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ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

INSTITUTE OF SOUND AND VIBRATION RESEARCH 

Doctor of Philosophy 

SIGNAL RECONSTRUCTION FROM PARTIAL OR MODIFIED LINEAR TIME-
FREQUENCY REPRESENTATIONS 

By David Manuel Baptista Lopes 

The changing spectral qualities of a non-stationary ID signal can be analysed using Time-
Frequency Representations'. TFRs are real or complex 2D functions of time and frequency. 
The aim of this thesis is to explore both traditional and signal dependant TFRs, with 
particular emphasis on the potential of a given representation to be inverted to reconstruct 
the original time series. Invertibility is the ability to reconstruct a ID signal from a given TFR. 
Typical methods of inversion assume that the TFR to be inverted is valid, that is the TFR has 
an exact inverse. Two commonly used signal dependant Time-Frequency methods, Cohen-
Posch and the Reassigned approach, modify a TFR to produce a new distribution, which 
conforms to a set of desirable characteristics. The first section of this thesis reviews such 
signal dependant techniques and describes a method of inversion for the Reassigned 
Spectrogram through use of its link to the phase of the Short Time Fourier Transform (ST-FT). 

In order to achieve this inversion, signal reconstruction is required using only knowledge of 
the phase of the ST-FT. Such an inversion is shown to be possible to within an overall 
amplitude constant given mild conditions upon the degree of overlap used in the 
computation of the ST-FT. Complimentary to signal reconstruction from knowledge of the 
phase of the ST-FT, is reconstruction from its magnitude. Two distinct approaches are 
described. The first previously given in the literature, iteratively applies the Minimum Least 
Squares (MLS) inversion of the complete (amplitude and phase) ST-FT. The second uses an 
analogous approach to that used for signal reconstruction from phase. Although the first 
approach proves more robust to non-valid input TFR, both of these techniques require a 
similar degree of overlap to the phase case, and both reconstruct the signal to within an 
overall phase constant. The description of the theory concludes with a discussion of the set of 
Generalised Wavelet Transforms (GWTs), of which both the ST-FT and WT are members. 
After defining the set of GWTs, descriptions are given for the MLS inversion for complete 
GWT information, and for signal reconstruction from either phase or amplitude. 

The thesis concludes by using the MLS based technique to create signals from modified or 
synthetic spectrograms generated using heart sounds. The first application of this is to 
extend the duration of heart sounds. Temporal extension in this fashion has the ability to 
extend the signals in time without affecting the spectrum of the sound. In addition, it does 
not require the use of a model as in matching pursuit based methods described in the 
literature. The second application is to create a time-series from a synthetic spectrogram 
constructed by averaging the spectrograms of a patient's heart murmur. Such averaging 
cannot take place in the time-domain owing to the random nature of the flow noise in a 
murmur. 
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Fzgẑ fg 2& /(gajjzg/zg(/ Co-orf/zTzafgj qf/̂ gaZ Z,ZMgar CAzrp CompzfW zwzVzg Â ẑ mgrzcaZ D^rg/icg 
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Chapter 1 Introduction 

Signal processing can be considered as the act of taking a signal and transforming it 

to reveal previously unknown information. In its most general form, no conditions 

should be placed upon either the type of input signal, or the nature of the 

information extracted. For example, tasting (transform) an apple (signal) to see if it is 

ripe (information) would be one example, just as a Fourier transform (transform) of 

the output from an accelerometer (signal) might reveal if a vibration level is too high 

(information). 

Typically the signals examined throughout this thesis are ID time series. Examples 

of such signals include those obtained from a microphone or an accelerometer. 

Signals can be classified as either stationary or non-stationary. Statistical properties 

of stationary signals do not vary with time, as opposed to those of non-stationary 

signals, which do. One example of a stationary signal is the sound generated by a 

rotating fan having constant RPM. The blade passing frequency of the fan does not 

alter from moment to moment. However the sound is measured as the fan rotates 

from rest up to its operating speed is not stationary, since the changing blade speed 

results in a temporally changing auto-correlation function. A more formal definition 

of stationarity is given in Chapter 2 Section 2.2.7. 

In the process of extracting information from a signal, the stationarity of the signal, 

needs to be considered. Continuing with the fan example, if the information to be 

extracted is the blade passing frequency, then if the fan is rotating at constant RPM 

one number fully describes the required information. However a function of time is 

required to describe the blade passing frequency as the fan spins up. In general for 

non-stationary signals, any extracted information requires an additional time 

variable to describe the temporal changes. 

The increasing performance of the modern digital computer has meant that more 

and more complex signal processing algorithms can now be applied to a wider range 

of signals. One of the major signal processing techniques to benefit from this 

12 



increased computation resource is Time-Frequency (TF) analysis. This technique 

decomposes a ID signal into a 2D image showing the changing spectral content 

present in the signal. 

This thesis will investigate a number of different TF approaches each with their own 

benefits and limitations. Ultimately in a practical sense all these methods are limited 

by ITeisenburg's uncertainty principle, which states that the more precisely a signal 

is defined in time, the less precisely it is defined in frequency. Beginning with an 

introduction to spectral and non-stationary signal analysis, this thesis reviews the 

key ideas behind TF analysis, beginning with the Short-Time Fourier Transform (ST-

FT) (for example [PortnoffSO, Cohen95, Hammond96]). The ST-FT is one of two 

currently popular linear TFRs, the other being the Wavelet Transform (WT) 

[Rioul91]. Although linear, these functions are usually complex valued. Thus in 

order to display these functions simply the squared modulus (called the Spectrogram 

for the ST-FT and the Scalogram for WT) is usually plotted. The Spectrogram is part 

of a wider set of bilinear TFRs referred to as Cohen's Class (CC). Over recent years 

the popularity of CC has increased with ever more sophisticated kernel functions, 

enabling the TFR to have a number of user-defined characteristics. 

One of the limitations of CC of TFRs is that they do not alter their characteristics to 

match those present in the signal. As such these distributions are called signal 

independent TFRs. Chapter 3 investigates current signal dependant methods, which 

attempt to improve the performance of CC of TFR [Loughlin95a-b, Jones95]. One 

data adaptive technique that has grown in popularity recently is the 'reassigned' 

approach [Kodera76-78, Moss94, Auger95]. Although originally developed in the 

late 1970's using the ST-FT (called the reassigned spectrogram), the method has been 

extended to all members of CC. 

One highly desirable property for any TFR to posses is invertibility, enabling the 

reconstruction of a signal from the TFR. Mathematically simple inverses exist for all 

the signal independent approaches [Cohen95]. One goal of this work is to develop 

such an inverse for the reassigned spectrogram. The computation of the reassigned 

spectrogram can be achieved in a number of different ways, with the original method 

[Kodera76] using the difference between successive phase points in the ST-FT. 

In Chapter 4 the link between the phase of the ST-FT and the reassigned spectrogram 

is exploited to allow reconstruction of real signals from their reassigned co-ordinates. 
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In order to achieve thiŝ  an algorithm is developed for reconstructing a signal purely 

from the phase of its ST-FT. This inversion is achieved to within an overall 

amplitude constant. 

Although inversions exist for members of CC, their usefulness is limited. These 

approaches assume that the TFR to be inverted is 'valid'. The concept of validity in 

terms of TFRs is now defined. A TFR is a 2D function created via a TF transform of a 

ID function. For a TFR to be valid it must be the result of the application of a TF 

transform to some ID signal [Qian96]. In general, an arbitrary 2D function is not a 

valid TFR since there exists no ID signal, which could have created it via a TF 

transform. Hence, inversion of an invalid TFR can only be performed in an 

approximate manner. This leads to an optimisations problem. Direct application of 

the CC inversion formulae to invalid TFRs generally results in sub-optimal solutions. 

The question is now posed; Why would we wish to recover a signal from a TFR 

which has been altered? The TF plane offers the possibility of easily defining time-

varying filtering operations, simply by modifying a signal's TFR. Any modifications 

to a valid TFR almost certainly render it invalid. Robust procedures are required 

which work well upon invalid input TFRs. The alteration of the TF to create a new 

signal with 'desirable' characteristics has been considered by many authors in the 

literature for a range of different TFRs [Krattenthaler93, Hlawatsch94, 91, Griffin83, 

PortnoffSO, etc.]. Operations such as the masking out of unwanted signal 

components, or alteration of the time or frequency support of a signal are examples 

of such alterations. 

Chapter 5 focuses upon the problem of signal reconstruction from the magnitude of 

the ST-FT, the dual problem of that discussed in Chapter 4. Griffin et al. [Griffin83-

84] describe a method of signal reconstruction based upon the Minimum Least 

Squares (MLS) algorithm for the ST-FT. This technique is robust to invalid 

spectrograms, and can therefore be used as the basis for time-varying filtering. Other 

previously described techniques are reviewed, and a new approach to the problem 

(based upon a quadratic form) is presented. This new approach is compared to 

previously described algorithms. 

With a view to generalising the approaches given in Chapter 4 and 5 to a wider set of 

linear TFRs, Chapter 6 presents the set of Generalised Wavelet Transforms (GWTs) of 

which both the ST-FT and WT are members. It then proceeds to develop the 
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techniques for signal reconstruction from either phase or modulus, as well as a MLS 

algorithm for signal recc.istruction from full (complex) representation. 

Chapter 7 demonstrates an application for the methods presented in earlier chapters. 

Two different applications are presented, the temporal extension of heart sounds 

(without altering its spectral content) and the construction of a typical murmur 

sound from an averaged spectrogram. Both applications use the MLS algorithm for 

the spectrogram (reviewed in Chapter 5) as the basis for the reconstruction. 
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Chapter 2 Classical Time 

2.1 Introduction 
This chapter begins with a brief description and discussion of the Fourier Transform 

(FT). This function transforms a ID signal (typically in the time-domain) to the 

frequency domain, allowing its spectral content to be computed. The FT uses the 

whole of the signal to construct the spectrum of the signal. The use of the FT for non-

stationary signals is limited since it does not easily provide information regarding 

the time at which a given frequency component occurred. In order to compute the 

changing signal characteristics a decomposition of the signal in terms of both time 

and frequency is required. Such a decomposition is called a Time-Frequency 

Representation (TFR). The most basic linear TFR is a simple extension of the FT, 

called the Short-Time FT (ST-FT). Basic theory and ideas surrounding the ST-FT and 

another linear TFR, the Wavelet Transform (WT) are presented. The WT differs from 

the ST-FT by decomposing the signal in scale rather than frequency. The squared 

magnitudes of the ST-FT and WT, called the Spectrogram and Scalogram 

respectively, are both 'bilinear' TFRs. The chapter also describes a wider set of 

bilinear TFRs called Cohen's Class (CC), of which the spectrogram is a member. The 

chapter concludes with an examination of CC of TFRs, including the relationship 

between members of the set and their limitations. 

2.2 Fourier Transform 
2.2.1 Introduction 
The Fourier Transform (FT) is one of the most fundamental of all signal processing 

techniques. It is the decomposition of a signal in terms of oscillating harmonic 

waves. Informally, the FT allows the computation of the spectral or frequency 

content of a signal. Such a decomposition is useful because it can provide 

information regarding the process used to create the signal, for example the blade 

passing frequency of a fan, or the resonant frequency of a vibrating plate. Beginning 

with the definition of the continuous form of the FT, this section then proceeds to 
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develop the discrete FT by discretising first time, and then both time and frequency 

variables. 

2.2.2 Continuous Fourier Transform 
Consider a 1-D signal (real or complex) denoted the equation for its FT is given 

in equation (2-la), where t and 0) are the continuous time (in seconds) and 

frequency (in radians per second) variables respectively. The link between O) and 

frequency / in Hertz, is given by 6) = . The function is called the FT of 

the input signal x{t). (All integrals are taken over the limits —oo,oo unless otherwise 

stated). 

There are a number of alternative definitions of the FT, all simply related to one 

another. The FT is a one-to-one mapping from the time to frequency domain. The 

uniqueness of the transform for a given signal means that the transform can be 

inverted (2-lb). 

1 , (2-lb) 

The measure of the energy in the signal, as defined by (2-2), is the same, regardless of 

whether energy is measured in the time or frequency domain. This relation is called 

Parseval's or Rayleigh theorem [James95]. 

The FT is a decomposition of an input signal in terms of a set of complex exponential 

harmonic wave basis functions. Each of these complex exponentials can be thought 

of as a filter possessing an infinitely narrow bandwidth, centred at the frequency CO, 

and acting over the whole of the signal. The FT integrates the output of the each of 

these filters. The squared magnitude of the these filters is the same as the squared 

magnitude of the FT (2-la) and is called the spectrum. 
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2.2.3 Properties of the Continuous Fourier Transform 

2.2.3.1 Windowing and Convolution Effects 
Consider the signal given in (2-3). This signal is the result of the multiplication of 

two signals in the time domain. In the frequency domain, the result is that the 

signal's FT are 'convolved' as defined in (2-4) [James95]. This process in called 

'convolution'. A similar relation also holds with convolution in the time domain, 

resulting in a multiplication in the frequency domain. 

To demonstrate the effect of multiplication in the time domain, consider the 

windowed pure harmonic signal as given in (2-5). 

(f) (2-5) 

This signal is multiplied by two different windowing functions and their effect upon 

the frequency domain is considered. In this example, a Harming and rectangular 

windows are used. The time and frequency domain versions of these windows are 

given in Table 1. The definition of both of these windowing functions has an 

additional parameter, is used to tailor the support of each of the functions in 

the time domain. Altering this parameter affects both the time and frequency 

domain versions of the windowing function. In the following examples is set to 

7̂  = 2 for both windowing functions. 

Figure 1 shows the plot of the real and imaginary parts of the complex tone 

{0)q =15). The sharp start and stop effect of rectangular window can be seen at - 1 

and 1 seconds. As described by equation (2-4), multiplication in the time domain 

results in convolution in the frequency domain. The FT of a complex tone is a Dirac 

delta function and thus the convolution operation simply shifts the FT of the 

windowing so that it is centred at the fundamental frequency of the tone, 0)^. This is 

shown in Figure 2, where the FT of the rectangular window function is shifted to be 

centred at 15. Figure 3 show the same harmonic windowed using the Harming 

window, the result in the frequency being given in Figure 4. Comparing FT versions 
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of the signals, it can be seen that the main lobe (the part closed to 6) = 15) in Figure 2 

is narrower than the main lobe seen in Figure 4. Conversely, the amplitude of Figure 

4 rolls off much more quickly with increased frequency as compared to Figure 2. 

Mathematically the -3dB bandwidth of the main lope for a rectangular window is 

0.88/7^ , whereas for a Harming window is it 1.4/7^ [White82]. The asymptotic roll 

off of a rectangular window is 6dB per octave as compared to the Harming window 

which rolls off at 18dB per octave [White82]. It follows therefore that if a signal 

needs to be windowed prior to analysis, as for example when using the Short-Time 

FT (see Section 2.3.2.2) careful consideration should be given to the type and size of 

the windowing function used. 

Window 
Type 

Time Domain Version Frequency Domain Version 

Rectangular 

h(t). 

T T 
1 — 

2 2 
0 otherwise 

L 2 
0) 

Harming 

A ( f ) : 
1 + cos 

0 
V 

2 2 

otherwise \ / 2 

sin 

V 2 y ^2 ; ry 
J J 

Table 1 Time and Frequency Domain definitions of Harming and Rectangular 
Windows 
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-0.5 0 
Time / sec 

Figure 1 Complex Harmonic Windowed by a Rectangular Window (Real Part Solid 
Line, Imaginary Part Dashed Line) 

20 30 40 50 
Frequency / radians 

60 70 

Figiire 2 The Amplitude of the FT of a Rectangular Windowed Complex Harmonic 
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Time / sec 

Figure 3 Complex Harmonic Windowed by a Hanning Window (Real Part Solid 
Line, Imaginary Part Dashed Line) 

30 40 
Frequency / radians 

Figure 4 The Amplitude of the FT of a Harming Windowed Complex Harmonic 
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2.2.3.2 Contraction and Expansion 
This section describes the effect on the FT of rescaling the time axis. The relationship 

is shown in (2-6) [Qian96, etc.] and proven via a change of variables. 

1 (2-6) 
F r x ( a f ) l = — = —==-T-i-fA;(T)e 

V2^ k r W v« / 

By contracting the signal in the time domain, the frequency domain representation is 

expanded and scaled. This is intuitive and can be illustrated via a simple example of 

a pure tone in time of known frequency. By expanding and contracting the signal (or 

by replaying the signal at a slower or faster rate), the period of oscillation of the tone 

changes and thus so does its spectrum. When the signal is expanded (a is greater 

than one), the frequency decreases; and as the signal is contracted (a is less than 

one), the frequency increases. 

This property essential to the Wavelet Transform (WT) as defined later in this 

chapter. 

2.2.3.3 Tlie Uncertainty Principle 

In relation to the FT, the uncertainty principle can be derived in a number of ways. 

Cohen [Cohen95] discusses the relationship by saying "The density in time is 

and the density in frequency is but and are related and hence 

one should not be surprised to find that there is a relation between the densities. The 

relation is such that if one density is narrow the other is broad." There are a number 

of different ways to prove the relationship between the resolution in time and 

frequency [Gabor46, Cohen95, Qian96, Rioul91]. 

For a given signal, the 'bandwidth', A6), of the FT is defined as given in (2-7), where 

the dominator is the energy of the signal. The variable A6) represents the resolution 

in the frequency domain. In a similar fashion, the spread in time is denoted as At 

and is given by (2-8) where once again the denominator is the energy of the signal. 

The variable At represents the temporal resolution. Using these definitions it is 

possible to show that (2-9) must always hold [Gabor46, Cohen95, Hammond96]. 

Equation (2-9) states that the product of the bandwidth in frequency Aco and the 

time width At is never less than Vi. This relation defines the uncertainty principle. 

The more precisely a signal is specified in time, is less precisely it can be specified in 
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frequency, and vice versa. This is analogous to the relationship found in quantum 

physics between displacement and momentum. 

(^-8) 

A6^ .Ar> l 
2 

The product of the bandwidth of a signal in time and frequency is called the 

Bandwidth-Time (BT) product. 

2.2.3.41116 Analytic Signal 
The Hilbert transform is used to transform real input signals into 'analytic signals'. 

Analytic signals have the virtue that they have a defined instantaneous frequency 

(detailed in the next section) and a lower BT product. The analytic signal derives its 

name from that fact that complex functions defined in this manner satisfy the 

Cauchy-Rieman conditions for differentiability and functions which satisfy this have 

been traditionally called analytic functions [Cohen95]. 

The analytic signal is defined in (2-10) and is characterised by being zero for negative 

frequencies. 

'(f) = F-

2X((w) (U>0 

X(<y) Ct>-0 

0 6 ;<0 

(2-10) 

The analytic signal is usually computed with the aid of the Hilbert transform 

[Papoulis91]. By using the analytic form of a signal, the BT product can be reduced. 

Furthermore, use of the analytic signal can help reduce the number of cross-terms 

generated when using CC TFRs. 
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2.2.3.5 Instantaneous Frequency and Group Delay 

Consider a signal of the form given in (2-11). If the functions a (f), the amplitude, 

the phase, are such that the inequality given in (2-12) holds, z.e. the amplitude 

is slowly varying, then the signal is said to be (time) asymptotic [Guillemain96]. The 

signal given in (2-11) is approximately analytic if it is asymptotic [Tchamitchian91]. 

(2-11) 

1 

a (r) & 
« 

(2-12) 

In general, this signal is non-stationary, possessing a time-varying spectrum. 

Such a signal possesses only one frequency component at any given instant in time, 

and one may ask: What is the signal's frequency at a given time? One, intuitive 

solution, is provided by the instantaneous frequency (IF) as deBned in (2-13). 

Similarly one may ask: When does a frequency component occur? The 

corresponding solution is the Group Delay (GD) defined in (2-14). 

X ( f ) = a (f = * (J, ( f ) = 

(2-14) 

In order for the IF and GD to unambiguously describe a signal in time and 

frequency, each of these functions must be monotonic. If this were not the case, then 

it would be possible for a signal to have the same IF at two different times. The 

result of this would be the need for the GD function to be multi-valued at one 

frequency, in order to fully describe the signal. Since the GD function is single 

valued, it follows that in order the GD and IF functions to be interpreted reliably 

then they must be monotonic. 

Although the IF and GD essentially answer the same question, whether or not these 

two parameters describe the same curves depends upon how well (2-12) is satisfied. 

This will be shown in Chapter 3 Section 3.4.3.1. Further use will be made of the IF 
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and GD functions in the following chapter in the context of the Reassigned 

Spectrogram. 

2.2.4 Discrete-Time Fourier Transform 
In order to be efficiently stored and manipulated on a modern digital computer, 

continuous signals need to be discretised. This is achieved via sampling the 

continuous signal at a finite number of discrete regularly spaced points. This 

sampling must take place at a sufficiently high rate (the sampling interval should be 

sufficiently small). Wittaker [Wittaker35] showed that the sampling rate should be 

twice the highest frequency component of the signal. The highest frequency which 

can be accurately measured is half the sampling rate. This frequency is called the 

'Nyquist' or 'folding' frequency. The discrete version x[n] of the continuous time 

series x{t) is given in (2-15), where n is the discrete time variable, and is the 

sampling rate (reciprocal of sampling interval). This equation uses a Dirac Delta 

function to sample the continuous time function. Equation (2-16) defines this delta 

function in terms of the limit of a function using two Heaviside step functions. 

r « "l (2-15) n 
r 

Using the discrete definition of the input time series, a new form of the FT can be 

derived. The version given in (2-17) is discrete in time, but continuous in frequency. 

This is called Discrete-Time Fourier Transform [Lim88] and is a mid-way point 

between the fully continuous or fully discrete versions of the FT traditionally used. 

V 7J=—oo 
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2.2.5 Discrete Fourier Transform 
For implementation on a digital computer, both the input time series and the output 

frequency representation must be discrete. In order to achieve this, the input data is 

assumed to have finite length N , here assumed to start at » = 0 . This reduces the 

infinite sum in (2-17) to a finite sum. The length of the input data defines the length 

of the frequency domain version of the signal. By defining the continuous frequency 

variable, CO in form given in (2-18), equation (2-17) can be shown to reduce to the 

Discrete Fourier Transform (DFT) as given in (2-19) [Marven96]. 

2;rA: (2-18) 
6) = 

N 

N-i (2-19) 

Af-1 

The DFT is discrete in both time and frequency domains. It is computed via a finite 

sum and can therefore be easily implemented, and the results stored upon a digital 

computer. The length of the sequence generated by the DFT is the same as the length 

of the signal, N. In terms of the frequency, the axis spans the space from DC (OHz) to 

the half the sampling frequency in N/2 discrete steps. An efficient method of 

computing the DFT has been created, called the Fast Fourier Transform (FFT) 

[Marven96]. Since the only difference between the DFT and FFT is the method of 

implementation, further exploration of the FFT is not given here, (see [Marven96] for 

further details). The FFT implementation of the DFT has allowed Fourier analysis to 

be applied to a wide range of real world problems. Applications of the FFT include 

estimation of transfer functions [Herlufsen84], pitch period estimation in speech 

[Rabiner87], and active noise control [Nelson94]. 

2.2.5.1 Resoiufion 
The signal and its DFT are of equal length. Therefore the greater the length of the 

signal, the more closely space the frequency samples. The width of each cell in the 

frequency domain is given by (2-20). The spacing of the samples is linear in the 

frequency domain, so the bandwidth of frequencies covered per cell does not change 

with frequency. 
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m = A 
N 

This relationship is sometimes referred to the 'resolution' of the DFT. It is preferred 

to reserve the term resolution for the ability to able to resolve two closely spaced 

sinusoids. For example, appending a number of zero samples to its end can extend a 

discrete signal sequence. By equation (2-20) then spacing between successive points 

along the DFT has been reduced. However the ability to resolve two closely spaced 

sinusiods in the signal has not been improved, and as such (2-20) should not be 

considered as the resolution of the DFT. 

2.2.6 Stochastic and Deterministic Signals 
The ID signals used through this thesis can be considered as the result of a measured 

experiment. If each time the experiment is run, the result is a different output 

waveforni, then the system and signal are called stochastic (or random) [Bendat86]. 

In contrast, if each time the experiment is conducted the output waveform is the 

same, then the system and signal are called deterministic. 

If only one realisation is available, then without prior system knowledge, it is not 

possible to determine whether the signal comes from a deterministic or stochastic 

system. Throughout this thesis, the signal is usually considered to come from a 

deterministic system. The distinction between stochastic and deterministic systems 

is important when considering whether a signal is stationary or non-stationary, as 

detailed in the following section. 

2.2.7 Stationary and Non-Stationary Signals 
The concepts of stationary and non-stationary are most appropriately presented in 

context of stochastic signals. However, since throughout this thesis signals are 

considered to be deterministic, these concepts are introduced from this framework. 

The time-dependant auto-correlation for a single realisation of a signal, x[t) is given 

in (2-21) [Bendat86]. 

r 

\ 

T 
f 4— 

2 
t 

2 
/ 

A necessary but not sufficient condition for a signal to be (wise sense) stationary is 

that the auto-correlation function is a function purely of the lag variable, t i.e. 
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R{t,T) = / ( r ) , V r (where / ( r ) is an arbitrary function). In order to prove 

stationarity, then multiple realisations of the stochastic signal should be considered. 

If the auto-correlation function changes over time as well as lag then the signal is 

non-stationary. Most of the signals considered in this thesis are non-stationary, in 

that their time-dependant auto-correlation functions and thus their spectra vary with 

time. This changing spectral content over time, highlights the need for a 

decomposition of the signal in terms of both time and frequency. 

2,3 Linear Time-Frequency Distributions 
2.3.1 Introduction 
This section will detail two linear time-frequency representations (TFRs), which 

achieve a signal decomposition in terms of time and frequency. These are the Short-

Time Fourier Transform (ST-FT), an extension of the FT and the Wavelet transform 

(WT). Prior to defining these, there follows the definition of linearity in the context 

of TFRs. 

For an arbitrary function / (r), to be linear it must satisfy (2-22), where c, and are 

constants. In order for a unspecified TFR, P,, to be linear with respect to the 

input signal, then it must obey an analogous law as given by (2-23) 

[Hlawatsch92]. 

(2-22) 

(f) + (f) => (2-23) 

Although linearity in TFRs might be considered as desirable, these TFRs cannot be 

interpreted as energy decompositions. In other words, the value of a particular point 

on a linear TFR cannot be considered to be the energy present in the input signal at 

that particular time and at that particular frequency. This is due to energy being a 

quadratic rather than a linear quantity. 
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2.3.2 Short-Time Fourier Transform 

2.3.2.1 Introduction 
In previous sections, the need for time-varying spectral information for non-

stationary signals was justified. However, the FT does not readily provide such 

information, and therefore in order to be able to express the changing characteristics 

of the signal, a further development is required. One approach is to temporally limit 

the FT, allowing the time-varying characteristics to be found. This is the essence of 

the Short-Time Fourier Transform (ST-FT). 

2.3.2.2 Continuous ST-FT 
In order to focus the FT to study the properties close to time t, a time-localising 

window can be used which suppresses the influence of the signal away from this 

point. A new signal is created as a result of multiplying the signal by a windowing 

function as given in (2-24) [Cohen95]. Examples of this windowing function include 

Harming, Hamming and Gaussian [Owens93]. 

(r) - - %") (2-24) 

This new signal is a function of two variables, time t, and lag, t . Application of the 

FT to the 'windowed' signal yields an estimate of the spectrum about time t (2-25). 

By moving the centre of the window along the length of the signal, an estimate of the 

local spectrum as a function of time can be achieved. This is defined in (2-26) and is 

the ST-FT. The two different definitions of the ST-FT given in (2-26) although 

equivalent they allow different interpretations of the same equation. The top 

definition can be viewed as dragging the window past a fixed signal, whereas the 

bottom definition can be interpreted as dragging the signal past a fixed window. 
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2.3.2.3 Proof of Linearity of the Continuous ST-FT 

Consider the signal given in (2-27)̂  comprised of a linear combination of two signals, 

Xy{t) and ^2 (?) (q and Cj are constants). The proof that the ST-FT of this signal is 

the same linear combination of the ST-FT of each signal component is given in (2-28), 

where S^{t,Ci)) is the ST-FT of the signal denoted in the subscript. (This subscript 

notion will be used throughout this thesis when it is necessary to make it explicitly 

clear upon which signal the TFR is acting) 

%(;)== + (2^53 

1 (2-28) 

= - y = ^ c , j x , ( r )A(r - f )g"^6fT- i -C2 j x ; 

2.3.2.4 Discrete ST-FT 
Computation of the ST-FT of an arbitrary sampled signal requires a discrete version 

of the ST-FT. Just as with the FT, generalisation can take place in a two step process. 

