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Gravitational waves from timing irregularities of radio pulsars

by Garvin Yim

Radio pulsars are rotating neutron stars (NSs) identified by a periodic detection of ra-
dio emission with intervals of seconds to milliseconds. The periodicity of the emission
is closely tied to the NS’s spin frequency such that timing a pulsar allows its spin fre-
quency to be accurately determined.

The spin frequency is generally predictable except for the case of two timing irregu-
larities: glitches and timing noise. Both represent phenomena that occur on different
time-scales with glitches affecting short-term evolution and timing noise affecting long-
term evolution. Glitches are sudden increases in the spin frequency which is sometimes
followed by a post-glitch recovery. Timing noise is the term used for the residuals left
over after the predictable spin evolution is subtracted from observations.

There are existing models that can explain glitches, their recovery as well as timing
noise, but in this thesis, we focus on creating two more, one for the post-glitch recovery
and another for timing noise. The key aspect of these models is their connection to
gravitational waves (GWs), which is an idea not well explored.

In the first part of this thesis, we create the “transient mountain” model which can
explain post-glitch recoveries and make falsifiable predictions for the GWs that come
off. This is based off the idea that a NS “mountain” would create an extra braking
torque on the NS, hence, spinning it down during the post-glitch recovery.

For the second part of this thesis, we create a model for timing noise which we propose
is caused by successive (micro)glitches which cause the NS to oscillate. These glitches
excite the f-modes on the NS which are known to emit GWs. In modelling these two
types of timing irregularities, we hope to strengthen the bridge between theory, radio
observations and GW observations.

http://www.southampton.ac.uk




v

Contents

List of Figures ix

List of Tables xi

Declaration of Authorship xiii

Acknowledgements xv

1 Introduction 1
1.1 A history and overview of neutron stars . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation and aims of the project . . . . . . . . . . . . . . . . . . . . . . 5

2 Radio astronomy overview 7
2.1 Overview of pulsars and pulsar timing . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Why radio? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Magnetic dipole radiation . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Pulsar timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Glitches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Current theories of glitches . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Current theories of glitch recoveries . . . . . . . . . . . . . . . . . 20

2.3 Timing noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Current theories of timing noise . . . . . . . . . . . . . . . . . . . 24
2.3.3 Connecting glitches with timing noise . . . . . . . . . . . . . . . . 25

2.3.3.1 Alpar, Nandkumar & Pines (1986) . . . . . . . . . . . . . 25
2.3.3.2 Cheng (1987) and Cheng et al. (1988) . . . . . . . . . . . 25
2.3.3.3 Janssen & Stappers (2006) . . . . . . . . . . . . . . . . . . 26
2.3.3.4 Espinoza at al. (2014, 2021) . . . . . . . . . . . . . . . . . 26

3 Gravitational waves overview 31
3.1 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Linearising Einstein’s field equations . . . . . . . . . . . . . . . . . . . . . 35
3.3 Energy from gravitational waves . . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Types of gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Detecting gravitational waves . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Fluid dynamics overview 45



vi CONTENTS

4.1 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Eulerian and Lagrangian perturbations . . . . . . . . . . . . . . . . . . . 46
4.3 Perturbed integral quantities . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Gravitational waves from transient mountains 49
5.1 Introducing the transient mountain model . . . . . . . . . . . . . . . . . . 49
5.2 The glitch model from radio astronomy . . . . . . . . . . . . . . . . . . . 51
5.3 Ellipticity and gravitational wave strain . . . . . . . . . . . . . . . . . . . 54
5.4 Total gravitational wave energy from the glitch recovery . . . . . . . . . 56
5.5 Signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Applying the transient mountain model to data . . . . . . . . . . . . . . 60
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Other applications of the transient mountain model 73
6.1 Applying the transient mountain model to J0537-6910 . . . . . . . . . . . 73

6.1.1 The standard calculation . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.2 Long-term spin-down behaviour . . . . . . . . . . . . . . . . . . . 76
6.1.3 Short-term braking index behaviour . . . . . . . . . . . . . . . . . 78

6.2 Fast recovery of 2016 Vela glitch . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.1 Observational information . . . . . . . . . . . . . . . . . . . . . . 82
6.2.2 Applying the basic model . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.3 Including the spin-down prior to the glitch . . . . . . . . . . . . . 84

6.3 Fast recovery of glitches from other pulsars . . . . . . . . . . . . . . . . . 87
6.3.1 Outlining the idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.3 A more realistic ellipticity . . . . . . . . . . . . . . . . . . . . . . . 89

6.4 Finding an electromagnetic counterpart for the S200114f event . . . . . . 89
6.4.1 Information about S200114f . . . . . . . . . . . . . . . . . . . . . . 90
6.4.2 Applying the transient mountain model to S200114f . . . . . . . . 91

7 Energetics of the building mountains 95
7.1 The Baym & Pines model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Elastic energy from secular spin-down . . . . . . . . . . . . . . . . . . . . 97

7.2.1 Pessimistic estimate of elastic energy . . . . . . . . . . . . . . . . 97
7.2.2 Optimistic estimate of elastic energy . . . . . . . . . . . . . . . . . 99

7.3 Energy to build a mountain on a non-rotating neutron star . . . . . . . . 102

8 Gravitational waves from f-mode oscillations 105
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 Solving the fluid equations for the background solution . . . . . . . . . . 107
8.3 Kelvin modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.4 Energies and angular momenta of Kelvin modes from first principles . . 116

8.4.1 Background to calculating mode energies . . . . . . . . . . . . . . 117
8.4.2 Mode energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.4.3 Mode angular momenta . . . . . . . . . . . . . . . . . . . . . . . . 121

8.5 Gravitational wave emission using quadrupole formulae . . . . . . . . . 122
8.5.1 Rate of change of energy . . . . . . . . . . . . . . . . . . . . . . . . 123



CONTENTS vii

8.5.2 Rate of change of angular momentum . . . . . . . . . . . . . . . . 125
8.5.3 Gravitational wave time-scales . . . . . . . . . . . . . . . . . . . . 125

8.6 Canonical mode energies and angular momenta . . . . . . . . . . . . . . 127
8.6.1 Canonical energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.6.1.1 General equations . . . . . . . . . . . . . . . . . . . . . . 127
8.6.1.2 Application to Kelvin modes . . . . . . . . . . . . . . . . 129

8.6.2 Canonical angular momentum . . . . . . . . . . . . . . . . . . . . 131
8.6.2.1 General equations . . . . . . . . . . . . . . . . . . . . . . 131
8.6.2.2 Application to Kelvin modes . . . . . . . . . . . . . . . . 132

8.7 Gravitational wave back-reaction . . . . . . . . . . . . . . . . . . . . . . . 132
8.7.1 Mode damping time-scale . . . . . . . . . . . . . . . . . . . . . . . 132

8.7.1.1 General equations . . . . . . . . . . . . . . . . . . . . . . 132
8.7.1.2 Application to Kelvin modes . . . . . . . . . . . . . . . . 134

8.7.2 Torque exerted on the star . . . . . . . . . . . . . . . . . . . . . . . 136

9 Applying the oscillation model to observations 141
9.1 Total change in angular velocity . . . . . . . . . . . . . . . . . . . . . . . . 143
9.2 The need for a coupling torque . . . . . . . . . . . . . . . . . . . . . . . . 145
9.3 Applying the model to Espinoza et al. (2014, 2021) data . . . . . . . . . . 148
9.4 Gravitational wave detectability of the l = 2 Kelvin modes . . . . . . . . 153
9.5 Calculating the energies involved . . . . . . . . . . . . . . . . . . . . . . . 158

9.5.1 Energy required to power the Kelvin modes . . . . . . . . . . . . 158
9.5.2 Energy attainable from elasticity . . . . . . . . . . . . . . . . . . . 159

10 Overall summary 161

Appendix A Simplifying the change in torque during the glitch recovery 167

Appendix B The change in the moment of inertia due to the formation of a
mountain 171

Appendix C Virial equation for perturbations 177

References 181





ix

List of Figures

2.1 Magnetic field around a neutron star . . . . . . . . . . . . . . . . . . . . . 8
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Chapter 1

Introduction

1.1 A history and overview of neutron stars

The idea of neutron stars (NSs) were first proposed by Baade and Zwicky (1934), just
two years after the discovery of the neutron by Chadwick (1932). In their paper, Baade
and Zwicky said

”With all reserve we advance the view that a super-nova represents the transition
of an ordinary star into a neutron star, consisting mainly of neutrons. Such a star

may possess a very small radius and an extremely high density.”
- Baade & Zwicky, 1934.

It seemed like the scientific community did not appreciate Baade and Zwicky’s find-
ings until the unexpected discovery of the first pulsar by PhD student and supervisor
pair, Bell and Hewish, in 1967 (Hewish et al., 1968). What they had intended to find
were distant quasars which were affected by scintillation in the radio band. Instead, a
repeating radio source with a period of 1.337 s was discovered which was unlike the
characteristic scintillations they had previously observed. The short period suggested
the source was a compact object. This was seen by comparing the period to the light-
crossing time across the theoretical object and realising that radio photons travelling
across the object must not surpass the speed of light. As a result, they concluded the re-
peating radio source was caused by vibrational modes of either a NS or a white dwarf.

Unbeknown to Bell and Hewish, Pacini (1967) had created a model of how a rotating NS
with a strong dipolar magnetic field could power a supernova remnant, just 3 months
before the pulsar discovery paper. Independent of Pacini, Gold (1968) had written a
theory suggesting that a radio pulsar was in fact a rotating NS (even though at the
time they were essentially in adjacent offices). The theory consisted of radio photons
being emitted from a jet above the magnetic poles of the NS. The magnetic axis was



2 Chapter 1. Introduction

inclined to the rotation axis such that when the NS rotated and the jet passed across
the observer’s line of sight, a pulse of radio waves would be detected. This was the
first time that someone had made the connection between a NS and a pulsar and in
hindsight, proved to be critical in understanding pulsars.

Both the vibrational mode theory and the rotating NS theory were plausible explana-
tions of the repeating radio source at the time and so further observations were needed
to distinguish which was correct. Most scientists preferred the idea of white dwarfs be-
ing the source as they were well understood at the time, whereas the existence of NSs
was purely hypothetical and so was mainly accepted by just theorists. It was in late
1968 that the Vela pulsar (Large et al., 1968) and the Crab pulsar (Staelin and Reifen-
stein, 1968) were discovered, having periods of 89 ms and 33 ms respectively. To have
such short periods eliminated any theories built around white dwarfs so as a result,
NS theories were favoured. However, there was still the problem of distinguishing
whether it was a vibrating NS or a rotating NS. Pacini (now collaborating with Gold)
realised their rotating NS model predicted the frequency of radio pulses should de-
crease over time whereas there would be no decrease in frequency for the vibrational
mode model (Pacini, 1968). Soon enough, there were indeed observations of the Crab
pulsar slowing down by 36.48 ns per day (Richards and Comella, 1969) which then
gave strong evidence in support of the rotating NS model.

To this day, we still use the rotating NS model to explain radio pulsars and it has been
successful enough to predict when the next pulse will arrive with great accuracy (in the
absence of glitches, see Section 2.2). There are also many back-of-the-envelope calcula-
tions one could perform to estimate the minimum period (P), minimum mean density
(ρ̄) and maximum radius (R) of a NS. The derivation of these properties begin with en-
forcing the radial gravitational acceleration of the NS to be greater than the centripetal
acceleration required to keep the NS bound

Ω2R <
GM
R2 (1.1)

where Ω is the NS’s angular frequency, G is Newton’s gravitational constant and M is
the mass of the NS. Then, we substitute Ω = 2π

P and assume that the NS is perfectly
spherical and uniformly-dense such that ρ̄ = 3M

4πR3 . We can then derive the minimum
period (or maximum frequency if we invert) a pulsar can have before the NS’s gravita-
tional force can no longer hold itself together

P >

√
3π

Gρ̄
. (1.2)
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If we were to observe a certain period, then we could rearrange Equation (1.2) to find
the implied minimum mean density as being

ρ̄ >
3π

GP2 . (1.3)

Note that this is a rather conservative lower limit for the minimum mean density be-
cause in reality the NS will oblate in shape due to its fast rotation. Also, due to the
complex nature of the interior of NSs, the density is far greater than what is calculated
in this simple calculation. Nevertheless, for a more oblate NS, matter on the equa-
tor will be further from the rotation axis meaning the gravitational acceleration would
be weaker but the centripetal acceleration must be greater to keep that matter bound.
Taking this effect into account makes the right hand side of Equation (1.3) more pos-
itive, hence, a conservative lower limit. For the first pulsar discovered, P = 1.337 s
making the minimum mean density equal 7.9 × 1010 kg m−3 (or 7.9 × 107 g cm−3 in
CGS units). This certainly agrees with Baade and Zwicky’s predictions about a NS
having high density (c.f. the densest metal on Earth, osmium, which has a density of
2.259× 104 kg m−3).

Finally, to get the maximum radius, we need to make an assumption about the mass.
We know that white dwarfs are supported by electron degeneracy pressure which pre-
vents the white dwarf from collapsing under its own gravity. The electron degeneracy
pressure is a result of the Pauli exclusion principle where no two identical fermions
(such as electrons) are allowed to be in the same quantum state. There becomes a cer-
tain mass, known as the Chandrasekhar limit, whereby the electron-degeneracy pres-
sure can no longer withstand the gravitational pressure and causes the white dwarf
to collapse into a NS, where now, neutron degeneracy pressure prevents any further
collapse. The Chandrasekhar limit is about 1.4 M�. Assuming the mass is kept the
same throughout the collapse (meaning no mass has been ejected or converted into ra-
diative energy), then it is justified to say that the mass of the newly formed NS will
be around 1.4 M� (Shapiro and Teukolsky, 1983). From more detailed calculations, the
mass is theorised to be between 1 M� and 3 M� (Özel and Freire, 2016). From the
observational side, the most massive NS observed so far has a mass of (2.08+0.07

−0.07) M�
(Cromartie et al., 2020; Fonseca et al., 2021; Riley et al., 2021; Miller et al., 2021). This
type of collapse whereby a white dwarf accretes matter from a binary counterpart until
it passes the Chandrasekhar limit is known as a Type Ia supernova. Using this informa-
tion along with Equation (1.1), we deduce the back-of-the-envelope maximum radius
of a NS which is

R <

(
GMP2

4π2

) 1
3

(1.4)

which for a pulsar having a period of P = 1.337 s yields a maximum radius of 2030 km.
This is still large relative to our current estimate of the NS radii of being around 10 km,
but at least it eliminates the chance of the source being a white dwarf which typically
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have radii of 7000 km. The difference between 2030 km and 10 km is not an issue as
Equation (1.4) refers to the maximum radius a NS of period P = 1.337 s can have. To
find the most general maximum radius, we should use the smallest period which be-
longs to a pulsar of frequency 716 Hz corresponding to a period of P = 1.4× 10−3 s
(Hessels et al., 2006). Equation (1.4) then leads to the maximum radius being 21 km.
This gives further support of Baade and Zwicky’s prediction that a NS’s radius is
small. Realistically, NSs are not uniformly-dense and have an equation of state (EOS)
which tells us how the pressure varies with the mass density (or energy density) within
the NS. Including the EOS into the calculation brings the maximum radius down to
10− 15 km depending on which EOS you use (Özel and Freire, 2016). Along with the
typical value of the mass (1.4 M�), a typical moment of inertia, I, can be calculated too
assuming the NS is a solid, uniform sphere, I = 2

5 MR2 ≈ 1038 kg m2 = 1045 g cm2.
This large moment of inertia is what is responsible for a NS to spin with little deviation
over long periods except in the case of catastrophic events such as a glitches as we will
learn about in Section 2.2.

The other known channel to create a NS is through a Type II supernova whereby a main
sequence star of mass between 8.5+1

−1.5 M� and 16.5+1.5
−1.5 M� undergoes core-collapse

(Smartt, 2009). When a main sequence star of radius ∼ 106 km collapses into a NS
of radius 10 km, there are two developments which occur. The moment of inertia de-
creases (since I ∝ R2) and from the conservation of angular momentum, the angular
frequency must therefore increase. This is the first development and there is strong
evidence to support this as there are observations of NSs with frequencies between
0.043 Hz (Tan et al., 2018) to 716 Hz (Hessels et al., 2006) which are considerably higher
than the rotational frequencies of main sequence stars. The upper and lower frequen-
cies were sourced from the ATNF Pulsar Catalogue which is a complete catalogue of
all known pulsars and it is regularly updated (Manchester et al., 2005).

The second development arises from the conservation of magnetic flux, ΦB =
∫

B · dS,
where B is the magnetic field flux density (or simply magnetic field) and S is the vector
surface area. Since the radius is decreasing by a factor of 105, the area decreases by a fac-
tor of 1010 meaning the magnetic field strength increases by a factor of 1010. For a typi-
cal main sequence star, the magnetic field stength is ∼ 102 G (1 G = 10−4 T) so for the
resultant NS, the magnetic field would be ∼ 1012 G. Typically, isolated NSs have mag-
netic fields between 1010 G and 1013 G. There are objects known as magnetars which are
thought to be very similar to NSs with the exception that their magnetic field is 1014 G
to 1015 G. Due to this high magnetic field, rather than being rotationally-powered (see
Section 2.1.2), these magnetars are powered from the decay of its magnetic field. See
Kaspi and Beloborodov (2017) for a recent review of magnetars.
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1.2 Motivation and aims of the project

The motivation of this PhD project is to attempt to find the cause of the widespread,
and often not well understood, timing irregularities seen in radio pulsar astronomy.
This means trying to understand more about glitches and timing noise, both of which
are discussed in Sections 2.2 and 2.3. In particular, there has been little theoretical
modelling of how timing noise arises and so we make an attempt to do so in the latter
part of this thesis.

Another topical event which motivates our work is the recent detection of gravitational
waves (GWs) and electromagnetic emission from the binary NS merger, GW170817
(Abbott et al., 2017b). This opened up a whole new field of physics known as multi-
messenger astronomy. Multi-messenger astronomy unites our attempts in understand-
ing a system by looking at it both electromagnetically and gravitationally via GWs (and
also through cosmic rays and neutrino observations). With upcoming electromagnetic
telescopes/satellites (e.g. SKA, eXTP) and new GW detectors (e.g. KAGRA, aLIGO In-
dia, DECIGO, LISA, Einstein Telescope, Cosmic Explorer), there will certainly be more
synergy between the different disciplines which makes it an interesting field to be in.

The models we create delve into the field of multi-messenger astronomy and in do-
ing so, we aim to explain glitch recoveries and timing noise in radio data but also
have testable predictions for GW data. Specifically, we create the “transient mountain”
model to explain glitch recoveries and we model timing noise as lots of unresolved
glitches with each glitch triggering short-lived f-mode oscillations on the NS.

This thesis is split up into three main parts. Chapters 2 - 4 go over relevant and es-
tablished ideas from radio astronomy, GW astronomy and fluid dynamics respectively.
Chapter 5 discusses the project on glitch recoveries and how they can be explained
with glitch-induced transient mountains, which resulted in a published paper (Yim
and Jones, 2020). Chapters 6 and 7 are spin-offs from Chapter 5, where we apply the
transient mountain model to more scenarios as well as consider the energetics involved.

This leads nicely onto the other project which is about NS oscillations and starts from
Chapter 8 onwards. In that chapter, we look at oscillations on non-rotating, incom-
pressible, uniformly-dense NSs. This leads to the first analytic calculation of the grav-
itational radiation reaction from non-axisymmetric f-modes, with both energy and an-
gular momentum conservation consistently accounted for. In doing so, one finds that
GW emission from a prograde (retrograde) mode causes the NS to rotate in the retro-
grade (prograde) direction, something we term the “GW back-reaction”.

Connected to this is Chapter 9, where we explore how NS oscillations could explain
small glitch-like features that have previously been observed, which ultimately could
be the cause for timing noise. Finally, Chapter 10 summarises the main findings pre-
sented in this thesis.
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Chapter 2

Radio astronomy overview

2.1 Overview of pulsars and pulsar timing

2.1.1 Why radio?

First of all, we should establish the type of pulsars were are interested in. Pulsars can
either be in a binary system or they could be isolated. For now, it makes sense to focus
on the simpler case of isolated pulsars which we call “NSs” most of the time.

Isolated NSs can be seen in the radio, γ-ray and even the ultraviolet, optical and in-
frared (UVOIR) parts of the electromagnetic spectrum (Mignani, 2011). NSs in binaries
also have X-ray emission given the companion is near enough for the NS to accrete
matter. The problem with observing with UVOIR frequencies is that there is only a
small population of isolated NSs that exhibit UVOIR emission. What is even more
important is we wish to see both short and long-term timing phenomena (relating to
glitches and timing noise respectively) but UVOIR observations either have an obser-
vational cadence not great enough to see any short-term phenomena, or have obser-
vations with long integration times (of a few days) but are infrequent meaning we do
not see phenomena which have durations longer than a few days. In essence, we do
not have a large enough volume of UVOIR data for it to be useful for our needs. We
cannot use γ-ray data for the same reason but the cause is slightly different. This is
due to current γ-ray detectors not being sensitive enough to have large counts of γ-ray
photons to make statistically significant conclusions. As γ-ray detectors become more
sensitive and greater in number, we could eventually use them to study the timing of
isolated NSs. What remains are radio observations which have been operating since
the discovery of the first pulsar and can provide us with effectively real-time data with
daily observations of certain pulsars. There are over 3000 radio pulsars1 and many of
them have been tracked long enough that timing noise can be seen (Hobbs et al., 2010;

1Value taken from the ATNF Pulsar Catalogue (Manchester et al., 2005).
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Parthasarathy et al., 2019; Lower et al., 2020). Similarly, over 190 radio pulsars2 have
been seen to glitch so overall, there is a large volume and rich phenomena to work with
in the radio.

2.1.2 Magnetic dipole radiation

To understand pulsar timing, we take a closer look at the long-term (secular) spin evo-
lution of a NS. It was mentioned in Section 1.1 that the Crab pulsar was seen to slow
down (spin-down) over time and that Gold and Pacini had predicted this was because
of magnetic dipole radiation. We show in Figure 2.1 what such a NS would look like
for a magnetic dipole inclined to the rotational axis by an angle α.

FIGURE 2.1: A diagram showing the dipolar nature of the magnetic field around a
NS. The magnetic axis (B) is inclined to the rotation axis (Ω) by angle α. The light-
cylinder radius (RLC) is marked on the diagram and it is the radius from the rotation
axis where the furthest part of the magnetosphere co-rotates with the NS at the speed
of light. By that definition, it is also where the last closed magnetic field line is tangent

to the light-cylinder.

The power radiated from an oscillating magnetic dipole is a standard calculation and
can be found in Griffiths (2013), for example. However, if the magnetic dipole is rotat-
ing instead of oscillating, then the power output is twice that of the oscillating case. In
SI units, the rotating magnetic dipole radiation power is

Pmag.dip. =
µ0|m̈|2 sin2 α

6πc3 (2.1)

2Value taken from the JBCA Glitch Catalogue (Espinoza et al., 2011).
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where µ0 is the permeability of free space and m̈ is the second time-derivative of the
magnetic dipole moment, m. The rotating magnetic field has a magnetic dipole mo-
ment of m = m0e−iΩt where m0 is the magnetic dipole moment at some arbitrary time
which rotates around at angular frequency, Ω.

Carrying out the time-derivatives and squaring, we find a Ω4 dependence for Pmag.dip.

Pmag.dip. =
µ0|m0|2Ω4 sin2 α

6πc3 . (2.2)

We can convert the magnetic dipole moment into the magnetic field strength which is
of more physical interest. In a spherical coordinates, the magnetic field of a dipole is

Bdip =
µ0|m0|
4πr3

[
2 cos θr̂ + sin θθ̂

]
, (2.3)

which, at the magnetic poles of the NS (θ = 0) and on the surface (r = R), we find the
polar magnetic field strength is

Bp =
µ0|m0|
2πR3 . (2.4)

We rearrange Equation (2.4) for |m0| and substitute into Equation (2.2) to get the mag-
netic dipole radiation power in terms of the polar magnetic field which is

Pmag.dip. =
2πR6B2

p sin2 α

3µ0c3 Ω4 . (2.5)

From the conservation of energy, we know that this emitted energy must take energy
away from the NS. The most natural form of energy to reduce would be the NS’s ro-
tational kinetic energy, Erot, which would explain why the NS spins-down. The rate at
which rotational kinetic energy changes is

dErot

dt
=

d
dt

(
1
2

IΩ2
)
= IΩΩ̇ . (2.6)

We can equate the radiated power to the rate of loss of rotational kinetic energy to get

Pmag.dip. = −
dErot

dt
2πR6B2

p sin2 α

3µ0c3 Ω4 = −IΩΩ̇

→ Ω̇ = −
2πR6B2

p sin2 α

3µ0c3 I
Ω3 . (2.7)

We see the right hand side of Equation (2.7) is always negative so magnetic dipole
radiation always spins the NS down. In addition, Equation (2.7) says a faster spinning
NS will have a larger spin-down rate. Whilst we have Equation (2.7) handy, we can
rearrange to find the magnetic field strength as a function of the period P = 2π

Ω and its
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derivative, Ṗ = − 2πΩ̇
Ω2 , giving

Bp =

√
3µ0c3 I

8π3R6 sin2 α
PṖ . (2.8)

If we substitute typical values of I = 1038 kg m2 and R = 104 m, we get

Bp = 6.4× 1015

√
PṖ

sin2 α
[Tesla]

Bp = 6.4× 1019

√
PṖ

sin2 α
[Gauss]

Bp > 6.4× 1019
√

PṖ [Gauss] (2.9)

since 0 < sin2 α < 1. For the Crab pulsar, P = 0.0334 s and Ṗ = 4.21× 10−13 s s−1 so
the minimum polar magnetic field strength is Bp, min = 7.6× 1012 G which agrees with
our earlier order-of-magnitude prediction of a typical magnetic field in Section 1.1.

Motivated by Equation (2.7), we can define the braking index, n. In general, the relation
between the angular frequency derivative and the angular frequency can be written as

Ω̇ ∝ −Ωn (2.10)

Depending on what emission mechanisms are involved, the value of the braking index
varies. For example, we have shown the braking index is n = 3 for magnetic dipole
radiation and later in Section 5, we will see that n = 5 for non-axisymmetric rigid NSs
emitting GWs. Another well-studied method of spin-down gives n = 7 due to unstable
r-modes being driven by GW emission (Andersson, 1998; Lindblom et al., 1998; Owen
et al., 1998).

Working from the other direction, one can often determine Ω, Ω̇ and Ω̈ from pulsar
timing observations and use them to calculate n. To see how, let us differentiate Equa-
tion (2.10) and rearrange to find

Ω̈ = −nkΩn−1Ω̇ = n(−kΩn)
Ω̇
Ω

= n
Ω̇2

Ω

→ n =
ΩΩ̈
Ω̇2

(2.11)

where k is a constant of proportionality. Typically, the majority of pulsars are observed
to have n . 3 but, as we will see in Section 2.3, there can be large deviations from this
due to timing noise. These deviations from n = 3 suggests that magnetic dipole radi-
ation cannot be the only radiative mechanism affecting the spin evolution of pulsars if
all else has been correctly been accounted for.
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There is one final derived quantity which is commonly used when talking about pulsar
timing and it is the characteristic age, τc. This is a rough estimate of the age of a pulsar
under the assumption that all spin-down has been due to magnetic dipole radiation.
Rearranging Equation (2.8), we find

PṖ =
8π3R6B2

p sin2 α

3µ0c3 I
. (2.12)

Assuming the magnetic field strength and angle between the magnetic and rotation
axes do not change with time, we see that PṖ is constant which allows us to do the
following

PṖ = P
dP
dt∫ τc

0
PṖdt =

∫ P

P0

P′dP′

PṖ
∫ τc

0
dt =

P2 − P2
0

2

τc =
P2 − P2

0

2PṖ
(2.13)

where P0 is the period of the NS when it is born. If P � P0, which would be the case
long after birth, then we can ignore the second term in Equation (2.13) to yield

τc =
P

2Ṗ
= − Ω

2Ω̇
(2.14)

which is the definition of the characteristic age of a pulsar. This simple calculation
describes observed pulsars fairly well. This is seen in Figure 2.2 in what is known as a
P-Ṗ diagram, with a pulsar’s period on the horizonal axis and period derivative on the
vertical axis. The dashed lines with years stated at the base represent lines of constant
characteristic ages. As pulsars age, we expect their characteristic age to increase so
they move down the diagram. It appears that at a certain characteristic age, we stop
observing pulsars. The implication of this might be because the they have “died”. In
fact, there is a zone at the bottom right of the diagram (shaded in yellow in Figure 2.2)
which is known as the pulsar graveyard. The line which seperates the graveyard is
calculated from the condition that living pulsars must have a strong enough magnetic
field to create an electric potential difference strong enough to initiate pair production
which eventually leads to radio emission. As a result, the “death line” is an key aspect
in the understanding pulsar emission mechanisms and even the EOS of NSs (Harding
et al., 2002).
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FIGURE 2.2: A P-Ṗ diagram where the period of a pulsar P and its derivative Ṗ are
plotted on the axes. Each point represents a single pulsar and in the diagram, there are
a total of 2636 pulsars. There are some special types of pulsars which have different
icons but this thesis does not concern these. The legend in the top left states these
types of pulsars. The shaded yellow region in the bottom right is known as the pulsar
graveyard. The data was taken from the ATNF Pulsar Catalogue (Manchester et al.,
2005). The diagram was created by an open-sourced Python module created by Pitkin

(2018).

2.1.3 Pulsar timing

NSs have a large moment of inertia which is responsible for their stable rotation but
over long durations, there is a secular deviation due to magnetic dipole radiation as
shown in Section 2.1.2. This effect is not obvious when comparing consecutive radio
pulses as the fractional deviation is minuscule and the time between each pulse is small.
However, we see the effect more clearly when we look over longer time-scales (weeks
to years) which is the idea behind pulsar timing.

There is always some reference date in pulsar timing known as the reference epoch. We
need to be able to have a model of what the average radio pulse looks like at the refer-
ence epoch in order for future pulses to be compared to it. This allows us to compare
some feature (say the peak of the pulse) to the reference to see what has changed. For
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pulsar timing, we would be interested to know whether future pulses arrive earlier or
later than expected.

When we measure radio emission from a pulsar, we measure the radio flux density
as a function of time. Radio flux densities are measured conventionally in units of
Janskys (Jy) where 1 Jy = 10−26 W m−2 Hz−1. Individual radio pulses generally arrive
with flux densities of differing shapes which makes it difficult to find a stable reference
point. To reduce this variability, an average of a set of pulses is taken. This creates
what is known as a pulse profile which is incredibly stable for a given pulsar. Each
pulse profile is unique so some call it the “fingerprint” of a pulsar. Figure 2.3 shows
schematically the stages of converting raw data into a pulse profile.

(A) An example of what radio pulsar data would look like from a radio telescope. It
shows flux density as a function of time. Each pulse is seperated by one period, P,

and each pulse is numbered with n.

(B) This shows a pulse stack where
each individual pulse is stacked on

top of one another.

(C) When individual pulses are averaged, such
as those in Subfigure 2.3B, the resultant aver-
aged pulse is known as the pulse profile of a

pulsar.

FIGURE 2.3: Subfigures (A), (B) and (C) show how to get from raw data to a pulse
profile for a given pulsar. The graphs all show flux density as a function of time with

each graph presenting the same data differently.

We now have a stable reference to compare any timing deviations from. Statistically,
the best point to take as the reference is the sharpest peak on the pulse profile. Also,
the more pulses we receive, the more accurate and precise the pulse profile reference
point will be. This is one reason why, for precise timing, such as for gravitational wave
detection in pulsar timing arrays (see Section 3.5), we use millisecond pulsars with
sharp peaks in their pulse profiles.
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Since all pulsars have different periods, it is useful to standardise the measurements so
that we can make comparisons between pulsars. Since pulsars rotate 360° during each
period, we can rescale one period as 1P = 360°. We call this angle of rotation the pulse
phase or longitude (φ) and by convention, the pulse phase of greatest flux density is
set to have φ = 0 and t = 0 (unlike Figure 2.3). The pulse phase also “wraps around”
every 360° so that φ + 360° = φ.

All timing (and hence pulse phase) variations are measured with respect to a fixed
reference point on the pulse profile. This reference point does not necessarily have to
be the point of highest flux density or the sharpest peak, but could be any arbitrary
point. Between pulses, the phase of this reference point changes by a small amount so
the first few terms of a Taylor expansion is appropriate. It follows that the phase of the
n’th pulse for the i’th integration (a dataset taken over time τ

(i)
int , as in the integration

time), φ(i)(t(n)), about an arbitrary reference time, t(i)0 , such as the start time of the
integration, is given by

φ(i)(t
(n)) = φ(i)(t

(i)
0 ) +

dφ(i)

dt
(t(n) − t(i)0 ) +

1
2!

d2φ(i)

dt2 (t(n) − t(i)0 )2

+
1
3!

d3φ(i)

dt3 (t(n) − t(i)0 )3 + · · · (2.15)

where
dφ(i)

dt ,
d2φ(i)

dt2 and
d3φ(i)

dt3 are parameters to be found numerically. The time t(n) falls

in the range of [t(i)0 , t(i)0 + τ
(i)
int ]. The time t(i)0 is in the range [0, ∞] and will be different

for each integration. The notation is slightly subtle so it might help to take a look at
Figure 2.4.

At this point, we should be clear that for a given integration, φ(i)(t(n)) represents a
discrete dataset since n consists of natural numbers going up to N which is the total
number of pulses in one integration. φ(i) in itself is another discrete set. This discrete
set is caused by radio telescopes not always being able to observe the pulsar of interest
meaning integrations can be unequally spaced. Above, we could have measured all
times relative to one period such that t(n) and t(i)0 are both in the range [0, P], but we
see it is best for our understanding to keep it unchanged. In reality, we might want to
use the latter method since it is best to keep numbers small whilst solving problems
numerically.

We know the rate of change in pulse phase is equal to the angular frequency of the
pulsar (

dφ(i)
dt = Ω(i)) and so we write the following

φ(i)(t
(n)) ≈ φ(i)(t

(i)
0 ) + Ω(i)(t

(n) − t(i)0 ) +
1
2

Ω̇(i)(t
(n) − t(i)0 )2 +

1
6

Ω̈(i)(t
(n) − t(i)0 )3 (2.16)

where Ω(i) is the angular frequency determined from the i’th integration. Equation (2.16)
captures exactly what we want to describe. Say a pulsar does not spin-down, we ex-
pect t(n) = t(i)0 + (n − 1)P since pulses would come at regular intervals. This means
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on the left hand side of Equation (2.16) we have φ(i)(t
(i)
0 + (n− 1)P) = φ(i)(t

(i)
0 ) where

the equality is because the pulse phase repeats every period by definition. Also, Ω(i) is
constant here (Ω(i) =

2π
P ) so together with the periodic property of φ(i), the Ω(i) term

has zero contribution. If the left hand side of Equation (2.16) equals φ(i)(t
(i)
0 ), then the

only solution to satisfy the right hand side of Equation (2.16) is if the terms with Ω̇(i)

and Ω̈(i) (and higher order terms) sum to zero. The trivial solution would be Ω̇(i) = 0
which means no observed spin-down, recovering the information we put in.

We know pulsars are dynamic systems which evolve at different time-scales so as a
result, if we obtain values of Ω(i), Ω̇(i) and Ω̈(i) at a later time, we would find the results
vary noticeably. However, these secular changes are sufficiently small which again
allows us to use a Taylor expansion about an arbitrary time. For these secular changes,
the arbitrary time will be a reference epoch as mentioned earlier, but for simplicity, one
can think of it as when the pulsar was first observed, tepoch, which leads to

φ(t(i)TOA) ≈ φ(tepoch) + Ω(t(i)TOA − tepoch) +
1
2

Ω̇(t(i)TOA − tepoch)
2 +

1
6

Ω̈(t(i)TOA − tepoch)
3

(2.17)
where

φ(t(i)TOA) =
1
N

N

∑
n=1

φ(i)(t
(n)) (2.18)

t(i)TOA = t(i)0 +
1
N

N

∑
n=1

t(n) . (2.19)

In other words, the phase φ(t(i)TOA) is the average of the individual pulse phases of a
given integration and contributes to one datapoint on a graph of φ as a function of
t. The time corresponding to this datapoint is at t(i)TOA and is called the time of ar-
rival (TOA). The spacing between the TOAs need not be the same which is why we
compare to the reference epoch tepoch and this comes back to radio telescopes not being
able to observe at every possible moment in time. The spacing between TOAs are usu-
ally on order of a few days, whereas the spacing between t(n) is on order of a period.
Figure 2.4 shows the graphical representation of the all the quantities described in this
calculation.

Similar to fitting Equation (2.16) to timing data from one integration, we can fit Equa-
tion (2.17) to TOA data to determine Ω, Ω̇ and Ω̈ which ultimately is the objective of
pulsar timing. It is these parameters which allow us to test our understanding of pul-
sars and they are the values we use to determine the braking index (Equation (2.11)).

We have gone from observations to deriving quantities of Ω, Ω̇ and Ω̈, but we can
work from the opposite direction and propose Ω, Ω̇ and Ω̈ to determine what we ex-
pect to observe. When we set values of Ω, Ω̇ and Ω̈, the resultant phase model (Equa-
tion (2.17)) is known as a timing model. Not only are Ω, Ω̇ and Ω̈ included in the timing
model but there are many different parameters which we need to include. There are
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FIGURE 2.4: A diagram pictorially showing the graphical interpretations of the terms
introduced in Equations (2.15) - (2.19). The larger graph displays a pulsar’s phase as
a function of time. The same applies to the smaller graph in the top right except the
time-scale is much smaller. Each open circle in the larger graph represents a single
TOA and each cross in the smaller graph represents an individual pulse. Identified
here is the fourth TOA and the corresponding integration for that TOA is displayed
in the smaller graph. The fifth pulse in the integration has been identified and the
associated notation labelled. If a numerical fit were to be applied to the smaller graph,
it would yield values of Ω(4), Ω̇(4) and Ω̈(4) whereas a numerical fit to the larger graph

produces Ω, Ω̇ and Ω̈.

parameters such as the sky location, proper motion (transverse velocity), dispersion
measure (essentially the distance) and its derivative (essentially the radial velocity).
There are also relativistic effects such as the Einstein delay and Shapiro decay as well
as a classical effect known as the Rømer delay which requires us to correctly model the
Earth’s motion around the Sun. For that reason, all incoming timing observations are
always taken relative to the Solar System’s barycentre. This standardises the observa-
tions to allow for meaningful and easy comparisons between studies. A small devia-
tion from true astrometric or dispersive parameters could lead to systematic errors in
the timing model’s results which normally would be seen as characteristic signatures
in the residuals.

So, we need to define what is meant by a residual. It is simply the observed phase
minus the predicted phase from our timing model. If the timing model provides an
exact description, the residuals would equal zero resembling a flat line on a residual-
time graph. However, observations are generally not well-described with the simple
theoretical work developed in previous sections. Each pulsar is very different and so
the residuals we observe do not give us zeroes, even with our best values for timing
parameters. Not only could the emission process be different in different pulsars, but
there are also temporal variations too which we need to consider. The next section
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describes short time-scaled events known as glitches and the section after that is on
timing noise which is a long time-scale phenomenon.

2.2 Glitches

2.2.1 Introduction

Glitches are sudden events where a pulsar will rapidly spin-up and increase its angular
frequency by ∆Ω

Ω = 10−12 − 10−5 (Espinoza et al., 2011). The event was first seen in the
Vela pulsar in a glitch of size ∆Ω

Ω = 2× 10−6 reported in back-to-back papers in 1969
(Radhakrishnan and Manchester, 1969; Reichley and Downs, 1969). As of today, there
are 581 glitches from 191 different pulsars3 meaning this phenomenon affects roughly
6% of the known pulsar population. Typically, a pulsar’s glitch size distribution fol-
lows a power law (with different pulsars having different power indices) and waiting
times between glitches are exponentially distributed (Melatos et al., 2008; Fuentes et al.,
2019). There are however some exceptions which include the Vela pulsar, J0537-6910
and J1341-6220 where glitches occur quasi-periodically (Melatos et al., 2008; Howitt
et al., 2018; Fuentes et al., 2019). These population studies should be taken lightly as
only a few tens of glitches have been observed for even the most frequent glitchers.

For glitches in young (small τc) pulsars, after increasing in angular frequency, there
is normally an exponential recovery back to, but never quite reaching, the pre-glitch
angular frequency in a time-scale of a few tens of days, whereas for older pulsars, there
is not normally this exponential recovery (Shemar and Lyne, 1996). Sometimes, there is
a permanent change to the spin-down rate too which accompanies the glitch (e.g. Lyne
et al., 2000). Graphs of Ω and Ω̇ and their residuals as functions of time are shown in
Figure 2.5 to show what a typical glitch looks like.

The above is the description for typical glitches though in general, the field is widely
diverse and has a rich phenomenology. An instance of this is seen in the Crab pulsar,
thought to be created in 1054 AD. It had 3 large glitches which all showed an extra
resolved spin-up typically a day after the main spin-up (Lyne et al., 2015; Shaw et al.,
2018). The first 2 of these 3 large glitches and another large glitch in 2004 showed a
standard exponential recovery but then the frequency exponentially increased asymp-
totically such that at long times (about a year), there was a permanent frequency in-
crease relative to the pre-glitch value which was much larger than the permanent offset
often found in smaller glitches (Lyne et al., 2015). The last of the 3 large glitches was
only recently discovered and is the largest Crab glitch ever detected. Due to how re-
cent this observation was, we still need to wait to confirm whether it will have the
exponential permanent increase in frequency like the other large glitches (Shaw et al.,

3Value taken from the JBCA Glitch Catalogue Espinoza et al. (2011).
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(A) Ω as a function of time. (B) Ω̇ as a function of time.

(C) Residual Ω as a function of time. (D) Residual Ω̇ as a function of time.

FIGURE 2.5: The subfigures above show what a glitch would look like in that re-
spective graph. For Subfigures (A) and (B), the dashed lines represent the the secular
spin-down of the NS. The solid line shows what would be observed if there were a
glitch. In the above examples, the permanent change in spin-down rate is set to zero.

2018). Though there have been attempts (e.g. Gügercinoǧlu and Alpar, 2019), features
like these are still not well understood and so there are many possibilities for research.

There is a lot of timing research based around the Crab pulsar since it is one of the
longest-recorded in history with daily observations of up to 12 hours per day from
Jodrell Bank Centre for Astrophysics (JBCA) since 1984 (Lyne et al., 2015). Before that,
other observatories also observed the Crab but with not on a daily basis. It is also one of
the youngest pulsars we know about meaning there are numerous glitches occurring.
There is yet another well-monitored pulsar which is the Vela pulsar (Dodson et al.,
2007). Vela’s glitches have many differences to the Crab’s but the most noticeable is
that Vela’s glitches are much larger in size compared to the Crab’s, perhaps indicative
of a different glitch mechanism. This variation amongst different pulsars adds to the
challenge of understanding glitches fully.

2.2.2 Current theories of glitches

From seeing different types of glitches, numerous glitching mechanisms have been pro-
posed (see Haskell and Melatos (2015) for a recent review). Here we will only discuss
the main two models, the starquake model and the vortex unpinning model.
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We begin with describing the starquake model which was first conceptualised by Ru-
derman (1969). He proposed NSs are born with intrinsic spin and due to this, the NS
has an oblate shape about the rotational axis. Soon after a NS is born, the outer layers
cool forming a solid crystalline crust which is oblate in shape. As the NS spins-down,
the centrifugal force decreases and the NS wants to become more spherical but it is pre-
vented from doing so due to the solid crust. Instead, shear stresses build in the crust
until a critical threshold is reached which is when the crust cracks. The cracking of
the crust results in a sudden release of the shear stresses and the NS rapidly becomes
more spherical reducing the moment of inertia and causes the NS to glitch in order to
conserve angular momentum.

This model was generally accepted for a few years until it was realised that starquakes
could only explain small glitches and not larger ones, especially at the rate we were
seeing large glitches from Vela (Baym et al., 1969b; Baym and Pines, 1971). Another
prediction of the model is that glitch sizes should be correlated with the waiting time
before the glitch. This is because the further away the stress energy is to the critical
threshold, the longer one must wait before that threshold is reached. However, it was
soon realised that there was no such correlation (except the case of PSR J0537-6910 (Es-
pinoza et al., 2011)) and so a new theory of vortex unpinning was created by Anderson
and Itoh (1975).

Their model required that a NS has two components: a superfluid interior and a normal
matter crust (Baym et al., 1969a). Due to the irrotational property of superfluids, when
a NS rotates, quantised superfluid vortices form which lie parallel to the rotation axis
(e.g. Graber et al., 2017). These vortices hold the circulation of the superfluid meaning
that on a macroscopic scale, the superfluid can rotate. Subsequently, the area density of
vortices becomes proportional to the angular velocity of the local superfluid so that the
creation or destruction of these vortices is the only way the NS can change its angular
velocity.

As the NS spins-down, these vortices migrate outwards from the rotational axis in an
attempt to reduce the angular velocity of the NS. However, near the crust-core bound-
ary, there are pinning sites where these vortices can get pinned, stopping them from
their migration. Eventually, a build up of vortices at this boundary causes the core to
rotate at a different angular velocity to the crust (which is constantly being spun-down
by an external braking torque, primarily due to magnetic dipole radiation) and a lag
develops.

Once pinned, a vortex experiences the Magnus force which acts to unpin the vortex. It
is proportional and acts perpendicular to the relative velocity between the pinned vor-
tices and the background superfluid. Once the lag between the core and crust becomes
large enough, the Magnus force causes a collective unpinning of vortices which rapidly
transfers angular momentum from the core to the crust, to which the magnetic field is
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thought to be “frozen” to (Goldreich and Julian, 1969), leading to an observed spin-up
– a pulsar glitch.

2.2.3 Current theories of glitch recoveries

We have explored models which cause the glitch but we have yet to address the re-
covery back to (almost) the pre-glitch frequency. The generally accepted model is the
vortex creep model which is an extension to the Anderson and Itoh (1975) vortex un-
pinning model (Alpar et al., 1984, 1989).

In the vortex creep model, once a vortex is pinned, it is allowed to “hop” or “creep” to
another pinning location which, on average, is radially further out due to it being more
energetically favourable. The creep rate is proportional to the Boltzmann factor and the
exponential of the lag between the core and crust. Therefore, at a finite temperature,
there is always a non-zero transfer of angular momentum from the pinned superfluid
to the normal matter in the crust, with the angular momentum transfer being faster
for hotter NSs or for larger lags. When there is vortex creep (and hence pinned vor-
tices), the superfluid and crust are said to be “dynamically coupled”, even though both
components are rotating at different rates (Gügercinoğlu and Alpar, 2020). For clarity,
dynamically coupled components (confusingly) mean the components are uncoupled
in the usual sense, in that they rotate at different rates.

When a glitch occurs, vortices collectively unpin and the lag between the core and
crust momentarily becomes zero causing the creep rate to decrease, possibly stopping
entirely. During this split second, the superfluid and normal matter dynamically de-
couple (or couple in the usual sense) since there is no longer any creep. Now, during the
post-glitch recovery, the external braking torque acts on a smaller moment of inertia,
causing a negative jump to the time derivative of the spin frequency (alternatively, an
increase in the spin-down rate). The spin-down rate recovers as the creep re-establishes
itself.

Another way to think of the vortex creep model is through an analogy created by Alpar
and collaborators linking it to electrical circuits containing a capacitor (Alpar et al.,
1996; Akbal and Alpar, 2018; Gügercinoǧlu and Alpar, 2019). The idea goes that the
lag between the superfluid and crust acts like a potential difference driving charge
carriers (vortices) to the capacitor (pinning sites). Any resistive elements have a current
going through them which represents vortex creep. Then, when the potential difference
drops, the capacitor discharges which constitutes a glitch. This analogy does not quite
handle the complexities of the vortex creep model, but nevertheless, it does help to
visualise what is happening.
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The vortex creep model is generally the most accepted model for glitch recoveries, but
there are others too which include mutual friction (Jones, 1991; Haskell et al., 2012), Ek-
man pumping (van Eysden and Melatos, 2008; Bennett et al., 2010; Singh, 2017), vortex
slippage (Link, 2014) and transient mountains (Yim and Jones, 2020) which is a novel
model created as part of this thesis, as we will see in Chapter 5.

