ON RESIDUALIZING HOMOMORPHISMS PRESERVING QUASICONVEXITY

Ashot Minasyan
Department of Mathematics
Vanderbilt University
Nashville, TN 37240, USA
aminasyan@gmail.com

Abstract

H is called a G-subgroup of a hyperbolic group G if for any finite subset $M \subset G$ there exists a homomorphism from G onto a non-elementary hyperbolic group G_{1} that is surjective on H and injective on M. In his paper in 1993 A. Ol'shanskii gave a description of all G-subgroups in any given non-elementary hyperbolic group G. Here we show that for the same class of G-subgroups the finiteness assumption on M (under certain natural conditions) can be replaced by an assumption of quasiconvexity.

1 Introduction

Suppose G is a group with some finite generating set \mathcal{A} (assume that \mathcal{A} is symmetrized, i.e. $\left.\mathcal{A}^{-1}=\mathcal{A}\right)$. Then one can construct the Cayley graph $\Gamma(G, \mathcal{A})$ which is a geodesic metric space. Assume $\eta \geq 0$ is some number. A subset Q of G (or of $\Gamma(G, \mathcal{A})$) is said to be η-quasiconvex (or just quasiconvex) if for any pair of elements $u, v \in Q$ and any geodesic segment p connecting u and v, p belongs to a closed η-neighborhood of the subset Q in $\Gamma(G, \mathcal{A})$.

If, in addition, the group G is (word) hyperbolic, the fact that a subset of this group is quasiconvex does not depend on the choice of a generating set \mathcal{A} (see [7]).

If $S \subseteq G, C_{H}(S)$ will denote the centralizer subgroup of S in H, i.e.

$$
C_{H}(S)=\{h \in H \mid h g=g h \quad \forall g \in S\}
$$

If A, B are subsets of the group G, their product is the subset of G defined by

$$
A \cdot B=A B \stackrel{\text { def }}{=}\{a b \mid a \in A, b \in B\}
$$

$A^{-1} \subset G$ will denote the subset $\left\{a^{-1} \mid a \in A\right\}$.
Now let G be a δ-hyperbolic group, $\delta \geq 0$. Every element $g \in G$ of infinite order belongs to a unique maximal elementary subgroup $E(g)$ (a group is called elementary if it has a cyclic subgroup of finite index). Then by [16, Lemmas 1.16 and 1.17]

$$
\begin{gather*}
E(g)=\left\{x \in G \mid x g^{n} x^{-1}=g^{ \pm n} \text { for some } n \in \mathbb{N}\right\} \text { and } \\
E(g)=\left\{x \in G \mid x g^{k} x^{-1}=g^{l} \text { for some } k, l \in \mathbb{Z} \backslash\{0\}\right\} \tag{1}
\end{gather*}
$$

It is easy to see that the subgroup

$$
E^{+}(g)=\left\{x \in G \mid x g^{n} x^{-1}=g^{n} \text { for some } n \in \mathbb{N}\right\}
$$

is of index at most 2 in $E(g)$.
For any subgroup H of G denote by H^{0} the set of elements of infinite order in H. Using the terminology from [16], a non-elementary subgroup H of G will be called a G-subgroup if for any finite subset $M \subset G$ there is a non-elementary hyperbolic quotient G_{1} of the group G, such that the natural homomorphism $G \rightarrow G_{1}$ is surjective on H and injective on M.

Denote $E(H)=\bigcap_{x \in H^{0}} E(x)$. If H is a non-elementary subgroup of G, then $E(H)$ is the unique maximal finite subgroup of G normalized by H ([16, Prop. 1]). Hence H acts on $E(H)$ by conjugation and we have a homomorphism of H into the permutation group on the set of elements of $E(H)$. The kernel of that homomorphism is $C_{H}(E(H))$ which sometimes will be denoted by $K(H)$. The index $|H: K(H)|$ is finite because of the finiteness of $E(H)$.

The following characterization of all G-subgroups was given in [16, Thm. 1]:
Lemma 1.1. A non-elementary subgroup H of a hyperbolic group G is a G subgroup if and only if $E(H)=E(G)$ and $|H: K(H)|=|G: K(G)|$ (i.e. the actions by conjugation of H and G on $E(H)=E(G)$ are similar: for every $g \in G$ there exists an element $h \in H$ with gag $^{-1}=h a h^{-1}$ for all $\left.a \in E(G)\right)$.

Definition. Let H be a subgroup of the group G and $Q \subseteq G$ be a quasiconvex subset. The subset Q will be called small relatively to H if for any two finite subsets P_{1}, P_{2} of the group G one has

$$
\begin{equation*}
H \nsubseteq\left(P_{1} \cdot Q^{-1} \cdot Q \cdot P_{2}\right) \tag{*}
\end{equation*}
$$

As we know, any generating set induces a left-invariant metric on the set of elements of a group. So, if G_{1} is a quotient of G, the group G_{1} will be generated by the image of \mathcal{A} under the natural homomorphism $\phi: G \rightarrow G_{1}$. Therefore, later G_{1} will be assigned the metric corresponding to the generating set $\phi(\mathcal{A})$.

The main result of this paper is
Theorem 1. Let $H_{1}, H_{2}, \ldots, H_{k}$ be G-subgroups of a non-elementary hyperbolic group G and $H_{1}^{\prime}, \ldots, H_{k^{\prime}}^{\prime}$ be some non-elementary subgroups of G. Assume $Q \subseteq G$ is an η-quasiconvex subset (for some $\eta \geq 0$) that is small relatively to H_{i} for every $i=1,2 \ldots, k$. Then there exist a group G_{1} and an epimorphism $\phi: G \rightarrow G_{1}$ such that

1) G_{1} is a non-elementary hyperbolic group;
2) The homomorphism ϕ is an isometry between Q and $\phi(Q)$ (if the metrics on G and G_{1} are chosen as explained above) and for any quasiconvex subset $S \subseteq Q$, its image $\phi(S)$ is quasiconvex in G_{1}. In particular, ϕ is injective on Q;
3) ϕ is surjective on each of the subgroups H_{1}, \ldots, H_{k}, i.e. $\phi\left(H_{i}\right)=G_{1}$ for each $i=1,2, \ldots, k$;
4) ϕ-images of two elements from Q are conjugate in G_{1} if and only if these elements are conjugate in G;
5) The centralizer $C_{G_{1}}(\phi(a))$ for every $a \in Q$ is the ϕ-image of the centralizer $C_{G}(a)$;
6) $k e r \phi$ is a torsion-free subgroup;
7) ϕ induces a bijective map on sets of conjugacy classes of elements having finite orders in G and G_{1} respectively;
8) $\phi\left(H_{1}^{\prime}\right), \ldots, \phi\left(H_{k^{\prime}}^{\prime}\right)$ are non-elementary subgroups of G_{1};
9) $E\left(G_{1}\right)=\phi(E(G))$.

Parts 1)-8) of Theorem 1 were proved by A. Ol'shanskii in [16, Thm. 2] for the case when the subset Q is finite; part 9) was proved in [16, Thm. 4] with additional conditions imposed on G. If $\operatorname{card}(Q)<\infty$, since each H_{i} is infinite, the condition $(*)$ becomes trivial and can be omitted (Q will be small relatively to any infinite subgroup). In our proof the tools and techniques developed in the paper [16] will be crucial, so an interested reader is referred to that article in advance.

Definition. A subgroup H of a group G will be called a quasiretract of G if there exists a normal subgroup $N \triangleleft G$ such that $|G: H N|<\infty$ and the intersection $H \cap N$ is finite.

In particular, any retract is a quasiretract. The proof of the following lemma is not difficult and will be given in the beginning of section 3 .

Lemma 1.2. Assume that G is a hyperbolic group and H is a quasiretract of G. Then the subgroup H is quasiconvex in G.

One can observe that if the group G is torsion-free then any its non-elementary subgroup will be a G-subgroup. However, by far, not every subgroup in G will be quasiconvex (or a quasiretract). In the next theorem we show that demanding Q to be small relatively to H_{i} is necessary if one doesn't impose additional limitations on the subgroups $H_{i}, i=1,2, \ldots, k$.

Theorem 2. Let H be an infinite subgroup of a hyperbolic group G and $Q \subset G$ be a subset (not necessarily quasiconvex). Suppose that

$$
H \subseteq P_{1} Q^{-1} Q P_{2}
$$

for some finite subsets P_{1}, P_{2} of G and there is a group G_{1} and an epimorphism $\phi: G \rightarrow G_{1}$ such that ϕ is surjective on H (i.e. $\phi(H)=G_{1}$) and $\left.\phi\right|_{Q}$ is a quasiisometry between Q and $\phi(Q)$. Then the subgroup H is a quasiretract of G.

In section 5 we investigate some properties of condition $(*)$; we show that if two quasiconvex subsets satisfy this condition then so do their union and product (lemma 5.4). If, in addition, one demands that Q^{-1} is quasiconvex then we are able to simplify $(*)$: the set $Q^{-1} Q$ in it can be substituted by just Q (corollary 4).

As examples of quasiconvex sets Q satisfying $(*)$ we can consider special subsets that are finite unions of products of quasiconvex subgroups. More precisely, suppose F_{1}, \ldots, F_{n} are quasiconvex subgroups of a hyperbolic group G
and $g_{0}, g_{1}, \ldots, g_{n} \in G$. Following [13], the subset

$$
P=g_{0} F_{1} \cdot \ldots \cdot g_{n-1} F_{n} g_{n}=\left\{g_{0} f_{1} \cdot \ldots \cdot g_{n-1} f_{n} g_{n} \mid f_{i} \in F_{i}, i=1, \ldots, n\right\} \subseteq G
$$

will be called a quasiconvex product. The quasiconvex subgroups $F_{i}, i=1, \ldots, n$, are said to be members of the product P. A finite union of quasiconvex products is always a quasiconvex subset in a hyperbolic group ([13, Prop. 1,Lemma 2.1]).

Let $U=\bigcup_{k=1}^{N} P_{k}$ be a finite union of quasiconvex products $P_{k}, k=1, \ldots, N$. A subgroup $F \leq G$ will be called a member of U, by definition, if F is a member of P_{k} for some $1 \leq k \leq N$. For any such set U we fix its representation as a finite union of quasiconvex products and fix its members.

Theorem 3. Suppose G is a hyperbolic group, H is its subgroup and Q is a finite union of quasiconvex products in G with members F_{1}, \ldots, F_{l}. Assume also that

$$
\left|H:\left(H \cap g F_{j} g^{-1}\right)\right|=\infty, \quad \text { for every } g \in G \text { and } j=1,2, \ldots, l
$$

Then for arbitrary two finite subsets $P_{1}, P_{2} \subset G$, the subgroup H is not contained inside of $P_{1} \cdot Q^{-1} \cdot Q \cdot P_{2}$.

Let \mathcal{A} be an alphabet and \mathcal{R}_{i} - subsets of words in $\mathcal{A}^{ \pm 1}, i \in \mathbb{N}$, satisfying $\mathcal{R}_{i} \subset \mathcal{R}_{i+1}$ for all i. Let the groups G_{i} have presentations

$$
G_{i}=\left\langle\mathcal{A} \| \mathcal{R}_{i}\right\rangle, i \in \mathbb{N} .
$$

Then $G_{i+1} \cong G_{i} / N_{i}$ where $N_{i} \triangleleft G_{i}$ is the normal closure of $\mathcal{R}_{i+1} \backslash \mathcal{R}_{i}$ in G_{i}, i.e. there is an epimorphism $\phi_{i}: G_{i} \rightarrow G_{i+1}$ with $\operatorname{ker}\left(\phi_{i}\right)=N_{i}$.

Set $\mathcal{R}=\bigcup_{i=1}^{\infty} \mathcal{R}_{i}$. The group M defined by the presentation

$$
M=\langle\mathcal{A} \| \mathcal{R}\rangle
$$

is said to be an inductive limit of the groups $G_{i}, i \in \mathbb{N}$.
Thus we obtain an infinite sequence of epimorphisms

$$
G_{1} \xrightarrow{\phi_{1}} G_{2} \xrightarrow{\phi_{2}} G_{3} \xrightarrow{\phi_{3}} \ldots
$$

and $M=\underset{\rightarrow}{\lim }\left(G_{i}, \phi_{i}\right)$.
The statement below follows from theorem 1 and can be compared with $[18$, Theorems 1,3].

Corollary 1. Suppose G, H are hyperbolic groups and G is non-elementary. Then H can be isomorphically embedded into some simple quotient M of the group G. Moreover, the group M is an inductive limit of hyperbolic groups.
D. Osin noticed that using a similar argument one can obtain

Corollary 2. There exists a simple group M that is a quotient of every nonelementary hyperbolic group and contains every hyperbolic group (isomorphically embedded).

Recall that a non-trivial proper subgroup H of a group G is called malnormal if for any $g \in G \backslash H$ the intersection $H \cap g H g^{-1}$ is trivial.

In the torsion-free case we can strengthen the claim of corollary 1 to obtain a "thrifty" embedding (cf. [15]):

Corollary 3. Suppose G, H are torsion-free hyperbolic groups, G is nonelementary and H is non-trivial. Then there exists a simple torsion-free quotient M of G and an injective homomorphism $\pi: H \rightarrow M$ such that $\pi(H)$ is malnormal in M and any proper subgroup of M is conjugate (in M) to a subgroup of $\pi(H)$.

Acknowledgements

The author is grateful to Professor A. Yu. Ol'shanskii for suggesting the problem and helpful remarks.

2 Preliminary Information

Assume $(\mathcal{X}, d(\cdot, \cdot))$ is a proper geodesic metric space. If $Q \subset \mathcal{X}, N \geq 0$, the closed N-neighborhood of Q will be denoted by

$$
\mathcal{O}_{N}(Q) \stackrel{\text { def }}{=}\{x \in \mathcal{X} \mid d(x, Q) \leq N\}
$$

If $x, y, w \in \mathcal{X}$, then the number

$$
(x \mid y)_{w} \stackrel{\text { def }}{=} \frac{1}{2}(d(x, w)+d(y, w)-d(x, y))
$$

is called the Gromov product of x and y with respect to w.
Let $a b c$ be a geodesic triangle in the space \mathcal{X} and $[a, b],[b, c],[a, c]$ be its sides between the corresponding vertices. There exist "special" points $O_{a} \in[b, c]$, $O_{b} \in[a, c], O_{c} \in[a, b]$ with the properties: $d\left(a, O_{b}\right)=d\left(a, O_{c}\right)=\alpha, d\left(b, O_{a}\right)=$ $=d\left(b, O_{c}\right)=\beta, d\left(c, O_{a}\right)=d\left(c, O_{b}\right)=\gamma$. From a corresponding system of linear equations one can find that $\alpha=(b \mid c)_{a}, \beta=(a \mid c)_{b}, \gamma=(a \mid b)_{c}$. Two points $O \in[a, b]$ and $O^{\prime} \in[a, c]$ are called a-equidistant if $d(a, O)=d\left(a, O^{\prime}\right) \leq \alpha$. The triangle $a b c$ is said to be δ-thin if for any two points O, O^{\prime} lying on its sides and equidistant from one of its vertices, $d\left(O, O^{\prime}\right) \leq \delta$ holds.

A geodesic n-gon in the space \mathcal{X} is said to be δ-slim if each of its sides belongs to a closed δ-neighborhood of the union of the others.

Later we will use three equivalent definitions of hyperbolicity of the space \mathcal{X} (see [5],[1]):
1°. (M. Gromov) There exists $\delta \geq 0$ such that for any four points $x, y, z, w \in \mathcal{X}$ their Gromov products satisfy

$$
(x \mid y)_{w} \geq \min \left\{(x \mid z)_{w},(y \mid z)_{w}\right\}-\delta
$$

2°. All triangles in \mathcal{X} are δ-thin for some $\delta \geq 0 ;$
3°. (E. Rips) All triangles in \mathcal{X} are δ-slim for some $\delta \geq 0$.

Remark 1. It is easy to see that the definition 3° implies that any geodesic n-gon in the space \mathcal{X} is $(n-2) \delta$-slim if $n \geq 3$.

Now, suppose G is a finitely generated group with a fixed finite generating set \mathcal{A}. For every element $g \in G$ its length $|g|_{G}$ is the length of a shortest word in the alphabet \mathcal{A} representing g in G. Then, if $g, h \in G$ we define the distance $d(g, h)=\left|g^{-1} h\right|_{G}$. This distance function can be extended to a metric on the Cayley graph invariant under the action of G by left multiplication:

$$
\forall x, y \in \Gamma(G, \mathcal{A}) \text { and } g \in G \quad d(g \circ x, g \circ y)=d(x, y)
$$

This implies that for any elements $x, y, z, w \in G$

$$
(x \mid y)_{w}=(z x \mid z y)_{z w}
$$

Thus the Cayley graph $\Gamma(G, \mathcal{A})$ becomes a proper geodesic metric space. There is a natural (metric space) embedding of the group G into its Cayley graph. Later we will identify G with its image under it.

The group G is called hyperbolic if $\Gamma(G, \mathcal{A})$ is a hyperbolic metric space. This definition does not depend on the choice of the finite generating set \mathcal{A} in $G([7],[5,5.2 .14])$, thus hyperbolicity is a group-theoretical property. Among well-known examples of hyperbolic groups are free groups of finite rank, finite groups, fundamental groups of negatively curved compact manifolds, etc.

Further on we will assume that $\Gamma(G, \mathcal{A})$ meets $1^{\circ}, 2^{\circ}$ and 3° for a fixed (sufficiently large) $\delta \geq 0$.

For any two points $x, y \in \Gamma(G, \mathcal{A})$ we fix a geodesic path between them and denote it by $[x, y]$. Let p be a path in the Cayley graph of G. Then p_{-}, p_{+}will denote the startpoint and the endpoint of $p,\|p\|$ - its length; $l a b(p)$, as usual, will mean the word in the alphabet \mathcal{A} written on p. elem $(p) \in G$ will denote the element of the group G represented by the word $\operatorname{lab}(p) . p^{-1}$ will be the inverse path to p, i.e. the path with the same set of points but traced in the opposite direction.

A path q is called (λ, c) - quasigeodesic if there exist $0<\lambda \leq 1, c \geq 0$, such that for any subpath p of q the inequality $\lambda\|p\|-c \leq d\left(p_{-}, p_{+}\right)$holds.
In a hyperbolic space quasigeodesics and geodesics with same ends are mutually close :

Lemma 2.1. ([5, 5.6,5.11],[1, 3.3]) There is a constant $\nu=\nu(\delta, \lambda, c)$ such that for any (λ, c)-quasigeodesic path p in $\Gamma(G, \mathcal{A})$ and a geodesic q with $p_{-}=q_{-}$, $p_{+}=q_{+}$, one has $p \subset \mathcal{O}_{\nu}(q)$ and $q \subset \mathcal{O}_{\nu}(p)$.

An important property of cyclic subgroups in a hyperbolic group states
Lemma 2.2. ([5, 8.21],[1, 3.2]) For any word w representing an element $g \in G$ of infinite order there exist constants $\lambda>0, c \geq 0$, such that any path with a label w^{m} in the Cayley graph of G is (λ, c)-quasigeodesic for arbitrary integer m.

It is easy to see that any finite subset of a group is $D / 2$-quasiconvex where D is the diameter of that subset.

It follows from lemmas 2.1 and 2.2 that any cyclic subgroup of a hyperbolic group is quasiconvex.
Lemma 2.3. ([8, Prop. 3.14],[13, Lemma 2.1,Prop. 1]) Let G be a hyperbolic group and let A, B be its quasiconvex subsets. Then the subsets $A \cup B$ and $A \cdot B$ are also quasiconvex.

If $X_{1}, X_{2}, \ldots, X_{n}$ are points in $\Gamma(G, \mathcal{A})$, the notation $X_{1} X_{2} \ldots X_{n}$ will be used for the geodesic n-gon with vertices $X_{i}, i=1, \ldots, n$, and sides $\left[X_{i}, X_{i+1}\right]$, $i=1,2, \ldots, n-1,\left[X_{n}, X_{0}\right] .\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ will denote the broken line with these vertices in the corresponding order (i.e. the path $\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ will consist of consecutively concatenated geodesic segments $\left.\left[X_{i}, X_{i+1}\right], i=1,2, \ldots, n\right)$.
Lemma 2.4. ([17, Lemma 21]) Let $p=\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ be a broken line in $\Gamma(G, \mathcal{A})$ such that $\left\|\left[X_{i-1}, X_{i}\right]\right\| \geq C_{1} \forall i=1, \ldots, n$, and $\left(X_{i-1} \mid X_{i+1}\right)_{X_{i}} \leq C_{0}$ $\forall i=1, \ldots, n-1$, where $C_{0} \geq 14 \delta, C_{1}>12\left(C_{0}+\delta\right)$. Then p is contained in the closed $2 C_{0}$-neighborhood $\mathcal{O}_{2 C_{0}}\left(\left[X_{0}, X_{n}\right]\right)$ of the geodesic segment $\left[X_{0}, X_{n}\right]$.

Lemma 2.5. ([14, Lemma 3.5]) In the conditions of lemma 2.4 the inequality $\left\|\left[X_{0}, X_{n}\right]\right\| \geq\|p\| / 2$ holds.