Firstly consider the discretisation in time of the input signal and windowing 

function. This can be represented as given in (2-29). (The l/2;r factor has been 

omitted for notional simplicity). 

(2-29) 
S{n,(o)= ^ x\m ]'2[/7 - m 

Using a sampled version of the windowing function, the infinite summation in (2-29) 

reduces to a finite sum, defined over the range for which the windowing function is 

not zero, as given in (2-30). The windowing function is N points long and is centred 

at the origin. By shifting the window in time such that its maximum value is at N{2 

rather than at the origin, equation (2-31) can be formulated. 

(2-30) 
S{n,co)= ^ x\m\h\n - m\e~ 

m=-N jl 
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S(n.m) = Y x { m W - m y ' -
m=0 

In the same fashion as with the FT, the continuous frequency variable is now 

replaced by a discrete value. 

(2-32) 

At each n the windowing function moves one sample along. This is can be 

generalised so that it is possible to specify the number of samples moved for each 

successive n, also known as time-slice (2-33). In the case where L=1 (2-33) reduces to 

(2-32) and the ST-FT is said to be 'maximally overlapped'. 

Af-i (2-33) 

/n=0 

This definition is the form of the discrete ST-FT used widely throughout this thesis. 

The ST-FT was developed as a means of showing the changing spectral content of a 

non-stationary deterministic signal. Figure 5 shows the magnitude of the ST-FT for a 

linear FM chirp as given in (2-34). For this plot, the sample rate was set to 

lOOOHz, the starting frequency of the chirp, 0)̂  was set to cô  = 160;r and the rate-of-

increase of frequency, a was set to 400 ;r. A 64 point Harming window was used in 

the computation of this plot. 

(2-34) 

x[n] = cos 
n 

f s 

The changing frequency content is evident in Figure 5, and the rising frequency 

component easily visible. 

The ST-FT is generally a complex valued function. In order to view this function 

easily, the modulus or squared modulus is plotted. The squared modulus of the ST-

FT is called the 'Spectrogram'. The spectrogram is not a linear TFR. 
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All the TFRs used throughout this thesis are displayed in the form given in Figure 5. 

The x-axis is used for time and the y-axis for frequency. The z-axis shown in the 

form of a colour is the amplitude of the TFR and is displayed on a logarithmic scale. 

The scale changes from blue for low amplitude to red for high. The scale is dynamic, 

altering according to the maximum value present in the TFR. 
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Figure 5 The Spectrogram of a Linear Chirp 

2.3.2.5 Limitations of tine ST-F 
At the core of the ST-FT is the windowing function. The choice of both shape and 

size of the window make a large visual difference to the computed spectrogram, the 

effects of which are briefly described here. 

The data window aims to select a desired region, and suppress the signal outside of 

that region. In order to demonstrate the effect that this window has upon the ST-FT, 

consider the limiting case where the window is a Kronecker delta function, (2-35). 

S[n] = 
1 n = 0 (2-35) 

0 otherwise 
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In this case, the window only picks out the time (one sample) of interest, at the 

expense of all others. However, since the window function in now only Ipt long, the 

DFT is also only Ipoint long. A point long DPT offers no insight as to the spectral 

content of the signal. Therefore, a very fine in time window has come at the expense 

of frequency resolution. 

If good frequency resolution is required, a long time window should be used. If the 

data is of length , then the longest window which can be used, assuming that the 

data is not zero-padded, is also of length . However as stated in Section 2.2.5.1, 

zero-padding the data does not improve the resolution, it merely increases the 

number of samples used. In the case where the window size is the same as the signal 

length, the ST-FT has the same frequency resolution as the FT. However, fine 

frequency resolution has come at the expense of time resolution. This trade-off 

between time and frequency resolutiori is another manifestation of Heisenburg's 

uncertainty principle. An analogous result also holds for the continuous version of 

the ST-FT. 

To demonstrate the differences created by using different window sizes examine the 

two spectrograms of the same input signal (speech signal) given in Figure 6 and 

Figure 7. The utterance used is Richard saying 'that human affairs were being 

watched from the timeless worlds of space', taken from Jeff Wayne's musical version 

of 'The War of the Worlds'. Figure 6 shows the signal using a short time window 

(Gaussian window). In this plot, the good time resolution can be seen by observing 

the abrupt start and stop of components as witnessed by the broad horizontal bands 

in Figure 6. However, when using the short time window the frequency resolution is 

poor. In contrast to the short time window, a long time window (Gaussian) was 

used in the construction of Figure 7. As expected, although this plot displays good 

frequency resolution, 'smearing' in the time axis indicates poor time resolution. An 

example of the time-smearing present in long time windows can be seen by 

considering the distributions close to 0.6sec. When using a short time window 

(Figure 6) an impulsive component can be seen, ranging from approximately to 0 to 

approximately 4000 Hz. When the long time window is used (Figure 7), this 

impulsive component cannot be seen. The poor frequency resolution for a short-time 

window can be seen when comparing the two figures in the region from 2-2.5sec. 

The harmonic nature of speech can be clearly seen when using a long time window. 
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However when using a short time window, these harmonics become blurred into a 

single component. Without prior signal knowledge, it is not possible to state a przorz 

what length the windowing function should take to best match the input signal. 

Typically the user computes three or four different spectrograms using different 

window lengths in order to ascertain visually which window length 'best' matches 

the input signal. 

Careful consideration must also be given to the shape of the windowing function 

used as well as its size. A Gaussian window offers the best time/frequency trade-off, 

since its time-bandwidth product is a 1/2 [Cohen95]. In order to show the 

differences that the choice of window can make to the spectrogram, the same speech 

signal as used previously is analysed using a Gaussian (Figure 8) and a rectangular 

window (Figure 9). The two windows were selected such that they had the same 

duration (spread) in time. The two resultant spectrograms look different. The 

Gaussian window (Figure 8) produces an image devoid of components that start and 

stop very rapidly. In contrast to this, the spectrogram using the rectangular window 

(Figure 9) has abrupt starts and stops along the time axis, however it has less clearly 

defined tonal components in frequency. 

The reason different windows produce visually different spectrograms can be traced 

back to the FT. Previously in this chapter, the effect windowing has been examined 

in equations (2-3)-(2-4). This stated that windowing a signal in the time domain 

resulted in a smearing in the frequency domain. The degree of smearing is 

dependant upon the FT of the windowing function used. Since the Gaussian is the 

most compact function in time-frequency [Hammond96], it is often selected as the 

window of choice for the spectrogram. 
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Figure 6 Spectrogram of Speech Signal Short Time Window 
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Figure 7 Spectrogram of Speech Signal Long Time Window 
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Figure 8 Spectrogram of Speech Signal Gaussian Window 
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Figure 9 Spectrogram of Speech Signal using Rectangular Window 
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2.3.3 Continuous Wavelet Tronsfornn (WT) 

2.3.3.1 Introduction 
In the previous section, the basic theory surrounding the ST-FT was outlined. The 

ST-FT can be viewed simply as a time-localising windowed version of the DPT. One 

of the inherent properties of the DFT is that the frequency resolution is dependant 

upon the length of the window, and is constant across the whole spectrum. An 

alternative approach is to make frequency resolution decrease with centre frequency. 

The change in frequency resolution with centre frequency results in improved 

temporal resolution at high frequencies and improved frequency resolution at low 

frequencies. 

If the resolution is proportional to centre frequency then this is called 'Constant Q' 

analysis [Hlawatsch92] and is at the heart of wavelet analysis. The definition of the 

WT is as given in (2-36). 

W — —j= {x(x^h 
(2-36) 

dT 

Typically, the wavelet used is oscillatory in nature. This is in contrast to the ST-FT, 

where the user specified window used is typically a non-oscillatory, low pass filter of 

some kind. One example of a wavelet used is the Morlet wavelet as defined by (2-37) 

where (Ug is the centre frequency of the wavelet [Giiillemain91]. The scale 

parameter, a, provides the contraction (dilation) or expansion of the mother wavelet, 

which also alters the frequency domain characteristics of the wavelet, as discussed in 

Section 2.2.3.2. Using a modulating (oscillating) wavelet the WT can be seen as 

another time-frequency representation due to the link between scale and frequency 

as given in (2-38) [Rioul91]. 

2̂ 1 (2-37) 
A(f)= ^ 

(Uo (2-38) 
a = —^ 

(t) 

2.3.3.2 Proof of Linearity 
As with the ST-FT, the WT is a linear TFR. This is shown in (2-39), where WT^ it, a) is 

the WT of the signal ) given in (2-36). 
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f - r (/T 
(2-39) 

j^;, (r)A c(r + C2j;(2(T)A 
V « / V « y 

= c,WTAt,to)-^c,V.'TAl.lo] 

2.3.3,3 Digital impiementation 
In the case of the continuous ST-FT, the conversion from the continuous to discrete 

domain was clearly defined via the DPT. In the wavelet case the progression is not 

as clearly defined. The discretisation of the WT as defined in (2-36) can be written as 

given in (2-40). 

^ 7M=0 

772 —M 
(2-40) 

If the wavelet is a sampled version of a known continuous function, then the dilated 

version of the windowing function required for (2-40) can be easily computed. The 

wavelet can be pre-computed for a given scale, which reduces the overall 

computation required for the transform. The variable [n] is used to represent the 

realisation of the wavelet at scale a as given in (2-41). Substituting this expression 

into (2-40) results in (2-42). 

Ag [»]=/% 
a 

(2-41) 

= [ / » - » ] 

V ^ m=0 

(2-42) 

Unlike the FT case, where the limits of the frequency axis were set implicitly by the 

FT, in the wavelet case it is the users discretion as to the frequency range used. The 

lowest frequency which can be analysed is dependant upon the length of the signal 

and the sampling rate. The highest is the Nyquist frequency. 

The squared modulus of the WT is called the 'scalogram'. As with the spectrogram, 

the scalogram is not a linear TFR. To demonstrate the differences between the 

spectrogram and scalogram Figure 11 shows the scalogram for the linear chirp 

shown previously in Figure 5. The previously straight line in TP is now curved 
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owing to the relationship between frequency and scale as given in (2-38). This plot is 

also shown on a frequency scale in Figure 12. At high frequency the frequency 

resolution of the scalogram can be seen to decrease, this phenomenon is described in 

the following section. 

2.3.4 Comparison of the Resolution of the ST-FT 
ondWT 

The ST-FT (and thus the spectrogram) is limited by the resolution characteristics of 

the FT. In order to achieve good frequency resolution, time resolution is sacrificed. 

The changing window lengths of the WT (scalogram) mean that time-frequency 

resolution is not fixed. Instead the time-frequency resolution is a function of 

frequency (or scale), changing as to offer good time / poor frequency at high 

frequencies, and poor time / good frequency at low frequencies. Although the 

time/frequency resolution varies with frequency, their product is fixed. This is 

another manifestation of the Heisenburg's uncertainty principle. An example 

showing the different resolution tiling of the ST-FT and WT are shown graphically in 

Figure 10. 

Figure 10 The Resolution Tiling of the ST-FT (Spectrogram) (Left) and WT 
(Scalogram) (Right) 
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Figure 12 Scalogram of a Linear Chirp using Morlet Wavelet - Linear Frequency 
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2,4 Cohen Class of Bilinear Time-
Frequency Distributions 

2.4.1 Introduction 
In the previous section, two non-linear TFRs have been discussed: the spectrogram 

and scalogram. In this section, these are placed in the context of a wider class of 

TFRs called Cohen's Class. The section begins with the definition of the Wigner TFR, 

the distribution at the heart of CC and then proceeds to define the rest of CC in terms 

of a 2D convolution operation upon the Wigner Distribution [Hammond96]. Finally, 

the limitations of CC of TFRs are considered. 

2.4.2 Energetic Time-Frequency Representations 
The concept of an energetic TFR is now introduced. A TFR can be considered an 

energetic TFR if it conforms to the following three conditions, where P{t,Oj) is a real 

valued TFR [Qian96]. 

Vr.fu (2-43) 

The justification for these three requirements is as follows. The TFR must be non-

negative for all time and frequency. Since energy is a manifestly non-negative 

quantity. The second property (2-44) states that integrating the TFR along the 

frequency axis should yield the energy per unit time at time t. This is called the 

time-marginal. The third property defines a similar relationship but in frequency. 

Integrating the TFR along the time axis should yield the energy per unit frequency at 

frequency CO. This property is called the frequency marginal [Cohen85]. 

Although guaranteed positive, both the spectrogram and scalogram fail to conform 

to either the time or frequency marginals. In both cases, this is due to the time-

localising window used in the computation. However, these TFRs are still 

considered by many as energetic TFRs, since they provide an estimate of the energy 

present in a signal and a particular time and frequency. 
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2.4.3 Bilinear Time-Frequency Distributions 
In Section 2.'̂ .2.3 it was shown that the ST-FT is a linear function, and it was stated 

(Section 2.3.2.4) that the same property did not hold for the spectrogram. In an 

analogous manner to that used for the ST-FT and WT cases, consider the 

spectrogram (2-45) for a two-component signal is given in (2-46). The spectrogram 

(and the scalogram) can be seen to be the result of adding together the spectrograms 

(scalograms) of each signal component (so called 'auto-terms') and a series of terms 

dependant upon the product of ST-FTs of individual components (so called 'cross-

terms'). A range of names have been given to the cross-terms, including 'error-

terms', and 'interference errors', but they are a necessary result of the interaction 

between signal components. 

2 

(2-46) 

The energetic TFRs created in this manner are called 'bilinear' presence of both auto 

and cross-terms of (?) and [Hlawatsch92]. All members of CC, of which the 

spectrogram is one, are called 'bilinear'. Their bilinear nature gives rise to the 

presence of cross-terms. In most bilinear TFRs manifest themselves as visually 

detracting components in the TFR. In the case of the spectrogram and scalogram, it 

is the cross-terms which result in the auto-terms becoming spread in TF. 

2.4.4 Wigner Distribution 
The Wigner Distribution (WD) is given in (2-47) for the continuous input signal x{t). 

The fact that the WD is a bilinear transform can be easily shown, as given in (2-49) 

where WD^ {t,CD) is the WD of the signal x{t) and WD^ is called the 'cross-WD', 

taking in two input signals, and ^̂ 2/ defined in (2-48). 

1 f (2-47) 
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» ' 0 , , , ( r , a ) = i j ^ , - { ( - T / 2 ) x , ( r + r/2)< ./(UT 
(2-48) 

WD 
2;T 

2;r 

j((%/ (r -T /2 ) + ( f - + V2) + (f + r/2)))g--^(fT 

j'^%,'(f-r/2)%, (r + r /2) + A : 2 * ( ^ - ( f + T/2)jg"-^(fTj + 

+ ( 4 ' - V2);:2 (r + r /2) + %/ (f - r/2);c, (f + T/2))e-''^<fT) 

(2-49) 

= WD, +WO ^ +WD, , ' =WO +WD, +2RerWD ^ 1 
AT] "̂ 2 '̂ 1 -̂ 2 L J 

The WD has a number of beneficial characteristics over other TFRs in general, and 

the spectrogram and scalogram in particular. Consider the linear chirp given in 

(2-34). Writing the equation in term of modulus and phase, the instantaneous 

frequency of the signal is found by taking the gradient of the phase, which is given in 

(2-50). The WD for this signal can easily be shown to be as given in (2-51). 

(2-50) 

, 6;) = (^(6) - (2W + (Uo)) (2-51) 

This is a special case of a fundamental property of the WD, specifically that it is 

concentrated along the instantaneous frequency for all signals [Cohen95, Qian96]. 

However, owing to the bilinear nature of the transform, only mono-component 

linear chirp signals are free from cross-terms. 

A useful property of the WD is that it satisfies the 'marginal properties', these as 

described in (2-44). The WD conforms to three of the four requirements to be 

considered as an energetic TFR. Unfortunately, the WD it is not guaranteed to be 

positive. To illustrate this, consider the signal given in (2-52). This is a Gaussian 

windowed amplitude with linearly increasing frequency. The WD for this signal is 

given in (2-53) [Cohen95]. 

x(f)= (4(1^ (2-52) 

WD(f,6;) = -
K 

/or 
(2-53) 
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This function can be seen to be negative whenever at^ + ((U - ^ 1/2. 

This makes it difficult to interpret the WD as an energetic TFR. 

The only signal for which the WD is positive is a Gaussian modulated chirp as given 

in (2-54). The WD for this signal is given in (2-55) and pictorially in Figure 13 

[Cohen95]. 

1/4 (2-54) 

WD A (^-55) 
K 

A list detailing various properties of the spectrogram, scalogram and Wigner 

distribution is given in Table 2 (A more complete list in given in [Hammond96, 

Hlawatsch92]). 

The WD for the speech signal used previously in Section 2.3.2 is shown in Figure 14. 

Although conforming to the marginal properties and having the correct 

instantaneous frequency etc., properties which the spectrogram does not possess, for 

a complicated signal such as speech, the WD can be visually difficult to interpret, as 

evidenced by Figure 14. 

2.4.4.1 The Requirement for Cross-Terms 
Although producing visually distracting artefacts, cross-terms are required in order 

for the WT (and other TFRs) to conform to the marginal properties. This is shown in 

the following example. Consider a signal comprised of two complex sinusoids as 

given in (2-56); the energy per unit time of this signal is given in (2-57). 

% (f) = 4- (2-56) 

|x(?)| = Aj + Aj + 2A,Aj cos((<1)2'^1 )^) (2 57) 

Through the application of (2-47) the WD for this signal can be derived as given in 

(2-58). Integrating out frequency yields the signal energy per unit time, given in 

(2-59). Since the WT has the correct time-marginal, this is equal to that derived 

directly from the signal. 
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(2-58) 

f 
+ ila^A^S +(^2, 

V 
cosfWz - ( U j ) 

^WT {t,(D^dco — A.^ + Aj + 2AjAj cos (̂ (̂ 2 ~^1)^) — |% (f )| 
(2-59) 

In this example, the auto and cross-terms of the signal can be seen in the formulation 

of the WD. A new TFR can be written using only the auto-terms as given in (2-60). 

Although intuitively correct, this new distribution no longer has the correct time-

marginal as shown in (2-61). This illustrates that the cross-terms are necessary for 

the WD to conform to the marginals and further that the 'intuitive distribution' does 

not satisfy the marginals. 

D{t,co^ — A^ 5{(i) — + Aj 5{^(D — 0)2) (2-60) 

= A,̂  - t - ^ | ^ ( ^ ) | (2-61) 
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Properties Mathematical Description 
Wigner 

Distribution Spectrogram Scalogram 
Pseudo 
Wigner 

Distribution 

Reality V V V V 
Time Marginal V X X X 

Frequency 
Marginal V X X V 
Positivity X V V X 

Time Shift ~ 0̂ ) ~ 0̂ ' V V V V 
Frequency 

Shift V V V V 

Instantaneous 
Frequency 

rnf Yv 
V X X V 

Group Delay 

Tg(6;) =—arg{x(6;)} 
V X X X 

Table 2 Comparison between spectrogram, scalogram and the Wigner distribution 
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Figure 13 Wigner Distribution for a Gaussian Enveloped Linear Chirp 
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Figure 14 Wigner Distribution of Speech Signal 
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2.4.5 Relationship between Cotien's Class of Time-
Frequency Representations 

Previously in this chapter, the WD, spectrogram and scalogram have all been 

introduced. These TFRs are all bilinear and are members of Cohen's Class (CC) of 

TFRs. Two equivalent definition's of CC are given in (2-62) and (2-63). 

(2-62) 

= — (2-63) 
2n 

In 

The two definitions allow for different interpretations on the relationship between 

CC TFRs. According to (2-62) a member of CC can be viewed as a 2D convolution 

operation upon the WD with a kernel function. In equation (2-63) the TFR is defined 

via the 2D Inverse FT (IFT) of the result of multiplying the Ambiguity Function (AF) 

(2-64) with another kernel function. This 2D IFT of the TF plane is called the 

Ambiguity Plane (AP). The relationship between convolution and multiplication 

was discussed previously for the FT (Section 2.2.3.1). The two different forms of CC 

follow as a consequence of this. The kernel functions (as defined by (2-63)) for a 

number of different TFRs are given in Table 3. 

The reason for the number of different TFRs is to endeavour to create a TFR with 

'desirable' properties, such as marginal properties and finite time/frequency support 

without the presence of cross-terms. 

The cross-terms in the WD tend to be highly oscillatory in nature. This can be seen in 

the example given in Section 2.4.4.1 where the cross-terms oscillated depending upon 

the difference in the frequencies of the input sinusoids. It follows that in order to 

remove them a low-pass kernel function can be used, 11 in (2-62). The faster 

the fall-off rate of the low pass filter used, the greater the degree of smoothing 

applied to the TF plane and the cross-terms more are suppressed relative to the auto-

terms. The smoothing of the TF in this manner has the disadvantage of blurring the 

auto-terms. As the spectrogram can be shown to be a smoothed version of the WD 

(Table 3), it too fits into this definition. In the spectrogram case, the cross-terms, 

while not visually detracting as in the WD, are present in the highly spread auto-
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terms. Furthermore, the kernel used to transform the WD to the spectrogram, is the 

WD of the windowing function itself. Altering the size or shape of the windowing 

function, changes the size and support of the kernel function and thus its effect in TF. 

In order to be able to set the degree of cross-term suppression and auto-term 

spreading, most CC TFRs (such as the Choi-Williams TFR [Boashash92]) have user 

selectable parameters. 

Table 4 gives the requirements on the kernel function in order for certain time-

frequency characteristics to hold. For an arbitrary signal, no TFR can hold all of these 

properties simultaneously [Cohen95]. 

The scalogram is not a member of CC as defined by (2-62) [Hlawatsch92], but is 

related to the WD as given below. As can be seen, the scalogram is related to the WD 

via affine convolution rather than linear convolution. The kernel function used for 

the scalogram, is the same as that used for the spectrogram. 

(2-65) 
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Distribution 

Wigner Distribution 

Spectrogram A' 
^ 1 ^ 
M 4 T 

Choi-Williams 

Zhao-Atlas-Marks 
sinadr 

Page 

Bom-Jordon 
2 sin 

Table 3 Definitions of Kernel for Various Time-Frequency Representations 
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Properties Kernel 

Time-Shift Invariant Independent of time variable t 

Frequency-Shift Invariant Independent of frequency variable CO 

Realness 

Time Marginal 

Frequency Marginal ^(T,0)=1 

Instantaneous Frequency Property ^(0,^) = 1 and — = 0 
Of 1*4 

Group Delay Property ^(T,0) = 1 and = 0 
" ^ 1̂=0 

Table 4 Restrictions on the kernel function in order to create a TFR with 'desired' TF 

properties. 
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Figure 15 Choi-Williams Distribution for Speech Signal 

2.4.6 Inversion 
An inversion formula does exist to recover the signal from a CC TFR [Cohen95]. 

Equation (2-66) shows how a signal can be recovered from a CC TFR, through 

knowledge of the kernel function. Signal reconstruction can only take place to 

within an overall phase constant. If the first sample value x (O) is known then (2-66) 

can be applied directly. Otherwise the phase constant can be selected arbitrarily. 

(2-66) 

Implementation of the reconstruction formula is non-trivial if the kernel produced 

tends to zero. Most AP kernels tend to zero at some locations away from the origin 

in order to suppress cross-terms, as discussed previously in Section 2.4.5. The result 

in TF is typically a low pass filter, typically tending to zero away from the origin. 

The inversion requires the division by the kernel function in the TF domain, and thus 

numerical errors can result if the kernel has small values. 
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2.4.7 Limitations of Cohen's Class of Time-
Frequency Representations 

All practical TFRs must conform to the uncertainty principle, and yet the WD 

appears to defy this by having well localised harmonics and linear chirps. The WD 

does however conform to the marginal properties as expressed in Table 3. These 

place a limit upon the global characteristics of the WD via the FT. As stated 

previously in this chapter, the FT is itself limited by the uncertainty principle. This 

restricts frequency resolution according to the length of data. It follows that the 

frequency resolution of the WD is also limited by the resolution of the FT, and thus 

the WD does conform to the uncertainty principle. 

By designing the kernel function in an appropriate manner, TFR properties which 

are considered important to the application can be preserved while the cross-terms 

are suppressed as much as possible [Cohen95]. One example of such a kernel 

function is the 'Choi-Williams' function. This offers high resolution compared to the 

spectrogram, and suppresses the cross-terms present in the WD and maintains 

marginal properties. Figure 15 shows that Choi-Williams (CW) TFR for the speech 

signal used previously in Section 2.3.2. The improved visual quality can be easily 

seen when comparing the CW TFR in Figure 15 to the WD in Figure 14 and the 

spectrogram in Figure 8. The Choi-Williams distribution requires user interaction in 

the selection of the parameter controlling the degree of cross-term rejection and auto-

terms smoothing. 

Previously in Section 2.4.2 the properties required for a TFR to be considered as 

energetic were introduced. These stated that the TFR must be manifestly positive 

and conform to the marginal properties. The only member of CC which is manifestly 

positive for all signals is the spectrogram [Qian96]. In order for a TFR to conform to 

the marginal properties, its kernel function (in the AP) must conform to both 

0{t,O)=l (time marginal) and 0{O,6) = l (see Table 4). Since the spectrogram is the 

only positive member of CC and cannot simultaneously conform to both marginals 

[Cohen95], it follows that no member of CC can truly be considered as an energetic 

TFR. 
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2,5 Conclusions 
This chapter has introduced signal invariant TFRs, including the spectrogram, 

scalogram and WD. The spectrogram and WD can be seen to be members to CC, and 

as such are bilinear TFRs and exhibit cross-terms. In the extreme case of the WD, 

these produce distributions that are hard to interpret visually. Although the 

spectrogram is also bilinear, the cross-terms significantly blur the auto-term 

components rather than creating visually distracting components. For some 

members of CC, it is possible to alter a parameter to change the amount of cross-

terms present in the resultant distribution. One example of such as TFR is the 'Choi-

Williams' distribution. A conceptually simple inverse exists for all CC TFRs. 

One key element of CC is that none of the distributions alter their characteristics for a 

given signal. This characteristic is both a virtue and a limitation. Consider for 

example a signal which is comprised of tonal components at the start of the signal 

and is impulsive at the end. The design of the kernel can be targeted to offer good 

performance for either the tonal or the impulsive component, but not both 

simultaneously. The inability to be able to alter characteristics to match that of the 

signal, and the fact that data independent TFRs cannot be considered as an energetic 

TFRs as defined by (2-43) and (2-44), are the two fundamental limitations of 

traditional TP analysis. 
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Chapter 3 Data Adaptive 
Time-Frequency Analysis 

3.1 Introduction 
In Chapter 2 the theory of signal independent TF signal analysis was introduced. 

Although allowing the time-varying characteristics of a signal to be displayed in a 

manner previously not possible with the FT, all the linear and bilinear introduced 

TFRs posses some inherent limitations. The limitation for linear distributions is that 

the decomposition they provide cannot be considered as energetic. For the bilinear 

CC of TFRs performance is either limited by the presence of cross-terms (as in the 

case of WD), or by the resolution degrading effect of any kernel function used to 

suppress them. 

A common link between all the TFRs described in Chapter 2 was that they didn't 

adapt their characteristics to suit the input signal. User intervention is required to 

optimise the performance of the TFR to suit those of the signal, for example in the 

case of the spectrogram by selecting the length and shape of the window to match 

the characteristics of the signal. A method of optimising the TFR to the signal 

without the need for user intervention is desirable. In this chapter a number of 

different signal dependant TF techniques are described. 

