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Abstract

Background

It is estimated that up to 50% of all disease causing variants disrupt splicing. Due to its
complexity, our ability to predict which variants disrupt splicing is limited, meaning
missed diagnoses for patients. The emergence of machine learning for targeted medicine
holds great potential to improve prediction of splice disrupting variants. The recently
published SpliceAI algorithm utilises deep neural networks and has been reported to
have a greater accuracy than other commonly used methods.

Methods and findings

The original SpliceAI was trained on splice sites included in primary isoforms combined
with novel junctions observed in GTEx data, which might introduce noise and
de-correlate the machine learning input with its output. Limiting the data to only
validated and manual annotated primary and alternatively spliced GENCODE sites in
training may improve predictive abilities. All of these gene isoforms were collapsed
(aggregated into one pseudo-isoform) and the SpliceAI architecture was retrained
(CI-SpliceAI). Predictive performance on a newly curated dataset of 1,316 functionally
validated variants from the literature was compared with the original SpliceAI,
alongside MMSplice, MaxEntScan, and SQUIRLS.

Both SpliceAI algorithms outperformed the other methods, with the original
SpliceAI achieving an accuracy of ∼ 91%, and CI-SpliceAI showing an improvement at
∼ 92% overall. Predictive accuracy increased in the majority of curated variants.

Conclusions

We show that including only manually annotated alternatively spliced sites in training
data improves prediction of clinically relevant variants, and highlight avenues for further
performance improvements.
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Introduction 1

Splicing is a complex biological process which removes introns and combines exons to 2

produce protein coding transcripts (Fig 1). It is mediated by the spliceosome, and 3

regulated by numerous cis- and trans- acting factors, including the splice donor and 4

acceptor sites encoded in the RNA itself [1]. Over 90% of multi-exon genes are believed 5

to undergo alternative splicing, where the same gene can encode multiple different 6

isoforms and therefore proteins [2, 3]. 7
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Fig 1. Schematic diagram of splicing process and major regulatory
elements. (A) Frequency diagrams at splice sites reveal nucleotide sequence motifs for
the acceptor and donor site. The branch point is located upstream of the acceptor. (B)
Regulatory protein binding sites can occur anywhere around a splice site. (C)
Regulatory protein bind to the motifs and excite or inhibit splicing. (D) The U1 and U2
snRNPs bind to the two splice sites and are attracted to or repelled by regulatory
protein. The two junctions are joined to build (E) the mature mRNA that codes for a
specific transcript. Branch point and protein binding motifs taken from [4–8]

Disruption of splicing is a significant contributor to many disorders, from rare 8

diseases to cancer. It is estimated that a substantial amount of pathogenic 9

single-nucleotide variants disrupt splicing [9, 10]. While the exact number is hard to 10

quantify due to bioinformatic pipelines often filtering out synonymous and intronic 11

variants [11], recent studies have shown an improved diagnostic yield of ∼ 35% through 12

inclusion of RNA sequencing [12–14]. Because of its complexity, predicting which 13

variants disrupt splicing is difficult computationally, leading to a reliance on expensive 14

and time consuming experimental methods to confirm variant pathogenicity. Accurate 15

in silico methods would reduce costs and increase speed in a clinical setting. 16

Many splice prediction tools exist, but there is little consensus on which the best 17

tools are, what thresholds should be used to detect significant disruptions, and how 18

these applications should be applied in clinical diagnostics. Recent applications of 19

machine learning to splice site prediction show great promise, and have been found to 20

be more accurate than older but still widely used methods such as MaxEntScan 21

(MES) [15–17]. MES models the likelihood of a splice site given 9 or 23 bases using a 22

maximum entropy model; MMSplice [18] uses neural networks to predict splice sites 23

given 18 or 53 nucleotides; SQUIRLS [19] uses carefully engineered features from 24

around the splice sites to classify using decision trees; and SpliceAI [20] uses five deep 25

convolutional neural networks to predict splice sites based on 10,000 nucleotides of 26

context. SpliceAI models the splicing process directly on a per-nucleotide basis, which 27

may lead to insights into the splicing mechanism itself. 28

The original SpliceAI algorithm was trained on GENCODE v24GRCh37 [21] data, 29

using a single selected primary isoform per gene, enriched with ”novel splice junctions 30

commonly observed in the GTEx cohort” [20]. The human reference genome in version 31