Lemma 2.6. ([14, Lemma 4.1]) Consider a geodesic quadrangle $X_{1} X_{2} X_{3} X_{4}$ in $\Gamma(G, \mathcal{A})$ with $d\left(X_{2}, X_{3}\right)>d\left(X_{1}, X_{2}\right)+d\left(X_{3}, X_{4}\right)$. Then there are points $U, V \in\left[X_{2}, X_{3}\right]$ such that $d\left(X_{2}, U\right) \leq d\left(X_{1}, X_{2}\right), d\left(V, X_{3}\right) \leq d\left(X_{3}, X_{4}\right)$ and the geodesic subsegment $[U, V]$ of $\left[X_{2}, X_{3}\right]$ lies 2δ-close to the side $\left[X_{1}, X_{4}\right]$.

Lemma 2.7. ([14, Lemma 4.5]) Let G be a δ-hyperbolic and let H_{i} be ε_{i} quasiconvex subgroups of $G, i=1,2$. If one has

$$
\sup \left\{\left(h_{1} \mid h_{2}\right)_{1_{G}}: h_{1} \in H_{1}, h_{2} \in H_{2}\right\}=\infty
$$

then $\operatorname{card}\left(H_{1} \cap H_{2}\right)=\infty$.
Lemma 2.8. ([14, Lemma 4.2]) Let A be an infinite ε-quasiconvex set in G and $g \in G$. Then if the intersection $A \cap g A g^{-1}$ is infinite, there exists an element $r \in G$ with $|r|_{G} \leq 4 \delta+2 \varepsilon+2 \varkappa$ such that $g \in \operatorname{Ar} A^{-1}$, where \varkappa is the length of a shortest element from A.

Lemma 2.9. ([14, Lemma 4.3]) Let G be a δ-hyperbolic group, H and K-its subgroups with K quasiconvex. If $H \subset \bigcup_{j=1}^{N} K s_{j} K \quad$ for some $s_{1}, \ldots, s_{N} \in G$ then $|H:(K \cap H)|<\infty$.

Lemma 2.10. ([5, 8.3.36]) Any infinite subgroup of a hyperbolic group contains an element of infinite order.

If $g \in G^{0}, T(g)$ will be used to denote the set of elements of finite order in the subgroup $E(g)$.

Definition. Let G be a hyperbolic group and H be its non-elementary subgroup. An element $g \in H^{0}$ will be called H-suitable if $E(H)=T(g)$ and

$$
E(g)=E^{+}(g)=C_{G}(g)=T(g) \times\langle g\rangle .
$$

In particular, if the element g is H-suitable then $g \in C_{H}(E(H))$.
Two elements $g, h \in G$ of infinite order are called commensurable if $g^{k}=a h^{l} a^{-1}$ for some non-zero integers k, l and some $a \in G$.

Now we recall the statement of [16, Lemma 3.8]:
Lemma 2.11. Every non-elementary subgroup H of a hyperbolic group G contains an infinite set of pairwise non-commensurable H-suitable elements.

We will need the following modification of [16, Lemma 3.7]:
Lemma 2.12. Let g be an H-suitable element in a non-elementary subgroup H of a hyperbolic group G. Suppose $l \in \mathbb{N}$ and K is a non-elementary subgroup of H. Then for any number $C_{1} \geq 0$ there exist elements $x_{i} \in K, i=1, \ldots, l$, satisfying the following properties:
0) $\left|x_{i}\right|_{G}>C_{1}$ for every $i=1,2 \ldots, l$;

1) $x_{i} \notin E(g)$ for every $i=1,2 \ldots, l$;
2) $x_{i} \in C_{G}(E(H))$ for every $i=1,2 \ldots, l$;
3) $a x_{i}=x_{i} b$ for $a, b \in E(g)$ implies that $a=b \in E(H), i=1,2 \ldots, l$;
4) if $a, b \in E(g)$ and $a x_{i}=x_{j} b$ for some $i, j \in\{1, \ldots, l\}$ then $i=j$.

Proof. Indeed, it is shown in the proof of [16, Lemma 3.7] that if the elements $g, h_{1}, \ldots, h_{l} \in H$ are pairwise non-commensurable in G then for any sufficiently large $t \in \mathbb{N}$, the elements $x_{i}=h_{i}^{t}$ satisfy the conditions 1) - 4). By lemma 2.11 we can choose such h_{1}, \ldots, h_{l} inside of K, thus $x_{i}=h_{i}^{t} \in K$. Obviously, if $t \in \mathbb{N}$ is sufficiently large the property 0) will also be satisfied.

In this paper we will also use the concept of Gromov boundary of a hyperbolic group G (for a detailed theory the reader is referred to the corresponding chapters in [5], [3] or [1]).) In order to define it, call a sequence $\left(x_{i}\right)_{i \in \mathbb{N}} \subset \Gamma(G, \mathcal{A})$ converging to infinity if

$$
\lim _{i, j \rightarrow \infty}\left(x_{i} \mid x_{j}\right)_{1_{G}}=\infty \quad\left(1_{G} \text { is the identity element of the group } G\right)
$$

Two sequences $\left(x_{i}\right)_{i \in \mathbb{N}},\left(y_{j}\right)_{i \in \mathbb{N}}$ converging to infinity are said to be equivalent if

$$
\lim _{i \rightarrow \infty}\left(x_{i} \mid y_{i}\right)_{1_{G}}=\infty .
$$

The points of the boundary ∂G are identified with the equivalence classes of sequences converging to infinity. (It is easy to see that this definition does not depend on the choice of a basepoint: instead of 1_{G} one could use any fixed
point p of $\Gamma(G, \mathcal{A})[1]$.) If α is the equivalence class of $\left(x_{i}\right)_{i \in \mathbb{N}}$ we will write $\lim _{i \rightarrow \infty} x_{i}=\alpha$.

The space ∂G can be topologized so that it becomes compact, Hausdorff and metrizable (see [1],[5]).

Every isometry ψ of the space $\Gamma(G, \mathcal{A})$ induces a homeomorphism of ∂G in a natural way: for every equivalence class of sequences converging to infinity $\left[\left(x_{i}\right)_{i \in \mathbb{N}}\right] \in \partial G$ choose a representative $\left(x_{i}\right)_{i \in \mathbb{N}} \subset \Gamma(G, \mathcal{A})$ and set

$$
\psi\left(\left[\left(x_{i}\right)_{i \in \mathbb{N}}\right]\right) \stackrel{\text { def }}{=}\left[\left(\psi\left(x_{i}\right)\right)_{i \in \mathbb{N}}\right] \in \partial G .
$$

Left multiplication by elements of the group induces an isometric action of G on $\Gamma(G, \mathcal{A})$. Hence, G acts homeomorphically on the boundary ∂G as described above.

If $g \in G$ is an element of infinite order then the sequences $\left(g^{i}\right)_{i \in \mathbb{N}}$ and $\left(g^{-i}\right)_{i \in \mathbb{N}}$ converge to infinity and we will use the notation

$$
\lim _{i \rightarrow \infty} g^{i}=g^{\infty}, \quad \lim _{i \rightarrow \infty} g^{-i}=g^{-\infty}
$$

For a subset $A \subseteq \Gamma(G, \mathcal{A})$ the limit set $\Lambda(A)$ of A is the collection of the points $\alpha \in \partial G$ that are limits of sequences (converging to infinity) from A.

The following properties of limit sets are well-known:
Lemma 2.13. ([9],[19]) Suppose A, B are arbitrary subsets of $\Gamma(G, \mathcal{A}), g \in G$. Then
(a) $\Lambda(A)=\emptyset$ if and only if A is finite;
(b) $\Lambda(A)$ is a closed subset of the boundary ∂G;
(c) $\Lambda(A \cup B)=\Lambda(A) \cup \Lambda(B)$;
(d) $\Lambda(A g)=\Lambda(A), g \circ \Lambda(A)=\Lambda(g A)$;

Lemma 2.14. Suppose A and B are subsets of the hyperbolic group G and $\Lambda(A) \cap \Lambda(B)=\emptyset$. Then $\sup _{a \in A, b \in B}\left\{(a \mid b)_{1_{G}}\right\}<\infty$.

Proof. This statement is an easy consequence of the definition of a limit set. Indeed, assume, by the contrary, that there are sequences of elements $\left(a_{i}\right)_{i \in \mathbb{N}} \subset A$ and $\left(b_{i}\right)_{i \in \mathbb{N}} \subset B$ such that $\lim _{i \rightarrow \infty}\left(a_{i} \mid b_{i}\right)_{1_{G}}=\infty$. Then the subsets $\left\{a_{i} \mid i \in \mathbb{N}\right\} \subset G$ and $\left\{b_{i} \mid i \in \mathbb{N}\right\} \subset G$ are infinite, hence each of them has at least one limit point (by lemma 2.13.(a)). Thus, there are subsequences $\left(a_{i_{j}}\right)_{j \in \mathbb{N}}$ of $\left(a_{i}\right)$ and $\left(b_{i_{j}}\right)_{j \in \mathbb{N}}$ of $\left(b_{i}\right)$ satisfying

$$
\lim _{j \rightarrow \infty} a_{i_{j}}=\alpha \in \Lambda(A), \quad \lim _{j \rightarrow \infty} b_{i_{j}}=\beta \in \Lambda(B) .
$$

But $\lim _{j \rightarrow \infty}\left(a_{i_{j}} \mid b_{i_{j}}\right)_{1_{G}}=\infty$ by our assumption, hence $\alpha=\beta$. A contradiction with the condition $\Lambda(A) \cap \Lambda(B)=\emptyset$.

If H is a subgroup of G, it is known that ΛH is either empty (if H is finite) or consists of two distinct points (if H is infinite elementary), or is uncountable (if H is non-elementary) ([9],[5]). In the second case, when there exists $g \in H^{0}$ such that $|H:\langle g\rangle|<\infty, \Lambda H=\left\{g^{\infty}, g^{-\infty}\right\}$.

As the hyperbolic group G acts on its boundary, for every subset $\Omega \subset \partial G$ one can define the stabilizer subgroup by $S t_{G}(\Omega)=\{g \in G \mid g \circ \Omega=\Omega\}$. For our convenience, we set $S t_{G}(\emptyset)=G$.

It is proved in [5, thm. 8.3.30] that for any point $\alpha \in \partial G \quad S t_{G}(\{\alpha\})$ is an elementary subgroup of the group G (in fact, if $\alpha=g^{\infty}$ for some element of infinite order $g \in G$ then

$$
S t_{G}\left(\left\{g^{\infty}\right\}\right)=E^{+}(g),
$$

otherwise the subgroup $S t_{G}(\{\alpha\})$ is finite $) . S t_{G}\left(\left\{g^{\infty}, g^{-\infty}\right\}\right)=E(g)$.
If $A \subseteq G$ and $\Omega \subseteq \partial G$ then the orbit of Ω under the action of A will be denoted

$$
A \circ \Omega \stackrel{\text { def }}{=}\{g \circ \alpha \mid g \in A, \alpha \in \Omega\} \subseteq \partial G
$$

Lemma 2.15. ([9, Lemma 3.3]) If H is an infinite subgroup of G then $\Lambda(H)$ contains at least two distinct points and the set $\Lambda(H)$ is H-invariant, i.e. for every $h \in H \quad h \circ \Lambda(H)=\Lambda(H)$.

Thus every infinite subgroup H of G acts on its limit set $\Lambda(H)$ and this action is induced by the action of G on the boundary ∂G described above.

Lemma 2.16. ([9, Lemma 3.8]) Let A be an infinite normal subgroup of a subgroup H in G. Then $\Lambda(A)=\Lambda(H)$.

For an arbitrary subset $\Omega \subseteq \partial G$ denote by $\operatorname{cl}(\Omega)$ its closure in the topology of the boundary ∂G.

Lemma 2.17. ([14, Lemma 6.4]) Suppose $\Omega \subset \partial G$ is a subset having at least two distinct points. Then $\Lambda\left(S t_{G}(\Omega)\right) \subseteq c l(\Omega)$.

Combining lemmas 8.1.(5) and 8.2 from [14] together one obtains
Lemma 2.18. Assume H is a subgroup of G and $A \subseteq G$ is a non-empty quasiconvex subset. If $\Lambda(H) \subseteq \Lambda(A)$ then there is a finite subset $P \subset G$ such that $H \subseteq A \cdot P=\bigcup_{x \in P} A x$.

3 Proofs of Theorems 2,3

Suppose $H=\langle\mathcal{B}\rangle$ is a subgroup of G with a finite generating set \mathcal{B}. If $h \in$ H, then by $|h|_{G}$ and $|h|_{H}$ we will denote the lengths of the element h in the alphabets \mathcal{A} and \mathcal{B} respectively. Denote $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}=\{0,1,2, \ldots\}$. The distortion function (see [6]) $D_{H}: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ of H in G is defined by

$$
D_{H}(n)=\max \left\{|h|_{H}\left|h \in H,|h|_{G} \leq n\right\} .\right.
$$

If $\alpha, \beta: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ are two functions then we write $\alpha \preceq \beta$ if there are constants $K_{1}, K_{2}>0: \alpha(n) \leq K_{1} \beta\left(K_{2} n\right)$ for every $n \in \mathbb{N} . \alpha$ and β are said to be equivalent if $\alpha \preceq \beta$ and $\beta \preceq \alpha$.

Evidently, the function D_{H} does not depend (up to this equivalence) on the choice of finite generating sets \mathcal{A} of G and \mathcal{B} of H. One can also notice that $D_{H}(n)$ is always at least linear (provided that H is infinite). Fix a linear function $L: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ (for example, $L(n)=n$). If $D_{H} \preceq L, H$ is called undistorted.
Lemma 3.1. [13, Lemma 1.6] Let H be a finitely generated subgroup of a hyperbolic group G. Then H is quasiconvex if and only if H is undistorted in G.

Proof of lemma 1.2. Let H be a quasiretract of the hyperbolic group G and let $N \triangleleft G$ satisfy $|G: H N|<\infty, \operatorname{card}(H \cap N)<\infty$. Denote $\hat{G}=H N \leq G$. Then for the quotient group $K=\hat{G} / N$ there is a natural epimorphism $\varphi: \hat{G} \rightarrow K$ such that $K=\varphi(H)$ and $M \stackrel{\text { def }}{=} \operatorname{ker}(\varphi) \cap H$ is finite.

The group \hat{G} is generated by a finite set $\hat{\mathcal{A}}$ (because it is of finite index in a finitely generated group $G)$. Hence K is generated by the finite set $\mathcal{C}=\varphi(\hat{\mathcal{A}})$. For every element $x \in \mathcal{C}$ choose one element $y \in H$ from its preimage under φ and denote by $\overline{\mathcal{C}}$ the subset of H consisting of them. Since

$$
H / M \cong K
$$

H is generated by the finite set $\mathcal{B}=\overline{\mathcal{C}} \cup M$.
Now one can define the corresponding length functions $|\cdot|_{H}$ and $|\cdot|_{\hat{G}}$ which satisfy the following properties:

$$
\begin{gathered}
\forall g \in \hat{G} \quad|\varphi(g)|_{K} \leq|g|_{\hat{G}}, \\
\forall h \in H \quad|h|_{H} \leq|\varphi(h)|_{K}+1 .
\end{gathered}
$$

Combining these inequalities we get

$$
\forall h \in H \quad|h|_{H} \leq|h|_{\hat{G}}+1 .
$$

Therefore, $D_{H}(n) \leq n+1$, i.e. H is undistorted in \hat{G}. The group G is hyperbolic and any its subgroup of finite index is quasiconvex, thus, by lemma 3.1, \hat{G} is undistorted in G. Evidently the property that a subgroup is undistorted in a group is transitive, hence H is undistorted in G. It remains to apply lemma 3.1 to complete the proof.

Proof of theorem 2. It is enough to show that $M=\operatorname{ker} \phi \cap H$ is finite. By the conditions,

$$
M \subset P_{1} Q^{-1} Q P_{2}=\bigcup_{x \in P_{1}, y \in P_{2}} x Q^{-1} Q y
$$

Proving by contradiction, assume that M is infinite. Then, since the subsets P_{1}, P_{2} are finite, there are elements $g \in P_{1}$ and $h \in P_{2}$ such that the intersection

$$
A \stackrel{\text { def }}{=} M \cap g Q^{-1} Q h
$$

is infinite. Therefore, $B=g^{-1} A h^{-1}$ is an infinite subset of $Q^{-1} Q$ satisfying

$$
\phi(B)=\left\{\phi\left(g^{-1} h^{-1}\right)\right\}-\text { a one-element subset } .
$$

It is easy to see that the latter is impossible if ϕ is a quasiisometry between Q and $\phi(Q)$ (since for any $u, v \in Q \quad d(u, v)=\left|u^{-1} v\right|_{G}, d_{1}(\phi(u), \phi(v))=\left|\phi\left(u^{-1} v\right)\right|_{G_{1}}$, $\left.u^{-1} v \in Q^{-1} Q\right)$.

To prove theorem 3 we will need the following statement:
Lemma 3.2. [14, Thm. 2] Assume that U is a finite union of quasiconvex products in a hyperbolic group G and the subgroups $F_{1}, F_{2}, \ldots, F_{l}$ are all the members of U. If H is a subgroup of G and $H \subseteq U$ then for some $g \in G$ and $j \in\{1,2, \ldots, l\}$ one has $\left|H:\left(H \cap g F_{j} g^{-1}\right)\right|<\infty$.

Proof of theorem 3. Fix arbitrary finite subsets P_{1}, P_{2} of G. Then the set $U=P_{1} Q^{-1} Q P_{2}$ is also a finite union of quasiconvex products in the group G with the same members F_{1}, \ldots, F_{l}. Now the claim of the theorem follows directly from lemma 3.2 .

4 Auxiliary Lemmas

Assume \mathcal{X} is a δ-hyperbolic metric space with metric $d(\cdot, \cdot)$.
Lemma 4.1. Suppose $\varkappa \geq 0, X, Y, Z, X^{\prime}, Y^{\prime} \in \mathcal{X}$ and $X^{\prime} \in \mathcal{O}_{\varkappa}([X, Z]), Y^{\prime} \in$ $\mathcal{O}_{\varkappa}([Y, Z])$. Then $\left(X^{\prime} \mid Y^{\prime}\right)_{Z} \leq(X \mid Y)_{Z}+2 \varkappa$.

Proof. Let $X^{\prime \prime} \in[X, Z], Y^{\prime \prime} \in[Y, Z]$ satisfy $d\left(X^{\prime}, X^{\prime \prime}\right) \leq \varkappa, d\left(Y^{\prime}, Y^{\prime \prime}\right) \leq \varkappa$. By the triangle inequality

$$
\begin{gathered}
\left(X^{\prime} \mid Y^{\prime}\right)_{Z}=\frac{1}{2}\left(d\left(X^{\prime}, Z\right)+d\left(Y^{\prime}, Z\right)-d\left(X^{\prime}, Y^{\prime}\right)\right) \leq \\
\leq \frac{1}{2}\left(d\left(X^{\prime \prime}, Z\right)+d\left(Y^{\prime \prime}, Z\right)-d\left(X^{\prime \prime}, Y^{\prime \prime}\right)+2 d\left(X^{\prime}, X^{\prime \prime}\right)+2 d\left(Y^{\prime}, Y^{\prime \prime}\right)\right) .
\end{gathered}
$$

Now, since $d(X, Z)=d\left(X^{\prime \prime}, Z\right)+d\left(X^{\prime \prime}, X\right)$ and $d(Y, Z)=d\left(Y^{\prime \prime}, Z\right)+$ $d\left(Y^{\prime \prime}, Y\right)$, we achieve

$$
\begin{aligned}
\left(X^{\prime} \mid Y^{\prime}\right)_{Z} & \leq \frac{1}{2}\left(d(X, Z)+d(Y, Z)-\left[d\left(X^{\prime \prime}, Y^{\prime \prime}\right)+d\left(X^{\prime \prime}, X\right)+d\left(Y^{\prime \prime}, Y\right)\right]\right)+2 \varkappa \leq \\
& \leq \frac{1}{2}(d(X, Z)+d(Y, Z)-d(X, Y))+2 \varkappa=(X \mid Y)_{Z}+2 \varkappa .
\end{aligned}
$$

Q.e.d

Lemma 4.2. Let $\bar{\lambda}>0, \bar{c} \geq 0, C_{0} \geq 14 \delta, C_{1}=12\left(C_{0}+\delta\right)+\bar{c}+1$ be given. Then for $\lambda=\bar{\lambda} / 4>0$ there exist $c=c\left(\bar{\lambda}, \bar{c}, C_{0}\right) \geq 0$ satisfying the statement below.
Assume $N \in \mathbb{N}, X_{i} \in \mathcal{X}, i=0, \ldots, N$, and q_{i} are $(\bar{\lambda}, \bar{c})$-quasigeodesic paths between X_{i-1} and X_{i} in $\mathcal{X}, i=1, \ldots, N$. If $\left\|q_{i}\right\| \geq\left(C_{1}+\bar{c}\right) / \bar{\lambda}, i=1, \ldots, N$, and $\left(X_{i-1} \mid X_{i+1}\right)_{X_{i}} \leq C_{0}$ for all $i=1, \ldots, N-1$, then the path q obtained as a consequent concatenation of $q_{1}, q_{2}, \ldots, q_{N}$, is (λ, c)-quasigeodesic.

