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The study of interacting many-element systems is as vital for our understanding of
complex organisms, as it is important for the modelling of disease spreading in pan-
demics, and is a key element in the search for materials with novel properties. The
presence of nonlinearities and interaction time-lags critically influences the dynamics
and complicates control over these systems. Moreover, complexity in network struc-
tures rapidly scales with a larger number of elements and increasing degrees of free-
dom, often making them computationally intractable.

Artificially engineered networks, on the other hand, can be used for the simulation and
study of interacting systems, and pave the way for novel and unconventional com-
puting paradigms. The implementation of these schemes is being explored in various
tields such as electronics, photonics and quantum systems. In particular, lattices of po-
lariton condensates in optical microcavities present a promising platform for the reali-
sation of coupled network structures. Microcavity polaritons are light-weight bosonic
quasi-particles formed by the strong coupling of cavity photons and quantum well ex-
citons. Their hybrid light-matter character facilitates macroscopically accessible quan-
tum degenerate states (condensates) at elevated temperatures. Large optical malleabil-
ity, picosecond-timescale dynamics, and strong intrinsic nonlinearities highlight the
potential of polariton lattices for future technological applications.

The work presented in this PhD thesis investigates the interactions of coupled polari-
ton condensates, and shows substantial advancements in both, the engineering and
the manipulation of optically generated condensate lattices. In particular, the introduc-
tion of a laser feedback scheme for condensate density stabilisation makes it possible
to accurately build macroscopic lattices of tuneable size and network architecture. The
nonlinear dynamics and synchronisation phenomena of coupled condensates are ex-
plored in various coupling topologies, ranging from simply-connected structures to
one- and two-dimensional periodic systems. Shaping of the polariton potential land-
scape by using spatially patterned lasers opens up an all-optical method of controlling
couplings, interaction time-lags, and coherence properties in condensate lattices. The
results and methods presented support the realisation of an ultra-fast delay-coupled

nonlinear oscillator network, with precise control over individual couplings.
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Chapter 1

Introduction

While we have found efficient ways to describe the motion of a pendulum in a gravi-
tational field or the bound state formed between a proton and an electron, the analysis
of real-world structures is often much more complicated as they are formed by many
interacting elements. Such structures with many degrees of freedom are omnipresent
throughout nature and technology and appear on both, macroscopic (classical) and
microscopic (quantum) scales. Their study is therefore, of crucial importance for the
description of solid-state physical systems, our understanding of neurological systems,
the modelling of socio-biological systems, the forecasting of financial markets, and the
managing of power grids. These systems often exhibit nonlinearities and interaction
time-lags, which can lead to chaotic behaviour and further complicate the dynam-
ics [1, 2]. As a matter of fact, an exponential growth of necessary computer resources
with increasing number of elements (as in the case of quantum many-body systems)

can make these systems computationally intractable [3].

Despite their enormous complexity there are however, situations when the dynamical
state of a many-element system is greatly simplified by the emergence of dynamical or-
der [4]. In particular, the build-up of rigid correlations between individual constituents
can lead to the emergence of a collective state, a process that is commonly referred to
as synchronisation. In the simplest case, the dynamics of all elements then becomes
identical and the system is said to be fully synchronised. The phenomenon of synchro-
nisation plays a universal role in nature and science; it describes e.g. the picturesque
setting of firefly populations flashing in unison, and the functioning of a pacemaker
cell to induce a rhythmic heart beat [5].

Besides its wide-spread occurrence in macroscopic classical systems the spontaneous
formation of order can also be found in quantum many-body systems consisting of
identical bosonic particles. In equilibrium systems the transition from incoherence to
coherence is typically controlled by a reduction in temperature and results in the mas-

sive occupation of a single quantum state. The spatial expansion of quantum behaviour
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onto macroscopic scales is a fascinating subject and has attracted much research in
the past century. Prime examples of experiments demonstrating the emergence of
macroscopic order at low temperatures are the superfluid phase transition of liquid
helium [6, 7], the superconducting phase transition of weakly-bound electron pairs [8],
and Bose-Einstein condensation of dilute atomic gases [9, 10].

In the past two decades, exciting directions of macroscopic quantum phenomena un-
der nonequilibrium settings have also been explored in optical microcavities embedded
with quantum wells [11]. Progressed fabrication processes have made it possible to en-
ter the regime of strong coupling between quantum well excitons and cavity photons
in high-quality microcavities [12], and results in the formation of half-light, half-matter
bosonic quasi-particles called polaritons [13]. Owing to their hybrid character, polari-
tons inherit particle properties from both of their constituents. While their excitonic
component facilitates strong nonlinear interactions, their photonic components makes
polaritons extremely light quasi-particles (m ~ 10~°m,) with short radiative lifetimes
T ~ 1 —100 ps. One of their great advantages is that due to their light weight, polari-
tons are expected to have a much higher critical temperature for reaching condensa-
tion than, for instance, atomic gases. Indeed the first demonstrations of a power-driven
bosonic phase transition of microcavity polaritons were realised under optical pump-
ing and at cryogenic temperatures T ~ 10 K [14, 15]. Amongst other things, this phase
transition is described by the spontaneous build-up of coherence and the formation of
a macroscopically populated quantum state; the polariton condensate. Like in the case
of a laser, the finite cavity losses of a polariton condensate results in the emission of
coherent light. The system, therefore often termed polariton laser [16], presents an ex-
citing platform for opto-electronic applications with strong intrinsic nonlinearities [17].
Importantly, polariton condensation has also been demonstrated under electrical injec-
tion [18] and at room-temperature in wide-bandgap semiconductor materials [19, 20]
and organic structures [21, 22], highlighting the prospect of future polariton devices

operating under ambient conditions.

The short radiative lifetime makes polariton condensates an inherent dissipative sys-
tem, that requires continuous (optical or electrical) pumping to replenish particles leak-
ing out of the cavity. These optical losses, however, enable continuous characterisa-
tion of the polariton system (density, momentum, spin, energy, coherence properties)
by means of conventional optical measurements. The ease in generation, manipula-
tion, and optical read-out of polariton condensates is one of the striking advantages in
terms of technical feasibility. In fact, in the past two decades a plethora of fascinating
macroscopic phenomena have been demonstrated in experiments, such as superfluid
behaviour [23], quantised vortices [24], propagating solitons [25], bosonic Josephson
junctions [26, 27], and others [11].

The experimental accessibility of macroscopic quantum phenomena (e.g. in cold atom



systems or semiconductor microcavities) has further led to implementations of inter-
acting particles in artificial lattices structures, and offers possibilities to study quantum
phase transitions and exotic states of matter [28]. As an exciting new direction, the engi-
neering of bosonic many-body systems in controllable potential structures also presents
an experimental platform for the realisation of analogue (quantum) simulators [29, 30].
Hereby, a quantum system with controllable network architecture and interactions can
be realised in order to emulate computationally intractable problems, such as before-

mentioned complex many-body systems.

The structuring of synthetic networks and lattices in polariton condensates is typically
accomplished by lateral patterning of the microcavity structure during fabrication [31,
32] or, alternatively, by using spatially patterned laser beams to dynamically induce
optically formed potentials [33, 34, 35]. Studies on polariton lattices have demon-
strated a diverse range of applications, such as the formation of excited state conden-
sates [31, 36], the realisation of topological lasers [37] and topological insulators [38],
neuro-inspired computing schemes [39], optically-tunable bandstructures [40], and ap-

plications for the simulation of nonlinear oscillator models [41, 42, 43].

This PhD thesis details on the all-optical engineering of polariton condensates in net-
works and lattices. Experimental advancements in design and manipulation of coupled
condensate structures allow the flexible generation of macroscopic lattices, and facili-
tate precise control over the system’s coherence properties. The coupling dynamics
of polariton condensates is tunable via optical patterning of the non-Hermitian poten-
tial landscape, and makes it possible to explore synchronisation and non-stationary
dynamical regimes in structured many-body systems. The results, which are schemat-
ically summarised in Fig. 1.1, demonstrate that optically engineered polariton lattices
have the potential to emulate networks of delay-coupled nonlinear oscillators with con-
trol over individual couplings. The techniques developed present a general toolbox for
the optical sculpting of driven-dissipative lattices, with applications in lattices of po-

lariton and photon condensates, and in laser arrays.

Chapter 2 provides a brief introduction into the vast field of nonlinear dynamical sys-
tems. In particular, the coupling and synchronisation dynamics of general nonlinear
oscillators are described. Effects of frequency detuning and time-delayed coupling are
discussed and shown to play a crucial role in the formation of coherence and dynamical
stability of coupled nonlinear oscillatory systems. The concepts and phenomena intro-
duced in this first part are essential for the discussion of synchronisation phenomena

in polariton lattices presented throughout this thesis.

Next, fundamentals of polaritons and the formation of macroscopic quantum phenom-

ena in semiconductor microcavities are presented in Chapter 3. In detail, the strong
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(a) Delay-coupled condensates (b) Coherent lattices

(1) W, (1)

(1) W,(H)

(c) Control of couplings

FIGURE 1.1: Engineering coherence in networks of coupled polariton condensates.

Advanced optical methods facilitate the generation of (a) polariton condensates with

time-delayed coupling, (b) macroscopically coherent condensate lattices, and (c) all-
optical control over individual couplings via implementation of optical barriers.

coupling regime and hybridisation of photonic and excitonic resonances in microcavi-
ties are introduced, and the power-driven bosonic phase transition of a polariton con-
densate is described. The Chapter further details on characteristics of non-resonantly
excited polariton condensates, and discusses measures for the system’s finite coherence
properties.

Experimental methods for optical excitation and measurement of polariton lattices are
given in Chapter 4. Focus is put on the developed closed-loop feedback technique
for the stabilisation of particle densities across networks and lattices of polariton con-
densates. The method allows to counteract experimental aberrations and facilitates the
generation of flexible geometries with striking homogeneity. Furthermore, methods for
the measurement of temporal and spatial correlations in networks of coupled polariton
condensates are presented.

Chapter 4 details on the properties of a single (ballistically expanding) polariton con-
densate and, subsequently, unravels the coupling and dynamics of two condensates
[see Fig. 1.1(a)]. In particular, spectral features and coherence properties of two con-
densates are studied, and shown to posses universal characteristics of time-delayed
coupled nonlinear oscillators. A delay-coupled oscillator model is introduced and fully



reproduces the experimentally observed dynamical features and synchronisation phe-
nomena of ballistically coupled polariton condensates.

The engineering and in-depth characterisation of macroscopic polariton lattices is then
demonstrated in Chapter 6. Importantly, the applied optical stabilisation of particle
densities [see Fig. 1.1(b)] is shown to significantly increase the spatial coherence prop-
erties in polariton lattices, and results in the formation of near-diffraction limited cavity
emission. Active compensation of system aberrations allows to accurately study the co-
herence properties of coupled condensate structures for varying network architectures.
The study reveals that dimensionality and connectivity critically affect coherence and
power consumption in polariton lattices.

Chapter 7 introduces an experimental method for all-optical control over couplings
in lattices of polariton condensates. The method utilises optical injection of potential
barriers in-between ballistically coupled condensate nodes [see Fig. 1.1(c)] for accurate
control over inter-condensate particle flows. The effect is strong enough to significantly
alter the synchronous phases between two condensates, inducing parity flip transitions,
as well as the emergence of non-stationary periodic states. The system dynamics can
be described by a delay-coupled oscillators model with variable coupling phases. Opti-
cal control over couplings is further demonstrated in larger one- and two-dimensional
lattices, and proofs the scalability and flexibility of the presented technique.






Chapter 2

Coupling And Synchronisation Of
Nonlinear Oscillators

Periodic oscillatory motion of one or multiple interconnected units is an ubiquitous
phenomenon in nature and technology. While the periodic motion of a mechanical
pendulum serves as the timekeeping element in a clock, the periodic and synchronous
firing of neurons determines the neurological functioning of brains [5]. The linear har-
monic oscillator is a universal model for the description of small amplitude oscillators.
In such system’s the amplitude is determined by initial conditions, e.g. the initial spa-
tial displacement of a pendulum, and the oscillation frequency is independent of the
amplitude. In nonlinear systems, however, the amplitude is self-regulating and the
oscillation frequency is generally amplitude-dependent. Examples of nonlinear oscil-
latory systems are electromagnetic fields in laser cavities, superconducting Josephson
junctions and predator-prey cycles [1, 5]. Just as the harmonic oscillator constitutes a
universal model for linear oscillators, the Stuart Landau equation represents a univer-
sal mathematical model to describe weakly nonlinear oscillators close to the onset of
oscillations [44].

The scope of this Chapter is to present the basics and dynamical regimes of coupled
nonlinear oscillators, thus giving the basis for the analysis of coupled exciton-polariton
condensates presented in this thesis. We begin our discussion by introducing the Stuart-
Landau equation describing the state of a single nonlinear oscillator. Next we describe
that, in the regime of weak coupling, two such coupled nonlinear oscillators can be
reduced to a system of coupled phase oscillators. The appearing synchronised and
desynchronised regimes of two coupled oscillators are discussed and effects of time

delayed coupling are presented.
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FIGURE 2.1: A nonlinear Stuart-Landau oscillator. Phase-space diagrams of the Stu-

art Landau equation in the complex plane with (a) negative gain and (b) positive gain.

The ocurring stable limit cycle for the case of positive gain can be described by a non-

vanishing oscillation ampitude r = |z| and an oscillation frequency d¢/dt as shown in

(c) and (d). Simulation parameters: w = 2 sL,o=05s"1,y=1slandA = —1s7!
for (a) and A = +1 s for (b).

2.1 Stuart-Landau Oscillator

In the following, we consider a single nonlinear oscillatory system whose state can
be described by amplitude r and phase ¢, or alternatively in complex notation z =
rexp (i¢). The time-dynamics of this system is goverened by the Stuart-Landau equa-
tion,

2= [Aiw—(c—iy)z|*] z, (2.1)

where the four parameters A, w, o and +y are real-valued. The meaning of these param-

eters becomes evident when rewriting Eq. 2.1 in polar coordinates,

= Ar—or’, (2.2a)
¢ =w+qr’. (2.2b)

While the effective gain A > 0 drives an increase in amplitude 7, the parameter o > 0
leads to a nonlinear gain saturation in the system preventing the amplitude from grow-
ing indefinitely. The parameter 7 causes a nonlinear modification of the system’s oscil-
lation frequency deviating from its natural (small-amplitude) frequency w.

We only consider the case of positive gain saturation ¢ > 0 and determine the system’s
fixed amplitude points # = 0 from Eq. 2.2a. For negative gain, i.e. A < 0, the Stu-
art Landau equation has one stable solution given by the equilibrium point r(*!) = 0.
In Fig. 2.1(a) the system’s phase-space diagram is shown illustrating the attraction of
the origin. However, for A > 0 the origin becomes unstable and instead a stable pe-
riodic orbit with amplitude ! = \/A/c and constant phase oscillation frequency
¢! emerges. Under this latter condition, the dynamical system described in Eq. 2.1
is named Stuart Landau oscillator. Trajectories in phase-space displayed in Fig. 2.1(b)
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show attraction to the stable limit cycle (black circle). All orbits except the one starting
at the origin converge to the limit cycle for t — co. The increase of the limit cycle radius
r(sY) and oscillation frequency ¢*) of the Stuart-Landau oscillator with growing effec-
tive gain A > 0 are illustrated in Fig. 2.1(c) and (d).

Besides its universality for the description of single nonlinear oscillators, the Stuart-
Landau oscillator presents a paradigm to describe coupled nonlinear systems with a
plethora of dynamical effects [45, 46, 47]. Of particular interest for the studies pre-
sented in this thesis is the weak mutual coupling of two or more oscillators leading to

synchronisation of their periodic orbits.

2.2 Definition of Synchronisation

Synchronisation describes the phenomenon of adjustment of oscillatory motion of two
or more oscillators due to their coupling [5]. This effect was already studied in the 17th
century by Christiaan Huygens, the inventor of the pendulum clock, who observed
that two clocks hanging from a common frame tend to swing at the same frequency
yet 180° out of phase [48]. Similarly, synchrony is observed between two metronomes
placed on a moveable base [49] as illustrated in Fig. 2.2(a). In this configuration the
small motion of the base couples the metronomes and, for small intrinsic frequency
differences, causing synchronisation with nearly vanishing phase difference.

When describing two oscillators with intrinsic (uncoupled) frequencies w; and w;, we
call their coupled system synchronised if both oscillators oscillate at the same frequency
due to their coupling, i.e. ¢1 = ¢,. On the other hand, if the two units oscillate at differ-
ent frequencies the system is termed unsynchronised. The tendency for the two oscilla-
tors to synchronise depends on both their frequency detuning w; — w» and their mutual
coupling strength. A larger coupling strength generally enables synchronisation for a
larger range of frequency detunings. When synchronisation between two coupled os-
cillators occurs and their phase difference ¢12 = ¢1 — ¢ remains stable at a definite
preferred value against perturbations we denote the system as phase-locked. Phase-
locking of two oscillators with vanishing phase difference ¢, = 0 is named in-phase
synchronisation and phase-locking with ¢, = 7t is named anti-phase synchronisation.

2.3 Two coupled oscillators

Two symmetrically coupled Stuart Landau oscillators can be described by introducing

a real-valued linear coupling term J,

2 = [M +iwr — (o1 —im) [21]*] 21 + Jz2, (2.3a)
2 = [M +iwy — (2 = im2) |22)"] 22 + J 21 (2.3b)
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FIGURE 2.2: Synchronisation of two weakly coupled phase oscillators. (a) Schematic
of two metronomes weakly coupled through a moveable base. (b) When the frequency
detuning A of the two phase oscillators is too large then no synchronisation is possible.
(c) When the coupling strength |]| is large enough to compensate for the oscillators’
intrinsic detuning synchronisation is possible and the phase difference ¢1,(f) is con-
stant. (d) Lyapunov exponent ¢ for varying detuning A between the phase oscillators.
(e,f) Potential function V (¢1,) (Eq. 2.8) in the (e) desynchronised and (f) synchronised
regime. The system’s descent to lower potential energy is depicted with black arrows.

While this coupled oscillator system features in general complex dynamics [50], the
system’s degrees of freedom can effectively be reduced to phase dynamics in the case of
weak coupling. Hence, we rewrite the coupled oscillator Egs. 2.3 in polar coordinates,

1= Ar1 — 0'11’:1)) + ]7’2 CcoS (4)2 — 4)1), (2.4a)
7o = Aoty — 0’21’% + ]7’1 CcoS (4)1 — 472), (24]:))
. T .
1 = wy +’Y11’%+If sin (¢2 — ¢1), (240¢)
. rr .
P2 = wa + ’)/21’% + ]i sin (471 — 4)2) (2.4d)

Without coupling, ] = 0, each isolated oscillator has a stable limit cycle with constant
amplitude 71, and natural intrinsic frequency @i, = w2 + ’)’1,27’%,2- In the following
we consider the case of weakly coupled oscillators, i.e. small coupling parameter |]| <
A1p. In this case the amplitude of each oscillator is approximately constant and equal
to the oscillation amplitude of an isolated (uncoupled) unit [51], i.e. 112 = \/A12/010.
Hence, when further assuming that both oscillator units have the same amplitude, i.e.
r = r1 = 17, the weakly coupled oscillator system reduces to a system of symmetrically

coupled phase oscillators,

¢1 = @1 + Jsin (¢2 — 1), (2.5a)
$o = @ + Jsin (1 — ¢2). (2.5b)
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In this simplified model we see that while both oscillators try to run independently at
their own intrinsic frequencies @;, their weak coupling depends on the mutual phase
difference and seeks to synchronise the system. The analysis can be readily extended
to systems of N weakly coupled oscillators yielding a network of coupled phase oscil-

lators described by the dynamical equations

N
i =@+ ] Z{sin (¢j—¢i), i=1,..,N. (2.6)

j=
This is the paradigmatic Kuramoto model [52]. It is a universal model that describes dy-
namics and synchronisation phenomena of an ensemble of coupled oscillators with rel-
evance to many fields ranging from physics, social science, chemistry and biology [5, 1].
It is known that the long-term dynamics of any system of weakly coupled limit cy-
cle oscillators can be mapped onto a system of coupled phase equations with the Ku-
ramoto model being the simplest form [53, 54]. In particular, a system comprising near-
identical metronomes placed onto a moveable base exhibits synchronisation dynamics

governed by coupled phase equations [49].

In the following we investigate the synchronised regime of two coupled phase oscil-
lators described by Egs. 2.5. The phase difference ¢12 = ¢ — ¢ between both phase

oscillators evolves according to
¢12 =A-— 2] sin (¢12), (27)

where we have defined the frequency detuning A = @; — @,. It is apparent from
Eq. 2.7 that synchronisation, i.e. equally evolving phases with ¢, = 0, is only possible
for small detuning |A| < 2|J|. The stable values of the phase difference ¢, can be
obtained by noting that Eq. 2.7 has the form of a gradient system, ¢1o = —9V /d¢1,

with real valued function V

V(¢12) = —A¢12 — 2] cos (¢12). (2.8)

The function V is also called potential function because the state of the system ¢y ()
only evolves towards smaller values of V, thus dissipating potential energy, as can be
seen by the time derivative

2

<0. (2.9)

V(¢2) _ 9V(¢12) 9p12 _ | 9¢12
ot 9P ot ot

Stable equilibrium points ¢§g) of the weakly coupled oscillator system described in

Eq. 2.7 with |A| < 2|]| are thus given by the minima of the potential function V and are
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located at A
arcsin () € <—E,E) , if ] >0,
0) 2] 2°2
¢y = (2.10)
rcsin A +m1T € T 3 if ] <0
arcs 2] ) .

The frequency synchronised units oscillate at the average of their intrinsic frequencies
$1 = ¢» = (@1 + @2)/2. For identical phase oscillators, i.e. A = 0, the two possible
synchronised configurations are characterised by a vanishing phase difference ¢, =
0 (in-phase synchronisation) for attractive coupling | > 0 and ¢, = 7 (anti-phase
synchronisation) for repulsive coupling | < 0, respectively.

A deeper insight into the stability of the frequency synchronised solutions is obtained
by assuming small deviations from the equilibrium points, i.e. ¢12(t) = gbgg) + (1),
and linearising the dynamical Eq. 2.7 around these points,

0%V

R 2.11)
12

7=
The solution of this ordinary differential equation is an exponential function exp (—¢t),
where the exponent is given by & = \/4J2 — A2. The sign of the real part of the in-
troduced parameter ¢ - often denoted as Lyapunov exponent - determines whether a
small perturbation #(t) is growing or shrinking in time. Therefore, stability of the so-
lution ¢ = cp%g) is dependent on a positive value of (&) facilitating fast relaxation
of perturbations such as noise in the system. In Fig.2.2(d) we show the real-valued
Lyapunov exponent ¢ as a function of frequency detuning A describing the stability of
the synchronised states. We can see that largest stability (Lyapunov exponent) of the
coupled phase oscillator system is obtained for vanishing detuning A = 0 and stabil-
ity monotonically decreases with increasing detuning |A| until the equilibrium point
destabilises at |A| = 2|J|. For even larger detunings |A| > 2|]J| the coupled oscillator
system is desynchronised.

2.4 Delay-coupled oscillators

Often interactions between coupled nonlinear oscillators are subject to finite signal
propagation times [55]. Examples are the dendritic and axonal coupling delays in neu-
ronal systems such as in our brain or the inter-cavity coupling of two spatially sep-
arated laser cavities. When the relevant coupling time delay T exceeds the system’s
characteristic time scale, such as an oscillator’s intrinsic oscillation period T, the dy-
namical complexity of the system can be greatly increased due to an effectively infinite

dimensional state space [56]. The presence of delay in coupled nonlinear systems can
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FIGURE 2.3: Delay-coupled oscillators. (a) Schematic of two oscillators with time-
delayed coupling due to finite signal transfer speed. (b) Stability diagram of two iden-
tical delay-coupled phase oscillators (Eqgs. 2.12) with eigenfrequencies @ = 1 s~ ! in the
parameter space of coupling strength | and delay 7. (c) Frequencies () of the synchro-
nised oscillators with increasing delay T and fixed coupling strength J. (d) Frequencies
Q) of the synchronised oscillators with increasing delay T and exponentially decaying
coupling strength . In-phase and anti-phase synchronisation states are illustrated as
red and blue coloured curves, respectively. Blue, red, and grey shaded areas indicate
in-phase monostability, anti-phase monostability, and multistability, respectively. The
parameter trajectories for (c) and (d) are illustrated in (b) as black dashed lines.

lead to a plethora of dynamical effects such as amplitude death [57], phase-flip bifur-
cations [58], chimera states [59] and both stabilisation and destabilisation of periodic
orbits [2].

In the following we consider the case of two delay-coupled phase oscillators such as
schematically illustrated in Fig.2.3(a). By introducing a time delay 7 into the coupled
oscillator Egs. 2.5 the equations of motion for the two phases ¢; » can be written as

$1(t) = @+ Jsin (¢2(t — T) — P1(t)), (2.12a)
Pa(t) = @+ Jsin (p1(t — T) — ¢a2(t)), (2.12b)

where we have assumed identical eigenfrequencies @ for both oscillators. Synchro-
nised and phase-locked states of the delay-coupled Kuramoto oscillators in Egs. 2.12
can be obtained numerically as detailed for example in Ref. [60]. In contrast to the
solutions of the instantaneously coupled oscillators described by Egs. 2.10, due to the
delayed coupling there can be more than one stable synchronisation frequency () =
¢$1 = ¢ with both in-phase and anti-phase synchronisation configurations. We note
that, also in the presence of a delay, in-phase and anti-phase synchronisation refers to
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stable equal-time phase differences, i.e. ¢1(t) — ¢2(t) = 0, 7w respectively. The stabil-
ity regions for the mutually delay-coupled oscillator system are shown in Fig. 2.3(b)
where blue (red) regions denote configurations with only monostable in-phase (anti-
phase) phase-locked solution. Grey regions indicate multistability, i.e. more than one
stable phase-locked state exist for the coupled oscillator system. It is apparent that the
size of single-solution (monostable) regions is decaying with increasing time-delay, in-
dicating the tendency of delay to enhance the system’s dynamic complexity and, in this
case, increasing the number of simultaneously stable solutions. A natural question one
might ask is - despite the ubiquity of delay in interactions between coupled elements
- at what point does a coupling delay effect the system’s dynamics and needs to be
considered in order to accurately model the system. While for small coupling delays
T < T = 27t/ @ there is no significant change in system dynamics and stability of the
in-phase state compared to zero delay, the increase of delay T exceeding the oscillators’
intrinsic period T = 27r/@ can lead to destabilisation of the initial in-phase state and

stabilisation of an anti-phase state despite a positive coupling parameter | > 0.