GRCh37.p5 [22] provided sequencing input. This means many validated alternative 32

transcripts from GENCODE are not included in the training data, and that unchecked 33
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and novel splice sites from GTEx are. GTEx splice sites not contained within 34

GENCODE may also result from changes in GTEx participant DNA not present in the 35

reference genome that SpliceAI is trained on, decoupling the relationship between DNA 36

sequence input and splicing outcome. To overcome both issues, we retrained the model 37

using a collapsed isoform set representative of all manually annotated constitutive and 38

alternative splice sites from GENCODE (Fig 2), also known as HAVANA annotations. 39
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Fig 2. All manually annotated and validated SH3YL1 isoforms on
GENCODE v37GRCh38, and the training data used for SpliceAI and
CI-SpliceAI. SH3YL1 is the first gene on the SpliceAI training data with more than
one validated transcript. Ambivalent regions that can code for both exons and introns
are depicted by dotted lines. On this gene, 26 (46%) of splice sites in the SpliceAI
training data are not in HAVANA; 7 (18%) of our splice sites are not present in
SpliceAI training data.

We compare the performance of this Collapsed Isoform SpliceAI (CI-SpliceAI) 40

algorithm against the original SpliceAI, MMSplice, SQUIRLS and MES using a set of 41

1,316 variants functionally tested for splicing impact from the literature. The best 42

thresholds on this data are determined empirically to assist future similar studies. 43
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Comparing CI-SpliceAI to SpliceAI, we report gains in overall accuracy, improvements 44

of scores for the majority of variants tested, and higher quality of variant effect 45

predictions. We demonstrate modifications in the data pipeline can improve 46

performance, enhance clinical utility, and highlight areas for further refinement. 47

Methods 48

Splice site recognition 49

The final SpliceAI algorithm is trained on 19 chromosomes (excluding 1,3,5,7, and 9). 50

We trained our model twice: 1) on the 19 training chromosomes to allow a fair 51

comparison to the original SpliceAI algorithm; and 2) on the entire dataset which is 52

used as our final predictive model. The inclusion of all chromosomes should prevent 53

biasing the model against those genes held out in the train set. 54

The model from 1) was then tested on the remainder of chromosomes excluding 55

paralogs, which were taken from Ensembl BioMart. 56

GENCODE annotations (v37GRCh38) [21] were filtered to exclude level 3 57

transcripts (automated annotation), so all training data was annotated by a human. 58

Exon annotations were matched to their transcripts by transcript ID. Exon boundaries 59

that aligned with a transcript start or end annotation were removed, implicitly 60

removing transcripts/genes consisting of only one exon. All remaining splice sites for all 61

transcripts per gene were aggregated into one collapsed representation. 62

Each transcript region was enlarged by 5,000 nucleotides on both sides to provide 63

10,000 nucleotides of context, and sequence data was extracted from GRCh38.p13 [23]. 64

Sequences were sliced into windows of 15,000 bases, where each slice predicts 5,000 65

nucleotides at a time given 10,000 bases of flanking context. Genes on the negative 66

strand were reverse-complemented, short slices were padded with ’N’ (unknown 67

nucleotide) if necessary. Both the sequence data and the 5,000 ground truth positions 68

(acceptor/donor/neither) were one-hot encoded. 69

The training process was reimplemented from SpliceAI [20]. The training data was 70

aggregated into chunks of 100 genes (the last two chunks being combined so no chunk 71

has less than 100 genes). Each of the five models is trained on two GPUs given a 72

random subset of 90% of chunks, with the remainder functioning as validation data. 73

They are trained for ten times the number of train chunks by randomly selecting one 74

chunk and iterating over it gene by gene, and descending the gradient of the categorical 75

cross-entropy error using Adaptive Moment Estimation (Adam) after each gene. The 76

initial learning rate of 0.001 is halved after 60%, 70%, 80%, and 90% of the total train 77

process. 78

Curated variant data 79

Variant data was aggregated from the literature [24–29]. Erroneous Human Genome 80

