;) (fewo^e a aoWmm o/a;(A; + l) = /[a;(A:)] con-

a;o = a;(a;o, 0)- (Ae ongm z = 0 aaW ô 6e 5(o5Ze itnder per(i(r6a(%0M5

(^/or o/Z e > 0 (Aere ea;%3k (̂ i(E) 2̂(G) ||3;o|| < ||e(A;,3;)|| < 62

/or aH A; > 0 zmpZ?/ ||2;(a;o, A;)|| < 6 /or 0// A; > 0. J / m acfcfz^zon, (Aere OM r a

Ph.D Thesis University of Southampton 114

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

A'(e) sucA ||a;o|| < r omd He(A;,a;)|| < (̂ 2(6) /or a// A; > 0 ||a;(a;o,A:)|| < e

/or aZ/ A > ^Ae on^m (0 6e â roM Ẑ?/ g^o6/e untfer pe7iwr6a^zons.

Theorem 3 7/ / za co7%(mwoug m a Me2̂ A6ourAooc(0/ (Ae egw2/%6rmm,

(Ae a;(A; + 1) = /[^^(A;)] g^rong/?/ a(a6/e uM(fer per(ur6o(%on5 %/

onZ?/ */ oa!/mp(o^%ca//2/

To introduce the concept of observability, consider (7.1) and define the so-

cailed input and output sequences of length I as

Uiijy) = [•u(A)),'u(A; + l),---, 'u(A; + / — 1)]

^ (^) = [2 / (^) 1 + + ^ — (7.5)

Then by the definition of the state, it follows that a;(Z + 1) can be represented as

2;(A; + Z):=F([a;(A;),[/((A;)] (7.6)

where .F) : % x U) —> %. Also the output at time A; + (can be written as

2/(A + Z) = A[Ff(a;(A;), [//(A;))] := %(A;), [/̂ (A;)] (7.7)

where A : % x y . Finally, }1(A;) can be expressed as

}1(Aj):=ff,[3;(A;),[/,_i(A:)] (7.8)

where jif; : X x [/;_i —>

When the context is clear, the index A; will be omitted, eg [/(= (/f(A;).

Observability is now defined as follows.

Definit ion 10 A di/MamzcaZ w gmcf 0̂ 6e o65eri'a6/e z/^wen an?/ ^wo

Ph.D Thesis University of Southampton 115

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 7

2:2 (Aere on seguence Z, i e . = ('w(O), it(l), - - ,

— 1)), gucA [/() tuAere ou(pu(gegwence.

Essentially, the ability to eEectively estimate the state of a system, or to identify it

based on input-outpnt observations, is determined by its observability properties.

Consider now the Mth order linear time invariant system described by the state

space model

a;(A; + 1) = A3;(A:) +

^(A;) == Ca;(A;) (7.9)

Then a basic result in linear systems theory is that this system is observable if,

and only if, the so-called observability matrix

C

Mc :=

7 1 - 1

(7.10)

CA

is nonsingular (or, equivalently, has rank n).

Observability of a linear system is a system theoretic property and remains

unchanged even when inputs are present - provided they are known. If a linear

system of order n, is observable then any input sequence of length M will distinguish

any state from any other state. If two states cannot be distinguished by this

randomly chosen input, they cannot be distinguished by any other input sequence.

In such a case, i.e. the system is not observable, the system can be realized by an

observable system of lower dimension (order).

Ph.D Thesis University of Southampton 116

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

A single deEnition of observability is adequate for the linear case only - the con-

cept of observability for nonlinear systems is somewhat more complex. A desirable

situation would be that any input sequence of length / would sufEce to determine

the state uniquely for some integer Z. This is known as strong observability and

it is easy to show that any observable linear system is strongly observable with

Z = M (M is the system order).

So-called generic observability is a somewhat less restrictive form of observ-

ability in the nonlinear case. A system of the form (7.1) is said to be generically

observable if there exists an integer / such that almost any input sequence (generic)

of length greater than or equal to I will uniquely determine the state. If strong

observability holds, this ensures the existence of an input-output model of the

form

2/(A; + 1) = f'[2/(A:), ^(/c - 1), - " , + 1), ^(^ - 1),' " , + 1)]

(7.11)

in a neighbourhood 2̂ G X x of the equilibrium state of (7.1). This, in turn,

leads to the construction of a state feedback controller for the system whose imple-

mentation using neural network based structures is one subject of the next section.

Finally, note that a comprehensive treatment of observability of nonlinear systems

can, for example, be found in (Isidori 1989).

Some well established results on the control of linear time invariant systems

will also be required where only the single-input single-output (SISO) case is con-

sidered. In particular suppose that the system of (7.9) (i.e. the pair (v4, B)) is

controllable. Then this property is equivalent to the existence of a state feedback

law It = F z (where F is a row vector of dimension 1 x n with constant entries) such

that the resulting closed loop system is stable, i.e. all eigenvalues of the matrix

Ph.D Thesis University of Southampton 117

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

A + B F lie inside the open unit circle in the complex plane.

Since

- - - , (7.12)

the state of the controllable system can be transferred from any initial state to

any hnal state in at most n steps. Also the following can be written

(̂A; + n) = CA"a;(A:) + CA"-^BM(A;) + - - - + CBM(A; + n - 1) (7.13)

Hence if (7.9) is also observable then the following important results are obtained.

1. The state a;(A:) can be expressed as a linear combination of ^(A;),^(A; — 1), - - ,

y{k — fi + l),ii(A; — l),'u(/c — 2), - - - ^ u(^k — n).

2. The closed loop system can be stabilized using an input which is a linear

combination of the signals given in 1 above.

3. If the system has uniform rank d, i.e. CA'B = 0, 0 < d — 2 and ^ 0,

then the input at any time instant ^ can affect the output only d instants later.

The integer denotes the delay in propagation of the signals through the system

and is termed its relative degree.

Suppose now that (7.9) has relative degree d. Then the so-called autoregressive

moving average (ARMA) model of its dynamics can be described by either of the

following equations (see, for example, (Franklin and Powell 1980))

n—1 n—1

(̂A; + 1) = ^ o:̂ (̂A; - %) + ^ - ;) (7.14)
1=0 j=d—l
n—1 n—1

2/(A; + (f) = ^a i2 / (A: -%) + ^ % M (A ; - ;) (7.15)
i=0 j=0

In terms of control, it is (7.15) which is the more convenient and the models used

Ph.D Thesis University of Southampton 118

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

in this chapter for controlling nonlinear systems are based on it.

Let + (f) denote the desired response at time A: 4- d for the plant under

consideration and suppose that its value is known at time /c. Then given it is

easy to show that the following choice for %(A;) yields the desired output at time

A; + d

u{k) = (7.16)

This process can be repeated to obtain the desired output cf time steps beyond a

given instant and the corresponding state equation is

1

Also if A — has all its eigenvalues inside the open unit circle in the complex

plane (i.e. stable) this tracking can be obtained with bounded inputs and the

system is termed minimum phase.

In qualitative terms, minimum phase implies that a bounded output guar-

antees a bounded input. If a linear system is not minimum phase, asymptotic

tracking is not possible. Alternatively, the minimum phase property can be inter-

preted as requiring that all zeros of the system transfer function lie in the open

unit circle in the complex plane.

7.3 Neural Network Based Control of Nonlinear Systems

In terms of the control of plants described by (7.1), the approach used will depend

on the information available about the system and the control objectives. Two

possible scenarios in terms of the information available about the plant are

Ph.D Thesis University of Southampton 119

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

1. / and are known.

2. / and are unknown or, at best, partially known.

The hrst case arises when the laws governing the system are known but the

states of the system are not accessible (or cannot be physically measured) or are

only partially accessible, eg a mechanical system where the velocities cannot be

measured directly. By definition, knowledge of the states will enable accurate pre-

diction of the system response and hence the observation problem here is actually

that of estimating the state based on input and output observations over a time

interval, say, [A;o, + /]. This is the well known observer problem.

The second case arises most often when dealing with complex systems for

which first principles based laws are not available. The essential task now is to

create a model whose input-output behaviour 'closely approximates' (ideally is

identical to) that of the system over the range of operation (of the system). In

this case, identification must be performed using the system itself. Also since there

is no prior knowledge available, this must be undertaken in an open loop fashion

and this, in turn, requires one of the following two conditions to hold.

1. Bounded outputs - if the inputs are in a bounded set, the resulting system

outputs will also belong to a bounded set (with an appropriate definition of a

bounded set).

2. Ability to reset the system - this is an alternative assumption which is not

considered in this work.

It is now necessary to make precise the tracking and regulation control prob-

lems discussed briefly in the previous section. In terms of (7.1) these problems are

dehned as follows.

1. State Regulation (Stabilization) - using only input-output data determine a

control law that will stabilise the overall system around a pre-specihed equilib-

Ph.D Thesis University of Southampton 120

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

rium point.

2. Tracking - given as a uniformly bounded desired output sequence, deter-

mine an input such that limt_^oo — Z/(i(^)ll = 0- The so-called output

regulation problem arises when convergence to a pre-specihed hxed value (assumed

to be zero) is required.

Clearly the regulation problem only has a non-trivial solution when the system

is unstable. This problem is (relatively) easier if all the states are accessible so here

the interest will be on hrst estimating the state via an observer and then using the

resulting state estimate to stabilize the system. This problem is considered next

where / and are assumed known.

7.3.1 S ta t e Recons t ruc t ion

It is first necessary to derive conditions for local observability of the nonlinear

system (7.1), i.e. given the origin as an equilibrium state, does there exist a region,

say around the origin such that any state a: 6 Hz can be uniquely determined

by probing the system with any input sequence of suScient length. Equivalently,

conditions are sought under which the system is locally strongly observable. The

following result (Levin and Narendra 1993) gives sufhcient conditions for strong

local observability of (7.1) in terms of its linearisation at the origin

â;(A; -t-1) = /3;|o,o(^3;(/:) 4- /u|o,o(ît(A;) — vl^z(A;) + B(5ii(/u)

(̂ (̂/c) = Ai|o(̂ a;(A;) = C^a;(A:) (7.18)

where A := /ijo.o, -B := /u|o,o, and C := /i3;|o are the system's Jacobian matrices.

Theorem 4 7/' /mear za (Ae nonZmear

Ph.D Thesis University of Southampton 121

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 7

7.4 Conclusions

This chapter has presented some essential theory for the control of nonlinear sys-

tems which underlies the neural network training processes described in the next

chapter. It is now possible to describe the plant to be controlled as locally strongly

observable and, with the aid of the Lyapunov and contraction mapping theories,

as stabilizable. The important concepts of identihcation and controllability are

closely related to observability and stabilizability respectively. These properties

are directly derivable from the linearisation of the nonlinear system around the

equilibrium (which is assumed here to be the origin). The theory will now be used

in the implementation of neural network schemes for control in the next chapter.

