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ABSTRACT
FACULTY OF ENGINEERING
SHIP SCIENCE

Master of Philosophy

MEASUREMENT OF THE WAVE PATTERN RESISTANCE OF ASYMMETRIC HULL FORMS BY
THE LONGITUDINAL CUT METHOD

by Derek Alan Colman

Much work has been done on the measurement of the wave pattern resistance of
hﬁlls and a completely automated system has been developed by Hogben at N.P.L.
However, this work has been concerned almost entirely with symmetriec hull
forms and wave patterns. This present work is concerned with the measurement
of both symmetric‘and asymmetric wave patterns and thus establishing the wave
pattern resistance of symmetric and asymmetric hull forms.

The wave pattern is measured by four wave probes spaced across the ﬁank such
that the first and fourth are equidistant from the centre-line and similarly
for the second and third. Thus the symmetric and antisymmetric components of
the asymmetric wave pattern are found rgspectively by halving the sum and
difference of each pair of probes and their contribution to resistance is
then calculated separately. The wave pattern expansion is as a Fourier
series and the analysis makes a least squares fit over points measured,
followed by the Gauss—Seidel method to solve the resulting simultaneous
équations, in order to find the coefficients in the expansion. In general
the analysis of the symmetric component is good but in the antisymmetric case
the weaknesses of the method are more pronounced and the results consequently
poor.

Plots of the total resistance and wave pattern resistance for the upright
symmetric model show that their difference, the viscous resistance, is of the
magnitude and behaviour expected. Previous wind tunnel results imply that
the total wave pattern resistance should increase with yaw. However, results
show that any increase is in fact small so the greater increase with yaw in
total resistance in the tank over that in the tunmnel must be sought within

the viscous and induced resistances.



NOTATION

b tank breadth

. e tank depth
g gravitational acceleration
U model velocity

x,¥,z coordinate axes
x parallel to model direction, positive astern
y perpendiqular to x and horizontal
z vertical, pesitive upwards

u,v,w velocity perturbations in directions x, ¥y, z

L L.W.L. of model

d model draught

A wetted surface area

S underwater plan area

z wave elevation, positive upwards

L symmetric wave elevation

Ca antisymmetric wave elevation

0 . wave angle

A wavelength

c wave velocity = U cos 6

Y = 27 /A

w =y, cos en in.expansion of symmetric wave pattern
rm_ =y, cos em in expansion of antisymmetric wave pattern

£, n, coefficients in expansion of symmetric wave pattern

Mos Vo coefficients in expansion of antisymmetric wave pattern

N number of symmetric wave harmonics
M number of antisymmetric wave harmonies
h distance between sampling positions in x-direction

K number of samples taken from each wave probe



total resistance of model

Rv viscous resistance
Ry induced resistance
Rw wave pattern resistance
Rws symmetric wave pattern resistance
Rwa antisymmetric wave pattern resistance
GRW resistance component of one wave harmonic
Ch resistance coefficient in the towing tank
CD resistance coefficient in the wind tunnel
tunnel
¥ Froude number = —7—U
T 24
, UL . .. .
Re Reynold's number = > v kinematic viscosity
A quality of fit r.m.s. residual

r.m.s. wave height



1. INTRODUCTION

Essential to the model testing of hull forms in the towing tank is
an understanding of the components of the total resistance to motion
experienced by the model.

Following William Froude's early hypothesis that the total resistance
cen be divided into two components, the skin-friction resistance due to
the tangential shear forces acting on the hull surface and a residuary
resistance, due to normal pressure forces, mainly comprised of wave
pattern reéistance, Kelvin made a great step forward in the understanding
of the wave pattern when, in 1904, he published his linearised theory
of ship waves. In spite of the rather drastic approximation of repre-
senting the ship by a single point disturbance the wave pattern so pro-
duced bears a close resemblance to the general wave pattern shape of a
real ship. Havelock continued theoretical work on wave patterns (ref. 3)
- and considered a wave pattern moving at veloeity o comprised of waves

moving with the wave pattern but at an angle 6 to its direction and

obtained
/2
r = F(8) sin{K secge(x cos 6 +y sin 0 + ¢(0))}de
-n/2
2n02 . .
where K = ol F(0) is the amplitude factor and e(8) is phase,

for the wave elevation.

By drawing lines representing the crests of ﬁaves at various values
of 6, Havelock found that the envelope of these lines produced the
typical wave pattern comprising both diverging and transverse waves, as

seen behind a ship.



WAVE PATTERN BEHIND A SHIP

AC is parallel to crests of waves of angle 350. From the figure
it is seen that the transverse waves are comprised of waves with an angle
6 < 35° while the divergent system is comprised of waves with 60 > 359,

Also angle AOB is the Kelvin wave angle of approximately 19°.

At the 11th International Towing Tank Conference the components of
resistance were discussed and the following diagrammatic break-down of

total resistance resulted: (overleaf)
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The actual forces acting directly on the hull itself are clearly the
normal'pressure and the tangential shear forces or skin friction which
when integrated over the hull will result in the total resistance. However,
actual direct measurement of these two quantities is obviously not con~
venient on any arbitrary model, so other components of resistance are
sought by measurement, away from the hull, of the effect of the hull upon
the surrounding water.

It is necessary to define the components measured such that they have
a clear physical meaning and can be measuied. Three components of
resistance emerge:

1. The wave resistance: the force necessary to maintain the energy of
the wave pattern, and can be calculated from measurements within

the wave pattern. It is not the total wave making resistance of the



hull since that includes the energy dissipated into the wake
through wave bresking.

2. The viscous resistance: that resistance associated with creating
vorticity and turbulence, and can be measured by msking a wake
traverse astern of the model. Clearly this component will include
the skin-friction resistance and the form drag or viscous pressure
resistance due to boundary layer thickness and separation effects.
Also included is the wave breaking resistance mentioned above.

3. The induced resistance: that resistance caused by the generation of
trailing vortices. When the hull is not creating a net sideforce
this éomponent will in general be negligible.  However, with the
production of sideforce, and the inherent trailing vortices, the
induced resistance will become significant. Unfortunately, at
present there is no convenient way of measuring this component. It
should be noted that ambiguity can arise if the induced resistance
is defined as the difference between the total resistance at vaw
and the total resistance at zero sideforce when it might well include
some wave and viscous resistance.

Thus the total resistance can be subdivided:

RT - R‘w * Rv N RI

It has in the past been experimental practice, when wishing to scale
up measurements on ship models, to assum; that the wave resistance is
equal to the total resistance minus an estimation for viscous resistance
based on the skin friction of a flat plate times some suitable form
factor, calculated at low Froude number. However, various techniques for
measuring the wave resistance have been developed and these can be
divided into two main categories.

In the first instance measurements of the wave pattern are made and

the wave resistance is calculated from the expression for the energy of

the measured wave pattern. This method can be further subdivided into

b



two basic means of measurement.

Firstly the longitudinal cut method, as used in this pres;nt work
and by Gadd and ﬁogben (ref. 2), in which measurements of the wave
pattern are-made by towing the model past fixed wave probes and thus
obtaining longitudinal wave traces. Secondly the transverse cut method
used by Eggers (ref. 1), in which measurements are made across the wave
pattern at two fixed distances behind the model. An advantage of this
second method is that the méasuring apparatus is carried with the model
thus avoiding the necessity of having separate shore-mounted wave probes.

All these methods are in fact approximate, since they rely on the
application of linearised theory to the real disturbance, although in
general they-will be sufficiently accurate outside the wake and the
vicinity of the model.

The second means of measuring the wave pattern resistance is by

'making measurements within the wave pattern that lead directly to an esti-
mation of the resistance without actually establishing an expression for
the wave pattern itself. Ward (ref. 12) calculates the wave pattern
resistance from measurements of forces exerted by the passing wave pattern
on a long circulaf cylinder held vertically in the water surface. This
second approach does not provide as much information about the wave pattern
as the first but its chief advantage is that it does not use any Fourier
analysis, a technique used in all cases of the first instance, and which

can lead to analysis problems, as found in the present work.

Work on wave pattern resistance at Southampton University was
started in 1971 in a project by Wynne (ref. 14). He used the longitudinal
cut method to study symmetric wave patterns and so all the basic equipment
necessary for this method was already available. This equipment has been

modified during the course of the present work and a more sophisticated



means of analysis adopted for calculating both the symmetric and anti-
symmetric components of wave resistance found in an assymmetric wave
pattern. For all experiments a 1/6th scale model of the 5.5 metre yacht
'Antiope' was used, although thé purpose of this present work was not so
much to measure the wave pattern resistance of 'Antiope', but rather to
developea relisble means of measuring symmetric and asymmetric wave patterns
and hence the corresponding resistance in the towing tank.

The results from symmetric wave patterns obteined from the upright
model are consideied'good from comparisén of wave resistance with the
total measured resistance and the high quality of fit of the calculated
wave patterns to the measured wave patterns. However, when the model is
yawed, thus producing asymmetric wave patterns, the results obtained

deteriorate. The analysis of the symmetric component is still good but

the antisymmetric component of resistance cannot be considered reliable.