Variant Society IDs (HGVS-IDs) [30], such as incorrect annotations on reverse-stranded 81

genes or outdated transcript identifiers, were adjusted when needed. GRCh38 82

coordinates were queried from their HGVS-IDs using ensembl VEP [31]. Duplicates 83

were resolved based on their genomic location. Details about aggregation and manual 84

data correction can be found in S2 Appendix. 85

Specific variant effects, such as which specific exon is skipped or which 86

novel/alternative splice site is used, were parsed manually where available, allowing 87

investigation into prediction accuracy on exact variant effect. 88
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Algorithmic comparison on variant data 89

Algorithms 90

All five algorithms (MES, MMSplice, SQUIRLS, SpliceAI and CI-SpliceAI) were 91

assessed on this curated variant set. 92

MES [15] was run in two different ways. 1) As an Ensembl VEP [32] plugin [33], 93

which checks for donor and acceptor sites within 9 or 23 bases from the variant 94

respectively to calculate one reference and one variant score, which will disregard all 95

cryptic sites. And 2) through application as a sliding window (similar to [19]) around 96

each variant in a custom python implementation, enabling detection of newly generated 97

cryptic splice sites. 98

MMSplice [18] was run through kipoi [34], a python manager for genomic models. 99

The two most appropriate MMSplice models, namely splicing efficiency and 100

pathogenicity, were run on a variant call format (VCF) file which was normalised and 101

left aligned. 102

SQUIRLS was run on the variant VCF file as described in [19]. 103

Both SpliceAI [20] and CI-SpliceAI were run using their respective published python 104

VCF annotation module, with a maximum distance from the variant set to 5,000. For 105

SpliceAI, we configured 4,999 nucleotides max-distance as the python library does not 106

support more than that nucleotides to account for deep variants. Both implementations 107

extract the reference sequence plus the maximum distance from a variant and a further 108

5,000 nucleotides providing context on either side, one-hot encode reference and variant 109

sequences, and run them through their respective neural networks. They both 110

compensate insertions and deletions by padding variant predictions with zeros for 111

deletions, or using the max function for insertions, ensuring alignment with the 112

reference coordinates (more details in S4 Appendix). Our VCF annotation library 113

follows [35] with some optimisations such as allowing to process multi-nucleotide indels 114

(such as GTT>AA). Our VCF annotation module and its application can be found 115

through our portal (S1 Application, Data, Code). 116

For the two SpliceAI models and MES, the delta score (difference between reference 117

and alternative sequence scores) was derived. If the maximum absolute delta score 118

exceeds the defined threshold at any nucleotide, the variant is determined to be splice 119

affecting. The SpliceAI authors used a main threshold of 0.2 and recommended higher 120

thresholds for more specificity [20]. 121

For every tool, we report the optimal threshold in our dataset, i.e. the threshold 122

with maximum accuracy across all possible thresholds. On this data, the percentage 123

deviation (i.e. [36, 37]) decreased predictive performance for all tools and was omitted. 124

Variant experiment designs 125

Algorithm performance was assessed in two different ways: 1) the binary classification 126

task which evaluates how well the algorithms predict if a variant affects splicing or not 127

(all algorithms, full data set, missing predictions are filled as non-affecting); and 2) the 128

exact classification task investigating how well the exact position and effect of the 129

variant on splicing could be determined. The second experiment could only be 130

conducted on algorithms that predict scores per offset (SpliceAI, CI-SpliceAI, and the 131

sliding window MES), and on variants where the exact variant effect was known. 132
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Results 133

Training data 134

The collapsed isoform training set contains more splice sites, genes, and chromosomes 135

than the original SpliceAI training data (Table 1). When filtered to the same 136

chromosomes, the number of genes in CI-SpliceAI is slightly smaller due to the newer 137

GENCODE version containing fewer transcripts of low quality. 18% of start and stop 138

annotations of genes (primary transcript for SpliceAI, collapsed isoform for CI-SpliceAI) 139

and 58% of splice sites overlap between the lifted SpliceAI training set and ours when 140

filtered to the same chromosomes. 141

Table 1. Numeric comparison between the original SpliceAI training set and our novel collapsed dataset

No. Chroms No. Genes No. Splice Sites Proportion Acceptor/Donor

SpliceAI (Train) 19 13,385 391,515 2.1% more acceptor sites
CI-SpliceAI (Train) 19 13,240 301,835 3.5% more donor sites
CI-SpliceAI (All) 24 18,580 428,475 3.4% more donor sites

The novel collapsed training dataset used for training (bottom row) includes all chromosome, more genes, and more splice
sites than SpliceAI. For comparison only, if filtered to the same chromosomes as SpliceAI (middle row), the collapsed dataset
would have slightly fewer genes and splice sites than SpliceAI, due to newer GENCODE versions and filtering. While the
SpliceAI dataset has slightly more acceptor than donor sites, ours has slightly more donor sites.