2.3 Timing noise

2.3.1 Introduction

We have covered the short time-scale effects to pulsar timing so now let us look at the
long time-scale effects, i.e. on the order of years. Timing noise is unlike glitches in the
fact that we do not really have a solid theoretical understanding of how it arises. By
definition, timing noise is observed as non-zero residuals which suggests our timing
models are incomplete. Most of the time, we see it as long time-scale variations to
residuals, examples of which are found in Figure 2.6. Some of these residual plots,
like the bottom-right plot in Figure 2.6 (PSR B1700-18), show a fairly even scatter of
residuals averaging about zero. The residual range is small and there are no obvious
patterns within the data. This would be classified as well-modelled and any deviations
would be attributed to the intrinsic system noise in the telescope which is white (has
noise components at all frequencies).

FIGURE 2.6: A collection of residual-time plots for several pulsars. The three labels on
each plot show the name of the pulsar, the range between the maximum and minimum
residuals in seconds, and the range between the maximum and minimum residuals as

a fraction of the pulsar’s period. This figure was taken from Hobbs et al. (2010).

However, if we take a residual plot of a pulsar affected by timing noise and take a
Fourier transform of it, we would find that rather than having a white spectrum (shown
by a flat line in the Fourier transform), the spectrum will be red meaning there is an
overabundance of low frequency phenomena which is characteristic of timing noise.
An example of this red spectrum in shown in Figure 2.7 for B1826-17.

In 2004, Hobbs et al. wrote a paper on the long-term timing of 374 pulsars (Hobbs et al.,
2004). In their research, they found braking indices to vary between −2.6× 108 < n <
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FIGURE 2.7: A power spectrum (Fourier transform of residual-time plot) of the resid-
uals of B1826-17. The original residual-time plot is shown between the dashed lines
and one can see apparent long-term fluctuations in the residuals. According to the
power spectrum, the residuals are dominated by an effect of about 2.5 years in period.
There are also other effects at different time-scales and together, they form what is

known as timing noise. This figure was taken from Hobbs et al. (2010).

2.5× 108. Clearly, this is orders of magnitude larger than n = 3 predicted earlier for
magnetic dipole radiation in Section 2.1.2. They concluded such large values of n are
caused by the domination of timing noise which goes to show timing noise can hide
the underlying physics found from pulsar timing. What is also interesting is that 46%
of the studied pulsars had negative n meaning 54% had positive n. The symmetry
between the magnitudes and distribution of positive and negative n sure is intriguing
and maybe hints a symmetric nature of timing noise.

In the same paper, Ω̈ (which is related to n by Equation (2.11)) was found to vary across
seven orders of magnitude ranging from 1× 10−29 rad s−3 < |Ω̈| < 4× 10−22 rad s−3.
The issue with Ω̈ was that is was found to vary depending on the timespan of data you
measure it from. This suggests that timing noise is time-scale dependent.

To eliminate effects from timing noise to get clean data, Hobbs et al. created an al-
gorithm incorporated into a common pulsar timing software, TEMPO2 (Hobbs et al.,
2006), which eliminated the effect of timing noise. The way in which they did this
was they subtracted low-frequency harmonically-related sinusoids from the residuals
to whiten the data4. From this analysis, they were able to correctly recover astrometric
data consistent with very-long baseline interferometry (VLBI) methods. They used this

4One can also whiten residuals by subtracting (red) power laws (e.g. Coles et al., 2011; Lentati et al.,
2014; Lower et al., 2020) or a high number of terms from a Taylor series (e.g. Abbott et al., 2020).
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to justify their subtraction of harmonic sinusoids but they did not provide an analysis
of what they removed until years later.

Hobbs et al. (2010) eventually analysed the timing noise which they had subtracted
from their previous paper. They used two diagnostics, ∆8 and σz(T), to measure how
much timing noise affected a pulsar

∆8 = log10

(
1

6Ω
|Ω̈|T3

8

)
(2.20)

σz(T) =
T2

2
√

5

〈
c2〉 1

2 (2.21)

where T8 = 108 s (an arbitrary length of time corresponding to the length of data the
creators of the ∆8 diagnostic had (Arzoumanian et al., 1994)), T is the length of data
being used and c is the amplitude of the cubic term in Equation (2.17). The angled
brackets around c represents the average value of the cubic term over many realisations
of data with length T.

The ∆8 diagnostic was created based on finding out how much the cubic term in Equa-
tion (2.17) influences a timing model when only the Ω and Ω̇ terms are accounted for. It
is worth noting that there is a Ω in the denominator of ∆8 (which makes the argument
of the logarithm have units of s) and this makes the argument of the logarithm equal
the pulsar clock error (Arzoumanian et al., 1994).

The ∆8 diagnostic does have its issues though. If different pulsars have different lengths
of data, then comparing ∆8 would no longer be meaningful as Hobbs et al. (2004) found
Ω̈ depended on the duration of data used (Namkham et al., 2019). It all goes back to
timing noise being time-scale dependent. This is why the σz(T) diagnostic was used in
the 2010 follow-up paper which allowed a measure of timing noise on any time-scale.
The σz(T) diagnostic was adapted from the Allan variance which is traditionally used
to measure a clock’s stability (Matsakis et al., 1997). For a time-scale of 10 years, Hobbs
et al. found the empirical relation

log10 (σz(10 yr)) = 1.37 log10(Ω
−0.29|Ω̇|0.55) + 0.52 (2.22)

based on a linear regression fit of log10 (σz(10 yr)) against log10(Ω
α|Ω̇|β) where α and β

were constants found numerically. The correlation coefficient was 0.77 for this relation.
This result supports the general consensus that timing noise has a larger effect for pul-
sars with a larger spin-down rate (Cordes and Helfand, 1980). Hobbs et al. also found
timing noise to be inversely proportional to the characteristic age of a pulsar, with the
exception of those with τc < 105 yr, where they found pulse timings were consistent
with glitch recoveries.
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2.3.2 Current theories of timing noise

In 1972, Boynton et al. were the first group to report seeing timing noise (Boynton et al.,
1972). The timing noise was found in none other than the Crab pulsar, but in their case,
it was observed in optical wavelengths with a total of 2 years of data. Back then, residu-
als were not calculated in phase-space but instead in terms of the derivative in angular
frequency. It meant whatever measured Ω̇ they had, they subtracted Equation (2.10)
away from it and set n = 3 since magnetic dipole radiation was the most dominant
effect seen in pulsar timing.

Within that group was Groth, who had just submitted a thesis on the optical timing of
the Crab pulsar (Groth, 1971). He proposed a model which suggested that timing noise
was one of “phase noise”, “frequency noise” or “slowing-down noise”. This is the same
as saying timing noise is due to noise in φ, Ω or Ω̇. The model stated that at random
times, one of the quantities has an unresolved discontinuous jump, with the amplitude
of each jump also randomly distributed. This is why the term “random walk” is often
used when explaining this model.

Later in 1975, Groth confirmed the Crab’s timing noise was most consistent with a
random walk in the pulse frequency (Groth, 1975). The model gained support and by
1980, Cordes & Helfand reported that timing noise was a characteristic of many pulsars
and not just the Crab (Cordes and Helfand, 1980). With more pulsars to look at, Cordes
& Downs extended Groth’s model and said that timing noise was not just a noise in the
phase, frequency or spin-down but in fact a mixture of all of them (Cordes and Downs,
1985). Another finding was that Cordes and Downs (1985) was able to model timing
noise in some pulsars as microglitches. Out of 17 pulsars available, there were thought
to be 42 microglitch events (Cordes and Downs, 1985).

Around the same time, Cheng came up with the theory that timing noise could be
caused by magnetospheric fluctuations (Cheng, 1987a,b). In his first paper, he sug-
gested the natural fluctuation in pair production in the outer gap of the magnetosphere
could give rise to timing noise (Cheng, 1987a). In the paper which immediately fol-
lowed, he suggested microglitches could somehow excite the magnetosphere which
results in timing noise (Cheng, 1987b).

Fast-forward to 2010 where Lyne et al. found observational evidence to suggest timing
noise is due to a NS’s magnetosphere quasi-periodically switching states (Lyne et al.,
2010). This explanation is not too far from Cheng’s theory, though the time-scales do
not quite match. The evidence for magnetospheric switching was shown by a strong
correlation between changes to the pulse profile (the shape of which is strongly related
to the magnetosphere) and the angular frequency derivative, Ω̇. It was these quasi-
periodic changes to Ω̇ that they said explained the timing noise residuals. The research
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was quite a breakthrough in our understanding but on the other hand, it was only 6
pulsars which showed evidence of magnetospheric switching.

Besides these phenomenological noise and magnetospheric models, there have been
attempts at explaining timing noise as due to effects within the interior of the NS. Jones
(1990) proposed the variability in the coupling between the superfluid and crust could
possibly be the reason. More recently, Melatos and Link (2014) suggested superfluid
turbulence may be the cause. It is clear there is still uncertainty in the mechanism
behind timing noise and so in the latter part of the thesis, we create our own model
which involves microglitches exciting NS oscillations, see Chapter 8 onwards.

2.3.3 Connecting glitches with timing noise

2.3.3.1 Alpar, Nandkumar & Pines (1986)

Groth’s model was more of a phenomenological one and as timing noise became more
mysterious, there was more pressure on the theorists to explain the physics behind it
all. It has already been hinted that there may be some connection between glitches and
timing noise in the last section (Cordes and Downs, 1985; Cheng, 1987b).

In Sections 2.2.2 and 2.2.3, we saw how the vortex creep/unpinning model could ex-
plain glitches and their subsequent recoveries. Alpar et al. (1986) had the idea to use
the vortex model to test whether timing noise could be explained with it.

They concluded that the mechanism responsible for large glitches, specifically vortex
unpinning, played no role in the timing noise of the 25 pulsars they studied which
included the Crab and Vela. As a result of this conclusion, they suggested that there
maybe a minimum size for glitches produced by vortex unpinning. Another conclu-
sion was that the microglitches are not simply scaled down versions of (macro)glitches.
As we will see shortly, both these conclusions are consistent with the recent work of
Espinoza et al. (2014, 2021).

2.3.3.2 Cheng (1987) and Cheng et al. (1988)

After the conclusion of Alpar, Nandkumar & Pines, Cheng (1987b) did not want to
give up the idea of internal vortex dynamics being the cause of timing noise so he
attempted to describe timing noise slightly differently. He modified the vortex unpin-
ning model by saying microglitches caused by vortices unpinning perturb the magne-
tosphere which causes changes to the braking torque on the NS. Cheng said any white
noise found in the power spectrum of the residuals would be attributed directly to the
microglitches and the red timing noise is due to the microglitch-induced changes to
the magnetosphere. He compared his theoretical predictions of the “slow-down noise
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strength parameter” to observational values (Cordes and Helfand, 1980) for 22 pulsars
and found that within a factor of a few, his theory was consistent. The main uncer-
tainty was due to a lack of understanding between how magnetosphere responds to
the microglitches.

Soon after, Alpar and collaborators saw potential in Cheng’s research and partnered
up with him to continue the quest of explaining timing noise with superfluid vortices
(Cheng et al., 1988). They had to find a reason to why microglitches could exist and
they suggested different pinning sites had different values of critical lag before a glitch
occurred. As such, they concluded that “structural inhomogeneities in the crust of
neutron stars may be responsible for frequent microglitches which lead to pulsar timing
noise”.

2.3.3.3 Janssen & Stappers (2006)

Another more direct piece of observational evidence that glitches may be the same phe-
nomenon as timing noise was reported by Janssen and Stappers (2006). Their paper
reported 30 glitches in 7 slow-spinning pulsars. From the P− Ṗ diagram in Figure 2.2,
we see that pulsars observed to be slowly rotating typically have higher characteristic
ages and we know from Section 2.2.1 that older pulsars tend not to show an exponen-
tial recovery. This was indeed what was found so they modelled the glitches without
an exponential recovery and just as a permanent, discontinuous change to Ω and Ω̇.
Any exponential recovery would have been difficult to spot anyway since most glitches
were small.

There was one pulsar which was of particular interest, B1951+32. After taking away the
secular spin-down (Equation (2.17)), the residuals measured in milliturns (1000 milli-
turns = 360° of phase) showed timing noise features and are shown in Figure 2.8.

Janssen & Stappers found that B1951+32’s timing noise was best modelled by 4 consec-
utive glitches, each a few hundred days apart. In doing this, they reduced the residuals
by a factor of 10 and the resultant residual plot had no obvious features. Another in-
teresting point was that the sizes of the glitches ranged from 0.51 × 10−9 < ∆Ω

Ω <

2.25× 10−9 which is on the smaller side for glitch sizes.

2.3.3.4 Espinoza at al. (2014, 2021)

There are two more related papers which are of interest to us. The first is a paper from
Espinoza et al. (2014) and it discusses the minimum glitch size observable in the Crab
pulsar. They claim the smallest glitch size possible for the Crab pulsar is ∆Ω

Ω ∼ 2× 10−9,
which is above detection limits of current telescopes. They create a criterion for glitch
detection by defining a glitch occurs when ∆Ω > 0 and ∆Ω̇ < 0 simultaneously which
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FIGURE 2.8: The top graph shows the residuals of B1951+32 when the φ, Ω and
Ω̇ terms are accounted for in the timing model which has been subtracted (Equa-
tion (2.17)). The middle graph is the same but with the Ω̈ term also removed. The
bottom graph shows the residuals after 4 glitches have been included in the model
and notice the vertical scale is 10 times smaller. This figure was taken from Janssen

and Stappers (2006).

is how we defined a glitch in Section 2.2.1 and is seen visually in Figure 2.5. For a glitch
at time tg, the phase residual relative to if there was not a glitch, ∆φg, is

∆φg = −∆Ω(tTOA − tg)−
1
2

∆Ω̇(tTOA − tg)
2 (2.23)

where tTOA > tg. Here, ∆Ω and ∆Ω̇ are step changes and do not have a time depen-
dence. Figure 2.9 shows Equation (2.23) in a residual-time graph for when a glitch has
occurred.

We see from Equation (2.23) that ∆Ω > 0 leads to a linear decrease in ∆φg whereas
∆Ω̇ < 0 leads to a quadratic increase in ∆φg with both effects being visible in Figure 2.9.
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FIGURE 2.9: An example of a glitch as seen in a phase residual-time graph. This figure
was taken from Espinoza et al. (2014).

So, the first constraint Espinoza et al. stated was that there must be a dominant effect
from the linear term compared to the quadratic term so that a dip in ∆φg is seen. The
second constraint was that this dip had to be greater than the root-mean-square of
the residuals prior to tg. From just these two constraints, they were able to create an
algorithm to process timing data from as far back as 1984 which totalled 8862 TOAs.

From their analysis, they re-discovered all but one of the glitches already known to-
talling 19 out of a possible 20. They attributed the missed detection to the missed
glitch occurring only 63 days after the previous, and so the residuals were still in
the process of recovering. They also found 381 “glitch candidates” (GCs) which sat-
isfied the two criteria required to be classed as a glitch. They altered the program to
find “anti-glitch candidates” (AGCs) which would have a bump instead of a dip in
∆φg and they found 383 of them. When arranged by glitch size, the known glitches
were clearly larger in size ( ∆Ω

Ω & 2× 10−9) compared to the candidates which all had
sizes below ∆Ω

Ω ∼ 1× 10−9. This is what drove them to test whether the candidates
and known glitches came from the same distribution. They found the candidates were
well-described by a log-normal distribution, whereas the glitches, as we have already
established in Section 2.2.1, were well-described by a power law. There seems to be a
striking symmetry for these GCs and AGCs and it offers a chance to investigate timing
noise, which according to this study, would have sizes of ∆Ω

Ω < 1× 10−9 and have a
log-normal distribution.

Then in their second paper, they re-did the analysis but for the Vela pulsar (Espinoza
et al., 2021). A very similar conclusion was reached in that there was an intrinsic lack of



2.3. Timing noise 29

Vela glitch sizes smaller than ∆Ω
Ω ∼ 9× 10−7, consistent with the findings of Shannon

et al. (2016). There were 83 GCs and 66 AGCs for 24 years of data. Again, a log-normal
distribution was favoured and it had a maximum size of ∆Ω

Ω . 9× 10−10.

There was a slight difference between the two papers though. In the Crab analysis,
there was a 4% chance that GCs and AGCs were not from the same distribution but for
Vela, there was only a 16.5% chance the GCs and AGCs were from the same distribution.
However, Espinoza et al. (2021) did mention the lower end of the distributions were
poorly constrained, in this case, due to noise in the residuals.
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Chapter 3

Gravitational waves overview

We should now have enough knowledge about pulsar timing, glitches and timing noise
so in this section, we will focus on the theory behind GWs. Ultimately, we would like
to have models for glitch recoveries and timing noise, but in order for a model to be
useful, it should have testable predictions. We wish to test our models by comparing
to GW observations so it is imperative to know more about GWs. We will begin with a
quick overview of general relativity (GR).

3.1 General relativity

Einstein first came up with the idea of GR in 1915. His theory was one which explained
gravity as some geometric property of space and time. From his work on special rel-
ativity in 1905, his two postulates led him to say that space and time were actually
inseparable and always had to be considered together, as spacetime. Then, when you
place matter within this spacetime, it causes the spacetime to curve. This curvature
tells other matter how to move which is what we know as gravity. This theory can be
seen from Einstein’s field equations

Rµν −
1
2

Rgµν =
8πG

c4 Tµν (3.1)

where Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the spacetime metric tensor,
G is Newton’s gravitational constant, c is the speed of light in a vacuum and Tµν is
the stress-energy tensor. We will go through what each of the more unfamiliar terms
are later but for now, we see the right hand side of Equation (3.1) depends only on
the stress-energy tensor. This stress-energy tensor is non-zero whenever we have some
matter (or equivalently, energy) within our spacetime. On the left hand side, we have
the Ricci tensor and scalar and both are measures of how curved the spacetime is. We
therefore see that having matter within spacetime causes curvature.
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gµν is the spacetime metric tensor and can be thought of as the “fabric” of spacetime
which is being curved. This tells us everything about our system. We will see later
that Rµν and R are made up of essentially second derivatives of gµν which highlights
why Rµν and R measure curvature. This means the left hand side of Equation (3.1) is
completely known if gµν is known.

gµν can be defined in terms of the line element (or spacetime interval)

ds2 = gµνdxµdxν (3.2)

which essentially is “Pythagoras’ theorem” in a general spacetime which could possibly
be curved. It reduces to exactly to Pythagoras’ theorem if we only look at the spatial
components (which we know we cannot do in relativity) of a spacetime which is flat,
known as the Minkowski spacetime and is symbolised by gµν = ηµν.

gµν also has the property that it can raise and lower indices on tensors. Non-relativistic
classical physics was always done in Euclidean space and time was distinct from it. In
such a space, there is no difference between upper and lower indices but in relativity,
it is important we make this distinction. We are capturing the effects of the curvature
of spacetime by doing this. The way in which the spacetime metric raises and lowers
indices is

dxµ = gµνdxν and dxµ = gµνdxν . (3.3)

Next, we look at the covariant derivative. The covariant derivative is used to find the
derivative of some object (scalars, vectors, tensors) along a specified tangent vector in
a curved spacetime. This is non-trivial as the two points used for the derivative will
belong to different tangent spaces (due to curvature) and so one must account for this
by using connection coefficients, Γρ

µν. By definition, the covariant derivative is

∇νeµ = Γρ
µνeρ (3.4)

where ∇ν represents the covariant derivative, eµ are the basis vectors and Γρ
µν are the

connection coefficients. One can think of the connection coefficients as encoding how
the basis vectors change as they move around. For instance, the basis vectors in cylin-
drical coordinates are r̂, θ̂ and ẑ. At all positions, the direction of ẑ always remains
the same, however, the direction of r̂ and θ̂ change depending on where you are. In
GR, the basis vectors can change due to the curvature of the spacetime you are moving
through.

Coming back to the covariant derivative, one wants to be able to compare two points
in spacetime but this is meaningless if they belong to different tangent spaces, each
having a different local curvature. One needs to parallel transport which essentially
takes the local geometry of one region and moves it to another place, whilst keeping
angles between basis vectors the same. This then allows the correct comparison when
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evaluating the derivative. The scalar product of the basis vectors is another definition
of metric tensor

gµν = eµ · eν (3.5)

and we want the right hand side to be constant during parallel transport (for constant
angles), which means we have the condition

∇ρgµν = 0 . (3.6)

Along with the assumption of a torsion-free metric1, it can be shown (e.g. Misner et al.,
1973) that

Γρ
µν =

1
2

gρλ(gλµ,ν + gλν,µ − gµν,λ) (3.7)

where in this special case, Γρ
µν are called the Christoffel symbols. The commas in Equa-

tion (3.7) are best understood when we look at the covariant derivative of the vector,
A = Aρeρ.

∇ν A = ∇ν(Aρeρ) = (∇ν Aρ)eρ + (∇νeρ)Aρ

= (∇ν Aρ)eρ + (Γλ
ρνeλ)Aρ

= (∇ν Aρ + Γρ
λν Aλ)eρ

→ Aρ
;νeρ = (Aρ

,ν + Γρ
λν Aλ)eρ

→ Aρ
;ν = Aρ

,ν + Γρ
λν Aλ (3.8)

Here we introduced the semi-colon notation but this should help us understand the
comma notation. Equation (3.8) is like the “total derivative” we encounter in calculus.
The total derivative always has a term which is a partial derivative and this says to
explicitly differentiate with respect to some variable. Then, there are other terms which
carry the implicit dependence of the variable you are differentiating with respect to.
In this regard, the comma represents a partial derivative of the object, and the second
term accounts for effects from gradients in the metric (one can see that Γρ

µν depends on
the first derivative of the metric from Equation (3.7)). The second term is also there to
ensure the covariance of the equation, i.e. if the left hand side is a tensor, then the right
hand side must be a tensor too.

The beauty with GR is that you can always transform to another reference frame and
the law of physics will be the same. One simplifies the calculation if one selects a local
reference frame with Γρ

µν = 0. This means semi-colons and commas no longer have
a difference. This type of reference frame is where the observer is freely-falling in the
curved spacetime and is called a local Lorentz frame. The effects of Γρ

µν could then be
brought back into the end result if needs be.

1Practically, this means the order in which you differentiate a mixed 2nd order derivative does not
matter. It also means the connection coefficients are symmetric in its lower two indices. i.e. Γρ

µν = Γρ
νµ.
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Next, we introduce the Riemann tensor which eventually contracts into the Ricci ten-
sor followed by the Ricci scalar. The Riemann tensor can be written entirely out of
Christoffel symbols

Rρ
λµν = Γρ

λν,µ − Γρ
λµ,ν + Γρ

σµΓσ
λν − Γρ

σνΓσ
λµ (3.9)

and notice the Riemann tensor is made up from a “partial derivative” of the Christoffel
symbols. This means that the Riemann tensor is proportional to the “second partial
derivative” of the spacetime metric making it a measure of curvature. We show this
explicitly by substituting Equation (3.7) into Equation (3.9) and using the properties
that gµν is symmetrical and “partial differentials” commute, we get

Rρ
λµν =

1
2

gρσ(gσν,λµ − gσµ,λν + gλµ,σν − gλν,σµ) . (3.10)

We then contract the 1st and 3rd indices to attain the Ricci tensor

Rλν = Rµ
λµν (3.11)

and contract the remaining indices to get the Ricci scalar

R = Rν
ν (3.12)

where we applied the spacetime metric gνλ on to the Ricci tensor in Equation (3.11) to
raise the λ and change it to a ν.

The Ricci tensor and scalar make up the left hand side of Equation (3.1) but the Einstein
field equations can be further simplified. We define the Einstein tensor

Gµν = Rµν −
1
2

Rgµν (3.13)

meaning the Einstein field equations now take a simpler form

Gµν =
8πG

c4 Tµν . (3.14)

From geometric principles, one can show

∇ · Gµν = 0 (3.15)

which is known as the contracted Bianchi identity. Together with Equation (3.14), one
can see that the conservation of energy and momentum comes out as a result of this
geometric statement and is shown by

∇ · Tµν = 0 . (3.16)
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3.2 Linearising Einstein’s field equations

If we go back to the picture of masses causing curvature to spacetime, GWs are a result
of moving masses about and are seen as ripples in spacetime. This is analogous to how
we see ripples radiating outwards on the surface of a pond when we throw a stone into
it.

To see how GWs arise from the theory of GR, we need to use first-order perturbation
theory. This regime only works when the GWs are far from their source such that the
radius of the curvature of spacetime is much larger than the wavelength of the GWs.
When we are in such a regime, the GWs can be thought of as plane waves and will
be small perturbations on the flat Minkowski metric. This means the perturbation is
shown by a total spacetime metric of

gαβ = ηαβ + hαβ (3.17)

where ηαβ = diag(−1, 1, 1, 1) and hαβ is the metric perturbation with the property
|hαβ| � 1. We also define the trace-reversed metric perturbation

h̄αβ = hαβ −
1
2

ηαβh (3.18)

where h = hα
α and h̄α

α = −h hence the name “trace-reversed”. Once we use Equa-
tion (3.17) in Equation (3.10), keeping only 1st order terms in hαβ, and calculate the
Einstein tensor using Equations (3.13) and (3.18), we get

Gαβ = −1
2
(h̄ ,µ

αβ,µ + ηαβh̄ ,µν
µν − h̄ ,µ

αµ,β − h̄ ,µ
βµ,α ) . (3.19)

This is quite a complex expression but we can get rid of the 2nd, 3rd and 4th terms if
we set h̄µν

,µ = 0. This is known as the Lorentz gauge and means we fix what coordinate
system we are using. Once we make this gauge choice, Equation (3.19) looks a lot less
intimidating and reduces to

Gαβ = −1
2

h̄ ,µ
αβ,µ . (3.20)

Like in electromagnetism, we define the d’Alembertian operator

2ψ = ψ
,µ

,µ =

(
− 1

c2
∂2

∂t2 +
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
ψ (3.21)

where the last equality is the d’Alembertian in standard Cartesian coordinates. This
then allows us to write Equation (3.20) as

Gαβ = −1
2
2h̄αβ . (3.22)
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Substituting this into Einstein’s field equations (Equation (3.14)), we get

2h̄αβ = −16πG
c4 Tαβ . (3.23)

This is in the form of a sourced wave equation. However, in regions where the radius of
spacetime curvature is much greater than the wavelength of GWs (typically in regions
of low mass), GWs are known to propagate as if they were travelling through a vacuum
(at the speed of light). This has recently been supported by GW170817 where they
found the difference between the speed of GWs and the speed of light to be no more
than 3× 10−15 times the speed of light (Abbott et al., 2017c). Therefore, we model GWs
(far from their source) as travelling through a vacuum, meaning the matter term on the
right hand side of Equation (3.23) vanishes leading to

2h̄αβ = 0 . (3.24)

A solution to the homogeneous wave equation is given by the plane wave solution

h̄αβ = Aαβeikµxµ
(3.25)

where Aαβ represents the amplitude of the trace-reversed metric perturbation and kµ =

(ω
c , k)T which is the 4-wavevector, with ω being the wave angular frequency. When we

substitute this solution back into Equation (3.24), we find kµkµ = 0 meaning GWs have
a null worldline which is the statement that they travel at the speed of light. With the
solution, we can also substitute into the Lorentz gauge condition (h̄αβ

,α = 0) to find

Aαβkα = 0 . (3.26)

We divert slightly now to count the number degrees of freedom within our system.
As we know, once we have gαβ, we will know everything about the system. By Equa-
tion (3.17), it means if we know hαβ (or h̄αβ), we too will know everything since ηαβ

is already known. In one temporal and three spatial dimensions, h̄αβ (and hence Aαβ)
has 16 possible components. However, due to h̄αβ being symmetrical, we only need to
know 10 of the components (say the top right triangle of the matrix) since we could re-
flect in the diagonal line to recover 16 components. If we say our GW propagates only
in the z direction (kµ = (ω

c , 0, 0, k)T), then the relation we found through the Lorentz
gauge (Equation (3.26)) reduces to

A0β = −A3β (3.27)

with the help of kµkµ = 0. This statement means the temporal row of the upper trian-
gle will be known if we know the z row of Aαβ. This means 4 of the (temporal row)
components are no longer degrees of freedom. From the Lorentz gauge alone, we have
reduced Aαβ to only 6 independent components, all of which are spatial.
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It can be proven (e.g. p. 205 of Schutz (1985)) that we can add an extra gauge condi-
tion to the system (apply more constraints to lower the number of degrees of freedom)
without affecting the Lorentz gauge we have already applied. This gauge is known as
the transverse-traceless gauge and we denote we are using it by having a superscript
“TT” on top of h̄αβ. This gauge is the statement that h̄αβ must be traceless (h̄α

α = 0) and
transverse (h̄αβUβ = 0 where Uβ is an arbitrary constant time-like 4-vector) meaning
the effects of the GWs are in a direction perpendicular to the direction of propagation
(i.e. GWs affect the x− y plane when travelling in the z direction). Since h̄αβ is purely
spatial (space-like), in order to satisfy h̄αβUβ = 0, Uβ must be purely time-like (due to
the scalar product). Therefore if we take Uβ = δ

β
0, then we find

Aα0 = 0 . (3.28)

This sets all the components in the temporal column to zero which has the effect of
setting all but the inner-most 4 components to zero when combined with h̄αβ being
symmetric and Equation (3.27). Equation (3.28) alone removes 3 more degrees of free-
dom and the traceless condition gives

A22 = −A11 (3.29)

which gets rid of 1 more degree of freedom. In total, only 2 degrees of freedom re-
main and there is no more gauge freedom left within our system. This means the 2
components must have a physical meaning and they are the 2 polarisations which a
GW can have. The polarisations are separated by a rotation by 45° which is why one is
called the “plus” polarisation and the other the “cross” polarisation. In order to write
our final perturbed metric tensor, we need to convert from h̄αβ to hαβ. However in the
transverse-traceless gauge, the trace of h̄TT

αβ is zero. Therefore, we can say hTT
αβ = h̄TT

αβ

giving

hTT
αβ =




0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0




eikµxµ
. (3.30)

3.3 Energy from gravitational waves

To calculate the energy of GWs, one must do more than first-order perturbation theory
on a flat Minkowski metric but here we will go over the main results (e.g. Thorne and
Blandford, 2017). The main reason for this is because we cannot localise the energy
of a GW to a particular part of the GW, i.e. the crest, trough or anywhere in between.
We therefore take an average over many wavelengths to find the average energy. Since
GWs have a sinusoidal form in spatial coordinates (Equation (3.25)), any 1st order terms
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will average out to zero meaning we must go to 2nd order. Also, the existence of GWs
within a system will perturb the background metric which is an effect not captured in
first-order perturbation theory. In terms of Einstein’s field equations, this is written as

G(B)
αβ =

8πG
c4 TGW

αβ . (3.31)

From Equation (3.22), we see a homogeneous wave equation only exists if 〈Gαβ〉 = 0,
where the angled brackets represents an average over several wavelengths. Gαβ, which
measures curvature, can be expanded to 2nd order for a general spacetime metric and
when we take the average over several wavelengths, we get

〈Gαβ〉 = G(B)
αβ + 〈G(2)

αβ 〉 = 0 (3.32)

where the superscript “(B)” and “(2)” represent the background and 2nd order expan-
sion in hαβ of Gαβ respectively. The 1st order term vanishes after averaging for the
reasons given above. Then, if we substitute Equation (3.32) into Equation (3.31), we
find

TGW
αβ = − c4

8πG
〈G(2)

αβ 〉 (3.33)

which defines the stress-energy tensor for GWs. After finding the 2nd order expression
for Gαβ in terms of hαβ, and if we use the transverse-traceless gauge, Equation (3.33)
becomes

TGW
αβ =

c4

32πG
〈hTT

µν,αhµν
TT,β〉 (3.34)

which reduces to

TGW
αβ =

c4

16πG
〈h+,αh+,β + h×,αh×,β〉 (3.35)

when we use Equation (3.30). Since our GWs are set to propagate in the z direction,
we have h+ = h+(kz− ωt) and h× = h×(kz− ωt) so the non-zero terms in the stress-
energy tensor are

TGW
00 =

TGW
03
c

= TGW
30 c =

TGW
33
c2 =

c2

16πG
〈(ḣ+)2 + (ḣ×)2〉 (3.36)

where TGW
00 is the energy density, TGW

03 is the energy flux in the z direction, TGW
30 is

density of the z component of momentum and TGW
33 is the momentum flux in the z

direction.

Since we are interested in the energy of GWs, we can take a closer look at TGW
03

TGW
03 = FGW =

c3

16πG
〈(ḣ+)2 + (ḣ×)2〉 (3.37)

which is the same as the GW energy flux. The dots represent time derivatives. If we
let h+ and h× have the same amplitude, h0, and they vary sinusoidally with an angular
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frequency of ω = 2π f , we find the GW energy flux is given by

FGW =
π

4
c3

G
f 2h2

0 . (3.38)

Finally, to get a luminosity from this, we need to multiply by some surface area which
the GWs irradiate. One might want to multiply by a factor of 4πd2 where d is the
distance between the observer and the GW source however this assumes isotropic GW
emission from the source. This is not the case for GWs (see p. 975 of Misner et al., 1973).
Once the GW flux is integrated across the correct (quadrupolar) surface area, then for a
source where |h+| = |h×| = h0, the GW luminosity is

LGW =
2π2

5
c3

G
d2 f 2h2

0 . (3.39)

Alternatively, the GW luminosity can be written in terms of the trace-reduced mass
quadrupole moment, Iij, defined as

Iij ≡
∫

V
ρ

(
xixj −

1
3

δijr2
)

d3x (3.40)

where r2 = xkxk. It can be shown that hTT
µν in Equation (3.34) can be simplified in terms

of Iij. From Equation (3.30), we see that hTT
0ν = hTT

µ0 = 0 so hTT
µν can be fully represented

by its spatial part, hTT
ij . Then, it can be shown that hTT

ij is proportional to the second time
derivative of ITT

ij

hTT
ij =

2
r

G
c4 ÏTT

ij

(
t− r

c

)
(3.41)

where ÏTT
ij is evaluated at the retarded time and is also in the transverse-traceless gauge

(see Misner et al., 1973). When substituted into Equation (3.34) and TGW
03 is correctly

integrated, we get a GW luminosity of

LGW =
1
5

G
c5

〈...
I ij

...
I ij
〉

. (3.42)

Finally, GWs can carry angular momentum away from a system, at a rate, N i
GW, which

is equal to the GW torque. One can show (e.g. Andersson, 2019) that this rate of change
in angular momentum is

N i
GW =

2
5

G
c5

〈
εijk Ï l

j
...
I kl

〉
(3.43)

where εijk is the Levi-Civita symbol. The convention we have used here is if GWs
are carrying away angular momentum away from the system, then N i

GW would be
positive. Likewise, if GWs carry energy away from the system, then LGW would be
positive.
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3.4 Types of gravitational waves

We have looked at the mathematical approach to GWs but in this subsection, we will
look more at the qualitative properties of different types of GWs. GWs are created
whenever there is a time-varying mass multipole or current multipole, in the most
generic case. For a multipole labelled by l, the GW luminosity from the l’th current
multipole is smaller by a factor of O(v2/c2) compared to the l’th mass multipole. We
will therefore consider low velocity systems where the l = 2 current multipole is much
less than the l = 2 mass quadrupole, allowing us to focus entirely on the l = 2 mass
quadrupole.

There are several astrophysical systems that have a time-varying mass quadrupole. It
is important that these sources are astrophysical (so they have a lot of mass) because
GWs are incredibly weak. The very first GW detection came from the coalescence of
two black holes (BHs) producing h0 ∼ 10−21 (Abbott et al., 2016). GWs have the effect
where they squeeze and stretch fixed distances so h0 ∼ 10−21 means that a 1 metre ruler
changes its length by 1 zeptometre, ∆L ∼ 1× 10−21 m. The more massive the system,
the larger h0 will be.

There are 4 main groups of GWs which GW detectors are looking for. The first are
compact binary coalescence (CBC) GWs and as the name suggests, they are the result
of the coalescence of two compact binary objects (NS-NS, BH-BH or NS-BH). These
GWs are the ripples in spacetime that come off as the two massive objects spiral into
one another. As the two objects get closer, their orbital frequency increases and as a
result, so does the GW frequency. This gives rise to the “chirp” that some people refer
to when talking about CBC GWs. Our current GW detectors are only sensitive to the
final moments of a CBC and so the duration of the CBC GWs we detect last no longer
than ∼ 100 s.

Next are the GWs which will be the focus of this thesis, continuous GWs (CWs). CWs
are quasi-monochromatic and last for a quasi-infinite duration. A leading candidate for
these CWs are long-lasting “mountains” that form on NSs. These mountains “hook” on
to the fabric of spacetime and as the NS rotates, GWs radiate away at a seemingly fixed
frequency (twice the spin frequency) (Bonazzola and Gourgoulhon, 1996). Another
two possible mechanisms for CWs are precessing NSs (Jones and Andersson, 2002)
and long-lived oscillation modes on NSs (Andersson, 1998).

Stochastic GWs are always present whenever making GW observations, much like the
cosmic microwave background. The stochastic GW background is thought to be the
accumulation of GWs generated from random unresolved events. Candidates for these
events are unresolved CBCs, rotating NSs, cosmic string interactions, inflationary mod-
els of the early universe and phase transitions of the universe (Abbott et al., 2017a).
Finally, burst GWs have short durations like CBC GWs, but are not caused by a CBC.
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Burst GWs have been suggested to be produced by supernovae or gamma-ray bursts,
but there are countless other possibilities (Schutz, 1989).

3.5 Detecting gravitational waves

As mentioned in Section 3.4, GWs squeeze and stretch fixed distances. However, due
to the quadrupolar nature of GWs, whenever we see a stretch in one direction, we
see a squeeze in the perpendicular direction. This is best shown in Figure 3.1 which
shows how a GW travelling in the z direction influences a circular ring of test masses
in the x-y plane. This property means our detector must see changes in length in two

FIGURE 3.1: A diagram showing how a GW travelling in the z direction influences
a circular ring of test masses at time t1 and a later time t2. Subfigure (a) shows the
circular ring of test masses without any influence of a GW. Subfigure (b) shows the
effect of a GW purely in the “+” polarisation. Subfigure (c) shows the effect of a GW
purely in the “×” polarisation. This figure was taken from A First Course in General

Relativity by Schutz (1985).

spatial directions to have a chance of detecting GWs. The largest deformation occurs
at right angles which is why current ground-based detectors, like Advanced LIGO,
have arms which are perpendicular. Future GW detectors, like the Einstein Telescope,
will have arms with a 60° opening angle and, with three of them, can arranged in a
triangular configuration. The triangular detector would need to be larger to detect the
same deformation as a perpendicular detector but there are some important scientific
advantages, such as having a “null stream” and better sky localisation, as well as some
financial advantages too, such as two arms being able to share the same infrastructure
along one of the sides of the triangle (Sathyaprakash et al., 2012; Maggiore et al., 2020).
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Our detector needs to be able to measure small changes in length incredibly accurately.
A Michelson interferometer does exactly this and is what ground-based and space-
based GW detectors are based on, just on a much larger scale. A Michelson interfer-
ometer uses a powerful laser which is split by a beam-splitter and sent down both
arms. The beams travel down the arms and reflect off freely-suspended mirrors at the
end and come back to the beam-splitter where there is a semi-transparent mirror. This
semi-transparent mirror reflects most of the light back into the arms to be recycled but
some gets sent to a photodiode. If the light from both arms are out of phase (which
is the case by default), then the light would destructively interfere and there would
be almost no photons being detected on the photodiode. This is why sometimes it is
called the “dark port”. If a GW passes by, the arms would change lengths and then
the light beams will become slightly more in phase and constructively interfere mean-
ing photons would be detected on the photodiode. We can compare the output of the
photodiode to models of what is expected and if there is an agreement, then we can
confirm a GW detection.

We have not mentioned much about the size of these detectors yet. The size of these
detectors determine what GW wavelengths (and thus frequencies) they are sensitive
to. Generally, the larger the detector, the lower the GW frequency it can detect. For
instance, current ground-based telescopes have 3-4 km arms and future ground-based
telescopes, like the Einstein Telescope and Cosmic Explorer, have proposed arms of
length 10 km and 40 km, respectively. These ground-based telescopes are most sensitive
to GW frequencies between 10− 103 Hz. Then, there are (future) space-based detectors,
like LISA and Taiji, that will have arm lengths of 2.5× 106 km and 3.0× 106 km, respec-
tively. These will be sensitive to GW frequencies between 10−4 − 10−1 Hz. Clearly,
we need different GW detectors to detect the different GW frequencies that arise from
different astrophysical sources.

There is one other type of GW detector that has been gaining momentum recently and
is even provided free to us by nature – pulsar timing arrays. Contrary to what was said
in Sections 2.2 and 2.3, pulsars are still very stable clocks. They outperform the best
atomic clocks on Earth. Their regular pulses means we can predict when the next pulse
will arrive with great accuracy. If everything is well-modelled for the outgoing photons
from the pulsar, and we observe a delay or early arrival of multiple pulses, then we
could attribute that to the distance changing between us and the pulsar. This means
the arm length is the distance between Earth and the pulsar, which is typically a few
hundred parsecs to a few kiloparsecs, resulting in the greatest GW sensitivity between
10−9 − 10−7 Hz. Again, we need to see length changes in two spatial directions so
we cross-correlate the TOAs from different pulsars across the sky. The requirement of
stable timing from the pulsars is paramount in the success of pulsar timing arrays and
this is another reason why it is so important to understand more about glitches and
timing noise.
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FIGURE 3.2: An example of some sensitivity curves,
√

Sn( f ), measured in units of
Hz−

1
2 . Large values of

√
Sn( f ) means there is more noise at that particular GW fre-

quency. These sensitivity curves represent Hanford and Livingston (both aLIGO de-
tectors in the US) and Virgo (in Italy) in their O3 phase. This figure was taken from

Abbott et al. (2021a).

As mentioned, a given GW detector has certain GW frequencies which it is more sen-
sitive to. In fact, we can measure this in what is known as a noise amplitude spectral
density graph or a sensitivity curve, symbolised by

√
Sn( f ). It tells us how much noise

there is at a given frequency. The higher the value, the more noise there is (or the less
sensitive we are) and vice versa. An example of a sensitivity curve is given in Figure 3.2.

Whenever a GW detection is made, the signal-to-noise ratio (SNR) is normally quoted,
or at least some detection statistic which is related (e.g. Jaranowski et al., 1998). This is
a measure of how significant the signal is when in the presence of noise. To calculate
the optimal SNR, ρ0, we define

ρ0 =
√
(h||h) (3.44)

where h is the GW signal and the double vertical bar represents a scalar product defined
as

(x||y) = 4<
{∫ ∞

0

x̃( f )ỹ∗( f )
Sn( f )

d f
}

(3.45)

where the asterisk (∗) represents the complex conjugate, the tilde (˜) represents a Fourier
transform2, f is the GW frequency and Sn( f ) is the one-sided noise power spectral den-
sity measured in Hz−1. The SNR is referred to as optimal when the matched-filtering
template (the GW waveform model) fits the data perfectly (e.g. Prix et al., 2011). One
can see why Equation (3.44) represents the SNR when you realise that the numerator

2In this thesis, we define a forward Fourier transform of the function g(t) as g̃( f ) =
∫ ∞
−∞ g(t)ei2π f tdt.
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of Equation (3.45) equals the GW power (as a function of frequency) and the denomi-
nator is the power due to noise (also as a function of frequency). By integrating, we are
adding all the contributions at all frequencies to give the total signal power divided by
the noise power. Taking the square root then gives the SNR.

Typically, a GW detector receives a signal x(t) comprised of a noise part n(t) and if
fortunate, a GW part h(t), i.e. x(t) = n(t) + h(t). To make any sense of the raw data,
we calculate the expectation value of the product of two signals at two different times,
〈x(t1)x(t2)〉, and once we make the assumptions that the noise has a Gaussian distri-
bution with zero mean and that the covariance of n(ti) and h(tj) is zero for all i, j, we
get

〈x(t1)x(t2)〉 = 〈n(t1)n(t2)〉+ 〈h(t1)h(t2)〉 . (3.46)

If the noise is stationary (the property where a segment of noise at a given time has the
same behaviour as a segment of the same duration at a different time), then the first
term on the right hand side of Equation (3.46) is purely a function dependent on the
duration of the observation, τ = |t1 − t2|. Explicitly, we have

κ(τ) = 〈n(t1)n(t2)〉 . (3.47)

Then by definition, the one-sided noise power spectral density is twice the Fourier
transform of Equation (3.47)

Sn( f ) = 2
∫ ∞

−∞
κ(τ)ei2π f τdτ (3.48)

for f ≥ 0 and is Sn( f ) = 0 for f < 0. The factor of 2 comes in because we consider
only positive values of frequency hence the name “one-sided”. The noise power which
would have been in the negative frequencies is added to the positive frequencies and
so there is a factor of 2. This prevents any noise power information from being lost.
Up to a scaling factor of 2, Sn( f ) can also be thought of as the Fourier transform of
the autocorrelation function of the noise amplitude data. By calculating

√
Sn( f ) using

Equation (3.48), one can generate the sensitivity curves seen in Figure 3.2.
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Chapter 4

Fluid dynamics overview

4.1 Equations of motion

It is believed that NSs are born as hot balls of fluid that rotate at great speed. As the
NS cools over time, a solid crust forms but the core remains fluid. With the crust being
∼ 1 km thick from a radius of ∼ 10 km, the whole NS can be approximately governed
by fluid dynamics. For something to be fluid means that it does not build a strain
whenever stress is applied to it. In this section, we state the basic fluid equations for
a non-relativistic (Newtonian) fluid. Of course, this is not the case for a real NS as the
strong gravity around it gives rise to relativistic effects, but for us, we will keep within
the Newtonian regime for simplicity. One can re-do the analysis in GR once the proof
of concept has been established but we will not do this here.

A non-dissipative fluid can be described solely by its mass density ρ(x, t), velocity
v(x, t), pressure P(x, t) and gravitational potential Φ(x, t). There are 4 equations that
connects all 4 variables to each other and they are: the continuity equation, Euler’s
equation, Poisson’s equation for gravity and the equation of state (EOS). Overall, they
encompass the behaviour of fluids and encode the conservation of energy and momen-
tum.

First is the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 . (4.1)

This is a statement about the conservation of mass. It says that the rate at which fluid
mass enters a region is equal to the mass which leaves the same region. Next is Euler’s
equation

ρ
dv
dt

= −∇P− ρ∇Φ (4.2)
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which is essentially Newton’s 2nd law but for a fluid. The left hand side represents the
resultant force (per unit volume) due to pressure gradients and gravitational potential
gradients. The left hand side of Equation (4.2) uses the total (or convective) derivative
defined as

d
dt

=
∂

∂t
+ v ·∇ . (4.3)

This convective derivative captures changes to a variable as we follow a fluid element
around. The first term represents the changes to a fluid element if it were not following
the fluid and the second term represents additional changes due to the movement of
the fluid element. For this reason, sometimes d

dt is called the Lagrangian time derivative
and ∂

∂t is called the Eulerian time derivative, as will become clear in Section 4.2.

Poisson’s equation for gravity is

∇2Φ = 4πGρ . (4.4)

This is a type of field equation that relates how a field (gravitational potential field)
behaves in the presence of a source term (mass density). This is exactly the same as
Einstein’s field equations (Equation (3.1)) but in the Newtonian limit.

Finally, we have the EOS, which generically for a non-dissipative fluid is

P = P(ρ) . (4.5)

The exact form of the EOS depends on the detailed microscopic modelling of the physics
within the fluid.

4.2 Eulerian and Lagrangian perturbations

Along with a set of initial conditions, stationary solutions for a fluid system can found
using the 4 equations in Section 4.1. However, to find out more about the system,
one might want to perturb it to see what results (e.g. Chandrasekhar, 1969). For a
fluid variable, Q, there are two formalisms for the perturbations we apply: Eulerian
perturbations (δQ) and Lagrangian perturbations (∆Q). Throughout this subsection
and the next, we will keep to 1st order in our small expansion parameter, ξ, which will
be defined shortly.