3.2 Data Adaptive Kernel Design 
Although the TFRs developed in the previous chapter are not explicitly data 

adaptive, in order to optimise their performance user intervention in the form of 

altering some windowing parameter is often required. The altering of the 

windowing function or kernel parameter implicitly sets the amount of auto and cross 

terms that are passed in the TF plane and thus alters the visual characteristics of the 

TFR. An alternative approach is to design a kernel that is algorithmically adapted to 

the characteristics of the signal. By automatically constructing the kernel in the AP, 

the kernel could optimise the amount of auto-terms whilst minimising the amount of 

cross-terms passed to the TF domain. As stated in the previous chapter, the 

oscillatory nature of cross-terms in TF means that they tend to be located away from 
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the origin in the AP. This property- aids automatic kernel construction in the AP, 

since auto-terms tend to be less oscillatory in TF being located closer to the origin of 

the AP as compared to the cross-terms. Baraniuk and Jones [Baraniuk93] first 

formulated one method of achieving this goal by solving the optimisation problem 

given in (3-1), where the optimal kernel function is radially non-increasing 

and centred at the origin. 

( frsubjectto^(0,0) = l 

— a > 0 

The constraints placed upon the kernel force it to be a low-pass filter in TF of 

maximum volume a . In order for this approach to be effective the auto and cross 

terms must be separated from one another, i.e. the cross-terms and auto-terms should 

be located in separate regions of the AP. If the dimensions of the kernel are changed 

such that it encroaches upon the region between the auto and cross-terms, then the 

result is an increase in kernel volume with little increase in the signal energy covered 

by the kernel. Hence, the optimisation procedure favours kernels concentrated at the 

origin, precisely the region of the AP where auto components are present. 

Additional constraints can be added to the kernel [Baranuik93] in order that the 

optimised kernel function conforms to desirable TF characteristics, such as the time 

and frequency marginals. A fast algorithm for implementing the optimal kernel 

approach was developed to reduce computation time [Baraniuk94]. Unlike the rest 

of the data adaptive TFRs covered in the remainder of this chapter, since the 

technique is based upon kernel design a simple inverse exists. An unmodified 

version of the inversion formula given in Section 2.4.6 (Equation (2-66)) allows signal 

reconstruction. A locally adaptive version of the optimal kernel was designed to 

adapt to signals whose character changes with time was developed by 0ones95]. All 

these methods have the limitation that they require user specification of the volume 

for the kernel. In this respect, although allowing the CC TFRs kernel to be signal 

adaptive, they still require some degree of user intervention. 
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3,3 Cohen Posch Distributions 
Prior to the introduction of data adaptive kernels, Cohen and Zaparovanny proposed 

a simple data adaptive TFR formulation given in the context of quantum physics (the 

field in which the WD originated) [Cohen79]. This stated that a TFR function could 

be formulated as given in (3-2), where Q is a signal dependant function. 

(3-2) 

where 

' . w 0-3) 

In order for this formulation to offer an improved TFR compared to the WD, three 

desirable properties are required: the time and frequency marginals (see Table 1) 

must be conformed to and the distribution must be manifestly positive. Cohen and 

Posch [Cohen85] showed that a simple kernel conforming to these was any positive 

function O satisfying (3-4). Cohen [Cohen95] commented that it was sufficient to 

define Q(W, v) only for 0 < M,V > 1 and that u and v are the cumulative marginals, 

the sum of the densities up to a given time and frequency value. 

= 1 

The TFRs constructed using (3-2) and (3-4) were the first to conform to the marginals 

and be manifestly positive. TFRs which posses both these properties are called 

'Cohen-Posch' (CP) TFRs. Loughlin et al. [Loughlin94a] extended this definition to 

include other desirable properties such as the moments of a TFR defined via the FT. 

3.3.1 Numerical Computation 
The constraints placed upon the kernel function for CP TFRs are such there are an 

infinite number of CP TFRs for any given signal. Loughlin et al. [Loughlin94a] 

accomplished the task of finding the most appropriate CP TFR for a given signal by 

choosing an initial positive estimate TFR (typically a spectrogram) and then 

minimising the cross entropy subject to the TFR conforming to the marginals. The 
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algorithm to create a Minimum Cross Entropy (MCE) CP TFR is given in (3-5). 

Additional constraints other than the simple time and frequency marginals can also 

be imposed if required, increasing the number of steps in each iteration. Fonollosa 

[Fonollosa96] extended Loughlin's original approach to include rotated TP (or 

fractional) marginals. 

« ) = ? " - " ( ( , a ) - ' ' " 

The algorithm works by, at each iteration, enforcing a marginal upon the TFR, the 

frequency marginal in (3-5) and the time marginal in (3-6). This approach can be 

shown to be a 'Projection onto Convex Sets' (POCS) algorithm [Clarkson95], and as 

such is guaranteed to converge to a solution if the system is convex. Appendix 1 

proves that the sets, defined by positivity and conforming to the time and frequency 

marginals, are convex. Using a POCS method a CP TFR for the speech signal used 

previously is given in Figure 16. Compare Figure 16 to the spectrogram of the 

speech signal (Figure 8). A marked improvement in terms of the ability to resolve 

the start and stop of components can be seen. The impulsive components within 

single words can now be seen, whereas in the spectrogram they were completely lost 

due to the windowing function. Figure 16 is also free from the visually distracting 

cross-terms present in the WD and CW TFRs shown previously in Figure 14 and 

Figure 15. However, the CP TFRs although manifestly positive, can be seen not to 

track FM components of the signal as well the CW given in Figure 15. This is 

because the CP TFRs favours harmonic and impulse components over others. This is 

a limitation of CP TFRs, and discussed in more detail in Section 3.3.3. 

An alterative approach to the formulation of positive TFRs was given by [Pitton93]. 

Using the Evolutionary Spectrum (ES) (defined by Priestley [PriestleySl]) Pitton et al. 

[Pitton93] formulated the construction of a CP TFR by suggesting that a spectrogram 

can be considered as a smoothed CP TFR, see (3-7). In this equation, (o;) is the FT 

of the time-limiting windowing function used and w{t) is a smoothing function 
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acting only upon time in the TF plane. Pitton et al. [Pitton93] proceeded to describe 

an estimation procedure for P{t,Q)) based on deconvolving . 

|5(r, 0)F = j j r ( f - T , 0 ) - 9 ) P { t , e)dT dd 
(3-7) 

where = 

This view of the spectrogram as a blurred positive TFR is returned to in Section 3.4. 

CP TFRs have been used in a wide range of different applications including speech 

and condition monitoring [Pitton94]. 
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Figure 16 Cohen Posch TFR of Speech Signal 

3.3.2 Inversion 
Two different approaches for signal reconstruction from CP TFRs have been 

proposed in the literature. The first [Francos93] is a parameter based approach, 

which assumes the signal is comprised of a number of amplitude and frequency 
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modulated harmonic signals. This method extracts the amplitude and frequency 

modulation laws for each component via a CP TFR. The method is ultimately 

limited to signals which are well matched to the model. The second approach is a 

non-parameter based method [Shah98]. This approach is based upon finding a TFR 

whose squared magnitude conforms to the desired marginals, is invertible and the 

closest (in a minimum least squared sense) to a given prior estimate. An iterative 

process is described, imposing at each iteration the time and frequency marginals, as 

well as the invertibility of the resultant TFR. 

3.3.3 Limitations of Colien Poscli Time-Frequency 
Representations 

Although CP TFRs seem to offer good performance characteristics, (in that they are 

positive and satisfy the marginals in time and frequency), these properties may not 

be sufficient to guarantee good visual performance. This was demonstrated by 

Fonollosa [Fonollosa96] where the CP TFR for a linear FM signal was shown to be 

significantly spread. In fact the CP TFR is ideal for showing the frequency of tones 

and the time location of impulses, but in general produces poor distributions for FM 

signals. With a view to improving the visual qualities of CP TFRs for linear FM 

signals, the requirement for fractional marginals to be conformed can also be 

introduced [Fonollosa96]. However for non-linear FM signals, no simple way exists 

to improve the visual quality of the CP TFRs. 

3.4 Reassigned Spectrogram 
3.4.1 Introduction 

Equation (3-7) enabled the spectrogram to be interpreted as a blurred version of a CP 

TFR. Rihaczek (given in [AckroydZl]) defined the spectrogram in a similar fashion 

but using different blurring functions, given in (3-8). In this equation d{t,a)) is 

dependant upon the signal, and dependant upon the windowing function 

used in the computation of the ST-FT (2-36). 

where = 

(3-8) 
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Kodera [Kodera76] noted that although the integral (3-8) is taken over the whole 

range of the TF plane, the main contribution to the spectrogram comes from a limited 

region, defined by the bandwidth (in time and frequency) of the windowing function 

Kodera argued that since the bandwidth of the windowing function is 

spreading the underlying distribution, then the energy located the point of the 

spectrogram would be better placed at the local moment, By 

reallocating the energy to this new point, the spreading due to the bandwidth of the 

windowing function is reduced. There follows a brief justification for this. 

Although both and are complex functions, the imaginary part of the 

integration (3-8) must be zero since the spectrogram is real. With regards to (3-8) it is 

useful to define the functions and given in (3-9) and (3-10), so 

that (3-11) holds. 

^ j R e [ d (r 

(3-11) 

If 7y(^,r,<D) is sharply peaked about a specific value of frequency, then Kodera 

[Kodera76] stated that this value will give '[a] better representation of the frequency 

at which the maximum power is situated'. The peak of the function of ri[6,t,Co) is 

assumed to correspond to its first moment, (3-12). A similar procedure can be 

applied to f i { r , t , ( D ) to yield (3-13). (Kodera et al later showed [Kodera78] that by 

using the moment as opposed to the maximum value, that the instantaneous 

frequency and group delay parameters computed using these functions gave 

intuitively correct results under a range of signal band widths.) 

It can be shown that this local moment operation is analogous to computing a value 

of local instantaneous frequency Cl),. and group delay f at each point of time-

frequency [Kodera76], since (3-12) and (3-13) can be expressed in terms of the 

derivative of the phase of the ST-FT (3-14). It should be noted that Kodera used a 
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slightly different definition of the ST-FT, (different phase constant) than given 

previously in (2-26), this is given in (3-15). This is analogous to the way in which IF 

and CD were defined in terms of the derivative of the phase of the analytic signal 

and FT (see Chapter 2 Section 2.2.3.5). 

(3-12) 

(3-13) 

= (3-14) 

r " 
oCO 

= (3-15) 

Equations (3-12) and (3-13) define the reassigned spectrogram co-ordinates (the 

collective name given to the local instantaneous frequency and group delay 

parameters). There are a number of alternative ways to compute these functions and 

they are detailed in Section 3.4.3. 

To demonstrate the improved visual qualities that plotting these co-ordinates can 

produce. Figure 17 shows the reassigned co-ordinates (also called the reassigned 

vector field [Auger95, Chassande97]) for the linear chirp. The spread of the TFR due 

to the windowing function used has been reduced, with the co-ordinates being 

concentrated along the line of the chirp. The chirp has a high BT product and thus 

the IF and GD curves coincide [Kodera78]. 

Although the reassigned co-ordinates provide an estimate of the value of the IF and 

GD at a point in TF, they do not provide amplitude information. The original 

methodology defined by Kodera [Kodera76] was to reallocate the energy of the 

signal in TF to a new location which was relatively unaffected by the windowing 

function. As such the reassigned co-ordinates, although providing the location of 

these new points, do not provide a value for the energy that should be placed there. 

Kodera [Kodera76] stated that once the new co-ordinates were computed, that the 
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energy should be reallocated to this location. A more mathematical definition was 

provided by Auger of. via a double convolution with a set of delta functions given 

in (3-16), where is the reassigned spectrogram. The double convolution 

with a set of a 2D Dirac delta functions centred upon the locations provided by the 

reassigned co-ordinates, simply picks out these locations in the TF plane. By 

multiplying the result by the original spectrogram, the result is to create a TFR which 

only has non-zero values at locations dictated by the reassigned co-ordinates, with 

the energy at this location provided by the original spectrogram. 

The reassigned spectrogram for the linear chirp signal is shown in Figure 18. Figure 

19 shows the reassigned spectrogram for the speech signal. As compared to the 

spectrogram of the same signal given in Figure 6, the reassigned spectrogram 

appears to offer improved temporal support with tighter, better resolved impulses. 

The reassigned spectrogram also appears to offer improved frequency resolution, 

with the frequency modulation law and harmonic components of each word more 

easily seen than with the spectrogram. 

, 6)) = (r, - (u,. (r, ̂  

The reassigned spectrogram has been used to improve the visual characteristics of 

TFRs of speech [Plante98] and of structural response data [Hammond96]. 
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Figure 17 Reassigned Spectrogram Co-ordinates of a Linear FM Signal 
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Figure 18 Reassigned Spectrogram of a Linear FM Signal 

64 



5000 

4000 

•3000 

2000 

1000 

Time / sec 

Figure 19 Reassigned Spectrogram of the Speech Signal 

3.4.2Extension to Other Members of Cohen's Class 
Given the improved temporal and spectral performance which the reassigned 

spectrogram appears to offer over the spectrogram, it is logical to ask whether a 

similar procedure can be applied to other TFRs. The extension to other TFRs was 

conducted by Moss and Hammond [Moss94] for the pseudo-WD and later by Auger 

et at [Auger95] for a range of bilinear TFRs. The reassigned co-ordinates for an 

arbitrary member of CC of TFRs (as defined by (2-66)) are given in (3-17). The 

reassigned CC TFR is defined in (3-18) and is analogous to the method used for the 

spectrogram. 

\\TYl{T,6)WD{t-T,co-d)d'i: dO 
= 

^ jjn{T,9)WD{t-T,co-0)dTd9 

Q)j{t,C0) = 0)-
j j e n ( T , 9) WD{t -T,0)- 9)dt d9 

jjn(f, 9) WD[t -T,(0- 9)dT d9 

(3-17) 
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The objective of the reassigned procedure is to mitigate the effect of the windowing 

function used. It follows that if no windowing function is used in constructing the 

TFR then reassignment is unnecessary. This leads to the observation that the 

reassignment operation has no effect upon the WD. In the case of the Pseudo-WD, 

where only time domain smoothing is used, then no change is made to the frequency 

co-ordinate [Moss94]. 

This thesis shall concentrate on the reassigned spectrogram in preference to other 

reassigned distributions. One reason for this is that the resultant reassigned TFRs all 

appear similar for different distributions [Moss94, Auger96]. 

3.4.3Theoretical Performance of the Reassigned 
Spectrogram 

3.4.3.1 Example of the Instantaneous Frequency and Group 
Delay Computed via the Fourier Transform 

In Chapter 2 Sections 2.2.3.3 and 2.2.3.5 the concepts of the Bandwidth-Time (BT) 

product and Instantaneous Frequency (IF) and Group Delay (CD) were introduced. 

It was noted that, although IF and CD attempt measure the same thing, they do not 

always agree. This is illustrated by in the following example. The continuous signal 

given in (3-19) is a Gaussian windowed linear chirp, the FT of which is given in 

(3-20) [Cohen95]. 

, , - r 
%(f) = g ^ g ^ ^ 

(3-20) 

The IF and CD of this signal (as computed via equations (2-13), (2-14)) are given in 

(3-21) and (3-22). For both (3-21) and (3-22) to describe the same line in TF, it can be 

seen that . This condition states that for the IF and CD to be the same, the 

rate of change of the phase of the signal must vary much faster than the envelope. 

This is the definition of an asymptotic signal as given in Section 2.2.3.5. These signals 
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typically have a high BT product and thus both the IF and CD laws describe the 

same line in TF [Kodera78]. 

(U; (f) = (3-21) 

((J - (3-22) 

3.4.3.2 Performance of the Reassigned Co-ordinates under 
Changing Windowing Bandwidth 

In this section the effect that different windowing bandwidths have upon the 

reassigned co-ordinates is considered. 

Consider the definition of the ST-FT, of a signal with respect to a windowing 

function, A (f) which is zero outside of the region, ' Af/2] as given by (3-23). 

. '+(Ar/2) (3-23) 

For sufficiently small Ar, the signal can be assumed to be constant within the region 

[f—Af/2,f+ Ar/2]. This assumption leads to the expression given in (3-24), z.e. the 

ST-FT is equal to a scaled version of the signal. The reassigned co-ordinates for this 

signal, given in (3-26). 

= (3-25) 

. (3-26) 

where ^ (f) is the signal's phase. So the phase of the ST-FT is the phase of the signal, 

therefore the reassigned co-ordinates are assigned along the instantaneous frequency 

as defined in (2-13). If very Hne frequency resolution is required, then Af —> oo. In 

this case, (3-23) reduces to the form given in (3-27). Consider the ST-FT written in 
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terms of frequency domain functions, (3-28). As the windowing function becomes 

broader in time, then its FT becomes more impulse like. In which case t̂ iC ST-FT 

becomes a scaled version of the signals FT. Hence the phase of the ST-FT approaches 

the phase of the signals FT. 

^ j X = A' (0)% ((u) 

(3-27) 

(3-28) 

6;,. = (3-29) 

where i^ico) is the phase of the FT of the signal. Then the reassigned co-ordinates 

(3-29) are assigned along the group delay of the signal, as defined by the FT (2-14). 

Therefore, as the temporal resolution of the ST-FT varies from very fine to very 

coarse, the reassigned co-ordinates vary from the IF law to the CD law. Kodera 

[Kodera78] compared this to the performance of a number of other algorithms, 

showing that the reassigned spectrogram was the only one to offer intuitively correct 

performance regardless of the length of the window used. 

3.4.3.3 Analytical Example of the Reassigned Spectrogram 
This section briefly describes the effect upon the reassigned co-ordinates of the BT 

product of the signal. The reassigned co-ordinates for the linear chirp, (3-19), using 

the ST-FT with a Gaussian time-localising window, (3-30), are given in (3-31) and 

(3-32) [Kodera78]. 

(3-30) 

A ( f ) : 
^ 2 ^ -

g 

/ \ 1 \ , \ 2 ol (3-31) 

68 



(3-32) 

(::= 1-H 2(%y4-<22 (/?2 + ] / ) (:K33) 

If the temporal resolution of the ST-FT (as defined by the spread of the windowing 

function)/ Af, is much smaller than the duration bandwidth of the signal, 7 , (z.g. 

A f « D then it follows that —) 0 . If this is the case, then (3-32) can be shown to 

satisfy = Therefore, the reassigned co-ordinates follow the 

instantaneous frequency law [Koder78]. 

Similarly, if the reciprocal temporal resolution of the ST-FT, is much larger than the 

spectral bandwidth of the signal, B , (z.e. A f » l / g ) then it can be shown that 

o2 ^ 2 

4- j ^ 0. If this is the case then (U, which is the 

group delay law [Kodera78]. 

Kodera [Kodera78] commented than since 5 7 >1/2 that, Af « 7 or Ar » l/B is 

almost always satisfied. Thus the reassigned co-ordinate tend to either follow the 

instantaneous frequency or group delay laws. It therefore follows that the 

reassigned spectrogram fails to totally remove the effect of the windowing function, 

since the reassigned co-ordinates alter with different window bandwidths. However 

if the signal is asymptotic, so the IF and GD laws coincide, then the reassignment will 

be invariant to the window used. 

3.4.4Computation of the Reassigned Spectrogram 
Co-ordinates 

This section examines the different computational techniques used to compute the 

reassigned co-ordinates. 

3.4.4.1 Pliase Difference IVIethods 
The reassigned co-ordinates can be formulated either in terms of a local moment 

operation, (3-12) and (3-13), or in terms of the partial derivatives of the phase of the 

ST-FT (3-14). The latter definition allows for a simpler digital implementation. The 

most basic of which is to approximate the phase derivative using a first order 

numerical difference [Kodera76]. Considering the discrete ST-FT, as computed via 
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(2-36), the reassigned co-ordinates can be estimated as given in (3-34), where is 

the sampling rate, N is the length of the windowing function used and L is the 

oveHap. 

f s 

n,/r + l]-^[n,^]) 

(3-34) 

/v 

Although computationally simple these first order differences offer poor estimates of 

the derivatives of the phase. This method is also prone to errors due to phase 

unwrapping problems, which becomes worse as the overlap in the ST-FT is reduced. 

Alternative methods of computing the reassigned co-ordinates are generally 

preferred [Auger95]. 

3.4.4.2 Analytical Derivative IVIethods 
An alternative to the difference method is to use the reassignment operators as 

defined by Auger and Flandrin [Auger95] in (3-17). By inserting the kernel function 

that creates the spectrogram from the WD, the expressions for the reassigned co-
ordinates can be simplified to (3-35), where is the ST-FT computed with 

the time window A(f) [Auger95]. Using this formulation a direct estimate of the 

reassigned co-ordinates can be achieved, requiring the computation of three ST-FTs, 

rather than one. 

M'} 
(3-35) 

t — t + Re 
A(f ) 

Reductions in the amount of computation required can be achieved if a Gaussian 

window is used in the computation of the ST-FT. Then the computation of the 

reassignment operators requires computing only one additional ST-FT, since a 

Gaussian is simply related to its derivative, as given in (3-36). It follows therefore 
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that the ST-FT using the windowing function can be calculated from the ST-FT 

using the windowing function f - ) via (3-37). 

(if Va (y 

C r \ 1 C r \ (3-37) 

jr ^ 

This method of computing the reassigned co-ordinates is preferred over the 

numerical difference method given in Section 3.4.4.1 for a number of reasons. Firstly 

there is no need to unwrap the phase in order to accurately estimate the gradient. 

Secondly the derivative is estimated directly, so avoiding the use of finite differences. 

Thirdly the performance of the algorithm is robust with respect to the overlap used. 

This is method that was used to generate Figure 17 and Figure 18. 

3.4.4.3 Recursive Implementation 
Implementing the ST-FT in a recursive manner can further reduce the computational 

load. Since the ST-FT is computed using an overlapping time window, there is a 

degree of shared signal information between successive time slices. Richard ef aZ. 

[Richard97] describe how this can be used to reduce the computation required. This 

method requires that the window has a suitable Fourier series decomposition. 

3.4.5Links with Ridge and Skeleton approacli 
The reassigned spectrogram reallocates signal energy along a line described by either 

the IF, GD, or somewhere between the two. An alternative is to attempt to extract 

the IF laws present in the signal directly, without computing the reassigned co-

ordinates. One approach is to use the phase of the ST-FT (or Wavelet) as defined in 

Chapter 2 [Guillemain91, Delprat92, Lopesl997]. A simple form of this algorithm is 

outlined here. Consider the tonal signal given in (3-38) the ST-FT can be written as 

(3-39). By taking the derivative of the phase of the ST-FT an estimate of the 

frequency of the tone can be obtained. Furthermore, knowledge of the FT of the 

windowing function used allows estimation of the amplitude of the signal. 

(3-38) 
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Most signals are multi-component and not perfect tones. Therefore a more 

algorithmic approach is required in order to extract all IF laws [Guillemain91]. The 

task reduces to finding the points of the derivative of the phase of the ST-FT such 

that (3-40) holds. The iterative algorithm given in (3-41) converges towards a 

solution of the above equation given an initial estimate of (O . 

(3-40) 
(D=—^ 

- (3-41) 

dt 

In order to extract the appropriate number of IF laws, multiple starting values for the 

iteration (3-41) must be taken, resulting in a number IF laws for each signal. More 

advanced methods of finding the IF laws of signals are also available [Guillemain96, 

Delprat92], these are based upon a similar method but using non-harmonic signals. 

This method of IF extraction has been called the 'Ridge and Skeleton' approach due 

to the form of the images created [Guillemain96]. 

The similarity between the ridge and skeleton and the reassigned spectrogram 

approach has been commented on independently by [Lopes97] and [Chassande97]. 

It can be seen that the reassigned IF co-ordinate, as calculated through the derivative 

of the phase of the ST-FT (3-14), is the first stage of the ridge and skeleton approach 

of (3-41) using regularly spaced initial estimates as defined by the spacing of the 

DPT. 

3.5 Conclusions 
In this chapter signal adaptive TFRs have been outlined. By virtue of their ability to 

match the characteristics of the signal they offer improved visual performance over 

the signal independent TFRs discussed in Chapter 2. In the case of the optimal 

kernel function as given by Baraniuk [Baraniuk93], although the kernel function is 

data adaptive, user intervention is still require to provide a suitable volume for the 

kernel function. Cohen-Posch TFRs, as originally defined, seem to provide an ideal 

TFR, by requiring that the distribution be both positive and conform to the TF 
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marginals [Cohen85]. However, poor performance can result if only the time and 

frequency marginals are used for chirp or non-linear FM signals [Fonollosa96]. The 

reassigned spectrogram does not suffer from this limitation, offering good 

performance for a wide range of signals. 

Inversion formulas exist for both the data adaptive kernel functions and CP TFRs, 

but to date no inversion of the reassigned spectrogram has been published. In the 

following chapter, one method of recovering the signal from the reassigned co-

ordinates is introduced. 
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Reconstruction from Phase of 
the ST-FT 

4.1 Introduction 
In Chapter 3 the concept of reassigned TFRs was introduced. These TFRs reduce the 

effect of the windowing function by reallocating the energy of a point in TF to a new 

location dependant upon a local moment. This process is achieved in two stages. 

Firstly the new location for a given point in TF is computed (called the reassigned co-

ordinates), and secondly the energy at this point is computed. In the case of the 

spectrogram Kodera [Kodera76] showed that the reassigned co-ordinates for the 

spectrogram could be found by computing the partial derivatives of the phase of the 

ST-FT with respect to time and frequency. This link, between the reassigned co-

ordinates of the spectrogram and the phase of the ST-FT, is exploited in this chapter 

to allow signal reconstruction from the reassigned co-ordinates. In order to achieve 

this inversion, the ability to recover a signal from the phase of the ST-FT is required. 

This chapter works towards this result by starting with inversion from the phase of 

the FT and generalising to a piece-wise, and then global, approach for signal 

reconstruction from the phase of the ST-FT. 

4.2 Recovery of the Phase of the ST-FT from 
the Reassigned Spectrogram Co-
ordinates 

In order to reconstruct the signal from the reassigned spectrogram co-ordinates, the 

operation of creating the reassigned co-ordinates must be invertible. Various 

definitions of the reassigned co-ordinates are given in Chapter 3. These include 

Kodera's original definition, in terms of a local moment in TF and a definition in 

terms of the partial derivatives of the phase of the ST-FT. One further definition (if a 

Gaussian window is used) is given in (4-1) [Chassande97]. This simple formulation 

allows the recovery of the spectrogram from the reassigned co-ordinates via an 
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integration, (4-2), where c, (f) and are unknown functions of time and 

frequency. These constants are required since only the partial derivatives are 

evaluated in (4-1). 

aiog|^(f,6;)| (4-1) 
6̂ ; ( = — 

dt 

9log|5'(f,a;] 

^6; 

I , .|2 2(c,(f)+|'a;,(,.6,X'i (4-2) 

• e 

The two equations given in (4-2), cannot be readily solved for the three unknown 

functions, c, (f), (72(6)) and . A similar set of equations for the phase of the 

ST-FT, can be derived from Kodera's definition of the reassigned co-

ordinates (4-3). Once more, due to the partial derivatives being used, the system of 

two equations defines three unknown functions, gf, (&)) and <̂2 (f). 

= f - jfg + (̂ 2 W 

It is not expected that the transform that maps the squared magnitude or phase of the 

ST-FT to the reassigned co-ordinates is invertible. Invertible in this context means 

the ability to recover the location in TF from which the energy at the reassigned 

coordinate originated. In the previous section, the reassigned co-ordinates for a 

Gaussian windowed linear chirp were given in equations (3-31) and (3-32). A pure 

tone is a special case obtained by setting the chirp rate to zero, i.e. = 0. The 

expressions for the reassigned co-ordinates for a pure tone are given in (4-4). 

Previously it was stated that if the temporal resolution of the ST-FT is much smaller 

than the bandwidth of the signal, then (Xy —> 0 . If this is the case, then the 

expressions for the GD and IF parameters simplify to those given in (4-5). 
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, , r (4-4) 

l + <%y 

= f (4-5) 

6), (f,6;) = 6;o 

In this case, the reassigned IF co-ordinate is not a function of frequency. This is an 

example of a many-to-one function and thus is not invertible. 