Proof. Let the number $\nu=\nu(\bar{\lambda}, \bar{c}) \geq 0$ be chosen according to the claim of lemma 2.1. Set $c=\frac{5}{2}\left(\nu+C_{1}\right) \geq 0$.

Suppose p is an arbitrary subpath of q. Then $p_{-} \in q_{j}, p_{+} \in q_{k}$ for some $1 \leq j \leq k \leq N$. If $j=k, p$ is a subpath of q_{j} and therefore, it is $(\bar{\lambda}, \bar{c})$ quasigeodesic, hence it is (λ, c)-quasigeodesic.

Now let's assume that $j<k$. By our conditions and the choice of ν, there are points $U \in\left[X_{j-1}, X_{j}\right], V \in\left[X_{k-1}, X_{k}\right]$ such that $d\left(p_{-}, U\right) \leq \nu$ and $d\left(p_{+}, V\right) \leq \nu .\left\|\left[X_{j-1}, X_{j}\right]\right\| \geq \bar{\lambda}\left\|q_{j}\right\|-\bar{c} \geq C_{1}$, similarly, $\left[X_{k-1}, X_{k}\right] \geq C_{1}$, hence after shifting the points U and V along the segments $\left[X_{j-1}, X_{j}\right]$ and $\left[X_{k-1}, X_{k}\right.$] (correspondingly) by distances at most C_{1} we will obtain $\left\|\left[U, X_{j}\right]\right\| \geq C_{1}$, $\left\|\left[X_{k-1}, V\right]\right\| \geq C_{1}, d\left(U, p_{-}\right) \leq \nu+C_{1}, d\left(V, p_{+}\right) \leq \nu+C_{1}$ and, therefore, $d\left(p_{-}, p_{+}\right) \geq d(U, V)-2 \nu-2 C_{1}$.

According to the lemma 4.1, all the conditions of lemma 2.5 applied to the broken line $\left[U, X_{j}, \ldots, X_{k-1}, V\right]$ are satisfied, hence

$$
d(U, V) \geq \frac{1}{2}\left\|\left[U, X_{j}, \ldots, X_{k-1}, V\right]\right\|
$$

Consequently,

$$
d\left(p_{-}, p_{+}\right) \geq \frac{1}{2}\left(d\left(U, X_{j}\right)+\sum_{i=j}^{k-2} d\left(X_{i}, X_{i+1}\right)+d\left(X_{k-1}, V\right)\right)-2 \nu-2 C_{1}
$$

Finally, we observe that $d\left(U, X_{j}\right) \geq \frac{1}{2} d\left(U, X_{j}\right)+\frac{C_{1}}{2}>\frac{1}{2}\left(d\left(U, X_{j}\right)+\bar{c}\right)$ and analogously for the other summands. Denote by $q_{j}^{\prime}, q_{k}^{\prime}$ the segments of q_{j} and q_{k} from p_{-}to X_{j} and from X_{k-1} to p_{+}correspondingly. We obtain

$$
\begin{gathered}
d\left(p_{-}, p_{+}\right) \geq \frac{1}{4}\left(d\left(U, X_{j}\right)+\bar{c}+\sum_{i=j}^{k-2}\left(d\left(X_{i}, X_{i+1}\right)+\bar{c}\right)+d\left(X_{k-1}, V\right)+\bar{c}\right)- \\
-2 \nu-2 C_{1} \geq
\end{gathered}
$$

$$
\begin{aligned}
& \geq \frac{1}{4}\left(d\left(p_{-}, X_{j}\right)+\bar{c}+\sum_{i=j}^{k-2}\left(d\left(X_{i}, X_{i+1}\right)+\bar{c}\right)+d\left(X_{k-1}, p_{+}\right)+\bar{c}\right)-\frac{5}{2} \nu-\frac{5}{2} C_{1} \geq \\
& \quad \geq \frac{1}{4}\left(\bar{\lambda}\left\|q_{j}^{\prime}\right\|+\sum_{i=j}^{k-2} \bar{\lambda}\left\|q_{i+1}\right\|+\bar{\lambda}\left\|q_{k}^{\prime}\right\|\right)-\frac{5}{2} \nu-\frac{5}{2} C_{1} \geq \frac{\bar{\lambda}}{4}\|p\|-\frac{5}{2}\left(\nu+C_{1}\right) .
\end{aligned}
$$

The statement is proved.
Now let G be a δ-hyperbolic group, $\delta \geq 0$.

Lemma 4.3. Let H be a non-elementary subgroup of a hyperbolic group G, and g be an H-suitable element. If $y \in C_{H}(E(H)) \backslash E(g)$ then there exists $N \in \mathbb{N}$ such that the element $y g^{n}$ has infinite order in H and is H-suitable for every $n \geq N$.

Proof. Observe that $E(g) \neq E\left(y g y^{-1}\right)$ because, otherwise, we would have $y g^{k} y^{-1}=g^{l}$ for some non-zero integers k, l, and (1) would imply $y \in E(g)$ which is not true by the conditions of the lemma. Therefore $E(g) \cap E\left(y g y^{-1}\right)$ is finite, hence, by lemma 2.7 there is $C_{0}^{\prime} \geq 0$ such that $\left(g^{l} \mid y g^{k} y^{-1}\right)_{1_{G}} \leq C_{0}^{\prime}$ for any $k, l \in \mathbb{Z}$. Set $C_{0}=C_{0}^{\prime}+2|y|_{G}+14 \delta$, then $C_{0} \geq 14 \delta$ and

$$
\begin{equation*}
\left(g^{-n} y^{-1} \mid y g^{n}\right)_{1_{G}} \leq\left(g^{-n} \mid y g^{n} y^{-1}\right)_{1_{G}}+2|y|_{G} \leq C_{0} \quad \forall n \in \mathbb{N} . \tag{2}
\end{equation*}
$$

First, let us show that $y g^{n} \in H^{0}$ if $n \in \mathbb{N}$ is sufficiently big.
Choose $C_{1}=12\left(C_{0}+\delta\right)+1$ and $N_{1} \in \mathbb{N}$ so that $\left|y g^{n}\right|_{G} \geq C_{1}$ for all $n \geq N_{1}$. Suppose $\left(y g^{n}\right)^{t}=1_{G}$ for some $t \in \mathbb{N}$ and $n \geq N_{1}$. Consider the broken line $\left[X_{0}, X_{1}, \ldots, X_{t}\right]$ in $\Gamma(G, \mathcal{A})$ with $X_{i}=\left(y g^{n}\right)^{i}, i=0,1 \ldots, t$. We can estimate

$$
\left(X_{i-1} \mid X_{i+1}\right)_{X_{i}}=\left(\left(y g^{n}\right)^{i-1} \mid\left(y g^{n}\right)^{i+1}\right)_{\left(y g^{n}\right)^{i}}=\left(g^{-n} y^{-1} \mid y g^{n}\right)_{1_{G}} \leq C_{0}
$$

It satisfies all the conditions of lemma 2.5, therefore

$$
\left\|\left[X_{0}, X_{t}\right]\right\| \geq \frac{1}{2}\left\|\left[X_{0}, X_{1}, \ldots, X_{t}\right]\right\| \geq C_{1} / 2>0
$$

but we assumed that $X_{0}=X_{t}$. A contradiction. Hence the element $y g^{n}$ has infinite order for each $n \geq N_{1}$.

Now, if $n \geq N_{1}, E\left(y g^{n}\right) \neq E(g)$ because, otherwise, we would obtain $y g^{n} \in$ $E(g)$ which implies $y \in E(g)$ contradicting to the conditions of the lemma. Hence,

$$
E(g) \cap E\left(y g^{n}\right) \subset T(g)=E(H) \subset E\left(y g^{n}\right), \text { thus } E(g) \cap E\left(y g^{n}\right)=E(H)
$$

Let w_{1}, w_{2} be shortest words in the alphabet \mathcal{A} representing y and g correspondingly. By lemma 2.2 there exist $\bar{\lambda}>0$ and $\bar{c}^{\prime} \geq 0$ such that any path in $\Gamma(G, \mathcal{A})$ labelled by the word w_{2}^{n} is $\left(\bar{\lambda}, \bar{c}^{\prime}\right)$-quasigeodesic for any $n \in \mathbb{N}$. Consequently, any path labelled by $w_{1} w_{2}^{n}$ is $(\bar{\lambda}, \bar{c})$-quasigeodesic where $\bar{c}=\bar{c}^{\prime}+2\left\|w_{1}\right\|$. Set $C_{1}=12\left(C_{0}+\delta\right)+\bar{c}+1$. Suppose that $n \geq\left(C_{1}+\bar{c}\right) / \bar{\lambda}$. Then $\left\|w_{1} w_{2}^{n}\right\| \geq$ $\left(C_{1}+\bar{c}\right) / \bar{\lambda}$ and by (2) we can apply lemma 4.2 to find $\lambda>0$ and $c \geq 0$ (not depending on n) such that any path labelled by $\left(w_{1} w_{2}^{n}\right)^{t}$ is (λ, c)-quasigeodesic for any $t \in \mathbb{Z}$.

Suppose $x \in E\left(y g^{n}\right)$. There is $k \in \mathbb{N}$ such that $x\left(y g^{n}\right)^{k} x^{-1}=\left(y g^{n}\right)^{\epsilon k}$ where $\epsilon \in\{1,-1\}$, hence $x\left(y g^{n}\right)^{l k} x^{-1}=\left(y g^{n}\right)^{\epsilon l k}$ for any $l \in \mathbb{N}$. Consider the geodesic quadrangle $Y_{1} Y_{2} Y_{3} Y_{4}$ in $\Gamma(G, \mathcal{A})$ with $Y_{1}=1_{G}, Y_{2}=x, Y_{3}=$ $x\left(y g^{n}\right)^{l k}, Y_{4}=x\left(y g^{n}\right)^{l k} x^{-1}$ and (λ, c)-quasigeodesic paths p between Y_{2} and Y_{3} and q between Y_{1} and Y_{4} labelled by the words $\left(w_{1} w_{2}^{n}\right)^{l k}$ and $\left(w_{1} w_{2}^{n}\right)^{\epsilon l k}$ correspondingly. Choose $\nu=\nu(\lambda, c)$ to be the constant given by lemma 2.1. Thus

$$
p \subset \mathcal{O}_{\nu}\left(\left[Y_{2}, Y_{3}\right]\right),\left[Y_{2}, Y_{3}\right] \subset \mathcal{O}_{\nu}(p), q \subset \mathcal{O}_{\nu}\left(\left[Y_{1}, Y_{4}\right]\right),\left[Y_{1}, Y_{4}\right] \subset \mathcal{O}_{\nu}(q)
$$

Obviously, by taking the number l sufficiently large, one can find a subpath r of p labelled by w_{2}^{n} with its endpoints r_{-}and r_{+}having distances at least $\left(|x|_{G}+\nu\right)$ from both of the vertices Y_{2} and Y_{3}. Then an application of lemma 2.6 will give us

$$
r_{-}, r_{+} \in \mathcal{O}_{\nu+2 \delta}\left(\left[Y_{1}, Y_{4}\right]\right) \subset \mathcal{O}_{2 \nu+2 \delta}(q)
$$

Let denote u, v denote the points on the path q with $d\left(r_{-}, u\right) \leq 2 \nu+2 \delta$ and $d\left(r_{+}, v\right) \leq 2 \nu+2 \delta$, and let r^{\prime} be the subpath of q (or q^{-1}) starting at u, ending at v. The length of r (and, hence, the length of $\left[r_{-}, r_{+}\right]$) depends on n, thus it can be made as large as we please, therefore r^{\prime} will also be long (compared to $\left\|w_{1}\right\|$), consequently r^{\prime} will have a subpath q^{\prime} labelled by $w_{2}^{t}, t \in \mathbb{Z}$, with $|t| \geq \bar{\lambda} n / 3$. Since the quadrangles in $\Gamma(G, \mathcal{A})$ are 2δ-slim, we achieve

$$
\begin{gathered}
{[u, v] \subset \mathcal{O}_{2 \delta}\left(\left[r_{-}, r_{+}\right] \cup\left[r_{-}, u\right] \cup\left[r_{+}, v\right]\right) \subset \mathcal{O}_{2 \nu+4 \delta}\left(\left[r_{-}, r_{+}\right]\right), \text {hence }} \\
q^{\prime} \subset \mathcal{O}_{\nu}([u, v]) \subset \mathcal{O}_{3 \nu+4 \delta}\left(\left[r_{-}, r_{+}\right]\right) \subset \mathcal{O}_{4 \nu+4 \delta}(r)
\end{gathered}
$$

Consider the vertices $a_{0}=q_{-}^{\prime}, a_{2}, \ldots, a_{|t|}=q_{+}^{\prime}$ of the path q^{\prime} such that the subpaths between a_{i-1} and a_{i} are labelled by w_{2} (respectively, w_{2}^{-1} if $t<0$) for every $1 \leq i \leq|t|$ (we will call them phase vertices). Then each of them is at distance at most $\left(4 \nu+4 \delta+\left\|w_{2}\right\|\right)$ from some phase vertex of r. There are only finitely many words over the alphabet \mathcal{A} of length at most $\left(4 \nu+4 \delta+\left\|w_{2}\right\|\right)$, therefore, if n is sufficiently large, there will be two paths α and β connecting two different phase vertices of q^{\prime} with some vertices of r having the same word w_{3} written on them. Thus we achieve an equality in the group G :

$$
w_{2}^{s}=w_{3} w_{2}^{s^{\prime}} w_{3}^{-1} \text { for some } s, s^{\prime} \in \mathbb{Z} \backslash\{0\}
$$

So, if z denotes the element of G represented by the word w_{3}, we have

$$
\begin{equation*}
z g^{s^{\prime}} z^{-1}=g^{s} \tag{3}
\end{equation*}
$$

Then $z \in E(g)$ by (1). By the construction, $x=\left(y g^{n}\right)^{\zeta} g^{\xi} z g^{\xi^{\prime}}\left(y g^{n}\right)^{\zeta^{\prime}}$ for some $\zeta, \xi, \zeta^{\prime}, \xi^{\prime} \in \mathbb{Z}$. Note that $\left(y g^{n}\right)^{-\zeta} x\left(y g^{n}\right)^{-\zeta^{\prime}} \in E\left(y g^{n}\right)$ and $g^{\xi} z g^{\xi^{\prime}} \in E(g)$. Hence,

$$
g^{\xi} z g^{\xi^{\prime}}=\left(y g^{n}\right)^{-\zeta} x\left(y g^{n}\right)^{-\zeta^{\prime}} \in E\left(y g^{n}\right) \cap E(g)=E(H) .
$$

Now, since $y g^{n} \in C_{H}(E(H))$ we obtain $x \in\left\langle y g^{n}\right\rangle \cdot E(H)=\left\langle y g^{n}\right\rangle \times E(H)$ for arbitrary x from $E\left(y g^{n}\right)$. This implies that $y g^{n}$ is H-suitable.
Lemma 4.4. Let G be a hyperbolic group, $k \in \mathbb{N}$ and let $g_{1}, g_{2}, \ldots, g_{k}$ be pairwise non-commensurable elements of G. Consider $y_{i} \in G \backslash E\left(g_{i}\right)$ for each $i=1,2, \ldots, k$. Then there exists $N \in \mathbb{N}$ such that the elements $y_{1} g_{1}^{n}, \ldots, y_{k} g_{k}^{n}$ have infinite order and are pairwise non-commensurable if $n \geq N$.

Proof. By the same argument as above, $y_{i} g_{i}^{n} \in G^{0}$ for each $i \in\{1,2, \ldots, k\}$. Suppose that $y_{i} g_{i}^{n}$ is commensurable with $y_{j} g_{j}^{n}, 1 \leq i<j \leq k$. Then there is $x \in G$ satisfying $x\left(y_{i} g_{i}^{n}\right)^{t} x^{-1}=\left(y_{j} g_{j}^{n}\right)^{t^{\prime}}$ for some $t, t^{\prime} \in \mathbb{Z} \backslash\{0\}$. Therefore, if n is sufficiently large, we can prove that there exist $z \in G$ and $s, s^{\prime} \in \mathbb{Z} \backslash\{0\}$ such that $z g_{i}^{s^{\prime}} z^{-1}=g_{j}^{s}$ in exactly the same way as we proved (3). Which leads to a contradiction with the assumptions of the lemma.

Lemma 4.5. Suppose G is a hyperbolic group, H is its non-elementary subgroup and $\alpha_{1}, \ldots, \alpha_{n}$ are points on the boundary ∂G. Then H has a non-elementary subgroup K that is quasiconvex in G and $\alpha_{i} \notin \Lambda(K) \subset \partial G$ for every $i=1,2, \ldots, n$.

Proof. Induction on n.
$\overline{\text { Let } n}=1$. Choose elements of infinite order $g_{1}, g_{2} \in H$ with $E\left(g_{1}\right) \neq E\left(g_{2}\right)$ and let the words w_{1}, w_{2} over the alphabet \mathcal{A} represent them. Following the proof of [16, Cor. 6], we get $M \in \mathbb{N}, \lambda>0$ and $c \geq 0$ such that any word of the form

$$
w_{i_{1}}^{m k_{1}} \cdot \ldots \cdot w_{i_{s}}^{m k_{s}}
$$

where $i_{j} \in\{1,2\}, i_{j} \neq i_{j+1}, k_{j} \in \mathbb{Z} \backslash\{0\}$ and $m \geq M$, is (λ, c)-quasigeodesic. Take $\nu=\nu(\lambda, c)$ from lemma 2.1. Then the subgroup $K_{1}=\left\langle g_{1}^{m}, g_{2}^{m}\right\rangle \leq H$ is free of $\operatorname{rank} 2$ and ε-quasiconvex in $G\left(\varepsilon=\nu+m \cdot \max \left\{\left\|w_{1}\right\|,\left\|w_{2}\right\|\right\}\right)$. By taking m large enough, we can obtain $\left|H: K_{1}\right|=\infty$.

Now, if $\alpha_{1} \notin \Lambda\left(K_{1}\right)$, there is nothing to prove. So, assume that $\alpha_{1} \in \Lambda\left(K_{1}\right)$. By lemmas 2.8 and 2.9 there exists $h \in H$ such that $\operatorname{card}\left(K_{1} \cap h K_{1} h^{-1}\right)<\infty$. The subgroup $h K_{1} h^{-1} \leq H$ is non-elementary and quasiconvex in G, hence, using lemma 2.7 and the definition of the boundary ∂G we obtain

$$
\Lambda\left(K_{1}\right) \cap \Lambda\left(h K_{1} h^{-1}\right)=\emptyset \text { in } \partial G
$$

Consequently, $\alpha_{1} \notin \Lambda\left(h K_{1} h^{-1}\right)$.
Assume, now, that $n>1$. And the induction hypothesis is verified for $\alpha_{1}, \ldots, \alpha_{n-1} \in \partial G$. I.e. there is a non-elementary subgroup $K^{\prime} \leq H$ with $\alpha_{i} \notin \Lambda\left(K^{\prime}\right), 1 \leq i \leq n-1$. Using the base of our induction, we obtain a nonelementary subgroup $K \leq K^{\prime} \leq H$ that is quasiconvex in G and $\alpha_{n} \notin \Lambda(K)$. Since $\Lambda(K) \subseteq \Lambda\left(K^{\prime}\right), K$ satisfies all the conditions needed.

The proof of the lemma is complete.
It is a well-known fact that the set of all rational points $\left\{g^{\infty} \mid g \in G^{0}\right\}$ is dense in the group boundary ∂G (see, for example, [2, Theorem], [7, 4,8.2D]). We will need a bit stronger statement:

Lemma 4.6. Assume H is a non-elementary subgroup of a hyperbolic group G and $\alpha \in \partial G$. Then $\Lambda(H) \subseteq \operatorname{cl}(H \circ \alpha)$ where $H \circ \alpha$ is the orbit of α under the action of H and $\operatorname{cl}(H \circ \alpha)$ is its closure inside of ∂G.

Proof. Since H is non-elementary, the set $H \circ \alpha$ consists of more than one point. By definition, $H \subset S t_{G}(H \circ \alpha)$, hence, applying lemma 2.17, we achieve

$$
\Lambda(H) \subseteq \operatorname{cl}(H \circ \alpha)
$$

Q.e.d.

5 On condition (*)

Let G be a δ-hyperbolic group, $Q \subseteq G-\eta$-quasiconvex subset.