The Eulerian formalism measures the change of a variable at a fixed point in space. For
example, if we had a 2D Cartesian coordinate system, we would always be measuring
how the mass density changes at (1,0). If Q0 is the value of the variable before the
perturbation, then an Eulerian perturbation to Q0 is defined as

δQ(x, t) ≡ Q(x, t)−Q0(x, t) . (4.6)
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Alternatively, we have the Lagrangian formalism where we measure changes to a vari-
able as we follow a fluid element around (like the convective derivative in Equation (4.3)).
Using the same example as before, if we wanted to know the Lagrangian change to the
mass density at (1,0) for a fluid which has been perturbed by a radial enlargement of
factor 2, then we would measure the mass density at (2,0) and subtract the mass density
at (1,0). Mathematically, this is written as

∆Q(x, t) ≡ Q(x + ξ, t)−Q0(x, t) (4.7)

where ξ is the (spatial) displacement vector, which can be a function of position and
time, ξ = ξ(x, t) and is much smaller in magnitude when compared to the position
vector, |ξ| � |x|. We can relate Eulerian and Lagrangian perturbations when we Taylor
expand Equation (4.7)

∆Q(x, t) ≈ [Q(x, t) + ξ ·∇Q(x, t)]−Q0(x, t) (4.8)

which, with the help of Equation (4.6), simplifies down to the 1st order operator relation

∆ = δ + ξ ·∇ (4.9)

when operating on fluid variable Q.

4.3 Perturbed integral quantities

Say an integral in an unperturbed fluid is (e.g. Shapiro and Teukolsky, 1983)

I0 ≡
∫

V
Q0(x, t)dx (4.10)

where V represents the unperturbed volume, then the equivalent integral but in a per-
turbed fluid is

I ≡
∫

V+∆V
Q(x, t)dx (4.11)

where ∆V is the additional volume created by perturbing the boundary of V by ξ.
The first variation of the integral is written as δI (not to be confused with an Eulerian
perturbation) and is defined as

δI ≡
∫

V+∆V
Q(x, t)dx−

∫

V
Q0(x, t)dx . (4.12)

We can simplify this further by making both integrals over the same volume which we
choose to be the unperturbed volume, V. This requires us to make the transformation,
x′ = x− ξ(x), which ensures the first integral is conducted over the unperturbed vol-
ume. Substituting x = x′ + ξ(x) and introducing the Jacobian, J, due to our change in
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coordinates, we get

δI =
∫

V
Q(x′ + ξ, t)Jdx′ −

∫

V
Q0(x, t)dx . (4.13)

The Jacobian is given by

J =
∂x
∂x′

=
∂(x′ + ξ(x))

∂x′
= 1 +∇′ · ξ(x) ≈ 1 +∇′ · ξ(x’) (4.14)

to 1st order in ξ and where ∇′ represents the gradient operator in x′ coordinates. Ap-
plying Equations (4.14) and (4.7) to Equation (4.13) and relabelling x′ → x, we get the
final result of

δI ≈
∫

V
[∆Q(x, t) + (∇ · ξ)Q(x, t)] dx (4.15)

where again, we have kept only 1st order terms in ξ. For an incompressible fluid,
∇ · ξ = 0 so we can simplify to

δI =
∫

V
∆Q(x, t)dx . (4.16)

There is one final perturbed integral quantity which we will see multiple times so
we will highlight it now. The aforementioned perturbed integral is any of the form
δ
∫

V ρQ dx. To simplify this, we first need to look at the conservation of mass. We know
that mass can be written as

M =
∫

V
ρdx (4.17)

and when we perturb a system, we wish to conserve mass, so

δM = δ
∫

V
ρdx = 0 . (4.18)

Setting Q → ρ in Equation (4.15) and invoking the conservation of mass, we get the
relation

∆ρ + (∇ · ξ)ρ = 0 . (4.19)

Repeating the same procedure but setting Q→ ρQ in Equation (4.15) will give us

δ
∫

V
ρQ dx =

∫

V
[ρ∆Q + Q {∆ρ + (∇ · ξ)ρ}] dx (4.20)

but we know the terms in the braces equate to zero by Equation (4.19). This then leaves
the simple relation

δ
∫

V
ρQ dx =

∫

V
ρ∆Q dx . (4.21)
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Chapter 5

Gravitational waves from transient
mountains

From here on in, we cover topics that are novel and original. As mentioned previously,
in this thesis we are looking to create models that are based off astrophysical obser-
vations and have some element of GW emission. The first of the new models is the
transient mountain model which can explain glitch recoveries and give rise to transient
CWs (Prix et al., 2011). This work led to a paper being published in Monthly Notices of
the Royal Astronomical Society (Yim and Jones, 2020) and a large part of this chapter is
taken from there.

5.1 Introducing the transient mountain model

As mentioned in Section 2.2, NSs glitch from time to time. This means its spin fre-
quency, ν, measured in Hz, rapidly increases and is thought to be due to vortex un-
pinning or starquakes (Section 2.2.2). Then, for some glitches, especially from younger
NSs, there often follows an exponential recovery where the spin frequency recovers
back to, but never quite reaches, the spin frequency prior to the glitch. This recovery is
commonly associated with vortex creep (Section 2.2.3).

Accompanying the positive change to the spin frequency, ∆ν(tg) > 0, there is nor-
mally a simultaneous negative change to the time derivative of the spin frequency,
∆ν̇(tg) < 0, or alternatively, an increase to the spin-down rate, ∆|ν̇|(tg) > 0, where tg is
the time of the glitch. In this chapter, the ∆ represents changes due to the glitch.

As for GWs, we learnt in Section 3.4 that there are GWs of different types and different
time-scales. CBC GWs and burst GWs are both short relative to CWs which last much
longer than the time spent observing them. Stochastic GWs are the most extreme in the
sense that they are always present.
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The longer a GW signal lasts, the more chance you have of detecting it (the SNR in-
creases as the square-root of the time spent observing the signal). However, unlike
CBC GWs and CWs, burst GWs and stochastic GWs are unmodelled which makes them
more difficult to detect. CBC GWs and CWs are typically modelled so matched-filtering
can be used to detect them. This means getting a template (matched-filter) and match-
ing it to the data. A goodness-of-fit can be evaluated for each template and when the
match statistic exceeds a threshold, one can say a detection has been made. So far only
CBC GWs have been detected (Abbott et al., 2019a).

Besides the above types of GWs, there is another category of modelled GWs which
Prix et al. (2011) named “transient CWs”. These are GWs with durations between CBC
GWs and CWs, meaning on the order of hours to weeks. As to how they are modelled,
transient CWs are essentially shorter versions of conventional CWs so have the same
quasi-monochromatic behaviour. This means, generally, transient CWs have signals of
the form

h(t) = h0(ts)W(t; ts, tf) sin(2π f ∆t) (5.1)

where h0(ts) is the GW amplitude at the start of the signal,W(t; ts, tf) is some window
function starting at t = ts and finishing at t = tf, f is the GW frequency and ∆t = t− ts

is the time elapsed since the signal began.

So far, there has been little theoretical modelling of how these transient CWs come
about. It has been suggested that pulsar glitches could be the trigger since glitch recov-
ery time-scales naturally fall within the range covered by transient CWs. Models using
glitches include Ekman flow1 within the NS (van Eysden and Melatos, 2008; Bennett
et al., 2010; Singh, 2017) and also a toy model where the excess superfluid energy from
a glitch could seed a non-axisymmetric deformation leading to transient CW emission
(Prix et al., 2011). It has been suggested that magnetar flares producing polar Alfvén
waves could cause transient CWs too (Kashiyama and Ioka, 2011).

It is clear there are not many models for transient CWs but nevertheless, there have
been attempts to detect them. Most recently, Keitel et al. (2019) tried to find transient
CWs in the glitch recoveries of the Crab and Vela pulsars but unfortunately, no tran-
sient CWs were detected. Abbott et al. (2019c) did a similar search but for unmodelled
transient GWs after the binary NS merger GW170817, for durations of up to 8.5 days.
Again, no transient GWs were detected.

So, there is an interest to detect transient CWs but the theory is lacking. This is es-
pecially the case when it comes to trying to explain both the transient CWs and the
observed glitch recovery simultaneously. Those that exist generally depend on some
internal mechanism for it to work and quite often, this leads to models being difficult

1Ekman flow is the bulk movement of fluid due to some tangential force. In a two-component NS, the
tangential force comes from the viscous shear force between the crust and core.
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to falsify since the interior of NSs cannot be directly observed. We therefore task our-
selves with creating a new model which is simple and makes precise and falsifiable
predictions.

In its most basic form, our model, the transient mountain model, only concerns the
glitch recovery and is agnostic to what causes the glitch2. The sudden increase to the spin-
down rate at the moment of the glitch we propose is due to the instantaneous formation
of a non-axisymmetric mountain (a l = 2, m = 2 deformation in the language of spher-
ical harmonics). Such a mountain would create a braking torque on the NS which acts
to spin the NS down. Then, we propose the mountain decays away exponentially, on a
time-scale similar to the glitch recovery time-scale. As the mountain decays, the brak-
ing torque, and hence the rate of spin-down, is reduced and it is this which results in
the observed exponential glitch recovery. For a mountain that completely decays away,
the spin-down rate will recover to the pre-glitch value. On the other hand, a remnant
or “permanent” mountain causes the spin-down rate to be greater after the glitch has
fully recovered, leading to a more negative gradient of the spin frequency at times long
after the glitch. Right now, we do not focus on the mechanism which creates the moun-
tain or causes it to decay, rather, we are looking at the consequences if such a transient
mountain exists. In Chapter 7, we will return to this matter and explore the plausibility
of building the mountain from an energetics point of view.

This chapter will be divided as follows. Section 5.2 introduces the relevant equations
from radio pulsar astronomy that explain glitches and their subsequent recovery. Sec-
tion 5.3 looks at the dynamics of the system which allows us to calculate the ellipticity
required to cause the glitch recovery. This, in turn, tells us the GW strain achievable.
In Section 5.4, we find an expression for the total GW energy radiated away by a tran-
sient mountain. In Section 5.5, we calculate the SNR achievable in a GW detector. In
Section 5.6, we apply our model to radio data and give a table of results including the
SNRs for Crab and Vela glitches for both aLIGO and the Einstein Telescope (ET). In
Section 5.7, we discuss the predictions and limitations of our model. Finally, Section 5.8
summarises the results of this work and concludes with some final remarks on future
prospects of this research.

5.2 The glitch model from radio astronomy

Timing a pulsar requires accurate modelling of the rotational dynamics of a NS. One
well-known property of NSs is that they spin-down on secular time-scales. This is
thought to be primarily due to magnetic dipole radiation (Section 2.1.2) though searches
are being performed to see if CWs could also play a role (e.g. Abbott et al., 2020). This

2Possible glitch mechanisms include starquakes and vortex unpinning, but these precise details are not
covered since we are concerned only with the post-glitch recovery. Future improvements to the model
will look to incorporate a specific glitch mechanism.
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FIGURE 5.1: The graph shows how the spin frequency of a NS changes as a function
of time when there is a glitch. There are two parts, one being the secular spin-down
(shown by the lower dashed line) and the other being the glitch. ∆ν(tg) is the total
change in spin frequency at the time of the glitch, which is made up of a permanent
part, ∆νp, and a transient part, ∆νt. ∆νt exponentially decays away with a time-scale
of τ. Also, the permanent change to the time derivative of the spin frequency, ∆ν̇p,
has been set to ∆ν̇p = 0 in the above graph, which has been assumed for most of our

analysis.

secular spin-down is represented by the lower dashed line in Figure 5.1. Since we are
only interested in glitches (which have much shorter time-scales), we can subtract the
secular spin-down to leave the change in the spin frequency due to the glitch, ∆ν(t),
represented phenomenologically by

∆ν(t) =





0 , if t < tg

∆νp + ∆ν̇p · ∆t + ∆νte−
∆t
τ , if t ≥ tg

(5.2)

where ∆t = t− tg is the time elapsed after the glitch with tg being the time of the glitch.
∆νp refers to the change in spin frequency which is permanent due to the glitch and ∆νt

is the same but refers to the transient part, i.e. the change in the spin frequency which
fully recovers on time-scales much larger than the recovery time-scale of the glitch, τ.
The product ∆ν̇p ·∆t represents the contribution to ∆ν(t) due to a permanent change in
the spin-down rate caused by the glitch, ∆ν̇p. From this formulation, it is seen at t = tg,
we get the relation

∆ν(tg) = ∆νp + ∆νt . (5.3)

We can then differentiate Equation (5.2) to get the time derivative of the spin frequency,
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∆ν̇(t), and in the regime of t ≥ tg, we have

∆ν̇(t) = ∆ν̇p −
∆νt

τ
e−

∆t
τ . (5.4)

From this, we associate the coefficient of the time-dependent term to be equal to the
transient change in the spin-down rate, ∆ν̇t, which is given by

∆ν̇t ≡ −
∆νt

τ
(5.5)

such that ∆ν̇(t) = ∆ν̇p + ∆ν̇te−
∆t
τ = ∆ν̇p + ∆ν̇t(t). There is a slight subtlety in the no-

tation here since we have explicitly used parentheses to represent a time-dependence,
e.g. ∆ν̇t(t) depends on time but ∆ν̇t = ∆ν̇t(tg) is a constant. The phenomenological
glitch model above (or slight variants of it) have been established for a long time, hav-
ing been used to model the first few glitches of the Crab pulsar (Boynton et al., 1972)
and the Vela pulsar (Downs, 1981). Even now, it is still being used in pulsar timing
softwares such as TEMPO2 (Edwards et al., 2006).

Our analysis uses publicly available glitch data from the JBCA Glitch Catalogue (Es-
pinoza et al., 2011). Within this catalogue are values for ∆ν(tg)

ν0
and ∆ν̇(tg)

ν̇0
for each glitch

of a given pulsar. Respectively, ν0 and ν̇0 are the measured values of the spin frequency
and the time derivative of the spin frequency immediately before the glitch. However,
there is an issue using this data since we are not told exactly how much of ∆ν(tg) and
∆ν̇(tg) is due to a transient part and how much of it is due to a permanent part. We
therefore require more data and for us, it will be in the form of the healing parameter,
Q.

By definition, Q is defined as

Q ≡ ∆νt

∆ν(tg)
(5.6)

where the numerator represents the change in spin frequency which will “heal” at
t� tg and the denominator represents the total change in spin frequency at t = tg

which is the sum of permanent and transient parts, as seen in Equation (5.3). There-
fore, a glitch which recovers completely has Q = 1 and a glitch showing no recovery
whatsoever has Q = 0.

We can substitute Equation (5.6) into Equation (5.5) to relate our unknowns (∆ν̇t, ∆νt)
to our observables (Q, ∆ν(tg)) to get the relations

∆ν̇tτ = −∆νt = −Q∆ν(tg) . (5.7)

τ makes an appearance in Equation (5.7) and it can either be treated as known or un-
known. It is known when radio observations are frequent enough to acquire τ directly
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from the data. However, this is not the case for most glitches as the exponential recov-
ery is sometimes missed, or if too few observations are made during the glitch recovery
to allow a reliable fit. If it is unknown, then we can use Equation (5.7) to approximate τ,
see Section 5.7. Throughout this analysis, we will treat τ as unknown but if it is known
in reality, then our model provides an independent value of τ which can be checked for
consistency and guide future transient CW searches.

5.3 Ellipticity and gravitational wave strain

In this section, we focus on calculating the ellipticity and GW strain obtainable from
transient mountains in terms of our observables. It will help at this point if we remind
ourselves of the steps of the model: 1) a NS glitches (we are agnostic to what causes
this), 2) a transient mountain immediately forms, 3) transient CWs are emitted whilst
the transient mountain decays away at a similar rate as the glitch recovery.

It is well-known that a NS mountain will emit CWs at twice the NS’s spin frequency,
f = 2ν (e.g. Shapiro and Teukolsky, 1983). A mountain also creates an extra braking
torque on the system which we assume explains the glitch recovery. Basic mechanics
tells us that the torque, N , is related to power (or in our case GW luminosity) by the
equation L = −NΩ (for L > 0) where Ω is the angular velocity of the NS. It can also be
shown (e.g. Shapiro and Teukolsky, 1983) that the GW luminosity due to a mountain is

LGW(t) =
(2π)6

10
G
c5 I2 f 6ε2(t) (5.8)

where I represents the moment of inertia about the rotation axis, f is the GW frequency
of the emitted CWs and ε(t) is the dimensionless equatorial ellipticity of the NS (see
Equation (B.5) for the definition in terms of moment of inertias about the principal
axes).

By taking out a factor of Ω = 2πν = π f from Equation (5.8), multiplying throughout
by −1 and using f ≈ 2ν0, we get the torque due to a NS mountain

Nmountain(t) = −
32(2π)5

5
G
c5 I2ν5

0ε2(t) . (5.9)

Also from mechanics, we know N = İΩ + IΩ̇ in general. However, as we show in
Appendix A, during the glitch recovery we can associate the change in torque solely to
a change in the spin-down rate caused by a transient mountain which means

∆N (t) = 2π I∆ν̇t(t) (5.10)

where we have ignored the effect of ∆ İ, ∆Ω and ∆I and specialised to transient moun-
tains only. The physical reasoning for this is because changes in the torque caused by
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changes in the moment of inertia or spin frequency are negligible when compared to
changes caused by the spin-down rate. This is shown numerically for two very differ-
ent glitchers, the Crab and Vela pulsars, in Appendix A. It is also worth noting that the
internal superfluid is important during glitches and can cause changes to the NS’s mo-
ment of inertia (e.g. Link et al., 1999; Andersson et al., 2012). However, our model only
concerns the change of the shape of the NS during the glitch recovery and omits details
about the interior, as the change in shape is what we ascribe to the glitch recovery.

Since our model associates the change in torque purely to a transient mountain, we
equate the left hand sides of Equations (5.9) and (5.10). This allows us to find an ex-
pression for the ellipticity for t ≥ tg which is

ε(t) =

√
− 5

32(2π)4
c5

G
1
I

∆ν̇t(t)
ν5

0
. (5.11)

Note that this means our model will only apply to pulsars rotating fast enough, as
slow rotators will give a value of ε(t) that would be problematically large in terms
of the physics. Conventional long-lasting mountains have a maximum possible size
that is linked to the maximum strain the crust can endure and typically yields maxi-
mum values of εmax ∼ 10−6 − 10−5 (e.g. Johnson-McDaniel and Owen, 2013). How-
ever, as our transient mountains exists for a shorter duration, there may be some non-
stationary solution that permits their existence, even if greater than εmax. The best
situation would be to have a pulsar that rotates fast enough such that ε(t) falls below
the maximum allowed for conventional mountains, though this is not essential if there
are non-stationary mechanisms at play. Assuming εmax ∼ 10−5, then for both Crab-like
and Vela-like glitches, we require ν & 40 Hz.

Since ∆ν̇t(t) is in the expression for ε(t) and ∆ν̇t(t) is unknown, we will set ∆ν̇t(t) =

∆ν̇(t) to give us an approximation for the ellipticity from a transient mountain. This
means we assume the entire change in the spin-down rate is purely transient, i.e. no
permanent mountains are formed which would be associated with ∆ν̇p within the
framework of our model. As mentioned later in a footnote of Section 5.7, this is true
for most glitches besides the largest glitches from the Crab where there appears to be
a linear relationship between ∆ν̇p and ∆ν (Lyne et al., 2015). We can then rearrange in
terms of how the JBCA Glitch Catalogue reports glitch values, as well as setting t = tg,
to get the ellipticity at the moment of the glitch which is

εapprox(tg) =

√
− 5

32(2π)4
c5

G
1
I

ν̇0

ν5
0

(
∆ν̇(tg)

ν̇0

)
. (5.12)
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Now that we have the ellipticity, we can calculate the GW strain, h0(t). In general, a
given ε(t) sources a GW strain of

h0(t) = (2π)2 G
c4

I f 2

d
ε(t) (5.13)

where d is the distance to the source (e.g. Jaranowski et al., 1998). We can then substitute
the ellipticity, Equation (5.11), into Equation (5.13) to find the corresponding GW strain
at t ≥ tg which is

h0(t) =

√
−5

2
G
c3

I
d2

∆ν̇t

ν0
e−

∆t
2τ (5.14)

where we have used ∆ν̇t(t) = ∆ν̇te−
∆t
τ . Note that h0(t) ∝ e−

∆t
2τ and not h0(t) ∝ e−

∆t
τ

as one might originally think. This implies τGW = 2τradio, see Section 5.7. This is due
to ∆ν̇t(t) being square-rooted in the expression for ε(t), as per Equation (5.11). Finally,
we can get an approximation for the GW strain at the moment of the glitch by using
∆ν̇t = ∆ν̇(tg) which gives

h0,approx(tg) =

√
−5

2
G
c3

I
d2

ν̇0

ν0

(
∆ν̇(tg)

ν̇0

)
. (5.15)

5.4 Total gravitational wave energy from the glitch recovery

We now proceed on to calculating how much energy is available for the emission of
GWs due to the loss of kinetic energy during the glitch recovery. We do not include in
our calculation any energy which might be liberated during the glitch or required for
the formation of transient mountains since these values require more detailed calcula-
tions. We will return to this in Chapter 7.

We begin with the simple expression for the rotational kinetic energy, Erot = 1
2 IΩ2.

Any instantaneous loss (hence minus sign) of rotational kinetic energy we can write as
a luminosity L(> 0) by differentiating with respect to time leading to

L = −4π2 Iνν̇ . (5.16)

In particular, we are interested in the GW luminosity achievable due to a mountain
which we attribute to having a negative ∆ν̇. We can also get a change in the luminosity
if there is a change in I or ν. However, as demonstrated in Appendices A and B, we are
allowed to ignore the contributions due to ∆I and ∆ν as these will be negligible.

The change in luminosity due to the glitch, ∆L, can therefore be written as

∆L(t) = −4π2 Iν0∆ν̇t(t) (5.17)
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where we have put time-dependence into the equation and specialised to transient
mountains only. This means we are only tracking the GWs due to transient moun-
tains and not from any permanent mountains which arise due to a permanent change
in the spin-down rate (these would give conventional CWs).

We can now integrate Equation (5.17) across all time to get the GW energy due to a
transient mountain and using ∆ν̇t(t) = ∆ν̇te−

∆t
τ , we get

EGW = −4π2 Iν0∆ν̇tτ = 4π2 Iν0∆νt (5.18)

and using Equation (5.7) we can relate the unknowns to our observables giving the
final result of

EGW = 4π2 Iν0Q∆ν(tg) (5.19)

or when put in terms of how the JBCA Glitch Catalogue reports measurements, we get

EGW = 4π2 Iν2
0Q
(

∆ν(tg)

ν0

)
. (5.20)

Note that Equation (5.19) can be seen as the answer you would get if you were to
naı̈vely find the change in the rotational kinetic energy, but with an additional factor of
Q to account for the partial recovery of the glitch.

5.5 Signal-to-noise ratio

Next, we relate the GW energy to the optimal3 SNR achievable. We follow the steps of
Prix et al. (2011) but apply it to our transient mountain model instead of their super-
fluid excess energy model. Additionally, we account for the effects of having multiple
detectors and non-perpendicular interferometer arms which were not considered pre-
viously.

For a CW with a time-varying GW amplitude, h0(t), the geometrical-average of the
optimal SNR squared, 〈ρ2

0〉, is commonly written as

〈ρ2
0〉 =

4
25

1
Sn( f )

∫ Tobs

0
h2

0(t)dt (5.21)

where the angled brackets represents an average over geometrical parameters which
are the right ascension, declination, polarisation angle and inclination of the source.
This is what is responsible for the factor of 4

25 which otherwise would not be there if
the SNR was not averaged (Jaranowski et al., 1998; Prix et al., 2011). Sn( f ) is the GW
detector’s noise power spectral density which is a measure of how much noise the

3The SNR is optimal when the matched-filter exactly describes the data. Whenever there is a mismatch,
the SNR becomes sub-optimal. See Figure 1 of Prix et al. (2011).



58 Chapter 5. Gravitational waves from transient mountains

detector picks up at a given GW frequency, f . Tobs is the duration for which we observe
the source. We eventually set Tobs → ∞ to ensure we capture the entire transient CW.

Equation (5.21) is used frequently within the literature though it does not fully capture
the effects which apply to us here in this analysis. The ET is a 3rd-generation GW detec-
tor which will consist of three identical interferometers, each with a pair of arms with
an opening angle of 60°, arranged in a triangle such that two arms share the same side
of the triangle (Freise et al., 2009). The fact that we have multiple detectors increases
the SNR and an opening angle less than 90° decreases the SNR. Combining both these
effects changes Equation (5.21) into

〈ρ2
0〉 =

4
25

N sin2 ζ

Sn( f )

∫ Tobs

0
h2

0(t)dt (5.22)

where N is the number of independent interferometers and ζ is the opening angle be-
tween the arms of the interferometer. The sin2 ζ factor can also be found in Jaranowski
et al. (1998). It is important we account for this as the Sn( f ) data for the ET is for a
single 90° interferometer4, even though in reality the ET is made up of three 60° inter-
ferometers (Hild et al., 2011).

We now need to evaluate the integral in Equation (5.22). To do this, we directly substi-
tute for h0(t) using Equation (5.14) followed by Equation (5.7) to get

〈ρ2
0〉 =

2
5

G
c3

N sin2 ζ

Sn(2ν0)

I
d2Q

(
∆ν(tg)

ν0

)
(5.23)

which is the SNR (squared) in terms of the observables within our model.

Alternatively, we can utilise the GW energy we calculated in Section 5.4. Equation (5.8)
gives the GW luminosity as a function of ε(t), but ε(t) is related to h0(t) through Equa-
tion (5.13). We can therefore write the GW luminosity as a function of h0(t) and inte-
grate to get an expression for the GW energy. This gives

EGW =
2π2

5
c3

G
f 2d2

∫ Tobs

0
h2

0(t)dt . (5.24)

We rearrange for the integral and substitute the integral into Equation (5.22) to get

〈ρ2
0〉 =

2
5π2

G
c3

N sin2 ζ

Sn( f )
EGW

f 2d2 (5.25)

Finally, we substitute in the GW energy calculated in Equation (5.19) and we get the
same answer as Equation (5.23). This alternative method is perhaps more powerful
than the first as Equations (5.24) and (5.25) are completely agnostic with regard to the

4The ET-D sensitivity curve was taken from http://www.et-gw.eu/index.php/etsensitivities.

http://www.et-gw.eu/index.php/etsensitivities


5.5. Signal-to-noise ratio 59

time-dependence of h0(t) (since we substituted the entire integral). For the same rea-
son, Equation (5.25) is valid even if we integrate over a short period of time. In other
words, it means that we accumulate more SNR the longer the observation is. Equa-
tion (5.25) agrees with Equation (4) in Prix et al. (2011) besides the factor of N sin2 ζ

which we added in here.

To bring familiarity to all this, we can also express our results in terms of a measure of
the GW strain used in burst searches, since after all, transient CWs are essentially just
a long burst. The measure used is called the root-sum-squared of the GW amplitude,
h0,rss, which is defined as

h2
0,rss ≡

∫ Tobs

0
h2

0(t)dt . (5.26)

Similarly, we can define the geometrically-averaged h2
0,rss as

〈h2
0,rss〉 ≡

4
25

∫ Tobs

0
h2

0(t)dt =
4
25

h2
0(tg)τ (5.27)

such that

〈ρ2
0〉 ≡ N sin2 ζ

〈h2
0,rss〉

Sn( f )
=

4
25

N sin2 ζ
h2

0(tg)τ

Sn( f )
(5.28)

where the last equalities in Equations (5.27) and (5.28) come from using our transient
mountain model and setting Tobs → ∞. The first equality in Equation (5.28) can be seen
from combining Equation (5.22) and the definition in Equation (5.27).

We can check for consistency by substituting our expression for h0(tg) from Equa-
tion (5.13) and then using Equation (5.7) to get the SNR in terms of observables. After
doing that, we find that the right hand side of Equation (5.28) gives the same answer as
Equation (5.23). In terms of our observables, 〈h2

0,rss〉 can explicitly be written as

〈h2
0,rss〉 =

2
5

G
c3

I
d2Q

(
∆ν(tg)

ν0

)
. (5.29)

The benefit of calculating 〈h2
0,rss〉 is that it has the same units as Sn( f ) which are units

of Hz−1. This then allows us to plot both quantities on the same set of axes allowing a

visual comparison between the two terms. In fact, if we plot
√
〈h2

0,rss〉 and
√

Sn( f )
N sin2 ζ

on

the same axes, then the ratio of the two gives exactly the SNR.

In reality, there is some SNR threshold, ρthres, which we must exceed before confidently
accepting a detection. It varies depending on what search method is used, whether the
data is stacked coherently and how large the search parameter space is (Walsh et al.,
2016; Dreissigacker et al., 2018). For a conventional targeted coherent CW search, this
threshold5 is ρthres ≈ 11.4 (Abbott et al., 2004).

5This particular SNR threshold gives a single trial false alarm rate of 1% and a false dismissal rate of
10% (see Section 3.2 of Jaranowski et al., 1998).
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However, as we are dealing with transient CWs, it is difficult to accumulate such a large
SNR (the SNR increases with the square root of the signal duration). For example, if a
transient signal lasted only half as long as it normally would, then only about 70% of
the SNR would be accumulated. Even though a signal is shorter in duration, there is
still a signal present so we need to decrease the SNR threshold to ensure it is detected.
i.e. we would decrease the threshold to around 70% of its prior value (e.g. Keitel et al.,
2019). There is one other factor we need to account for. As the signal we are looking for
is now shorter, there is a greater chance of accidentally reporting a false positive, so the
threshold should increase to account for the greater number of trials. The amount this
increases by is sensitive to the transient signal parameters such as the start time and
signal duration (Prix et al., 2011). The details are clearly complicated and there is no
simple analytical method to determine the SNR threshold for each glitch so we will take
the conservative blanket approach and adopt the same threshold used in conventional
CW searches, namely ρthres ≈ 11.4. However, to highlight the potential differences, we
refer to Keitel et al. (2019) who used an F -statistic analysis to try to detect transient
CWs. Their F -statistic threshold was E [2Fthres] = 48, where E [...] represents the ex-
pectation value, and using Equation (40) of Prix et al. (2011), one can cast this to a SNR
threshold of ρthres ≈ 6.6, which is lower than our conservative threshold of 11.4.

Bringing this all together, if we plot
√
〈h2

0,rss〉 and
√

Sn( f )ρ2
thres

N sin2 ζ
on the same axes, any

signal which lies above the modified sensitivity curve will be confidently detectable,
with a SNR greater than 11.4.

5.6 Applying the transient mountain model to data

We will now take our model and apply it to observed radio data. First we need to
select which pulsars to use in our model. Obviously the pulsar must glitch so that
constrains us to 191 pulsars6. However, the most limiting factor requires us to resolve
the recovery of the glitch which requires a high cadence of observations, i.e. pulsars
which are observed frequently enough to see changes due to the glitch recovery. There
are two outstanding candidates which satisfy these constraints and they are the Crab
pulsar (B0531+21) and the Vela pulsar (B0833-45). As mentioned in Section 2.2.1, these
two pulsars are observed daily at the Jodrell Bank Observatory (Lyne et al., 2015) and
at the Mount Pleasant Radio Observatory (Dodson et al., 2007) respectively. Therefore,
our analysis will focus on the Crab and Vela pulsars, though the model is applicable
to any glitching pulsar where Q can be obtained and is rotating fast enough to prevent
unphysically large mountains, see Equation (5.11).

6Value taken from http://www.jb.man.ac.uk/pulsar/glitches/gTable.html.

http://www.jb.man.ac.uk/pulsar/glitches/gTable.html
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TABLE 5.1: The values for the spin frequency, its time derivative and the distance to
the Crab and Vela pulsars. These values were calculated in mid-1991 and early-2000
for the Crab and Vela pulsars respectively. Data taken from the ATNF Pulsar Database

(Manchester et al., 2005).

Crab Vela

ν0 = 29.947 Hz ν0 = 11.195 Hz
ν̇0 = −3.77× 10−10 Hz s−1 ν̇0 = −1.567× 10−11 Hz s−1

d = 2.00 kpc d = 0.28 kpc

We used radio data from three main sources: JBCA Glitch Catalogue for ∆ν(tg)
ν0

and
∆ν̇(tg)

ν̇0
(Espinoza et al., 2011), Crawford and Demiański (2003) for Q and the ATNF Pul-

sar Database for ν0, ν̇0 and d (Manchester et al., 2005). The value for ν0 needed to be
modified to account for the secular spin-down of the NS7, but ν̇0 and d were taken as
what was reported in the ATNF Pulsar Catalogue. The secular spin-down model we
used included the first time derivative of the frequency only, namely

ν0(tg) = ν0,ATNF + ν̇0,ATNF · (tg − tATNF) (5.30)

where the subscript “ATNF” represents the value taken from the ATNF Pulsar Cata-
logue. tATNF is the epoch corresponding to when the ATNF values were calculated.
This was mid-1991 for the Crab and early-2000 for Vela (Manchester et al., 2005). The
left hand side of Equation (5.30) is what was used for ν0 in all calculations.

tg was set as the date of the glitch when calculating EGW, εapprox(tg) and h0,approx(tg).
However, when calculating SNRs for the different detectors, tg = MJD 57856 for O2 de-
tectors, tg = MJD 59761 for aLIGO at design sensitivity and tg = MJD 64693 for the ET.
These correspond to the middle of the O2 run, the middle of 2022 and the middle of the
2030s respectively, which are the approximate times for when these detectors may be
operational. This step of converting from the catalogue frequency to the predicted fre-
quency is required because over decades, a NSs spin can change considerably and this
affects the detector’s sensitivity estimates which is required for the SNR calculation.

The values for ν0, ν̇0 and d from the ATNF Pulsar Catalogue are found in Table 5.1 and
the remaining data from the other two data sources can be found in Tables 5.2 and 5.3.
Any unknownQ’s were set to the averageQ from existing known values. For the Crab,
this was Q ≈ 0.84 and for Vela, it was Q ≈ 0.17.

Crawford and Demiański (2003) provides a comprehensive list of Q’s compiled from a
large collection of literature. Each glitch has a Q value and for some glitches, there are
several Q’s, each from a different research group. Whenever there was more than one

7We found that if one used the value of ν0 for the Crab from the ATNF Pulsar Catalogue without ac-
counting for secular spin-down, then the GW frequency fell within the 60 Hz mains power line spike in
the sensitivity curves of the O2 detectors.
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Q for a single glitch, we used the average which is the value we report in Tables 5.2 and
5.3.

As for the GW side of the analysis, we will look at the SNRs achievable in the Hanford
and Livingston detectors (during the O2 observation run), aLIGO at its design sensitiv-
ity and the ET in its ‘D’ configuration8. Like the sensitivity curve of the ET, the aLIGO
design sensitivity curve is for a single interferometer (Aasi et al., 2015) and since two
90° interferometers make up aLIGO, we set NaLIGO = 2 and ζ = 90°. As established
in Section 5.5, NET = 3 and ζ = 60° for the ET. We will treat each of the Hanford and
Livingston detectors in O2 as individual interferometers since they have slightly dif-
ferent sensitivity curves, hence, N = 1 and ζ = 90°for both. One can simply multiply
the SNR of either Hanford or Livingston by

√
2 to get an approximate combined SNR

(or add in quadrature for a more accurate value), but as we will see, this makes little
difference in detecting transient CWs outlined in our model for these two detectors.

Together, this data was used to calculate EGW,
√
〈ρ2

0〉, εapprox(tg), h0,approx(tg) and
√
〈h2

0,rss〉.
The results are shown in Tables 5.2 and 5.3.

Finally, Figure 5.2 shows the detectability of the different glitch-induced transient moun-
tains superimposed on modified sensitivity curves of the GW detectors of interest. The
data-points (grey filled circles and light red crosses) represent the square root of the
root-sum-squared GW amplitude,

√
〈h2

0,rss〉, and the modified sensitivity curve is given

by
√

Sn( f )ρ2
thres

N sin2 ζ
. The grey filled circles correspond to glitches we hadQ for, and the light

red crosses refer to glitches where we did not have Q and so the average Q for that
pulsar was used. If a data-point lies above the modified sensitivity curve, then the SNR
would be greater than our threshold of 11.4 and would be classified as detectable. In
reality, this detection threshold is only a guide and will differ depending on the con-
fidence which you assign to the detection. The left bunch of data-points represents
glitches from Vela and the right bunch belongs to the Crab.

From this visual representation of the detectability, we can see immediately that the
Hanford detector would not have detected transient CWs from glitch-induced tran-
sient mountains from the Crab and Vela pulsars, irrespective of whether the glitches oc-
curred during the O2 run or not. To be clear, all but 2 glitches did not happen in O2. This
corresponds as expected with the numerical values of the SNR in Tables 5.2 and 5.3.

For the other detectors, we see that some data-points are situated higher than the de-
tector’s sensitivity curve so we will look at the tabulated SNR values to identify these.
For Livingston (O2), the Crab had 1 glitch and Vela had 10 glitches which exceeded the
threshold SNR. These would have been detectable if they occurred in the O2 run, but
again, those 11 glitches did not occur in during the O2 run.

8The sensitivity curves of Hanford, Livingston and aLIGO at design sensitivity were taken from https:

//dcc.ligo.org/LIGO-G1701570/public, https://dcc.ligo.org/LIGO-G1701571/public and https:

//dcc.ligo.org/LIGO-T1800044/public respectively.

https://dcc.ligo.org/LIGO-G1701570/public
https://dcc.ligo.org/LIGO-G1701570/public
https://dcc.ligo.org/LIGO-G1701571/public
https://dcc.ligo.org/LIGO-T1800044/public
https://dcc.ligo.org/LIGO-T1800044/public
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FIGURE 5.2: The above graph shows modified sensitivity curves of ET in its ‘D’ con-
figuration (purple), aLIGO (green), Livingston in O2 (yellow) and Hanford in O2 (or-
ange). The square root of the root-sum-squared GW amplitude of each transient CW
is plotted as a grey filled circle. The light red crosses are the same but for the glitches
we estimated Q for. If a data-point lies above the modified sensitivity curve, then
that transient CW signal would give a SNR greater than our threshold which is set to
ρthres = 11.4, meaning it would be confidently detectable. The x-axis refers to the GW

frequency which is twice the pulsar’s spin frequency for a NS mountain.

There were only 2 glitches which did occur during the O2 run, MJD 57839 (Crab) and
MJD 57734 (Vela), and both had SNRs smaller than the 11.4 threshold in both the Han-
ford and Livingston detectors. This is consistent with the null findings of Keitel et al.
(2019).

Furthermore, there was a glitch from the Crab (MJD 58687) which did occur during
the O3 observation run. Although the change in the spin-down rate due to the glitch
has not yet been published, using our model and assuming the value of Q ≈ 0.84, we

predict transient CWs from this glitch should not be detectable, as
√
〈ρ2

0〉 = 7.5 < ρthres

for the optimistic case of the O3 detectors having aLIGO’s design sensitivity.

Moving onto aLIGO at design sensitivity, our calculations have shown that 3 Crab
glitches would be detectable if these glitches were to occur when aLIGO is operational
at design sensitivity. For Vela, 17 out of its 20 glitches would be detectable. This is
indeed promising for upcoming transient CW searches. However, in general it seems
like transient CWs from the Crab are unlikely to be detected, except for the very largest
of glitches. Looking into the near future, we should focus on finding transient CWs
from Vela’s glitches, or any other sufficiently rapidly-rotating pulsar which is near, has
a large glitch size

(
∆ν(tg)

ν0

)
, has a large glitch recovery (Q) or ideally some combination

of all three.
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Finally, for 3rd-generation detectors like the ET, we should almost certainly see tran-
sient CWs from both the Crab and Vela if glitch recoveries are even partly explained by
our transient mountain model. If we do not see transient CWs with the next generation
of GW detectors, one could put an upper limit on how much a glitch’s recovery is due
to a transient mountain.
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5.7 Discussion

It is interesting to point out that the total GW energy in our transient mountain model
(Equation (5.18)) depends on ∆νt, but ∆νt can be written either as a product of ∆ν(tg)

andQ or ∆ν̇t and τ, by Equation (5.7). This highlights two different degeneracies within
our model. The first is that the same GW energy, and hence SNR, can be obtained dur-
ing the glitch recovery whether it be a large glitch with a small recovery, or a small
glitch with a large recovery. This means that we should not neglect searching for tran-
sient CWs even if a pulsar has had a small glitch. There could very well be a significant
transient CW signal, given the small glitch recovers by a large enough amount.

Secondly, there is a degeneracy between the transient change in the spin-down rate
and the recovery time scale. Since ε2(tg) ∝ ∆ν̇t by Equation (5.11), the same SNR can be
achieved with either a large transient mountain that decays away on a short time-scale,
or a small transient mountain that decays on a long time-scale. Taken to the extreme,
this statement is how conventional CW searches keep decreasing the upper limit on ε

or h0 for a given pulsar, because not seeing a CW signal for a longer amount of time
means the ellipticity must be smaller.

In previous sections, we briefly mentioned the idea of permanent mountains created
at the moment of the glitch. They can exist from having a negative ∆ν̇p, but with the
exception of a few large glitches of the Crab9, many glitches do not normally show a
non-zero ∆ν̇p. The only place where we needed to use ∆ν̇(tg) instead of ∆ν̇t was in
calculating εapprox(tg) and h0,approx(tg), where use of this approximation is clear from
the subscript. If one had a value for ∆ν̇t, then using that to calculate ε(tg) or h0(tg)

would yield a more accurate result. The same can be said for including the effects of
∆ν̇p in the total GW energy emitted. Permanent mountains would give off conventional
CWs which contribute to a constant GW luminosity.

Link et al. (1992) argued that a negative ∆ν̇p could not be explained with the vortex
creep model10 and concluded that there must be either a time-dependent torque dur-
ing the glitch recovery (e.g. Allen and Horvath, 1997) or the glitch causes a change to
the external torque. They preferred the idea of changing the external torque through
a rearrangement of the magnetic field (Link et al., 1998; Franco et al., 2000), but our
model, if one allows also for the formation of a permanent mountain, provides both
the time-dependent torque from transient mountains and the (permanent) change to
the external torque from permanent mountains.

9It is well-known that large glitches of the Crab exhibit a permanent change to the spin-down rate
(Lyne et al., 1993) but this is seemingly the only pulsar which shows this behaviour (Lyne et al., 2000).
The Crab had large glitches in the years 1975, 1989, 2011 and 2017 (MJD 42447.26, 47767.504, 55875.5 and
58064.555 respectively) with the first 3 showing a permanent change to ν̇ (Lyne et al., 2015), and the last
one too recent to confidently say whether there has been a permanent change to ν̇ (Shaw et al., 2018).

10Alpar and collaborators soon added a ”vortex depletion region” into their model to explain a negative
∆ν̇p (Alpar and Pines, 1993; Alpar et al., 1996).
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In our model, we can also make a prediction for the recovery time-scale by rearranging
Equation (5.7) and using the approximation ∆ν̇t ≈ ∆ν̇(tg) to give

τapprox ≈ −
Q∆ν(tg)

∆ν̇(tg)
= − ∆νt

∆ν̇(tg)
. (5.31)

If we were to include the effect of ∆ν̇p, then the recovery time-scale would be just a
rearrangement of Equation (5.5)

τ = −∆νt

∆ν̇t
= − ∆νt

Q′∆ν̇(tg)
=

1
Q′ τapprox (5.32)

where we follow Weltevrede et al. (2011) in defining

Q′ = ∆ν̇t

∆ν̇(tg)
=

∆ν̇t

∆ν̇t + ∆ν̇p
(5.33)

which is analogous to Q but for the spin-down rate. We can then look at Q′ as ∆ν̇p

varies, with ∆ν̇t held as a negative constant. At ∆ν̇p = 0, we get Q′ = 1 leading to
τ = τapprox as expected. For the case of permanent mountains, ∆ν̇p . 0 so Q′ . 1 and
τ & τapprox. If there happens to be ∆ν̇p & 0, then Q′ & 1 and τ . τapprox.

It is important to note that τapprox is the approximate recovery time-scale of the glitch
recovery which we see in radio. As mentioned in Section 5.3, the GW recovery time-

scale from a glitch, τGW, defined by h0(t) ∝ e−
∆t

τGW , is twice the recovery time-scale
observed in the radio. Hence, for transient CW searches, one should use

τGW =
2
Q′ τapprox = − 2

Q′
ν0

ν̇0
Q
(

∆ν(tg)

ν0

)(
∆ν̇(tg)

ν̇0

)−1

(5.34)

or half of this if you are predicting the radio glitch recovery time-scale. Of course,
if we already know τ from radio observations then τGW would simply be twice the
value of τ. This information should certainly help conduct transient CW searches and
if, in the future, we detect transient CWs frequently, it could be that GW observations
end up aiding radio astronomers in their discoveries instead of the other way around.
Generally, GW searches are performed over some plausible range of damping times
and not just at this single value (e.g. Keitel et al., 2019).

In both disciplines, it would be insightful to use typical values of Q and Q′ when a
pulsar glitches, so one could immediately predict how the GW waveform/radio timing
residuals would appear in data under this model. For instance, we already calculated
the average Q for our two pulsars of interest, QCrab ≈ 0.84 and QVela ≈ 0.17. We can
try to do the same forQ′. Observationally, it appears that ∆ν̇p < 0.2∆ν̇(tg) for the Crab
with the caveat that the glitch is not affected by the previous one (Espinoza et al., 2011;
Lyne et al., 2015). This results in 0.8 < Q′Crab < 1.0 with larger Crab glitches taking
values closer to the lower bound. It is harder to say for Vela as glitches tend to occur
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before the spin-down rate has had a chance to fully recover from the previous glitch
(Lyne et al., 1996).

When we do calculate τGW usingQ′ = 1, we get average values of 〈τGW, Crab〉 ≈ 24 days
and 〈τGW, Vela〉 ≈ 298 days. Keitel et al. (2019) searched for transient CWs of up to 4
months in duration. One can see 〈τGW, Vela〉 is longer than 4 months so if a typical glitch
from Vela occurred, and it was uninterrupted by another glitch, then it would require
a search longer than 4 months to track the first e-fold of its recovery.

In a few cases, there were SNRs greater than our SNR threshold, ρthres. If these glitches
occurred during a GW observation run (which they did not), then we could have had a
detection if only a fraction of the total signal was detected. With an exponential recov-
ery model, most of the GW energy is emitted within the first few e-folds of the signal,
hence, we can reduce how long we need to integrate for. By using Equations (5.22) and
(5.14), we get

Tdetect = −τ ln

(
1− ρ2

thres

〈ρ2
0〉

)
(5.35)

where Tdetect is the time it takes to confidently detect a signal and 〈ρ2
0〉 is given by

Equation (5.23), which is the SNR (squared) you would get if you could capture the
entire transient CW uninterrupted. 〈ρ2

0〉 can be predicted at the glitch if we use an
approximate value of Q. One should note 〈ρ2

0〉 is different for every glitch, pulsar and
GW detector so consequently Tdetect will be different in each case too. If a transient CW
was detected confidently before ∆t = Tdetect was reached, then our model would not be
a viable explanation for that particular transient CW. In practical terms, if another glitch
occurred before ∆t = Tdetect, but we were still able to confidently detect a transient CW
signal from the first glitch, then this model fails to explain that transient CW. A reason
for this to happen is if more GW energy is emitted immediately after the glitch and so
an exponential form for the GW amplitude is not representative of the physics which
cause the GWs.

As a proof of concept on how to use Equation (5.35), we can set Tdetect = 4 months and τ

to the average we would expect from Vela, so τ = 〈τ〉 = 1
2 〈τGW, Vela〉 = 149 days, to find

what a 4 month search would be sensitive to if a typical Vela glitch with τ = 149 days
were to occur. For ρthres = 11.4, the calculation shows that a 4 month search on a typi-

cal Vela glitch would only be detectable if the emitted transient CW had
√
〈ρ2

0〉 ≥ 15.3.

Explicitly, this means a typical Vela glitch with 11.4 <
√
〈ρ2

0〉 < 15.3 would not be de-
tected with a 4 month search, though it would be if we could integrate for longer. Every
glitch is different and so if τ was smaller, then the upper limit of the SNR range we are
not sensitive to would reduce. It is clear that restricting the length of time searched
over limits how many transient CWs we can detect. Therefore, appropriate modelling
of transient CWs becomes important in selecting the upper temporal boundary for GW
searches.
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For the time it takes for a confident detection, the fraction of energy emitted is given by

Edetect

EGW
=

ρ2
thres

〈ρ2
0〉

(5.36)

where Edetect is the accumulated GW energy emitted up to the detection time Tdetect

and EGW is the total GW energy emitted if the glitch fully recovered. For the Vela case
above, a confident detection within a 4 month observation corresponds to detecting at
least 55% of EGW for a Vela glitch. Any remaining kinetic energy lost during the glitch
recovery could be attributed to elsewhere.