Discrete methods of computing the reassigned co-ordinates were introduced in 

Chapter 3 Section 3.4.4. The most basic of these methods is to compute the phase of 

the discrete ST-FT, and estimate its partial derivatives with respect to time and 

frequency using difference methods. The reassigned time co-ordinate (3-33) is given 

(for convenience assume = 1) in (4-6). Rearranging this equation so that 

+1] is on the RHS, results in (4-7). This equation has two phase components 

present, + and As such this equation is recursive. Making a 

change of variables in (4-7), equation (4-8) can be shown. Substituting equation (4-8) 

back into (4-8) yields the first expansion of the recursive formula, (4-9). Continuing 

the expansion leads to a simplified into the form given in (4-10). 

+ (4-7) 

(4-8) 

[̂M,A: + l]= (4-9) 

r 1 r (4-10) 

J 

Equation (4-10) allows the recovery of the phase of the ST-FT via knowledge of the 

reassigned time co-ordinate, as defined via a numerical difference and the 

knowledge of the phase point ^[^,0]. 
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A similar formula to (4-10) could be constructed using just the reassigned IF co-

ordinate (3-33) (once more for convenience assuming = 1) (4-11). 

/ " ^ (4-11) 
^[n +1,A:] = (TV — A) +^[0,A:] 

V / = ! 

Rather than requiring ^ [O,»], equation (4-11) requires knowledge of the phase of the 

first time slice, ^[0,A], in order to be able to reconstruct the phase of the ST-FT 

completely. 

For real signals, the value of the phase at can be shown (see Section 4.5.1) to 

be either 0 or ;r. For real signal the phase for each time-slice can therefore be 

recovered to within a known constant (0 or ;r), whereas for complex signals the 

phase can only be reconstructed to within an arbitrary unknown constant. However, 

in order to recover the signal used in the construction of the first time-slice 

must be known. Therefore since more signal knowledge is required to reconstruct 

the phase from the reassigned IF co-ordinate than the GD co-ordinate, (4-10) is used 

as the phase reconstruction formula of choice. 

4.3Signal Reconstruction from tine Phase of 
the DFT 

Once the phase of the ST-FT has been recovered from the reassigned co-ordinates, 

then the signal still has to be reconstructed from this phase. The next two sections 

discuss signal reconstruction from the ST-FT phase. This begins with a review of 

previously published techniques for signal reconstruction from the DFT phase. 

These methods are then extended as to enable signal reconstruction from the phase 

of the ST-FT. 

In the literature, two methods of signal reconstruction from the phase of DFT have 

been described [QuatieriSl, Hayes80a-b]. The first technique assumes that the input 

signal is either maximum or minimum phase [QuatieriSl]. Alternatively, Hayes et al. 

[Hayes80a-b] describe a method for arbitrary signal reconstruction by rearranging 

the definition of the phase of the DFT, and by making the assumption that the signal 

has at least N12 zero samples. Both iterative and closed forms of this method were 
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proposed. This section begins with relaxing the assumption of N / 2 zero samples to 

N / 2 known samples. 

4.3.1 Iterative Solution 
The modulus and argument form of an N point DFT of the complex signal sequence, 

can be denoted in modulus and phase form as given in (4-12). 

(4-12) 

An iterative algorithm to reconstruct the sequence x[n ] from N samples of the phase 

of the DFT, ^[^], and knowledge of the last M samples (M > N/2) samples of x\n\ 

is now outlined. The known samples of the input sequence x\n\ will be denoted as 

[»]. This three step process is now detailed. 

Step 1: Beginning with an initial (non-zero) estimate of the amplitude of the DFT, 

Xg ^ construct an estimate of the complex spectrum of the signal. Compute the 

IDFT, this is an estimate of the input sequence, denoted Xp\n], where p is the 

iteration number. 

(4-13) 

Step 2: From construct a new sequence, x [n] as defined by (4-15). This 

ensures that the last M samples are the same as those of the desired known sequence, 

d\n]. 

. r 1 0 < M < A r - M - l (4-15) 

Step 3; Perform an N point DFT upon x [n], and use the modulus of this as the new 

estimate of the signals modulus. 

Repetition of Steps 1-3 defines the iteration. 
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The error between the desired signal and the current estimate of the signal, 

["]/ given in (4-16). In this iterative procedure, the squared error, is non-

increasing at every iteration. To prove this the method used by Hayes ef aZ. 

[HavesSOb] is followed. 

F r 1 r (4-16) 

n=0 

Previously defined in the continuous domain in Section 2.2.2, Parseval's theorem can 

be applied in the discrete domain to the DFX. Application of Parseval's theorem to 

(4-16) results in equation (4-17). Since both and have the same phase, 

(4-17) can be rewritten as (4-18). Since \x^ [^]| by definition (see (4-13)), 

equation (4-18) can be written as (4-19). From the definition of the magnitude of 

X [^] and application of the triangle inequality for vector differences, equation 

(4-20) can be derived. 

t=o 

r 1 , r (4-18) 

t=0 

(=0 

^ r 1 r (4-20) 

t=0 

Equality holds in equation (4-20) if (%)[&]= Application of Parseval's theorem 

to (4-20) results in (4-21). 

-̂1, ,? (4-21) 

From (4-15) it follows that the error between [»] and A:[»] must be less than the 

error between A: , [n] and %[»] (4-22) and thus 
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and hence 

71=0 n=0 

(4-22) 

(4-23) 

M=0 

- ^P-
(4-24) 

Equality holds in equation (4-24) if and only if xp_^\n\= x i . e . if the system has 

converged. Although this is not sufficient to guarantee convergence of the 

algorithm, numerical trials have verified that the system'tends to the correct solution. 

4.3.2Closed Form Solution 
Although the iterative algorithm described in Section 4.3.1 appears to converge 

towards the desired sequence, a closed form solution is preferable, such an algorithm 

is now presented. This is an extension to the method proposed by Hayes aZ. 

[Hayes80a-b] to relax the condition that the known samples are zero. From the 

definition of the DFT, (2-19), the DFT phase can be written as given in (4-25). In this 

equation, the numerator is the imaginary part of the DFT and the denominator is the 

real part. 

Im 

Re 

Af-l -'I A' 
(4-25) 

A ' - l / 2;r«A-' 
-;i -

71=0 

Since %[»] is an arbitrary complex sequence, it can be separated into its real and 

imaginary parts as given in (4-26). Substitution of (4-26) into (4-25) leads to (4-27). 

By re-writing tan in terms of sine and cosine, (4-28) can be derived. Further 

manipulation using standard sine and cosine identities leads to (4-29). 

(4-26) 
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Af-1 
cos 

/i=0 

2;rn& 

TV 
sm 

N-i 
COS 

M=0 

2;rMA: 

N 
+ X, [^jsin 

2;rM^ 

N 

(4-27) 

< N-l 
Sin [^D Z ^ r [ " ] COS 

V 7:=0 
+ %,[/%] sm 

V ^ VV 

COS 

. n=0 
COS 

2;rM^ 

N 
-X,. [rt]sin 

2;TMA; 

V ^ yy 
= 0 

/ yv-i 

/%=0 
+ -

2mk 

N 

\ \ / yv-

y j 

^%,[»]cos 
/IzO 

+-
2;zM^ \ \ 

y j 

0 

(4-28) 

(4-29) 

It is assumed that (the last) M samples of the signal are known. In which case (4-29) 

can be re-written as (4-30), where and (f, are the real and imaginary parts of the 

known signal. 

A'-M-l 

/:=0 
A'-M-l 

2;r7%̂  ̂  

N 
x,[M]cos [̂A:]-t-

2;FM^ (4-30) 

n=Â—M 
+ -

2;rM^ 

N 
(f, [njcos 

iTcnk ^ 

N 

Using (4-30), all the unknown parameters of the signal are on the left hand side, 

whilst the right hand side is a function of the known parameters. This system of 

equations is linear in the unknown parameters, [n] and x, [n], and can be written 

in a matrix form as given by (4-31). 

Ax = b (4-31) 

where 

A = [sin(Q) - cos (Q) ] (4-32) 
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Q 

4^0] 4^0] .. 

(»[ii M * ^ -

= k [ 0 ] .̂ r[l] - - x , k - M - l ] %,[0] x,[l] ... ;c , [7V-M-lF 

b = [sin(P) cos(P)]d 

^[o] ^[o] ... [̂O] 

^ ^ ^ ^ TV ^ ^ TV 

, 2;z-(TV-l)(N-M) , , 2 ; r (N- l ) fN-M+l ) , , WA^-l)(7V-l) 
# - ! ] + — ^ ^ # - ! ] + — ^ ^ ... # - ! ] + ^ ^ 

d = [ 4 [ 0 ] ^,[0] ^,[1] ... 

The sine (or cosine) of a matrix is assumed to refer to the matrix composed of the sine 

(or cosine) of the elements of the matrix. 

Examination of the A matrix in equation (4-31) shows that this matrix is square if 

M = . If M < is smaller than this value, then the system of the equations is 

under-determined and thus no unique solution can be found. If M = then 

numerical trials have shown that the A matrix has full rank. In this case, signal 

reconstruction can take place by computing the inverse of A, denoted A"', and 

computing the vector product A"'b. If then the A matrix is over-

determined and thus computation of the pseudo-inverse of A is required. Denoting 

the pseudo-inverse of A as A^, then computing the vector product A*b 

reconstructs the signal. 

Prior to describing signal reconstruction from the phase of the ST-FT, it should be 

noted that (4-29) can for written as an alternative matrix formulation as given in 

(4-33), where * denotes a complex conjugate. 
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Im[Cx' ]= 0 (4-33) 

Where 

C = j r 

= g ^ ' ' 

x = [%[0] x[l] x [ ? / - l ] ] 

Although a more compact form of the equation, this equation is not used throughout 

the remainder of the thesis since it does not add significantly to the development of 

the ideas and mathematics. 

4.4Signal Reconstruction from the Phase of 
the ST-FT 

4.4.1 Plecewlse Approach to Signal Reconstruction 
from tlie Phase of the ST-I=T 

The results given in the previous section are extended to allow signal reconstruction 

from the phase of the discrete ST-FT. 

Considering just one time-slice (or frame) of the ST-FT leads to (4-34). 

(4-34) 

?,=o 

where 

[m ] = x\nL + m ] (4-35) 

For each time-slice of the ST-FT the product of the windowing function and the input 

time sequence is transformed into the frequency domain using the DPT. By 

considering each time-slice of the ST-FT to be the result of a windowed DFT, the 

results derived in the previous section can be applied directly to the ST-FT. If the 

windowing function and sufficient signal samples are known then the phase of the 

ST-FT is sufficient to reconstruct the signal by analogy with the methods presented in 

Section 4.3. 
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4.4.1.1 Piecewise Signal Reconstruction from the Phase of the 
ST-FT 

If the overlap used in the computation of the ST-FT is sufficiently small, then there 

will be at least N/2 samples common between successive time slices. If the overlap is 

at least N/2 then reconstruction of samples of the one time-slice enables the 

reconstruction of the following time-slice, once the effect of the windowing function 

has been factored out. It is assumed that at least N/2 samples are known at the start 

of the signal to enable reconstruction of the first time slice. In a synthetic example 

this condition can be met by adding N/2 known samples to the start of the signal and 

computing the ST-FT on this padded signal. 

This piecewise approach to signal reconstruction from the phase of the ST-FT can be 

summarised. An iterative algorithm is now presented in five steps assuming that the 

overlap is set to N/2. 

1. From knowledge of the first N/2 samples and of the phase of the ST-FT, 

recover the unknown samples from the first time slice, via the solution of (4-31). 

2. The recovered signal is a windowed version of the input signal. Thus to 

recover the input sequence divide by the windowing function. 

3. Multiply the first N/2 samples of the windowing function by the samples 

recovered in Step 2. Thus these are the same samples used in the construction of 

the next time slice. 

4. Use this new sequence and knowledge of the phase of the ST-FT of the next 

time slice to recover the next segment of the sequence. 

5. Repeat Steps 2-4 until all phase slices have been used. 

This description assumes that an overlap of N/2 is used, although only a simple 

modification is required to allow for a greater overlap. The greater the degree of 

overlap the greater then robustness of the algorithm since the matrix A in equation 

(4-31) becomes more over-determined. 

4.4.1.2 Limitations to Piecewise Signal Reconstruction 
The piecewise algorithm suffers from two limitations. Firstly, in order to recover the 

signal defined by the phase of the first time-slice, additional signal knowledge is 
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required. This is because the formulation is based upon signal reconstruction from 

the phase of the DPT. This requirement for some a pnori signal knowledge means 

that the phase of the ST-FT alone is not sufficient to reconstruct the signal using this 

method. Secondly the open loop form of the iteration results in poor numerical 

characteristics. Specifically small errors in each time-slice tend to accumulate and 

cause divergence from the correct solution. This effect can be seen in later in this 

chapter in Section 4.5.2.3. 

Both these limitations stem from the fact that the solution is constructed in a piece-

wise fashion. In the next section a new global approach to the problem is presented, 

attempting to solve the problem in single step. 

4.4.2 Global Approach to Signal Reconstruction from 
the Phase of the ST-FT 

The closed form global solution to signal reconstruction from the phase of the ST-FT 

can be developed in an analogous manner to that employed in the development of 

the matrix form for solving the DFT problem (Section 4.3.2). Assuming a, real, time 

limiting window, equation (4-34) can be written in terms of the phase of the ST-FT 

given in (4-36). 

A'- l 

tan = i 
cos 

m=0 

iTtmk 

N 
- [m]/T[m]sin 

N 

Af-l 
cos 

m=0 

2;rm^ 

N 
+ [m\h\m\ sm 

2;rm^ 

N 

(4-36) 

Manipulation of this equation via trigonometric identities leads to simplified form 

given in (4-37). Unlike (4-30), since it is assumed that no signal information is 

available (4-37) cannot be split into known, and unknown parts. 

m=0 
+ -

2wM/: \ \ 

N 

w-i 

/ / 

A:] 
m=0 

+ -
2w»A: 

N 

W 
0 

(4-37) 

Where the signal component x„[m] fits into the whole signal is dependant upon the 

overlap used. Substituting (4-35) back into (4-37) yields 
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2;r/M^ 

N 

(4-38) 

Af-l 
J J 

2;r/MÂ  

N J J 

The equation is now linear in terms of the signal components and can be defined in 

terms of the matrix formulation given in (4-39). 

[A, : A j 
(4-39) 

where 

A, = 

¥i 
Z 

z 

¥2 

z z " Yf 

A, Z 

Z A2 

z z A, 

(4-40) 

'Cs = 

/7[0]sin(^[j,0]) 

2;r 1 A[l]sm [̂.9,1]-
V A' 

A[0]sm(^[f,Af-l]) A[l]sm 2;r(A:-l) 

A[Â  -ijsi 
2;r(A^-l) 

/;[0jcos(^[ ,̂0j) 

A[0]cos(^[j,l]) 

/7[l]cos(^[j,0]) 

/![l]cOs| 

/i[0]cos(^[j,A^-]]) /?[l]cos ^[j,A^-l]+ 2;r(A'-l) 
N 

/7[Â  -l]cos(^[f,0]) 

, , 2;r(/V-l) 
/![A^-]]cos 

A [TV - ]]cos 
2;r(7V-l)(7V-l) 

,A-1]+ 

Xr=[^r[0] ;»:rD] " 

In (4-40) is the length of the input time sequence, and P is the number of time 

slices in the ST-FT. The matrix Z is a (typically non-square) matrix of zeros which 

has N rows and L columns. The matrix alters size according to the overlap used, 

providing the correct spacing between the and A^ for a given overlap. 
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The system of equations (4-39)is homogeneous. One method of finding a non-trivial 

solution "s to force the first value of the vector x to unity, as shown in (4-41). This 

extension has the result that the first sample is always reconstructed to be unity. It 

thus follows that the signal is only reconstructed to within an overall scale constant, 

which is dependant upon the value of the first sample of the real part of the signal. It 

follows that for inversion to take place, this sample is assumed to be non-zero. 

Ax = b (4-41) 

1 0 0 

[A, : A;] 

b = [l 0 ... o f 

That signal reconstruction from phase can only take place to within an overall scale 

constant is to be expected. Since the ST-FT is a linear transform, scaling the 

amplitude of the signal has no effect upon the phase. It follows that for two signals, 

one which is an amplitude scaled version of the other, the phase of their ST-FT's will 

be identical. Since the phase does not encode this overall amplitude information, any 

signal reconstructed purely from the phase can only be recovered to within an 

overall constant. 

If a signal is comprised of two components, separated by at least N zero samples, 

then reconstruction of eack signal component will take place to within an 

multiplicative amplitude constant. This is because there is no continuum of 

information between the two components. The signal can be considered as two 

separate signals, and thus the linearity of the ST-FT means that the phase of the ST-

FT only allows for reconstruction to within an amplitude constant for each separate 

signal. If any noise is present (for example, recording noise) above the level of the 

numerical precision of the machine, then the signal will be reconstructed to within an 

overall, rather than a local amplitude constant. Therefore, since this phenomenon is 

only present on synthetic examples it is not considered as a severe limitation. 

The solution to (4-41) can be achieved by matrix inversion, assuming A is non-

singular. Empirical studies have shown that an overlap L < 0.37V is sufficient for A 

to be non-singular. 
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An alternative (related) method for solving this system of equations is based on 

Singular Value Decomposition (SVD) of the A matrix defined in (4-40) [Golub89]. 

The singular vector associated with the zero singular value is the solution to the 

equation. The use of this method removes the requirement for the first sample to be 

non-zero, as required in the method described by (4-41). 

4.4.3 Examples of Signal Reconstruction from Phase of 
ST-FT 

As an illustration of signal reconstruction from the phase of the ST-FT, two examples 

are presented. The first is the familiar linear chirp example. In order to show that no 

structure is required in the signal, the second example is a pseudo-random Gaussian 

sequence. Other examples showing this technique in use are given in Lopes et al. 

[Lopes98]. 

4.4.3.1 Example 1 Linear Chirp 
The ST-FT for the linear FM signal shown in Figure 20 was computed using a 

maximally overlapped 32pt Gaussian window. The phase of the ST-FT is shown in 

Figure 21. The ridge (line of large magnitude in TF) of the linear chirp appears in 

this phase figure as the chequered region. It is the zero-crossing of the phase in this 

region that the 'ridge and skeleton' algorithms and the reassigned spectrogram pick 

out. Using only the phase information, and through the application of equation 

(4-41), the signal was reconstructed. Both the recovered and the original signals were 

then normalised with respect to their first samples. The amplitude difference 

between the two signals is plotted in Figure 22. The error between the amplitudes of 

the two signals can be seen to be of the order of 10 ", which represents a -280dB error. 

A similar performance measure can be seen when comparing the phase of the 

original signal to that of the reconstructed signal as shown in Figure 23. 

4.4.3.2 Example 2 Pseudo Random Sequence 
As stated in the introduction to this section, in order to show that there is no specific 

requirement upon the type of signal used, a pseudo random Gaussian white noise 

signal is considered. The input sequence is shown in Figure 24, the phase of the ST-

FT generated using 32pt Gaussian window is shown in Figure 25. Unlike the case of 

the linear chirp, no clear ridge can be seen in this plot of the phase, since no FM 

signal is present in the signal. The error between the original and reconstructed 
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signals for the pseudo-random noise case is of the same order as the linear chirp 

example; The amplitude and phases errors are displayed in Figure 26 and 27. 

0.3 0.4 0.5 0.6 
Time / sec 

Figure 20 Linear FM Harmonic Wave (Real Part SoHd, Imaginary Part Dashed Line) 

0.3 0.4 
Time / sec 

Figure 21 Phase of the ST-FT of Linear Chirp Computed using 32pt Gaussian 

Window (Maximally Overlapped) 
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0.4 0.5 
Time / sec 

Figure 24 Pseudo Random Gaussian White Noise (Real Part Solid Line, Imaginary 

Part Dashed Line) 

Y - Y . - ' I ' : : . ) 

0.3 0.4 
Time / sec 

Figure 25 Phase of the ST-FT of Pseudo Random Gaussian Noise Computed using 

32pt Gaussian Window (Maximally Overlapped) 
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4.5Signal Reconstruction from the 
Reassigned Spectrogrann Co-ordinates 

4.5.1 Real Signal Reconstruction from tlie Reassigned 
Spectrogram Co-ordinates 

Section 4.2 outlined a method of reconstructing the signal from the reassigned 

spectrogram co-ordinates. The recursive equation given in (4-10) enables the 

reconstruction of the phase of the ST-FT from the reassigned GD co-ordinates if 

computed via a numerical difference method. 

From the definition of the DFT given in Chapter 2 equation (2-19), the first sample 

point of the DFT can be seen to be equal the sum of the signal samples (4-42). If the 

signal is real, then the result of the summation must also be real. The modulus is 

defined as being real and positive, so the value of the phase at this point can only be 

0 or . It follows for real signals that (4-10) reduces to (4-43), where c[»] is function 

whose value is zero or one depending upon whether the sum of the signal 

(multiplied by the windowing function) in the n'th time slice is positive or negative. 

(4-42) 

M=0 

r i ^ r i (4-43) 

I /.=1 y 

Equation (4-43) establishes a one-to-two mapping between the reassigned Group 

Delay (time) co-ordinate and the phase of the ST-FT. The effect that this additional 

K offset has upon the signal reconstruction from phase, as defined in Section 4.3.2, is 

now explored. 

By allowing the additional variable c\n]7J: into (4-38), (4-44) can be derived. Since 

the function c[»] can only take the value of zero or one, (4-45) follows. By 

expanding (4-44) using trigonometric identities and simplifying the result, (4-46) can 

be derived. The result of variable c[n] can now be seen to change the overall sign of 
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the result of the summation. This variable can thus be removed without affecting the 

solution of the systems of equations since the RHS is zero. 

/ -̂1 
[nL + m]/z[m]sin (j)\n,k\-c\n\7t 

/?i=0 

iKmk \ \ 

N 

(4-44) 

[nL + m]/z[m]cos (p\n,k\-c\n]n + 
m=0 

y j 

J J 

sin(c[M];r) = 0 

cos = 

(4-45) 

[nL + m]/z[m]sin ^[n,A:] + -

- 1 
(in] 

m=0 
/ N-l 

2;rm^ \ \ (4-46) 

^X; [nL + m]/i[m]cos ^ 
m=0 

+ -

^ Vy 
2;rmA: 

N 
0 

J J 

Since the variable c[n] does not affect the solution, it can, without loss of generality, 

be assumed to be zero. This leads to the simplification of (4-43) as given in (4-47). 

Equation (4-47) expresses a one-to-one mapping between the reassigned group delay 

co-ordinate and the phase of the ST-FT. In this manner knowledge of the reassigned 

group delay co-ordinates, computed via a numerical difference method, allows the 

phase of the ST-FT to be recovered. Thus if the original ST-FT is computed using 

sufficient overlap, the signal can now be reconstructed using the previously 

described method. 

(4-47) 

To illustrate this method, the real part of the linear chirp given in Figure 20, is 

reconstructed from its reassigned co-ordinates, shown in Figure 28. Using the 

reassigned GD parameter, and assuming that the input is real, the phase of the ST-

FT, and then the signal, was reconstructed. The error in amplitude between the 

reconstructed signal and the normalised input signal is given in Figure 29. The error 

is of the order of 10 ''' smaller than the maximum amplitude. 
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&4 &5 0^ 
Time / sec 

Figure 28 Reassigned Co-ordinates of Real Linear Chirp Computed using Numerical 

Difference Method, based a 16pt Maximally Overlapped Gaussian Windowed ST-FT. 

&3 0^ as a6 07 
Time / sec 

Figure 29 Error in Amplitude between Real Normalised Linear Input Signal, and 

Signal Reconstructed via the Group Delay Reassigned Co-ordinate. 
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4.5.2 Complex Signal Reconstruction from the 
Reassigned Spectrogram Co-ordinates 

This section will investigate the reconstruction of complex valued signals from their 

reassigned GD co-ordinate. 

4.5.2.1 Signal Reconstruction from the Phase of the DFT known 
to within a Constant 

If the input signal is real, then a known (or inferred) point of the phase is sufficient to 

allow reconstruction of the signal from its reassigned GD co-ordinate (Section 4.5.1). 

If the signal is complex, then the reassigned GD co-ordinate can only reconstruct the 

phase of the ST-FT to within an additive constant per time-slice. The method of 

reconstruction from phase given previously needs to be modified to take this 

additional constant into account. As before, signal reconstruction is considered 

using the phase of the DFT and then generalised to the ST-FT case. 

Application of equation (4-10) for complex signals results in the reconstruction of 

each phase to within an additive constant per time slice. This can be represented as 

given in (4-48), where is the reconstructed phase for one time-slice through 

application of (4-10), is the correct phase and (j)̂ . is a constant. Substituting 

(4-48) into the signal reconstruction from the phase of the DFT (4-29) produces (4-49). 

Expanding this expression using standard trigonometric identities, equation (4-50) 

can be deduced. 

y[k]=4k]-<P, 

yv-i ^ 

M=0 ^ N 
-

Vy M=0 ^ N 
0 

/y 

^ 71=0 ^ 

I.TCftk, ^ r 1 (J. -iX 1 '[ T̂CYik, 
x;. [njcos 0 {k\ + 

N 

/ /y-i / 

, n=0 I ^ 

J N J J 

[mjcos 
y 

iTtnk 
= 0 

yy 

(4-48) 

(4-49) 

(4-50) 

As previously, this equation can now be split into known and unknown parts. It is 

assumed than the last M samples of the real and imaginary parts of the signal are 
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known. Using the definitions provided by (4-51) and (4-52), (4-50) can be separated 

into two summations as given in (4-53). This equation can be written in terms of a 

matrix equation that can be solved for the unknown parameters, and 

cos sin . 

[»]cos x) [»] = [n ]cos 

A ] == 

(4-51) 

aXn\=x\n\?,m <t)\k] > N 

6,[M]=z,[»]cos 
V . 

N 

2;z%X: 

N 

(4-52) 

Y [»]+ ["DsinL'[^]+ 1+ [»]- ]+ 
TV J Ai" 7Z=0 

AT-I 
^ K [ » ] - 6 , [ n D c o s 4 - (a,[wj-k 6̂  [ » ] ) s i n = 0 

n=/V—M 

(4-53) 

The matrix formulation for (4-53) is given in (4-54). 

Sx = 0 (4-54) 

where S = [sin(<D):-cos(0):(A^ -B,.):(A, + B j ] ^ 

0 

(Aio] 

'̂[1] 2^ 2;r(#-l) 
N 

(Z^lw-l+l] 

... ' 
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X^(N -M +1) 
A =(sin(Y)) 

A:,. (Â  - M ) 

X; ( # - M + l ) 

( N - l ) 

5, =(cos(7)) 
(TV - Af +1) 

g, =(cos(Y)) 

z , ( A r - M ) 

X. (TV - M +1) 

x = |x^+x, Xj-Xr cos(%) sm| sin((Z>jy 

As previously, in order to avoid the trivial solution, an additional row is appended, 

producing the modified form as given below. 

x = S - ' b (4-55) 

where 

1 0 0 0 

s 

b = [l 0 ... o f 

Since the system of equations is homogeneous, then the four unknowns, + %., 

- X,, cos and sin are only solved to within a multiplicative constant. The 

value of this constant, denoted a , means that the two equations (4-56) need to be 

solved to recover . Equation (4-57) provides the solution to this problem, allowing 

the amplitude to be recovered to within a sign constant. 

y. =6Ksin^^ 

=acos^^ 

=+cos" Yi 

(4-56) 

(4-57) 
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a = + Y y , +72' 
(4-58) 

Through knowledge of the recovered signal components^ + x, and , the 

signal can be recovered as given in (4-59). 

4 ["] = K [»]+ A ) - (̂ r [«]- [MDcos((Z),) 

(4-59) 

Thus the unknown sequence can be recovered, along with the unknown additive 

phase constant. Numerical inversion is used to implement (4-55). Trials have shown 

that typically N12 + 2 signal samples are required to be known to ensure that the 

matrix inversion is well defined. 

4.5.2.2 Signal Reconstruction from the Pliase of the ST-Î  l<nown 
to within a constant per time slice 

In Section 4.5.2.1 signal reconstruction from the phase of the DFT known to within a 

constant was described. This approach can be applied to the complex signal 

reconstruction from the reassigned group delay problem. Since the phase of each 

time slice can be reconstructed to within an additive constant, (4-53) can be extended 

to included phase constants from multiple time slices. In (4-60) this extension is 

defined, where is the phase from the time slice, and is the unknown 

phase constant for the 7)%"' slice. 

