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Development and Application of Grand Canonical Methods for Molecular
Dynamics Simulations

by Marley Luke Samways

The work presented in this thesis focuses on the use of grand canonical Monte Carlo
(GCMC) sampling during molecular dynamics (MD) simulations (referred to as GCM-
C/MD), which is used in this work with the aim of enhancing the sampling of wa-
ter molecules at buried protein-ligand interfaces. Several developments in both the
methodology and implementation of GCMC are presented, as well as insights into the
binding of drugs to an influenza protein.

First, a Python module (grand) is presented in chapter 3, which was developed dur-
ing this work to allow GCMC sampling of water molecules to be carried out with the
OpenMM software package. This implementation of GCMC was thoroughly tested in
terms of reproduction of bulk water densities, as well as a rigorous statistical valida-
tion.

In chapter 4, GCMC/MD simulations are applied to the M2 protein, which is an in-
fluenza drug target, where water is thought to play a key role in ligand binding. In-
sights are provided into how water affects the binding of different ligand enantiomers
to the M2 channel, as well as the possible role of water networks in the resistance of M2
to some drugs, which may aid in the design of future inhibitors.

In chapter 5, it is shown that nonequilibrium candidate Monte Carlo (NCMC) can be
used to drastically increase the acceptance rates of GCMC moves — referred to as grand
canonical nonequilibrium candidate Monte Carlo (GCNCMC) — by allowing the en-
vironment to relax in response to a proposed water insertion or deletion. Whilst these
moves are more expensive, they can be up to five times more efficient than traditional
GCMC. In chapter 6, it is shown that this improvement greatly facilitates grand canon-
ical sampling of molecules larger than water, indicating that GCNCMC sampling of
molecular fragments could have applications in computer-aided drug design.

http://www.southampton.ac.uk
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Chapter 1

Introduction

1.1 Significance of Protein-Bound Water Molecules

The binding of small molecules to protein targets is very important in many biological
processes, as well as in drug design — a 2017 study estimated that small molecules
represent approximately 85 % of approved drugs.1 Accordingly, there are a number
of computational methods which can be used in order to study protein-ligand com-
plexes, ranging from docking, which seeks to provide a rapid prediction of the struc-
ture and stability of a complex,2 to free energy calculations, which typically aim to
rigorously predict differences in binding affinity between pairs of ligands.3 As the vast
majority of biology occurs in an aqueous environment, water also plays an important
role in protein-small molecule binding. For example, if two molecules form equally
favourable interactions with the protein, the less hydrophilic of these will bind more
strongly, owing to the greater difference in stability between the solvated and protein-
bound states — this is known as the hydrophobic effect.4 However, water is not just
the solvent in which biological events take place, as it also plays an active role in
many processes.5 Of particular interest here is the impact that protein-bound water
molecules can have on the thermodynamics of ligand binding.5–10 The prevalence of
water molecules at protein-ligand interfaces was highlighted by a 2007 study of 392
high resolution crystal structures, which found that over 85 % of the complexes con-
tained at least one water bridge between the protein and ligand.11

Water molecules which bind at protein-ligand interfaces are typically much more re-
stricted in terms of their motion than water molecules in bulk solution. This means that
such ordered water sites bind to the protein with a loss of entropy, thereby requiring
a negative enthalpy change in order for the binding to be associated with a favourable
change in free energy:

∆G = ∆H − T∆S (1.1)
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where ∆G is the change in Gibbs free energy, ∆H is the change in enthalpy, T is the
temperature and ∆S is the change in entropy. This entropic effect is of great inter-
est in drug design,10 because if a compound modification can be designed to cause
the displacement of an ordered water site (shown schematically in Fig. 1.1), then the
gain in entropy associated with releasing the water into bulk solution will contribute
favourably to the binding affinity of the compound. It has been suggested that the
maximum possible value of this entropic effect is around 2 kcal mol-1, based on the
entropy associated with the transition from ice to liquid water.6 However, it should
be noted that water displacement is likely to be enthalpically unfavourable, and that
the interactions that the water makes with the complex must be adequately replaced
by the compound modification in order for the displacement to have a net favourable
effect on the ligand binding affinity. In some cases, it may be more effective to conserve
the water, and treat it as part of the protein binding site, with which the interactions
involving the ligand should be optimised.

There are many examples in the literature of cases where water displacement has been
associated with both increases12–14 and decreases15,16 in ligand binding affinity — a
widely recognised example is HIV-1 protease, where the displacement of a highly or-
dered water site is correlated with a large increase in binding affinity for cyclic urea
inhibitors.17 As well as simple changes in binding affinity, there are also a number of
cases where the hydration pattern of a protein binding site plays a key role in the se-
lectivity18–21 or promiscuity22 of the site. However, it should be noted that the exact
balance between the enthalpic and entropic contributions of a given water site is not
known a priori, and therefore, it is very difficult to predict whether compound devel-
opment is best served by displacement or conservation of the site.

The sections below describe some of the experimental and computational methods
which can be used for the study of water in protein complexes.
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FIGURE 1.1: Schematic showing a hypothetical compound modification, where com-
pound 2 was designed, based on compound 1, in order to displace the buried water

site. ∆∆Gbind is the difference in binding free energies of the two compounds.
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1.2 Experiment

X-ray crystallography is the primary experimental method used for the structural anal-
ysis of protein-bound water molecules. In these experiments, the electron density dis-
tribution is inferred from the X-ray diffraction pattern of a single crystal, and a struc-
tural model is then proposed and refined to fit the electron density.23 One potential
issue with this method is that the conditions under which the crystals were formed
may be very different to physiological conditions, which could cause a distortion in the
protein structure.24 However, there are also a number of practical limitations which
affect the identification of water binding sites within protein structures. First, it is im-
portant to note that water is isoelectronic with a number of commonly used ions (Na+,
Mg2+, NH +

4 and F–), from which it cannot be easily distinguished in an electron density
map23 — although the identity may sometimes be inferred from the surrounding envi-
ronment, such as nearby charged species and/or hydrogen bonding groups. Secondly,
if a water site is highly mobile, or partially occupied, the electron density observed
could be very weak, causing the site to be missed. Additionally, the positions and
occupancies of water sites are sometimes inadvertently fitted to the noise in the elec-
tron density, thereby ‘absorbing’ errors in the model, by reducing the amount of ‘un-
explained’ density.25 The cumulative impact of these issues has been demonstrated by
studies in which very different water distributions were assigned to the same structure
by different crystallographers.26,27 Nevertheless, X-ray crystallography is preferable to
the alternatives (discussed below), and is the source of the bulk of experimental data
on water locations within protein structures.

The positions of hydrogen atoms are rarely assigned in X-ray crystal structures, as they
have very little impact on the scattering of X-rays, and are therefore not easily detected.
However, hydrogen/deuterium atoms are much better at scattering neutrons, allowing
their positions to be identified much more easily using neutron diffraction.28,29 There-
fore, these structures can resolve some of the aforementioned issues with determining
water binding locations, by making it easier to distinguish water sites from isoelec-
tronic groups and structural noise, via the characteristic ‘boomerang’ shape typically
observed for water molecules in nuclear density maps.30 However, neutron structures
are more difficult to obtain than X-ray structures, in part owing to the requirement for
much larger crystals.28 The impact of this limitation is evidenced by the fact that only
179 of 176,528 structures in the Protein Data Bank (PDB)31,32 are labelled as neutron
diffraction structures (as of 10th April 2021). It should be noted that water locations
can also be inferred from nuclear magnetic resonance (NMR) spectroscopy, by identi-
fying water-protein interactions via the nuclear Overhauser effect.33–36 However, this
also suffers from a number of limitations, one of which is that the interactions are not
easily studied between water sites and protein sites involving labile hydrogen atoms,
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as the signal is significantly disturbed by hydrogen exchange between water and the
protein.33,34,37

1.3 Computation

As well as some of the aforementioned limitations of experimental methods for the
identification of water binding locations, it should also be noted that it is not possible
to experimentally measure the thermodynamics of individual water sites. Owing to
these limitations, computation can play a very useful role in the molecular-level analy-
sis of water positions and thermodynamics within a protein structure.38,39 To this end,
a large number of methods have been developed over the years, to offer computational
prediction and analysis of protein-bound water sites, at varying levels of both theoret-
ical rigour and computational cost.40 A number of these methods are described below.

1.3.1 Knowledge-Based Methods

Owing to the wealth of available crystallographic data regarding protein-bound wa-
ter sites,31,32 a large number of knowledge-based methods have been developed which
attempt to predict water locations in protein structures by extrapolating from these
data. The more common approach adopted by these methods is to model the structural
features surrounding crystallographic water sites, which can then be used to identify
likely water locations within a protein of interest. The AQUARIUS method calculates
the observed 3D distributions of water about each of the amino acids from a knowledge
base of structures, and then maps these onto the amino acid coordinates of the query
structure, yielding a distribution of water sites.41,42 Similarly, the SuperStar method ex-
tracts fragment-water interaction distributions from the IsoStar database,43 which are
then superimposed onto instances of those molecule fragments within a protein struc-
ture, generating a map of water positions around the structure.44,45 AcquaAlta identi-
fies likely water locations based on the hydrogen bonding geometries which would be
formed with the protein at those locations (using a knowledge base of hydrogen bond
geometries), whilst also using quantum mechanical data to prioritise different hydro-
gen bond types, based on their calculated strength.46 The WarPP method also searches
the space around the protein, and ranks specific points, based on the quality of hy-
drogen bonds formed (using observed hydrogen bond geometries for reference), water
sites are placed at optimal locations and their positions are then refined together.47 Xiao
et al. developed a method which identifies tetrahedral units within a knowledge base,
where one vertex is a water site and the other three are protein atoms, from which water
molecules are then mapped onto triplets of protein atoms within a structure of inter-
est.48 A somewhat different approach is employed by the wPMF method, which con-
structs a knowledge-based potential, based on radial distribution functions between
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waters and different types of protein atom. These potentials are then used to calculate
the probability of a water site at points on a lattice, and the more favourable points are
clustered to identify water binding locations.49 Knowledge-based methods for water
site prediction often achieve good accuracy in terms of the identification of crystallo-
graphic water sites, as they are trained on crystallographic data. However, the quality
of the predictions is dependent on the quality of the training data, and as such, these
methods will suffer from the same limitations regarding water placement as X-ray crys-
tallography (discussed in section 1.2). Additionally, these methods may have difficulty
with protein-ligand interfaces, if the chemistry of the ligand is not adequately repre-
sented in the training set.

As well as the prediction of water binding locations, knowledge-based methods have
also been developed to characterise observed water binding sites — typically, this in-
volves predicting whether a site is likely to be conserved or displaced upon ligand
binding. A number of methods employ clustering of water sites from a series of su-
perimposed structures of very similar proteins, where the cluster occupancy (i.e. the
fraction of structures containing a given water) is assumed to be linked to the stability
of a water site — these methods include ProBiS H2O,50 PyWATER,51 WatCH52 and the
method described by Bottoms et al. 53 The Consolv method predicts whether a water site
observed in an apo-structure is likely to be conserved or displaced upon ligand binding,
using a k-nearest neighbours algorithm. Each water molecule is modelled by a series
of structural descriptors (atom density, hydrophilicity, number of hydrogen bonds and
crystallographic temperature factor), and then compared against a knowledge base of
waters, where the k most similar sites (note that the value of k is a parameter of the
method) ‘vote’ on whether the query water would be conserved or displaced.54 Water-
Score uses a logistic regression of the temperature factor, number of protein contacts
and solvent-accessible surface area of water sites to predict their probability of being
conserved in corresponding holo-structures.55 Ross et al. trained a tree-based machine
learning model to predict whether water sites would be conserved or displaced, based
on terms describing the hydrogen bond interactions, hydrophilicity and lipophilicity
of the site.56 Again, these methods are limited by the relevance of the data used to train
and parameterise the models. Additionally, many of these methods assume that the
likelihood of water displacement is inherent to the water site, when in reality, the na-
ture of the ligand will also play a significant role. It should also be noted that those
methods which make use of the temperature factor of a water site (such as Consolv
and WaterScore) can only be applied to crystallographic water sites, and not predicted
sites.
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1.3.2 Interaction-Based Site Prediction

For a given model of how water interacts with a protein environment, water sites can
be predicted by identifying the most energetically favourable binding locations within
a structure of interest. One approach is to superimpose a 3D lattice onto the structure
and then sample the water interaction energy at each point, as first proposed by Good-
ford with the GRID method.57 The 3D reference interaction site model (3D-RISM) uses
an integral equation theory (based on statistical mechanics) in order to resolve a contin-
uous solvent distribution onto a grid.58–60 Methods such as Placevent61 and GAsol62

can then place explicit water sites around the structure in order to best represent the
distribution calculated using 3D-RISM. The method proposed by Setny and Zacharias
identifies grid cells as occupied or unoccupied by water, based on their interactions
with the protein, and then refines this grid, taking water-water interactions into ac-
count (via a continuum model).63 Ben-Shalom et al. developed a method which allows
water to be translated between points on a grid (covering both protein and bulk sol-
vent), thereby allowing waters to be exchanged much more rapidly during molecular
dynamics simulations.64

Rather than sampling regular points on a grid, a number of other methods instead
place waters by ‘flooding’ protein cavities, and then refining these randomly gener-
ated sites (typically independently of each other). The multiple copy simultaneous
search (MCSS) method first discards water sites with interaction energies which do not
meet some threshold, then optimises the positions of those which remain, and discards
any overlapping sites.65 WATGEN scores water sites based on their hydrogen bonds
formed with the protein, then selects from these, starting from those with the highest
scores (any waters which clash with higher scoring sites are discarded).66 The Dowser
method minimises each water site, and then discards those which do not meet a de-
fined threshold67 — various modifications have been made to optimise the parameters
of this method.68,69 WaterDock makes use of a docking program to insert waters into a
protein structure, then, after running this many times, the docked water locations are
clustered into discrete sites56 — WaterDock 2.0 reduces the number of false predictions
by filtering water sites based on the quality of their hydrogen bonds with the ligand.70

In general, these methods offer a significant degree of control over the balance between
the computational cost and the rigour of the predictions made. For example, increas-
ing the quality of the interaction model used, and sampling the space around the pro-
tein more extensively would be expected to give better quality predictions, albeit at
increased computational cost. Conversely, if the speed of the predictions is prioritised
(such as when screening a large number of structures), then a more approximate inter-
action model might be used in combination with a less extensive search. It should be
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noted that some of these methods produce water density grids, rather than water loca-
tions, which might be more difficult to interpret in a drug design context. Additionally,
some methods (Dowser, GRID and WaterDock) consider water molecules in isolation,
and therefore may fail to capture water sites which are stabilised by other waters.

1.3.3 Inclusion of Waters in Ligand Docking

Protein-ligand docking is a widely used tool in computer-aided drug design, as the
rapid predictions of ligand binding modes, and associated estimation of binding affin-
ity (referred to as a docking score), make this a very useful tool for virtual screening.2

Owing to the influence that structural water molecules can have on ligand binding,
the majority of docking programs now include some treatment of binding site waters.
Most approaches include explicit water molecules as part of the protein structure (often
requiring pre-determined water locations), with varying degrees of water flexibility —
in some cases, the water positions are fixed, and many methods allow these waters to
be displaced during ligand docking. FlexX includes fixed water molecules as the lig-
and is grown from fragments, with the presence of the waters evaluated throughout,
in order to determine if they should be bound or displaced.71 The SLIDE method first
attempts to resolve ligand-water clashes by translation of the water site, and, if this
is not reasonably feasible, the water is displaced and the conservation probability of
the site (predicted with Consolv54) is used to apply an energetic penalty.72 Glide XP
uses grid-based sampling to dock water molecules after the ligand has been docked
to the protein73 — the WScore method builds upon Glide XP by including flexible,
displaceable water sites during the ligand docking procedure, using results from a Wa-
terMap74,75 analysis (see the following section) to determine the thermodynamic effect
of these displacements.76 The GOLD program includes rotationally flexible water sites
which can be displaced during ligand docking, where conserved water sites result in
an entropic penalty for the complex77 — a similar approach is taken by the FITTED
method.78 It is also possible to use grid-resolved water densities and/or thermody-
namics from the GIST method79 (see the following section), which has been used to
influence ligand docking in both the AutoDock80 and DOCK81,82 programs. A distinct
approach is to treat the water molecules as a part of the ligand, rather than the protein.
In these methods, water molecules are attached to the ligand during the docking proce-
dure, based on hydrogen bond geometries.83 This approach is available in AutoDock84

and RosettaLigand.85

The key advantage of these docking methods is the speed with which they can be exe-
cuted, making them very useful for screening. They also differ from many of the other
categories of methods discussed, in that they do not require the binding mode of the
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ligand to be known a priori, as this is precisely what they are used to predict. The au-
thors of the methods discussed in this section consistently reported that a more rigorous
treatment of water in docking improves the measured performance of the algorithm,
thereby highlighting the importance of water molecules in protein-ligand binding.

1.3.4 Thermodynamic Analysis of Water Sites

As previously mentioned, experimental methods cannot directly measure the thermo-
dynamics associated with the binding of individual water molecules at protein-ligand
interfaces. Fortunately, computational methods do not suffer from this limitation, and
a number of methods have been developed to calculate water binding free energies,
with varying degrees of theoretical rigour — many of these methods require water lo-
cations to be determined prior to analysis. Widely considered to be the gold standard
in the calculation of water binding free energies,86 is the double decoupling method.87

This involves calculating the free energies associated with removing a water molecule
(the concept of alchemical decoupling is described in section 2.4) from the protein bind-
ing site, and also from bulk water, where the difference between these gives the bind-
ing free energy of the site. This typically involves the application of restraints/con-
straints which prevent the removed water site from being replaced with another water
molecule (which is not possible in experiments) — the calculated free energy must then
be corrected for this.87 Using this method, Barillari et al. have shown that, in general,
water molecules with more negative binding free energies are less likely to be displaced
by a ligand.88

A number of methods employ inhomogeneous fluid solvation theory (IFST)89,90 for the
analysis of water configurations obtained from molecular dynamics (MD) simulations.
Here, the binding enthalpy of a water site is typically calculated based on the average
interaction energy observed (a widely used assumption), and the entropy is estimated
from correlation functions of the water positions and orientations. This methodology
can be used to calculate thermodynamics for discrete water sites, as implemented in
WaterMap,74,75 for example, or the solvation thermodynamics can be resolved onto
a lattice, yielding grid-based inhomogeneous solvation theory79 (GIST). In IFST, the
entropy is typically calculated from two contributions: distributions in the water po-
sitions relative to a solute, and distributions of water orientations in the solute frame
of reference (these distributions are assumed to be uniform in bulk water). However,
this is a truncation of the solvation entropy as described by IFST — the full expres-
sion involves integrating over all possible combinations of water molecules79 — and
the GIST method has since been expanded to take second-order correlations between
water molecules into account.91 Many other approaches also exist for estimation of
the entropy of protein-bound water sites from simulation data. WATsite approximates
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the entropy using probability distributions of the water positions and orientations92

— these data can also be used by the DeepWATsite algorithm to rescore structures ob-
tained from docking.93 The SPAM approach estimates the water binding free energy
from the distribution of interaction energies observed, from which the entropic contri-
bution is inferred by subtracting the average interaction energy from the free energy.94

Another approach is cell theory, which calculates orientational, vibrational and libra-
tional entropic effects for water using the number of orientations, forces and torques
observed for each water, relative to the corresponding values for bulk water95 — like
IFST, these data can be resolved onto a grid (known as grid cell theory).96,97 Unlike IFST,
cell theory does not involve a large expansion of the entropic term, as it makes use of
a mean field approximation,96 which improves the efficiency of the entropy calculation.

JAWS is a Monte Carlo method which allows the prediction of water locations and es-
timation of their binding free energies.98 Here, water sites are partially decoupled via
a parameter which is free to vary over the course of a simulation, and provides a route
for waters to gradually bind and unbind from the system, whilst also allowing them
to better explore the protein. The favourability of water binding in different regions
of the protein can also be determined from the extent to which the corresponding wa-
ters are fully coupled.98 Grand canonical Monte Carlo (GCMC) simulations are carried
out at constant chemical potential, volume and temperature, which allow the number
of particles to fluctuate according to these constraints.99–102 This involves the insertion
and deletion of particles, which can be used to allow waters to rapidly bind and un-
bind from a protein over the course of a simulation.103,104 The binding free energy of
a water network can be calculated from simulations at a range of chemical potential
values,104,105 whilst also predicting water binding locations.

These methods are usually much slower than the other classes of methods discussed,
as they typically involve complex descriptions of molecular interactions and simula-
tions which can be very computationally expensive. A common limitation of these
methods is that many of those which analyse molecular dynamics data are based on
the assumption that the simulated water distributions are equilibrated, which may not
be the case, as water exchange between proteins and solution can be very slow.106 Ad-
ditionally, some of these approaches analyse water sites independently of each other,
meaning that cooperative effects between waters are not captured. Despite these limi-
tations, computational analysis of the thermodynamics of protein-bound water sites is
recognised as a useful tool in modern structure-based drug design.38,39
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1.4 Objectives

The method which underpins the work presented in this thesis is grand canonical
Monte Carlo (GCMC). As discussed briefly in the previous section, this is a simula-
tion method which allows the number of particles in a simulation to fluctuate accord-
ing to a defined chemical potential (which is constant).99–102 When applied to protein
binding sites, this allows waters to rapidly bind and unbind, without kinetic limita-
tions.21,103–105,107–110 This is useful, as the timescales of water exchange between a pro-
tein binding site and bulk solution can be as long as milliseconds,106 which can be
very problematic for molecular dynamics simulations.64 GCMC simulations have been
found to predict the locations of crystallographic water sites in protein binding sites
very well,104 which, as previously discussed, can be very useful in computer-aided
drug design. Beyond simple prediction of water binding locations, GCMC simula-
tions can also be used to rigorously calculate the binding free energy of water networks
to protein binding sites (giving results in good agreement with double decoupling)105

which offers insight into the thermodynamics associated with binding site hydration —
it should also be noted that cooperative effects between water sites are implicitly cap-
tured by GCMC. Additionally, GCMC can be used to automatically capture the effects
of water displacement when carrying out free energy calculations where one ligand is
perturbed into another107,109,110 — otherwise, the accuracy of these calculations can be
significantly impaired if the displaced water is not expelled from the protein binding
site within the timescale of the simulation.111 The underlying theory of GCMC is de-
scribed in detail in section 2.6.3.

Despite the power of grand canonical simulation methods, they are not yet widely used
for the simulation of biomolecular systems — their utility is, however, recognised in the
computational study of adsorbent binding to porous materials.112 The objectives of this
work were to increase the usability of GCMC simulations of protein-bound water sites,
apply these methods to protein systems of interest, and to build upon the recent theo-
retical and methodological developments.104,105,109 In order to facilitate these aims, the
grand Python module was developed during this work,113 which serves as a ‘bolt-on’
tool to allow GCMC sampling to be carried out with the OpenMM114 simulation en-
gine. This approach was chosen because OpenMM has a large and growing user base,
and the highly customisable framework makes it very suitable to the development of
prototype code for novel methods. Chapter 3 describes the development and valida-
tion of the GCMC implementation in grand. This module was then used to study the
thermodynamics of water binding to the matrix 2 protein (an influenza A drug target),
in order to investigate the effects of the water network on ligand binding to the trans-
membrane domain, as presented in chapter 4. Chapter 5 presents a novel development,
in which nonequilibrium candidate Monte Carlo115 (NCMC) is used to drastically im-
prove the efficiency of GCMC by allowing the insertion and deletion of water sites to
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be carried out in a smoother fashion — this method is referred to as grand canonical
nonequilibrium candidate Monte Carlo (GCNCMC). It is then shown in chapter 6 that
GCNCMC makes grand canonical sampling of small organic molecules feasible, which
could have applications in computational fragment-based drug design.
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Chapter 2

Theory and Methods

2.1 Modelling Molecular Interactions

The total energy, E, of a molecular system can be calculated using the time-independent
Schrödinger equation:116

Ĥψ = Eψ (2.1)

where Ĥ is the Hamiltonian operator and ψ is the wavefunction of the system. How-
ever, this equation cannot be solved analytically for multi-electron systems, and the
cost of numerical methods increases very rapidly with the size of the system.116 There-
fore, to simulate ‘large’ systems, such as those of interest in biological processes, much
of computational chemistry employs classical Hamiltonians, in order to make the sim-
ulations tractable. However, this comes at the cost of reduced accuracy, and a neglect of
quantum mechanical effects (such as bond-breaking and electron transfer, for example)
in these simulations. This also means that energies for these classical simulations can-
not be determined from first principles, and require a number of fitted parameters. The
combination of a particular Hamiltonian with a particular set of parameters is known
as a force field. This section describes the general structure of modern force fields.

In a classical simulation of a system containing N particles, with positions, rN , and
momenta, pN , the total energy is calculated as the sum of the potential and kinetic
energies:116,117

E(rN , pN) = U(rN) +
N

∑
i=1

|pi|2
2m

(2.2)

where m is the particle mass, and U(rN) is the potential energy calculated as a func-
tion of the particle positions. The potential energy can be decomposed into a series of
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different contributions:

U = Ubonds + Uangles + Udihedrals + Uele + UvdW (2.3)

where Ubonds, Uangles and Udihedrals are the bonded terms, which arise from bond stretch-
ing, angle bending and dihedral rotation, respectively; and Uele and UvdW are the non-
bonded terms, which describe electrostatic and van der Waals interactions, respectively.
These two groups of terms are described in more detail below.

2.1.1 Bonded Interactions

The potential energy associated with bond stretching is modelled as a harmonic poten-
tial, where the bonded interaction between atoms i and j is calculated as a function of
the bond length, `ij:

Ubond
ij (`ij) =

1
2

k`ij(`ij − `
eq
ij )

2 (2.4)

where `
eq
ij is the equilibrium bond length, and k`ij is the force constant. These parame-

ters might be extracted from experimental data, such as crystallographic structures for
the equilibrium bond length and infrared spectroscopy for the force constant, or they
might be fitted to quantum mechanical (QM) data. This potential is a good approxima-
tion of the bond interaction energy at bond lengths close to the equilibrium value, but
the approximation breaks down at very short and very long bond lengths.116 However,
the majority of simulations are only concerned with allowing bonds to fluctuate about
their equilibrium lengths, and as Eq. 2.4 only requires two parameters, this is a con-
venient, and widely employed, approximation. The value of Ubonds is calculated as the
sum of bonded interactions over all bonds.

Similarly, the angle bending interactions are also typically modelled via a harmonic
potential, where the interaction for an angle, θijk, involving atoms i, j and k is calculated
as:116

Uangle
ijk (θijk) =

1
2

kθ
ijk(θijk − θ

eq
ijk)

2 (2.5)

where θ
eq
ijk is the equilibrium value of the angle, and kθ

ijk is the force constant. The pa-
rameters can again be inferred from experimental measurements, or fitted to QM data.
Alternatively, some equilibrium angle values might be determined using chemical in-
tuition — for example, the angles about an sp2-hybridised carbon centre might be set
to 120◦. Again, this is a reasonable approximation, as we expect the angles to fluctuate
about their equilibrium values. The value of Uangles is calculated as the sum of angle
bending interactions over all bond angles.
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The modelling of dihedral interactions is less trivial than that of bond stretching and
angle bending, for two reasons. Firstly, it is almost always the case that dihedral in-
teractions have multiple local energy minima, and secondly, they must also satisfy a
periodicity compatible with 360◦, in order to avoid discontinuities. Both of these re-
quirements can be satisfied via a Fourier series consisting of M cosine functions, where
the interaction energy for the dihedral of atoms i, j, k and l is given by:116

Udihedral
ijkl (ϕijkl) =

M

∑
m=1

km
[
cos(nm ϕijkl − γm) + 1

]
(2.6)

where ϕijkl is the dihedral angle, and km, nm and γm are parameters associated with
the mth cosine function. These parameters are often fitted to a potential energy surface
calculated at the quantum mechanical level. However, as dihedral parameters are typi-
cally the last to be fitted for a force field, they may unintentionally absorb errors which
arise from deficiencies in other aspects of the model. Udihedrals is calculated as the sum
of all dihedral interaction energies.

In order to make the parameters more suitable for general use, most force fields make
use of atom types, which provide a qualitative description of the chemistry of each
atom (such as whether a carbon atom is aromatic or aliphatic, for example). The pa-
rameters can then be determined for different combinations of atom types, rather than
exact combinations of atoms. For example, a generalised set of bonded parameters
might be determined for bonds between two sp3-hybridised carbon atoms, which are
then applied to all bonds of this type, eliminating the need to specifically parameterise
every carbon-carbon bond encountered. This aims to reduce the number of parameters
required, and improve the transferability of the force field to new molecules. However,
recent developments, such as the Open Force Field Initiative, have sought to develop
force fields which do not employ atom types, as some complex molecules can be dif-
ficult to describe within the constraints imposed by the atom types available within a
force field.118,119 This is based on the concept of direct chemical perception, where the
force field parameters are inferred directly from the molecular chemistry,119 rather than
indirectly via the set of pre-defined atom types.118 The SMIRNOFF99Frosst force field,
developed using this approach, was observed to provide similar accuracy to the gen-
eral AMBER force field120 (GAFF) for the prediction of small molecule hydration free
energies, but requiring many fewer force field parameters to do so.118

2.1.2 Nonbonded Interactions

The majority of force fields describe the charge distribution of a system by using point
charges centred on each atom. Therefore, the interactions between all of these point
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charges can be calculated using Coulomb’s law:116,117

Uele =
N

∑
i=1

N

∑
j>i

qiqj

4πε0rij
(2.7)

where qi is the charge on atom i, ε0 is the vacuum permittivity and rij is the interparti-
cle separation for particles i and j. The charges are often determined using some form
of quantum mechanical analysis. One approach is to rapidly calculate a set of charges
from a semi-empirical quantum mechanical calculation (which make use of empirical
parameters and are therefore more approximate than ab initio methods). The AM1-BCC
method rapidly calculates an initial set of atomic charges from AM1 semi-empirical cal-
culations,121 and then applies a bond charge correction (BCC) to these charges, which
takes into account the atoms to which each atom is bonded.122,123 Bond types are de-
fined based on pairs of atom types, and the corrections for each bond type were param-
eterised by fitting to the molecular electrostatic potential (calculated at a higher level of
theory).122,123 More rigorous (and computationally expensive) approaches make use of
ab initio QM calculations, such as the restrained electrostatic potential (RESP) method,
which optimises the atomic charges (within some restraints) to reproduce the molec-
ular electrostatic potential calculated using high level QM calculations.124 Distributed
multipole analysis is another method, which uses a multipole expansion about each
atom to fit the calculated charge distribution.125 Other approaches involve artificially
‘sharing’ the electron density across the atoms — some of which are based on the quan-
tum theory of atoms in molecules126 — which can then be combined with the nuclear
charges to generate a net charge for each atom. There are a number of methods for the
distribution of the electron density, including Mulliken population analysis,127 Hirsh-
feld analysis128 and iterative stockholder analysis.129–131

However, the use of atom-centred point charges to represent a charge distribution is
rather limited. There are two issues with the representation of charge in most force
fields: firstly, these charges often lack the complexity required to describe molecular
charge distributions (the quadrupolar nature of benzene is a good example), and sec-
ondly, these charges are typically fixed, and do not change in response to their environ-
ment. Two approaches exist for the first issue: one of which is to include higher order
multipoles at the atom centres, and the other is to consider additional point charges,
positioned slightly off-centre.132,133 As for the second issue, polarisation is very diffi-
cult to efficiently include as it must be iteratively solved, owing to the interdependence
of the induced multipoles of different atoms. The AMOEBA force field offers a solu-
tion to both of these issues, as it uses permanent dipoles and quadrupoles to better
represent the fixed charge distribution, as well as including an induced dipolar term
which accounts for polarisation, where the dipoles are updated in a self-consistent
manner.134–138 However, the increased computational cost of this force field presents
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a barrier to its widespread use.