For the ellipticities which we have calculated, it might be natural to want to see how
they compare with the spin-down ellipticity of the pulsar. The spin-down ellipticity,
εsd, is the ellipticity a pulsar would have if all of its secular spin-down were due to
conventional CW emission. Mathematically, it is found from equating Equations (5.8)
and (5.16) and solving for ε(t) = εsd, leading to ε2

sd ∝ ν̇0. Also, from Equation (5.11), we
know ε2(tg) ∝ ∆ν̇t. Both the constants of proportionality are the same and so we find
the relation

ε2(tg) =

(
∆ν̇t

ν̇0

)
ε2

sd (5.37)

or

ε2
approx(tg) =

(
∆ν̇(tg)

ν̇0

)
ε2

sd (5.38)

when we use the approximation ∆ν̇t ≈ ∆ν̇(tg). Since
(

∆ν̇(tg)
ν̇0

)
< 1, we can conclude

εapprox(tg) < εsd is always true. Therefore, the ellipticities of our transient mountains
should never exceed the spin-down ellipticity. This is shown visually in Figure 5.3 us-
ing data from the Crab and Vela. Also within Figure 5.3 is a horizontal dashed line
which represents the current upper limit on the spin-down ellipticity of the Crab and
Vela pulsars, taken from Abbott et al. (2020). It can be seen that many transient moun-
tains have ellipticities which exceed this upper limit. However, this does not disprove
our model, as the upper limit is calculated for a conventional CW with a duration on
the order of years, whereas our shorter transient CWs may only have ε > εupper for
only some small fraction of time. There would not be enough signal emitted during
this short time to accumulate enough SNR to be classified as a detection. This point
just highlights the degeneracy between the size of the transient mountain and the time
it takes to decay away.

There is nothing in our model to suggest that we cannot have values of Q > 1. This
is in contrast to the vortex creep model where Link et al. (1992) showed only Q < 1
was possible. Ultimately though,Q < 1 is what is observed for most pulsars including
the Crab and Vela pulsars. Looking at the definition of Q in Equation (5.6), Q > 1
is mathematically equivalent to having ∆νp < 0 given ∆νt > 0. This would appear
as an “over-recovery” and has in fact been seen before in X-ray glitches of magnetars
(Livingstone et al., 2010; Gavriil et al., 2011) and the high-magnetic-field radio pulsar
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FIGURE 5.3: εapprox(tg) at various MJDs for glitches of the Crab (top) and Vela (bot-
tom). The horizontal solid grey line represents the spin-down ellipticity required to
explain the secular spin-down for that given pulsar. For the Crab, εsd = 7.6× 10−4

and for Vela, εsd = 1.8× 10−3. The horizontal dashed grey line represents the latest
upper limit on the secular spin-down ellipticity as given in Abbott et al. (2020). These
upper limits are εupper = 8.6× 10−6 and εupper = 1.2× 10−4 for the Crab and Vela

pulsars respectively.

J1119-6127 (Weltevrede et al., 2011; Antonopoulou et al., 2015). However, it should be
noted that magnetars generally rotate too slowly for our model to apply. Although a
SNR could be calculated, any ellipticities would end up unphysically large. Addition-
ally, J1119-6127 is one of the very few pulsars which have ∆ν̇p > 0. This feature cannot
be explained by our model.

For glitches with Q > 1, the spin frequency after fully recovering is lower than the
pre-glitch frequency. Therefore, if the recovery time-scale of such a glitch were to be
shorter than the time between observations, then this over-recovery would be appear
as an “anti-glitch”. Such an anti-glitch was seen in Archibald et al. (2013), but it was for
a magnetar. One explanation for this was an enhanced electromagnetic outflow at the
glitch, causing an increase on the external braking torque (e.g. Tong, 2014). If such an
anti-glitch were to happen for a rapidly-rotating NS, then our model would associate
the anti-glitch with a period of excess braking torque caused by the emission of GWs
from a transient mountain. From Equation (5.7), an arbitrarily large Q can be achieved
from having a transient mountain which is large enough, and/or lasts long enough.

Finally, our model is limited to glitches which have ∆ν(tg) > 0 and ∆ν̇(tg) < 0. This is
true for most glitches but there are a handful of other glitches which have ∆ν(tg) > 0
and ∆ν̇(tg) > 0. So far, there is nothing in our model to explain such a glitch and would
require more thought.

5.8 Conclusion

To summarise, we have created a simple model whereby pulsar glitch recoveries seen
in radio observations are attributed to the instantaneous formation of a transient moun-
tain at the moment of the glitch. This mountain would create a braking torque on the
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NS spinning it back down, but not exclusively, to near pre-glitch spin frequencies via
the emission of transient CWs. We calculated various quantities like the energy which
could go into GW emission, the values for the SNR in different GW detectors as well
as the ellipticity and GW strain which could be achieved from our model. All these
quantities were expressed in terms of observable parameters from radio astronomy.
We found that the greatest chance of detecting a transient CW required a large glitch
size, a large glitch recovery and that the pulsar needed to be near to us in distance.

In general, we found that O2-era detectors would not have detected the majority of
the Crab’s or Vela’s glitches, irrelevant of whether they actually occurred during the
O2 run. There were however 2 glitches which did occur in O2 but both of these were
not detectable according to our model. This is consistent with the recent findings of
Keitel et al. (2019). Also, our model predicts that the Crab glitch which occurred in
O3 will not be seen when the data from O3 is processed. One disappointing finding
is that unless the Crab has a large glitch, it is unlikely we will see transient CWs from
the Crab at aLIGO’s design sensitivity. Fortunately though, most of Vela’s glitches will
be detectable at aLIGO’s design sensitivity if our model is correct. Finally, with 3rd-
generation detectors such as the ET, our results suggests we will see transient CWs
from the glitches of both the Crab and Vela pulsars with the caveat that our model is
correct, even if partially. If we do not see transient CWs from pulsar glitches at that
point, then one could put an upper limit on how much transient mountains actually
contribute to the glitch recovery.

A consequence of our model is that large transient mountains which decay away quickly
emit the same GW energy as smaller mountains which take longer to decay. This em-
phasises why it is important to search the uncharted territory between burst GWs and
conventional CWs. To this end, we reported an estimate of the recovery time-scale for
which transient CWs emitted via mountains would have. It was found that the GW
recovery time-scale is exactly twice the glitch recovery time-scale found in radio ob-
servations, i.e. τGW = 2τradio. We provided an expression for τGW dependent only on
observables and could be quickly calculated either with or without the assumption of
a permanent mountain being formed at the glitch. This will help guide future transient
CW searches, not least, to give a theoretical explanation of a detection, if we are ever
successful.

Finally, we provided a prediction for the minimum time required to accumulate enough
SNR to warrant a detection, Tdetect. If future searches do find transient CWs within a
time shorter than Tdetect, then this simple model, as it stands, will not be able to explain
the newly-discovered phenomenon.



73

Chapter 6

Other applications of the transient
mountain model

In Chapter 5, we developed the transient mountain model which is a model that can
generate transient CWs and explain glitch recoveries. In this chapter, we explore other
scenarios where we could apply the model. Each extension has its own subsection and
has been presented briefly. There is not enough detail in each subsection to warrant
separate publications though future publications could stem from these ideas.

We begin with the same calculation that we did in Section 5.6 but applied to another
interesting pulsar, J0537-6910. Then, we will look at applying our model to the fast
component of the glitch recovery seen in the 2016 Vela glitch (Ashton et al., 2019). After-
wards, we take the case where every pulsar glitch has a fast component, to see whether
such a glitch recovery would yield detectable transient CWs. Finally, there was a burst
GW candidate detected during O3 known as S200114f. For the case that this burst GW
is in fact the emission from a very short-lived transient mountain, we find expressions
for the glitch size that we would expect. This then gives pulsar astronomers an indi-
cation for what to expect and, with the GW candidate sky localisation, would allow a
more informed search for an electromagnetic counterpart.

6.1 Applying the transient mountain model to J0537-6910

It was only after giving a presentation to the CW group at the Albert Einstein Insti-
tute (Hannover) were we asked if we had applied the transient mountain model to
J0537-6910. It had not crossed our minds to look at J0537-6910 since we primarily fo-
cused on radio pulsars. Nevertheless, the transient mountain model still applies no
matter what wavelength the pulsar is observed in, and so here we apply the model to
the frequently-glitching X-ray pulsar, J0537-6910.
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J0537-6910 is a young, Crab-like pulsar that was discovered in 1998 using the Rossi X-
ray Timing Explorer (RXTE) (Marshall et al., 1998). It has a spin frequency of around
ν ≈ 62 Hz and on average, glitches once every ∼ 100 days. In 13 years of RXTE data,
it was seen to glitch 45 times (Antonopoulou et al., 2018) (or 42 times (Ferdman et al.,
2018)). More recently, the Neutron star Interior Composition Explorer (NICER) mission
found another 8 more glitches in 2.7 years of X-ray data, starting from August 2017 until
April 2020 (Ho et al., 2020a) and another 3 glitches between May 2020 to October 2020
(Abbott et al., 2021b).

The upcoming sections will be arranged as follows. In Section 6.1.1, we apply the same
transient mountain SNR calculation as we did for the Crab and Vela previously but for
J0537-6910. Then, in Section 6.1.2, we explore how the unusual long-term spin-down
behaviour of J0537-6910 could be explained with an extension to our model, using the
idea that each glitch contributes a little towards an ever-growing permanent mountain.
Finally, in Section 6.1.3, we highlight how transient mountains could be responsible for
the short-term braking index behaviour seen immediately after each glitch.

6.1.1 The standard calculation

The standard calculation refers to the question of, “if the glitch recoveries of J0537-6910
are purely due to transient mountains, would the GWs given off be detectable”? To
answer this, we simply put the relevant information into Equation (5.23) to find the
SNR and see whether it surpasses the threshold for detection.

To do this, we need the glitch size and the healing parameter, Q. We will take glitch
sizes of the 45 glitches that occurred during the RXTE mission from Antonopoulou et al.
(2018). Then, the further 11 glitches during the NICER mission we will take from Ho
et al. (2020a) and Abbott et al. (2021b).

We do not however have values ofQ, but this is expected since the rotational evolution
of J0537-6910 is so heavily dominated by glitches. Often, there is not enough time to
observe the glitch recovery before another glitch arrives so there is no accurate mea-
surement of Q. Since this is the case, we will take the optimistic view that every glitch
fully recovers which means we will set Q = 1.

From the ATNF Pulsar Catalogue, the required pulsar parameters are ν0 ≈ 62 Hz,
ν̇0 ≈ −2× 10−10 Hz s−1 and d ≈ 49.7 kpc (Manchester et al., 2005). Putting all this data

into the calculations, we get values for EGW,
√
〈ρ2

0〉, εapprox(tg) and h0,approx(tg). The
results are shown in Table 6.1.

The calculations of the SNR show that aLIGO, even at design sensitivity, is not sensi-
tive enough to detect transient mountains from J0537-6910, if its glitch recoveries are
caused by them. This includes the 3 glitches (MJD 58637, 58807, 58868) which occurred
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TABLE 6.1: Summary of results for J0537-6910. Columns 1 - 3 are taken from
Antonopoulou et al. (2018) (no asterisk), Ho et al. (2020a) (∗) and Abbott et al. (2021b)
(∗∗). Columns 4 - 8 are calculated from Equations (5.20), (5.23) using ζ = 90°, (5.23)
using ζ = 60°, (5.12) and (5.15) respectively. The 3 values for the SNR for aLIGO rep-
resent Hanford (in O2), Livingston (in O2) and aLIGO at design sensitivity from left to
right. A value of Q = 1 was used throughout the calculations. O3This glitch occurred

during the O3 run of aLIGO and aVirgo.

J0537-6910

MJD ∆ν(tg)
ν0

∆ν̇(tg)
ν̇0

EGW [erg]
√
〈ρ2

0〉aLIGO

√
〈ρ2

0〉ET
εapprox(tg) h0,approx(tg)

51278 6.87× 10−7 1× 10−3 1.0× 1044 0.69, 0.82, 2.0 22.1 2.8× 10−6 9.2× 10−28

51562 4.50× 10−7 7× 10−4 6.8× 1043 0.56, 0.67, 1.6 17.9 2.4× 10−6 7.7× 10−28

51711 3.15× 10−7 6× 10−4 4.8× 1043 0.47, 0.56, 1.4 14.9 2.2× 10−6 7.1× 10−28

51826 1.40× 10−7 5× 10−4 2.1× 1043 0.31, 0.37, 0.9 10.0 2.0× 10−6 6.5× 10−28

51881 1.40× 10−7 7× 10−4 2.1× 1043 0.31, 0.37, 0.9 10.0 2.4× 10−6 7.7× 10−28

51960 4.54× 10−7 8× 10−4 6.9× 1043 0.56, 0.67, 1.6 17.9 2.5× 10−6 8.2× 10−28

52152 2.3× 10−9 . . . 3.5× 1041 0.04, 0.05, 0.1 1.3 . . . . . .
52170 1.84× 10−7 8× 10−4 2.8× 1043 0.36, 0.43, 1.0 11.4 2.5× 10−6 8.2× 10−28

52241 4.26× 10−7 2× 10−4 6.5× 1043 0.54, 0.65, 1.6 17.4 1.3× 10−6 4.1× 10−28

52378 1.68× 10−7 4× 10−4 2.5× 1043 0.34, 0.41, 1.0 10.9 1.8× 10−6 5.8× 10−28

52453 2.18× 10−7 4× 10−4 3.3× 1043 0.39, 0.46, 1.1 12.4 1.8× 10−6 5.8× 10−28

52545 4.20× 10−7 5× 10−4 6.4× 1043 0.54, 0.64, 1.6 17.2 2.0× 10−6 6.5× 10−28

52731 1.46× 10−7 6× 10−4 2.2× 1043 0.32, 0.38, 0.9 10.2 2.2× 10−6 7.1× 10−28

52807 2.55× 10−7 6× 10−4 3.9× 1043 0.42, 0.50, 1.2 13.4 2.2× 10−6 7.1× 10−28

52886 2.346× 10−7 4.4× 10−4 3.6× 1043 0.40, 0.48, 1.2 12.9 1.9× 10−6 6.1× 10−28

53014 3.38× 10−7 7× 10−4 5.1× 1043 0.48, 0.58, 1.4 15.5 2.4× 10−6 7.7× 10−28

53125.5 1.7× 10−8 4× 10−4 2.6× 1042 0.11, 0.13, 0.3 3.5 1.8× 10−6 5.8× 10−28

53145 3.911× 10−7 1.9× 10−4 5.9× 1043 0.52, 0.62, 1.5 16.6 1.2× 10−6 4.0× 10−28

53288 3.95× 10−7 7× 10−4 6.0× 1043 0.52, 0.62, 1.5 16.7 2.4× 10−6 7.7× 10−28

53445 2.60× 10−7 9× 10−4 3.9× 1043 0.42, 0.51, 1.2 13.6 2.7× 10−6 8.7× 10−28

53550 3.21× 10−7 7× 10−4 4.9× 1043 0.47, 0.56, 1.4 15.1 2.4× 10−6 7.7× 10−28

53696 4.09× 10−7 7× 10−4 6.2× 1043 0.53, 0.63, 1.5 17.0 2.4× 10−6 7.7× 10−28

53861 2.35× 10−7 8× 10−4 3.6× 1043 0.40, 0.48, 1.2 12.9 2.5× 10−6 8.2× 10−28

53951.3 1.8× 10−8 3× 10−4 2.7× 1042 0.11, 0.13, 0.3 3.6 1.5× 10−6 5.0× 10−28

53999 3.52× 10−7 4× 10−4 5.3× 1043 0.49, 0.59, 1.4 15.8 1.8× 10−6 5.8× 10−28

54094 3.71× 10−7 1× 10−4 5.6× 1043 0.51, 0.60, 1.5 16.2 8.9× 10−7 2.9× 10−28

54243 1× 10−9 . . . 1.5× 1041 0.03, 0.03, 0.1 0.8 . . . . . .
54271 4.88× 10−7 8× 10−4 7.4× 1043 0.58, 0.69, 1.7 18.6 2.5× 10−6 8.2× 10−28

54448 2.39× 10−7 8× 10−4 3.6× 1043 0.41, 0.49, 1.2 13.0 2.5× 10−6 8.2× 10−28

54538 1.14× 10−7 5× 10−4 1.7× 1043 0.28, 0.33, 0.8 9.0 2.0× 10−6 6.5× 10−28

54578 1.47× 10−7 0 2.2× 1043 0.32, 0.38, 0.9 10.2 . . . . . .
54639 1.287× 10−7 4× 10−4 2.0× 1043 0.30, 0.36, 0.9 9.5 1.8× 10−6 5.8× 10−28

54712 1.05× 10−7 5× 10−4 1.6× 1043 0.27, 0.32, 0.8 8.6 2.0× 10−6 6.5× 10−28

54767 3.62× 10−7 6× 10−4 5.5× 1043 0.50, 0.60, 1.4 16.0 2.2× 10−6 7.1× 10−28

54895 3.41× 10−7 5× 10−4 5.2× 1043 0.48, 0.58, 1.4 15.5 2.0× 10−6 6.5× 10−28

55043 2.17× 10−7 8× 10−4 3.3× 1043 0.39, 0.46, 1.1 12.4 2.5× 10−6 8.2× 10−28

55184 2.09× 10−7 1.1× 10−3 3.2× 1043 0.38, 0.45, 1.1 12.2 3.0× 10−6 9.7× 10−28

55280 5.49× 10−7 3× 10−4 8.3× 1043 0.61, 0.74, 1.8 19.7 1.5× 10−6 5.0× 10−28

55451 1.69× 10−7 4× 10−4 2.6× 1043 0.34, 0.41, 1.0 10.9 1.8× 10−6 5.8× 10−28

55519 1.22× 10−7 4× 10−4 1.8× 1043 0.29, 0.35, 0.8 9.3 1.8× 10−6 5.8× 10−28

55552 8× 10−9 −2× 10−3 1.2× 1042 . . . . . . . . . . . .
55587 8.7× 10−8 1× 10−3 1.3× 1043 0.24, 0.29, 0.7 7.9 2.8× 10−6 9.2× 10−28

55615 4.53× 10−7 2× 10−4 6.9× 1043 0.56, 0.67, 1.6 17.9 1.3× 10−6 4.1× 10−28

55786.1 1.4× 10−8 −2× 10−4 2.1× 1042 . . . . . . . . . . . .
55819 3.46× 10−7 9× 10−4 5.2× 1043 0.49, 0.58, 1.4 15.7 2.7× 10−6 8.7× 10−28

58083∗ 2.61× 10−7 7.5× 10−4 3.9× 1043 0.42, 0.51, 1.2 13.6 2.5× 10−6 8.0× 10−28

58152∗ 5.82× 10−7 8.0× 10−4 8.8× 1043 0.63, 0.76, 1.8 20.3 2.5× 10−6 8.3× 10−28

58363∗ 1.26× 10−7 1.2× 10−3 1.9× 1043 0.29, 0.35, 0.9 9.5 3.0× 10−6 9.9× 10−28

58424∗ 4.09× 10−7 1.0× 10−3 6.2× 1043 0.53, 0.63, 1.5 17.0 2.8× 10−6 9.2× 10−28

58566∗ 1.49× 10−7 4.5× 10−4 2.2× 1043 0.32, 0.38, 0.9 10.3 1.9× 10−6 6.2× 10−28

58637∗,O3 4.36× 10−7 4.3× 10−4 6.6× 1043 0.55, 0.66, 1.6 17.6 1.9× 10−6 6.1× 10−28

58807∗,O3 1.22× 10−7 1.1× 10−3 1.8× 1043 0.29, 0.35, 0.8 9.3 3.0× 10−6 9.7× 10−28

58868∗,O3 3.88× 10−7 1.2× 10−3 5.9× 1043 0.52, 0.62, 1.5 16.6 3.1× 10−6 1.0× 10−27

58993∗∗ 6× 10−9 1.5× 10−4 9.8× 1041 0.07, 0.08, 0.2 2.1 1.1× 10−6 3.6× 10−28

59049∗∗ 1.37× 10−7 6.5× 10−4 2.1× 1043 0.31, 0.37, 0.9 9.8 2.3× 10−6 7.4× 10−28

59103∗∗ 5.49× 10−7 1.0× 10−3 8.3× 1043 0.61, 0.73, 1.8 19.7 2.8× 10−6 9.2× 10−28
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in O3. Our model therefore predicts no glitch-induced transient CWs will be found
from J0537-6910 when a GW search is performed on O3 data. In fact, there was a recent
conventional CWs search on J0537-6910 for O3 data and there was no detection re-
ported (Abbott et al., 2021b). Ideally, a more dedicated transient CW search is required
before a fair comparison with our predictions can be made, though the null findings of
the conventional CW search is perhaps suggestive of what would result.

Our calculations also suggest that the ET will be sensitive enough to detect these tran-
sient CWs should they exist. One can see that a little more than a half of the J0537-6910’s
glitches would lead to a detection with ρthres = 11.4. It seems like the main reason for
such low SNRs is because of the distance to J0537-6910. It is almost 25 times as far
compared to the Crab and this increases to over 170 when compared to Vela.

There is a slight improvement to the detector sensitivity due to the higher spin fre-
quency of J0537-6910 when compared to the Crab and Vela, but it is still not enough to
give a significant SNR. However, there is also a negative trade-off because of the faster
rotation – the transient mountain ellipticities are smaller (compared to Crab and Vela)
and as a result, the SNRs are smaller too.

To summarise, there is nothing immediate to report for J0537-6910 concerning a de-
tectable signal. Even at aLIGO’s design sensitivity and with our optimistic assumption
of glitches fully recovering, we would not expect to detect transient CWs from the glitch
recoveries of J0537-6910 using the transient mountain model. The model, however, will
become more relevant for 3rd generation detectors like the ET.

6.1.2 Long-term spin-down behaviour

One other unusual feature of J0537-6910 is that the time derivative of the spin frequency,
ν̇, appears to decrease linearly over long time-scales. In other words, an increase in the
spin-down rate, |ν̇|. This is unusual because pulsars are expected to decrease their spin-
down rate over long times, as they are thought to spin-down most during their early
years shortly after birth.

One can see a graph of the spin-down evolution in Figure 6.1. Antonopoulou et al.
(2018) found this corresponded to ν̈LT = −7.7× 10−22 Hz s−2, where ‘LT’ means “long-
term”. This can be transformed into a braking index, n, by Equation (2.11), where the
sign of n matches the sign of ν̈. When the relevant values were put in, Antonopoulou
et al. (2018) calculated a value of nLT = −1.22. Ho et al. (2020a) found ν̈LT = −8.00×
10−22 Hz s−2 and nLT = −1.25 when NICER data was incorporated into the calculation.

So, a value of nLT = −1.25 means ν̇ becomes more negative with time. In fact, ν̇ be-
comes more negative by 8.00× 10−22 Hz s−1 per second on average over long times. In
Yim and Jones (2020), a negative ν̇ is caused by the presence of a mountain on the NS.
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FIGURE 6.1: A graph of the spin-down rate, ν̇, as a function of time for J0537-6910.
The data points were fitted to glitch-free observation spans. There is a long-term de-
crease to ν̇ which was found to have a ν̈ value of ν̈LT = −7.7× 10−22 Hz s−2 and a
corresponding braking index of nLT = −1.22. Figure taken from Antonopoulou et al.

(2018).

What if the long-term spin-down behaviour of J0537-6910 is caused by an increase in the
size of an ever-growing permanent mountain at every glitch? Running with the idea of tran-
sient mountains being responsible for glitch recoveries, it is not implausible to think
that a transient mountain does not fully decay away and so a “permanent” mountain
remains. Then, whenever another glitch occurs, the permanent mountain gets added
to coherently causing it to grow and therefore causes the spin-down rate to increase.

To model this, we can take Equation (5.11) and apply it to the case of permanent moun-
tains. “Permanent” refers to the mountain existing much longer than the recovery time-
scale of glitches, but here we propose it grows over long times in order to explain the
observed ν̈LT. This then becomes

εp(t) =

√
− 5

32(2π)4
c5

G
1
I

ν̇(t)
ν5

0
(6.1)

where εp(t) is the spin-down ellipticity (permanent mountain) and ν̇(t) is given by
ν̇(t) = ν̇(tepoch) + ν̈LT∆t where ∆t = t− tepoch. Taking the time derivative, we get

ε̇p(t) =

√
− 5

128(2π)4
c5

G
1
I

1
ν5

0

ν̈2(t)
ν̇(t)

. (6.2)

One could then define the growth time-scale for the permanent mountains, τε, as

τε(t) =
εp(t)
ε̇p(t)

=
2ν̇(t)
ν̈(t)

. (6.3)
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When we substitute ν̇(t) ≈ −2× 10−10 Hz s−1 and ν̈(t) = ν̈LT = −8.00× 10−22 Hz s−2,
we get τε ≈ 16000 years. We can compare this to the characteristic age of J0537-6910
which is τc ≈ 5000 years. This tells us that the growth time-scale of the permanent
mountain is a few times the pulsar’s current characteristic age.

Continuing on, we know how large ε̇p(t) is from Equation (6.2) and so we can calcu-
late the increase in size of the permanent mountain required, at each glitch, to explain
observations. This is done by multiplying the growth rate by the time elapsed to give

∆εp(t) =

√
− 5

128(2π)4
c5

G
1
I

ν̈2
LT

ν5
0 ν̇0

∆t. (6.4)

Over 13 years (∆t = 13 years), the increase to the permanent mountain size is ∆εp ≈
7.3× 10−8 so if 45 glitches occurred during that time interval, each glitch must have
added a permanent mountain of size ∆εp ≈ 1.6× 10−9, on average.

We can compare this to two other ellipticities. The first is the spin-down ellipticity and
is computed using Equation (6.1). This is the ellipticity required to explain the spin-
down rate if only mountains were spinning the NS down (so no contribution from
magnetic dipole emission). This gives εsd ≈ 8.9× 10−5. Also, from Table 6.1, we have
the size of the transient mountains that form at each glitch. These transient mountains
have ellipticities that are roughly ∆εt ∼ 2× 10−6. We see that the size of the permanent
mountains formed at each glitch is small compared to the other two measures and so
we can ignore their effects in most scenarios.

In essence, the long term decrease in ν̇ can be explained by a difficult-to-measure per-
manent mountain. Currently, the upper limit implied by a non-detection of CWs from
J0537-6910 is εUL = 3× 10−5 (Abbott et al., 2021b) which is orders of magnitude too
large to resolve the increase to the permanent mountain expected here. In the context
of our model, the spin-down behaviour of J0537-6910 is governed by transient moun-
tains and these increase the size of the permanent mountain at every glitch. This would
explain its glitch recoveries as well as the long term decrease to ν̇.

6.1.3 Short-term braking index behaviour

So far, there has been little attempt to try and explain the short-term behaviour after
glitches in J0537-6910. Most papers have been interested in fitting data to the interglitch
sections of the data (where effects from glitch recoveries are minimal) and, as a result,
there is now evidence to suggest r-mode emission during these interglitch periods (An-
dersson et al., 2018). Fesik and Papa (2020) and Abbott et al. (2021d) focused on this
and conducted CW searches for r-modes during the interglitch periods of J0537-6910.
Unfortunately, both groups did not detect any GWs.
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FIGURE 6.2: A graph of the post-glitch braking indices of J0537-6910 as a function of
time. The dashed dark blue line represents a value of n = 7 and the dotted red line
represents a value of n = 3. The insert shows a zoomed-in section of the graph with

braking indices on a logarithmic scale. Figure taken from Andersson et al. (2018).

Our glitch recovery model has two parts, transient mountains that decay away on short
time-scales (days to months) and permanent mountains that last much longer than the
decay time-scales of transient mountains. We have seen how permanent mountains
might explain the long-term spin-down of J0537-6910, but how about the short-term
behaviour? Perhaps transient mountains play a role, an idea we will now explore.

To allow us to compare with the other papers and make comparisons between different
braking mechanisms, we will focus on the braking index for the remainder of this sec-
tion. Figure 6.2 shows how the braking index of J0537-6910 varies as a function of time
after its glitches. Each glitch provides multiple datapoints depending on how many
observations are made post-glitch (but before the next glitch occurs). We see that at
large times after the glitch, but before the next glitch, the braking index tends towards
n ≈ 7, which was the evidence provided to suggest r-mode emission during interglitch
periods (Andersson et al., 2018). The asymptotic value was found to be n = 6.8± 0.2
when data from Antonopoulou et al. (2018) was used, and n = 7.4± 0.7 for Ferdman
et al. (2018) data, but it was noted that timing noise could have had an impact on these
final values (Andersson et al., 2018). This suggests that n ≈ 5 may not be ruled out,
which is the braking index expected for a non-growing/decaying NS mountain. Fur-
thermore, there was no attempt to explain the behaviour for post-glitch times less than
50 days. We aim to be able to do this with transient mountains.

The idea can be understood quite simply. The braking index essentially tells us how
quickly a NS decelerates so we would expect it to suddenly increase if a transient moun-
tain is formed at a glitch. As the transient mountain decays away, it has a weaker effect
on the deceleration of the NS and so the braking index also decays.
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To see this mathematically, we begin by writing down the general response of the brak-
ing index, ∆n, to a change of ∆ν, ∆ν̇ and/or ∆ν̈ which, right now, do not need to be
small. This can be done by setting ν→ ν0 + ∆ν (and likewise for the other variables) in
Equation (2.11)

n + ∆n =
(ν + ∆ν)(ν̈ + ∆ν̈)

(ν̇ + ∆ν̇)2 (6.5)

where we have dropped the subscript ‘0’ for ease of reading. Then, if we define a = ∆ν
ν ,

b = ∆ν̇
ν̇ and c = ∆ν̈

ν̈ , all of which are time-dependent, then the above can be re-written
as

∆n
n

= (1 + a)(1 + c)(1 + b)−2 − 1 (6.6)

which is still exact and does not require a, b or c to be small. However, we note that one
can move the b in the denominator to the numerator by the use of a Taylor expansion
which further simplifies the equation. To do so, we need to ensure b is small, i.e. ∆ν̇�
ν̇, but we already know this is true for J0537-6910, see Table 6.1. We do not need to do
this for a or c as they are already in the numerator so are not required to be small (even
though a is small). As a and b are small for J0537-6910, the large ∆n(� n) observed
in Figure 6.2 must be attributed to a large c, i.e. ∆ν̈ � ν̈, which in our model means a
large rate of change in the size of the transient mountain, |ε̇|.

Doing the Taylor expansion in b, we find

∆n
n

= (1 + a)(1 + c)(1− 2b + 3b2 + · · · )− 1 (6.7)

or
∆n
n
≈ (1 + a)(1 + c)(1− 2b)− 1 (6.8)

when b� 1.

Recall the phenomenological timing model, Equation (5.2), that the transient mountain
model is based on

∆ν(t) = ∆νp + ∆ν̇p · ∆t + ∆νte−
∆t
τ . (6.9)

From this, one can write down what a, b and c are

a =
∆νp

ν
+

∆ν̇p

ν
∆t +

∆νt

ν
e−

∆t
τ (6.10)

b =
∆ν̇p

ν̇
− ∆νt

ν̇τ
e−

∆t
τ (6.11)

c =
∆νt

ν̈τ2 e−
∆t
τ (6.12)

which can then be substituted into Equation (6.7) to yield the exact ∆n that one would
get from changes in the variables associated with the transient mountain model. In
reality, this is not practical as there are infinite terms, but instead, one could use Equa-
tion (6.8) if b � 1. This means we get a (relatively) simple expression for ∆n for the
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transient mountain model

∆n(t) =
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where we have reinstated the subscript ‘0’ to represent it is the quantity measured im-
mediately before the glitch. This expression for ∆n is governed by 7 parameters, {ν0,
ν̇0, ν̈0, ∆νp, ∆νt, ∆ν̇p, τ}, but ν0, ν̇0 and ν̈0 are known. Moreover, if we use the relations

∆ν(tg) = ∆νt + ∆νp (6.14)

∆ν̇(tg) = ∆ν̇t + ∆ν̇p (6.15)

∆ν̇tτ = −Q∆ν(tg) (6.16)

where Q = ∆νt
∆ν(tg)

, then τ becomes the only degree of freedom left, since ∆ν(tg), ∆ν̇(tg)

and Q can be taken from radio (or X-ray) observations. In GW searches, there is also
a degree of freedom for the time of the glitch, but here we take it as given. The brak-
ing index at a given time, n(t), would therefore be the pre-glitch value, n0, which is
unknown and adds a degree of freedom, plus ∆n(t), so has the general form

n(t) = A(n0, ν0, ν̇0, ν̈0, ∆νp, ∆ν̇p) + B(ν̇0, ν̈0, ∆ν̇p)∆t + C(ν0, ν̇0, ν̈0, ∆νt, τ)e−
∆t
τ (6.17)

where A, B and C are functions that can be fitted for empirically, or, for the transient
mountain model (for small b), would have the values

A(n0, ν0, ν̇0, ν̈0, ∆νp, ∆ν̇p) = n0 +
ν̈0∆νp

ν̇2
0
− 2ν0ν̈0∆ν̇p

ν̇3
0

(6.18)

B(ν̇0, ν̈0, ∆ν̇p) =
ν̈0∆ν̇p

ν̇2
0

(6.19)

C(ν0, ν̇0, ν̈0, ∆νt, τ) =
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ν̈0

ν̇2
0
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ν̇2
0τ2

+
2ν0ν̈0

ν̇3
0τ

)
∆νt . (6.20)

It is clear that there exists an exponential recovery of n(t) within the framework of the
transient mountain model. Looking at Figure 6.2, it does appear that this is indeed
observed for times shorter than ∆t < 50 days. This is a little clearer in the insert where
on a logarithmic scale, it appears like there is a linear relation between the logarithm of
n and time for ∆t < 50 days.

In summary, we have highlighted that the transient mountain model could account
for the qualitative short-term post-glitch behaviour of J0537-6910, with predictions (at
least to leading order) of an exponential recovery to the braking index, having the same
time-scale as the glitch recovery. To get a more accurate representation of how the brak-
ing index changes, one should include higher order terms in b, especially during the
time immediately after the glitch, where higher order terms are required. One could
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FIGURE 6.3: The 2016 Vela glitch shown in terms of the spin frequency. This was
obtained by splitting the time-domain data into 200 s windows then fitting a constant
frequency to the truncated data. The window is then slid along and a constant fre-
quency is fitted to the new truncated data. The constant frequency fitted to each 200 s
window is what is plotted above as a function of time. Therefore, features appear

smeared out in the above graph. Figure taken from Ashton et al. (2019).

also continue the analysis numerically and find the coefficients in Equation (6.17), ei-
ther phenomenologically (where A, B and C are free parameters) or using the transient
mountain model but with higher order terms included.

6.2 Fast recovery of 2016 Vela glitch

6.2.1 Observational information

Recently, Ashton et al. (2019) looked at the rotational evolution of Vela during its most
recent glitch in 2016 (MJD 57734), which also overlapped with O2. What was special
about this glitch was that radio astronomers were observing the source at the moment
it glitched and were able to extract individual pulse data, which had never been done
before (Palfreyman et al., 2018). In the frequency domain, Ashton et al. (2019) found a
fast ∼100 s recovery after the glitch and also a ∼100 s spin-down prior to the glitch. To
emphasize, these time-scales are much shorter than those considered in earlier sections.
Figure 6.3 shows what the 2016 Vela glitch looked like in terms of its spin frequency and
Figure 6.4 shows the same but magnified around the time of the glitch.
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FIGURE 6.4: This figure is a magnified version of Figure 6.3 around the time of the
glitch. The black line and grey area is the raw data and its error bars respectively.
The solid blue and red curves represent two models fitted to the data. Blue represents
a typical glitch where there is a rapid spin-up followed by an exponential recovery
and red is the same but with a constant negative offset in spin frequency prior to the
glitch. The dashed lines represent what that model would look like if the data was not

smeared out with the 200 s window. Figure taken from Ashton et al. (2019).

In Figure 6.4, there are two models fitted to the data. One model represents a typical
glitch where there is a rapid spin-up due to the glitch followed by an exponential re-
covery. This is represented as the blue curve. The other model is the same but with a
constant negative off-set in spin frequency prior to the glitch which is represented by
the red curve. Ashton et al. (2019) found that the model with a negative off-set prior
to the glitch was favoured with a log Bayes factor of 2.8 when compared to 0.38 for the
other model. They therefore reported that there was evidence for a spin-down prior
to the glitch and suggested that this spin-down triggered the glitch, as the critical lag
between the superfluid and normal matter had been reached.

6.2.2 Applying the basic model

In the context of the transient mountain model, the fast glitch recovery is caused by the
instantaneous formation of a transient mountain at the moment of the glitch followed
by the mountain decaying away, all whilst emitting GWs. This is what was covered in
Chapter 5. The calculations there showed how to go from observables to the SNR for
the GWs emitted and other derived quantities like the size of the transient mountain.
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Applying that here, we first read from Figure 6.4 our observables

∆ν(tg) ∼ 3.5× 10−5 Hz

Q ∼ 0.5

τ ∼ 100 s

ν0 ∼ 11.2 Hz

d ∼ 0.28 kpc

→ ∆ν(tg)

ν0
∼ 3.1× 10−6

→ ∆ν̇t ∼ −1.8× 10−7 Hz s−1

where the values of ν0 and d were obtained from Table 5.1 and ∆ν̇t was calculated from
Equation (5.7).

We also require the sensitivity of the GW detector at f = 2ν0 to calculate the SNR.
Unfortunately, the Livingston detector was being tested/commissioned at the time of
the Vela glitch so only the Hanford detector was observing at the time. This means we
need to set N = 1 in Equation (5.23). We can read off the sensitivity from a daily record1

of the sensitivity curves. On 16th December 2016, Hanford had a sensitivity of

√
Sn(2ν0) ≈ 2× 10−22 Hz−

1
2

and Livingston was half as sensitive, i.e.
√

Sn(2ν0) ≈ 4× 10−22 Hz−
1
2 , for when it was

operational on that date. Livingston was not observing at 11:36 UTC when the glitch
occurred (Palfreyman et al., 2018).

When all this data is substituted into Equations (5.23) and (5.11), for Hanford, we get

√
〈ρ2

0〉 = 7.2

ε(tg) = 1.9× 10−1 .

The SNR is below our threshold of 11.4 to be classified as a detection. Also, ε(tg) is
unphysically large making it unlikely that transient mountains are entirely responsible
for the fast ∼100 s post-glitch recovery of the 2016 Vela glitch.

6.2.3 Including the spin-down prior to the glitch

In this section, we divert our attention to the spin-down seen immediately before the
2016 Vela glitch. An interesting extension of the transient mountain model is to suggest
this spin-down is caused by the presence of a NS mountain. This mountain could either

1https://www.gw-openscience.org/detector_status/day/20161212/

https://www.gw-openscience.org/detector_status/day/20161212/
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grow in size until some critical ellipticity which cracks the crust and triggers the glitch,
or, it could be the instantaneous formation of a constant-sized (or growing) mountain
that spins-down the normal component of the NS causing the lag between the normal
and superfluid components to become critical, triggering vortex unpinning (Anderson
and Itoh, 1975). The glitch recovery would then be associated with the mountain de-
caying away, as previously suggested.

Like before, we do not propose a formation mechanism for the mountain, rather, we
only consider the consequences of such a mountain. We look into the energetics of
building a mountain in Chapter 7. Further analysis of ν̈ would be required to distin-
guish if it was a growing mountain or a constant-sized mountain, similar to what was
covered in Sections 6.1.2 and 6.1.3.

This extension of the model implies that there would be GWs emitted at twice the NS’s
spin frequency prior to the glitch, as well as after the glitch. If the crust-cracking idea
is correct, it could also explain the symmetry of the observations since the crust would
crack at the halfway point between it growing and decaying away, at the mountain’s
maximum size. Another symmetry is that the spin-down rate before and after the glitch
appear to be the same magnitude. This would correspond to the mountain surviving
the glitch event before decaying away.

Taking the idea that the growth of the mountain is the same as the decay, the signal
would essentially consist of an exponentially growing signal, until t = tg, followed
by a exponentially decaying signal afterwards. Both growth/decay time-scales would
be similar. Therefore, if we capture this entire signal, the root-sum-squared of the GW
amplitude doubles from previous, i.e. 〈h2

0,rss〉 → 2〈h2
0,rss〉 meaning the SNR improves

by a factor of
√

2. Also, due to the survival of the mountain throughout the glitch, the
ellipticity would be the same as what was calculated in Section 6.2.2. Therefore, we get

√
〈ρ2

0〉 = 10.1

ε(tg) = 1.9× 10−1 .

It appears that using the sensitivity curve of Hanford on the day of the glitch leads to
a SNR that is below our threshold for detection. This suggests a GW search should not
return a detection, according to the transient mountain model, even in the optimistic
case of such large mountains. In the most ideal case where both detectors were operat-
ing, Livingston would have had half the sensitivity of Hanford (on that day) so the SNR
would have been 5.1. Combined in quadrature, the combined sensitivity of Hanford
and Livingston would have been 11.3, which would have still been below the detection
threshold.

It is worth noting that the input data for our model could have been more accurate
which would have led to slightly different answers. It appears like the models (solid
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red and blue lines in Figure 6.4) used in Ashton et al. (2019) do not fit the data (solid
black line) that well. There are two reasons that might explain this.

It could be that the pre-glitch spin-down event could be better modelled with either a
constant negative change in the spin-down rate at t ≈ −100 s or a negatively-growing
exponential. The first suggests the instantaneous formation of a constant-sized moun-
tain at t ≈ −100 s, and the second suggests an exponentially growing mountain which
begins its growth at about the same time.

The second, perhaps more likely reason, is due to the truncation of data into 200 s
segments. A constant-frequency model was fitted to each segment and the value of
the fitted frequency is what is shown in Figures 6.3 and 6.4. To advance in time is the
same as sliding the 200 s window across the data, with a constant-frequency fitted to
each segment. We see that the sharp peaks in the raw data (black line in Figure 6.4) is
separated by less than 200 s, perhaps just over 180 s when judged by eye.

Then, we realise that a glitch model with a discontinuous jump in spin frequency at
the time of the glitch can, at best, have peaks separated by 200 s when smeared out
with a 200 s window (allowing direct comparison with the data). This is essentially a
convolution of the dashed curves in Figure 6.4 with a uniform distribution of width
200 s. This can be confirmed by looking at Figure 6.4 and seeing the peaks and troughs
of the solid red curve and solid blue curve are each separated by 200 s. Therefore, no
matter how accurate the frequency evolution model, it would never be able to resolve
a 180 s feature in the data when convolved with a 200 s window. It is very much the
case of trying to “fit a square peg into a round hole”.

The points made above are natural steps to progress the work done here. If the theo-
retical SNR still ends up being less than 11.4 with more accurate inputs, then greater
certainty can be placed on our conclusion of not being able to detect a signal in the
GW data, according to the transient mountain model. Also, questions have been raised
about the profile of the pre-glitch spin-down and could be another possible avenue to
explore. Evidence to suggest the favouring of one profile over another would create
questions on pre-glitch mechanisms and would offer interesting tests on the extensions
of the transient mountain model mentioned here.

Finally and most obviously, we could conduct a directed GW search for the 2016 Vela
glitch in O2 data. Surprisingly, the parameter-space of the expected signal ( fGW ∼ 22 Hz,
τGW ∼ 400 s) has not been searched across before. The nearest searches in terms of
parameter-space include a transient CW search from Keitel et al. (2019) and an all-sky
search by Abbott et al. (2019b). The shortest GW time-scale Keitel et al. (2019) searched
for was 0.5 days and the all-sky search only went to GW frequencies as low as 24 Hz.
Although we expect there not to be a GW signal, a null result from such a GW search
would place upper limits on the size of the transient mountain before and after the
glitch, much like the spin-down limit for the non-detection of CWs.
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6.3 Fast recovery of glitches from other pulsars

6.3.1 Outlining the idea

Since no other pulsars besides Vela have been observed whilst glitching, it could be
the case that all pulsar glitches have a fast (O(minutes)) recovery. It would simply
be observational bias that has prevented us from seeing this phenomenon previously.
In this section, we explore this idea a little more and assess whether glitches of other
pulsars could be potential GW candidates for the case that they have an unresolved fast
recovery caused by a transient mountain.

Generally, for a given ε(tg) and τ, one can write the SNR as

√
〈ρ2

0〉 =
8(2π)2

5
G
c4

√
N sin2 ζ

Sn(2ν0)

I
d

ν2
0
√

τε(tg) (6.21)

which comes from combining Equations (5.23), (5.11) and (5.7). This clearly shows the
degeneracy between ε(tg) and τ which was detailed earlier in Section 5.7. Interesting

candidates will need to be detectable so require
√
〈ρ2

0〉 > 11.4.

Having such a transient mountain causes the spin frequency of the pulsar to decrease
rapidly, which we will call ∆νcalc, and is assumed to be unresolved. One can calculate
what this decrease is with

∆νcalc

ν0
≡ 32(2π)4

5
G
c5 Iν4

0τε2(tg) (6.22)

which comes from combining Equations (5.11) and (5.7). Say a short-duration GW was
detected from a glitch but a fast glitch recovery was not seen, then, the above equation
tells electromagnetic observers how much of the entire glitch they had missed because
they had not caught the glitch as it happened. This information may be useful for those
working on glitch mechanisms.

6.3.2 Results

We will now calculate the SNR that comes from unresolved fast recoveries caused by a
transient mountain. We initially assume the transient mountain has the same properties
as the one determined for the 2016 Vela glitch, i.e. ε(tg) = 0.19 and τ = 100 s, but each
pulsar will have a different ν0 and d.

To populate our dataset, we first need to find out which pulsars glitch, which can be
found in the JBCA Glitch Catalogue (Espinoza et al., 2011). When counted by J-name,
there are 191 different pulsars that glitch. Then, to get ν0 and d, we look at the ATNF
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TABLE 6.2: These pulsars are potential candidates for emitters of transient CWs from
fast glitch recoveries, under the assumption of ε(tg) = 0.19 and τ = 100 s.

Rank Pulsar ν0 [Hz] d [kpc] SNR
1 J0613-0200 326.6 0.78 105635.3
2 J1824-2452A 327.4 5.50 15055.0
3 J0534+2200 (Crab) 29.9 2.00 275.2
4 J1952+3252 25.3 3.00 115.2
5 J1913+1011 27.8 4.61 98.2
6 J0835-4510 (Vela) 11.2 0.28 77.7
7 J1302-6350 20.9 2.63 74.8
8 J1813-1246 20.8 2.64 73.3
9 J0537-6910 62.0 49.70 65.0
10 J2229+6114 19.4 3.00 51.3
11 J1105-6107 15.8 2.36 33.0
12 J0205+6449 15.2 3.20 21.2
13 J1833-1034 16.2 4.10 20.4
14 J1915+1606 16.9 4.17 18.8
15 J2022+3842 20.6 10.00 18.6
16 J1112-6103 15.4 4.50 15.7
17 J1410-6132 20.0 13.51 12.6
18 J1718-3825 13.4 3.49 12.3
19 J1617-5055 14.4 4.74 11.8

Pulsar Catalogue (Manchester et al., 2005) but this contains only 180 of the 191 glitching
pulsars. Of these 180 pulsars, 2 of them do not have a distance measurement meaning
we would not be able to calculate a SNR for them. In the end, 178 pulsars have the
necessary measurements required for the SNR calculation.

As for the GW detector, we choose to have only one aLIGO detector (so N = 1 and
ζ = 90°) and we will assume it has design sensitivity.

Putting in each pulsar’s spin frequency and distance into Equation (6.21), we find that
19 pulsars would be potential candidates, given the glitch recoveries of these candi-
dates were caused by a transient mountains with properties ε(tg) = 0.19 and τ = 100 s.
The results are shown in Table 6.2.

The two pulsars with the highest SNR are both millisecond pulsars. This is not sur-
prising considering the SNR is proportional to the square of the spin frequency. Both
pulsars have glitched just the once and it will be unlikely that they will glitch again due
to their old age (Cognard and Backer, 2004; McKee et al., 2016).