Lemma 5.1. The subset $Q^{-1} Q \subseteq G$ is $(\eta+\delta)$-quasiconvex.
Proof. Consider arbitrary $x \in Q^{-1} Q, x=u^{-1} v$ where $u, v \in Q$. Then $[u, v] \subset \mathcal{O}_{\eta}(Q)$. Since the metric on $\Gamma(G, \mathcal{A})$ is invariant under the action of G by left translations, we have

$$
\begin{equation*}
\left[1_{G}, x\right]=u^{-1} \circ[u, v] \subset \mathcal{O}_{\eta}\left(u^{-1} Q\right) \subset \mathcal{O}_{\eta}\left(Q^{-1} Q\right) \tag{4}
\end{equation*}
$$

Since the geodesic triangles in $\Gamma(G, \mathcal{A})$ are δ-slim, for any two $x_{1}, x_{2} \in Q^{-1} Q$ using (4) one obtains

$$
\left[x_{1}, x_{2}\right] \subset \mathcal{O}_{\delta}\left(\left[1_{G}, x_{1}\right] \cup\left[1_{G}, x_{2}\right]\right) \subseteq \mathcal{O}_{\delta+\eta}\left(Q^{-1} Q\right)
$$

The lemma is proved.
Lemma 5.2. Suppose $S, Q \subseteq G$ and the subset Q is η-quasiconvex. Then on the boundary ∂G of the group G one has

$$
\begin{gathered}
\Lambda(S \cdot Q) \subseteq \Lambda(S) \cup(S \cdot Q) \circ \Lambda\left(Q^{-1} \cdot Q\right) \\
\Lambda\left(S \cdot Q^{-1}\right) \subseteq \Lambda(S) \cup\left(S \cdot Q^{-1} \cdot Q\right) \circ \Lambda\left(Q^{-1}\right)
\end{gathered}
$$

Proof. Let $P \subseteq G$, consider an arbitrary limit point $\alpha \in \Lambda(S P)$. There is a sequence $\left(z_{i}\right)_{i \in \mathbb{N}}$ converging to infinity in G with $z_{i}=x_{i} y_{i}, x_{i} \in S, y_{i} \in P$ for all $i \in \mathbb{N}$.
I. Suppose, first, that $\sup _{i \in \mathbb{N}}\left(z_{i} \mid x_{i}\right)_{1_{G}}=\infty$. Then one can find a sequence $\left(i_{j}\right)_{j \in \mathbb{N}}$ of natural numbers such that

$$
\lim _{j \rightarrow \infty}\left(z_{i_{j}} \mid x_{i_{j}}\right)_{1_{G}}=\infty
$$

But $\lim _{j \rightarrow \infty} z_{i_{j}}=\lim _{i \rightarrow \infty} z_{i}=\alpha$, which implies that $\left(x_{i_{j}}\right)_{j \in \mathbb{N}}$ also converges to infinity and

$$
\lim _{j \rightarrow \infty} x_{i_{j}}=\lim _{j \rightarrow \infty} z_{i_{j}}=\alpha
$$

Thus, $\alpha \in \Lambda(S)$.
II. Therefore, we can now assume that there is a number $M \geq 0$ such that $\left(z_{i} \mid x_{i}\right)_{1_{G}} \leq M$ for every $i \in \mathbb{N}$. For each $i \in \mathbb{N}$ consider a geodesic triangle in $\Gamma(G, \mathcal{A})$ with vertices $1_{G}, x_{i}$ and z_{i}. It is δ-thin, hence $d\left(1_{G},\left[x_{i}, z_{i}\right]\right) \leq M+\delta$.
a). Suppose $P=Q$. Fix an arbitrary element $q \in Q$ and let $\varkappa=|q|_{G}$. Then

$$
\left[1_{G}, y_{i}\right] \in \mathcal{O}_{\delta}\left(\left[1_{G}, q\right] \cup\left[q, y_{i}\right]\right) \subset \mathcal{O}_{\delta+\varkappa}\left(\left[q, y_{i}\right]\right) \subset \mathcal{O}_{\delta+\varkappa+\eta}(Q)
$$

Using the left translation-invariance of the word metric, we get

$$
\left[x_{i}, z_{i}\right]=\left[x_{i}, x_{i} y_{i}\right] \subset \mathcal{O}_{\delta+\varkappa+\eta}\left(x_{i} Q\right)
$$

Consequently, there exists $q_{i} \in Q$ satisfying

$$
d\left(1_{G}, x_{i} q_{i}\right)=\left|x_{i} q_{i}\right|_{G} \leq M+2 \delta+\varkappa+\eta \text { for every } i \in \mathbb{N}
$$

The group G has only finitely many elements in a ball of finite radius, hence, by passing to a subsequence, we can assume that $x_{i} q_{i}=p \in S Q$ for all $i \in \mathbb{N}$. Thus, $z_{i}=x_{i} q_{i} q_{i}^{-1} y_{i}=p q_{i}^{-1} y_{i} \in p Q^{-1} Q$ for every i, which implies

$$
\alpha \in \Lambda\left(p Q^{-1} Q\right)=p \circ \Lambda\left(Q^{-1} Q\right) \subset(S Q) \circ \Lambda\left(Q^{-1} Q\right)
$$

b). Assume, $P=Q^{-1}$. Then $y_{i}^{-1} \in Q$ hence

$$
\left[x_{i}, z_{i}\right]=\left[z_{i} y_{i}^{-1}, z_{i}\right] \subset \mathcal{O}_{\delta+\varkappa+\eta}\left(z_{i} Q\right) .
$$

So, there are elements $q_{i} \in Q$ such that

$$
d\left(1_{G}, z_{i} q_{i}\right)=\left|z_{i} q_{i}\right|_{G} \leq M+2 \delta+\varkappa+\eta \text { for every } i \in \mathbb{N} .
$$

As before, we can suppose that $z_{i} q_{i}=p \in S Q^{-1} Q$ for all $i \in \mathbb{N}$. Thus $z_{i}=p q_{i}^{-1} \in p Q^{-1}$ for every i, implying

$$
\alpha \in \Lambda\left(p Q^{-1}\right)=p \circ \Lambda\left(Q^{-1}\right) \subset\left(S Q^{-1} Q\right) \circ \Lambda\left(Q^{-1}\right) .
$$

Q.e.d.

Lemma 5.3. Assume that H is a subgroup and A is a non-empty quasiconvex subset of a hyperbolic group G. The following conditions are equivalent:

1. There are finite subsets $P_{1}, P_{2} \subset G$ such that $H \subseteq P_{1} \cdot A \cdot P_{2}$;
2. $\Lambda(H) \subseteq G \circ \Lambda(A)$.

Proof. The implication $1 \Rightarrow 2$ is an immediate consequence of lemma 2.13 since

$$
\Lambda\left(P_{1} \cdot A \cdot P_{2}\right)=\Lambda\left(P_{1} A\right)=P_{1} \circ \Lambda(A) \subset G \circ \Lambda(A) .
$$

Now let's show that 2 implies 1. Denote $\Omega=\Lambda(A)$.
If the subgroup H is finite then the claim is trivial.
If H is infinite elementary then $\operatorname{card}(\Lambda(H))=2$, hence, according to the condition 2 , there are elements $g_{1}, g_{2} \in G$ such that

$$
\Lambda(H) \subset g_{1} \circ \Lambda(A) \cup g_{2} \circ \Lambda(A)=\Lambda\left(g_{1} A \cup g_{2} A\right)
$$

The subset $g_{1} A \cup g_{2} A \subset G$ is quasiconvex by lemma 2.3 , hence we can apply lemma 2.18 to get a finite subset P_{2} of G satisfying $H \subseteq\left(g_{1} A \cup g_{2} A\right) P_{2}=P_{1} A P_{2}$ where $P_{1}=\left\{g_{1}, g_{2}\right\}$.

Thus we can assume that the subgroup H is non-elementary.
Case 1. Suppose that for some $g \in G g \circ \Omega$ contains a non-empty open set U of the subspace $\Lambda(H)$, i.e. $U=U^{\prime} \cap \Lambda(H)$ for some open set $U^{\prime} \subseteq \partial G$. Then, by lemma 4.6, for any $\beta \in \Lambda(H)$ there exists $h \in H$ such that $h \circ \beta \in U^{\prime}$. On the other hand, $h \circ \beta \in \Lambda(H)$ by lemma 2.15, thus, $h \circ \beta \in U$, i.e. $\beta \in h^{-1} \circ U$. Consequently,

$$
\begin{equation*}
\Lambda(H) \subseteq \bigcup_{h \in H} h \circ U \tag{5}
\end{equation*}
$$

The space $\Lambda(H)$ is a closed subspace of the compact metric space ∂G, hence it is compact itself and one can choose a finite subcover of the open cover from (5). Thus
$\Lambda(H) \subseteq \bigcup_{i=1}^{N} h_{i} \circ U \subseteq \bigcup_{i=1}^{N} h_{i} \circ(g \circ \Omega)=\bigcup_{i=1}^{N} h_{i} \circ \Lambda(g A)=\Lambda\left(\bigcup_{i=1}^{N} h_{i} g A\right)=\Lambda\left(P_{1} A\right)$
according to lemma 2.13, where $P_{1}=\bigcup_{i=1}^{N} h_{i} g \subset G, \operatorname{card}\left(P_{1}\right)<\infty$.
The set $P_{1} A=\bigcup_{y \in P_{1}} y A$ is quasiconvex as a finite union of quasiconvex sets, therefore, we can apply lemma 2.18 to find a finite subset P_{2} of the group G such that $H \subseteq P_{1} \cdot A \cdot P_{2}$ as we needed.

Hence, we can proceed to
Case 2. For every $g \in G \quad g \circ \Omega$ contains no non-empty open subsets of $\Lambda(H)$. Ω is a closed subset of the boundary ∂G by lemma 2.13.(b), thus $g \circ \Omega$ is also closed and, hence, $(g \circ \Omega) \cap \Lambda(H)$ is a closed nowhere dense subset of the compact metric space $\Lambda(H)$. Evidently, $\Lambda(H)$ is a Baire space (it is locally compact and Hausdorff). Since the group G is countable, the set

$$
(G \circ \Omega) \cap \Lambda(H)=\bigcup_{g \in G}(g \circ \Omega) \cap \Lambda(H)
$$

is of the first category in the space $\Lambda(H)$, hence, by a well-know theorem from topology (see, for instance, [4, Chap. XI, Thm. 10.5]),

$$
\Lambda(H) \neq(G \circ \Omega) \cap \Lambda(H),
$$

therefore, $\Lambda(H) \nsubseteq G \circ \Lambda(A)$ which is a contradiction to our assumptions. Thus, Case 2 is impossible.
Remark 2. Assume (in the notations of lemma 5.3) that H is non-elementary. Then the following two properties are equivalent:

1. There are no finite subsets P_{1}, P_{2} of G such that $H \subset P_{1} A P_{2}$;
2. On the hyperbolic boundary ∂G for any $g \in G$ the set $(g \circ \Lambda(A)) \cap \Lambda(H)$ is nowhere dense in $\Lambda(H)$.

In the proof of lemma 5.3 the condition 1 automatically puts us into the Case 2 , thus $1 \Rightarrow 2$. Now, if the property 2 holds and the property 1 doesn't, we can find some finite subsets $P_{1}, P_{2} \subset G$ satisfying $H \subset P_{1} A P_{2}$. Therefore, by lemma 2.13 ,

$$
\Lambda(H) \subset \Lambda\left(P_{1} A P_{2}\right)=\Lambda\left(P_{1} A\right)
$$

Hence $\Lambda(H)=\bigcup_{g \in P_{1}}(g \circ \Lambda(A) \cap \Lambda(H))$ contradicting to 2 because of the fact that a finite union of nowhere dense subsets is nowhere dense in $\Lambda(H)$. Hence $2 \Rightarrow 1$.

Lemma 5.4. Suppose that H is a non-elementary subgroup and Q, S are quasiconvex subsets of a hyperbolic group G. Assume that for any two finite subsets P_{1}, P_{2} of the group G

$$
\begin{equation*}
H \nsubseteq P_{1} Q^{-1} Q P_{2} \text { and } H \nsubseteq P_{1} S^{-1} S P_{2} \tag{6}
\end{equation*}
$$

Then the (quasiconvex) subsets $T_{1}=Q \cup S$ and $T_{2}=Q S$ satisfy the same property: for any $i \in\{1,2\}$ and arbitrary finite $P_{1}, P_{2} \subset G$ one has

$$
H \nsubseteq P_{1} T_{i}^{-1} T_{i} P_{2}
$$

Proof. a). Since $T_{1}^{-1}=Q^{-1} \cup S^{-1}$, we can use lemmas 2.13.(c) and 5.2 to obtain

$$
\begin{gathered}
\Lambda\left(T_{1}^{-1} T_{1}\right)=\Lambda\left(Q^{-1} Q \cup Q^{-1} S \cup S^{-1} Q \cup S^{-1} S\right)= \\
=\Lambda\left(Q^{-1} Q\right) \cup \Lambda\left(Q^{-1} S\right) \cup \Lambda\left(S^{-1} Q\right) \cup \Lambda\left(S^{-1} S\right) \subseteq \\
\subseteq \Lambda\left(Q^{-1} Q\right) \cup \Lambda\left(Q^{-1}\right) \cup G \circ \Lambda\left(S^{-1} S\right) \cup \Lambda\left(S^{-1}\right) \cup G \circ \Lambda\left(Q^{-1} Q\right) \cup \Lambda\left(S^{-1} S\right)= \\
=G \circ \Lambda\left(S^{-1} S\right) \cup G \circ \Lambda\left(Q^{-1} Q\right)=G \circ \Lambda\left(S^{-1} S \cup Q^{-1} Q\right)
\end{gathered}
$$

(here we used the fact that if $s \in S$ then $S^{-1} s \subset S^{-1} S$, and by lemma 2.13.(d) $\Lambda\left(S^{-1}\right)=\Lambda\left(S^{-1} s\right) \subset \Lambda\left(S^{-1} S\right)$ and similarly for $\left.Q\right)$.
Thus, $G \circ \Lambda\left(T_{1}^{-1} T_{1}\right) \subseteq G \circ \Lambda\left(S^{-1} S \cup Q^{-1} Q\right)$.
The conditions (6) imply (by remark 2) that for any $g \in G$ the sets $g \circ \Lambda\left(Q^{-1} Q\right) \cap \Lambda(H)$ and $g \circ \Lambda\left(S^{-1} S\right) \cap \Lambda(H)$ are nowhere dense in $\Lambda(H)$, therefore the set $G \circ \Lambda\left(Q^{-1} Q \cup S^{-1} S\right) \cap \Lambda(H)$ is of the first category in the compact metric space $\Lambda(H)$. Consequently,

$$
\begin{equation*}
\Lambda(H) \nsubseteq G \circ\left(Q^{-1} Q \cup S^{-1} S\right) \tag{7}
\end{equation*}
$$

Hence

$$
\Lambda(H) \nsubseteq G \circ\left(T_{1}^{-1} T_{1}\right) .
$$

The subset $T_{1} \subset G$ is quasiconvex according to lemma 2.3. Therefore, to finish the proof it remains to apply lemma 5.1 to $T_{1}^{-1} T_{1}$ and then lemma 5.3 to $T_{1}^{-1} T_{1}$ and H.
b). The proof for T_{2} is similar. Note that $T_{2}^{-1}=S^{-1} Q^{-1}$, hence, by lemma 5.2

$$
\Lambda\left(T_{2}^{-1} T_{2}\right)=\Lambda\left(S^{-1} Q^{-1} Q S\right) \subset \Lambda\left(S^{-1} Q^{-1} Q\right) \cup G \circ \Lambda\left(S^{-1} S\right)
$$

$Q^{-1} Q \subset G$ is quasiconvex by lemma 5.1 and $\left(Q^{-1} Q\right)^{-1}=Q^{-1} Q$ therefore, applying lemma 5.2 two more times we obtain
$\Lambda\left(T_{2}^{-1} T_{2}\right) \subset \Lambda\left(S^{-1}\right) \cup G \circ \Lambda\left(Q^{-1} Q\right) \cup G \circ \Lambda\left(S^{-1} S\right)=G \circ\left(Q^{-1} Q \cup S^{-1} S\right)$.
Consequently, recalling (7), one gets $\Lambda(H) \nsubseteq G \circ\left(T_{2}^{-1} T_{2}\right)$. Since T_{2} is a quasiconvex subset of G (lemma 2.3), T_{2} and H satisfy the needed property by lemma 5.3.

Corollary 4. Let Q be a quasiconvex subset of a hyperbolic group G and H be a non-elementary subgroup of G. Assume, in addition, that $Q^{-1} \subset G$ is also quasiconvex. Then the following properties are equivalent:

1. For arbitrary finite subsets P_{1}, P_{2} of $G, H \nsubseteq P_{1} Q P_{2}$;
2. For arbitrary finite subsets P_{1}, P_{2} of $G, H \nsubseteq P_{1} Q^{-1} Q P_{2}$.

Proof. Evidently, 2 implies 1. So, let's assume that 1 holds and prove 2. Since the subset Q^{-1} is quasiconvex, we are able to apply lemma 5.2 to achieve

$$
\Lambda\left(Q^{-1} Q\right) \subset \Lambda\left(Q^{-1}\right) \cup G \circ \Lambda(Q)
$$

Thus, $G \circ \Lambda\left(Q^{-1} Q\right) \subset G \circ\left(\Lambda\left(Q^{-1}\right) \cup \Lambda(Q)\right)$. Observe that the property 1 is equivalent to $H \nsubseteq P_{1} Q^{-1} P_{2}$ for any finite $P_{1}, P_{2} \subset G$ (because $H^{-1}=H$). Consequently, by remark 2 ,

$$
\Lambda(H) \nsubseteq G \circ\left(\Lambda\left(Q^{-1}\right) \cup \Lambda(Q)\right), \text { hence } \Lambda(H) \nsubseteq G \circ \Lambda\left(Q^{-1} Q\right)
$$

Now, by applying lemma 5.2 , we can conclude that the property 2 holds.
Example. We observe that the implication $1 \Rightarrow 2$ in the latter corollary may fail if Q^{-1} is not quasiconvex: let $G=F(x, y)$ be the free group with free generators x, y. Set Q to be the set of all reduced words w over the alphabet $\left\{x^{ \pm 1}, y^{ \pm 1}\right\}$ satisfying the property: if $k \in \mathbb{N}$ and $2^{k} \leq\|w\|$ then the letter on 2^{k}-th place in w is x. Thus,

$$
\begin{gathered}
Q=\left\{x, x^{-1}, y, y^{-1}, x^{2}, y x, y^{-1} x, x^{3}, x^{2} y, x^{2} y^{-1}, y x y,\right. \\
\left.y x y^{-1}, y^{-1} x y, y^{-1} x y^{-1}, \ldots\right\} \subset G .
\end{gathered}
$$

The subset Q is quasiconvex in G since any prefix of a word from Q belongs to Q. It is not difficult to show that $G \nsubseteq P_{1} Q P_{2}$ for any finite subsets $P_{1}, P_{2} \subset G$; nevertheless, $G=Q^{-1} Q$ (because any reduced word is a suffix of some word from Q).

6 Small Cancellations over Hyperbolic Groups

In this section we list the results from [16] that provide the main tool for proving theorem 1 .

Let \mathcal{R} be a symmetrized set of words in an alphabet \mathcal{A}, i.e. if $R \in \mathcal{R}$ then R^{-1} and any cyclic permutation of R belong to \mathcal{R}.

Suppose G is a group with generating set \mathcal{A} and \mathcal{R} is a symmetrized set of words over \mathcal{A}. For the given constants $\varepsilon \geq 0, \mu>0,0<\lambda \leq 1, c \geq 0$, $\rho>0$ one defines the generalized small cancellation conditions $C(\varepsilon, \mu, \lambda, c, \rho)$, $C_{1}(\varepsilon, \mu, \lambda, c, \rho), C_{2}(\varepsilon, \mu, \lambda, c, \rho)$ and $C_{3}(\varepsilon, \mu, \lambda, c, \rho)$ (see [16, Chapter 4]).
Remark 3. In the definition of the generalized small cancellation conditions $C(\varepsilon, \mu, \lambda, c, \rho)$ and $C_{j}(\varepsilon, \mu, \lambda, c, \rho), j=1,2,3, \lambda, c$ appear only in the condition on every word $R \in \mathcal{R}$ to be (λ, c)-quasigeodesic (a word R is called (λ, c)quasigeodesic if any path in $\Gamma(G, \mathcal{A})$ labelled by R is (λ, c) - quasigeodesic). The
number ρ stands for a minimal length of a relation from $\mathcal{R} ; \mu$ has an alogous meaning to the constant in the classical small cancellation condition $C^{\prime}(\mu)$; subwords of defining relations are distinguished up to factors of length at most ε.

Consider non-elementary subgroups H_{1}, \ldots, H_{k} (some of them may coincide) of a hyperbolic group G, elements $g_{i} \in H_{i}$ chosen according to the claim of lemma 2.11 and elements $x_{i 0} \in C_{G}\left(E\left(H_{i}\right)\right) \backslash E\left(g_{i}\right), i=1, \ldots, k$. Let g_{i}, $x_{i 0}, \ldots, x_{i l}$ be represented by words $W_{i}, X_{i 0}, \ldots, X_{i l}$ over the alphabet \mathcal{A} of minimal length, $i=1, \ldots, k$.