2.  THEORY

2.1 Components of Total Registance from Consideration of Momentum

DIAGRAM OF THE MODEL IN THE TANK

Consider a model moving with constant velocity U in a towing tank
of breadth b and depth e. Let axes x, y, 2, having origin in the surface
at the model centre, move with the model and denote longitudinal, trans-
verse and vertical distances respectively, and u, v, w be the corresponding
velocity perturbations. It 1s assumed that the flow sbout the model and
within the wake and wave pattern is steady relative to the coordinate axes
X, ¥, 2. This assumption may not be strictly true if the model is free
to trim and thus possibly suffer from small pitching oscillations.

Let A and B be two planes perpendicular to the x axis and such that
A is in undisturbed water upstream of the model and B is a similar
distance downstream of the model. Consider the control volume defined by
the planes A and B, the walls and floor of the tank, the free surface and
the wetted surface of the model. If it is assumed that the frictional

forces at the walls and floor of the tank and also at the free surface are



negligible then the net force in the x direction acting upon the control

-

volume is
(the integral of pressure over A) FA
-~ (the integral of pressure over B) EB

~ (the total resistance of the model) RT
and this mﬁst equal the change in the flux of ﬁomentum in the x direction
through the control volume,
(flux of momentum // x through A) M,
- (flux of momentum // x through B) M.
Now suppose Z(x, y) is the surface displacement or wave height at
(x, y, O), then at A, £ =0 and u=v=w =0 and so by continuity
since there is no flow through the tank walls and the surface is of
constant shape, the net flow into the control volume at A must equal that
flowing out at B

/2 °B

Ube (U + u) dzdy (1)

/2 ¢

Momentum flux across A 1is

b/2 °B
MA = pUabe = pU f f (U + u)dzdy (2)
-b/2 -e
Momentum flux across B is
b/2 B
My = p I f (U + w2 dzdy (3)
-b/2 -e

Now from Bernoulli's principle if pressures are measured relative to

atmospheric pressure the total head at A can be equated to the total

head at B
PA PB 2 2 2
“E'+ %U2 + gz = ~;- + %«U + u) + v+ w) + gz + Af- (L)



where Ap is the viscous pressure loss and will therefore be zerc outside
the wake. Also on the surface at A, PA =0 and z = 0, so the total head
is %Uz.

Hence the pressure force on A is

b/2 0
F, = f f P, dzdy = }ogbe® (5)
~b/2 -e ’

and the pressure force on B 1is

b/2 °B
EB = [ PB dzdy
~b/2 -e
b/2 B
_ : 2 2 2
= - {pgz + Ap + 3p(2Uu + v~ + v° + w°)}dzdy
-b/2 -e
b/2
= Jogbe® - dog f CBQ dy
b/2
‘b/2 °B b/2 B
- f f Apdzdy - 3p [ [ (2Uu + u° + v° + wg)dzdy
~b/2 -e b/2 =-e (6)

Now from above

Bp = Fy-Fg+ M - M

or b/2 b/2 B b/2  °B
Ry = 3og [ KBQ dy + [ [ Ap dzdy + 3p f [ (¥ +w° - ug)dzdy
-b/2 b/2 e ~b/2 -e

(1)

It is clear that the first term contributes to wave resistance while
the second term is viscous resistance. Containing velocity perturbations
the third term will contribute to wave pattern resistance, viscous resis-
tance within the wake and also induced resistance due to trailing vortices.

Now define u such that



P N .
IO+ D2+ +v7) + gz = P .

o |w

i.e., o+ 2 = 3u+uw? s+ —4-2-

and u will differ from u only within the wake. Hence, equation (T7)

becomes
‘ b/2 b/2  °B
R, = 208 I CBQ dy + %o f J (v2 +w? - 3°)azdy
~b/2 ~b/2 -~e

=

+ ” {ap + 30(5°% - v2)} dmdy
wakev
and the last term can bevidentified as the total viscous resistance and
will be zero outside the wake.
The second term must now be divided inéo induced resistance and some
wave pattern resistance. From the theory of gravity waves, given the
wave pattern ¢(x, y), the associated orbital velocities U, Vi, W, can

be calculated. Thus components of resistance can be defined:

Wave pattern resistance

b2, b/2 B ) ) ,
R, =38 [ 3o avr+d [ [ (v +w-u) azdy (8)
~b/2 -b/2 ~e
Viscous resistance
-2 .
R = f[ [ AD + 3p(u° - u2) ] dzdy (9)
wake
Induced resistance
b/2 B
RI = 3p (V2 + W -5 - Vi2 - wl2 + u12) dzdy (10)
-b/2 =~e
and
RT = Rw + Rv + RI' (11)

10.



2.2 Wave Resistance Using Weighted Mean Square Method :

The following method of calculating the wave pattern resistance was

given by Gadd and Hogben (ref. 2) in one of their early papers on wave

pattern resistance. The wave pattern of a model in a towing tenk is com—

prised of waves moving at various angles 8, to the direction of motion of

the model.

Consider first the case of transverse waves moving with the model so

] = 0.

Taking the mean of equation (§) in the x direction

b/2 b/2  °B

ﬁw=%p8£ ;Bedy‘*%pl f
-b/2 . ~b /2

Now R = Rw’ the motion being steady and v

w

-e

(V12 * wiz - u12) dzdy

1= O since the waves being

considered are transverse and hence have no transverse motion. In deep

water waves the particles move round in circles; hence wig - u12 = 0.
Thusb
b/2
= 1 2 '
R = Zp8 tg & - (12)
-b/2
Now midway between a crest and a trough z =0 and also u12 = vig =0 in
equation (§) but w12 is a maximum, therefore
bv/2 B
2
PR
Rw = 3p i f vy dzdy
“b/2 -e
b/2
= 3pg ry A (13)
-b/2
In an oblique wave train where ¢ # O equation (13) will still be valid and

the average value of (vl2 ~ u12) is (sinze - cosge)w 2

1 since the

resultant of W and vy is the horizontal component of particle motion.

AT wE A
S
/o AR
/;@_ ) ©
L iBasgy 2
\e /

11.




Whence for an obligue wave train of angle 6

b/2 b/2 B
; 2 > 2
R, = 208 g Gy + 30 2Wl (1 - cos“8) dzdy
-b/2 ' -b/2 -e '
b/2 b/2 B
. > . 2 2
= 308 Ty &+ 20 vy (1 - cos“0)dzdy
-b/2 ~b/2 —e DB
. . . . 2 2
since Wl is sinusoidal and so wl = 2wl .
max
Hence from equation (13)
b/2
2 2
R = log(2 - cos%6) [ i ay (14)
~b /2

for an oblique wave train of angle 6 .
The wave resistance for a complete pattern is derived by choosing an
effectiye average value for Cos 9 in equation (14). Gadd & Hogben also
describe a so-called Fourier strip-bethod of analysing a series of
longitudinal profiles and Hogben later developed a least square fitting

technique known as the 'Matrix' method appliicable to more general arrays

and used in the automated system described in reference 6.

2.3 TFourier Expansion of the Wave Pattern

From work by Kelvin and Havelock it is seen that the wave pattern behind
a ship is composed of wave trains moving at various angles 6 to the direc-
tion of motion of the model.

Consider waves of angle 6, wavelength X and wave velocity c
contained in the wave pattern of a model moving along the centre-line of

a tank of breadth b with velocity U.

12.
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A_ TYPICAL WAVE TRAIN

There are three conditions which must be satisfied:
(a) The laws for gravity waves are obeyed.
(b) The wave pattern moves with the model.
(¢) There is no flow through the tank walls.
Now x cos 6 -y sin 6 = constant along lines fparallel. to the waves.

Hence the equation for the wave elevation is

r' = A cos(x cos 6 -y sin 6 + e)g-;% (15)

where A and € are constants.

From condition (a) g’){- = 5.2-
c

and from (b) ¢c=Ucos 8 .

Therefore

= = 3 = v (say) (16)

Whence expanding (15)

z' = A cos[ y(x cos & + e€)].cos[y y sin 8]

+ A sin[y(x cos & + e)].sin[y y sin 6} (17)

Now consider the wave train cf angle -8 which will not necessarily be

equal in magnitude or phase since the wave pattern may not be symmetric,

13.



r'" =3B cos[y (x cos 0 + 8)]. cos[y y sin 6]

- B sin[y (x cos 6 + 6)].sin[y y sin 6] (18)
Now summing (17) and (18) and expanding

z = gt e+

]

[ cos(y x cos 8) + n sin(y x cos 8)] cos(y y sin o)

+ [u cos(y x cos 8) + v sin(y x cos 8)] sin(y y sin @) (19)

where constants A, B, € and § have been sbsorbed in the coefficients &,

Ny, H, V.
Tt is immediately seen that the first term is symmetric about the
centre-line y = O while the second is antisymmetric sbout y = O.

To satisfy condition (c¢) it is sufficient to apply the condition for

reflection at the walls

Whence for the symmetric part

sin(y :Z- sin &) = o

x—g-sin6= (n - L)n

or
y sin 8 = -2—(9-:5-—1)-“ n integer 3 1 (20)

and for the antisymmetric part

cos (y %sin ) = O
xo sin ¢ = ______________"(2m = 1)
2 2
or
y sing= {2m = 1)m m integer > 1 (21)

b

(Note: Only positive values of m and n are taken since negative values
lead to negative values of © which are included from equation (18).)

Hence it is seen that for a model moving in a tank of breadth b

1L,



with velocity U the resulting wave pattern is composed of a discrete
set of symmetric and antisymmetric waves given by equations (20), (21)
and (16).