The van der Waals term in Eq. 2.3 is used to model two effects: the short-range repul-
sive interaction between particles (owing to nuclear repulsion and the Pauli exclusion
principle) and the attractive dispersion interaction (which arises from instantaneous
multipoles). These effects are typically modelled using the Lennard-Jones 12-6 equa-
tion:139

UvdW =
N

∑
i=1

N

∑
j>i

4ε ij

[(
σij

rij

)12

−
(

σij

rij

)6
]

(2.8)

where ε ij is the minimum potential energy for the interaction between particles i and j,
and σij is the finite distance at which the interaction is zero — the interaction is repul-
sive at distances shorter than σij and attractive at distances longer than σij. The r−6 term
arises from the dipole-dipole contribution, which is the leading term in the dispersion
interaction (the higher order terms decay much more rapidly with respect to distance,
and are therefore neglected by the Lennard-Jones equation). The r−12 term, however,
is a more approximate representation. At very short distances, the repulsion decays as
r−1 (owing to the unshielded electrostatic repulsion between the nuclei) and the decay
then becomes exponential at less short distances, owing to the overlap of the molecular
wavefunctions — both of these effects are approximated as r−12, the reasons for which
are pragmatic in nature. Firstly, the Lennard-Jones equation requires only two param-
eters per interaction, which makes the parameter fitting easier and less susceptible to
overfitting. Secondly, in the early days of computational chemistry, when comput-
ers were much less powerful than they are now, it was of significant practical benefit
that r−12 can be calculated directly from r−6, and that both can be calculated using the
square distance, r2, which was more efficiently calculated than the distance, r.116 The
σ and ε parameters can be fitted to either QM data, or to reproduce bulk experimental
measurements (such as the density of a fluid). These parameters can be transferred for
different combinations of atom types, using the Lorentz-Berthelot combining rules:140

σij =
1
2
(
σii + σjj

)
(2.9a)

ε ij =
(
ε iiε jj

) 1
2 (2.9b)

Other combining rules exist, but those above are the most common.

It should be noted that it is common practice to ignore non-bonded interactions for
pairs of particles separated by one or two bonds, as their close distance would oth-
erwise cause repulsions which might disturb the molecular geometry. Similarly, the
non-bonded interactions for those which are separated by three bonds (known as 1-4
interactions) are often scaled, such that they do not fully interact, where the scaling
factor often varies by force field.
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2.1.2.1 Long-range interactions

As the non-bonded interactions must be calculated over (almost) all pairs of particles in
the system, the cost of calculating the sum of these terms scales asO(N2), and is one of
the primary contributors to the computational cost of molecular simulations. Therefore,
in order to reduce the impact of this, it is common to ignore non-bonded interactions
beyond some cutoff distance, rc, where they are assumed to be negligible. However,
the process of deciding which interactions to ignore would require calculating the dis-
tances for all pairs of particles, which still scales as O(N2). Therefore, modern simula-
tion engines make use of neighbour lists, where, for each particle, a list of ‘neighbour’
particles which lie within some distance (which must be larger than the interaction
cutoff) is maintained. Each interaction calculation therefore only involves the calcula-
tion of distances for particles within neighbour lists of each other. The neighbour list
must be updated sufficiently often to ensure that no interactions are missed.116,117 Ad-
ditionally, if interactions beyond the cutoff distance are simply truncated, there is a risk
that discontinuities will be introduced (especially in molecular dynamics simulations,
where the derivative of the potential energy must be smooth — see section 2.5), there-
fore, switching functions are often employed to ensure that the interaction energies go
smoothly to zero at the cutoff distance. The switching function is employed between
some distance, rs, and the cutoff, such that interactions at distances less than or equal
to rs are not scaled, those with distances greater than, or equal to, the cutoff evaluate to
zero, and those in between are scaled smoothly. The switching distance must be suffi-
ciently close to the cutoff distance to minimise the disturbance to the interactions, but
not so close that the interactions are scaled too quickly. An additional requirement is
that the first and second derivatives of the switching function must be equal to zero at
both rs and rc, in order to avoid the introduction of additional discontinuities.116,117

In order to limit finite size effects, and to maximise the relevance of simulated systems
to their macroscopic equivalents, most modern simulations employ periodic boundary
conditions (PBCs). This involves considering the simulated system to be periodically
surrounded by an infinite number of copies of itself, known as images. The calculation
of non-bonded interactions employs the minimum image convention, where the interac-
tion between a pair of particles is taken as that between their closest pair of respective
images. These periodic images need not be explicitly simulated, as the calculated in-
terparticle distances can be simply corrected to account for the periodic boundaries,
based on the dimensions of the simulation. An additional requirement for simulations
employing periodic boundaries is that the value of the interaction cutoff must be less
than half of the shortest simulation box dimension, in order to ensure that each particle
can only interact with a maximum of one image of any other particle.116,117
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However, the choice of the cutoff distance may have an impact on the simulation be-
haviour, if the sum of the interactions beyond the cutoff is non-negligible. The long-
range correction for a given potential energy function, U(r), can be written as:117

Ur>rc =
N 〈ρ〉

2

∫ ∞

rc

4πr2U(r)dr (2.10)

where 〈ρ〉 is the average number density (it is assumed that the number density is
equal to this value at long distances). The above therefore dictates that the potential
energy term must decay at a rate greater than, or equal to r−3 in order to guarantee
that the potential energy correction converges with increasing distance. This is true
for the Lennard-Jones equation, for which the long-range correction can be analytically
calculated:117

UvdW
r>rc

= 8π 〈ρ〉 ε
∫ ∞

rc

r2
[(σ

r

)12
−
(σ

r

)6
]

dr

=
8
3

π 〈ρ〉 εσ3
[

1
3

(σ

r

)9
−
(σ

r

)3
] (2.11)

This therefore allows the effect of not explicitly calculating long-range Lennard-Jones
interactions to be rather easily corrected.

However, as the electrostatic interactions between point charges decay as r−1, the po-
tential energy correction is not guaranteed to converge to a finite value at infinitely
large distances — additionally, the contributions from positive and negative charges
both diverge.116,117 Therefore, the long-range correction for electrostatic interactions
cannot be calculated analytically, and more elaborate methods, such as Ewald summa-
tion,141 are therefore required. In order to make the sum of electrostatic interactions
converge more rapidly, the Ewald method screens the charges by adding a Gaussian
charge distribution of the opposite sign to the position of each point charge. This en-
sures that the direct interactions decay very quickly with respect to distance, and all
interactions will be negligible at the cutoff distance. In order to correct for the neutralis-
ing charge distribution added, a second set of Gaussian charges is added, which exactly
cancel the neutralising distribution — problematically, the interactions between these
Gaussians and the point charges decay very slowly with respect to distance. However,
provided that the simulated system is periodic, a Fourier transform can be applied, and
it transpires that the interactions involving this second set of Gaussians converge very
quickly in Fourier space. When using Ewald summation, Eq. 2.7 is therefore replaced
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with the following:141

UEwald
ele =

N

∑
i=1

N

∑
j>i

qiqj erfc
(√

αrij
)

rij

+
1

2V ∑
k 6=0

4π

k2 |ρ (k) |
2 exp

(
− k2

4α

)

−
( α

π

) 1
2

N

∑
i=1

q2
i

(2.12)

where:
erfc (x) =

2√
π

∫ ∞

x
e−x2

dx (2.13)

ρ (k) =
N

∑
i=1

qieik·ri (2.14)

α is a parameter of the method (which defines the width of the Gaussians), V is the sim-
ulation volume, k is a vector in Fourier space, i =

√
−1, and ri is the position vector

of atom i — note that the above is written in Gaussian units (for notational simplicity),
hence the absence of the (4πε0)−1 factor found in Eq. 2.7. The first term in Eq. 2.12 is
the summation of all direct interactions between screened charges, which is calculated
in real space. The second term is the interaction of all point charges with the second set
of Gaussians (those which cancel the neutralising distribution), which is calculated in
Fourier space. The calculation of the second term includes interactions between each
point charge and the Gaussian distribution (of the same sign) centred on the same po-
sition — which is not correct — and the third term is a correction to account for this.
The real space sum converges more rapidly for large values of α, whereas the Fourier
space sum converges more rapidly for small values. When suitably optimised, the cost
of Ewald summation can scale as O(N

3
2 ).116,117

However, for very large systems, even the improved scaling ofO(N
3
2 ) offered by Ewald

summation is prohibitively expensive. A more efficient approach to the inclusion of
long-range electrostatic interactions is the Particle Mesh Ewald (PME) method.142 This
involves the resolution of the charge distribution onto a lattice (or mesh), which then
allows the utilisation of the Fast Fourier Transform (FFT) technique, which greatly in-
creases the efficiency of the Fourier space sum. This further improves the scaling of the
computational cost toO(N ln N), which allows PME to be routinely applied to simula-
tions of large systems.
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2.2 Classical Statistical Mechanics

Statistical mechanics is essential to computational chemistry, as this allows the particle
configurations simulated at the nano- or microscopic scale to be related to macroscopic
observables.116,117,143 Here, we are primarily concerned with the equilibrium proba-
bilities of microstates in different ensembles, as these allow us to calculate correctly
weighted averages of some property of interest. For example, for some hypothetical
property, A, the ensemble average is calculated as a weighted average of the value of
A over all possible microstates of a system:

〈A〉 =
∫ ∫

A(rN , pN)ρ(rN , pN)drNdpN (2.15)

where 〈. . . 〉 represents an ensemble average, A(rN , pN) is the value of A for microstate
(rN , pN), and ρ(rN , pN) is the equilibrium probability density of the microstate.

An ensemble represents a collection of related microstates, all of which obey several
conditions specific to that ensemble. These commonly involve a set of parameters
which are held constant — different ensemble types are defined by the constraints that
they set. For example, the canonical ensemble is defined by constant particle number
(N), volume (V) and temperature (T), and as such, is referred to as the NVT ensem-
ble. In this section, some of the common ensemble choices are described, as well as the
grand canonical ensemble, which is central to this work.

2.2.1 Canonical Ensemble

The canonical (NVT) ensemble is defined with constant particle number, volume and
temperature, and is the simplest ensemble discussed here. The system is considered
to be in contact with a thermal reservoir of constant temperature, with which the sys-
tem exchanges energy in the form of heat, in order to maintain constant temperature.
The partition function of an ensemble represents the number of microstates accessi-
ble under the prescribed conditions, and also serves as a normalisation constant for
the probabilities of individual microstates. The canonical partition function, QNVT, is
related to the Helmholtz free energy via:116,117,143

F = −kBT ln QNVT (2.16)

where kB is Boltzmann’s constant. The following partial derivatives relate the Helmholtz
free energy to several thermodynamic properties of the ensemble:143

(
∂F
∂N

)
V,T

= µ (2.17)
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(
∂F
∂V

)
N,T

= −P (2.18)

(
∂F
∂T

)
N,V

= −S (2.19)

where µ is the chemical potential, P is the pressure, and S is the entropy of the ensem-
ble. In the above, the subscripts indicate parameters which are held constant.

For a system which can only occupy a finite set of discrete microstates, the canonical
partition function is simply calculated from the following sum over all microstates:

QNVT = ∑
i

e−βEi (2.20)

where Ei denotes the total energy of the ith ensemble member, and β = (kBT)−1 is the
thermodynamic beta. However, for the classical systems simulated in this work, the
total energy does not occupy a finite set of discrete values, but is rather a function of
particle positions and momenta, both of which are continuous. Therefore, the canonical
partition function must be calculated by integrating over all positions and momenta:

QNVT =
1

h3N N!

∫ ∫
e−βE(rN ,pN)drNdpN (2.21)

where h is Planck’s constant. The h3N term serves to ensure that the partition function
is unitless, and the (N!)−1 term arises from the fact that, if the particles are identical,
there are N! possible arrangements which would appear to be the same configuration
— if the particles are not identical, then this N! term is not necessary. Given that the
total energy is composed of potential and kinetic terms (Eq. 2.2), and that the positions
and momenta are separable, the two integrals can be calculated separately. When ex-
ponentiated, the kinetic term yields a Gaussian function of momentum and the integral
over the momenta can therefore be carried out analytically:

∫ +∞

−∞
exp

{
−

N

∑
i=1

|pi|2
2mkBT

}
dpN = (2πmkBT)

3N
2 (2.22)

This separation allows the canonical partition function to be simplified:

QNVT =
1

h3N N!

∫ ∫
e−βE(rN ,pN)drNdpN

=
1

h3N N!

∫ +∞

−∞
exp

{
−

N

∑
i=1

|pi|2
2mkBT

}
dpN

∫
e−βU(rN)drN

=
1

Λ3N N!

∫
e−βU(rN)drN

(2.23)
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where Λ is the thermal wavelength of a particle, defined as:

Λ =

(
h2

2πmkBT

) 1
2

(2.24)

Additionally, the particle positions can be re-written in terms of scaled coordinates, sN ,
where all coordinates are scaled to lie between 0 and 1:

QNVT =
VN

Λ3N N!

∫ 1

0
e−βU(sN ; V)dsN (2.25)

where U(sN ; V) indicates that the potential energy is calculated as a function of the
real coordinates, not the scaled values. Here, the partition function can be viewed as a
product of ideal and excess contributions:

Qid
NVT =

VN

Λ3N N!
(2.26)

Qex
NVT =

∫ 1

0
e−βU(sN ; V)dsN (2.27)

where Qid
NVT is the partition function of an equivalent ideal gas, and Qex

NVT is the con-
tribution from particle interactions — if there are no intermolecular interactions in the
system, then Qex

NVT = 1. The Helmholtz free energy can therefore also be separated into
ideal and excess components:

F = −kBT ln Qid
NVT − kBT ln Qex

NVT

= Fid + Fex
(2.28)

The probability density of a microstate in the canonical ensemble is:116,117,143

ρNVT(rN , pN) = Q−1
NVT

1
h3N N!

e−βE(rN ,pN) (2.29)

We are often only interested in the probability of observing a particular particle config-
uration, and as such, the momentum contribution can be integrated out:

ρNVT(rN) = Q−1
NVT

1
h3N N!

e−βU(rN)
∫ +∞

−∞
exp

{
−

N

∑
i=1

|pi|2
2mkBT

}
dpN

= Q−1
NVT

1
Λ3N N!

e−βU(rN)

=
e−βU(rN)∫

e−βU(rN)drN

(2.30)

where the probability density of each configuration is therefore dependent only on the
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potential energy, normalised by the configurational integral. The ensemble average of
a property, A, in the canonical ensemble can therefore be calculated as:

〈A〉NVT =

∫
A(rN)e−βU(rN)drN∫

e−βU(rN)drN
(2.31)

2.2.2 Isothermal-Isobaric Ensemble

The isothermal-isobaric ensemble allows simulations to be carried out at constant pres-
sure (P), by considering the system to be in equilibrium with an ideal gas at fixed pres-
sure.117 The system is assumed to be in contact with this ideal gas, such that the pres-
sure is maintained by a hypothetical piston which increases or decreases the volume of
the system, in order to maintain the pressure equivalent to that of the gas. The prob-
ability of each microstate is weighted by a factor of exp (−βPV), in order to account
for the probability of the current volume, given the system pressure.143 The partition
function for this ensemble must therefore also include an integration over all possible
microstate volumes, as well as particle positions and momenta:

ZNPT =
βP

h3N N!

∫ ∫ ∫
e−βPVe−βE(rN ,pN)drNdpNdV (2.32)

where the βP term is included to ensure that the partition function is unitless.117 The
above can be simplified by integrating the momenta, and scaling the coordinates:

ZNPT =
βP

Λ3N N!

∫
VNe−βPVdV

∫
e−βU(sN ; V)dsN (2.33)

The isothermal-isobaric partition function is related to the Gibbs free energy of the sys-
tem as:

G = −kBT ln ZNPT (2.34)

The Gibbs free energy can be related to other thermodynamic properties, via the fol-
lowing partial derivatives:143 (

∂G
∂N

)
P,T

= µ (2.35)

(
∂G
∂P

)
N,T

= 〈V〉N,T (2.36)

(
∂G
∂T

)
N,P

= −S (2.37)
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The probability density of a given set of positions, rN , in a volume of V in the isothermal-
isobaric ensemble can be calculated as:

ρNPT(rN , V) = Z−1
NPT

βP
Λ3N N!

e−βPVe−βU(rN)

= Z−1
NPT

βPVN

Λ3N N!
e−βPVe−βU(sN ;V)

(2.38)

Therefore, the ensemble average of a quantity, A, can be written as:

〈A〉NPT = Z−1
NPT

βP
Λ3N N!

∫ ∫
A(sN , V)VNe−βPVe−βU(sN ; V)dVdsN (2.39)

2.2.3 Grand Canonical Ensemble

The grand canonical (µVT) ensemble is distinctive in comparison to the NVT and NPT
ensembles, in that the particle number need not be constant. Instead, the chemical po-
tential, µ, of the system is held constant, and the particle number is free to vary accord-
ingly — this ensemble can therefore be considered a sum of canonical ensembles.144

Here, the system is considered to be in equilibrium with an ideal gas reservoir, where
particles can be exchanged between the system and the reservoir.117 The characteris-
tic state function (analogous to the Helmholtz and Gibbs free energies) of the grand
canonical ensemble is the grand potential:

Ω = −kBT ln ΞµVT (2.40)

The following partial derivatives hold for the grand potential:143

(
∂Ω
∂µ

)
V,T

= − 〈N〉V,T (2.41)

(
∂Ω
∂V

)
µ,T

= −P (2.42)

(
∂Ω
∂T

)
µ,V

= −S (2.43)

Owing to the importance of the grand canonical ensemble in this work, the partition
function for this ensemble is derived below.

As previously mentioned, here we consider the system and ideal gas as a large, canon-
ical ensemble, containing M particles within a volume of V — the system contains N
particles in a volume of Vs, leaving the ideal gas with M− N particles in a volume of
V − Vs. First, we consider one specific arrangement of N and M − N particles across
the two volumes, where no exchange of particles is possible. The partition function for
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this arrangement is:

QMVT =
1

h3M M!

∫ ∫
e−βE(rM ,pM)drMdpM

=
N!(M− N)!

M!
QNVsTQ(M−N)(V−Vs)T

(2.44)

where:
QNVsT =

1
h3N N!

∫ ∫
e−βEs(rN ,pN)drNdpN (2.45)

Q(M−N)(V−Vs)T =
1

h3(M−N)(M− N)!

∫ ∫
e−βEi(rM−N ,pM−N)drM−NdpM−N (2.46)

We can now construct the full partition function by considering all possible distribu-
tions of the M particles over the two volumes:

QMVT =
M

∑
N=0

g(N, M− N)
N!(M− N)!

M!
QNVsTQ(M−N)(V−Vs)T (2.47)

where g(N, M− N) represents the number of possible ways in which the M particles
can be separated into two groups of size N and M− N. This degeneracy can be calcu-
lated by the binomial coefficient:

g(N, M− N) =
M!

N!(M− N)!
(2.48)

Substituting this into the above, we obtain:

QMVT =
M

∑
N=0

QNVsTQ(M−N)(V−Vs)T (2.49)

The partition function of the ideal gas (for a given value of M − N) is related to the
Helmholtz free energy of the reservoir, and when M � N and V � Vs, this can be
calculated by expanding about the free energy of the combined system, FMVT:143

F(M−N)(V−Vs)T ≈ FMVT − N
∂F
∂N
−Vs

∂F
∂V

≈ FMVT − µN + PVs

(2.50)

This expression for the free energy of the reservoir can be used to replace the corre-
sponding partition function:

QMVT =
M

∑
N=0

e−β(FMVT−µN+PVs)QNVsT

= e−βPVs QMVT

M

∑
N=0

eβµNQNVsT

(2.51)
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At this point, QMVT appears on both sides of the equation and therefore cancels, leaving
the following relationship:

eβPVs =
M

∑
N=0

eβµNQNVsT (2.52)

It should be noted that there is now no explicit reference to the ideal gas reservoir
(except for M, which is taken to be infinitely large). We can therefore consider this
relationship only in terms of the grand canonical system, replacing Vs with V, which is
the volume of this grand canonical ensemble:

eβPV =
∞

∑
N=0

eβµNQNVT (2.53)

Here, it is convenient to write the grand potential as:143

Ω = V
∂Ω
∂V

= −PV
(2.54)

which provides a direct relationship between PV and the grand canonical partition
function:

kBT ln ΞµVT = PV (2.55)

Therefore, substituting this into Eq. 2.53 yields an expression for the partition function:

ΞµVT =
∞

∑
N=0

eβµNQNVT (2.56)

As previously mentioned, the above shows how the grand canonical ensemble can be
considered a weighted sum of canonical ensembles with different numbers of particles
(referred to as petite ensembles by Gibbs 144).

For a microstate in the grand canonical ensemble containing N particles at positions,
rN , with momenta, pN , the probability density is given by:

ρµVT(rN , pN) = Ξ−1
µVT

eβµN

h3N N!
e−βE(rN ,pN) (2.57)

As before, in order to obtain the probability density of a particular configuration, the
momenta can be integrated, except that these terms no longer cancel:

ρµVT(rN) = Ξ−1
µVT

eβµN

Λ3N N!
e−βU(rN) (2.58)
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Therefore, the ensemble average of a property, A, in the grand canonical ensemble can
be calculated as:

〈A〉µVT = Ξ−1
µVT

∞

∑
N=0

eβµN

Λ3N N!

∫
A(rN)e−βU(rN)drN (2.59)

If we are interested in the probability density of observing a particular configuration,
regardless of particle labels (which are physically meaningless), the factorial term is
sometimes not included — this essentially sums the probability densities of the N! sets
of particle labels which can be arbitrarily assigned to each configuration of N particles.

2.3 Chemical Potential

The chemical potential defines the direction in which particles flow, where areas of low
chemical potential are more favourable. Under conditions of constant volume and tem-
perature, the chemical potential can be determined as the derivative of the Helmholtz
free energy with respect to the number of particles116,117,143 (Eq. 2.17), or, under condi-
tions of constant pressure and temperature, as the derivative of the Gibbs free energy
with respect to the particle number (Eq. 2.35). For simplicity, the discussion in this
section focuses on the former. The chemical potential therefore indicates the extent to
which adding an additional particle to a molecular system is favourable.

As previously mentioned, the Helmholtz free energy can be written in terms of ideal
and excess contributions (Eq. 2.28). The chemical potential can therefore also be rewrit-
ten in such a way:

µ =
∂

∂N
(Fid + Fex)

=
∂Fid

∂N
+

∂Fex

∂N
= µid + µex

(2.60)

where µid is the ideal chemical potential, which is the chemical potential of an analo-
gous ideal gas, and µex is the excess chemical potential, which is the difference made to
the chemical potential by the inclusion of potential energy interactions between parti-
cles. The calculations of these two contributions are discussed in this section.

2.3.1 Ideal Chemical Potential

For a system containing N particles within a volume of V, the ideal component of the
canonical partition function can be calculated analytically (Eq. 2.26). Therefore, the



2.3. Chemical Potential 29

corresponding Helmholtz free energy can also be determined analytically:117

Fid(N) = −kBT ln Qid
NVT

= −kBT ln
(

VN

Λ3N N!

) (2.61)

For a very large ideal gas, we can use Stirling’s approximation (which is valid for very
large numbers) to rewrite the above:

Fid(N) ≈ −kBT ln
(

N ln
(

V
Λ3

)
− N ln N + N

)
(2.62)

The derivative of this free energy, and therefore, the ideal chemical potential, can be
calculated as

µid =
∂Fid

∂N
= −kBT ln

(
V

NΛ3

)
(2.63)

which can be rewritten in terms of the number density of the ideal gas, ρideal , as:

µid = kBT ln
(
ρidealΛ3) (2.64)

2.3.2 Excess Chemical Potential

The excess Helmholtz free energy of a system can, in principle, also be calculated from
the excess contribution to the canonical partition function:117

Fex(N) = −kBT ln Qex
NVT

≈ −kBT ln
{∫ 1

0
e−βU(sN ; V)dsN

} (2.65)

Note that this integral is over scaled coordinates, such that if the interaction energy
is always zero, the integral evaluates to one, and the excess free energy is therefore
zero. However, the configurational integral above can only be solved analytically for
the simplest possible systems, which are of little interest here. For the large, biomolec-
ular systems of interest in this work, the excess free energy (and therefore, the excess
chemical potential) cannot be calculated analytically, so numerical methods must be
used. These methods involve rewriting the derivative of the excess free energy from
Eq. 2.60 as a finite difference derivative, where ∆N = 1:

µex ≈ ∆Fex

∆N
= Fex(N + 1)− Fex(N)

(2.66)

Thus enabling the excess chemical potential to be calculated as the excess free energy
of adding an additional particle.
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The Widom particle insertion method is a relatively simple approach to calculate the
excess free energy of adding an additional particle to a system.145

Fex(N + 1)− Fex(N) = −kBT ln
Qex

(N+1)VT

Qex
NVT

= −kBT ln

{∫
e−βU(sN+1; V)dsN+1∫

e−βU(sN ; V)dsN

} (2.67)

Where we now have a ratio of two integrals which we cannot easily solve. This problem
is avoided by rewriting the potential energy of the N + 1 state as:

U(sN+1; V) = U(sN ; V) + ∆UN+1 (2.68)

where ∆UN+1 refers to the interaction energy of the (N + 1)th particle with all other
particles in the system. This allows the excess chemical potential to be written in terms
of this energy change:

µex = −kBT ln
{∫ 〈

e−β∆UN+1
〉

N
dsN+1

}
(2.69)

where the integral is carried out over all positions of the (N + 1)th particle, and 〈. . . 〉N
indicates an ensemble average over the system containing N particles. In practice, the
integral is solved using the Monte Carlo method, which involves generating configura-
tions according to the equilibrium distribution of the N-particle system, and at regular
intervals, the additional particle is assigned to a random position and the exponential
term in Eq. 2.69 is calculated. This term is then averaged over all samples, and then
the natural logarithm is taken of this value, from which the excess chemical potential is
then calculated.117

However, a problem with the Widom method is that it requires a significant degree of
phase space overlap between the systems with N and N + 1 particles — that is, the
microstates sampled from the equilibrium distribution of the N-particle system must
be such that inserting a particle at random locations generates microstates which are
reasonably populated in the equilibrium distribution of the N + 1 system.117 It should
be noted that this is not a theoretical requirement of the method, but that the conver-
gence of the result obtained will be very slow when the phase space overlap is poor —
theoretically, the result will eventually converge in the limit of infinite sampling. For
this reason, the Widom method is better suited to low density systems, where there is
plenty of free space for the additional particle to favourably occupy. For condensed
phase systems, such as the biomolecular systems of interest in this work, this becomes
increasingly unlikely, as the vast majority of random insertions will be met with a steric
clash, resulting in a large, positive difference in potential energy. This will cause the
excess chemical potential to be calculated as significantly more positive than its true
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value. For this reason, free energy perturbation methods (discussed in section 2.4) are
better suited to the calculation of the excess chemical potential for condensed systems,
as they make use of intermediate states which reduce the problem of phase space over-
lap.

2.4 Free Energy Calculations

Thus far, free energies have primarily been discussed in terms of their relationship with
the chemical potential via the number of particles. In modern computational chemistry,
it is often of interest to calculate the difference in free energy between two distinct states
— denoted A and B — which are often related by some chemical change of interest. For
example, relative binding free energy calculations seek to determine the affinity differ-
ence between a pair of compounds, by calculating the difference in free energy between
them in both the protein binding site and bulk water, under identical conditions. A free
energy difference can be written in terms of the partition functions (this is shown for
the canonical ensemble, and can be written similarly for other ensembles):116,117

∆FAB = FB − FA

= −kBT ln
QB

QA

= −kBT ln

{ ∫
e−βUB(rN)drN∫
e−βUA(rN)drN

} (2.70)

where UA and UB denote the potential energy functions associated with states A and B,
respectively. Note that in the above, the states are assumed to have the same number of
particles — this is often ensured by using ‘dummy’ particles which do not contribute
to the potential energy. As seen with the Widom particle insertion method, the free
energy difference therefore depends on the ratio of a pair of integrals which cannot be
solved in practice, for all but the simplest cases.

One approach to the calculation of the ratio of integrals given in Eq. 2.70 is the expo-
nential averaging method. This method makes use of multiplying the integral ratio by
a factor of exe−x = 1 to calculate the ratio of partition functions as follows:

QB

QA
=

∫
e−βUB(rN)eβUA(rN)e−βUA(rN)drN∫

e−βUA(rN)drN

=

∫
e−β∆UAB(rN)e−βUA(rN)drN∫

e−βUA(rN)drN

=
〈

e−β∆UAB
〉

A

(2.71)
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where ∆UAB = UB −UA, and the ensemble average is carried out over state A. There-
fore, the ratio of integrals can be much more easily calculated via this ensemble average.
Combining the above with Eq. 2.70 yields the Zwanzig equation:146

∆FAB = −kBT ln
〈

e−β∆UAB
〉

A
(2.72)

However, as with the Widom particle insertion method,145 the calculation of free ener-
gies using the Zwanzig equation is severely limited, owing to the requirement that the
phase spaces of states A and B overlap significantly. If this is not the case, then high
probability microstates from state B will be sampled infrequently (or perhaps never)
during a finite simulation of state A, and therefore biasing the free energy result ob-
tained. A solution to the issue of phase space overlap is the use of alchemical perturba-
tions, via a scaling coordinate, λ, where the potential energy can be calculated as:116,117

U(λ) = λUB + (1− λ)UA (2.73)

where U(λ = 0) = UA and U(λ = 1) = UB — note that λ values between 0 and 1 cor-
respond to non-physical states (hence the use of the term alchemical). Note that other
methods for combining the potential energy function via λ exist.

When calculating the free energy change associated with adding or removing a parti-
cle from a system (as is needed in the calculation of the excess chemical potential, for
example), practical issues can occur for λ values where the molecule is largely non-
interacting.116,117 Notably, the widely-used Lennard-Jones potential (Eq. 2.8) at short
distances does not go smoothly to zero as λ goes to zero (using the convention that
λ = 0 corresponds to the non-interacting state). The constant presence of short-range
repulsions limits phase space overlap with the non-interacting state, and therefore, the
efficiency of the calculation. A solution is to ‘soften’ the interactions, using so-called
softcore potentials,147 such as:

UvdW
ij (rij, λ) = 4λε ij


 σij

re f f
ij

12

−

 σij

re f f
ij

6
 (2.74)

where the effective distance is calculated as:

re f f
ij (λ) = σij

(
1− λ

2
+

(
rij

σij

)6
) 1

6

(2.75)
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It should be noted that many forms of softcore potential exist, the above is just one
example. However, the presence of finite Lennard-Jones interactions at rij = 0 intro-
duces the possibility that attractive electrostatic interactions may cause particle centres
to converge as they overcome the finite steric repulsions, resulting in numerical insta-
bilities. For this reason, a common approach is to separate λ into electrostatic and van
der Waals components, λele and λvdW , allowing these interactions to be decoupled sep-
arately. When decoupling a molecule (or vice versa for coupling), first the electrostatic
interactions are decoupled, and then the van der Waals interactions are decoupled, re-
moving the risk of electrostatic singularities. When this is the case, the electrostatic
interactions can simply be scaled by λ, but if the electrostatic and van der Waals scaling
is not separated, then the electrostatic interactions must also be softened.

Using alchemical perturbation, the free energy calculation between A and B can be
separated into M− 1 smaller free energy calculations between adjacent λ values, where
the phase space overlap will be much better (note that here, M refers to the number of
λ values used):116,117

∆FAB = −kBT
M−1

∑
i=1

ln
〈

e−β(Ui+1−Ui)
〉

λi
(2.76)

where Ui = U(λi), λ1 = 0 and λM = 1. This offers a significant improvement on the
direct free energy calculation from A to B; however, this method is still rarely used in
practice, owing to the availability of more efficient methods, some of which are dis-
cussed below.