The examples to be presented are restricted to Single Input Single Output (SISO)

plants, but since neural networks are easily extended to Multiple Input Multiple

Output (MIMO) schemes, a MIMO notation is used.

Ph.D Thesis University of Southampton 122

Chapter 8

Implementation of Neural

Network Based Nonlinear Control

8.1 In t roduc t ion

This chapter considers the implementation of feedback control schemes based on

neural networks. The key tasks of state estimation, system identihcation, and

stabilisation/tracking (sections 8.2.1 to 8.2.3) are each considered in turn with

training procedures that build on the theoretical concepts described in the pre-

vious chapter. Following this, the use of these components in a multiple model

adaptive control scheme (the linear model case was presented in chapter 6) is

treated (section 8.3). Section 8.4 describes the parallelisation of the scheme with

section 8.5 presenting the results. The chapter ends on some performance analysis

(section 8.6).

123

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

8.2 Neura l Network Based Control of Nonlinear Systems

Before a switching scheme can be constucted for the control of nonlinear plants,

the neural network components of that scheme must first be implemented. This

section describes the training processes (with results) of neural networks for state

reconstruction, identification, stabilisation and tracking.

8.2.1 S ta t e Recons t ruc t ion

In section 7.3.1 the concept of strong local observability was introduced. This

concept is essential to the type of plant which is to be controlled in this chap-

ter. Provided the plant is observable within the region of interest around the

equilibrium point, then a neural network can be trained to estimate the states.

Ne twork Imp lemen ta t i on : Since the system is assumed to be strongly observ-

able in its range of operation, then there exists a mapping $ such that a;(A:) —

$[}^(A;), (7n_i(A;)], where here it is assumed that the system order M is known. (If

only an upper bound, say M, of the system order is known then all algorithms

must be suitably modified to work with n instead of n.) For control purposes it is

essential to study the state of the system after the probing input has been applied.

Since z(A + M — 1) = f^_i[a;(A;), [yn-i(^)], there exists a function $ such that

a;(A; + n - l) = $[}^(A:),L/n-i(A:)] (8.1)

or, on rearranging the indexes,

];(A;) = $[%i(A; + M — 1), — n 4- 1)] (8.2)

Given / and A, the variables on both sides of (8.1) can be observed and hence

Ph.D Thesis University of Southampton 124

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

a feedforward neural network, denoted can be trained to emulate $ and

(by assumption at this stage / and are known) the training procedure can be

completed off-line. At each A;, the inputs to the network (not to be confused with

the inputs to the system) are the past » — 1 inputs and the past M outputs (a total

of 271 — 1). The output is the estimated state f (A;) which is then compared with

the state of a simulated system and the error is given by

^xik) — x{k) — NN^\Yn{k, — n + 1), Un^iik — n + 1)] (8.3)

The training procedure for the observer requires the adjustment of the param-

eters of along the negative gradient of ||ea;(A;)||. Suppose now that ^ denotes

a parameter of and the learning rate. Then the update rule is given by

-t-1) — (̂A) 4- /7e3;(A;)— (8.4)

Figure 8.1 is a schematic of the observer learning process where TDL denotes

a tapped delay line. Next the details of this process are discussed and some

performance enhancing actions are developed.

I Model of system

u(k) x(k)

TDL

h
y(k)

-a

M + 1) J I

TDL

Y„(k ~n+l)

Figure 8.1: Training an observer (Levin and Narendra 1996)

Ph.D Thesis University of Southampton 125

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

The speciSc error function to be minimised is:

j

and the weights are updated using (with ^ -

j >

= 77e2;(A;)%(A;)(l-Zj(A;)) (8.6)

The neural network is a Multi-Layer Perceptron (MLP) and the notation

adopted is that dehned in section 2.3, i.e.

(8 . 7)

where TVTV is an Z/-layer network with nodes at the Z '̂̂ -layer, Mo denotes the

input layer and the output layer. It should also be noted that the number n;

does not include the bias node Q which is present in all layers except L.

Resu l t s

The neural network was initially trained on an example in (Levin and Narendra

1996). The third-order system employed is described by

3;i(/r-t-l) = 1.43;2(/:) —0.5];3(A;) + 0.3?i^(^)

X2{k ~)~ 1) = .Tj(/c) ~l~ [1 — 0.3x2(A:)]-u(A:)

-j- 1) = 0.43̂ 2(A;)3̂ 2(/u) — x^{k) + u(k^

2/(^) = 3;i(A;) (8.8)

Ph.D Thesis University of Southampton 126

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

A Axed training parameter, = 0.55, was used with a momentum value a — 0.95.

Weights were initialised to random values in the range (-0.1, 0.1). Scaling factors

were placed on the sigmoid output nodes with values: E (—8,8), fg G (—8,8),

:r3 E (—8,8). This means that the upper bound of the sigmoid function of 1 is

interpreted as the upper bound of the x-range (8 in these cases) and the lower

bound of 0 as the lower bound of x (-8) and C The results are

shown in figure 8.2 and are further discussed next together with some necessary

alterations.

Improvemen t s and Al te ra t ions

One immediate alteration that waa necessary in order to train the network

at all, in any practical sense, was to set a boundary (a range of values for the

plant output outside of which the plant states are reset to zero) for the output

of the plant model (equations (8.8)). In the results in figure 8.2 this is set at

y G (—20, 20).

As can be seen from figure 8.2, the estimation (or closeness of tracking) is

accurate only within the x-boundaries. This is probably due to the large changes

in the weights that will result when the plant is outside these boundaries. The

estimation is particularly poor around the origin.

In an effort to improve estimation around the origin, a training bias was in-

troduced. This simply involved training the network on small deviations from the

origin for a number of steps (denoted by o) each time the system is reset.

An example of origin training with o = 25 and a boundary ^ E (—20, 20)

is shown in 6gure 8.3. Random state and control input deviations were chosen

to be in the following ranges for all training examples involving an origin bias:

G (—0.05,0.05), Mo E (—0.01,0.01) (only during the bias training stages). It

Ph.D Thesis University of Southampton 127

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

-

1 NAf*

A A A

"if

(a)

Figure 8.2: Estimation of states with a boundary set at 3/ E (—20,20).

Ph.D Thesis University of Southampton 128

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

can be seen that, although accuracy around the origin is improved slightly, this

is largely at the expense of accuracy elsewhere - particularly, in this case, in the

estimation of 2:3 (hgure 8.3c). For easier inspection, figure 8.4 shows a plot of the

errors in estimation in Egures 8.2 and 8.3.

Two comments can now be made on these initial results. Firstly, despite a

boundary reset of 20, it has been possible for the plant to reach heights of more

than twice this value before being reset. This would advocate a narrowing of

the boundary. Secondly, the origin training has too strong a bias, any improved

accuracy around the origin is outweighed by the decrease in accuracy elsewhere.

Figure 8.5 shows the case when the boundary is reduced to ^ E (—5,5) without

an origin training bias. Figure 8.6 shows the boundary 1/ E (—5,5) with a training

bias o — 25. Figure 8.7 shows the error plots.

Here, the beneht of an origin training bias has begun to appear. Although the

estimation of a;i is about as good with or without the bias, the improvement in

estimation of 3:2 and is marked. If the stabilisation stage is taken into account,

it can be seen that the operation boundary will be such that the norm of the

state vector is assumed to be 5" = {3;|||a;|| < 2} which in this example means a

narrowing of the boundary can still be afforded.

Figure 8.8 shows the case when the boundary is reduced to ^ G (—3.5,3.5)

without an origin training bias. Figure 8.9 shows the boundary 1/ G (—3.5,3.5)

with a training bias 0 — 25. Figure 8.10 shows the error plots.

In these graphs, it can be seen that the effectiveness of the origin bias is

negligible (i.e. that the errors are roughly the same for the estimation with and

without an origin training bias). The ineEectiveness of this bias is probably due

to the size of the boundary involved. In any case, training is now concentrated

Ph.D Thesis University of Southampton 129

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

(a) i i

(b) 12

(c) 33

Figure 8.3: Estimation of states with a boundary set at y £ (—20,20) and with origin training
bias of o = 25.

Ph.D Thesis University of Southampton 130

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

(a)

(b) 12

4 0 4 5 S O

(c) Z3

Figure 8.4: Comparison of error with boundary E (—20,20)

Ph.D Thesis University of Southampton 131

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

(a)

(b) iz

(c) 33

Figure 8.5: Estimation of states with a boundary set at 3/ E (-5 ,5) .

Ph.D Thesis University of Southampton 132

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

(a) II

(c) 13

Figure 8.6: Estimation of states with a boundary set at 1/ E (—5,5) and with origin braining biaa
of 0 = 25.

Ph.D Thesis University of Southampton 133

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

(a)

(b) 12

(c) Z3

Figure 8.7: Comparison of error with boundary i/ E (- 5 , 5)

Ph.D Thesis University of Southampton 134

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

(a) i i

(b) iz

(c) Z3

Figure 8.8: Estimation of states with a boundary set at ?/ 6 (—3.5,3.5).

Ph.D Thesis University of Southampton 135

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

(a)

(b) 12

(c) 13

Figure 8.9: Estimation of states with a boundary set at y G (—3.5, 3.5) and with origin training
bias of o = 25.

Ph.D Thesis University of Southampton 136

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

(a)

40 45 50

(b) 12

(c) 13

Figure 8.10: Comparison of error with boundary y G (—3.5,3.5)

Ph.D Thesis University of Southampton 137

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

around the origin, regardless of biasing - this may in turn point to a possibility of

increasing the random deviations involved in the origin training process.

These last modifications do not greatly reduce the errors relative to the previ-

ous boundary of E (—5, 5). Figure 8.11 compares the error in estimation of the

boundaries ^ G (—3.5,3.5) and ?/ E (—5,5). They do not vary greatly, however,

due to the system being reset more frequently in the narrower boundary, these

two cases can not be compared exactly.

Finally, it should be noted that the accuracy of estimation can be increased

greatly by training an observer off raw state inputs. This is equivalent to training

a network G g g to map the function / in Sgure 8.1. Figures 8.12 to

8.15 show equivalent plots for some of the cases discussed so far.

Despite the increased accuracy, this situation is unlikely to be acceptable, if

the raw states are available during run time, then a better solution might be to

train the stabiliser network straight off them. Of course, that is only possible from

a model that can be used to calculate the next state from the current states x and

input u.

8.2.2 Ident i f ica t ion

This is a very extensively studied area for the case of linear dynamics - see, for

example, (Ljung 1999). In this case, if the system order is known then the structure

of the model can be chosen and the remaining task is parameter estimation, eg the

parameters and of (7.15). This does not apply in the nonlinear case where

the structure of the model has to be justified.