In Fig. 2.3(c) we show the frequency solutions (2 for increasing coupling delay T while
keeping the coupling constant | constant (see black dashed line in Fig. 2.3(b)). The
periodically alternating branches of in-phase and anti-phase synchronisation states are
limited in the frequency range @ =+ | and with increasing time-delay the monostable
regions disappear, i.e. the system always features multistability. In a typical physical
realisation the increase of time-delay T between two coupled elements can be imple-
mented by increasing their physical separation distance, however, such a modification
often also reduces the coupling strength | due to a spatially decaying coupling sig-
nal. Assuming a coupling constant | that is exponentially decaying with increasing
coupling delay 7 (see black dashed curve in Fig. 2.3(b)) the resulting synchronisation
frequencies () are shown in Fig. 2.3(d). We notice the exponentially decaying frequency
range (size) of the branches with increasing delay 7 and the enhancement of monosta-
bility even at larger delays due to the decaying coupling parameter. The transition from
monostable in-phase to monostable anti-phase synchronisation configuration is always
interleaved with a region of bistability, i.e. a region in which both phase-locked states

are stable attractors.

2.5 Correlation function and mutual coherence between oscil-

lators

When investigating synchronisation in systems of coupled oscillatory elements it is
important to define how to quantify the synchronised state. While the definitions of
synchronisation and phase-locking of two oscillators given in Section 2.2 present sim-

ple mathematical relations, any realistic system features finite correlation times and
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deviations from a perfectly synchronised and phase-locked state e.g. due to noise. A
measure for mutual coherence between two oscillators with complex-valued state func-
tions z;(t) and z;(t) can be defined by their normalised (first-order) correlation function

< (t+1)z(t >t

gij(17) = /
RNV EOEREOR)

where (...), denotes a time average and 7 refers to a time-difference between the two

(2.13)

oscillator functions at which the average is calculated. The correlation function is a
complex quantity from which we denote its modulus at zero time |g;;(7 = 0)| < 1 as
the mutual coherence between z; and z;. For a fully-coherent (or synchronised) system
of two oscillators their mutual coherence |g;;(0)| = 1, while for an incoherent (unsyn-
chronised) system the correlation function vanishes, g;;(0) = 0. The special cases of
in-phase and anti-phase synchronisation yield g;;(0) = 1and &;;(0) = —1, respectively.
For a partially coherent system, i.e. 0 < |g;;(0)| < 1, the argument arg (g;;(0)) is a
measure for the average phase difference between the two oscillators.

The synchronisation phenomena of coupled oscillators presented in this section are of
relevance for the discussion of coupled polariton condensates throughout this thesis.
While in the context presented in this section we refer to general nonlinear coupled os-
cillators, the functions z;(t) and z;(t) in Eq. 2.13 can also represent the complex-valued
mode amplitudes of two polariton condensates, such that g;;(77) describes the first-
order complex degree of coherence between the two condensates. The rich dynamical
regimes and phase-flip transitions presented for delay-coupled phase oscillators ap-
pear in our investigation of ballistically coupled polariton condensates in Chapter 5.
Furthermore, the presented influence of homogeneity between interacting oscillators
(such as their intrinsic frequencies) onto both phase-locking and stability is of impor-
tance for our study of coherence in larger arrays of coupled polariton condensates in
Chapter 6.
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Chapter 3

The Physics Of Semiconductor

Microcavities

Microcavities are optical resonator structures with confinement sizes comparable to
the wavelength of light. Embedding of resonant absorbers in semiconductor micro-
cavities, such as quantum well (QW) excitons, facilitates light-matter coupling for op-
toelectronic applications, e.g. in the form of photodetectors or vertical-cavity surface-
emitting lasers (VCSELs). In the case of strong coupling between cavity photons and
QW excitons, new mixed light-matter quasi-particles called exciton-polaritons are formed.
These hybrid quasi-particles inherit characteristics of both their light and matter con-
stituents, e.g. light effective masses and strong nonlinearities. As composite bosons
exciton-polaritons can undergo a power-driven phase transition into a macroscopically
coherent state, a so-called polariton condensate. In this Chapter we present the funda-
mentals of strong coupling in planar semiconductor microcavities, describe the conden-
sation process of exciton-polaritons, and detail on the coherence properties of polariton
condensates.

3.1 Light-matter coupling in microcavities

Depending on technological application and building material there have been devel-
oped various geometries of microresonators, such as micropillar cavities, microtoroid
resonators and photonic crystal cavities [61]. The most common microcavity, however,
is the planar cavity comprising two parallel flat mirrors. Typically, the mirrors of these
Fabry-Perrot-type cavities are either formed by highly reflective metallic surfaces, or by
distributed Bragg reflectors (DBRs), i.e. periodically patterned two-dimensional dielet-
ric or semiconductor layers of alternating refractive index. While in the former case the
cavity modal field vanishes almost completely at the metallic surface, in the latter case

the electric field has a substantial penetration depth into the Bragg mirror.
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FIGURE 3.1: Periodically patterned two-dimensional layers for use as a dielectric
mirror. (a) Schematic of the DBR structure with refractive index profile shown in (b).
(c) Reflectivity spectrum for light under normal incidence onto the structure.

3.1.1 Distributed Bragg reflectors

Of importance for the design of microcavities is that the reflectivity properties of DBR
structures can be tailored by changing the number of mirror stacks or the refractive in-
dex difference between the periodically alternating materials. A schematic DBR struc-
ture is illustrated in Fig. 3.1 (a) containing 10 pairs of alternating layers (shown in red
and blue colour). An incoming electromagnetic wave will generally be partially re-
flected and partially be transmitted through the structure. The amount of reflected and
transmitted energy depends on various parameters such as the signal’s frequency w
and polarisation, the DBR’s composition and size, and the angle of incidence [13]. The
DBR’s periodically alternating refractive index profile along its longitudinal (growth)
axis is depicted in in Fig. 3.1(b). Each of the layers has a thickness d; that equals a
quarter wavelength, i.e. d; = A¢/4n; with i = 1,2. The wavelength Ay corresponds to
the frequency wy = 27tc/ Ao for which the DBR structure is designed, and 1, are the
refractive indices of the DBR composite materials, respectively. The successive pattern-
ing of layers with thickness of a quarter wavelength yields constructive interference of
reflected beams from each layer-to-layer interface, and causes a large reflectivity at the
design frequency wy. The resulting reflectivity spectrum contains a photonic stopband
centred around wy as shown in Fig. 3.1 (c). The DBR stopband width Q)gp is determined
by the refractive index composition [13, Chapter 2],

8c|ny — ny

Qop ~ S~ 2]
SB /\0(711 —|—1’12)

(3.1)

and increases with larger contrast between the two refractive indices n; and n5.
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FIGURE 3.2: Photonic cavity formed by parallel alignment of two DBR mirrors. (a)

Schematic of the microcavity structure with refractive index profile shown in (b). The

cavity mode with frequency wy placed within the DBR stopband results in a dip in the
reflectivity spectrum depicted in (c).

3.1.2 Confinement of photons in a planar cavity

Starting with the Bragg reflector illustrated in Fig. 3.1 a planar microcavity can be
formed by adding an additional layer into the center of the structure as schematically
shown in Fig. 3.2(a). Thickness and refractive index of this ‘cavity layer” are labelled as
d. and n., respectively. This layer can be seen as a “defect” inside a periodically pat-
terned structure giving rise to new (confined) photonic modes. Under the assumption
of normal incidence, negligible absorptivity and high reflectivity of the DBR structure
the resonance condition for the confined longitudinal Fabry-Pérot modes can be written
as

w; = j%, j e N*. (3.2)

The free spectral range (FSR) Aw, i.e. the equidistant frequency spacing between the
longitudinal cavity modes, is inversely proportional to the cavity thickness d. and given

as

7TC
Aw = — (3.3)

For sufficiently thin resonators, such as microcavities, the FSR Aw is often much larger
than the DBR’s stopband width ()gg. In that case, only one longitudinal mode can be
present within the photonic stopband.

A schematic of the reflectivity spectrum of a photonic microcavity under normal in-
cidence is shown in Fig. 3.2(c). The cavity mode with frequency w, gives rise to a
dip in the reflectivity spectrum and is associated with resonant tunnelling of photons
through the structure. For the photonic cavity presented in Fig. 3.2 the cavity reso-
nance frequency w, is located in the center of the reflectivity stop band. This symmet-
ric condition is realised when the cavity thickness d. is chosen to be a multiple of a
half-wavelength, i.e. d. = jAg/2n,.
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The spectral broadening of the resonant mode shown in Fig. 3.2(c) is caused by radia-
tive losses due to the finite mirror reflectivity. It can be associated with the lifetime 7. of
photons inside the cavity, i.e. there is a finite probability of photons to tunnel through
the mirrors into the continuum. In any realistic system the cavity resonance is further
broadened by additional absorption or scattering channels, e.g. due to defects. A res-
onator with resonance frequency w; and spectral full width at half maximum (FWHM)
dwj is characterised by its quality factor Q,
Q=1 64
N 5w] '
It is a measure for the ratio between the amount of energy that is stored in the cavity
and the amount of energy that is lost in each oscillation cycle. The energy loss is linked

to the cavity photon lifetime 7,
T = —. 3.5
= (35)
Taking into account the system’s lateral translational invariance, each cavity mode is
described by a wavevector k, that is quantized in longitudinal (z) direction but shows
continuous dispersion in transverse (x and y) directions. Denoting the lateral wavevec-
tor as k|, the cavity in-plane dispersion can be approximated as parabolic for small
angles of incidence,

(3.6)

Here, we have introduced the cavity photon effective mass m, = hwjn2/c* (see e.g.
Ref. [62, Chapter 9]). In comparison to electronic systems, the effective photon mass
in microcavities is very light and typically in the order of 10~°m,, where m, is the free

electron mass.

3.1.3 Excitons in quantum wells

Excitons in crystalline solids are electrically neutral compound particles formed by
Coulomb attraction between electrons and holes. An exciton is an elementary exci-
tation of a bulk semiconductor, and created when exciting an electron from the valence
band to the conduction band, e.g. by optical excitation. Due to its similarity to a bound
electron-proton pair, the particle wavefunction and energy spectra of excitons have
similar structure to the hydrogen atom [62, Chapter 9]. For a bulk semiconductor with
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bandgap energy E,, free excitons have the energy dispersion relation

272
E}*P(k) = E, — % + thIL( nelNT. (3.7)
Here, the exciton translational mass My = m; + m; is given as the sum of effective
electron and holes masses m; and m; of the crystalline solid. The exciton Rydberg
energy Ro defines the scale of the binding energy and, therefore, is a measure for the
thermal stability of the quasi particle. It is dependant on material properties such as
the permittivity € and reads as
Ry = ﬂ. (3.8)
(877)2€2h?
The introduced exciton effective mass mx = mjm;,/(m} 4+ m} ) represents the reduced
mass of electron and holes masses. Due to their larger effective mass myx and smaller
permittivity €, wide-bandgap semiconductors such as ZnO (Ry ~ 62 meV) or GaN
(Ro =~ 26 meV) typically have a larger Rydberg energy than, for instance, GaAs (Ro ~
4.2 meV) [62, Chapter 9]. Importantly, this means that excitons in wide-bandgap semi-
conductors can be stable at room-temperature (kpT ~ 25 meV).

A QW is a thin (few nanometers) layer of semiconductor material embedded in be-
tween two materials with different conduction band and valence band energies repre-
senting an effective potential well structure for electrons and holes. The longitudinal
confinement of electrons and holes within the QW causes an additional exciton con-
finement energy term Ec, and leads to the 2D exciton dispersion relation,

Ro k3

X,2D _ I +
EX?P (k) = Eg + Ec — 1727 3y neN*. (3.9)

It is important to note, that in comparison with the bulk energy spectrum [Eq. 3.7],
excitons in QWs have a ground state binding energy (n = 1) that is larger by a factor
of 4. Moreover, the increased spatial overlap of electron and hole wavefunctions in
confined systems yields a larger exciton oscillator strength f in QWs than in bulk [62,
Chapter 9]. The oscillator strength is a dimensionless quantity describing the effective
coupling between light and the optically active exciton mode, i.e. the probabilities of
absorption and emission of photons. Therefore, low-dimensional structures such as
QWs are preferred systems for studying excitonic phenomena with enhanced optical
transitions and at elevated temperatures .

The commutator of exciton creation and annihilation field operators X™ and X in 2D

systems satisfies [13, Chapter 5]

<[X+, X]> ~1— O(nxa). (3.10)
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Here, we have introduced the exciton density nx and excitonic Bohr radius ag. Under
the assumption of low particle densities nx < a3, excitons can be treated as (weakly
interacting) Bosons. For larger densities, however, the density-dependent correction
term destroys their bosonic character. The critical density nxap ~ 1 is also referred to
as the Mott density. Beyond the exciton Mott transition nxa% > 1 the large particle

interaction terms causes ionization of excitons into an unbound electron-hole plasma.

3.1.4 Strong coupling and exciton-polaritons

Optoelectronic applications and devices rely on light-matter interactions enabling an
interplay of photonic and electronic modes inside the system material. For the pre-
sented planar cavity [Section 3.1.2], one can implement an active medium in the form
of a semiconductor QW structure [Section 3.1.3] inside the cavity layer, which gives
rise to optically active and confined excitonic modes. A schematic of the microcav-
ity structure containing coupled photon and exciton modes is depicted in Figs. 3.3(a)
and (b). The coupling strength of cavity photons and QW excitons is characterised by
their interaction energy 7Q)r, where the Rabi frequency () describes the rate at which
energy is exchanged between photon and exciton mode. The microcavity reflectivity
spectrum of strongly coupled exciton and photon modes under normal incidence is
shown in Fig. 3.3(c). Here, the degeneracy of bare cavity and QW exciton mode ener-
gies is lifted, and two new resonances split by the Rabi frequency Qg appear. These
resonances resemble the system’s hybridised exciton-polariton modes. The apparent
energy repulsion of two coupled resonances can be described in terms of two linearly-
coupled harmonic oscillators as described in the following.

The coupled exciton-photon Hamiltonian H can be expressed as [13, Chapter 5]

e

— t t R t +

H= kz Ec(k))C} Ciq, + kz Ex (k) Xf, X, + kz [Cku X +Co Xt | G1D)
I I I

Here, cavity mode and QW exciton mode energy dispersion relations are denoted as
Ec (k) and Ex (k) with details given in Egs. 3.6 and 3.9. The first two terms in Eq. 3.11
represent the bare cavity and bare exciton energies with photon and exciton field oper-
ators Ci, and Xj, respectively. The third term describes exciton-photon interactions,
represented by absorption and emission cycles at frequency Q.

Because there is no mixing of inplane wavevectors k| present in Eq. 3.11, the Hamilto-
nian H can be split into the sum, H = Zku Hk”, where each term Hk” can be written in

matrix notation,

. (3.12)

- [Ec(k|) hQR /2
I

hOr/2 Ex(kj)
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FIGURE 3.3: Strong coupling of photon and QW exciton modes. (a) Schematic of the
microcavity structure with refractive index profile shown in (b). (c) Reflectivity spec-
trum for normal incidence. Strong coupling of photon mode and excitonic mode result
in the formation of two polaritonic resonances, which are split by the Rabi frequency.

Diagonalisation of the Hamiltonian Hy then yields the lower polariton branch (LP)
and upper polariton branch (UP) eigenstates

[LPy;) = cx; [Ci) — X1 [Xi) s (3.13a)
[UPk,) = X, [Ciy) + iy [ X)) - (3.13b)

The mixing coefficients ¢ and xy denote the so-called Hopfield coefficients. Their
squared norms, |cy, |? and | Xk |?, represent the fraction of photonic and excitonic com-
ponent for each polariton branch, respectively. Furthermore, the polariton resonances

are characterised by the coupled-mode dispersion relations

EUP,LP(kH) = % Ec(k”) + EX(kH) + \/[EC(kH) - Ex(k”)]z + hZQ%{ (3.14)
While the uncoupled bare exciton and cavity modes might be in resonance at some in-
plane wavevector k|, i.e. Ec(k|) = Ex(k|), their coupling leads to repulsion and the
formation of two energy levels split by the Rabi energy 71Q)g. The spectral repulsion and
hybridisation of exciton and cavity modes are schematically illustrated in Fig. 3.4(a).
One can notice that the bare exciton energy branch Ex (k) seems dispersionless be-

cause of the heavy effective mass of excitons compared to cavity photons.
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FIGURE 3.4: Exciton-polariton energy branches in microcavities. (a) Hybridisation

of bare QW exciton (X) and cavity photon (C) mode into upper polariton (UP) and

lower polariton (LP) modes. (b-d) Energy dispersion relations and (e-g) calculated LP

Hopfield coefficients for (b,e) negative detuning, (c,f) vanishing detuning, and (d,g)
positive detuning.

The photonic and excitonic fractions of the polariton modes are given as

o = Eup (k) Ex (k) — Evp (k) Ec(k)) , (3.152)
[Ec(k)) + Ex(k))] \/[Ec(kn) — Ex(k))]* + H20%

i [ = Eup(kj)Ec(kj) — Erp(k))Ex (k) . (3.15b)
[Ec(i) + Ex(ky)] 3/ [Ec(l) — Ex(le)]* + 7204

(3.15¢)

Polaritons are hybrid quasi-particles formed by the coherent superposition of bare
bosonic cavity and exciton mode with mixing parameters described by Egs. 3.13 and 3.15.

In typical realisations, cavity photons are characterised by a small effective mass m; ~
10~°m, and a short lifetime 7. ~ 1 — 100 ps, while semiconductor excitons such as

in GaAs have a larger effective mass my ~ 0.2m, and longer radiative lifetime 7x ~
0.1 — 1 ns. Importantly, the particle properties of exciton-polaritons in microcavities
can be tuned by variation of their respective Hopfield coefficients. For this purpose,
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microcavities are often fabricated with a shallow gradient of the cavity layer thick-
ness, allowing for experimental access to different exciton-photon detuning parameters
A = Ec(0) — Ex(0) and, therefore, experimental control over the polariton Hopfield co-
efficients.

Calculated energy dispersion relations and Hopfield coefficients for varying detuning
parameters A < 0, A = 0, and A > 0 are illustrated in Figs. 3.4(b-d) and Figs. 3.4(e-
f), respectively. All graphs are plotted versus the cavity polariton emission angle 6 =
sin~? (k| /k). Regardless of the detuning parameter, for large emission angles the up-
per (lower) polariton branch is asymptotic to the bare cavity (exciton) mode, which is
expressed by its Hopfield coefficient |x|> — 1. At small emission angles, however, a
change in detuning parameter A can have a strong influence on the polariton prop-
erties. Experimental results presented in this thesis are obtained using a negatively
detuned microcavity [presented in Chapter 4.1]. For negative detunings, the LP parti-
cles with small in-plane wavevector k| = 0 have a large photonic component, while LP

particle at large wavevectors are dominantly excitonic.

It is worth noting that embedding of multiple QWs within the microcavity, typically at
the anti-nodes of the cavity electric field distribution, helps to increase the Rabi split-
ting Qg and decreases the exciton density per QW. This, in turn, improves stability of

cavity polaritons and lowers the particle density to avoid the critical Mott density.

Next, it should be noted that the energy level repulsion described in Eq. 3.14 occurs,
however weak the interaction term 7Q)g is. In any physical realisation, though there
will always be a finite linewidth-broadening dissipation term present for both, cavity
mode and exciton mode described by the terms <, and yx. Strong coupling, i.e. the co-
herent superposition of exciton and photon mode as in Egs. 3.13, can then only occur,
when the coupling term is larger than any dephasing mechanism. In other words, the
coupled-mode frequency splitting (Or should be larger than the bare mode linewidths,
ie. Qr > 9., 7x. In the strong coupling regime the energy transfer rate (2 between
bare cavity and exciton modes is larger than the particle loss rates. In quantum me-
chanics a system described by a Hamiltonian with large off-diagonal coupling terms
cannot be treated using perturbation theory, but rather has to be diagonalised to accu-
rately capture the system dynamics. The polariton modes are then the new eigenstates
of the system. When the energy transfer rate is slower than the respective exciton and
photon decay rates, Qr < ¢, vx, the system is said to be weakly coupled. A micro-
cavity operating in the weak coupling regime can represent a VCSEL, and the system

dynamics can be treated using perturbative methods.
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3.2 Condensation of exciton-polaritons in microcavities

Microcavity polaritons are bosonic quasi particles and, as such, can exhibit bosonic
phase transitions, e.g. the emerging macroscopic occupation of a single-particle quan-
tum state. Such macroscopic quantum phenomena have attracted many different areas
in physics and chemistry due to their bridge between quantum mechanical wave dy-
namics, and experimental accessibility on a macroscopic scale. Well-known examples
of bosonic phase transitions with the emergence of a macroscopically coherent state
range from Bose-Einstein condensation (BEC) of ultra cold atomic gases [9, 10], the su-
perfluid phase transition of liquid helium [6, 7], the superconducting transition of solid
mercury at cryogenic temperatures [63], and the non-equilibrium phase transition of
photons in a laser. General criteria of a bosonic condensate, whether in thermal equi-
librium or not, were outlined by Penrose and Onsager [64], and Yang [65], and are

summarised in the following section.

3.2.1 Definition and characteristics of a condensate

A general many-body system with fixed particle number N is captured by its density
operator p(t), and can be written as the statistical mixture of pure states |¥;(f)) with
weights ps(t), i.e.

p(t) = ;Ps(f) [¥s(£)) (Ys(D)]. (3.16)

For description of the system’s first-order spatial correlation properties we are reducing
the analysis to the so-called ‘one-particle reduced density matrix” p1(x, X, t), which is
defined as

p1(x, %, t) = (¥ (x, ) ¥ (X, 1)) . (3.17)

Here, operators ¥* and ¥ represent particle creation and annihilation field operators
and (...) denotes the expectation value in the mixed state. When projecting the opera-
tors in Eq. 3.17 onto spatial coordinates, the reduced density matrix becomes apparent

as the partial trace of p over N — 1 particle coordinates [66];
p1(x, X, t) = NZps(t) /‘I’:(x, x2..., XN, 1) ¥s (X', x2..., Xy, t)dxo...dX . (3.18)
S

The mathematical presentation in Eq. 3.18 implies the physical meaning of the one-
particle reduced density matrix as the product of probability amplitudes to find a par-
ticle at positions x and x/, averaged over the distribution functions of all other N — 1
particles.

Since the reduced density matrix p;(x,x/, t) is Hermitian, it can further be written in
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diagonal form, i.e. it can be decomposed into a complete and orthonormal set of single-
particle wavefunctions ¢;(x, t),

(x, %, t) Zn Y (x, )i (X, 1). (3.19)

The eigenvalues n; describe the populations of each single-particle quantum state ;,
respectively, and the total particle density n(x, t) is given by the trace (sum of diagonal

elements),

Zn Mi(x,t)] (3.20)

Macroscopic population of a specific single-particle state 1;, i.e. the existence of a con-
densate fraction within the many-body system, then means that the population ratio
n;/ N of this state is of order unity [64],

ni/N = O(1) +» condensed state ;. (3.21)

Description of the condensed state is given by the condensate wave function ¥(x, t)

=1/ ni(t)gbi(x, f). (322)

The macroscopically populated wave function ¥(x,t) is also called the condensate

and defined as

order parameter. This order parameter is a measure for the system’s bosonic phase
transition, that vanishes in one phase [¥(x,t)|> = 0, but has non-vanishing value
|¥(x,t)|*> > 0 in the other phase. The phase transition is further characterised by a
spontaneous symmetry breaking of the system'’s continuous global U(1) gauge sym-
metry; in every realisation the condensate is formed with a random but specific global
phase. Examples of control parameters for phase transitions in a many-body system are
the temperature T in case of a dilute atomic gas, or the pump power P in case of driven-
dissipative systems such as lasers or polariton condensates. The BEC phase transition

of an ideal gas is schematically illustrated in Fig. 3.5(a).

Experimentally it can be difficult to provide sufficient evidence of a condensed state by
investigating the diagonal elements of the one-particle density matrix p;(x, x, t) only,
e.g. in form of particle density measurements [Eq. 3.20]. However, an equivalent and
generally accepted defining characteristic of a condensed state was given by Penrose
and Onsager [64] and Yang [65], and focuses on the off-diagonal terms of the reduced
density matrix instead. The existence of a condensed state is then related to the pres-
ence of off-diagonal long-range order (ODLRO), i.e.

p1(x, X, t) ——— ¥* (X, ) ¥ (x, 1), (3.23)

[x—x'|—00

which for an infinite system would be non-vanishing even in the limit [x — x'| — co.
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FIGURE 3.5: Bose-Einstein condensation of an ideal gas. (a) Emergence and growth
of the condensate population ny with decreasing temperature T. (b-d) Illustration of
the formation of coherence with decreasing temperature. Uncondensed wavepackets
with spatial extension given by the thermal de Broglie wavelength Ay, are shown in
red, and the emerging macroscopically coherent state (condensate) is shown in blue.