As the system $\mathcal{R}=\mathcal{R}_{k, l, m}\left(W_{1}, \ldots, W_{k}, X_{10}, \ldots, X_{k l}, m\right)$ consider all cyclic permutations of $R_{i}^{ \pm 1}$ where

$$
R_{i} \equiv X_{i 0} W_{i}^{m} X_{i 1} W_{i}^{m} \ldots X_{i l} W_{i}^{m}, \quad i=1,2, \ldots, k
$$

Then we have
Lemma 6.1. ([16, Lemma 4.2]) For the words $W_{1}, \ldots, W_{k}, X_{10}, \ldots, X_{k 0}$ given above, there exist $\lambda>0$ such that for any $\mu>0$ there are $l \in \mathbb{N}$ and $c \geq 0$ such that for any $\varepsilon \geq 0, \rho>0$ there are $m_{0} \in \mathbb{N}$ and words $X_{11}, \ldots, X_{k l}$ such that the system $\mathcal{R}_{k, l, m}$ satisfies $C(\varepsilon, \mu, \lambda, c, \rho)$ and $C_{1}(\varepsilon, \mu, \lambda, c, \rho)$-conditions if $m \geq m_{0}$.

Remark 4. Moreover, from the proof of this lemma it follows that the elements $x_{i 1}, \ldots, x_{i l} \in H_{i}$ can be chosen right after the choice of $l \in \mathbb{N}$ to be any elements that satisfy properties 1)-4) of lemma 2.12 for $g=g_{i}$ and $H=H_{i}, i=1,2, \ldots, k$.

In this article we assume that the concepts of a Van Kampen (circular) diagram and a Schupp (annular) diagram over a group presentation are known to the reader (see, for instance, [11]). Let \mathcal{O} denote the system of all relations (not only defining) in the group G. Let \mathcal{R} be some symmetrized set of additional relations over the alphabet \mathcal{A}. The group G_{1} will be defined by its presentation:

$$
\begin{equation*}
G_{1}=\langle\mathcal{A} \| \mathcal{O} \cup \mathcal{R}\rangle . \tag{8}
\end{equation*}
$$

Thus G_{1} is a quotient of the group G by the subgroup $\mathcal{N}=\left\langle\mathcal{R}^{G}\right\rangle$ that is a normal closure of the set of elements in G represented by words from \mathcal{R}.

Inheriting the terminology from [16] the faces of a Van Kampen diagram with boundary labels from \mathcal{O} (from \mathcal{R}) will be called 0 -faces (\mathcal{R}-faces).

In [16, Chapter 5] A. Ol'shanskii also introduces reduced diagrams (the number of \mathcal{R}-faces in them can not be reduced after a finite number of certain elementary transformations; in particular, diagrams with minimal number of \mathcal{R}-faces are reduced). Further we will only need to know that for any word W that is trivial in the group G_{1} there exists a reduced circular diagram over the presentation (8) whose boundary label is letter-to-letter equal to W. And if two words U and V are conjugate in G_{1} then there is a reduced annular diagram over the presentation (8) whose boundary contours have labels (letter-to-letter) equal to U and V respectively.

Later in this paper we will consider diagrams over G and G_{1} (with the presentations $G=\langle\mathcal{A} \| \mathcal{O}\rangle$ and (8)), so all of them will be over the alphabet \mathcal{A}. A path q inside such a diagram will be called (λ, c)-quasigeodesic if a (any) path in the Cayley graph $\Gamma(G, \mathcal{A})$ of the group G with the same label as q is (λ, c)-quasigeodesic.

The boundary $\partial \Delta$ of a diagram will be divided into at most 4 distinguished subpaths (called sections) each of which will be (λ, c)-quasigeodesic (for some given $\lambda>0, c \geq 0)$.

Suppose $\varepsilon \geq 0$ is a given number. Consider a simple closed path $o=p_{1} q_{1} p_{2} q_{2}$ in a diagram Δ over G_{1}, such that q_{1} is a subpath of the boundary cycle of an \mathcal{R} cell Π and q_{2} is a subpath of a section q of $\partial \Delta$. Let Γ denote the subdiagram of Δ bounded by o. Assuming that Γ has no holes, no \mathcal{R}-faces and $\left\|p_{1}\right\|,\left\|p_{2}\right\| \leq \varepsilon$, it will be called an ε-contiguity subdiagram of Π to q. The ratio $\left\|q_{1}\right\| /\|\partial \Pi\|$ will be called the contiguity degree of Π to q and denoted (Π, Γ, q).

The following analog of Grindlinger's lemma is proved in [16, Lemma 6.6] (here we include a correction mentioned in [18]):

Lemma 6.2. For any hyperbolic group G and any $\lambda>0$ there is $\mu_{0}>0$ such that for any $\mu \in\left(0, \mu_{0}\right]$ and $c \geq 0$ there are $\varepsilon \geq 0$ and $\rho>0$ with the following property:

Let the symmetrized presentation (8) satisfy the $C(\varepsilon, \mu, \lambda, c, \rho)$-condition. Furthermore, let Δ be a reduced circular diagram over G_{1} whose boundary is decomposed into a product of (λ, c)-quasigeodesic sections q^{1}, \ldots, q^{r} where $1 \leq r \leq 4$. Then, provided Δ has an \mathcal{R}-face, there exists an \mathcal{R}-face Π in Δ and disjoint ε-contiguity subdiagrams $\Gamma_{1}, \ldots, \Gamma_{r}$ (some of them may be absent) of Π to q^{1}, \ldots, q^{r} respectively, such that

$$
\begin{equation*}
\left(\Pi, \Gamma_{1}, q^{1}\right)+\ldots+\left(\Pi, \Gamma_{r}, q^{r}\right)>1-23 \mu . \tag{9}
\end{equation*}
$$

The next lemma is an analog of the previous one for annular diagrams.
Lemma 6.3. [16, Lemma 8.1] For any hyperbolic group G and any $\lambda>0$ there is $\mu_{0}>0$ such that for any $\mu \in\left(0, \mu_{0}\right]$ and $c \geq 0$ there are $\varepsilon \geq 0$ and $\rho>0$ with the following property:

Let the symmetrized presentation (8) satisfy the $C_{1}(\varepsilon, \mu, \lambda, c, \rho)$-condition. Further, let Δ be a reduced annular diagram over G_{1} with boundary contours $p=p_{1} p_{2}, q=q_{1} q_{2}$ such that $p_{1}, p_{2}, q_{1}, q_{2}$ are (λ, c)-quasigeodesic. Then, provided Δ has an \mathcal{R}-face, there exists an \mathcal{R}-face Π in Δ and disjoint ε-contiguity subdiagrams $\Gamma_{1}, \ldots, \Gamma_{4}$ (some of them may be absent) of Π to $p_{1}, p_{2}, q_{1}, q_{2}$ respectively, such that

$$
\begin{equation*}
\left(\Pi, \Gamma_{1}, p_{1}\right)+\left(\Pi, \Gamma_{2}, p_{2}\right)+\left(\Pi, \Gamma_{3}, q_{1}\right)+\left(\Pi, \Gamma_{4}, q_{2}\right)>1-23 \mu \tag{10}
\end{equation*}
$$

Collecting together the claims of Lemmas 6.7,7.4 and 7.5 from [16] we obtain
Lemma 6.4. Suppose G is a non-elementary hyperbolic group and $H_{1}^{\prime}, \ldots, H_{k^{\prime}}^{\prime}$ - its non-elementary subgroups. Then for any $\lambda>0$ there is $\mu_{0}>0$ such that
for any $\mu \in\left(0, \mu_{0}\right]$ and $c \geq 0$ there is $\varepsilon \geq 0$ such that for any $N>0$ there exists $\rho>0$ with the following property:

Let the symmetrized presentation (8) satisfy the $C(\varepsilon, \mu, \lambda, c, \rho)$-condition. Then the quotient $G_{1}(8)$ is a non-elementary hyperbolic group and the images of the subgroups $H_{1}^{\prime}, \ldots, H_{k^{\prime}}^{\prime}$ are non-elementary in G_{1}. Moreover, $W=1$ in G_{1} if and only if $W=1$ in G for every word W with $\|W\| \leq N$.

7 Main Construction

Assume, now, that we are in the conditions of Theorem 1. The δ-hyperbolic group G is generated by the symmetrized set $\mathcal{A}=\left\{a_{1}^{\prime}, \ldots, a_{r}^{\prime}\right\}$. Set $s=k r$ and define $a_{1}, \ldots, a_{s}, \hat{H}_{1}, \ldots, \hat{H}_{s}$ as follows:

$$
a_{i r+j}=a_{j}^{\prime}, \quad \hat{H}_{i r+j}=H_{i+1} \quad \text { if } 1 \leq j \leq r, 0 \leq i \leq k-1,
$$

i.e. $a_{1}=a_{1}^{\prime}, \ldots, a_{r}=a_{r}^{\prime}, a_{r+1}=a_{1}^{\prime}, a_{r+2}=a_{2}^{\prime}, \ldots, \hat{H}_{1}=H_{1}, \ldots, \hat{H}_{r}=H_{1}$, $\hat{H}_{r+1}=H_{2}, \hat{H}_{r+2}=H_{2}, \ldots$

Since every \hat{H}_{i} is a G-subgroup, we can find $b_{i} \in \hat{H}_{i}$ such that $a_{i} b_{i}^{-1} \in$ $C_{G}\left(E\left(\hat{H}_{i}\right)\right)$ (such a choice is possible because $E\left(\hat{H}_{i}\right)=E(G)$ and $\left|\hat{H}_{i}: K\left(\hat{H}_{i}\right)\right|=$ $|G: K(G)|)$.

For each $i=1,2, \ldots, s$, the subgroup $F_{i}=C_{\hat{H}_{i}}\left(E\left(\hat{H}_{i}\right)\right)$ has finite index in \hat{H}_{i}, hence, $\Lambda\left(\hat{H}_{i}\right)=\Lambda\left(F_{i}\right)$ by parts (c) and (d) of lemma 2.13. The set $Q^{-1} Q$ is quasiconvex by lemma 5.1, thus, according to the assumptions of theorem 1 , we can apply lemma 5.3 to find the points on the boundary ∂G :

$$
\alpha_{i} \in \Lambda\left(F_{i}\right) \backslash\left(G \circ \Lambda\left(Q^{-1} Q\right)\right)
$$

and a sequence $\left(y_{j}^{(i)}\right)_{j \in \mathbb{N}} \subset F_{i}$ with $\lim _{j \rightarrow \infty} y_{j}^{(i)}=\alpha_{i}, i=1,2, \ldots, s$.
The set $\left\{y_{j}^{(i)} \mid j \in \mathbb{N}\right\}$ is infinite, therefore, the set $\left\{\left(y_{j}^{(i)}\right)^{-1} \mid j \in \mathbb{N}\right\}$ is also infinite, hence, by lemma 2.13 it has a limit point $\beta_{i} \in \partial G$. So, after passing to a subsequence, we can assume that

$$
\lim _{j \rightarrow \infty}\left(y_{j}^{(i)}\right)^{-1}=\beta_{i}, i=1,2, \ldots, s
$$

Using lemma 2.11 one can find an \hat{H}_{i}-suitable element $g_{i} \in \hat{H}_{i}^{0}$ for every $i=1, \ldots, s$, so that the elements g_{1}, \ldots, g_{s} are pairwise non-commensurable and on the Gromov boundary of the group G we have

$$
\begin{equation*}
\left\{g_{i}^{\infty}, g_{i}^{-\infty}\right\} \cap\left\{\alpha_{i}, \beta_{i}\right\}=\emptyset, i=1,2, \ldots, s \tag{11}
\end{equation*}
$$

(recall that if for two elements of infinite order $g, h \in G$ we have $g^{\infty}=h^{ \pm \infty}$ then $g^{m}=h^{l}$ for some $m, l \in \mathbb{Z} \backslash\{0\}$ - by lemma 2.7).
\hat{H}_{i} is non-elementary, therefore $F_{i} \leq \hat{H}_{i}$ is also non-elementary, $i=1, \ldots, s$. Now we use lemma 4.5 to obtain a non-elementary subgroup $K_{i} \leq F_{i}$ such that

$$
\begin{equation*}
\left\{\alpha_{i}, g_{i}^{-\infty},\left(b_{i} a_{i}^{-1}\right) \circ g_{i}^{-\infty}\right\} \cap \Lambda\left(K_{i}\right)=\emptyset \text { in } \partial G, i=1,2, \ldots, s . \tag{12}
\end{equation*}
$$

According to (11) and (12) we can use the claim of lemma 2.14 to show that

$$
\begin{gathered}
C_{01 i}=\sup \left\{\left(\left(y_{j}^{(i)}\right)^{-1} \mid g_{i}^{n}\right)_{1_{G}}: j, n \in \mathbb{N}\right\}<\infty, \\
C_{02 i}=\sup \left\{\left(y_{j}^{(i)} \mid g_{i}^{-n}\right)_{1_{G}}: j, n \in \mathbb{N}\right\}<\infty, \\
C_{03 i}=\sup \left\{\left(x \mid y_{j}^{(i)}\right)_{1_{G}}: j \in \mathbb{N}, x \in K_{i}\right\}<\infty, \\
C_{04 i}=\sup \left\{\left(g_{i}^{-n} \mid x\right)_{1_{G}}: n \in \mathbb{N}, x \in K_{i}\right\}<\infty \text { and } \\
C_{05 i}=\sup \left\{\left(b_{i} a_{i}^{-1} g_{i}^{-n} \mid x\right)_{1_{G}}: n \in \mathbb{N}, x \in K_{i}\right\}<\infty
\end{gathered}
$$

for each $i=1,2 \ldots, s$. Finally, define

$$
C_{0}=\max _{1 \leq i \leq s}\left\{C_{01 i}, C_{02 i}, C_{03 i}+\left|b_{i} a_{i}^{-1}\right|_{G}, C_{04 i}, C_{05 i}+\left|b_{i} a_{i}^{-1}\right|_{G}\right\}+14 \delta .
$$

Denote $\bar{\lambda}=1, \bar{c}=0$,

$$
\begin{equation*}
C_{1}=12\left(C_{0}+\delta\right)+\bar{c}+1 \tag{13}
\end{equation*}
$$

Let

$$
\begin{equation*}
\lambda=\bar{\lambda} / 4=1 / 4, c=c\left(\bar{\lambda}, \bar{c}, C_{0}\right) \geq 0 \text { be the constant from lemma } 4.2 \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\text { and let } \nu=\nu(\lambda, c) \text { be the constant from the claim of lemma 2.1. } \tag{15}
\end{equation*}
$$

By the conditions of the theorem 1 , the subset Q is η-quasiconvex for some $\eta \geq 0$,

$$
\begin{equation*}
\text { let } \varkappa \text { be the length of a shortest element from } Q \text {. } \tag{16}
\end{equation*}
$$

Set

$$
\begin{equation*}
A=\left\{\left.g \in G| | g\right|_{G} \leq 3 \delta+\nu+\eta+\varkappa\right\} \tag{17}
\end{equation*}
$$

then $\operatorname{card}(A)<\infty$. By the construction of α_{i},

$$
\alpha_{i} \notin \bigcup_{g \in A} g \circ \Lambda\left(Q^{-1} Q\right)=\Lambda\left(\bigcup_{g \in A} g Q^{-1} Q\right)=\Lambda\left(A Q^{-1} Q\right)
$$

Hence, according to the lemma 2.14, one can define

$$
\begin{equation*}
C_{3}=\max _{1 \leq i \leq s} \sup \left\{\left(y_{j}^{(i)} \mid x\right)_{1_{G}} \mid j \in \mathbb{N}, x \in A Q^{-1} Q\right\} \tag{18}
\end{equation*}
$$

For every $i \in\{1,2, \ldots, s\}, \quad\left|y_{j}^{(i)}\right|_{G} \rightarrow \infty$ as $j \rightarrow \infty$, and the intersection $\left\{y_{j}^{(i)} \mid j \in \mathbb{N}\right\} \cap E\left(g_{i}\right)$ is finite by (11), therefore for some j_{0} (depending on i), after setting $y_{i}=y_{j_{0}}^{(i)} \in F_{i}$, we will have

$$
\begin{equation*}
\left|y_{i}\right|_{G}>3 \delta+\nu+\eta+\varkappa+C_{1}+2 C_{3} \text { and } y_{i} \in C_{\hat{H}_{i}}\left(E\left(\hat{H}_{i}\right)\right) \backslash E\left(g_{i}\right) . \tag{19}
\end{equation*}
$$

Applying lemmas 4.3 and 4.4 we can find $n \in \mathbb{N}$ such that the elements

$$
w_{i}=y_{i} g_{i}^{n}
$$

have infinite order, are \hat{H}_{i}-suitable and pairwise non-commensurable when $1 \leq i \leq s$. Obviously, in addition, we can demand that $\left|g_{i}^{n}\right|_{G},\left|w_{i}\right|_{G}>C_{1}$ for every i.

The subgroups $K_{i} \leq G$ are non-elementary, hence we can find elements $c_{i} \in K_{i} \leq C_{\hat{H}_{i}}\left(E\left(\hat{H}_{i}\right)\right)$ for which

$$
\begin{equation*}
x_{i 0} \stackrel{\text { def }}{=} a_{i} b_{i}^{-1} c_{i} \in C_{G}\left(E\left(\hat{H}_{i}\right)\right) \backslash E\left(w_{i}\right) \text { and }\left|x_{i 0}\right|_{G}>C_{1} \text { for } i=1, \ldots, s . \tag{20}
\end{equation*}
$$

Note that $b_{i}^{-1} c_{i} \in \hat{H}_{i}$ for each i.
Let $w_{i} \in \hat{H}_{i}^{0}, x_{i 0} \in G, x_{i 1}, \ldots, x_{i l} \in \hat{H}_{i}$ be represented by words $W_{i}, X_{i 0}$, $X_{i 1}, \ldots, X_{i l}$ over the alphabet \mathcal{A} of minimal length, $i=1, \ldots, s$. As the system $\mathcal{R}=\mathcal{R}_{s, l, m}\left(W_{1}, \ldots, W_{s}, X_{10}, \ldots, X_{s l}, m\right)$ consider all cyclic permutations of $R_{i}^{ \pm 1}$ where

$$
\begin{equation*}
R_{i} \equiv X_{i 0} W_{i}^{m} X_{i 1} W_{i}^{m} \ldots X_{i l} W_{i}^{m}, \quad i=1,2, \ldots, s \tag{21}
\end{equation*}
$$

Lemma 7.1. Fix $i \in\{1, \ldots, s\}$. Let λ, c be the constants defined in (14) and the elements $x_{i j}, j=1, \ldots, l$, satisfy the properties:

$$
x_{i j} \in K_{i} \text { and }\left|x_{i j}\right|_{G}>C_{1} \text { for every } j=1, \ldots, l
$$

($K_{i} \leq \hat{H}_{i}$ and $C_{1}>0$ are as above). Then for any $n \in \mathbb{N}$, any path q in $\Gamma(G, \mathcal{A})$ labelled by a word $R_{i}^{ \pm n}$ is (λ, c)-quasigeodesic.

Proof. It is enough to prove this lemma for the case when q is labelled by R_{i}^{n} because if $\operatorname{lab}(q) \equiv R_{i}^{-n}$ then $\operatorname{lab}\left(q^{-1}\right) \equiv R_{i}^{n}$ and if q^{-1} is (λ, c)-quasigeodesic then so is q.

For convenience, assume that $i=1$. Since left translations are isometries, we can suppose that $q_{-}=1_{G}$. Set $t=(m+1)(l+1)$. The path q is a broken line $\left[z_{0}, z_{1}, \ldots, z_{n t}\right]$ in the Cayley graph $\Gamma(G, \mathcal{A})$ where

$$
z_{0}=q_{-}=1_{G}, z_{1}=x_{10}, z_{2}=x_{10} w_{1}, z_{3}=x_{10} w_{1}^{2}
$$

$$
z_{m+1}=x_{10} w_{1}^{m}, z_{m+2}=x_{10} w_{1}^{m} x_{11}, z_{m+3}=x_{10} w_{1}^{m} x_{11} w_{1}
$$

......
$z_{t}=x_{10} w_{1}^{m} x_{11} w_{1}^{m} \ldots x_{1 l} w_{1}^{m}, z_{t+1}=x_{10} w_{1}^{m} x_{11} w_{1}^{m} \ldots x_{1 l} w_{1}^{m} x_{10}$,
$z_{n t}=x_{10} w_{1}^{m} \ldots x_{1 l} w_{1}^{m} x_{10} w_{1}^{m} \ldots x_{1 l} w_{1}^{m} \ldots x_{10} w_{1}^{m} \ldots x_{1 l} w_{1}^{m}=q_{+}$.
By construction, $\left\|\left[z_{j-1}, z_{j}\right]\right\|>C_{1}, j=1,2, \ldots, n t$. In order to apply lemma 4.2 to the path q it remains to verify that $\left(z_{j-1} \mid z_{j+1}\right)_{z_{j}} \leq C_{0}$ for every $l=$ $1, \ldots, n t-1$. There are several types of Gromov products that appear when j changes from 1 to $n t-1$. Below we compute them in the order of their occurrence.