The true system is not known at this juncture and hence it must be assumed

that it belongs to a specified set. This then leads to the assumption that a pa-

Ph.D Thesis University of Southampton 138

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

3.5. d.8)

(c) ±3

Figure 8.11: Comparison of error with boundary i/ E (—3.5,3.5) and ?/ € (—5,5)

Ph.D Thesis University of Southampton 139

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

(a) z i

(b) ±2

40 48 50

(c) &3

Figure 8.12: Estimation of states with a boundary set at ^ e (-20,20) .

Ph.D Thesis University of Southampton 140

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

(a)

(b) 12

(c) Z3

Figure 8.13: Estimation of states with a boundary set at E (—20,20) and with origin training
bias of o = 25.

Ph.D Thesis University of Southampton 141

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

(a)

(b) ±2

35 40 4a BO

(c) ±3

Figure 8.14: Estimation of states with a boundary set at y £ (—5,5).

Ph.D Thesis University of Southampton 142

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

(a) II

(b) 12

(c) 33

Figure 8.15: Estimation of states with a boundary set at 1/ E (—5,5) and with origin training
bias of o = 25.

Ph.D Thesis University of Southampton 143

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

rameterised model can be chosen that (theoretically) can realize the input-output

behaviour of any member of that set. Hence in this setting identihcation again

reduces to a parameter estimation problem.

Given the approximation capabilities of feedforward neural networks, the func-

tions / and can be approximated by a multilayed neural network with appro-

priate input and output dimensions. Hence (7.1) can be realised by a system of

the form

z(A: + l) = ArArXz(A;),M(A;)]

(̂A;) = 7VAr,,[z(A;)] (8.9)

Here the system's states are assumed not to be accessible and hence the training of

such a network to identify the system requires the use of dynamic backpropagation

- a computationally very intensive procedure which is hence hard and slow to

implement.

Suppose now (as in the linear case) that it is possible to determine the future

outputs of the system as a function of the past observations of the inputs and

outputs. Equivalently, there exists a number / and a continuous function :

y] X > y such that the recursive (input-output) model

y{k + 1) = h[y{k)^ y{k — 1), • • • ^y{k — I + 1), u[k), u{k — 1), - • • .,u[k — I + 1)]

(8.10)

has the same input-output behaviour as the original system (7.1). Then A(-) can

Ph.D Thesis University of Southampton 144

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

be realised by a feedforward neural network. This results in the model

+ 1) = - 1),' " , ^ + 1), 'uW, 'u(A; - 1), - - - , - Z + 1)]

(8.11)

Since the outputs and inputs of the network are directly accessable at all time

instants, backpropagation (or indeed any other supervised training method) can

be used to train the network. Also if the conditions for local observability hold

then it can be shown (Levin and Narendra 1993) that locally the system can be

described by an input-output model.

Ne twork Imp lemen ta t i on : If the strong observability assumptions hold in the

system's region of operation, then the identification procedure using a feedforward

neural network is a straightforward task. At each A;, the past M inputs and the past

M outputs are fed into the network - figure 8.16. The networks's output is then

compared with the next observation of the system's output, to yield a prediction

error

e(/c + 1) = y{k "4" 1) — NNj^{Yn{k — n -\-1), Unik — tt, + 1) (8.12)

The network weights are then adjusted using backpropagation to minimise the

least squares error. The specific error function to minimise is:

E = - y^(%'(A: + d) — NNii[Yn{k — n + 1), Un-i{k — n + 1)])^
i

— - ^ (% (A : + (f)—^j(A; + d))^ (8.13)
j

Ph.D Thesis University of Southampton 145

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

and are updated using (with + (f) =

+ 4 (1 - (8.14)

Figure 8.16 includes a stabilisation loop for examples where the nonlinear

plant requires stabilisation first. If, however, the plant is open loop stable then

the model Mg can be substituted for the model M. For examples where the plant

requires stabilisation (7(a)n_i(A; — n + 1) is defined as:

U(^s)n—i{k — 72 + 1) = \u{k — Ti -j- 1) + Ug{k — n -\-1), u(^k — tt. + 2)

+ Ug(^k — + 2), • • • , u{k — 1) + — 1)] (8.15)

Stabilization with neural networks is treated in the next section.

"(t)
0

TDL

u{k) + us(k)

Model of system (M)

x(k)

TDL TDL

— n + 1)

, i(A:)

%% (A — 71 + 1)

Asymptotically stable system {Ms)

y(k + 1)

t d l

Yn{k — n 1)

Un-ijk - n + 1|
NN.

Figure 8.16: The first stage of training an identifier

Once the identihcation is complete, two modes of operation are possible as

discussed next.

Ph.D Thesis University of Southampton 146

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

Ser ies -Para l le l M o d e : - the outputs of the actual system are used as inputs to

the model. Hence this scheme can only be used in conjunction with the system

and can generate only one step ahead prediction. The architecture is identical to

that used for identification.

Pa ra l l e l M o d e : - this must be used for more than one step ahead prediction.

Here the output of the network is fed back into the network - Agure 8.17 - and

hence the outputs of the network itself are used to generate future predictions (i.e.

a recurrent network). If the relative degree of the plant is d then the output at

time A; 4- d is a function of the state and the input at time A; only. Since it is

independent of inputs introduced after time A;, these can be arbitrarily set to zero

(Levin and Narendra 1996). The accuracy of such predictions is only realistic for

short horizons.

— u t d l I

... b^TDLl

TDL

y(k+d) u(k)

e(k)

y(k+d) t d l

t d l
u(k)

NN
NN N N NN

NN

Figure 8.17: Training the network NN^. using the network NNu

Resu l t s

The required networks were trained on an example in (Levin and Narendra

1996). The third order system considered is defined by:

Ph.D Thesis University of Southampton 147

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

+ — 0.5a;3(A;)

a;2(/̂ + l) = Zi(A;) + [l + 0.4a;2(A;)]it(A;)

a;3(A; + l) = 0.33;i(A;)3;3(/i;)—3;2(^)

2/(A;) = (8.16)

Figure 8.18 shows the trajectory of the network E 10,5,1 after con-

vergence. The output of the plant haa been normalised such that 1/ G (—3,3) and

the training parameters 7; = 0.55 and a = 0.95 were used.

Figure 8.18: Identification of y(k+l)

Figure 8.19 shows the trajectory of the network E 10.5,1 an es-

timate of 2/(A; -t- (f) compared to the estimate of -I-1) as provided by network

TVTVk- The network was trained using the same training parameters as with TViV/i.

Both networks converged after about 30000 steps.

8.2.3 Stabi l i sa t ion and Tracking

In this section it is assumed that a sufBciently accurate model - supplied indepen-

dently or obtained by system identification - is available. The particular form of

the model used will depend on the control problem considered, i.e regulation or

Ph.D Thesis University of Southampton 148

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

Figure 8.19: Prediction of y(k+d)

tracking.

In the cage of regulation, the objective is to stabilise the system about a spec-

ified equilibrium point using only input and output measurements. By definition,

a state space model of the plant is assumed to exist and the regulation problem

consists of two steps.

1. Estimation of the states from input-output observations.

2. Design of a feedback control law using the estimated states.

The state estimation problem has been treated earlier in section 7.3.1. The

additional theory required here for the second problem is given by the following

result from (Levin and Narendra 1993).

Theorem 5 (Ae nom/mear gWe apoce modeZ (fe-

oncf TAeM an /eedAacA /ow

u{k) — g\Yn{k — n + 1), Un-i{k — n + 1)] (817)

(Azg Zmear (Ae on^m.

Network implementation consists of two phases that can be undertaken inde-

pendently and the training procedure is the same for both cases, i.e. assumed

Ph.D Thesis University of Southampton 149

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

availability of a model or its identification from input output data. In both cases,

the actual training is done on a model and the resulting controller could then be

applied to the plant. The training of the observer has been detailed earlier in

this chapter and once it is complete, it can be assumed that a neural network

(given the proper number of past input and output data) will generate as

its output an accurate estimate of the current state of the system, i.e.

:r(A;) = — n + 1), M + 1)] = + e3;(A;) (8.18)

In this last equation, ^ (̂A;) is the state estimation error where ||ei;(/!;)|| < e <K 1

for all k.

A state feedback based controller can be trained independently off-line on a

model of the system it is to stabilise and, since controller training is done on a

model of the system, it can be assumed that the states of the latter are accessible.

The training of a controller to stabilise the system about the origin will now

be dehned, starting with the following result (Levin and Narendra 1993).

Theorem 6 (Ae non/mear and 2̂ 5 (Ae

6ourAoo(f C % oroT/nd ond a /ee(f6ocA; Zow «(A;) = ^[a;(A)]

m'// moAe reapec^ (o (Ae i e. an?/ a:o E

can (Ae on'pm m n

The existence of the deadbeat controller of the last theorem enables an objective

function for the training procedure to be specified.

Now dehne / = / [' , ^ ()j Fg = /g(')- Then by the last theorem, there

exists an open set y C % containing the origin such that for all z E y, Fg(a;) = 0.

Also since Fg(') is a continuous function, it follows that there exists a larger open

Ph.D Thesis University of Southampton 150

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

set l y containing V as a proper subset such that for all a; E TV

| | F , W - f , (0) l l < I I F j W - O I I < | | . t | | (8 . 1 9)

Using the contraction mapping theorem, it now follows that for any a; E

—A/ A/TZ

limt_^oo-P'g(3;) = /g (a;) = 0, and, for a given a;, A is finite. It is this fact that

is exploited in the design of a nonlinear controller for (7.1) to yield closed loop

stability in a finite number of steps. The design objective is to choose to

make as large aa possible.
For a given deEne the autonomous dynamical system

z(A; + 1) = (8.20)

Then it follows that y (z) = | | i | | is a Lyapunov function for this system for

all ^ E To make IF as large as possible, g must be adjusted such that

\\x{k + 1)11 < ||^(A;)||. As will be established below, this is achieved naturally

using neural networks.

In the method described thus far, the region depends on the system and

is at least as big as that obtained using a linear controller. Also the existence of

a local deadbeat controller that stabilises the system around the origin effectively

establishes the following result.

Theorem 7 Z TAen (Aere a

onpm.

The control law above is global but need not be continuous and hence it is not

clear how it can be implemented using continuous neural networks. This problem

Ph.D Thesis University of Southampton 151

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

has been the subject of some work (Sontag 1990) but here attention is restricted

to continuous control laws and next learning methods that optimize the range over

which the contraction stabilising controller is valid are given.

For the above analysis to be applicable in a given case, the controllability of

the linearisation must be checked. To do this, hrst determine the Jacobian of

with respect to the inputs at the equilibrium points and thereby define

. 4 - ^ I..0. B- ^ 1... (8.21)

and check if {vl.B} is a controllable pair by any of the standard tests. Also let S

denote the region of which stabilisation is desired.

The tagk now is to train a neural network aa a controller for (7.1) such

that 5" is hnitely stable with respect to the origin. The results given earlier establish

the existence of a control law = ^(a;) for which the following are true.