2.4.1 Thermodynamic Integration

The thermodynamic integration method makes use of the fact that the partition func-
tion (and therefore the free energy) can be treated as a function of λ. Therefore, the free
energy difference between states A and B can be written as the integral of the derivative
of the free energy with respect to λ:116,117

∆FAB =
∫ 1

0

∂F(λ)
∂λ

dλ (2.77)
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This derivative can be rewritten as:

∂F(λ)
∂λ

= −kBT
∂

∂λ
ln Q(λ)

=
−kBT
Q(λ)

∂Q(λ)

∂λ

=
1

Q(λ)

1
Λ3N N!

∫
∂U(rN , λ)

∂λ
e−βU(rN ,λ)drN

=

〈
∂U(λ)

∂λ

〉
λ

(2.78)

where the derivative of the free energy can be equated to the ensemble average of the
derivative of the potential energy with respect to λ, allowing the free energy difference
to be rewritten in terms of the latter:

∆FAB =
∫ 1

0

〈
∂U(λ)

∂λ

〉
λ

dλ (2.79)

where this derivative is typically calculated using numerical methods, such as:

∂U(λ)

∂λ
≈ U(λ + δλ)−U(λ− δλ)

2δλ
(2.80)

where δλ is suitably small.

An advantage of this method is that the derivatives at different values of λ are calcu-
lated independently. Therefore, if the number of λ values is deemed insufficient after
running a set of simulations, additional λ-states can be added without requiring that
the initial simulations be discarded.

2.4.2 Bennett Acceptance Ratio

The Bennett acceptance ratio (BAR) method is based on the fact that the ratio of parti-
tion functions is equivalent to a ratio of ensemble averages:148

QA

QB
=

〈
we−βUA

〉
B〈

we−βUB
〉

A
(2.81)

which holds for any w(rN). The free energy difference can therefore be written in terms
of these ensemble averages as:

β∆FAB = ln
〈

we−βUA
〉

B
− ln

〈
we−βUB

〉
A

(2.82)
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Bennett discovered that the statistical uncertainty of the free energy is minimised for
the following choice of w(rN):148

w(rN) =
constant

QA
nA

e−βUB(rN) + QB
nB

e−βUA(rN)
(2.83)

where nA and nB are the number of statistically independent samples collected for
states A and B, respectively. Substituting this into the above, we obtain:

eβ∆FAB =
〈 f (β(UA −UB + C))〉B
〈 f (β(UB −UA − C))〉A

eβC (2.84)

where the above holds for any function f such that f (x)/ f (−x) = e−x, and any con-
stant C with units of energy. However, statistically optimal results are obtained for the
following choices:148

f (x) =
1

1 + ex (2.85)

C = β−1 ln
QAnB

QBnA
(2.86)

It can be seen here that the optimal value of C depends on the ratio of partition func-
tions, which is the unknown quantity of interest. However, one can begin with an
initial guess and then optimise C in a self-consistent manner, based on the following
equations:

β∆FAB = ln
{

∑B f (β(UA −UB + C))
∑A f (β(UB −UA − C))

}
− ln

nB

nA
+ βC (2.87a)

β∆FAB = βC− ln
nB

nA
(2.87b)

where self-consistency is achieved when the following is true:

∑
A

f (β(UB −UA − C)) = ∑
B

f (β(UA −UB + C)) (2.88)

The BAR method is a significant improvement over the Zwanzig equation, as it makes
use of sampling from both end states, rather than just one. However, this still requires
(albeit to a lesser extent) significant phase space overlap between the two states. One
approach to alleviate this issue is to, again, break the calculation into a series of smaller
free energy calculations, which can be summed. However, the multistate Bennett ac-
ceptance ratio (MBAR) method149 is a superior alternative to this. This method is an
extension of BAR, such that data from an arbitrary number of λ values can be analysed,
to provide free energy estimates between all pairs of λ values — in the case where only
two values of λ are considered, MBAR reduces to the BAR method as described by
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Bennett. MBAR has been shown to offer significantly better statistical performance
than other free energy estimators.149

2.4.3 Nonequilibrium Methods

The free energy methods discussed thus far are known as equilibrium methods. This is
because at each value of λ, the simulation is carried out at equilibrium. However, there
also exists another class of methods, known as nonequilibrium free energy methods.117

Rather than running equilibrium simulations at a range of λ values, these methods
involve gradually switching the value of λ from 0 to 1, whilst calculating the work
required to do so. This makes use of the fact that the free energy difference between two
states is equal to the reversible work required to transform one state into the other:117

∆F = W∞ (2.89)

where the ∞ subscript indicates that the transformation from A to B is carried out in-
finitely slowly. In practice, the value of λ is increased incrementally, and the nonequi-
librium work is calculated as the sum of the potential energy changes associated with
each of these λ increments.

As simulated nonequilibrium protocols cannot be infinitely long, they are not strictly
reversible and therefore Eq. 2.89 cannot be used to calculate free energy changes. The
Jarzynski estimator calculates the free energy from a set of nonequilibrium work values
using the following relationship:150

∆FAB = −kBT ln
〈

e−βWAB
〉

A
(2.90)

where WAB is the work required to perturb A into B, and this holds in the limit of
infinite sampling — this can be either an infinite number of work samples, or a work
calculated from an infinitely long protocol. In practice, this means that shorter switches
will require a larger number of work values to produce an accurate estimate of the free
energy. Additionally, the BAR method can be used to estimate the free energy, using
work values for both the forward and reverse transformations.151 This works just as
described above for BAR analysis of equilibrium simulations, except that the potential
energy differences are replaced with work values. It has been found empirically that
nonequilibrium free energy differences calculated using BAR are more consistent than
those calculated using the Jarzynski estimator.152
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2.5 Molecular Dynamics Simulation

Thus far in this chapter, extensive reference has been made to the sampling of mi-
crostates from a given ensemble, with no mention as to how this is done. Molecular
dynamics (MD) is a simulation technique which seeks to generate samples by propa-
gating the system through time.116,117 The time evolution of a set of particle positions
can be classically modelled using Newton’s second law of motion:

F = ma

= m
d2r
dt2

(2.91)

The force on each particle in a molecular simulation can be calculated as the negative
derivative of the potential energy:

Fi = −∇iU(rN) (2.92)

where ∇i indicates differentiation with respect to the positions of the ith particle — for
this reason, most force fields use potential energy expressions for which these deriva-
tives can be readily calculated (section 2.1). The equations above can therefore be com-
bined to directly relate the motion of the particles to the potential energy:

d2ri

dt2 = − 1
m
∇iU(rN) (2.93)

thus yielding the concept which underpins molecular dynamics simulations. The above
can be re-written as the following system of ordinary differential equations (ODEs):

dri

dt
= vi (2.94a)

dvi

dt
= − 1

m
∇iU(rN) (2.94b)

where vi is the velocity of the ith particle.

However, for systems containing three or more particles, Eq. 2.94 becomes a many
body problem, as the motions of all particles are coupled. Therefore, the time evolu-
tion of a many particle system cannot be solved analytically, and numerical integration
techniques must be employed, as discussed below.
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2.5.1 Integration

Given an initial set of positions and velocities, the system of ODEs in Eq. 2.94 can be
treated as an initial value problem — the positions are often obtained from experimen-
tal data or a structural model, and velocities can be directly drawn from their equilib-
rium distribution for a given temperature. Therefore, starting from a given microstate,
the positions and velocities can be integrated by making small, discrete jumps in time
(known as a timestep, δt) — the smaller the timestep, the more accurately the true so-
lution is represented, at increased computational cost per unit time.116,117 There are a
number of approaches to evolve a system in this way, with some of the more common
algorithms described in this section.

The simplest approach for an initial value problem is Euler’s method:

f (x + δx) = f (x) + δx
d f
dx

(2.95)

When applied to Eq. 2.94, this yields the following algorithm:

r(t + δt) = r(t) + δtv(t) (2.96a)

v(t + δt) = v(t) + δta(t) (2.96b)

However, the error of this method scales as O(δt) when δt is small (known as a first
order method). This error is quickly accumulated, leading to unstable dynamics, and
ultimately, incorrect results.

A more accurate algorithm is the Verlet integrator,153 which makes use of Taylor series
expansions of the positions about a point in time:

r(t− δt) = r(t)− δtv(t) +
1
2

δt2a(t) (2.97a)

r(t + δt) = r(t) + δtv(t) +
1
2

δt2a(t) (2.97b)

These two expressions can be combined to given an expression for r(t + δt), based on
r(t) and r(t− δt):

r(t + δt) = 2r(t)− r(t− δt) + δt2a(t) (2.98)

The Verlet integrator is a second order method, and therefore much more stable. How-
ever, there are two issues with this method. The first, relatively minor issue is that two
initial values are required: a set of positions at t = t, and another at t = t− δt — a po-
tential solution is to use Euler’s method for the very first step, to generate the second
microstate, and then continue the simulation with the Verlet integrator. The second,



2.5. Molecular Dynamics Simulation 39

more serious issue is that this integration algorithm has no dependence on the veloci-
ties, and therefore, no dependence on the temperature, meaning that it cannot be used
to sample canonical ensembles116 (see the following section for details on temperature
control). A further improvement is the velocity Verlet integrator, which makes use of a
half step for the velocities:154

v(t +
1
2

δt) = v(t) +
1
2

δta(t) (2.99a)

r(t + δt) = r(t) + δtv(t +
1
2

δt) (2.99b)

v(t + δt) = v(t +
1
2

δt) +
1
2

δta(t + δt) (2.99c)

This method is also second order, but has the advantage that the temperature can
be controlled via the velocities, allowing the simulation of canonical ensembles.116 It
should be noted that higher order integrators exist, but are not widely used.

2.5.2 Temperature Control

By default, the integrators discussed above should conserve the total energy of the
simulation, and therefore sample the microcanonical (NVE) ensemble. In order to sam-
ple the canonical ensemble (or any other ensemble defined at constant temperature),
molecular dynamics simulations make use of thermostats, which modify the velocities
of the particles throughout the simulation to regulate the temperature. This makes use
of the following relation, where the temperature can be related to the ensemble average
of the kinetic energy:116 〈

N

∑
i=1

mi|vi|2
2

〉
=

3
2

NkBT (2.100)

where, on average, each degree of freedom contributes 1
2 kBT to the kinetic energy — it

should be noted that the application of constraints on a simulation reduces the number
of degrees of freedom, and therefore has an impact on the above. There are a number
of methods which aim to impose constant temperature on a simulation, some of which
are described below.

The simplest approach to maintain a constant temperature is to simply rescale the ve-
locities at regular intervals by a factor of

√
T/T(t), where T is the desired temperature

and T(t) is the temperature calculated from the velocities at time, t.154 However, this
method will maintain the temperature exactly constant, with zero fluctuation, which is
incorrect.116 Additionally, this approach can result in ‘hot‘ and ‘cold‘ regions of a sim-
ulation, causing strange and incorrect dynamics.116 It should be noted that algorithms
also exist which apply velocity rescaling in a stochastic fashion which correctly samples
the canonical ensemble.155 A method which allows some fluctuation in the temperature
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is the Berendsen thermostat, which, by considering the system to be in thermal equilib-
rium with a heat bath, causes the temperature to converge exponentially towards the
desired value, rescaling the velocities by the following factor:156

λ2 = 1 +
δt
τT

(
T

T(t)
− 1
)

(2.101)

where τT is a coupling constant, which controls the rate of convergence — if τT = δt,
this method reduces to the simple rescaling approach. However, whilst the Berendsen
thermostat is an improvement over simple velocity rescaling, it still does not sample
the correct canonical ensemble.116

One more rigorous approach is the Andersen thermostat.157 Here it is assumed that
the heat bath periodically emits a hypothetical ‘thermal particle’, which collides with
atoms with the system, transferring kinetic energy. In practice, this involves selecting
a random particle (or group of particles), and replacing the velocity vector with one
drawn randomly from the Maxwell-Boltzmann distribution. The rigour with which
the canonical ensemble is sampled is therefore dependent on the frequency of these
stochastic collisions. A potential concern is that if these collisions are too frequent, dis-
continuous dynamics can result, which may be undesirable for some applications.116

A different approach for constant temperature simulation is the use of Langevin dy-
namics, where the heat bath can be considered as a medium through which the parti-
cles move and ‘collide’, exchanging kinetic energy.116 Here, Eq. 2.92 is replaced with
the following:

Fi = −∇iU(rN)− γmvi + (2γmkBT)
1
2N (2.102)

where γ is the friction coefficient and N is a random vector drawn from a normal
distribution with a mean of 0 and a variance of 1 (also known as a Wiener process).
When γ = 0, the dynamics will be completely deterministic, and the above is reduced
to Eq. 2.92, and in the high friction limit, the above gives Brownian dynamics. Langevin
integrators can be used to simulate at constant temperature, where one such example
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is the BAOAB Langevin integrator (also denoted VRORV):158,159

v(t +
1
2

δt) = v(t)− 1
2m

δt∇U(r(t)) (2.103a)

r(t +
1
2

δt) = r(t) +
1
2

δtv(t +
1
2

δt) (2.103b)

v′(t +
1
2

δt) = e−γδtv(t +
1
2

δt) +
(

kBT
m

(1− e−2γδt)

) 1
2

N (t) (2.103c)

r(t + δt) = r(t +
1
2

δt) +
1
2

δtv′(t +
1
2

δt) (2.103d)

v(t + δt) = v′(t +
1
2

δt)− 1
2m

δt∇U(r(t + δt)) (2.103e)

The first and fifth steps are deterministic velocity updates (denoted ‘B’ or ‘V’), the sec-
ond and fourth steps are deterministic position updates (denoted ‘A’ or ‘R’), and the
third is a stochastic velocity update (denoted ‘O’). These steps can be combined in
any order (ABOBA instead of BAOAB, for example), but the behaviour of different
Langevin integrators is not equivalent.158,159 It has been empirically observed that the
BAOAB variant is of particularly high quality, showing second order accuracy at low
values of γ and fourth order accuracy at high values.158 Additionally, it transpires that
the samples generated using the BAOAB integrator obey the canonical equilibrium dis-
tribution very well.159

Other, more complex methods of temperature regulation also exist, such as the Nosé-
Hoover thermostat.160,161 This method rigorously treats the heat bath as an intrinsic
part of the simulated system, which is counted as an additional degree of freedom.
Such a system is referred to as an ‘extended system’, and a description of this method
is beyond the scope of this section.116

2.5.3 Pressure Control

Just as thermostats are required to carry out simulations at constant temperature, barostats
are required for constant pressure simulations. These algorithms maintain the pressure
of the system by scaling the simulation volume (and particle coordinates). This can be
thought of as connecting the simulated system to a pressure bath via a piston, which
expands or compresses the volume of the system, in order to balance the pressure of
the simulation with that of the bath.116

Analogously to temperature control, there also exist barostat implementations of the
rescaling and Berendsen thermostats, except that these methods involve scaling of the
simulation volume, instead of velocities.156 However, as before, these methods do not
produce the correct fluctuations in the system pressure/volume, and therefore, do not
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sample the NPT ensemble correctly.116 The Andersen barostat is an extended system
method in which the hypothetical piston is considered an additional degree of freedom,
and is able to rigorously sample the NPT ensemble.157 Another rigorous approach is
the Monte Carlo barostat, described in section 2.6.1.117

2.6 Monte Carlo Simulation

Monte Carlo (MC) is a statistical simulation technique which seeks to generate a set of
samples of a given system, according to their equilibrium probabilities. Unlike molec-
ular dynamics, Monte Carlo simulations have no time-dependence, and there is no
requirement to generate a smooth or continuous transition between microstates. These
simulations employ ‘moves’ which involve proposing random changes to the system,
which are then accepted or rejected, according to the equilibrium likelihood of the pro-
posed state. Whilst these simulations offer no dynamic information about a system of
interest, they are able to sample the equilibrium distribution very accurately,116,117 and
offer the ability to sample degrees of freedom beyond particle rearrangements, as dis-
cussed later in this section.

In order to ensure that a simulation remains at equilibrium, the probability distribution
must be stationary. This is typically imposed via the detailed balance condition, which
ensures that, for any pair of microstates, x and y, there is no net flux of probability
between them:

π(x)P(y|x)A(y|x) = π(y)P(x|y)A(x|y) (2.104)

where π(x) is the equilibrium probability of microstate x, P(y|x) is the probability of
proposing a move to y from x, and A(y|x) is the probability of accepting that move.
Therefore, we can use this condition to determine the probability of accepting a given
move proposal, whilst ensuring that the equilibrium distribution is preserved. Eq.
2.104 can be rearranged into the following ratio of acceptance probabilities (also known
as an acceptance ratio):

A(y|x)
A(x|y) =

P(x|y)π(y)
P(y|x)π(x)

(2.105)

However, when deciding whether or not a specific move should be accepted or rejected,
we need to be able to determine the probability of accepting this move, A(y|x), which
we cannot calculate directly. Therefore, we need some expression for the acceptance
probability which satisfies the acceptance ratio above. A solution to this problem is the
Metropolis-Hastings criterion:162,163

A(y|x) = min
[

1,
A(y|x)
A(x|y)

]
(2.106)
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This therefore allows us to compute the probability of accepting a move, without re-
quiring the unknown probability of accepting the reverse move.

In order to ensure that a given move is accepted with the correct probability, the calcu-
lated acceptance probability is compared to a random number drawn from a uniform
distribution between 0 and 1. If the acceptance probability is greater than the random
number, the move is accepted, and the proposed microstate is added to the ensem-
ble and used as the starting point for the next move. Otherwise, the move is rejected
and an additional copy of the initial microstate is added to the ensemble. This pro-
cess generates a Markov chain, in which the probability of generating any microstate
in the chain is dependent only on the previous microstate, with no dependence on the
history of the chain. In the ensemble generated, the microstates are represented accord-
ing to their equilibrium probabilities, so the ensemble average of a property, A, can be
calculated as a simple mean over all microstates:

〈A〉 ≈ 1
M

M

∑
i=1

Ai (2.107)

where M is the number of samples generated, and Ai is the value of the property for the
ith sample. The accuracy of this average increases as the number of samples increases,
and is exact in the limit of infinite sampling.

As an example of how Monte Carlo simulation can be applied in practice, we con-
sider a simple, canonical system of spherical particles. We can simulate this system by
proposing a change in the particle coordinates from rN to rN

new, which is then accepted
or rejected. This can be done by selecting a particle at random, and then applying a
randomly generated translation vector, δr:

δr = ∆max

2ζ1 − 1
2ζ2 − 1
2ζ3 − 1

 (2.108)

where ∆max is the maximum possible translation in any dimension (this is determined
prior to simulation), and ζn are distinct random numbers drawn from a uniform distri-
bution between 0 and 1. Here, the probability of proposing the reverse move (selecting
the same particle at random, and then displacing it by −δr) is equal to that of the for-
ward move, and as such, the acceptance ratio depends only on the probability ratio of
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the two configurations:

A(rN
new|rN)

A(rN |rN
new)

=
πNVT(rN

new)

πNVT(rN)

=
Q−1

NVTΛ−3N(N!)−1e−βU(rN
new)

Q−1
NVTΛ−3N(N!)−1e−βU(rN)

= e−β∆U

(2.109)

where ∆U is the potential energy change associated with the particle displacement. We
then determine the probability of accepting the move, by calculating A(rN

new|rN) using
Eqs. 2.106 and 2.109, and comparing this to a random number drawn from a uniform
distribution between 0 and 1. It should be noted that the proportion of moves which
are accepted (known as the acceptance rate) will be dependent on the value chosen for
∆max. For larger values of this parameter, it becomes increasingly likely that the move
proposals will generate steric clashes between particles, causing a larger percentage of
moves to be rejected (especially for simulations of condensed phases). Conversely, if
the value chosen for ∆max is very small, the acceptance rate will be high, but a very
large number of moves will be needed in order to observe significant changes in the
system. In practice, the value of ∆max should be chosen to optimise this risk-reward
balance.

2.6.1 Pressure Control

Monte Carlo sampling can be used to maintain the pressure of a simulation by propos-
ing random changes in the volume, and then accepting or rejecting these changes, as
appropriate. These moves can be applied at regular intervals during a simulation, to al-
low the volumes to correctly sample the NPT ensemble. Given a microstate containing
N particles with scaled coordinates, sN , within a volume of V, we can propose a change
in volume of ∆V, generating a new volume of Vnew = V + ∆V. It should be noted that
here it is assumed that ∆V is drawn from a uniform distribution over a suitable range,
which is symmetric about zero — this ensures that the probabilities of proposing the
forward and reverse moves are equal. The acceptance ratio for such a move can there-
fore be written as a ratio of the equilibrium probabilities for the two microstates:117

A(Vnew|V)

A(V|Vnew)
=

πNPT(sN ; Vnew)

πNPT(sN ; V)

=
Z−1

NPT βPΛ−3N(N!)−1VN
newe−βPVnew e−βU(sN ;Vnew)dsNdV

Z−1
NPT βPΛ−3N(N!)−1VNe−βPVe−βU(sN ;V)dsNdV

=

(
Vnew

V

)N

e−βP(Vnew−V)e−β∆U

=

(
Vnew

V

)N

e−βP∆Ve−β∆U

(2.110)
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where ∆U is the difference in potential energy caused by the proposed change in vol-
ume. It should be noted that a Monte Carlo barostat could also be implemented by
proposing random changes in the simulation box lengths, or by applying random
changes to the logarithm of the volume, but the acceptance ratio would have to be
modified accordingly.117

2.6.2 Nonequilibrium Candidate Monte Carlo

As previously mentioned, Monte Carlo sampling is often very limited for the simu-
lation of condensed phase systems. The high density of these systems makes it over-
whelmingly likely that, for all but the smallest move proposals, a steric clash will be
created, resulting in rejection. For this reason, only relatively small proposals are typi-
cally attempted, to ensure a significant overlap between the initial and proposed states,
in order to give a reasonable chance of move acceptance. This approach is highly prob-
lematic for the sampling of transitions between microstates with high probabilities that
are separated by potential energy barriers, as the intermediate microstates will likely
never be sampled within a finite simulation time. Additionally, if a concerted motion is
required, it becomes overwhelmingly unlikely that the sequence of proposals required
are all randomly attempted (and accepted) in order. Nonequilibrium candidate Monte
Carlo (NCMC) is a method which attempts to resolve this issue by increasing the ac-
ceptance probabilities of large transitions between high probability microstates.115

The core concept of this method is that a large move is proposed (such as rotation of
a restricted dihedral, for example), and this move is broken into a series of smaller
perturbations, from which the combined effect gives the large proposal.115 The per-
turbation steps are separated by relaxation steps, which allows the system to relax
in response to the perturbation. This resolves the issues typically presented by large
move proposals in MC simulations, by allowing the environment to adapt to the pro-
posal, thereby greatly reducing the likelihood that the proposal results in steric clashes.
NCMC has been applied to improve the sampling of ligand binding modes,164–166 ro-
tation about restricted dihedrals,167 fluctuations in salt concentration,168 water bind-
ing169 and changes in protonation states.170,171 In some of these cases, the use of NCMC
has been found to improve the acceptance rates of large moves by many orders of mag-
nitude, relative to traditional Monte Carlo moves.164,168

Each NCMC move is separated into a series of perturbation steps (denoted an), in which
work is done on the system to drive a change in a particular direction, and propaga-
tion steps (denoted Kn), where the system releases heat as it relaxes in response to the
perturbation. The order in which these steps are applied is referred to as the move pro-
tocol, Λp = {a1, K1, . . . , aT, KT}. When this protocol is applied to a state, x0, (where x
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represents all positions, momenta and any other simulation parameters which are sub-
ject to change), a sequence of microstates (or path) is generated, X = {x0, x1, . . . , xT}.
The forward move can therefore be represented as:

x0
a1−→ x∗1

K1−→ x1 → · · · → xT−1
aT−→ x∗T

KT−→ xT (2.111)

where x∗n is generated by perturbing xn−1. The detailed balance condition requires that
there must be a non-zero probability of selecting the reverse protocol, Λ̃p, in which the
sequence of perturbation and propagation steps is the reverse of Λp, such that when
applied to x̃T (where the tilde indicates that the momenta have been reversed) the re-
verse sequence of microstates, X̃, is generated, returning the system to x0. In order to
preserve the equilibrium distribution, the momenta must be reversed upon either ac-
ceptance or rejection.172,173

The probabilities of each step in the protocol must all be accounted for, arriving at the
following, highly generalised, acceptance ratio:

A(X|Λp)

A(X̃|Λ̃p)
=

P(Λ̃p|x̃T)

P(Λp|x0)

α(X̃|Λ̃p)

α(X|Λp)

π(x̃T)

π(x0)
e−∆S(X|Λp) (2.112)

where P(Λp|x0) is the probability of selecting protocol Λp from x0, α(X|Λp) is the cu-
mulative probability of each perturbation step from the forward move, and ∆S(X|Λp)

is the conditional path action difference (where the conditional path action is the neg-
ative natural logarithm of the conditional path probability174). The latter two terms
are related to the probabilities of the individual perturbation and propagation steps as
follows:

α(X̃|Λ̃p)

α(X|Λp)
=

T

∏
t=1

at(x̃∗t , x̃t−1)

at(xt−1, x∗t )
(2.113)

e−∆S(X|Λp) =
T

∏
t=1

Kt(x̃t, x̃∗t )
Kt(x∗t , xt)

(2.114)

where at(xt−1, x∗t ) is the probability of generating x∗t by applying perturbation at to
xt−1, and, similarly, Kt(x∗t , xt) is the probability of generating xt by applying propaga-
tion Kt to xt−1. It should be noted that the acceptance ratio above, derived by Nilmeier
et al., is based on a strict, pathwise form of detailed balance, which reduces to the tra-
ditional detailed balance condition if all possible trajectories/paths between x0 and x̃T

are accounted for.115

It should be noted that Eq. 2.112 is a highly generalised form of the acceptance ra-
tio, and, when applied in practice, is typically much less complex, owing to a number
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of simplifications which can typically be made, depending on the specific implementa-
tion. For example, if the forward and reverse protocols are selected with equal probabil-
ity, then P(Λp|x0) = P(Λ̃p|x̃T), and these terms thus cancel. If the perturbation kernels
are applied in a deterministic fashion, it typically transpires that α(X|Λp) = α(X̃|Λ̃p),
though this is not necessarily the case if there is a stochastic element to the perturba-
tions.

The method used for propagating the system during the relaxation phases can also
have a significant impact on the acceptance criterion. If the propagation steps are de-
terministic (as they would be if using velocity Verlet integration, for example), then
Kt(x∗t , xt) = Kt(x̃t, x̃∗t ), and the conditional path action difference evaluates to zero, so
the exponential of this term can be safely omitted. However, if the propagation steps
are carried out using an equilibrium-preserving method (such as Monte Carlo sam-
pling, for example), then the conditional path action difference is related to the heat,
Q(X|Λp), released over the course of the forward move, as ∆S(X|Λp) = −βQ(X|Λp).
The heat and work associated with the forward move are calculated as:115,175

W(X|Λp) =
T

∑
t=1

[E(x∗t )− E(xt−1)] (2.115)

Q(X|Λp) =
T

∑
t=1

[E(xt)− E(x∗t )] (2.116)

When these various simplifications are combined, the acceptance ratio is typically much
more compact than Eq. 2.112. For the full derivation of these terms and further details
on the underlying theory of NCMC, the 2011 publication by Nilmeier et al. is highly
recommended.115

2.6.3 Grand Canonical Monte Carlo

Here, the theory underpinning grand canonical Monte Carlo (GCMC) is described,
along with some of the free energy analyses that can be performed using GCMC simu-
lations.104,105

2.6.3.1 Acceptance Criteria

Monte Carlo simulations are the primary method of simulating the grand canonical
ensemble,21,99–105,107–109 as they provide a convenient way to allow the number of par-
ticles in a simulation to vary according to an imposed chemical potential. This is im-
plemented via the inclusion of Monte Carlo moves which insert and delete particles
to/from the system, in a theoretically rigorous manner. This section shows how the
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acceptance criteria for these moves can be derived.117

We begin with the derivation of a particle insertion move, in which we increase the
number of particles in the system from N to N + 1, by translating a particle from the
ideal gas reservoir. We again make use of the treatment of the combined system and
ideal gas reservoir as a large canonical ensemble, as described in section 2.2.3. The
particles in the system and the reservoir are identical, with the only difference being
that particles exhibit intermolecular interactions when in the system, but not when in
the reservoir — when an ideal particle is inserted into the system, it becomes ‘real’
(i.e. exhibits interactions with other particles), and conversely, when a ‘real’ particle is
moved to the ideal gas reservoir, it becomes ideal. Here, the equilibrium probability of
a microstate containing N particles in the system and M− N particles in the ideal gas,
with position vectors, rN and rM−N , respectively, is given by:

π(rN , rM−N) = Q−1
MVTΛ−3NΛ−3(M−N)e−βU(rN)drNdrM−N (2.117)

At any point in time, the particles in the ideal gas are indistinguishable from each other
(as are those in the system), but the M−N identical ideal particles can be distinguished
from the N identical particles in the system. In the above, the factorial terms have
been dropped, as this gives the probability of observing any arrangement of identical
particles at those positions, and is therefore independent of arbitrary particle labelling
schemes — note that this step is not necessary for the derivation, but makes the rest of
this section more intuitive. The forward move involves translating one of the M − N
ideal gas particles to a random point (with infinitesimal volume, dr) in the simulated
system, with the following probability of proposal:

P(rN+1|rN) =
1
2

1
M− N

dr
Vsys

(2.118)

where the first term is because insertion and deletion moves are equally likely, the sec-
ond arises from selecting one particle at random from M− N particles, and the third is
owing to the probability of selecting a particular position being inversely proportional
to the accessible volume. Conversely, the reverse move involves selecting one of the
N + 1 particles from the proposed microstate, and translating it to a random point in
the ideal gas, with the following probability of proposing the initial microstate:

P(rN |rN+1) =
1
2

1
N + 1

dr
Videal

(2.119)
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These terms can be combined with the equilibrium probabilities of the initial and pro-
posed microstates to calculate the acceptance ratio:

A(rN+1|rN)

A(rN |rN+1)
=

P(rN |rN+1)

P(rN+1|rN)

π(rN+1, rM−N−1)

π(rN , rM−N)

=
drV−1

ideal(N + 1)−1

drV−1
sys (M− N)−1

Q−1
MVTΛ−3(N+1)Λ−3(M−N−1)e−βU(rN+1)drN+1drM−N−1

Q−1
MVTΛ−3NΛ−3(M−N)e−βU(rN)drNdrM−N

=
M− N
Videal

Vsys

N + 1
e−β∆U

(2.120)

where ∆U is the potential energy change associated with the particle insertion. As M
goes to infinity, the number density of the ideal gas can be substituted as:

lim
M→∞

M− N
Videal

= ρideal (2.121)

The number density is related to the chemical potential of the ideal gas as shown in
Eq. 2.64, which allows the acceptance ratio to be re-written in terms of the chemical
potential:

A(rN+1|rN)

A(rN |rN+1)
=

1
N + 1

Vsys

Λ3 eβµe−β∆U (2.122)

We can then introduce the Adams parameter:99,100

B = βµ + ln
(

Vsys

Λ3

)
(2.123)

which allows the acceptance ratio to be written more simply, as:

A(rN+1|rN)

A(rN |rN+1)
=

1
N + 1

eBe−β∆U (2.124)

Similarly, the acceptance ratio for a deletion move, which decreases the number of par-
ticles in the system from N to N − 1, can be derived to be the following (the derivation
is not given here, to avoid repetition of many of the steps above):

A(rN−1|rN)

A(rN |rN−1)
= Ne−Be−β∆U (2.125)

where ∆U here is the potential energy associated with the deletion of a particle. Note
that in both cases, the acceptance ratio has no explicit dependence on the ideal gas
reservoir, meaning that the ideal gas need not be simulated.117 In order to allow this,
any non-translational degrees of freedom must be accounted for. For example, water
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molecules in the ideal gas will show uniformly distributed orientations, and when in-
serting a water molecule in a GCMC simulation, a random orientation must therefore
be generated, in order to replicate the orientation that the water would have in the ideal
gas. It should also be noted that the derivation presented in this section can be carried
out differently, whilst arriving at the same result.117 The derivation presented here is
that thought to be most intuitive.