Although both J0613-0200 and J1824-2452A have similar spin frequencies, their SNR
differ. This highlights the second important factor to consider which is the distance.
Between the two, J0613-0200 is much closer and since the SNR is inversely proportional
to the distance, the closer pulsar gives the higher SNR. Therefore, potential candidates
will be those that spin fast and/or are close, similar to the conventional CW case.
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6.3.3 A more realistic ellipticity

In the previous calculation, we used ε(tg) = 0.19 which is far too large according to
existing research on the maximum mountain size. The generally accepted value is
between ε ∼ 10−8 − 10−5 (Johnson-McDaniel and Owen, 2013; Gittins et al., 2021)
which corresponds to when the crust breaks (Horowitz and Kadau, 2009; Baiko and
Chugunov, 2018). So, we repeat the above analysis with the still optimistic, but more
realistic, value of ε(tg) = 1× 10−5 and τ = 100 s to see what arises.

The result of this calculation is that transient mountains associated with a fast glitch re-
covery on all pulsars are not detectable with aLIGO at design sensitivity, when ε(tg) =

1× 10−5. This is somewhat expected since upper limits from CW searches have shown
that mountains around the same order of magnitude (and even smaller) have not been
detected, even when the signal lasts much longer (e.g. Abbott et al., 2021c).

If we ignore these physical arguments about the allowed maximum size, we can ask the
question of how large must a transient mountain be in order for it to be detected. We
find that, out of all glitching pulsars, J0613-0200 requires the smallest ε(tg) before the
detection threshold is reached (as expected), and corresponds to ε(tg) = 2.05× 10−5.
Next is J1824-2452A, which happens at ε(tg) = 1.44× 10−4. For the Crab and Vela, it is
ε(tg) = 7.87× 10−3 and ε(tg) = 2.79× 10−2 respectively. Note that the value for Vela
calculated here differs from the earlier value of ε(tg) = 0.19. This is because we are
now using aLIGO at design sensitivity instead of during O2.

Excluding millisecond pulsars, transient mountains need to be at least as big as ε(tg) ∼
1× 10−3 to be detected. Unless there is some mechanism that can sustain a mountain
of this size for τ = 100 s, it appears transient mountains cannot explain a fast recovery,
if they are ever observed.

6.4 Finding an electromagnetic counterpart for the S200114f event

During the O3 run of aLIGO and aVirgo the Gravitational-Wave Candidate Event Database
(GraceDB) was created which is a public database of GW candidates. GW candidates
are added automatically along with basic information such as the expected source of
the GW (if a CBC), the pipeline used to detect it, which interferometers detected it, the
false alarm rate, as well as physical properties such as the time of the event and a sky
map showing the areas in the sky the GW most likely originated from.

Of the 80+ entries in GraceDB, only 3 of them are classified as non-CBC GW events.
However, of these 3 events, 2 of them were retracted, leaving just 1 non-CBC event -
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S200114f. It was found using the burst search pipeline, cWB, which searches for un-
modelled GWs (Klimenko et al., 2016). Currently, the raw data is still with the LIGO-
Virgo-KAGRA collaboration (LVK) and so there has not been a published paper that
describes what S200114f might be. What has been concluded recently is that it cannot
be due to a quasi-circular binary BH (The LIGO Scientific Collaboration et al., 2021).
Nevertheless, there has been speculation. Perhaps most well-known and picked up by
the media is the idea that Betelgeuse has gone supernova, but right now, Betelgeuse
still shines brightly in the night sky.

In this section, we propose the burst GW is from a super short-lived transient mountain
and if so, ask what size the glitch must have been to cause it2. This then gives pulsar
astronomers an idea of the sort of glitch size they might be looking for, if S200114f was
triggered by a glitch and its recovery was due to a transient mountain.

6.4.1 Information about S200114f

From the GraceDB webpage3 for S200114f, we find the following relevant information

tstart = 1263002916.225766 s

t0 = 1263002916.239300 s

tend = 1263002916.252885 s

and a false-alarm-rate of 1.226 × 10−9 Hz or 1 false positive event per 25.838 years.
Also provided is the sky map of S200114f which gives an area on the sky where pulsar
astronomers could search for coincident pulsars. tstart is the “time corresponding to the
start of the window for grouping events into this superevent”, t0 is the “best estimate
of time at which the GW event occurred” and tend is the “time corresponding to the end
of the window for grouping events into this superevent”4. We will therefore take the
duration of the GW event to be

τGW = tend − t0 = 0.013585 s (6.23)

so that
τ =

1
2

τGW = 0.0067925 s . (6.24)

The reason we divided the GW time-scale by two is because the transient mountain
model predicts the glitch recovery time-scale will be half of the GW recovery time-scale
(Equations (5.2) and (5.14)).

2This idea was inspired from a discussion with Ben Shaw from the University of Manchester. He was
interested in seeing whether S200114f could be explained by f-mode oscillations (e.g. Ho et al., 2020b), but
here, we use transient mountains instead.

3https://gracedb.ligo.org/superevents/S200114f/
4https://gracedb.ligo.org/documentation/models.html

https://gracedb.ligo.org/superevents/S200114f/
https://gracedb.ligo.org/documentation/models.html
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Then from a GW alert notice5, we find the central GW frequency to be f = 64.69 Hz
meaning

ν0 =
1
2

f = 32.345 Hz (6.25)

where the halving is done because GWs from NS mountains are emitted at twice the
spin frequency. Pulsars with spin frequencies around 32.345 Hz which happen to co-
incide with the GW sky localisation would be suggestive of the transient mountain
model. Other models of short GW emission from pulsar glitches include f -modes os-
cillations (Ho et al., 2020b), but these generally predict kHz GW frequencies which do
not match with the reported observed GW frequency of S200114f.

6.4.2 Applying the transient mountain model to S200114f

To answer whether S200114f was due to a transient mountain, we first note that the
SNR must have been around 10 or greater, otherwise it would have not been detectable
in the first place. We then restate Equation (5.23) but for a network of detectors

〈ρ2
0〉 =

2
5

G
c3

1
SNetwork

n (2ν0)

I
d2Q

(
∆ν(tg)

ν0

)
. (6.26)

We are required to use the network sensitivity because S200114f was detected in Liv-
ingston, Hanford and Virgo, each with a slightly different sensitivity. To combine M
independent detectors, we add together the weighted reciprocals of the GW power sen-
sitivity curves (alternatively, add the amplitude sensitivity curves in fractional quadra-
ture) to give

S(M)
n ( f ) =

(
1

F(λ1)Sn,1( f )
+

1
F(λ2)Sn,2( f )

+ · · ·+ 1
F(λM)Sn,M( f )

)−1

. (6.27)

where F is a function similar to an antenna pattern, which is less than or equal to 1, that
depends on the source’s sky location parameters λi for i = 1, 2, . . . , M (e.g. Jaranowski
et al., 1998). F is equal to 1 when the source is directly above the detector. As a very
crude and optimistic approximation for the network sensitivity, we will look at the
case where F is equal to 1 for each detector (which is physically not possible due to
there being an angle subtended between different detectors from the perspective of the
source). Nonetheless, this provides a simple estimate which can be used to find the
maximum value for the SNR. Explicitly, we take

S(M)
n ( f ) ∼

(
1

Sn,1( f )
+

1
Sn,2( f )

+ · · ·+ 1
Sn,M( f )

)−1

. (6.28)

5https://gcn.gsfc.nasa.gov/notices_l/S200114f.lvc

https://gcn.gsfc.nasa.gov/notices_l/S200114f.lvc


92 Chapter 6. Other applications of the transient mountain model

This can be verified by looking at the case where we have M = N independent GW de-
tectors, all with the same sensitivity. We see the GW power sensitivity improves (value
of Sn decreases) as N increases, or similarly, the GW amplitude sensitivity improves as√

N, leading to an improvement to the SNR by
√

N which is generally well-known.

Looking at the sensitivity curves on the day of the event6, we find

√
Sn,Livingston(64.69 Hz) ≈ 6× 10−24 Hz−

1
2

√
Sn,Hanford(64.69 Hz) ≈ 1× 10−23 Hz−

1
2

√
Sn,Virgo(64.69 Hz) ≈ 1.5× 10−23 Hz−

1
2

so the combined network sensitivity on the day was

√
SNetwork

n (64.69 Hz) = 4.87× 10−24 Hz−
1
2 . (6.29)

Going back to Equation (6.26), we see that there is a degeneracy between the glitch size
and distance, i.e. a nearby pulsar that has a small glitch would give the same SNR as a
far away pulsar that has a large glitch. Therefore, in the optimistic case where the glitch
fully recovers (so Q = 1), we have the condition

1
d

√(
∆ν(tg)

ν0

)
>

√
5
2

c3

G
SNetwork

n (2ν0)
1
I
〈ρ2

0〉 (6.30)

→ 1
d

√(
∆ν(tg)

ν0

)
> 1.51× 10−4 kpc−1 (6.31)

that we must satisfy for the GW signal to be detectable. If we look at the limiting case
of the smallest glitch size currently detectable by telescopes, which is around ∆ν(tg)

ν0
∼

10−11, we find that we must have d < 0.02 kpc, meaning the pulsar must be within
0.02 kpc otherwise it would not be detectable. Given the nearest detected pulsar is at
a distance of 0.09 kpc (Manchester et al., 2005), it makes it highly unlikely that GW
detectors would ever be sensitive enough to detect a GW signal from a glitch of size
∼ 10−11.

What if the glitch was bigger? This would have the effect of increasing the detectable
distance, but there is only so much one could increase the glitch size before the size of
the transient mountain that causes the (full) glitch recovery becomes too large. This is

6https://www.gw-openscience.org/detector_status/day/20200114/

https://www.gw-openscience.org/detector_status/day/20200114/
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highlighted when we combine Equations (5.11) and (5.7) to give

ε(t) =

√
5

32(2π)4
c5

G
1
I

1
ν4

0

1
τ

(
∆ν(t)

ν0

)
e−

∆t
2τ (6.32)

→ ε(tg) =

√
5

32(2π)4
c5

G
1
I

1
ν4

0

1
τ

(
∆ν(tg)

ν0

)
(6.33)

where we have set Q = 1. We know that the maximum allowed size of a moun-
tain is around εmax ∼ 10−5 and for S200114f, the equivalent pulsar spin frequency is
ν0 = 32.345 Hz (Equation (6.25)) and the glitch recovery time-scale is τ = 0.0067925 s
(Equation (6.24)). Therefore, the largest glitch size possible without violating the largest
mountain allowed is

(
∆ν(tg)

ν0

)
<

32(2π)4

5
G
c5 Iν4

0τε2
max (6.34)

→
(

∆ν(tg)

ν0

)
< 2.04× 10−17

( ν0

32.345 Hz

)4 ( τ

0.0067925 s

) ( εmax

10−5

)2
. (6.35)

Clearly, the glitch must be very small and is much smaller than telescope detection
limits. However, if telescope limits were not an issue, then together with the constraint
in Equation (6.31), we see that we are forced to have implausibly small values of d
which are even closer than the 0.02 kpc calculated earlier. Similarly, for more realistic
distances of d > 0.09 kpc, a glitch large enough to give a detectable GW signal would
have a transient mountain too large.

We have shown that the transient mountain model is not a suitable explanation for
S200114f. Given the sensitivities of our current GW detectors and telescopes, the only
situation where the transient mountain model may be more plausible is if the GW
source had a greater ν0 and/or τ so that the transient mountain is not unphysically
large.
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Chapter 7

Energetics of the building
mountains

In Chapter 5, we proposed that transient mountains could explain the glitch recovery
often seen in pulsar glitches. In the model, a transient mountain instantaneously forms
at the time of the glitch, causing a braking torque on the NS which spins it down. In
essence, we looked at angular momentum conservation and the resulting consequences
for GW and electromagnetic observations. We did not however look at whether it could
be energetically possible to form the mountain.

In this chapter, we aim to find out if it is energetically possible to form a mountain
(regardless of whether it is transient or permanent - it does not matter for the argument
here), and if so, explain where this energy comes from. We first go over the Baym
and Pines model created for starquakes (Baym and Pines, 1971) followed by sections
applying the Baym and Pines’ model to fit our purpose.

7.1 The Baym & Pines model

Ruderman (1969) was the first to suggest that pulsar glitches are the result of star-
quakes (see Section 2.2.2). Then, two years later, Baym and Pines (1971) created the
mathematical formalism by considering rotational, elastic and gravitational effects on
a self-gravitating, elastic, incompressible NS. These ideal conditions allowed for ana-
lytic results without having to focus too much on other details.

The formalism was based on perturbing a non-rotating, spherical NS, with perturba-
tions captured by the small parameter

ε20 ≡
Izz − Isph

Isph
(7.1)
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which we know is the oblateness parameter (c.f. Equation (B.6)). Here, the “20” rep-
resents a l = 2, m = 0 spherical harmonic perturbation, which is the deformation
expected for a spinning NS. This is an axisymmetric perturbation. To clarify, the tran-
sient mountains in earlier chapters refer to a l = 2, m = 2 perturbation so we will need
to eventually connect to l = 2, m = 2 perturbations. Izz is the moment of inertia about
the z-axis, which we choose as our axis of rotation, and Isph is the moment of inertia of
the NS if it were spherical.

Using the oblateness parameter, Baym and Pines (1971) wrote down the energy of an
axisymmetric, elastic, oblate NS1

E = Esph +
J2

2Izz
+ A20ε2

20 + B20(ε20 − εref,20)
2 (7.2)

E = Esph +
1
2

Isph(1 + ε20)Ω2 + A20ε2
20 + B20(ε20 − εref,20)

2 (7.3)

where Esph is the energy a spherical NS would possess, J = IzzΩ = Isph(1 + ε20)Ω is
the angular momentum of the NS, A20 is a positive constant that relates to the change
in gravitational potential energy when a spherical NS is perturbed by a l = 2, m = 0
perturbation, B20 is similar but for the elastic energy and εref,20 is called the “reference”
oblateness, at which the NS is unstrained.

From Baym and Pines (1971), for an incompressible NS, A20 was found to be minus one
fifth the value of the self gravitational binding energy, meaning

A20 =
3
25

GM2

R
. (7.4)

Moreover, B20 is defined as

Eelastic ≡ B20(ε20 − εref,20)
2 (7.5)

such that the elastic energy is proportional to the square of oblateness departure from
the unstrained configuration, with the constant of proportionality being B20. Note that
the elastic energy does care about whether ε20 or εref,20 is larger, but rather the relative
difference between the two.

We can introduce the mean stress, σ, which is defined as

σ ≡
∣∣∣∣

1
Vcrust

∂Eelastic

∂ε20

∣∣∣∣ = µ(ε20 − εref,20) (7.6)

1This equation is only accurate to the leading terms in the gravitational potential energy and elastic
energy. The next leading terms would be 4th order terms in ε20, for NSs in equilibrium. Each new 4th

order term would have a new coefficient in front of it, e.g. A(4)
20 and B(4)

20 . This would need to be considered
if we calculate E accurate to 4th order.
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where Vcrust is the volume of the crust and µ is the mean shear modulus of the crust,
which is equal to

µ =
2B20

Vcrust
. (7.7)

If we substitute values of M = 1.4 M� and R = 10 km into Equation (7.4), then A20 ≈
6.3× 1052 erg. Similarly, for µ ∼ 1× 1030 erg cm−3 in the crust (Strohmayer et al., 1991),
and a typical crust thickness of 1 km, the value of B20 as calculated from Equation (7.7)
is B20 ∼ 6× 1047 erg. One can see that B20 � A20 which will be useful later. This is
the statement that the gravitational potential energy changes by a greater amount for a
given change in oblateness, when compared to the changes in the elastic energy.

Going back to the energy, Equation (7.2), one can get from this to the ellipticity of a NS
in equilibrium. In equilibrium, the energy of a system is extremised to any changes
in the oblateness so we partially differentiate Equation (7.2) with respect to ε20, whilst
holding the angular momentum constant, and equate the result to zero. i.e. ∂E

∂ε20

∣∣∣
J
= 0.

Forcing the equilibrium condition, we find that the oblateness of a NS in equilibrium is

ε20 =
IsphΩ2

4(A20 + B20)
+

B20

A20 + B20
εref,20 . (7.8)

Equations (7.3) and (7.8) are the key results from this section, and they will come up
multiple times in the upcoming sections.

7.2 Elastic energy from secular spin-down

So, how do we use Equations (7.3) and (7.8)? In this section, we will use those equa-
tions to tell us how much elastic energy can be stored in the crust; firstly, during the
spin-down between glitches and secondly, when considering the possibility of a “strain
reservoir” which might arise from the early formation of a maximally-deformed crust.
Then in the next section, we will compare these energies to the energy required to build
a mountain, to see whether mountain formation can be energetically sustained.

7.2.1 Pessimistic estimate of elastic energy

The calculation outlined here will comprise of finding out how much elastic energy can
be obtained between glitches, on the assumption that the elastic strain reduces to zero
immediately after a glitch. One might expect this in the starquake model where the
cracking of the crust relieves all elastic strains (and hence energy) in the crust. The loss
of elastic strain causes the NS to become more spherical (from an initially more oblate
state) which reduces the moment of inertia which in turn causes the spin to increase in
order to conserve angular momentum.
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With this assumption of zero strain after a glitch, we end up with a pessimistic estimate
of the elastic energy. The reason for this comes from the fact we have not considered
a potential “strain reservoir” which may have formed during the early life of the NS
when it was spinning much faster. We will cover this optimistic case in more detail in
Section 7.2.2.

For now, we focus only on the interglitch period and for the reasons above, we label the
(unstrained) oblateness immediately after a glitch as εref,20 and as the NS spins-down
during the interglitch period, the oblateness decreases to ε20 which leads to an increase
in stored strain. Clearly, we will have

δε20 ≡ εref,20 − ε20 > 0 (7.9)

where δ represents quantities that are varying across the interglitch period. Then, the
amount of elastic energy available during an interglitch period is given as

δEelastic = B(δε20)
2 (7.10)

where we have used Equation (7.5). We can get δε20 in analytic form by evaluating the
oblateness at the start and end of the interglitch period, εref,20 and ε20. We will define
the rotational frequency at the start of the interglitch period as Ωstart and we know the
NS is not strained at this moment, so using Equation (7.8), we find

εref,20 =
IsphΩ2

start

4A20
(7.11)

where we used B20 = 0 since elasticity does not play a role when there is no strain. The
oblateness at the end of the interglitch period does include elasticity so we need to use
Equation (7.8) to represent this.

Therefore, taking ε20 from εref,20, we find

δε20 =
Isph(Ω2

start −Ω2)

4(A20 + B20)
. (7.12)

Writing Ω = Ωstart + δΩ, where δΩ (< 0) is how much the rotational frequency has
changed by during the interglitch period, we can rewrite the above to give

δε20 = − 1
2(A20 + B20)

IsphΩ2
start

[(
δΩ

Ωstart

)
+

1
2

(
δΩ

Ωstart

)2
]

(7.13)

and when substituted into Equation (7.10) for the elastic energy, we get

δEelastic =
1
4

B20

(A20 + B20)2 I2
sphΩ4

start

[(
δΩ

Ωstart

)2

+

(
δΩ

Ωstart

)3

+
1
4

(
δΩ

Ωstart

)4
]

(7.14)



7.2. Elastic energy from secular spin-down 99

or if δΩ� Ωstart, then

δEelastic ≈
1
4

B20

(A20 + B20)2 I2
sphΩ4

start

(
δΩ

Ωstart

)2

. (7.15)

One can see that when elasticity is weak, i.e. when B20 is small, we obtain smaller
amounts of elastic energy. Additionally, the elastic energy, to leading order, is quadratic
in the amount the NS spins-down by, so a NS that spins-down more stores more elastic
energy.

We can now put in numerical values for the Crab and Vela pulsars. Firstly, we state
the constants, A20 ≈ 6.3 × 1052 erg, B20 ∼ 6 × 1047 erg and Isph = 1 × 1045 g cm2.
Then, for the Crab and Vela, we use their rotational frequencies for Ωstart, which are
Ωstart = 186.6 rad s−1 and Ωstart = 70.4 rad s−1 respectively.

As for δΩ, we look at the evolutionary history of the Crab and Vela. The spin frequency
of the Crab decreased from ν ≈ 30.2 Hz in 1970 to ν ≈ 29.7 Hz in 2015, so a total change
of δν ≈ −0.5 Hz over 45 years, and over this time, it had 24 glitches (Lyne et al., 2015).
This means the average change in angular frequency for a typical interglitch period for
the Crab is δΩ ≈ −0.13 rad s−1 or

(
δΩ

Ωstart

)
≈ −7× 10−4.

As for Vela, its spin frequency decreased from ν ≈ 11.21 Hz in 1968 to ν ≈ 11.19 Hz
in 2005, so a total change of δν ≈ −0.02 Hz over 37 years, consisting of 17 glitches
(Cordes et al., 1988; Espinoza et al., 2021). This means the average change in angu-
lar frequency for a typical interglitch period for Vela is δΩ ≈ −7.4× 10−3 rad s−1 or(

δΩ
Ωstart

)
≈ −1× 10−4.

Using all of this observational data in Equation (7.14) (or Equation (7.15)), one finds that
the typical energy that could be harnessed from the build-up of elastic energy between
glitches is

δEelastic ≈ 2.2× 1034 erg (Crab) (7.16)

δEelastic ≈ 1.0× 1031 erg (Vela) . (7.17)

Recall that this is a pessimistic estimation of the energy available to build mountains.
In the next subsection, we will move onto the optimistic case.

7.2.2 Optimistic estimate of elastic energy

In this section, we will look at a more optimistic estimate of the elastic energy that
might be available to build mountains. The main idea was suggested by Jones (2012)
and goes as follows. NSs are born hot and spinning very quickly. However, they soon
cool down which results in a crust forming (whilst still in an extremely oblate shape).
As the NS crust can withstand a strain of up to umax ∼ 0.1 (Horowitz and Kadau, 2009;
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Baiko and Chugunov, 2018), one might expect the strain in the crust to build up to this
maximal value as the NS first spins-down (or by some other mechanism). This then acts
as a “reservoir” of strain that could be utilised at a later date, given not all the strain is
released during glitches. The fact that the strain reservoir can be depleted means that
this mechanism is not a steady state solution. This is unlike the mechanism covered
in Section 7.2.1 which is self-sufficient and does not require a one-off event needing to
take place, i.e. the rapid spin-down shortly after birth to maximally strain the crust.

To evaluate this, it is often easier to think in terms of the strain, which we will define as

u ≡ εref,20 − ε20 . (7.18)

During the initial spin-down when strain is being built up, εref,20 is the initial oblate-
ness when the crust just forms (so no strain yet) and ε20 refers to the oblateness of the
strained configuration, with ε20 < εref,20. The elastic energy is then given by

Eelastic = Bu2 . (7.19)

As the maximum strain is umax ∼ 0.1, we very quickly see that the maximum elastic
energy is Eelastic, max ∼ 6× 1045 erg.

In the most extreme case, all this stored elastic energy could be used to create a single
transient (or non-transient) mountain, but this would only be able to explain a single
glitch recovery since the strain reservoir would have completely depleted. Instead, we
now look at a more realistic situation where there are multiple glitches.

In the starquake model, a sudden decrease in the oblateness leads to a glitch which
comes from the conservation of angular momentum. However, one normally assumes
the strain leading to the glitch is built up during the spin-down between glitches. The
case that we are considering here is different. There already exists a strain reservoir
and so we propose the NS is unloading itself of its stored strain by having glitches. We
see this clearly from

∆ν

ν
= −∆I

I
= −∆ε20 (7.20)

where the first equality comes from the conservation of angular momentum and the
second equality comes from the definition of ε20, see Equation (7.1).

The change in oblateness, ∆ε20, can be achieved by saying that glitches are triggered
by a decrease in reference oblateness, which in turn causes the actual oblateness to
decrease too. This relation between the perturbed oblateness parameters can be seen
by perturbing Equation (7.8)

∆ε20 =
B

A + B
∆εref,20 (7.21)
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which assumes only a change in reference oblateness can cause a change to ε20. Then,
it is simple to see

∆ε20 − ∆εref,20 = − A
A + B

∆εref,20 . (7.22)

The left hand side is equal to −∆u so we find

∆u =
A

A + B
∆εref,20 (7.23)

or in words, the change in strain is approximately equal to the change in reference
oblateness. Substituting Equations (7.21) and (7.23) into Equation (7.20), one finds

∆ν

ν
= − B

A
∆u (7.24)

or similarly

∆u = −A
B

(
∆ν

ν

)
(7.25)

which says how much strain is released for a given glitch size. One can look at Equa-
tion (7.24) and ask the question of how large could the largest glitch be, if all the strain
from a maximally strained crust is released all at once. We set ∆u = −umax ∼ −0.1 to
find that the largest glitch that could be explained with a maximal strain reservoir is
∆ν
ν ∼ 1× 10−6 which happens to be the typical size of a Vela glitch. Therefore, from

this very simple argument, we have shown that although one of Vela’s glitches could
be explained by the release of natal strain, it cannot be the full picture as we would not
be able to get consecutive glitches.

It is slightly different for the Crab which typically has smaller glitch sizes. For a typical
glitch size of ∆ν

ν ∼ 1× 10−8, the strain released is ∆u ∼ −1× 10−3 which suggests that
this mechanism could power around 100 glitches before the strain reservoir is fully
depleted. This suggests this mechanism is still plausible for the Crab considering only
∼ 30 Crab glitches have been observed so far.

We initially set out to find how much energy could be available for building mountains
from a strain reservoir and now we have everything to determine this. We have just
seen that a glitch could be caused by a change in reference oblateness which in turn
changes the actual oblateness, and this results in a change in strain. If we assume this
change in strain is small compared to the strain already in the crust (∆u� u), then we
only need to consider the linear terms in the perturbed elastic energy

∆Eelastic = 2Bu∆u (7.26)

which comes from perturbing Equation (7.19). For the Crab, we saw ∆u ∼ −1× 10−3

and if we take the optimistic case of the current strain being equal to the breaking
strain (u ∼ 0.1), then the elastic energy that would be liberated and hence available for



102 Chapter 7. Energetics of the building mountains

building mountains is

|∆Eelastic| = 1.2× 1044 erg (Crab) . (7.27)

We saw earlier that Vela requires the maximum possible strain to be released in order
to explain a typical glitch, so the most energy available for building a mountain for Vela
is Eelastic, max ∼ 6× 1045 erg.

7.3 Energy to build a mountain on a non-rotating neutron star

In the last section, we found pessimistic and optimistic estimates of the energy that
could become available when a glitch occurs. The question we are trying to answer
now is how much energy is required to build a mountain so that we can compare to
what is available. It is important to stress that a mountain is represented by an l = 2,
m = 2 deformation, which is non-axisymmetric. We therefore cannot use the oblateness
parameter. Instead, we use the equatorial ellipticity which is defined as

ε22 ≡
Ixx − Iyy

Izz
(7.28)

where Ixx, Iyy and Izz are the moment of inertias about the x, y and z axes respectively.
Like in many cases, the z-axis is the axis of rotation. In principle, the form of the NS’s
energy would have a similar form to the l = 2, m = 0 case (Equation (7.3)). This is
because the energy of any physical system in equilibrium is situated around a minima,
meaning the first non-zero contributions from perturbations only comes in at second
order. Therefore, the energy of a NS with a mountain has the following form

E = Esph +
1
2

IzzΩ2 + A22ε2
22 + B22(ε22 − εref,22)

2 . (7.29)

Note that the positive constants A22 and B22, in general, are different to the l = 2, m = 0
case. Like before, mountains in equilibrium are extremised with respect to changes to
the ellipticity whilst holding the angular momentum constant, so like in the l = 2,
m = 0 case, we have

ε22 =
Ω2

4(A22 + B22)

∂Izz

∂ε22
+

B22

A22 + B22
εref,22 . (7.30)
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For our rough estimate, we will only look at the energy of building a mountain on a
non-rotating NS. This means the energy and ellipticity can be written as

E = Esph + A22ε2
22 + B22(ε22 − εref,22)

2 (7.31)

ε22 =
B22

A22 + B22
εref,22 → εref,22 =

A22 + B22

B22
ε22 . (7.32)

When εref,22 is substituted into Equation (7.31), we find that the change in energy due
to a mountain on a non-rotating NS, ∆Emountain = E− Esph, is equal to

∆Emountain = A22

(
1 +

A22

B22

)
ε2

22 ≈
A2

22
B22

ε2
22 (7.33)

for a mountain of ellipticity ε22. We have assumed B22 � A22 for the approximation
and it is only an assumption since the exact forms of A22 and B22 have not been found.
As a first guess, we will assume the values of A22 and B22 are equal to their l = 2, m = 0
counterparts, so that A22 ≈ 6.3× 1052 erg and B22 ∼ 6× 1047 erg. The calculation of
these coefficients will be the study of future work.

What is left to know is the size of the mountain. As we are applying these calculations
to see whether the transient mountains in Section 5 can exist, it is instructive to take
the ellipticities from there. For the Crab, the smallest and largest transient mountains
were ε22 = 7.8× 10−6 and ε22 = 6.5× 10−5, and for Vela, they were ε22 = 2× 10−5 and
ε22 = 1.4× 10−3. Therefore, the energies required to build these mountains are

4.0× 1047 erg < ∆Emountain < 2.8× 1049 erg (Crab) (7.34)

2.6× 1048 erg < ∆Emountain < 1.3× 1052 erg (Vela) . (7.35)

When comparing to our optimistic estimates of the amount of energy available, see Sec-
tion 7.2.2, it is clear that even the smallest of transient mountains cannot be accounted
for by elasticity alone. According to Equation (7.33), the largest mountains that can
be formed from the elastic energy released during a glitch, for the Crab and Vela, are
εmax,22 ≈ 1.3× 10−7 and εmax,22 ≈ 1.0× 10−6 respectively.

Therefore, we have shown, through a greatly simplified calculation, that it is unlikely
mountains of the size found in Section 5 can be explained by elasticity alone. There are
many ways to improve this calculation, but perhaps the most important is accounting
for the superfluid found within NSs. It has been suggested that a pinned superfluid,
on which the Magnus force acts, could potentially strain the crust more leading to an
extra source of strain (Jones, 2010). This would allow for larger mountains to be created
for the same maximum elastic strain reservoir considered here. Also, another improve-
ment could be to find what A22 and B22 are analytically, instead of assuming they take
the values of A20 and B20. The inclusion of rotation may play in important part too,
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since rotational kinetic energy is the next most important energy, behind gravitational
potential energy and ahead of elasticity (Keer and Jones, 2015).



105

Chapter 8

Gravitational waves from f-mode
oscillations

8.1 Introduction

From this point onwards, we will be discussing GWs from NS oscillations. Specifically,
we aim to model pulsar timing noise as due to NS oscillations, an idea which thus far
has not been explored to the best of our knowledge. Due to the time-varying mass
quadrupole one could get from NS oscillations, one expects GWs to be emitted and so
this model connects GWs and electromagnetic observations, making it a part of multi-
messenger astronomy.

The field of NS oscillations is vast, complex and is rich with physics. Ultimately, per-
turbing a NS or causing it to oscillate allows us to find out more about its interior and
its composition, which is something we cannot achieve from electromagnetic obser-
vations alone. It is because of this complexity that research on this subject often has
simplifications, which at times may seem absurd and illogical, but they do eventually
get improved on (e.g. Comins, 1979).

Therefore, as a starting point for this novel timing noise model, it is natural to work
with the simplest case of a non-rotating, uniformly-dense, incompressible NS which
is treated in Newtonian gravity. This allows us to solve problems analytically. Once a
proof of concept has been established, then further work could be done to remove these
assumptions and extend to GR.

In making these assumptions, only one type of oscillation mode can be excited and
they are known as the f-modes or fundamental modes. These are “bulk” oscillations to
the NS where the entire shape, including the interior, oscillate at the f-mode frequency.
In terms of the radial overtone number, n, the fundamental mode of any oscillating
system, has n = 0. This means fluid elements along the same radial line from the
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origin move in phase with each other. When there are overtones, i.e. n ≥ 1, we get
p-modes (pressure modes) and g-modes (gravity modes). Respectively, the restorative
force in each case comes from pressure gradients and gravitational potential gradients
(buoyancy). These two types of oscillation modes arise when the incompressibility as-
sumption is relaxed. Oscillation modes are also characterised by their degree, l, which
captures how many nodal lines exist on the surface of the NS. These nodal lines are
lines where no fluid motion occurs. Oscillation modes also have an order, m, which
is the number of longitudinal nodal lines. Therefore, the number of latitudinal nodal
lines is given by l − |m|.

Finally, a real NS rotates so there is a Coriolis force in the reference frame that rotates
with the NS, which is called the “body frame” or “rotating frame”. This Coriolis force is
the restorative force driving r-modes (Rossby modes). r-modes are particularly interest-
ing for GW astronomers because the emission of GWs from these modes could cause an
instability, the CFS instability, named after its discoverers (Chandrasekhar, 1970; Fried-
man and Schutz, 1978a,b). The instability occurs whenever the rotation rate of the NS
exceeds the pattern speed of the oscillation mode (which propagates in the direction
opposite to rotation). This causes the mode amplitude to grow in a runaway reaction
leading to even more GWs being emitted (Andersson, 1998). Although r-modes are
fascinating, we will not discuss them any further as we restrict ourselves to working
with non-rotating NSs for simplicity.

Our ultimate aim is to build the foundations of a timing noise model. As discussed in
Section 2.3.3, there may be a link between timing noise and microglitches so this will be
the main idea that we will build on in the rest of this thesis. One might ask what causes
microglitches and instead of the usual glitch models of starquakes or vortex unpinning,
we propose that microglitches are caused by the excitation and decay of f-modes, the
properties of which are carefully derived in this chapter. (Further details of the model
can be found in the introduction of Chapter 9.)

After the careful treatment of f-modes, we move to Chapter 9 where we utilise the
findings of Chapter 8 to provide an explanation for the unexplained glitch candidates
(GCs) and anti-glitch candidates (AGCs) reported in Espinoza et al. (2014, 2021). There
appears to be some symmetry between GCs and AGCs, which may manifest itself as
equal but opposite f-modes being excited, e.g. for l = 2, the m = 2 and m = −2 f-
modes1. These modes have the effect of spinning-up and spinning-down the NS by
a small amount since the GWs emitted from them carry away negative and positive
angular momentum respectively.

The final part of the model would be to explain how these frequent microglitches, per-
haps unresolvable (unlike the GCs and AGCs), may have their effects accumulate to

1The convention we will use is m = 2 is the retrograde mode and m = −2 is the prograde mode, i.e. the
oscillations have a form ei(mφ+ωt).
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give long-term variations to the rotation rate, i.e. timing noise. The mechanism has not
yet been fully developed, but as we will see, there is already a lot of interesting physics
surrounding the principle ideas of this model.

In this chapter, we outline all the key details of the f-modes used in our model and in
particular, how they damp due to the emission of GWs. We begin by solving the fluid
equations for the background equilibrium configuration, followed by a calculation of
eigenfunctions (ξ) and eigenvalues (ω2) of the f-modes allowed on our NS. Once we
have the eigenfunctions and eigenvalues, we will be able to calculate the associated
mode energies and angular momenta, using second order perturbation theory (Fried-
man and Schutz, 1978a,b). What then follows is a calculation of the rate of change of
these quantities which forces us to conclude the existence of a “GW back-reaction”. The
latter half of this chapter is also detailed in our second paper (Yim and Jones, 2022).

8.2 Solving the fluid equations for the background solution

To find out more about NS oscillations, we first need to understand the background
solution, i.e. the static solution to the fluid equations, on top of which perturbations
are applied to. As mentioned in Section 8.1, we are initially looking at perturbations
applied to a non-rotating, uniformly-dense, incompressible, fluid NS. This means the
background NS is spherical so we will be specialising to a spherical coordinate system
(r, θ, φ). There will also be no time dependence for the background solution, since by
construction, it is static. Due to spherical symmetry, all background variables will be
functions of radius r only.

A uniformly-dense NS with mass M and radius R has a density profile

ρ(r) = ρ̄(1− H(r− R)) (8.1)

where ρ̄ = 3M
4πR3 is the average mass density and H(x) is the Heaviside step function

which has properties

H(x) =





0 for x < 0
1
2 for x = 0

1 for x > 0 .

(8.2)

Also, by construction, we have P(r; ρ) 6= 0 for r < R and P(r; ρ) = 0 otherwise. Due to
there being no time dependence in the system, Euler’s equation (Equation (4.2)) reduces
to

0 = −∇P− ρ∇Φ (8.3)
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and Poisson’s equation for gravity (Equation (4.4)) remains the same

∇2Φ = 4πGρ . (8.4)

Since there is a discontinuous jump in the density at r = R, it is best if we find solutions
for inside the star (r < R) and outside the star (r > R) and then match the solutions at
the boundary using boundary conditions. Inside the interior of the star, we have

0 = −∇Pint − ρ̄∇Φint (8.5)

∇2Φint = 4πGρ̄ (8.6)

and on the exterior, we have
∇2Φext = 0 . (8.7)

We can solve for Φint by performing a volume integral on Equation (8.6) over a Gaus-
sian sphere of volume V(r). Then, using the divergence theorem we get

∫

V(r)
∇ ·∇ΦintdV =

∫

∂V(r)
∇Φint · dS = 4πGρ̄

∫

V(r)
dV

→ dΦint

dr
(4πr2) = 4πGρ̄

(
4
3

πr3
)
+ C1

→ dΦint

dr
=

4
3

πGρ̄r +
C1

4πr2 (8.8)

where C1 is a constant of integration. We demand finite solutions at the origin so the
constant of integration must be C1 = 0 meaning

dΦint

dr
=

4
3

πGρ̄r → Φint(r) =
2
3

πGρ̄r2 + C2 (8.9)

with C2 being another constant of integration. Solving Laplace’s equation for the exter-
nal gravitational potential in spherical coordinates (Equation (8.7)), we get the familiar
result

Φext(r) = −GM
r

= −4πGρ̄R3

3r
. (8.10)

We have the boundary condition that Φint(R) = Φext(R) since the gravitational poten-
tial must be continuous across the boundary. If it were not continuous, there would be
a discontinuous jump in the gravitational potential meaning an infinite gradient corre-
sponding to an infinite gravitational force at the boundary which is unphysical. Using
this boundary condition, we find C2 = −2πGρ̄R2 meaning the background gravita-
tional potential is

Φ(r) =





2
3 πGρ̄(r2 − 3R2) for r ≤ R

− 4πGρ̄R3

3r for r > R .
(8.11)
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We can use the interior gravitational potential in Equation (8.5) to get

dPint

dr
= −4

3
πGρ̄2r

→ Pint(r) = −2
3

πGρ̄2r2 + C3 . (8.12)

By using Pint(R) = 0, we find C3 = 2
3 πGρ̄2R2 meaning the background pressure solu-

tion is

P(r) =





2
3 πGρ̄2(R2 − r2) for r ≤ R

0 for r > R .
(8.13)

8.3 Kelvin modes

Now that we have the background solution, we can see what happens when we perturb
the NS. We want to displace all fluid elements by the displacement vector, ξ(r, θ, φ, t),
which causes changes to the pressure, gravitational potential and, when using Eulerian
perturbations (see Section 4.2), the mass density too.

For the assumptions of no rotation, uniform density and incompressibility, the eigen-
functions/displacement vectors that solve the perturbed fluid equations are known as
the Kelvin modes. Thompson, who is better known as Lord Kelvin, was the first to
derive these results using fairly archaic notation in 1863 (§58 in Thomson (1863)). In
this section, we will re-derive the eigenfunctions and eigenvalues of the Kelvin modes
but using more modern notation. Then, in the next section, we will use these eigen-
functions to determine the mode energies and angular momenta. As it will become
important later, we will make clear here that the entirety of this section is accurate to
first order in ξ.

We begin by defining the associated velocities caused by the displacement vector ξ

over some time t. The partial time derivative of the displacement vector is defined as
the Eulerian change in the velocity

δv ≡ ∂ξ

∂t
= ξ̇ (8.14)

and the total time derivative of the displacement vector is defined as the Lagrangian
change in the velocity

∆v ≡ dξ

dt
= ξ̇ + (v ·∇)ξ (8.15)

where we have used Equations (4.3) and (8.14) in the final equality. Since our back-
ground NS is static, we have v = 0 which means we get

∆v = δv = ξ̇ . (8.16)
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The NS is also modelled as incompressible meaning the total Lagrangian volume re-
mains the same at all times when we perturb it (to first order in ξ). In terms of our
displacement vector, incompressibility is defined as ∇ · ξ ≡ 0. Since the Lagrangian
volume remains the same, as does the total mass of the NS, we deduce the Lagrangian
change to the mass density must zero everywhere (and at all times) which means

∆ρ = 0 . (8.17)

Temporarily dropping the time dependence, we use Equation (4.9) to relate Lagrangian
perturbations to Eulerian ones, and so Equation (8.17) becomes

δρ = −ξ(r, θ, φ) ·∇ρ(r) (8.18)

where ρ(r) is the background mass density (Equation (8.1)). Since the background
solution is only dependent on the radius from the origin, we only need to consider
the radial part of ∇ρ(r)

∇r ρ(r) ≡ dρ

dr
= −ρ̄

d
dr

(H(r− R)) . (8.19)

The Heaviside step function has another defining property which is dH(x)
dx = δ(x) where

δ(x) is Dirac’s delta function. Therefore, we get

∇r ρ(r) = −ρ̄δ(r− R) . (8.20)

Since ∇ρ(r) is purely radial, the scalar product in Equation (8.18) only produces a non-
zero value when the radial component of ξ(r, θ, φ), which we denote with ξr(r, θ, φ),
takes part in the calculation. As a result, the Eulerian change to the mass density is

δρ(r, θ, φ) = ρ̄δ(r− R)ξr(r, θ, φ) (8.21)

which is true for all times. We can see that there is discontinuous behaviour at the sur-
face of the NS so like in the last section, we will treat the interior and exterior separately
to the boundary and use boundary conditions to fix any unknowns.

We now make a choice and look at the Eulerian perturbations of the NS’s variables.
We could very well use Lagrangian perturbations, but the results do not change. It is
necessary to put in the time-dependence at this point. The perturbed variables then
become

vpert(r, θ, φ, t) = δv(r, θ, φ, t) = ξ̇(r, θ, φ, t) (8.22)

ρpert(r, θ, φ, t) = ρ(r) + δρ(r, θ, φ, t) (8.23)

Ppert(r, θ, φ, t) = P(r) + δP(r, θ, φ, t) (8.24)

Φpert(r, θ, φ, t) = Φ(r) + δΦ(r, θ, φ, t) . (8.25)
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We can substitute these perturbed quantities into the Euler equation (Equation (4.2)) to
get

[ρ(r) + δρ(r, θ, φ, t)]
∂2ξ(r, θ, φ, t)

∂t2 =−∇[P(r) + δP(r, θ, φ, t)] (8.26)

− [ρ(r) + δρ(r, θ, φ, t)]∇[Φ(r) + δΦ(r, θ, φ, t)]

and if we drop all second order terms in the perturbations (e.g. δρ∇δΦ would be
second order), we find

ρ(r)
∂2ξ(r, θ, φ, t)

∂t2 = −∇P(r) −∇δP(r, θ, φ, t) −ρ(r)∇Φ(r)

− ρ(r)∇δΦ(r, θ, φ, t)− δρ(r, θ, φ, t)∇Φ(r) . (8.27)

The terms in the dashed boxes collect to form the equation for the background solution
(Equation (8.3)) so we can set the sum of these terms equal to zero. What remains is

ρ(r)
∂2ξ(r, θ, φ, t)

∂t2 = −∇δP(r, θ, φ, t)− ρ(r)∇δΦ(r, θ, φ, t)− δρ(r, θ, φ, t)∇Φ(r) .
(8.28)

However, we saw in Equation (8.21) that δρ(r, θ, φ, t) is discontinuous at the surface of
the NS and so we will only look at solutions inside the NS (r < R) and deal with the
surface later. Equation (8.28) then becomes

ρ̄
∂2ξ(r, θ, φ, t)

∂t2 = −∇δPint(r, θ, φ, t)− ρ̄∇δΦint(r, θ, φ, t) (8.29)

for r < R. We can perturb Poisson’s equation (Equation (4.4)) to find

∇2δΦ(r, θ, φ, t) = 4πGδρ(r, θ, φ, t) . (8.30)

Again, if we are only concerning ourselves with the inside of the NS, Equation (8.30)
becomes

∇2δΦint(r, θ, φ, t) = 0 (8.31)

for r < R. Equations (8.29) and (8.31) are the governing fluid equations of the Eule-
rian perturbations inside the NS. To solve them, we first take the divergence of Equa-
tion (8.29) to get

ρ̄
∂2

∂t2 (∇ · ξ(r, θ, φ, t)) = −∇2δPint(r, θ, φ, t)− ρ̄∇2δΦint(r, θ, φ, t) (8.32)

and because our NS is incompressible (∇ · ξ = 0) and because of Equation (8.31), we
find

∇2δPint(r, θ, φ, t) = 0 . (8.33)

Equations (8.31) and (8.33) are Laplace equations for δΦint(r, θ, φ, t) and δPint(r, θ, φ, t)
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respectively. From Equations (8.30) and (8.21), we also know the external perturbed
gravitational potential δΦext(r, θ, φ, t) must follow Laplace’s equation. All three quan-
tities will therefore have the same general solution at a fixed time which in spherical
coordinates is

δQ(r, θ, φ) =
∞

∑
l=0

l

∑
m=−l

(
A′lmrl + B′lmr−(l+1)

)
Ylm(θ, φ) (8.34)

for a general variable, Q. A′lm and B′lm are unknown constants to be fixed by using
boundary conditions and Ylm(θ, φ) are spherical harmonic functions which have a de-
gree, l, and an order, m. For a given l, there are 2l + 1 values of m.

Then, due to the requirement of regular (finite) solutions at r = 0 for δΦint(r, θ, φ, t) and
δPint(r, θ, φ, t), and regular solutions at r → ∞ for δΦext(r, θ, φ, t), we get the solutions

δPint(r, θ, φ) = AlmrlYlm(θ, φ) (8.35)

δΦint(r, θ, φ) = BlmrlYlm(θ, φ) (8.36)

δΦext(r, θ, φ) = Clmr−(l+1)Ylm(θ, φ) (8.37)

at any point in time. Alm, Blm and Clm are unknown constants. We have dropped the
summation symbols but the indices here are not the same as tensor index notation used
in Section 3.1, i.e. indices do not contract here. By construction, there is no matter at
r > R. This means there is no pressure there and since changes in the mass density are
only observed inside the NS or on the surface, δPext = 0.

Let us quickly review what is going to happen. We have three unknowns and we will
use two boundary conditions to express Blm and Clm in terms of Alm. Once we do that,
we will express δPint(r, θ, φ, t), δΦint(r, θ, φ, t) and δΦext(r, θ, φ, t) in terms of Alm which
we will use in the perturbed Euler equation (Equation (8.29)) to find ξ(r, θ, φ, t) in terms
of Alm. Once we have ξ(r, θ, φ, t) (the eigenfunctions), we eliminate Alm to find ω2

lm (the
eigenvalues).