1. There exists an open set y containing the origin such that for all a; E y ,

F(a;) = 0.

2. There exists a larger open set IV (F is a proper subset) such that for ail a; G

F(3;) is a contraction mapping.

Using these results, the performance of a controller can only be evaluated in

n-step intervals and it is assumed that u = g{x) can be found such that W covers

6". The controller training is done using the model and therefore arbitrary initial

conditions can be used which are selected using a random distribution over

Now let

(z) = ATAAy [a;, (a;)] (8.22)

Then, once an initial point a;o is chosen, a;̂ = A/̂ A^̂ g(a;o) is calculated by running

Ph.D Thesis University of Southampton 152

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

the controlled model through M steps.

It is only for the unknown a; G y that the system can be driven to zero in n

steps, the training error for the controller must be chosen as

e z =
if | |a ;o | |<por | |a;n | |>/^ | |3;o |

0, otherwise.
(8.23)

Here p > 0 is initially chosen to be 'small', and the parameter 0 < A < 1, which

determines the contraction over ly, initially chosen 'close' to 1. Next the actual

implementation of this approach is detailed.

Ne twork Imp lemen ta t i on : Once stabilizability is confirmed the training is to

be set up so as to provide stabilisation from input/output meaaurements as shown

in hgure 8.20. Training of the stabiliser is performed using the model of the system

u(k) x(k)

Un—l {k — Tl 1)

- 1 .

TDL TDL

N N , N N ,

Figure 8.20: Stabilization using input / output measurements (Levin and Narendra 1996)

and therefore arbitrary initial conditions can be assumed (randomly chosen from

5"). Once the initial point a;o is chosen is calculated, as dehned

in (8.22). This is represented diagramatically in hgure 8.21 and the training error

is calculated using (8.23).

Ph.D Thesis University of Southampton 153

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

The error gradient calculation is not as simple (relatively) as in the previous

section. The problem is that the error cost function (when e(a;) 0):

1
(8.24)

is not directly related to the output of the neural network TVTVg. This requires an

extra term in the chain rule:

m (8.25)

where u = N7Vg(x(A;)). In reality, as only SISO plants are considered, there is

only one output node corresponding to j in the equation. However, the scheme is

relatively easily extended to MIMO systems so the notation is retained.

In order for conventional error back propagation to be applied here, the system

needs to be unfolded to take into account delays in the plant. The original scheme

proposed by Levin and Narendra (1993) is shown in hgure 8.21.

error back propagation

NN NN NN

Figure 8.21: Training a direct stabiliser using state inputs (Levin and Narendra 1993)

where n denotes the order of the plant.

This particular approach uses the trained network jVNy as an observer, with

Ph.D Thesis University of Southampton 154

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

the added advantage of requiring no additional plant model for training, since the

state estimates of JVTVy are used as its next input. However, the disadvantage

with such a method is that any error in estimation will become compounded. It

is also desirable to provide stabilisation from just past input and output data. An

alternative unfolding of the system for such a method is shown in hgure 8.22.

error back propagation

TDL TDl

TDL TDL TDL

Figure 8.22: Training a direct stabiliser using input-output data

If Ggure 8.22 is used, its execution can be greatly simplified by training the

stabiliser using the plant model states (figure 8.23). This does not require any

further assumptions about the system and is liable to produce more accurate

results. The stabilisation of the scheme during run time will still be achieved

using the state estimates from observer network as in Hgure 8.20.

error back propagation

NN NN NN

Figure 8.23; Training a stabiliser direct from the model state inputs

As can be seen from the figures, a weight change needs to occur for each

Ph.D Thesis University of Southampton 155

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

controller stage in the unfolding. The error back propagation becomes:

-

or with Uj (t) = 2/1 :

M r " = (8.27)
m (= 0

and is estimated using the Taylor series approximation:

$'(%) « (8.28)

where ^ is the relevant section of the unfolding in Sgure 8.21 or 8.22.

Necessary Al t e ra t ions

Scaling Fac tors on t h e I n p u t Values

In order to aid convergence of a solution with state inputs that lie in small

ranges, the effective difference between inputs is increased by multiplying each

input by a scaling factor.

Repea t ing Po in t s

The objective of the stabiliser was to stabilize the system inside 5", 5" =

{3;|||a;|| < 2}. W wag initially chosen as IV = {a:|||a;|| < 0.1}. It was found

through trial and error that convergence was not possible where random points

in l y were encountered only once. In order to improve convergence of the sta-

biliser network, each point was presented up to times. A new point was chosen

when the current point had been contracted or after presentations. Training waa

performed using the system in figure 8.23. The network E took

Ph.D Thesis University of Southampton 156

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

284642 time steps to converge with a = 0.95,77 = 0.55, = 35, A = 0.95, p = 0.01

and with the outputs of the network normalised within u G (—5, 5) and the state

inputs were normalised with a multiplying factor of 1000. Figure 8.24 shows the

stabilisation of a point x = (0.01,0.01,0.01) by with estimated state inputs

from as represented in Agure 8.8.

Figure 8.24: Stabilization of point x = (0.01,0.01,0.01) with NNg trained using repeated points

Figure 8.25 shows the limits of the trained stabiliser with the stabilisation of

point X = (0.0380,0.0413,0.0299). This is equivalent to ||xH = 0.0636 and no

point outside this range is stabilizable by the network TVTVg.

Figure 8.25: Stabilization of point x = (0.0380,0.0413,0.0299) with trained using repeated
points

Ph.D Thesis University of Southampton 157

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

Driv ing Po in t s to zero

Although the utilisation of repeated points helped with convergence for ex-

amples involving a small area round the origin, examples with ranges outside

| |z| | = 0.1 were extremely slow to converge. An added component of training wa5

introduced with the aim of driving all points to zero. This is not possible for all

points, but whenever a point contracted successfully, the new point was chosen as

the contracted point rather than as a new random point in W. An early result of

this is shown in figure 8.26. Here the stabiliser is attempting to stabilize the point

X = (0.085,0.085,0.085). All training parameters are the same as in the previous

example.

Figure 8.26: Attempted stabilisation of point x = (0.085,0.085,0.085) with JVNg trained using
repeated points and driving points to zero

Although the stabilisation is not successful in figure 8.26, the result is a promis-

ing one. Having taken 202991 steps to converge, the convergence rate is faster and

the point is well outside the range of the previous examples (||x|| — 0.147). The

oscillation could be due to the bias that exists in this training method towards

points outside of y (estimated as p). This can be overcome by reducing the value

of p causing each point to be contracted nearer to zero and reducing the bias.

Ph.D Thesis University of Southampton 158

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

Variable Training P a r a m e t e r s

To further aid convergence, a variable training parameter was introduced:

A (L—1) 7 II II SXm. 5u^
Awl- = K7y||xo (8.29)

Figure 8.27 shows the control action TVA/g when trained to stabiliser points in 1^,

VF = {a;| ||a;|| < 0.5}. The training parameters are the same as before with the

exception that here p — 0.005, A;;; = 3.5 and the multiplying scaling factor on the

input has been reduced to 100. The network converged after only 37169 steps and

the hgure shows the stabilisation of a point x = (0.25,0.25,0.25), ||x|| = 0.43.

Figure 8.27: Stabilization of point x = (0.25, 0.25, 0.25) with NNg trained using a variable
training parameter

Figure 8.28 shows the control action of when trained to stabilize points in

l y = {a;] I la;11 < 1.0}. The training parameters are the same as previous with

the exception that here = 0.5 and a scaling factor of 20 is used. Oscillation is

present here, which in the example in figure 8.26 was cured by a reduced value of

/). Figure 8.29 shows an example where p = 0.001. The oscillation still present.

This example highlights a problem which occurs for larger choices of IV in that

the scaling factor used can hinder convergence if too large a value is selected.

Ph.D Thesis University of Southampton 159

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

Figure 8.30 shows an example where the scaling factor has been reduced to 19.5,

/) = 0.005 and A// = 0.49 in this example.

All that remains is to train a tracking controller that can control the plant to

follow a model of reference. In other words, a network NTVc is to be trained to

emulate the mapping:

u{k) = c\Yn{k — n + \),Un~i{kn + + d)\ (8.30)

that will cause the system to follow the reference model

Network Imp lemen ta t i on : The system is set up as shown in figure 8.31.

A controller can be trained for a plant where the states are unavailable in two

ways. Either the state input in hgure 8.31 can be estimated using the observer

network and all else remains unchanged; or the controller can be trained off

input output data directly, as shown in figure 8.32.

In similar fashion to the stabiliser network, the weights are adjusted as a

function of the response of the network NN^i to the controller input. Equivalently,

the error cost function

+ + (8.31)
77%

is used to adjust the weights according to (with %(/:) = 2/j^^):

X

2^XA:)(1-%(A:))^^-') (8.32)

Ph.D Thesis University of Southampton 160

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

Figure 8.28: Attempted stabilisation of point x = (0.55,0.55,0.55) with p = 0.005 and a scaling
factor = 20

Figure 8.29: Attempted stabilisation of point x = (0.55,0.55,0.55) with p = 0.001 and a scaling
factor = 20

Figure 8.30: Stabilization of point x = (0.58,0.58, 0.58) with p = 0.005 and a scaling factor
19.5

Ph.D Thesis University of Southampton 161

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

NN, NN,
tp.

NN,

3/(t + d)

e(t)

Figure 8.31: Training the network NNc

Yn {k — 71 1)

k
+ 4

TDL

TDL NN,

Figure 8.32: Training the network NNc off input output data directly

where is estimated using the Taylor series approximation:

+ /l)) -

h
(8.33)

and ^ represents + (f).

Resu l t s

The network G 10,5,1 was trained to control the output of the system

described in (8.16) to follow the reference signal = am(27r(A; + 2)/7.5). The

network was trained using a Exed training parameter 7y = 0.02 and a momentum

a = 0.85. Convergence waa achieved after 75000 steps. The result is shown in

hgure 8.33.

Ph.D Thesis University of Southampton 162

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

20 28 30 38 40 48

Figure 8.33: Controlling the system % to follow a reference trajectory where ym = y^{k + d)

8.3 A Mul t ip le Model Based Adapt ive Control Scheme

Based on Neural Network Models

In this section, the implementation of the multiple model based adaptive control

scheme of chapter 6 is considered based on neural network models. Figure 8.34

shows a schematic of this scheme where, aa in chapter 6, a number of hxed mod-

els operate alongside a real-time adaptive identihcation model. Model quality is

evaluated using the cost function:

(8.34)

Again a hysteresis switching component, is built into the switch such that a

new model is chosen if the following condition is met:

J new ~l~ ^ t/c (8.35)

The adaptive component here is quite diEerent from that of chapter 6. With

the training of the controller requiring a ready trained predictor ^(/c + d) =

Ph.D Thesis University of Southampton 163

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

CONTROLLERS MODELS
r(t)

-o

- o

u(k)

TDL

TDL

Plant

Figure 8.34: A revised switching scheme incorporating neural networks

it is no longer possible to use a completely free adaptive model. This problem can

be overcome by resetting the adaptive network weights to the best model each time

a new model is chosen. This requires that the networks

and NNc{new) be communicated whenever a new model is chosen. This is highly

inefEcient, so to reduce the overheads, all 6xed networks are communicated to the

adaptive processor (1) before the scheme is started. This means that any hxed

model can be identified by a single integer tag during run time.