In case of a three-dimensional ideal (thermalised) Bose gas above the phase transition
temperature (T > T.) the decay of correlations is dominated by thermal fluctuations.
In particular, the characteristic length scale of spatial correlations is determined by the
thermal de Broglie wavelength Ay,,

27h?
An(T) =4/ kT’ (3.24)

and the reduced density matrix (correlation function) decays approximately as p(x,0) ~
exp (—mtx? /A% ) [67, 68]. Thus, in a simplified picture, the thermalised bosonic parti-
cles can be seen as quantum mechanical Gaussian wavepackets with spatial extension
given by the thermal de Broglie wavelength Ay, [see Fig. 3.5(b)]. Cooling of the Bose gas
leads to an increase of the correlation length up to the point where Ay, becomes com-
parable to the mean particle separation distance d. At this point, particle wavepackets
start overlapping and their phases become correlated [see Fig. 3.5(c)]; the gas under-
goes a BEC phase transition [69]. More rigorous calculation of the critical temperature

T. for a three-dimensional ideal Bose gas leads to the condition
An(Te)/d ~ 1.38 (3.25)

One can notice, that the critical temperature T, scales inversely with the particle mass m.
In principle, this means that the BEC phase transition can occur at higher temperatures
T for lighter particles such as excitons or polaritons as compared to atoms. Below the
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FIGURE 3.6: Condensation of polaritons under non-resonant optical excitation.

critical temperature (T < T;) a macroscopically populated quantum state has emerged
[see Fig. 3.5(d)] and the correlation function p; has established ODLRO [Eq. 3.23].

Experimental access to (off-diagonal) spatial correlations is provided, e.g. by momentum-
space (‘time-of-flight” expansion) measurements in ultra cold atom experiments [70],
or by interferometric measurements in polariton systems as described in Sections 3.3
and 4.4.4. The spontaneous build-up of long-range spatial coherence (or ODLRO) is
then a defining feature of the condensation threshold.

3.2.2 Build-up of spontaneous coherence in semiconductor microcavities

In contrast to the conserved particle numbers found in ultracold atom experiments, co-
herent phenomena of exciton-polaritons are subject to an interplay of gain and (mainly
radiative) losses. In a typical polariton condensate experiment gain is provided either
by optical or electrical injection of carriers. While a coherent population of polaritons
can in principle be injected resonantly via an external pump laser, it is only via non-
resonant pumping that a phase transition with the spontaneous formation of coher-
ence can be studied. The first demonstrations of spontaneous coherence formation in
the LP states under non-resonant optical excitation were conducted on GaAs [14, 71,
72], CdTe [15, 73] and GaN [19, 20] microcavities. Hereby, the excitation laser wave-
length is typically blue-detuned towards the first reflection minimum of the DBR stop-
band, ensuring efficient optical excitation of free carriers that are energetically located
~ 100 meV above the LP ground state. Any subsequently appearing (coherent) cavity
emission originating from the LP dispersion branch is the result of many de-phasing
particle relaxation processes. Importantly, this ensures that the emergence of spatial
coherence is indeed due to spontaneous symmetry breaking at the condensation phase

transition, and not inherited by the coherence of the excitation laser.
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The polariton relaxation kinetics and formation of spontaneous coherence under non-
resonant optical excitation are schematically depicted in Fig. 3.6. The optically excited
high-energy electron-hole gas quickly dissipates energy on a picosecond time scale
mainly by emission of longitudinal-optical phonons, and leads to the population of
the exciton dispersion at large in-plane momenta [13, Chapter 8]. Subsequent parti-
cle relaxation processes are dominantly based on exciton-exciton and exciton-acoustic
phonon interactions. While the former process mainly leads to a redistribution of en-
ergy within the exciton cloud, the latter process transfers energy to the host lattice.
Since the lifetime of excitonic states (tx ~ 0.1 — 1 ns) is much larger than their relax-

ation time (7 ~ 10 ps), quasi-thermalisation of the incoherent exciton cloud is possible.

However, relaxation processes become less efficient once the particles have reached the
edge of the "polariton momentum space trap’, which is formed by the hybridisation
of exciton and cavity modes. Beyond this point scattering rates are reduced due to a
decrease in density of states and due to a decrease of the excitonic Hopfield coefficient
| x|? inside the polariton trap. Moreover, polariton lifetimes are greatly reduced at small
momenta due their growing photonic component |c|?, generally preventing the polari-
ton gas from reaching thermal equilibrium. The accumulation of excitonic particles at

the 'neck’ of the LP dispersion relation is named the ‘bottleneck effect’ [74].

When reaching sufficiently large particle densities, 'stimulated pair scattering” of bot-
tleneck excitons can become the dominant scattering process, and facilitates popula-
tion of polariton states within the LP momentum space trap [see Fig. 3.6]. Hereby, two
particles with energies E;, and momenta k; » elastically scatter via dipole-dipole in-
teractions into new states with energies E3 4 and momenta k3 4, while total energy and
momentum are conserved. Bosonic final state stimulation yields a coherent polariton-

polariton scattering rate W that is enhanced by the occupation Ny of final states, i.e.
Wic ko -k ks & Nk1Nkz(Nk3 +1) (Nk4 +1). (3.26)

Once the occupancy Ny of a final state within the polariton trap exceeds unity, the
stimulated scattering rate overtakes its spontaneous counterpart, and a coherent many-

body state emerges [15].

It is important to note that, in the case of polariton condensates, the final state that
first reaches condensation threshold is not necessarily coinciding with the LP ground
state located at k = 0, but can exist at elevated energies and finite momenta |k| > 0.
While the use of a large-size pump spot (FWHM 2 30 pm) and positive detuning
parameter (A > 0) generally favours ground state polariton condensation [15], optical
excitation with narrow laser spots (FWHM < 20 um) and negative detuning (A <
0) facilitates non-ground state condensation [73, 75]. Details on this phenomenon are
given in Section 5.2.
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Typical measurement data of the power-driven phase transition of a polariton gas gen-
erated using a narrow pump laser spot (FWHM =~ 2 um) are illustrated in Fig. 3.7.
Here, the LP particle densities are shown in the plane of energy E and in-plane wave
vector k for three different pump powers P. For small pump powers, i.e. small excited
LP particle densities, there is a broad spectral occupation of the LP momentum space
polariton trap [Fig. 3.7(a)]. With increasing excitation pump power reaching conden-
sation threshold (P ~ Py,) a spectral narrowing of the LP particle density distribution
becomes visible, indicating the emergence of a macroscopically populated quantum
state [Fig. 3.7(b)]. For larger pump powers (P > Py,) almost all particles occupy the
same state [Fig. 3.7(c)]. Importantly, the narrow particle density distribution in both en-
ergy, and momentum space above condensation threshold is the result of established

temporal and spatial coherence.

3.2.3 Characteristics of polariton condensates

Owing to their light effective mass m ~ 10~°m,, polaritons are promising candidates
for the study of macroscopic quantum phenomena at elevated temperatures. However,
due to their intrinsic short lifetime T ~ 1 ps — 100 ps, thermalisation of polaritons can
be hindered, such that any occurring phase transition cannot be described in thermal
equilibrium. While macroscopic occupation of the polariton ground state in thermal
equilibrium is generally referred to as polariton BEC [15, 76], an out-of-equilibrium
macroscopically populated state is often termed "polariton laser” [16]. A comparison of
the characteristics of polariton BEC, polariton laser, and photon laser can be found in
Reference [11].
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Throughout this work, we are denoting our results of out-of-equilibrium coherent many-
body states as “polariton condensates’. These polariton condensates emerge from an in-
coherent non-resonantly pumped exciton reservoir via a power-driven phase transition
with the following properties:

1. Appearance of long-range spatial coherence (ODLRO) across the system at thresh-
old.

2. Narrowing of the spectral density (emission linewidth) at threshold. This effect
is inherently connected with an increase of temporal coherence.

3. Nonlinear increase of condensate population with increasing pump power just
above threshold.

4. Spectral blue-shift of the LP dispersion branch and condensate frequency with
increasing pump power due to (repulsive) nonlinear interactions.

5. Multi-mode condensation is possible, i.e. multiple states at different energies but
the same spatial location can simultaneously condense [77]. The nonstationary
periodic dynamics in polariton condensates associated with multiple frequency
components [34, 78] is generally enhanced by a negative detuning, i.e. polariton
condensates with large photonic components [79].

3.2.4 Numerical simulation of polariton condensates

The dynamics of interacting many-body systems are generally computationally in-
tractable problems due to the immensely large degrees of freedom present. However,
by approximating the interactions in-between particles with that of an effective ‘'mean
field’, these problems can greatly be reduced to a one-body system. Computation and
even analytical description of many-body systems can then become possible by self-
consistent determination of the mean field. In the case of superfluids and supercon-
ductors such simplifications have led to the development of the famous Gross-Pitaevski
equation (GPE) and the complex Ginzburg Landau equation [80].

The driven-dissipative nature of non-resonantly pumped polariton condensates has led
to the development of a generalised GPE (including gain and losses) for the conden-
sate order parameter ¥(x, t), which is coupled to a rate equation of the uncondensed
(exciton) reservoir n(x,t) [81]:

2 _
) LT D+ g ) + 5 (R =] YO0, (32)
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on(x,t)
ot

h = {—7r — R[¥(x,t)|> + DV?} n(x,t) + P(x, t). (3.28)
In this parabolic regime, m is the LP effective mass, g the polariton-polariton interaction
strength, ¢r the interaction strength of polaritons and uncondensed reservoir particles,
R the scattering rate of reservoir particles into the condensate, and y and -y are the po-
lariton and reservoir decay rates, respectively. The exciton reservoir is further pumped
by the term P(x, t) representing the non-resonant excitation laser profile. The reservoir
spatial dynamics is captured by the diffusion coefficient D, but it is often neglected
(D = 0) due to the large effective exciton mass, and despite the long exciton lifetime.

3.3 Measures of coherence in polariton condensate systems

We generalise the expression for coherence of coupled oscillators in Eq. 2.13 for contin-
uous variables, such as the fluctuating bosonic field ¥(x, t) of a polariton condensate.
Because there is direct correspondence between the condensate’s state described by the
wave function ¥ (x, t) and its associated optical field E(x, t) leaking out of the cavity, we
can apply the statistical analysis of optical fields [82] to describe coherence properties
in polariton condensates. Throughout this theses we interchangeably use the expres-
sions ‘condensate density” and “intensity” of the emitted light to describe density terms,

e.g. [¥(x,t)|%. In the following we define the relevant statistical quantities:

1. Mutual coherence function I'(x, x2,77)

The mutual coherence function of a stationary field ¥ (x, t) is defined as
I(x1,x2,17) = (¥ (x1, 1) ¥ (x2, t + 1)), (3.29)

This complex-valued quantity describes the first order spatio-temporal correla-
tions of the field between two spatial locations x; an x, and with a time-offset
7. Details on the measurement of the mutual coherence function are given in
Section 4.4.2.

2. Mutual intensity I'(x3, x2)
For vanishing time-offset between the two signals, i.e. # = 0, we drop the time-
offset parameter in Eq. 3.29 and denote the equal-time correlation as the mutual
intensity,
T(x1,x2) = (¥ (x1,1)¥(x2, 1)), . (3.30)

The mutual intensity is a complex-valued function, and its argument, arg (I'(x, x)),
is a measure for the average phase difference between the two spatial locations x;
and x;. The mutual intensity I'(x;, x2) of the coherent cavity emission is equiva-
lent to the reduced density matrix p1(x1,x2) of the polariton many-body system
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described in Section 3.2.1. Experimental access to the spatial correlations of the
condensate’s emitted light field is detailed in Section 4.4.4.

. Intensity I(x)

The equal-time correlations in Eq. 3.30 at the same spatial location x; = xo = x

represent the field intensity (or average condensate density),
I(x) =T(x,x). (3.31)
We further define the intensity function (k) in reciprocal space,
Ix) = (¥ (& 1)?),, (3.32)

where ¥ (k, t) is the Fourier-transformed wavefunction representing the conden-
sate’s state in momentum space. Optical measurements of light intensities (or
time-averaged condensate densities) in real space and Fourier space are described
in Section 4.4.1.

. Complex degree of coherence g(x1,X2,7)

Normalisation of the mutual coherence coherence function in Eq. 3.29 with re-
spect to the field intensities at locations x; and x; yield the complex degree of

coherence,

_ TOa,xem)
Q(x1,%2,1) = I(xl)I(xz)' (3.33)

This normalised statistical quantity (0 < |g(x1,X2,%)| < 1) can describe the tem-
poral decay of coherence between two spatial locations x; and x, with increasing

time-offset 7. Measurement of the complex degree of coherence are explained in
Section 4.4.2.

. Complex coherence factor g(x;,x2)

For vanishing time-offset between the two signals, i.e. # = 0, we drop the time-
offset parameter in Eq. 3.33 and denote the normalised equal-time correlation as
the complex coherence factor,

I'(x1,x2

g(x1,x2) = # (3.34)

[(xa)I(x2)
This complex-valued function describes the system’s spatial decay of coherence
with increasing distance |x; — xo| — co. For equal spatial coordinates, i.e. x; =
xp = X, the complex coherence factor becomes g(x, x) = 1. Details on the experi-
mental measurement of the complex coherence factor are given in Section 4.4.4.

. Time-resolved correlation functions

In case of a non-stationary system, such as a polariton condensates realised under

non-resonant pulsed laser excitation, the time-averages (...), appearing in Eq. 3.29
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and Eq. 3.30 can be replaced by ensemble averages (...), and the relevant statistical
quantities become explicitly dependent on the time t. In particular, we define the
time-resolved mutual intensity

F(Xl, X2, t) = <‘.P* (X], t)T(Xz, t)> ’ (335)

and its normalised form, the time-resolved complex coherence factor

T'(x1,x2,t)
F(Xl, X1, t)r(XZ/ X2, t) ‘

(3.36)

g(x1,x,t) = 7

Throughout this thesis we either include or drop the time parameter ¢ in the ar-
gument of correlation functions to specify the time-resolved or time-averaged
measurement. When using time-averages over many system realisations in case
of repetitive pulsed laser excitation, the modulus of the time-integrated factor
|g(x1,x2)| [Eq. 3.34] represents a lower bound for the maximum value of the time-

resolved complex coherence factor |g(x1, X2, t)| [Eq. 3.36].

Of interest for the description of coherence in polariton codensates is the relationship
between the spatial coherence properties and the condensate density in momentum

space,

I(k) = //F(xl,xz)eik"le’ik’quldxz. (3.37)

In the context of an optical setup with a partially coherent light source this equality
is also known as the ‘Van Cittert-Zernike theorem’. The Fourier-transform pairing be-
tween intensity distribution in reciprocal space and its spatial correlations in real space
stated in Eq. 3.37 implies important reciprocal width relations:

¢ Long-range spatial coherence <+ Narrow density in momentum space.

e Short-range spatial coherence <+ Broad density in momentum space.

We note that the formation of ODLRO during condensation of exciton polaritons, i.e.
formation of long-range spatial coherence, is inherently tied up with a narrowing of
the system’s angular emission pattern [(k). This principle becomes apparent in our
discussion of coherence in coupled polariton condensates in Chapter 6, where we com-
pare both condensate momentum density distribution and condensate spatial coher-

ence properties.
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Chapter 4
Experimental Methods

In this thesis we present networks and lattices of non-resonantly excited polariton
condensates in a planar semiconductor microcavity. Hereby, spatially separated and
tightly-pumped polariton condensates show mutual ballistic flow of polaritons from
one condensate to another one, giving rise to particle exchange-based interactions. The
general scheme for generation of polariton condensate lattices with individual control
over couplings is illustrated in Fig. 4.1. We spatially shape two Gaussian laser beams
into an optical excitation pattern of polariton condensates (red coloured spots) and po-
tential barriers (blue coloured spots). While each of the condensate nodes is pumped
by a tightly-focused laser spot with pump power exceeding the threshold pump power
P > Py, the barrier beams only generate incoherent exciton reservoirs below the con-
densate threshold P < Py, affecting the in-plane particle flows. It is the precise optical
control over the complex-valued (i.e. non-Hermitian) potential landscape of polariton
condensates that allows us to steer and study the synchronisation patterns arising in
coupled condensate structures. In the following we describe the experimental methods

for optical generation, modulation and read-out of coupled polariton condensates.

We begin in Section 4.1 by describing the planar semiconductor microcavity sample
used for the experimental studies presented in this thesis. The methods for laser beam
shaping are presented in Section 4.2 including a description of optical feedback for sta-
bilisation of the spatial pump geometry. A general layout for the optical excitation
setup is shown and described in Section 4.3. Lastly, the optical techniques for mea-
surements of density, energy, phase, and coherence in coupled polariton condensate

systems are presented in Section 4.4.
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FIGURE 4.1: Generation of polariton graphs with control over individual coupling
parameters using optically generated potential barriers. Two non-resonant Gaus-
sian beams are modulated (1a,1b) using two SLMs to form the (red coloured) pump
geometry of polariton condensates, and the (blue coloured) spatial geometry of po-
tential barriers. Upon combination (2) of the two laser profiles and focusing of the
total graph onto the microcavity sample, a network of coupled polariton condensates
is generated (3). While each of the pump beams excites a condensate of polaritons
with pump power above the condensation threshold P > Py, the barrier beams only
generate locallly confined exciton reservoirs below condensation threshold P < Py,,.
Feedback (4) of the polariton emission can be integrated into the beam shaping process
leading to a closed-loop algorithm for generation of stabilised polariton lattices.

4.1 Microcavity Sample

Semiconductor microcavities based on GaAs/AlAs heterostructures are preferred sys-
tems for realising high Q-factor cavities due to the large bandgap difference and small
lattice mismatch between GaAs and AlAs layers. Interestingly, these structures have
been reported to yield Q-factors exceeding 300,000 and polariton lifetimes beyond
100 ps giving access to condensation of exciton-polaritons in thermal equilibrium [76].
Such a low-loss microcavity was realised by increasing the DBR thickness to up to 40
pairs of A /4 layers. In another approach, increased quality factors and particle propa-
gation distances can be realised by reducing the strain-induced defects such as cross-
hatch dislocations present in GaAs/AlAs heterostrucures due to their small remaining
lattice mismatch [83]. It was demonstrated that reduction of strain and, thus, suppres-
sion of dislocation patterns can be realised by introducing AIP layers into the centre
of the AlAs DBR layers [84]. All experiments presented in this thesis are performed
on such a strain-compensated planar microcavity [85] facilitating the macroscopic po-
lariton propagation distances and condensate coupling distances exceeding 100 pm
described in Chapter 5 and Chapter 6. The structure of this microcavity is grown on
a GaAs substrate and its architecture is schematically drawn in Fig. 4.2. It consists of
a 2A-GaAs cavity with 6 embedded Ing gsGagp.92As QWs located at the antinodes of the

modal field distribution. Two additional QWs are located at the first and last nodes of
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FIGURE 4.2: Schematic of the microcavity sample used for the results presented
throughout this thesis. Details of the sample are presented in Ref. [85].

the field distribution for carrier collection. The presence of Indium in the QWs lowers
the emission energy below the GaAs substrate bandgap energy which allows measure-
ments in transmission geometry. The reflectivity stopband (A ~ 800 — 900 nm) of the
cavity is formed by 26 pairs of AlAsg9sPo 02/ GaAs layers for the top DBR and 23 equiv-
alent pairs for the bottom DBR. Strong coupling between bare cavity and exciton modes
is provided by a Rabi splitting of 8 meV. An additional wedge in the cavity thickness
gives access to a controllable cavity-exciton detuning parameter A from —8 meV to
1 meV. Measurements presented throughout this thesis are performed at a detuning of
A ~ —5 meV with LP ground state emission at A ~ 858 nm.

This sample was designed and fabricated under the directions of P. G. Lagoudakis and
W. Langbein. Characterisation and demonstration of strong coupling and polariton
condensation in this sample are reported in Ref. [85]. The structure’s quality factor is
experimentally determined as Q ~ 12,000. Following from Eq. 3.5, the particle lifetime
can be estimated as T ~ 5 ps.

4.2 Beam shaping using Spatial Light Modulators

The spatial transformations of Gaussian laser beams into designated geometries for

pumps and barriers are accomplished using phase-only spatial light modulators (SLMs).
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FIGURE 4.3: Operational principle of a reflective spatial light modulator. An incom-

ing wavefront Ej, is phase-modulated upon reflection from the liquid crystal cells,

where the voltage V of each cell determines the orientation of its optical axis ¢ and
phase shift of the outgoing wave Eqyt.

Working principle of phase-only SLMs and iterative algorithms for digital control over

the transformed laser beam shape are described in the following.

The computer-controlled spatial wavefront modulators in use throughout this thesis
are reflective liquid crystal displays, i.e. electrically-tuneable arrays of liquid crystal
cells. A simplified schematic of such an SLM is illustrated in Fig. 4.3. Each cell is filled
with rod-like birefringent molecules, whose molecular orientation is controlled through
an externally applied voltage V. Birefringence is the optical property of a material
having different refractive indices parallel n, and perpendicular #, to the material’s
optical axis c. In case of the liquid crystal cells displayed in Fig. 4.3 the optical axis ¢ of
each cell is determined by the liquid crystals” macroscopic molecular orientation and
lies within the image plane. An optical wave with linear polarisation lying in the plane
spanned by the orientations of ¢, i.e. in the image plane of Fig. 4.3, feels the effective

refractive index
NoNe

\/ng sin?(a) + n2 cos?(a)

where « is the angle between the optical waves propagation direction and c. Thus, via a

n(a) = , (4.1)

spatial modulation of the externally applied voltage V(x), a tuneable phase-retardance
¢(x) for the reflected electric field E(x)out can be achieved, i.e.

Eout(x) = Ein(x)ei¢(X)’ (4.2)

Here, we have neglected any losses that appear during reflection of the incoming wave
Ein from the spatial light modulator. The spatially controllable phase shift in each cell
is given as ¢(a) = 27mdn(a)/A, where A is the optical wavelength and d is the cells
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FIGURE 4.4: Beam shaping using an SLM. (a) Simple setup depicting the experimen-

tal shaping of a Gaussian input beam (SLM plane) into a square arrangement of 4

Gaussian beams (target plane). (b) Iterative Gerchberg-Saxton algorithm for calcula-
tion of a phase pattern ¢(") which is determined by the target intensity map Ir.

effective thickness taking into account that the wave is travelling twice through each

liquid crystal cell.

The experimental implementation of beam shaping using a reflective phase-only SLM
is illustrated in Fig. 4.4(a). The wavefront of an incoming Gaussian beam with field
amplitude A (x) is spatially modulated upon reflection from the SLM, where the ap-
plied phase-hologram ¢y (x) (or just hologram) is given by an 8-bit grey level pattern,
i.e. a 271 phase modulation is digitized into 256 bit levels. A thin lens of focal length
f is used to create the Fourier transform of the phase-modulated field at a distance 2f
after the SLM. In the following we denote the two planes at a focal distance f before
and after the lens as SLM plane and target plane, respectively. While the field at the
SLM plane is given as the phase-modulated incoming field, Esjp = Ein exp (i¢p), the
field at the target plane Et reads as

27x
Af

where Fs {f(s)} (x) denotes the two-dimensional Fourier transform of function f(s)

Er(x) = Fs {Estm(s)} (), (4.3)
with respect to s. The inverse relationship of Eq. 4.3 holds,

2mx
Af

where F; 1 {f(s)} (x) denotes the inverse Fourier transform.

Esim(x) = F ' {Er(s)} (57), (44)
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4.2.1 Gerchberg-Saxton algorithm

In the following, we describe the computational approach of designing a holographic
phase pattern ¢ (x), which in the experimental realisation depicted in Fig. 4.4(a) allows
to transform the incoming Gaussian beam into a designated target intensity pattern
It (x) at the target plane. Within the work presented in this thesis these target intensity
patterns I7(x) are typically composed of arrays (and lattices) of Gaussian spots, each
of them representing either a condensate pump node or a potential barrier. We note
that due to the non-resonant excitation scheme applied in our experiment, only the
intensity pattern I7(x) of the target pattern is of concern, while its phase has no impli-
cation on the excited condensate system. We utilise the popular Gerchberg-Saxton (GS)
algorithm [86], an iterative Fourier-transforming algorithm, to compute SLM phase
holograms ¢ (x) for approximate solutions of the equivalence between the obtained
2

intensity |E7(x)|* of the computed target field in Eq. 4.3 and the designated target in-

tensity pattern I7(x).

The algorithm [schematically shown in Fig. 4.4(b)] begins with the initialisation of a 2D
complex-valued field of amplitude A(%)(x) and phase ¢¥) (x), which represent the field
of the input laser beam at the SLM plane. We assume a flat phase-front $(¥)(x) = 0
and a Gaussian amplitude A(?)(x), whose width matches the laser beam width. The
core of the algorithm consists of a loop in which cyclic operations of Fourier and in-
verse Fourier transformations link the fields between SLM and target plane. Each iter-
ation step 1 begins with propagation of the field A(?) exp(i¢(")) from the SLM plane to
the target plane by means of a fast Fourier transform (FFT), resulting in the complex-
valued field A exp(i¢™)). Here, for differentiation between SLM plane and target
plane, we add the tilde diacritic to fields in the (Fourier-transformed) target plane. The
amplitude A is replaced with the amplitude of the designated target intensity pat-
tern, i.e. \/Ir — A", and back propagation to the SLM is computed by means of an
inverse fast Fourier transform (IFFT) yielding a complex field with amplitude A+

and phase ¢("+1)

. At the end of each iteration step 7, the newly computed phase field
¢("*1) is kept and replaces the initial phase pattern of the previous iteration step, i.e.

Pt — p(n),

Convergence of the algorithm, as well as a certain level of congruence between the ob-
tained intensity target pattern |A(")|2 and the designated target intensity pattern I7(x)
is usually reached after a few tens of iterations, such that execution can be stopped. The
phase pattern ¢(") (x), that was calculated after 7 iteration steps of the GS algorithm,
is then combined with additional device and setup dependent phase correction terms
¢c(x), and a blazed grating ¢¢(x) to yield the SLM phase hologram for our experiment,
ie.