2.6.3.2 Calculation of Water Network Binding Free Energies

The chemical potential at which water sites are observed in a GCMC simulation is re-
lated to their stability.104 For example, a very tightly bound water molecule would re-
quire a significant reduction in the chemical potential of the simulation in order to make
the deletion favourable. This section describes how a set of simulations at a range of
different chemical potentials can be used to perform a free energy analysis on the wa-
ters present in a particular region of interest — these calculations are known as titration
calculations. An advantage of GCMC in this regard, is that cooperative effects between
waters are captured implicitly.

The calculation of the free energy change associated with transferring waters from the
ideal gas to the system was first presented by Ross et al., and can be separated into the
following:104

∆Ftrans = ∆Fsys − ∆Fideal (2.126)

where ∆Fsys is the Helmholtz free energy difference associated with changing the num-
ber of waters in the system, and ∆Fideal is the difference of changing the number of
waters in the ideal gas. In the thermodynamic limit, the Helmholtz free energy is re-
lated to the grand potential via:143

FNVT = ΩµVT + Nµ (2.127)

Which allows the free energy change of the system to be written in terms of the grand
potential and the chemical potential:

∆Fsys(Ni → N f ) = ∆Ωsys(µi → µ f ) + N f µ f − Niµi (2.128)

where µ f is the chemical potential at which N f waters are observed, on average. The
partial derivative of the grand potential with respect to the chemical potential is the
negative of the particle number (Eq. 2.41), meaning that the change in the grand poten-
tial can therefore be calculated by the following integral:

∆Ωsys(µi → µ f ) = −
∫ µ f

µi

N(µ)dµ (2.129)
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Substituting this into the above gives an expression for the change in free energy of the
system:

∆Fsys(Ni → N f ) = N f µ f − Niµi −
∫ µ f

µi

N(µ)dµ

= kBT
{

N f B f − NiBi − (N f − Ni) ln
(

Vsys

Λ3

)
−
∫ B f

Bi

N(B)dB
}

(2.130)

The free energy of an ideal gas containing N particles is given in Eq. 2.61, from which
the difference in ideal gas free energy between N f and Ni waters can be written as:

∆Fideal(Ni → N f ) = kBT ln
(

N f !
Ni!

)
− kBT(N f − Ni) ln

(
Videal

Λ3

)
(2.131)

This can be combined with the change in system free energy to give the transfer free
energy:

β∆Ftrans(Ni → N f ) = N f B f − NiBi + ln
(

Ni!
N f !

)
− (N f − Ni) ln

(
Vsys

Videal

)
−
∫ B f

Bi

N(B)dB

(2.132)
Note that this is not exactly the same expression as given for β∆Ftrans by Ross et al.,104

as here we have not assumed the volumes of the system and ideal gas to be equal.

However, we are more interested in the difference in binding free energy, ∆Gbind, be-
tween two water networks containing N f and Ni water molecules, respectively. Using
the thermodynamic cycle shown in Fig. 2.1, this quantity can be calculated from the
transfer free energy as:105

∆Gbind = ∆Ftrans + ∆Fideal − ∆Gsol (2.133)

where ∆Gsol is the free energy change associated with changing the number of waters
in bulk solution — note that the differences between Helmholtz and Gibbs free energies
are assumed to be negligible. The free energy change in the bulk solvent is given by:

∆Gsol(Ni → N f ) = (N f − Ni)µsol

= (N f − Ni)
(
µex

sol + kBT ln(ρsolΛ3)
) (2.134)

where µsol and ρsol are the chemical potential and number density of bulk water, re-
spectively. Eqs. 2.131, 2.132 and 2.134 can therefore be substituted into Eq. 2.133:

β∆Gbind(Ni → N f ) = N f B f − NiBi − (N f − Ni)
{

βµex
sol + ln

(
ρsolVsys

)}
−
∫ B f

Bi

N(B)dB

(2.135)
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FIGURE 2.1: Thermodynamic cycle for the calculation of the binding free energy of
waters to a GCMC region. The columns represent different environments, with bulk
water on the left, the simulated system (a protein binding site, for example) in the
centre, and an ideal gas on the right. The top row represents fully dehydrated GCMC
regions, and the bottom row represents hydrated GCMC regions. Image based on Fig.

1.5 in the thesis of Dr Hannah Bruce Macdonald.176

Under standard state conditions, we take ρ◦sol = 1/V◦, where V◦ is the standard state
volume of water. The above can therefore be re-written as a difference in standard state
binding free energies:105

β∆G◦bind(Ni → N f ) = N f B f − NiBi − (N f − Ni)

{
βµex

sol + ln
(

Vsys

V◦

)}
−
∫ B f

Bi

N(B)dB

(2.136)

Free energies calculated using Eq. 2.136 have been found to be in excellent agreement
with those calculated using double decoupling, at reduced computational cost (the in-
crease in efficiency is greater for larger water networks).105 Whilst multiple references
have been made to the thermodynamic limit in this derivation, it was verified by Ross
et al. that these relationships are also valid for very small values of N.104,105 Further
details on the derivations presented in this section can be found in the relevant publi-
cations by Ross et al. 104,105

It should be noted that multiple references have been made above to the integral of
the number of waters observed as a function of the Adams value. Given that the data
obtained from a set of GCMC titration data is not a simple function of B, we must
make some approximations to calculate this integral from numerical data. In the limit
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of infinite sampling, N(B) increases monotonically with B, and it transpires that this
data is well represented by a sum of sigmoid functions:104

N(B) ≈
m

∑
i=1

ni

1 + exp(w0,i − wiB)
(2.137)

where m is the number of sigmoids, and ni, w0,i and wi are the parameters of the ith sig-
moid. The value of m is chosen with some degree of user judgement, but a convenient
rule of thumb is to set m to the number of ‘steps’ observed in a plot of N(B) against B.
A benefit of fitting this set of sigmoids, is that the integral of the fitted curve can then
be calculated analytically:104

∫ B f

Bi

N(B)dB ≈
m

∑
i=1

ni

wi
ln

(
ewi B f + ew0,i

ewi Bi + ew0,i

)
(2.138)

This therefore allows the integral to be calculated with relative ease.

2.6.3.3 GCMC Simulations at Equilibrium

The number of waters observed in a particular region, when in equilibrium with bulk
water, could be determined by running a full titration calculation, and then determin-
ing the value of N which produces the lowest value of ∆G◦bind(N). However, this would
require simulations at a large number of chemical potentials, over a range which is not
known a priori. For this reason, it is of great use to be able to determine the Adams
value at which equilibrium behaviour will be observed, Bequil .

As mentioned above, the point of equilibrium is defined by a minimum in ∆G◦bind(N),
with respect to N, where the derivative will be zero:105

∂∆G◦bind(N)

∂N
= 0 (2.139)

Here, it is convenient to write the standard binding free energy as the following (see
Fig. 2.1):

∆G◦bind(N) = ∆Fsys(N)− ∆G◦sol(N) (2.140)

where the superscripts indicate that the free energies are referenced to the standard
state. We can also write ∆Fsys as:

∆Fsys(N) =
∫ N

0
µsys(N) dN (2.141)
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where the above holds in the thermodynamic limit.104,105 This can then be substituted
back into the expression for the standard binding free energy:

∆G◦bind(N) =
∫ N

0
µsys(N) dN − Nµ◦sol (2.142)

where µ◦sol is the standard state chemical potential of bulk water. The above can now
be easily differentiated with respect to the number of waters:

∂∆G◦bind(N)

∂N
= µsys − µ◦sol (2.143)

which shows that at the free energy minimum, the chemical potential of the system
must be equal to the standard state chemical potential of bulk water, thereby establish-
ing this as a condition for equilibrium.105 Therefore, the value of the Adams parameter
(Eq. 2.123) at equilibrium can be determined from the standard state chemical potential
of bulk water:

Bequil = βµ◦sol + ln
(

Vsys

Λ3

)
= β

(
µex

sol + kBT ln
(

Λ3

V◦

))
+ ln

(
Vsys

Λ3

)
= βµex

sol + ln
(

Vsys

V◦

) (2.144)

This value of the Adams parameter can then be used to run a single simulation in which
the GCMC region will demonstrate equilibrium behaviour with bulk water.105 The ex-
cess chemical potential and standard state volume of bulk water are therefore required
parameters for an equilibrium GCMC simulation.

It is important to note that Eq. 2.141 is only exact in the thermodynamic limit, and
it has not yet been theoretically demonstrated that the resulting expression for Bequil

(Eq. 2.144) holds for small values of N. In practice, however, the average number
of waters observed in a single simulation at Bequil is in agreement with the value of N
which corresponds to a minimum in the water network binding free energy (see data in
chapter 4), indicating that this result also applies away from the thermodynamic limit.

2.6.3.4 Accounting for the Non-Spherical Nature of Water

All discussion of partition functions and chemical potentials in this chapter have been
with respect to a system of spherical particles, for simplicity. However, for systems of
non-spherical molecules, terms must be included to account for the additional, non-
translational degrees of freedom of the molecules. The ideal partition function for a
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system containing N molecules can be written as:177

Qid
NVT =

(qid)N

N!
(2.145)

where qid is the ideal partition function for a single molecule under identical conditions,
and can be written as a product of the following terms:177

qid = qtransqrotqvib (2.146)

where these are the partition functions associated with integrating all translational, ro-
tational, and vibrational degrees of freedom, respectively, for an ideal molecule. The
translational component of the molecular partition function has been presented al-
ready:

qtrans =
V
Λ3 (2.147)

The vibrational partition function can be safely ignored here, as in the vast majority
of modern simulations, water molecules are constrained, and therefore have no vibra-
tional degrees of freedom, giving qvib = 1. However, the rotational partition function,
qrot cannot be neglected for a molecule such as water. This therefore affects the chemical
potential of water:178

µid =
∂Fid

∂N

= −kBT
∂

∂N
ln
(
(qid)N

N!

)
= −kBT ln

(
qid

N

)
= −kBT ln

(
Vqrot

NΛ3

)
= kBT ln

(
ρidealΛ3

qrot

)
(2.148)

For molecules more complex than water (or a flexible model of water), the qvib term
would be included alongside qrot. Note that the effects of intermolecular interactions
on each of these degrees of freedom are absorbed into the excess chemical potential,
which must be calculated numerically (section 2.3.2).

Whilst the rotational partition function should strictly be accounted for in GCMC, it
transpires that this term can be absorbed into the Adams value, and when determin-
ing the value of Bequil , qrot is cancelled exactly. Additionally, this term also cancels in
the derivation of the water network binding free energies. Therefore, when GCMC is
carried out via the Adams value (as is standard practice for many) the neglect of the ro-
tational partition function has no impact. The proof for the cancellation of qrot is given
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in appendix A.

2.7 Summary

This chapter has provided a theoretical foundation for the methods which were used in
the work presented in the rest of this thesis. The focus of this thesis is simulation of the
grand canonical ensemble, and as such, the theory underlying both this ensemble and
how it can be simulated and analysed in a Monte Carlo context, has been discussed
in detail. Chapter 3 demonstrates how GCMC can be combined with MD sampling,
yielding simulations referred to as GCMC/MD. In chapter 4, GCMC/MD titrations are
carried out, in order to determine binding free energies of water networks to a protein
of interest, using Eq. 2.136. The theory relating to NCMC is referenced extensively
in chapter 5, where this technique is used to enhance the acceptance rates of GCMC
moves by allowing water insertions and deletions to be applied in an adaptive fash-
ion — this technique is referred to as grand canonical nonequilibrium candidate Monte
Carlo (GCNCMC). This proves very useful in chapter 6, where GCNCMC allows the
insertion and deletion of benzene molecules, which is extremely difficult using conven-
tional GCMC moves.
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Chapter 3

Development of the grand Python
Module

3.1 Introduction

Molecular dynamics simulations can be carried out in the isothermal-isobaric (NPT)
ensemble by periodically updating the volume of the simulation according to the im-
posed pressure, via the use of a barostat. The volume is fixed between these updates,
so the simulation trajectory is strictly a concatenation of many short canonical trajec-
tories with different volumes. If the time between volume updates is short, relative
to the total length of the simulation, the simulated equilibrium distribution should
be indistinguishable from that of the NPT ensemble. A similar concept can be used
to carry out MD simulations in the grand canonical ensemble, where, instead of up-
dating the volume according to the pressure, the number of particles is updated ac-
cording to the chemical potential. Grand canonical Monte Carlo (GCMC) moves (as
described in detail in section 2.6.3) are a convenient way to allow the particle number
to vary according to the equilibrium distribution.143 Therefore, simulations can sam-
ple the grand canonical ensemble by interspersing canonical molecular dynamics with
GCMC particle insertion and deletion moves — here, such simulations are referred to
as GCMC/MD. However, it should be noted that this work is not the first application
to combine molecular dynamics with GCMC sampling in this way.107

As previously mentioned, during this work, the aims were not only to apply GCM-
C/MD simulations to systems of interest, but also to expand upon the existing theory
and methodology, in order to extend the applicability of this method. Therefore, it was
determined that this work would be best served by the development of a new software
package which could be used as a foundation for any such advances. For this rea-
son, a Python module, named grand,113 was developed, which serves as a ‘bolt-on’ tool
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to carry out GCMC sampling of water molecules during molecular simulations using
the OpenMM simulation engine.114,179 OpenMM was chosen for this purpose as it has
a growing user base and, more importantly, the highly versatile Python applied pro-
gramming interface (API) makes it very well suited to the development of prototype
code for the incorporation of novel ideas into molecular simulations.114,179

In this chapter, the implementation of GCMC sampling in the grand module is de-
scribed, along with the results of a series of tests performed to validate this imple-
mentation. A number of tests were carried out using simulations of bulk water, as this
serves as a simple, homogeneous test case. It should be noted, however, that the bulk
water tests performed are not trivial, as they are much larger than the protein binding
sites for which the GCMC implementation in grand is intended, and therefore require
significantly more sampling in order to observe sufficient fluctuations in the particle
number. This increased size means that any theoretical or methodological errors in
grand should be exacerbated by the size of these systems. Finally, grand was applied
to a protein system, in order to verify that stable waters within a binding site can be
correctly inserted.

3.2 Implementation

The implementation of GCMC sampling of water molecules in grand is largely based
on that of the ProtoMS software package.180 However, practical considerations have
dictated a number of changes in implementation, which are described in this section.
These differences primarily arise from those between MC and MD sampling of protein
systems.

In ProtoMS, the GCMC region sampled is defined as a cuboid centred on a particular
point in Cartesian space.104,180 This is feasible because (as previously stated) large-scale
translations and rotations of the protein are highly unlikely, and as such, the position
and orientation of the GCMC region, relative to the protein, are practically constant.
However, in MD simulations, large-scale protein motions are a common occurrence, so
the definition of the GCMC region must be adapted accordingly. Therefore, in grand,
the GCMC region is defined as a sphere, centred on the mean coordinate of a subset
of protein atoms (chosen by the user). The use of a sphere ensures that the region of
the protein covered is independent of protein rotation, and the use of reference atoms
attaches the region to the protein, rather than to a fixed point in space.

In the ProtoMS implementation of GCMC, water molecules can only enter or leave the
GCMC region via insertion/deletion moves, as translation is blocked by so-called ‘hard
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wall’ constraints — this involves applying a large, sudden energy change as soon as a
water crosses the boundary, resulting in the rejection of such moves. These constraints
are not easily implemented in MD simulations, as discontinuous energy surfaces are
problematic for the calculation of forces. An alternative approach is the use of ‘soft
wall’ restraints, in which a half-harmonic function could be used to repel waters which
attempt to move in or out of the GCMC region via translation. However, Newton’s
third law dictates that for every force applied, there must also exist an equal and op-
posite force. This opposite force, if resolved onto the protein, could result in artificial
dynamics which would distort the simulation. Therefore, it was deemed least objec-
tionable to not prevent waters from translating across the boundaries of the GCMC
region in grand. This is not expected to present a problem for simulations at Bequil , but
it could be problematic for GCMC titrations. For example, at very low B values, where
deletion moves are favoured, the deleted waters may be continually replaced by those
diffusing from bulk water, preventing the GCMC region from being dehydrated.

It should also be noted that, by default, long-range corrections to the Lennard-Jones in-
teractions are disabled in grand. This is because the Lennard-Jones interactions require
softcore potentials to prevent singularities from occurring when ‘ghost’ waters (those
which are non-interacting, owing to their having been deleted or not yet inserted) over-
lap with other particles. This is implemented via a CustomNonbondedForce object in
OpenMM, which are not able to utilise the analytical calculation of the long-range cor-
rection, and must therefore calculate this numerically. Whilst this numerical solution
has been written very efficiently to prevent unnecessary repeated calculations, these ef-
ficiency measures are upset whenever the simulation parameters are changed (such as
the attempted insertion or deletion of a water molecule), which triggers a recalculation
of the entire solution. Therefore, the use of long-range Lennard-Jones corrections be-
comes very expensive with GCMC/MD as implemented in grand, and so the decision
was made to neglect this contribution.

Another key difference between grand and ProtoMS is that, unlike MC simulations, MD
requires that all particles in the system have an associated momentum vector. After a
batch of GCMC moves during a GCMC/MD simulation, the system momenta are un-
changed, except for any water molecules introduced by GCMC insertions, whose mo-
menta should be random (as they would have been in the ideal gas, prior to insertion).
In the latest development version of grand (which has not yet been publicly released,
as of the time of writing), random velocities (drawn from the Maxwell-Boltzmann dis-
tribution, using the native OpenMM functionality) are explicitly assigned to waters
upon insertion. In earlier versions of grand, inserted waters would retain the velocities
which they possessed prior to insertion — as the waters would have been ‘ghosts’ prior
to insertion, the velocities sampled would be effectively random, owing to the lack of
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intermolecular interactions. In any case, it is expected that the velocities of inserted
particles would have minimal effect on the simulated behaviour, as they would likely
be quickly decorrelated from these values by the effect of interactions with their envi-
ronment, and the stochastic updates made by the Langevin integrator (section 2.5.2).

3.2.1 Software Details

One of the primary benefits of the OpenMM simulation engine is the control over the
simulation afforded to the user by the Python API. It was intended that grand would
serve as a Python module which could be imported into a Python script describing an
OpenMM simulation with minimal disruption, in order to preserve as much user con-
trol as possible. It was also decided that the amount of additional knowledge required
to use grand should be minimal for a user who is already familiar with OpenMM. For
this reason, the vast majority of the underlying GCMC operations (such as generating
microstates and determining whether or not they should be accepted) and tracking of
appropriate variables are handled ‘under the hood’ by a set of Sampler Python objects,
with which the user can interact at a relatively high level, without requiring any spe-
cialist knowledge or mathematical understanding of GCMC.

A Sampler object must first be initialised with the information needed to carry out
GCMC moves. This includes GCMC-specific data, such as a definition of the GCMC
region (a sphere can be defined via a radius and a set of reference atoms, or the entire
simulation volume can be used), as well as the values of the excess chemical potential
and standard state volume of water, from which the value of Bequil is determined —
alternatively, the user can override the calculation of Bequil with a chosen value for the
Adams parameter. A number of more general parameters, including the temperature
and system-specific information (such as the topology) must also be supplied. Once
the Sampler object has been created, the particle coordinates must be supplied, along
with the identities of non-interacting (‘ghost’) waters (grand includes a function to add
ghost waters to a system), so that their interactions are not counted. From this point,
GCMC sampling can be easily carried out at any point in the simulation, by running
the Sampler.move() function, which will execute a prescribed number of GCMC moves
on the system, from which molecular dynamics (or other OpenMM functionalities) can
be applied to the new system configuration. This allows the user to still use OpenMM
as they normally would, but with the additional ability to carry out GCMC sampling
on their system, with the flexibility of applying any amount of GCMC in combination
with any amount of molecular dynamics. Additionally, grand also includes a number of
functions to support analysis of GCMC/MD simulations, including simple trajectory
processing, and clustering of water sites. In order to facilitate usage of grand, a number
of example scripts demonstrating different ways in which the module can be used are
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provided on the GitHub page (see below).

The grand module113 is released under the MIT licence and is freely available for down-
load (along with example scripts) at https://github.com/essex-lab/grand. Alterna-
tively, the module can be downloaded and installed using conda via the following
command:

conda install -c omnia -c anaconda -c conda-forge -c essexlab grand

3.3 Simulation Details

The following simulation conditions were used for all simulations presented in this
chapter. The AMBER ff14SB and TIP3P force fields were used to model the protein181

and water,182 respectively, with the Joung-Cheatham parameters used for neutralising
ions.183,184 Nonbonded interactions were subjected to a cutoff of 12 Å, with a switch-
ing function applied between 10 and 12 Å, and PME was used to calculate the effect of
long-range electrostatic interactions.142 All simulations were carried out at 298 K, using
the BAOAB Langevin integrator (γ = 1 ps-1, δt = 2 fs) to integrate the dynamics and
control the temperature.158 All bonds involving hydrogen were constrained to their
equilibrium values, using the SHAKE algorithm for the protein,185,186 and the SETTLE
algorithm for water.187 All simulations were performed at constant volume, unless ex-
plicitly stated otherwise — where constant pressure simulations were performed, the
pressure was set to 1 bar and regulated using a Monte Carlo barostat, with volume
changes attempted every 25 timesteps. All GCMC/MD simulations were carried out at
the appropriate Bequil value, calculated using µex

sol = −6.09 kcal mol-1 and V◦ = 30.345
Å3 (as determined in section 3.3.1), unless explicitly stated otherwise. All simulations
used version 7.2.2 of OpenMM114,179 and version 1.0.0 of grand.113

3.3.1 Thermodynamic Parameters

The accuracy of GCMC/MD simulations is dependent on the values of the excess chem-
ical potential, µex

sol , and the standard state volume of water, V◦, as these parameters de-
fine the reference state with which the simulated system is in equilibrium — a change
in these parameters would correspond to a change in reference state. The values of the
excess chemical potential and standard state volume can be calculated as the hydration
free energy of water and the volume per water molecule, respectively. Experimentally,
these values have been reported as −6.324 kcal mol-1 and 30.003 Å3,188,189 where the
latter is calculated from the density of bulk water. In order to ensure self-consistency in
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the event of discrepancies between simulated and experimental behaviour, these val-
ues were also determined computationally.

The hydration free energy of water was calculated by alchemically decoupling a water
molecule from bulk, over 30 equally-spaced λ values from 1 to 0. For each independent
repeat, 1000 potential energy samples were collected for each value of λ, with 10 ps of
constant pressure MD carried out between samples — resulting in a total of 300 ns of
simulation time per repeat. The data were processed to remove correlated samples190

and the free energy was then calculated via the MBAR method,149 using the functions
provided in the pymbar Python module.191 The calculation of the standard state volume
of water is significantly simpler. Each independent repeat was simulated for 50 ns of
constant pressure MD, with the average volume per water molecule sampled every 5
ps.

For both sets of simulations, a box of pre-equilibrated water, containing 2094 water
molecules at a density of 0.978 g mL-1, was used as the starting structure. In each case,
the number of independent repeats carried out was increased until the standard error
in the mean was judged to be sufficiently small.

3.3.2 Bulk Water Density

In order to assess the accuracy of the GCMC implementation, simulations were carried
out to calculate the density of bulk water, where fluctuations in the density arise from
variation in the number of waters in the system, at fixed volume. These simulations
were compared to results from constant pressure simulations, in which fluctuations in
the density are caused by variations in the volume, for a fixed number of particles. The
NPT simulations were carried out for 100 ns, with the density sampled every 0.5 ns.
The GCMC/MD simulations were also carried out for 100 ns, with 125 GCMC moves
attempted every 250 fs, and densities recorded every 0.5 ns — in these simulations,
the entire system volume was subjected to GCMC sampling. GCMC/MD simulations
were carried out using the experimental values of µex

sol and V◦ (Bequil = −3.039), and
also with those calculated in this chapter (Bequil = −2.655).

Additional, shorter simulations were carried out to further test the GCMC/MD imple-
mentation. In order to test the ability of GCMC/MD to equilibrate the density of a
water box, simulations were run with initial densities of 0.804 and 1.199 g mL-1. The
sensitivity of the density to the value of the excess chemical potential was also tested
by setting this parameter to −6.15, −6.20 and −6.25 kcal mol-1. Each of these simula-
tions were run for 25 ns, with densities reported every 0.1 ns, with an additional set of
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equivalent NPT simulations run for comparison with these results.

In each case, three independent runs were carried out, each starting from a pre-equilibrated
water box containing 2094 water molecules at a density of 1.004 g mL-1 — except the
GCMC/MD simulations where the equilibration of the density was tested, in which
the initial number of water molecules was changed to give the densities stated.

3.3.3 Ensemble Validation

An additional, more rigorous test can be carried out to verify that the grand canonical
ensemble is sampled correctly, using the method reported by Shirts.192 This method
involves comparing the probability distributions of some observable sampled under
two different sets of thermodynamic conditions. For the grand canonical ensemble, the
probability distribution in which we are interested is that of the particle number, which,
for a given value of µ, is distributed as follows:

π(N|µ) = Ξ−1

∫
e−βU(rN)drN

Λ3N N!
eβµN (3.1)

where the above is obtained by integrating the probability density (Eq. 2.58) over all
configurations containing N particles. For two ensembles which differ only in the value
of the chemical potential, the dependence on the unknown configurational integrals
can be removed by taking the ratio of the probability distributions:

π(N|µ2)

π(N|µ1)
=

Ξ−1
2

Ξ−1
1

eβ(µ2−µ1)N (3.2)

Taking the natural logarithm of this ratio yields a linear relationship with respect to N:

ln
(

π(N|µ2)

π(N|µ1)

)
= ln

(
Ξ−1

2

Ξ−1
1

)
+ β(µ2 − µ1)N (3.3)

where the gradient of the line is equal to β(µ2 − µ1). Therefore, when two histograms
of N are plotted from two simulations at different chemical potentials, if the natural
logarithm of the probability ratio is plotted for the values of N in the overlapping re-
gion, then the gradient should yield this result, if the ensemble is sampled correctly.192

The chemical potential values should be chosen to be sufficiently close that their dis-
tributions overlap well, but also sufficiently different that the distributions are distinct.
As the samples of N collected are integers, there is no error introduced to the analysis
from the choice of histogram bin width, provided that the width is set to 1.
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For this analysis, GCMC/MD simulations were carried out on a bulk water system
containing 2094 water molecules in a volume of (40.004 Å)3, under the same conditions
as those described in section 3.3.2, except that data were saved every 100 ps, instead of
every 500 ps. Simulations were performed at B1 = Bequil = −2.630 and B2 = −2.672
(both rounded to 3 decimal places), corresponding to a difference in chemical potential
of 0.025 kcal mol-1. For each of these B values, 10 independent repeats were carried out
from the same starting structure.

3.3.4 Bovine Pancreatic Trypsin Inhibitor

As the ultimate aim of the grand module is to support the sampling of water molecules
buried within protein structures, bovine pancreatic trypsin inhibitor (BPTI) was also
simulated, based on a buried pocket containing three waters, which has previously
been used to validate GCMC results.104,105 The three water sites have been found to be
very stable,105 and should be well reproduced.

The starting structure for the protein was taken from the Protein Data Bank,31,32 with
structure ID 5PTI.193 Side chain issues were resolved by selecting the more occupied
conformation, and all hydrogen atoms were removed, then re-added using the Mod-
eller tool in OpenMM114 — the terminal residues were charged. The protein was then
solvated in a water box extending at least 8 Å from the protein in each dimension, and
chloride ions were added to ensure that the system was neutrally charged, using the
tleap program in AmberTools.194

The GCMC sphere was centred on the mean coordinate of the Cα atoms of the Tyr10 and
Asn43 residues and had a radius of 4.2 Å, corresponding to Bequil = −7.959. All waters
present in the sphere were deleted prior to equilibration, which took place over three
stages — GCMC/MD to equilibrate the water sites, NPT MD to equilibrate the system
volume, then GCMC/MD to further equilibrate the waters at the new volume. The first
stage involved 10k initial GCMC moves, followed by 1 ps of GCMC/MD (1000 GCMC
moves every 1 fs) — a high ratio of GCMC moves to MD was used, as the priority in
the early stages of the equilibration is to insert waters before the dry pocket collapses.
The NPT stage lasted 500 ps, and was followed by 500 ps of GCMC/MD (200 moves
every 1 ps). The equilibration was followed by a production run of 10 ns of GCMC/MD
(50 moves every 1 ps). For comparison, an identical set of simulations was carried out,
except with the GCMC moves removed, leaving the GCMC/MD stages replaced with
NVT MD.
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3.4 Results

3.4.1 Thermodynamic Parameters

The hydration free energy calculation of water (in water) was carried out for a total
of 50 independent runs, giving a mean value (with standard error) of −6.087± 0.005
kcal mol-1. From this, the excess chemical potential was taken as µex

sol = −6.09 kcal
mol-1. Only 10 independent runs were necessary for the calculation of the standard
state volume, giving a value of 30.3454± 0.0006 Å3, from which the standard state vol-
ume is taken as V◦ = 30.345 Å3. These values are fairly close to the experimental
values of −6.324 kcal mol-1 and 30.003 Å3. The excess chemical potential is in good
agreement with recently reported simulated values of −6.09± 0.04,107 −6.18± 0.02,195

and −6.05196 kcal mol-1 for the excess chemical potential of TIP3P water (this is by no
means intended to be an extensive list) — values reported in older publications vary
more significantly.197–199 Values for the standard state volume of TIP3P water of 29.855
Å3 and 30.525 Å3 have been reported (both values have been converted from the re-
ported mass densities),200,201 where the value calculated here is in better agreement
with the latter.

As previously mentioned, the values of the excess chemical potential and standard
state volume of water can be interpreted as the definition of the reference state with
which a simulated system is in equilibrium (in terms of water transfer). Here, that ref-
erence state has been taken as pure water, but it may be more appropriate for protein
simulations to determine these parameters for more realistic, physiologically relevant
mixtures. The use of more biologically relevant reference states may be of benefit to the
simulation of waters in protein binding sites, particularly for those waters with binding
affinities close to zero, where a slight shift in these parameters might make the differ-
ence between a water site appearing favourable or unfavourable. However, this more
realistic approach brings additional complications. First, the composition of this solu-
tion (i.e. the relevant components and their concentrations) which is most appropriate
will likely be dependent on the specific application, and also may be difficult to define.
Secondly, the concentration of each component would be expected to fluctuate signif-
icantly about their macroscopic values (owing to the relatively small volume of simu-
lated systems). This second issue could be resolved using the osmostat method pre-
sented by Ross et al., although this method also requires running concentration-specific
parameterisations of the chemical potential (or differences in chemical potential) for
each component of the solution,168 which would make this a rather complicated solu-
tion. Therefore, pure water is used as a reference state throughout this work, largely
for convenience and simplicity.
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3.4.2 Bulk Water Density

The densities of the water box sampled from GCMC/MD simulations using both the
experimental and computational values of µex

sol and V◦ are compared against those
from the NPT simulation in Fig. 3.1. As can be seen, the results of the comparison
are very dependent on the values of these parameters. When the simulated values of
µex

sol = −6.09 kcal mol-1 and V◦ = 30.345 Å3 are used, the agreement with the NPT
results is very good, with the two distributions showing excellent overlap. However,
when using the slightly different, experimental values of µex

sol = −6.324 kcal mol-1 and
V◦ = 30.003 Å3, the densities from the GCMC/MD simulations are notably lower, and
the distribution overlap with the NPT densities becomes very poor. These observa-
tions demonstrate the importance of self-consistency within a simulation, as obtained
by determining these parameters under the simulation conditions of interest — if GCM-
C/MD were carried out under conditions different to these, it would be advisable to
recalculate these values. This self-consistency ensures that a simulated system is at
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FIGURE 3.1: Comparison of the water densities observed using both constant pressure
MD (blue) and GCMC/MD (red). The GCMC/MD densities were collected using
both the calibrated values of µex

sol and V◦, as well as the experimental values. In each
case, the solid line represents the mean density from the three repeats, and the shaded

region covers the values within one standard error of the mean.