8.4 Parallelisation of t he Scheme

T h e Training P h a s e

The scheme requires the availability of trained networks JVTV/i, and ÂTVc

for each plant environment. Narendra a/. (1995) advocate the automatic detec-

tion of differin environments during the training process. However, as an explicit

model of the plant is required during each stage of the training process, the use-

Ph.D Thesis University of Southampton 164

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

fulness of this approach is limited. Assuming detailed knowledge of each plant

environment allows the training process to be parallelised by distributing informa-

tion of the plant environments evenly amongst the available processors.

In order to reduce communication overheads, the run time topology is used for

allocation of networks for the training phase. Therefore, processor 0 is reserved

for the maater and processor 1 for the adaptive component where possible. This

means that the maater and adaptive processors remain idle during the training

process. The trained networks are then communicated to the master and stored

for future runs of the switching scheme.

T h e Switching Scheme

The switching scheme shown in hgure 8.34 is parallelised in exactly the same

way as the linear case shown in hgure 6.6. The basic structure is identical with the

sequential taaks of simulation and sampling of the plant sandwiching the parallel

task of calculating the model outputs (see figure 6.6b).

The processor topology is aa shown in hgure 8.35. The master processor is re-

served for plant simulation, sampling and performs the hnal switch in the switching

scheme. The adaptive processor performs fine tuning of the hxed models run on

the other worker processors.

T h e Communica t i on S t r a t egy

The communication strategy has changed somewhat relative to, chapter 6 in

an effort to minimise the communication of the large amount of data required to

represent each neural network (compared to a few numbers representing the linear

parameter space in the previous chapter). The tree topology is as before and is

shown in figure 8.35.

Ph.D Thesis University of Southampton 165

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

Proc 0

Best Model

Number
Best model number

+ switching value
Adaptive model

switching value

Plant output

+ input

Proc 2 Proc 3 Proc n Proc 1

Fixed models Fixed models Fixed models
Adaptive

Model

Master

Plant

+ feedback

Figure 8.35; Tree topology with the communication strategy for the revised switching scheme.

Set-up Communica t ions

To reduce run time communications, the master sends the data of all the

Axed NTVj and networks to the adaptive processor. As training is

only required once per plant example, it is desirable to allow the master to load

network data from disk, and in these cases the master has to distribute model data

amongst the worker processors available. The pattern of distribution is shown in

the tables in section 8.6.

The run time data is divided into three packets:

Sample d a t a - From the master to the workers.

Details of input and output plant data for model calculation purposes, together

with the reference signal value for controller purposes. The final component of this

packet contains a best processor Hag so that each processor can determine if the

best model has come from them and introduce hysteresis to local switching if

required.

Ph.D Thesis University of Southampton 166

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

M o d e l d a t a - From the workers to the master.

Details of best model number, the cost function value of the best model and

the control input corresponding to this best model. Note that since the plant is

nonlinear, no averaging is performed because the theories that allow interpolation

between models in the linear scheme are invalid in the nonlinear case.

B e s t M o d e l D a t a - From the master to the adaptive processor.

This consists of an integer tag identifying the best model. Since the adaptive

processor stores all the fixed models, no further communication is required by the

master.

8.5 Resul ts and Discussion

A six environment plant was set up as in equations (8.36) to (8.41).

Environment 1;

a;i(A; + l) = 0.52;3(A:)

3̂ 2(A; + 1) = Xi{k^ 4- [1 — 0.4^2(A;)]'u(A;)

a;3(A; + l) — 0.3a;i(A;)a;3(A;) —3;2(A;)

2/(A:) = a;i(/!;) (8.36)

Environment 2:

a;i(A; + l) = 0.3a;3(/L;)

a;2(/: + l) = 3;i(A;) + [l —0.25a;2(A:)]w(A;)

a;3(/i; + l) = 0.5a;i(A;)a;3(A;)-a;2(/:)

i/(A;) = 2;i(A;) (8.37)

Ph.D Thesis University of Southampton 167

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

Environment 3:

Xi{k ~l~ 1) — 0.3x (̂̂ k^ 4" 0.3xi(A;)

a;2(A; + l) = a;i(A;) + [l —

2:3(^ + 1) = 0.4a;i(/c)a;3(A:)-a;2(^)

(̂A;) = 371 (A;) (8.38)

Environment 4:

Xi{k "f- 1) — 0 . 3 3 7 3 + 0.2xi{k^

X2{k H~ 1) = Xi(k^ [1 — 0.4x2(A;)]'u(/c)

a;3(A; + l) = 0.3a;i(A;)a;3(A;) —a;2(A;)

^(/c) = 3;i(A;) (8.39)

Environment 5:

~l~ 1) — —0.3373(/u)

a72(A: + l) = a7i(A7) + [l —0.2a72(A7)]i/(A:)

a73(A; + l) — 0.3a7i(A;)a73(A;)—372(̂ 7)

i/(A;) = 371 (A7) (8.40)

Environment 6:

37i(A; + l) = 0.3373(̂ 7)

372(A; + 1) = 37i(/i7) + [l — 0.35372(/!7)]'u(A7)

a73(A; + l) = 0.437% (A7)373 (A7)—372(̂ 7)

^(/c) = 37i(A7) (8.41)

Environment changes occurred after every 100 time steps. The following cost

function was chosen with an hysteresis constant = 0.5.

J^(^) = lOOe^(^) + 200 / (8.42)

The networks were chosen, as in previous sections, with E A^A ŝ.io s,!, Â Â d E

Â Â g 10,5.1 G A^A/̂ ,io,5,r The training parameters were chosen as: 77 =

0.55 and a = 0.95 for the A'̂ Â /z and A/̂ A/̂ j networks, and 77 = 0.018 and a = 0.85 for

the A/̂ Âc networks. The reference model was chosen as = 5m(27r(A; + 2)/7.5).

Ph.D Thesis University of Southampton 168

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

The results are shown in figure 8.36. The error in the control of the hrst plant

environment 6 [0 : 100)) is unsatisfactory. This is due to the wrong model

being chosen by the scheme and is in turn due to the transient error caused by the

delay in the plant. The model that gives the lowest output (closest to the actual

plant output of zero for the hrst cf = 3 time steps) is chosen. The third plant

environment (A; E [200 : 300)) is also fairly poor, although this is due in part to a

poor convergence of the neural networks that provide identification and control for

this environment (relative to the other models). This highlights a problem with

using the same training parameters for the training of each model. However, if a

unique training parameter is chosen for each model, it creates a problem with the

choice of parameters for the training of the adaptive component.

In an attempt to overcome the problems of control of the initial environment,

a cost function with greater sensitivity to changes in error waa chosen:

J^(^) - e^(() + 6 / (8.43)

The results for this cost function are shown in figure 8.37. The control of the

hrst environment has been greatly improved. However, this has been achieved at

the expense of accuracy in the other environments. The control is likely to still

be acceptable, and the choice of cost function, along with the choice of training

parameters and the hysteresis constant is unique to each problem and control

requirement.

Ph.D Thesis University of Southampton 169

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

Figure 8.36: Control of a nonlinear plant with dynamic changes every 100 time steps using cost
function — 100E?(f) + 2 0 0

Ph.D Thesis University of Southampton 170

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

Figure 8.37: Control of a nonlinear plant with dynamic changes every 100 time steps using cost
function J((f) = + 6

Ph.D Thesis University of Southampton 171

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

8.6 Pe r fo rmance Analysis

8.6.1 Resu l t s on t he P o w e r P C ne twork

Table 8.1 shows the timings for the training process. As can be seen by the reduc-

tion in time between the sequential process (1 x 1 partition) and the 8 processor

solution (2x4 partition), the training process is highly parallel. This is underlined

by the scalability column which is an efRciency calculation dehned by

(8.44)

where Ti is the time taken to perform the calculation on a single processor and

is the time taken to perform the calculation over TV processors.

The Scalability column settles down to a scalability of around 93%. The

number of processors in the scalability calculation ignores processors reserved for

the master and adaptive model as these processors remain idle during the training

process. The time also ignores any time required to communicate the networks

back to the master - these times will be the same as the hxed model communication

times in table 8.2. These times include the time taken for the master to send all

the Rxed networks to the adaptive model processor and for the master to distribute

the Axed models across the partition. These are one off set up times and so are

insignihcant since they will have no effect on the minimum length of the sampling

period. This means that the times in table 8.1 for partitions 1 x 1 , 1 x 2 , 2 x 1 and

1 x 3 should all be the same and any anomally is due to memory access bottlenecks

or nonoptimal caching which will be unique to each processor. The apparent drop

in efhciency on the 2 x 3 partition is due to the non-uniform distribution of 6 models

across 4 processors (the distribution is explicitly listed in the models per processor

Ph.D Thesis University of Southampton 172

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

column). This problem can be overcome by distributing the models evenly across

six processors - ignoring the reservation for master and adaptive processors. This

would require a redistribution of models after training. This is unlikely to affect

the efficiency of the calculation since the communication time of distributing the

networks across the processor topology is relatively small. This can be seen in

table 8.2. For long runs this initial communication will become irrelevant to the

overall run time, since it is a one-off-set-up overhead.

Table 8.3 shows the run times for the results shown in figures 8.36 and 8.37.

The minimum sampling period for each partition is shown in the last column.

This allows a comparison with speed up and scalability to be drawn. In order for

a parallel solution to run faster than the sequential solution it is necessary for the

following inequality to be met:

^ (8.45)

This criteria is not met until the implementation on a 4 processor partition,

where a speed-up of only 1.178 is achieved on the 1 x 4 partition and 1.212 on

the optimal 2 x 2 partition (which is directly mapable onto the PowerXplorer PC

component shown in figure 3.5. The speed-up on the 2 x 4 partition is only 1.416

but this is still equal to a minimum length of the sampling period that is about

g ' s the length of the sequential solution.