Thus for the whole wave pattern

& = Csymmetric * Cantisymmetric

: 200 - Ly

L [gn cos(wnx) +n, sm(mnx)] cos =

'§2m’~'121ry: (22)

+ L [, cos(rx) +v_ sin(r x)] sin

n=1 b
where ®w_ = vYy_cos 6
n n n
I‘m = Yo cos em
and Y, sin en - 2§n ; 1217

and

m b
Y. = N - S - "'&-[l“f' A+h((2m"l)‘ntﬁ )2]
m 2 2 2 : bg

U cos Gm 2U

and En’ n.s W, v, ere constant coefficients.

2.4 The Wave Resistance From the Wave Pattern

The wave resistance for an oblique wave train as an integral of the

mean wave height squared has been calculated (equation (1k)),

v/2 __
R, = 208(2 - cos?0) f 2 day
-b/2

15.



and the wave pattern is expressed in equation (22).
To arrive at an expression for the wave resistance in terms of the
coefficients in the wave pattern expansion it is convenient to consider

& tank of width b' = 2b and with a centre-line such that y' =y - g'.

=

™~ :

o,

- i

THE SYMMETRIC WAVE PATTERN IN THE DOUBLE TANK

The wave pattern now related to a tank of breadth b' represents the
pattern obtained from two oppositely asymmetric models moving in tanks of
breadth b with one coincident wall, as shown. The resulting wave

pattern will be symmetric.

W(n-1)w(y' + g)

= nzl [gn cos(ynx cos en) +n, 51n(yn X cos en)].cos =
b
o 2(em-1)n(y' + =)
+ Y [u cos(y x cos 6 ) +v sin(y x cos 6 )].sin 2
1 B m m m m m b!
o«
- ]
= ) [g cos(y x cos 6_) + n_ sin(y x cos 6_)]. cos(éig—llﬁx— + (n-1)w)
n=1 B n n n n n b!
v . . 2(2m ~ 1)my!
+ mgl [um cos(me cos em) + v 81n(ym x cos em)]. sin( = ‘
n
+ — —
mn 2)
. . 2(r = L)wy!
= rzl [ar cos(y x cos er) + 8 51n(yrx cos er)] cos o

(23)

16.



where if r is odd o = + even =+
r - 2 2 .
r+ 1 r+1 ‘
B. =+ 5 > odd =
and if r is even o =+ P L even = +
r — 2 2
- v I r
= 4 = = -
Br + > 5 odd =
and
Yy = ———5-——-——
r U2 coszer

£ 1+ /1 + h(g_ﬁ_lz_:_}_M_U_z.)E].
oU° | . b'g

The total wave pattern resistance Rw' will be the sum of the wave

resistances of each of the harmonics of the wave pattern.

i} b1/2
R' = g Z(z—césze) c 2 g
T P ro r r :
~bt/2
Now when r = 1, ;12 = 3(a 2 4 312) since 91 =0
b /2
; 2 2 o 1 .42 2
and so 3pg(2 - cos 91) z,” dy' = iped (al + B ),
“'b'/2 4
2 2 2, 2 2(r-1)my"
and when r 3 1, 7 = %(ar + 8, )cos =
b'/2
2 : 2 2£ - l}ﬂ' ‘
and 3pg(2 - cos er) f %(arz + Brz).cos L = dy' =
172
g 1 20y 2 2
tpgb'(1 - 3 cos Sr)(ar +8,).
Thus
2 2 T 2 2 2
R = gpgbv(al + 8y ) + 2pgb’ rzg (1L -~ 3 cos er)(ar + 8, ).
(2k4)

Now the actusl wave pattern resistance Rw = %Rw'; thus halving equation

(2Lh) and substituting b' = 2b,

17.



R, = 3pgb(a12 + 812) +dod § (1 -3 coszer)(mr2 + Br‘r“.)
, r=2 .
= tpgb{ nzl'(l - 3 coszen).(§n2 + nnz)}
+do (] (1= 3 cos”0y). () + v ®) (25)

m=1
oo

where the notation nZl' = the term.in n = 1 1s doubled.

2.5 Analysis of Measurements

The wave elevation ¢ 1is measured at four positions across the tank
Yis ¥p» ¥3 and ¥y, for K values of x from h to Kh in increments of h, such
that ¥y, =V and Y, = V3 Now considering just one pair of y measure-

ments, y and -y, from equation (22)

() = g )+ 5 ()
and by definition

t (y) = 2(z(y) + tl-y))

g (y) = 3zly) - tl-y)).

Hence the values of Cs and Cab are known at the points (xj, yl)

and (xj, y2) where 1 ¢ j <K and X = j.h. Consider the symmetric

part

o]

= ngl[ £ cos(mnx) +n, sin(wnx)] cos ESE_%ALLEZ (26)

and assume that wave harmonics greater than N have negligible coefficients
(see Appendix 3).
Let s = ;s(xj, y), multiply equation (26) by cos(wrxj) where

1 ¢r g N, and sum over j. Whence

18.



g
z. cos(w x.) _ _ ‘
j=l J r J

Ii 12

"
I o1

{{ £ cos(wnxj)cos(wrxj) +n sin(wnxj)cos(wrxj)]

J=1 n=1
‘ - Dy
.cos-Z(n o L }
¥ 2(n - 1 X
= r nzl{ cos =T . jzl [En%(cos(mn + wr)hj + cos(wn - wr)hJ)

1 . . . _ .
+ nné(SIH(wn + wr)ha + 31n(wn wr)hJ)]}
X 2(r ~ 1)my ‘
: 1 . . .
+ jzl cos = { Eré(cos(Zwrha) + 1) + nr%'SIH(Zmrh?)}

. g s 2(n - 1) [g 1.(cos g(wn + wr)h(K + 1).sin %(wn + wr)hK

. 5 : >
nel b n sin %(wn + wr)h
1 - . 1 .
cos §(wn mr)h(K + 1) sin ;(mn mr)hK
+ sin 3 (w - w_)h
n T
. 1 . 1 \
. %(51n 3 (wn + wrzh(K + 1) sin 3 (wn + wr)hK
n sin 3 (wn + mr)h
. 1 - - 1 —
. sin 3 (wn wr)h(K + 1) sin 3 (wn wr)hK) ]

sin 2 (mn - wr)h

_ cos wh(K + 1) sin w_hK
+ cos ?Ll;..guﬂ (3 + r r”

sin w h
T
sin w h(K + 1) sin w_hK
+n_3. L £ (27)
r sin w_h
r
N th
where the notation r ) = the sum omits the r ~ term.
n=1

Now multiply by sin(mrxj) and sum over Jj,



e~ 3

. 8in X.
L5 (wr J)

J=1
= vy (w.h J).sin(w h 5 + in(w h )sin(w_hj) 2(n-1 Y3
= jél ngi{[gn cos(wyh J).sinlw h 3 +n  sin(w b jsin(e b ],cos ———S~lﬂy
: 2(n ~ 1)ny K 1f..: . . .
=r ] { cos b .+ I [ g d(sin(e + 0 )nj- sin(e - w )hd)

n=1 §=1
- nn%(cos(mn + wr)hj'“ cos(wn - mr)hj)]}

2{r - 1

+ cos B

>{gr% sin(szhj) + %nr(l - cos(2wrhj))}

N s 2(n _blz e %(sin 3 (wn + wr)h(K + 1).sin %(wn + wr)hK
. n

sin %(w +w )h
. n r

sin %(wn - wr)h(K + 1).sin %(wn - wr)hK

N —

sin %(wn _‘wr)h

cos %(wn + wr)h(K + l).sin %(mn + wr)hK

- n.3( p— "
n sin z(wn wr)h

cos %(wn - wr)h(K + 1).sin %(mn - wr)hK

)]

sin %(wn - wr)h

. +1).si
sin wrh(K 1).sin wrhK

b [Eré' sin wrh

cos w h(K + 1).sin w hK
r o

1 —
+ nrz.(K = ob - )] (28)

(Note: the summation relations used above are given in Appendix 1.)

Thus a set of 2N simultaneous equations in £, and n > l¢ ng N
is formed
Ap = g (29)
l¢1 <N

N+ 1g i g 2N.
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Similarly for the antisymmetric pé.rt it is assumed that harmonics

greater than M have negligible coefficients

M \ .
= - . (em - 1)my
L, = mzl [um cos(Pm;) v 81n(rm;)] sin = (30)
ir Cj = t_;n(xj, y) multiply equation (30) by cos(I‘rxj) where 1 ¢ r § M
and sum over Jj. Whence

IX(
. cos(T x.)
j=1 d rJ

K M
= ¥ Y {[u cos(r x.).cos(T x.) +v_ sin(T_x.).cos(T x.)].sin 2(n-1)myy
551 m=1 m ’ m J rJ m m J rJ b

and as sbove

cos 3(r_ + TIB(K + 1).sin 3(I_ + T )bk

o ] ein{Emo 1wy

1
H E-( . Y
= b m sin 2(T_+T )h
. cos %(I‘m - I‘r)h(K + 1).sin %(I‘m - I‘r)hK
- 1 -
sin 5(1‘m I’r)h
. i - 1
, sin %(rm + rr)h(K + 1).8in ;(rm +,Pr)hK

+ vmz.(

L) 1 +
sin z(rm I’r)h

- 1 - v 1 -
. gin ;(rm rr)h(K +.1).31n_§(rm, ,rr)hK )]
sin -
%(rm r_)h

cos T h(K + 1).sin T_hK
+ sin (or - V)my [u Ik + r r )
i b r sin I’rh

sin I‘rh(K + 1).sin .I.'rhK

(31)

,
+ . T
vré sin I‘rh

Now multiply by sin(rrxj) and sum over Jj:
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K
Z T sln(I‘x)
J=1.