3.4. Results 67

equilibrium with a simulated water box.

The results shown in Fig. 3.2 show the densities sampled using GCMC/MD when the
starting density is far from the equilibrium value (approximately 20 % too high or too
low). As can be seen, in both cases, the GCMC/MD densities converge within 10-15
ns, and then agree well with the NPT results. This is a reassuring result, which fur-
ther evidences that the GCMC implementation and the accompanying thermodynamic
parameters are physically correct. It should be noted that the equilibration times are
fairly long, but this is because sampling density fluctuations by adding and removing
one water molecule at a time is not an efficient approach. It would not normally be
recommended to run GCMC sampling of water over such a large volume, but in this
case, it provides a robust test for the methodology, where any errors in theory or im-
plementation would likely be amplified.
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FIGURE 3.2: Comparison of the water densities observed using both constant pressure
MD (blue) and GCMC/MD (red). The GCMC/MD simulations were started using
densities of 0.804 and 1.199 g mL-1. In each case, the solid line represents the mean
density from the three repeats, and the shaded region covers the values within one

standard error of the mean.
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FIGURE 3.3: Comparison of the water densities observed using both constant pressure
MD (blue) and GCMC/MD (red). The GCMC/MD densities were collected using
values of −6.15, −6.20 and −6.25 kcal mol-1 for the excess chemical potential. In each
case, the solid line represents the mean density from the three repeats, and the shaded

region covers the values within one standard error of the mean.
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The results showing the sensitivity of GCMC/MD to the value of the excess chemical
potential are shown in Fig. 3.3. As can be seen, the density values sampled using GCM-
C/MD are highly sensitive to the value of this parameter, as even with µex

sol = −6.15 kcal
mol-1 (a difference of −0.06 kcal mol-1 from the calibrated value) a clear difference is
seen from the densities observed using constant pressure MD. This sensitivity appears
somewhat alarming, but it should be noted that (as previously mentioned) for a GCMC
volume which is so large, with so many water molecules, any errors will be magnified.
It is therefore likely that when applying GCMC to smaller regions, such as protein bind-
ing sites, this sensitivity would be less pronounced. In any case, this further reinforces
the recommendation that the values of µex

sol and V◦ should be reparameterised when
simulating under conditions significantly different to those described in this chapter.

3.4.3 Ensemble Validation

As previously described, the validation method described by Shirts (as carried out
in this work) involves calculating the probabilities of observing each value of N at
two chemical potentials, and then plotting the natural logarithm of the probability ra-
tio against N, from which the gradient can be compared to the theoretical value (Eq.
3.3).192 The distributions of N observed at each chemical potential (or B value) are
shown in Fig. 3.4a. As can be seen visually, there is a significant overlap between the
two histograms, which provides plenty of data for comparison. The overlap region
considered for analysis was taken as 2074 ≤ N ≤ 2116 — this was chosen as every
value of N in this range was sampled at least once by all independent repeats. The
probability of observing each value of N in this range was calculated separately for
each independent repeat, then probability ratios were calculated for all values of N by
comparing the probabilities from all ten independent repeats at µ1 against all ten re-
peats at µ2, yielding 100 values of the logarithm of the probability ratio (Eq. 3.3) for
each value of N.

The fitting procedure was carried out using a bootstrapping analysis. For each boot-
strap, a subset of the data was collected by selecting one value of the logarithm of the
probability ratio (corresponding to one random comparison between independent re-
peats) for each value of N in the overlap region, and a first order polynomial was then
fitted to this data. This was repeated for 50,000 bootstraps, yielding the data shown in
Table 3.1 for the gradient and intercept. The mean gradient observed over all bootstraps
was −3.978×10-2, with a standard deviation of 0.754×10-2. This is in good agreement
with the theoretical value of β(µ2 − µ1) = −4.222×10-2, when considering the un-
certainty in the fitted gradient — the difference between the theoretical value and the
mean fitted value is 0.323σ, where σ is the standard deviation of the fitted gradients.
The agreement between the two gradients is shown visually in Fig. 3.4b, though there
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Parameter Theoretical value Mean (fit) Std. dev. (fit)
Gradient −4.222×10-2 −3.978×10-2 7.538×10-3

Intercept Unknown 83.41 15.80

TABLE 3.1: Mean values of the gradient and intercept observed over all bootstrap
samples carried out, including the standard deviations of these values. The theoretical
value of the gradient (Eq. 3.3) is also included, for reference — note that the theoretical

value of the intercept is not known. All values are given to four significant figures.
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FIGURE 3.4: Results obtained from the analysis of the grand canonical sampling car-
ried out by grand. (A) Distributions of N observed at the two different chemical po-
tential values. The overlap region considered for analysis is indicated with dashed
vertical lines. (B) The fitted gradient is shown in comparison to both the raw data
and the theoretical gradient, where the red shaded region corresponds to one stan-
dard deviation either side of the mean fit. For the raw data, the natural logarithm
of the probability ratio is calculated for all 100 comparisons of individual repeats at
µ1 against those of µ2, with the mean value plotted, and the error bars represent the

standard deviation.

is significant noise in the simulated data, owing to the slow convergence of GCMC
sampling for such a large system. This analysis provides further evidence that the im-
plementation of GCMC in grand appears to be correct.

3.4.4 Bovine Pancreatic Trypsin Inhibitor

The water locations observed in both the GCMC/MD and NVT production runs were
clustered, in order to compare the simulated positions to the crystallographic water
sites. This analysis was carried out using average-linkage hierarchical clustering (via
SciPy202) with a cutoff of 2.4 Å — distances between water observations from the same
simulation frame were set to an arbitrarily high value, in order to prevent the merging
of distinct water sites — the location of each cluster was then taken as the position of
the water snapshot closest to the average coordinate. The cluster positions from the
two sets of simulations are shown alongside the experimental positions in Fig. 3.5,
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where it can be seen that the GCMC/MD results agree much better with the experi-
mental data than the NVT results. From the GCMC/MD results, all three experimental
water sites are reproduced to within 0.6 Å, and are highly occupied (greater than 99
%), which is consistent with free energy analyses which have indicated these sites to be
very stable.105 However, from the NVT simulation, only two of these sites are repro-
duced within 1.0 Å, with occupancies of 57 and 51 % — for reference, a water site with
a standard binding free energy of zero would be expected to show an occupancy of 50
% (though this assumes that water binding/unbinding events are well sampled). Both
sets of results show additional sites, but these are all of sufficiently low occupancy that
they can be safely ignored.

It should be noted that GCMC/MD as implemented in grand is somewhat more com-
putationally expensive (in terms of wall time) than conventional molecular dynamics
in OpenMM — by a factor of ∼4.4 for these BPTI simulations. However, if the GCM-
C/MD simulations were used as an equilibration tool, rather than for production sam-
pling, this cost would be significantly reduced. For example, the three crystallographic
sites in BPTI were all inserted within the first few minutes of GCMC/MD equilibra-
tion, whereas this did not occur during two hours of canonical molecular dynamics.
It should be noted that the grand module has not been extensively optimised for effi-
ciency.

FIGURE 3.5: Comparison of the cluster sites determined from the GCMC/MD (red)
and NVT MD (blue) simulations with the experimentally determined water sites
(grey). The colours of the cluster sites are faded as the occupancy decreases, where
white would indicate 0 % occupancy — where the colour is unclear, the site is anno-

tated with the percentage occupancy, coloured accordingly.
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3.5 Summary

This chapter presents the grand Python module,113 implemented in this work, which
allows the execution of GCMC sampling of water molecules within OpenMM, mak-
ing use of the highly customisable simulation framework.114,179 The accuracy of this
module has been demonstrated, as the water density distribution sampled at constant
chemical potential using grand is in very good agreement with that sampled by con-
stant pressure simulations at the same temperature (Figs. 3.1a and 3.2). It was also
verified, using the method described by Shirts,192 that the probability distribution of
the particle number correctly responds to changes in the chemical potential (Fig. 3.4).
Finally, the method was applied to a protein test case, by reproducing three buried
crystallographic water molecules in bovine pancreatic trypsin inhibitor (BPTI), which
are not easily reached using conventional molecular dynamics (Fig. 3.5).

However, it should be noted that the density distribution sampled for bulk water is
rather sensitive to the value used for the excess chemical potential of water (Figs. 3.1b
and 3.3). This underlines the importance of ensuring that the thermodynamic param-
eters necessary to establish a correct equilibrium — the excess chemical potential and
standard state volume of water — are well calibrated. Values for these parameters are
provided in this chapter (µex

sol = −6.09 kcal mol-1 and V◦ = 30.345 Å3), but these should
be recalibrated if the simulation conditions of interest differ significantly from those
described in section 3.3.1. However, the sensitivities demonstrated are for bulk water,
which would not normally be simulated using GCMC/MD, so those observed for pro-
tein binding sites (which will often be at least two orders of magnitude smaller than
the bulk water system simulated in this chapter) will likely be less severe. Another lim-
itation of this implementation is that the acceptance rates observed for the simulations
presented in this chapter are very low (around 0.03 %), meaning that a large percentage
of the computational effort spent on GCMC sampling is effectively wasted. Efforts to
improve the acceptance rate, and also the efficiency, of grand canonical sampling are
discussed in chapter 5.

The grand module will form the foundation for the work presented in later chapters of
this thesis.
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Chapter 4

Insights Into Drug Binding to the
M2 Protein Using GCMC/MD

The work presented in this chapter was carried out as part of a larger collaboration involving
researchers from multiple institutions. This chapter focuses on the aspects of these projects
carried out by MLS, however, Athina Konstantinidi (AK, University of Athens) and Dimitrios
Kolokouris (DK, University of Oxford) both contributed to the preparation of the protein-ligand
complexes, prior to simulation — these contributions are made clear in italics, where relevant.
All simulations and analyses presented in this chapter were performed by MLS.

4.1 Introduction

4.1.1 Background

The matrix 2 (M2) protein is a 97-residue, homotetrameric protein, which carries out
several roles within the influenza A virus.203–207 One of these roles is proton transport,
which lowers the pH of the viral interior, leading to the unpacking of viral ribonucleo-
porins,208 where the transmembrane domain (residues 23-46) is a minimally functional
structure for proton transport.209,210 Studies of the transmembrane domain are easier in
practice,211 and give results which are almost indistinguishable from those of the full
protein.210,212,213 Inhibition of proton transport across M2 has been found to prevent
replication of the influenza A virus,214 and is the motivation for M2 as a drug target.

Adamantyl-amines are a class of influenza drugs which inhibit the M2 proton channel,
including amantadine and rimantadine (Fig. 4.1). Crystal structures of these inhibitors
(with resolution better than 3.5 Å212) have only become available in recent years,211 al-
lowing detailed studies of the drug-target interface. These drugs are highly non-polar,
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NH3 H3N

NH3

Amantadine Rimantadine Spiroadamantane

FIGURE 4.1: Structures of the adamantyl-amine drugs, amantadine and rimantadine,
and also the spiroadamantane inhibitor.

and yet are very effective inhibitors of the M2 channel. There are several factors of inter-
est here: the drugs have little to no conformational flexibility, and therefore the entropic
penalty of binding is significantly reduced.211 The charged ammonium group appears
to take advantage of the fact that the protein has evolved to stabilise hydronium ions
at multiple locations in the channel,215 and the steric bulk of the ligand is thought to
provide a very complementary fit to the shape of the channel pore.216 However, clin-
ical use of amantadine and rimantadine has been discontinued, owing to widespread
resistance.217,218 Spiroadamantane (Fig. 4.1), is a spiro-adamantyl-amine, which was
rationally designed to inhibit the amantadine-resistant V27A mutant of M2, as well as
the wild type (WT).216

Despite the fact that amantadine and rimantadine can no longer be administered, M2
remains a promising drug target, so the interactions of these potent inhibitors with
the target warrant further study. Of particular interest in this work is role of wa-
ter molecules in the M2 channel. Water is not only vital for the transport of protons
through the channel, but has also been observed to form organised networks which
interact directly with the bound drugs.211 Fig. 4.2 shows several of the crystallographic
arrangements of water in the complexes between M2 and the three ligands studied in
this work. A key detail is that the waters appear to bind in ‘layers’, where two layers
of waters are observed for both amantadine and rimantadine in complex with the WT
protein.211 Interestingly, spiroadamantane forms one layer of water in complex with
the wild type (the ligand displaces the upper water layer), and two in complex with
the V27A mutant — this detail is thought to be related to its ability to inhibit both
forms of the protein.219

Owing to the importance of water in the binding of drugs to the M2 transmembrane
domain, it is of interest to investigate what insights can be offered using GCMC/MD
simulations. The work presented in this chapter is from two related projects, based on
different aspects of drug binding to the M2 channel. These are discussed further below.
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FIGURE 4.2: Crystal structures of amantadine, rimantadine and spiroadamantane in
complex with the transmembrane domain of M2. The side chains of residue 27 and
His37 are shown for reference, and two of the protein helices are omitted for clarity.
(A) Amantadine in complex with the WT structure (PDB ID: 6BKK,211 2.00 Å). (B)
Rimantadine (racemic) in complex with the WT structure (PDB ID: 6BKL,211 2.00 Å).
(C) Spiroadamantane in complex with the WT structure (PDB ID: 6BMZ,211 2.63 Å).
(D) Spiroadamantane in complex with the V27A structure (PDB ID: 6NV1,219 2.50 Å).

4.1.2 Rimantadine Stereoselectivity

When in clinical usage, rimantadine was administered as a racemic mixture. However,
given that rimantadine is a chiral compound, it is possible that one of the enantiomers
may bind more strongly to the M2 channel than the other — such enantiomeric selectiv-
ity would be of interest for the design of future inhibitors. There is some disagreement
in the literature as to whether or not the two enantiomers bind differently to M2. Solid
state NMR studies have claimed that the (R)-enantiomer binds more strongly, based
on changes in chemical shifts upon drug binding.220 However, other experiments have
suggested that the inhibition of M2 by the two enantiomers is indistinguishable, using
electrophysiological, isothermal titration calorimetry (ITC) and antiviral assays,221,222

and also in vivo studies in mice.223 In the work presented in this chapter, GCMC/MD
titrations (described in section 2.6.3.2) are used to investigate the structure and ther-
modynamics of the water networks found in the M2 channel, in the presence of each
enantiomer, in order to determine any atomic-level differences between the two enan-
tiomers.

4.1.3 V27A Resistance

As previously mentioned, resistance of M2 to the adamantyl-amine drugs has become
ubiquitous, leading to their withdrawal as treatments for influenza.217,218 Resistance
can be conferred by a number of mutations to the M2 protein,224,225 but only three tend
to be observed in transmissible variants of influenza: L26F, V27A and S31N.217,226,227

Of these, the V27A mutant is of particular interest for two reasons: V27A appears
to be the most selected for under drug pressure,217,226 and this mutant offers total,
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rather than partial, resistance to amantadine.216,228 However, as previously mentioned,
spiroadamantane inhibits both wild-type (WT) and the V27A mutant of M2.216 A recent
analysis of crystal structures of spiroadamantane in complex with both of these struc-
tures revealed that the ligand binds in slightly different positions to each of these pro-
tein structures, notably with one water layer in the WT structure and two in the V27A
structure (Fig. 4.2).211,219 The ability of spiroadamantane to ‘shift’ its position within
the channel, according to the identity of residue 27 was hypothesised by Thomaston
et al. to be the reason that spiroadamantane is able to inhibit both the WT and V27A
forms of M2.219

Given that there may be a water-mediated aspect to the resistance (or lack thereof) of
the M2 protein to inhibitors, the differences in structure and thermodynamics of the
water networks in the binding site of the M2 protein were analysed using GCMC/MD
titrations (section 2.6.3.2). Titrations were carried out for both the WT and V27A struc-
tures, each run separately in complex with amantadine and spiroadamantane, in order
to investigate any possible differences in water binding free energy — especially as
there does not appear to be a published crystal structure for amantadine in complex
with the V27A channel. One hypothesis considered during this work was that, when
amantadine binds to the V27A mutant, a water wire might be able to bypass amanta-
dine, allowing proton transport to continue even in the presence of the bound ligand.

4.2 Simulation Details

Unless explicitly stated otherwise, all simulations reported in this chapter were carried
out under the following conditions. The AMBER ff14SB, lipid17 and TIP3P force fields
were used to model the protein,181 lipids229 and water,182 respectively, and Joung-
Cheatham parameters183,184 were used for any ions present in the simulation. The
ligands were modelled using the general AMBER force field120 (GAFF) with AM1-
BCC charges,122,123 calculated using antechamber230 — all ligands were simulated as
positively charged. A real space interaction cutoff of 12 Å was used, with a switch-
ing function applied between 10 and 12 Å, and PME was used to calculate long-range
electrostatic interactions.142 Simulations were carried out at 300 K, using the BAOAB
Langevin integrator158 (γ = 1 ps-1, δt = 2 fs). All bonds involving hydrogen atoms
were constrained to their equilibrium values, using the SETTLE algorithm for water
molecules,187 and the SHAKE algorithm otherwise.185,186 Any simulations at constant
pressure employed a semi-isotropic Monte Carlo barostat with a pressure of 1 bar and
surface tension of zero, with volume changes attempted every timestep. All simula-
tions here used version 7.3.1 of OpenMM.114,179
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4.2.1 Rimantadine Stereoselectivity

The preparation of the protein structures for both (R)- and (S)-rimantadine as described in
this paragraph was carried out by AK. The structures for the (R)- and (S)-enantiomers in
complex with the transmembrane domain of M2 were taken from PDB entries 6US9
and 6US8, respectively. The protein was embedded within a bilayer of approximately
200 POPC lipids, and solvated in a system containing around 18,000 water molecules.
Sodium ions were added to neutralise the system charge, and then pairs of sodium and
chloride ions were added to reproduce a concentration of 150 mM. For all simulations
in this work, the His37 residues were simulated in their neutral, ε-protonated form
(where the protons point away from the ligand), as in previously reported MD studies
of ligand-bound M2.211,219

The rimantadine GCMC/MD simulations were carried out with version 1.0.0 of grand,113

and the GCMC sphere was centred on the mean coordinate of the Cα atoms of the Gly34
tetrad, with a radius of 6 Å (see Fig. 4.3a). For each enantiomer, the following procedure
was carried out once. The initial structure was first minimised for 500 steps, to remove
any clashes, and all waters present in the GCMC sphere were then removed. The sys-
tem was then subjected to three stages of GCMC/MD equilibration at Bequil = −6.820:
the first stage involved 50,000 GCMC moves over 1 ps (500 moves per 100 fs), followed
by 50,000 moves over 10 ps (1000 moves per 200 fs) and then 100,000 moves over 50 ps
(500 moves per 250 fs). The volume of the system was then equilibrated over 500 ps of

(A) Sphere used for rimantadine titrations. (B) Sphere used for V27A titrations.

FIGURE 4.3: Visual representation of the GCMC spheres used for the two different sets
of titration calculations. The sidechains of the Val27 and His37 residues are shown for
reference. Two of the polymer chains are hidden for ease of visualisation. (A) shows
(R)-rimantadine and (B) shows amantadine, each in complex with the WT structure.
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NPT MD. The resulting structure was then used as a starting point for the independent
repeats of each enantiomer.

Each independent titration of each system first involved a further 500 ps of GCMC/MD
with a total of 100,000 moves (50 moves per 250 fs) at Bequil , to allow some divergence
from the shared starting point. The resulting structure was then used for a further
equilibration of the same length at each individual B value — 21 evenly spaced Adams
values between −24.820 and −4.820 were used. Then, a production GCMC/MD simu-
lation was carried out at each B value, for 100,000 moves over 2.5 ns (20 moves every
500 fs), with simulation frames saved every 5 ps. The average number of waters, 〈N〉,
was recorded for each B value, and used for the calculation of water network binding
free energies (Eq. 2.136). Three independent titrations were carried out for both the (R)-
and (S)-enantiomers of rimantadine, bound to the transmembrane domain of the WT
structure of M2.

4.2.2 V27A Resistance

The initial structures of both amantadine and spiroadamantane in complex with the WT protein
were prepared by AK, and that of spiroadamantane in complex with the V27A mutant was pre-
pared by DK. As there was no known experimental structure of amantadine in complex with the
V27A mutant of M2, this structure was created by MLS, by simply mutating the Val27 residues
from the WT system. The structure of amantadine in complex with the WT protein was
taken from PDB entry 6BKK,211 that for spiroadamantane was taken from 6BMZ,211

and the structure of spiroadamantane in complex with the V27A mutant was taken
from 6NV1.219 Similarly to the rimantadine structures, the protein was embedded in a
membrane of ∼200 POPC lipids, and solvated with approximately 16,000-19,000 water
molecules. Sodium ions were added to neutralise the system charge, and the concen-
tration of sodium chloride was set to 150 mM.

Apart from the differences stated here, the equilibration and titration protocols em-
ployed were identical to those used for the simulations of rimantadine in complex
with WT M2, as described above. The GCMC/MD simulations used version 1.0.1 of
grand,113 with a GCMC sphere centred on the mean coordinate of the Cα atoms of the
four Ile32 residues, with a radius of 9 Å (see Fig. 4.3b) — corresponding to a Bequil

value of −5.604. A larger sphere was used here, in order to account for any possible
water-mediated effects around the Val27/Ala27 residues. Accordingly, the Adams val-
ues for the titrations were taken as 21 evenly spaced values from −23.604 to −3.604.
Three independent titrations were carried out for both amantadine and spiroadaman-
tane, bound to both the WT and V27A structures of the transmembrane domain of M2.
It should be noted that the amantadine-V27A simulation was equilibrated for slightly
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longer than the other simulations as this was the only system which did not start from
a native crystal structure (but instead started from the crystal structure of the WT com-
plex). This extra GCMC/MD equilibration stage took place after the NPT equilibration
(before separating the independent repeats), and consisted of 200,000 GCMC moves
over 1 ns (50 moves every 250 fs).

4.3 Results

4.3.1 Rimantadine Stereoselectivity

As mentioned in the previous chapter, there is a risk when carrying out GCMC/MD
titration calculations that the impact on the waters in the GCMC sphere by insertion
and deletion moves will be continually offset by diffusion of waters during the MD
portions of the simulations. Fortunately, this does not appear to be the case for the sim-
ulations carried out in this chapter. Fig. 4.4 shows the total flux of water observed into
the GCMC sphere during the MD portions of the simulations at each B value. Whilst
some degree of diffusion of waters in and out of the GCMC sphere was observed —
interestingly, this effect appears to be more pronounced for (R)-rimantadine than the
(S)-enantiomer — the magnitude of this effect seems to be rather small, relative to the
size of the GCMC sphere and the length of the simulation. This is evidenced by fact
that the simulations at low B were able to fully dehydrate the sphere (Fig. 4.5), although
these diffusion effects likely account for some of the noise in the titration data. The fact
that diffusion of waters does not appear to have a significant impact is likely because

-24.82 -23.82 -22.82 -21.82 -20.82 -19.82 -18.82 -17.82 -16.82 -15.82 -14.82 -13.82 -12.82 -11.82 -10.82 -9.82 -8.82 -7.82 -6.82 -5.82 -4.82
Adams value

2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

To
ta

l f
lu

x 
of

 w
at

er
 m

ol
ec

ul
es

 in
to

 th
e 

GC
M

C 
sp

he
re

Enantiomer
R
S

FIGURE 4.4: Bar chart showing the total diffusion of waters into the GCMC sphere
during the MD portions of the GCMC/MD simulations at each of the B values. For
each simulation, the change in the number of waters over each batch of MD steps was
calculated and these values were summed to give the total flux over the course of the

simulation. The error bars indicate the standard deviation over the three repeats.
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(A) (R)-rimantadine.
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(B) (S)-rimantadine.

FIGURE 4.5: Titration data collected for both (R)- and (S)-rimantadine, along with the
fitted curves. The τ values mentioned in the legends represent the Kendall tau coeffi-
cients for the raw data (which measure the monotonicity of the data on a scale from 0
to 1). The solid line represents the median fit, and the shaded regions correspond to 68
% and 95 % of the fits — the value of 68 % was chosen in each case, as this would corre-
spond to approximately one standard deviation, if the data were normally distributed.

For reference, Bequil = −6.820.

the GCMC sphere is fairly occluded from bulk water, and the ligands are able to block
this diffusion to a large extent.

After collecting the average number of water molecules observed in the GCMC sphere
at each simulated B value, the titration curves were fitted, using 1000 bootstrap fits.
Each bootstrap was carried out by taking one random value of 〈N〉 from each value
of B, and then performing a fit to this subset of the data, using four sigmoid func-
tions (four was qualitatively determined to give the best fit). The fitted titration curves,
along with the raw data, are shown in Fig. 4.5 for both enantiomers. Whilst there is
some noise in the data (primarily in regions of high gradient), the fits appear good.
The two fitted curves are shown alongside each other in Fig. 4.6a. Interestingly, the
predicted number of waters in the GCMC sphere at Bequil = −6.820 agrees quite well
between the enantiomers, but the two curves appear to show very distinct hydration
profiles with respect to changes in the chemical potential.

The binding free energy of the water network is plotted with respect to the number of
water molecules for both enantiomers in Fig. 4.6b, where both curves show a free en-
ergy minimum for N = 9 water molecules — for reference, average occupancies of 9.26
± 0.17 and 9.04± 0.15 were observed at Bequil for (R)- and (S)-rimantadine, respectively
(quoted are the mean and associated standard error of the average number of waters
over the three independent repeats). It should be noted that whilst the uncertainty in
the free energy curves makes it appear as though there is also a lot of uncertainty in the
position of the free energy minimum, this is not the case. Fig. 4.6c shows that 9 is the
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(B) Water network binding free energy.
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(C) Binding free energy of the Nth water.

FIGURE 4.6: Comparisons between the titrations and extracted free energies for the
two enantiomers of rimantadine. For (A) and (B), the lines correspond to the median
result, and the shaded regions correspond to 68 % and 95 % of the data. For (C), the
bars are drawn at the median free energy, and the error bars correspond to 68 % of the

data. For reference, Bequil = −6.820

largest value of N which introduces a negative change in binding free energy for the
network (for both enantiomers) and the uncertainties in this value do not dispute N = 9
as the free energy minimum. The uncertainty observed in Fig. 4.6b is an accumulation
of the uncertainties shown in Fig. 4.6c. This observation is in good agreement with the
crystal structures, where 9 and 10 waters are observed for the (R)- and (S)-enantiomers,
respectively — in the latter case, the crystallographic occupancies of the 10 waters sum
to 9.23 ± 0.06 (quoted are the mean and standard error over the four protein units in
the crystal structure). The titration results predict the free energy change of introduc-
ing a tenth water site to be positive, but very small (+0.06 [−0.02, +0.23] kcal mol-1

and +0.38 [+0.09, +0.51] kcal mol-1 for (R) and (S), respectively), indicating that this
additional water is also thermally accessible — the values quoted are the median value
from the bootstrap sampling, and those in square brackets represent the range where
68 % of the fits lie (this value was chosen as it would correspond to one standard devi-
ation, if the data were normally distributed). The values of the free energy minimum
are−30.3 [−31.3,−29.2] kcal mol-1 and−29.0 [−29.8,−27.5] kcal mol-1 for the (R)- and
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(S)-enantiomers, respectively, which would appear to indicate that the water network
is slightly more stable in the presence of the (R)-enantiomer, however, there is a large
overlap between the uncertainties (Fig. 4.6). The distributions of these free energy val-
ues are shown in Fig. 4.7, where it seems that the distributions do appear to be distinct,
providing further, albeit weak, support for the water network being more stable in the
presence of the (R)- than the (S)-enantiomer, although the magnitude of this difference
cannot be precisely determined, owing to the aforementioned large overlap.

Of particular interest from Fig. 4.6b is that the difference in water network free en-
ergies between the two enantiomers is very large (even relative to the uncertainty) at
lower levels of hydration. For this reason, structural analyses were carried out in or-
der to identify any trends across the B values used in the titration calculations. Some
of the structural trends observed are depicted via a series of representative simulation
frames, shown in Fig. 4.8. Fig. 4.9 shows a series of distributions for the positions of
water molecules along the channel length at different B values for both enantiomers,
and similarly, Fig. 4.10 shows a similar distribution for the position of the rimantadine
nitrogen atom. At high B values, one can clearly see two broad peaks in the water
distribution, corresponding to the two water layers (Figs. 4.8c and 4.8f), which quali-
tatively appear very similar between the two enantiomers at Bequil = −6.820 (though
there does seem to be a slight difference in the positions of the ligand here). As the
Adams value decreases, the more weakly bound water molecules are first preferen-
tially deleted from the upper layer, and the ligand drops further into the channel in
order to interact directly with the lower layer (Figs. 4.8b and 4.8e). Finally, when the
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FIGURE 4.7: Distributions of the binding free energies calculated for a 9-water network
from the rimantadine titration data. Each of the free energy values were calculated

from individual titration bootstraps.
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(A) B = −24.820. (B) B = −15.820. (C) B = −6.820.

(D) B = −24.820. (E) B = −15.820. (F) B = −6.820.

FIGURE 4.8: Representative snapshots of the rimantadine simulations at different
B values. The top row corresponds to (R)-rimantadine, and the bottom to (S)-
rimantadine. The crystallographic water sites are show as grey spheres, and two of

the transmembrane helices are omitted for clarity. For reference, Bequil = −6.820.

lower layer is removed, the ligand drops again to interact directly with the His37 tetrad
(Figs. 4.8a and 4.8d). At very low B values, when the channel is dehydrated, it appears
that (R)-rimantadine drops slightly further into the channel than (S)-rimantadine, pro-
viding possible evidence of an apparent chiral effect when the water is removed. It
should be noted that a quantitative comparison between the locations of the simulated
and crystallographic water sites has not been reported here, owing to the flexibility of
the simulated water network. As the waters are highly mobile, they are therefore not
suitable for quantitative comparison with the fixed, crystallographic water locations.

In summary, these data appear to suggest that the water network binds very slightly
more favourably to the M2 channel in the presence of the (R)-enantiomer of rimanta-
dine than the (S)-enantiomer (Fig. 4.6b). However, this difference is around 1.3 kcal
mol-1 (with a large degree of uncertainty) — where 1 kcal mol-1 is widely considered
to be the sensitivity limit of calculated free energy values3 — so this free energy differ-
ence is compatible with there being no difference in binding affinity between the two
enantiomers. However, it is interesting to note that when the channel is partially de-
hydrated, the difference in binding free energy between the water networks is much
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FIGURE 4.9: (A) Violin plots demonstrating the positions of the waters within the M2
pore at each Adams value for the rimantadine titrations. Each data point is taken as
the z-coordinate (the z-axis is perpendicular to the plane of the membrane) of the wa-
ter oxygen atom, relative to the mean z-coordinate of the Cα atoms of the four His37
residues. The data are normalised such that all violins have the same width, which
means the violins at very low B values are in some cases highly distorted by the fact
that there are many fewer waters observed. For reference, Bequil = −6.820. (B) Crys-
tal structure of (R)-rimantadine (PDB ID: 6US9), labelled with several z-distances, for

reference.
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FIGURE 4.10: (A) Violin plots showing the z-positions of the rimantadine nitrogen
atom within the M2 pore at each Adams value, relative to the Cα atoms of the His37
tetrad. The data are normalised such that all violins have the same width. For ref-
erence, Bequil = −6.820. (B) Crystal structure of (R)-rimantadine (PDB ID: 6US9), la-

belled with several z-distances, for reference.

more significant, relative to the corresponding uncertainties (Fig. 4.6b). This would ap-
pear to indicate that a chiral difference becomes apparent when there are fewer waters
bound to the channel, as supported by the structural trends observed at low B values
(Figs. 4.8, 4.9 and 4.10). It is hypothesised that at Bequil , the larger water network is
sufficiently flexible to adapt to the protein-ligand complex, cancelling the chirality of
the protein, such that the ligand appears to interact with an achiral environment. How-
ever, at low B values, the reduced flexibility of smaller water networks would mask
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the chirality of the protein less effectively, such that the stereochemistry of the ligand
becomes relevant. Whilst this does not affect rimantadine, as these poorly hydrated
configurations are likely not thermally accessible, this might be relevant for future M2
inhibitors, where those which displace the upper water layer may demonstrate enan-
tiomeric selectivity.