It is possible with the data available to produce a crude mathematical model of

the processes involved. Defining a communication setup time as C, the hxed model

calculation as F and the adaptive tuning process as v4, the following equations -

Ph.D Thesis University of Southampton 173

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

Partition

No. of Fixed Networks
on Processor ID Number

Time (s) Scalability(%) Partition 0 1 2 3 4 5 6 7 Time (s) Scalability(%)
1 x 1 6 - 969.420 100.00
1 x 2 M 6 1046.838 92.60
2 x 1 M 6 1046.846 92.60
1 x 3 M A 6 969.487 99.99
1 x 4 M A 3 3 - - - 518.195 93.54
2 x 2 M A 3 3 - - — - 518.144 93.55
2 x 3 M A 1 1 2 2 - - 349.218 69.40
2 x 4 M A 1 1 1 1 1 1 174.340 92.68

Table 8.1; Training times for 6 networks over various partitions (where possible, processor 0 is
reserved for the master (M) and processor 1 for a real time adaptive model (A))

Partition

No. of Fixed Networks
on Processor Number

Comms
To Fixed
Time (s)

Comms
To Adapt
Time (s)

Total
Time (s) Partition 0 1 2 3 4 5 6 7

Comms
To Fixed
Time (s)

Comms
To Adapt
Time (s)

Total
Time (s)

1 x 1 6+A 0.0000 0.0000 0.0000
1 x 2 M 6+A 0.0518 0.0000 0.0518
2 x 1 M 6+A 0.0512 0.0000 0.0512
1 x 3 M A 6 0.0593 0.0511 0.110
1 x 4 M A 3 3 - - - - 0.0647 0.0510 0.116
2 x 2 M A 3 3 - - - - 0.0550 0.0516 0.107
2 x 3 M A 1 I 2 2 - - 0.0612 0.0517 0.113
2 x 4 M A 1 1 1 1 1 1 0.0648 0.0519 0.117

Table 8.2: Time taken to communicate trained networks to required processors

Ph.D Thesis University of Southampton 174

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

constructed from partitions 1 x 2, 2 x 2 and 2 x 4 - are arrived at

1 x 2 : v4 + 7:^ + C = 435

2 x 2 : ^ + 3C = 282

2 x 4 : yl + PF + 7 C - 256 (8.46)

Note that the adaptive process is a sum of the hxed model calculation and the

adaptive tuning process (A + ly) and that the model assumes a high message

latency such that all messages take the same time to set-up for communication (C).

The best model communication between the master and the adaptive processor is

built into the quantity A. Solving the simultaneous equations of (8.46), gives the

following solutions

^ 91.2

= 46.7

C = 16.9 (8.47)

which yield the following predictions

1 x 3 : A + 6iy + 2C = 405.2

1 x 4 : A + 3M^ + 3C = 282.0

2 x 3 : A + 2PF + 5C = 269.1 (8.48)

The predictions for partitions 1 x 3 (actually 411 sees) and 2 x 3 (actually 276

sees) are accurate, however the 1 x 4 partition is not. With a workload identical to

the 2 x 2 partition, the 1 x 4 partition should yield the same result. The times are

most likely to differ due to anomalies in the network routing strategy, but there is

Ph.D Thesis University of Southampton 175

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

no direct information in the documentation (Parsytec 1994) about this strategy.

The 2 x 2 partition is an optimal topology for 4 processors, whereas the 1 x 4

partition can only be connected in a line across two connecting 2 x 2 processor

components. This means, in communication terms, that the worst case message

routing strategy passes through 1 processor (a total of 2 communications) in the

optimal 2 x 2 partition and through 2 processors (a total of 3 communications) in

the unoptimal 1 x 4 partition. There is also no attempt to model the sequential

(1 x 1) process since the respective sequential and parallel codes diEer to such an

extent that they are not directly comparable.

Tables 8.4 - 8.6 show results for longer runs to test for consistency. The

results do show some variation. However, since the variation is also observed in

the sequential result, delays or inconsistencies exist in the computation area as

well as the communication.

8.6.2 Resu l t s on t h e T ranspu te r Ne twork

As a direct comparison with the results on the PowerXplorer array, the switching

scheme was run on the transputer array. Table 8.7 shows the set-up communication

times to be used as a comparison with table 8.2. As can be seen, there is a

consistency of times in the transputer communications that is not apparent in the

PowerPC array. The communication times are also faster on the transputer array,

despite the fact that both arrays use transputer links for communication. The

transputer array has a backplane which allows 'direct' communication between

processors on different boards whereas messages have to be routed through a

number of processors on the PowerXplorer array.

Table 8.8 shows the run times for the switching scheme run over 600 time

Ph.D Thesis University of Southampton 176

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

Partition

No. of Fixed Networks
on Processor Number

Time (s) Scalability(%)

Min Length
of Sampling

Period(s) Partition 0 1 2 3 4 5 6 7 Time (s) Scalability(%)

Min Length
of Sampling

Period(s)
1 x 1 6+A 2.265 100.00 0.00378
1 x 2 M 6+A 2.819 40.17 0.00470
2 x 1 M 6+A 2.794 40.53 0.00466
1 x 3 M A 6 2.566 29.42 0.00428
1 x 4 M A 3 3 - - - 1.923 29.45 0.00321
2 x 2 M A 3 3 - - - 1.872 30.25 0.00312
2 x 3 M A 1 1 2 2 - - 1.673 22.56 0.00279
2 x 4 M A 1 1 1 1 1 1 1.603 17.66 0.00267

Table 8.3: Results of running the switching scheme over 600 time steps

Partition

No. of Fixed Networks
on Processor Number

Time (s) Scalability(%)

Min Length
of Samphng

Period(s) Partition 0 1 2 3 4 5 6 7 Time (s) Scalability(%)

Min Length
of Samphng

Period(s)
1 x 1 6+A 45.564 100.00 0.00380
1 x 2 M 6+A 57.297 39.76 0.00477
2 x 1 M 6+A 56.751 40.14 0.00473
1 x 3 M A 6 51.683 29.39 0.00431
1 x 4 M A 3 3 - - - 38.801 29.36 0.00323
2 x 2 M A 3 3 - - - 37.973 30.00 0.00316
2 x 3 M A 1 1 2 2 - - 34.163 22.23 0.00285
2 x 4 M A 1 1 1 1 1 1 33.060 17.23 0.00276

Table 8.4: Results of running the switching scheme over 12000 time steps

Partition

No. of Fixed Networks
on Processor Number

Time (s) Scalability(%)

Min Length
of Sampling

Period (s) Partition 0 1 2 3 4 5 6 7 Time (s) Scalability(%)

Min Length
of Sampling

Period (s)
1 x 1 6+A 203.218 100.00 0.00376
1 X 2 M 6+A 232.155 43.77 0.00430
2 x 1 M 6+A 255.029 39.84 0.00472
1 x 3 M A 6 - - - - — 230.471 29.39 0.00427
1 x 4 M A 3 3 - - - - 175.844 28.89 0.00326
2 x 2 M A 3 3 - - ~ - 174.567 29.10 0.00323
2 x 3 M A 1 1 2 2 - - 163.320 20.74 0.00302
2 x 4 M A 1 1 1 1 1 1 150.237 16.91 0.00278

Table 8.5: Results of running the switching scheme over 54000 time steps

Ph.D Thesis University of Southampton 177

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

steps. These times are also more consistent with processor partitions of the same

size taking times of an extremely similar length. The actual run times are much

slower, due to the inferior transputer processor speed, but any inconsistencies

in calculation times would appear to be unique to the PowerPC array. This is

probably due to a better balance between processor and communication speeds

present on the transputer array.

8.7 Opt imisat ion

The communication strategy hag been minimised already. The main optimisation

potential lies in code optimisation.

The usefulness of the adaptive component can be signihcantly increased. As

the convergence rate of neural networks is so slow, there is no point concentrating

on a real time adaptive component in any sense. However, the potential lies in

taking advantage of the fine tuning element, that allows the adaptive component to

adapt to the wear and tear of a system (as with more conventional adaptive control

systems). In order to take full advantage of this the fixed models themselves must

be updated. The best way to achieve this is to update the model that corresponds

to Jcur from which the adaptive model has been tuning with the current adaptive

model weights, before the adaptive model is updated with the model weights that

correspond to the cost function Jnew

Although the nonlinear switching scheme has been limited to plant environ-

ments that can be stabilized by a zero input, the scheme can easily by extended

to include observers and stabilisers as described in sections 7.3.1 and 8.2.3 respec-

tively. This will increase the computational intensity and the adaptive component

will have to fine tune two more components as a result.

Ph.D Thesis University of Southampton 178

D.M.Brown
Parallel Processing Tools in

Adaptive and Self Tuning Control Chapter 8

Partition

No. of Fixed Networks
on Processor Number

Time (s) Scaiability(%)

Min Length
of Sampling

Period(s) Partition 0 1 2 3 4 5 6 7 Time (s) Scaiability(%)

Min Length
of Sampling

Period(s)
1 x 1 6+A 345.004 100.00 0.00383
1 X 2 M 6+A 435.497 39.61 0.00484
2 x 1 M 6+A 438.930 39.30 0.00488
1 x 3 M A 6 410.554 28.01 0.00456
1 x 4 M A 3 3 - - - 310.056 27.82 0.00345
2 x 2 M A 3 3 - - - - 282.233 30.56 0.00314
2 x 3 M A 1 1 2 2 - - 275.992 20.83 0.00307
2 x 4 M A 1 1 1 1 1 1 256.130 16.84 0.00285

Table 8.6: Results of running the switching scheme over 90000 time steps

Partition

No. of Fixed Networks
on Processor Number

Comms
To Fixed
Time (s)

Comms
To Adapt
Time (s)

Total
Time (s) Partition 0 1 2 3 4 5 6 7

Comms
To Fixed
Time (s)

Comms
To Adapt
Time (s)

Total
Time (s)

1 x 1 6+A 0.0000 0.0000 0.0000
1 x 2 M 6+A 0.0369 0.0000 0.0369
2 x 1 M 6+A 0.0368 0.0000 0.0368
1 x 3 M A 6 0.0467 0.0368 0.0835
3 x 1 M A 6 0.0465 0.0368 0.0833
1 x 4 M A 3 3 - - - - 0.0510 0.0369 0.0879
4 x 1 M A 3 3 - - - - 0.0509 0.0368 0.0877
2 x 2 M A 3 3 - - - - 0.0409 0.0368 0.0777
2 x 3 M A 1 1 2 2 - - 0.0470 0.0368 0.0838
3 x 2 M A 1 1 2 2 - - 0.0470 0.0368 0.0838
2 x 4 M A 1 1 1 1 1 1 0.0508 0.0368 0.0876
4 x 2 M A 1 1 1 1 1 1 0.0510 0.0368 0.0878

Table 8.7: Time taken to communicate trained networks to required processors on the transputer
array

Partition

No. of Fixed Networks
on Processor Number

Time (s) Scalabihty(%)

Min Length
of Sampling

Period (s) Partition 0 1 2 3 4 5 6 7 Time (s) Scalabihty(%)

Min Length
of Sampling

Period (s)
1 x 1 6+A 34.806 100.00 0.0580
1 x 2 M 6+A 34.101 51.03 0.0568
2 x 1 M 6+A 34.102 51.03 0.0568
1 x 3 M A 6 33.962 34.16 0.0566
3 x 1 M A 6 33.962 34.16 0.0566
1 x 4 M A 3 3 - - - - 23.410 37.17 0.0390
4 x 1 M A 3 3 - - - - 23.410 37.17 0.0390
2 x 2 M A 3 3 - - - - 23.375 37.23 0.0390
2 x 3 M A 1 1 2 2 - - 19.913 29.13 0.0332
3 x 2 M A 1 1 2 2 - - 19.910 29.14 0.0332
2 x 4 M A 1 1 1 1 1 1 16.398 26.53 0.0273
4 x 2 M A 1 1 1 1 1 1 16.395 26.54 0.0273

Table 8.8: Results of running the switching scheme over 600 time steps on the transputer array

Ph.D Thesis University of Southampton 179

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

8.8 Conclusions

In section 7.3.1, the results in (Levin and Narendra 1996) were tested and verified.