Pr(x) = P + e (x) + Pg (). (4.5)
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The phase correction term ¢ compensates optical aberrations in the optical setup, and
aberrations due to the non-flatness of the SLM screen. The phase grating ¢, spa-
tially displaces the phase-modulated laser beam (1st diffraction order) in the target
plane from the unmodulated reflected beam (Oth order) and higher-order diffraction
orders and, thus, allows to block the unwanted orders using an aperture as depicted in
Fig. 4.4(a).

It is important to note, that even when aiming for a target laser spot pattern with ho-
mogeneous spot intensities, due to the technically limited accuracy of the GS algo-
rithm, and unavoidable remaining optical aberrations due to misalignment and device
imperfections, the resultant experimentally obtained pump spot intensity distribution
can strongly deviate from the homogeneous target. In the next section we describe a
method to include feedback of the experimentally recorded laser spot pattern for sta-
bilisation of the spot intensities.

4.2.2 Spatial stabilisation of pump intensity

A schematic of the closed-loop algorithm taking into account feedback from the exper-
imentally measured laser spot intensity distribution is shown in Fig. 4.5. Its implemen-
tation is similar to the schemes published in Refs. [87] and [88] with applications in the
field of cold atom trapping. The algorithm is a modified version of the conventional
GS algorithm presented in Fig. 4.4(b), in which a nonlinear adjustment of the target in-
tensity pattern I (x) in each iteration cycle controls the convergence to a homogeneous
spot intensity distribution.

Within each iteration cycle n of the conventional GS cycle [orange box in Fig. 4.5(a)]
we apply the current phase-hologram ¢ [see Eq. 4.5] onto the SLM and, subsequently,
record the current spatial distribution of the laser beam in the target plane using a cam-

(n)

era. We extract the measured intensity Iy, ; of each laser spot j = 1, ..., N by integrating

the camera counts within the beam waist of each spot. The target intensity I%.H)

for
each laser spot j is then updated for the next iteration cycle n + 1 utilising a nonlinear

function,
1(”)
[+ — L : (4.6)

T, IIE/};;
1+e€ (<11£An>> — 1)

Here, <115/711 )> represents the mean of the measured laser spot intensities and € > 0

is an adjustable feedback parameter. The nonlinear function in Eq. 4.6 lowers (raises)

the target spot power Ig;.ﬂ) of each spot j, when its measured intensity is larger (lower)

than the average. In the next step, the two dimensional target intensity map f%"H) (x) is
calculated and consists of the superposition of N Gaussian spots, where the amplitude

of each spot is determined by the calculated spot intensities I%H) and the width of each



44 Chapter 4. Experimental Methods

A(0) i@

A1) gien D

IFFT

%?{K% ¢gb) » gm[&ﬂ] | Converged?

(il Measure spot index

i
i
: l
[ #(n+1) ig(™) €«O———| i™ i) | spot power :
Wi e ATe ! | | DONE
[Poragiu sy St T Adjust target |
\GS cycle; . Just targ :
I T+ _ ) :
: T,j W |
1te| LI g |
(n)
| (47) !
|
|
: Create V i
o 2 (n+1)
Replace target NN - i1y| 2D map guf:p,- |
place arg R | |
| e 0 o spot index |
|. _________________________ -
(Feedback|
With Feedback
0
o)
c
5
@
B
ol
£
No Feedback

Laser spot power (arb.u.)

FIGURE 4.5: Closed-loop feedback algorithm for spatial stabilisation of laser spot

intensities. (a) Schematic of the algorithm. Experimentally recored intensity patterns

of a square lattice of laser spots after (b) 100 iterations of the conventional GS algo-

rithm and (c) 100 iterations of the modified GS algrotuhm including feedback. (d)

The extracted spread of spot power distribution for both algorithms. Adapted from
Ref. [89]

spot is related to the Gaussian width of the laser profile A°(x) on the SLM by means
of a Fourier transform. This updated intensity map then feeds back into the GS cycle,
replacing the amplitude function A" (x) in the target plane.

The feedback parameter € in Eq. 4.6 controls the speed of convergence to a homoge-
neous distribution of spot intensities, but cannot be set too large to avoid destabilisa-
tion of the algorithm. We find empirically that a value of € in the range of 1072 — 10!
allows for both, spatial stabilisation of a laser spot pattern and spatial stabilisation of a
non-resonanlty excited lattice of polariton condensates as discussed in Chapter 6. For
€ = 0 there is no change in target spot intensities, i.e. the pattern is fixed by the initial
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(n) )

target Iy = %0] , and the algorithm corresponds to the conventional form of the GS

algorithm. Execution of the algorithm is stopped once the spread of measured spot
intensities IM, j
achieved within less than 100 iterations. Execution of the Fourier transform algorithm

reaches a threshold of 1% relative standard deviation (RSD) typically

on the graphics processing unit (GPU) allows for cycle periods in the order of 100 ms,
i.e. spatial stabilisation of laser spot patters (or polariton condensate lattices) within
less than 1 minute.

In Figs. 4.5(b) and 4.5(c) we show the experimentally recorded laser spot pattern after
100 iterations of the conventional GS algorithm (no feedback) and after 100 iterations of
the modified GS algorithm (including feedback), respectively. In both cases the initial
target pattern is a homogeneous 10 x 10 square lattice with equal spot intensities. Due
to device imperfections, optical aberrations and the limited accuracy of the GS algo-
rithm there is a non-homogenous distribution of spot intensities with a spread of 15%
RSD as shown in Fig. 4.5(c). These detrimental effects are counteracted when applying
the described active spatial stabilisation of spot intensities. The homogeneous lattice
depicted in Fig. 4.5(c) shows a reduced spread of spot intensities with only 1% RSD.

While we have mainly focused here on spatial stabilisation of laser spot intensities in
the target plane of an experimental setup, the algorithm also allows to stabilise PL in-
tensities in optically excited polariton condensate lattices as presented in Chapter 6
of this thesis. We point out, that demonstration and description of this algorithm for
emission intensity stabilisation in lattices of polariton condensates is published in Ref-

erence [89] and its supplemental material.

4.3 Excitation of polariton condensate networks

Experiments presented in this thesis rely on optical excitation of polariton condensates
using non-resonant lasers. While for smaller-size systems a single-mode continuous
wave (cw) laser yields enough excitation power for excitation of up to ~ 50 coupled
condensate nodes, for larger lattices (> 100 condensate nodes) excitation is performed
using a mode-locked pulsed laser with 80 MHz repetition rate and ~ 150 fs pulse
duration. A schematic of the experimental setup for excitation of polariton condensate
networks is shown in Fig. 4.6. Both coherent excitation light sources (labelled as Laser
1 and Laser 2) operate at the first reflection minimum above the cavity reflection stop
band (A ~ 800 nm). Using a flippable mirror allows to selectively chose between cw or
pulsed excitation. An additional acousto-optic modulator (AOM) is used in connection
with the cw laser to generate square wave pulses of typically 10 kHz repetition rate
and 5% duty cycle to avoid sample heating under cw excitation. The resulting effective
pulse length of ~ 5 us is orders of magnitude above the typical picosecond timescale

of polariton condensates, i.e. excitation can still be regarded as stationary.
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FIGURE 4.6: Schematic of the optical excitation setup. Optical paths of the nonreso-
nant pump laser beams are illustrated in red colour, the polariton PL in green colour,
and the resonant (seeding) laser beam in purple colour. Abbreviations: Acousto op-
tic modulator (AOM), mirror (M), flippable mirror (FM), lens (L), beam splitter (BS),
half-wave plate (A/2), quarter-wave plate (A/4), polariser (P), spatial light modula-
tor (SLM), dichroic mirror (DM), microscope objective lens (MO), microcavity (MC),
charge-coupled device (CCD), photoluminescence (PL).

A beam splitter (BS1) splits the excitation laser source into two paths, each of them
containing a reflective SLM. Both SLMs are operated in the Fourier plane of the opti-
cal excitation setup and are used to engineer networks (or lattices) of Gaussian laser
spots as detailed in Section 4.2. We utilise one of the modulators (SLM1) to generate
pump geometries for non-resonantly excited polariton condensate networks, and the
other modulator (SLM2) to independently modify non-resonantly imprinted potential
barriers for the polariton condensate (see Chapter 7). Rotation of half-wave plates in
front of a polariser allows to control the laser power in each path, while the polarisa-
tion axis matches the liquid crystal director axis. Two lenses (L1) and (L2) are used to
project both SLM planes onto the back aperture of the microscope objective lens (20x,
0.4NA, infinity corrected). An additional quarter-wave plate transforms the excitation
laser polarisation in circular polarisation. We project the far field (Fourier plane) of
both SLMs onto a charge-coupled device (CCD) image sensor to spatially record both
laser geometries. The microcavity sample is held in a cold finger cryostat at low tem-
peratures (T ~ 6 K, mounted using thermally conductive silver paste), and polariton
PL is collected in reflection geometry and separated from the excitation laser using a
dichroic mirror at an angle of 45°. The PL detection schemes (not shown in Fig. 4.6) are

presented in Section 4.4.
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An additional cw laser source (Laser 3, A ~ 857 nm) is used for resonant injection
of polaritons in conjunction with our non-resonant excitation schemes. As detailed in
Chapter 7 and presented in Ref. [90] we utilise this weak resonant laser matching the
~ 2 um beam waist of a non-resonantly excited polariton condensate to lock the phase
of one condensate to that of the coherent seed laser. Part of this seeding laser beam is
diverted using a beam splitter (BS4) and serves as a coherent reference wave for use
in interferometric analysis (phase extraction) of the polariton condensate network (see
Section 4.4.3).

4.4 Detection of polariton condensate networks

While the inherited photonic component of microcavity polaritons leads to short (pi-
cosecond) particle lifetimes, the optical losses allow in-situ optical characterisation of
a polariton condensate with typical measurements of condensate density, energy, po-
larisation and coherence. The experimental setups and methods for measurement and

extraction of these characteristics are presented in the following.

4.4.1 Imaging techniques

Experimental access to the condensate’s real space density |¥(x)|?> and Fourier space
density [¥(x)|? is realised by near field and far field imaging techniques as schemati-
cally illustrated in Figs. 4.7(a) and 4.7(b). Here, the cavity emission is collected by an
infinity corrected microscope objective lens and either the near field (or real space),
or the far field (or Fourier space) are projected onto the image plane of our detection
setup using either one or two lenses. Using a CCD camera image sensor at the im-
age plane we record then either the time-integrated real space condensate density, i.e.
I(x) = (|¥(x)[?);, or the time-integrated Fourier space density, i.e. [(k) = {|¥(k)|?);.
In case of pulsed excitation (80 MHz) and with typical camera exposure times in the
order of 10 — 100 ms this corresponds to an average over millions of realisations of the

condensate system.

Additionally, by projecting the real space or Fourier space emission signals onto the en-
trance slit of an imaging spectrometer we can measure the spectrally-resolved conden-
sate densities along the slit direction as shown in Figs. 4.7(c) and 4.7(d). Assuming that
the slit is oriented in vertical direction and centred at x = 0 or k, = 0, respectively, the
measurable quantities are the spectral densities |¥(x =0,y,E)[?and [¥(k, =0, ky,E) 2,

where the latter is also denoted as the systems dispersion image.
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FIGURE 4.7: Optical detection schemes for analysis of polariton condensates. Light

emitted out of the microcavity (MC) is collected by a microscope objective lens (MO)

and imaged via one or two lenses (L1,L2) with focal lengths f; and f, to project the

condensate’s (a) real space or (b) Fourier space density onto the image plane. The back

focal plane (BFP) of the MO is illustrated as a black dashed line. Placing the entrance

slit of an imaging spectrometer at the image plane the spectrally resolved emission in
(c) real or (d) Fourier plane can be measured.

L2

4.4.2 Measurement of temporal coherence

In this section we describe an interferometric method to extract both the mutual co-
herence factor I'(x, —x,77) and its normalised form, the complex degree of coherence
g(x, —x,17). Scanning of the time-offset parameter 7 allows to measure the temporal
decay of coherence (or coherence time) in polariton condensates.

We utilise a modified Michelson interferometer, which is depicted in Fig. 4.8(d), and
contains a retro reflector mounted on a translational stage to control the relative path
length between the two interferometer arms. A CCD image sensor records the real
space intensity pattern I;(x) or I(x) when either one of the interferometer arms is
blocked. Example images of I1(x) and I(x) representing a Gaussian-shaped polariton
condensate formed in an optical trap are shown in Fig. 4.8(a) and Fig. 4.8(b). Because
the retro reflector placed in arm 2 of the interferometer inverts the intensity pattern



4.4. Detection of polariton condensate networks 49

(d)
M
| —
1 <i>
2
IH™™ -
MC MO BS RR
L <
CCD
Y
I
shift&
IFFT IFFT
M(—x,—x) T(x,— )] ereloCx )

0] (m) (0) m
| BT
4

FIGURE 4.8: Coherence measurements in a Michelson interferometer. Intensity pat-
terns of the emission a Gaussian polariton condensate passing through (a) arm 1 only,
(b) arm 2 only, and (c) both interferometer arms simultaneously. A schematic of the
interferometer with adjustable time-delay # is shown in (d). Arm 2 contains a retro
reflector inverting the image acquired by the CCD image sensor. (e-g) Digitally com-
puted fast Fourier transforms of (a-c). (h-j) Spatially filtered Fourier images. (k-m)
Correlation functions I computed by inverse fast Fourier transformation of (h-j). Mag-
nitude (n) and argument (0) of the complex degree of coherence g(x, —x, 7).

recorded by the CCD image sensor, we can write

Li(x) = I(x), (4.7)
I(—x), (4.8)

where I(x) = (|¥(x,t)|?); denotes the condensate emission intensity. Importantly, the
signal coming from arm 2 impinges onto the recording CCD image sensor at an angle
determined by the transverse wavevector k;. This transverse wavevector is control-
lable by offsetting the retro reflector lateral position from the optical axis as illustrated
in Fig. 4.8(d). The interference signal [int(x), i.e. neither of the interferometer arms is

blocked, is shown in Fig. 4.8(c) and can be written as

line(x) = ([¥(x, 1) + €M% ¥ (=x, £+ 7))
= I1(x) + L(x) + XX . T(x, —x, 1) + e XX . T*(x, —x, 77). (4.9)
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It is apparent from Eq. 4.9 that visibility of interference fringes, whose geometrical ori-
entation is defined by k|, depends on the coherence function I'. Therefore, Fourier-
analysis of the recorded interferogram allows extraction of the mutual coherence func-

tion as explained in the following.

The two-dimensional Fourier transformation of the interference signal in Eq. 4.9 is writ-
ten as

fint(k) = fl (k) + fz(k) + f'(k — kH,ﬂ) + f*(—k + kH,U), (4.10)
where the hat diacritic denotes the spatial Fourier transform of intensity I > and co-
herence function I, respectively. Digital FFT of the recorded interference signal is il-
lustrated in Fig. 4.8(g). One can see that the off-axis displacement of f(k -k, 7) in
Fourier space allows to filter this component as long as the displacement vector k is
sufficiently larger than any relevant spatial frequency components in I, and I'. We
spatially filter the relevant component in the FFT image using a circular mask depicted
in Fig. 4.8(g) in white dashed. Subsequent shifting of the Fourier-filtered component
into the centre of the image, i.e. f(k -k, n) — f(k, 1), and computation of the IFFT
yields the mutual coherence function I'(x, —x, 17) shown in Fig. 4.8(m).

Furthermore, we apply an equivalent circular mask to the Fourier-images of the recorded
reference images I; and I, displayed in Fig. 4.8(e) and Fig. 4.8(f). The spatially centred
mask filters large-frequency components in the images of I; and I, analogous to the
filtering of spatial frequencies of the interferogram shown in Fig. 4.8(g). The resulting
Fourier-filtered intensity patterns I(x) = I'(x, x) and I(—x) = I'(—x, —x) are displayed
in Fig. 4.8(k) and Fig. 4.8(1). Subsequently, we calculate the complex degree of coher-
ence g(x, —x,77) as described in Eq. 3.33. Extracted magnitude |g| and argument arg (g)
of the Gaussian shaped polariton condensate are shown in Fig. 4.8(n) and Fig. 4.8(0),

respectively.

Scanning of the relative path length-difference between the two interferometer arms
allows measurement of the temporal change of the complex degree of coherence g(77).
The system’s coherence time 7, is determined by the decay of coherence and defined as

TC:/_ \g(O,O,n)]Zdiy, 4.11)

where we have chosen the centre of symmetry x = 0 as a reference point.

4.4.3 Phase Measurement in coupled condensate networks

Measurements using a recording CCD image sensor (such as presented in Fig. 4.7) yield

information about the condensate density |¥(x)|2, however, access to the condensate

phase distribution arg [¥(x)] is not obtained. Instead, interference of the condensate
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FIGURE 4.9: Phase measurements in networks of polariton condensate. (a)
Schematic of the homodyne interferometer containing a resonant seed laser injected
onto one non-resonantly pumped polariton condensate. Part of the resonant seed
laser is used as a reference beam in a Mach-Zehnder interferometer configuration.
Ilustrations of the real space laser profiles of (b) resonant seed and (c) non-resonant
pump exciting four polariton condensates. Recorded (d) real space photolumines-
cence (|¥|?)and (e) reference beam profile (|A|?). (f) Interferogram of condensate PL
and reference beam. (g) Digitally extracted condensate phase distribution arg (¥).

emission signal ¥ with a coherent reference wave A allows to encode phase informa-
tion into a spatial amplitude modulation accessible to a recording image sensor. In this
section we describe a homodyne interferometric technique to extract the phase distribu-
tion arg [¥(x)] of a stationary network of coupled polariton condensates. The method
and its application for phase extraction in polariton condensate lattices is published in
Ref. [90].

The interferometer setup is schematically shown in Fig. 4.9(a). We combine the two
cw lasers described in Section 4.3 to excite and manipulate the condensate network.
Both laser beams are synchronously modulated using AOMs into square wave trains
of ~ 5 us duration. While one of the lasers (A ~ 800 nm) serves as a spatially mod-
ulated non-resonant pump laser exciting a network of polariton condensates [Laser
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2 in Fig. 4.6], the second resonant laser (A ~ 857 nm) is used as a low-power seed
laser to lock the phase of one condensate in the network [Laser 3 in Fig. 4.6]. Exam-
ple images of the two laser profiles for (resonant) seed and (non-resonant) pump are
shown in Fig. 4.9(b) and Fig. 4.9(c), respectively. Here, we excite an array of 4 conden-
sates in square geometry and inject a low-power resonant seed beam onto the right-
most condensate only. The focused laser spots of both seed and pump beam have a
FWHM =~ 2 pum at the cavity plane. The seed laser linewidth (=~ 100 kHz) is more
than 5 orders of magnitude narrower than that of the polariton condensate system.
It is important to note that the resonant seed laser locks the phase of one condensate
only, while any formation of spatial coherence across the condensate array is a result of
in-plane coupling (see Chapter 7).

As part of the detection setup illustrated in Fig. 4.9(a) we project the polariton real
space PL (|¥(x,t)|?); onto a CCD image sensor. A portion of the resonant seed laser is
being split by a beam splitter and spatially filtered using a combination of a lens and
a pinhole. An additional lens, which is positioned at the focal distance away from the
pinhole, collimates this reference laser beam and projects a broad beam profile with
nearly flat phase front A(x, t) onto the CCD camera filling the whole image sensor. The
recorded beam profile (|A(x,t)|?); is shown in Fig. 4.9(e). We utilise a beam splitter
to combine both signals (PL and reference laser) and record their interference pattern

Iint(x) as illustrated in Fig. 4.9(f). The interferogram can be written as

Tine(x) = ([¥(x, £)2), + (JA(x, £)|2), + ™1 (A(x, 1) (x, 1)), + e RI% - (A" (x, ) ¥ (x, 1)), -

(4.12)
Here, we have included an adjustable tilt exp (ik|x) in the wavefront of the reference
beam leading to interference fringes as shown in the inset of Fig. 4.9(f). This tilt enables
(off-axis) Fourier-analysis as presented in Section 4.4.2, and makes it possible to dig-
itally extract the mutual coherence function (A(x, f)¥*(x, t)), between seed laser and
condensate PL. Due to the narrow linewidth of the reference laser we can approximate
its optical wave as single-frequency, i.e. A(x,t) = Ao(x) exp (—iwpt). The laser’s fre-
quency wy is tuned to match the peak of the (non-driven) condensate’s power spectral
density. The mutual coherence function can then be written as

T .
(A(x ¥ (x, 1), = Ag(x) lim % [ e (s
T

T—o0

= Ag(x) - ¥(x,w = wy). (4.13)

Here, we have introduced the time-frequency Fourier-transformed order parameter
¥(x,w). We note that ¥(x, wp) is a complex-valued function describing both, spatial
distribution of magnitude [¥| and phase arg (%) of the corresponding polariton mode
with energy fiwy. Aberrations in the phasefront of the reference wave (typically low-

order Zernike polynomials) are incorporated in Ap(x) and can be corrected from the
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result in Eq. 4.13 yielding the condensate phase distribution arg (‘¥ (x, wyp)). The digi-
tally extracted phase map of the four-condensate array is shown in Fig. 4.9(g).

4.4.4 Measurement of spatial correlations in condensate arrays

Synchronisation phenomena in networks of interacting elements, such as lattices of
polariton condensates, can be investigated by means of correlation measurements be-
tween pairs of lattice nodes. When studying coupled polariton condensates we assume
that the macroscopic order parameter ¥(x,t) can effectively be written as a sum of

individual condensate wavefunctions, i.e.
Y(xt) =) i(x—x t). (4.14)
i

Here, ¢;(x,t) represents the wavefunction of the ith condensate node within the net-
work. Because of the strongly localised density of each condensate node i at their spa-
tial position x;, the macroscopic order parameter approximately writes as ¥(x;, t) ~
¥:(0,t). Determination of the complex degree of coherence g(x;, x;), defined in Eq. 3.33,
therefore, gives a measure for the synchronisation of two coupled condensate nodes
located at x; and x;. We further abbreviate the mutual intensity and complex coherence
factor between two condensate nodes i and j as I';; and g;j, respectively. In terms of the
complex-valued amplitudes ¢; these correlation functions can then be written as

Ty = (97 (0,5)9;(0,1)),, (4.15)

and

_ (W 0.);(0,1)), (4.16)

8ij = :
LU 0,01), (190, R),

In this section we describe an experimental technique for determination of the com-

plex coherence factor between any pair of nodes within networks of coupled polariton
condensates. The method and its application in measurements of spatial coherence in

lattices of polariton condensates has been published in Ref. [89].

We utilise a digitally controllable spatial filter for generation of reconfigurable aper-
tures and spatial modulation of the polariton lattice emission. In particular, we selec-
tively mask the real space polariton emission ¥ (x, t) with an aperture P(x) transmitting
only the spatial emission centres of condensate nodes. The masked emission profile
writes then as ¥'(x, t) = P(x)¥(x,t). We approximate the aperture function as the sum
of point-like holes, i.e.

P(x) =AY d(x—x;), (4.17)

1

where A accounts for the finite size of each hole and the sum is performed over the
condensate node locations x; within the lattice. Then, taking into account Eq. 3.37 we
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see that the reciprocal space intensity function [’(k) of the spatially masked emission
is the superposition of partially-coherent point-like light sources,

I'(k) = A% T4, (4.18)
i,j
Here, we have introduced the in-plane spatial displacement d;; = x; — x; between each
pair {i, j} of condensate nodes. Experimental investigation of the masked far field emis-
sion pattern in Eq. 4.18 gives access to information about the spatial correlations I’;; in
arrays of coupled condensates. In particular, for a mask transmitting two condensate
centres only, Eq. 4.18 reduces to the double-hole interference pattern,

Io(k) = L(k) + (k) + 24/ [1 (k) I (k) |g12| cos (kd 1z + 612). (4.19)

The homogeneous intensity profile j{,z(k) of each masked condensate is taken into ac-
count in Eq. 4.19 and arises due to the finite physical aperture hole sizes in our ex-
periment. Measurement of the masked emission profiles ; (k), [(k) and [;,,(k) us-
ing three different apertures allows extraction of coherence |g12| and phase difference
61, = arg (g12) between both condensate nodes by fitting of Eq. 4.19.

In our experiment we utilise a reflective SLM as the core element of the digitally con-
trollable aperture. The optical design is illustrated in Fig. 4.10(a) and is similar to the
space-domain lock-in amplifier system presented in Ref. [91]. Working principle of the
interferometer is demonstrated with the example of a triangular lattice of coupled po-
lariton condensates. Real space and reciprocal space condensate emission are shown in
Fig. 4.10(b) and 4.10(c). The polariton PL is collected using a microscope objective and
polarisation-filtered using a quarter waveplate and polariser. The system only trans-
mits the same polarisation as the circular pump polarisation, and the polariser angle
coincides with the SLM’s optical axis. We project the real space condensate PL onto the
SLM surface (magnification M = 60) and apply a digital phase-hologram that consists
of circularly-masked blazed-phase gratings. Each circular mask coincides with the po-
sition of a condensate node within the polariton lattice. The diameter of each circular
mask amounts for ~ 200 um, and corresponds to an effective diameter of ~ 3 um on
the sample plane. Example phase-holograms for spatial filtering of condensate node 1,
condensate node 2, and condensate nodes 1 + 2 are shown in Figs. 4.10(d-f).