,V-M-

Af-I / 

N 

27mk 

~w 

(4-60) 

^ sin r -
n=N—Af N 

+sm & /M ]) cos [m-1,/%]+%, =0 

I'"' "]= cos(^^ [n] [/»,»]= cos(^^ [»] 

[/%, M ] = sin [/M ] X, [m, M ] = sin [m ])%. [»] 

This formulation allows the computation of the unknown signal component,^ purely 

in terms of components of the previous time slice. Unlike the real signal case, this 

expression cannot be generalised into a global solution. This is due to the fact that 

the reconstruction formulation is non-linear in terms of the reconstructed 
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components. In order to extract the products 

and must be 

computed. This expression is non-linear in terms of and therefore post-

processing is required to compute its value. It thus follows that a simple linear 

matrix form of equation (4-60) cannot be written, since it is not possible to extract the 

signal without previously calculating the phase shift, (p̂ . 

Although it is not possible to find a closed form solution to reconstruct the whole of 

the signal in a single step, a 'piece-wise' algorithm can still be developed. As with 

signal reconstruction from phase of ST-FT, this has the advantage of dividing the 

reconstruction procedure into smaller, less computationally demanding elements. 

However is also has the disadvantage that, in order to begin the reconstruction 

procedure some knowledge of the signal is required. Furthermore, such a procedure 

is numerical unstable, with numerical errors propagating through the solution. 

4.5.2.3 Complex Signal Reconstruction from the Reassigned 
Group Delay Co-ordinate 

One iterative approach to complex signal reconstruction follows. In order for the 

matrix formulation of (4-60) to have a solution, the overlap, M , between successive 

time slices must be greater than N/2 4- 2 (z.e. M > (N/24- 2)). In order to recover the 

first time slice, it is assumed that M samples are known over the length of window. 

This is sufficient signal data for equation (4-60) to be able to reconstruction the signal 

corresponding to the first time-slice. If the overlap used is much less than N/2, 

more than one time slice is used to recover a given signal sample. To reduce 

numerical errors, an average of the computed sample values reconstructed from each 

of time slices can be constructed. An iterative scheme incorporating this approach is 

given below. 

1. Through application of (4-60), using the recovered phase known to within a 

constant and known sample, recover the unknown samples of the first segment. 

2. Application of (4-57) and (4-59) will lead to the recovery of the real and 

imaginary parts of the signal, along with the phase off-set for that time slice. 

3. Using this recovered signal information, compute the unknown part of next time 

slice, and the phase offset. 
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4. Repeat Part 3) averaging if overlap is sufficient until all the signal samples have 

been reconstructed. 

To illustrate this algorithm, the complex chirp shown in Figure 20 is used as an 

example. The phase of the ST-FT is reconstructed to within an additive constant per 

slice, via inversion of the reassigned group delay parameter (4-10). The reassigned 

co-ordinates are shown in 

Figure 30. The error between the reconstructed and normalised original signal is 

shown in 

Figure 31. As can be seen, the more time-slices reconstructed, the greater the error 

between the recovered and original signal. As commented previously (Section 

4.4.1.2), this is due to the build up of numerical errors. Empirical studies have shown 

increasing the size of the window function used reduces this error, by increasing the 

overlap between successive time slices and thus reducing the total number of 

iterations the algorithm has to perform. 

0.4 0.5 0.6 
Time / sec 

Figure 30 Reassigned Co-ordinates of Complex Linear Chirp Computed using 

Numerical Difference Method Based upon a 32pt Maximally Overlapped Gaussian 

Window ST-FT. 
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Figure 31 Error in Amplitude between Normalised Complex Linear Input Signal, and 

Signal Reconstructed via the Group Delay Reassigned Co-ordinate. 

4,6Conclusions 
This chapter has reviewed signal reconstruction techniques from the phase of the 

DFT and presented new algorithms for reconstructing a signal from the phase of the 

ST-FT. Two approaches were derived; firstly signal reconstruction took place in an 

iterative piece-wise manner and secondly in a global closed linear form. Although 

computationally simpler, the piece-wise approach suffers from two limitations. 

These are that in order to reconstruct the first slice of the signal some prior 

knowledge is required, and that numerical errors propagate through the solution, 

increasing over the length of the signal. 

The global approach does not suffer from either of these limitations. Signal 

reconstruction purely from the phase of the ST-FT can be achieved if the number of 

common samples between successive time-slices is sufficient large. Examples of 

signal reconstruction using a linear chirp and a pseudo random noise signal were 

given. 
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The link between the reassigned co-ordinates, as computed via a numerical 

difference method and the phase of the ST-FT, was established in a recursive 

equation. In the case where the signal is known to be real, the phase of the ST-FT can 

be assumed to start at zero across all time-slices. This information permits the 

recovery of the phase of the ST-FT from knowledge of the reassigned GD parameter, 

as computed via numerical differences. Once the phase has been recovered, the 

signal itself can be reconstructed through use of the global reconstruction algorithm. 

It follows therefore that real signals can be reconstructed from their reassigned GD 

co-ordinates. 

For complex signals, the situation is more complicated. Since the phase 

reconstruction equation only yields the phase of each time slice to within an additive 

unknown constant, modifications are required to take this constant into account. If 

sufficient overlap is used then the system can still be solved. However, a global, 

closed, linear approach is no longer possible. A piece-wise approach is thus adopted, 

resulting in complex signal reconstruction from the reassigned group delay 

parameter. As previously where the use of a piece-wise approach results in two 

limitations, namely the requirement for some signal knowledge and the poor 

numerical performance. 

The dual of signal reconstruction from the phase of the ST-FT is reconstruction from 

the magnitude. This is the subject of the following chapter. 
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Chapter 5 Signal 
Reconstruction from tlie 
Magnitude of tlie ST-FT 

5.1 Introduction 
In Chapter 4 algorithms to reconstruct a signal from the phase of its ST-FT were 

developed. It was found that, if the overlap between successive time slices was 

sufficiently high, then the phase of the ST-FT uniquely identified the signal to within 

an overall scale constant. In this chapter, analogous results for the modulus of the 

ST-FT are presented. Unlike the phase case, signal reconstruction from the 

magnitude of the ST-FT has described previously in the literature [Anderson92, 93, 

94a-b, Nawab82, 83a-b]. 

Beginning once more with signal reconstruction from the DFT, this chapter reviews 

previously described techniques to reconstruct the signal in a piece-wise and closed 

form [QuatieriSl]. These approaches for signal reconstruction from the magnitude of 

the DFT lead directly to a piece-wise approach to signal reconstruction from the 

magnitude of the ST-FT. Two global methods of reconstructing the signal from the 

magnitude of the ST-FT are then presented. Both of these techniques are iterative, 

but approach the problem in different ways. 

5,2Signal Reconstruction from the 
IVIognitucle of tine FT 

5.2.1 Minimunn and Maximum Phase Signals 
The z-transform of a discrete input sequence, x\n\ of length is given in (5-1) 

[OppenheimZS]. Evaluation of the z-transform about the unit circle, (5-2), leads to 

the Discrete-Time version of the FT described previously in Chapter 2 Section 2.2.4. 
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X (z)= " 

X{(0] = X{e"-) = X { z ) l _ , e-2) 

Restricting the z-transform of a sequence to be rational for notional simplicity, 

Yegnanarayana gf aZ. [Yegnanarayana84] expressed the z-transform as given in (5-3), 

where A is a real constant, Mg is an integer, and TV (z) and D (z) are polynomials in 

z ' 

A signal is said to have 'minimum phase' if in (5-3) »o — if all the roots of 

(z) and D(z) of X ( z ) are inside the unit circle. Conversely, a signal is said to 

be 'maximum phase' if, for a given Mg, the poles and zeros of (5-3) lie outside the unit 

circle. 

5.2.2 IVIaximum and IVIinimum Phase Signal 
Reconstruction from eittier IVIagnitude or Pliase of 
the FT 

In parallel with the development of algorithms to recover an arbitrary signal from 

the magnitude of the DFT, a class to algorithms were presented to reconstruct a 

signal from the magnitude (or phase) of its DFT if the signal was minimum or 

maximum phase [Oppenheim75, Quatieri81,Yegnanarayana83, 84]. 

The reconstruction of the time-series from partial (magnitude or phase) information 

is made possible because, for maximum or minimum phase signals there is a direct 

relationship between the magnitude and the phase of the DFT. The link between the 

modulus and phase of a minimum phase signal was given by Oppenheim et al. 

[OppenheimZS]. Quatieri et al. [QuatieriSl] developed these ideas further, deriving 

iterative algorithms for signals reconstruction for minimum phase signals from either 

the magnitude or the phase of the DFT. Non-iterative algorithms were later derived 

[YegnanarayanaSS, 84] for the reconstruction of signals which have minimum or 
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maximum phase, from either the magnitude or phase of the DFT. These algorithms 

used the relationship between the magnitude and phase of the DFT and the 'cepstral' 

coefficients [Oppenheim75]. 

For a minimum phase signal, then log-magnitude and phase can be written in terms 

of the cepstral coefficients as given in (5-5) and (5-6), where A (a)) is a function 

which unwraps the phase. 

(5-4) Z (6;) = |x 

, I cfOl ^ (5-5) 
Injx = —^4-^c(M)cos(M6u) 

^ (5-6) 
^(6)) = - ^ c ( M ) s i n ( n 6 ; ) -

For a maximum phase signal, the same relationship exists between the log 

magnitude and the cepstral coefficients; however, the relationship between the phase 

and the cepstral coefficients is slightly altered (5-7). 

(5-7) 

n=l 

From knowledge of the modulus or phase, the cepstral coefficients can be solved for 

directly. If the magnitude of the DFT is known, then application either of (5-6) or 

(5-7) reconstructs the principle value of the phase of the DFT. If the phase is known, 

then application of (5-5) recovers the magnitude. Once both the magnitude and 

phase of the FT are known, the signal can be reconstructed directly through the 

IDFT. 

5.2.3 Arbitrary Signal Reconstruction from the 
IVIagnltude of the DFT 

Arbitrary signal reconstruction from the magnitude of the DFT has also previously 

been described in the literature [HayesSO]. In a similar fashion to the phase case, in 

order to be able to reconstruct a signal from the magnitude of the FT additional 

signal information is required. An iterative procedure, almost identical to that used 

to reconstruct the signal from the phase of the DFT (see Chapter 4 Section 4.3), was 
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implemented by Quatieri aZ. [QuatieriSl]. This procedure imposes known zero-

samples and the desired DFT n.agnitude at every iteration. An alternative approach 

based upon the auto-correlation function was extended to allow signal 

reconstruction from the magnitude of the ST-FT [Nawab92, 93a-b]. It is this 

approach which is detailed here for signal reconstruction from the DFT. 

The discrete auto-correlation function of the complex input signal x[n] is given in 

(5-8). The relationship between the auto-correlation function and the squared 

magnitude of the signal's DFT is given in (5-9). This relationship is easily shown by 

expressing (5-8) as a convolution. 

r 1 V r 1 r i 
a n | = A x[m\x[m+n\ 

/M=—W—1 

= F [/"[«]] (5-9) 

Since (5-9) defines the auto-correlation function in terms of the magnitude of the 

DFT, it follows that reconstructing the signal from the auto-correlation function is 

analogous to reconstructing the signal from the magnitude of the DFT. 

Consider the (iV - l ) "" lag of the autocorrelation function, r - 1 ] , the summation 

for which is given in (5-10). Since A;[M] is only defined over the range, O..Â  - 1 , this 

summation can be fully expressed as given in (5-11). Assuming that the first signal 

sample x[0] is known, then (5-12) allows the reconstruction of the last sample 

A" [ - 1 J , from knowledge of the auto-correlation function at r [Â  — l]. 

1 ^ r 1 r. ^ 1 (5-10) 

m=—A/-] 

7 - [N- l ] = x [ 0 ] x [ N - l ] (5-11) 

x[A^- l ] = r[A^-l]/%[0] (5-12) 

Successive sample points can be reconstructed by solving a system of linear 

equations, given in (5-13). Nawab [Nawab83] showed that it is possible to 

reconstruct f unknown samples of :([»], where f >|^M/2"| (where M=A^-l-2 
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and is the smallest integer greater or equal to ). Since (5-13) uses only the 

auto-correlation function to recover the unknown samples, (5-13) defines a method 

of reconstructing the signal of knowledge of the squared magnitude of the DPT. The 

requirements for signal reconstruction, that at least half the signal must be known, 

are in direct analogy with the conditions required for signal reconstruction from the 

phase DFT given in the previous chapter (Chapter 4 Section 4.3.2). 

x[0] 

x[0] 
' r [ M - l ] ' 

x[M-2] / - [ M - 2 ] 

. [ 0 ] 
%[M/2] r [ M / 2 ] 

ei-13) 

%[2] 

In the above it was assumed that the first sample and second half the signal are 

known. If the first sample is not known then signal reconstruction can still take 

place, to within an overall complex constant. Since the signal must have the same 

energy in both time and frequency domains (Parseval's Theorem, Equation (2-2)) the 

amplitude component of the complex constant can be removed. This resulting signal 

is thus correct to within an overall phase constant. 

5,3 Piece-Wise Signal Reconstruction from 
the Magnitude of the ST-FT 

In the case of signal reconstruction from the phase of the ST-FT, two distinct 

approaches were outlined, one piece-wise and one global. In considering signal 

reconstruction from the modulus of the ST-FT, the same distinction can be drawn. 

Two further distinct piece-wise approaches to the problem of recovering a time series 

from the magnitude of the ST-FT are given by Anderson [Anderson92, 93, 94a,b] and 

Nawab [Nawab82, 83a-b]. 

Through a series of papers Anderson [Anderson84, 85, 92, 93, 94a,b] derived the 

conditions under which a complex causal signal can be reconstructed from the 

magnitude of its ST-FT [Anderson92] and WT [Anderson93]. Anderson establishes 

the fact that as few as three points per time-slice of the spectrogram or scalogram 

may be sufficient to recover a complex causal signal. Details of this technique are not 

given here. However, in outline it works in a similar manner to all piece-wise 
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approaches, using signal information (in this case the causality of the signal) to 

recover information associated with the first time-slice, and then recovers the 

remainder of the signal based on this. Reconstruction of each sample takes place by 

identifying the common root of two quadratic equations, with reconstruction taking 

place to within an overall sign constant if the signal is real, and an overall phase 

constant if the signal is complex [Anderson94b]. In the following chapter, 

Anderson's method for signal reconstruction from the magnitude of the WT is 

described more fully. 

The technique described by Nawab [Nawab82, 83a-b] makes use of the relationship 

between the auto-correlation function of a signal and the inverse DFT of the 

magnitude of the ST-FT. By assuming the signal to be causal, reconstruction of the 

signal samples from the first time-slice of the magnitude can be undertaken as 

described in Section 5.2. Once the effect of the windowing function has been 

removed, the reconstructed samples of one time-slice are then used in the recovery of 

the samples of the next time-slice. As with the phase case (Chapter 4 Section 4.4.1), 

in order for reconstruction to take place, the number of common samples between 

successive time-slices must be greater than half the window length used. Also in an 

analogous manner to the phase case, this iterative piece-wise approach allows 

numerical errors to propagate through the solution. An improved version was later 

developed [Nawab83] with greater error suppression characteristics arising from the 

least squares approach being adopted. Once more signal reconstruction takes place 

to within an overall sign constant if the signal is real, and an overall phase constant if 

the signal is complex. Quatieri [QuatieriSS] showed that if the signal is maximally 

overlapped then as few as one or two spectrogram samples are required per time-

slice to permit reconstruction through use of this auto-correlation method. 

Both of these methods suffer from two limitations. Firstly they assume that the 

signal is causal in order to recover information encoded in the first time-slice. 

Although this assumption is mild, it does require the user to possess some a priori 

signal knowledge. Hence signal reconstruction does not take place purely from 

information provided from the magnitude of the ST-FT. The second limitation is of a 

numerical nature, i.e. that numerical errors in the reconstruction build up in an 

unstable fashion. This phenomena has already been demonstrated for the piece-wise 

reconstruction of a complex signal from the reassigned group delay parameter 

(Section 4.5.2) 

109 



In the phase case, in order to overcome similar limitations (Chapter 4 Section 4.4.1.2), 

global methods of signal reconstruction were developed. A new novel global 

approach for signal reconstruction from the magnitude of the ST-FT is presented in 

the following section. 

5.4Global Signal Reconstruction from tlie 
iVIagnitude of tine ST-FT 

As stated in Chapter 2, the spectrogram is a member of Cohen's Class of TFRs. 

Equation (2-70) defines a simple inversion for members of CC's of TFRs to recover 

the original signal (to within a multiplicative phase constant). This method of signal 

reconstruction from the spectrogram is not used in practice, since it requires division 

by the kernel function. As the kernel function of a spectrogram tends to zero away 

from the origin, this division operation becomes numerical unstable. 

In this section two alternative global approaches are presented to the problem of 

signal reconstruction from the modulus of the ST-FT. The first approach previously 

described in the literature, employs the least-squares inversion of the ST-FT and uses 

an iterative procedure to converge towards the solution using only the modulus of 

the ST-FT [Griffin83, 84]. The second approach follows a similar strategy to that 

adopted in Chapter 4 Section 4.4.2 for the development of signal reconstruction from 

the phase of the ST-FT. 

5.4.1 Least Squares Inversion of the ST-FT 
The task of inverting the complete ST-FT in order to recover the original signal 

should be simple. A number of different methods have been proposed in the 

literature, so called 'overlap and add' and 'weighted overlap and add' techniques 

[Allen77, PortnoffSO, Crochiere80]. Although all these techniques recover the signal 

from the ST-FT, their performance when altered or synthetic ST-FT are used, is not 

optimal. Optimal in this sense means minimising the Mean Squared Error (MSB) 

between the desired ST-FT and that created by the ST-FT of the constructed signal. 

Griffin [Griffin83, 84] described such a minimum least squares (MLS) procedure to 

compute a signal from a synthetic or modified ST-FT. Although originally defined in 

the continuous domain, the work is presented here in discrete form. Beginning with 

the definition of the discrete ST-FT as described by (2-33), equation (5-14) can be 

derived, where represents the DFT of the function with respect to the 
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variable », L is the overlap used between successive time-slices, and N is the length 

of the real windowing function 

w-i ^ (5-14) 

;=o 

x^^[/]= x[/}z[mL-/] (5-15) 

Consider a modified (or synthetic) ST-FT called y[/7z,A], the inverse FT of one time-

slice of which is given in (5-16). 

1 (5-16) 
y.Al\=FMYhn.k]i^^YnmA ' 

In general the function Y\m,k\ is not a valid ST-FT\ As such depending upon which 

method of reconstruction is chosen, a different time history will result. Therefore 

rather than simple inversion, the inversion of Y\m,k\ should be chosen to minimise 

the error between it and a valid ST-FT, X\m,k\ The distance measure between the 

desired ST-FT and a valid ST-FT is given in (5-17), where P is the number of time-

slices present in the ST-FT. Application of the discrete form of Parseval's theorem 

(continuous form given previously in (2-2)) results in the form of the distance 

measure given in (5-18). Note that the equivalent equations in Griffin [Griffiii83, 84] 

assumed real input sequence (thus removing the modulus brackets from the (5-18)). 

Here the more general result for a complex signal is developed. This equation 

computes a distance measure between the FT of the desired ST-FT, and the FT 

of a valid ST-FT, 

m-O ^ k-O 

n!=0 /=0 

' A valid ST-FT is a ST-FT which could have been created through application of the ST-FT equation 
upon a signal. An arbitrary 2-D function is not generally a valid ST-FT. 
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The distance measure is quadratic with respect to the signal, and thus the 

minimisation of D [ x [ n ] , F obtained by setting the gradient with respect to 

, to zero has a closed form. This defines the optimal signal is a MLS sense. The 

minimisation of the distance measure with respect to the complex sequence x[n] can 

be regarded as the minimisation of the distance measure wi th respect to the real and 

imaginary signal parts as independently described in (5-19). Therefore finding the 

minimum reduces to solving (5-20) and (5-21). 

d{D[x[n\Y[m,k^ _ d{D{x[n\Y[m,k^ _ .d{D[x[n\Y[m,k^ 

dx{n\ 

(5-19) 

= 0 
(5-20) 

0 
(5-21) 

Consider (5-20), this can be expressed as given in (5-22). Expanding the right hand 

side, and simplifying, results in (5-23), where * denotes complex conjugation. The 

relationships (5-24) can readily be shown. Application of these relationships to 

equation (5-23) results in (5-25). 

[»] 
m=0 f=0 

(5-22) 

[»] w=0 /=0 [n] 

Re[ziz J = Re[z| ]Re[z2 ] - W^i ] 

2Re[z, ]= z, + z,' 

2Im[z, ]= z, - z / 

(5-24) 

[»] m=0 

(5-25) 
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Performing a similar analysis on the imaginary part of the signal results in (5-26). 

Combining the expressions for the real and imaginary parts back yields (5-27). 

Rearranging this equation to solve directly for the signal results in the MLS solution 

as given in (5-28). 

o;:/ l»j m=0 

p-i (5-27) 

ni=0 

f - l P-1 

? !=0 

% c[»] = m=0 

(5-28) 

7?!=0 

Thus from an invalid ST-FT, the optimal reconstructed signal in a MLS sense can be 

computed. A similar procedure will be employed in Chapter 6 to enable MLS signal 

reconstruction from a generalised version of the WT. 

The implementation of (5-28) requires little additional computation over other 

previously defined methods [PortnoffSO, CrochiereSO]. If the windowing function 

chosen such that (5-29) is satisfied then some reduction in computation is possible 

[Griffin83, 84]. 

g { A K - „ ] ) = = i ' ' ' ' ' ' 
m = 0 

5.4.2Signal Reconstruction based on IVILS Inversion of 
the ST-FT 

Beginning with the MLS inversion of the ST-FT, Griffin [Griffin83, 84] then 

proceeded to develop a method for signal reconstruction f rom the magnitude of the 

ST-FT. This will be referred to as the least squares ST-FT method of signal 

reconstruction. Through repeated application of MLS solution for the discrete ST-FT, 

an iterative procedure was described. A discrete version of Griffin's iteration is 
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given in (5-30), where |f [m,A:]| is the desired modulus, and X''\]n,k\ is the ST-FT of 

the current signal estimate, [n]. The algorithm is now described. 

1. Choose an initial estimate for the signal, denoted [n] , set p - 0. 

2. Using x'' \n\ construct the ST-FT through the application of equation (2-33) 

denoted 

3. Impose the required amplitude | F [m ,^ | upon the phase of as 

given in (5-31). This variable is given the name 7 [m, ̂  ]. 

4. Use Y [m,k] to compute a new estimate of the signal, [n] through the 

application of (5-30). 

Repeated application of Steps 2-5 defines the iteration. The algorithm is stopped 

when the error between the amplitude of the ST-FT, \x'' \m,k] , and the desired 

amplitude, defined in (5-32) is considered to have converged in some 

fashion. 

Since the distance measure, (5-32) is not quadratic in terms of the signal, it may have 

more than one minimum. Convergence to a solution is guaranteed [Griffin83], 

however there is no guarantee that this is a global minimum. 

p - i (5-30) 

771=0 

A;] (5-31) 

r r 1 I r -Wl 1 ^ 4 4 CI r -W I r ( 5 - 3 2 ) 

*=0 m=0 

This method of signal reconstruction from the modulus does not assume that the 

signal is causal as in the piece-wise reconstruction ([Quatieri83] amongst others). 
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Since the distance measure is a function of the modulus of the ST-FT obtained from 

the current estimate of the reconstructed signal and of the desired modulus, it is 

invariant to overall phase shifts. The result of this is tha t the signal can only be 

reconstructed to within an overall phase constant. 

The iteration is run until the distance measure (5-32) falls below a user specified 

threshold or until a predefined number of iterations is exceeded. The method 

requires computation of the MLS signal reconstruction algorithm given in (5-28) and 

a discrete ST-FT every iteration. Even for moderately long signals, this is not 

computationally prohibitive. 

Application of this method of signal reconstruction from the magnitude of the ST-FT 

has been used in speech modification and synthesis [Griffin84] and is applied in 

Chapter 7 to the extension in time of heart sounds. 

5.4.2.1 Examples of Signal Reconstruction from the 
Spectrogram (Least Squares ST-FT IVIethod) 

Two examples are now given to illustrate signal reconstruction from the modulus of 

the ST-FT. The two signals are a linear FM chirp sequence, and a Gaussian pseudo 

random sequence. Both signals are 100 points long, and are assumed to be sampled 

at 100 Hz. In order to compute the ST-FT a 32-point maximally overlapped Gaussian 

window function is used. 

.5.4.2.7.7 fxoMzpZg 7 L/near FM CA/rp 

The time series of the linear FM chirp is shown in Figure 32. The spectrogram for 

this signal is depicted in Figure 33. Through use of the modulus (square root of the 

spectrogram) and application of (5-30), the signal was reconstructed. The error at 

each successive iteration is given in Figure 34, and can be seen to be monotonically 

decreasing, until levels of the order of 10"^ error (at which point numerical precision 

affects the result). The difference in amplitude between the original and 

reconstructed signal are as given in Figure 35, and the error in the phase between the 

two signals is given in Figure 36. The magnitude has been reconstructed to within a 

small error (below 3x10"^), and the phase to within an overall constant. 
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J. 4.2.7.7 Exomp/g 2 f Wkzfe Nowg 5'egwgMcg 

The second example signal is a pseudo-random Gaussian signal, the time series and 

spectrogram of which is given in Figure 37 and Figure 38 respectively. From Figure 

39 the algorithm can be seen to have converged, resulting in a small error between 

the desired and reconstructed signals. Similar performance to that for the linear 

chirp can also be seen in the difference between the amplitudes (Figure 40) and the 

phases (Figure 41). 

Figure 32 Linear FM Harmonic Signal (Real Part Solid, Imaginary Part Dashed 

Lines) 
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Figure 33 Spectrogram of Linear FM Harmonic Signal 

Iteration Number 
600 

Figure 34 Error between Spectrogram of Original and Current Estimate of the 

Signal - Linear Chirp 
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. %10 

Figure 35 Error Between Amplitude of Original and Reconstructed Signal • 

Linear Chirp 

Figure 36 Error Between Phase of Original and Reconstructed Signal - Linear 

Chirp 
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Figure 37 Pseudo-Random Gaussian White Noise Signal (Real Part Solid, 

Imaginary Part Dashed Lines) 

0.3 0.4 
Time 

Figure 38 Spectrogram of Gaussian White Noise Signal 
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Iteration Number 

3500 4000 4500 

Figure 39 Error between Spectrogram of Original and Current Estimate of the 

Signal - Gaussian White Noise 

X 10 

Time 
0.7 0.8 0.9 1 

Figure 40 Error Between Amplitude of Original and Reconstructed Signal • 

Gaussian White Noise 
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Figure 41 Error Between Phase of Original and Reconstructed Signal - Gaussian 

White Noise 

5.4.3 Quadratic Form of the IVIagnitude of the DFT 
An alternative global approach to the method discussed in Section 5.4.2 is now 

presented. In the case of signal reconstruction from the phase of the ST-FT an 

expression was derived for the signal by expanding the phase into terms involving 

the real and imaginary parts of the transform. The analogous expansion for the 

squared magnitude of the DFT of a complex input sequence can be created (5-33). 