Improvements to the training process were suggested and analysed. Although

reasonable estimation of the states was demonstrated when training a network

from input and output data inputs, better accuracy was obtained using the state

vector. Judging by the results shown in (Levin and Narendra 1996), a far harsher

constraint on the plant outputs (i.e. a narrower boundary than even the ?/ E

(—3.5,3.5)) might be necessary. Low errors have been achieved in (Levin and

Narendra 1996), although problems in the estimation of 3:3 are apparent from

their results.

In section 8.2.2, the identiAcation networks introduced in (Levin and Narendra

1996) were verihed. To increase the accuracy, it was necessary to put constraints

on the plant by resetting the plant states and network inputs to zero if the plant

output exceeded certain boundaries. It is almost certain that similar constraints

were necessary in (Levin and Narendra 1996). The example presented was open

loop stable, substantially reducing the computational overheads, since networks

and can be discarded (the networks required for the purposes of sta-

bilisation). Limiting plants to this type also has the effect of simplifying the

components of the switching scheme in section 8.3.

In section 8.2.3, the stabilisation problem was considered. An example in

(Levin and Narendra 1996) was stabilised with varying degrees of success. A

number of related improvements and refinements to aid convergence were presented

and discussed. The accuracy of an observer network trained to estimate the system

states from input/output data was demonstrated to be sufficient in this case (all

networks in the section were trained from model data but tested with observer

Ph.D Thesis University of Southampton 180

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

estimation) and only slight errors were present - which may be as much to do with

solutions to the differential equations that exist around the equilibrium point as

with errors in estimation.

There may be problems using systems that require a stabiliser in the nonlinear

switching scheme (see section 8.3). The training parameters required to get each

stabiliser to work may be unique to each plant environment. However, provided

each environment is covered, a resettable adaptive model could still be a solution to

this problem. The implementation of observers and stabilisers into the switching

scheme was not considered in this thesis.

Following the treatment of the stabilisation problem, a controller network was

successfully trained to control a plant trajectory to follow a sinusoidal reference

signal. This was achieved without any constraints being placed on the plant,

hence justifying the resetting constraints placed on the identi6er networks

and The controller network converged with no additional training biases

required.

In section 8.3, successful control was demonstrated with a six environment

plant that changes frequently over a short period of time. The usefulness of the

adaptive component only becomes apparent when it is used to fine tune the fixed

model components of the system, allowing the plant to be controlled when its

operating environments are known at the outset, but also allowing the system to

cope with unknown wear and tear of the system over a relatively long period of

time (when compared to normal operation time).

A good example of an area to which this is applicable is a robot arm that

operates in environments that can not be modelled by a linearised model (or set of

models). This offers another level of complexity to the previous linear switching

Ph.D Thesis University of Southampton 181

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 8

scheme and would allow a large variation of load to be lifted by the robot arm

(when compared to the overall mass of the arm). This in turn would allow the

maas of the arm to be reduced in relation to the load masses encountered in run

time.

The parallelisation of the scheme has been justified since a significant reduction

in the minimum sampling period has been achieved allowing the sampling rate to

be increased which in turn increases the accuracy of control.

Ph.D Thesis University of Southampton 182

Chapter 9

General Conclusions and Further

Work

9.1 Conclusions

After presenting introductory material in chapters 1 to 3, the hrst original work

appeared in chapter 4 with verihcation work for systolic architectures introduced

in (Li 1990) that were for the parallel computation of difference equations required

as part of the control process. As part of this process, parallel verihcation and

analysis techniques were introduced and used to model the architectures from (Li

1990). Such architectures were shown to be highly parallel and scalable assuming

eihcient coding was employed.

Possible parallel processing schemes for the computation of matrix-vector mul-

tiplication, arising in Dynamic Matrix Control, were introduced in chapter 5. Al-

though it is possible to decompose the basic calculation into a number of parallel

components, the communication overheads required to transmit the data to the

worker processors is comparatively high. Even in problems where message sizes

183

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 9

were at an optimum for communication, only a small speed-up was achieved. For

MIMD architectures of the type considered in this work, appreciable speed up from

parallel processing would only be achievable if the balance of communications to

computations altered significantly in favour of communications.

Chapter 6 introduced the concept of parallel multiple model adaptive control.

The controller corresponding to the best model from a large number of hxed mod-

els and a real time adaptive model was (o and used to control a linear

plant that undergoes large discontinuous changes in its dynamics during normal

run time. The inherent algorithm here was highly parallelisable and the level of

parallelism was limited to the number of fixed models employed and a minimum

granularity (models per processor) below which no further speed-up was possible.

The effectiveness of such systems depends on the maximum number of Axed mod-

els applicable to a given plant. This limit is comparatively small (at most a few

hundred), making the parallelism most applicable to a small number of low cost

processors as opposed to available massively parallel machines.

Chapter 7 provided some essential theory as a foundation for the neural net-

work schemes of chapter 8.

Chapter 8 extended the switching schemes in chapter 6 to nonlinear plants.

Extensive research is presented into the application of neural networks to all areas

of the control process before a switching scheme is constructed from neural network

identifiers and controllers that have been pre-trained. Such systems require the

existence of acceptable mathematical models of each environment that the plant

might occupy during any run time. Neural networks are trained to model the plant

trajectories from past input and output data - with a neural network trained to

each known environment. This allows the overall control system to cope with

large discontinuous changes in dynamics during normal run time, while having

Ph.D Thesis University of Southampton 184

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 9

the ability to fine tune the neural networks during run time.

All parallel solutions in this thesis have been developed around the assumption

that only a small number of low cost processors are available. The solutions have

largely been for problems where the ratio between computation and communica-

tion has been high - a key property of problems that are highly parallelisable - with

the exception of chapter 5 where only a small amount of speed-up was achievable

(and then only in optimal conditions) as a result.

The switching schemes of chapters 6 and 8 offer great promise. Frequently, the

practical solution to plants which are not time invariant is to make the dynamic

changes that the plant undergoes negligible. Robot arms are of a much larger

maas than their loads for this reason. If the constraint on mass is removed from

the system with the implementation of a multiple model switching scheme, the

arms can be made much lighter - making them cheaper and having important

implications in the space industry where payloads are critical.

The adaptive component of the nonlinear switching scheme may at first seem

obsolete. However, if the control system is for a system used often, the adaptive

component can fine tune models to slow changes in plant dynamics such as that

caused by ageing components and other wear and tear of the system through

frequent use.

The thesis has successfully identified a number of techniques in control system

engineering in which parallel processing can be successfully employed inexpen-

sively. It has also shown that not all inherently parallel algorithms are suitable for

parallelisation using commodity processors. Through the implementation of the

switching schemes for linear and nonlinear plants steps have been made towards

widening the field of adaptive control beyond slow-time varying plants and in the

Ph.D Thesis University of Southampton 185

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 9

case of nonlinear plants, suggesting a generalised control scheme. As to how useful

parallel processing will be in the future is a matter of debate. Over the last Ave

years little has been suggested in the field with fastness of control coming from

the implementation of algorithms on increasingly fast sequential machines. The

next Eve years might see parallel control schemes die out completely. With some

plants, modern digital control has already reached a near optimal level and parallel

processing offers nothing more there. However, with a plant whose dynamics can

change in a large discontinuous step, a sampling period as short as possible and as

short a delay in the generation of the control input will always be two important

goals. As sequential processing has an upper theoretical limit of not much more

than the gigahertz processors on the horizon, the only way of increasing speed

beyond that limit lies in the connecting together of very faat sequential processors

by a fast ethernet link (or any link that allows fast communication between pro-

cessors). The future will perhaps see more application speciRc computers tuned

to specialist calculations - of which one field that could beneht is adaptive and

self-tuning control.

Ph.D Thesis University of Southampton 186

Parallel Processing Tools in
D.M.Brown Adaptive and Self Tuning Control Chapter 9

9.2 Fu r the r Work

Several areas of further interest immediately arise from the work presented in this

thesis. Some suggestions for further work are now presented.

1. Update the systolic architectures of chapter 4 to include modern processors.

2. The implementation of systolic architectures to the control input generation

and Recursive Least Squares component calculations of the switching scheme

in chapter 6 - allowing more complex systems models to be constructed.

3. The extension of the multiple model switching scheme in chapter 6 to linear

MIMO systems.

4. The implementation of the nonlinear multiple model switching schemes of

chapter 8 to systems that are not open-loop stable with the introduction of

neural network observers and stabilisers to the scheme.

5. An investigation into the speciEc design implications of extending adaptive

control to time invarient systems - for example by allowing the maas of robot

arms to be reduced.

6. An investigation into the industrial applications of such systems.

7. Further investigation into areas of control that could beneht from parallelisa-

tion with the aim of producing a generic parallel toolbox for control systems

design and implementation.

8. An investigation into the application of different neural network models to the

switching scheme of chapter 8 (for example, B-Splines, neuro-fuzzy models,

networks that introduce transfer function models as node functions).

Ph.D Thesis University of Southampton 187

Bibliography

Aseltine, J. A, A. R Mancini, and C. W Sarture, 1958 (December). A survey

of adaptive control systems. TEE OM ControZ 3,

102—108.

Astrom, K. J, 1983 (September). Theory and applications of adaptive control -

a survey. 19, 471—486.

Autenreith, T, 1996. An investigation into adaptation and learning based on

multiple models switching and tuning. Technical report, The University of

Southampton.

Bakkers, A (Ed.), 1989. Mac/imeg. IOC.

Baude, F, 1989.

oMd ;4pproac/i. In (Bakkers 1989).

Baxter, M, M. O Tokhi, and P. J Fleming, 1994. Parallelising algorithms to ex-

ploit heterogeneous architectures for real-time control systems. In ZEE f ro -

o/ MarcA Con/erence number

ggg, pp. 1266—1271.

Brown, D, Y Li, E Rogers, and O. R Tutty, 1995. Verihcation of parallel archi-

tecture for real time feedback controllers. In froceedm^s o/ ZF4C/IF7P

on and v4rcM(ec(ureg /or /ZeoZ-Tzme Con^ro/

'PJj, Mo?/ - .gnd June pp. 355—360.