An iris, which is located at the back focal plane of the collecting lens (L1), transmits
only the modulated first diffraction order and blocks any reflected (unmodulated) light.
Importantly, this means that any emission not being projected onto one of the cir-
cular masks displayed in Figs. 4.10(d-f) is blocked by the iris. By using two addi-
tional lenses (L2,L3) we project the masked far field patterns [], I} and Ij_, onto a
recording CCD camera as displayed in Figs. 4.10(g-i). The formation of interference
fringes in Fig. 4.10(i) is a result of the mutual coherence between both condensate
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FIGURE 4.10: Spatial coherence measurements in lattices of polariton condensates.
(a) Schematic of the optical setup for measurements of mutual coherence. (b) Near
field and (c) far field profile of a triangular lattice of polariton condensates. (d-f) Three
different apertures for filtering of the real space PL of either one or two condensate
centres. (g-i) The far field emission patterns after filtering with masks shown in (d-f).
(j) The extracted far field intensity profiles I{, [} and I 4o perpendicular to the inter-
ference fringe orientation displayed in (i). Fitting of the interference profile (dashed
yellow) yields the complex coherence factor g1, between both condensates.

nodes 1 and 2. For each far field measurement [/(k) we extract a 1-D intensity pro-
file [! (k) along the direction vector k|, which is defined as co-parallel to the displace-
ment vector dip, i.e. kjdp = k| |di2|. Fitting of Eq. 4.19 along the direction vector
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k|, and each of the extracted intensity profiles I (kyp), fﬁ(kH) and [f 1o(k) are shown in
Fig. 4.10(j). In this example the fitting yields a coherence |g12| = 0.86 and phase differ-
ence arg (g12) = —0.12 rad between the two condensate nodes. Scanning of all pairs of
condensate nodes i, j within the lattice allows to extract the full coherence map g;; and
to characterise the system’s spatial coherence properties.
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Chapter 5

Delay-Coupled Polariton
Condensates

When the intrinsic time scales appearing in a system of coupled elements, such as the
oscillation period of coupled pendulums, is much longer than the inter-element signal
propagation time, the system is well described as instantaneously coupled. Examples
of dynamical systems with vanishing coupling delay range from mechanical systems
such as Huygen’s clock synchronisation [48], to macroscopic quantum systems such
as evanescently coupled polariton condensates [27]. On the other hand, when signal
propagation times are comparable or longer than the oscillators intrinsic time scales,
the system is subject to time-delayed interactions. The presence of time-delay in cou-
pled dynamical systems is an ubiquitous phenomenon appearing in nature, techno-
logical applications, and socio-economic systems. It largely affects the spread of dis-
eases in pandemics, influences traffic flow, dictates the neurological function of brains,
defines the population dynamics of biological species in predator-prey systems, and
determines the stability of lasers [92]. As previously described in Section 2.4, the ap-
pearance of time-delay in-between coupled elements greatly increases their dynamical
complexity, and gives rise to dynamical effects such as phase-flip bifurcations [58] and
both stabilisation and destabilisation of periodic orbits [2].

In this Chapter the coupling and synchronisation phenomena of spatially separated
ballistically expanding polariton condensates is investigated. It is shown that the sys-
tem can adequately be described by a delay-coupled oscillator model. By controlling
the coupling time-delay (separation distance) between two condensates we observe
phase-flip transitions and switching between fixed point and periodic orbit solutions.
The results have been published in References [78] and [89]. In the following, we be-
gin by summarising the experimental methods and introducing the characteristics of a

single ballistically expanding condensate.
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5.1 Experimental methods

The experimental techniques for excitation and detection of one or two polariton con-
densates with controllable spatial separation distance are described in Section 4.3 and
Section 4.4 of this thesis. Unless otherwise stated, results presented in this Chapter
are acquired using non-resonant cw excitation. The sample in use is a GaAs microcav-
ity, which is described in Section 4.3, and operated at a negative (photonic) detuning
(A = —5.5 meV). The excitation laser is focused onto the sample using a (0.4NA, 20x)
microscope objective lens yielding laser spot sizes of approximately 2 um FWHM.

5.2 Ballistically expanding condensates

It is known that the use of positive (excitonic) detuning and large-size laser excitation
spots (FWHM 2 30 um) generally favours polariton ground state condensation [15].
On the other hand, operation at a negative (photonic) detuning and with a tightly-
focused excitation laser spot was shown to facilitate non-ground state condensation at
finite in-plane momentum |k| > 0 [73, 75]. The origin of this effect lies in the spa-
tially inhomogeneous anti-trapping potential for polaritons introduced by the locally
injected exciton reservoir [93, 94]. Using the notation introduced for the generalised
GPE [Eq. 3.27] the repulsive potential V(x) felt by polaritons can be written as

V(x) = grn(x) + g[¥ (x) % (5.1)

Condensed polaritons are generated with zero in-plane momentum at the pump spot
location coinciding with the maximum of V(x). Subsequent acceleration of particles
away from the pump spot centre leads to radial ballistic expansion” of the polariton

condensate with finite in-plane momentum |k| > 0.

In Fig. 5.1 we illustrate the characteristics of the power-driven phase transition of a bal-
listically expanding polariton condensate. In particular, we show (a-c) the real space
condensate emission, (d-f) the modulus of the system’s complex coherence factor, (h-j)
the condensate momentum space distribution, and (I-n) the spectrally resolved mo-
mentum space emission (dispersion) for varying excitation pump power. Below con-
densation threshold (P < Py,,) the complex coherence factor g(x, —x) depicted in Fig. 5.1(d)
shows a narrow distribution with FWHM ~ 1 um indicating the absence of ODLRO.
The incoherent emission is further evident in momentum space [Fig. 5.1(h)] and dis-
persion images [Fig. 5.1(1)], illustrating a broad particle density distribution both in
reciprocal space and in energy. The condensate phase transition at P = Py, and the
connected emergence of spatial and temporal coherence in the system are discernible
by the formation of ODLRO [Fig. 5.1(e)], the narrowing of density distribution in mo-
mentum space [Fig. 5.1(i)], and the spectral linewidth narrowing [Fig. 5.1(m)]. We note
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FIGURE 5.1: Phase transition of a tightly-pumped polariton condensate. (a-c) Real
space particle density, (d-f) modulus of the complex coherence factor, (h-j) momen-
tum space particle density, and (I-n) dispersion images for excitation powers (left
column) below threshold, (middle column) at threshold, and (right column) above
threshold. (g) Pump power dependency of the modulus of the complex coherence
factor g(xp, —xg) for xg = (0,10 um)”. (k) Condensate emission intensity extracted
by spatial integration of momentum space emission. (o) Power-dependence of the
emission linewidth shown as the spectral FWHM. Small asymmetry in the condensate
emission patterns arises from a small ellipticity of the pump laser beam profile.

that the emergence of spatial coherence (ODLRO) and a narrowing of density distribu-
tion in reciprocal space are inherently connected as described in Eq. 3.37. The macro-
scopic occupation of a single quantum state above condensation threshold P > Py, is
evident by the established long-range spatial coherence exceeding the pump spot size
[Fig. 5.1(f)] and narrow particle density distributions in reciprocal space [Fig. 5.1(j)] and
energy [Fig. 5.1(n)].

Characteristics of the power-driven condensate phase transition are further summarised
in Figs. 5.1(g k,0) showing the spatial coherence |g(xo, —x¢)| with xo = (0,10um)?, the
PL emission intensity, and the extracted spectral linewidth as a function of excitation

pump power P. The phase transition at P = Py, reveals a clear threshold behaviour
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of spatial correlations g(xo, —Xo), an exponential increase of emission intensity, and a

sharp narrowing of the emission linewidth.

In the presented case of a small excitation pump spot an approximate analytical de-
scription of the stationary condensate wave function ¥(x) exp (—iEt/h) outside the
pump region can be obtained [93]. With increasing distance from the central pump
spot location the effective repulsive potential V(x) [Eq. 5.1] vanishes, and the station-
ary generalised GPE [Eq. 3.27] reduces to the linear Helmholtz equation, i.e.

E+4+ I
2m++2

2 .
[h e Y1 g(x) = 0. (5.2)

The physically relevant solution to this equation is given by the Oth order Hankel func-

tion of the first kind, H(()l) (kc|x|), and describes radially outgoing waves with complex-

valued wave vector k, = \/ 2m(E + ifly/2) /h*. The asymptotic expansion of Hél) re-

veals the asymptotic form of the condensate wave function at large distances r,
E—KT’

NED

Here, we have split the complex-valued wave vector k. into real- and imaginary parts,
corresponding to the outflow wave vector k. &~ \/2mE/h? and the spatial decay rate
k = ym/2hk., respectively.

ker |

¥(r — o) ~é (5.3)

We find good agreement between the form of an outgoing cylindrical wave and the
experimentally measured condensate wave form of a tightly-pumped condensate sum-
marised in Fig. 5.2. Here, we excite a ballistically expanding condensate using a nonres-
onant laser with approximately 2 um (FWHM) spot size and pump power P ~ 1.5Py,;.
In particular, we show the experimentally measured real space condensate density
|¥(x)|? [Fig. 5.2(b)], the energy-resolved far field emission [Fig. 5.2(d)], the real space
condensate phase map arg (¥(x)) [Fig. 5.2(e)], and the momentum space condensate
density |¥(k)|? [Fig. 5.2(g)]. The spectrally resolved far field PL depicted in Fig. 5.2(d)
reveals single-mode condensation at elevated energy E ~ 2.22 meV above the LP
ground state. Intersection of the LP dispersion paraboloid E; p (k) with this blue-shifted
iso-energy plane E corresponds to the ring-shaped emission profile visible in momen-
tum space [Fig. 5.2(g)] with radial outflow wave vector k. ~ 1.7 um~!. The spatial
decay of condensate density shown in Fig. 5.2 (c) is fitted with a cylindrical outgoing
wave H(gl) [(kcr)] (red line) outside the pump spot region and yields a spatial decay rate
x ~ 0.014 um~!.

The ballistic expansion of the polariton condensate and its approximate wave form
[Eq. 5.3] are particularly perceptible in the extracted radial phase profile arg (‘¥(r)) as
shown in Fig. 5.2(f). Outside the central pump region a constant linear phase gradient is

clearly visible corresponding to a cylindrically expanding wave front with radial wave
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FIGURE 5.2: Characteristics of a ballistically expanding polariton condensate. (a)
Schematic of the expanding condensate excited by a tightly-focused laser. (b) Mea-
sured real space PL and (c) extracted radial intensity profile. (d) Spectrally resolved
momentum space PL showing single mode emission at energy E ~ 2.22 meV above
the LP ground state. (e) Measured real space phase map and (f) extracted radial phase
profile. (g) Measured condensate PL in momentum space and (h) extracted radial
intensity profile showing density concentration at wave vector k; ~ 1.7 um~1. (i)
Dependence of the outflow wave vector k. versus the FWHM of the pump laser spot.
Results shown in (b-h) correspond to the smallest pump spot size ~ 2 pm (FWHM).

vector k.. The condensate gain center acts as a two-dimensional “antenna’ isotropically
emitting matter-waves with well defined energy E and wavelength A = 27t /k..

By applying a circular aperture with controllable size onto the SLM diffraction holo-
gram in our optical excitation setup [Section 4.3] we effectively modify the NA of our
focusing excitation lens. Via this additional modulation parameter we are able to char-
acterise the dependency of the condensate radial expansion on the excitation pump
spot size. The measured reduction of outflow wave vector k. with increasing pump
spot size is shown in Fig. 5.2(i). We note that, while the threshold pump power Py,
varies with the excitation laser spot size, in Fig. 5.2(i) the pump power P for each re-
alisation was chosen to match P = 1.5Py,. For large pump spot sizes we expect an
asymptotically vanishing wave vector k. — 0 corresponding to ground state condensa-
tion in a spatially homogeneous potential landscape. At small pump spot sizes (< 3 pm
FWHM) we notice a saturation of the outflow wave vector k., which is attributed to the

finite diffusion length of the underlying exciton reservoir.
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FIGURE 5.3: Delay-coupled polariton condensates. (a) Schematic showing the in-
terference of two interfering ballistically expanding polariton condensates with sep-
aration distance d ~ 37 pm. Finite particle transfer time T results in time-delayed
coupling between condensates ¥ and ¥,. Unlike in the case of (b) a conventional
bosonic Josephson junction, the reported time-delayed coupling mechanism between
(c) two ballistically coupled polariton condensates is not mediated by a tunnelling cur-
rent ] (blue dashed line) but by a radiative transfer of particles (blue wavy line). Figure
adapted from Reference [78].

5.3 Ballistically coupled polariton condensates

Conventionally, coupled condensate structures consisting of ultra cold atoms [95], Cooper
pairs [96], photons [97] or polaritons [27, 36] are realised in trapping potentials, and
weakly coupled via tunneling currents (evanescent waves). Here, we detail on the
inverse case, wherein two ballistically coupled polariton condensates act as freely ex-
panding matter-wave sources (or antennas) experiencing dynamics reminiscent to macro-
scopic delay-coupled systems such as externally coupled semiconductor lasers [98].
Wave propagation from one polariton condensate centre to another results in a sub-
stantial phase accumulation, interpreted as a retardation of information flow between
the condensates. A schematic of the time-delayed coupling scheme of two ballistically
expanding polariton condensates is shown in Fig. 5.3(a). The differences between a
bosonic Josephson junction and ballistically coupled polariton condensates are further
highlighted in Figs. 5.3(b) and (c), where we show the conventional regime of coupled
condensates separated by a potential barrier and described by a tunneling current J,
and macroscopically coupled polariton condensates interacting via radiative particle

transfer and subject to a finite propagation time .

The ballistic outflow of tightly-pumped polariton condensates facilitates particle ex-
change and (phase-)coupling of spatially separated condensation centers. This form of
coupling has been investigated in previous studies [33, 41, 99, 100], and manifests itself
in the formation of coherence across a multiplet of condensates. The synchronised state
and established fixed phase differences 0;; between each linked pair of condensates i
and j was shown to depend on parameters such as the condensate separation distance
dij, the outflow wave vector k., and sample disorder potential V(x). The coupling
mechanism has been described with parameters describing instantaneous coupling in
the form of real-valued Josephson coupling [99], imaginary-valued gain-dissipative
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coupling [101], complex-valued coupling [43] or qualitatively as a parameter that max-
imizes the particle number [41, 100] in a system that is driven by bosonic stimulation.

In the following, we present an in-depth study on the ballistic coupling and dynamics
of tightly-pumped polariton condensates. We address in detail the system’s spectral
properties, the formation of synchronised and desynchronised (periodic) states, and
the coherence of two condensates. We show that all features are best reproduced by
coupled-mode equations with time-delayed interaction with strong similarity to the
Lang-Kobayahsi equation [102, 103].

5.3.1 Synchronisation and interference of ballistic condensates

We investigate a system of two tightly-pumped polariton condensates with pump cen-
ters located at x; and x, and assume, that the presence of a second spatially displaced
condensate node does not significantly alter the wave form of a ballistically expand-
ing condensate [Eq. 5.3]. A synchronised state of the two matter-wave antennas is
described by a common frequency w = E/T and a fixed phase difference 1, = const
between the two condensation centres. For such a state, one can express the total con-
densate wave function ¥ (x, t) as the sum of two terms,

¥ (x,t) = pr(x)e” ™" 4 2y (x)e ", (5.4)

where 91 and ¢, represent the cylindrically expanding wave forms of a ballistic polari-
ton condensate centred at their respective locations x; and x,. For a symmetric system,
P2(x) = ¢ (x — d12) with displacement vector di; = x» — X3, and the stationary con-

densate densities in real and momentum space can be expressed as

¥ ()7 = [1(x) + P21 (x — d1a) %, (5.5a)
¥ (K)|* = 2|1 (K)|* [1 + cos (kdyo — 612)], (5.5b)

where |¢1(k)|? denotes the ring-shaped momentum space density of a ballistic con-
densate [see Fig. 5.2(g)]. A synchronised state of the condensate nodes is described by
the presence of interference fringes in both real space [Eq. 5.5a] and momentum space
[Eq. 5.5b] as a result of stable counter-propagating polariton currents originating from
the condensation centres. It is further apparent that the position of interference fringes
in real and momentum space depends on the phase difference 61,. In particular, a bright
(dark) interference fringe at centre of symmetry, i.e. x = (x; + x2)/2 or k = 0, occurs
due to constructive (destructive) interference for an in-phase (anti-phase) synchronised
system. Such states with in-phase (612 = 0) or anti-phase (612 = 7) synchronisation can
equivalently be classified by even or odd parity of the condensate wave function ¥ (x, t)
described in Eq. 5.4.
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FIGURE 5.4: Synchronisation of two ballistically coupled polariton condensates un-
der cw laser excitation. (a) Real space and (b) momentum space PL of two condensates
separated by d = 12 pm. (c) Measured modulus of the complex coherence factor g1,
between the two condensation centres versus laser pump power P. (d) Full width
at half maximum of the measured power spectral density. (e) Spatially averaged PL
intensity. Data shown in (a,b) correspond to pump power P = 1.6Py,,.

An experimental example of two ballistically expanding and coupled polariton conden-
sates with separation distance d = 12 um is pictured in Fig. 5.4. Anti-phase synchroni-
sation of the two matter-wave antennas is evidenced by the formation of interference
fringes with large visibility in real space [Fig. 5.4(a)] and momentum space [Fig. 5.4(b)].
It is important to note that the depicted near field and far field emission patterns repre-
sent time and ensemble averages over thousands of system realisations and, therefore,

the phase difference 61, = 77 is deterministically established.

The coherence between the two condensate nodes can be quantified by the modulus of
their complex coherence factor |g12| as described in Eq. 4.16. In Fig. 5.4(c) we show the
pump power-dependence of 12| revealing absence of coherence below threshold (P <
Py,), a sharp increase of mutual coherence at condensation threshold P = Py, and a
maximum of coherence |g12| = 0.84 above threshold P ~ 1.6Py,,. The decrease of equal-
time correlations expressed by |g12| for larger pump powers P > 1.6Py,, arises due to
the transition to multi-mode lasing and will be discussed in the following Sections. As
expected and shown in Figs. 5.4(d) and (e) the phase transition is also characterised a

sharp reduction in emission linewidth and an exponential increase in PL intensity.

We note, that while the separation distance d = 12 um in Fig. 5.4 was chosen to yield
a stationary state of two polariton condensates with 61, = 7, a change in d can signifi-
cantly alter the synchronisation state. In fact, we observe that opposite to the two-fold
hybridisation of two evanescently coupled polariton condensates [27], the ballistically
coupled system is characterised by a multitude of accessible modes of even and odd
parity (i.e. 0 and 7t phase difference) that alternate continuously between opposite par-
ity states with increasing separation distance d. For a range of separation distances only
one resonant mode is present in the gain region of the system, wherein the polariton
dyad is phase-locked, occupying a single energy level. Between the separation dis-
tances where only one mode is present, we observe the coexistence of two resonances

with opposite parity resulting in non-stationary periodic states, i.e. 612(¢) # const.
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FIGURE 5.5: Characteristics of two ballistically coupled polariton condensates. (a,d)
Real space, (b,e) momentum space, and (c,f) spectrally-resolved momentum space
emission for two condensates with separation distances (a-c) d = 12.7 um and (d-
f) d = 37.3 pm. (g) Normalised power spectral densities shown as blue circles and
red squares, respectively. Absolute values of the energy are given as a blue-shift with
respect to the lower polariton ground state energy. Each condensate is excited by a

non-resonant laser with power P = 1.5Pt(;r) , where Pt(hlr) is the threshold pump power

of a single isolated condensate. Figure adapted from Reference [78].

Examples of the two regimes, stationary and non-stationary, are pictured in Fig. 5.5.
In particular, Figs. 5.5(a,d) show real space PL, Figs. 5.5(b,e) show momentum space
PL, and Figs. 5.5(c,f) show the spectrally resolved momentum space emission along the
dyad symmetry axis ky = 0 for the separation distances d = 12.7 ym and d = 37.3 um,
respectively. Each condensate node is pumped by a non-resonant laser spot with power
P = 1.5Pt(;r), where Pt(}}r) is the threshold pump power of a single isolated condensate.
In the case of the non-stationary state (d = 12.7 um), two lasing modes are clearly vis-
ible in momentum space [Fig. 5.5(b)] and dispersion [Fig. 5.5(c)]. Both of these modes
have well defined but opposite parity to the other. We note that as long as the two
condensate nodes are pumped with equal power, we do not observe formation of any
non-trivial phase configurations. The power spectral densities (PSDs) of single-mode
and dual-mode regimes are compared in Fig. 5.5(g), revealing a general red-shift (re-
duction in energy) compared to the emission energy E ~ 2.22 meV of a single ballistic
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condensates excited with the same pump power P = 1.5Pt(hlr) [see Fig. 5.2(d)]. The ori-
gin of this red-shift is the reduced exciton reservoir population and interaction energy
due to a lower condensation threshold for ballistically coupled polariton condensates
(see Section 6.3.4).

5.3.2 Spectral characterisation

Deeper insight into the dynamics and synchronisation of two ballistically coupled po-
lariton condensates is obtained by investigating the system’s spectral features for con-
tinuously varying condensate node separation distance d. We record the spectrally-
resolved far field emission (dispersion) for more than 400 sample points between d =
5 um and d = 55 um while keeping the excitation pump power per condensate node
constant at P = 1.5Pt(;r) . The extracted and normalised power spectral densities are
illustrated in Fig. 5.6(a), and show that for each distance d the dominant PL signal
is formed by either one or two lasing modes. We note that there also exist configura-
tions with more than two detectable occupied energy levels, but with a relative spectral
weight of the third peak always less than a few percent. In the following, we focus our
analysis to the two brightest lasing modes for each configuration.

Spectral weights and extracted spectral blue-shift of the two brightest lasing modes
for each condensate node separation distance d are illustrated in Figs. 5.6(b) and (c)
using red dots and blue squares to distinguish even and odd parity modes, respec-
tively. We find that the system follows and oscillatory behaviour between the two
parity states, thus giving rise to continuous parity transitions of the condensate order
parameter ¥ with increasing distance d. In other words, this means that the synchro-
nisation state of the two ballistic condensates periodically alternates between stable in-
phase (612 = 0) and anti-phase (612 = 7) configurations, with non-stationary regimes
(612(t) # const) appearing in-between. Each period of these parity oscillations (start-
ing and ending with a vanishing spectral weight) displays an “energy branch’ featuring
a notable reduction in energy with increasing pump spot separation distance d. The
spectral range of each energy branch, i.e. its measurable red-shift with increasing d, is
decaying branch-to-branch, and can be linked to a decaying coupling strength between
the two condensates with increasing distance. In the limit of large separation distances
d — oo the system emission energy coincides with that of uncoupled (isolated) conden-
sates [black dashed horizontal line in Fig. 5.6(c)].

We note the strong similarity between the experimentally recorded spectral composi-
tion of two ballistically coupled polariton condensates for varying distance d shown

in Fig. 5.6 and the presented spectra of two delay-coupled Kuramoto oscillators for
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FIGURE 5.6: Spectral characterisation of two ballistically coupled polariton conden-

sates. (a) Measured normalised power spectral densities (PSD) of two coupled po-
lariton condensates with separation distance d. The non-resonant excitation pump

power P for each condensate node is fixed at P = 1.5P(1), where P(lr) is the threshold
pump power of a single isolated condensate. (b) Spectral weights and (c) blue-shift of
the two most dominant even (red dots) and odd (blue squares) parity modes for each
separation distance d. The emission energy E ~ 2.22 meV of a single ballistic conden-

sates pumped with the same pump power P = 1.5Pt(;r) is illustrated as a black dashed
horizontal line in (c). Vertical grey dashed lines indicate to the two configurations
presented in Fig. 5.5. Figure adapted from Reference [78].

varying time delay T presented in Fig. 2.3(d). Moreover, it has been shown that phase-
flip transitions in non-linear oscillatory systems, accompanied with changes in oscil-
lation frequency to another mode are universal characteristics of time-delayed cou-
pling [56, 104]. Such dynamics are often linked to non-linear electronic circuits [104]
and coupled semiconductor lasers [98], but have also been demonstrated experimen-

tally for other types of time-delayed coupled systems such as living organisms [105],

chemical oscillators [106] and candle-flame oscillators [107].
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5.3.3 Periodic population transfer

Non-stationary states of the coupled two condensate system [as shown in Figs. 5.5(a-c)]
involve periodic transfer of condensate population due to the admixture of even and
odd parity states. Such coherent population oscillations between two polariton con-
densates have been reported for evanescently coupled polariton condensates forming a
bosonic Josephson junction [26, 27] as schematically illustrated in Fig. 5.3(b). While the
oscillations in these trapped systems have been realised under pulsed and asymmet-
ric pumping, the oscillations for ballistically coupled condensates are realised under

symmetric cw excitation, i.e. the oscillations emerge spontaneously.

In the following, we consider the case of a coherent polariton dyad with two co-existing
lasing modes of equal amplitude but opposite parity. The complex amplitudes ()
and ¢, (t) of the two coupled condensates can then be expressed as

P1(t) = go (7 om0t /2, (5.62)
o(t) = ¢o< et _ giwo ) /2, (5.6b)

where we have introduced the time-independent complex amplitude ¥y, and the os-
cillation frequencies of even and odd parity modes as w, and w,. While the total
2 =

population is conserved, |11 ()|* + |a(t) 0|2, the finite frequency splitting A =

|we — w,| leads to the periodic population oscillations

[p1(t)|* = [gpol* cos?(At/2), (5.72)
2 (8)[* = [¢o]* sin®(At/2). (5.7b)

For the dual-mode states in the investigated range of condensate separation distances
fromd = 5 um to d = 55 um [see Fig. 5.6] we measure an energy splitting in the range
of hA = 80 peV to hA = 450 peV. The expected oscillation periods T ~ 10 ps — 50 ps
are well below the ~ ps minimum exposure times of CCD or CMOS sensors, and thus

cannot be directly resolved.