Type I. $\left(z_{0} \mid z_{2}\right)_{z_{1}}=\left(1_{G} \mid x_{10} w_{1}\right)_{x_{10}}=\left(x_{10}^{-1} \mid w_{1}\right)_{1_{G}}$. Recall that $w_{1}=y_{1} g_{1}^{n}$. By the Gromov's definition of a hyperbolic space,

$$
\left(x_{10}^{-1} \mid y_{1}\right)_{1_{G}} \geq \min \left\{\left(x_{10}^{-1} \mid w_{1}\right)_{1_{G}},\left(y_{1} \mid w_{1}\right)_{1_{G}}\right\}-\delta .
$$

Now, we observe that

$$
\left(x_{10}^{-1} \mid y_{1}\right)_{1_{G}}=\left(c_{1}^{-1} b_{1} a_{1}^{-1} \mid y_{1}\right)_{1_{G}} \leq\left(c_{1}^{-1} \mid y_{1}\right)_{1_{G}}+\left|b_{1} a_{1}^{-1}\right|_{G} \leq C_{031}+\left|b_{1} a_{1}^{-1}\right|_{G} .
$$

Hence,

$$
\begin{equation*}
\min \left\{\left(x_{10}^{-1} \mid w_{1}\right)_{1_{G}},\left(y_{1} \mid w_{1}\right)_{1_{G}}\right\} \leq C_{031}+\left|b_{1} a_{1}^{-1}\right|_{G}+\delta \leq C_{0} . \tag{22}
\end{equation*}
$$

From the geodesic triangle $1_{G} y_{1} w_{1}$ in $\Gamma(G, \mathcal{A})$ we obtain

$$
\left(y_{1} \mid w_{1}\right)_{1_{G}}=\left|y_{1}\right|_{G}-\left(1_{G} \mid w_{1}\right)_{y_{1}}=\left|y_{1}\right|_{G}-\left(y_{1}^{-1} \mid g_{1}^{n}\right)_{1_{G}} \geq C_{1}-C_{0}>C_{0} .
$$

Combining the latter inequality with (22) we achieve

$$
\left(z_{0} \mid z_{2}\right)_{z_{1}}=\left(x_{10}^{-1} \mid w_{1}\right)_{1_{G}} \leq C_{0} .
$$

Type II. $\left(z_{1} \mid z_{3}\right)_{z_{2}}=\left(x_{10} \mid x_{10} w_{1}^{2}\right)_{x_{10} w_{1}}=\left(w_{1}^{-1} \mid w_{1}\right)_{1_{G}}$.
Again, applying the definition of hyperbolicity twice, we obtain

$$
\begin{aligned}
& \quad\left(g_{1}^{-n} \mid y_{1}\right)_{1_{G}} \geq \min \left\{\left(g_{1}^{-n} \mid w_{1}\right)_{1_{G}},\left(y_{1} \mid w_{1}\right)_{1_{G}}\right\}-\delta \geq \\
& \geq \min \left\{\left(w_{1}^{-1} \mid w_{1}\right)_{1_{G}},\left(g_{1}^{-n} \mid w_{1}^{-1}\right)_{1_{G}},\left(y_{1} \mid w_{1}\right)_{1_{G}}\right\}-2 \delta .
\end{aligned}
$$

By construction, $\left(g_{1}^{-n} \mid y_{1}\right)_{1_{G}} \leq C_{021} \leq c_{0}-2 \delta$. As we showed above, $\left(y_{1} \mid w_{1}\right)_{1_{G}}>C_{0}$.

Considering the geodesic triangle $1_{G} g_{1}^{-n} w_{1}^{-1}$ we get

$$
\left(g_{1}^{-n} \mid w_{1}^{-1}\right)_{1_{G}}=\left|g^{-n}\right|_{G}-\left(1_{G} \mid w_{1}^{-1}\right)_{g^{-n}}=\left|g^{n}\right|_{G}-\left(g^{n} \mid y_{1}^{-1}\right)_{1_{G}} \geq C_{1}-C_{0}>C_{0}
$$

So, combining these inequalities, we achieve

$$
\left(z_{1} \mid z_{3}\right)_{z_{2}}=\left(w_{1}^{-1} \mid w_{1}\right)_{1_{G}} \leq C_{0} .
$$

Type III. $\left(z_{m} \mid z_{m+2}\right)_{z_{m+1}}=\left(w_{1}^{-1} \mid x_{11}\right)_{1_{G}} \leq C_{0}$.
Type IV. $\left(z_{m+1} \mid z_{m+3}\right)_{z_{m+2}}=\left(x_{11}^{-1} \mid w_{1}\right)_{1_{G}} \leq C_{0}$.
These two inequalities are proved in the same way as we proved the inequality for Type I (the arguments are even easier since $x_{11} \in K_{1}$).
The last possibility is
Type V. $\left(z_{t-1} \mid z_{t+1}\right)_{z_{t}}=\left(w_{1}^{-1} \mid x_{10}\right)_{1_{G}}$.
As before, we have

$$
\begin{gathered}
\left(g_{1}^{-n} \mid x_{10}\right)_{1_{G}} \geq \min \left\{\left(w_{1}^{-1} \mid x_{10}\right)_{1_{G}},\left(w_{1}^{-1} \mid g_{1}^{-n}\right)_{1_{G}}\right\}-\delta . \\
\left(g_{1}^{-n} \mid x_{10}\right)_{1_{G}}=\left(g_{1}^{-n} \mid a_{1} b_{1}^{-1} c_{1}\right)_{1_{G}}=\left(b_{1} a_{1}^{-1} g_{1}^{-n} \mid c_{1}\right)_{b_{1} a_{1}^{-1}} \leq \\
\leq\left(b_{1} a_{1}^{-1} g_{1}^{-n} \mid c_{1}\right)_{1_{G}}+\left|b_{1} a_{1}^{-1}\right|_{G} \leq C_{051}+\left|b_{1} a_{1}^{-1}\right|_{G} \leq C_{0}-\delta .
\end{gathered}
$$

We showed while considering the Type II, that $\left(g_{1}^{-n} \mid w_{1}^{-1}\right)_{1_{G}}>C_{0}$. Therefore,

$$
\left(z_{t-1} \mid z_{t+1}\right)_{z_{t}}=\left(w_{1}^{-1} \mid x_{10}\right)_{1_{G}} \leq C_{0} .
$$

It is easy to see that for arbitrary $j \in\{1,2, \ldots, n t-1\}$ the Gromov product $\left(z_{j-1} \mid z_{j+1}\right)_{z_{j}}$ is equal to a Gromov product of one of the Types I-V, thus it is not larger than C_{0}.

Therefore, recalling that the constant C_{1} was defined by formula (13), we can use the lemma 4.2 to show that the path q is (λ, c)-quasigeodesic, where $\lambda>0$ and $c \geq 0$ are defined in (14). Q.e.d.

Below we have an analog of the lemma 6.1 needed for our proof:
Lemma 7.2. Suppose $W_{1}, \ldots, W_{s}, X_{10}, \ldots, X_{s 0}$ and $\lambda>0, c \geq 0$ are the words and the constants defined above. Then for any $\mu>0$ there are $l \in \mathbb{N}$ and words $X_{11}, \ldots, X_{s l}\left(X_{i j}\right.$ represents an element $\left.x_{i j} \in \hat{H}_{i}, j=1, \ldots, l, i=1, \ldots, s\right)$ such that for any $\varepsilon \geq 0, \rho>0$ there is $m_{0} \in \mathbb{N}$ such that the system $\mathcal{R}_{s, l, m}$ (21) satisfies $C(\varepsilon, \mu, \lambda, c, \rho)$ and $C_{1}(\varepsilon, \mu, \lambda, c, \rho)$-conditions if $m \geq m_{0}$.

Proof. By lemma 6.1 there exist $\lambda^{\prime}>0$ such that for any $\mu>0$ there are $l \in \mathbb{N}$ and $c^{\prime} \geq 0$ such that for any $\varepsilon \geq 0, \rho>0$ there are $m_{0} \in \mathbb{N}$ and words $X_{11}, \ldots, X_{s l}$ such that the system $\mathcal{R}_{s, l, m}$ satisfies the generalized small cancellation conditions $C\left(\varepsilon, \mu, \lambda^{\prime}, c^{\prime}, \rho\right)$ and $C_{1}\left(\varepsilon, \mu, \lambda^{\prime}, c^{\prime}, \rho\right)$ if $m \geq m_{0}$.

According to the remark 4 after the formulation of lemma 6.1, lemma 2.12 and lemma 2.11, the elements $x_{i 1}, \ldots, x_{i s}$ can be chosen right after l, inside of the subgroup K_{i}, with an additional property $\left|x_{i j}\right|_{G}>C_{1}$ (the constant C_{1} was defined in (13)) for every $j=1, \ldots, l, i=1, \ldots, s$.

Consider any word $R \in \mathcal{R}_{s, l, m}$. By definition, R is a subword of a word $R_{i}^{ \pm 2}$ for some $i \in\{1, \ldots, s\}$. By lemma 7.1 the word $R_{i}^{ \pm 2}$ is (λ, c)-quasigeodesic (where λ and c are defined in (14)), hence so is R. Taking into account remark 3, we achieve that the system $\mathcal{R}_{s, l, m}$ satisfies the conditions $C(\varepsilon, \mu, \lambda, c, \rho)$ and $C_{1}(\varepsilon, \mu, \lambda, c, \rho)$ if $m \geq m_{0}$.

Lemma 7.3. Let $\mathcal{R}=\mathcal{R}_{s, l, m}\left(W_{1}, \ldots, W_{s}, X_{10}, \ldots, X_{s l}, m\right)$ be the system of additional relations and $\lambda>0, c \geq 0$ be the constants defined above. Then for any $\varepsilon \geq 0$ and $\xi>0$ there exists $m_{1} \in \mathbb{N}$ such that for any $m \geq m_{1}$ the following property holds:

Suppose Δ is a diagram over the presentation (8) and $q-a$ subpath of $\partial \Delta$ such that the corresponding path q^{\prime} in the Cayley $\operatorname{graph} \Gamma(G, \mathcal{A})$ of the group G with the same label as q is geodesic (in other words, $\left.\|q\|=|\operatorname{elem}(q)|_{G}\right)$ and elem $(q) \in Q$ in G. Then for arbitrary \mathcal{R}-face Π of Δ and an ε-contiguity subdiagram Γ between Π and q we have

$$
(\Pi, \Gamma, q) \leq \xi
$$

Proof. Let $\partial \Gamma=p_{1} q_{1} p_{2} q_{2}$ where q_{1}, q_{2} are subpaths of $\partial \Pi$ and q correspondingly and $\left\|p_{1}\right\|,\left\|p_{2}\right\| \leq \varepsilon$. Take arbitrary $\xi>0$. Obviously, from the definition (21), there is $m_{1} \in \mathbb{N}$ such that for any $m \geq m_{1}$ the inequality $\left\|q_{1}\right\| /\|\partial \Pi\|>\xi$
implies that the path q_{1} has a subpath o labelled by the word $W_{i}^{ \pm 1}$ for some $i \in\{1, \ldots, s\}$ and, moreover, the subpaths o_{1}, o_{2} of q_{1} (with $\left(o_{1}\right)_{-}=\left(q_{1}\right)_{-}$, $\left.\left(o_{1}\right)_{+}=o_{-},\left(o_{2}\right)_{-}=o_{+},\left(o_{2}\right)_{-}=\left(q_{1}\right)_{+}\right)$satisfy

$$
\begin{equation*}
\left\|o_{j}\right\|>(\varepsilon+c+\nu) / \lambda, j=1,2, \tag{23}
\end{equation*}
$$

(ν is chosen according to (15)).
We are going to obtain a contradiction with the definitions of elements w_{i} and y_{i}.

Since the diagram Γ contains only 0 -faces (i.e. it is a diagram over the group G), we can consider the corresponding picture in $\Gamma(G, \mathcal{A})$ with a geodesic path q^{\prime} starting at 1_{G} (its subpath $\left.q_{2}^{\prime}\right),(\lambda, c)$-quasigeodesic path q_{1}^{\prime} (its subpaths o^{\prime}, $\left.o_{1}^{\prime}, o_{2}^{\prime}\right)$ and paths $p_{1}^{\prime}, p_{2}^{\prime}$ of lengths at most ε with $\left(p_{1}^{\prime}\right)_{-}=\left(q_{2}^{\prime}\right)_{+},\left(p_{1}^{\prime}\right)_{+}=\left(q_{1}^{\prime}\right)_{-}$, $\left(p_{2}^{\prime}\right)_{-}=\left(q_{1}^{\prime}\right)_{+},\left(p_{2}^{\prime}\right)_{+}=\left(q_{2}^{\prime}\right)_{-}$(i.e. for every path r from Δ we construct a corresponding path r^{\prime} in $\Gamma(G, \mathcal{A})$ with the same label; see Figure 1).

Pick any $z \in Q$ with $|z|_{G}=\varkappa$ (the constant \varkappa was defined in (16)). Then $q_{+}^{\prime}=\operatorname{elem}\left(q^{\prime}\right)=\operatorname{elem}(q) \in Q$. Hence, since the triangles are δ-slim, one obtains

$$
q^{\prime} \subset \mathcal{O}_{\delta}\left([1, z] \cup\left[z, \operatorname{elem}\left(q^{\prime}\right)\right]\right) \subset \mathcal{O}_{\delta+\varkappa}\left(\left[z, \operatorname{elem}\left(q^{\prime}\right)\right]\right) \subset \mathcal{O}_{\delta+\varkappa+\eta}(Q)
$$

Denote $u=\left(q_{1}^{\prime}\right)_{-}, v=\left(q_{1}^{\prime}\right)_{+}$. Then $u, v \subset \mathcal{O}_{\varepsilon}\left(q_{2}^{\prime}\right)$.

Figure 1

Now, since

$$
o^{\prime} \subset q_{1}^{\prime} \subset \mathcal{O}_{\nu}([u, v])
$$

using (23) and lemma 2.6 we obtain

$$
o^{\prime} \subset \mathcal{O}_{\nu+2 \delta}\left(q^{\prime}\right) \subset \mathcal{O}_{3 \delta+\nu+\varkappa+\eta}(Q)
$$

Recall that $\operatorname{lab}\left(o^{\prime}\right)=W_{i}^{ \pm 1}$ by construction. So, if $l a b\left(o^{\prime}\right)=W_{i}$, define the points $f=o_{-}^{\prime}, g=o_{+}^{\prime}$ and if $\operatorname{lab}\left(o^{\prime}\right)=W_{i}^{-1}$, define $g=o_{-}^{\prime}$ and $f=o_{+}^{\prime}$. Thus there are elements $h_{1}, h_{2} \in Q$ such that

$$
d\left(f, h_{1}\right)=\left|f^{-1} h_{1}\right|_{G} \leq 3 \delta+\nu+\varkappa+\eta, d\left(g, h_{2}\right) \leq 3 \delta+\nu+\varkappa+\eta .
$$

By the definition of w_{i}, we have $f y_{i} g_{i}^{n}=g$. According to Gromov's definition of a hyperbolic metric space, we achieve

$$
\left(h_{2} \mid f y_{i}\right)_{f} \geq \min \left\{\left(h_{2} \mid g\right)_{f},\left(g \mid f y_{i}\right)_{f}\right\}-\delta .
$$

Observe that $\left(h_{2} \mid f y_{i}\right)_{f}=\left(f^{-1} h_{2} \mid y_{i}\right)_{1_{G}}$ and

$$
x=f^{-1} h_{2}=\left(f^{-1} h_{1}\right) h_{1}^{-1} h_{2} \in A Q^{-1} Q
$$

(the set A was defined in (17)).

$$
\begin{aligned}
\left(g \mid f y_{i}\right)_{f} & =\left\|\left[f, f y_{i}\right]\right\|-(f \mid g)_{f y_{i}}=\left|y_{i}\right|_{G}-\left(y_{i}^{-1} \mid g_{i}^{n}\right)_{1_{G}} \geq \\
& \geq\left|y_{i}\right|_{G}-C_{0}>5 \delta+\nu+\varkappa+\eta+2 C_{3}
\end{aligned}
$$

(Here we used that $C_{1}-C_{0}>2 \delta$.) Note that $d(f, g) \geq\left(g \mid f y_{i}\right)_{f}$, hence

$$
\left(h_{2} \mid g\right)_{f} \geq \frac{1}{2}\left(d(f, g)-d\left(g, h_{2}\right)\right) \geq \frac{1}{2}\left(\left(g \mid f y_{i}\right)_{f}-(3 \delta+\nu+\varkappa+\eta)\right)>C_{3}+\delta .
$$

Combining the above formulas, we finally obtain

$$
\left(h_{2} \mid f y_{i}\right)_{f}=\left(x \mid y_{i}\right)_{1_{G}}>C_{3}
$$

contradicting to the definition (18) of C_{3}. Therefore, $\left\|q_{1}\right\| /\|\partial \Pi\|=(\Pi, \Gamma, q) \leq \xi$.
The lemma is proved.

8 Proof of Theorem 1

Proof. The group G_{1} is generated by $\phi(\mathcal{A})$, so let $|x|_{G_{1}}$ be the corresponding length function for elements $x \in G_{1}$, and let $d_{1}(\cdot, \cdot)$ be the corresponding metric on the Cayley graph of the group G_{1}. Sometimes it will be convenient for us to identify \mathcal{A} and $\phi(\mathcal{A})$ for G_{1}, so $\Gamma\left(G_{1}, \mathcal{A}\right)$ will be the Cayley graph of G_{1}. Since ϕ is a homomorphism, from the definition of the word metric it follows that

$$
\begin{equation*}
\forall x, y \in G \quad d_{1}(\phi(x), \phi(y)) \leq d(x, y) . \tag{24}
\end{equation*}
$$

Define the elements $a_{1}, \ldots, a_{s} \in G$ and the subgroups $\hat{H}_{1}, \ldots, \hat{H}_{s}$ as we did in the beginning of section 7 . After that construct the elements g_{i}, y_{i}, w_{i} and $x_{i 0}, i=1,2, \ldots, s$, as described in that section. Then we can find the constants $\lambda>0$ and $c \geq 0$ according to (14).

Suppose that $W_{i}, X_{i 0}, \ldots, X_{i l}$ are shortest words in the alphabet \mathcal{A} representing $w_{i}, x_{i 0}, \ldots, x_{i l}, i=1, \ldots, s$. As the system of additional relations, consider the set

$$
\mathcal{R}=\mathcal{R}_{s, l, m}\left(W_{1}, \ldots, W_{s}, X_{10}, \ldots, X_{s l}, m\right)
$$

of all cyclic permutations of $R_{i}^{ \pm 1}, i=1, \ldots, s$, established in (21).

Define the group G_{1} according to (8), thus, $G_{1} \cong G /\left\langle\mathcal{R}^{G}\right\rangle$. Let ϕ be the natural epimorphism from G to G_{1}.

By lemma 7.2 one can find $l, m_{0} \in \mathbb{N}$ and elements $x_{i j} \in \hat{H}_{i}, j=1, \ldots, l$, $i=1, \ldots, s$, such that the group G_{1} satisfies all of the conditions of lemmas 6.2 and 6.4 if $m \geq m_{0}$. Therefore we obtain the parts 1) and 8) of the theorem 1 .

It is easy to see that the relation R_{i} implies $\phi\left(a_{i} z_{i}\right)=1$ in G_{1} for some $z_{i} \in \hat{H}_{i}$, hence $\phi\left(a_{i}\right) \in \phi\left(\hat{H}_{i}\right)$ for $i=1, \ldots, s$.

Due to the choice of a_{1}, \ldots, a_{s} and $\hat{H}_{1}, \ldots, \hat{H}_{s}$ we obtain $\phi(\mathcal{A}) \subset \phi\left(H_{j}\right)$ for every $j \in\{1,2, \ldots, k\}$. Consequently, $G_{1}=\phi\left(H_{j}\right), j=1, \ldots, k$, so the part 3) of the theorem is proved.

Let us now prove the property 2). Let $\mu_{0}>0, \varepsilon \geq 0$ be chosen according to lemma 6.2. Since we can take any μ inside of the interval $\left(0, \mu_{0}\right.$] we can also demand that $1 /(\lambda+1)<1-23 \mu$. Choose $\xi>0$ in such a way that

$$
\begin{equation*}
\frac{1}{\lambda+1}<1-23 \mu-2 \xi \tag{25}
\end{equation*}
$$

Denote $\theta=1-23 \mu-2 \xi>0$. Then (25) implies that $(\lambda+1) \theta-1>0$. Set $L_{0}=\min \{\|R\| \mid R \in \mathcal{R}\}$. Evidently, L_{0} depends on m and there exists $m_{2} \in \mathbb{N}$ such that for any $m \geq m_{2}$

$$
\begin{equation*}
((\lambda+1) \theta-1) L_{0}>c+4 \varepsilon \tag{26}
\end{equation*}
$$

Now, let's apply the statement lemma 7.3 to find $m_{1}=m_{1}(\varepsilon, \xi) \in \mathbb{N}$.
By taking any $m \geq \max \left\{m_{0}, m_{1}, m_{2}\right\}$ we can further assume that the claims of lemmas 6.2 and 7.3 hold together with the inequality (26).