Splice site recognition 142

The five neural networks trained on 19 chromosomes can predict splice sites on the 143

remainder (excluding paralogs) with 94% area under the PR curve, less than the 98% 144

when trained on primary isoforms [20, Fig 1E] and more than the 84% on the SpliceAI 145

GENCODE+GTEx dataset [38]. 146

We used both SpliceAI and CI-SpliceAI (trained on the 19 training chromosomes) to 147

predict splice sites on the gene CFTR (comparable to [20, Fig 1B]), located on 148

chromosome 7 which is excluded from the training data (Fig 3). While SpliceAI has 15 149

mispredictions, half of them false positives, CI-SpliceAI has 4 mispredictions, all of 150

them false negatives. 151
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Fig 3. Predictions of splice sites in CFTR in comparison to our ground
truth from GENCODE. Mispredictions are marked with a red X. The original
SpliceAI algorithm misses one exon, adds one extra, and mispredicts 15 sites in total.
When trained on collapsed the curated GENCODE sites (train chromosomes),
CI-SpliceAI misses two exons, does not add any extra exons, and mispredicts 7 sites in
total. When trained on the collapsed isoform data and all chromosomes (which includes
this gene), one missing exon is detected correctly and the overall error decreases to 4
mispredicted sites in total.
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Variant data 152

1,316 unique variants with functionally validated splicing impact were sourced from the 153

literature (see S2 Appendix). Fig 4 shows that the variants are reasonably balanced 154

between splice affecting and non-affecting variants as well as the strandedness, 155

preventing some potential biases, however due many of the publications investigating 156

breast cancer, the chromosomes are biased towards chr17 (BRCA1 ) and chr13 157

(BRCA2 ). The vast majority of variants are SNVs, with deletions next most common. 158

388 variants have exact genomic coordinate annotations that describe the effect, i.e. the 159

genomic coordinates of a loss or gain event, so that algorithmic effect outputs can be 160

compared more granularly. 161

Fig 4. The final curated variant data set consists of 1,316 unique variants.
(A) Literature sources of our data. There is an overlap of 8% of variants (mainly due to
Houdayer et al. citing Leman et al.), all with consensus. (B) Split between splice
affecting and non-affecting variants. (C) Split between negatively and positively
stranded genes. (D) Variant location on chromosomes. Chromosomes 1, 11, 13, and 17
make up 73% of the variants. (E) Types of variants. (F) Split of non-SNV variant
classes (7% of the whole data). (G) Functional impact of splicing variants. (H) Type of
disruption for the 388 variants where the exact genomic location of the disruption is
known (mostly exon skipping, with 19% using a specific alternative acceptor or donor
site).

Fig 5 shows the variant distribution relative to their closest splice site. As expected, 162

variants nearer to a splice site are more frequently disruptive. The dataset includes 163

some deep intronic variants that affect splicing and variants near splice sites that do not, 164

both of which are challenging to predict. 165

Algorithmic comparison on variant data 166

Five splicing prediction algorithms were run on the 1,316 splice tested variants 167

described above. Table 2 shows the area under the precision-recall and receiver-operater 168

characteristic curve, the optimal threshold found on the data, its corresponding 169

accuracy, and the coverage of how many variants have been annotated for all algorithms 170

discussed. The optimal thresholds were empirically calculated to give the greatest 171

accuracy on the large, curated variant set. The two SpliceAI models outperform the 172

others, with CI-SpliceAI showing improved performance over SpliceAI by around one 173

percentage point on all measures and an accuracy of over 92%. The SpliceAI module 174

misses three annotations for which its lookup table contains no transcripts in that 175

region and seven variants are not annotated because REF and ALT sequences are both 176

longer than one basepair. CI-SpliceAI annotates all variants and therefore reaches 100% 177

coverage, together with SQUIRLS and the sliding window MES. While MES, as run 178

through VEP, provides scores for only 58% of all variants (missing 553 variants where 179
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Fig 5. All 1,316 variants in relation to their closest splice site and if they
affect splicing (shaded area and numerator in the fraction). 57% of sites are
closer to a donor than an acceptor site. 23% of variants are in the consensus motif
(equally split between acceptors and donors); 98% of variants within consensus regions
are splice affecting.