4.3.2 V27A Resistance

As previously mentioned, a larger GCMC sphere was used for the V27A titrations, in
order to capture any potential water effects around residue 27 — possibilities consid-
ered include the binding of a water layer above the amantadine position (owing to
the increased space from the removal of the Val27 side chains), and the formation of a
water wire in the amantadine-V27A structure, which might allow proton conductance
across the channel. Visual inspection of the simulation trajectories indicated that this
was not the case (see Fig. 4.13), so the titration data were post-processed using the same
GCMC sphere as used for the rimantadine simulations, in order to focus the analysis
on the water layers between the ligand and the His37 tetrad, with the raw data and
fitted curves (using the same bootstrapping procedure as described previously) shown
in Fig. 4.11. Note that the B values are shifted to reflect the fact that the volume used
for the free energy analysis is smaller than that used for sampling. The quality of the
data is generally very good, except in the case of spiroadamantane-V27A, where there
is significant noise in the raw data at lower B values — this will increase the uncertainty
in the extracted free energy data.

For both amantadine and spiroadamantane, the water titrations and free energies are
compared between the WT and V27A simulations in Fig. 4.12. The fitted titration
curves for amantadine bound to the WT and V27A structures (Fig. 4.12a) are remark-
ably similar at low-medium B values, and at higher B values, more waters are observed
in the V27A structure — when the Val27 side chains are removed, the ligand has more
space to occupy higher positions within the channel, thereby allowing slightly more
water to bind (this is discussed further in a later section). Fig. 4.12c shows that the
free energy curves are also very similar for amantadine, except that the binding of ad-
ditional waters is slightly more favourable, with a slightly lower network binding free
energy in the V27A structure. As shown in Fig. 4.12e, the optimal number of waters is
10 in the WT protein (in agreement with the crystallographic data), and 11 in the V27A
structure (the N = 12 state also appears very accessible, owing to the very small change
in free energy upon the binding of the 12th water) — at Bequil , average occupancies of
9.98 ± 0.30 and 10.82 ± 0.20 are observed, respectively. Overall, there does not appear
to be any large thermodynamic difference in the water network of amantadine-bound
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(A) Amantadine-WT.
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(B) Amantadine-V27A.
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(C) Spiroadamantane-WT.
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(D) Spiroadamantane-V27A.

FIGURE 4.11: Titration data collected for amantadine and spiroadamantane, in com-
plex with the transmembrane domains of both wild type M2 and the V27A mutant.
The solid line represents the median fit, and the shaded regions correspond to 68 %
and 95 % of the fits. Note that the B values are all shifted, relative to those at which
the simulations were performed, owing to the use of a smaller volume to process the
simulation data. For these analyses, Bequil corresponds to −6.820, owing to the focus

on a smaller volume.

M2 between the WT and V27A structures.

The titration curves for the spiroadamantane complexes (Fig. 4.12b) are also fairly sim-
ilar between the WT and V27A structures, except for the large divergence at high B
values, which corresponds to the binding of the second water layer observed in the
crystal structure of spiroadamantane-V27A.219 The free energy curves show that the
water network appears to be several kcal mol-1 more favourable in the V27A structure
than WT, but the exact difference is not clear, owing to the large uncertainty in the
free energy for the V27A simulation (caused by the aforementioned noise in the corre-
sponding titration). However, the data is clear that the optimal number of waters in
the WT and V27A systems are 5 and 6, respectively, when spiroadamantane is bound
(Fig. 4.12f) — these are respectively in agreement with average occupancies of 5.20 ±
0.24 and 6.04 ± 0.29 at Bequil . The crystal structure of spiroadamantane bound to the
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(A) Fitted titrations (amantadine).
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(B) Fitted titrations (spiroadamantane).
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(C) Binding free energy curves (amantadine).
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(D) Binding free energy curves (spiroadaman-
tane).

0 2 4 6 8 10 12
Number of waters, N

8

6

4

2

0

Bi
nd

in
g 

fre
e 

en
er

gy
 o

f t
he

 N
th

 w
at

er
 / 

kc
al

 m
ol

1

Ama-WT
Ama-V27A

(E) Binding free energy of the Nth water (aman-
tadine).
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(spiroadamantane).

FIGURE 4.12: Comparisons between the titrations and extracted free energies for the
WT and V27A titrations, for both amantadine (left column) and spiroadamantane
(right column). For (A-D), the lines correspond to the median result, and the shaded
regions correspond to 68 % and 95 % of the fits. For (E-F), the bars are drawn at the me-
dian free energy, and the error bars correspond to 68 % of the data. For these analyses,

Bequil corresponds to −6.820.
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(A) B = −23.604. (B) B = −15.604. (C) B = −9.604. (D) B = −5.604.

(E) B = −23.604. (F) B = −15.604. (G) B = −9.604. (H) B = −5.604.

(I) B = −23.604. (J) B = −13.604. (K) B = −5.604. (L) B = −3.604.

(M) B = −23.604. (N) B = −13.604. (O) B = −5.604. (P) B = −3.604.

FIGURE 4.13: Representative snapshots from the GCMC/MD simulations of amanta-
dine and spiroadamantane in complex with both the WT and V27A structures of M2, at
different Adams values. First row: amantadine-WT, second row: amantadine-V27A,
third row: spiroadamantane-WT, fourth row: spiroadamantane-V27A. Two of the pro-
tein chains are omitted for ease of visualisation, and the crystallographic water sites
are shown as grey spheres, for reference — for amantadine-V27A, the crystallographic

sites are taken from the WT crystal structure. Bequil corresponds to −5.604.
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WT protein shows 4 water sites bound in a single layer — the additional site observed
in the simulations sits slightly below this water layer (Fig. 4.13k). A more surprising
difference is that the crystal structure of spiroadamantane with the V27A mutant con-
tains 8-9 water molecules in two layers, whereas 6 is identified as the optimal number
here. Visual inspection of the simulations shows a single water layer (as observed in
the WT simulations), but with a single site (occasionally two) occupied in the upper
layer (Fig. 4.13o), rather than a full second layer. This discrepancy between the sim-
ulated and experimental data for spiroadamantane-V27A is discussed further in the
structural analysis below.

A series of representative snapshots were extracted from each of the simulations at dif-
ferent B values, and are shown in Fig. 4.13. As discussed for rimantadine, a similar set
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FIGURE 4.14: Violin plots demonstrating the z-positions of the water oxygen atoms
within the M2 pore at each Adams value for the V27A titrations, relative to the Cα

atoms of the His37 tetrad. The data are normalised such that all violins have the same
width, leading to some visualisation artefacts at low B values, where many fewer wa-
ters are observed. For these analyses, Bequil corresponds to −5.604. (A) and (C) show
the violin plots for amantadine and spiroadamantane, respectively. (B) and (D) show
the crystal structures of amantadine-WT and spiroadamantane-V27A, with labelled

z-distances for reference.
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FIGURE 4.15: Violin plots showing the z-positions of the ligand nitrogen atom within
the M2 pore at each Adams value for the V27A titrations, relative to the Cα atoms of
the His37 tetrad. The data are normalised such that all violins have the same width.
The value of this coordinate observed in the appropriate crystal structure is included
as a dashed line, for comparison. For these analyses, Bequil corresponds to −5.604. (A)
and (C) show the violin plots for amantadine and spiroadamantane, respectively. (B)
and (D) show the crystal structures of amantadine-WT and spiroadamantane-V27A,

with labelled z-distances for reference.

of violin plots for the distributions of the water and ligand positions in the M2 channel
are provided for both amantadine and spiroadamantane in Figs. 4.14 and 4.15. The
general trends observed for amantadine (Figs. 4.14a and 4.15a) are similar to those ob-
served for rimantadine, in that the more weakly bound waters are first removed from
the upper layer, and the ligand drops further into the channel accordingly. A difference
between the WT and V27A simulations, is that at around Bequil and above, amantadine
can adopt a higher position in the V27A channel than in the WT channel, owing to the
removal of the Val27 ‘valve’219 (Fig. 4.13h). Interestingly, the water distributions at the
corresponding B values show three peaks (between 0 Å and around 7.5 Å on Fig. 4.14a),
rather than two, indicating that the additional space created causes the water network
to form three layers, as shown in Fig. 4.13h. At very low B values, amantadine is some-
times observed at an unusually high position within the channel, with visual inspection
revealing that the ligand had turned upside-down at the lower level of hydration, as
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shown in Fig. 4.13e. Initially, this was of little interest, as it did not impact the titration
calculation (the number of waters observed was not affected), and was assumed to be
a transient artefact of simulating at an unnaturally low chemical potential. Interest-
ingly, however, such a ‘flipped’ conformation has been proposed by Llabrés et al. as an
intermediate configuration in the binding and unbinding of amantadine to/from the
M2 channel.231 It should also be noted that water distributions in Fig. 4.14a show no
sign of water density in the region blocked by amantadine, indicating no evidence of
a water wire (which might allow proton conductance) bypassing the ligand in the re-
sistant mutant — this was supported by visual inspection of the simulation trajectories.

The corresponding violin plots for spiroadamantane (Figs. 4.14c and 4.15c) show that
the distributions tend to agree well between the WT and V27A structures at the major-
ity of B values (although there are some differences), except for the very high B values,
where the second layer of water binds to the V27A complex. Interestingly, the fact
that the upper layer is only partially occupied in the V27A complex at Bequil means
that spiroadamantane is situated lower in the M2 channel than is shown in the crystal
structure (Fig. 4.13o). However, for B > Bequil , the upper layer of waters is more sig-
nificantly occupied and the ligand position agrees much more closely with that seen in
the crystal structure (Fig. 4.13p). The GCMC/MD data collected in this work therefore
indicates that the upper layer of waters is not fully occupied at equilibrium, but that
the free energy difference associated with completing the upper layer (and correspond-
ingly shifting the ligand up the channel) is positive, but very small (Fig. 4.12d). Note
that, owing to the noise in the binding free energy curve (Fig. 4.12d), it is difficult to as-
sign a precise value to the size of this free energy difference. However, the second layer
is observed at B = −4.604, which is only one unit more positive than Bequil , correspond-
ing to a chemical potential which is only kBT = 0.596 kcal mol-1 more positive than that
of bulk water, indicating that only a very subtle bias is needed to favour the binding
of the second layer. Interestingly, Thomaston et al. carried out constant pressure MD
simulations of spiroadamantane in complex with the V27A mutant, starting the simu-
lation from a homology model based on the WT structure (i.e. the Val27 residues were
mutated into alanine), where they report the binding of the second water layer after
300 ns.219 Given that the analysis above suggests that there is a very small, positive free
energy difference associated with the binding of the full second water layer, it is very
possible that the difference between these GCMC/MD simulations and the MD data
reported by Thomaston et al. 219 might be caused by a difference in force field. That
is, the configurations containing two water layers might correspond to the free energy
minimum when using a different force field, or under different simulation conditions.

Owing to the discrepancy between the simulated and experimental data for spiroadaman-
tane in complex with the V27A mutant — and that the simulation result appears to be
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sensitive to the simulation parameters — the experimental data was inspected more
closely. The electron density score for individual atoms (EDIA) is a quantitative mea-
sure of how well an atom in a crystal structure represents the raw electron density.232,233

According to Meyder et al., an EDIA score between 0.8 and 1.2 represents strong elec-
tron density evidence for an atom, a score between 0.4 and 0.8 indicates minor incon-
sistencies between the atom and the electron density, and a score below 0.4 indicates
substantial inconsistencies.232 The EDIA scores for the upper and lower layer waters
were calculated from PDB entry 6NV1219 using the ProteinsPlus server,234,235 with the
EDIA scores plotted in Fig. 4.16 (note that one water which lies between the two layers
was ignored, owing to its ambiguity). As can be seen, a number of the upper layer
waters from this structure have very poor EDIA scores, and the others are moderate,
at best — this appears to support the observation from the titration data that the up-
per layer is likely only partially occupied at equilibrium. However, it is very curious
to note that, whilst the experimental evidence for the upper water layer is weak, this
does not appear to be the case for the ligand position. Fig. 4.17a shows the crystal-
lographic binding mode of spiroadamantane to the V27A mutant in comparison with
the electron density map, where the agreement appears qualitatively very good, de-
spite the poor agreement between the upper layer waters and the electron density. In
contrast, comparison of the simulated structure with the electron density (as shown
for a representative frame in Fig. 4.17b) shows good agreement for the waters, but the
electron density does not support the lower spiroadamantane position observed in the
GCMC/MD simulations. The source of these discrepancies is unclear. One possibility
is that these structural differences are caused by differences in temperature — the X-ray
diffraction was carried out at 100 K,219 and the simulations were performed at 300 K.
Another is that the crystallographic binding mode of spiroadamantane is the correct
one, and that the upper layer waters do bind, but are poorly resolved in the crystal

0.0 0.2 0.4 0.6 0.8 1.0 1.2
EDIA

Upper

Lower

FIGURE 4.16: Box plots for the EDIA scores of the upper and lower layer waters in the
spiroadamantane-V27A complex — note that 8 values were obtained for each layer,
as the crystal structure (PDB ID: 6NV1219) contains two protein tetramers. The raw
values for the individual waters are also included as points. The background of the
plot is coloured according to the implications of different EDIA scores as described by

Meyder et al. 232
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(A) (B)

FIGURE 4.17: Comparison with the electron density for the crystallographic binding
modes of spiroadamantane in complex with the V27A mutant. The electron density
data shown is the 2Fo − Fc map contoured at 1σ, showing only the data within 2 Å of
the crystallographic spiroadamantane or water positions. (A) Crystal structure (PDB
ID: 6NV1,219 2.5 Å). (B) Representative frame from the GCMC/MD simulations at

Bequil .

structure, perhaps owing to disorder in their positions.

4.4 Summary

The work presented in this chapter demonstrates how GCMC titrations can be used in
practice for a specific protein of interest, yielding thermodynamic, as well as structural
information regarding the binding site waters. Here, GCMC/MD titrations have been
applied to the M2 drug target in complex with three key ligands of interest, including
two drugs against which it has evolved resistance,217,218 and a promising inhibitor of
the V27A mutant.216 This has been used to investigate both the role of hydration in
stereoselectivity of the chiral drug, rimantadine, and also to investigate the differences
in hydration between amantadine and spiroadamantane in complex with both the WT
and V27A forms of M2.

The titration calculations performed in this work indicate that the water network bind-
ing free energies are very similar between the complexes of WT M2 with the two enan-
tiomers of rimantadine, with that of the (R)-enantiomer being slightly more stable.
However, the difference (∼1.3 kcal mol-1) is very small,3 and could be an artefact of the
simulation conditions. Therefore, these data are considered to be in support of there be-
ing little to no difference in the affinities of the two enantiomers of rimantadine221–223
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— at least in terms of the role of water in this complex. However, an interesting obser-
vation made is that the difference in the stabilities of the water networks is much more
substantial at lower levels of hydration (Fig. 4.6b), indicating that there may be a chiral
preference when only one of the water layers is bound — this is further supported by
the enantiomers adopting different positions within the channel when there are fewer
waters bound (Fig. 4.10). It is hypothesised that when two layers of waters are bound,
the water network is sufficiently flexible to adapt to the protein-ligand interface, such
that the ligand ‘sees’ an achiral environment, whereas when only one layer is present,
the network is not flexible enough to achieve this effect. This observation may be rel-
evant if the next generation of M2 inhibitors displace the upper layer of waters — as
does spiroadamantane211 — as these compounds may exhibit water-mediated stereos-
electivity.

When considering the impact of the V27A mutation on the M2-ligand complex, this
work has found no clear structural or thermodynamic evidence of a water-mediated
mechanism by which this mutant achieves resistance to amantadine, but not to spiroadaman-
tane. The possibility of a water wire being able to bypass the bound amantadine in the
V27A structure, allowing the channel to conduct protons even in the presence of the
ligand, was considered, but no evidence was found to support this. However, some
interesting structural observations were made. For amantadine, the V27A mutation
causes the ligand to be shifted up the channel, likely owing to the removal of the Val27
‘valve’.219 Interestingly, this appears to result in the reorganisation of the water net-
work from two layers into three (Fig. 4.13h), although this does not appear to be asso-
ciated with a significant change in the binding free energy of the network (Fig. 4.12c). It
should be noted that this observation cannot be compared to experiment, as there is no
known crystal structure of amantadine bound to the V27A mutant. It was suggested
by Thomaston et al. that spiroadamantane is able to bind to both the WT and V27A
forms of M2, because it adjusts its position within the channel according to the iden-
tity of residue 27, and, correspondingly, the number of water layers changes from one
to two upon the V27A mutation (Fig. 4.2).219 However, the GCMC/MD simulations
carried out at Bequil did not support this, with only one water layer observed in the
V27A structure, and the spiroadamantane ligand seen in approximately the same posi-
tion as observed in the WT structure (Figs. 4.13k and 4.13o). Further inspection of the
crystallographic data suggested that the electron density evidence for the upper water
layer in the V27A structure was quantitatively very weak (Figs. 4.16), but visual in-
spection of the electron density shows little doubt in the crystallographically observed
spiroadamantane position, whereas the position observed in the Bequil simulations does
not agree well with the ligand electron density (Fig. 4.17). It is therefore expected that
the crystallographic binding mode of spiroadamantane is correct, and that the upper
water layer is simply poorly resolved (which is very possible for a structure with a
resolution of 2.5 Å). It is interesting to note that the crystallographic ligand position is
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observed in the GCMC/MD simulations at B > Bequil (Figs. 4.13p, 4.14c and 4.15c),
indicating a small free energy difference between the one and two layer configurations.
In fact, spiroadamantane is observed in the crystallographic position at B = −4.604
(Fig. 4.15c), where the corresponding chemical potential is only kBT is larger than that
at Bequil , indicating not only that a very subtle bias is needed to cause the second water
layer to bind, but that this difference is also thermally accessible. Therefore, the free
energy difference between the one and two water layer configurations is likely suffi-
ciently small that observing one or two water layers could be sensitive to the force field
— this might explain why the crystallographic pose was observed from MD simula-
tions reported by Thomaston et al. 219

As described above, it does not appear likely (from the results obtained in this work)
that the resistance mechanism of the V27A mutation of the M2 protein is water-mediated.
Another possibility is that resistance arises from a difference in binding affinity, al-
though such a large drop in amantadine activity216,228 does not appear likely to arise
from a reduction in stability associated with the V27A mutation. It should be noted that
whilst it has been demonstrated (via ITC experiments) that the S31N mutation causes
a very significant reduction in amantadine binding affinity,222 such data do not appear
to have been published for the V27A mutation, where functional assays seem to be
favoured.216,228 This could be tested computationally by carrying out free energy cal-
culations of M2-ligand complexes, in which the Val27 tetrad is perturbed into an Ala27
tetrad. If the resistance is driven by a difference in binding affinity, the free energy
change associated with the mutation would be expected to be large and positive for
amantadine, and either small or negative for spiroadamantane. An aspect which has
not been considered in this work is the pH-dependence of the ligand binding. Given
that the M2 protein is a proton channel, it may be worthwhile to investigate the role
of different protein protonation states on the protein-ligand binding. For example, the
metadynamics study by Llabrés et al. reported that amantadine is significantly less sta-
ble in the V27A structure than the WT, citing repulsive interactions between the posi-
tively charged amantadine and the His37 tetrad (simulated in the +2 charge state) as a
factor.231 Therefore, constant pH simulations may be of interest in future work on this
protein, in order to explicitly capture changes in protonation states.170,171 It might also
be interesting to use this method to carry out the mutation free energy calculations dis-
cussed above over a range of pH values. Owing to the possible force field sensitivity
noted observed in this work, future work might be best served by carrying out simu-
lations across multiple force fields, to ascertain whether the insights obtained are force
field-specific.
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Chapter 5

Nonequilibrium Candidate Monte
Carlo in the Grand Canonical
Ensemble

5.1 Introduction

A weakness of GCMC simulations is that the acceptance rates observed in condensed
phases can be very low, and some work in the past has limited grand canonical sim-
ulations to low density systems for this reason.101,105 For example, the equilibrium
simulations of bulk water presented in chapter 3 observed acceptance rates of around
0.03 % — whilst the acceptance rate is somewhat system-dependent, they are often ap-
proximately on this order of magnitude. This therefore means that a large percentage
of the computational effort devoted to GCMC sampling is effectively wasted. This is
not ideal, and the very low acceptance rates mean that a very large number of GCMC
moves must be attempted in order to yield a sufficient number of accepted moves to
provide adequate sampling. Some of the various methods which have been developed
to improve the efficiency are described here.

The efficiency of particle insertion/deletion moves can be improved by increasing the
acceptance rate, and several approaches have been developed with this aim. The cavity
bias method proposed by Mezei seeks to steer the insertion attempts to avoid locations
which will result in steric clashes (thereby biasing insertions into cavities), based on
pre-sampling a number of points at random within the GCMC volume.101,102 These
pre-sampled points are used to calculate the probability of a site which is not sterically
blocked being present, and this probability is used to correct the acceptance criteria of
both insertion and deletion moves, in order to maintain detailed balance.101 For non-
spherical molecules such as water, insertion moves can also be rejected even when the
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insertion location is good, if the random orientation generated introduces a clash. Ori-
entation biasing methods have been developed which attempt to bias the inserted wa-
ters towards more favourable orientations236,237 — again, this bias must be accounted
for in the acceptance criteria. A study by Woo et al. combined orientation biasing with
a grid-based cavity bias implementation, yielding an acceptance rate of 0.81 % (com-
pared to 0.06 % using unbiased GCMC for the same system).103 For approaches such as
these, it is important to consider whether the additional computational cost introduced
by the bias is justified by the increase in acceptance rate: if not, then it would be more
efficient to simply perform a larger number of unbiased GCMC moves.

An alternative approach used to improve the efficiency of GCMC moves is to increase
the speed of the calculations — particularly those which are rejected — thereby re-
ducing the overall amount of computational time wasted. One such example is the
excluded volume mapping method, in which a 3D grid details the sites which are ster-
ically occluded, and if an insertion is attempted at or near one of these positions, the
move is quickly rejected, avoiding the need to calculate the full acceptance probabil-
ity.64,238,239 Shelley and Patey also point out that, (using such an approach) insertions
can typically be rejected much more quickly than deletion moves, so attempting in-
sertions more frequently than deletions (rather than with equal probability, as is more
common) can allow a larger number of moves to be executed per unit time, and there-
fore offering more acceptances237 — it should be noted that this requires a change in
acceptance criteria to account for this bias. In addition to excluded volume mapping,
Ben-Shalom et al. make use of a rapid, approximate potential energy calculation, and
if this indicates a very repulsive interaction, the move is rejected — if the energy dif-
ference obtained is less than +15 kcal mol-1, then a full energy calculation is used.64

A unique approach was described by Ross et al., which carries out batches of GCMC
moves in a parallelised manner.110 Many GCMC moves are carried out simultaneously
(with each move in the batch assigned an ID number), and if one of the moves in the
batch is accepted, the rest of the attempts (those with IDs higher than that of the first
accepted move) are discarded, and the accepted microstate is used as the starting point
for the next batch. The process is repeated until the prescribed number of moves have
been attempted. This approach offers a significant improvement in efficiency by ex-
ploiting the low acceptance rates observed during GCMC.110

In this chapter, nonequilibrium candidate Monte Carlo (NCMC)115 is used to increase
the acceptance rates of GCMC moves, by allowing the system to relax and adjust in
response to the proposed insertion or deletion of a water molecule. In this work, the
use of NCMC to enhance GCMC moves is referred to as grand canonical nonequilib-
rium candidate Monte Carlo (GCNCMC), and simulations which combine this with
conventional MD are described as GCNCMC/MD simulations. Whilst this would be
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expected to provide an increase in acceptance rate over unbiased GCMC (also referred
to as instantaneous GCMC), this approach has a key theoretical advantage over the
other efficiency-enhancing measures described above. This is because the relaxation
component of GCNCMC offers the possibility of inserting and deleting waters via an
‘induced fit‘ mechanism, where the insertion or deletion of a water site requires coop-
erativity from the environment. Such moves would almost never be observed using
the various biasing approaches, as these would require the spontaneous formation of a
cavity, followed by the subsequent and rapid insertion of a water site — or conversely,
for a deletion move, this might require the collapse of a cavity containing a water. How-
ever, GCNCMC would allow synergistic effects between water insertion/deletion and
the rest of the system to occur. Further, owing to the increased computational cost of
GCNCMC, any boosts in acceptance rate observed are weighed against the time taken
to execute each move, in order to assess the overall benefit.

5.2 Acceptance Ratio Derivation

The derivation for a GCNCMC insertion move is demonstrated here, by combining
the derivation of instantaneous GCMC (section 2.6.3.1) with the generalised NCMC
acceptance ratio:115

A(X|Λp)

A(X̃|Λ̃p)
=

P(Λ̃p|x̃T)

P(Λp|x0)

α(X̃|Λ̃p)

α(X|Λp)

π(x̃T)

π(x0)
e−∆S(X|Λp) (2.112 revisited)

where P(Λp|x0) is the probability of applying protocol Λp to x0, α(X|Λp) is the total
probability of applying each of the perturbations of the forward move, π(x0) is the
equilibrium probability of x0, and ∆S(X|Λp) is the conditional path action difference.
Here, we again make use of the treatment of a grand canonical simulation as a large,
canonical simulation which includes the ideal gas reservoir. The equilibrium probabil-
ity for a microstate with N particles in the system and M− N particles in the ideal gas
is given by:

πMVT(rN , rM−N , pM) = Q−1
MVTh−3Me−βE(rN ,rM−N ,pM)drMdpM (5.1)

where:

E(rN , rM−N , pM) = U(rN) +
M

∑
i=1

|pi|2
2m

(5.2)

Note that the above is written in terms of the total energy, which has no dependence on
the positions of the particles in the ideal gas — the momenta are not separated, as the
total energy is not affected by whether a particular momentum value comes from the
ideal gas or the system.
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The forward protocol for an insertion move first involves translating a particle from the
ideal gas to a random location within the system of interest, and then deterministically
increasing the interactions of this particle with the surroundings by scaling λ from 0
to 1, interspersed with relaxation steps. The reverse protocol would involve gradually
decreasing the interactions of the particle by scaling λ from 1 to 0, and then translating
it to a random location in the ideal gas. As the translations between the ideal gas and
the system are not actually simulated in practice, these probabilities are absorbed into
the probabilities of selecting the forward and reverse protocols. All other perturbation
kernels are deterministic, as they involve changing the value of λ between two prede-
termined values (depending on the direction of the perturbation and the point within
the protocol), therefore α(X|Λp) = α(X̃|Λ̃p). Given that insertions and deletions are
attempted with equal probability, the probabilities of selecting the forward and reverse
protocols are therefore given as:

P(Λp|x0) =
1
2

1
M− N

dr
Vsys

(5.3)

P(Λ̃p|x̃T) =
1
2

1
N + 1

dr
Videal

(5.4)

Substituting all of the above into Eq. 2.112 (and using the rearrangements employed in
section 2.6.3.1), we arrive at the following, still somewhat generalised, acceptance ratio:

A(X|Λp)

A(X̃|Λ̃p)
=

P(Λ̃p|x̃T)

P(Λp|x0)

α(X̃|Λ̃p)

α(X|Λp)

π(x̃T)

π(x0)
e−∆S(X|Λp)

=
M− N
Videal

Vsys

N + 1
e−∆S(X|Λp)e−β∆E(X|Λp)

=
1

N + 1
Vsys

Λ3 eβµe−∆S(X|Λp)e−β∆E(X|Λp)

=
1

N + 1
eBe−∆S(X|Λp)e−β∆E(X|Λp)

(5.5)

where some of the steps demonstrated in section 2.6.3.1 have been omitted to avoid
repetition.

When the propagation kernels preserve the equilibrium distribution, the conditional
path action difference — where the conditional path action for the forward move is
taken as the negative logarithm of the cumulative probability of all propagation steps,115,174

and vice versa for the reverse move — can be written in terms of the heat change asso-
ciated with the forward protocol:115

∆S(X|Λp) = −βQ(X|Λp) (5.6)

As implemented in grand, all relaxation/propagation steps are carried out using the
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BAOAB Langevin integrator, which has been empirically observed to sample the equi-
librium distribution very well,158,159 so we can use this expression for the conditional
path action difference. The change in total energy of the system can be decomposed
into the heat and work of the forward path:

∆E(X|Λp) = W(X|Λp) + Q(X|Λp) (5.7)

Which therefore allows the acceptance ratio to be somewhat simplified:

A(X|Λp)

A(X̃|Λ̃p)
=

1
N + 1

eBe−∆S(X|Λp)e−β∆E(X|Λp)

=
1

N + 1
eBeβQ(X|Λp)e−β(W(X|Λp)+Q(X|Λp))

=
1

N + 1
eBe−βW(X|Λp)

(5.8)

There are two contributions to the work done during a nonequilibrium protocol: the
work done on the system by each of the perturbation steps, known as the protocol
work, Wp; and the work done on the system through integration error, known as the
shadow work, Ws.240 As numerical integration methods employ finite timesteps, they
do not strictly obey the equations of motion for the system, and as such the total energy
of a simulation is not exactly conserved during deterministic integration steps. These
steps conserve the energy of a shadow Hamiltonian, which closely resembles the ‘true’
Hamiltonian of the simulation when the timestep is small. The change in system en-
ergy introduced by this difference is known as the shadow work, which can therefore
be considered as a measure of the error introduced to the sampled distribution by the
choice of integrator (and timestep).240 The BAOAB integrator used here has been ob-
served to preserve the equilibrium distribution very well,158,159 so the shadow work
can be assumed to be negligible — this assumption is also made in other NCMC-based
methods.164,168,169 The total work can therefore be well approximated by the protocol
work:

W(X|Λp) = Wp(X|Λp) + Ws(X|Λp)

≈
T

∑
t=1

[U(x∗t )−U(xt−1)]
(5.9)

Leading to the following acceptance ratio for a GCNCMC insertion move:

A(X|Λp)

A(X̃|Λ̃p)
=

1
N + 1

eBe−βWp(X|Λp) (5.10)
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An equivalent derivation can be performed to show that the acceptance ratio for a GC-
NCMC deletion move is:

A(X|Λp)

A(X̃|Λ̃p)
= Ne−Be−βWp(X|Λp) (5.11)

A comparison between Eqs. 5.10 & 5.11 with Eqs. 2.124 & 2.125 shows that the only
difference made by the inclusion of NCMC is the replacement of the potential energy
change with the protocol work:

A(rN+1|rN)

A(rN |rN+1)
=

1
N + 1

eBe−β∆U (2.124 revisited)

A(rN−1|rN)

A(rN |rN+1)
= Ne−Be−β∆U (2.125 revisited)

When these moves are applied in conjunction with a GCMC sphere, it is possible that
waters diffuse in or out of the sphere over the course of the move. Therefore, when
using a GCMC sphere, Eqs. 5.10 & 5.11 are replaced with Eqs. 5.12 & 5.13, respectively:

A(X|Λp)

A(X̃|Λ̃p)
=

1
NT

eBe−βWp(X|Λp) (5.12)

A(X|Λp)

A(X̃|Λ̃p)
= N0 e−Be−βWp(X|Λp) (5.13)

where N0 is the number of waters in the sphere at the beginning of the move, and NT

is the corresponding number at the end of the move. If, at the end of the move, the wa-
ter which is subject to the nonequilibrium procedure lies outside the sphere, this move
must be automatically rejected, as the reverse protocol cannot be proposed by sampling
waters within the sphere.