Z z {[u COS(P P d)sin(r hJ) + v sin(T hj )s1n(r h s )] 81ni-~"lmx}

j=1 m=1

| sin 3(r_+ T )h(K + 1).sin 3(r + Pr)hK
sin 2(r_ + T )h

r X (2m-—1)1_ry[ 3(

- m=1
_ sin %(rm - rr)h(K + 1).sin %(rm - rr)hK
sin %(rm - rJh
- (cos %(rm + Fr)h(K + 1).sin 3(1‘m +'rr)hK
m- " sin 3(r + Tr )n
m r

cos %(Fm Pr)h(K + 1).sin %(Pm - Fr)hK

sin %(Pm - 1)n

(2r - 12 Y [, 3 sin T h(K + 1).sin T hK
u 2. -

+ sim T
sin rrh

cos T h{K + 1).sin T hK
T r

)] (32)

+ 3(K - -
vrQ(K sin rrh

Thus a set of 2M simultaneous equations in n, and Vs lgmgM

is formed as sbove,

Bp=ga
where P; = oW lgigM
ViM M+1 g1 g2M

It is now necessary to solve these two sets of simultaneous equationms.
In practice if y, eand y, are suitably chosen (see section 3.3) it is

possible, for each equation, to select a value of y which will maximise

- 1)ny .| - 1)y . .
the factor cos 2(r 5 ) or Ssin er bl and hence the coefficients
of Er’ N W and v, in the rﬁh equations respectively.

Thus matrices A and B are formed with strong diagonal elements

22.



suitable for the application of the Gauss-Seidel method of solving
simultaneous equations (see ref. 11 and Appendix 2).
The computer program written for the above analysis of results

discussed in Appendix k.
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3. APPARATUS

3.1 The Towing Tank

The Southampton University towing tank was used for all experimental
work carried out. The tank has a breadth b of 2.45m and depth e of
1.22m and the length over which‘the towed model movés at the constant set
velocity is 14.2m. Since the working length of the tank is so small it
was necessary to position the wave probes carefully so as to optimise the

length of the recorded wave trace.

wave probes

tank 19
S 8 wall ) >§F

LONGITUDINAL WAVE PROBE POSITIONS

Suppose the model moves with cénstant velocity U between A and B,
and the wave pattern as a whole also moves with the model at wvelocity U.
—However, since the group veldcity of a set of waves with individual
velocities U is 3U (ref. 10) the end of the wave pattern will move with
velocity 3U. Hence, if time t =0 wﬁen the model is at A, the end of
the wave pattern will reach the probes at time t = 2(13 - 61)/U.

Also the time at which the waves due to deceleration reach the probe
from B is

. - 2(22 - 62) . L
U

al

2k,



Now for optimum positioning of the probes these two events will be

concurrent; hence

2(13 - sl) = 2(sa2 - 52) + oy
or hzz = 2 - 26, + 28,
and if 61 = 62
then L, = %zl

and the time at the end of the maximum length trace recordable is

3 -
B e M- LA W1
[§) 2 U
23 21
If recording is started when the model passes the probes at time —5'= 2 T

then the length of the trace will be

N jw

©

|
i
o

1}
i
©

Now substituting in dimensions of the tank it is found that

22 = 3.55m

and the length of trace = 10m.

3.2 The Wave Probes

Four capacitance wave probes were used for measuring the wave elevation.
This is an established method of measurement and is well developed within the
Ship Division at H.P.L. Each probe consists of a polyurethane coated wire
strung vertically through the water surface. By the use of four 'grey
boxes' the capacitance between the wire and the water, using the polyure-
thane as dielectric, can be made proportional to the.wave elevation about -
the wire, and hence, with further electroniecs, outputs can be obtained
whose voltage is proportional to the wave elevation at the wire and thus
suitable for recording. Details of the probe design and electronics are

given in Appendix 5.
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3.3 Lateral Spacing of Wave Probes

As mentioned sbove in section 2.5 it is necessary to position the
wave probes laterally across the tank so that a probe may be chosen whose
value of y 1s such that for each harmonic in the symmetric case the term
cos gig*:gilm[ # 0 and for each harmonic in the antisymmetric case
sin ng_lgllmi # 0. In practice it is desirable that the probes are
positioned such that the least possible values of the sine and cosine are
reasonably large and the aim of the following is to establish positions
where this is the case.

Considering first the symmetric case:

if cos 212_%_;112, #0 V n>0

a sufficient condition for this is that 2&2;%;llﬂl. is not an integral value
of ¢ whence gi&—:glllx' = my + §-n (say)
such that
T, TS T,
where r

O 1 . )
- <z and m, r, s are integers,

and
ms +

- r
b 2s(n - 1)°

Now if for each n 3 m and r such that

<

m.s +r =k.(n - 1) for some k

\

. then

.

Y. k_
b 2s

Hence, it is sufficient to show that ms + r can generate all integers, or

that

eeo(m=-1)s + rs mS - T, ... WS; ms+1...ms+T ...
generates all integers,
which is true if (m - 1)s + ro+tlzms - rg

. or 8 ¢<2r + 1,
s o)
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but an initial condition is — < 3
whence s = 2ro + 1.
Thus, s is odd and k is any integer.

In the antisymmetric case, following a similar argument:

sipt -y L4y g

b
then
(2n = 1)yy I T
= + + =
b mr T, T
such that -“r g rgr
o) o)
where ro 1
=<3

w

and m, r, s are integer
is a sufficient conditioen.
Therefore,

Yy _(om+1)s + 2r
b (on-1).2s °

Now if s 1is odd, then (2m + 1)s + 2r can generate all odd integers if
(2m - 1)s + er_+ 23 (2m + 1)s - 2r

or 2r + 1 3 s
o)
but ro/s < 3
Therefore,

s = 2ro + 1 as before.
Hence m and r can be chosen such that
(2m + 1)s + 2r = k(2n - 1) V n

where k 1s odd.

So for optimum positioning of the probes

% = £ where k is odd (33)
2s
r grgr as above
o o

. and s = 2r + 1.
e}
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Now clearly %’< 3 for the probes to be within the tank. Also it

is necessary to mount the probes sufficiently far away from the tank centre-

line and walls to avoid interference from the model and wake and wall effects.

If r, = l, s 3, then %'= %‘ which is too close to the centre-line.

= = x:-l‘-__.?l_ X.=_3_.. 3 Y
If T 2, 8 5, then b 10° 10 and b 10 1s a swmtable

position, giving cosine and sine values of + 1, + 0.81 and + 0.31.
If r, = 3, 8 =T, then %-= %E' is suitsble, giving cosine and sine
values of + 1, + 0.9, + 0.62 and + 0.22.

Hence, 1f the probes are positioned at

L = 4 1 and + 2

b = 10 = 1k
the minimum possible cosine and sine value will be 0.31 if the probe giving
the maximum value is chosen, and in general it will be larger than this.
In the analysis program the trace with the maximum value of the sine or
cosine is chosen for each individual harmonic, on the assumption that the
larger the diagonal elements in the matrix of equation (29), the less

sensitive the analysis is to noise.

3.4 The Model

Much towing tank work has been carried out on the 5.5 metre yacht
'Antiope' and also on the full scale yacht in order to obtain some corre-
lation between various towing tank results (kef. k).

For this reason and because»of the availability of the model, a one-
sixth scale fibreglass model of 'Antiope' was used for all wave pattern
measurements. In accordance with other tests the model was given a fixed
stétic trim and allowed to -trim freely when being towed. Turbulence studs
‘were fitted at approximately 1/5 waterline length and on the leading edge of
the keel. The model displacement was 11.85 kg and L.W.L. = 1.15m. In order
vto be within the wave making speed range the model was towed in various
aspects at speeds ffom 0.92 m/s to 1.48 m/s which correspond to full scale

speeds of L.l knots and 7 knots.
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k.,  EXPERIMENTAL PROCEDURE

In order to obtain data of the wave pattern suitable for the above
analysis it is necessary to fecord the output from the wave probes (i.e.,
the wave elevations) as the model and wave pattern pass the probes. The
resulting four traces must then be digitised and punched on to paper tape
in a mode suitable for acceptance by the analysis program. Initially the
wave pattern was recorded on magnetic tape and then digitised on an
analogue computer. This method was found very unsatisfactory for this
particular work so it was abandoned in favour of s more manual digitisation
process.

The outputs from the four probes were recorded simultaneously on a
u/v recorder and the resulting wave traces were digitised by hand, using a
trace reader which was able to punch the data obtained directly on to
paper tape. A trigger which put a pulse on to the wave trace as the model
centré passed the probes was incorporated for reference purposes. Digitisa-
‘tion started at one model's length aft of the model in order to be beyond
the bow waves and clear of the local wave disturbances around the model,
so the maximum lengthjof usable trace was 8.2m. Due to zero shifting and
changes in wave magnitude with speed, it was necessary to calibrate the

wvave probes before every other run. However, since the probes are linear

~
L3

it was sufficient.for calibration of the trace reader to record only two
positions; mean zero and a wave elevation of 2.54 cm, which was convenient
due to the wave probe éonstruction. The four wave traces were sampled
simultaneously every .tenth of a second in real time, the reason for this
being éiven in Appendix 6.