1% = R e [ X [/:]]'+Im[% [;k]] 
(5-33) 

/z=0 N 
+ X. [n]sin 

+ ^ x , [ » ] c o s 
V M=0 I ^ y 

K, [«]sin 
2;rMA: 

N 

2;r»A: 

yj 

J J 

By considering just one element in frequency, equation (5-33) can be written as a 

quadratic form [Anton91]. A matrix expression forming this relationship is given in 

(5-34). 
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x^Ax = |x[A:t (5-34) 

where 

n> m 

» = m 

m — n + N 

7M < N 

A _ (A:) 

1 

0 

cos 
2;TA: 

N 

f 
m<M4-^ — sin 

2;r^ 
N 

(m - n) 
J 

( m - ») 

f 

7M>N sin 
V 

2;/rA; 

N 
(?«-») 

Equation (5-34) expresses the relationship between the sample points in the input 

data, and just one point in the frequency domain. In order to extend (5-34) to cover 

all provided frequency points, its simple quadratic form is lost. This new 

formulation, making use of all frequency points, is given in (5-35): 

j ^ x = X (5-35) 

where 

"x"̂  0 •• 0" ' A(0) -

X = 
0 x"̂  •• 0 x = A = 

A(l) 

0 0 " x^ ] z [ N - l ] ' _A(N-1)_ 

and 0 is a vector of zeros with the same dimensions as vector x^. Although not 

longer in a quadratic form as described in (5-34), this formulation is still bilinear in 

terms of the signal. Such a non-linear system cannot be easily solved, and a 

linearised form is sought. One linearisation of (5-35) is given in (5-36): 

Ax = X (5-36) 

where 
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-'•[of ^ , [ O k [ l ] - j : , [ 0 K [ / V - 1 ] ;(,[0]A-[0] ... x, [0]l, [W - 1 ] 

The vector x contains all the products between the real a n d imaginary components 

of the input signal. It follows therefore that the size of this vector is where 

Nthe length of the complex vector x . In fact there are only 27V^+A^ unique 

variables. 

Since the vector containing the magnitude of the DFT, X, is N points long, it follows 

that this system of equations is under-determined. Thus there are an infinite number 

of solutions to the problem. Each known signal sample .reduces the set of unknowns 

by N . Equation (5-37) expresses the relation between the number of unknowns 

(2A^^ + ), and the required number of complex samples which must be known 

(2aN ) such that there are fewer unknowns that the number of points provided by 

the DFT (N ). Solving for the number of required samples, a , results in the need for 

at least N real, or N/2 complex, samples to be known (5-38). This requirement, for 

there to be at least A /̂2 known samples is the same as that required by Nawab's 

algorithm described in previously in this section, and is also the same requirement as 

was derived in the case were only phase information f rom the DFT was known 

(Chapter 4 Section 4.4.1.1). 

(5-37) 

a < N (5-38) 

5.4.4 Extension of the Quadratic Form to tlie 
Spectrogram 

Equation (5-35) is a bilinear equation expressing the relationship between the 

squared magnitude of the DFT and the signal that generated it. The reformulation of 

the bilinear form into a linear form (5-36) showed that some signal knowledge was 

required in order for the squared magnitude of the DFT to uniquely identify the 

signal. This method is now extended from the DFT to the ST-FT. Although the 

formulation given in (5-36) is a matrix form, it is bilinear in terms of the signal 

samples, and not suitable for extension to the spectrogram. Thus it is the 
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formulation provided by (5-35), that is extended. Using the definition of the ST-FT 

(2-36) and by extending (5-35) over multiple time-slices yields (5-39): 

Where 

= S 

x = [%,[0] x j l ] ... x , [ Z , - l ] %,[0] %,[!] ... 

(5-39) 

Xo 0 0 0 • 0 
0 Xo ' • 0 0 • 0 
0 0 • , 0 0 • 0 |̂ [0,l]' 
0 0 • ' Xo 0 0 
0 0 • • 0 X, • • 0 s = i#,A^-ir 
0 0 • . 0 0 • . 0 
0 0 • • 0 0 • -

|^[r,N-i]' 
A/-1 Columns 

h.xJ fLn)...! Z Z l)jj h.x . .̂ Zv.̂ +(iV—l)jj 

A = 

SA[0] PA[n,0] (5-40) 

SA[1] 
SA [»] = 

PA[M,1] 
A(/:) = 

"RR(A:) Rl(/^)'] 

IR(A) 

SA[r-i] PA[M,7V-1] 

PA 

PA 

PA 

PA 

( L , / J j.. A ~̂1) )..,[ A/—1)) 

{L.n+l^). . . (Z, .n4 - /^ , -T - ( ,V-i ) j , (L , / iA'- l ) ) 

{L.n+lj^ )...(^L.n-hij^+{N—l)).{L.n+lj.)...{L.n+iN—l)^ 

H 

A[0] A[l] ... A [ N - 1 ] 

A[0] ;;[1] ... A[A^-1] 

A[0] A[l] ... A[7V-1] 

where Z[n] is a vector containing n zeros, PA is the i, j element of the matrix 

P A , is the length of the input signal, P is the number of time-slices, L is the 

!rlap between successive time-slices and the vector h contains the samples of the ove 
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time-limiting window function used. The matrices, RR,RI,IR,II are defined by 

splitting up the A matrix defined in (5-34). Let us dwell on the form of the A and 

X matrices. Previously the A matrix in (5-35) was created by concatenating together 

the smaller A matrices defined by (5-34). In the ST-FT case, each of these matrices 

must only operate upon a small sub-set of the whole signal, the length of which 

depends on the size of the data window used, and the location of which depends on 

the time-slice number and the overlap being used. In order to correctly position the 

smaller A matrices in terms of the x vector, zero vectors are used. Furthermore the 

original A matrices need to be split into components which operate only on 

products of the real with the real, the real with the imaginary etc. (5-40). 

Although the formulation given in (5-39) is simple (albeit if the required matrix 

definitions are long winded), there are two principal problems with this definition. 

The first of which relates to the rapid increase in the size of A as the signal length 

increases. For each additional complex sample, the size of the matrix x will increase. 

The dimensions of the matrix are If the signal is maximally 

overlapped, then for each additional sample there is an additional time-slice in the 

ST-FT. This increases the overall size of the matrix by ( f 4- 4- l ) N ) . This rate 

of increase in size of matrix is prohibitive. 

The second problem with the definition given in (5-39), is that once more the 

formulation is non-linear in terms of the input signal. One approach to solve this 

problem is to employ an iterative procedure to compute the solution. A fixed-point 

iteration is defined in (5-41), where the current estimate of the signal is denoted by 

Xp. The matrix x A is generally not square, and thus pseudo-inverse procedures 

are used, the pseudo-inverse of being denoted by". 

Convergence is obtained when the spectrogram of the signal x̂ +̂  is the same as the 

desired spectrogram as given by the vector S . Numerical trials have shown that this 

procedure is convergent to the required solution if sufficient overlap is used, 

although no theoretical proof has been developed. As with the phase reconstruction 

case, the algorithm appears to require L < 0.3iV . In the phase case this requirement 
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was so that a phase matrix had sufficient rank. In the modulus case an overlap 

smaller than this results in a lack of convergence. 

A number of other different methods could have been used to solve (5-39). Re-

arranging (5-39) leads directly to (5-42). Solving this equation can now be thought of 

as finding the roots to a set of non-linear equations. This can be represented in the 

form given in (5-43), where F is the system of equations described by x A x - S ^ a 

function of the signal x _ 

i ^ - S = 0 (5-42) 

F ( x ) = 0 . (5-43) 

Various numerical methods have been proposed for finding these roots, one of the 

most popular being Newton's method [Press92, Stoer93 a n d Kincaid91]. Unlike the 

fixed-point algorithm described by equation (5-41), application of Newton's method 

to this problem guarantees convergence if the initial estimate of the signal is 

sufficient close to a root [Press92]. 

(5-44) 

where 

= (5-45) 

Here J is the Jacobian matrix. The general form of this matrix is given in (5-46), 

where F^ is the M* equation and is the element of x . The Jacobian for the 

system of equations defined by — S is relatively simple to compute numerically, 

although it has no simple analytic form. 

Unless the number of equations in F is the same as the number of variables x then 

this matrix will not be square and thus no simple inverse will exist. Typically there 

are more equations than unknowns and thus a pseudo inverse matrix, can be used in 

(5-45). 
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ap. ^ (5-46) 

% 3Fv 

8̂ :, 8%. 
% 
9x_ 

Newton's method is guaranteed to converge to a root of the equation in the 

neighbourhood of the starting point of the iteration. However, since we have no 

knowledge of the roots of the equation, there is a requirement for an algorithm that 

converges to the solution, regardless of the starting ppint. A modified version of 

Newton's method can be constructed which will guarantee convergence to a solution 

of the equation from an arbitrary starting point, by backtracking if the error doesn't 

decrease between successive iterations [Press92]. Although guaranteed to converge, 

the algorithm may converge to a local rather than global solution. The MLS 

technique reviewed in Section 5.4.2 suffers from the same limitation. 

When reconstructing a signal from the squared magnitude of the ST-FT, the signal is 

recovered to within an overall phase constant. In the case of signal reconstruction 

from phase, it was commented (Chapter 4 Section 4.4.2) that if a signal has two 

components separated by a number of zeros, greater than a window length, then 

each of the two components would be reconstructed to within an individual 

magnitude constant. An analogous limitation is also present in the reconstruction 

from magnitude case, since if the signal is zero for greater than N samples, the ST-FT 

and thus the spectrogram are also zero. In this case, no information is carried 

between the two segments, and thus each segment is recovered to within its 

individual phase offset. Computer trials have shown this to be the case. As 

commented upon previously the presence of measurement noise is likely to render 

this unimportant in practice. 

5.4.4.1 Examples of Signal Reconstruction from Spectrogram 
(Bilinear Form) 

Two examples are now presented to show the bilinear form of the problem working. 

As before, the two example signals are a complex linear chirp, and a pseudo-random 

signal. Due to computational considerations the size of the two signals has been 
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reduced from those used previously in this section to 50 points. Both signals are 

assumed to have been sampled at 50Hz. The ST-FT was computed using a 16 point 

maximally overlapped Gaussian window. The signal were reconstructed using the 

fixed-point iteration algorithm described in equation (5-41) since this technique 

appeared to converge with fewer iterations than Newton's method. 

The ST-FT of the linear FM signal given in Figure 42 was computed. The 

spectrogram (squared magnitude of the ST-FT) is shown in Figure 43, where the 

increasing frequency of the FM tone can be seen. Through use of the spectrogram 

and application of (5-39) the signal was reconstructed. -The reducing error between 

the spectrogram of the original signal and that of the reconstructed estimate is shown 

in Figure 44. Although the error is not monotonically decreasing^ after only 20 

iterations the system converges to an error below 1x10"^*', which approximately 

corresponds to the numerical precision of the computer used. The amplitude 

difference between the original and reconstructed signal is given in Figure 45. As 

with signal reconstruction from the phase of ST-FT of the recovered signal, the 

amplitude of the recovered signal closely matches the original. However, unlike that 

case, no signal normalisation of the original signal is necessary. Since no 

normalisation has taken place, a phase difference between the original and 

reconstructed signal is anticipated and can be seen in Figure 46. 

J.'̂ .'̂ .7.2 EmnipZg 2 f 

The same performance shown for the linear chirp in previous example is now 

demonstrated for a pseudo random sequence. The time series of the sequence is 

given in Figure 47, and spectrogram is shown in Figure 48. Similar convergence 

characteristics can also be seen in Figure 49. Once more, the error between the 

amplitudes of the original and reconstructed signals is small, (Figure 50), and the 

reconstruction can be seen to take place within an overall phase constant (Figure 51). 
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Figure 42 Linear FM Harmonic Signal (Real Part Solid, Imaginary Part Dashed Lines) 
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Time 

Figure 43 Spectrogram of Linear FM Harmonic Signal 
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Figure 44 Error between Spectrogram of Original and Current Estimate of the Signal 

- Linear Chirp 

Figure 45 Error Between Amplitude of Original and Reconstructed Signal - Linear 

Chirp 
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Figure 46 Error Between Phase of Original and Reconstructed Signal - Linear Chirp 

0.8 0.9 

Figtue 47 Pseudo-Random Gaussian White Noise Signal (Real Part Solid, Imaginary 

Part Dashed Lines) 
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Figure 48 Spectrogram of Gaussian White Noise Signal 
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Figure 49 Error between Spectrogram of Original and Current Estimate of the Signal 

- Gaussian White Noise 
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Figure 50 Error Between Amplitude of Original and Reconstructed Signal - Gaussian 

White Noise 

0̂  1 

Figure 51 Error between Phase of Original and Reconstructed Signal - Gaussian 

White Noise 
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5./1.5Comparison Between Different Techniques 
In Sections 5.4.2 and 5.4.4, two different approaches to signal reconstruction from the 

modulus have been presented. Both techniques solve the problem in an iterative 

manner. The first reconstructed the signal by repeatedly applying the MLS 

algorithm developed for signal reconstruction from ST-FT. The second algorithm 

was based on a formulation of the squared magnitude of the ST-FT and solved the 

problem using either a fixed point or Newton Raphson algorithm. 

Although fundamentally designed with signal reconstruction from the spectrogram 

in mind, the method based on the quadratic form described in Section 5.4.4 suffers a 

number of limitations. The first of which is the computational load required per 

iteration. For even small signal sizes (lOOpt), the computational resources required 

both in terms of memory and processing power are too restrictive on current 

computers. For a fixed point algorithm the pseudo-inverse matrix, j needs to 

be computed. For a Newton's based method, the Jacobian, J , its pseudo-inverse and 

the equation xAx - S need to be computed. The calculation of either of these 

matrices makes this method much more computationally intensive compared to the 

MLS based algorithm. However, computer trials have shown that, using a fixed-

point iteration, the quadratic form based method typically required fewer iterations 

than the MLS based technique. 

The second, more fundamental, difference between the two procedures is the 

guarantee of convergence of the MLS based algorithm regardless of whether the 

desired spectrogram is valid or not. A modified version of Newton's algorithm can 

be guaranteed to reduce the error at each iteration, offering similar performance to 

the MLS algorithm. However, the computational load required for this method is 

much greater than both the fixed-point iteration or the MLS based algorithm. Trials 

of the fixed-point algorithm for the quadratic form based technique have shown that 

the algorithm always convergences to the correct solution (given sufficient overlap) 

for valid ST-FT. Furthermore it typically takes fewer iterations for this algorithm to 

converge than Newton's method. However, the fixed-point algorithm fails to 

converge for invalid spectrograms. This means that use of this method to reconstruct 

a signal from a modified spectrogram is not advisable. 
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Regardless of which method of solving this quadratic form based system of 

equations, the computational requirements are always greater than if using the MLS 

based method. As such there are no reasons for opting for the quadratic form based 

method over the MLS based approach. 

5.5Conclusions 
This chapter has followed the form of Chapter 4, presenting signal reconstruction 

methods for the magnitude, rather than the phase of the ST-FT. In total four different 

approaches have been presented, two piece-wise and two global solutions. The 

piece-wise solutions suffer the limitation of requiring that the signal be causal, in 

order to recover the signal from the first time-slice of the magnitude of the ST-FT. 

Two distinct methods of global signal reconstruction from the magnitude were also 

presented. One method described previously in the literature is based upon a MLS 

solution to signal reconstruction from the ST-FT. An iterative algorithm using this 

approach can be used in the reconstruction of the signal f rom the modulus of the ST-

FT. Although computational lean in terms of resources used, this method can 

converge to non-optimal solutions. This method has the advantage that a solution is 

always guaranteed regardless of whether the input modulus is a valid ST-FT or not. 

An alterative approach was formulated based upon a quadratic form equation. In 

order to recover the signal from this formulation, it was necessary to find the roots of 

multi-dimensional non-linear equation. This problem was solved in two ways, either 

via a fixed-point algorithm or via application of Newton's algorithm. The fixed-

point algorithm converged quickly in trials, however offered no guarantee of 

convergence. Newton's algorithm is guaranteed to converge only when the initial 

guess of the solution is sufficiently close to the root. A modified version of Newton's 

algorithm can be constructed which is guaranteed to converge, regardless of the 

initial guess, however this technique requires more computation per iteration. Both 

the fixed point and Newton's algorithm require the construction of large matrices for 

even modest signal sizes, and both require the computation of pseudo-inverses, 

further adding to the computational load. 

Both techniques to solve the quadratic form based definition of the problem require 

significantly more computer resources, both in terms of time and space, than the 

MLS based method. The results of which is that in all bar the most academic of 
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examples that the MLS based method should be used. Two examples showing both 

of these global methods were presented, a linear FM chirp and a pseudo random 

Gaussian noise sequence. 

The symmetry between signal reconstruction from phase and modulus can now be 

seen. Fundamental limitations in terms of the ability to reconstruct signals given the 

amount of overlap, or the signals being separated by a number of zeros greater than 

the window length are common between both modulus and phase cases. In the 

phase case, signal reconstruction could only take place to within an overall 

magnitude constant. The dual of this is that is the modulus case in that signal 

reconstruction can only take place to within an overall phase constant. 
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Chapter 6 Signal 
Reconstruction from the 

Generated Wavelet Transform 
Information 

6,1 Introduction 
In Chapters 4 and 5 the development of the theory surrounding signal reconstruction 

from full or partial (magnitude or phase) ST-FT information was presented. The ST-

FT is one of the two major linear TFRs used currently, the other being the Wavelet 

Transform (WT). 

The WT was introduced in Chapter 2 (Section 2.3.3) as an alternative to the ST-FT. 

The principle difference between the ST-FT and the WT is that the WT decomposes 

the signal using a 'Constant Q' approach, changing the frequency resolution with the 

centre frequency of each analysis filter. In contrast, the ST-FT uses analysis filters 

whose resolution remains fixed. The use of such variable bandwidth filters makes 

the WT more suited to analysis of speech and music sounds, since at high 

frequencies the ear can be modelled as a set of 'Constant Q' filters [Irino92, 93, 

Kronland88]. 

A number of simple inverses exist to recover the signal from its WT, all of which 

have been developed from the definition of the WT. Implicit to these definitions is 

the concept that the WT, from which the signal is to be recovered, is valid. This 

assumption, or rather the lack of provision for signal reconstruction from invalid 

WTs results in sub-optimal reconstruction of signals when synthetic or invalid WTs 

are used. This chapter begins by reviewing existing methods of signal reconstruction 

from the WT. 

Although the ST-FT and WT provide different signal decompositions, the basic forms 

of their definitions are very similar. This similarity is explored in the construction of 

a generalised form of the standard WT, termed the Generalised Wavelet Transform 
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(GWT), of which the ST-FT and WT are special cases. Since this transform 

encompasses a range of linear TFRs, a MLS inversion formula for this set is desired. 

The construction of such a formula means that for any TFR which can be placed 

within the GWT framework, a simple MLS inversion formula can be written. MLS 

inversion for GWT is described in this chapter. 

Signal reconstruction from partial (magnitude or phase) GWT information is then 

considered. In an analogous manner to that used in the derivation of signal 

reconstruction from the phase of the ST-FT, signal reconstruction from the phase of 

the GWT is presented. The chapter then completes the theory by reviewing two 

previously presented methods of signal reconstruction f rom the magnitude of the 

WT, and presenting two new methods for signal reconstruction from the magnitude 

of the GWT. These new methods are extensions of techniques developed for the ST-

FT, one based upon a quadratic form type of equation, and the other based upon the 

MLS approach of signal reconstruction from the GWT. 

6,2Signal Recnstruction from the Complete 
Wavelet Transform 

6.2.1 Direct Inversion Teciiniques 
In the continuous domain, the inversion to the WT can be defined as in two 

alternative forms, as given in (6-1) and (6-2) [Rioul91, Kronland88], where is the 

decomposing wavelet, and c, and Cj are constants depending upon the wavelet 

used for decomposition. 

(6-1) 

a>0 
a 

Discretised forms of these equations can be used to reconstruct a signal from a 

discretely defined WT. One form of this discretisation is given in (6-3), where c ̂  is a 

constant [Irino92, 93]. 
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/M=—oo 61=0 

M -A?% (6-3) 

Although (6-3) can be implemented rapidly owing to its simplicity, these equations 

assume that the WT is valid. With a view to developing a MLS inversion of the WT, 

a generalised version of the wavelet transform (GWT) is now presented. 

6.2.2 Generalised Form of the Wavelet Transform 
A generalisation of the discrete WT presented in Chapter 2 (2-42) is given in (6-4) and 

(6-5). This generalisation allows user selection of the number and scale of each 

decomposing wavelet. A user-defined function q{c) defines the scale 

decomposition used, given a discrete scale number, c (6-4), where as previously is 

the length of the input signal, ;(:[»]. In essence, the parameter c describes the 

amount by wtiich the wavelet is contradicted. The function defines the 

amount of overlap used, where m is non-negative variable. 

a = <?lc. (6-4) 

c I ;=o 

(6-5) 

A further step can be taken to generalise this expression in order to allow different, 

non-scale decompositions of a signal. In the WT case, the scale variable defines the 

amount of contraction and expansion undergone by the wavelet. In the formulation 

given in (6-6), the user has complete control over the decomposition used. The scale 

variable has been replaced by an arbitrary 'frequency' variable, w . 

Both traditional wavelet decompositions (such as the Morlet wavelet) and the ST-FT 

(illustrated for a Gaussian window) can be written in this form. The appropriate 

choices of windowing function are given in Table 5 (the sampling rate is assumed to 

be unity to simplify notation). 

/=o 

(6-6) 
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This extension is similar to that presented by Rabiner [Rabiner78] and Anderson 

[Anderson93]. It is evident that all GWTr constructed in this manner are linear TFRs 

regardless of the decomposing wavelet used\ 

Time-Frequency Decomposition 

Windowing Function 

Morlet Wavelet 
1 iJaY 

Vw 

Continuous ST-FT (Gaussian 

Window) 2;r 

Discrete ST-FT (Gaussian Window) 
2 1 — 1̂ -ZyWTK 

N 

Table 5 Windowing Function Definitions for Generalised Wavelet Transform 

6.2.3 IVIinimum Least Squares Inversion 
This section details an MLS inversion scheme for the GWT. This method will extend 

the ST-FT MLS inversion to other GWTs, most importantly it extends to the 

conventional WT. 

Consider a 'desired' GWT given by 7 [/M, w]. In this case the recovered signal should 

minimise the mean squared error between Y\m,u], and the GWT computed from 

the reconstructed signal, %[/«,«]. To obtain an optimum solution, the distance 

measure given in (6-7) is minimised, where P{u) is the number of time-slices 

present in the GWT for a given scale u, and U is the total number of 'frequency' 

points used. 

[/-I 
D[A-[n],F ^ ^ | x 

( 6 - 7 ) 

«=0 m=0 

It is assumed that the windowing function is signal independent. 
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The input signal %[»] is generally complex, and can be separated into its real and 

imaginary parts. In order to find the minimum of this function, the derivative with 

respect to both the real and imaginary parts is set to zero, as in (5-13). For the real 

component one expands the modulus-squared term in (6-7), to obtain (6-8). 

From the definition of the GWT (6-6), the derivatives in (6-8) can be evaluated, and 

are given in (6-9) and (6-10). Substituting (6-9) and (6-10) into (6-8) and simplifying 

the result leads to (6-10). Via a similar process, (6-11) can be obtained. 

[»] .=0 m=0 ' ' 3;:̂  [»] 
(6-8) 

M=0 m=0 

= = (6-9) 

ox^ \ n\ M=0 m=0 

OX, j - -w=0 m=0 

Since for an optimum the derivatives defined in (6-10) and (6-11) will be zero, then it 

follows that (6-12) must be satisfied. 

= ( X [ m , » ] - 7 [ m , a ] ) A [ , . - | ; ( m ) , « ] = 0 (6-12) 
3x[n] M=0 m=0 

Substituting into (6-12) the definition of a GWT, given by (6-6), an expression for the 

required signal in terms of the desired GWT can be written, see (6-13). Re-arranging 

(6-13) leads to the linear formulation expressed in (6-14), where K\l,n\ is a kernel 

function dependant only upon the wavelet used in the decomposition of the signal. 

Z Z = Y (6-13) 
f/=0 ;?i=0 /=0 ff=0 m=0 
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1=0 «=0 m=0 , , _ (6-14) 
[ / - I f(M)-l 

M=0 nf=0 

Equation (6-14) describes the MLS inversion of the GWT. Such a formulation was 

described in an analogous, if less formal manner, by Irino [Irino92, 93]. These papers 

stop their development short of the form given in (6-14). They stated that there was 

no reason to proceed, since the system of equations was not easily solved due to the 

size of the matrices used. Such computational concerns are less severe now, and 

therefore the MLS of a GWT now developed. 

The equation (6-14) is linear in terms of the reconstructed signal, and so can be 

written in a matrix form (6-15). 

Kx = Y (6-15) 

where 

(/-I 
Y..,= 

w=0 m-Q 

(6-16) 

U_, ?(«)-! 

:(=0 /?:=0 

X = [X[0] %[1] ••• A-[/, - l ] ] 

0 j f p { u ) 
u=G 

X = K*Y (6-18) 

The matrix K has dimensions of max(f and each element is the result of a 

double summation, requiring y5./,..max (P (w)] multiplications. 

Once the kernel function has been computed, its pseudo-inverse (denoted K ' ) must 

be found in order to compute the signal (6-18). Direct application of a standard 

pseudo-inverse routine can be used to achieve this. However the dominant 

computational load resides in the calculation of K . Improvements in computational 

time are possible by using Fourier based methods [Rabiner78, Oppenheim75]. Each 
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row of the kernel matrix can be expressed as a convolution. Through the use of DPT 

based convolution methods, a complete set of points can be computed via one FFT, 

rather than requiring the computation of each point individually. 

Although the calculation of the kernel and its inverse is computationally intensive, 

the kernel is data independent. This means that, for a given set of wavelets and a 

particular signal length, the kernel function and its inverse need only be computed 

once. This makes the technique useful for applications where the data length, and 

the set of decomposing wavelets are fixed. 

The application of (6-18) recovers more points than the signal length, owing to the 

manner in which the convolution operates. If the signal is reconstructed though 

direct application of (6-18), a zero-padded version of the signal is recovered, i.e. the 

signal is assumed to have finite support. By using FFT's to compute the correlation 

there is an implicit assumption that the signal is zero outside the defined points. 

This assumption can be seen in Figure 52, with the time-axis extending before the 

start of the signal and after the end. In the case of Figure 52, the linear chirp can be 

seen as a curve in time-scale, between t=0 and By limiting the column space of 

the kernel so that only the non-zero points are recovered, the computational burden 

is reduced. 

6.2.3.1 Examples of IVILS Signal Reconstruction from tlie WT 
Two examples are now given to illustrate MLS signal reconstruction from the WT. 

As previously, the two signals used are a linear FM chirp sequence, and a Gaussian 

pseudo random sequence. Both signals are 100 points long, and are assumed to be 

sampled at 100 Hz. 

The decomposing wavelets selected were 20 Morlet wavelets (see Table 5 for 

definition), ranging in size from 51 to 13 points long, covering a scale range from 0.04 

to 0.01. 

6 . 2 7 . 7 7 CAf/p 

The time series of a Linear FM chirp sequence has been given previously in Chapter 

4 (Figure 21), and the amplitude of the GWT is shown in Figure 52. 

Through the use of the amplitude and phase of WT and application of (6-18), the 

signal was reconstructed. Since both the amplitude and phase information are used. 
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the signal can be reconstructed precisely, with no ambiguity. Figure 53 and Figure 

54 depict the errors between the original and reconstructed signal for both the 

modulus and phase. These errors are small, indicating the success of the algorithm. 

6.2.3.1.2 Example 2 Pseudo Random Gaussian White Noise Sequence 

The time series of a pseudo random Gaussian white noise sequence has been given 

previously (Chapter 4, Figure 25), and magnitude of WT using a Morlet wavelet is 

shown in Figure 55. As before, unlike the linear chirp signal, no structure can be 

seen in time-scale. The signal was reconstructed using both the modulus and phase 

of the GWT, and the modulus and phase errors are depicted in Figure 56 and Figure 

57 respectively. As with the previous examples, the reconstruction exhibits a high 

level of fidelity. 

It should be noted that this signal is full band, i.e. it has significant energy at all 

frequencies between 0-50 Hz. However the decomposition provided only covers the 

region between 0.01-0.04 (appropriately 25-100 Hz, aliased). Since the filters are not 

perfect, there is significant energy both due to the low scale (high frequency) filters 

aliasing back and the filters having imperfect stop-bands. 