However, indirect assessment of the coherent population oscillations between two cou-
pled polariton condensates can be conducted by measuring first-order temporal cor-
relations between the condensate nodes [for experimental methods see Section 4.4.2].
In particular, the complex degree of coherence [see Eq. 3.33] between two condensate

nodes with complex amplitudes ¢; and 1; is written as

<7~P1 ll]] t+7])>
gij(n) = -
TP (e,

The complex degree of coherence g;i(7) is a Hermitian matrix, and describes auto-

(5.8)

and cross-correlations in the two-condensate system for i = j and i # j, respectively.
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FIGURE 5.7: Periodic (two-colour) states of two ballistically coupled polariton con-
densates. (a) Interferograms of the real space PL of one condensate 1p; with a delayed
version of itself, or with a delayed version of the second spatially displaced conden-
sate 1. (b) Spectrally resolved real space emission of the two condensate system. (c)
Modulus of the complex degree of coherence |g11(#7)| and |g12(%7)| for vaying time off-
set. Inset shows the expected coherence oscillations multiplied with an exponential
decaying envelope. The two condensates shown in (a-c) are separated by a distance
d = 10.3um. (d) Measured modulus of the complex degree of self-coherence |¢11(77)|
in a two condensate system with distance d = 20.0 um and d = 20.5pum, and for a sin-
gle (isolated) condensate. Solid lines represent exponential fits with 1/e decay times
of 7. = 25.5 ps and 7, = 10.2 ps. Figure adapted from Reference [78].

The periodic population oscillations of the dual-mode system, which are described in
Egs. 5.6 and Egs. 5.7, are innately linked to the periodic coherence relations of diagonal
and off-diagonal elements

1811,22(17)| = | cos(An /2)], (5.9a)
181221 (17)| = | sin(An/2)|. (5.9b)

In our experiment we determine the behaviour of the complex degree of coherence
gij(n) in a polariton dyad with distance d = 10.3 pm via interferometric measure-
ments as summarised in Fig. 5.7(a) for diagonal elements (top row) and off-diagonal
elements (bottom row). Energy-resolved real space PL along the axis of the dyad re-
veals occupation of an even and odd parity mode with energy splitting A = 270 peV
[see Fig. 5.7(b)]. The experimentally extracted values of mutual coherence |g12(%7)| and
self-coherence [g11(77)| are shown in Fig. 5.7(c), and demonstrate periodic disappear-
ance and revival of coherence with period T = 15.3 ps, which is consistent with the
observed energy splitting. In good agreement with the expected behaviour [Egs. 5.9]
there is a strong equal-time auto-correlation signal ¢11(0) ~ 1, and a vanishing cross-

correlation signal g12(0) ~ 0 due to the antisymmetric temporal population beatings
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in |1 (¢)|?> and |y ()| In the inset of Fig. 5.7(c) we illustrate the calculated coherence
oscillations [Egs. 5.9] multiplied with an exponential decay accounting for the system’s

finite coherence time.

A comparison of the temporal decay of coherence for a single polariton condensate,
and both single-mode and dual-mode polariton dyad configurations is depicted in
Fig. 5.7(d). Here, we show the measured decay of self-coherence |g11(#)| for a station-
ary (single-mode) dyad with separation distance 4 = 20 pm, an oscillatory (dual-mode)
dyad with distance d = 20.5 um, as well as the decay of self-coherence of a single bal-
listically expanding polariton condensate. All configurations are pumped equally with
power P = 1.7Pt(;r) per condensate node. Interestingly, the ballistic coupling of two con-
densates results in an enhanced coherence time: In case of the single-mode polariton
dyad and the isolated condensate the coherence time 7 is extracted from exponential
fits yielding 7. = 25.5 ps and 7. = 10.2 ps, respectively. The origin of these enhanced
coherence properties is the previously mentioned reduced exciton reservoir population

for ballistically coupled polariton condensates, and is further discussed in Section 6.3.4.

5.3.4 Time-resolved synchronisation

The time-resolved formation of spatial coherence in polariton condensates under non-
resonant pulsed laser excitation has been investigated for both single-[108, 109, 110]
and two-condensate systems [99, 100]. However, in the latter case, a detailed descrip-
tion of the synchronisation process between two condensates in terms of their complex
coherence factor has not been reported. Here, we explicitly address the (time-resolved)

build-up of the complex coherence factor,

CAGIAG)
v (wil?) (lwil?)

for two ballistically coupled condensates with complex amplitudes ¥; and ;.

gij(t) = (5.10)

The experimentally recorded time-averaged real space emission profile of a polariton
dyad under sub-picosecond pulsed laser excitation with separation distance d = 8 um
and pump power P = 1.2Py, is shown in Fig. 5.8(a). The bright interference peak
located at the geometrical centre of the two-condensate system (x,y = 0) indicates in-
phase synchronisation of the two condensate nodes. The synchronisation state is con-
firmed by the Young’s double hole far field interference pattern as shown in Fig. 5.8(b)
[methods detailed in Section 4.4.4], and reveals a large (time-averaged) complex coher-
ence factor |g12| ~ 0.94. By projecting the far field emission pattern onto the entrance
slit of a streak camera with time resolution At = 2 ps we can record the time-resolved
and ensemble-averaged emission of each individual condensate node and their mu-

tual interference as shown in Figs. 5.8(c-e). The origin of the time axis t = 0 is set by
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FIGURE 5.8: Time-resolved synchronisation of two ballistically coupled polariton
condensates with separation distance d = 8 pum. (a) Measured real space PL. (b)
Recorded far field interference when spatially filtering the emission of both condensate
centres as marked with red dashed circles in (a). (c-e) Time-resolved and normalised
far field PL for both condensates interfering (1 + 2) and individually (1, 2), recorded
by projecting the PL onto the entrance slit of a streak camera (red-dashed rectangle
in (b)). Extracted time-dependencies of phase difference 61,(t), the modulus of the
complex degree of coherence g15(f), and the total emission signal I'11(t) + I'2»(t) of
both condensate nodes are shown in (f-h). The origin for the time axis in (f-h) is defined
by the laser arrival time. Light green shaded area in (f-g) marks the full width at half
maximum of the emission signal. Figure adapted from Reference [89].

the excitation laser pulse arrival time. The extracted time-resolved dynamics of the
complex degree of coherence g1, (t) and the total condensate occupation I'1 (¢) + I'aa(#)
with T;(t) = [¢;(t)|? are illustrated in Figs. 5.8(f-h). Interestingly, while the measured
condensate population I'1; () + I'2p(t) reveals a peak signal =~ 50 ps after the excitation
pulse, the mutual coherence g1»(t) reaches complete synchronisation [g12(¢)| = 1 at
shorter time t ~ 41 ps, which is still during the condensate growth time. A difference
in dynamics between condensate population and spatial correlations is also noticeable
in the subsequent temporal decay of the condensate. Exponential fits yield 1/e decay
times of ~ 80 ps and =~ 13 ps for the coherence factor |g12(t)| and the condensate popu-
lation T'11 () + 'z (), respectively. Differences in growth and decay dynamics between
condensate population and coherence in single-condensate systems have previously
been observed in Ref. [108] and Ref. [109].

5.3.5 Spatial coherence

Due to the spatial decay of ballistically expanding condensates [Eq. 5.3] it is expected
that the coupling strength between spatially separated condensates is decaying with
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FIGURE 5.9: Mutual coherence of two ballistically coupled polariton condensates.
Measured (a,d) real space and (b,e) momentum space PL of two condensates under
cw laser excitation and with separation distances d ~ 25 pm and d ~ 110 um. (c,f)
Corresponding Young’s double hole interference patterns, realised by spatially filter-
ing the central ~ 2 um FWHM of each condensate node in real space. (g) Dependence
of the extracted mutual coherence factor gj» on the condensate separation distance d
for cw excitation (blue circles) and pulsed excitation (red triangles). Solid lines repre-
sent Gaussian curve fits to the experimental data. Data shown in (g) are extracted at

constant pump power, which is set at P = 1.6 Pt(}fc*;,m and P = 1.2 Pt(}fg”m) for cw

and pulsed excitation, respectively. Figure adapted from Reference [89].

increasing distance d. From our stability analysis of two coupled phase oscillators de-
scribed in Section 2.3 and illustrated in Fig. 2.2(d) we therefore expect reduced coher-
ence properties between two condensates with large distance d, because relaxation of
perturbations to the synchronised state is less efficient. In the limit of d — oo the un-

coupled polariton condensates are incoherent with g1, = 0.

In our experimental study of mutual coherence across a ballistic polariton dyad for
varying separation distance d we focus on stationary configurations with single-mode
condensation only. For all distances d we set the total non-resonant cw pump power
to the same value P = 1.6Pt(}3r2 kM) where Pt(ﬁrz HM) s the threshold pump power of a
dyad with separation distance d = 12 um [see Fig. 5.4]. Recorded real space and mo-
mentum space PL of two configurations with d ~ 25 pm and d ~ 110 pm are shown
in Figs. 5.9(a,d) and Figs. 5.9(b,e), respectively. The presence of mutual coherence be-
tween the two ballistically expanding polariton condensates for the smaller distance
is visible in the formation of interference fringes in both real and momentum space
[Figs. 5.9(a,b)]. On the other hand, the absence of interference fringes in the emission
patterns of the large ballistic polariton dyad with d ~ 110 um [Figs. 5.9(d,e)] indicates
a desynchronised state. In fact, the far field radiation pattern shown in Fig. 5.9(e) is
the incoherent superposition of two ring-like emission patterns originating from both
polariton condensates. It is important to note that each of the uncoupled condensates
in the large polariton dyad is still pumped above condensation threshold.
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To determine the complex coherence factor g1, between the two condensates we mea-
sured the corresponding Young’s double hole interference patterns [methods detailed
in Section 4.4.4]. The far field interference of the two condensation centers for small
(d =~ 25 um) and large (d ~ 110 pm) distance are illustrated in Figs. 5.9(c) and (f),
respectively. The extracted modulus of the complex coherence factor |g12| for single-
mode polariton dyad configurations with varying separation distance 4 and under cw
excitation are shown in Fig. 5.9(g) using blue circles. We quantify the length over which
synchronisation of the two-condensate system is possible by the effective coherence
length L.,

L= /O Ig(x)]dx, (5.11)

where |g(x)| is the extracted mutual coherence of a dyad with separation distance x. A
Gaussian curve [blue solid line in Fig. 5.9(g)] is fitted to the experimental data yielding
an effective coherence length L. = 40 um. We note that an increase in coherence length
of two ballistically expanding polariton codensates is realisable through an increase of
pump power, i.e. an increase of particle fluxes, and synchronisation of two condensates

beyond 100 um separation distance has been demonstrated [78].

In Fig. 5.9(g) we also show the measured time-integrated modulus of the complex co-
herence factor |g12| for two condensates under non-resonant sub-picosecond pulsed
laser excitation. While both excitation schemes demonstrate similar coherence prop-
erties for small separation distances d < 20 um, the measured coherence |g12| of the
stationary system under cw excitation is enhanced for larger distances d > 20 pm
as compared to the pulsed excitation scheme. A Gaussian curve fit [red solid line in
Fig. 5.9(g)] yields a reduced effective coherence length L, = 25 pm as opposed to cw
excitation. For small separation distances d < 20 pm, i.e. short inter-condensate travel
distances, the build-up of coherence g1»(t) under pulsed excitation is fast enough as
to efficiently synchronise the two-condensate system [see Section 5.3.4] and approx-
imately reach the same coherence as in steady state operation. For larger distances,
however, the increased time-of-flight of particles travelling in-between the two con-
densate nodes becomes noticeable and reduces the complex coherence factor g1, of the
non-stationary system with finite life-time. More detailed studies on coupled ballistic
polariton condensates under non-resonant pulsed excitation are presented in Chap-
ter 6.

5.3.6 Multi-mode condensation

While at moderate pump powers (P < 2Py,,) we observe dominant occupation of only
one or two modes in the spectra of two coupled polariton condensates, for larger pump

powers (P > 2Py,,) and, hence, increased non-linear interaction energy a transition into
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FIGURE 5.10: Multi-mode condensation of polariton condensates at large pump
powers. (ab) Spectrally resolved real space emission and (c,d) spectrally resolved
momentum space emission of two condensates with pump spot separation distance
d ~ 25 um for pump powers P = 1.4Py,, and P = 4.1Py,,. White arrows in (a,b) mark
the pump spot locations, and white dashed curves in (c,d) represent the LP branch in
the linear regime. (e) Normalised spectra of the two-condensate system with continu-
ously increasing pump power P indicating the transition to multi-mode emission.

multi-mode condensation becomes apparent. Spectrally resolved real space and mo-
mentum space emission images of a polariton dyad with pump spot separation dis-
tance d ~ 25 um are shown in Fig. 5.10(a-d) for moderate and large cw pump powers,
respectively. At smaller pump power P = 1.4Py, [Fig. 5.10(a,c)] only two modes are
macroscopically occupied, and both of them share large spatial overlap with the laser-
induced pump spot locations (white arrows). This state resembles periodic population
oscillations between two ballistically coupled condensation centres described in Sec-
tion 5.3.3.

At larger pump power P = 4.1Py, [Fig. 5.10(b,d)] a clear blue-shift of the emission
spectrum and the occupation of additional lower-energy modes are present. These
spectral modes resemble the eigenmodes of the quantum harmonic oscillator formed
by the pump-induced near-parabolic confinement potential along the dyad-axis [34].
The appearance of "trapped condensates’ [35] for increasing pump power is attributed
to the increased gain of the low-energy modes penetrating into the laser-induced spa-
tially localised gain regions, and to the increased nonlinear particle interactions facil-
itating efficient relaxation to the equidistant energy modes of the near-parabolic po-
tential [34]. Mode-locking of the trapped condensation modes further leads to the for-
mation of non-dispersive polariton wavepackets (solitons) oscillating between the two
pump spots [34, 99]. The continuous transition of the two-spot system from dual-mode
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FIGURE 5.11: Resonances of two complex-valued J-shaped potentials. (a) Schematic

showing the potential landscape V(x) of the one-dimensional Schrdinger equation.

Calculated (b) imaginary and (c) real parts of the eigenvalues E;, + in Eq. 5.15. The two

solutions with largest gain (imaginary part of E) are illustrated as solid lines; other

solutions are shown as dotted branches. Numerical parameters: (Vp) = 1 meV um,

$(Vp) = 2 meV um, m = 0.28 meV ps® um~2, ¢ = 1/5.5 ps~!. Figure adapted from
Reference [78].

condensation at moderate pump powers (small particle densities) to multi-mode con-
densation at large pump powers (large particle densities) is illustrated in Fig. 5.10(e).

5.4 Analytical description

A simplified analytical description of the presented two-condensate system can be ob-
tained by calculating the resonances of a one-dimensional Schrodinger equation with
two complex-valued J-potentials accounting for the two pump-induced and spatially
localised gain centres. The non-hermitian time-independent problem can then be writ-
ten as

1?92

E¥(x) = |~ +V(x)—ih27 ¥(x), (5.12)

where V(x) = Vod(x —d/2) + Voé(x + d/2) describes two é-shaped potentials with
separation distance d [see schematic in Fig. 5.11(a)]. The complex-valued parameter
Vo describes a repulsive potential wall (R(Vy) > 0) and gain (3(Vp) > 0) that is felt
by the particle wave function ¥(x). Eigenfunctions of Eq. 5.12 describing outwards

propagating waves with complex-valued wave number k are further written as

Aeiikxl X S _d/zl
Y(x) =< Be + Cem*x, —d/2<x<d/2, (5.13)
De**, x>d/2.
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The parameters A, B, C and D describe the complex-valued amplitudes of each particle
wave depicted in Fig. 5.11(a). Solutions with even parity are described by A = D
and B = C, whereas for solutions with odd parity one finds A = —D and B = —C.
The system contains infinitely many resonances of both (+) even and (—) odd parity
characterised by the integer number n € Z:

i

kn,:t - d

[—V + Wn(qEVeV)} , (5.14)
Here, we have substituted V = mdV,/h#* and introduced W,, to describe the branches
of the Lambert W function. The corresponding complex-valued energies E, + of each
resonance are given as
Wkie iy
En+ = — =
’ 2m 2

Calculated solutions of the imaginary parts S(E, + ) and real parts R(E, 1 ) for varying

(5.15)

potential separation distances d are depicted in Figs. 5.11(b) and (c). In close analogy
to the experimental findings of two ballistically coupled polariton condensates [see
Fig. 5.6] the simplified one-dimensional toy-model describes periodic transitions be-
tween even and odd parity resonance yielding largest gain [solid lines in Fig. 5.11(b)],
as well as the formation of distinct energy branches [solid lines in Fig. 5.11(c)]. Further-
more, while there are periodically alternating regions of even and odd-parity solutions
dominating the gain, the transition region is always described by two resonances hav-

ing equal gain, i.e. dual-mode operation is expected in the transition region.

5.5 Delay-coupled oscillator model

Instead of solving the simplistic one-dimensional Schrdinger equation in Eq. 5.12 ex-
actly, we aim to reformulate the problem as a system of two coupled (condensate) os-
cillators, where each condensate i = 1,2 causes a ballistically propagating wave 1;(x)
emerging from the condensation centres. We rewrite the time-dependent wave func-

tion ¥ (x, t) as the superposition

Y(x,t) =ci1(t)p(x) + c2(t)ya(x), (5.16)

where c1 () describe the state of each condensate (or oscillator). Normalised forms for
the one-dimensional spatial wave functions are given as ¢ »(x) = /k exp (ik|x = d/2|)
with complex-valued wave number k = k. + ix. In a next step we assume weak cou-
pling between both condensates, i.e. small overlap terms ¢ = exp(—xd), such that any
terms of order O(&?) or higher can be neglected. By substituting Eq. 5.16 into the time-
dependent form of Eq. 5.12, and integrating out the spatial degrees of freedom [78], one
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obtains

¢ + Voeikdc‘, (5.17)
]

- h2k2 ih'y ih%k
ihe; = lzm_z <V0_m

where j = 3 —iand i = 1,2 are the two condensate indices. Importantly, the last term
in Eq. 5.17 shows that the coupling in-between the two condensates is mediated by a
coherent flux of particles with phase-retardation k.d as opposed to evanescent coupling
(tunnelling) in trapped condensate systems. When the amplitudes c;(t) and c;(t) are
oscillating at a fixed frequency w, the phase shifting-term k.d can be transformed into
an effective time-delay, i.e.

eikdcj(t) = e”‘dcj(t —1). (5.18)

The time-delay T = k.d/w represents an interaction lag between both condensation
centres due to their spatial separation, and the exponential term exp (—xd) accounts

for the spatial decay of the polariton flux.

By re-introducing polariton non-linear interactions, and the dynamics of reservoirs #;
[see Eq. 3.27 and Eq. 3.28] one can write the full non-linear equation of motion for the

two delay-coupled condensates as

ici(t) = [Q—iFJr( ) t) + alci(t)] } ci(t) + JetPe;(t — 1), (5.19a)

ii(t) = — (Ca + Rlci(t) (5.19b)

Here, () and I’ are the condensate eigenfrequency (self-energy) and loss rate, g and R
represent reservoir-induced blue-shift and stimulated scattering rate, « is the effective
polariton nonlinearity, ] and f are magnitude and phase of the coupling term, and
I'4 and P are reservoir loss and pump rate. It is not surprising that equations 5.19
have strong similarity with the Lang-Kobayashi equations [102, 103] used to describe
externally coupled lasers subject to time-delayed interaction. While in the case of two
externally coupled lasers there is propagation of photons in-between the two cavities,
in our case there is propagation of polaritons in-between two gain-centres localised in

a two-dimensional microcavity.

The spectra of two ballistically coupled polaritons [see Fig. 5.6] can be reproduced using
the delay-coupled oscillator model [Egs. 5.19] by scaling the coupling strength param-
eter | with the approximate spatial amplitude of a ballistic polariton condensate,

J(d) = Jo| H" (kd)|, (5.20)

and assuming that the time-delay approximately scales proportional to the separation
distance, i.e. T = d/v. Excellent agreement between the spectra obtained from experi-
ment and from the delay-coupled oscillator model is shown in Fig. 5.12 (a), where we

illustrate the normalised PSD from experiment (false colour scale), and the numerically
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FIGURE 5.12: Time-delayed coupled polariton condensates. (a) Comparison of ex-
perimentally measured power spectral densities (false colour scale) of two ballistically
coupled polariton condensates with separation distance d, and numerically calculated
spectral peaks (blue dots) of two delay-coupled oscillators [Egs. 5.19] with time-delay
T = d/v. (b) Power spectral densities and (c) phase-space diagrams for the anti-
phase to in-phase transition of the numerically calculated delay-coupled system for
increasing separation distance d = 20 um to d = 21 pum. Numerical parameters:
Q) = 122 meV, il = 0.5 meV, ig = 0.5 peV, iR = 0.5 peV, in = 0.1 peV,
v =19 um ps™!, P = 100 ps™!, T4 = 0.05 ps™!, iy = 1.1 meV, B = —1, and
k = (1.7 +0.014) um~1. Figure adapted from Reference [78].

calculated spectral peak from Egs. 5.19 (blue dots) when in single mode operation, or
the two most dominant spectral peaks when multiple spectral components exist.

Numerical integration of Egs. 5.19 for increasing separation d also reproduces the ex-
perimental findings of periodic parity-flip transitions accompanied by periodic solu-
tions (population oscillations) in the transition region. In particular, we illustrate the
spectral transition of the delay-coupled oscillator system from an anti-phase to an in-
phase synchronisation configuration in Fig. 5.12(b). The corresponding phase-space
diagrams are pictured Fig. 5.12(c) showing periodic orbits in the transition region, and
involve oscillations in the population imbalance z = (|c1|> — |c2]?)/(|c1]? + |c2|?) and
the phase difference 6 = arg (cjc2).
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5.6 Conclusion

Ballistically expanding polariton condensates offer a platform for exploring optically
controllable synchronous phases in coupled condensate networks. Synchronisation
of two condensates over macroscopic distances d > 100 um have been realised [78],
highlighting the prospect for applications in extended configurations. We observe that
the dynamics of two ballistically coupled polariton condensation centres is not dic-
tated by two hybridized (binding and anti-binding) modes [111], but by an infinite
amount of coupled modes that can be considered as the Fabry-Perot resonances of
an effective complex-valued double-d-potential. The introduction of time-delay into
a set of coupled oscillator equations fully reproduces the experimentally observed phe-
nomena, and describes polariton condensates as picosecond, nonlinear oscillators sub-
ject to time-delayed interactions. The intrinsic high-dimensional state space of delay-
coupled systems makes ballistically coupled polariton condensates a promising plat-
form to investigate neuro-inspired classification tasks such as pattern and speech recog-
nition [112, 113, 114].

5.7 Disclaimer

Experimental studies presented in this Chapter were conducted by J. D. Topfer, L.
Pickup, and T. Cookson. Theoretical description and numerical simulations were car-
ried out by J. D. Topfer, and H. Sigurdsson. Figures and text description presented in
this Chapter are adapted from published References [78] and [89].
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Chapter 6

Engineering Coherence In Networks
Of Polariton Condensates

The transition into synchrony and the formation of coherence between coupled ele-
ments is a universal concept arising in nature and technology [5]. In our previous
discussions we have detailed on the synchronisation of macroscopic entities such as
two coupled metronomes [see Section 2.3], as well as the emergence of spatial coher-
ence across a driven-dissipative quantum system realised in semiconductor microcavi-
ties [see Chapter 5]. In either case, synchronisation between two oscillating mechanical
pendulums or between two ballistically expanding polariton condensates is manifested
in the formation of a fixed phase relationship between the two nonlinear oscillating el-
ements [see Section 2.2]. Stability of such phase-locked states generally depends on
the inter-element coupling strength in competition with any present dephasing mecha-
nisms and, therefore, limiting noise sources and reducing any oscillator frequency mis-
match is key to improve synchrony. Furthermore, in larger systems consisting of many
coupled elements the underlying coupling topology (or network architecture) is known
to critically influence the system dynamics and formation of coherence [115]. In tech-
nological applications the engineering of spatial coherence in large coupled networks
is then an important element for increasing system performances as in power-grid net-
works [116], neuroinspired computational devices [117], and laser arrays [118].

Coherent phenomena in networks and lattices of coupled condensates are investigated
for the study and simulation of phase transitions and computationally complex tasks
such as in atomic [30, 119], photonic [97] and polaritonic [39, 41, 120] platforms. While
the performance of these laboratory systems is ultimately limited by the systems spatial
coherence length (i.e. how many condensates can coherently be coupled), large-scale
synchronisation in lattices is often hindered by an inhomogeneous distribution of nat-

ural frequencies (energies), e.g. due to an unavoidable disorder potential [121].
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In this Chapter we detail on the application of a feedback laser scheme [see Section 4.2.2]
to balance the condensate density across networks and lattices of ballistically coupled
polariton condensates. By doing so we overcome the challenges of mode localization
and condensate dephasing due to sample non-uniformities and non-homogeneous gain
distribution. Density-stabilisation of polariton lattices results in a homogeneous and
macroscopically coherent state with near-diffraction limited far field emission. Fur-
thermore, we detail on the critical implications of dimensionality and connectivity of
the lattice architecture (i.e. number of neighbouring condensate sites) onto power con-
sumption and spatial coherence properties in lattices of driven-dissipative condensates.

The results presented in this Chapter have been published in Reference [89].

6.1 Experimental methods

The experimental techniques for both excitation and detection of coupled polariton
condensates are described in Section 4.3 and Section 4.4 of this thesis. The iterative al-
gorithm for active stabilisation of the condensate node emission intensities in optically
excited networks and lattices is described in Section 4.2.2. All experimental results pre-
sented in this Chapter are acquired using non-resonant sub-picosecond pulsed laser
excitation with circular polarisation. While we are typically limited to structures of
< 100 condensates with cw laser excitation, the use of pulsed excitation allows for the
generation of coherent lattices with > 100 condensates. The sample in use is a GaAs-
based planar microcavity, which is described in Section 4.3, and operated at a negative
(photonic) detuning (A ~ —5 meV).