Although this method is found to be much more reliable in digitising

the actual part of the wave pattern required, it is a time consuming method
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of obtaining results since one run in the tank takes up to half an hour,
due to settling time, and one wave trace also takes about half an hour
_to digitise. It is therefore recommended that if this method of wave
pattern analysis is to be pursued, a digital voltmeter or analogue computer‘
is connected direct to the wave probe amplifier which could then produce

digitised wave traces immediately, ready for analysis.



5. PRESENTATION OF RESULTS

The results are presented in three main sections:

5.1 Results Concerning the Credibility of the Analysis Method, Figs. 1 to 12

Included in this section is a table of the quality of fit parameter A
at the various speeds and aspects tested (Fig. 1). The quality of fit is

defined for the symmetric component of the wave pattern

r.m.s. of symmetric residuals on trace sat ¥y

- 1
A 3( r.m.s. of symmetric wave heights Cs(yl)

r.m.s. of symmetric residuals on trace at Y,

r.m.s. of symmetric wave heights ;S(yz) )

where at the point (x, y)
the residual = (measured wave height — estimated wave height)
and similarly for the quality of fit of the antisymmetric component.
Figures 5 to 8 are the wave spectra results of tests carried out with
changed wave probe positions and are included with the original results for
comparison. In these plots thé wave resistance is plotted against the wave
harmonic number rather than the harﬁénic angle, for clarity in establishing
harmonics with 'spikes!. As in all blots of wave resistance spectra the
resistance due to each wave harmonic GRW is non-dimensionalised by
dividing by the total fesistance of the component of which it is'a part.
Hence for symmetric wave resistance spectra it is GRW/Rws gnd anti~
symmetric spectra GRW/Rwa. This is done so that the relative concentration

of energy within spectra at different speeds can be compared more easily.
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5.2 Symmetric and Antisymmetric Wave Resistance Spectra, Figs. 13 to 30

In the plots of wave resistance spectra, symmetric and antisymmetric,
the non-dimensional wave harmonic resistance GRW/Rw as above is plotted
against wave angle 8.

It should be noted that the spectra are composed of discrete points
which are not part of a continuous spectrum of wave energy. The lines
joining these points are only drawn for reasons of clarity and are not

supposed to represent any form of continuous spectrum.

5.3 The Wave Resistance as a Whole, Figs. 31 to L2

In the plots of wave resistance components and total wave resistance
against aspect for the speeds tested (Figs. 31 to 39) the actual calculated
values of wave resistance in newtons are ﬁlotted rather than any with the
correction to the antisymmetric resistance suggested in section 6.3.

The coefficients of resistance in Figs. 41 and 42 are derived using
the underwater side profile area of the model when static as the area

factor.
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6. DISCUSSION

6.1 The Method of Analysis

The method of wave pattern amalysis used in this work is basically a
refinement of the method originally used by Wynne (ref. 1) in his work on
the wave pattern of a symmetrically towed yacht model,( Wynne used the
Fourier integral rather than the Fourier summation to estsblish simult-—

aneous equations for the coefficients in the wave pattern expansion
Ap = g see equation (29)

He then assumed the off diagonal elements to be small and obtained

the solution for p by the equations

p; = qi/Aii l1sizgen

In the present work, as is shown in Chapter 2, a more accurate solution
is sought by solving the simultaneous equations as a whole using the Gauss-—
Seidel method.

The problems in solution which are immediately encountered and which
are the only apparently significant problems in this analysis, are the
magnitudes of the diagonal elements of the matrix, and their size relative
to the off diagonal elements. For convergence, when using the Gauss~
Seidel method of solution, it is necessary that the on diagonal elements
-are large compared with the off diagonal elements (ref. 11) and also it
is desirable that the sum of the moduli of the off diagonal elements in
any row is less than that diagonal elemént, although this condition is not
strictly necessary. It is possible to increase their relative size by
increasing the iength of the wave trace used or by varyingvtheysampling
rate. However, as shown in section 3.1, the length of the wave trace is at
a max%mum for the taﬁk used and the sampling’rate of 10 samples per second

is about optimum from the arguments put forward in Appendix 6.

)
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During early experiments this problem became acute due to the large
number of wave harmonics being analysed (35 in each component in the first
instance) thus causing the sum of the moduli of the off diagonal elements
to be large. However, from study of wave resistance spectra and harmonic
wave angles an empirical formula for the maximum wave harmonic number

significant in the symmetric component was obtained

N = bg(l1.39 - 0.595U) + 1 (34)
(Appendix 3)

which reduced considerably the number of wave harmonics being analysed and
thus increased the chance of convergence in the Gauss-Seidel solution.

This was also taken as the maximum wave number necessary for the anti-
symmetric case, since it seems unlikely that the maximum wave angle appear-—
ing in the antisymmetric spectra should be any different from that in the
symmetric spectra.

The problem of the relative magnitudes of the diagonal elements appears
to be more seriqus, although theoreticélly the varying magnitudes should have
no effect upon the solution. Upon studying the wave resistance spectra
over the whole' range of speeds it seeﬁed an odd coincidence that peaks, often
representing more than half the total wave resistance, should occur always
at the same harmonic number. These 'spikes' are particularly noticesble
in the antisymmetric component of resistance. If now the plots of the mag-
nitude ofvthe diagonal elements in the symmetric and antisymmetric matrices
(Fig. 3) are compared with the wave spectra, then it is seen that almost
invariably wheré there occurs a small diagonal element then there also occurs
a corresponding 'spike' in the wave spectrum.

Now the magnitude§ of the diagonal elements are determined by the
positions of the wave probes (see section 3.3) so it was therefore decided
to conduct ;n experiment with one of the pairs of wave prébes in a different
lateral: position. Appéaling to eduation (33) and putting r, = 4  the

§

following positions for the probes were obtained

¥
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r.., 3
v - X710

and + I%

and the magnitudes of thebdiagonal elements of the resulting matrices are
shown in Fig. 4. There are of course still low diagonal elements but
since these now-occur on other harmonic numbers it is possible to establish
whether the 'spikes' are a genuine feature of the spectra or just a conse—

. quence of the low diagonals. The results of this experiment are discussed

in section 6.3.

As mentioned above the analysis used is a refinement upon the method
used by Wynne and by comparison with results obtained using Wynne's method
on the same wave trace data, it does produce a better fit. However, a
further refinement was considered.

Since for each wave harmonic only one of the two wave traces is used
to derive the corresponding equations in equation (29) depending on the
maximum cosine or sine function with y, it was thought that a method of
least squares fit covering all the sampled points might produce a better
result. The method already used is in fact a least squares fit for each
harmonic on the appropriate wave trace. However when the matrix of the set
of simultaneous equations derived from a least squares fit over all the
points was calculated, it was found that instead of evening out the relative
magnitudes of the diagonal éiements and iﬁcreasing their magnitude relative
to the off diagonal elements, the very opposite occurred and diagonal ele— ’
ments that were originally large became even larger in comparisoh with the
- smaller elements since they were effectively squared, while off diagonal
elements were all increased by a factor of an on diagonal element, thus
magnifying the wéaknesses of the original matrices in this new one.

This method was therefore sbandoned in favour of the original which,
although not entirely satisfactory, particularly in the antisymmetric case,

appears to be the best method of analysis for the data collected.

¥
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6.2 Theoretical Tests

During the development of the computer program used in the wave pattern
analysis a few theoretical wave patterns, obtained from a source distribution,
were analysed. The relations between the source strengths and distribution,
wave elevation and the Fourier coefficients for the wave pattern expansion
used in this work are those derived by Hogben (ref. 5).

Although the wave patterns and resistance spectra so obtained bore
little resemblance to those measured in the tank, the theoretical wave traces
were analysed by program to a very good degree of comparison with the
original. A certain disparity did still occur at one of the low diagonal
wave harmonics. It is thought that the reason for the good resolution of
the theoretical pattern is due to the much higher degree of accuracy in the
theoretical wave trace data, calculated by computer, tpan in the data obtained
from the tank. This data is subject to considerable noise and error in
the method of digitisation which only gives three significant figures in the
range approximately + 3.00 anyway.

Following this train of thought and considering the method of analysis,
noise on the wave tracé data will have an equal effect upon all the components
in the vector g of equation (29). Hence the effect of noise upon the
coefficients with small diagonal elements will, in the solution, be greater

than on those with large diagonals.

6.3 Quality of Results

The wave resistance of the model of 'Antiope' was measured at nine
speeds in the range 0.92 m/s to 1.48 m/s, corresponding Froude numbers being
0.27 to 0.4k, upright at zero yaw and at lO? heel to starboard with yaw
angles 20, ho, 6° ana 8°. Apart from th; tests with the different wave probe
positions, three non?consecutive runs were made at each speed fbf every

aspect apart from the 8° yaw, when only one run was made. A few runs have
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been omitted from the results due to inaccuracies in the analysis caused
by faulty wave trace data.