0.035 

CO 0.025 

0.015 

Time / sec 
1 1.2 

Figure 52 Magnitude of GWT of Linear FM Harmonic Signal (Morlet Window) 
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Figure 55 Magnitude of GWT of Gaussian White Noise Signal (Morlet Window) 
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Figure 56 Error Between Amplitude of Original and Reconstructed Signal -

Gaussian White Noise 
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Figure 57 Error Between Phase of Original and Reconstructed Signal - Gaussian 

White Noise 

6.3Signal Reconstruction from the Phase of 
the Generalised Wavelet Transform 

In Chapter 4, the problem of signal reconstruction from the phase of the ST-FT was 

discussed. The solution presented used a linear matrix formulation, derived from 

the definition of the phase of the ST-FT. The ST-FT can be considered to be an 

example of the GWT. The techniques developed for the ST-FT are now extended to 

the GWT. 

Consider the GWT (6-6), expressed in modulus and phase form in equation (6-19). 

The phase of the transform can be expressed as given by (6-20). 

(6-19) 
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Im 

Re 

;=o 

(6-20) 

z=o 

Unlike the ST-FT, the windowing function used in the GWT is generally complex. 

Defining the real and imaginary parts of the windowing function via (6-21), the 

summations in (6-20) can be expanded to give (6-22), which can be written as (6-23). 

7=0 Z=0 

(6-21) 

(6-22) 

L-l 

/=0 

f L - l 

-cos((Z)[m,w]) (/«),«] + 

(6-23) 

= 0 

Equation (6-23) can be rearranged in the form shown in (6-24). 

/=0 

[Z](/%r - g ('M), w]COS [/M, w]) 4- A,. - g (m), w] sin [/M, M])) = 0 

(6-24) 

z=o 

The modulating wavelet can be written in terms of its modulus and phase form, to 

finally yield (6-27). 

A[M,w] = |A[M,w]|g 

[»,»] = |A[M,w]|cos(;;[M,M]) 

hi [n,u] = ^h[n,u^sm(^ri[n,u]) 

(6-25) 

(6-26) 
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s i n - g (;%),« 
/=0 

/y—1 

(6-27) 

The similarity between the expression for the ST-FT (4-33), and the more general 

result is (6-27), is evident. Equation (6-27) reduces to (4-33) when the appropriate 

windowing function (as defined by Table 5) is selected. 

In a similar manner to that already described for the ST-FT, equation (6-27) can be 

written as in a matrix form, given in (6-28). 

Ax = 0 (6-28) 

where 

z s. 
z c, z 
: Z C, 

Z Z Sp Z Z Cp 

(6-29) 

s. = 

Cs 

|A [0,0]j sin O] - ( 0 , 0 ) ) j* [1,0^ sin [j, O] - ( 1 , 0 ) ) 

|/i[0,ljsin(^[j,]]-;;(0.l)) I)) 

jA [0,0]| cos (^ [ J, 0] - ( 0 , 0 ) ) |A [], 0]| cos (;> [ .̂ 0] - ( 1 . 0 ) ) 

j/z [O, I ̂  cos [f. 1 ] - ( 0 , 1 ) ) |A [I, I ] cos (^ [.;, I ] - ?; (I. I)) 

|/,[Af-I,0]{sin(^[j,0)-77(/V-1.0)) ' 

-1.1 I]-;7(Af -],!)) 

|/,[/V-1,(/{sin((*[j.[:]-;7(Ar-],[/)) 
IA [/V -1.0]| cos (f* [f. 0] - ? (AT -1,0)) 

| / i [# - l . l^cos{<p{s, \]-ri{N -1,1)) 

|A[0,(/̂ cos(̂ [̂ ,[/]-77(0,[/)) |/![l,(/]|cos(^[j,(y]-7;(l.(/)) -- |A[/V-l.(/]cos(^[^,(/]-?(A^-l,(/)) 

x = [z , [0 ] %,[1] -- %,[0] %,[1] --

In the above formulation, the matrix Z has [/ columns and ^ rows (the amount 

of overlap), where U is the number of decomposing wavelets, and P is the number 

of time-slices. In this expression it is assumed that all wavelets have the same length. 

This can be achieved by symmetrically zero padding the smaller wavelets. 

The homogeneous system of equations (6-29) can be solved using the methods 

discussed in Section 4.4.2 for the ST-FT. 
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In the ST-FT case, whether the matrix A has sufficient rank is dependant upon the 

imount of overlap used between successive time-slices. Since typically different 

wavelets are of different sizes, no simple rule can be derived as to the amount of 

overlap required in order to ensure reconstruction. Furthermore, as in the ST-FT, it is 

assumed that the first signal point is non-zero. 

6.3.1 Examples of Signal Reconstruction from the 
Phase of the GWT 

As before, two example signals are used to demonstrate this technique, a linear chirp, 

and a pseudo random Gaussian sequence. The same decomposing wavelets used in 

the examples of MLS signal reconstruction from the GWT were also used in these 

examples. Both signals are 100 points long and assumed to be sampled at lOOHz. 

6.3.1.1 Example 1 Linear FIVI Chirp Sequence 
The linear FM sequence used previously in Chapters 4 and 5 is again used here. In 

the construction of the GWT, the signal is not assumed to be causal, or zero past the 

end of the signal. The magnitude of the GWT is given in Figure 58. Note that this 

representation does not contain the start and end transients that appear in Figure 52. 

This is due to the different methods used when computing the GWT near the signal's 

start and end. 

The phase from which the signal is reconstructed is given in Figure 59. The 

difference in amplitude between the original (normalised with respect to the 

maximum sample), and the reconstructed signal, is given in Figure 60, and the error 

in phase is given in Figure 61. As before, the errors between the original and 

reconstructed signals are low. These errors can be seen to increase toward the start 

and end of the signal. This is because these locations contribute to fewer time-slices 

and so are subject to greater uncertainty. 

6.3.1.2 Example 2 Pseudo Random Gaussian Sequence 
The magnitude and phase of the GWT for a pseudo-random Gaussian sequence are 

shown in Figure 62 and Figure 63. The error between the normalised original and 

reconstructed signal is shown in Figure 64 and Figure 65. Once more the error 

between the two signals is low, increasing towards the start and end of the signal. 
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Figure 58 Magnitude of GWT of Linear FM Harmonic Signal (Morlet Window) - No 

Causal Assumption. 
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Figure 59 Phase of GWT of Linear FM Harmonic Signal (Morlet Window) - No 

Causal Assumption. 
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Figure 60 Error Between Amplitude of Original and Reconstructed Signal - Linear 

Chirp 
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Figure 61 Error Between Phase of Original and Reconstructed Signal - Linear Chirp 
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Figure 62 Magnitude of GWT of Gaussian White Noise Signal (Morlet Window) 
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Figure 63 Phase of GWT of Gaussian White Noise (Morlet Window) - No Causal 
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6.4Signal Reconstruction from the Modulus 
of the WT Transform 

6.4.1.1 Inverse WI based method 
In the approach to signal reconstruction from the magnitude of the ST-FT, Griffin 

[Griffin83, 84] developed an algorithm based upon repeated application of the MLS 

signal reconstruction from ST-FT. Irino [Irino92, 93] followed the same 

methodology; however they found that the MLS inversion of the WT was too 

computationally intensive for the decomposing wavelets they wished to use. 

Therefore, rather than repeatedly applying a MLS inversion formula for the WT, 

Irino choose to use a faster, but non-MLS inversion formula. This inversion formula 

used was given previously in (6-3). 

Based upon this inversion formulation, Irino [Irino92, 93] defined the 'Replace and 

Inverse Wavelet Transform - Modified Wavelet Transform Magnitude' or RIWT-

MWMT algorithm as expressed in (6-30) and (6-31). 

In this equation, X [ m , a ] is the WT of the signal estimate, F [m, a ]| is the 

desired modulus, A [»] is the decomposing wavelet. 

(/-I /'("H 
X' 

a=0 M=0 

(6-30) 

Z' ' [m,a] = ly 
(6-31) 

If the MLS inversion formula, defined for the GWT in Section 6.2.3, were used 

instead of the simple inversion formula given (6-3) then a matrix inversion would be 

required at each iteration. Thus this method requires less computational resource 

per iteration. This approach does however suffer from two limitations. Firstly, 

unlike the MLS based method for the GWT (of which the WT is one example) 

presented in Section 6.5.1.3, the distance measure between the WT of the current 

estimate of the signal and the desired WT is not monotonically decreasing. Secondly, 

for an invalid input WTs, this algorithm will not tend toward the MLS solution. The 

MLS GWT based approach does not suffer from this limitation. 
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6.5Signal Reconstruction fronn Magnitude 
of the GWT Transform 

Sections 6.2 and 6.3 describe signal reconstruction from the complete GWT, and only 

using its phase. The final extension is to describe signal reconstruction from solely 

magnitude information. This section begins by reviewing previous techniques for 

signal reconstruction from the magnitude of the WT and then presents the MLS 

based inversion for the GWT. 

6.5.1.1 Piece-wise IVIefliod 
As stated in the introduction to Chapter 5 Section 5.4 Anderson [Anderson93] 

generalised the ST-FT approach of sequential reconstruction from the magnitude of 
the ST-FT, to the GWT. If the GWT is maximally overlapped such that g[m) = m, 

(6-32) can be written. 

(6-32) 
X[m,u]= ^ x[l + m]h[l,u] 

Writing the decomposing wavelet in terms of modulus and phase as given in (6-33), 

where [n] is low pass filter (i.e. its amplitude varies very slowly). If is of 

the form ^[n,u] = f[u)n then windowing provides a decomposition at the 

frequency f [u). Making this assumption and substituting (6-33) into (6-32) results 

in (6-34). This equation is of finite length, defined between the points 0 < / < /1(m) , 

where A (w) is the length of the wavelet for the scale, w . 

A [», w] = [»] (6-33) 

["1= E 4 ' + ' " ] i ' A ' ] 
/=0 

Deriving the magnitude of (6-34), and writing the signal in terms of real and 

imaginary parts as defined in (6-35), results in (6-36). 
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x[»] = A:^[»]+ (6-35) 

[ w ] = [ o f + ^ , [ " ] " ) + ( I . [ » ] + C . [ ^ ] 

where 

ajM]=2A[0] Y A,,[Z](%,[^ + m]cos(/(w)^)-x,[Z + m]sm(/(M)Z)) 
;=o 

6,[M] = 2A[0] ^ A^[Z](;r^[Z + fM]sin(/(M)Z) + %,.[^4-»z]cos(/(w)^)) 
1=0 

[»]= 
1=0 

Working from a similar formulation, Anderson [Anderson92, 94] stated that 

evaluation of these equations at two distinct frequencies (scales), results in a system 

of two non-linear equations. When the two equations are subtracted from one 

another, the squared terms are eliminated, yielding a linear relationship between 

X, [n] and x,. [n]. Solving for x- \n\ in terms of [n] and substituting into either of 

the original non-linear equations, yields a quadratic in terms of one unknown x^\n\. 

Solution of the quadratic equation gives two candidate values. Computation of these 

values at two distinct frequency (scale) points resolves this ambiguity by selecting 

the common value present in both solutions. Once the value of is known, 

Xj\n] can be found directly. Anderson [Anderson92] noted that signal 

reconstruction in this manner only take places to within a phase constant, as 

expected though use of only modulus information. Anderson [Anderson94] 

described a more advanced version of this algorithm, based upon the use of an error 

criterion. Once one signal point has been constructed, the next can be recovered in 

an analogous manner. 

Although requiring very few scale points (but more than two), this technique does 

require the signal to be causal and maximally overlapped. The causality constraint is 

another manifestation of the requirement for some degree of signal knowledge prior 
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to reconstruction, a limitation of all piece-wise approaches shown throughout this 

thesis. 

6.5.1.2 Quadratic Form based method 
Consider the definition of the GWT, (6-6). The squared modulus of this function, at a 

given point in time-scale, can be defined as given in (6-37), which can be expanded as 

(6-38). 

\x = Re 
/=o 

• Im 
/=0 

\X \m,u\ 

;=o 

This equation can be expressed in matrix form (6-39). 

where 

x^A^x = 1% [m.^r 

A,, — A, + AI 
A, = [h, : - h , [h, ! - h , 

A i = [ h , : h ; ]^[h , ! h , ] 

(6-37) 

(6-38) 

(6-39) 

HR=[AXO,w) A X L , " ) - -

h, =k (0 ,w) - - A,((Z;,-l)-g(m),M)] 

x = [%,[0] z , [ l ] ... x , [ / ^ - l ] %,.[0] x,[l] ... 

The quadratic form in (6-39) defines the squared magnitude for the GWT for one 

point in time-scale. As previously, the generalisation of this equation from one point 

in time-scale to multiple points in time, and then to multiple points in time-scale, is 

non-trivial. The full extension is described by (6-40). 

xAx = X (6-40) 
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where 

X u 

0 

0 0 

... 0 

... 0 

B 

B, 
0.0 

^P(0)-l.0 

B 

X 

[x[o ,o f 

| x [ l , o f 

x[/'{0),0]f 

|x[0,lf 

Bm,. = 
RR_ RI_ 

IR. II 
ARR, ARI^ 

AIR Al l 

RR„ „ = 7 ARR 7 

7 7 7 

RI. ARI 7 

7 7 7 

IR. AIR 7 

7 7 7 

II. = 7 A n 7 

7 7 7 

and as before^ ? ( » ) is the number of time-slice for a given wavelet decomposition, 

A (u) is the length of the wavelet, ^ is a zero matrix of size m x n . The matrices 

ARR^ , ARI ,AIR^ , An^ are defined by symmetrically splitting up A^ as defined 

by (6-39). 
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Just as in the ST-FT case, the formulation is non-linear in terms of the signal. As 

before, an iterative solution is proposed in order to solve this equation. This is given 

in (6-41). In general the matrix is not square, and thus pseudo inverse methods 

must be used. 

X,,, . ( x , A ) ' x 

As in the ST-FT case, this iteration is not guaranteed to converge even for an valid 

input GWT. Indeed trials have shown that, unlike the ST-FT case, this approach fails 

to converge even for valid GWT, unless careful selection of the decomposing 

wavelets is made. As before, a Newton based technique could also be used, solving 

an alternative form of equation (6-40) given in (6-42). As stated in Chapter 5 Section 

5.1.6 Newton's algorithm is only guaranteed to converge when the starting point is 

close to the root. A modified version of Newton's algorithm [Press92], also 

consistently failed to converge to the correct solution for an arbitrary starting point. 

Furthermore this method required the multiple computations of the function and its 

Jacobian, making it computationally intensive. 

x A x - X = 0 (6-42) 

The computational load and the problems with convergence of the solution mean 

that the quadratic form based method is computationally problematic. 

6.5.1.3IVILS B a s e d (Vle thod 

In Section 6.2.3 a MLS approach to signal reconstruction was developed and 

computational issues considered. Thus, in the same manner as described by Griffin 

[Griffin83] for the ST-FT, a MLS based signal reconstruction from the magnitude of 

the GWT can be now described. An iterative algorithm for signal reconstruction is 

described in (6-43) and (6-44), where X ^ [m, u ] is the GWT of the p"" estimate of the 

signal x''^', and Y \m,u] is the desired GWT. 

(6-43) 

f D'-i ^ (6-44) 

^ M=0 m=0 y 
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This iterative algorithm is found to be monotonically decreasing with regards to the 

distance measure given in (6-45). A proof of this is given in Appendix 2. It should be 

noted that, although the computation of kernel may take some time, it need only be 

computed once at the start of the algorithm. Computation of the vector can be 

achieved through one outer product and one summation, and thus can be computed 

quickly even for large signals. 

This approach is very similar in definition to the non-MLS inversion of the WT 

described in the previous section and given in equations (6-30) and (6-31). As 

illustrated in Table 5, the windowing function can be selected such that the GWT 

provides a WT decomposition of the signal. Therefore the two algorithms can be 

. considered as attempting to achieve the same goal. However since this algorithm 

uses the MLS inversion formula, it will yield an optimum solution. This is not true of 

the approach presented by Irino [Irino92, 93]. Thus the inversion described by (6-43) 

and (6-44) is expected to be more robust to invalid GWT, in analogy with the ST-FT 

case described by Griffin [Griffin84]. 

^ (6-45) 

w=0 m=0 

The algorithm is stopped when the distance measure or reconstructed signal changes 

less than a given tolerance, or if a set number of iterations is exceeded. 

As previously, two example signals are now used to demonstrate this algorithm, a 

linear FM chirp and pseudo random sequence. Both sequences are 100 points long 

and are assumed to be sampled at 100 Hz. The Morlet wavelet as used to decompose 

the signal into time-scale. The algorithms were stopped after 500 iterations. 

6.J. 7..) .2 7 jLmgar CAf/p JggwgMcg 

The linear FM sequence used throughout this chapter was used an input, and a GWT 

computed. The magnitude of the GWT used here was given previously in Figure 52. 
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Figure 66 shows the error between the GWT of the current best estimate of the signal, 

and the desired GWT. The error given in these plots is the sum of the square erro^ 

across the whole of the TF plot used for reconstruction. The error between the 

desired and reconstructed GWTs never reaches zero, how^ever in the time-domain 

the error between the magnitude of the desired and the reconstructed signal is still 

small (i.e. error is less than 10% of the peak value of 10), as given in Figure 67. The 

error between the signals can also be seen in the differences between the phases, 

shown in Figure 68. Allowing the procedure to run for a larger number of iterations 

results in reduced errors between the original and reconstructed signals. 

6.J.7..)..? ExampZg 2 f 5 ' e g w g M c g 

Similar performance between can also be seen when using a pseudo-random input 

sequence. The error of the converging system is shown in Figure 69, with the final 

error between the original and reconstructed signals shown in Figure 70 and Figure 

71. The error at the last iteration was lower in the case of the Gaussian pseudo-

random noise than for the linear chirp. This is reflected in the error between the 

desired and reconstructed signals being much lower. The maximum error in the 

magnitude of the signal is less than 7% of the max (maximum value of 1), compared 

to 10% in the linear chirp case. Once again, allowing the procedure to run for a 

larger number of iterations results in reduced errors between the original and 

reconstructed signals. 
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Figure 66 Error between GWT of Signal Estimate and Desired Signal - MLS based 

Reconstruction from Magnitude, Linear Chirp 
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Figure 67 Error in Amplitude between Original and Reconstructed Signals - MLS 

based Reconstruction from Magnitude, Linear Chirp 
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Figure 68 Error in Phase between Original and Reconstructed Signals - MLS Based 

Reconstruction from Magnitude, Linear Chirp 
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Figure 69 Error between GWT of Signal Estimate and Desired Signal - MLS Based 

Reconstruction from Magnitude, Pseudo Random Gaussian Sequence 
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Figure 70 Error in Amplitude between Original and Reconstructed Signals - MLS 

based Reconstruction from Magnitude, Pseudo Random Gaussian Sequence 
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Figure 71 Error in Phase between Original and Reconstructed Signals - MLS based 

Reconstruction from Magnitude, Pseudo Random Gaussian Sequence 
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6,6Conclusions 
This chapter has generalised the theory of signal reconstruction from magnitude or 

phase presented previously for the ST-FT to cover a wide range of decomposition 

methods, the so called GWT. 

This chapter began by reviewing present methods of signal reconstruction from the 

WT. These methods, although quick to implement, produce sub-optimal (in a MLS 

sense) solutions when invalid WTs are used. Developing the work presented by 

Griffin [Griffin83, 84] for the ST-FT, the MLS inversion of the GWT was defined and 

demonstrated. Although possessing qualities present in the ST-FT case (i.e. non-

causality), the MLS signal reconstruction from the GWT requires much more 

computer resources than the ST-FT, requiring a large matrix inversion. 

In Chapter 4 signal reconstruction from the phase of the ST-FT was presented. 

Herein signal reconstruction from the phase of the GWT was developed. In a direct 

analogy with the ST-FT case, signal reconstruction takes place via the inversion of a 

signal dependant matrix. Examples showing the algorithm working for a set Morlet 

decomposing wavelet functions were presented. 

Signal reconstruction from the magnitude of the WT (as v\rith the ST-FT) have been 

presented previously in the literature. Two previously defined methods were 

reviewed, one based upon the piece-wise reconstruction of a causal signal 

[Anderson94], and the other based by the algorithm described by Griffin [Griffin83, 

84] for signal reconstruction, without using a MLS based inversion procedure. The 

former of these two requires some prior signal knowledge and the latter, despite 

being fast to implement, cannot be shown to converge to the optimal solution. 

Two novel alternatives to these approaches were presented for signal reconstruction 

from the magnitude of the GWT. The first is based on the solution to a quadratic 

form. This technique suffers all the limitations present in the ST-FT case, requiring 

large computational resources with no guarantee of convergence. Trials of two 

different methods to solve this problem have shown that convergence may not occur 

even if the GWT is valid. 
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The second technique follows the methodology presented in Griffin [Griffin83, 84] 

but using the MLS signal reconstruction from GWT. This solution to the problem has 

a number of benefits over those defined previously. How^ever since the algorithm is 

based upon the MLS inversion of the GWT, it suffers from the poor computational 

performance of that algorithm, making it currently unsuitable for reasonable length 

signals. This method is guaranteed to converge toward the MLS solution even if the 

input is an invalid as the magnitude of a GWT. 
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Chapter 7 Enhancement of 
Heart Sounds via Time-

Frequency IVIodlficatlon 
7.1 Introduction 

The traditional method for physicians to hear to the sounds created by the heart 

beating has been through the use of a stethoscope. By listening to the sound created, 

a skilled physician can identify some structural defects present in the heart of a 

patient. Abnormal sounds, such as a heart 'murmur', may reflect some pathological 

defect in the heart. The pitch, duration and location of the murmur in the cardiac 

cycle are all important parameters used in diagnosis [Leung99]. 

7.2 Time Domain Form of Heart Sounds 
As heard through a traditional or an electronic stethoscope, the heart sounds like 

'lub-dup lub-dup'. These sounds correspond to the two dominant sounds in the 

cardiac cycle. The first sound, the 'lub', is known as the first heart sound (SI) and the 

second, the 'dup', as the second heart sound (S2). An explanation of the mechanisms 

creating these sounds is not offered here, and the reader is referred to [Leung99, 

Rangayyan88, Durand95]. 

In addition to SI and S2, other sounds can also occasionally be heard when listening 

to the heart. These range from ejection sounds (high-pitched clicks) to filling sounds 

(low-pitched thumps). The sounds of interest in this thesis are heart 'murmurs'; 

these sounds are created by the turbulent flow of blood in the cardiovascular system. 

There are a number of potential causes for this turbulence. 

In this research the murmurs which are investigated are: Atrial Septal Defects (ASD), 

Ventricular Septal Defects (VSD) and non-pathological irmocent murmurs. 

Temporally these murmurs all exist in the region between SI and S2 in the heart 

sound. 
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ASD refers to a defect (hole) in the wall separating the left and right atria. The sound 

created is due to the additional flow of blood being pumped trough the pulmonary 

artery. 

VSDs are due to a defect in the wall separating the left and right ventricles. The 

pumping action of the heart creates a high pressure^ which results in the flow of 

blood through the defect becoming turbulent. VSDs are typically easier to diagnose 

due to their long duration and loudness. 

Innocent murmurs can occasionally be found in young children. These murmurs are 

created due to a more dynamic rather normal flow of blood in the heart becoming 

turbulent, and thus creating flow noise [Harris76, Leung99]. These murmurs can be 

difficult to distinguish from ASDs. 

7.3 Extension of the Duration of a Signal 
via Spectrogram 

A typical cardiac cycle in an adult lasts for around a second (less in children), making 

diagnosis of a murmur difficult. The murmur is typically lower in amplitude 

compared to SI and S2. Both of these factors make accurate diagnosis a complicated 

task. 

With a view to improving the ability of the physician to diagnose the type of 

murmur present, the cardiac cycle can be recorded and replayed at a slower rate. 

This helps to separate SI and S2, but it has an additional effect; the contraction and 

expansion of a signal in time alters its spectral content. This relation was stated 

mathematically in Chapter 2 Section 2.2.3.2, and is used by the WT to alter the shape 

in time and frequency of a particular wavelet. This effect can be heard when playing 

a record at the wrong speed: there is a shift in pitch as well as an alteration of the 

temporal support of the sound. 

In a series of papers Zhang et al. [Zhang88a-b] describe a matching pursuit algorithm 

applied to the expansion of heart sounds. The matching pursuit algorithm 

decomposes a signal in terms of known time-frequency 'atoms'. Each atom can be 

scaled, dilated, and shifted in time or frequency to provide the best local match to the 

signal. An iterative algorithm is described to decompose the signal; at each iteration 

the atom that best matches the signal is found. The remainder of the signal, after this 
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atom has been subtracted, is the starting point for the next iteration. This method 

works well when the signal being analysed is efficiently modelled by a sum of 

decomposing functions; Zhang aZ. use exponentially decaying sinusoids. 

However, the number of decomposing functions required increases rapidly when the 

signal is not well matched to the decomposing functions. As a result this procedure 

has a problem synthesising murmurs in heart sounds due to their random nature, 

since these murmurs can not be efficiently represented using simple TF atoms. In the 

paper by Zhang gZ. [Zhang88b] this parametric approach is used to temporally 

expand and frequency shift heart sounds, in order to improve audio discrimination 

and thus aid diagnosis and training. 

Here an alternative non-parametric method is proposed. Altering the temporal 

characteristics of the signal, whilst retaining its frequency characteristics, is possible 

if the process is performed in the TF domain rather than the time domain. In this 

manner, the signal can be manipulated to increase its duration, without a contraction 

in frequency. The non-parametric nature of the GWTs makes it more widely 

applicable than the matching pursuit method. 

The process of altering the duration of the signal, whilst retaining the frequency 

characteristics, is presented. The sounds from the heart are recorded at a sufficiently 

high sampHng rate (in this case 2000 Hz). The signal is then transformed into the TF 

domain via a GWT. In order to reduce the computation time, the ST-FT is used to 

provide the TF decomposition. 

Once the signal is in the TF domain, this representation can be stretched in time so 

that the required signal duration is achieved. This procedure can be achieved by 

interpolating addition time-slices between known time slices. The greater the 

number of interpolated slices inserted, the longer the temporal duration of the TFR. 

It follows therefore that the greater the number of interpolated slices in the TFR, the 

longer the duration of a signal reconstructed from it. This procedure can be difficult 

to achieve, if the complex ST-FT is used, due to phase wrapping ambiguities between 

successive time-slices. In order to improve the quality of the interpolated TFR, the 

squared magnitude of the ST-FT (spectrogram) is used. Use of the magnitude 

removes the problems of phase unwrapping that are present with a linear TFR. 

The result of this procedure is to create an invalid spectrogram. Through the 

application of the MLS based technique described in Chapter 5 a signal can now be 
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reconstructed to create a temporally extended signal. Griffin et al. [Griffin84] used a 

similar procedure to alter the duration of cpeech. Since the resultant spectrogram 

created is unlikely to be valid, the error between the spectrogram created from the 

current estimate of the signal and the desired spectrogram will not converge to zero. 

Using this approach, four recorded signals were extended. The four signals used are 

a normal heart sound, and heart sounds containing; an ASD murmur, a VSD 

murmur and a non-pathological innocent murmur^ Three seconds of data were 

acquired for each. This was sufficient to span three or four cardiac cycles. These 

time series are shown in Figure 72 to Figure 75. Visual inspection of these time-series 

yields little information about the presence or type of murmur. Only the VSD 

murmur can be clearly seen as a rapidly changing signal component between SI and 

S2 (Figure 74). This is as expected, since typically a VSD murmur has a higher 

amplitude than the other types of murmur investigated here. The approximate times 

for the occurrence of SI and S2 are given in Table 6. 

The ST-FT for each of these signals was computed using a 128 pt Harming window, 

with an overlap of 96 samples between successive time slices. The spectrograms for 

the four signals are given in Figure 76 to Figure 79. The impulse-like nature of SI 

and S2 can be seen from these plots, covering at least the range from 0-500 Hz. 

Again, of the three murmur signals, the VSD murmur can be most clearly seen, as a 

broad-band (0-900Hz before being cut-off by the anti-aliasing filter) sound lasting 

almost all the time between SI and S2. The innocent murmur can also be seen 

between SI and S2 as increased signal energy at low frequencies. The ASD murmur 

cannot be identified as there as little difference between the spectrogram of the ASD 

and of the normal (healthy) heart beat. Using linear interpolation, the temporal 

dimension of the spectrogram was extended so that the resultant spectrogram was 

three times longer than the original. The modified spectrograms for the four signals 

are shown in Figure 80 to Figure 83. 