It should be noted that two additional parameters are introduced for GCNCMC moves:
the number of perturbation kernels, npert, and the number of timesteps per propagation
kernel, nprop. Given that each protocol begins and ends with propagation (to ensure
symmetry of the forward and reverse protocols), the length of each nonequilibrium
protocol (known as the switching time, τ) can be related to these parameters:

τ =
(
npert + 1

)
npropδt (5.14)

The length of the protocol should have no impact on the accuracy, but is expected to
affect the acceptance rate, and therefore the rate of convergence of results. The effect of
different switching times is investigated in this chapter.
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5.3 Simulation Details

The TIP3P water model182 was used in all simulations, with a real-space interaction
cutoff of 12 Å (interactions were switched between 10 and 12 Å), with PME used to
calculate the effect of long-range electrostatic interactions.142 Simulations were run at
a temperature of 298 K, using the BAOAB Langevin integrator158 (γ = 1 ps-1, δt = 2
fs). All water molecules were constrained using the SETTLE algorithm.187 Simulations
were carried out using versions 7.3.1 and 1.1.0 of OpenMM114,179 and grand,113 respec-
tively.

5.3.1 Effects of Nonequilibrium Sampling on Performance

As any difference in performance observed between GCNCMC and instantaneous GCMC
was expected to be dependent on the protocol used for the GCNCMC moves, a series
of protocols were tested, as described here. GCNCMC simulations were carried out
using a range of switching times, from τ = 1 ps to 15 ps, using nprop values of 1, 5, 10,
50 and 100, in order to investigate the impact of this parameter — the values of npert

were determined from the switching time and value of nprop, according to Eq. 5.14.
All switching times tested are given in Table 5.1, along with the corresponding values
of npert for each value of nprop. In each case, only GCNCMC moves were carried out,
with no conventional MD sampling. For comparison, simulations were also carried out
using instantaneous GCMC. It should be noted that these simulations are not strictly
a fair representation of how GCMC would normally be carried out, but the absence of
conventional MD sampling allows a more direct comparison between the two move
types, in order to ascertain any benefit offered by the nonequilibrium aspect. All sim-
ulations were run for a 12 hour wall time limit, for three independent repeats, starting
from a pre-equilibrated box of 2094 water molecules.

5.3.2 Bulk Water Density

To test that the GCNCMC implementation samples the correct distribution — i.e. that
the inclusion of nonequilibrium sampling has been correctly accounted for in the accep-
tance criteria — another test was carried out on a bulk water system. These simulations
were carried out on a pre-equilibrated box of 500 water molecules. For reference, con-
stant pressure MD simulations were run for 100 ns each, with simulation frames written
out every 50 ps — the pressure was maintained at 1 bar, using a Monte Carlo barostat,
with volume changes attempted every 25 timesteps. The average volume observed
over the three independent NPT simulations was used for the GCNCMC/MD simula-
tions, which were carried out using a switching time of 7 ps (nprop = 50, npert = 69)
— this protocol was chosen as it appears to be most efficient for bulk water (Fig. 5.3).
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npert
τ / ps nprop = 1 nprop = 5 nprop = 10 nprop = 50 nprop = 100

1 499 99 49 9 4
2 999 199 99 19 9
3 1499 299 149 29 14
4 1999 399 199 39 19
5 2499 499 249 49 24
6 2999 599 299 59 29
7 3499 699 349 69 34
8 3999 799 399 79 39
9 4499 899 449 89 44
10 4999 999 499 99 49
11 5499 1099 549 109 54
12 5999 1199 599 119 59
13 6499 1299 649 129 64
14 6999 1399 699 139 69
15 7499 1499 749 149 74

TABLE 5.1: Parameters defining each of the GCNCMC protocols tested. For each value
of the switching time, τ, and nprop tested, the corresponding value of npert is given.

These values are all related via Eq. 5.14.

Three independent repeats were run in iterations of one GCNCMC move followed by
3 ps of MD, for 150,000 iterations, with simulation frames saved every 50 iterations.

5.4 Results

5.4.1 Effects of Nonequilibrium Sampling on Performance

The acceptance rates observed for each of the different GCNCMC protocols tested are
plotted against switching time in Fig. 5.1. All of these protocols offer acceptance rates
better than that of 0.0253 ± 0.0005 % observed using instantaneous GCMC. First, it
seems that the acceptance rate is largely independent of the value of nprop when nprop is
fairly small (10 or below, here). Larger values of nprop begin to decrease the acceptance
rate, as the correspondingly lower values of npert (see Table 5.1) result in larger jumps
in λ for each perturbation step — this is especially apparent for short switching times,
where the acceptance rates for nprop = 100 differ significantly from the other values.
Interestingly, the acceptance rate appears to increase approximately linearly with the
switching time over the tested range of 1 ps ≤ τ ≤ 15 ps. For switching times of 15
ps, acceptance rates of around 30 % were observed — an improvement of three orders
of magnitude over instantaneous GCMC. Further, the data collected suggest that the
acceptance rate could be increased even further with longer switching times, but this
would likely not be an efficient use of wall time, as discussed below. For comparison,
the combination of cavity and orientation biasing by Woo et al. yielded acceptance rates
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FIGURE 5.1: Acceptance rates observed for the different GCNCMC protocols tested
in this chapter, with the acceptance rates observed for instantaneous GCMC included
for reference. The data on the right is identical to that on the left, but plotted on a
logarithmic scale, in order to better visualise the comparison with the instantaneous
acceptance rate. Error bars represent the standard error over the three repeats (as does

the shaded region about the dashed line) — note that the errors are very small.

of 0.81 - 0.85 %.103

The increase in acceptance rate for longer switching times can be explained in terms
of the work distributions obtained from the GCNCMC protocols. Several work dis-
tributions for different switching times are plotted in Fig. 5.2, where the work values
from rejected moves are also included. As can be seen, increasing the switching time
causes the resulting work distribution to shift towards more negative values, as well as
becoming narrower and more symmetric. In the limit of very long switching times, the
work distributions would be expected to be normally distributed150 about the excess
chemical potential (or the negative value), with a very low variance. The narrowing of
the work distributions is significantly more pronounced for the insertion moves than
the deletions, where the former are still rather skewed even with a switching time of 15
ps.

Having established that GCNCMC moves can offer significantly higher acceptance
rates than instantaneous GCMC, it is important to assess whether these simulations are
more efficient, as the improvement may be offset by the increased computational cost
of these moves. The relative efficiencies of the different protocols were calculated as the
total number of moves accepted during the 12 hour wall time limit of the simulations,
divided by the mean number of moves accepted in the same amount of time using
instantaneous GCMC. These results are plotted for the different protocols in Fig. 5.3,
where it can be seen that both the value of nprop and the switching time have a signifi-
cant effect on the efficiency. Larger values of nprop increase the relative efficiency of the
protocols, as the acceptance rates tend to differ little between different values of nprop,
but the wall time required to execute each GCNCMC move is reduced for larger values
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FIGURE 5.2: Work distributions of GCNCMC moves using different switching times.
The upper plot corresponds to insertion moves, and the lower plot to deletions, with
the positive and negative values of the excess chemical potential included as dashed
lines, for reference. The work values were taken from simulations using nprop = 10 as

a representative example.

of this parameter. It is thought that, for larger relaxation times between perturbations,
the simulation becomes slightly more MD-like, which means that more of the simula-
tion time is spent on the native, GPU-optimised MD functionality in OpenMM, relative
to the slower perturbation steps carried out in grand (executed on the CPU). This fact
makes it likely that the exact performance difference between different NCMC proto-
cols is therefore likely to be hardware-dependent. However, the relationship described
between nprop and efficiency breaks down when increasing nprop from 50 to 100, as the
drop in acceptance rate (Fig. 5.1) is not compensated for by the increase in speed. Of the
nprop values tested in this work, nprop = 50 provides optimal results (provided that the
switching time is not too small), and can be over five times more efficient than instan-
taneous GCMC. A positive result here is the fact that, for a given value of nprop < 100,
the relative efficiency does not appear to vary significantly for switching times between
approximately 5 ps and 13 ps. This means that the optimal GCNCMC protocol need
not be determined too precisely, and should therefore be suitable to simulate different
systems with near-optimal efficiency.

An additional advantage of GCNCMC moves over the previously used instantaneous
implementation is that the work values calculated during the nonequilibrium protocols
can be used to calculate the free energy of inserting a water molecule into the system
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FIGURE 5.3: Efficiencies of the different GCNCMC protocols tested in this chapter,
relative to instantaneous GCMC. The efficiencies are calculated as the total number of
moves accepted during the same amount of wall time, relative to the mean number
of moves accepted in the same amount of time using instantaneous GCMC. As in Fig.
5.1, error bars (and the shaded region about the dashed line) represent the standard

error over the three repeats.

(section 2.4.3). This can also make use of the work values from rejected moves, meaning
that the time invested in generating configurations which are not accepted into the en-
semble is therefore not totally wasted. In order to assess this capability, the work values
from each of the simulations were processed using BAR (as implemented in pymbar191)
to calculate the hydration free energy of water (where the insertion works are taken as
the forward values, and the deletion works are taken as the reverse values), with the
results shown in Fig. 5.4. As can be seen, for longer switching times, the estimated
free energies begin to approach the free energy value calculated in chapter 3, although
even for the longest switching times employed, the free energies are still systemati-
cally overestimated. This is because, as shown in Fig. 5.2, even with a switching time
of 15 ps, the work distributions are still distinctly offset from the value calculated (at
significantly greater computational expense) using an equilibrium free energy method.
Better nonequilibrium free estimates would require either longer switching times, or
significantly more samples. However, it should be recalled that the primary aim of
these simulations is to sample the grand canonical ensemble, so these free energy data
should be considered a bonus, which can be calculated at little to no additional compu-
tational cost. Note that here, all work values were combined for each simulation type,
as the bulk water system simulated is homogeneous. If a heterogeneous system (such
as a protein system) were to be analysed this way, then the work values would have
to be separated appropriately to capture the spatial dependence of the insertion free
energy — more samples would therefore be needed to give converged free energies
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FIGURE 5.4: Nonequilibrium estimates of the free energy to insert a water molecule
in water, using the work values obtained from the GCNCMC moves carried out. Each
data point is the mean free energy calculated over the three repeats, and the error bars

represent the standard error in the mean.

across the space sampled.

5.4.2 Bulk Water Density

As previously mentioned, in order to verify that the inclusion of nonequilibrium switch-
ing was correctly accounted for in the acceptance criteria, an analysis of bulk water was
carried out, similar to that presented in chapter 3. Histograms of the mass density of the
simulated water box are plotted in Fig. 5.5 for both the NPT and GCNCMC/MD sim-
ulations. As can be seen, the agreement between the two distributions is qualitatively
excellent, which would appear to verify that the acceptance criteria derived for GC-
NCMC moves in this work are correct. As discussed in chapter 3, bulk water is a much
larger system than would typically be simulated with grand canonical methods, but
serves as a useful test, because the scale of the system would likely exacerbate any er-
rors in the underlying theory or implementation — this is therefore a reassuring result.
It is interesting to note that the distributions shown in Fig. 5.5 are somewhat broader
than those in Fig. 3.1a, owing to the smaller volume of the simulations described in
this chapter — a similar effect was observed by Ross et al., where fluctuations in salt
concentrations were noted to be larger for smaller simulation volumes.168
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FIGURE 5.5: Distributions of the bulk water density as sampled using constant pres-
sure MD and GCNCMC/MD (τ = 7 ps).

5.5 Summary

This chapter has shown that nonequilibrium candidate Monte Carlo (NCMC) can be
applied to drastically improve the acceptance rates and efficiencies of GCMC simula-
tions (yielding GCNCMC), by allowing the simulated system to relax in response to a
proposed insertion or deletion move. The derivation is presented for these acceptance
criteria, which transpire to be almost identical to those used for instantaneous GCMC
simulations, except that the instantaneous potential energy change is replaced with a
nonequilibrium work. The results collected in this work show that the acceptance rates
for GCMC sampling of water molecules can be increased by three orders of magnitude,
when using GCNCMC. Interestingly, the acceptance rate did not plateau over the range
of switching times tested, and can therefore likely be increased even further (Fig. 5.1)
— however, this will likely be less efficient, as the results obtained indicate that the
optimal balance between acceptance rate and computational cost lies somewhere be-
tween 5 ps and 13 ps (Fig. 5.3). When accounting for the increased computational cost
of GCNCMC moves over instantaneous GCMC, it was found that the efficiency can
be increased by over a factor of 5 (Fig. 5.3), although it should be noted that the effi-
ciency differences between different NCMC protocols are likely hardware-dependent.
The correctness of the GCNCMC implementation in grand was demonstrated by the
excellent agreement between the bulk water density distributions observed from GC-
NCMC/MD simulations and those from constant pressure simulations under the same
conditions (Fig. 5.5).
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An additional advantage of GCNCMC is that the work values calculated from the
nonequilibrium protocols can be used to estimate free energy data from the simula-
tion. Whilst the relatively short nature of the nonequilibrium protocols used for water
sampling means that the free energy estimates are not accurate (Fig. 5.4), it should be
noted that these free energies are provided as a secondary benefit of using NCMC to
enhance the sampling of water molecules, and can be calculated at an additional com-
putational cost which is negligible, relative to that of the simulation itself. Whilst the
free energies may not be fully converged, they can still be used to provide some degree
of additional insight into the system.

A surprising observation made in related work (not presented here — the observations dis-
cussed in this paragraph were made by Oliver Melling (OJM), using results collected by OJM)
is that the use of GCNCMC sampling of waters in protein binding sites not only im-
proves the sampling of the waters, but can also improve the sampling of other degrees
of freedom. During GCNCMC/MD simulations of major urinary protein I (MUP-I), a
broader distribution of waters are observed in the protein binding site than observed
using instantaneous GCMC/MD. It transpires that these additional microstates are a re-
sult of greater motion of the ligand within the binding site, owing to the fact that some
insertion and deletion moves appear to require ligand motion in order to stabilise the
insertion/deletion. Such stabilisations cannot occur during instantaneous GCMC/MD,
and analogous move proposals are therefore overwhelmingly rejected. This surprising
observation indicates that GCNCMC/MD simulations may be even more beneficial to
the sampling of protein-ligand binding sites than initially anticipated.

In summary, the results presented in this chapter show that NCMC appears to offer
a significant and efficient improvement in the very low acceptance rates typically ob-
served using unbiased GCMC. The fact that the acceptance rates can be increased so
significantly may mean that NCMC can be applied to GCMC sampling of molecules
larger than water, for which instantaneous insertion and deletion moves will become
vanishingly unlikely — the smoother nature of GCNCMC insertions and deletions
would be expected to be especially beneficial in such cases, where suitable cavities are
unlikely to arise spontaneously. This prospect is investigated in the following chapter.
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Chapter 6

Grand Canonical Sampling of Small
Organic Molecules

6.1 Introduction

6.1.1 Fragment-Based Drug Design

Fragment-based drug design (FBDD) is now a widely used strategy for initial hit iden-
tification.241 Unlike conventional screening, FBDD focuses on the screening of small,
weakly binding molecules (fragments), which can then be elaborated upon to design
drug-like molecules.242 Screened fragments typically obey the ‘rule of three’:243,244 molec-
ular weight less than, or equal to, 300 Da; fewer than, or equal to, 3 hydrogen bond
donors; fewer than, or equal to, 3 hydrogen bond acceptors; and a logP less than, or
equal to, 3. The primary benefit of this approach is that a broader range of chem-
ical space can be covered with fewer compounds, compared to screening of larger
compounds.242 However, the reduced size and complexity of fragment-like molecules
means that they typically bind weakly to their target, and the lower limit of useful frag-
ment size is therefore determined by the sensitivity with which hits can be identified.
Another benefit of FBDD is that the small size of the fragments allows them to bind to
protein regions which may not be identified with larger compounds.245

Alongside docking — which is widely used in the pharmaceutical industry for the pre-
diction of protein-ligand binding modes2 — a number of MD-based methods have been
developed for the study of fragment binding,246 some of which are briefly discussed
here. The SILCS method involves simulating a protein surrounded by a concentrated
fragment solution (with a repulsive potential employed between fragment molecules
to prevent aggregation), from which fragment binding locations can be identified.247
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MixMD is a similar method, which simulates a protein in a mixture of water and an-
other solvent (such as ethanol or acetamide), from which the solvent interactions with
the protein are used to identify interaction hotspots.248 SWISH is a fragment sampling
method, primarily intended for the identification of cryptic binding pockets (those
which are only visible after ligand binding), which scales the interaction strength be-
tween waters and apolar protein atoms, causing more water to bind to the protein than
usual.249 This increased water binding opens apolar pockets on the protein, to which
the ligands can then bind by displacing the waters. Multiple replicas of the system are
simulated, each using different values of the scaling parameter, with replica exchange
used to extract unbiased simulation trajectories.249 However, these MD-based method-
ologies would be expected to suffer from the same kinetic limitations as previously
discussed for MD simulation of buried water sites, particularly when the fragment
binding location is deeply buried. A possible exception is perhaps the BLUES software
package, which aims to enhance the sampling of transitions between fragment bind-
ing modes, with the first implementation using NCMC to attempt large rotations of
the fragment about the centre of mass,164 and a later version extending this methodol-
ogy to attempt large dihedral rotations.167 The use of BLUES for enhanced rotational
sampling has been used to refine docked fragment structures, offering an improvement
in the identification of crystallographically observed binding modes.165 More recently,
however, this package has been extended to sample transitions between distinct frag-
ment binding sites using a Monte Carlo technique known as molecular darting, which
can allow fragments to ‘jump’ between different regions of the protein.250

6.1.2 Application of GCMC to Fragment Binding

Throughout this thesis, grand canonical Monte Carlo (GCMC) has only been discussed
in the context of determining the binding locations of water molecules within protein
systems, but there is no conceptual reason preventing this method from being used to
determine the binding locations of other small molecules, such as molecular fragments.
However, it is expected that the acceptance rates would be vanishingly low, making
this practically infeasible, given the very small acceptance rates which are typically ob-
served for a molecule even as small as water (chapter 5). Clark et al. have employed
GCMC sampling to determine the binding modes and free energies of rigid fragments
to protein structures,251,252 although they did not report the acceptance rates observed,
a number of biasing techniques were necessary to favour more probable insertions.251

A GCMC-like method has also been developed by Lakkaraju et al. for the sampling of
fragment binding to a restrained protein structure.253 However, it should be noted that
this method is not strictly GCMC, as the chemical potential is not constant, instead,
the excess chemical potential is allowed to vary such that the fragment concentration
within the simulation volume fluctuates about some user-defined value.253
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In chapter 5, it was shown that nonequilibrium candidate Monte Carlo (NCMC) can
be used to increase the acceptance rates of GCMC moves by three orders of magnitude
for water molecules. This observation raises the question as to whether NCMC could
therefore be used to make grand canonical sampling of small organic molecules more
accessible in condensed phases. If this were the case, then it could allow GCNCM-
C/MD simulations to be used to identify fragment binding locations within protein
structures, which would be of significant interest in computer-aided drug design. Ad-
ditionally, it is possible that GCNCMC moves may allow the detection of cryptic bind-
ing pockets by allowing protein rearrangements following the insertion of a fragment
into a closed pocket.

It should be noted that the implementation of grand canonical sampling for non-water
molecules is slightly more complex. Previously, only sampling of water molecules was
considered, where the reference state is bulk water, which has a well defined standard
state (pure water under standard conditions). When considering grand canonical sam-
pling of non-water molecules, we consider the reference state to be a solution of the
ligand (benzene is used in this chapter) in water. It is preferable to carry out GCNCMC
sampling of water, as well as the ligand, and as such, this necessitates the use of two
separate Adams values for the ligand and water, denoted BL and BW , respectively —
that is, the chemical potentials of the both the ligand and the water are separate and
constant.254–257 Similarly, there is an Adams value for each species which will give a
simulation in equilibrium with the reference solution:

BL
equil(cL) = βµex

L (cL) + ln
(

VGCMC

VL(cL)

)
(6.1)

where cL is the ligand concentration, µex
L is the excess chemical potential of the ligand

and VL is the average volume per ligand in the reference solution178 — BW
equil is similarly

defined. Note that if the exact ligand concentration is known, then the average volume
per ligand can be trivially calculated:

VL(cL) =
1

NAcL
(6.2)

where NA is Avogadro’s constant. The standard state for a mixture is more difficult to
define than that of a pure substance, as the mixture can be defined in terms of the mole
fraction, molarity or molality of the solute,178 whereas for a single component system
such as bulk water, the standard state is simply the pure substance under standard
conditions. Even under standard conditions, the chemical potential of the reference
solution is dependent on the composition of the mixture178 (unlike the case of bulk
water, where composition is not an issue). As one might wish to define a reference
concentration which does not correspond to any definition of standard state solution,
the average volume per ligand/water is not referred to as the standard state volume
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of the species in this chapter, and the ‘◦’ superscript is therefore not used. Therefore,
the grand canonical parameters are not only dependent on the ligand of interest, but
also on the concentration of the reference solution, as is made explicit in the equations
above.

In this chapter, the use of GCNCMC/MD simulations for fragment-like molecules is
demonstrated using benzene as an example. First, the thermodynamic parameters re-
quired for grand canonical simulation are calculated for several concentrations of ben-
zene solution. These parameters are then tested by running GCNCMC/MD simula-
tions on a pure water box, in order to identify whether or not the desired concentration
is reproduced by the choice of parameters. In order to test the ability of GCNCMC
sampling of small molecules to identify fragment binding locations within a protein
structure, TEM1 β-lactamase was chosen as a test system. This protein was chosen be-
cause it contains a cryptic binding pocket259 for which benzene binding was observed
using the SWISH method for cryptic pocket detection.249,260 This system was used to
test the ability of GCNCMC sampling to bind benzene to both pre-formed pockets and
cryptic pockets. The former was tested by running simulations using restraints to hold
the cryptic pocket open, and in the latter case, the apo-structure was used as a starting
point, in which the cryptic pocket is not seen (Fig. 6.1).

FIGURE 6.1: Location of the TEM1 β-lactamase cryptic pocket in the apo- and holo-
structures. The apo-structure (PDB ID: 1JWP,258 1.75 Å) is shown in green and the
holo-structure (PDB ID: 1PZO,259 1.90 Å) is shown in cyan, with the bound ligand. As
can be seen, the opening of the pocket involves a significant backbone rearrangement.
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6.2 Simulation Details

The following conditions were used for all simulations reported in this chapter. The
AMBER ff14SB and TIP3P force fields were used to model the protein181 and water,182

respectively, and Joung-Cheatham parameters183,184 were used for any ions present in
the simulation. The general AMBER force field120 (GAFF) was used with AM1-BCC
charges,122,123 (calculated using antechamber230) to represent benzene molecules. An in-
teraction cutoff of 12 Å was used, with a switching function applied between 10 and 12
Å, and long-range electrostatic interactions were calculated using PME.142 Simulations
were carried out at 298 K, using the BAOAB Langevin integrator158 to integrate the
configurational degrees of freedom (γ = 1 ps-1, δt = 2 fs). All bonds involving hydro-
gen atoms were constrained to their equilibrium values, using the SETTLE algorithm
for water molecules,187 and the SHAKE algorithm for non-water molecules.185,186 Any
NPT simulations were carried out at a pressure of 1 bar, using a Monte Carlo barostat,
with volume changes attempted every 25 timesteps. Where GCNCMC moves were
carried out, a switching time of 50 ps (nprop = 50, npert = 499) was used for benzene,
and τ = 10 ps was used for water (nprop = 50, npert = 99) — it should be noted that
the GCNCMC protocol for benzene has not been optimised. All simulations here used
version 7.3.1 of OpenMM,114,179 and a development version of the grand module.113

6.2.1 Thermodynamic Parameters

As the grand canonical parameters required for both water and benzene are expected
to be dependent on the composition of the reference solution, the excess chemical po-
tential and average volume were calculated for both species at several concentrations
of benzene. Concentrations of ∼0.1 M, ∼0.3 M and ∼0.5 M were selected, as this range
was observed to provide well mixed solutions (at concentrations closer to 1.0 M, the
benzene molecules were observed to aggregate). It should be noted that these con-
centrations are approximate, as it is very difficult to set an exact concentration for a
finite-size simulation — these were prepared by creating systems containing 4, 12 and
20 benzene molecules, each with 2094 water molecules. The exact concentrations ob-
served in each case are provided in Table 6.2 — for notational simplicity, these values
are referred to approximately throughout this chapter.

The excess chemical potentials were calculated separately for both benzene and water.
In each case, a non-interacting molecule was gradually coupled to the system over 30
equally-spaced λ values from 0 to 1, with ten independent repeats carried out in each
case. For each repeat, 1000 samples were collected, with 10 ps of NPT simulation be-
tween samples. These samples were post-processed to remove correlated data,190 and
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the free energy was then extracted using the MBAR method.149,191 The average molec-
ular volume was calculated from a 50 ns simulation at the appropriate concentration.
Every 5 ps, samples were collected for both benzene and water, in which the simulation
volume was divided by the appropriate number of molecules in the simulation. In this
case, five independent repeats were carried out.

6.2.2 Bulk Concentration

In order to test the quality of the thermodynamic parameters determined, the ability of
grand canonical simulations to reproduce the bulk benzene concentration was tested,
just as the bulk density of water was analysed in chapter 3. Here, GCNCMC/MD sim-
ulations were run, starting from a pre-equilibrated box of pure water, containing 2109
water molecules within a volume of (40.101 Å)3, in order to test if the desired con-
centration would be reproduced. The system was simulated for 50,000 iterations of
the following: one GCNCMC benzene move, three GCNCMC water moves, and 20 ps
of conventional MD. Concentration samples were taken after every iteration, with the
first 5000 samples discarded as equilibration. The GCNCMC moves sampled the entire
system volume, according to the Bequil values given in Table 6.1 for each concentration,
calculated using Eq. 6.1 with the parameters determined in this work (Table 6.2). Five
independent repeats were carried out for each concentration.

For comparison, an additional set of simulations were carried out, under exactly the
same conditions, except that every GCNCMC move on benzene was replaced with 5000
instantaneous GCMC moves. In this case, the starting structure for the simulation was
an equilibrated benzene solution at approximately the desired concentration. This was
run for 2000 iterations (giving a total of 107 GCMC moves on benzene). The purpose of
this alternate set of simulations was not to test the GCMC methodology, but to obtain
a quantitative estimate of how poor the acceptance rate would be for GCMC sampling
of benzene, to which the GCNCMC acceptance rate could be compared.

Concentration / M BL
equil BW

equil
∼0.1 +0.497 −2.615
∼0.3 +1.459 −2.650
∼0.5 +1.850 −2.634

TABLE 6.1: Bequil values of benzene and water for the GCNCMC/MD simulations
carried out to reproduce the bulk concentrations. These values were all calculated
using Eq. 6.1 (for both the ligand and water) with the parameters given in Table 6.2.
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6.2.3 Identification of Fragment Binding Sites

As previously mentioned, two separate sets of simulations were run for the TEM1 sys-
tem — one with an open binding pocket, and one in which the cryptic pocket is closed.
The initial structure of the closed simulation was taken as the apo-structure of TEM1
(PDB ID: 1JWP258). For the open simulation, the holo-structure, in which a ligand is
bound to the cryptic pocket (PDB ID: 1PZO,259 Fig. 6.1), was downloaded, and the
ligand molecules were removed, giving a pseudo-apo-structure. In order to prevent the
pocket from collapsing after the removal of the ligand, harmonic restraints were ap-
plied to all protein heavy atoms, restraining them to their initial positions, using a
harmonic constant of 10 kcal mol-1 Å-2.

For both systems, the following setup procedure was applied. The relevant crystal
structure was downloaded from the Protein Data Bank (PDB),31,32 and then hydrogen
atoms were added using the Modeller tool found in OpenMM114 — the N-terminus was
capped with an acetyl group, and the C-terminus was negatively charged. The protein
was solvated in a water box, which extended at least 8 Å from all protein atoms, with
sodium ions added to neutralise the system charge. The system was minimised and
then subjected to 1 ns of constant pressure equilibration. In each case, the GCMC sphere
was centred on the Cα atom of Thr71, with a radius of 30 Å to cover the entire protein,
and the benzene concentration was set to ∼0.5 M, using the parameters determined in
this work (BL

equil = +2.412, BW
equil = −2.072). As before, the simulations were carried out

in iterations of one GCNCMC benzene move, followed by three GCNCMC moves on
water, and then 20 ps of conventional MD. Each simulation was run for 5000 iterations,
with simulation frames saved after each iteration — three independent simulations
were run for each initial structure.

6.3 Results

6.3.1 Thermodynamic Parameters

The values of the excess chemical potential and average molecular volume calculated
for both benzene and water at each of the tested concentrations are given in Table 6.2.
As can be seen, these properties are very concentration-dependent, except for the excess
chemical potential of water, which appears relatively insensitive to the benzene con-
centration — likely because the concentrations of benzene are small, relative to those
of water. Where these parameters are used in GCNCMC/MD simulations reported in
this chapter, the value of each parameter is taken as the mean value, rounded to the
same precision as the first significant figure in the standard error, e.g. using the results
in Table 6.2, the value of the excess chemical potential of benzene at a concentration of



118 Chapter 6. Grand Canonical Sampling of Small Organic Molecules

Concentration / M µex
L / kcal mol-1 VL / Å3 µex

W / kcal mol-1 VW / Å3

0.103564 −0.528 16,033.8 −6.080 30.6281
(0.000001) (0.015) (0.2) (0.010) (0.0004)

0.305082 −0.600 5442.9 −6.088 31.1915
(0.000007) (0.012) (0.1) (0.013) (0.0007)

0.499386 −0.656 3325.2 −6.070 31.7589
(0.000022) (0.026) (0.1) (0.010) (0.0014)

TABLE 6.2: Values of the thermodynamic parameters calculated for both benzene and
water for different concentrations of benzene, along with the exact benzene concen-
trations observed for each simulation configuration. For each parameter, the value
quoted is the mean value from the independent repeats, and the value in parentheses
is the standard error in the mean. Note that the uncertainty in the concentration arises

from fluctuations in the simulation volume at constant pressure.

∼0.1 M is taken as −0.53 kcal mol-1. Having collected these data, the parameters for
benzene concentrations between 0.1 and 0.5 M could be obtained by interpolation from
the values in Table 6.2, making it easier to simulate alternative concentrations, without
requiring these costly parameterisation simulations.

6.3.2 Bulk Concentration

The acceptance rates observed for the GCNCMC moves on benzene, at concentrations
of ∼0.1 M, ∼0.3 M and ∼0.5 M were 24.8 ± 0.1 % , 25.1 ± 0.1 % and 24.5 ± 0.0 %,
respectively — interestingly, the acceptance rates appear to be relatively independent
of the benzene concentration. In order to quantify the improvement in the acceptance
rate offered by NCMC, an additional set of simulations were run using instantaneous
GCMC moves to insert and delete benzene molecules, as described previously. For
these simulations, the acceptance rates were (1.0 ± 0.5) × 10-5 %, (1.2 ± 0.4) × 10-5 %
and (2.2 ± 0.9) × 10-5 % , respectively, where such a low acceptance rate would make
instantaneous GCMC/MD simulation of benzene infeasible. This therefore indicates
that the use of NCMC for benzene insertions and deletions improves the acceptance
rates by six orders of magnitude — in chapter 5, the improvement for water was three
orders of magnitude, indicating that the benefit of NCMC becomes even more signifi-
cant for lower probability instantaneous move proposals. This therefore highlights the
power of NCMC move proposals, via the relaxation stages in the nonequilibrium pro-
tocol.