The first boundary condition is

δΦint(R, θ, φ) = δΦext(R, θ, φ) (8.38)

which keeps the gravitational potential continuous at the boundary after the perturba-
tion has taken place. One can very quickly see from Equations (8.36) and (8.37) that this
results in

Clm = BlmR2l+1 . (8.39)

Next, the Lagrangian change to the pressure is also zero at the surface (this is what
defines the surface) which is the second boundary condition

∆P(R, θ, φ) = 0 . (8.40)
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This then leads to an equation similar in form to Equation (8.18)

δP(R, θ, φ) = −ξ(R, θ, φ) ·∇P(R) (8.41)

by Equation (4.9). P(R) is the background pressure (Equation (8.13)) evaluated at r = R
so doing the calculation and using Equation (8.35) for δP(R, θ, φ), we get

AlmRlYlm(θ, φ) =
4
3

πGρ̄2Rξr(R, θ, φ) . (8.42)

We have not yet solved Poisson’s equation at the boundary (Equation (8.30)), so we will
do so now. Equation (8.30) becomes

∇2δΦ(r, θ, φ) = 4πGρ̄δ(r− R)ξr(r, θ, φ) (8.43)

when we use Equation (8.21) for δρ(r, θ, φ). This equation gives boundary information
when we do a volume integral over a Gaussian pillbox positioned across the NS surface
such that one end of the pillbox is just within the NS’s surface, and the other end is just
outside of it. In the limit of the ends of the pillbox becoming infinitely close, there
is no contribution from the sides of the pillbox and so we pick out only the radial
components from the volume integral. This then gives the result

lim
ε→0

[
∂Φext(R + ε, θ, φ)

∂r
− ∂Φint(R− ε, θ, φ)

∂r

]
= 4πGρ̄ξr(R, θ, φ) (8.44)

which in the absolute limit, using Equations (8.36) and (8.37), we get

− (l + 1)ClmR−(l+2)Ylm(θ, φ)− lBlmRl−1Ylm(θ, φ) = 4πGρ̄ξr(R, θ, φ) . (8.45)

From Equation (8.39), we can relate Clm to Blm to simplify down to

− (2l + 1)BlmRl−1Ylm(θ, φ) = 4πGρ̄ξr(R, θ, φ) . (8.46)

We now have enough to connect Alm to Blm through Equations (8.42) and (8.46). We do
so by eliminating ξr(R, θ, φ) from these two equations to get

Blm = − 3
ρ̄(2l + 1)

Alm (8.47)

and using Equation (8.39), also get

Clm = − 3R2l+1

ρ̄(2l + 1)
Alm (8.48)
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such that Equations (8.35), (8.36) and (8.37) become

δPint(r, θ, φ) = AlmrlYlm(θ, φ) (8.49)

δΦint(r, θ, φ) = − 3
ρ̄(2l + 1)

AlmrlYlm(θ, φ) (8.50)

δΦext(r, θ, φ) = − 3R2l+1

ρ̄(2l + 1)
Almr−(l+1)Ylm(θ, φ) . (8.51)

Next, we give all our variables oscillatory time dependences, eiωlmt, such that ∂2ξ(r,θ,φ,t)
∂t2 =

−ω2
lmξ(r, θ, φ, t). Using this result along with Equations (8.49) and (8.50) in the per-

turbed Euler equation (Equation (8.29)), we can rearrange for the displacement vector

ξ lm(r, θ, φ) =
2(l − 1)
2l + 1

Alm

ρ̄ω2
lm
∇(rlYlm(θ, φ)) (8.52)

which are our eigenfunctions. To find our eigenvalues, which are values of ω2
lm, we

need to eliminate Alm. We can do so if we use Equation (8.42) but that requires the
radial component of ξ(r, θ, φ). We do this by taking the radial part of Equation (8.52)
which is

ξr
lm(r, θ, φ) =

2l(l − 1)
2l + 1

Alm

ρ̄ω2
lm

rl−1Ylm(θ, φ) . (8.53)

Using this in Equation (8.42) and eliminating Alm, we find our eigenvalues to be

ω2
lm = ω2

l =
8πGρ̄

3
l(l − 1)
2l + 1

. (8.54)

where we removed the subscript m from ωlm since we have shown it does not depend
on m. Thomson (1863) pointed out that for a given mass density, the oscillation fre-
quency on a spherical fluid sphere is independent of the size of the sphere, which is
indeed what is seen above.

It is also worth noting that oscillations cannot form for l = 0 or l = 1. Therefore, the
smallest l that gives a non-zero oscillation frequency is l = 2 and this would be the
mode that contributes most to GW emission, compared to higher modes with l > 2
(Thorne, 1980). For l = 2, the Kelvin mode frequency is

ω2
2 =

16πGρ̄

15
. (8.55)

We introduce a new small parameter, αlm, which is the dimensionless amplitude of a
Kelvin mode, assumed to be much less than 1, and is defined as

αlm ≡
2(l − 1)
2l + 1

AlmRl−2

ρ̄ω2
l

(8.56)
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such that the displacement vector takes the simpler form of

ξ lm(r, θ, φ, t) =
αlm

Rl−2∇(rlYlm(θ, φ))eiωl t (8.57)

which is even simpler in the case of l = 2. We defined αlm in such a way that there is
a Rl−2 in the denominator of Equation (8.57). This is to ensure that αlm remains dimen-
sionless for all l. One can see this by looking at the gradient part which is proportional
to rl−1. We require ξ lm to be a length so there must be a Rl−2 in the denominator if αlm

is to be dimensionless.

We have set the time-dependence of the Kelvin modes to be eiωl t since we require os-
cillatory behaviour. It will be important, especially when using second order perturba-
tion theory, to always take the real part of Equation (8.57) because complex functions
are only a mathematical tool that represents something which is actually physical. For
instance, we use eiωl t to represent the physical time dependence of cos(ωlt). We also
need to take the real parts as soon as possible rather than at the end. This can clearly
lead to errors as Re

{
e2iωl t

}
6= (Re

{
eiωl t

}
)2 → cos(2ωlt) 6= cos2(ωlt).

It is also important to note that spherical harmonics are complex functions due to a eimφ

dependence. If we are to take the real parts of ξ lm, we need to expand the spherical
harmonics to account for the hidden imaginary term. To do this, we write

Ylm(θ, φ) = Ylm(θ, 0)eimφ (8.58)

where Ylm(θ, 0) is purely real. This then allows us to rewrite ξ lm as

ξ lm(r, θ, φ, t) = αlm
rl−1

Rl−2

[
lYlm(θ, 0)er +

dYlm(θ, 0)
dθ

eθ + i
m

sin θ
Ylm(θ, 0)eφ

]
ei(mφ+ωl t)

(8.59)
or when in explicitly real form

ξ lm(r, θ, φ, t) = αlm
rl−1

Rl−2 [lYlm(θ, 0) cos(mφ + ωlt)er (8.60)

+
dYlm(θ, 0)

dθ
cos(mφ + ωlt)eθ −

m
sin θ

Ylm(θ, 0) sin(mφ + ωlt)eφ

]
.

For completeness, we can express the real parts of δPint, δΦint and δΦext as

δPint =
4πGρ̄2l

3
αlm

rl

Rl−2 Ylm(θ, 0) cos(mφ + ωlt) (8.61)

δΦint = −4πGρ̄l
2l + 1

αlm
rl

Rl−2 Ylm(θ, 0) cos(mφ + ωlt) (8.62)

δΦext = −4πGρ̄l
2l + 1

αlm
Rl+3

rl+1 Ylm(θ, 0) cos(mφ + ωlt) . (8.63)
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At this point, we should also define the pattern speed for non-axisymmetric (m 6= 0)
modes

ωp ≡ −
ωl

m
(8.64)

which comes from tracking a fixed phase of the mode, i.e. from d
dt (mφ + ωlt) = 0. This

means that modes with negative m propagate in the positive (prograde) direction and
modes with positive m propagate in the negative (retrograde) direction.

As we will mainly be focusing on l = 2, we list below Equations (8.59) - (8.63) but for
l = 2. The complex version of ξ2m is

ξ2m(r, θ, φ, t) = α2mr
[

2Y2m(θ, 0)er +
dY2m(θ, 0)

dθ
eθ + i

m
sin θ

Y2m(θ, 0)eφ

]
ei(mφ+ω2t)

(8.65)
followed by the real part

ξ2m(r, θ, φ, t) = α2mr [2Y2m(θ, 0) cos(mφ + ω2t)er (8.66)

+
dY2m(θ, 0)

dθ
cos(mφ + ω2t)eθ −

m
sin θ

Y2m(θ, 0) sin(mφ + ω2t)eφ

]

and finally

δPint =
8πGρ̄2

3
α2mr2Y2m(θ, 0) cos(mφ + ω2t) (8.67)

δΦint = −8πGρ̄

5
α2mr2Y2m(θ, 0) cos(mφ + ω2t) (8.68)

δΦext = −8πGρ̄

5
α2m

R5

r3 Y2m(θ, 0) cos(mφ + ω2t) . (8.69)

8.4 Energies and angular momenta of Kelvin modes from first
principles

In this section, we will calculate the energies and angular momenta associated with
the l = 2 Kelvin modes. In the first subsection, we will provide some background
to why this calculation is not as straightforward as one might initially think. Then,
we will proceed to calculate the energy and angular momentum from first principles,
using equations from Appendix B of Friedman and Schutz (1978a). Throughout the
remainder of this chapter, we will make extensive use of equations from Friedman and
Schutz (1978a) and Friedman and Schutz (1978b), which we refer to using the short-
hand (FSa...) and (FSb...) respectively. A large part of the rest of this chapter can also
be found in Yim and Jones (2022).
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8.4.1 Background to calculating mode energies

In the 1960s, Chandrasekhar pioneered a method to calculate energies of stars in equi-
librium, in what he called the “virial method” (Chandrasekhar, 1961, 1969). This method
intended to simplify the relatively harder problem of solving exact equations of motion,
especially when gravity or magnetism are involved. It involves taking the first few mo-
ments of an equation of motion and looking at each subsequent equation individually.
One of the main advantages is that individual terms can often be interpreted as physical
quantities, like different energies.

An example can be seen for our system. If we take the first moment of the Euler equa-
tion, we get ∫

V
ρ(x)xi

dvj

dt
dx = −

∫

V
xi

∂P
∂xj

dx−
∫

V
ρ(x)xi

∂Φ
∂xj

dx (8.70)

which after some algebra (e.g. Chandrasekhar, 1969) simplifies to

1
2

d2I
dt2 = 2T + W − 3U (8.71)

where I =
∫

V ρ(x)|x|2dx is the scalar moment of inertia, T is the kinetic energy of the
background, U is the internal energy of the background and W is the gravitational
potential energy of the background.

This gives the “virial equation” for the energies in the (unperturbed) background star,
but here, we are concerned about the energies of the perturbations. Chandrasekhar
and Lebovitz (1962) suggested that the virial method could be further used to study
perturbation energies. In their analysis, they perturb the equation above with small
changes in the energies, represented by a δ, which have an oscillatory time dependence,
to give

− 1
2

ω2δI = 2δT + δW − 3δU (8.72)

see also §118 of Chandrasekhar (1961). However, in general, it is not correct to do this.
As Friedman and Schutz (1978a) pointed out, perturbation energies are second order
meaning they are generally comprised of two terms: one that is quadratic in the first
order changes in the fluid variables (ρ, v, P, Φ) and another that is linear in the second
order changes in the fluid variables. In the equation above and with how δT, δW and
δU are defined, it is assumed that the term linear in the second order changes is zero.
The reason is because it has the same form as the first order change in energy, which
vanishes identically for stationary solutions. However, as was discovered for the CFS
instability, rotating stars are not necessarily stable if a counter-rotating mode with a
sufficiently large m is present, so there could indeed be a non-zero contribution from
the neglected linear piece.
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This oversight was carried into subsequent works throughout the 1960s and 1970s. This
included work on another method called the “variational principle” which is distinct
from, but is largely consistent with, the virial method (Chandrasekhar, 1964; Clement,
1964; Lynden-Bell and Ostriker, 1967). In the variational principle, which we will be us-
ing throughout this chapter, fluid perturbations are described by a displacement vector,
ξ, meaning we can keep track of our expansions in powers of ξ rather than in changes
to the fluid variables.

Eventually, Schutz and Sorkin (1977) realised that there is a class of displacement vec-
tors called the “trivials” that leave the physical fluid variables unchanged, but changed
the (apparent) perturbation energy that many used for stability analysis. The trivials
amounted to a relabelling of fluid elements, which clearly should not change the en-
ergy. This was the first sign that the existing expressions for perturbation energy were
not complete.

Friedman and Schutz (1978a) set about fixing this and a year later, provided a com-
plete second order calculation of the energies (and angular momentum) using the vari-
ational principle. Moreover, they were able to do this for a displacement vector that
only needed to be first order in some small parameter (for us, αlm). Here, we will apply
their formalism to the Kelvin modes which, as far as we know, is the first time this has
been done.

8.4.2 Mode energies

Recall that the (real) displacement vector for the l = 2 Kelvin modes is given by Equa-
tion (8.66). This will be used whenever ξ i appears. It should also be noted that from
now on, whenever referring to an accuracy up to a certain order, it means in powers of
αlm. Therefore, ξ i is first order in αlm and the mode energy and angular momentum are
second order in αlm.

In their Appendix B, Friedman and Schutz (1978a) give all the formulae that are needed
to compute mode energies accurate to second order, using only the first order pertur-
bations, ξ. We simply need to evaluate the relevant formulae for the Kelvin modes.
The mode energies calculated here are “physical” in the sense that they represent the
actual change in energy when a mode is present and comes from the elementary def-
initions of the different energies. This is opposed to the “canonical” energies that we
will encounter later in Section 8.6.

The total physical change in energy due to a mode, δE, is given by the sum of the
kinetic, internal and gravitational pieces (FSaB59)

δE = δT + δU + δW (8.73)
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TABLE 8.1: Table of contributions to the total mode energy δE, in units of β ≡
α2

2mρ̄ω2
2R5. Starting with column 2, we have perturbation in kinetic energy δT, in-

ternal energy δU, gravitational energy δW, “total potential energy” δV ≡ δU + δW,
and total energy δE = δT + δV.

δT/β δU/β δW/β δV/β δE/β

l = 2, m = 0 sin2(ω2t) 5
4 cos2(ω2t) − 1

4 cos2(ω2t) cos2(ω2t) 1
l = 2, m = ±1, ±2 1

2
5
8 − 1

8
1
2 1

where each term depends on l and m of the mode, but is not explicitly shown here. We
give a summary in Table 8.1 of each of these pieces, for the cases of l = 2, m = 0 and
l = 2, m 6= 0.

The kinetic energy perturbation is given by (FSaB43), which for a non-rotating star
takes the simple form

δT =
1
2

∫

V
ρξ̇ i ξ̇i dV . (8.74)

Substituting for ξ using Equation (8.66), we obtain the results given in the second col-
umn of Table 8.1. Note that for m = 0, we have δT ∝ sin2(ω2t), whilst for m 6= 0,
we have δT = constant. Both of these results were to be expected. For m = 0, the
oscillation changes the shape of the star between a prolate and oblate shape, once per
mode period. The kinetic energy will be zero when maximally deformed and positive
in between. For m 6= 0, the mode results in a perturbed shape that rotates at the pat-
tern speed, so that the configuration at different times is related by a rotation about the
z-axis. It follows that δT (and also δU and δW) must be constant in time.

The internal energy piece is given by the ∇iξ
i = 0 form of (FSaB48)

δU =
1
2

∫

V
ξ iξ j∇i∇jP dV (8.75)

where P(r) is the background pressure which can be found in Equation (8.13). From
Equation (8.13), one can see that the pressure drops from a finite value to zero at the
surface of the star, so ∇jP at the stellar surface can be described by a Heaviside step
function

∇jP(r) = −
4
3

πGρ̄2rjH(R− r) (8.76)

where rj is the position vector. When differentiated, the step function results in the
appearance of a delta function

∇i∇jP(r) = −
4
3

πGρ̄2[δijH(R− r)− rjr̂iδ(r− R)] (8.77)
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where r̂i is the radial unit vector. The integral to be computed therefore contains both a
volume and surface term

δU = −2
3

πGρ̄2
∫

V
ξ iξi dV +

2
3

πGρ̄2R
∫

∂V
[ξr(R)]2 dS . (8.78)

The result of this calculation is given in the third column of Table 8.1, showing positive
non-zero values for δU.

It may seem surprising that δU is not exactly zero for the modes we consider, which
are, after all, supposed to be perturbations of an incompressible background star. We
attribute the existence of this non-zero δU to the fact that the mode eigenfunctions of
Section 8.3 were obtained by solving the equations of motion to first order in ξ. As
such, they satisfy the incompressibility condition of∇iξ

i = 0, but only to first order. To
second order, there will be a non-zero Lagrangian perturbation in the mass density, as
is made clear by (FSaB32)

∆ρ

ρ̄
= −∇iξ

i +
1
2
(∇iξ

i∇jξ
j +∇iξ

j∇jξ
i) +O(ξ3) . (8.79)

The last of the three terms on the right hand side is non-zero for our eigenfunctions.
Consequently, this leads to a net compression resulting in the positive δU values that
we calculated.

The perturbation in gravitational energy is given by (FSaB56)

δW =
∫

V

[
ρξ i∇iΦ + ρξ i∇iδΦ +

1
8πG

∇iδΦ∇iδΦ +
1
2

ρξ iξ j∇i∇jΦ
]

dV . (8.80)

Friedman & Schutz obtained this result by integrating by parts several times, exploiting
the fact that surface terms, evaluated at infinity, are zero (see (FSaB49) – (FSaB53)).
It follows that the domain of integration V extends to infinity, so one must include
the contribution from outside the star. The first, second and fourth terms in the above
integral vanish outside the star, as ρ = 0 there, but the third term has a non-vanishing
component, and is calculated by using Equation (8.69) outside the star. Performing the
calculations, we obtain the results given in the fourth column of Table 8.1.

In the fifth column of Table 8.1, we give the sum of the internal and gravitational energy
perturbations

δV ≡ δU + δW . (8.81)

This can be thought of as the total potential energy, which when summed with the
kinetic term gives the full energy perturbation, δE, as recorded in the final column of
Table 8.1. For all m, the result can be written as

δE = α2
2mρ̄ω2

2R5 . (8.82)
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We can perform several checks of these results. Firstly, for m = 0, we can see that the
δT and δV terms are of equal amplitude, representing an exchange between kinetic and
potential energies, with constant total energy. For all m, we can verify that our results
are consistent with the “virial equation for perturbations”, given by Equation (6.6.14)
of Shapiro and Teukolsky (1983)

1
4

d2

dt2 δI = δT − δV (8.83)

where δI is the trace of the mass quadrupole moment tensor caused by the perturba-
tions. We postpone the calculation of this tensor until Section 8.5.1, where it is required
to compute the GW emission, but we note here that this virial equation is indeed satis-
fied by our solutions. A derivation of this equation is given in Appendix C.

For m = 0, we can also compare our result for δE with what is written in Chau (1967),
in his Equation (17). Our result for δE is a factor of 2 larger than the result he uses. In
fact, Chau does not compute δE. Instead, he takes a result from Rayleigh (1945), but
comparing with this original source, Chau seems to have incorrectly copied Rayleigh’s
result. Specifically, it appears Chau only considers the kinetic energy term, given by
Equation (7) of §264 of Rayleigh (1945), and replaces a cos2 term with a factor of 1/2
(perhaps with the mindset of taking an average) when in fact, the inclusion of potential
energies introduces a sin2 term which combines with the kinetic energy without the
need to take an average.

8.4.3 Mode angular momenta

Friedman and Schutz (1978b) also give all the formulae that are needed to compute
mode angular momenta accurate to second order, using only the first order perturba-
tions, ξ.

Combining Equations (FSa61), (FSa47) and (FSa38) for vi = 0 we have

δJ = −
∫

V
ρ

[
φi∆vi +

∂ξ i

∂φ

∂ξi

∂t

]
dV (8.84)

where φi = r sin θ(eφ)i and ∆vi is the Lagrangian perturbation in velocity, accurate to
second order in ξ, as given in Equation (FSaB40)

∆vi = ξ̇i + ξ̇ j∇iξ j = ξ̇i + ξ̇ j ∂ξ j

∂xi − ξ̇ jΓk
jiξk (8.85)

where the minus sign comes from the covariant derivative acting on a covariant vector
as opposed to the contravariant vector seen in Equation (3.8). Looking at the integral
for δJ, we see the only non-zero term comes from ∆vφ if we are in spherical coordinates.
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The connection coefficients, Γk
ji, can be found from a rearrangement of Equation (3.4)

Γk
ji = ek · ∇iej (8.86)

where the right hand side can be calculated explicitly. However, there is a convenient
list of connection coefficients for spherical coordinates on p.616 of Thorne and Bland-
ford (2017) which we use instead. When the non-zero connection coefficients are sub-
stituted into Equation (8.85) with i = φ, we get

∆vφ = ξ̇φ + ξ̇r ∂ξr

∂φ
+ ξ̇θ ∂ξθ

∂φ
+ ξ̇φ ∂ξφ

∂φ
− ξ̇φ(Γr

φφξr + Γθ
φφξθ)− (ξ̇rΓφ

rφ + ξ̇θΓφ
θφ)ξφ (8.87)

where Γr
φφ = −Γφ

rφ = − 1
r and Γθ

φφ = −Γφ
θφ = − cot θ

r . Using this along with the l = 2
form of ξ from Equation (8.66), we find

δJ = −1
2

mα2
2mρ̄ω2R5 (8.88)

for all m.

Recall our convention for the mode phase, (mφ + ωlt). Consistent with this, we see
that modes which propagate in the positive mathematical sense (m < 0) have δJ > 0,
while modes that propagate in the negative mathematical sense (m > 0) have δJ < 0,
and m = 0 “prolate/oblate” modes have δJ = 0.

8.5 Gravitational wave emission using quadrupole formulae

In the previous section, we found the energy and angular momentum of the l = 2
Kelvin modes, neglecting dissipation, i.e. the value of δE and δJ for a mode that is
constantly oscillating on the NS. Now, we will compute the rate at which this mode
radiates energy and angular momentum via the emission of GWs. This will cause it to
damp away. The m = 0 case was first studied by Chau (1967) and the m 6= 0 case by
Detweiler (1975), based on Thorne (1969), but Detweiler’s calculations only considered
energy conservation and not the full problem which also includes angular momentum.

In Section 8.5.1, we calculate the rate of change of energy due to GW emission. In
Section 8.5.2, we calculate the rate of change of angular momentum. In Section 8.5.3,
we discuss the significance of these results by considering the implied GW time-scales.
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8.5.1 Rate of change of energy

For l = 2, the rate of change of energy due to GW emission, ĖGW, is given by the
standard quadrupole formula

ĖGW =
1
5

G
c5

〈...
I ij

...
I ij
〉

(8.89)

where the dots represent time derivatives in the inertial frame and the angled brackets
represent an average over several wavelengths/periods (e.g. Misner et al., 1973; An-
dersson, 2019). Iij is the trace-reduced mass quadrupole moment tensor, defined by

Iij ≡
∫

V
ρ

(
xixj −

1
3

δijxkxk

)
dV (8.90)

where xi is the position vector in a Cartesian basis. Note that ĖGW is positive when
GWs carry energy away from the system resulting in the system’s energy decreasing.

In practice, one would first calculate the mass quadrupole moment tensor

Iij ≡
∫

V
ρxixjdV (8.91)

before reducing by its trace to give Iij, i.e.

Iij = Iij −
1
3

δij Ik
k (8.92)

such that Tr(Iij) = 0. It is useful to decompose the mass quadrupole moment tensor
into a term related to the background, which is spherical and constant in time, and a
time-dependent term which is caused by the perturbation

Iij = Isphδij + δIij → İij = δ İij → İij = δ İij (8.93)

and similarly for higher time derivatives. From this, we see that once we obtain δIij,
we can reduce it by its trace, differentiate with respect to time an appropriate number
of times and then substitute into Equation (8.89) to get ĖGW. So, our task now is to find
δIij.

We can use the general rule for perturbing integral quantities where the mass density
appears in the integrand

δ
∫

V
ρQdV =

∫

V
ρ∆QdV (8.94)

(FSaB12) for some fluid variable Q (see also §15 of Chandrasekhar (1969) or Equa-
tion (4.21) for a similar result but using the covariant derivative definition of the La-
grangian change, as opposed to the more natural definition based on Lie derivatives
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used by Friedman & Schutz). We obtain

δIij = δ
∫

V
ρxixjdV =

∫

V
ρ∆(xixj)dV = ρ̄

∫

V
(ξixj + xiξ j + ξiξ j)dV (8.95)

which is exact and where ξ is now in a Cartesian basis. Note that the Lagrangian change
to the position vector is exactly ξ by definition so there are no higher order terms to
consider. We need only the first order terms of δIij to calculate the rate of change in GW
energy and angular momentum accurate to second order, which are quadratic in (the
time derivatives of) δIij, but we need the second order term to test the virial equation
stated earlier in Equation (8.83).

Substituting ξ from Equation (8.66) into Equation (8.95) and after some algebra, we find

δI2,0
ij =

1
15

α2,0ρ̄R5 cos(ω2t) . . .

. . .



−4
√

5π + 5α2,0 cos(ω2t) 0 0
0 −4

√
5π + 5α2,0 cos(ω2t) 0

0 0 4(2
√

5π + 5α2,0 cos(ω2t))




(8.96)

δI2,±1
ij =

1
4

α2,±1ρ̄R5




2α2,±1 cos2(ω2t) ∓α2,±1 sin(2ω2t) ∓ 8
15

√
30π cos(ω2t)

∓α2,±1 sin(2ω2t) 2α2,±1 sin2(ω2t) 8
15

√
30π sin(ω2t)

∓ 8
15

√
30π cos(ω2t) 8

15

√
30π sin(ω2t) 2α2,±1




(8.97)

δI2,±2
ij =

1
30

α2,±2ρ̄R5




4
√

30π cos(ω2t) + 15α2,±2 ∓4
√

30π sin(ω2t) 0
∓4
√

30π sin(ω2t) −4
√

30π cos(ω2t) + 15α2,±2 0
0 0 0




(8.98)

which have traces equal to 2α2
2,0ρ̄R5 cos2(ω2t), α2

2,±1ρ̄R5 and α2
2,±2ρ̄R5 for m = 0,±1,±2

respectively. The superscripts on δIij represent values of l and m. As an independent
check, we can now take these traces along with the energies in Table 8.1 to show that
the virial equation in Equation (8.83) is indeed satisfied by the Kelvin modes for all m.

Taking these δIij, reducing by their trace, differentiating three times with respect to time
and substituting into Equation (8.89), we find

ĖGW =
1

5c5 α2
2mρ̄ω8

2R10 (8.99)

for all m and to second order in α2m. To get to this form, we used Equation (8.55) which
takes a factor of ρ̄ along with some other constants and converts them to ω2

2. This is
why ĖGW is proportional to ω8

2 instead of ω6
2 which would be expected from just the

time derivatives alone.
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Our m = 0 case matches Equation (16) of Chau (1967) if one converts from our ampli-
tude parameter, α2,0, to his. This can be done by equating the radial position of the per-
turbed surface, which is R + ξ(R, θ, φ, t) · er for our work. As far as we are aware, this is
the first time the m 6= 0 GW luminosities for the Kelvin modes have been written down
analytically (Detweiler (1975) only reported damping time-scales directly and not GW
luminosities). For our particular choice of amplitude parameter, the relation for ĖGW is
the same for all m, mirroring the behaviour seen in compressible stars (Thorne, 1969).

8.5.2 Rate of change of angular momentum

Moving on, the rate of change of angular momentum taken away by GWs is given by
(e.g. Misner et al., 1973; Andersson, 2019)

J̇i
GW =

2
5

G
c5 εijk

〈
Ï l

j
...
I kl

〉
(8.100)

which is positive when GWs are carrying away positive angular momentum. We find
only the z component, J̇z

GW, is present so we set J̇GW = J̇z
GW. This means angular mo-

mentum is only being lost in the z direction (for m 6= 0).

We follow the same steps as before where we take δIij, which we have already from
Equations (8.96) – (8.98), reduce by the trace and take an appropriate number of time
derivatives to use in the above equation for J̇GW. After some algebra, we find

J̇GW = − 1
5c5 mα2

2mρ̄ω7
2R10 . (8.101)

8.5.3 Gravitational wave time-scales

Combining our results for the energy perturbation δE (Equation (8.82)) and the angular
momentum perturbation δJ (Equation (8.88)) we see that

δE = 2ωpδJ (8.102)

for m 6= 0, where ωp is the pattern speed. If instead we combine our results for the
rate at which GW energy is radiated to infinity (Equation (8.99)) and the rate at which
angular momentum is radiated (Equation (8.101)), we see, for m 6= 0, that

ĖGW = ωp J̇GW . (8.103)

This is a well-known relation that holds true for GW emission from any mass distribu-
tion with a well-defined pattern speed, and is an immediate consequence of the stan-
dard quadrupole formulae of Equations (8.89) and (8.100). The energy and angular
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momentum radiated comes at the expense of the energy and angular momentum of
the star.

In the case m = 0, we have δJ = 0 and J̇GW = 0, and the radiated energy clearly comes
at the expense of the mode energy. Given that both δE and ĖGW are quadratic in α2m,
the mode decays exponentially on a time-scale

τE ≡
2δE
ĖGW

. (8.104)

Using Equations (8.82) and (8.99), we obtain

τE =
10c5

ω6
2R5

. (8.105)

Note that the m = 0 result can be compared to Equation (19) of Chau (1967) but since
his δE is a factor of 2 too small (see Section 8.4.2), his result for τE is also a factor of 2
too small. Equation (8.105) is also valid for m 6= 0 and in this case, we can check our
results against Detweiler (1975) to which we find our results are consistent.

For m 6= 0, the situation is more interesting. Comparing Equations (8.102) and (8.103),
we see that while δE is locked to δJ, and ĖGW is locked to J̇GW, the constants of pro-
portionality differ by a factor of 2. This mean that, unlike the m = 0 case, the response
of the star to the GW emission cannot only be to decrease the mode amplitude. More
explicitly, for a given non-rotating star, the mode is parametrised by the single variable
α2m and its energy by α2

2m. It follows that any other quantity proportional to α2
2m, in-

cluding δJ, must evolve on the same time-scale as the one given in Equation (8.105).
However, if we were to compute the angular momentum analogue of Equation (8.105),
we would define

τJ ≡
2δJ
J̇GW

(8.106)

which leads to

τJ =
5c5

ω6
2R5

(8.107)

i.e. there is a factor of 2 mismatch between the energy-based and angular momentum-
based time-scales.

The natural resolution to this seeming contradiction is to realise that the definition of
the time-scale in Equation (8.106) implicitly assumes that all of the angular momentum
radiated away (i.e. all of J̇GW) is at the expense of the mode angular momentum only
(i.e. comes entirely from δJ). This suggests that the resolution is to allow for a torque
to be exerted on the bulk of the star (i.e. on the background configuration), something
which must then be accounted for in the angular momentum balance in order to obtain
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consistent results. To leading order in Ω, this changes the angular momentum (O(Ω))
but not the energy of the background (O(Ω2)).

8.6 Canonical mode energies and angular momenta

In the previous section, we showed that for m 6= 0, the effect of gravitational radiation
reaction is to exert a torque on the star, such that it acquires a non-zero angular veloc-
ity. This means one must allow for the development of rotation even though our star
is initially non-rotating (though initially has a mode with angular momentum δJ by
construction). The complications and subtleties that arise from rotation are precisely
those captured by the canonical energy/angular momentum formalism of Friedman
and Schutz (1978a,b). We will therefore proceed by using this to carefully calculate
the response of the star to GW emission, in terms of both the mode amplitude and the
development of rotation. We will calculate the canonical energy of our Kelvin modes
in Section 8.6.1 and the canonical angular momentum in Section 8.6.2. Then, in Sec-
tion 8.7, we will compute the time derivatives of these quantities, which will allow a
calculation of the effect of radiation reaction for m 6= 0.

8.6.1 Canonical energy

Friedman and Schutz (1978a,b) noted that, in addition to the physical second order
energy perturbation δE, it is useful to define a canonical energy (described below), par-
ticularly when dealing with rotating stars. Although the following equations were orig-
inally derived for compressible NSs, we have independently checked from first prin-
ciples that they remain valid for incompressible NSs. The first part of this section lays
out the general equations, and the second part applies them to the Kelvin modes.

8.6.1.1 General equations

Friedman and Schutz (1978a) noted that the equation of motion can be written in the
form

Ai
j ξ̈

j + Bi
j ξ̇

j + Ci
jξ

j ≡ 0 (8.108)

(FSa15) where A, B and C are operators that depend on the properties of the back-
ground NS. For a non-rotating NS, Bi

j = 0. However, we keep all terms for now as
this subsection is general and applies to all NSs. The form of Ai

j and Ci
j for our non-

rotating incompressible star are given in Section 8.6.1.2 below. By writing the perturbed
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equation of motion this way, the Lagrangian density L, can be written as

L =
1
2

(
ξ̇i Ai

j ξ̇
j + ξ̇iBi

jξ
j − ξiCi

jξ
j
)

(8.109)

(FSa35). The canonical energy (in the inertial frame), Ec, is defined as

Ec ≡
∫

V

(
ξ̇ i ∂L

∂ξ̇ i
−L

)
dV (8.110)

(FSa44) where ξ̇ i = ∂ξ i

∂t is real. Substituting the Lagrangian into Equation (8.110), we
get our first method of calculating Ec (using real ξ)

Ec =
1
2

∫

V

(
ξ̇i Ai

j ξ̇
j + ξiCi

jξ
j
)

dV . (8.111)

Alternatively, Friedman and Schutz (1978a) found that a “sympletic structure” could
more neatly describe a perturbed system. One key difference is that this sympletic
structure requires complex ξ, which, for clarity, we will write as ξ̃. From this, Friedman
and Schutz (1978a) provided another method to calculate Ec which we will label Ẽc,
since it will be calculated with ξ̃. The following equation is true for oscillation modes
that carry a eiωl t dependence

Ẽc = ωl

[
Re{ωl}〈ξ̃, Aξ̃〉 − 1

2
〈ξ̃, iBξ̃〉

]
(8.112)

(FSa50) where the angled brackets represent a complex inner product, defined as

〈ξ̃, η̃〉 ≡
∫

V
(ξ̃ i)∗η̃idV (8.113)

(above FSa36). To quickly summarise, there are two methods to calculate Ec, one using
Equation (8.111) with real ξ and the other using Equation (8.112) with complex ξ.

Friedman and Schutz (1978a) found a simple relation between the physical second or-
der energy perturbation δE and the canonical energy Ec

δE = Ec +
∫

V
ρvi∆vidV (8.114)

(FSa59) where ρ and vi are the mass density and velocity of the unperturbed NS, and
∆vi is the second order (covariant) Lagrangian change to the velocity.

One can see from Equation (8.114) that for a static background (vi = 0), the inte-
gral vanishes and we are left with the physical energy equalling the canonical energy,
i.e. δE = Ec. We nevertheless proceed to calculate Ec using the formulae given above,
as a check on our expression for δE in Equation (8.82). The calculation also provides
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a natural precursor to the calculation of the canonical angular momentum in the next
section, which does not equal the physical perturbation δJ.

8.6.1.2 Application to Kelvin modes

We will now apply the preceding equations to the Kelvin modes. We will calculate the
canonical energy, Ec, which should be the same regardless of whether it is calculated
with real or complex ξ, and must be equal to δE calculated previously (Equation (8.82)).

We start with the case of using real ξ to calculate Ec, see Equation (8.111). To do so, we
recall the form of the equation of motion

ρ
∂v
∂t

+ ρ(v ·∇)v = −∇P− ρ∇Φ (8.115)

which we perturb with (Eulerian) perturbations, Q → Q0 + δQ, keeping first order
terms only. Then, we subtract the background solution and enforce our assumptions of
a static, uniformly-dense, incompressible NS to get

ρ̄ξ̈ +∇δP + ρ̄∇δΦ = 0 (8.116)

where we used δv = ξ̇. We could have also obtained this from (FSa15) by using the con-
ditions ∇iξ

i = 0 and vi = 0, alongside a re-expression of Φ in terms of P. Comparing
to Equation (8.108), one immediately finds

Ai
j = ρ̄δi

j (8.117)

Bi
j = 0 (8.118)

Ci
jξ

j = ∇iδP + ρ̄∇iδΦ (8.119)

where δi
j is the Kronecker delta. Note that Bi

j is zero as expected for our static back-
ground configuration.

The expression for Ai
j is straightforward and for Ci

jξ
j, we need to know what δP and

δΦ are, which were presented earlier in Equations (8.61) and (8.62). Using this along
with ξ from Equation (8.60), Equation (8.111) in integral form becomes

Ec =
1
2

α2
lmρ̄ω2

l

∫

V
r2l−2

[
l2Y2

lm(θ, 0) +
(

dYlm(θ, 0)
dθ

)2

+
m2

sin2 θ
Y2

lm(θ, 0)

]
dV (8.120)

for all l and m. When we evaluate this integral for l = 2 Kelvin modes, we find that the
canonical energy is given by

δE = Ec = α2
2mρ̄ω2

2R5 (8.121)
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i.e. we have agreement with the physical second order energy perturbation δE com-
puted in Section 8.4.2.

Alternatively, we can use complex ξ̃ to find Ẽc, see Equation (8.112). The form of the
complex solution is basically given by Equation (8.57) above, but now we, importantly,
insert an additional normalisation factor N

ξ̃(r, θ, φ, t) = N
αlm

Rl−2∇[rlYlm(θ, φ)]eiωl t (8.122)

ξ̃(r, θ, φ, t) = Nαlm
rl−1

Rl−2

[
lYlm(θ, 0)er +

dYlm(θ, 0)
dθ

eθ +
im

sin θ
Ylm(θ, 0)eφ

]
ei(mφ+ωl t) .

(8.123)

Using Ai
j (and Bi

j = 0) in Equation (8.112), along with ξ̃ from Equation (8.123), we find
that the canonical energy of the Kelvin modes in integral form is

Ẽc = N2α2
lmρ̄ω2

l

∫

V
r2l−2

[
l2Y2

lm(θ, 0) +
(

dYlm(θ, 0)
dθ

)2

+
m2

sin2 θ
Y2

lm(θ, 0)

]
dV . (8.124)

Since the canonical energy must be the same regardless of whether ξ is real or complex,
i.e. Ec = Ẽc, we find from comparing Equations (8.124) and (8.120) that

N2 =
1
2
→ N =

1√
2

(8.125)

for all l and m. With this considered, Equations (8.124) and (8.120) now give the same
canonical energy.

This simple result is useful and necessary whenever there is a mixture of real and com-
plex ξ within an analysis. Since the equation of motion is linear in the perturbation,
there is no right or wrong relative normalisation for ξ as such, but one must enforce a
relative normalisation if one wants to use both real and complex formulae in the same
calculation. Without normalising, the calculation of the canonical energy with complex
ξ would be twice the value obtained when the calculation is done entirely with real
expressions. This clearly cannot be correct. To resolve this, one must put a factor of

1√
2

in front of each complex ξ (specifically, a factor of 1√
2

for every αlm). This can be
understood intuitively if one thinks of complex ξ as comprising of an equal amount of
“power” in its real and imaginary parts. Thus, if we only consider the real part, we
only get half the power, and hence 1√

2
the amplitude.
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8.6.2 Canonical angular momentum

8.6.2.1 General equations

We again begin by giving the general equations, to be applied to the Kelvin modes in
Section 8.6.2.2. The canonical angular momentum is defined as

Jc ≡ −
∫

V

∂ξ i

∂φ

∂L
∂ξ̇ i

dV (8.126)

(FSa47) where φ is the azimuthal angle and ξ is real. Substituting in the Lagrangian
from Equation (8.109) gives

Jc = −
∫

V

∂ξ i

∂φ

(
Aij ξ̇

j +
1
2

Bijξ
j
)

dV (8.127)

which will be the calculation using real ξ.

Alternatively, the sympletic structure can be used to find Jc but requires ξ to be complex
and have a ei(mφ+ωl t) dependence. Friedman and Schutz (1978a) found this to be

J̃c = −m
[

Re{ωl}〈ξ̃, Aξ̃〉 − 1
2
〈ξ̃, iBξ̃〉

]
(8.128)

(FSa51) for complex ξ. Comparing this to Equation (8.112), one finds, for m 6= 0, that
Ec and Jc are related by the pattern speed

Ec = −
ωl

m
Jc = ωp Jc (8.129)

(FSa52) which offers a quick alternative method to calculate Jc if one already has Ec.

Note that whereas, for a non-rotating star, the physical and canonical energy of the
perturbations were the same, this is not the case for the physical and canonical angular
momenta

δJ = Jc +
∫

V
ρφi∆vidV (8.130)

(FSa61). This point will be of importance when calculating the effect of gravitational
radiation reaction.
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8.6.2.2 Application to Kelvin modes

Once again, we specialise to the l = 2 Kelvin modes. Since we already have Ec from
Equation (8.121), the simplest method would be to utilise Equation (8.129) which gives

Jc = −mα2
2mρ̄ω2R5 . (8.131)

We verified that one obtains the same value when using Equation (8.127) with real ξ or
Equation (8.128) with complex ξ (whilst ensuring to account for the extra factor of 1√

2
for every α2m).

Note that this does indeed differ from the physical angular momentum of the Kelvin
modes as given by Equation (8.130), corresponding to non-vanishing of the last term in
Equation (8.130)

δJ − Jc =
∫

V
ρφi∆vidV =

1
2

mα2
2mρ̄ω2R5 . (8.132)

Related to this, comparing Equations (8.88) and (8.131) we see that

Jc = 2δJ . (8.133)

8.7 Gravitational wave back-reaction

8.7.1 Mode damping time-scale

8.7.1.1 General equations

The aim here is to highlight a calculation, based on the work of Friedman and Schutz
(1978a,b), that can determine the damping time-scale of modes on any NS. After the
general calculation, we specialise to the Kelvin modes which will be covered in Sec-
tion 8.7.1.2. The calculational method described here is similar to one done by Ipser
and Lindblom (1991), but we stick rigidly to the formalism of Friedman & Schutz.

Friedman and Schutz (1978a) define the canonical energy in the rotating frame, Ec,R, as

Ec,R = Ec −ΩJc = δE−ΩδJ (8.134)

(FSa62) where Ω is the angular frequency of the rigidly rotating NS. Note that Ec,R =

Ec = δE for non-rotating NSs.

One key reason why we introduced Ec,R is because the time derivative of Ec,R is easily
calculable, thus making the physical mode damping time-scale also easily calculable.
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To do this, we first need the perturbed form of the equation of motion of a dissipative
system, which is given by

Ai
j∂

2
t ξ j + Bi

j∂tξ
j + Ci

jξ
j = Fi (8.135)

(FSb46) where ∂t represents a time derivative in the inertial frame and crucially, Fi

is some dissipative force (per unit volume) acting on the system. From this, one can
calculate the time derivative of Ec,R with

d
dt

Ec,R = 〈 ˙̃ξ, F̃〉 (8.136)

(FSb49). Formally, the dot here represents a time derivative evaluated in the rotating
frame, i.e. ḟ = (∂t + Ω∂φ) f (FSb42), but this distinction is not important for the non-
rotating stars considered here. This time derivative of Ec,R is negative when the system
is losing energy. It is also worth remembering that ξ̇ and F must be complex in this
equation (but the result of taking the inner product will be real, see below).

The mode damping time-scale is then given by

τphys ≡ −
2Ec,R
d
dt Ec,R

(8.137)

where the minus sign ensures that the damping time-scale is positive for stable modes.
Unlike the earlier definitions of τE and τJ, τphys has the same quantity in the numerator
and denominator, and so is clearly the correct expression for the mode damping time-
scale. More explicitly, the numerators of τE and τJ were the physical mode energy and
angular momentum whereas the denominators were the rate of emission of GW energy
and angular momentum.

There are a few more quantities that can be calculated with this formalism, where
the equation of motion explicitly includes a dissipative term. For instance, the rate
of change in the canonical energy and angular momentum can be calculated with

d
dt

Ec = Re〈∂t ξ̃, F̃〉 (8.138)

d
dt

Jc = −Re〈∂φ ξ̃, F̃〉 (8.139)

(FSb70 & FSb71), where we have complex quantities on the right-hand side. Both are
negative when canonical energy or positive angular momentum is being lost from the
system. From this, Friedman and Schutz (1978b) found that the rate of change of Ec

and Jc are related by the pattern speed

d
dt

Ec = ωp
d
dt

Jc (8.140)
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(below FSb71) much like the ĖGW and J̇GW in Equation (8.103).

8.7.1.2 Application to Kelvin modes

Like in Section 8.6.1.2, we write down the equation of motion for our system, perturb
it, keep first order terms, subtract the background solution and apply our assumptions.
What is different now is that we allow for a dissipative force, GW emission in this
example, in the equation of motion. For GW emission, the dissipative force is given by

Fa = −ρ̄∇aΦRR (8.141)

where ΦRR is the Burke-Thorne GW radiation reaction potential

ΦRR =
1
5

G
c5 xixj d5

dt5 Iij (8.142)

(Burke, 1969, 1971; Thorne, 1969; Misner et al., 1973). This equates to having a per-
turbed equation of motion (8.135) of the form

ρ̄ξ̈a +∇aδP + ρ̄∇aδΦ = −1
5

G
c5 ρ̄∇axixj d5

dt5 Iij (8.143)

where a labels a spherical basis and i, j labels a Cartesian basis. When written like
this, it is clear we must use real ξ in the preceding equations, including for Fa in Equa-
tion (8.141). However, we saw earlier that we need complex Fa in Equations (8.136),
(8.138) and (8.139). This reiterates our need to connect real and complex expressions,
and as shown in Section 8.6.1.2, we can do so by introducing a factor of 1√

2
for every

αlm when going from real to complex.

To find τphys, we first need to find an expression for Ec,R, but this is trivial for a non-
rotating NS. For a non-rotating NS, Ec,R is simply equal to Ec so we read directly from
Equation (8.121)

Ec,R = Ec = α2
2mρ̄ω2

2R5 (8.144)

for all m.

Next is to find d
dt Ec,R so we now focus on Fa. For the l = 2 Kelvin modes, we get Iij

by manipulating δIij from Equations (8.96) – (8.98). We follow the same steps as before
where we reduce by the trace (to get δIij) and since İij = δ İij (which also holds for
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all higher time derivatives), we differentiate δIij five times and substitute into Equa-
tion (8.142) to find

ΦRR ≈





− 2
√

5π
75

G
c5 α2,0ρ̄ω5

2R5r2(1 + 3 cos 2θ) sin(ω2t) for m = 0

± 2
√

30π
75

G
c5 α2,±1ρ̄ω5

2R5r2 sin 2θ sin(±φ + ω2t) for m = ±1

− 2
√

30π
75

G
c5 α2,±2ρ̄ω5

2R5r2 sin2 θ sin(±2φ + ω2t) for m = ±2

(8.145)

to first order in α2m. Next, we use the GW radiation reaction potential to calculate the
GW radiation reaction force using Equation (8.141)

Fa =
4
√

5π

75
G
c5 α2,0ρ̄2ω5

2R5r



(1 + 3 cos 2θ) sin(ω2t)
−3 sin 2θ sin(ω2t)

0


 for m = 0 (8.146)

Fa = −4
√

30π

75
G
c5 α2,±1ρ̄2ω5

2R5r



± sin 2θ sin(±φ + ω2t)
± cos 2θ sin(±φ + ω2t)

cos θ cos(±φ + ω2t)


 for m = ±1 (8.147)

Fa =
2
√

30π

75
G
c5 α2,±2ρ̄2ω5

2R5r




2 sin2 θ sin(±2φ + ω2t)
sin 2θ sin(±2φ + ω2t)
±2 sin θ cos(±2φ + ω2t)


 for m = ±2 (8.148)

which is purely real and comes from using real ξ. Here, Fa is written in terms of spher-
ical basis vectors (er, eθ , eφ). This is almost what we want, but Equation (8.136) is only
valid for complex Fa. To “complexify” our real expression, we use the following

cos(mφ±ω2t) → 1√
2

ei(mφ±ω2t) (8.149)

sin(mφ±ω2t) → − 1√
2

iei(mφ±ω2t) (8.150)

where the factor of 1√
2

comes from Section 8.6.1.2 and from the fact that Fa depends
linearly on α2m. This then gives the complex expression for Fa which is

F̃a = − 1√
2

4
√

5π

75
G
c5 α2,0ρ̄2ω5

2R5reiω2t




i(1 + 3 cos 2θ)

−3i sin 2θ

0


 for m = 0 (8.151)

F̃a = − 1√
2

4
√

30π

75
G
c5 α2,±1ρ̄2ω5

2R5rei(±φ+ω2t)



∓i sin 2θ

∓i cos 2θ

cos θ


 for m = ±1 (8.152)

F̃a = − 1√
2

2
√

30π

75
G
c5 α2,±2ρ̄2ω5

2R5rei(±2φ+ω2t)




2i sin2 θ

i sin 2θ

∓2 sin θ


 for m = ±2 (8.153)
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which can now be used in Equations (8.136) with complex ξ̇, which is the time deriva-
tive of Equation (8.123) (with N = 1√

2
). Finally, this gives the (purely real) result

d
dt

Ec,R = − 1
5c5 α2

2mρ̄ω8
2R10 (8.154)

for all m, where we have also used Equation (8.55). This expression for the rate of
change of Ec,R is accurate to leading (second) order in α2m and for the m = 0 case, had
to be time-averaged. Note that this is equal to -ĖGW which was calculated with real ξ,
i.e. Equation (8.99). It was not obvious to us from the outset that this would be the case,
hence the need for this calculation.