no overlapping introns were found), its accuracy (> 86%) is considerably higher than 180

when applied as a sliding window (> 53%) which in turn provides annotation of all 181

variants. The pathogenicity model of MMSplice outperforms their splicing efficiency 182

model by a percentage point. Both models miss 8 predictions, all of which are deep 183

intronic (> 100bp). 184

Table 2. Binary classification results on the variant data (affecting/non affecting)

Coverage AUC-PR AUC-ROC Optimal Threshold Accuracy

MES (Sliding Window) 100% 55.68% 52.97% 12.500 53.42%
SQUIRLS 100% 91.32% 91.17% 0.074 85.64%
MES (VEP) 58% 92.52% 89.15% 2.109 86.40%
MMSplice (Splicing Efficiency) 99% 93.03% 92.56% 1.119 87.23%
MMSplice (Pathogenicity) 99% 94.13% 92.84% 0.961 88.53%
SpliceAI 99% 96.21% 95.65% 0.300 90.88%
CI-SpliceAI 100% 97.25% 96.75% 0.190 92.17%

Comparison of coverage (i.e. how many variants were annotated by the algorithm), the area under the precision-recall (PR)
and receiver-operator characteristic (ROC) curve, the optimal threshold found, and the accuracy on this threshold for the
different algorithms ran on our dataset. This is measured on all 1,316 variants.

The precision-recall curves are visualised in Fig 6. The smooth shapes of the 185

SpliceAI and CI-SpliceAI curves illustrate good clinical application due to few 186

fluctuations in predictive performance when selecting for a desired precision/recall 187

trade-off. Irregular shapes (sliding window MES, VEP MES for high recall, and 188

MMSplice pathogenicity for high precision predictions) indicate problems in the model 189

that limit clinical application. 190

When comparing the predictions made by the original SpliceAI vs CI-SpliceAI, the 191

prediction of 78% of variants changed, of which 73% improved (i.e. scores moved 192

towards the results of functional analysis, Fig 7). 193

In addition to the binary task of predicting whether or not a variant affects splicing, 194

for a subset of 388 variants, the exact location of splicing disruption was known. Table 3 195

compares the accuracy of predicting the exact genomic coordinates of the variant effect. 196

This is only possible for algorithms that return one score per nucleotide offset (the two 197

SpliceAI algorithms and the sliding window MES). The deep learning models 198

outperform MES, with CI-SpliceAI exceeding or matching SpliceAI’s accuracy on all 199

four effect classes. 200
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Fig 6. PR curves of algorithms investigated on all 1,316 variants. PR curves
demonstrate the capabilities of a model to trade off precision and recall. The area under
each curve is indicated in the legend.

Fig 7. Comparison of the predictive error between SpliceAI and
CI-SpliceAI on all 1,316 variants. The predictive error is the absolute difference
between the most significant predicted annotation and the ground truth. 78% of
predictions in CI-SpliceAI have a different output than when annotated with SpliceAI,
out of which 73% have a smaller predictive error. (A) Predictions for CI-SpliceAI
improved relative to SpliceAI for almost every position; there is no obvious bias where
predictions worsened at a specific distance from a splice site, neither for the type of
splice site nor the distance. (B) The magnitude of the change in predictive error.
Variants on the identity line did not change their score; points lying above the identity
line improved, points below worsened. The big cluster at the bottom left corner
represents points where our algorithm shows improved confidence in correct predictions.
A cluster of mispredicted variants of high confidence have worsened (top right corner).