It is seen from the plots of wave resistance against aspect (Figs. 31
to 39) that a fairly good degree of repeatability is obtained, particularly
in the upright case where the average scatter is about 6% of total wave
resistance. As might be expected from the analysis problems, discussed in
ﬁhe previous sections, the repeatability of the antisymmetric wave pattern
component is on average not as good, although in some cases it is found to
be very good. A measure Qf the noise on the wave trace data can be found
in the component of antisymmetric wave resistance computed for the upright
case. In all cases this is less than the scatter of the corresponding sym-—
metric resistance and in most cases it is less than ﬁhe scatter in the anti-
symmetric resistance at yaw, which might imply that some of the scatter is
due to conditions of testing not being repeated sufficiently accurately.

Except where spurious peaks occurred in the wave resistance spectra
causing the magnitude at that wave harmonic to vary considerably, thus
contributing to the larger scatter encountered in the asymmetric case, the
repeatability in the general shape of the spectra was found to be good,
the scatter being on average 6% of harmonic resistance in the symmetric
spectra dnd 15% in the antisymmetric case. For this reason the results
obtained from only one run are plotted in Figs. 13 to 30.

Again a good indication of accurécy, particularly of the syﬁmetric wave
resistance spectra, is given by the resuits of the tests, mentioned in
section 6.1, which were carried out with the wave probes in a different
lateral position, in order to establish the credibility of the results firs£
obtained. Two speeds Fr = 0.315 and 0.38 were chosen for test since their
original wave spectra were fairly typical of the general pattern. The
results are shown in Pigs. 5 to 8. '

The similarity between the symmetrical component wave spectra is most
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encouraging although a slight disparity is discernible at the 10 h and 12

harmonics in the higher speed, while there is rather less overall agreement
at the lower speed. This would tend to'prove the reliability of these
spectra, a fact which is borne out by the quality of fit A, in these cases
good, as it is in all symmetric cases, and the plots of the traces as
meagured and as fitted, Figs. 9 and 10.

In the antisymmetric case the situation changes. The 'spikes' which
were so prevalent on the 2nd and 9th harmonies, particularly at the lower
speed, completely give way to a peak on the Tth harmonics corresponding to
the first very low diagonal element in the corresponding matrix, and not
surprisingly the remaining harmonics are dissimilar because of the non-—
independent method of analysis. It is not surprising then to find that the

quality of fit A is not good in these cases.

An indication of the meaning qf the quality of fit A can be found in
the plots‘of the wave traces as messured and as fitted given in Figs. 9 to 12.

The fairiy good fit that is found with the symmetric wave patterns is
immediately clear‘from the two examples illustrated here. However, the
two examples of’aéymmetric wéve patterns have, as previouély discussed, a
‘poorer quality of fit, the antisymmeﬁric part of the trace at ¥y for the
lower speed béaring little resemblance to the original at all.

The regéon for a considerable difference in fit between one trace and
the other, which happens in several instances with the antisymmetric compo-
nent, although not in the case of the higher speed illustrated here, is not
clear. In spite of the selection in the analysisyof traces depending upon
values of’thé sine and cosine with &, there is an equal overall distiibution,
among the wave harmonics, 6f the\traces used in the analysis, so no weighting
should occur. However, in the first ten harmonics of the antisymmetric:

component, where the magnitudes of the harmonics are likely to be greatest,
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seven use the trace at Yo» which is closer to the centre line, and
although this weighting is evened out in later harmonics, it is thought
that this probably contributes to the better fit on the trace at Yp- In
the symmetric case the weighting over tﬂe first ten harmonics is six to
four in favour of the trace at ¥y but the fits at Yy and y, are both
still good in spite of this. Because of the trace selection dependent upon
the sine and cosine values, the bad 'spikes' always occur on the trace at Yo
which in the asymmetric case illustrated in fact has a better estimated fit
than the other trace although the harmonics with spurious pesks have more
influence on this trace.
A table of the quality of fit A for all runs tested is given in

Fig. 1. From this it is seen that the quality of fit for the symmetric wave
pattern produced by the upright model improves with increasing speed to
around 0.2 for the four highest speeds. It is thought that this may be
due to the signal on the wave trace being amplified to a maximum at these
speeds and thus reducing the effect of noise, while at lower speeds the
recorded wave trace cannot be amplified to give a maximum recordable signal
because of the need for calibration in the trace. For this reason a change
in the calibration is recommended in Appendix 5. Although not as good as
the quality of fit obtained by Hogben in his results of symmetrically
towed models (ref. 6) where ‘A is in the range 0.15 to 0.2, the quality of
fit in the upright case is considered sétisfactory for reliance upon the
accuracy of results.

| In the asymmetric results, the quality of fit of the symmetric componenf :
is seen to be similar in most cases to that of the corresponding upright case
except there is a slight increase in A with increasing asymmetry and at the
lower speeds the quality of fit is not good at the higher yaw angles. The
quality of fit of the antisymmetric compénent of the wave pattern does not

show such a good degree of accuracy as the symmetric component, which is
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expected from earlier discussion. Since the author is unaware of any
other results published on asymmetric wave patterns it is not possible to
cite a suitable comparison of fit.

It has been suggested by the author that by halving the wave amplitﬁde
of the harmonics which cause the spurious peaks (i.e. the 2nd and 9th anti-
symmetric harmonics) and thus quartering their contribution to the wave
resistance spectra, their magnitude will in general be brought more into
iine with adjscent harmoniecs. This has'been tried on the runs at 10° heel
and L4° yaw. It was found, in general, that the fit on the trace at yl, the
trace with less weighting from these elements, improved slightly, while that
at Yo worsened, giving a net qualitylof fit A equal to the previous
value, but improving slightly the balance between ¥y and Yo- The wave

resistance was, of course, reduced significantly.

It is clear from the above that the analysis given here of the anti-
symmetriec component of wave resistance in an asymmetric wave pattern is not
satisfactory. However, since the fitted wave pattern produced wﬁen the
'spikes' in the wave resistance spectra are reduced, is not greatly altered
" and its general amplitude is as near as with the 'spikes' to that of the
original traceé, it is felt that the antisymmetric wave pattern resistance
so obtained will be a close approximation to the actual value and the best

estimation obtainable froﬁ the data available.

*

6.4 The Symmetric Wave Pattern Resistance

.Plots of the ya&e resistance spectra against wave angle obtained from
the symmetric wave patterns produced by the model being towéd upright are
included in Figs. 13 to 21. |

The theoretical prediction for the wave resistance spéctrum from a

-



source/sink pair, a very crude approximastion to a towed model, indicates
a series of 'humps' decaying in magnitude with increasing wave angle 6.
The rate of decay and the relative magnitude at 6 = O increase with
increasing Froude number.

Both these phenomena can be seen in the plotted spectra. ?he peaks
which occur on the lOth harmonic, due to small diagonal elements in the
matrix, and particularly noticeable at the two lower speeds, can,vas previous-
1y suggested, probably be ignored. However, the remaining peaks which in
general comprise more than one wave harmonic can be assumed genuine. At
the lower speeds the bulk of the energy in the wave pattern lies in.the
diverging system of waves which comprises wave harmonics of angle 6 > 35O
(section 1 and ref5_3). At the higher speeds most of the wave energy lies
within the transverse system of waves, those harmonics with angle 6 < 350.
It cannot be determined from the present results but it seems likely that at
these higher speeds the second and third harmonics comprise the second 'hump'

in the wave resistance spectra rather than being part of the first. It is

]

also seen that'at the Froude numbers 0.36 and 0.38 corresponding to v//L

]

1.2 and 1.27 most of the wave pattern energy is in the first harmonic (0

0°)

All these trends are apparent from visual observations of the wave
patterns actuall& produced in the towing tank.

In Fig.gho the total measured resistance R, of "Antiope' being towed
upright is plotted with the symmetric wave pattern resistance Rw against
speed U. Inéluded in this figure are the resulting viscous resistance

Rv = RT - Rw and for comparison the viscous resistance estimated from the

121%™ I.7.7.¢. standard formula

R
_ £ 3 0.075
Ce = 30AUZ . - R (35)

e 2
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where Reynold's number Re = E%z
In order to obtain the length factor £ in Reynold's number the

effective waterline length was taken as 3/5 of L.W.L.

Thus £ = 2.1.15 = 0.69m
5
. .. . _ -6 2
kinematic viscosity v = 1.14 x 10 /s

and wetted surface area A = 0.42 m?.

Whence the skin friction

15.9 x U (36)
(loglOU x 6.Q5 x 103)2
Now the total viscous resistance Rv_ is estimated at 120% of Rf, since
it then produces 'a close approximation to total resistance at lower Froude

number. Thus the estimated viscous resistance plotted is '

R, =1.2R,. (37)

The increasing discrepancy with speed between the estimated and
measured viscous resistance which is almost negligible at the lowest plotted
speed is probably attributable to non-linear effects such as wave breaklng,
which becomes apparent at higher speeds, boundazy layer separation,
varigtions in the wetted surface area of the hull and variations in trim.
However, in general the agreement is considered good and thus provides more

proof of the accuracy of the symmetric wave pattern resistance.