The concentration distributions observed for the GCNCMC/MD simulations carried
out on bulk solvent, using the different sets of parameters are plotted in Fig. 6.2. In
general, it appears that the concentration distributions broadly represent the intended
macroscopic concentrations at which the parameters were determined. However, some
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FIGURE 6.2: Distributions of the benzene concentrations observed for the different
GCNCMC/MD simulations. The bin widths of the histograms correspond to the dif-
ference in concentration caused by changing the number of benzene molecules by one,
at the simulated volume. The dashed vertical lines indicate the intended macroscopic

concentration for each set of simulations.

discrepancies are noted — particularly for the ∼0.3 M data (discussed below) — but
these data generally indicate that the concentration of the ligand within the solution
can be controlled via GCNCMC/MD. It is also interesting to note that the distributions
here become notably broader for higher concentrations, likely because at lower con-
centrations, a difference of one benzene molecule corresponds to a larger difference in
concentration, relative to the equilibrium concentration, and is therefore less likely to
be accepted.

It should be noted that the distribution of the ∼0.3 M data is somewhat shifted from
the desired concentration. It is possible that this data is skewed because the parameters
are not as well calibrated as one might like — notably, the excess chemical potential of
water is slightly lower than those of the other two concentrations (Table 6.2). As shown
in chapter 3, even subtle differences in this parameter can cause noticeable differences
in the density of bulk water. If the value of µex

W is indeed too low the for∼0.3 M simula-
tions, the slight drop in the density of water could create space for additional benzene
molecules to be inserted into the solution, causing the concentration distribution to be
shifted. To test this hypothesis, a set of GCNCMC/MD simulations identical to those
at ∼0.3 M were carried out, except that the excess chemical potential of water was set
to −6.075 kcal mol-1 (halfway between the analogous values for ∼0.1 M and ∼0.5 M),
giving BW

equil = −2.625. The resulting concentration distribution for the two values of
µex

W are shown in Fig. 6.3. Interestingly, even a small difference of 0.015 kcal mol-1 in the
excess chemical potential of water causes a notable shift in the concentration distribu-
tion of benzene. These data therefore underscore the previously discussed importance



120 Chapter 6. Grand Canonical Sampling of Small Organic Molecules

0.0 0.2 0.4 0.6 0.8
Concentration / M

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Pr

ob
ab

ilit
y 

de
ns

ity
ex
W = 6.09 kcal mol 1

ex
W = 6.075 kcal mol 1

FIGURE 6.3: Distributions of the benzene concentrations observed for a macroscopic
concentration of ∼0.3 M, using two different values of the excess chemical potential
of water, µex

W . The value of −6.09 kcal mol-1 was taken by rounding the parameterised
value (Table 6.2), and the value of −6.075 kcal mol-1 was taken as the midpoint of the
values determined at concentrations of ∼0.1 M and ∼0.5 M. The dashed vertical line

indicates the intended macroscopic concentration.

of using well calibrated thermodynamic parameters (chapter 3). However, the aim of
these simulations was to verify that the ligand concentration is adequately sampled by
GCNCMC/MD simulation, which appears to be the case, and in many cases, reproduc-
ing the exact concentration of a ligand is likely to be of significantly less interest than
where the ligands bind. Nonetheless, further work is needed to validate this method,
preferably involving multiple solutes at range of concentrations.

6.3.3 Identification of Fragment Binding Sites

First, the simulations in which the cryptic pocket of TEM1 was held open by restrain-
ing the protein heavy atoms were analysed. It was observed that binding of benzene to
the pocket is rapidly observed in all three repeats, with the first insertion of a benzene
molecule into the pocket observed within 150 cycles in all three cases. As the simu-
lation progresses, the pocket is eventually filled with 3-5 benzene molecules, with a
representative example of 4 bound benzene molecules shown in Fig. 6.4. This there-
fore indicates that, despite the GCMC sphere covering the whole protein (not just the
binding site), the GCNCMC moves allow the molecule insertions to rapidly find pre-
formed cavities. However, whilst this is a reassuring result, in many cases, the pocket
of interest will not be neatly pre-formed, and some degree of protein reorganisation
will be necessary upon fragment binding.
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FIGURE 6.4: Representative frame from the GCNCMC/MD simulations, showing the
binding of benzene to the TEM1 pocket, where the protein is restrained to maintain
the pocket open. The benzene molecules are shown in pink and the crystallographic

binding mode of the ligand is shown in transparent cyan.

The unrestrained simulations of apo-TEM1 serve as a difficult test case for the use of
GCNCMC moves to insert fragments into closed protein binding sites, owing to the
significant backbone rearrangement which is required to open the cryptic pocket (Fig.
6.1). Indeed, no binding of benzene to the cryptic pocket was observed during any of
the three independent simulations — it should be noted that Oleinikovas et al. reported
binding of multiple benzene molecules to this pocket when simulating the apo-protein
using their SWISH method.249 The fact that binding is rapidly observed in all three
cases when the pocket is held open indicates that this is not a limitation of the search
of the space by random insertions, but rather that the insertions are hindered by the
pocket being closed — previous work by Oleinikovas et al. has found the opening of
this pocket to be associated with a notable free energy penalty, as determined from a
metadynamics analysis of the pocket exposure.249 During the relaxation stages of GC-
NCMC moves, the motion of the system is likely to follow the path of least resistance,
as governed by the forces acting on each of the particles. Given the fact that the opening
of this pocket is thought to be very unfavourable, the binding of a benzene molecule
to the closed pocket is likely to face a significant barrier. It is therefore possible that,
during the relaxation stages, it is easier for the partially interacting benzene molecule
to unbind from the protein (or move to some less obstructed site), than for the protein
to adapt to accommodate the fragment.

The hypothesis described above — that fragment unbinding may be preferential to
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rearrangement of the protein environment during the relaxation steps of NCMC inser-
tion protocols — was tested using a series of restrained insertions (note that these are
not NCMC moves). These simulations attempted to insert benzene molecules into the
apo-structure, focusing on the location of the cryptic pocket. Here, a random point was
selected within a sphere based on the cryptic pocket (centred on the Cα atoms of Arg222
and Ile282, with a radius of 4 Å), and a non-interacting benzene molecule was placed
at that location, with a random orientation. First, a harmonic force was gradually in-
troduced over 5 ps (with the harmonic constant linearly increased to 1 kcal mol-1 Å-2)
to restrain the centre of geometry of the benzene to the randomly generated point. The
benzene was then alchemically coupled to the system over 50 ps, and then the restraint
was removed over a further 5 ps. During this nonequilibrium protocol, 50 timesteps of
relaxation were carried out between perturbation steps. Prior to each insertion proto-
col, the system was sampled for 20 ps, and after the insertion protocol, the coordinates
were saved and then reset — this was repeated for 1000 insertions. For comparison,
an analogous set of unrestrained insertions were carried out in an identical fashion, ex-
cept that no restraints were employed and the entire 60 ps of switching was devoted to
alchemical coupling of the benzene molecule.

Visual inspection of the generated structures confirmed that the vast majority of the
unrestrained insertions result in the inserted benzene leaving the insertion region —
either ending up on the protein surface or in bulk solvent. This effect is also observed
to some extent from the restrained insertions — as the restraint is removed, the ligand
is free to leave — but a large number of these insertions result in benzene molecules
bound either to the cryptic pocket or very close. This difference was analysed quantita-
tively by calculating the extent to which the cryptic pocket is opened by each benzene
insertion, using the method of pocket exposure calculation described by Oleinikovas
et al. 249 This involves first determining the pocket-lining atoms of the crystal structure
— those protein heavy atoms within 4.5 Å of the ligand bound to the cryptic pocket
— then the pocket exposure of a simulation frame is calculated as the percentage of
these atoms which are determined to be pocket-lining using the fpocket tool.261 Fig.
6.5a shows a plot of the work done during the benzene insertion against the pocket
exposure of the protein following the insertion. It can be seen that insertions which in-
duce a greater degree of pocket exposure also require more work to insert the molecule
— likely related to the free energy penalty of opening the cryptic pocket.249 It can also
be seen that the restrained insertions consistently cause greater pocket exposure than
the unrestrained insertions, where a large majority of the latter have no impact on the
pocket exposure. It should be noted that the unrestrained insertions do sometimes bind
benzene to the cryptic pocket, but these cases seem to be rare, and extensive sampling
would likely be required to observe such an insertion when the sampling is focused on
the entire protein. In any case, it is of some concern that the work done by the inser-
tions which induce pocket exposure is typically very positive, and as such, it may be
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FIGURE 6.5: Work done by restrained and unrestrained benzene insertions into the
TEM1 cryptic pocket, along with the extent to which the pocket is opened by the in-
sertion — data is shown for switching times of 60 ps and 120 ps. For reference, the
pocket exposures of the apo- (PDB ID: 1JWP258) and holo-structures (PDB ID: 1PZO259)

were calculated as 2.9 % and 80 %, respectively.

very difficult to accept such insertions as GCNCMC moves. However, the distribution
of work values for these insertions can be shifted towards more negative values by us-
ing longer switching times, as shown in Fig. 6.5b, where the insertions were repeated
with doubled switching times. It is interesting to note that the probability of propos-
ing a state with high pocket exposure appears to decrease with longer switching time
for the unrestrained insertions — this may be because slower switching times give the
partially interacting fragment more time to escape from the binding site. These results
therefore suggest that the use of restraints may be of benefit during GCNCMC moves,
and this should likely be an avenue of future development in this area.

6.4 Summary

This chapter presents the extension of the grand Python module to allow the grand
canonical insertion and deletion of non-water molecules, with benzene used as an ex-
ample here. In this work, GCNCMC moves were used to achieve acceptance rates
of around 25 % for simulations on bulk solution, making grand canonical sampling
of fragment-like molecules in condensed phases very accessible. For benzene, GC-
NCMC moves (with a switching time of 50 ps) offer an acceptance rate six orders of
magnitude larger than that obtained using conventional GCMC (∼1×10−5 %). This
therefore implies that GCNCMC could be used to sample molecules larger than ben-
zene, whilst still obtaining a reasonable acceptance rate — though in some cases, this



124 Chapter 6. Grand Canonical Sampling of Small Organic Molecules

may necessitate a longer switching time, in order to provide sufficient system relax-
ation. Testing the GCNCMC/MD implementation on a simulation of bulk water yields
approximately the correct concentration (Fig. 6.2), for which the thermodynamic pa-
rameters (excess chemical potential and average volume for water and benzene) were
calibrated. However, it should be noted that the concentration distributions observed
are rather sensitive to subtle changes in these parameters — even a small change in the
calculated excess chemical of water can have a notable impact on the concentration of
benzene in the solution (Fig. 6.3) — further underlining the point made in chapter 3
that the accuracy of grand canonical simulations is dependent on rigorous calibration
of these parameters. It should also be noted that benzene may be a sub-optimal choice
of compound for this validation (owing to its very hydrophobic nature), and testing of
a number of compounds should be carried out, preferably covering a range of solubil-
ity.

Application of this methodology to a protein system (TEM1 β-lactamase) yielded mixed
results. It was demonstrated that this method is able to rapidly insert fragments into
preformed binding sites, by simulating a restrained TEM1 protein structure, in which
the cryptic pocket was held open. However, when the pocket is closed, as in the apo-
structure, no benzene binding to the pocket is observed. Visualisation of these sim-
ulations indicated that when benzene molecules were inserted into the closed cryptic
pocket, the benzene molecule tends to unbind from the protein during the course of
the move, rather than the desired effect of the pocket opening to accommodate the lig-
and. This observation is likely caused by the fact that there is a free energy barrier
associated with the opening of a cryptic pocket — particularly one requiring as signifi-
cant a protein rearrangement as the TEM1 pocket249 — which results in the relaxation
stages of the GCNCMC insertion favouring the relocation of the inserted fragment. It
therefore appears that, whilst this method is able to insert fragments into open pock-
ets (as demonstrated by the simulations in which the cryptic pocket was held open), it
will likely be very limited for the insertion of fragment molecules into cryptic binding
pockets. However, it is not clear how well this approach will perform for fragment
insertions which require only modest rearrangements of the binding pocket — further
testing should therefore be performed in future work.

A series of restrained and unrestrained nonequilibrium benzene insertions into the
cryptic site revealed that incorporating positional restraints into GCNCMC moves can
help to prevent the fragment from unbinding during the relaxation stages (as described
above), and were observed to induce a greater degree of pocket exposure than unre-
strained insertions. However, it should be noted that this additional pocket opening
comes at the cost of the work distributions being positively shifted, which would re-
duce the acceptance rate if these were Monte Carlo moves. This relates to the ‘quantity
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versus quality’ discussion by Gill et al., that not only the number of NCMC moves ac-
cepted is important, but also the types of moves accepted,164 i.e. in this context, moves
which open pockets are more meaningful than those in which the fragment unbinds
from the protein, and would justify a slightly lower acceptance rate.

Two points which have not been discussed thus far in this chapter are that the current
implementation in grand is limited to molecules which are charge neutral and confor-
mationally rigid. Charge neutrality is required in order to maintain that of the system
as a whole — in order to circumvent this limitation, the implementation would have to
be modified to couple molecular insertion/deletion with the insertion/deletion of an
appropriately charged ion, such that the move does not disturb the total system charge.
Conformational rigidity is required at this stage because the geometry of an inserted
molecule must mimic that of an ideal gas molecule, which typically involves randomis-
ing the orientation of the molecule upon insertion. However, for flexible molecules, this
would also involve selecting a molecular conformation according to the conformational
distribution observed in the ideal gas — this could be generated by running a gas phase
simulation for each fragment, from which conformations would be selected at random
upon insertion. Future work might seek to extend the grand module to remove these
limitations.

A practical limitation of this work, as presented, is that the grand canonical simulation
of a given ligand requires the calibration of several parameters, which are additionally
concentration-dependent. A concern is that this could become prohibitively computa-
tionally expensive when simulating a number of fragment molecules, if each fragment
must be rigorously parameterised at multiple concentrations (especially as the choice
of concentration is somewhat arbitrary). Self-adjusted mixture sampling (SAMS) is an
expanded ensemble method which can be used to simulate across a range of states,
using adaptive biases which regulate the sampling across these states.262 These biases
can be used to estimate the free energy differences between these states from a single
simulation, which can be more efficient than running multiple sets of free energy cal-
culations. SAMS could be used to calculate the free energy differences between states
containing different numbers of ligands in solution with water, in order to map the ex-
cess chemical potential to the ligand concentration, similarly to the method employed
by Ross et al. 168 However, a further complication is that the concentrations sampled
by GCNCMC/MD simulations appear to be very sensitive to these parameters (Fig.
6.3). An alternative approach is to titrate the system over some range of BL, as done
by Clark et al., in order to identify fragment binding locations and a relative ranking
between them (fragments which bind at lower BL values would be interpreted to bind
more strongly).251,252 It should be noted that this approach would not generate a single
equilibrium distribution, as would be obtained from a simulation at Bequil . However, a
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key difference is that — unlike GCMC titrations of water — the Adams values where
B 6= Bequil do not correspond to non-physical states, but rather to reference solutions
of different ligand concentrations, therefore making GCMC titrations of ligands more
akin to experimental titrations. A GCNCMC/MD titration over a range of BL values
would therefore correspond to running a series of simulations over an unknown range
of ligand concentrations — though the BL values could be mapped to a known con-
centration range by simply parameterising the ligand of interest (principally the excess
chemical potential) at several concentrations. Although, if the concentration range of
interest is suitably low, then it may not be necessary to parameterise the ligand over a
concentration range, as the concentration-dependence of the excess chemical potential
is likely to decrease for more dilute solutions — therefore, it may suffice to calculate the
hydration free energy for an infinitely dilute ligand solution. This approach could be
very useful in a fragment-based drug design context, where the locations and relative
stabilities of fragment binding are of great interest.

In summary, further work is required on this project. As previously discussed, there
are some limitations to the current implementation (specifically that it is currently
restricted to neutral, rigid molecules) which should be resolved, with some sugges-
tions as to how this could be done discussed above. However, significantly more test-
ing of this methodology is needed. First, the validation of GCNCMC/MD for small
molecules, in terms of the ability to reproduce concentrations of bulk solutions should
be further tested by expanding the tests performed in this work to include more (prefer-
ably diverse) fragments, across a range of concentrations. Also, given the observed sen-
sitivity of these results to the GCMC parameters, care should be taken to obtain precise
and accurate estimates of these values — particularly the excess chemical potentials,
for which the uncertainty is greater (Table 6.2). However, given that the ultimate aim
in developing this method is to produce a tool for use in fragment-based drug design,
it is especially important that tests be carried out in this regard. Ideally, this would
employ a dataset containing a range of proteins with multiple, experimentally verified
fragment binding locations. These proteins should then be subjected to GCNCMC/MD
titrations (as described above) with a series of fragments, in order to identify a range
of fragment binding locations (including a relative ranking between them), which can
then be compared to the experimental data, in order to assess the performance of this
method for realistic applications.
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Chapter 7

Conclusions

7.1 Summary

Protein-bound water molecules are now a key feature in structure-based drug design,
owing to the gain in entropy which is typically associated with their displacement by
a molecule which binds to the protein.10 As molecular simulations are now common-
place in computer-aided drug design,39 the long timescales of water exchange between
protein binding sites and bulk solution106 presents a limitation of these simulations.
Grand canonical Monte Carlo (GCMC) is a simulation method which can aid in the
sampling of buried water molecules by inserting and deleting waters to/from a region
of interest.104,105,109 During this work, GCMC sampling of water molecules in MD sim-
ulations has been made more accessible (via an open source Python module, named
grand), and several theoretical and methodological developments were made which
extend the applicability of GCMC. The work presented in this thesis is summarised be-
low.

Chapter 3 discusses the implementation of GCMC/MD in the grand Python module,
which was developed during this work. This module makes GCMC sampling of water
molecules easily accessible within the OpenMM simulation framework, requiring very
little additional knowledge for those already familiar with this simulation engine. The
accuracy of this implementation was verified by obtaining the same density distribu-
tions of bulk water, using both GCMC/MD and constant pressure simulations. Further
validation was carried out using the statistical method proposed by Shirts,192 demon-
strating that the distribution of the particle number, N, generated using grand responds
correctly to changes in the imposed chemical potential. Finally, for a simple protein
system (BPTI), it was shown that GCMC/MD sampling allows rapid equilibration of
the binding site waters, where conventional MD is much slower.
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Chapter 4 demonstrates how GCMC/MD titrations can be used to investigate the ther-
modynamics of water binding to a structure of interest. In this work, GCMC/MD
titrations were carried out on the binding site of the transmembrane domain of the
M2 protein in complex with various inhibitors. The data collected suggest a water-
mediated mechanism of inhibitor stereoselectivity, where the presence of a large water
network ‘cancels’ the chirality of the protein, and that when there are fewer waters
present, a chiral difference becomes apparent. This is of particular interest for the next
generation of M2 inhibitors, such as spiroadamantane, for which only one layer of wa-
ters are observed (in complex with wild type M2), rather than two.216,219 A series of
titration calculations were also carried out for both amantadine and spiroadamantane,
in complex with the wild type (WT) and V27A structures of M2, where the V27A mu-
tant is resistant to amantadine. No structural or thermodynamic evidence was found
to suggest a water-mediated resistance mechanism for the V27A mutation — it was
considered that a water wire might be able to bypass amantadine (allowing proton
conductance) when bound to the V27A structure, but the simulation data did not sup-
port this hypothesis. However, these simulations were able to provide further insight
into the structural features of these complexes. Notably, the multiple binding modes
adopted by spiroadamantane,219 depending on the identity of residue 27 appear to be
separated by an extremely subtle difference in free energy, which could be problematic
for computational analyses of this protein if the force field does not capture this sub-
tlety correctly. Future computational investigations of the V27A resistance mechanism
should likely make use of mutation free energy calculations, and also consider the im-
pact of pH on ligand binding.

In chapter 5, nonequilibrium candidate Monte Carlo (NCMC)115 is used to improve the
acceptance rates of GCMC moves, by sampling the configurational degrees of freedom
whilst a water is gradually inserted or deleted, referred to as grand canonical nonequi-
librium candidate Monte Carlo (GCNCMC). This allows the environment to relax in
response to the proposed change, automatically resolving any steric clashes which typ-
ically hamper the acceptance of GCMC moves. The acceptance criteria for GCNCMC
moves were derived, which are remarkably similar to those of instantaneous GCMC
moves. Additionally, it is demonstrated that, by using GCNCMC, the acceptance rates
can be improved by three orders of magnitude over conventional GCMC. Despite the
significantly increased computational cost of these moves, GCNCMC can be more effi-
cient (in terms of the number of accepted moves per unit wall time) than conventional
GCMC by up to a factor of five.

Chapter 6 shows how the grand module has been extended to allow GCMC sampling
of non-water molecules — reasonable acceptance rates can be achieved using the im-
plementation of GCNCMC presented in chapter 5. It was found that GCNCMC offers
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an improvement in the acceptance rate by six orders of magnitude over instantaneous
GCMC for sampling of benzene in solution. Grand canonical parameters were cal-
culated for benzene at several concentrations, which were then used to verify that GC-
NCMC/MD samples suitable concentration distributions for bulk solution — although
it should be noted that the results are rather sensitive to the calibration of these param-
eters. GCNCMC/MD sampling of benzene on the TEM1 β-lactamase protein showed
that this method is able to rapidly identify fragment binding locations in pre-formed
pockets, but that pockets where fragment binding requires significant protein reorgan-
isation are problematic. As a proof of concept, it was demonstrated that restraining the
fragment during nonequilibrium insertion can reduce this issue, and increase the prob-
ability of proposing move which opens a closed pocket. The possibility of including
positional restraints in GCNCMC moves is therefore an option for future work.

7.2 Future Work

Whilst significant progress has been made during this work, there remain a number of
directions in which future work could build upon that presented in this thesis. In this
section, some options for future research are discussed.

As briefly mentioned in chapter 5, if GCNCMC moves are used to sample a spherical
region (centred on a protein binding site, perhaps), then the move must be automati-
cally rejected if the switched water lies outside the sphere at the end of the move. This
is a necessary requirement in order to maintain detailed balance, as the reverse move
has zero probability of being proposed. However, in some cases (not presented here),
this can cause a large number of otherwise favourable moves to be rejected, and can re-
move a large portion of the increased efficiency offered by GCNCMC. Solving this issue
would be very beneficial, where one possible approach could be to carry out GCNCMC
sampling of a larger region around the GCMC sphere, as well as the sphere itself. This
would mean that the probability of proposing the reverse move is non-zero for moves
where the water leaves the sphere, and therefore, such moves need not be rejected au-
tomatically. An additional benefit of sampling the larger region is that this GCMC sam-
pling could aid in allowing the density of the entire system to fluctuate.110 Similarly,
if a convenient solution to preventing water diffusion in/out of the GCMC sphere can
be developed for GCMC/MD simulations, this would also make GCMC/MD titrations
much more accessible for binding sites which are somewhat solvent-exposed. It may be
possible to implement a suitable restraint/constraint protocol — which prevents water
diffusion across the boundaries of the GCMC sphere during the MD steps — without
adversely affecting the dynamics of the rest of the system.
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Previous work using GCMC titrations in ProtoMS has made use of replica exchange,
where attempts are periodically made to exchange configurations between adjacent B
values. It was found by Ross et al. that this significantly reduces the noise in titration
curves, and therefore also reduces the uncertainties in the water binding free energies
determined.105 However, this is not implemented in grand, as replica exchange simula-
tions are not easily carried out in OpenMM. If a convenient solution to this issue can be
found in future work, it would significantly improve the quality of GCMC/MD titra-
tion calculations performed using grand.

The extension of the grand module to allow GCMC sampling of small molecules, as
presented in chapter 6, appears promising and could be very useful in computational
fragment-based drug design. One limitation noted in this work, is that when fragment
binding requires some degree of protein rearrangement, it may be that the relaxation
component of GCNCMC causes the fragment to unbind, rather than the protein to
rearrange. As a proof of concept, it was shown in chapter 6 that applying restraints
during nonequilibrium insertion can alleviate this to some extent — future work could
build upon this to make use of restraints during GCNCMC moves in grand. It should be
noted that there are also some other limitations of the implementation of GCMC moves
for small molecules in grand. First, the latest development version of grand is only cor-
rect for molecules with no conformational degrees of freedom. In order to replicate the
translation of a flexible molecule from an ideal gas, a conformation would have to be
generated upon insertion, and this conformation would have to be drawn at random
from the conformational distribution observed in the ideal gas. In practice, this would
involve running a gas phase simulation of a single molecule to generate an ensemble
from which conformations would be selected at random — though this additional step
has not yet been included in grand. Secondly, as previously mentioned, grand can only
be used to carry out GCMC sampling of charge neutral molecules, in order to maintain
the charge neutrality of the simulation. This could be resolved by coupling the inser-
tion/deletion of a charged molecule, with that of an appropriately charged ion, similar
to the insertion of NaCl pairs in the saltswap method presented by Ross et al. 168

A powerful application of GCMC is the execution of relative binding free energy cal-
culations in the grand canonical ensemble, where the hydration of the binding site is
automatically adjusted to the ligand perturbation.107,109,110 Unfortunately, this is not
currently possible in grand — relative free energy calculations are generally rather dif-
ficult in OpenMM, although the perses module under development will likely make
this more feasible.263,264 Future work to make grand compatible with perses would be
very beneficial in this regard — although the latest development version of grand could
be used to carry out absolute binding free energy calculations (in which a ligand is
decoupled from the binding site, rather than perturbed into another ligand), these are
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typically less useful than relative binding free energy calculations. Additionally, the
combination of GCMC/MD sampling with other enhanced sampling methods, such as
constant pH simulations, or the sampling of ligand binding modes164 — thereby allow-
ing multiple orthogonal, slow degrees of freedom to be sampled during the same sim-
ulation — would be very interesting. This would be especially useful if these degrees
of freedom are likely to be correlated, i.e. if two ligand binding modes or protonation
states are hydrated differently, for example.

A factor which has not been discussed in this work is that water models are typically
parameterised to reproduce the properties of bulk water.182 However, as many pro-
tein binding sites are likely to be very different to the environment of bulk water, it
is likely that these bulk water parameters are not transferable to protein-bound water
sites. Specifically, the polarisation of the water sites is likely to be very different. An
interesting line of future investigation would be to study the differences introduced
by a better treatment of water polarisation — for waters with binding free energies
close to zero, this could make the difference between their binding being favourable or
unfavourable. However, polarisable force fields, such as AMOEBA,134–138 tend to sig-
nificantly increase the computational cost of a simulation. A more attractive approach
could be to resample microstates from a fixed charge simulation according to a polaris-
able force field, in order to reweight the relative probabilities of the configurations, as
proposed by Cave-Ayland et al. 265

In summary, whilst significant developments have been made to grand canonical sim-
ulations in this work, there are still a number of opportunities for further development
in this field, building upon the work presented in this thesis.
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Appendix A

Cancellation of the Rotational
Partition Function in GCMC

A.1 GCMC Acceptance Criteria

Here, the derivation of GCMC particle insertion moves is presented, as in section 2.6.3.1,
but with the ideal rotational partition function explicitly included. First, we make use
of the fact that the probability of a given configuration in the canonical ensemble (inde-
pendent of particle labelling), can be written as:

πNVT(rN) =
Qid

NVT
QNVT

N! e−βU(sN)dsN (A.1)

where the factorial term indicates a sum over all possible particle label arrangements.
Therefore, for the large canonical ensemble used in the GCMC derivation (containing
M− N particles in the ideal gas, and N particles in the system), the probability is:

πMVT(xN , xM−N) =
Qid

(M−N)ViT
Qid

NVsT

QMVT
(M− N)!N! e−βU(xN)dxNdxM−N (A.2)

where x is a vector containing the positions and orientations of each particle (scaled
such that if unity were integrated over all possible coordinates, the integral would yield
unity), and the ideal partition functions for the system and ideal gas are:

Qid
NVsT =

(qtrans
VsT qrot

T )N

N!
(A.3)

Qid
(M−N)ViT

=
(qtrans

ViT qrot
T )M−N

(M− N)!
(A.4)

where the fact that qtrans depends on both the volume and temperature, and that qrot

depends only on temperature177,266 (for a given molecule) has been made explicit, for
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clarity. Given that we are operating in scaled coordinates, the probabilities of proposing
the forward and reverse moves are:

P(xN+1|xN) =
1
2

ds
M− N

(A.5)

P(xN |xN+1) =
1
2

ds
N + 1

(A.6)

where s is a scaled position vector, and insertions and deletions are proposed with
equal probability.

Again, we can combine these terms into the acceptance ratio (where terms which im-
mediately cancel have been omitted, due to space constraints):

A(xN+1|xN)

A(xN |xN+1)
=

(N + 1)−1

(M− N)−1

Qid
(M−N−1)ViT

Qid
(N+1)VsT(M− N − 1)!(N + 1)! e−βU(xN+1)

Qid
(M−N)ViT

Qid
NVsT(M− N)!N! e−βU(xN)

=
M− N
N + 1

(qtrans
ViT qrot

T )M−N−1(qtrans
VsT qrot

T )N+1

(qtrans
ViT

qrot
T )M−N(qtrans

VsT qrot
T )N e−β∆U

=
qtrans

VsT

N + 1
M− N
qtrans

ViT
e−β∆U

(A.7)

We can now make the following substitution (Eq. 2.148):

lim
M→∞

M− N
qtrans

ViT
= qrot

T eβµ (A.8)

which allows the derivation of the acceptance ratio to be completed:

A(xN+1|xN)

A(xN |xN+1)
=

qtrans
VsT

N + 1
qrot

T eβµe−β∆U

=
1

N + 1
qrot

T Vsys

Λ3 eβµe−β∆U

=
1

N + 1
eB′e−β∆U

(A.9)

where the following, modified Adams parameter has been introduced:

B′ = βµ + ln
(

qrot
T Vsys

Λ3

)
(A.10)

Whilst it appears above that the rotational partition function does change the accep-
tance ratio, this is only true if GCMC is carried out by setting the chemical potential
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of the simulation directly. However, in practice, the chemical potential tends to be set
via the Adams value.99,100 The equilibrium Adams value, when accounting for ideal
rotations, is the following:

B′equil = βµ◦sol + ln
(

qrot
T Vsys

Λ3

)
= β

(
µex

sol + kBT ln
(

Λ3

qrot
T V◦

))
+ ln

(
qrot

T Vsys

Λ3

)
= βµex

sol + ln
(

Vsys

V◦

) (A.11)

where the rotational partition function cancels. Therefore, when carrying out GCMC
simulations where the chemical potential is regulated via the Adams value, the ro-
tational partition function need not be accounted for. An equivalent derivation can
demonstrate this for GCMC deletion moves.

A.2 Titration Calculations

Whilst the above demonstrates that the rotational partition function does not impact
GCMC sampling of water, it may be the case that this term needs to be included in the
analysis of titration calculations. Whilst this appears unlikely, given the excellent agree-
ment reported between the free energies calculated from GCMC titrations and those us-
ing rigorous double decoupling calculations,105 the cancellation of qrot is demonstrated
from first principles in this section.

First, we recall Eq. 2.133:

∆Gbind = ∆Ftrans + ∆Fideal − ∆Gsol (2.133 revisited)

Ross et al. stated that the calculation of ∆Ftrans is unaffected by ideal rotations of water
molecules.104 However, no such statement has been made in the literature for ∆Gbind,
so this is demonstrated here. The Helmholtz free energy of N non-spherical ideal gas
particles can be calculated analytically:

Fideal(N) = −kBT ln

(
(qtrans

ViT qrot
T )N

N!

)
(A.12)

Therefore, the difference in free energy between states containing Ni and N f particles
is:

β∆Fideal(Ni → N f ) = ln
(

N f !
Ni!

)
− (N f − Ni) ln

(
qrot

T Videal

Λ3

)
(A.13)
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The difference in solvent free energy (accounting for the rotational variation) is:

∆Gsol(Ni → N f ) = (N f − Ni)

(
µex

sol + kBT ln
(

ρsolΛ3

qrot
T

))
(A.14)

It therefore transpires that the rotational contributions to ∆Fideal and ∆Gsol cancel ex-
actly. This confirms that the rotational partition function of water need not be included
in the free energy analysis of GCMC titration calculations.
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