Application 201

We release CI-SpliceAI with all its components open source on our portal (S1 202

Application, Data, Code). The portal also allows annotation of VCF files online for 203
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Table 3. Exact classification results on the curated variant data

Acceptor Gain Acceptor Loss Donor Gain Donor Loss

MES (Sliding Window) 0.00% 1.16% 2.33% 2.25%
SpliceAI 87.50% 77.10% 79.07% 78.93%
CI-SpliceAI 93.75% 78.55% 79.07% 82.02%

Comparison of the accuracy of predicting the exact location of the splice disruption on the 388 variants with known exact
disruption coordinates. Except for donor gains, where CI-SpliceAI and the original SpliceAI have equal accuracy, CI-SpliceAI
outperforms other models.

non-commercial use free of charge; these variants are processed on the google cloud and 204

cached to a database to prevent redundant computation. 205

Discussion 206

Disruption of splicing is a major contributor to human disease, including rare disorders, 207

cancers and neurodegeneration. The ability to accurately predict the impact a variant 208

will have on the splicing process would improve diagnostics and enhance understanding 209

of disease processes. Despite many in silico algorithms for splice prediction being 210

available, there is little consensus on the best tools to use in classifying variants, and the 211

cutoffs to use to gain the greatest accuracy. Here we assessed the predictive 212

performance of several in silico approaches on a large curated set of functionally tested 213

splicing variants. We show the greatest accuracy from the deep learning based 214

algorithm SpliceAI can be further improved upon through the use of collapsed isoform 215

training data, and we suggest thresholds to maximise accuracy for all tools (Table 2), 216

guiding clinical implementation. 217

We make the curated variant set (S2 Appendix), all training data, the code 218

comparing all tools, the CI-SpliceAI training code and the command line tool freely 219

available on our portal (S1 Application, Data, Code). 220

The curated set of 1,316 variants derived from the literature is one of the most 221

extensive sets of tested splicing variants to date. On this data, CI-SpliceAI had the 222

greatest accuracy of all tools tested on both the binary task and when predicting the 223

exact variant effect. SpliceAI has performed favourably in many comparisons since its 224

release in 2019 [16,17, 20, 24, 29], and it was suggested that the simultaneous prediction 225

of thousands of nucleotides around a variant is the key advantage for its success: the big 226

window sizes might allow SpliceAI to recognise pairs of acceptors and donors and other 227

co-dependent features not only near splice sites, but also deep within the exon or intron. 228

Feature maps within a convolutional neural network that recognise patterns in data are 229

applied as a sliding window, allowing splicing factors such as binding sites or the branch 230

point to be recognised independent of their offset to a splice site, and variants within 231

their motifs are considered in the classification. This per-nucleotide modelling of the 232

splicing process also allows more granular predictions of the variant effect on the mRNA. 233

In this study, we show that modifications to the data used to train SpliceAI, while 234

maintaining the same fundamental architecture, can improve predictive performance of 235

splice site disruptions by over 1 percentage point. As accuracies approach 100%, it is to 236

be expected that performance improvements will be modest and incremental. There are 237

likely several factors responsible for this improved accuracy. Firstly, the original 238

SpliceAI included novel junctions from GTEx data that have not necessarily been 239

verified, whereas CI-SpliceAI included only GENCODE splice sites that have been 240

manually annotated. We argue this filtering increases the quality of training 241

annotations. As the exact GTEx data pipeline used by SpliceAI was not published, 242

analysis of their exact method and filtering is non-trivial. Secondly, by including GTEx 243
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specific splicing events but not their respective genomic sequence input, a mismatch 244

may be created between DNA input and splicing output annotations. The algorithm 245

may therefore misattribute splicing events subject to specific GTEx participants to the 246

human reference genome sequence that is not spliced. This would also explain why the 247

PR-AUC of SpliceAI on the shared GENCODE+GTEx data is so low, and why 248

measures on HAVANA annotations improved. Thirdly, we included all chromosomes in 249

our training data, whereas SpliceAI excluded chromosomes 1,3,5,7, and 9. We have 250

verified that this is not the single cause of why CI-SpliceAI is better: When including 251

all chromosomes within the SpliceAI training algorithm, the performance improvement 252

was only 0.05% PR-AUC on the clinical data. Finally, SpliceAI was trained using 253

GENCODE v24 and the GRCh37 reference build, both of which have been superseded 254

by more recent versions. Although newer versions improve accuracy and coverage of 255

both resources [39,40], and we too observed a higher quality of data, comparisons of 256

models trained on new and old versions revealed differences in accuracy were negligible. 257