_6.5 The Asymmetric Wave Pattern Resistance

Asymmetry in the wave pattern behind the yawed and heeled model is
clearly éeenion the wave traces obtained and in the tank itself. However,
as previoﬁsly discussed, the antisymmetric wave resistance spectra are not
good>and 80 no general trends or features can”really be seen. The spectrs
from the symmetric components of resistance are very similar to those ob-
tained-in the equivalent upright case ahd the trends and features discussed

earlier are found again here.
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Following the suggestion put forward in section 6.3 above, to reduce
the 'spikes' in the resistance spectra to a magnitude equivalent to
surrounding harmonics, it is found generally that the antisymmetric resis-—
tancg is reduced by one third. From consideratioq of plots of resistance
against aspect, Figs. 31 to 39, where the plotted points are those originally
calculated, it is seen that the antisymmetric wave resistance at 1° yaw
comprises between 8% and 50% of total wave resistance. Thus a third of the
antigymmetric resistance is Jjust above the order of the scatter found in
the total wave resistance and so is not really as dramatic a reduction as
it first appears. However, the effect on the total wave resistance is
enough to reduce the previously calculated increase with yaw. It therefore
appears that the total wave pattern resistance of the model only increases
slightly with yaw, by about 5% at 4° yaw for some speeds, while at others
there is no increase with yaw. |

‘However, frop observations of the towed model it is seen that the
wave-breaking at the bow increases with yaw and is apparent at all speeds.
This of course dissipates wave energy into the wake and would appear in the
.total viscous resistance obtained from a wake survey. Thus it seems likely
then that the actual wave masking of the model increaseé faster‘with yaw
than is measured from the wave pattern. From resistance measurements it
1s found that the total resistance RT increases much faster with &aw than
the wave resistanée,»by about 15% at 4° yaw, as is to be expected from the

production of sideforce creating an inherent induced resistance RI.

6.6 Comparison with Wind Tunnel Results

A comparison between wind tunnel results obtained by Maclaverty (ref. 8)
from a double model of a 5.5 metre yacﬁt at 10O héel and,vérioué dégréés'of
yaw and corresponding results in the towing taﬁg has been made by Milward
(ref. 9). From Milward's plofs of 1ift coefficient‘againsf yaw and drag

coefficient against 1ift coefficient squared, values for the drag coefficient

b
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in the tank minus the drag coefficient in the wind tunnel C ~-C

D D

tank tunnel
have been calculated for varying degrees of yaw and two Froude numbers
corresponding to two used in this present work. The results are plotted

with the coefficient of wave resistance,
R

= v
R, %pUZS

plan area, in Figs. 41 and k2.

C where S is underwater

It should be noted that the points corresponding to 10° heel and 0°
yaw in Milward's results have been made coincident with those of the wave
resistance from the upright model in this present work, 0° heel and 0° yaw.
Also, Milward points out that the tank and tunnel results were at different
Reynold's numbers and when an estimated correction is made for this, the

increase in C -C with yaw is slightly diminished. Points rep-
D D
tank tunnel

résenting the total wave resistance originally calculated are plotted
together with a line representing thé wave resistance independent of yaw
as suggested by some cases above.

No reliable quantitative information can be gleaned from this compari-
son since Milward's results were from a different model, although of the
same class, and as stated above, he was using different Reynold's numbers.
The phenomenon of the tank resistance increasing more rapidly than the
tunnel resistance with increasing yaw has been noted before and attributed
to increasing wave pattern resistance. Now if the wave pattern resistance
does not inc?ease then the increase must be in the total viscous resistanace
and the resistance due to trailing vortices. As mentioned previously, the
wave breaking is seen to igcrease with yaw and this will of course increasé
the apparent viscous resistanée. Other variations in wviscous resistance and
induced resistance are not possible to ascertain without measurements made
 within the wake. |

In conclusion it can be said that if the wave pattern resistance does

L.



increase with yaw, although in some cases it appears that it may not, the
greater increase with yaw of resistance in the tank from that in the tunnel

cannot be attributed entirely to increased wave pattern resistance.
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T. CONCLUDING REMARKS

1. It has been shown in this work that the total wave pattern resistance
of an asymmetric hull form can be considered as the sum of the resistance

due to the symmetric and antisymmetric parts of the wave pattern

R = R _+R .
w ws wa

2. Experimental results for the symmetric wave pattern from the upright
non-yawed hull and the symmetric part of the asymmetric wave pattern are

good, the percentage error being about 6% of total wave resistance.

3. The results for the antisymmetric part of the wave pattern are not so
successful, there being certain wave harmonics which cause spurious peaks in
the wave resistance spectra. An estimate of the antisymmetric resistance is

given, but this is clearly unsatisfactory as a general technique.

L. There is, in some cases, a slight increase in the wave resistance with
yaw, but it is not enough to account for the greater increase with yaw in
total resistance in the towing tank over that in the wind tunnel which must
therefore be accounted for by an increase in the viscous resistance or

induced resistance.

5. Tt is recommended that, for any further work on this subject, an
investigation is made into the analysis of the antisymmetric component of
the wave pattern with the first object being the elimination of the spurious

peaks in the wave resistance spectra.

6. In order to develop a simple, routine, wave resistance measuring tech;
gique it will be nedessary to incorporate a digital voltmeter or an on-line
analogue computer in the system that can produce, through a tape punch,
records  of the wave trace dlrectly on paper tape ready for analy51s. Alter—

nstively, the ultimate system would connect the wave probe outputs directly,

L6.



through an on-line consul to the computer which could then analyse data
as it is produced and wave resistance data could be made immediately

available with each run in the tank.
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APPENDIX 1: The Relations Used in Deriving Equations (23), (24),.(27)
and (28) in Section 2.5

X K iaj -iaj
Z cos aj = Z 1(e?d 4+ 13y
J= J=
) 1(elaK -1 . e-laK -1,
1- e—ia 1-e'? l
K r K _ 1
(from the geometric progression I r J = —=)
Jj=1 l1-r
- - - -h _. + _‘
= 1(e1aK -1 - ela(K +1) + ot ik g e.la(K. 1) + o iey

(1- e 28y(1 - &1®)

_cos ak + cos a —cos a(K + 1) - 1
2(1 - cos a)

cos 3 a(K + 1).sin 3ak
sin 2a

and
S K, iej - -iaj
J sinaj = ) 3(e*? - )
J= J=1
- %(Eiff;:mi _ o )
1-e 1t
_ 1elaK .1 ela(K + 1) + oie _ ek o e“la(K+l) - o te

(1 - 38 (1 - 12

sin ak + sin a — sin a (K + 1)
2(1 - cos a)

sin 3a(K + 1).sin 3ak
. sin la
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To solve the simultaneous equations given by

Ax=g where A is the n x n matrix
%1 #12 e %n
g1 22
%1 ahn
and 8 #0 1<isgn
assume an initial solution (xl(l) ves xn(l)) and derive a second approxi-

mation for X

Xl(2) (1) X (1)

oy = (agpxy ™7+ e A%y )] /214

and for x2

(2 (2 1 1
*2 ). [e, - (2% )+ 3‘23"3( SR aZan( ))]/aze

|

and so on for all n elements to obtain the second approximation

(2) (2)
(xl X ).

« s o0

Tterations continue until sufficient convergence is attained, the

general term for the rth element in the ith approximation being

1) r . L () (i) (i-1)
*r .- [qr (arlxl T ar,r--lxr—l + ar,r+lxr+l ot

ST X (i~1))]/a

-

A sufficient but not necessary condition for convergence is

n
> i#r izl [ar,i! vV r

lay]

i.e., that the matrix A is strongly diagonal.
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APPENDIX 3: Defining the Optimum Number of Wave Harmonics N

From plots of results obtained in early experiments using 35 sym-—
metric harmonics it was found that above a certain harmonic number at each
 speed the value of the right hand side of the equations in (29) became
very small relative to the corresponding diagonal element of the matrix.
These harmonic numbers are plotted in Fig. 2 and are considered the maximum

necessary for analysis and a formula for them is derived as follows:

Suppose N =c¢ - dUu + 1 . where ¢ and d are constants for a given

tank width b.

Now it is required that
¢ N max

and 8 = £(U, b) .
max

Also,

2 cos®8 = 1 + /1 + u(%ﬁ"—‘f—)?

or

@
"

2
cos T/ {3[1 + A n(-gi%—fg——uﬂ—)‘a 13

cos 1/ {3 El +/{'+ h(Q(C _b:U)“UZ)Z ]}

Now the maximum wave angle in any wave pattern can only be a fumction of
velocity U and therefore independent of b and g.
Therefore. ¢ - dU = bg(C - DU)

where C aidd D are constants

h = & =4
and €= i, D=35g -
From Fig; 2 where the maximum wave harmonic numbers derived from

early tests are plotted against U, it is found that when

9.81 m/s2

b

2.45m and g

14.3;

c=341% and 4
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3

1.39, D = 0.595.

Therefore, C
Hence,

N = bg(1l.39 - 0.595U) + 1.

Since this relation was derived from information in the Froude
number range 0.27 to O0.4hk, it should not be expected necessarily to apply
to situations outside this range. However, it does apply to tanks of

different breadth b when used in this speed range.
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APPENDIX 4: The Computer Program

The program used for the analysis of the wave trace is written in
Fortran. A complete listing of the program is not given since the funda-
mental parts are simply a translation of the wave pattern analysis given
in the text.

Apart from the wave trace data which is on paper tape, all data is
input on cards. This comprises the basic statistics of the model and
tank required in the analysis, the number of runs to be analysed and the
velocity, sampling rate and aspect related to each run. All other variables
are then derived within the program, including the values of y at the
wave probes since it was found that the accuracy of y mneeds to be higher
in the analysis than that measureable in the tank. Having found the
symmetric and antisymmetric wave heights, the simultaneous equations for
the symmetric part (equation 29) are then calculated from the reiations in
equations (27) and (28). A subroutine is used to solve these equations

by the Gauss Seidel method and is listed.