Using these synthetic spectrograms as an input, application of the MLS based signal 

reconstruction formula (Chapter 5 Section 5.4.2) enabled the construction of a time 

series for each spectrogram. The converging error of the algorithm is shown in 

Figure 84 to Figure 87. The error given in these plots is the sum of the square error 

across the whole of the TF plot used for reconstruction. A fixed number of iterations 

These diagnoses have been made by a skilled physidan 
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(2500) were used. The resulting time-series had the required extended temporal 

support. The differences between the desired and recrnstructed spectrograms are 

depicted in Figure 88 to Figure 91, and the reconstructed spectrograms are shown in 

Figure 92 to Figure 95. The error remains very low (below —200dB) until the last few 

time-slices and then increases to approximately -lOOdB. This is due to the limited 

information available for these time-slices. The error between the two solutions can 

be seen to be very much lower than the maximum amplitude present in the desired 

spectrogram. Indeed, visually there is little difference between the desired and 

reconstructed spectrograms. The reconstructed signals are shown in Figure 96 to 

Figure 99. 

Although the time-series and TFR provide a great deal of information regarding the 

signal, the transformation is most clear when the signal is listened to. The sound files 

are provided on the disc accompanying this thesis (Standard PC Format). The 

original versions of the heart sounds are given in the directory '/heart/original/', 

and the temporal extended versions given in ' /heart /extended/ ' . In this form the 

difference between the three different murmurs can be more easily heard. The 

improvement over simply changing the sampling rate can be heard by comparing 

the temporally extended versions in ' /heart/extended' with the re-sampled versions 

in '/heart/Lower Sampling Rate'. The difference in the fidelity in terms of the 

spectral content of the two different methods can be clear heard. 

With the extended version of the normal heart sound, there is little or no noise 

between SI and S2 of each cardiac cycle. With the innocent murmur, some narrow-

band flow noise can be heard, but this decays quickly. In contrast the VSD murmur 

can be heard prominently between beats, lasting almost the whole interval between 

SI and S2. In the ASD case, flow noise can also be heard between SI and S2, but at 

lower amplitude than with the VSD. In this signal, S2 can be heard to be split into 

two parts. 

As a training aid for physicians, these extended signals allow for easier 

discrimination between murmurs. Without the extension it was hard to hear the 

difference between the ASD and innocent murmur, whereas with the extension the 

difference can clearly be heard. As compared to playing a tape at a slower speed, 

this method offers the benefit of not altering the spectral content of the signal. 

Unlike the matching pursuit algorithm, the quality of the results is not affect by the 
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nature of the signal being analysed, and therefore this technique can be used to 

extend both normal heart sounds as well as those with murmurs. 

Heart Sound Time of 51 Time of S2 

Normal Heart Sound 
0.1 

0.5 0.8 
(Figures 72,76,80,88,92 and 

96) 
1.3 1.6 

2.4 2.7 

0.2 

ASD Murmur 0.5 0.75 

(Figures 73, 77,81, 89, 93 1.2 1.4 

and 97) 1.9 2.1 

2.6 2.9 

0.2 0.45 

VSD Murmur 0.75 1.0 

(Figures 74, 78, 82, 90, 94 1.4 1.6 

and 98) 1.9 2.2 

2.5 2.75 

0.05 0.35 

Irmocent Murmur 0.6 0.9 

(Figures 74, 78, 82, 90, 94 1.25 1.55 

and 98) 1.95 2.25 

2.6 2.9 

Table 6 Starting Times of SI and S2 in the Analysed Signals 

173 



< - 0 . 2 

Time / sec 

Figure 72 Time Series of a Normal Heart Beat 
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Figure 73 Time Series of a Heart Beat with an ASD 
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Figure 74 Time Series of a Heart Beat with a VSD 
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Figure 75 Time Series of a Heart Beat with an Innocent Murmur 
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Figure 76 Spectrogram of a Normal Heart Beat 
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Figure 77 Spectrogram of a Heart Beat with an ASD 
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Figure 78 Spectrogram of a Heart Beat with a VSD 
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Figure 79 Spectrogram of a Heart Beat with an Innocent Murmur 
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Figure 80 Modified Spectrogram of a Normal Heart Beat with Extended Temporal 

Support 
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Figure 81 Modified Spectrogram of a Heart Beat with an ASD with Extended 

Temporal Support 
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Figure 82 Modified Spectrogram of a Heart Beat with a VSD with Extended 

Temporal Support 
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Figure 83 Modified Spectrogram of a Heart Beat with an Innocent Murmur with 

Extended Temporal Support 
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Figure 84 Convergence of the Distance Measure between the Desired and 

Reconstructed Spectrograms - Normal Heart Sound 
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Figure 85 Convergence of the Distance Measure between the Desired and 

Reconstructed Spectrograms - Heart Beat with an ASD 
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Figure 86 Convergence of the Distance Measure between the Desired and 

Reconstructed Spectrograms - Heart Beat with a VSD 
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Figure 87 Convergence of the Distance Measure between the Desired and 

Reconstructed Spectrograms - Heart Beat with an Innocent Murmur 
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Figure 88 The Error between the Desired and Reconstructed Spectrograms - Normal 

Heart Sound 
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Figure 89 The Error between the Desired and Reconstructed Spectrogram - Heart 

Beat with ASD 
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Figure 90 The Error between the Desired and Reconstructed Spectrogram - Heart 

Beat with VSD 
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Figure 91 The Error between the Desired and Reconstructed Spectrogram - Heart 

Beat with Innocent Murmur 
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Figure 92 Reconstructed Spectrogram of a Normal Heart Beat whose Temporal 

Support has been Extended 
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Figure 93 Reconstructed Spectrogram of a Heart Beat with an ASD whose Temporal 

Support has been Extended 
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Figure 94 Reconstructed Spectrogram of a Heart Beat with a VSD with Extended 

Temporal Support 
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Figure 95 Reconstructed Spectrogram of a Heart Beat with an Innocent Murmur 

whose Temporal Support has been Extended 
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Figure 96 Time Series of Temporally Extended Normal Heart Beat 
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Figure 97 Time Series of Temporally Extended Heart Beat with an ASD 
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Figure 98 Time Series of Temporally Extended Heart Beat with a VSD 
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Figure 99 Time Series of Temporally Extended Heart Beat with an Innocent Murmur 
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7.4 Reconstruction of an Averaged 
Murmur via tlie Spectrogram 

The human body is a complex structure. As a result, the biological signals generated 

vary both between patients and over relatively short time scales, for example heart 

beat to heart beat. The dynamics of any heart murmur present alters in each cardiac 

cycle and thus any TFR generated will also change according to cardiac cycle being 

processed. With a view to improving diagnosis of the presence and type of a 

murmur, a technique to reduce the variability of the signal is desired. 

One technique used to reduce the variability is to average in the TF domain over a 

number of cardiac cycles [White97, Leung98, Leung99]. Averaging in the time-

domain is not possible because the signals are random in nature [Beyar84]. Each 

murmur is a different realisation of a zero mean random process. It follows that 

simply averaging in the time-domain, the different initial phase of each murmur will 

result in destructive interference, cancelling out the murmur waveform. A quadratic 

(or energetic) TFR is not affected by the random nature of the signal and therefore 

averaging in the TF domain can be performed without cancellation of signal terms. 

Energetic TFRs are not affected by the random nature of the signals because although 

each realisation of the murmur has a different starting phase, it has the same energy 

content in TF. Leung [Leung99] demonstrates this process for a range of different 

averaging methods and TFRs. 

A recording of a series of heart beats from a patient is split in order to separate 

complete cardiac cycles. The spectrogram is then computed for each of these signals, 

although other quadratic TFRs have been shown to offer improved visualisation 

characteristics [Leung99]. The spectrogram for each cardiac cycle is then 

synchronised so that the first heart sound (SI) is at time zero. The averaged 

spectrogram is then computed by taking the mean of the spectrograms of each 

cardiac cycle. Alternative smoothing operations can also be used [Leung99]. The 

averaging operation is given in (7-1) where the averaged spectrogram is 

given in terms of spectrograms computed for each cardiac cycle (f,6;)| . It is 

unlikely that the averaged spectrogram will be valid spectrogram. 
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Using averaged spectrogram, the time series of a typical example of the cardiac cycle 

can be reconstructed. Examining the average spectrogram between SI and S2, allows 

the structure of the murmur to be displayed with greater contrast. Furthermore use 

of only this part of the signal enables construction of a typical murmur signal, 

without SI and S2 being present in the reconstruction. 

The averaged spectrogram (area between SI and S2) computed over 20 cardiac 

cycles, for the three types of murmurs previously discussed are presented in Figure 

100 to Figure 102. In these images the effects of the anti-aliasing filter used in the 

sampling process can clearly be seen, as the energy content present in the signal 

fades as it reaches lOOOHz (half the sampling rate). The characteristics of each of the 

murmur can be seen to be different from one another, with the innocent murmur 

being almost tonal in nature compared to the ASD and VSD murmurs. The VSD 

murmur seems to possess a greater amount of energy above 300 Hz compared to the 

ASD. These averaged spectrograms were then used as the input to the signal 

reconstruction algorithm based upon the MLS inversion of the ST-FT [Griffin83, 84]. 

The converging total error is shown in Figure 103 to Figure 105. Since the averaged 

spectrogram was a synthetic input, a large number of iterations (2500) was used to 

attempt to get a good reconstruction. That said, the total error is still much higher 

than those achieved for the temporal extended spectrograms used in the previous 

section, with a typical sum of the squared error above 1x10* for the ASD and 

innocent murmurs and above 1x10® for the VSD murmur. Since the signals are of 

unequal length, more revealing statistics may be the mean, maximum and minimum 

squared errors, these are given for the three murmurs in Table 7. The reason for the 

high errors may be due to the fact that the reconstruction is using an averaged 

version of the murmur, and thus further removed from a valid spectrogram. 
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Error Statistic ASD Murmur VSD Murmur Innocent Murmur 

Sum of Squared Error 15900 762650 29700 

Mean Squared Error 53 1885 107 

Maximum Squared 

Error 656 2357 1040 

Minimum Squared 

Error 
7.6e-9 2.5e-7 1.8e-8 

Table 7 Error values for the three Synthetic Murmur Types after the 2500 Iterations 

Figure 106 to Figure 108 show the spectrogram of the reconstructed signals. There is 

little visual difference between the desired and reconstructed spectrograms. The 

time series used to create these plots can be thought of as being the average murmur, 

and these are given in Figure 109 to Figure 111. The difference in the power of the 

murmurs can be seen in the different maximum amplitudes present for each of the 

signals, the VSD (Figure 110) being the loudest as expected, since prior to any signal 

processing it is the most audible. The VSD murmur has a peak value of ~40dB across 

a broad range of frequencies, as compared to the ASD which only reaches ~25dB and 

the innocent murmur which ranges ~35dB but in a narrow range of frequencies. In 

the innocent murmur case (Figure 111), its tonal nature can also be seen in the time 

series, as a periodic component starting at 0.2sec and lasting approximately O.Ssec. 

As before, although the time series show the signal, the differences between the three 

signals can be more easily heard than visualised in the time series. These files are 

found on the enclosed disc in the '\heart\averaged murmur' directory. Judgement 

of the aural quality of these signals is hindered because of the short duration of the 

murmur signals. To alleviate this, five repetitions of each signal, each separated by a 

short-break, are given on each file. The aural differences in the spectral content 

between the VSD (high frequency), ASD and innocent murmurs (low frequency) can 

now be clearly heard. 
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7,5 Conclusions 
With a view to improving the diagnostic ability of the physician by offering various 

audio representations of the cardiac cycle, two different approaches based upon the 

reconstruction of a signal from a synthetic spectrogram have been presented. In 

terms of improving the diagnosis, the temporally extended version of the cardiac 

cycle overall prove to be more useful overall, owing to the physician familiarity with 

the original signal. The processing power required to compute the extended time 

series is reasonably small, such that a small personal computer can perform in a few 

seconds. However the averaged spectrogram proved to be a useful tool in the 

automatic classification of heart murmurs [Leung99], and could be used for the 

purposes of training. 
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Figure 100 Averaged Spectrogram for the Cardiac Cycle (between SI and S2) - ASD 

Murmur 
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Figure 101 Averaged Spectrogram for the Cardiac Cycle (between SI and S2) - VSD 
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Figure 102 Averaged Spectrogram for the Cardiac Cycle (between SI and S2) 

Innocent Murmur 
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Figure 103 Convergence of Distance Measure betiveen the Desired and the 

Reconstructed Averaged Spectrograms - ASD Murmur 
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Figure 104 Convergence of the Distance Measure between the Desired and 

Reconstructed Averaged Spectrograms - VSD Murmur 
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Figure 105 Convergence of the Distance Measure between the Desired and 

Reconstructed Averaged Spectrograms -Innocent Murmur 
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Figure 106 Reconstructed Spectrogram of the Cardiac Cycle (between SI and S2) 
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Figure 107 Reconstructed Spectrogram of the Cardiac Cycle (between SI and S2) 
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Figure 108 Reconstructed Spectrogram of the Cardiac Cycle (between SI and S2) 
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Figure 109 Reconstructed "Average" ASD Murmur 

< - 1 0 

0.02 0.04 0.06 0.08 0.1 
Time / sec 

0.12 0.14 0.16 0.18 

Figure 110 Reconstructed "Average" VSD Murmur 
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Figure 111 Reconstructed "Average" Innocent Murmur 
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Chapter 8 Conclusions and 
Future Work 

8.1 Summaries and Discussions 
In Chapter 2 the concepts of spectral analysis and TF representations for 1-D signals 

were reviewed. The differences between stationary and non-stationary, and 

stochastic and deterministic signals, were outlined. TFRs are one way in which the 

time-varying spectrum of a non-stationary signal can be displayed. The first TFR 

presented was the ST-FT, a temporally limited version of the FT. The ST-FT is a 

complex distribution, but has the benefit of being linear. The other commonly used 

linear TFR is the WT. Since the linear TFRs are complex valued their (squared) 

magnitudes are often plotted. The squared magnitudes of the ST-FT and WT are 

considered to be TFRs in there own right and are called the Spectrogram and 

Scalogram respectively. The Spectrogram can be considered to be a member of a 

wider set of bilinear TFRs called Cohen's Class. All these TFRs are bilinear with 

respect to the signal, and all suffer from a compromise between good local resolution 

and the presence of cross-terms, visually distracting components present due to the 

bilinearity. 

In Chapter 3 signal dependant TFRs were presented. Three distinct methods were 

considered: signal dependant kernel design, Cohen-Posch and Reassigned TFRs. 

Although easily defined in the Ambiguity Plane (AP) and invertible, data adaptive 

kernel design was not explored further since it required user intervention for the 

specification of the volume of the kernel. Cohen-Posch TFRs conform to the intuitive 

requirements for an energetic TFR, specifically positivity and correct marginals. 

However their performance for many classes of signals is poor. This is due to CP 

TFRs being sensitive to the orientation of the signals in the TF plane. The reassigned 

TFR approach does not suffer from this limitation, and the reassigned spectrogram is 

guaranteed to be positive. However the reassigned TFR does not, in general, 

conform to the marginal properties. The computation of a reassigned distribution is 

a two-stage process. It requires first, the computation of the 'reassigned co-

ordinates', a set of new co-ordinates dependant upon the local moments in time and 
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frequency of the distribution. These new co-ordinates reallocate the energy of the 

spectrogiam to a position which is less affected by the time-limiting windowing 

function used in its computation. The second stage is the reallocation of the energy 

within the bandwidth of the window to this new location. The reassigned 

spectrogram was shown to be linked to an instantaneous frequency extraction 

algorithm called the 'Ridge and Skeleton' approach. It is also related to the partial 

derivatives of the phase of the ST-FT with respect to time and frequency. 

With a view to constructing an inverse to the reassigned spectrogram, the link 

between the phase of the ST-FT and the reassigned co-ordinates was explored in 

Chapter 4. It was shown that, using the reassigned group-delay parameter 

(computed using finite differences), the phase of the ST-FT can be recovered to 

within a constant per time-slice. The chapter proceeds to describe signal 

reconstruction from phase, first reviewing existing techniques for signal 

reconstruction from the phase of the DFT, and then deriving techniques for signal 

reconstruction from the phase of the ST-FT. Two approaches to achieving this goal 

are presented, one reconstructing the signal in a piece-wise iterative manner, the 

other recovering the complete signal in a single step. The global approach was found 

to be superior to the piece-wise approach, since it did not require any a •priori signal 

knowledge and was robust to numerical errors. Through knowledge of the 

reassigned group-delay parameter, and application of the global reconstruction 

algorithm it was shown that a real signal can be reconstructed. In the case of a 

complex signal, the reassigned group-delay does not provide sufficient information 

for global reconstruction. However a piece-wise algorithm can be determined. 

The dual of signal reconstruction from the phase of the ST-FT is reconstruction from 

the modulus, as described in Chapter 5. Unlike the phase case, reconstruction from 

modulus (or squared modulus) of the ST-FT has been previously described in the 

literature. Chapter 5 reviews those approaches, including a Minimum Least Squares 

(MLS) based approach. The MLS algorithm reconstructs the signal to within an 

overall phase constant. A new approach to the problem is also presented. This takes 

inspiration from the method used to formulate reconstruction from phase, defining 

the squared modulus of a single point in TF in terms of a quadric form. The 

extension from one point in TF to all points is not simple, and the resultant formula 

is non-linear in terms of the signal. A fixed point and Newton-Raphson algorithms 

are used to solve the system of equations. Although Newton's algorithm is 
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guaranteed to converge close to the solution, it offers no global convergence 

characteristics. The fixed-point algorithm is not guaranteed to converge, but did so 

for valid spectrograms in fewer iterations than Newton's algorithm. However, both 

approaches require much greater computational resources, in terms of both 

processing power and memory than the MLS algorithm. Therefore for all but the 

shortest signals, the MLS algorithm is considered to be superior. 

The work for signal reconstruction from partial TF information given in Chapters 4 

and 5, is generalised in Chapter 6 to cover a wide range of different linear TFRs. A 

generalised version of the WT (GWT) is presented, which contains both the ST-FT 

and the WT as members. A MLS reconstruction equation is defined to recover a 

signal from full (modulus and phase) GWT information. This algorithm requires the 

computation of a signal-independent kernel matrix and its inverse, a potentially time 

consuming procedure for long signals. Generalising the algorithms in Chapter 4, 

signal reconstruction from the phase of the GWT is presented. As with the ST-FT 

case, signal reconstruction takes place to within an overall amplitude constant. As in 

the ST-FT case given in Chapter 5, the algorithm for signal reconstruction from the 

modulus of the GWT is based upon the MLS inversion. Therefore, the procedure 

suffers from the same limitation as the MLS inversion for the GWT, requiring the 

computation of the inverse of the kernel matrix. However this matrix need only be 

computed once for a given length of signal and set of decomposing wavelets. 

Two applications of signal construction from synthetic spectrograms are presented in 

Chapter 7 both involve processing heart sounds. In the Hrst application, heart 

sounds are temporally extended while maintaining their spectral characteristics, 

using modifications of the spectrogram of the heart sound. The temporal extension 

aids in the diagnosis of heart murmurs. Using the MLS based algorithm, a signal 

was reconstructed from a modified spectrogram. Unlike a parametric based 

technique described in the literature, the computation required is not dependant 

upon the type of signal present. The second application reconstructs an average 

murmur from the averaged spectrogram, an operation not possible purely in the 

time domain due to the random nature of the flow noise generating the murmur. 
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8.2 Further Work 
A number of further areas for research have presented themselves over the course of 

this thesis. An overview of three of these is given here. 

8.2.1 Robust Signal Reconstruction from tiie Phase of 
tlie GWT 

Although a method for signal reconstruction from the phase of the ST-FT (Chapter 4) 

and GWT (Chapter 6) has been described, these algorithms assume a valid (non-

modified or synthetic) phase distribution. If an invalid phase is used, then these 

algorithms yield poor performance. In order to improve the robustness of signal 

reconstruction from the magnitude of a linear TFR (Chapter 5 for ST-FT, Chapter 6 

for GWT) the solutiou was found which minimised the squared error between the 

desired and reconstructed signal. An analogous expression can be written for signal 

reconstruction from phase, as given in (8-1), where m is the time slice number, u is 

the frequency (or scale) variable, r(w) is the number of time-slices present for a 

given frequency, U is the number of decomposing frequencies, (p \m, u ] is the 

desired phase and ^ [/M, w ] is the phase of the GWT for the signal %. 

^ ^ (8-1) 

min 
^ M=0 ni7?=0 

The minimisation of (8-1) with respect to the input signal allows for synthetic or 

modified phase distributions to be used, producing a signal that has a phase 

distribution closest to that desired. 

The reassigned co-ordinates for the spectrogram can be viewed as the derivative of 

the phase with respect to the time and frequency variables used. Modifications of 

the reassigned co-ordinates could now take place to construct a signal with desired 

characteristics. Alternatively a signal could be constructed which possess the 

qualities defined by a purely synthetic set of reassigned co-ordinates. 
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8.2.2Signal Reconstruction from the Reassigned Co-
ordinates 

In Chapter 4 the link between the phase of the ST-FT and the reassigned co-ordinates 

(as defined by a numerical difference) was presented. Although simply defined, this 

method of computation of the reassigned co-ordinates suffers from a number of 

limitations. These include the need for phase unwrapping, and poor reconstruction 

when a non-maximally overlap ST-FT is used. Two alternatives for computing the 

reassigned co-ordinates have been presented in the literature, an analytical [Auger95] 

and a recursive [Richard97] method. 

Although simply defined in terms of the ST-FT, neither of these methods posses a 

simple inversion. Unlike the difference method employed upon the phase of the 

discrete ST-FT, these approaches compute a sampled version of the derivative of the 

phase of the continuous ST-FT. The link between this sampled continuous version 

and the fully discrete version (as derived by numerical differences) should be 

explored. If no relationship exists, then an alternative is to attempt to derive a 

method of allowing signal reconstruction from the discrete samples of continuous 

partial derivative. 

8.2.3 Fast Techniques for Inverse Kernel Computation 
In Chapter 6 a MLS method of signal reconstruction from the GWT was presented. 

This method relied on the computation of a kernel function, which was dependant 

upon the number and type of decomposing wavelets used. The time taken to 

compute this kernel can be reduced by using Fourier based methods as described in 

Chapter 6. The inverse of the matrix was computed numerically using a pseudo-

inverse algorithm. No attempt was made to compute this inverse matrix directly, 

rather than via numerical inversion. An examination of the structure of the kernel 

may allow analytical computation of its inverse, if there is sufficient structure. Direct 

computation of the kernel inverse would allow this method to be used for longer 

signals than is currently possible. 
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Appendix 1 A Proof of 

In order to prove that a Projection onto Convex Sets (POCS) algorithm will converge 

to a Cohen-Posch TFR, it sufficient to prove that the sets defined by all positive TFRs, 

and TFRs conforming to the time marginal and TFRs conforming to the frequency 

marginal are convex. 

A set C is defined to be convex if for any two points X̂ ,X2 e C , the point 

Xj = <7Xj + (l - crjxj also lies in C for any value of the parameter cr in the range 

0< cr < 1. 

An arbitrary TFR for a given input signal x(f) is defined as The set of 

TFRs which conform to the time marginal for a given input signal are given in [Al]. 

The set of TFRs which conform to the frequency marginals are given in [A2], where 

the FT of the input signal is denoted as X {o)] (Chapter 2 (2-la)). 

[A2] 

A proof that the sets defined by the time and frequency marginals and positivity are 

all convex [Clarkson95]. 

Time Marginal 

Define two arbitrary TFRs, and P̂  that are members of the set of TFRs 

conforming to the time-marginal as defined in [Al]. In order to prove that this set is 

convex, it is sufficient to prove that a new TFR, expressed in [A3] conforms to the 

time marginal. Simplifying [A3] in terms of the energy per unit time of the signal 
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leads directly to [A4]. Therefore the TFR conforms to the time-marginal 

and thus the set is convex. 

Frequency Marginal 

The proof that the frequency marginal also defines a convex set follows the proof for 

the time marginal. Defining the frequency marginal equivalent of [A3], in [A5], 

equation [A6] can be shown. Thus, since the TFR P^(t,a)) also conforms to the 

required frequency-marginal and the set is convex. 

[A5] 

[A6] 
= o-jx -I-(1 - ( 7 ) | z = 1 :̂ (6;)|^ 

Positivity 

Define the following variables: G , two arbitrary positive TFRs. In order to 

prove convexity we need to prove that e as defined in [A7] where 0 < <7 < 1. 

[A7] 

Due to the limits placed upon ( j , it is clear that (1 — c) e and thus 7^ e . Thus 

the set defined by positivity is convex. 

Therefore all three sets are convex and thus an POCS algorithm using membership of 

these three sets as constraints wHl converge. 
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Appendix 2 Proof of 
Monotonically Decreasing Error 

of Iterative Signal 
Reconstruction from 

Magnitude of Wavelet 
Transform 

This appendix shows the following: 

1. The signal recovered from the modulus of its Generalised Wavelet transform 

(GWT) is closed and bounded 

2. That the error between successive iterations is decreases 

The proof stops short of the showing that the algorithm will converge to a global 

minimum, merely showing that the error between successive errors decreases. The 

proof closely follows that of Griffin [Griffin84]. 

In the following derivation the input signal is assumed to be real. The algorithm is 

developed for the real and imaginary parts of the signal independently, this results 

in no loss of generality since the procedure can be repeated for the imaginary part of 

the signal. 

Previously (Chapter 6) reconstruction of a signal from the modulus GWT used 

formulated in terms of the repeated application of a matrix multiplication. For the 

definitions of the matrices, see Chapter 6, Section 6.5.1.3. In simplified form the 

reconstruction procedure can be seen as repeated application of [A8], where X'' is 

the GWT matrix of the vector x ' , and Y \m,n\ is the given or desired GWT modulus. 

X p+i = K Yh'̂  [A8] 
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Yh'' ^ y ' ' 
u=0 m=0 

y ' [ m , » ] = | 7 [m,« | 
j x " [7M,w] 

Let L be an algorithm on 0 ^, and suppose that, given an initial signal estimate x°, 

the sequence {%''} is created satisfying 

X' 

Given that the algorithm can be written in terms of the matrix formulation [A9], the 

system is both closed and bounded for if K exists, and if it, and Yh^ are finite. 

The discrete distance measure between the GWT and the desired GWT minimised in 

the MLS case, is given in [AlO]. 

[AlO] 

In the case of reconstruction from modulus, as expressed in [A8] at each iteration the 

recovered GWT X'' is replaced with Y' ' . Using the distance measure [AlO] Y^ 

minimises D^x'',Y'' [m,u]j for fixed and Y'' constrained to have magnitude 

|y [m,«]!. Therefore 

D [ x ^ y ^ [m, w]] < D [x^ ,y [m, w j] [All] 

and 

O [x^+' ,y [m, w ]] < D [x^+',y ̂  [m, w ]] [̂ 12] 

Through the application of [A8] Y^ allows estimation of the next signal x̂ "̂ .̂ Since 

the mathematics was derived to minimise d[^x,F for Y'' fixed, it follows 

that 
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[A13] 

With equality holding if and only if x̂ '̂ = x''. Combining [A12] and [A13] together 

produces [A14], again with equality holding if and only if x^ '̂ = x''. 

D [x^+' ,y [m, w]] < D [ x \ y ^ [m, w]] [AM] 

Writing the expression for D|^x,y explicitly as given in [A15], reduces 

[A16]. 

to 

D[x\y'' [m,w]] = 2 Z 
[A15] 

D[x^,y ̂  X^[/M,w]|-|y [m,w]|) =D^ [x^,y [m,w]] [A16] 

This leads to the distance measure based upon the GWT magnitude, 

D^ |̂̂ x ,̂y[7M,w]] given in Chapter 6 Section 6.5.1.3. Since 

D|^x'',y'' [x'',y reapplication of [A14] yields [A17]. 

[x""',y [ x \ y [A17] 

This expression shows that distance measure based upon the GWT magnitude 

decreases at each iteration. 
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