Finally, using Equation (8.137), we find

τphys =
10c5

ω6
2R5

(8.155)

for all m. This is the physical damping time-scale for the Kelvin modes if GW emis-
sion is the only dissipative mechanism. The m = 0 damping time-scale calculated here
agrees with Chau (1967) if one accounts for the factor of 2 that is missing from Chau’s
expression for his mode energy, see the discussion at the end of Section 8.4.2 for de-
tails. Our results also agree with the m 6= 0 Kelvin mode damping time-scales found
by Detweiler (1975) based on the nearly Newtonian limit of the general relativistic for-
malism of Thorne (1969). For a typical f-mode frequency of fmode = 2 kHz (where
ω2 = 2π fmode), the physical damping time-scale is τphys ≈ 0.06 s.

Whilst we have Fa in complex form, we can, for completeness, calculate d
dt Ec and d

dt Jc

using Equations (8.138) and (8.139). Doing this, one finds

d
dt

Ec = −
1

5c5 α2
2mρ̄ω8

2R10 = −ĖGW (8.156)

d
dt

Jc =
1

5c5 mα2
2mρ̄ω7

2R10 = − J̇GW . (8.157)

The energy result agrees with expectations since the inertial frame and rotating frame
of a non-rotating NS are the same, so we would expect d

dt Ec = d
dt Ec,R. This result of

Equation (8.157) then follows, to maintain consistency between the relations ĖGW =

ωp J̇GW (Equation (8.103)) and Ėc = ωp J̇c (equation (8.129)).

8.7.2 Torque exerted on the star

In Section 8.5.3, we argued that, for m 6= 0, the effect of gravitational radiation reaction
could not simply be to damp the mode – the bulk angular momentum of the star must
change too. We now have everything to compute this change. To do so, we turn to the
conservation of angular momentum. We will imagine the pre-existence of an m 6= 0
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Kelvin mode on an initially non-rotating star, and then calculate the value of Ω̇ that
the GW back-reaction induces. (We will look at the case where the mode is not pre-
existing in the next chapter.) Formally, once the star rotates, the mode eigenfunctions
will change, which means the mode energies and angular momenta would need to
be calculated again. However, in the slow rotation regime this will be a higher order
correction (in Ω) so we will not account for it here.

We follow a similar procedure as the r-mode analysis of Owen et al. (1998) and write
the total angular momentum of the system as

J ≡ IΩ + δJ (8.158)

where I is the NS’s moment of inertia and IΩ is the angular momentum of the bulk of
the NS. The difference here is that we used δJ to label the mode angular momentum,
whereas Owen et al. (1998) used Jc. As we showed in Section 8.6.2.2, Jc 6= δJ and the
physical mode angular momentum must be δJ. Differentiating with respect to time, we
get a torque-balance equation

J̇ = IΩ̇ + δ J̇ (8.159)

where we have discarded the İ term since the rotation corrections to I will be of higher
order. By conservation of angular momentum, J̇ = − J̇GW for our system, so that

− J̇GW = IΩ̇ + δ J̇ . (8.160)

There are two (completely equivalent) ways to find δ J̇. The first is to say δ J̇ = − 2δJ
τphys

(since the mode exponentially decays over the physical time-scale) and then substitute
in δJ and τphys. Or, we can differentiate the relation Jc = 2δJ from Equation (8.133) to
give

J̇c = 2δ J̇ (8.161)

which can be combined with the relation J̇c = − J̇GW from Equation (8.157) to give

δ J̇ = −1
2

J̇GW . (8.162)

We can use this to eliminate δ J̇ from Equation (8.160) to give

IΩ̇ = −1
2

J̇GW . (8.163)

Inserting the explicit form of J̇GW from Equation (8.101) we obtain

IΩ̇ =
1

10c5 mα2
2mρ̄ω7

2R10 . (8.164)
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This shows that if positive angular momentum is being lost from a prograde (m < 0)
mode, then we would have Ω̇ < 0 which rotates the initially static NS in the retrograde
direction. For a retrograde mode (m > 0), we have Ω̇ > 0, so the NS rotates in the
prograde direction.

To gain further insight, one can instead use Equation (8.162) to eliminate J̇GW from
Equation (8.160) to give

δ J̇ = IΩ̇ (8.165)

which can be integrated with respect to time

∫ ∞

0
δ J̇ dt =

∫ ∞

0
IΩ̇ dt . (8.166)

If we imagine that at t = 0 we deposit angular momentum δJ(0) into a mode on a
non-rotating (Ω(0) = 0) star, and integrate to t = ∞, so that the mode has completely
decayed away, we obtain

δJ(∞)− δJ(0) = IΩ(∞)− IΩ(0) (8.167)

such that

I∆Ω = −δJ(0) (8.168)

where ∆Ω is the change in angular velocity of the star as a result of the mode decaying
away.

Similarly, we can re-arrange Equation (8.163) to give

J̇GW = −2IΩ̇ (8.169)

which integrates to give

δJGW = −2I∆Ω (8.170)

where δJGW is the angular momentum radiated away as GWs. Substituting for I∆Ω
using Equation (8.168), we obtain

δJGW = 2δJ(0) . (8.171)

Therefore, we see that if one deposits angular momentum δJ(0) into an m 6= 0 Kelvin
mode on a non-rotating star, a total angular momentum of 2δJ(0) is ultimately radiated
away, whilst the star itself “recoils” by acquiring an angular momentum of −δJ(0). In
other words, the GW emission not only acts to reduce the angular momentum in the
mode, but actually “over-extracts” what is available, so to compensate, the NS rotates
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in the opposite direction of the mode to ensure angular momentum is conserved. As
far as we know, this is the first time this GW back-reaction has been reported.
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Chapter 9

Applying the oscillation model to
observations

In the previous chapter, we computed the physical mode energies and angular mo-
menta associated with the l = 2 Kelvin modes. We then computed the rate of change of
these quantities as a result of gravitational radiation reaction. From conserving energy
and angular momentum, we found, surprisingly, that gravitational radiation reaction
from non-axisymmetric modes not only damps the mode, but also produces a rotation
to the initially non-rotating star, with the direction of rotation opposing the direction of
mode propagation. We name this effect the “GW back-reaction”.

In this chapter, we explore the problem that originally inspired us to learn more about
Kelvin modes, which is the problem of modelling pulsar timing noise. The initial
idea for the model concerned only the angular frequency of a NS and asked the ques-
tion,“if non-axisymmetric modes, which carry angular momentum, are excited during
the spin-down of NSs, and its angular momentum were radiated away via GWs, could
these excitations somehow explain pulsar timing noise and could we verify this with
GW observations?”

As we saw in the last chapter, is not as simple as assuming that all the initial mode
angular momentum is radiated away during the GW damping of the mode, but rather,
it is twice the initial mode angular momentum that is radiated away. So, we will need
to incorporate this into our model.

Additionally, there were a set of intriguing observational papers by Espinoza et al.
(2014, 2021) that reported the existence of glitch candidates (GCs) and anti-glitch can-
didates (AGCs) which are described in more detail in Section 2.3.3.4. These correspond
to small instantaneous positive and negative step changes to the angular frequency
which we believe could be explained by mode excitations. Moreover, it is clear from
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the papers that these GCs and AGCs form a separate group from normal glitches, sug-
gesting the mechanism producing them need not be the same, e.g. does not have to be
vortex unpinning or starquakes.

One notable observation is that these GCs and AGCs show an instantaneous step change
in the spin-down rate immediately after they occur, with a sign opposite to that of the
change in angular velocity. There are other events too where the changes in spin-down
rate and angular frequency have the same sign, but we will not consider these here (see
Espinoza et al. (2021) for more details). We had not considered the spin-down rate in
our initial model but we provide a possible explanation via the coupling torque that
exists between the internal superfluid and normal matter.

The model can be summarised as follows. As a NS spins-down on long time-scales, a
mode with angular momentum δJ gets excited by some unspecified mechanism. As-
suming the mode angular momentum is taken from the NS’s rotational angular mo-
mentum, we find that the NS changes its rotational angular momentum by −δJ. Then,
as we saw in Chapter 8, GWs cause the mode to damp away (with 2δJ radiated away
as GWs) causing the NS’s rotational angular momentum to change by a further −δJ
meaning a total change of −2δJ, a result of both excitation and decay of the mode. If
δJ > 0, like for an m = −2 mode, then one finds that the NS spins down (∆Ω < 0). The
opposite case is true for m = 2. The model as presented is enough the explain changes
in just the angular frequency, so may be enough to explain timing noise.

On the other hand, if timing noise is in fact the aggregation of multiple GCs and AGCs,
then we also need to explain changes in the spin-down rate observed for GCs and
AGCs. When a NS is in steady-state, it is believed that there exists an interior pinned
superfluid component which is weakly coupled to the NS’s other matter (i.e. the crust
plus any unpinned superfluid - we will call this combination the “charged” matter,
even though overall it is electrically neutral, but this is in line with other works in the
literature (e.g. Andersson et al., 2012)). When there is a change in the relative angular
velocity between these two components (the pinned superfluid and charged matter),
the coupling torque increases in magnitude and acts to reduce the change.

This can be utilised in our model. We propose the spin-up caused by the excitation and
decay of an m = 2 mode only spins-up the charged matter (to which the magnetic field
is thought to be “frozen” to, and hence, electromagnetic observations dependent on).
This is expected as any torques cannot affect pinned superfluids. Then, the coupling
torque between the two components acts in a way which tries to decrease the angular
frequency of the charged matter (likewise, causes an increase to the spin-down rate,
i.e. ∆Ω̇ < 0).

Most importantly, since this model depends on non-axisymmetric modes being excited,
GWs are expected to be emitted. One could therefore test this model with GW obser-
vations.
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The rest of the chapter is arranged as follows. In Section 9.1, the total change in angular
velocity is computed by considering the excitation and damping of a non-axisymmetric
mode. Then, in Section 9.2, we consider a simple model for the coupling torque, which
allows us to fit to data from Espinoza et al. (2014, 2021) in Section 9.3. Finally, in Sec-
tion 9.4, we evaluate the detectability of the modes through GW observations and in
Section 9.5, we consider the energy budget that is required to power these modes. The
work presented in chapter is intended to be published as a paper in the near future.

9.1 Total change in angular velocity

In our model, we will be considering l = 2 Kelvin modes which get excited and then
subsequently damp away. It will be important to know the angular momentum of these
modes which is given by Equation (8.88) and is repeated below

δJ(t) = −1
2

mα2
2m(t)ρ̄ω2R5 (9.1)

where now we have put in an explicit time dependence, with t = 0 being the time when
some event occurs resulting in a mode being excited. We also learnt in Section 8.7.1 that
the mode amplitude gets damped on the physical time-scale, τphys, such that

α2m(t) = α2m(0)e
− t

τphys . (9.2)

The expression for τphys for l = 2 is given in Equation (8.155) and was found to have a
value τphys ≈ 0.06 s for a mode frequency of fmode = ω2

2π ≈ 2 kHz and a NS radius of
R = 10 km.

Together, the above two equations give

δJ(t) = −1
2

mα2
2m(0)ρ̄ω2R5e

− 2t
τphys ≡ δJ(0)e

− 2t
τphys (9.3)

where δJ(0) is dependent on m, but we will suppress any subscripts for clarity.

In our model, we will assume the excitation of a mode of angular momentum δJ(0)
comes at the expense of the rotational angular momentum of the NS. Therefore, the
change in the NS’s rotational angular momentum due to the excitation is

∆J = I∆Ωexcite = −δJ(0) → ∆Ωexcite = −
δJ(0)

I
(9.4)
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which assumes the moment of inertia does not change during the excitation event. We
also saw that the damping of the mode, through GW emission, causes a GW back-
reaction on the NS and was found to exert a torque

IΩ̇(t) =
1

10c5 mα2
2m(t)ρ̄ω7

2R10 → Ω̇(t) = − 2
τphys

δJ(0)
I

e
− 2t

τphys (9.5)

which can be integrated between t = 0 and the time until the next excitation event,
tnext, which gives

∆Ωdamp =
∫ tnext

0
Ω̇(t)dt = −δJ(0)

I

[
1− e

− 2tnext
τphys

]
(9.6)

which is the change in angular frequency due to the damping of the mode. Adding
these two effects together, we find that the total change in angular frequency due to the
excitation and damping of a mode is

∆Ω = ∆Ωexcite + ∆Ωdamp = −δJ(0)
I

[
2− e

− 2tnext
τphys

]
. (9.7)

If the excitation is not instantaneous but instead occurs over some finite time-scale, and
if we could resolve time-scales as short as τphys, then one might expect to see a two-step
increase to the angular frequency. However, this would only be possible for pulsars that
spin fast enough since τphys is already on the order of one rotation for the Crab and Vela.
It would be necessary to see the angular frequency change across multiple rotations to
be confident of such a finding.

Clearly, if the time until the next excitation event is much greater than the mode damp-
ing time-scale, i.e. tnext � τphys, then the change in angular frequency can be well
approximated as an instantaneous step change in angular frequency

∆Ω
Ω
≈ −2δJ(0)

IΩ
(9.8)

where we have normalised by the NS’s angular frequency so that both sides represents
the glitch size. Once again, we can see that a mode with positive angular momentum
causes a negative change to the angular frequency and vice versa. When we reinstate
the mode amplitude using Equation (9.3), we find

∆Ω
Ω
≈ 15

8π
mα2

2m(0)
ω2

Ω
(9.9)

where we also used I = 2
5 MR2 and ρ̄ = 3M

4πR3 . For the case of a fixed m and ω2, the
only free parameter left is the mode amplitude which controls how much the angular
frequency changes. Or, from the other direction, observations of a given glitch size (or
GW strain, see later) corresponds to a certain mode amplitude, if this model is to be
believed.
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With this model, we can explain changes in the angular frequency of NSs. For a sudden
instantaneous change, like a GC, AGC or even a glitch (if the mode amplitude allows),
our model would attribute this to the excitation and decay of a single non-axisymmetric
mode. There is also the possibility that modes are consecutively excited over some
period, which could lead to longer time-scale phenomena, like timing noise. At this
point, we will explore perhaps a related phenomena – GCs and AGCs. Maybe these
observations will help unravel the mystery behind what timing noise is and so we will
now proceed to model them.

9.2 The need for a coupling torque

In this section, we will address the change in spin-down rate observed for GCs and
AGCs. Figure 9.1 shows an example of this for the Crab. One can clearly see that GCs
and AGCs are distinct from glitches and have smaller changes to the spin frequency.
Similar to glitches, they have a measurable change in spin-up/down rate but unlike
glitches, these changes are instantaneous step changes and are not modelled (or seen)
to exponentially recover.

For the Crab and Vela, Espinoza et al. (2014, 2021) found that the fractional changes
in spin-down rate are about 104 - 105 times larger than the fractional changes in spin
frequency. Initially, one might want to see whether “conventional” spin-down, as indi-
cated by some braking index, could explain the difference. One could simply choose a
value of n = 3 for magnetic dipole radiation, or n = 5 for GW emission, but we will
keep it general below. From Equation (2.10), the spin-down rate can be written as

Ω̇ = −κΩn (9.10)

where κ is some constant of proportionality. We want to know how Ω̇ changes in re-
sponse to a change in the angular frequency, ∆Ω, so we perturb the above equation to
give

∆Ω̇ = −nκΩn−1∆Ω . (9.11)

Following on, one could substitute in the original equation to find

(
∆Ω̇
Ω̇

)
= n

(
∆Ω
Ω

)
. (9.12)

We see that with most theorised spin-down mechanisms, the braking index is not going
to give the required fractional change in Ω̇ which is 104 - 105 times larger than the
fractional change in Ω so we must resort to another mechanism.

In reality, we expect there to be at least two components to a NS, a superfluid compo-
nent and a normal (also called “charged” above) component (e.g. Baym et al., 1969b).
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FIGURE 9.1: A graph showing the change in spin frequency and change in spin-
up/down rate of different timing events of the Crab pulsar. GCs are marked with
black circles, AGCs with white circles and glitches with diamonds. The shaded areas
are representative areas in ∆ν - ∆ν̇ parameter space that are not observable, either
because the events are too small to be distinguished from noise (steepest slope), or
because the observational cadence is not high enough to catch the event happening

(smallest slope). Figure taken from Espinoza et al. (2014).

The superfluid component is mainly comprised of superfluid neutrons and the normal
component is the crust plus any other matter strongly coupled to it such as a proton su-
perconductor. It is thought that the superfluid and normal components are coupled
together, but when coupling is weak, the components are allowed to rotate at different
speeds. Then, because there is a lag, a coupling torque acts to try to rotate the two
components to the same speed, i.e. damps out any lag. We do not specify the cause of
the coupling torque, e.g. mutual friction, but keep it as some resistive torque which is
linear in the lag.

In the context of our problem, we could imagine, say, a retrograde mode being excited
which causes the NS to rotate in the prograde direction. Specifically, this would mean
that the normal component of the NS increases in spin frequency, with the superfluid
component unchanged due to the weak coupling and the short time-scale of the spin-
up (∼ mode damping time-scale). This causes a change in the lag where the normal
component now spins faster than what it used to. The coupling torque then acts in the
opposite direction so spins the normal component back down (over the coupling time-
scale) and, as we will soon see, does so with a spin-down rate large enough to explain
the GCs. For AGCs, everything is reversed.
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With that in mind, we will set up a set of torque-balance equations for the two separate
components, the superfluid component being indicated by a subscript ‘n’, for neutrons,
and the normal component with ‘c’, for the crust. In general, the crust would have some
constant external torque, such as a magnetic dipole torque, acting to spin it down. We
will indicate this with Next. Also acting on the crust would be the coupling torque
which spins the crust down when Ωc > Ωn. For the superfluid, there would be an equal
and opposite torque, as required by Newton’s 3rd law. Putting everything together, this
becomes

IcΩ̇c = Next −
Ic(Ωc −Ωn)

τcoup
(9.13)

InΩ̇n =
Ic(Ωc −Ωn)

τcoup
(9.14)

where the choice of Ic in the coupling torque sets the interpretation of τcoup (but could
equally be In or I = Ic + In for a different interpretation) and τcoup is the coupling
time-scale, which is a free parameter in this model. Here, τcoup can be thought of as
the typical time it takes for a change in lag from an event to be damped out by the
accompanying change in spin-down rate.

When we solve these coupled ODEs for Ω̇c and Ω̇n, we find the solutions

Ω̇n(t) = Ω̇∞ + (Ω̇n,0 − Ω̇∞)e
− I

In
t

τcoup (9.15)

Ω̇c(t) = Ω̇∞ −
In

Ic
(Ω̇n,0 − Ω̇∞)e

− I
In

t
τcoup (9.16)

where Ω̇∞ is the steady-state spin-down rate of system, i.e. when Ω̇c = Ω̇n ≡ Ω̇∞, and
is given by

Ω̇∞ ≡
Next

I
(9.17)

and Ω̇n,0 is the initial spin-down rate of the superfluid which is given by

Ω̇n,0 ≡
Ic

In

ω0

τcoup
(9.18)

where ω0 ≡ Ωc,0−Ωn,0 is the initial lag. Since our coupled ODEs are linear, we can eas-
ily use Equations (9.15) and (9.16) to tell us how the system would behave in response
to a perturbation (GC, AGC or glitch)

∆Ω̇n(t) =
Ic

In

∆ω0

τcoup
e−

I
In

t
τcoup (9.19)

∆Ω̇c(t) = −
∆ω0

τcoup
e−

I
In

t
τcoup (9.20)
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where we have assumed the external torque and moment of inertias remain the same
after the event. Glitches have a much larger ∆ω0 when compared to GCs and AGCs.
Now, t = 0 corresponds to the time of the event and quantities labelled with ∆ represent
changes due to the event. We see that for t � In

I τcoup, the changes in spin-down rates
are essentially step changes, but if observed for long enough afterwards, a recovery
would be seen with a recovery time-scale of

τEM ≡
In

I
τcoup . (9.21)

For glitches, τEM is the usual post-glitch recovery time-scale. This recovery is typically
observed as there is enough time between glitches. On the other hand, GCs and AGCs
occur more frequently than glitches, so any recovery would be interrupted by another
event which makes the change in spin-down rate appear step-like. We will assume that
GCs and AGCs have the same τEM as glitches.

We now move on to linking the observed change in spin-down rate (Equation (9.20))
to a change in crustal angular frequency. Taking the change in spin-down rate as being
step-like, we can write

∆Ω̇c ≈ −
∆Ωc − ∆Ωn

τcoup
≈ − ∆Ωc

τcoup
(9.22)

if the change in superfluid angular frequency is much smaller than the change in the
crust, i.e. ∆Ωn � ∆Ωc. This would happen if the angular momentum emitted via GWs
affected the crustal component only. Dividing both sides by Ω̇c and re-expressing it as
the characteristic age on the right hand side, τc = − Ωc

2Ω̇c
, we find the simple relation

∆Ω̇c

Ω̇c
≈ 2τc

τcoup

(
∆Ωc

Ωc

)
. (9.23)

This equation shows that, using a linear coupling torque, the fractional change in the
spin-down rate is 2τc

τcoup
larger than the fractional change in the spin frequency. For

young pulsars, we might expect τc ∼ 104 - 105 years and the coupling time-scale is
typically set to the recovery time-scale of a glitch, so anything on the order of months
to years. This means the ratio of the two time-scales may give the required factor to
explain the vast difference in magnitudes between the observed fractional change in
spin-down rate and spin frequency for GCs and AGCs.

9.3 Applying the model to Espinoza et al. (2014, 2021) data

The model is now sufficiently detailed to explain the origin of the GCs and AGCs de-
scribed in Espinoza et al. (2014, 2021). In this section, we will use our model to make
predictions and then make a comparison to observed data.
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There are a few assumptions that went into the modelling and we will state them here
for clarity. They are:

• The mode decay time-scale is much smaller than the time between events, τphys �
tnext – to allow for an instantaneous spin-up/down event

• The time between events is much smaller than the coupling time-scale (weighted
by the fractional superfluid moment of inertia), tnext � In

I τcoup – to allow for
step-like changes (appear not to recover)

• There is no change to the component moment of inertias or external torque at the
event – to make Equation (9.23) simpler

• Any change in the superfluid angular frequency is much smaller than the step
change in the crust’s angular frequency, ∆Ωn � ∆Ωc – to make Equation (9.23)
simpler.

For these assumptions, we found

∆Ω
Ω
≈ 15

8π
mα2

2m(0)
ω2

Ω
(9.24)

from Equation (9.9) and

∆Ω̇
Ω̇
≈ 2τc

τcoup

(
∆Ω
Ω

)
=

15
4π

mα2
2m(0)

τc

τcoup

ω2

Ω
(9.25)

from Equation (9.23). Note that the first equality in Equation (9.25) relates ∆Ω̇ to ∆Ω
and is agnostic to whatever causes the change in angular frequency. However, here
we will focus on the excitation and decay of modes as what causes ∆Ω. In this case,
we see that we have a two-parameter model, with α2m(0) and τcoup being the model
parameters (for a given m, taken to be |m| = 2 here). Since we know how τcoup relates
to τEM from Equation (9.21), and we know, from existing glitch recovery literature, the
range of values that τEM takes, we are able to recast the model parameter from τcoup to
In
I instead. In the absence of electromagnetically observed glitch recovery time-scales,

one can use τcoup as a model parameter directly.

A collection of glitch recovery time-scales for the Crab and Vela are found in Table 9.1
and Table 9.2 respectively. From these tables, we see that

Crab : 2 d < τEM < 56 d (9.26)

Vela : 1.6 d < τEM < 351 d . (9.27)

Multiplying by I
In

gives a range of values for τcoup. Typically, glitches require a su-
perfluid fraction of at least In

I & 0.01 which is thought to come from either the crustal
superfluid alone, or with an additional contribution from part of the core superfluid
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TABLE 9.1: A table of glitch recovery time-scales for the Crab pulsar. Note that the
recovery time-scales depend on the timing model used so it is expected for there to be
variations between two groups reporting on the same glitch. The data in the 2nd to

4th columns come from the JBCA Glitch Database (Espinoza et al., 2011).

Crab

Date MJD ∆ν
ν

∆ν̇
ν̇ τEM [d] Reference

27/09/1969 40491.80 7.20× 10−9 4.4× 10−4 18.7± 1.6 Lyne et al. (1993)
5± 2 Lyne et al. (2000)

29/07/1971 41161.98 1.90× 10−9 1.7× 10−4 . . . . . .
26/10/1971 41250.32 2.10× 10−9 1.1× 10−4 . . . . . .
04/02/1975 42447.26 3.57× 10−8 1.6× 10−3 18± 2 Lyne et al. (1993)

15.5± 0.2 Lyne et al. (2000)
21/08/1986 46663.69 6.00× 10−9 5.0× 10−4 9.3± 0.2 Lyne et al. (1993)

9.3± 0.2 Lyne et al. (2000)
29/08/1989 47767.504 8.10× 10−8 3.4× 10−3 18± 2 Lyne et al. (1993)

18± 2 Lyne et al. (2000)
19/11/1992 48945.6 4.20× 10−9 3.2× 10−4 2.0± 0.4 Wong et al. (2001)
30/10/1995 50020.04 2.10× 10−9 2.0× 10−4 3.2+7.3

−2.2 Wong et al. (2001)
26/06/1996 50260.031 3.19× 10−8 1.73× 10−3 10.3± 1.5 Wong et al. (2001)
10/01/1997 50458.94 6.10× 10−9 1.1× 10−3 3.0+0.5

−1.1 Wong et al. (2001)
10/02/1997 50489.7 8.00× 10−10 −2.0× 10−4 2.2 Wong et al. (2001)
30/12/1997 50812.59 6.20× 10−9 6.2× 10−4 2.9± 1.8 Wong et al. (2001)
01/10/1999 51452.02 6.80× 10−9 7.0× 10−4 3.4± 0.5 Wong et al. (2001)
15/07/2000 51740.656 2.51× 10−8 2.9× 10−3 4.0 Wang et al. (2001)
17/09/2000 51804.75 3.50× 10−9 5.3× 10−4 . . . . . .
24/06/2001 52084.072 2.26× 10−8 2.07× 10−3 . . . . . .
25/08/2001 52146.758 8.90× 10−9 5.7× 10−4 . . . . . .
12/08/2002 52498.257 3.40× 10−9 7.0× 10−4 . . . . . .
09/11/2002 52587.20 1.70× 10−9 5.0× 10−4 . . . . . .
03/03/2004 53067.078 2.14× 10−7 6.2× 10−3 21.1± 0.8 Wang et al. (2012)

24± 1 Ge et al. (2020)
06/09/2004 53254.109 4.90× 10−9 2.0× 10−4 . . . . . .
22/11/2004 53331.17 2.80× 10−9 7.0× 10−4 . . . . . .
23/08/2006 53970.190 2.18× 10−8 3.1× 10−3 7.3± 3.4 Wang et al. (2012)
24/04/2008 54580.38 4.70× 10−9 2.0× 10−4 . . . . . .
10/11/2011 55875.5 4.92× 10−8 . . . 10.6± 0.3 Ge et al. (2020)
27/03/2017 57839.92 2.14× 10−9 2.7× 10−4 . . . . . .
07/11/2017 58064.555 5.16× 10−7 6.969× 10−3 38.6± 3.4 Zhang et al. (2018)

56± 1 Vivekanand (2020)
45.9± 0.3 Ge et al. (2020)

29/04/2018 58237.357 4.08× 10−9 4.6× 10−4 . . . . . .
18/12/2018 58470.939 2.36× 10−9 3.60× 10−4 . . . . . .
23/07/2019 58687.59 3.60× 10−8 . . . . . . . . .

(Andersson et al., 2012). A superfluid fraction of In
I & 0.01 means the coupling time-

scale will be around 100 times larger than the observed electromagnetic time-scale.
However, for GCs and AGCs it is different. As we will see shortly, we require that the
superfluid fraction be on the order of unity, In

I ∼ 1, to be able to explain GC and AGC
data. This suggests that GCs and AGCs utilise all the superfluid in both the core and
crust, if the model is correct.

Next, we consider the initial mode amplitude, α2m(0). The initial mode amplitude
depends on how these modes are triggered so ideally it would come from detailed
modelling of the trigger mechanism. In absence of this, there is an alternative method
to proceed. Observationally, a change in spin frequency, ∆ν, maps onto a corresponding
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TABLE 9.2: A table of glitch recovery time-scales for the Vela pulsar. The glitch recov-
ery of the Vela pulsar is normally best fitted with the sum of two or more decaying
exponentials, hence why there are two time-scales provided. We have omitted the
very shortest of recoveries (< 1 d) and for the glitches fitted by Yu et al. (2013) and
Basu et al. (2020), only one exponential was fitted. Note that the recovery time-scales
depend on the timing model used so it is expected for there to be variations between
two groups reporting on the same glitch. The data in the 2nd to 4th columns come

from the JBCA Glitch Database (Espinoza et al., 2011).

Vela

Date MJD ∆ν
ν

∆ν̇
ν̇ τ1 [d] τ2 [d] Reference

28/02/1969 40280 2.34× 10−6 1.00× 10−2 10.0± 1.0 120.0± 6.0 Cordes et al. (1988)
29/08/1971 41192 2.05× 10−6 1.50× 10−2 4.0± 1.0 94.0± 5.0 Cordes et al. (1988)
27/12/1971 41312 1.20× 10−8 3.00× 10−3 10.0± 0.5 . . . Cordes et al. (1988)
28/09/1975 42683 1.99× 10−6 1.10× 10−2 4.0± 0.4 35.0± 2.0 Cordes et al. (1988)
04/07/1978 43693 3.06× 10−6 1.80× 10−2 6.0± 0.6 75.0± 3.0 Cordes et al. (1988)
11/10/1981 44888.4 1.15× 10−6 4.90× 10−2 1.6± 0.2 233± 1 McCulloch et al. (1987)

6.0± 0.6 14.0± 2.0 Cordes et al. (1988)
11/08/1982 45192 2.05× 10−6 2.30× 10−2 3.2± 0.5 60± 9 McCulloch et al. (1987)

3.0± 0.6 21.5± 2.0 Cordes et al. (1988)
11/07/1985 46257.228 1.60× 10−6 1.70× 10−2 6.5± 0.5 332± 10 McCulloch et al. (1987)
24/12/1988 47519.804 1.81× 10−6 7.70× 10−2 4.64± 0.02 351± 1 McCulloch et al. (1990)

4.0± 0.5 96± 5 Flanagan (1990)
20/07/1991 48457.382 2.72× 10−6 6.00× 10−1 . . . . . . . . .
26/07/1994 49559 8.35× 10−7 0 . . . . . . . . .
27/08/1994 49591.2 1.99× 10−7 1.20× 10−1 . . . . . . . . .
12/10/1996 50369.345 2.11× 10−6 5.95× 10−3 . . . 186± 12 Yu et al. (2013)
16/01/2000 51559.31 3.09× 10−6 6.74× 10−3 . . . 125± 83 Yu et al. (2013)
07/07/2004 53193 2.10× 10−6 . . . . . . 37± 11 Yu et al. (2013)
13/08/2006 53960 2.62× 10−6 2.30× 10−1 . . . 73± 8 Yu et al. (2013)
31/07/2010 55408.8 1.94× 10−6 7.50× 10−2 . . . . . . . . .
21/09/2013 56556 3.10× 10−6 1.48× 10−1 . . . . . . . . .
22/09/2014 56922 4.00× 10−10 1.00× 10−4 . . . . . . . . .
12/12/2016 57734.485 1.43× 10−6 . . . . . . 32± 2 Basu et al. (2020)

estimate for the initial mode amplitude, α2m(0), as seen in Equation (9.24), so a value of
∆ν can tell us what α2m(0) needs to be.

On a graph of ∆ν and ∆ν̇, the observed range of τEM with In
I = 1 permits only a cer-

tain region in that parameter space. This is identified as the area between the dashed
lines in Figures 9.2 and 9.3, where we have applied our model to the Crab and Vela.
To get to any position within the allowable area, one simply chooses the appropriate
combination of α2,2(0) and τEM, within the specified limits for τEM.

As for how the boundaries set by the dashed lines are determined, we consider the
upper and lower boundaries separately. The minimum τEM determines the boundary at
the top, with smaller minimum τEM values pushing the boundary higher. Conversely,
the maximum τEM determines the boundary at the bottom, with greater maximum τEM

values pushing the boundary lower. Finally, to move right and left within the dashed
lines, one increases or decreases the value of the initial mode amplitude, respectively.
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FIGURE 9.2: The area between the dashed lines shows the allowable parameter space
that our model permits for the Crab pulsar given the observational constraints on τEM
and after setting In

I = 1. The grey band is the same but for In
I = 0.07. The filled black

circles represent GCs, the filled white circles represent AGCs and the grey diamonds
represent glitches. GC and AGC data provided by C. M. Espinoza.

Looking at Figures 9.2 and 9.3, one finds that our model can explain GCs and AGCs
remarkably well when In

I = 1, with most GC and AGC events falling within the allow-
able region. Interestingly, glitches for the Crab also fall into the allowable band when
In
I = 1, and only if the mode amplitude is allowed to be large enough. This is not the

case for Vela’s glitches however. This possibly hints at a different nature between the
Crab and Vela’s glitches, and in the context of this model, could mean that Vela requires
a smaller superfluid fraction for glitches. In fact, if we decrease the superfluid fraction
to In

I = 0.07, motivated by the findings of Andersson et al. (2012), then the entire allow-
able band drops downwards on the graph and fits nicely over most of Vela’s glitches
(and misses most of the GCs and AGCs). This is shown by the grey band in the figures.

For Vela, this suggests its glitches require a smaller superfluid fraction compared to its
GC and AGC events. This corresponds to a long coupling time-scale for its glitches and
a short coupling time-scale for its GCs and AGCs. For the Crab, the superfluid fraction
for glitches and GCs/AGCs are the same. Between the Crab and Vela, Vela’s glitches
require a smaller superfluid fraction compared to the Crab, assuming this model can
be applied to glitches. For both the Crab and Vela, GCs and AGCs require a superfluid
fraction of In

I = 1.
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FIGURE 9.3: The area between the dashed lines shows the allowable parameter space
that our model permits for the Vela pulsar given the observational constraints on τEM
and after setting In

I = 1. The grey band is the same but for In
I = 0.07. The filled black

circles represent GCs, the filled white circles represent AGCs and the grey diamonds
represent glitches. GC and AGC data provided by C. M. Espinoza.

As the crustal superfluid only accounts for about 2% of the total moment of inertia
of a 1.4 M� NS (e.g. Ravenhall and Pethick, 1994), we conclude that part of the core
superfluid is required to generate GCs, AGCs and glitches within this model. Further
improvements to this simple model could help us understand more about the relatively
unknown NS core, such as how much superfluid it contains.

9.4 Gravitational wave detectability of the l = 2 Kelvin modes

We have just seen that GCs and AGCs can be modelled using the model described here.
As we know, non-axisymmetric modes give off GWs so the next natural question to ask
is whether the GWs are detectable or not. If so, one could search for these predicted
GWs to see if it is possible to falsify this model.

We begin by considering the SNR. From Section 3.5, the optimal SNR, ρ0, is defined as

ρ2
0 ≡ 4

∫ ∞

0

|h̃( f )|2
Sn( f )

d f (9.28)
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where |h̃( f )|2 = h̃∗( f )h̃( f ) and the tilde represents a Fourier transform. For a source
that emits a GW signal whose amplitude changes but frequency remains fixed during
the change in amplitude, such as a decaying oscillation mode or transient mountain,
the power spectral density, Sn( f ), remains almost constant so can be taken out of the
integral. This leads to

ρ2
0 =

4
Sn( f )

∫ ∞

0
|h̃( f )|2d f . (9.29)

Note that the frequency in Sn( f ) is the GW frequency but the f in the integral is only a
summation (dummy) variable. We then use Parseval’s theorem to write

2
∫ ∞

0
|h̃( f )|2d f =

∫ ∞

−∞
|h̃( f )|2d f =

∫ ∞

−∞
|h(t)|2dt . (9.30)

These relations can be seen from working from the middle outwards, i.e. the first equal-
ity is due to the |h̃( f )|2 being an even function and the final equality is Parseval’s the-
orem. This then allows us to write

ρ2
0 =

2
Sn( f )

∫ ∞

−∞
|h(t)|2dt . (9.31)

For a exponentially-decaying GW signal of the form

h(t) ≡ h0(t) cos [Φ(t)] ≡ h0(0)e
− t

τGW cos [Φ(t)] (9.32)

for t ≥ 0, where h0(t) is the GW amplitude and Φ(t) is the GW phase, the optimal SNR
can be shown to be equal to

ρ2
0 =

h2
0(0)τGW

2Sn( f )
→ ρ0 =

h0(0)
√

τGW√
2Sn( f )

. (9.33)

With this in mind, we now turn our attention to calculating the GW signal we would
expect from a decaying Kelvin mode and compare to Equations (9.32) and (9.33) to find
the associated SNR.

We begin with the easier task of finding what τGW is. We know that h(t) for the Kelvin
modes is proportional to the mode amplitude and the mode amplitude decays away
on the mode damping time-scale, τphys. Therefore, it is clear to see that

τGW = τphys =
625
32

c5

G3
R4

M3 (9.34)

which we read off from Equation (8.155) and used ω2
2 = 4GM

5R3 to get into the form above.

Next is to find h0(0). One can get this by looking at the rate of change in GW energy
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which, for the special case of l = 2, |m| = 2 deformations, is given by the time deriva-
tive of Equation (5.24)

ĖGW =
1
10

c3

G
ω2

2d2h2
0 (9.35)

where we used 2π f = ωGW = 2ωp = ω2 with ωp being the pattern speed. This is also
consistent with Equation (21) of Owen (2010). Conveniently, we already have ĖGW for
the Kelvin modes which was calculated earlier in Equation (8.99). So, we substitute it
into the left hand side of the above equation and rearrange for h0(0) to give

h0(0) =
4
25

√
30
π

α2,2(0)
G2

c4
M2

R
1
d

(9.36)

where again, we used ω2
2 = 4GM

5R3 .

Looking at Equation (9.36), one can place an upper limit on α2,2(0) if GW observations
place an upper limit on h0(0). As an aside, we note that there was a dedicated burst
search conducted on Vela’s August 2006 glitch (Abadie et al., 2011) which yielded an
upper limit of h0(0) < 6.3× 10−21. So far, this is the strictest upper limit for GWs from
glitches (that match the GW time-scales considered here). This corresponds to an upper
limit of α2,2(0) < 2.6× 10−4. To quickly convert between h0(0) and α2,2(0), we state

α2,2(0) = 1.4× 10−4
(

M
1.4 M�

)−2 ( R
10 km

)(
d

1 kpc

)(
h0(0)

1× 10−21

)
. (9.37)

Next, we ask what the SNR is as a function of α2,2(0). Putting Equations (9.34) and
(9.36) into the equation for the SNR (squared), Equation (9.33), we get

ρ2
0 =

15
2π

α2
2,2(0)

G
c3

1
Sn( f )

MR2 1
d2 (9.38)

or when we put in representative values of α2,2(0) = 1× 10−6, M = 1.4 M�, R = 10 km,
d = 1 kpc,

√
Sn( f ) = 1× 10−24 Hz−

1
2 (the value at f = 2 kHz for the ET), we get

ρ0 = 1.3
(

α2,2(0)
1× 10−6

)( √
Sn( f )

1× 10−24 Hz−
1
2

)−1 (
M

1.4 M�

) 1
2
(

R
10 km

)(
d

1 kpc

)−1

.

(9.39)

Besides from effects of different distances, masses and radii, it is clear that the SNR does
not change between different NSs. If we take the distance as given, then it is clear that
GWs from mode oscillations can inform us more about the mass and radius, and hence
provide constraints for the interior, which highlights one of the main motivations of
GW astroseismology.

Instead of writing the SNR as a function of α2,2(0), we can directly write it as a function
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FIGURE 9.4: This histogram shows the SNR attainable by the ET for the predicted
GWs from GCs, AGCs and glitches for the Crab pulsar. Some SNRs are not shown for

clarity. These are at values of: 20.0, 32.6 and 50.6, all of which belongs to glitches.

of ∆ν as our model allows us to change easily between the two via Equation (9.24).
Doing so gives

ρ2
0 =

2π
√

5G
c3

1
Sn( f )

M
1
2 R

7
2 d−2∆ν (9.40)

for |m| = 2. Figures 9.4 and 9.5 show histograms of the SNR that one finds when the
above equation is applied to Crab and Vela data assuming ET sensitivity. For the Crab,
GCs and AGCs have a SNR ∼ 1, whereas the SNR is around ∼ 5 for Vela. It appears
that GWs from individual GCs or AGCs will not be detectable with the ET. However, it
might be possible to coherently stack signals which improves the SNR by

√
Nexcite, with

Nexcite being the number of mode excitation events. This means that, for GCs/AGCs
from Vela, one would need to stack between 2 - 5 events before the combined signal
has a SNR that exceeds the detection threshold.

What is perhaps equally as interesting, but also fairly speculative, is to suggest that
glitches are caused by the excitation and decay of an m = 2 mode instead of vortex
unpinning or starquakes. This would require α2,2(0) to be sufficiently large. One can
find the SNRs that glitches would give (for the ET) in Figures 9.4 and 9.5. Some of
the Crab’s largest glitches and all of Vela’s glitches should be detectable. In fact, Vela’s
glitch SNRs for the ET are so large that we can consider what they would be for aLIGO
(at design sensitivity). The results of this are shown in Figure 9.6.

One can see that even with aLIGO, we will be able to put this idea to the test. For
the largest Vela glitch, the corresponding initial mode amplitude needs to be α2,2(0) =
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FIGURE 9.5: This histogram shows the SNR attainable by the ET for the predicted
GWs from GCs, AGCs and glitches for the Vela pulsar. Note the change in scale after
the break on the x-axis. Some SNRs are not shown for clarity. These are at values of:

33.9, 138.0 and 330.9, all of which belongs to glitches.

FIGURE 9.6: This histogram shows the SNR attainable by aLIGO at design sensitivity
for the predicted GWs from glitches for the Vela pulsar. Some SNRs are not shown for

clarity. These are at values of: 0.7, 3.7 and 14.9.
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1.2× 10−4. From Abadie et al. (2011), we find an observational limit of α2,2(0) < 2.6×
10−4 when their upper limit on h0(0) is cast to our model. This means that as far as
GW observations are concerned, this idea is still plausible but could probably be ruled
out, or upper limits set, with the next GW burst search coincident with a pulsar glitch.
Current detectors are much more sensitive than what was used in Abadie et al. (2011).

9.5 Calculating the energies involved

So far, we have only considered the angular momentum of the NS system and like
Chapter 7, we will now consider the energetics of our model. There is a slight differ-
ence here in that we consider (steady-state) power budgets rather than energies. The
quantities we will be calculating are: the power required to sustain the GCs and AGCs,
i.e. how much power we will need to give to the modes for them to exist, and the power
that can be obtained from elasticity. Both quantities will be given as a fraction of the
spin-down power, Ėspin-down = −4π2 Iνν̇.

In the following subsections, it will be useful to know how many GCs/AGCs there
were and over what timespan they occurred. For the Crab, there were 381 GCs and 383
AGCs (for a total of 764 events), and they occurred over a timespan of Tobs ≈ 10620 d
(Espinoza et al., 2014). Likewise, for Vela, there were 83 GCs and 66 AGCs (for a total
of 149 events) that occurred over a timespan of Tobs = 6865 d (Espinoza et al., 2021).
Also, so that everything is in one place, νCrab = 29.6 Hz, ν̇Crab = −3.68× 10−10 Hz s−1,
νVela = 11.2 Hz and ν̇Vela = −1.56× 10−11 Hz s−1.

9.5.1 Energy required to power the Kelvin modes

We already know how much energy it takes to excite an individual Kelvin mode from
Equation (8.82), denoted by δE. Therefore, the average power required to power these
modes is given by

〈Ėmode〉 =
N 〈δE〉

Tobs
=

3
5π
〈α2

2,2〉
GM2

R
N

Tobs
(9.41)

where N is the total number of GCs and AGCs and the angled brackets indicates an
average. Using the GC and AGC data from Figures 9.2 and 9.3, we can convert ∆ν

values into α2
2,2 using Equation (9.24) and then take an average. This gives 〈α2

2,2〉 =
4.3× 10−12 for the Crab and 〈α2

2,2〉 = 1.4× 10−12 for Vela. Using these values in the
equation above, along with the values of N and Tobs from Espinoza et al. (2014, 2021),
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we get

Crab: Ėmode = 3.6× 1035




√
〈α2

2,2〉
2.1× 10−6




2 (
M

1.4 M�

)2 ( R
10 km

)−1

erg s−1 (9.42)

Vela: Ėmode = 3.5× 1034




√
〈α2

2,2〉
1.2× 10−6




2 (
M

1.4 M�

)2 ( R
10 km

)−1

erg s−1 (9.43)

which, when expressed as a fraction of the spin-down energy, Ėspin-down = −4π2 Iνν̇, is

Crab:
Ėmode

Ėspin-down
∼ 7× 10−4 (9.44)

Vela:
Ėmode

Ėspin-down
∼ 4× 10−3 . (9.45)

This shows that we need less than 1% of the spin-down power to sustain the excitation
of Kelvin modes as frequently as they appear in observations. As for GWs, this means
that there is a up to 1% of the spin-down power available for GW emission if this model
is to be believed.

9.5.2 Energy attainable from elasticity

We have shown that we need around 10−3 of the spin-down power to power our modes
but we need some mechanism to explain where this energy comes from. A natural place
to look at is the elastic energy that is stored in the crust as the NS spins down. Here, we
will do a rough calculation to see how much energy we can extract from the elasticity
in the crust.

One can imagine that at some point in time, a NS is rotating at some angular velocity
which gives it some oblateness. As the NS spins down, the oblateness wants to decrease
due to a weakening centrifugal force, but the rigidity of the crust prevents it from doing
so. This then strains the crust so we get a build up of elastic energy that we could
harness for the excitation of our modes. This is build up of elastic strain is essentially a
part of the starquake model.

Therefore, we return to the Baym and Pines (1971) model for starquakes which is de-
tailed in Section 7.1. The elastic energy can be written as

Eel = B(εref − ε)2 (9.46)
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where B ≈ 6× 1047 erg, and the oblateness can be written as

ε =
IsphΩ2

4(A + B)
+

B
A + B

εref (9.47)

which is also stated in Equation (7.8). A is a constant that equals A ≈ 6.3× 1052 erg. εref

is the reference oblateness which is the oblateness when there is no strain in the crust.
This means εref > ε. One can differentiate the two equations above with respect to time
to find

Ėel = −2Bε̇(εref − ε) (9.48)

and

ε̇ =
IsphΩΩ̇

2(A + B)
=

Ėspin-down

2(A + B)
(9.49)

where we have assumed the reference oblateness does not change during the interglitch
period, i.e. ε̇ref = 0. We then substitute ε̇ into Equation (9.48) and use the fact that the
largest strain the NS is able to endure is the breaking strain, εref − ε = ubreak, which is
typically taken as 0.1 (Horowitz and Kadau, 2009; Baiko and Chugunov, 2018). This
means the power we can get from elasticity is

|Ėel|
Ėspin-down

=
B

A + B
ubreak ∼ 10−6 . (9.50)

Clearly this is around 3 orders of magnitude too small to power our Kelvin modes and
so elasticity alone cannot be the driver of these modes. In a more realistic situation, one
would expect the NS to contain a superfluid, so like with glitches, some energy may be
harnessed from there. We will explore this idea in the future.
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Chapter 10

Overall summary

In this thesis, we have given an overview of the most important aspects of radio pulsar
astronomy, GW astronomy and fluid dynamics. This allowed us to create two separate
models for pulsar timing irregularities: one for pulsar glitch recoveries and the other for
glitch candidates (GCs) and anti-glitch candidates (AGCs), which can be thought of as
small glitches and may play a role in understanding timing noise. Both models include
elements of multi-messenger astronomy, with electromagnetic observations being used
to make predictions for the GWs emitted. This makes the models falsifiable with future
GW observations.

The first of the novel models is the transient mountain model, which could be an ex-
planation for glitch recoveries (Yim and Jones, 2020). In this model, as soon as a NS
glitches, a mountain is formed which causes a braking torque on the NS. This is hinted
at by observations of ∆ν̇ < 0 immediately after the glitch. Then, during the glitch
recovery phase, the value of ν̇ appears to exponentially recover back to pre-glitch val-
ues, which in the context of our mountain means it must be decaying away. We found
the transient mountain would have a decay time-scale of 2τ, where τ is the recovery
time-scale of the glitch as seen in electromagnetic data. We were able to write down
the exact GW waveform expected for such a model and this can be easily incorporated
into existing GW searches, though limited by computational cost. Using the transient
mountain model, we can predict which glitches produce detectable GWs.