Consider arbitrary elements $u, v \in Q$. We need to show that $d(u, v)=$ $d_{1}(\phi(u), \phi(v))$.

Observe that, by definition, $d(u, v)=\left|u^{-1} v\right|_{G}, d_{1}(\phi(u), \phi(v))=\left|\phi\left(u^{-1} v\right)\right|_{G_{1}}$. Obviously, $\left|u^{-1} v\right|_{G} \geq\left|\phi\left(u^{-1} v\right)\right|_{G_{1}}$, so assume, by contradiction, that

$$
\begin{equation*}
\left|u^{-1} v\right|_{G}>\left|\phi\left(u^{-1} v\right)\right|_{G_{1}} \tag{27}
\end{equation*}
$$

Thus, if U, V are shortest words representing u, v in G, there is a word Z such that $U^{-1} V=Z$ in the G_{1} but not in $G(Z$ is a word of minimal length representing the element $\phi\left(u^{-1} v\right)$ in $\left.G_{1}\right)$.

Consider a reduced circular diagram Δ over G_{1} whose boundary is labelled by the word $U^{-1} V Z^{-1}$. Let q^{1}, q^{2}, q^{3} be the (geodesic) sections of the boundary $\partial \Delta$ labelled by the words U, V, Z respectively.

This diagram must contain at least one \mathcal{R}-face since $U^{-1} V Z^{-1} \neq 1$ in G. Therefore, by lemma 6.2 there exists an \mathcal{R}-face Π in Δ and ε-contiguity subdiagrams $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ between Π and the sections q^{1}, q^{2}, q^{3} (for our convenience, for each of the sections q^{j} we can choose a corresponding orientation of $\partial \Pi$, $j=1,2,3$) satisfying

$$
\left(\Pi, \Gamma_{1}, q^{1}\right)+\left(\Pi, \Gamma_{2}, q^{2}\right)+\left(\Pi, \Gamma_{3}, q^{3}\right)>1-23 \mu
$$

Since $\operatorname{elem}\left(q^{1}\right)=u \in Q, \operatorname{elem}\left(q^{2}\right)=v \in Q$ and $m \geq m_{1}$, we have $\left(\Pi, \Gamma_{1}, q^{1}\right) \leq \xi$ and $\left(\Pi, \Gamma_{2}, q^{2}\right) \leq \xi$. Hence,

$$
\begin{equation*}
\left(\Pi, \Gamma_{3}, q^{3}\right)>1-23 \mu-2 \xi=\theta . \tag{28}
\end{equation*}
$$

Now we are going to obtain a contradiction with the choice of Z. Let $\partial\left(\Gamma_{3}\right)=p_{1} r_{1} p_{2} o_{2}$ where $\partial \Pi=r_{1} r_{2}, q^{3}=o_{1} o_{2} o_{3},\left\|p_{1}\right\|,\left\|p_{2}\right\| \leq \varepsilon$ (Figure 2).

Figure 2

Let L denote the length of $\partial \Pi$. (28) implies

$$
\begin{equation*}
\left\|r_{1}\right\|>\theta L, \quad\left\|r_{2}\right\|=L-\left\|r_{1}\right\|<(1-\theta) L . \tag{29}
\end{equation*}
$$

Now, since Γ_{3} is a diagram over the group G, the equality

$$
\operatorname{elem}\left(o_{2}^{-1}\right)=\operatorname{elem}\left(p_{1}\right) \operatorname{elem}\left(r_{1}\right) \operatorname{elem}\left(p_{2}\right)
$$

holds in G. The path q^{3} is geodesic, therefore, its subpath o_{2} is also geodesic, thus,

$$
\begin{gathered}
\left\|o_{2}\right\|=\left\|o_{2}^{-1}\right\|=\left|\operatorname{elem}\left(o_{2}^{-1}\right)\right|_{G} \geq\left|\operatorname{elem}\left(r_{1}\right)\right|_{G}-\left|\operatorname{elem}\left(p_{1}\right)\right|_{G}-\left|\operatorname{elem}\left(p_{2}\right)\right|_{G}, \text { hence } \\
\left\|o_{2}\right\| \geq\left|\operatorname{elem}\left(r_{1}\right)\right|_{G}-2 \varepsilon
\end{gathered}
$$

The path r_{1} is (λ, c)-quasigeodesic as a subpath of the face contour $\partial \Pi$, therefore $\left|\operatorname{elem}\left(r_{1}\right)\right|_{G} \geq \lambda\left\|r_{1}\right\|-c$. Combining the last two inequalities with (29) we obtain

$$
\begin{equation*}
\left\|o_{2}\right\| \geq \lambda \theta L-c-2 \varepsilon \tag{30}
\end{equation*}
$$

Consider the subdiagram Ω of Δ bounded by the closed path $p_{2}^{-1} r_{2} p_{1}^{-1} o_{2}^{-1}$. It gives us the following equality in the group G_{1} :

$$
\operatorname{elem}\left(o_{2}\right)=\operatorname{elem}\left(p_{2}^{-1}\right) \cdot \operatorname{elem}\left(r_{2}\right) \cdot \operatorname{elem}\left(p_{1}^{-1}\right)
$$

Thus,

$$
\begin{aligned}
\left\|o_{2}\right\|=\left|\operatorname{elem}\left(o_{2}\right)\right|_{G_{1}} & \leq\left|\operatorname{elem}\left(p_{2}^{-1}\right)\right|_{G_{1}}+\left|\operatorname{elem}\left(r_{2}\right)\right|_{G_{1}}+\left|\operatorname{elem}\left(p_{1}^{-1}\right)\right|_{G_{1}} \leq \\
& \leq\left\|r_{2}\right\|+2 \varepsilon \leq(1-\theta) L+2 \varepsilon .
\end{aligned}
$$

Comparing the latter inequality with (30) we get

$$
\lambda \theta L-c-2 \varepsilon \leq(1-\theta) L+2 \varepsilon
$$

Or, equivalently,

$$
((\lambda+1) \theta-1) L \leq c+4 \varepsilon
$$

Since $L \geq L_{0}$ this contradicts to the inequality (26).
Therefore, the assumption (27) was incorrect and $d(u, v)=d_{1}(\phi(u), \phi(v))$ for arbitrary $u, v \in Q$. Thus $\left.\phi\right|_{Q}$ is an isometry.

By 1) G_{1} is δ_{1}-hyperbolic for some $\delta_{1} \geq 0$. Take any ω-quasiconvex (in G) subset $S \subseteq Q$. Let's show that $\phi(S) \subset G_{1}$ is $\left(\omega+\delta_{1}\right)$-quasiconvex.

Consider arbitrary two elements $u, v \in S$ and let p be a geodesic path in $\Gamma(G, \mathcal{A})$ connecting them. Then

$$
p \subset \mathcal{O}_{\omega}(S) \text { in } \Gamma(G, \mathcal{A})
$$

Let p_{1} be the path in $\Gamma\left(G_{1}, \mathcal{A}\right)$ starting at $\phi(u)$ with the same label as p. Then $\left(p_{1}\right)_{+}=\phi(v)$ (this is equivalent to the equality $\phi(u) \cdot \operatorname{elem}\left(p_{1}\right)=\phi(v)$ which follows from $u \cdot \operatorname{elem}(p)=v)$. Now, since ϕ is an isometry between S and $\phi(S)$,

$$
\left\|p_{1}\right\|=\|p\|=d(u, v)=d_{1}(\phi(u), \phi(v))
$$

Therefore, p_{1} is a geodesic path between $\phi(u)$ and $\phi(v)$ in $\Gamma\left(G_{1}, \mathcal{A}\right)$. (24) implies

$$
p_{1} \subset \mathcal{O}_{\omega}(\phi(S)) \text { in } \Gamma\left(G_{1}, \mathcal{A}\right)
$$

The space $\Gamma\left(G_{1}, \mathcal{A}\right)$ is δ_{1}-hyperbolic, hence for any geodesic path q between $\phi(u)$ and $\phi(v)$ we have $q \subset \mathcal{O}_{\delta_{1}}\left(p_{1}\right)$. Consequently,

$$
q \subset \mathcal{O}_{\omega+\delta_{1}}(\phi(S)) \quad \text { in } \Gamma\left(G_{1}, \mathcal{A}\right)
$$

The proof of the part 2) is complete.
For the case when Q is a finite subset, the proofs in [16, Thm. 3] of the properties corresponding to 4), 5) from our theorem 1 were based on the lemma 6.3, general properties of hyperbolic groups and the fact that in a diagram over (8) with labels of boundary contours representing elements of Q in G there can not exist any "long" ε-contiguity of an \mathcal{R}-face to a boundary contour. The same fact is true in our case by lemma 7.3 (after an appropriate choice the parameters like in the proof of the property 2$)$). So, for the proofs 4), 5) the reader is referred to [16, Thm. 3].

Properties 6) and 7) do not depend on Q, thus they can be proved in the same way as they were proved in [16, Thm. 2] (we can always add a finite subset to Q : it will stay quasiconvex and the formula $(*)$ will continue to hold).

Finally, let's derive the property 9). By lemma 2.11 , we can choose a G suitable element $g \in G$. Then, by definition, $T(g)=E(G)$. Denote $S=\langle g\rangle_{\infty}-$ a quasiconvex subgroup of the group G. Then for any $h \in G$

$$
\left|H_{i}:\left(H_{i} \cap h S h^{-1}\right)\right|=\infty
$$

since H_{i} is non-elementary for every $i=1, \ldots, k$. Hence, according to theorem $3, H_{i}$ is not contained inside of $P_{1} S^{-1} S P_{2}$ for arbitrary finite subsets $P_{1}, P_{2} \subset G$. Now we can apply lemmas 2.3 and 5.4 to the union

$$
Q^{\prime}=Q \cup S=Q \cup\langle g\rangle_{\infty}
$$

to show that all the requirements of theorem 1 will remain satisfied if one substitutes Q by Q^{\prime} in it. Since the properties 1$)-8$) were already proved, we can further use them for the elements of Q^{\prime}. Therefore, $\operatorname{ker}(\phi) \cap Q^{\prime}=\left\{1_{G}\right\}$, implying that $\phi(g)$ has infinite order in G_{1}.

Consider arbitrary $x \in E\left(G_{1}\right)$. Then, in particular, $x \in E(\phi(g))$. By definition, there exists $n \in \mathbb{N}$ such that $x(\phi(g))^{n} x^{-1}=(\phi(g))^{ \pm n}$.

If $x \phi(g)^{n} x^{-1}=\phi(g)^{-n}$ then by the part 4) the elements $g^{n}, g^{-n} \in Q^{\prime}$ must be conjugate in G which fails because $E(g)=E^{+}(g)$. Hence, $x(\phi(g))^{n} x^{-1}=$ $(\phi(g))^{n}$, i.e. $x \in C_{G_{1}}\left(\phi\left(g^{n}\right)\right)$.

Since $g^{n} \in Q^{\prime}$, one can apply the part 5) to find $y \in C_{G}\left(g^{n}\right)$ with $\phi(y)=x . g \in G$ is G-suitable, therefore $C_{G}\left(g^{n}\right) \leq E(g)=T(g) \times\langle g\rangle . G_{1}$ is non-elementary, therefore the subgroup $E\left(G_{1}\right) \leq G_{1}$ is finite, thus x has a finite order in G_{1}. It follows that y has a finite order in G, because, otherwise, we would get $y^{l_{1}}=g^{l_{2}}$ for some $l_{1}, l_{2} \in \mathbb{Z} \backslash\{0\}$ and $x^{l_{1}}=\phi\left(y^{l_{1}}\right)=\phi\left(g^{l_{2}}\right)$ where $\phi\left(g^{l_{2}}\right)$ has an infinite order in G_{1}. Consequently, $y \in T(g)=E(G)$ and

$$
x=\phi(y) \in \phi(E(G)) .
$$

The proof of the theorem is finished.

9 Constructing Simple Quotients

Lemma 9.1. Suppose N is an infinite normal subgroup of a hyperbolic group G and K is a quasiconvex subgroup of G such that $|G: K|=\infty$. Then for arbitrary $h \in G,\left|N:\left(N \cap h K h^{-1}\right)\right|=\infty$.

Proof. Since a conjugate to a quasiconvex subgroup of infinite index is again a quasiconvex subgroup of infinite index, it is enough to consider the case when $h=1_{G}$. Assume, by the contrary, that $|N:(N \cap K)|<\infty$. Then there exist elements $h_{1}, \ldots, h_{n} \in N$ such that $N \subseteq K h_{1} \cup \ldots \cup K h_{n}$. Applying lemmas 2.16 and 2.13 we achieve

$$
\Lambda(G)=\Lambda(N) \subseteq \Lambda\left(K h_{1} \cup \ldots \cup K h_{n}\right)=\Lambda(K) .
$$

Hence, by lemma 2.18, $G \subset K \cdot P=\bigcup_{p \in P} K p$ for some finite subset P of G, which implies that $|G: K|<\infty-$ a contradiction to our conditions.

Lemma 9.2. If H is a non-elementary subgroup of a hyperbolic group G then $E(H)$ coincides with the subgroup $K=\bigcap_{\alpha \in \Lambda(H)} S t_{G}(\{\alpha\}) \leq G$.

Proof. Indeed,

$$
K \subseteq \bigcap_{h \in H^{0}} S t_{G}\left(\left\{h^{\infty}\right\}\right)=\bigcap_{h \in H^{0}} E^{+}(h) \subseteq E(H)
$$

i.e. $K \subseteq E(H)$. Now, since $E(H)$ is a finite subgroup normalized by H, for every $x \in E(H)$ and $\alpha \in \Lambda(H)$ we can find a sequence of elements $y_{i} \in H$, $i \in \mathbb{N}$, with $\lim _{i \rightarrow \infty} y_{i}=\alpha$. Denote $Y=\left\{y_{i} \mid i \in \mathbb{N}\right\} \subset H$. Then $\Lambda(Y)=\{\alpha\}$, $x Y \subset Y \cdot E(H)$ and by lemma 2.13 we achieve

$$
\begin{gathered}
x \circ\{\alpha\}=x \circ \Lambda(Y)=\Lambda(x Y) \subset \Lambda(Y E(H))= \\
=\Lambda\left(\bigcup_{z \in E(H)} Y z\right)=\bigcup_{z \in E(H)} \Lambda(Y z)=\bigcup_{z \in E(H)} \Lambda(Y)=\{\alpha\} .
\end{gathered}
$$

Thus, $x \in K$ which implies $E(H) \subseteq K$.
Lemma 9.3. Assume that A is a non-elementary normal subgroup of a subgroup H in a hyperbolic group G. Then $E(A)=E(H)$.

Proof. According to lemma 9.2 and lemma 2.16 we have

$$
E(A)=\bigcap_{\alpha \in \Lambda(A)} S t_{G}(\{\alpha\})=\bigcap_{\alpha \in \Lambda(H)} S t_{G}(\{\alpha\})=E(H) .
$$

Proof of corollary 1. First, since $E(G)$ is the maximal finite normal subgroup of G, we can consider the quotient $\hat{G}=G / E(G)$. Obviously, the natural homomorphism $\psi: G \rightarrow \hat{G}$ is a quasiisometry between G and \hat{G}, therefore \hat{G} is a non-elementary hyperbolic group without non-trivial finite normal subgroups ([5, Ch. 5, Thm. 2.12]). Consequently, $E(\hat{G})=\left\{1_{\hat{G}}\right\}$.

Now, consider the free product $F=\hat{G} * H . F$ is hyperbolic as a free product of hyperbolic groups ([5, Ch. 1, Exercise 4.34]) and non-elementary. Identify \hat{G} and H with their canonical copies inside of F. Evidently, we have $E(\hat{G})=$ $E(F)=\left\{1_{F}\right\}$ in F, hence \hat{G} is a G-subgroup of F. By lemma 2.10 one can find an element $g \in \hat{G} \leq F$ of infinite order. Then

$$
\langle g\rangle \cap H=\left\{1_{F}\right\} \quad \text { in } F .
$$

As it follows from the normal forms of elements of a free product, the subgroup H is undistorted in F, hence, by lemma 3.1, H is a quasiconvex subgroup of F. Define the quasiconvex subset $Q \subset F$ by $Q=H \cup\langle g\rangle$. Obviously, no nontrivial element of \hat{G} is conjugate to an element of H in F, therefore, according to theorem 3 , we can apply theorem 1 to obtain a non-elementary hyperbolic quotient G_{1} of F and an epimorphism $\phi_{0}: F \rightarrow G_{1}$ that is surjective on \hat{G}, injective on $Q, \phi_{0}(H)$ is quasiconvex in G_{1} and

$$
\begin{equation*}
E\left(G_{1}\right)=\phi_{0}(E(F))=\left\{1_{G_{1}}\right\}, \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\left\langle\phi_{0}(g)\right\rangle \cap \phi_{0}(H)=\left\{1_{G_{1}}\right\} \tag{32}
\end{equation*}
$$

In particular, $\phi_{0}(H) \cong H$.
Let the $\left\{\chi_{j} \mid j \in \mathbb{N}\right\}$ denote the set of all non-trivial conjugacy classes of elements in the group G_{1}. Let N_{1} be the normal subgroup of G_{1} generated by χ_{1}. Observe that (31) implies that N_{1} is infinite, consequently, it is nonelementary (because $\Lambda\left(N_{1}\right)=\Lambda(G)=\partial G$ according to lemma 2.16 and this set is uncountable, but the limit set of an infinite elementary subgroup consists of only two points).

By lemma 9.3 $E\left(N_{1}\right)=E\left(G_{1}\right)$ is trivial, hence, N_{1} is a G-subgroup of the group G_{1}. Denote $g_{1}=\phi_{0}(g) \in G_{1}, H_{1}=\phi_{0}(H) \leq G_{1}, Q_{1}=\left\langle g_{1}\right\rangle \cup H_{1}$. The order of g_{1} in the group G_{1} is infinite, hence (32) implies that $\left|G_{1}: H_{1}\right|=\infty$. Therefore, $\left|N_{1}:\left(N_{1} \cap h\left\langle g_{1}\right\rangle h^{-1}\right)\right|=\infty$ and $\left|N_{1}:\left(N_{1} \cap h H_{1} h^{-1}\right)\right|=\infty$ for any $h \in G_{1}$ (by lemma 9.1). Thus, by theorem 3, we can apply theorem 1 again and achieve a non-elementary hyperbolic quotient G_{2} of G_{1} together with an epimorphism $\phi_{1}: G_{1} \rightarrow G_{2}$ satisfying $\phi_{1}\left(N_{1}\right)=G_{2}, \phi_{1}$ is injective on $Q_{1}, H_{2}=$ $\phi_{1}\left(H_{1}\right)$ is a quasiconvex subgroup of $G_{2}, E\left(G_{2}\right)=\left\{1_{G_{2}}\right\}$ and $\left\langle g_{2}\right\rangle \cap H_{2}=\left\{1_{G_{2}}\right\}$ where $g_{2}=\phi_{1}\left(g_{1}\right)$.

Now, let $j_{1}=1$ and $j_{2}>j_{1}$ be the smallest index such that $\phi_{1}\left(\chi_{j_{2}}\right)$ is nontrivial in G_{2}. Set $N_{2}=\left\langle\phi_{1}\left(\chi_{j_{2}}\right)\right\rangle \triangleleft G_{2}$. We can apply the same argument as before to get a non-elementary hyperbolic quotient G_{3} of G_{2} with the natural epimorphism $\phi_{2}: G_{2} \rightarrow G_{3}$ satisfying the properties we need (as above). And so on.

Thus, we obtain an infinite sequence of epimorphisms

$$
G \xrightarrow{\psi} \hat{G} \xrightarrow{\phi_{0}} G_{1} \xrightarrow{\phi_{1}} G_{2} \xrightarrow{\phi_{2}} \ldots
$$

where each epimorphism ϕ_{i} is injective on the image of $\phi_{i-1}(H), i \in \mathbb{N}$.
Denote by M the corresponding inductive limit of non-elementary hyperbolic groups. Then M is a quotient of G. As it is evident from the construction, M is a simple group and the group H is isomorphically embedded into M. So, the corollary is proved.

Proof of corollary 2. Let $A_{1}, A_{2}, A_{3}, \ldots$ be an enumeration of all non-elementary hyperbolic groups and $B_{1}, B_{2}, B_{3}, \ldots-$ an enumeration of all hyperbolic groups (there are countably many of them since every hyperbolic group is finitely presented [1]). Denote $\hat{A}_{i}=A_{i} / E\left(A_{i}\right), i=1,2, \ldots$.

Set $F_{1}=\hat{A}_{1} * B_{1}$. Then, applying theorem 1 , we can obtain a non-elementary hyperbolic group G_{1} and an epimorphism $\phi_{0}: F \rightarrow G_{1}$ that is surjective on $\hat{A_{1}}$ and injective on B_{1} (as before, we can demand that $\phi_{0}\left(B_{1}\right)$ is quasiconvex in $G_{1},\left|G_{1}: \phi_{0}\left(B_{1}\right)\right|=\infty$ and $\left.E\left(G_{1}\right)=\left\{1_{G_{1}}\right\}\right)$.