Brown, D, O. R Tutty, and E Rogers, 1996. Computer aided design and evalua-

tion of multiple model adaptive control schemes. In froceedmga o/ 5'!/m-

on Computer vlWed Con^ro/

- ,90̂ /* ylpnV _Ẑ 7̂, pp. 85—90.

Brown, D, O. R Tutty, and E Rogers, 2000. Parallel implementation of dynamic

matrix control algorithms. 7n^ema(%onaZ Jowf-no/ o/ Con^roL To be published.

188

Brown, M and C. J Harris, 1993. TAe B-gpZme JVewocoM^ro /̂er, pp. 134—167. In

foro/ZeZ froceaamp m a Con^roZ (Rogers and Li 1993).

Chen, Y. C and C. C Teng, 1995. A model reference control structure using a

fuzzy neural network. fVfzz?/ 6'ek amd 73, 291-312.

Chien, I. L, 1996 (September). Simple empirical nonlinear model for

temperature-based high-purity distillation columns. AzcAe Journal '^;8(9),

2692—2697.

Chisci, L and G Zappa, 1993. /or pp.

36—71. In (Rogers and Li 1993).

Cybenko, G, 1989. Approximation by superposition of sigmoidal function.

o/ CoM r̂of ond ,8(4), 303—314.

Dowd, K, 1993. f ef/ormonce O'Reilly and Associates Inc.

Elliott, H, R Cristi, and M Das, 1985 (April). Global stability of adaptive pole

placement. TEEE OM Control -^0(4), 348—356.

Fleming, R J (Ed.), 1988. fom/fe/ frocesamp m Con^ro/; (Ae

o^Aer arcAi^ec^tfrea. lEE Control Engineering Series 38. Peter Peregrinus Ltd.

Follinger, 0 , 1993a. Aege/uMpeM /. Miichen: Oldenburg Verlag. (in

German).

Follinger, O, 1993b. 77. Miichen: Oldenburg Verlag. (in

German).

Franklin, G. F and J. D Powell, 1980. Con^ro/ o/ Dg/Momzc j'g/g^ema.

Addison Wesley.

French, M and E Rogers, 1997. Approximate parameterisations for adaptive

feedback linearisation. In f roceedm^a o/ con/ereMce on ((ec%-

szon and con^rof, pp. 4665—4670.

French, M and E Rogers, 1998. Input/output stability theory for direct neuro-

fuzzy controllers. ZEEE OM 5?/a(ema 6, 331—345.

French, M, C Szepesvari, and E Rogers, 2000. Uncertainty, performance and

model dependancy in approximate adaptive nonlinear control. Trona-

oc(;ona on CoM r̂oZ 45. To appear May 2000.

Gaston, F. M. F, J Kadlec, and J Schier, 1994. The block regularised linear

quadratic optimal controller. froceetfmpa o/ Comoro/ 1254—1259.

2 1 - 2 4 March, Conference publication No 389.

Genceli, H and M Nikalaou, 1995 (September). Design of robust constrained

model predictive controllers with volterra series. Azc/ze (9), 2098—

2107.

Goodwin, G. C and D. Q Mayne, 1987. A parameter estimation perspective of

continuous time model reference adaptive control. ;8,?(1), 57—70.

Goodwin, G. G and K. S Sin, 1984. ond coM r̂oZ.

Information and systems science series. Englewood cliffs, New York: Prentice

Hall.

Goulding, J. R, 1991. Adaptive transfer functions. In froceedm^s o/

(7o»/ere)ice on jVeuroZ Volume 2.

Harris, G. J and S. A Billings (Eds.), 1985. Con^rof."

TAeon/ antf (2nd ed.). London, UK: Peter Peregrinus Ltd.

Hoare, G. A. R, 1978 (August). Communicating sequential processes. Commu-

o/fAe ACM ;9^(8), 666—677.

HopSeld, J, 1982. Neural networks and physical systems with emergent collective

computational abilities, froceedmpa Acacfemi/ o/5'czeMce3 79,

2554—2558.

Hornik, K, M Stinchcomb, and H White, 1989. Multilayer feedforward networks

are universal approximators. TVeuraZ 2, 359—366.

Hunt, D. J, 1989 (April). Amt dap - a processor array in a workstation environ-

ment. ^czemce amtf Engimeennp '^(2), 107—114.

Isidori, A, 1989. TVon/mear con r̂oZ am (2nd ed.). New

York: Springer-Verlag.

Jacobs, O. L. R, 1964 (May). Two uses of the term 'adaptive' in automatic

control. OM 9, 574—575.

Kalman, R. E, 1958. Design of a self-optimizing control system. ZRE

on v4u(omo^%c Con^roZ ' j (l) , 65—68.

Kreisselmeier, G and R Lozano, 1996 (November). Adaptive control of

continuous-time overmodeled plants. on Au^oma^zc Con-

r̂oZ ^^(12), 1779—1794.

Krose, B and P Van der Smagt, 1996. An m^roduc^zon ô TVewra/ TVê worAig (8

ed.). Kruislaan 403, NL-1098 SJ Amsterdam: The University of Amsterdam.

The entire text can be downloaded from the Faculty of Mathematics and

Computer Science's homepage.

Kung, S. Y, 1988. /iTToy froceaaorg. Information and System Sciences.

Prentice Hall.

Kwan, H. K, 1987 (December). Systolic realization of linear phase 5r digital

filters. I.E.E.E Transactions on Circuits and Systems 5^(12), 1604—1605.

Lang, S, 1983. jReoZ New York: Addison-Wesley.

Lee, J, M Morari, and C Garcia, 1994. State-space interpretation of model
predictive control. Automatica 30 {4), 707—717.

Leighton., F. T, 1992. (o OMcf .<4rcM(ec(weg.'

Morgan Kanfmann Publishers Inc.

Levin, A. U and K. 8 Narendra, 1993 (March). Control of nonlinear dynami-

cal systems using neural networks: Controllability and stabilization. IEEE

TyoMaocfzona on .^(2), 192—205.

Levin, A. U and K. S Narendra, 1996 (January). Control of nonlinear dynamical

systems using neural networks - part ii: Observability, identiGcation, and

control. ZEEE 7(1), 30—42.

Levin, M. J, 1958. Methods for the realization of self-optimizing systems. In

froceedmga o/ (Ae Con/erence, DeL, ApnZ

ISA Paper No. FCS 2-58.

Li, Y, 1990 (July). Conci/rren^ v4rcA%(ec t̂frea /or .ReaZ-Tzme Con(ro/. Ph. D.

thesis.

Li, Y and E Rogers, 1993. Baaed ^e^eropeneoua ArcAz-

kc^urea /or EmAeofcfecf Comoro/ fro6Zema. In (Rogers and Li 1993).

Lin, H, 1986. New vlsi systolic array design for real-time digital signal processing.

TEEE 7yonaoc(%ona on C%rcu%(and 5'2/a^ema 33, 673—676.

Ljung, L, 1977. Analysis of recursive stochastic algorithms. v4«^oma(%c CoM-

(ro/ 22, 551—575.

Ljung, L, 1999. 5'2/a(em T/ieon/ /or [/aer (2nd ed.). Infor-

mation and System Sciences. Englewood Cliffs, New Jersey 07632: P. T. R

Prentice Hall.

Ljung, L and T Soderstrom, 1983. TAeon/ ond froc(zce o/Eec^/razue

(%on. Cambridge, MA: MIT Press.

May, D and R Shepherd, 1990. Occam and the transputer. jVo êa m

6'czeHce 424, 329—353.

McWhirter, J. G and I. K Proudler, 1994 (March). A systolic array for recursive

leaat squares estimation by inverse updates. In froceedmpa o/ Con(ro/

Morc/i con/ereMce #o pp. 1272—1277.

Middleton, R. H, G. C Goodwin, D Hill, and D. Q Mayne, 1988. Design issues in

adaptive control. on Con^roZ ^^(1), 50—57.

Morse, A, D Mayne, and G Goodwin, 1992 (September). Applications of hys-

teresis switching in para neter adaptive control". IEEE Transactions on Au-

(oma^zc CoM r̂o/ ^7(9), 1343—1354.

Narendra, K and J Balakrishnan, 1997 (February). Adaptive control using mul-

tiple models. IEEE Transactions on Automatic Control 4^(2), 171—187.

Narendra, K, J Balakrishnan, and M Giliz, 1995 (June). Adaptation and learning

using multiple models, switching and tuning. ZEEE CoM(ro/

zme, 37—50.

Narendra, K. S and K Parthasarathy, 1991 (March). Gradient methods for the

optimization of dynamical systems containing neural networks. ZEEE TV-ana-

on jVe(worA;g 2, 252—261.

Parsytec, 1993. 6'o/(ware Documentation on(f Manua/ fopea. f o n r t;era2on .̂ .,8.

Parsytec, 1994 (May), farai/tec fowerXp/orer hardware uaer puzde. /Zewazon

1.1.

Rogers, E and Y Li (Eds.), 1993. farof/e/ froceaam^ m a Control 6'2/a(emg En-

wronmeni Systems and Control Engineering. London: Prentice Hall Inter-

national(UK) ltd.

Rumelhart, D. E, G. E Hinton, and R. J Williams, 1986. Learning internal

repreaentotiona 6?/ error joropa^ation, Volume 1, Chapter 8, pp. 318—362.

Cambridge, MA: MIT Press.

Sarimveis, H, H Genceli, and M Nikalaou, 1996 (September). Design of robust

nonsquare constrained model predictive control. v̂ z'cAe Jot/moZ .^^(9), 2582—

2593.

Sastry, S and M Bodson, 1989. Adaptife Control. Conwerpence ond

7Zo6uatneaa. Prentice Hall International Inc.

Slotine, J.-J. E and W Li, 1991. JVoMfmeor Con^ro/. Englewood Cliffs:

Prentice-Hall.

Sontag, E. D, 1990. Con(roZ T/ieoT^. New York: Springer-Verlag.

Takeda, K, O Tutty, and D Nicole, 1999. Parallel discrete vortex methods on

commodity supercomputers; an investigation into bluff body far wake be-

haviour. In froceetfmpa o/ (/izrd

amd re/o(e(f Mumencof me(/*oda, Volume 7, pp. 418—428.

Trew, A and G Wilson (Eds.), 1991. A 5''un;e{/ fam/Ze/

London: Springer-Verlag.

Tully, A and M Surridge, 1993 (October). Generic parallel software components

and techniques for simulation and control. Technical report. The Parallel

Applications Centre, The University of Southampton.

Weller, S and G Goodwin, 1994 (July). Hysteresis switching adaptive con-

trol of linear multivariable systems. ZEEE OM CoM-

(mZ gg(7), 1360—1375.

Wismer, D. A and C. H Wells, 1972. A modern approach to industrial process

control. 8, 117—125.