6.2 Condensate density stabilisation

The iterative algorithm for homogenisation of spatial laser profiles described in Sec-
tion 4.2.2 of this thesis is applied to the emission intensities of non-resonantly excited
and ballistically coupled polariton condensates. A schematic of the experimental im-
plementation is illustrated in Fig. 6.1(a). We operate a phase-only SLM in the Fourier
plane of the optical excitation setup allowing for holographic control over the (pump)
laser spatial profile on the microcavity sample plane. Iterative read-out of the conden-
sate emission, and nonlinear adjustment of the excitation pump profile allows us to
engineer macroscopic polariton lattices (> 100 nodes) with homogeneous condensate
node density distribution (typically < 1 % RSD).

We find good results for stabilising the density distribution in coupled polariton net-
works pumped at condensation threshold P 2 Py,,. Stabilisation at larger pump pow-
ers P > Py, however, is impeded using the presented technique - which operates at
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FIGURE 6.1: Condensate density stabilisation in polariton lattices. (a) Schematic of
the experimental feedback loop that iteratively analyses the condensate emission and
adjusts the spatial pump profile in order to equalise the condensate emission intensity
across the whole lattice. (b) Integrated emission intensities of 61 condensates at con-
densation threshold (P = Py,,) arranged in a triangular configuration with lattice con-
stant a = 14.9 pum for (blue squares) no condensate density stabilisation and (red cir-
cles) with stabilisation. Inset shows the condensate number indexing. (c,d) Recorded
real space emission and (e, f) measured complex coherence factor g;; between the cen-
tral condensate node 1 and each other condensate node j = 2, ..., 61 without and with
condensate density stabilization, respectively. False colour-scale and pseudo-spins
(black arrows) in (e) and (f) depict magnitude g1; and phase 6;; = arg (12). Data
shown in (c-f) are extracted at a total pump power P = 1.2Py,. Scale bars in (c-f)
correspond to 20 um. The Figure is adapted from Reference [89].
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a typical rate of 60 Hz - because of stronger nonlinear effects resulting in nonstation-
ary condensate dynamics on a picosecond timescale [see Section 5.3.6]. We note that
the described method of iterative condensate density stabilisation is applicable to both
periodic and non-periodic structures of polariton condensates.

A comparison of an experimentally realised polariton triangular lattice (61 condensate
nodes, lattice constant 4 = 14.9 um) with and without density stabilisation is sum-
marised in Figs. 6.1(b-f). In particular, the averaged emission intensities within the
FWHM of each condensate node at condensation threshold P = Py, is illustrated in
Fig. 6.1(b). Without condensate feedback, i.e. by using the conventional GS algorithm
for generation of pump laser profiles, a broad distribution of condensate emission in-
tensities becomes apparent with large spread ~ 37 % (RSD). It originates from a non-
homogeneous distribution of effective gain for each condensate node and is caused by
multiple factors, such as the finite accuracy of the GS algorithm, optical aberrations
in the excitation system, an unavoidable sample disorder potential, and edge-effects
due to the finite size of the lattice [101]. Compensation of these detrimental effects is
achieved by active stabilisation of the lattice node densities via the described closed-
loop feedback mechanism with density distribution spread of ~ 1 % (RSD), which is
only limited by noise in the experimental system.

The effects of density stabilisation onto symmetry and coherence of the macroscopic po-
lariton system are particularly perceivable in the real space condensate emission images
displayed in Figs. 6.1(c) and (d) for system realisations without and with stabilisation,
respectively. In both cases, the presence of interference fringes in-between the ballis-
tically expanding condensates is a result of phase-locking between nearest neighbour
(NN) condensates. However, in case of no active density stabilisation [Fig. 6.1(c)] there
is a lack of symmetry in spatial orientation of interference fringes across the lattice,
indicating a broad distribution of relative phase differences 6;; between condensation
centres. The striking homogeneity of node densities and interference fringe patterns in
case of active stabilisation [Fig. 6.1(d)] implies in-phase synchronisation (0;; = 0) and

the presence of long-range order across the whole triangular lattice.

Enhanced coherence properties of the stabilised condensate lattice are revealed by di-
rect measurements of the complex coherence factor g;; between pairs of condensate
nodes [see Section 4.4.4 for methods]. In Fig. 6.1(e) and (f) we illustrate magnitude
|g1;] and phase 60;; of the coherence factor between the central condensate node (index
1) and each other condensate node (index j) within the triangular lattice using false
colour scale and pseudo-spins (black arrows). In case of active density stabilisation
[Fig. 6.1(f)], there is an enhanced and isotropic decay of spatial coherence |g1;, as well
as a more homogeneous distribution of relative phase differences 6;. The reduced co-
herence properties and broader distribution of phase differences for the non-stabilised
polariton lattice [Fig. 6.1(e)] are the result of the spatially varying density distribution,
causing different blue-shifts (or eigenenergies) and different particle fluxes across the
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lattice nodes. We note that similar results have been described in Section 2.3 for the case
of two coupled phase-oscillators, where unequal oscillator properties in the form of a
frequency detuning A was shown to cause both a phase drift, and reduced coherence
properties.

The slight increase of phase differences 6y; (or rotation of pseudo-spins) towards the
edges of the stabilised triangular polariton lattice [Fig. 6.1(f)] is an expected finite-size
effect and is related to the finite flux of particles escaping the system [101]. In the case of
an ideal triangular lattice of infinite size, one would expect a homogeneous distribution
of phases with ¢;; = 0 for all condensate pairs due to translational invariance [see
Section 6.3.3 for details].

6.2.1 Near-diffraction limited emission of stabilised condensate networks

In close analogy to "time-of-flight” expansion measurements utilised in cold-atom sys-
tems [70] and beam interference experiments in coupled laser arrays [122], the global
coherence properties in polariton condensate lattices can be probed by far field mea-
surements. To remove residual PL coming from polaritons outside the condensation
(gain-)centers we spatially filter the emission of each condensation centre using a pro-
grammable aperture described in Section 4.4.4, and measure the interference of the
masked condensate emission in the far field.

As schematically shown in Fig. 6.2(a) we project the condensate near field PL [Fig. 6.2(b)]
onto the programmable aperture consisting of a triangular lattice of point-like holes
[Fig. 6.2(c)], and subsequently image the diffraction pattern (far field interference) onto
a recording CCD sensor [Fig. 6.2(d)]. The measurable intensity pattern I(k), expressed
in reciprocal space coordinates k, is innately linked to the coherence properties of the
condensate lattice [see Eq. 4.18],

f(k) = Az Zl"ijeikd"f, (61)

ij
where A expresses the finite physical size of each aperture hole, and I';; and d;; = x; — x;
are mutual intensity and displacement of each pair of condensates. Of particular inter-
est is the limiting case of a fully-coherent lattice with I';; = Iy for all pairs of conden-
sates, such that the far field diffraction pattern reduces to the well-known Fraunhofer

diffraction formula,
2

I(k) = A%l (6.2)

eikx,-
&

It is apparent from Eq. 6.2 that in case of a periodic structure (lattice) of identical and

fully-coherent light sources sampled at locations x;, the far field intensity pattern (k)

displays the system’s reciprocal lattice. The appearance of the reciprocal triangular
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FIGURE 6.2: Near-diffraction limited emission of a stabilised polariton lattice. (a)
Schematic of the experimental detection setup with microcavity (MC), microscope ob-
jective lens (MO), lenses (L1,L2), programmable aperture (PA) and charge-coupled de-
vice (CCD). (b) Real space PL, (c) real space masking aperture and (d) corresponding
far field interference pattern of a triangular polariton lattice consisting of 61 conden-
sate nodes. Zoom into the first Brillouin zones of the far field condensate emission for
excitation (e) without feedback and (f) with feedback. (g) Analogous far field emission
of a calculated ideal system consisting of 61 fully-coherent point sources. (h) Intensity
profiles of the central Bragg peak along the symmetry axis ky = 0 for the far field emis-
sion of (blue dashed) the non-stabilised lattice, (red dash-dotted) the stabilised lattice,
and (black solid) the diffraction limited case of a fully-coherent lattice. (i) Correspond-
ing pump power dependencies of the central Bragg peaks” FWHM. Data shown in
(b,d e f) are recorded at pump power P = 1.2Py,, and are illustrated using the same
logarithmic colour scale shown for (g). The Figure is adapted from Reference [89].

lattice shown in Fig. 6.2(d), therefore, indicates the presence of long-range coherence
across the lattice of condensation nodes [Fig. 6.2(b)].

A zoom into the first Brillouin zones of the recorded far-field emission pattern for the
triangular condensate lattice excited without and with density stabilisation are illus-
trated in Figs. 6.2(e) and (f), and compared to the calculated far-field emission pattern

of 61 superimposed fully coherent point-sources in equivalent periodic arrangement
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[Eq. 6.2] as shown in Fig. 6.2(g). While there is good agreement between the measured
far field emission of the stabilised polariton condensate lattice and the calculated recip-
rocal space intensity of a fully-coherent in-phase lattice, deviations of the non-stabilised
lattice from the ideal fully-coherent system highlight its reduced coherence properties.

Comparison of the lobe intensity profiles of the central far field emission (Bragg) peak
located at k = 0 is shown in Fig. 6.2(h). We note that the presented emission lobe
profile of the ideal full-coherent system (black line) represents the diffraction limited
interference peak. The increased widths of the experimentally measured peaks with
(red dash-dotted line) and without (blue dashed line) density stabilisation are then the
result of finite coherence length. The extracted FWHM of the central interference peak
for varying laser pump power P is shown in Fig. 6.2(i). Near-diffraction limited emis-
sion of the stabilised condensate lattice is found at P = 1.17Py,, with an emission lobe
width that is &~ 14 % larger than the diffraction limited spot size. Reduced coherence
in the non-stabilised lattice result in a spot width that is ~ 49 % larger than in the case

of a fully-coherent system.

6.3 Spatial coherence in polariton lattices

By utilising the described methods for all-optical generation of homogeneous (density-
stabilised) arrangements of polariton condensation centres, we engineer various net-
works and lattice types of ballistically coupled condensates within the same defect-free
sample area. Therefore, by eliminating physical differences between different micro-
cavity samples or different sample locations, we can accurately study the dependency

of system power efficiency and coherence properties on the underlying coupling topol-

ogy.

6.3.1 A polariton chain

In a first step, we investigate a stabilised linear array (chain) of 11 equidistant polari-
ton condensates with lattice constant 2 = 12.1 um. The chosen condensate spacing
yields single-mode emission and favours anti-phase synchronisation between NN con-
densation centres. Experimentally recorded real space and momentum space emission
patterns of the polariton chain pumped at P = 1.2Py,, are shown in Figs. 6.3(a) and (b).
The real space periodic interference pattern appearing in horizontal direction depicts a
polaritonic analogue of the optical Talbot effect [123].

Measured magnitude |g;;| and phase 6;; of the complex coherence factor between any
pair of condensates is shown in matrix form in Fig. 6.3(c). Row and column indices i
and j denote the the pair of condensates [indices denoted in Fig. 6.3(a)], and due to Her-
miticity of the correlation matrix we make use of the relation g;; = g7;. While the system
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FIGURE 6.3: A polariton chain of ballistically coupled condensate nodes. Recorded

(a) real space and (b) momentum space emission of 11 density-stabilised condensate

nodes arranged in a chain with separation distance a = 12.1 um. The pump power is

kept at P = 1.2Py,, for all data shown. (c) Correlation matrix showing magnitude and

phase of the measured complex coherence factor g;; between any pair of condensate

nodes. Condensate indexing is shown in (a). Scale bars in (a) and (b) correspond to
20 ymand 1 pm~1, respectively. The Figure is adapted from Reference [89].

exhibits strong anti-phase synchronisation between NN, there is a loss of anti-phase
order for increasing separation distances |i — j| > 1, i.e. towards the off-diagonal ma-
trix elements. The spatial decay of coherence in the polariton chain is further described
in Section 6.3.4 and compared to other lattice types.

6.3.2 A polariton square lattice

In a next step, we increase the dimensionality of the coupled condensate network by
investigating an 11 x 11 polariton square lattice of equivalent lattice constant 2 =
12.1 pum. Recorded real space and momentum space condensate emission patterns
are shown in Figs. 6.4(a) and (b) for an excitation laser pump power P = 1.2Py,,. The
regularity and large visibility of real space interference patterns, as well as the distinct
diffraction pattern appearing in reciprocal space both indicate anti-phase synchronisa-
tion between NNs and macroscopic coherence across the lattice.

Measured magnitude |g;;| and phase 6;; of the complex coherence factor between the
central condensate node located at x = 0 (index 1) and each other condensate node
(index j = 2,...,121) are shown in the correlation map in Fig. 6.4(c). The observed anti-
phase ordering for NNs is isotropically decaying with increasing condensate node sep-
aration distance, i.e. towards the edges of the lattice. However, we note that coherence
|g1;| does not drop below 0.3 for the given separation distances as large as d;; ~ 86 um
(center-to-edge distance). Further discussion of the spatial decay of coherence in the
polariton square lattice and comparison to other systems is given in Section 6.3.4.
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FIGURE 6.4: A two-dimensional polariton lattice of ballistically coupled conden-
sate nodes. Recorded (a) real space and (b) momentum space emission of 121
density-stabilised condensate nodes arranged in a square lattice with lattice constant
a = 12.1 pm. The pump power is kept at P = 1.2Py,, for all data shown. (c) Spatial
coherence map showing magnitude and phase of the measured complex coherence

factor g1; between the central condensate node (index 1) and any other condensate

node (index j = 2, ...,121). Scale bars in (a) and (b) correspond to 20 pm and 1 pum— 1,

respectively. The Figure is adapted from Reference [89].
6.3.3 Finite-size versus infinite lattices

Finite-size effects in polariton condensate lattices cannot be avoided in an experimental
setting, but can effectively be reduced by increasing the lattice size. In coherence mea-
surements presented in Fig. 6.1(f) and Fig. 6.4(c) a loss of phase-coherence (or rotation
of pseudo-spins) towards the edges is observed and attributed to the finite system size

and its concomitant finite flux of particles through the boundaries of the system [101].

For numerical simulations finite system sizes must be taken into account as well, al-
though edge effects can effectively be avoided by applying periodic boundary con-
ditions. A comparison of numerical simulations of the two dimensional GPE for a
square lattice of ballistically expanding polariton condensates without and with peri-
odic boundary conditions is shown in Fig. 6.5. In case of no periodic boundary con-
ditions (‘finite size lattice’) there is a distinct rotation of phases 6; towards the edges
of the lattice, which is in good agreement with experiment [Fig. 6.4(c)]. When remov-
ing the non-zero flux of particles escaping the system by applying periodic boundary
conditions ('infinite lattice”) to the numerical simulations, a homogeneous distribution
of phases 0;; = 0, r emerges as shown in Fig. 6.5(d). In fact, the translational invari-
ance present in the infinite system (realised by periodic boundary conditions) leads to
spatially invariant coherence properties.
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FIGURE 6.5: Finite-size effects in polariton lattices. Numerical simulation of the

GPE for a square lattice of ballistically expanding polariton condensates with damped

(a,c) and periodic boundary conditions (b,d) under non-resonant pulsed excitation.

(a,b) Time-integrated condensate density (|'¥|); and (c,d) complex coherence factor g;;

between the central condensate node (index 1) and each other node (index j). The
lattice constant is @ = 12 um. The Figure is adapted from Reference [89].

6.3.4 Enhanced coherence in coupled lattices

Comparison of the experimentally determined spatial coherence properties of ballisti-
cally coupled polariton condensates is summarised in Fig. 6.6 for the previously de-
scribed network architectures; two coupled condensates (dyad, see Fig. 5.9), a 1D chain
[see Fig. 6.3], and 2D square (see Fig. 6.4) and triangular lattices (see Fig. 6.1). In par-
ticular, the effective spatial decay of coherence |g;;| with increasing condensate node
separation distance d;; in each network is shown in Fig. 6.6(a). In case of the 1D and
2D periodic structures, the data points for different distances d;; correspond to differ-
ent pairs of condensates {i, j} within each system. For the polariton dyad, the physical
separation distance dj, between two condensation nodes is varied while keeping the
pump power P constant.

As previously described in Section 5.3.5 the spatial decay of coherence |g1| for the two-
condensate system with varying separation distance d; is well described by a Gaussian
decay [grey solid curve in Fig. 6.6(a)] and an effective coherence length L. ~ 25 um (see
Eq. 5.11). While this effective coherence length does not describe the spatial coherence
properties within one system realisation, it is a measure for the distance over which
coherent coupling of the two condensates is possible. On the other hand, the experi-

mentally determined spatial decay of coherence |g;;| in 1D and 2D periodic structures
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FIGURE 6.6: Comparison of spatial coherence in different networks and lattices of
ballistically coupled polariton condensates. (a) Measured spatial decay of (grey tri-
angles) a two-condensate system with variable separation distance, (blue square) a
chain with lattice constant 2 = 12.1 pum, (yellow circles) a square lattice with lattice
constant 2 = 12.1 pm, and (red diamonds) a triangular lattice with lattice constant
a = 14.9 pm. Solid curves represent a Gaussian fit for the two-condensate system, and
exponential fits for the 1D and 2D periodic structures, respectively. (b) Excitation pulse
energy dependence of the coherence |g12| between the central-most condensate node
(index 1) and one of its NNs (index 2) for the 1D and 2D periodic structures, and be-
tween two condensates with distance d1p = 12.7 um for the case of a dyad. Arrows in
(b) indicate the pump power P ~ 1.2Py,, used for measurements presented in (a). Ex-
tracted (c) effective coherence length L. and (d) threshold pump energy Ey,, versus the
average number of NNs Z of each network type. Figure adapted from Reference [89].

is well described by an exponential decay, which is in agreement with previous re-
sults on trapped polariton lattices [121]. Fitting of the experimental data with exponen-
tial curves [see Fig. 6.6(a)] yield coherence lengths of L. ~ 35 um, L. ~ 87 um, and

L. ~ 120 um for the polariton chain, square lattice, and triangular lattice, respectively.

Differences in system performances between the studied condensate networks become
further visible in their respective pump power dependencies. Figure 6.6(b) shows the
measured absolute value of coherence |g12| between a NN condensate pair versus the
average pump pulse energy per condensate node. In case of the polariton dyad, a con-
densate separation distance of di, = 12.7 pm is chosen, and is comparable to the NN
distances (lattice constant) of the investigated 1D and 2D periodic structures. While all
configurations show a similar pump-dependency of their coherence properties with a
coherence maximum appearing at P ~ 1.2Py,,, their threshold pump energy per con-
densate node can strongly deviate. In particular, we find a threshold pulse energy of
~ 4.7 p] and ~ 2.3 p] per condensate node for the polariton dyad and the polariton
triangular lattice, respectively.

Importantly, as summarised in Figs. 6.6(c) and (d), polariton networks are characterised
by both, an increase of the (effective) coherence length L., and by a decrease in thresh-
old pump energy per condensate node for network architectures with larger connec-
tivity, i.e. larger number of NN couplings Z. As we argue in the following, both effects
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originate from an increased coherent exchange of particles between neighbouring con-
densates.

For simplicity in our analysis we project the whole system dynamics onto a discretised
set of equations consisting of coupled condensates c; and reservoirs n; [see Egs. 5.19],
and write the steady state solution of frequency w as

. iR .
wej = [Q — il + (g—|— 2> n; —1—0401‘\2} c¢i+ (Jr+iJ1) Z cj, (6.3a)
JENN
P

T TA T RGP

(6.3b)
Here, we have neglected any couplings beyond nearest neighbours, and split the NN
coupling strength into its real part Jr and imaginary part J;. Further, we do not allow
for any geometric phase frustration, e.g. by assuming a positive imaginary coupling
strength J; > 0 producing a symmetric (in-phase) state, i.e. ¢; = ¢j and n; = n; for all
i and j. In this simplistic model the threshold pump power Py, per condensate node,
as well as the reservoir populations n; are determined from Egs. 6.3 by the interplay of
intrinsic condensate loss rate I' and coherent gain provided by Z coupled condensates,

2T,

Py = R (r=2J1), (6.4a)
n; = %(F—Zh) (64:b)

It is apparent that an increase in coupling strength J; and/or increase in the number of
coherently coupled NN condensates Z is therefore innately linked to both, a reduction
of threshold pump power Py, and a reduction in the number of uncondensed reservoir

particles n;.

It is well known that interactions between polaritons and uncondensed particles play a
dominant role in the condensate decoherence processes [124, 125, 126]. Therefore, and
in agreement with experimental results shown in Fig. 6.6(c) and in Fig. 5.7(d), the co-
herent coupling of non-resonantly excited polariton condensates is generally expected
to enhance spatial and temporal coherence properties. We note that in a similar prin-
ciple, reduced condensate-reservoir interaction energy is realised in optically trapped

structures and shown to yield improved coherence times exceeding 1 ns [127].

The strengthening of spatial correlations in densely connected polariton lattices, medi-
ated through the coherent coupling of condensate nodes, is well visualised in Fig. 6.7.
Here, we compare the mutual coherence between two macroscopically separated con-
densates (d12 = 172 yum) in a polariton dyad [Fig. 6.7(a)] and a square lattice [Fig. 6.7(b)].
In case of the two-condensate system, the measured far field interference pattern shown
in Fig. 6.7(c) reveals the incoherent superposition of both condensate signals. The cou-

pling between the two macroscopically separated condensates, which is limited by the
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FIGURE 6.7: Macroscopic coherence in polariton lattices. Real space emission of (a)
two polariton condensates with separation distance di = 172 um and (b) an 11 x 11
square lattice with lattice constant 4 ~ 12.1 pm. Young's double hole interference pat-
tern of (c) the two-condensate system, and (d) between the two out-most condensates
within the square lattice (labelled as 1 and 2) and the same distance dj; ~ 172 pm.

Image area displayed in (a,b) corresponds to an effective area of 160um x 160um, and

image area displayed in (c,d) corresponds to an effective area of 1.4um ! x 1.4um~!.

spatially decaying particle flux, is too weak to establish mutual coherence and hence,
g12 = 0. However, an indirect link between the two condensation centres is estab-
lished by creating a connected path with additional closely spaced condensates [see
Fig. 6.7(b)]. The presence of condensates in the bulk of the square lattice then mediate
the formation of coherence between the edge condensates with g1» = 0.25 and clearly

visible interference fringes in Fig. 6.7(d).

6.4 Conclusion

The presented closed-loop feedback scheme is suitable for balancing the condensate
emission intensity across optically generated networks and lattices of polariton con-
densates. Optical stabilisation counteracts photon-mode localisation caused by sample
nonuniformities [128], reduces the effects of optical aberrations in the experimental
system, and compensates non-homogeneous gain distribution in coupled condensate
networks. The scheme allows generation of both, periodic and non-periodic networks
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with striking homogeneity and enhanced coherence properties with examples shown
in Fig. 6.8.

It is well known that dynamics and synchronisation in coupled oscillator systems is
critically affected by the underlying network architecture [115]. Our results show, that
a larger number of couplings in lattices of ballistically coupled condensates generally
amplifies the formation of coherence across the system, and at the same time reduces
the operational pump power per condensate node. Similar results (i.e. enhanced co-
herence properties with larger connectivity in arrays of coupled elements) have been
observed in various technological platforms such as in VCSEL arrays [128], in microme-
chanical oscillator networks [129], and in arrays of fiber lasers [130].

Importantly, the presented methods for active mode-stabilisation qualify for other open-
dissipative systems such as photon condensates and laser arrays, and therefore, lay out
directions for the design of power-efficient devices of coherently coupled polaritonic or
photonic lattices.

6.5 Disclaimer

Experimental studies presented in this Chapter were conducted by J. D. Topfer, I. Chat-
zopoulos, and T. Cookson. Theoretical analysis was carried out by H. Sigurdsson and
Y. G. Rubo, and numerical simulations were calculated by H. Sigurdsson. Figures and
text description presented in this Chapter are adapted from published Reference [89].
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FIGURE 6.8: Coherent networks of polariton condensates realised by active stabili-

sation of the condensate node densities. Three-dimensional plots of the experimen-

tally recorded real space emission of a stabilised (a) square lattice, (b) triangular lattice,

(c) honeycomb lattice, (d) chain, (e) polygon, (f) heart structure, and a (g) square of po-

lariton condensates. Plot elevation and false colour scale [shown in (g)] in each panel

represent the condensate density on a logarithmic scale. Panels (a) and (b) are adapted
from Reference [89].
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Chapter 7

Optical Control Of Couplings In
Networks Of Polariton Condensates

A growing interest into the study of many-body optical networks is boosted by the ex-
perimental accessibility of open-dissipative lattices such as in coupled laser systems [131],
and photon [97] and polariton [89] condensates. Successful realisations of extended
polaritonic systems underline the versatile potential of polariton condensates for opti-
cal processing units and circuitry [132, 133, 134], simulation of many-body spin sys-
tems [41, 135] and the study of geometric frustration [136], neuromorphic comput-
ing [39], studies on synchronisation dynamics of coupled oscillator systems [89, 121],
and topological states [37, 38]. Performance of these systems depends on the accuracy
of control over the couplings between individual condensate elements. Moreover, the
realisation of complex device structures requires advanced engineering techniques and,

ultimately flexible control over individual couplings is desired.

As we have detailed in Chapter 5 the interactions between ballistically coupled polari-
ton condensates can readily be controlled by changing their physical in-plane separa-
tion distance d. Hereby, the change in optical path length between two condensates
- alternatively interpreted as a modified time-of-flight of particle fluxes - is the deci-
sive factor for the configuration of phase synchronised states. The methods can be
extended to condensate lattices, where control over the lattice constant (i.e. NN dis-
tance) allows realisation of various synchronisation states [41]. However, individual
couplings cannot be controlled in extended systems because the physical displacement
of one condensate will inevitably affect all couplings associated with this condensate.

In this Chapter, we describe an all-optical and reversible technique to control individ-
ual couplings in polariton lattices by non-resonant imprinting of potential barriers (i.e.
exciton reservoirs below condensation threshold) [93, 133]. Generation of a potential
barrier, which is located in-between two ballistically coupled polariton condensates,

modifies the effective optical path length separating the condensates (see Schematic in
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FIGURE 7.1: Optical control over the ballistic coupling of polariton condensates.
Non-resonant imprinting of a potential barrier modulates the polariton flux in magni-
tude and phase in-between two ballistically coupled condensates.