Again, let the $\left\{\chi_{j} \mid j \in \mathbb{N}\right\}$ be the set of all non-trivial conjugacy classes of elements in the group $G_{1}, N_{1}=\left\langle\chi_{1}\right\rangle \triangleleft G_{1}$. By theorem 1 we obtain a (nonelementary hyperbolic) quotient \hat{G}_{1} with the natural epimorphism $\psi_{1}: G_{1} \rightarrow \hat{G}_{1}$ that is surjective on N_{1} and injective on the image $\phi_{0}\left(B_{1}\right)$ of B_{1} in G_{1}.

Next, define $F_{2}=\hat{G}_{1} * \hat{A}_{2} * B_{2}$. Let G_{2} be a non-elementary hyperbolic quotient of F_{2} such that the natural epimorphism $\phi_{1}: F_{2} \rightarrow G_{2}$ is surjective on the subgroups $\hat{G}_{1}, \hat{A}_{2} \leq F_{2}$ and injective on B_{2} and the image of $B_{1} \leq G_{1} \leq F_{2}$.

Now, let $j_{1}=1$ and $j_{2}>j_{1}$ be the smallest index such that the image of $\chi_{j_{2}}$ (under the composition $\phi_{1} \circ \psi_{1}$) is non-trivial in G_{2}. Let $N_{2}=\left\langle\left(\phi_{1} \circ \psi_{1}\right)\left(\chi_{j_{2}}\right)\right\rangle \triangleleft$ G_{2}. Then we can find an epimorphism $\psi_{2}: G_{2} \rightarrow \hat{G}_{2}$ onto a non-elementary hyperbolic group \hat{G}_{2} that is surjective on N_{2} and injective on the images of B_{1}, B_{2}.

And so on. Thus we achieve a sequence of epimorphisms

$$
\hat{G}_{1} \rightarrow \hat{G}_{2} \rightarrow \hat{G}_{3} \rightarrow \ldots
$$

Let M the corresponding inductive limit of these groups. As it follows from the construction, M satisfies all the properties required.

10 Thrifty Embeddings

Observe that since any elementary torsion-free group is cyclic, maximal elementary subgroups are malnormal in torsion-free non-elementary hyperbolic groups.
Remark 5. Let H be a malnormal subgroup of a group $G, g \in G$. Then
(a) The conjugate subgroup $g H^{-1} \leq G$ is also malnormal;
(b) If $K \leq G$ is an infinite subgroup and $\left|K:\left(K \cap g H g^{-1}\right)\right|<\infty$ then $g^{-1} K g \leq H ;$
(c) For any $h \in H \backslash\left\{1_{G}\right\}, C_{G}(h) \leq H$;
(d) If $f \in G$ and $f H f^{-1} \cap g H g^{-1} \neq\left\{1_{G}\right\}$ then $f H f^{-1}=g H g^{-1}$.

For the proof of corollary 3 we will need the following auxiliary lemma:
Lemma 10.1. Suppose G is a group and H, A, B are its subgroups. Assume that H and B are malnormal in $G, H \cap g B g^{-1}=\left\{1_{G}\right\}$ for any $g \in G$ and there is an isomorphism $\tau: A \rightarrow B$. Then the natural image of H in the HNN-extension

$$
G_{1}=\left\langle G, t \mid t A t^{-1}=B\right\rangle \stackrel{\text { def }}{=}\left\langle G, t \mid t a t^{-1}=\tau(a), a \in A\right\rangle
$$

is malnormal.
Proof. Identify G and H with their canonical images in G_{1}. Assume that there exists $w \in G_{1} \backslash H$ and non-trivial elements $x, y \in H$ such that $w x w^{-1}=y$. Then we can write

$$
\begin{equation*}
w=u_{0} t^{\epsilon_{1}} u_{1} t^{\epsilon_{2}} \cdot \ldots \cdot t^{\epsilon_{n-1}} u_{n-1} t^{\epsilon_{n}} u_{n} \quad \text { in } G_{1} \tag{33}
\end{equation*}
$$

where $u_{0}, u_{n} \in G, u_{1}, \ldots, u_{n-1} \in G \backslash\left\{1_{G}\right\}, \epsilon_{1}, \ldots, \epsilon_{n} \in\{1,-1\}$, and this representation is reduced (i.e. it contains no occurences of the form $t u t^{-1}$ or $t^{-1} v t$ where $u \in A, v \in B)$.

Observe that $n \geq 1$ since $w \notin G$ (by malnormality of H in G) and

$$
\begin{equation*}
u_{0} t^{\epsilon_{1}} \cdot \ldots \cdot t^{\epsilon_{n}} u_{n} x u_{n}^{-1} t^{-\epsilon_{n}} \cdot \ldots \cdot t^{-\epsilon_{2}} u_{0}^{-1} y^{-1}=1_{G_{1}} . \tag{34}
\end{equation*}
$$

By Britton's lemma ([11]) the left-hand side in (34) is not reduced, hence $u_{n} x u_{n}^{-1}$ belongs to A or B. But this element is a conjugate of $x \in H$ therefore,
according to the assumptions of the lemma, it has to be in A and $\epsilon_{n}=1$. Consequently, $t^{\epsilon_{n}} u_{n} x u_{n}^{-1} t^{-\epsilon_{n}}=v \in B \backslash\left\{1_{G}\right\}$. Since no element of B is conjugate to the element $y \in H$ in the group G, the number n from the representation (33) must be at least 2 and

$$
w x w^{-1} y^{-1} \stackrel{G_{1}}{=} u_{0} t^{\epsilon_{1}} \cdot \ldots \cdot t^{\epsilon_{n-1}} u_{n-1} v u_{n-1}^{-1} t^{-\epsilon_{n-1}} \cdot \ldots \cdot t^{-\epsilon_{2}} u_{0}^{-1} y^{-1}=1_{G_{1}} .
$$

Applying Britton's lemma again, we get that the element $u_{n-1} v u_{n-1}^{-1}$ either belongs to A (and $\epsilon_{n-1}=1$) or to B (and $\epsilon_{n-1}=-1$). So, if it is in A, then $t^{\epsilon_{n-1}} u_{n-1} v u_{n-1}^{-1} t^{-\epsilon_{n-1}} \in B$ and n has to be at least 3 ; thus we can proceed as before. This process will end after finitely many steps because each time we eliminate a $t^{ \pm 1}$-element from the representation (33) of w. Therefore, we can assume that $u_{n-1} v u_{n-1}^{-1} \in B$ and $\epsilon_{n-1}=-1$. But the subgroup B was malnormal in G and $v \in B \backslash\left\{1_{G}\right\}$, hence $u_{n-1} \in B$. Hence $t^{\epsilon_{n-1}} u_{n-1} t^{\epsilon_{n}} \equiv$ $t^{-1} u_{n-1} t \in A$ which contradicts to our assumption that the right-hand side of (33) is reduced.

The lemma is proved.
Lemma 10.2. ([12, Thm. 3],[10, Cor. 1]) Let G be a hyperbolic group with isomorphic infinite elementary subgroups A and B, and let τ be an isomorphism from A to B. The $H N N$-extension $G_{1}=\langle G, t|$ tat $\left.^{-1}=\tau(a), a \in A\right\rangle$ of G with associated subgroups A and B is hyperbolic if and only if the following two conditions hold:

1) either A or B is a maximal elementary subgroup of G;
2) for all $g \in G$ the subgroup $g A g^{-1} \cap B$ is finite.

Lemma 10.3. ([10, Thm. 4]) Let the HNN-extension $G_{1}=\left\langle G, t \mid t A t^{-1}=B\right\rangle$ be hyperbolic with A quasiconvex in G_{1}. Then G is quasiconvex in G_{1}.

Remark 6. Suppose G_{1} is a hyperbolic group and $H \leq G \leq G_{1}$. If H is quasiconvex in G and G is quasiconvex in G_{1} then H is quasiconvex in G_{1}.

This follows from lemma 3.1 and the observation that an undistorted subgroup of an undistorted subgroup is undistorted in the entire group.

We are now ready to give the
Proof of corollary 3. Consider the free product $F=G * H$. Then F is a non-elementary torsion-free hyperbolic group, G is a G-subgroup of F and H is quasiconvex in F (because it is undistorted). H is non-trivial by the assumptions of the corollary, hence there is an element $y \in H$ of infinite order. Pick any $f \in G \backslash\left\{1_{F}\right\}$ and set $x=f y f^{-1} \in F$. From normal forms of elements of the free product F it follows that H is malnormal in $F, g H g^{-1} \cap G=\left\{1_{F}\right\}$ for any $g \in F$ and the infinite cyclic subgroup of F generated by x has trivial intersection with H. Denote $Q=\langle x\rangle \cup H$ - a quasiconvex subset of F.

By theorems 3 and 1 there exists a non-elementary hyperbolic quotient G_{0} of F and an epimorphism $\psi_{0}: F \rightarrow G_{0}$ with the properties 1) - 9) from the claim of theorem 1. Thus $\psi_{0}(G)=G_{0}, \psi_{0}$ is injective on Q, G_{0} is torsionfree (by the property 7)), $\psi_{0}(H)$ is quasiconvex in $G_{0}, \psi_{0}(x) \in\left(G_{0}\right)^{0}$ and $\psi_{0}(H) \cap\left\langle\psi_{0}(x)\right\rangle=\left\{1_{G_{0}}\right\}$.

Suppose for some non-trivial $z \in G_{0}$ there are non-trivial $a, b \in H$ such that $z \psi_{0}(a) z^{-1}=\psi_{0}(b)$. By property 4$)$ from the claim of theorem 1 , there exists an element $u \in F$ such that $u a u^{-1}=b$. H was malnormal in F, therefore $u \in H$ and $z^{-1} \psi_{0}(u) \psi_{0}(a) \psi_{0}(u)^{-1} z=\psi_{0}(a)$, i.e. $\quad z^{-1} \psi_{0}(u) \in C_{G_{0}}\left(\psi_{0}(a)\right)$. Then, according to property 5), there is $v \in C_{G}(a)$ satisfying $\psi_{0}(v)=z^{-1} \psi_{0}(u)$. Also, by remark $5, v \in H$. Thus, $z=\psi_{0}(u) \psi_{0}(v)^{-1} \in \psi_{0}(H)$, i.e. $\psi_{0}(H)$ is malnormal in G_{0}.

Enumerate all non-trivial elements of the group $G_{0}: g_{1}, g_{2}, \ldots$, and all its two-generated non-elementary subgroups: K_{1}, K_{2}, \ldots..

The group M will be constructed as an inductive limit of groups $G_{i}, i=$ $0,1, \ldots$. Assume, the non-elementary hyperbolic torsion-free quotient G_{i-1} of G_{0} has already been constructed, $i \geq 1$, and it satisfies the following properties: the natural epimorphism $\pi_{i-1}: G_{0} \rightarrow G_{i-1}\left(\pi_{0}=i d_{G_{0}}: G_{0} \rightarrow G_{0}\right)$ is injective on $\psi_{0}(H) \cup\left\langle\psi_{0}(x)\right\rangle$, the image of $\psi_{0}(H)$ is quasiconvex and malnormal in G_{i-1}; images of the elements g_{1}, \ldots, g_{i-1} are conjugate in G_{i-1} to some elements from $\pi_{i-1}\left(\psi_{0}(H)\right)$, and images of the subgroups K_{1}, \ldots, K_{i-1} either coincide with G_{i-1} or are conjugate in G_{i-1} to a subgroup of $\pi_{i-1}\left(\psi_{0}(H)\right)$, or are elementary.

Let us now construct the group G_{i}. Consider the element $\pi_{i-1}\left(g_{i}\right) \in G_{i-1}$. To simplify the notation, identify H and $\pi_{i-1}\left(\psi_{0}(H)\right)$. If $\pi_{i-1}\left(g_{i}\right)$ is conjugate in G_{i-1} to an element from H then set $F_{i}=G_{i-1}$.

If not, then the element $\pi_{i-1}\left(g_{i}\right)$ has infinite order in G_{i-1} and the maximal elementary subgroup $B=E\left(\pi_{i-1}\left(g_{i}\right)\right)$ is infinite cyclic (because G_{i-1} is torsionfree) and malnormal in G_{i-1}. Part (b) of remark 5 implies that $H \cap g B g^{-1}=$ $\left\{1_{G_{i-1}}\right\}$ for any $g \in G_{i-1}$. Denote by $A \leq G_{i-1}$ the infinite cyclic subgroup of H generated by the element y chosen in the beginning of the proof. Then we can construct an HNN-extension

$$
F_{i}=\left\langle G_{i-1}, t \mid t A t^{-1}=B\right\rangle
$$

According to lemmas 10.2 and 10.3 and basic properties of HNN-extensions (see [11, Ch. IV]), F_{i} is a torsion-free non-elementary hyperbolic group and the natural image of G_{i-1} is quasiconvex in it. By lemma 10.1 and remark $6, H$ is malnormal and quasiconvex in F_{i}. Note that the latter implies that $\left|G_{i-1}:\left(G_{i-1} \cap g H g^{-1}\right)\right|=\infty$ for any $g \in F_{i}$ because, otherwise, by part (b) of remark $5, G_{i-1} \leq g H g^{-1}$ and since $H \leq G_{i-1}$ is non-trivial, part (d) of the same remark would claim that $G_{i-1} \leq g \mathrm{Hg}^{-1}=H$. This leads to a contradiction with the fact that $x \in G_{i-1} \backslash H$.

By construction, $\pi_{i-1}\left(g_{i}\right)$ is conjugate to some element of H in F_{i}.
Now consider the subgroup $\pi_{i-1}\left(K_{i}\right) \leq G_{i-1} \leq F_{i}$. If this subgroup is elementary or conjugate to a subgroup of H in F_{i}, then we apply theorems 3 and 1 to obtain a torsion-free non-elementary hyperbolic group G_{i} and an epimorphism $\psi_{i}: F_{i} \rightarrow G_{i}$ such that $\psi_{i}\left(G_{i-1}\right)=G_{i}, \psi_{i}$ is injective on $H \cup\langle x\rangle$, $\psi_{i}(H)$ is quasiconvex and malnormal (as before) in G_{i}. Then $\psi_{i}\left(\pi_{i-1}\left(K_{i}\right)\right) \leq G_{i}$ is either elementary or conjugate to a subgroup of $\psi_{i}(H)$ in G_{i}.

Thus, we can assume that $\pi_{i-1}\left(K_{i}\right)$ is non-elementary and not conjugate
with a subgroup of H in F_{i}. Then, by remark 5 ,

$$
\left|\pi_{i-1}\left(K_{i}\right):\left(\pi_{i-1}\left(K_{i}\right) \cap g H g^{-1}\right)\right|=\infty \quad \text { for any } g \in F_{i}
$$

hence we can use theorems 3 and 1 to get an epimorphism ψ_{i} of F_{i} onto a nonelementary torsion-free hyperbolic group G_{i} satisfying the following conditions: $\psi_{i}\left(\pi_{i-1}\left(K_{i}\right)\right)=G_{i}\left(\right.$ consequently, $\left.\psi_{i}\left(G_{i-1}\right)=G_{i}\right), \psi_{i}$ is injective on $H \cup\langle x\rangle$ and $\psi_{i}(H)$ is quasiconvex and malnormal in G_{i}.

Thus, we have constructed the group G_{i} for every $i=0,1,2, \ldots$.
Set $M=\lim _{\rightarrow}\left(G_{i}, \psi_{i+1}\right)$. It remains to prove that M satisfies the properties required. There is a natural epimorphism $\pi: G_{0} \rightarrow M$. Note that if a word w is trivial in M, then (by the definition of an inductive limit) w is trivial in G_{i} for some i, hence M is torsion-free, π is injective on $H, \pi(x) \neq 1_{M}$ and $\pi(H) \cap\langle\pi(x)\rangle=\left\{1_{M}\right\}$ (we identify H and x with their images in G_{0}). Therefore $\pi(H)$ is a proper subgroup of M and, since the image of H was malnormal in each $G_{i}, \pi(H)$ will be malnormal in M.

Denote $P=\pi(H) \leq M$ and assume that L is a proper non-trivial subgroup of M. Then there exists $a \in L \backslash\left\{1_{M}\right\}$. Suppose that for every $b \in L$ there exists $g_{b} \in M$ such that $g_{b}\langle a, b\rangle g_{b}^{-1} \leq P$. Set $g=g_{1_{M}}$ and pick an arbitrary $b \in L$. Then

$$
a \in g_{b}^{-1} P g_{b} \cap g^{-1} P g \neq\left\{1_{M}\right\}
$$

Therefore, applying remark 5, we get $g_{b}^{-1} P g_{b}=g^{-1} P g$, thus $b \in g^{-1} P g$ for any $b \in L$, hence $g L g^{-1} \leq P$. So, if L is not conjugate to a subgroup of P then there should exist $b \in L$ such that the subgroup $\langle a, b\rangle \leq L$ is not conjugate to any subgroup from P. Choose arbitrary elements $c, d \in G_{0}$ with $\pi(c)=a$, $\pi(d)=b$. Then $\pi(\langle c, d\rangle)=\langle a, b\rangle$ and the image of $\langle c, d\rangle$ in G_{i} is not conjugate to a subgroup of the (corresponding) image of H for all i. Thus, this image is non-elementary (i.e. non-cyclic) in G_{i} for all i (since every cyclic subgroup will eventually be conjugate to some cyclic subgroup from an image of H). Consequently, $\langle c, d\rangle=K_{j}$ for some $j \in \mathbb{N}$ and the homomorphism $\pi_{j}: G_{0} \rightarrow G_{j}$ will be surjective on K_{j}. It follows that $\langle a, b\rangle=\pi(\langle c, d\rangle)=M$ - a contradiction with the condition $L \neq M$. So, we showed that any proper subgroup L of M is conjugate to some subgroup of P.

Finally, if $N \triangleleft M$ and $N \neq M$ then, applying the above, we obtain an element $g \in M$ such that $N=g N g^{-1} \leq P$. But this implies that $N=\left\{1_{M}\right\}$ because P is malnormal. Thus, M is simple.

References

[1] J. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Mihalik, M. Shapiro, H. Short, Notes on word hyperbolic groups. In: Short,H.B., ed. Group Theory from a Geometrical Viewpoint, Proc. ICTP Trieste, World Scientific, Singapore, 1991, pp. 3-63.
[2] P. Bowers, K. Ruane, Fixed points in boundaries of negatively curved groups, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1311-1313.
[3] M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Grundlehren Math. Wissenschaften, Volume 319, Springer, New York, 1999.
[4] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 7-th printing, 1972.
[5] E. Ghys and P. de la Harpe, Sur les Groupes Hyperboliques d'après Michael Gromov, Progress in Mathematics, Vol.83, Birkhauser, 1990.
[6] M. Gromov, Asymptotic invariants of infinite groups, London Math. Soc. Lect. Notes Ser. 1993, V.182, Geometric Group Theory, pp. 1-295.
[7] M. Gromov, Hyperbolic groups, Essays in Group Theory, ed. S.M.Gersten, Math. Sci. Res. Inst. Publ., Vol. 8, Springer, 1987, pp. 75-263.
[8] Z. Grunschlag, Computing angles in hyperbolic groups, Groups, Languages and Geometry, R. Gilman Ed., Contemporary Math. 250 (1999), 59-88.
[9] I. Kapovich, H. Short, Greeenberg's theorem for quasiconvex subgroups of word hyperbolic groups, Can. J. Math., v.48(6), 1996, pp. 1224-1244.
[10] O. Kharlampovich, A. Myasnikov, Hyperbolic groups and free constructions, Trans. Amer. Math. Soc., 350 (1998), no. 2, 571-613.
[11] R. Lyndon and P. Schupp, Combinatorial Group Theory, Springer-Verlag, 1977.
[12] K.V. Mihajlovskii, A.Yu. Ol'shanskii, Some contructions relating to hyperbolic groups, London Math. Soc. Lecture Notes Ser., 252 (1998), pp. 263-290.
[13] A. Minasyan, On products of quasiconvex subgroups in hyperbolic groups, International Journal of Algebra and Computation, Vol. 14, No. 2 (2004), pp. 173-195.
[14] A. Minasyan, Some Properties of Subsets of Hyperbolic groups, Comm. in Algebra 33 (2005), no. 3, pp. 909-935.
[15] A.Yu. Ol'shanskii, Economical embeddings of countable groups, Vestnik Mosk. Univ., Ser. Matem. (1989), N 2, 28-34 (in Russian); English translation in Moscow Univ. Math. Bull. 44 (1989), no. 2, 39-49.
[16] A.Yu. Ol'shanskii, On residualing homomorphisms and G-subgroups of hyperbolic groups, International Journal of Algebra and Computation, Vol. 3 , No. 4 (1993), pp. 365-409.
[17] A.Yu. Ol'shanskii, Periodic Quotients of Hyperbolic Groups, Mat. Zbornik 182 (4), 1991, 543-567.
[18] A.Yu. Ol'shanskii, The SQ-universality of hyperbolic groups, Mat. Sb. 186, No. 8 (1995) 119-132; English Translation: Sb. Math. 186, No. 8, 1199-1211.
[19] E. Swenson, Limit sets in the boundary of negatively curved groups, preprint, 1994.