Of the other tools tested, all achieved accuracies > 85%, with the exception of the 258

sliding window MES application, which did not perform notably better than random 259

chance. This approach was implemented because MES as run through VEP was only 260

able to provide predictions for ∼ 60% of variants, limited to variants that occur within 261

the vicinity of known splice sites. These predictions will necessarily miss disrupting 262

deep intronic/exonic variants and those creating alternative splice sites, restricting its 263

clinical utility. While the sliding window approach mitigated this limitation, clinical 264

application is inadvisable due to poor predictive performance. MMSplice and SQUIRLS 265

both gave good coverage of variants (> 99%) and had relatively high accuracy 266

(∼ 86 − 88%). Their design however means that neither can predict the actual variant 267

effect and its position. Accurate determination of the precise splicing impact has 268

implications for clinical interpretation, for example, in determining whether the splicing 269

change disrupts the reading frame and is likely to lead to nonsense mediated decay. The 270

design of SpliceAI and CI-SpliceAI models the splicing process on a per-nucleotide basis, 271

which allows predictions of the actual variant effect with high accuracy. CI-SpliceAI 272

outperforms or equals other tools on all measures, again, demonstrating the benefits of 273

the collapsed training set. 274

Many bioinformatic tools require time and computational expertise to be set-up, 275

especially deep learning tools with dependencies on computational graphic cards. But 276

out of the tools evaluated on this data, deep learning tools are significantly better in 277

predicting splice site disruptions, so efforts to improve and encourage their wide spread 278

use in the clinical setting are certainly warranted. Alamut Visual [41] simplifies access 279

to open source splice prediction software (and more) to a common interface, however it 280

is a commercial tool not accessible in the public domain. Ensembl VEP [32] is an open 281

source tool with a freely accessible web interface that allows third-party tools to be run 282

as a plugin. The web interface supports outputs of pre-computed SpliceAI and MES 283

scores for canonical splice sites. We believe that open source and simplified access is 284

vital to research and clinical application, and therefore release CI-SpliceAI both as an 285

open source tool and through a freely accessible web interface. 286

Under American College of Medical Genetics (ACMG) guidelines [11], in silico 287

methods for splice prediction may be used as supporting evidence only where multiple 288

lines of computational evidence suggest no impact (BP4) or deleterious impact (PP3) 289

on gene function. The results presented here highlight the most appropriate tools to use, 290

and suggest empirically derived thresholds to obtain optimal accuracy. 291

Although the variant set used to test the algorithms is one of the largest curated to 292

date, it is still limited in size, particularly when assessing the exact variant effects. Most 293

data sources did not report the specific splicing change with base-pair resolution, 294

limiting the number of variants available for this assessment. The variant set is also 295
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subject to various biases in ascertainment from the sources used. For example, a large 296

proportion of the variants are derived from papers with a focus on breast cancer, 297

leading to an over-representation of certain chromosomes which harbour the BRCA 298

genes. Other sources pre-filtered variant candidates computationally. This may limit 299

the generalisability of the findings, both for tool performance and optimal thresholds 300

reported, to the wider clinical setting. We have also identified a cluster of high 301

confidence mispredictions (Fig 7 top-right corner) where the inclusion of alternative 302

splice sites increased the scores to be even more confident. This might indicate 303

problems in the variant data that can only be resolved by re-evaluation through 304

functional analysis. 305

While accuracies > 90%, as observed for the SpliceAI models, are impressive, there 306

is still clearly room for improvement before in silico predictions can be fully trusted in 307

clinical variant interpretation. While CI-SpliceAI does show improved accuracy over 308

SpliceAI, this improvement is modest, impacting 972 out of 1316 variants (73.86%); the 309

accuracy on the remainder decreased. Naturally, the greater the accuracy of a tool, the 310

smaller the room for improvement. However, this study shows that relatively minor 311

adjustments in model development can make an impact on overall performance. Apart 312

from potential simplifications on the model architecture for faster classification, further 313

data engineering (e.g. incorporation of conservation scores, splicing factor binding sites, 314

tissue specific splice site usage levels) could enhance predictive accuracy and timely 315

diagnosis further. 316

To our knowledge, this study was the first to investigate computational modelling of 317

the actual variant effect, moving away from a simple binary affecting/non-affecting 318

problem formulation and towards predicting the actual impact of a variant on the 319

mRNA sequence. We encourage future splicing studies to report the exact variant effect 320

at base-pair resolution where possible to allow extending this analysis further. We 321

believe that more granular modelling and investigation of potential biases in both 322

training and variant data will enable even more accurate diagnosis of splicing related 323

disease. 324

Conclusion 325

In summary, we compiled an extensive set of functionally validated splicing variants, 326

and used these to test a variety of in silico splice prediction methods. We found 327