Fig. 7.1). This method can readily be extended to larger and more complex systems and
therefore, allows for manipulation of pairwise interactions of NNs.

In the following, we begin with a summary of the key experimental tools for gener-
ation and advanced control over coupled polariton condensates. Then, we detail on
the modified flow properties of a single ballistically expanding polariton condensate,
which is impinging onto an optically injected potential barrier. It is shown that the
phase modulation of the polariton flux is strong enough to control the synchronised
states in smaller systems of two condensates, as well as in larger 1D and 2D lattices.
Spectral analysis of the coupled condensate system reveals that the system dynamics
can adequately be described by a delay-coupled oscillator model with variable con-
trol over the phase of the complex coupling parameter. The results presented in this
Chapter have been published in Reference [90].

7.1 Experimental methods

In-depth descriptions of the experimental techniques for generation and read-out of
networks and lattices of polariton condensates are described in Chapter 4. The experi-
mental investigations presented in the following are conducted on a strain-compensated
GaAs-based microcavity (see Section 4.3) at an exciton-photon detuning A ~ —3.8 meV.
The non-resonant cw laser is split into two beams, modulated by two separate SLMs,
and recombined to form a digitally-controllable and reconfigurable excitation geometry
(see Fig. 4.1). One of the modulated laser beams forms the pump geometry of ballis-
tically expanding condensates, i.e. each of the nodes of this laser beam are pumped
above condensation threshold. The second laser beam however, injects a spatial pat-
tern of localised incoherent exciton reservoirs below condensation threshold. Density-
stabilisation of both, the condensate networks and the laser-induced potential barriers

is possible via the closed-loop feedback technique described in Section 4.2.2.



7.2.  Optically-induced potential barriers for polaritons 99

00 05 10 100 100 10 -2 0 2w
| — ] | —
(a)
Pump
»
(d)
Pump
Barrier
() 3
.-d 1F ®o mm 40 [
& oo‘:’°C>ooc>oclzzﬂt>°°’°°°‘:’ °e0 0, §
'§ °o o 172 g
= c8’°o £
g L , , , , , , 0% | &
< 700 0.1 0.2 0.3 0.0 0.1 0.2 0.3
Pbar (Pthr) Pbar (Pthr)

FIGURE 7.2: Modulation of a ballistically expanding condensate subject to an op-
tically injected potential barrier. (a,d) Real space laser pump profile, (b,e) recorded
real space PL, and (c,f) reconstructed phase map of a ballistically expanding conden-
sate (a-c) without and (d-f) with potential barrier. The barrier is displaced from the
condensate node by d/2 ~ 7.9 um, and is pumped below threshold P, ~ 0.36Py,;.
Condensate pump spot and potential barrier locations are shown as red and blue cir-
cles in (e), respectively. Extracted (g) magnitude and (h) phase shift of the condensate
wave function at a distance d ~ 15.7 um away from the condensate node [green circle
in (e)]. The Figure is adapted from Reference [90].

7.2 Optically-induced potential barriers for polaritons

Previous studies have detailed on the use of optically imprinted potential barriers in
microcavities for control of particle flows in polariton transistors [137], polariton inter-
ferometers [133], and for generation of artificial defects [138]. In this section we describe
the effects of a non-resonantly generated potential barrier onto the flow properties of
a single ballistically expanding polariton condensate, which is summarised in Fig. 7.2.
Detailed characteristics of a radially expanding condensate without any potential bar-
rier were presented in Fig. 5.2. Here, we only show the recorded real space condensate
density [Fig. 7.2(b)] and the extracted condensate phase distribution [Fig. 7.2(c)] for a
single condensate node pumped above condensation threshold (P = 1.3Py,). The visi-
ble radial phase gradient is innately linked to an isotropic radial condensate expansion
with non-zero outflow wave vector k. = 1.9 um~".

The impact of a non-resonantly injected barrier onto density and phase distribution of
the radially expanding condensate node are shown in Fig. 7.2(e) and Fig. 7.2(f), respec-
tively. The barrier is displaced from the condensate centre by a distance /2 ~ 7.9 uym
and is pumped below condensation threshold with pump power P = 0.36Py,. Itis
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apparent that the incoherent exciton reservoir, which is generated at the barrier laser
spot location, indeed acts as a potential barrier and leads to scattering of the incoming
coherent particle flux. In particular, there is a noticeable shadow (i.e. reduced density)
forming behind the barrier, and the condensate phase is shifted by the presence of the
barrier. In the linear regime the repulsive barrier potential V(x) [see Eq. 5.1] felt by
polaritons leads to a local blue-shift and is proportional to the locally generated exciton
population, i.e. V(x) = grn(x).

To quantify the impact of the barrier onto the condensate flow properties we measure
both, density and phase of the ‘transmitted” condensate wave function at a distance
d/2 = 7.9 um behind the barrier location [see green circle in Fig. 7.2(e)]. The ex-
tracted change in magnitude |¥| and phase arg(¥) of the condensate for increasing
barrier pump power B, are shown in Fig. 7.2(g) and Fig. 7.2(h), respectively. We note
that there is only a minor change in the amplitude of the transmitted condensate wave
due to an interplay of repulsion and gain provided by the localised incoherent exciton
reservoir. The transmitted condensate amplitude does not drop below ~ 77 % of the
amplitude of a freely expanding condensate (i.e. no barrier) in the given range of bar-
rier pump powers Pp,y < 0.36Py,,. Within this limited power range there is negligible
PL originating from the barrier itself, and within the experimental resolution there is no
discernable change in emission energy of the ballistic condensate node. Consequently,
the barrier can be seen as a weak perturbation to the ballistically expanding condensate,
with negligible back-action (reflection) onto the condensation centre. Nevertheless, a
large impact of the potential barrier onto the condensate flow dynamics can be seen by
the near-linear phase shift A, of the transmitted particle wave [see Fig. 7.2(h)] reaching
Ay = —7t for a barrier pump power Ppar = 0.36 Py,

By approximating the barrier as a square-shaped repulsive potential of width L and
height Vj, the phase shift Ay of the transmitted particle wave with wave number k and

particle mass m can be written as

. ZmVO
Ap = —kL (1—,/1— 2 > (7.1)

Since for small barrier pump powers P, < Py, One expects a small potential V; that

grows approximately linear with pump power, from Eq. 7.1 indeed follows a linearly
decreasing phase shift A, with increasing power Py,,;.

We note that - within the accuracy of the experimental system - there is no notable dif-
ference in the particle flow properties opposite to the direction of the potential barrier,
qualifying the method for directional control of particle flows in extended networks or
lattices. The observed changes in optical path length up to Ay = —7 further prompt
the idea of using an optically imprinted barrier to manipulate the phase locking of bal-
listically coupled polariton condensates.
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FIGURE 7.3: Optical control of couplings between two polariton condensates. Real

space (a,b) laser pump profile, (c,d) condensate density, and (e,f) phase distribution for

two condensates (a,c,e) without and (b,d,h) with additional potential barrier (Py,y =

0.36 Py ). Corresponding (g,h) momentum space and (i,j) dispersion images reveal an

even or odd parity state by showing a bright or dark interference fringe at ky = 0

(white dashed line). Energy is scaled with respect to the ground state of the lower
polariton branch. The Figure is adapted from Reference [90].

7.3 Control of couplings between two condensates

In the following we detail on the implementation of an optically induced potential bar-
rier to control the synchronous phases in a polariton dyad. The experimental conditions
in the two-condensate systems are equivalent to those of the single condensate system
described in the previous Section: Each condensate node is pumped at P = 1.3 Py,,, the
condensate separation distance is chosen as d ~ 15.7 um, and the barrier is imprinted at
the geometrical centre of the system at a distance d/2 ~ 7.9 um from each condensate.
Hence, the phase shifts A, determined for an expanding condensate [see Fig. 7.2(h)]
are transferable to the description of particle flows across the polariton dyad.
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The particular polariton dyad configuration without any potential barrier [Py,, = 0,
Fig. 7.3(a)] results in a synchronised state with zero phase difference between the two
condensate nodes. The condensate emission is probed by density measurements in
real space [Fig. 7.3(c)], in momentum space [Fig. 7.3(g)], and in energy-resolved mo-
mentum space [Fig. 7.3(i)] revealing macroscopic occupation of a single quantum state.
The measured real space phase distribution [Fig. 7.3(e)] exposes the even parity mode

characteristics and the vanishing condensate centres phase difference 61, = 0.

Optical injection of a potential barrier [P, = 0.36Py,,, Fig. 7.3(b)] via non-resonant gen-
eration of a localised exciton reservoir in-between the two condensate nodes then leads
to a transition of their synchronised state. Real space and momentum space PL mea-
surements [shown in Figs. 7.3(d,f,h,j)]] indicate single-mode emission of an odd-parity
state, i.e. phase-locking of the two condensation centres with stable phase difference
12 = 7. The observed in-phase to anti-phase synchronisation transition can readily be
explained by the generated optical path difference Ay = —77 leading to a change in the
system’s resonance condition. It is analogous to the previously described synchronisa-
tion transitions in Chapter 5, but does not require a change in condensate separation
distance d. We note that the observed mode transition, which is realised by the gener-
ation of a potential barrier between the condensates, can equivalently be obtained by a

decrease of the condensate separation distance by Ay ~ 7t/k..

Importantly, within the system’s emission linewidth (Ag ~ 70 ueV) there is no notable
difference in energy between the two stationary systems with and without potential
barrier, respectively. This is in line with the small modifications of the amplitude of
transmitted particle waves [see Fig. 7.2(g)] and therefore, implies that the barrier has a

small impact onto the coupling strength between the condensates only.

The continuous transition of the two coupled condensate system from in-phase to anti-
phase synchronised states is shown in Fig. 7.4(a), where we plot the recorded energy
spectral densities for increasing barrier pump power Py,,. It is apparent that the tran-
sition is interleaved by a region involving macroscopic occupation of two resonant
modes and thus, involves periodic population oscillations between the two conden-
sation centres. The transitions between stationary and non-stationary dynamical be-
haviour of two ballistically coupled condensates has been described in Section 5.3.3
and can be reproduced by a time-delayed coupled oscillator model [see Section 5.5].
It is straightforward to adjust the coupled oscillator equations [Egs. 5.19] in order to

include the investigated potential barriers for control over couplings.

7.3.1 Coupled oscillator model

The coupled oscillator model presented in Section 5.5 describes the state of each con-

densate by a complex-valued amplitude c;(t) and includes coupling of each condensate
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FIGURE 7.4: Optically controlled synchronous phase of two ballistically coupled
polariton condensates. (a) Experimentally recorded spectra of two condensates with
increasing barrier pump power Pp,;.. (b) Numerically calculated spectra of two cou-
pled nonlinear oscillators [see Eq. 7.2] as a function of phase lag Ay. The numerical
spectra are convoluted with a Lorentzian profile to match the experimental linewidth.
Energy is scaled with respect to the ground state of the lower polariton branch. Nu-
merical parameters: i) = 1.45 meV, il' = 0.5 meV, ig = 0.5 peV, IR = 0.5 peV,
ha = 0.1 peV, 1] = 015 meV, p = —0.8 rad, T = 12.1 ps, 'y = 0.05 ps_l, and
P =100 ps~! . The Figure is adapted from Reference [90].

with its underlying exciton reservoir #;(t). Time-delayed interactions between spatially
separated condensates depend on the inter-element particle currents, and are described
by a complex-valued coupling term ] exp(if). Small modifications of the effective op-
tical path length A, between ballistically coupled condensates, e.g. due to a weak po-
tential barrier, cause a change in coupling phase, i.e. B — B+ Ay. Ultimately, a 77 phase
shift of the coupling phase reverses the sign of the effective coupling term leading to
the observed change in synchronisation between two condensates. We note that such a
coupling phase lag can equivalently be described by a small time-delay [139].

The coupled condensate equations including variable coupling phases then read as

ic;(t) = [Q — i+ <g + 15) ni(t) + alci(t) | ci(t) + ]eiﬁeimcj(t — 1), (7.2a)
ni(t) = — (Ta + Rlci(t)|*) ni(t) + P. (7.2b)

The experimentally observed transition of the two-condensate system from an in-phase
to anti-phase state is well reproduced by numerical integration of Egs. 7.2. Spectral den-
sities of the simulated condensate oscillators are shown in Fig. 7.4(b), where an increas-
ing barrier pump power P, = 0...0.36Py,, is represented by a decreasing phase shift
Ay = 0...— 7t. The numerical results have been convoluted with a Lorentzian profile
in order to match the experimental linewidth. The calculated spectra reveal both, sta-
tionary (synchronised) states and non-stationary (periodic) states, in good agreement
with the experimentally observed dynamical regimes.
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FIGURE 7.5: Optical control of couplings in a polygon of polariton condensates. (a-
c) Laser pump profile, (d-f) real space condensate density, and (g-i) momentum space
condensate density for three different synchronisation states realised by individual
control of NN couplings via optically imprinted potential barriers. (j-1) Simulated far-
field emission pattern for fully-coherent point sources with the same spatial geometry
and phase distribution as in experiment. Red and blue circles in (a-c) mark the position
of condensate pump and barrier pump spots, respectively. Black arrows in (d-e) depict
the phase-locked polygon configuration. Scale bars shown in (a) and (d) amount for
20 pum. and 1 pum~1. Images (g-1) show the central 1 um~! x 1 pm~! emission area.

7.4 Synchronisation control in polariton lattices

Optical control over the ballistic flow of polaritons via engineering of a repulsive po-
tential landscape can be applied to larger coupled condensate geometries, and enables
flexible control over the NN interactions in lattices of polariton condensates. A proof
of concept is presented in the following, where we show experimental results on the
synchronisation control in 1D and 2D lattices of polariton condensates.
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7.4.1 A one-dimensional lattice

A 1D lattice with periodic boundary conditions is realised by non-resonant optical
excitation of 8 polariton condensates arranged in a polygon structure (octagon). The
recorded laser pump profile and condensate real space density map are illustrated in
Figs. 7.5(a) and (d), respectively. The condensate NN separation distance (lattice con-
stant) is chosen as @ ~ 15.2 pm, and renders a stable coherent state with anti-phase
synchronisation between NNs. While an even number of nodes within the polygon
can yield a stable anti-phase configuration, geometric frustration prevents the forma-
tion of such a state in odd-numbered polygons and leads to the formation of vortex
states instead [136]. The stable octagon phase configuration is indicated in Fig. 7.5(d)
using black pseudo-spins for each condensate node, with anti-parallel spins denoting
anti-phase configurations, and parallel spins resembling in-phase configurations. De-
structive interference of all emitted matter waves leads to the visible density minimum

at the system’s centre of symmetry.

The octagon of polariton condensates is then modified by introducing additional po-
tential barriers (P, < Py,) located either in-between each pair of NNs [Fig. 7.5(b)], or
in-between every second pair of NNs [Fig. 7.5(c)]. While in the former case the change
in couplings leads to synchronisation of condensates with zero phase differences [see
Fig. 7.5(e)], in the latter case the system transitions into a stable configuration with
4 synchronised ‘domains’ [see Fig. 7.5(f)]. A bright interference peak emerges at the
system’s centre of symmetry in case of the in-phase synchronised octagon [Fig. 7.5(e)]
due to constructive interference of all expanding condensates. The splitting of the clus-
tered polygon structure [Fig. 7.5(f)] causes the formation of 2 intersecting nodal lines
dividing the condensate density into 4 synchronised regions. The phase transitions are
reproducible by numerical simulations of the GPE [Eq. 3.27] and the coupled oscillator
model [Eq. 7.2], and emerge due to alterations of the pairwise interactions between NN
condensates.

Coherence and phase configuration of the coupled condensate system are further probed
by far field (momentum space) density measurements of the condensate PL as shown
in Fig. 7.5(g-1). One can see that the recorded intricate far field PL patterns strongly de-
pend on the symmetry of the synchronisation state. We point out the reduced (4-fold)
rotational symmetry in the recorded far field emission pattern of the clustered octagon
structure, as opposed to the 8-fold rotational symmetry for the anti-phase and in-phase
condensate structures. We recall that the far field intensity pattern [(k) is formed by
the interference of all condensates and thus, is innately linked to the systems coherence
properties [see Eq. 3.37]. There is excellent agreement between the measured far field
emission and the numerically calculated emission patterns of fully-coherent octagons
as depicted in Figs. 7.5(g-1).
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FIGURE 7.6: Optical control of couplings in a polariton square lattice. (a-c) Laser
pump profile, (d-f) real space condensate density, and (g-i) momentum space conden-
sate density for three different synchronisation states realised by individual control of
NN couplings via optically imprinted potential barriers. Red and blue circles in (a-c)
mark the position of condensate pump and barrier pump spots, respectively. Black
arrows in (d-e) depict the phase-locked lattice configuration. White dashed circles in
(g-1) indicate the centre of origin k = 0. Scale bars shown in (a,d), and (g) amount for
20 um and 1 pm ™!, respectively. The Figure is adapted from Reference [90].

7.4.2 A two-dimensional lattice

Optical control over the NN interactions in a 2D polariton lattice is demonstrated for a
4 x 4 square lattice with lattice constant a ~ 16.6 um. Figure 7.6(d) depicts the recorded
real space PL of the system condensing into a state with all condensates synchronised
in-phase. Macroscopic coherence is revealed by the appearance of periodic interfer-
ence peaks in the far field as shown in Fig. 7.6(g). The spacing between neighbouring
interference peaks is matching the reciprocal lattice constant 27t /a. The particular syn-
chronisation state, which is described by zero phase differences between individual
condensates, leads to the appearance of a distinct bright ‘Bragg’ peak located at the
origin k = 0.

Inversion of all NN interactions is then realised by implementation of potential barri-
ers (Poar < Piy) between every pair of neighbouring condensates [see pump profile
in Fig. 7.6(b)]. The induced change in pairwise interactions causes a transition into a
coherent state described by anti-phase synchronisation between NN as illustrated in
Fig. 7.6(e). The phase configuration is characterised by a lateral shift of the reciprocal
lattice [see Fig. 7.6(h)] and produces a density minimum at the origin k = 0. Similar
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transitioning between in-phase and anti-phase synchronisation states in a square lat-
tices of polariton condensates has been demonstrated in Reference [41] by tuning of the

lattice constant a.

A more complex lattice synchronisation state is implemented by adding only 4 poten-
tial barriers into the system as illustrated in Fig. 7.6(c). The barrier-induced changes in
couplings along one horizontal line can be seen as an effective ‘line defect” within the
square lattice. Indeed, the recorded real space PL shown in Fig. 7.6(f) reveals the for-
mation of 2 synchronised domains that appear out-of-phase with respect to each other.
It is important to note that although the two domains are out-of-phase, they are still
coherent, i.e. their phase relationship is a dynamically stable solution. The splitting
into two coherent domains is further evidenced by a distinct vertical splitting of the
interference Bragg peaks in momentum space as shown in Fig. 7.6(i). This particular
synchronisation state can alternatively be realised by local compression of the lattice
constant along the described horizontal line.

7.5 Conclusion

Control over coupling phases has been shown to be a crucial parameter for generation
of synchrony in general networks of nonlinear oscillators [140, 141]. Here, we have
successfully demonstrated an experimental strategy for tuning of coupling phases in
networks and lattices of coupled polariton condensates. The technique harnesses op-
tical control over the inter-element particle flows in microcavities, and facilitates flex-
ible, adjustable, and reversible generation of complex network architectures. Various
synchronised states of ballistic polariton condensates were realised by engineering of

coupling topologies in 1D and 2D periodic structures.

Optical tuning of couplings in networks and lattices of polariton condensates poten-
tially advances current strategies of designing systems for analogue simulation of spin-
Hamiltonians [41], novel neuro-inspired computing schemes [39], or for the generation
of topological states [37, 40]. In a broader application scheme it opens up an ultrafast
platform for the study of synchronisation dynamics in nonlinear oscillator networks

with malleable properties of coupled elements and network architectures.

7.6 Disclaimer

Experimental studies presented in this Chapter were conducted by S. Alyatkin, J. D.
Topfer, and A. Askitopoulos. Numerical simulations were carried out by H. Sigurds-
son. Figures and text description presented in this Chapter are adapted from published
References [90].
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Chapter 8

Concluding Remarks And Future
Perspectives

The hybrid nature of exciton-polaritons makes microcavities an interesting and inter-
disciplinary platform combining both photonics and solid state physics onto a micro- to
millimetre device scale. Particle properties are tunable and characterised by a small ef-
fective mass, strong nonlinearities, short particle lifetimes, and a non-parabolic disper-
sion relation. Most notably, polaritons are excellent candidates for the study of macro-
scopically occupied single quantum states (condensates) at elevated temperatures. The
intrinsic driven-dissipative nature and low-dimensional confinement of polariton con-
densates separates them from conventional BECs and superfluids, opening an inter-
esting window for the study of non-equilibrium quantum fluids and non-Hermitian

physics [11].

Optical malleability of the underlying non-Hermitian potential landscape offer a versa-
tile method for the manipulation of polariton condensates [142], with wide-ranging ap-
plications such as trapping of polariton condensates [143], sculpting of oscillators [34],
generation of non-equilibrium spin lattices [135], polariton circuitry [133], creation of
arrays of artificial two-level systems [144], and band-structure engineering [40]. More-
over, the ease of generation and spatial structuring of polariton condensates has led
to recent developments of lattices of coupled polariton condensates for the realisa-
tion of analogue simulators [41], topological devices [37, 38], and computational ma-
chines [39]. In a more general context, networks of coupled polariton condensates
may represent a paradigmatic platform for the realisation and study of coupled non-
linear oscillator systems [43] with realisations in trapping geometries [121], as freely-
expanding condensate nodes [89], and as oscillatory units [144].
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Key results

Optical control over the spatial structure and potential landscape in networks of polari-
ton condensates is at the heart of the studies conducted in this thesis. Advancements in
design and manipulation of optically generated polariton lattices presented through-
out this thesis were key for the experimental results obtained. The most important tool
introduced for the conducted work is the active density stabilisation method for laser
and condensate structures as described in Sections 4.2.2 and 6.2 of this thesis.

In Chaper 5 the dynamics and synchronisation of ballistically expanding polariton
condensates was studied. Increasing the separation distance between two symmetri-
cally pumped condensates was shown to periodically alter the system dynamics be-
tween in-phase and anti-phase synchronisation regimes, with additionally appearing
non-stationary periodic solutions. These non-stationary states resemble picosecond-
timescale population oscillations between both condensation centres, and have been
probed via auto- and cross correlation measurements. In contrast to the low-dimensional
state space of two tunneling-coupled condensates [111], the ballistically coupled system
is described by an infinite amount of coupled modes. It was shown, that the system
dynamics is well described by a delay-coupled oscillator model accounting for the
ballistic flow of particles between the condensates.

Non-resonant optical excitation and characterisation of different 1D and 2D periodic
structures of polariton condensates was described in Chapter 6. It was shown that
the closed-loop density stabilisation method reduces the detrimental effects of sample
non-uniformities and optical aberrations onto the system’s spatial coherence proper-
ties, allowing for the generation of macroscopically coherent polariton lattices with
near-diffraction limited emission. The advanced optical engineering of homogeneous
polariton lattices further made it possible to accurately study the spatial coherence
properties on the system’s network architecture. It was shown that an increasing num-
ber of coupling both, increases the system’s spatial coherence properties, and reduces
the operational pump power per condensate node. The developed methods for gen-
eration and spatial characterisation of polariton lattices are not limited to the field of
microcavity polaritons, but are transferable to other open-dissipative systems such as

photon condensates, and coupled lasers.

In Chapter 7 the engineering of ballistically coupled polariton lattices was advanced
by the introduction of an additional optically imprinted potential landscape. It was
shown that the local injection of tunable potential barriers in-between ballistically cou-
pled polariton condensates facilitates an additional degree of freedom for experimental
control of individual couplings in polariton lattices. In particular, it was demon-
strated experimentally that optically tunable coupling phases give flexible control
over system dynamics and synchronisation in two-condensate systems, as well as in

larger 1D and 2D condensate lattices.
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Future perspectives

The methods and results presented in this work lay out interesting directions for future
research in open-dissipative network structures. With advanced precision in genera-
tion and optical tunability of artificial lattices it is possible to explore the rich physics
and complicated dynamics of non-Hermitian many-body systems. Moreover, ballis-
tic polariton condensates represent a malleable experimental platform for the study of
coupled oscillator networks with tunable elements, adjustable time-delays and opti-
cally controllable coupling phases. The advancements in sample fabrication [76], and
the possibilities of macroscopic particle propagation lengths [145] and long-range cou-
plings [78] point out the future potential of extended systems containing 1000s of cou-

pled condensates.

While this work has mainly focused on the generation of homogeneous and highly-
coherent (synchronised) lattice structures, it is also possible to apply its methods for
the generation of inhomogeneities (i.e. controllable defects) and explore the occur-
ring system dynamics. Furthermore, it is of interest to investigate desynchronised
and partially-synchronised configurations, potentially exhibiting complex phenomena
such as chimera states, cluster synchronisation, chaotic dynamics, and the cross-over
between synchronised and desynchronised regimes [121]. Although not explored yet,
time-resolved measurements of spatial coherence in polariton lattices can give inter-
esting insights into the build-up of correlations in many-body system, and reveal the

temporal formation of synchronisation in spatially extended systems.

Advancements in optical shaping of potential landscapes can be further explored for
extended control of condensate structures and particle flows. Hereby, the non-Hermitian
nature of polaritons facilitates spatial patterning of both, the repulsive potential and
gain distribution within the microcavity plane. All-optical design of complex geome-
tries such as in-plane waveguides, resonators, and logic gates therefore, might offer

promising applications in future polariton microprocessors and circuitry [146].
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