We then applied the transient mountain model to several astrophysical scenarios: the
glitches of the Crab, Vela and J0537-6910; the long and short term braking index be-
haviours of J0537-6910; the fast ∼ 100 s glitch recovery observed in the 2016 Vela
glitch; fast, unresolved glitch recoveries from any pulsar; and the burst GW candidate
S200114f.

We found that the negative long term braking index of J0537-6910 could be explained
by a small increase to a permanent mountain at every glitch (∆εp ≈ 1.6 × 10−9 on
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average). We also showed that the short term exponential recovery of J0537-6910’s
post-glitch braking indices is a natural consequence of having transient mountains.
Consequently, we provided expressions for the braking index in terms of the model
parameters. Future work could involve fitting the braking index model to data.

As for the fast recovery after the 2016 Vela glitch, which was coincident with the O2
run, we found that the transient mountain size would have to be ε = 0.19 in order to
explain the large change in ν̇ after the glitch. This, of course, is too large to be physical.
Even if it were physically possible, our model still predicts that the associated GWs
would not be detectable with aLIGO detectors during O2. Another interesting idea is
whether the spin-down reported pre-glitch (Ashton et al., 2019) could be evidence of
the formation of a transient mountain. In such a scenario, we would expect GWs to be
emitted before the glitch. As of right now, nobody has carried out a GW search in the
appropriate parameter space so this could be a relatively quick extension.

From studying the fast recovery of the 2016 Vela glitch, a question was asked on whether
all glitches have a fast recovery and perhaps it is a lack of observational cadence that
has prevent us from seeing them previously. We initially explored this idea by propos-
ing every glitch from every pulsar forms a transient mountain of size ε = 0.19 which
lasts ∼ 200 s. We then calculated the SNR for the GWs emitted and provided a list of
pulsars that presented detectable GWs with aLIGO. However, when the mountain size
was reduced to a more realistic value, no pulsar produced detectable GWs, but this
was not surprising as even conventional CW searches, which last much longer, have
not been successful.

Finally, there was an idea based on the scenario where a GW signal is detected but the
electromagnetic counterpart is not. There was one such case in O3, S200114f, and it was
of particular interest because it was a burst candidate. We tested the idea that S100114f
was due to a very short-lived transient mountain on a NS with spin-frequency ν =
1
2 f , where the GW frequency for S200114f was f = 64.69 Hz. It was initially thought
that any glitching pulsar, with approximately the correct spin frequency, coincident
on the sky with the S100114f, could be a electromagnetic search candidate. However,
we found that in order for the signal to be detectable, it would either have a transient
mountain much larger than what is physically allowed, or that it is closer than the
nearest pulsar ever recorded. We conclude that a transient mountain is unlikely the
cause of S200114f.

Throughout all the above calculations, we had not accounted for whether it was en-
ergetically possible for transient mountains to form, especially at the large sizes we
were calculating them to be. First, we found pessimistic and optimistic estimates of
how much elastic energy is available to build mountains. The pessimistic calculation
assumed that the elastic strain built up between glitches is completely relieved at each
glitch. In other words, we were looking for a steady-state solution. The optimistic
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calculation on the other hand assumed that the NS was maximally strained early in
its life and that glitches are a way for the NS to divest its stored strain. This was a
non-steady-state solution. The estimates were compared to the energy it took to build
a mountain and it was found that elasticity alone is not enough to explain mountain
formation. More could be done to improve this outlook, for example, if we consider a
pinned superfluid which could support larger mountains.

The aim of the latter half of the thesis was to develop a model that could explain pulsar
timing noise. Like with the transient mountain model, it was important that there
were aspects of GWs included as their (non-)observation could provide an independent
test for the model. Although the timing noise model is not fully complete, the main
ideas can be easily summarised and some interesting physics has resulted during the
development stages of the model.

The novel idea is that NS oscillations could be what is causing timing noise. As a
NS evolves, one could imagine a non-axisymmetric oscillation mode being excited
by some unspecified mechanism (perhaps related to starquakes) and due to the non-
axisymmetric nature of the mode, GWs are emitted. This has the effect of radiating
angular momentum away which, by the conservation of angular momentum, changes
how much angular momentum the NS has. Through a choice of which mode is ex-
cited, the NS could lose negative or positive angular momentum which has the effect
of spinning-up or spinning-down the NS. If there are consecutive mode excitations,
then the changes in angular frequency could combine coherently to give rise to long
time-scale timing phenomena such as timing noise.

In reality, the problem goes much deeper than this. In Chapter 8, we derived from first
principle the Kelvin modes, which are f-modes on non-rotating, uniformly-dense and
incompressible NSs. These assumptions allowed our work to be completely analytic.
We were able to formulate the Kelvin modes (and all other quantities) in terms of the
mode amplitude, αlm, which was the small parameter used whenever perturbation the-
ory was required. As GW emission is strongest for l = 2, we specialised to the l = 2
modes.

Once we had the eigenfunctions and eigenvalues, we were able to calculate the mode
energies and angular momenta, which came from the second order formalism of Fried-
man and Schutz (1978a,b). Then, we computed the rate of change in energy and angular
momentum due to GW emission, via the quadrupole formulae. It was found that the
mode energies and angular momenta were related by δE = 2ωpδJ whereas the rates
were related by ĖGW = ωp J̇GW, where ωp is the pattern speed.

This simple result has surprising consequences. If we consider some energy time-scale
over which the mode energy is damped, defined as τE = 2δE

ĖGW
, and we define in a similar

way a time-scale for the angular momentum, τJ, then taking the ratio of the equations in
the last paragraph reveals that the energy time-scale is two times larger that the angular
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momentum time-scale, suggesting angular momentum is being radiated quicker than
energy. This cannot be as both δE and δJ depend only on α2

2m so they must both decay
at the same rate, as the mode amplitude damps on only one time-scale.

The resolution to this is to allow the initially non-rotating NS to start rotating, in what
we called the “GW back-reaction” (Yim and Jones, 2022). We found that a mode with
angular momentum δJ, radiates 2δJ of angular momentum as GWs, which leaves the
NS with an angular momentum of −δJ. In other words, the GW emission from a pro-
grade (retrograde) mode causes the NS to rotate in the retrograde (prograde) direction.

In Chapter 9, we utilised what we had learnt about mode damping to find out how
much a NS could change its angular frequency. Clearly, the GW back-reaction was
important but the initial excitation of the mode also needed to be accounted for. The
excitation of a mode of angular momentum δJ leaves the NS with angular momentum
−δJ. Then, as the mode damps away, it radiates 2δJ as GWs, which changes the NS’s
angular momentum by a further −δJ. Collectively, after the excitation and decay of
a mode, the NS’s angular momentum changes by a total of −2δJ. This is all that is
required if timing noise is solely a phenomena that affects the angular frequency. How-
ever, we may also need to account for changes in the spin-down rate.

Espinoza et al. (2014, 2021) reported the existence of GCs and AGCs, which are effec-
tively small glitches, but are distinct from the normal glitch population. These GCs
and AGCs have a ∆ν but they also have a ∆ν̇. If these GCs and AGCs make up timing
noise, then we need to be able to explain values of ∆ν̇. In fact, the fractional change
in spin-up/down rate was observed to be 3 to 4 orders of magnitude greater than the
glitch size. To explain this, we had to use a two-component model for the NS, whereby
a superfluid and normal component are coupled together by a linear coupling torque.
Using this, we found that the fractional change in spin-up/down rate could be related
to the glitch size by a factor of the pulsar’s age divided by the coupling time-scale.

So, we had an expression for the glitch size, dependent only on the mode amplitude,
and we had an expression for the fractional change in spin-up/down rate, which de-
pended on both mode amplitude and coupling time-scale. The coupling time-scale
could be further broken down into an electromagnetic glitch recovery time-scale, which
we had observations for, and the superfluid moment of inertia fraction. In the absence
of detailed modelling, the best we could do was to select a superfluid fraction that
allowed our model to fit the data. This is what was done and the results are shown
in Figures 9.2 and 9.3 for the Crab and Vela respectively. One can see that our model
is able to explain the vast majority of the GCs and AGCs for both the Crab and Vela
pulsars.

Since GWs are emitted from the modes, we then calculated the SNR and provided
histograms for their distribution. We found that even with the ET, it will not be possible
to detect GWs from non-axisymmetric modes if these modes are indeed what causes
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GCs and AGCs. However, for Vela, there may be the possibility of stacking a few GW
signals during ET which may accumulate enough SNR to be detected with confidence.

Moreover, we suggested that glitches could be caused by the excitation and decay of
a single m = 2 mode, rather than vortex unpinning or starquakes. This required the
initial mode amplitude to be large enough. Currently, constraints from GW observa-
tions still allow for a mode amplitude large enough to explain Vela’s largest glitch.
This speculative idea can be tested immediately with aLIGO if one has GW data that is
coincident with a large and/or nearby glitch.

Finally, we looked at the power budget available to power the Kelvin modes. We found
that, at the frequency they have been observed, only < 1% of the spin-down power
needed to be utilised to source the modes. However, we found that the build-up of
elastic energy between glitches is not enough to power the l = 2 Kelvin modes. Unless
we can think of another mechanism that could provide an energy source, like harness-
ing energy from the interior superfluid, then the energetics of the oscillation model
seems to be a bit problematic. This should be the first model feature to be improved
and further thought about.

In the upcoming years and decades, new GW detectors are planned to come online
with sensitivities being multiple times better than what we already have. It is there-
fore imperative that now, before the new detections arrive, we prepare our arsenal of
models so that we are ready for whatever may come our way. This is particularly ap-
parent for the oscillation model above, where we have shown that even with the ET, a
detection of an individual non-axisymmetric mode may not be possible. Nevertheless,
creating these models still has it uses in interpreting electromagnetic observations, like
GCs/AGCs and timing noise. There will become a point when there is so much data
that only the most accurate models should be used. Clearly, with the simple assump-
tions made here, there is still a long way to go, but hopefully, in making a start, the
models presented here will be ready for when the detections come in the not-so-distant
future.
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Appendix A

Simplifying the change in torque
during the glitch recovery

This Appendix aims to show that we can simplify the general expression for the change
in torque on a NS due to a transient mountain during the post-glitch recovery. We will
exploit the size differences between the fractional changes of several variables to allow
us, to some approximation, ignore all effects on the torque besides the change in the
spin-down rate.

Firstly, the torque N on the NS is given as

N (t) =
d
dt
(I(t)Ω(t)) = İ(t)Ω(t) + I(t)Ω̇(t) (A.1)

where I is the moment of inertia about the rotation axis, Ω is the angular velocity of the
NS and the dot represents a time derivative. Then, the change in the torque due to a
glitch is

∆N (t) = 2π
[
ν0∆ İ(t) + İ0∆ν(t) + ν̇0∆I(t) + I0∆ν̇(t)

]
(A.2)

for t > tg and where the subscript ‘0’ represents the pre-glitch value. This is a general
expression for the torque during the post-glitch recovery and each change of a variable
is time-dependent. This means a change in İ, ν, I or ν̇ will have an effect on the torque.
Our model associates the change in torque purely to a change in ν̇ so therefore we want
to show that the first 3 terms are much smaller than the last in order for our assumption
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to be justified. The relevant ratios are

Term 1
Term 4

=
ν0∆ İ(t)
I0∆ν̇(t)

(A.3)

Term 2
Term 4

=
İ0∆ν(t)
I0∆ν̇(t)

(A.4)

Term 3
Term 4

=
ν̇0∆I(t)
I0∆ν̇(t)

. (A.5)

These ratios are not trivial and so we will need explore further. In all ratios, the moment
of inertia plays an important role so we will start with that. One can imagine that before
a NS glitches, it has a stable, but still time-varying, moment of inertia, denoted by Isec(t)
where the subscript is short for “secular”. Then, immediately after the glitch it has a
moment of inertia of I(tg). The change of moment of inertia at the glitch is therefore
∆I(tg) = I(tg)− Isec(tg) = I(tg)− I0. If the moment of inertia exponentially recovers
at a rate τ (this can be verified by looking at Equations (B.6), (B.13) and (5.11) but with
the time-dependence kept in), then the moment of inertia of the NS goes as

I(t) = Isec(t) + ∆I(tg)e−
∆t
τ = Isec(t) + ∆I(t) (A.6)

for t > tg, and when we differentiate with respect to time we get

İ(t) = İsec(t)−
∆I(t)

τ
. (A.7)

We can therefore write

∆ İ(t) ≡ İ(t)− İsec(t) = −
∆I(t)

τ
(A.8)

which is the difference to the rate of change of the moment of inertia caused by the
glitch.

We also need to find an expression for İ0 to allow us to simplify Equation (A.4). To do
this, we need to look at the secular evolution of the NS’s moment of inertia which is
attributed to the slowing down of the NS over time. We can write the secular moment
of inertia in terms of a small parameter, εΩ, which parametrises how rotation causes a
departure from the moment of inertia of a non-rotating NS. Mathematically, it is

Isec(t) = INR(1 + εΩ(t)) (A.9)

where INR is the moment of inertia if the NS was not rotating. We immediately see that

İsec(t) = INR ε̇Ω(t) (A.10)
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In general, εΩ has the form

εΩ(t) = kΩ2(t) (A.11)

where k is some constant of proportionality which depends on the detailed model of
the NS. To get an idea of the size of εΩ, we can take the simple case of a completely
fluid and incompressible NS which Baym and Pines (1971) found has

εΩ(t) =
5
6

R3

GM
Ω2(t) (A.12)

which results in εΩ = 1.58× 10−4 for the Crab and εΩ = 2.21× 10−5 for Vela for values
of the spin frequency as given in Table 5.1 and using M = 1.4 M� and R = 10 km. Dif-
ferentiating Equation (A.11) with respect to time and substituting into Equation (A.10),
we find that

İsec(t) = 2INRεΩ(t)
Ω̇(t)
Ω(t)

. (A.13)

From Equation (A.9), we can see that there is only a small correction between using INR

and say the moment of inertia just before the glitch, I0 (= Isec(tg)), and so we can let
INR ≈ I0. This then allows us to evaluate Equation (A.13) at the moment just before the
glitch which gives

İ0

I0
= 2εΩ,0

ν̇0

ν0
. (A.14)

We now have enough to re-write our ratios without the İ0 and ∆ İ terms, and we want
all our ratios to be much less than 1. This results in

∆I(t)
I0
� −τ∆ν̇(t)

ν0
(A.15)

2εΩ,0
∆ν(t)

ν0
� ∆ν̇(t)

ν̇0
(A.16)

∆I(t)
I0
� ∆ν̇(t)

ν̇0
(A.17)

where each line represents the ratios in Equations (A.3), (A.4) and (A.5) respectively.
Note that these conditions are all still time-dependent. We can remove this by taking
the conservative case of ∆I(t) = ∆I(tg) and ∆ν(t) = ∆ν(tg) as both these quantities are
always smaller or equal to the value at the time of the glitch. On the right hand side, we
can say that during the post-glitch recovery, ∆ν̇(t) ∼ ∆ν̇t. Then, using Equation (5.7) in
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Equation (A.15), and Equation (5.33) in Equations (A.16) and (A.17), we finally get

∆I(tg)

I0
� Q

(
∆ν(tg)

ν0

)
(A.18)

2εΩ,0
∆ν(tg)

ν0
� Q′

(
∆ν̇(tg)

ν̇0

)
(A.19)

∆I(tg)

I0
� Q′

(
∆ν̇(tg)

ν̇0

)
(A.20)

where Q is the healing parameter of the spin frequency and Q′ is the same but for the
time derivative of the spin frequency. They are defined in Equations (5.6) and (5.33)
respectively.

Typically, Q and Q′ are on the order of unity and since the spin frequency of NSs vary
by a small amount over secular time-scales, we can say εΩ varies by little too, meaning
we are able to use the values of εΩ which we calculated earlier for εΩ,0.

From Appendix B, it was found empirically that ∆I(tg)
I0
� ∆ν(tg)

ν0
for both the Crab and

Vela. This means Equation (A.18) is satisfied. Then, looking at the JBCA Glitch Cata-
logue, we find that ∆ν(tg)

ν0
is about 4 - 6 orders of magnitude smaller than ∆ν̇(tg)

ν̇0
for both

pulsars. Along with εΩ,0 ∼ 10−5 – 10−4, Equation (A.19) is comfortably satisfied. Fi-
nally, by simple logic it must be that ∆I(tg)

I0
� ∆ν̇(tg)

ν̇0
so Equation (A.20) is also satisfied.

To summarise, we have shown Equations (A.18) – (A.20) to be true. This allows us to
ignore the small effects of ∆ İ, ∆ν and ∆I on the torque. As a result, the main contributor
to the change in torque for our transient mountain model is due to a change in the spin-
down rate, ∆ν̇.
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Appendix B

The change in the moment of inertia
due to the formation of a mountain

This Appendix addresses the question on whether the change in the moment of inertia
about the rotation axis, due to the formation of a transient mountain, can be ignored
when: 1) a NS rapidly spins-up during a glitch, and 2) when the NS recovers from
a glitch. For a uniformly-dense and incompressible NS, the sudden formation of a
mountain causes an increase to the moment of inertia about the rotation axis. This has
the effect of decreasing the NS’s spin frequency and the subsequent dissipation of the
mountain during the recovery causes the NS to spin faster. We show empirically that
these effects due to changes in the moment of inertia are negligible compared to the
frequency changes caused intrinsically by glitches for the Crab and Vela pulsars. We
use the results from this Appendix to simplify the calculation of the GW luminosity
and torque during the post-glitch recovery.

For the sake of simplicity, we will assume the NS is of uniform density and is incom-
pressible. This allows for simple analytic results to be calculated. Under the model
described in Section 5.1, when a NS glitches, the NS forms a transient mountain turn-
ing it into a tri-axial (ellipsoidal) NS. This tri-axial NS will have a volume of

V =
4
3

πa1a2a3 (B.1)

where a1, a2 and a3 are the semi-major axis lengths along the x, y and z axes respectively,
with the z-axis defined such that it is aligned with the rotation axis. The initial pre-
glitch configuration, shown by a subscript ‘0’, is generally axisymmetric with an initial
volume of

V0 =
4
3

πa2
1,0a3,0 (B.2)
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where we have used a1,0 = a2,0 for an axisymmetric NS. Keeping all generality, the
perturbed semi-major axis length can be written as the sum of the unperturbed semi-
major axis length, ai,0, and a small perturbation, δai, giving

ai = ai,0 + δai (B.3)

for i = 1, 2, 3. We are interested in spherical harmonic perturbations of the form l = 2,
m = 2 which have the property δa2 = −δa1. When enforced with volume conservation,
we find a 1-parameter family of solutions, with δa3 easily calculable if required.

Let the moment of inertia about the rotation axis be Izz. We have similar expres-
sions along the x and y axes which lie along the remaining axes of symmetry. For a
uniformly-dense ellipsoid of density ρ̄, the moment of inertia about each of the axes
can be written analytically as

Ixx =
1
5

M(a2
2 + a2

3)

Iyy =
1
5

M(a2
1 + a2

3) (B.4)

Izz =
1
5

M(a2
1 + a2

2)

where M = ρ̄V. Here, when we talk about NS mountains we refer to a non-axisymmetric
deformation which leads to an equatorial ellipticity, εeq. It is defined as

εeq ≡
Ixx − Iyy

Izz
(B.5)

which is a small dimensionless number parametrising how much the NS differs in
length between its x and y axes within the equatorial plane (for a NS with a non-zero
Izz).

There is another dimensionless parameter we can talk about which is the oblateness
parameter, εob, defined as

εob ≡
Izz − Izz,0

Izz,0
(B.6)

where Izz,0 = 2
5 Ma2

1,0. This is, again, a small parameter but this time it measures the
change in oblateness due to the sudden formation of a mountain. Oblateness can be
seen as how elliptical the NS is in a plane perpendicular to the equatorial plane, i.e.
within a meridional plane.

We want to show that we can ignore the effects of the change in the moment of inertia
about the z-axis whilst still obeying the conservation of angular momentum at the mo-
ment of the glitch. The change in the angular momentum at the moment of the glitch,
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∆J(tg), is the sum of

∆J(tg) = 2π∆Izz(tg)ν0 + 2π Izz,0∆ν(tg) (B.7)

where the parentheses show the quantity is evaluated at the time of the glitch, imme-
diately after the transient mountain has been created. If we can show the first term is
smaller than the second, then we can conclude that the change in the moment of in-
ertia can be ignored at the glitch without considerably affecting the “usual” change in
angular momentum due to a change in the spin frequency. In other words, we want to
show

∆Izz(tg)

Izz,0
� ∆ν(tg)

ν0
(B.8)

where ∆Izz(tg) = Izz(tg) − Izz,0. The left hand side of Equation (B.8) is the same as
εob(tg) and the right hand side we know from the JBCA Glitch Catalogue. However,
we do not immediately have a numerical value for εob(tg) but what we can get is a
value for εeq(tg). εeq(tg) can be approximated using Equation (5.12) from Section 5.3.
Therefore, we proceed by relating εob to εeq which would give us a numerical value to
the left hand side of Equation (B.8).

After substituting Equations (B.4) and (B.3) into Equation (B.6), we get

εob =
−
(

a2
1,0 − a2

2,0

)
+ (2a1,0δa1 + 2a2,0δa2) +

(
δa2

1 + δa2
2
)

2a2
1,0

(B.9)

and doing the same substitutions but for Equation (B.5) gives

εeq =

(
a2

2,0 − a2
1,0

)
+ 2 (a2,0δa2 − a1,0δa1) +

(
δa2

2 − δa2
1

)
(

a2
1,0 + a2

2,0

)
+ 2 (a1,0δa1 + a2,0δa2) +

(
δa2

1 + δa2
2

) . (B.10)

Both Equations (B.9) and (B.10) are general results. Then, we specialise to δa2 = −δa1

perturbations and account for the axisymmetric initial configuration, a1,0 = a2,0, so that
Equation (B.9) becomes

εob =

(
δa1

a1,0

)2

(B.11)

which is an exact result, and (the square of) Equation (B.10) becomes

ε2
eq = 4

(
δa1

a1,0

)2

+O
[(

δa1

a1,0

)4
]

(B.12)
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TABLE B.1: This table has values of εob(tg) calculated from Equation (B.13), the glitch
sizes from the JCBA Glitch Catalogue (Espinoza et al., 2011) and the final two columns
have the fraction of these two quantities expressed as a percentage, one without being
divided byQ and the other one with the division byQ. The 4th column represents the
contribution that the change in the moment of inertia has on the angular momentum
at moment of the glitch and 5th column represents the same but for the post-glitch
recovery. O2This glitch happened during the O2 run of aLIGO. O3This glitch occurred
during the O3 run of aLIGO. 1The data for this glitch was taken from Xu et al. (2019).

Crab

MJD εob(tg)
∆ν(tg)

ν0

εob(tg)ν0

∆ν(tg)
[%]

εob(tg)ν0

Q∆ν(tg)
[%]

40491.8 6.3× 10−11 7.2× 10−9 0.87 1.0
41161.98 2.4× 10−11 1.9× 10−9 1.3 1.4
41250.32 1.6× 10−11 2.1× 10−9 0.75 0.89
42447.26 2.3× 10−10 3.57× 10−8 0.64 0.79
46663.69 7× 10−11 6× 10−9 1 1
47767.504 4.9× 10−10 8.10× 10−8 0.60 0.67

48945.6 4.6× 10−11 4.2× 10−9 1.1 1.3
50020.04 3× 10−11 2.1× 10−9 1 2
50260.031 2.5× 10−10 3.19× 10−8 0.77 1.1
50458.94 1.6× 10−10 6.1× 10−9 2.6 3.0
50489.7 . . . 8× 10−10 . . . . . .

50812.59 8.8× 10−11 6.2× 10−9 1.4 1.6
51452.02 1× 10−10 6.8× 10−9 1 2
51740.656 4.1× 10−10 2.51× 10−8 1.7 2.1
51804.75 7.6× 10−11 3.5× 10−9 2.2 2.6
52084.072 3.0× 10−10 2.26× 10−8 1.3 1.6
52146.758 8.1× 10−11 8.9× 10−9 0.91 1.1
52498.257 1.0× 10−10 3.4× 10−9 2.9 3.5

52587.2 7× 10−11 1.7× 10−9 4 5
53067.078 8.8× 10−10 2.14× 10−7 0.41 0.49
53254.109 3× 10−11 4.9× 10−9 0.6 0.7
53331.17 1× 10−10 2.8× 10−9 4 4
53970.19 4.4× 10−10 2.18× 10−8 2.0 2.4
54580.38 3× 10−11 4.7× 10−9 1 1
55875.5 . . . 4.92× 10−8 . . . . . .

57839.92O2 3.9× 10−11 2.14× 10−9 1.8 2.6
58064.555 9.9× 10−10 5.164× 10−7 0.19 0.23
58237.357 6.6× 10−11 4.08× 10−9 1.6 1.9
58470.939 5.1× 10−11 2.36× 10−9 2.2 2.6
58687.59O3 . . . 3.60× 10−8 . . . . . .

Vela

MJD εob(tg)
∆ν(tg)

ν0

εob(tg)ν0

∆ν(tg)
[%]

εob(tg)ν0

Q∆ν(tg)
[%]

40280 8.1× 10−9 2.34× 10−6 0.35 10
41192 1.2× 10−8 2.05× 10−6 0.59 17
41312 2× 10−9 1.2× 10−8 20 40
42683 8.9× 10−9 1.99× 10−6 0.45 2.1
43693 1.5× 10−8 3.06× 10−6 0.48 4.0

44888.4 4.0× 10−8 1.145× 10−6 3.5 20
45192 1.9× 10−8 2.05× 10−6 0.91 21

46257.228 1.4× 10−8 1.601× 10−6 0.86 5.5
47519.8036 6.2× 10−8 1.805× 10−6 3.5 20
48457.382 4.9× 10−7 2.715× 10−6 18 110

49559 0 8.35× 10−7 0 0
49591.2 9.7× 10−8 1.99× 10−7 49 290

50369.345 4.8× 10−9 2.11× 10−6 0.23 0.60
51559.319 5.5× 10−9 3.086× 10−6 0.18 1.0

53193 . . . 2.1× 10−6 . . . . . .
53960 1.9× 10−7 2.62× 10−6 7.1 42

55408.8 6.1× 10−8 1.94× 10−6 3.1 18
56556 1.2× 10−7 3.1× 10−6 3.9 23
56922 8× 10−11 4× 10−10 20 100

57734.485O2,1 5.9× 10−8 1.431× 10−6 4.2 24

where the O notation represents higher order terms we can ignore, coming from a
Taylor expansion in

(
δa1
a1,0

)
. Therefore to a very good approximation, we can say that

εob ≈
1
4

ε2
eq (B.13)

at all times during and after the glitch. We can now numerically evaluate Equation (B.8)
to see if it is satisfied. We take εeq(tg) = εapprox(tg) from Tables 5.2 and 5.3 to calculate
εob(tg) and we compare εob(tg) as a percentage of ∆ν(tg)

ν0
. The results are shown in

Table B.1.

We can see from Table B.1 that εob(tg) is typically ∼1% of ∆ν(tg)
ν0

for the Crab, and typ-
ically 1 – 4% for Vela with the odd glitch hitting 20% or even 50%. Therefore, we find
that for most glitches, the assumption of ∆Izz being negligible holds at the moment of
the glitch, as its contribution to the angular momentum has a relative size of < 5%
when compared to the contribution due to ∆ν.

We can extend this calculation to include the post-glitch recovery too. If we wanted
to show that the change in the moment of inertia is negligible during the post-glitch
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recovery, we would need to show

∆Izz(t)
Izz,0

� ∆ν(t)
ν0

(B.14)

for all t > tg. However, ∆Izz(t) at most has a value of ∆Izz(tg) and the change in the
spin frequency during the glitch recovery is typically ∆ν(t) ∼ ∆νt. Therefore, we have

∆Izz(tg)

Izz,0
� ∆νt

ν0
= Q

(
∆ν(tg)

ν0

)
(B.15)

where we used Equation (5.7) in the equality. This condition is simply Equation (B.8)
but with an extra factor of Q. If Q ∼ 1, then Equations (B.15) and (B.8) are the same
and since we have already shown Equation (B.8) to be true, then Equation (B.15) must
also be true.

We do however, have values of Q so we shall use them to calculate the ratio of the left
hand side and the right hand side of Equation (B.15). This ratio, expressed as a percent-
age, is presented in Table B.1. We see that the contribution from the moment of inertia
is higher during the post-glitch recovery, though it is still small enough to allow us to
justify neglecting it. There are a few Vela glitches which have a large contribution from
the moment of inertia, but for the majority, it seems the inequality in Equation (B.15)
holds. Therefore, we can and we will ignore the change in the moment of inertia during
the post-glitch recovery.

Our assumption of the change in the angular momentum being solely due to a change
in spin frequency breaks down whenever the percentages in Table B.1 get larger, like in
a few of Vela’s glitches. Nonetheless, we could still use the assumption but we would
need to proceed with caution as a change in the moment of inertia about the rotation
axis would contribute to a change in the NS’s angular momentum. A quick way to
parametrise how much the moment of inertia contributes to the change in angular mo-
mentum would be to look at the following parameters

η1 ≡
εob(tg)ν0

∆ν(tg)
= − 5

32(2π)4
c5

G
1
I

ν̇0

ν5
0

(
∆ν̇(tg)

ν̇0

)(
∆ν(tg)

ν0

)−1

(B.16)

η2 ≡
εob(tg)ν0

Q∆ν(tg)
= − 5

32(2π)4
c5

G
1
I

ν̇0

ν5
0

1
Q

(
∆ν̇(tg)

ν̇0

)(
∆ν(tg)

ν0

)−1

(B.17)

where η1 represents the fractional contribution to the angular momentum due to a
change in the moment of inertia at the glitch and η2 represents the same but for the
post-glitch recovery. If both these parameter are much less than 1, then we can ignore
the change in the moment of inertia at the moment of the glitch and during the post-
glitch recovery. If η1 is considerably large, then it would mean there was a sudden
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increase in ∆Izz at the glitch which would slow down the NS. This would mean what-
ever mechanism was producing the spin-up would have to be correspondingly larger
than would otherwise be inferred, e.g. a larger starquake, a larger unpinning event.
Similarly, a large η2 would mean ∆Izz is considerable during the recovery, i.e. the de-
caying mountain would spin-up the NS. To counteract the effect of including ∆Izz, the
resultant transient mountain would need to be larger in size during the recovery.

The ratios η1 and η2 can be easily evaluated since the JBCA Glitch Catalogue and the
ATNF Pulsar Catalogue provides all the information required. All in all, these two pa-
rameters are useful tools to assess whether the change in the moment of inertia about
the rotation axis is an important factor when calculating a NS’s dynamics at the mo-
ment of a glitch and during its subsequent recovery.
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Appendix C

Virial equation for perturbations

In this Appendix, we will derive the “virial equation for perturbations” which is given
by Equation (6.6.14) of Shapiro and Teukolsky (1983). This derivation is specific to non-
rotating, uniformly-dense and incompressible stars.

Like in Section 8.3, we begin with Euler’s equation, Equation (4.2), but this time perturb
it using Lagrangian perturbations. This gives

d∆vi

dt
=

∆ρ

ρ2 ∇iP−
1
ρ
∇i∆P−∇i∆Φ

→ ∂2ξ i

∂t2 = −1
ρ
∇i∆P−∇i∆Φ (C.1)

where we have used Equation (4.3), ∆ρ = 0 and ∆vi = dξ i

dt = ∂ξ i

∂t where the last equality
is because our background NS is static (vi = 0). By definition, the Lagrangian change
in the pressure at the surface is zero (Equation (8.40)) but if we can show ∆P = 0 inside
the perturbed NS too, then we can remove the first term on the right hand side of
Equation (C.1).

To do this, we take a theorem from partial differential equations that says if some field,
ψ, is zero on the boundary of a system, but we can show∇2ψ = 0 everywhere inside the
boundary, then it must be that ψ is zero inside the boundary too. This can be thought
of as showing the curvature inside the boundary is always zero meaning the values of
ψ lie in one plane, and if ψ must equal zero on the boundary, then the only way for
everything to be consistent is if ψ inside is also zero.

We can take a partial derivative of Equation (C.1), and on the left hand side, we can
commute ∇i and ∂

∂t , since normally ∇i commutes with d
dt but d

dt =
∂
∂t for a static back-

ground (e.g. Shapiro and Teukolsky, 1983). Then, for our incompressible NS, we have
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∇iξ
i = 0 so we get

0 = −1
ρ
∇2∆P−∇2∆Φ → ∇2∆P = −ρ∇2∆Φ . (C.2)

Then, we can also perturb Poisson’s equation (Equation (4.4)) with Lagrangian pertur-
bations to give

∇2∆Φ = 4πG∆ρ = 0 (C.3)

where the last equality is because ∆ρ = 0 inside the NS. Therefore, substituting this
into Equation (C.2) gives

∇2∆P = 0 (C.4)

inside the NS, and so we have shown we can remove the first term on the right hand
side of Equation (C.1) to leave

∂2ξ i

∂t2 = −∇i∆Φ (C.5)

for our non-rotating, uniformly-dense, incompressible NS. We have not yet calculated
∆Φ but we have calculated δΦ and Φ before (Equations (8.50) and (8.11) respectively)
so we can use Equation (4.9) to write

∂2ξ i

∂t2 = −∇iδΦ−∇i(ξ
j∇jΦ)

→ ρ
∂2ξ i

∂t2 = −ρ∇iδΦ− ρ∇i(ξ
j∇jΦ) (C.6)

where we have multiplied by ρ to get into the form of

ρ
∂2ξ i

∂t2 = Lijξ
j (C.7)

where Lij is the potential operator (Shapiro and Teukolsky, 1983) and is equal to Lijξ
j =

−ρ∇iδΦ− ρ∇i(ξ
j∇jΦ) for our system. If ξ i is oscillatory in time, then Equation (C.7)

becomes an eigenequation. We then define the total potential energy of the perturba-
tions as being equal to

δV ≡ −1
2

∫

V
ξ iLijξ

jdV (C.8)

and the kinetic energy of the perturbations as

δT ≡ 1
2

∫

V
ρ

(
∂ξ i

∂t

)2

dV . (C.9)

Substituting Equation (C.7) into Equation (C.8), we get

δV = −1
2

∫

V
ρξ i ∂2ξ i

∂t2 dV (C.10)
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and when we calculate the Lagrangian of the Kelvin modes, given by L ≡ δT− δV, we
find

L =
1
2

∫

V
ρ

[(
∂ξ i

∂t

)2

+ ξ i ∂2ξ i

∂t2

]
dV . (C.11)

Taking two derivatives out of the brackets and moving them in front of the integral (for
a static background), we get

L =
1
4

d2

dt2

∫

V
ρξ iξ idV . (C.12)

The integral has a similar form to the mass quadrupole moment but has perturbed
quantities instead of non-perturbed. Therefore, we perturb the integral quantity to get

Iij =
∫

V
ρxixjdV

→ δIij =
∫

V
ρ∆(xixj)dV

=
∫

V
ρ
[
(xi + ξi)(xj + ξ j)− xixj

]
dV (C.13)

where we have used Equation (4.21) in going from Iij → δIij, and Equation (4.7) in the
step after. When we take the trace, we get

δIii = δI = 2
∫

V
ρxiξidV +

∫

V
ρξiξidV .

However, as the Kelvin modes are proportional to the spherical harmonics, the first
integral vanishes identically. In this case, we are free to drop that term and we are left
with

δI =
∫

V
ρξiξidV . (C.14)

Putting this into Equation (C.12), we get the final virial equation of

1
4

d2δI
dt2 = δT − δV (C.15)

which agrees with Equation (6.6.14) in Shapiro and Teukolsky (1983).
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Gügercinoǧlu, E. and Alpar, M. A. (2019). The largest Crab glitch and the vortex creep
model. Monthly Notices of the Royal Astronomical Society, 488(2):2275–2282.

Harding, A. K., Muslimov, A. G., and Zhang, B. (2002). Regimes of Pulsar Pair Forma-
tion and Particle Energetics. The Astrophysical Journal, 576:366–375.

Haskell, B. and Melatos, A. (2015). Models of pulsar glitches. International Journal of
Modern Physics D, 24:1530008.

Haskell, B., Pizzochero, P. M., and Sidery, T. (2012). Modelling pulsar glitches with
realistic pinning forces: a hydrodynamical approach. Monthly Notices of the Royal
Astronomical Society, 420(1):658–671.

Hessels, J. W. T., Ransom, S. M., Stairs, I. H., Freire, P. C. C., Kaspi, V. M., and Camilo,
F. (2006). A Radio Pulsar Spinning at 716 Hz. Science, 311:1901–1904.



REFERENCES 189

Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., and Collins, R. A. (1968). Obser-
vation of a rapidly pulsating radio source. Nature, 217:709–713.

Hild, S., Abernathy, M., Acernese, F., Amaro-Seoane, P., Andersson, N., Arun, K.,
Barone, F., and et al. (2011). Sensitivity studies for third-generation gravitational
wave observatories. Classical and Quantum Gravity, 28(9):094013.

Ho, W. C. G., Espinoza, C. M., Arzoumanian, Z., Enoto, T., Tamba, T., Antonopoulou,
D., Bejger, M., Guillot, S., Haskell, B., and Ray, P. S. (2020)a. Return of the Big
Glitcher: NICER timing and glitches of PSR J0537-6910. Monthly Notices of the Royal
Astronomical Society, 498(4):4605–4614.

Ho, W. C. G., Jones, D. I., Andersson, N., and Espinoza, C. M. (2020)b. Gravitational
waves from transient neutron star f -mode oscillations. Physical Review D, 101(10):
103009.

Hobbs, G., Lyne, A. G., Kramer, M., Martin, C. E., and Jordan, C. (2004). Long-term
timing observations of 374 pulsars. Monthly Notices of the Royal Astronomical Society,
353:1311–1344.

Hobbs, G., Lyne, A. G., and Kramer, M. (2010). An analysis of the timing irregularities
for 366 pulsars. Monthly Notices of the Royal Astronomical Society, 402:1027–1048.

Hobbs, G. B., Edwards, R. T., and Manchester, R. N. (2006). TEMPO2, a new pulsar-
timing package - I. An overview. Monthly Notices of the Royal Astronomical Society,
369:655–672.

Horowitz, C. J. and Kadau, K. (2009). Breaking Strain of Neutron Star Crust and Grav-
itational Waves. Physical Review Letters, 102(19):191102.

Howitt, G., Melatos, A., and Delaigle, A. (2018). Nonparametric Estimation of the Size
and Waiting Time Distributions of Pulsar Glitches. The Astrophysical Journal, 867(1):
60.

Ipser, J. R. and Lindblom, L. (1991). The Oscillations of Rapidly Rotating Newtonian
Stellar Models. II. Dissipative Effects. The Astrophysical Journal, 373:213.

Janssen, G. H. and Stappers, B. W. (2006). 30 glitches in slow pulsars. Astronomy &
Astrophysics, 457:611–618.

Jaranowski, P., Królak, A., and Schutz, B. F. (1998). Data analysis of gravitational-wave
signals from spinning neutron stars: The signal and its detection. Physical Review D,
58(6):063001.

Johnson-McDaniel, N. K. and Owen, B. J. (2013). Maximum elastic deformations of
relativistic stars. Physical Review D, 88(4):044004.



190 REFERENCES

Jones, D. I. (2010). Gravitational wave emission from rotating superfluid neutron stars.
Monthly Notices of the Royal Astronomical Society, 402(4):2503–2519.

Jones, D. I. (2012). Pulsar state switching, timing noise and free precession. Monthly
Notices of the Royal Astronomical Society, 420(3):2325–2338.

Jones, D. I. and Andersson, N. (2002). Gravitational waves from freely precessing
neutron stars. Monthly Notices of the Royal Astronomical Society, 331(1):203–220.

Jones, P. B. (1990). The generation of timing noise by superfluid rotation in pulsars.
Monthly Notices of the Royal Astronomical Society, 246:364

Jones, P. B. (1991). Rotation of the Neutron-Drip Superfluid in Pulsars: The Interaction
and Pinning of Vortices. The Astrophysical Journal, 373:208.

Kashiyama, K. and Ioka, K. (2011). Magnetar asteroseismology with long-term gravi-
tational waves. Physical Review D, 83(8):081302.

Kaspi, V. M. and Beloborodov, A. M. (2017). Magnetars. Annual Review of Astronomy
and Astrophysics, 55:261–301.

Keer, L. and Jones, D. I. (2015). Developing a model for neutron star oscillations fol-
lowing starquakes. Monthly Notices of the Royal Astronomical Society, 446:865–891.

Keitel, D., Woan, G., Pitkin, M., Schumacher, C., Pearlstone, B., Riles, K., Lyne, A. G.,
Palfreyman, J., Stappers, B., and Weltevrede, P. (2019). First search for long-duration
transient gravitational waves after glitches in the Vela and Crab pulsars. Physical
Review D, 100(6):064058.

Klimenko, S., Vedovato, G., Drago, M., Salemi, F., Tiwari, V., Prodi, G. A., Lazzaro,
C., Ackley, K., Tiwari, S., Da Silva, C. F., and Mitselmakher, G. (2016). Method
for detection and reconstruction of gravitational wave transients with networks of
advanced detectors. Physical Review D, 93(4):042004.

Large, M. I., Vaughan, A. E., and Mills, B. Y. (1968). A Pulsar Supernova Association?
Nature, 220:340–341.

Lentati, L., Alexander, P., Hobson, M. P., Feroz, F., van Haasteren, R., Lee, K. J., and
Shannon, R. M. (2014). TEMPONEST: a Bayesian approach to pulsar timing analysis.
Monthly Notices of the Royal Astronomical Society, 437(3):3004–3023.

Lindblom, L., Owen, B. J., and Morsink, S. M. (1998). Gravitational Radiation Instability
in Hot Young Neutron Stars. Physical Review Letters, 80(22):4843–4846.

Link, B. (2014). Thermally Activated Post-glitch Response of the Neutron Star Inner
Crust and Core. I. Theory. The Astrophysical Journal, 789(2):141.

Link, B., Epstein, R. I., and Baym, G. (1992). Postglitch Behavior of the Crab Pulsar:
Evidence for External Torque Variations. The Astrophysical Journal Letters, 390:L21.



REFERENCES 191

Link, B., Franco, L. M., and Epstein, R. I. (1998). Starquake-induced Magnetic Field and
Torque Evolution in Neutron Stars. The Astrophysical Journal, 508(2):838–843.

Link, B., Epstein, R. I., and Lattimer, J. M. (1999). Pulsar Constraints on Neutron Star
Structure and Equation of State. Physical Review Letters, 83(17):3362–3365.

Livingstone, M. A., Kaspi, V. M., and Gavriil, F. P. (2010). Timing Behavior of the
Magnetically Active Rotation-Powered Pulsar in the Supernova Remnant Kesteven
75. The Astrophysical Journal, 710(2):1710–1717.

Lower, M. E., Bailes, M., Shannon, R. M., Johnston, S., Flynn, C., Osłowski, S., Gupta,
V., Farah, W., Bateman, T., Green, A. J., Hunstead, R., Jameson, A., Jankowski, F.,
Parthasarathy, A., Price, D. C., Sutherland , A., Temby, D., and Venkatraman Krish-
nan, V. (2020). The UTMOST pulsar timing programme - II. Timing noise across the
pulsar population. Monthly Notices of the Royal Astronomical Society, 494(1):228–245.

Lynden-Bell, D. and Ostriker, J. P. (1967). On the stability of differentially rotating
bodies. Monthly Notices of the Royal Astronomical Society, 136:293.

Lyne, A., Hobbs, G., Kramer, M., Stairs, I., and Stappers, B. (2010). Switched Magneto-
spheric Regulation of Pulsar Spin-Down. Science, 329:408.

Lyne, A. G., Pritchard, R. S., and Graham-Smith, F. (1993). Twenty-Three Years of Crab
Pulsar Rotational History. Monthly Notices of the Royal Astronomical Society, 265:1003.

Lyne, A. G., Pritchard, R. S., Graham-Smith, F., and Camilo, F. (1996). Very low braking
index for the Vela pulsar. Nature, 381(6582):497–498.

Lyne, A. G., Shemar, S. L., and Smith, F. G. (2000). Statistical studies of pulsar glitches.
Monthly Notices of the Royal Astronomical Society, 315:534–542.

Lyne, A. G., Jordan, C. A., Graham-Smith, F., Espinoza, C. M., Stappers, B. W., and
Weltevrede, P. (2015). 45 years of rotation of the Crab pulsar. Monthly Notices of the
Royal Astronomical Society, 446:857–864.

Maggiore, M., Van Den Broeck, C., Bartolo, N., Belgacem, E., Bertacca, D., Bizouard,
M. A., Branchesi, M., Clesse, S., Foffa, S., Garcı́a-Bellido, J., Grimm, S., Harms, J.,
Hinderer, T., Matarrese, S., Palomba, C., Peloso, M., Ricciardone, A., and Sakellar-
iadou, M. (2020). Science case for the Einstein telescope. Journal of Cosmology and
Astroparticle Physics, 2020(3):050.

Manchester, R. N., Hobbs, G. B., Teoh, A., and Hobbs, M. (2005). The Australia Tele-
scope National Facility Pulsar Catalogue. The Astronomical Journal, 129:1993–2006.

Marshall, F. E., Gotthelf, E. V., Zhang, W., Middleditch, J., and Wang, Q. D. (1998).
Discovery of an Ultrafast X-Ray Pulsar in the Supernova Remnant N157B. The Astro-
physical Journal Letters, 499(2):L179–L182.



192 REFERENCES

Matsakis, D. N., Taylor, J. H., and Eubanks, T. M. (1997). A statistic for describing
pulsar and clock stabilities. Astronomy & Astrophysics, 326:924–928

McCulloch, P. M., Klekociuk, A. R., Hamilton, P. A., and Royle, G. W. R. (1987). Daily
observations of three period jumps of the VELA pulsar. Australian Journal of Physics,
40:725–730.

McCulloch, P. M., Hamilton, P. A., McConnell, D., and King, E. A. (1990). The Vela
glitch of Christmas 1988. Nature, 346(6287):822–824.

McKee, J. W., Janssen, G. H., Stappers, B. W., Lyne, A. G., Caballero, R. N., Lentati, L.,
Desvignes, G., Jessner, A., Jordan, C. A., Karuppusamy, R., Kramer, M., Cognard, I.,
Champion, D. J., Graikou, E., Lazarus, P., Osłowski, S., Perrodin, D., Shaifullah, G.,
Tiburzi, C., and Verbiest, J. P. W. (2016). A glitch in the millisecond pulsar J0613-0200.
Monthly Notices of the Royal Astronomical Society, 461(3):2809–2817.

Melatos, A., Peralta, C., and Wyithe, J. S. B. (2008). Avalanche Dynamics of Radio
Pulsar Glitches. The Astrophysical Journal, 672:1103–1118.

Melatos, A. and Link, B. (2014). Pulsar timing noise from superfluid turbulence.
Monthly Notices of the Royal Astronomical Society, 437(1):21–31.

Mignani, R. P. (2011). Optical, ultraviolet, and infrared observations of isolated neutron
stars. Advances in Space Research, 47(8):1281–1293.

Miller, M. C., Lamb, F. K., Dittmann, A. J., Bogdanov, S., Arzoumanian, Z., Gendreau,
K. C., Guillot, S., Ho, W. C. G., Lattimer, J. M., Loewenstein, M., Morsink, S. M.,
Ray, P. S., Wolff, M. T., Baker, C. L., Cazeau, T., Manthripragada, S., Markwardt,
C. B., Okajima, T., Pollard, S., Cognard, I., Cromartie, H. T., Fonseca, E., Guillemot,
L., Kerr, M., Parthasarathy, A., Pennucci, T. T., Ransom, S., and Stairs, I. (2021). The
Radius of PSR J0740+6620 from NICER and XMM-Newton Data. arXiv e-prints, art.
arXiv:2105.06979

Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation. W.H. Freeman and
Co.

Namkham, N., Jaroenjittichai, P., and Johnston, S. (2019). Diagnostics of timing noise
in middle-aged pulsars. Monthly Notices of the Royal Astronomical Society, 487(4):5854–
5861.

Owen, B. J. (2010). How to adapt broad-band gravitational-wave searches for r-modes.
Physical Review D, 82(10):104002.

Owen, B. J., Lindblom, L., Cutler, C., Schutz, B. F., Vecchio, A., and Andersson, N.
(1998). Gravitational waves from hot young rapidly rotating neutron stars. Physical
Review D, 58(8):084020.



REFERENCES 193
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