SUBROUTINE GAUSS(A,Q,N,P)
DIMENSION A(70,70),Q(N),P(N)
AC=0.005

1J=0

DO 10 I=1,N

IF(Q(1) ,NE,0,0)IT=1
P(1)=q(1)/A(1,1)
IF(1J,EQ,0)GO TO 1T

JJ=0

(cont/d...)
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11 J=0

JI=Jd+1

DO 15 K=1,N

B=0,0

DO 12 L=1,N

1F(L,EQ,K) GO TO 12

B=B+A(K,L)*P(L)

12 CONTINUE

s=(Q(x)-B) /A(K,K)
1k TF(ARS((S-P(K))/(ABS(S)+ABS(P(K)))),GT,AC ) J=1 #J
15 'P(K)=S

IF(JJ,EQ,25)G0 TO 16

IF(J,GE,1) GO TO 11
25 FORMAT(/10X,1k,11H ITERATIONS, 16,17TH ‘WITH LARGE ERROR)

16 WRITE(3,25)JJ,J
17 CONTINUE
RETURN
~ END

Iterations continue until the change from one approximation to the
next is less than 0.5% on all elements of the umknown vector. There is an
upper limit of 25 iterations in case of a diverging iteration process, and
also the number of iterations together with the number of non-convergent
elements if any is priﬂted out.

The antisymmetric part of the wave pattern is then calculated in a
similar way using equations (31) and (32). The wave pattern as fitted is
calculated simply now, knowing the coefficients in its Foﬁrier expansicn,
whence the symmetric and antisymmetric residualé at the points measured
are found and printed out with the measured wave heightg. The resistance

due to each wave harmonic and thus the total resistance is calculated from

-

N\
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the relations in equation (29).

Apart from the symmetric, antisymmetric and total wave resistances,
the final print out for each run lists for each wave harmonic, symmetric
and antisymmetric, vy, 0, 6Rw, £, n (or p and v) and 6Rw/Rw. Also
printed are the r.m.s. residuais and\wave heights on trace and the number

of samples used so that any error in the input of the paper tape data can

be noted.
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\Input data from cards]

[Calculate probe pos it:ion;]

1

‘|Determine run to be analysed}-

[Calculate run constants| -

[Calculate symmetric and antisymmetric variable;l
¥ -
[Input data from paper tape |

E)alculate symmetric and antisymmetric wave elevation;]

LR = R+ 1
Y
Select probe to maximise cos Z(R;Dﬂ

L}

Ealculate Rth and (R + N)th rows of matrix A for symmetric analysis]'

Y

,Ealculate from wave data Rth and (R + N)th elements of vector'_qjl

no

Does R = N ?

yes
[Call Gauss Seidel subroutine to solve Ap=gq]

B

[éualysis of the antisymmetric component follows a similar process |

!

Lgalculate symmetric and antisymmetric resistance]

{

{Sum for total resistance]

Blculate estimated wave elevations and whence the residuals‘]

{

[Print out measured wave elevations and residuals|

E’rint out current run datﬂ

yes

Any more runs for analysis?

no

Enint out table of results from all run;l

FLOW DIAGRAM
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APPENDIX 5: Wave Probe Design and Electroniecs

The original wave probe.design was considered too cumbersome and not.
sufficiently accurate when used dynamically. It seemed likely that the
underwater support for the probe interfered with the orbital motion of the
waves. Also, since the wire was looped at the bottom, there were in effect
two probes, which made it difficult to determine the exact position of
measurement.

| The probes were therefore re-designed. THe upper part of the original
probes was used including the electronic unit. ﬁse of the original elec-
tronics required using a similar length polyurethane coated wire of diameter
0.165 mm for the probe, which was convenient since then a single surface
piercing strand could be used and taken to twice the original depth, thus
minimising the_effecf of the support on the waves. For the support,
20 gauge stainless steel tube was braised into the upper section and bent
appropriately for stringing the wire. The whole apparatus is secured by
wing nuts into a vertical support and can thus be raised and lowered as
required. A pin can be inserted in holes spaced at one inch intervals for
calibration. Since the relation between wave elevation and wave probé
output is iinear, and from plots of output aéainst immersion this is seen
to be true, only two positions were used for calibration, zero and a wave
height of one inch. A recommendation for an improved design would be the
ability to calibrate in intervals of less than one inch, which would be

useful when measuring waves of small amplitude at low speeds.
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The electronic equipment is in two parts:
(1) the head amplifier unit mounted on each wave probe;
(2) the main ampiifier unit at the control console.

(1) The head amplifier unit uses the capacitaz{ce of the wave probe
assembly to determine the amount of negative feed-back to an amplifier and

hence control its gain. A 50 KHz oscillator voltage fed into the unit is

-amplitude-modulated; the-depth-of-modulation being proportional to the

depth of probe immersion. This A.M. signal is demodulated by a phase

sensitive rectifier and fed to the main amplifier unit.
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(2) The detected output from each probe unit is fed to one of the
four amplifiers in the main amplifier umit. Provision is made for off-
setting the D.C. voltage from the probe by means of a 10 term 'set zero'
control on the front panel of the amplifier unit. A centre zero meter on
the front panel is used in conjunction with the 'set zero' controls and
this meter is switched to the outputs of each of the amplifiers in turn.
The 50 kHz oscillators are of the astable multivibrator type. The output
of this oscillator is integrated and fed via an amplifier and emitter to
the head amplifier units.

| During early experiments a great deal of noise at 100 cycles was found
on all outputs and of an amplitude equivalent to the wave amplitudes. It
is thought that the cause of this noise is untraceable earth loopé in
spite of the extensive earthing of the tank and apparatus. Filters were
therefore built into each channel of the main amplifier unit but there
was still appreciable noise, so the signals wére passed through an external
filter unit which cut out sufficient noise for the traces to be measure—
sble. Since the maximum frequency being measured in the wave pattern is
about 5 c¢fs, it was necessary that the minimum frequency damped by the

filters was higher than this. 20 c¢/s was taken as a safe limit.
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APPENDIX 6: On Sampling Rate as Related to the Generation of Matrices
Used in the Analysis

As discussed in the text it is necessary that the matrix A wused in
equation (29), A p =g, is strongly diagonal.

Now if A 1is a 2N x 2N matrix each off diagonal element except those
elements Arn where r = n + N (the diagonal elements of the top right
and bottom left hand quarter matrices) has denominators sin %(wn + wr)h
and sin %(wn - wr)h, where h is the longitudinal distance between sampling
points and is therefore a measure of the sampling rate. Hence in order

for these off diagonal elements not to become large it is necessary that

;
z(wn + wr)h # kw

and

%(wn - wr)h # km n # r for any integer k.
Also for the diagonal elements of each quarter matrix there is a denominator

sin wrh, so it is also necessary that

Y r wrh # kw.
Now w, > 0 V r; hence, if wrh <w v r
t 3 + <
hen o< | z(wn mr)h[ ™
0 < | %(wn - wr)hl <7 V n,r st. n#r

Thus a sufficient condition for elements of the matrix to remain finite is
wh < Y r

which means that the sampling rate must be high enough to sample at least

twice per wavelength in the longitudinal x-direction for all wave harmonics

encountered.

Now from calculations w, o< 30, 1l £ r ¢ N, over the whole speed

range used if the number of wave harmonics N < 25, which gives the' condition
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h £ 0.1.

But if n=1r +1, Iwn - w_ | = 0.5, when r is large, and

A
. . -1
| sin %(wn - wr)h{ = 0.025 when h = 0.1 and therefore [sin %(wn -w Jh | =

40, and the remaining factors in this term are
% COS(Z(D ; l) )

and. the product of a cosine and sine with nearly equal arguments, thus
making a total factor of the order on average of 0.1. Hence the elements
adjacent to a diagonal element can be of the order of 4 when r is large
and from calculations of the matrices used, the lowest diagonal element
encountered is only 12 when h = O.1m and U = 1.0 m/s.

Now the magnitude of the diagonals is proportional to the number of
samples taken, K, which is proportional to the sampling rate. Hence, it
turns out that kincreasing the sampling rate inc.reases vthe elements Ai i+l
with the diagonal elements and at the same rate. Since the digitisation
was by hand, it was desirable that the sampling rate should be kept low,
and so since the traces were in fact marked-by the recorder every tenth of
a sécond, the sampling rate chosen was 10 per second for all speeds, and

from the above it appears that there would be not much advantage in

increasing this.
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FIG 3 RELATIVE MAGNITUDES OF THE MATRIX

DIAGONAL ELEMENTS

when L 5 3 and S
b

Symmetric
1o .
0-75
o5 }
0-%5 }
0
1 A [4 g 10 i (X 16 I8 70 b 8

wave number

Antisymmetric

10 ¢

0-5 b

o5}

A L [ 8 to 3 1 e 18 20 22
wave number
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FIG 5 COMPARISON OF SYMMETRIC WAVE RESISTANCE
SPECTRA FROM DIFFERENT PROBF POSITIONS -
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FIG 41 COMPARISON WITH WIND TUNNEL TESTS
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