SpliceAI outperformed other methods, and that its predictions could be improved upon 328

through the incorporation of alternative splicing sites in training data. For each tool, we 329

calculated optimal thresholds for use in the clinical setting. All data and models are 330

made available to facilitate adoption of the method in clinical practice, and further 331

improvements to model performance. 332

Supporting information 333

S1 Application, Data, Code. The application CI-SpliceAI (online and offline), the 334

variant dataset, our data pipeline, and our code for training, testing and analysis, can 335

be found on web portal on https://ci-spliceai.com. 336

S2 Appendix. Scraping and Quality Control of Variant Data 337

Incorporating Wai et al. 338

Table S1 of [24] consists of 258 (actually 259) variants across 65 genes. 339

There is a duplicate HGVS ID (variants 32/33), where apparently there was a 340

copy-and-paste error. In the original publication, variant 32 was incorrectly called 341
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NM 007294.3:c.5024C>T (duplicating the entry below) and with the authors help the 342

ID was corrected to NM 007294.3:c.5074+7C>T. Variant 220 is really two; the authors 343

could not determine which variant was causing the effect, so both variants were removed. 344

The splicing annotation from the source was changed to a binary form 345

(”Normal”/everything else). After parsing the RefSeq ID to genomic coordinates, 12 346

variant locations were found to be offset by 1bp. This was rectified by fetching all 347

genomic coordinates (see S2 Appendix). 348

Incorporating Maddirevula et al. 349

The publication [25] contains table S1 with an aggregation of 272 (269 really since 3 350

were not disclosed) variants, 124 new ones, 50 previously published variants across 45 351

publications, and 98 without attribution. 352

A number of HGVS IDs were not recognised by Ensembl VEP, so were manually 353

amended. Furthermore, only data points where the RT-PCR outcome indicated a 354

conclusive splicing disruption were included. 355

NM 001040656.1 was deprecated by NCBI, NM 001077416 is not supported by 356

ensembl VEP, both variants were removed. 357

Incorporating Leman et al. 358

Tables S1-S3 from [26] were used, containing a total of 254 variants (141 breast 359

cancer variants of their own, the rest compiled from 66 publications) across 11 genes. 360

NM 007294.3:c.133 136del is an invalid ID that could not be manually resolved as 361

it’s unclear if this is a single nucleotide deletion or if it’s removing a range of 362

nucleotides. Transcript/Variant annotations were used to generate HGVS IDs, and the 363

Splicing Effect field was used as ground truth. 364

Incorporating Houdayer et al. 365

Houdayer [27] includes 272 variants for BRCA1 and BRCA2 and partially overlaps 366

with the Leman [26] dataset. 367

65 of the variants are published as a HTML table and 207 variants on a PDF table 368

across 17 pages. Annotations from HTML were extracted through copy-and-paste into 369

Microsoft Excel, the PDF table was parsed using Tabula [42], followed by manual 370

correction of OCR issues. 371

12 annotations where the outcome was not obvious were removed, only retaining 372

entries tagged as acceptor/donor loss/gain / skipping / retention. One variant had no 373

annotated observation (NM 000059.3:c.7056T>A), which was also removed. Some IDs 374

contained recurrence annotations in their ID, which were removed as that was 375

syntactically invalid. Two variants (NM 000059.3:c.7397C>T, 376

NM 007294.2:c.5074+68T>C) had mismatching reference annotations and were 377

removed. NM 007294.3:c.5077 5080del4ins10 has a missing insertion annotation and was 378

removed. NM 000059.3:c.9257-10insT and NM 007294.2:c.5277+48 59dup12 could not 379

be parsed by Ensembl VEP. 380

When resolving duplicates, it was found that five variants that Leman et al. accredit 381

this paper for, are not actually published by this paper. Where these variants come 382

from could not be determined, some may represent those removed due to incorrect 383

annotations. 384

Incorporating Ito et al. 385

[28] published 57 LMNA variants in their table S5, 139 MYBPC3 variants in their 386

table S6, and another 43 and 31 (30 due one duplicate) LMNA and MYBPC3 genes 387

respectively in their table S7. Using splice assays in kidney cells, they compared normal 388

and abnormal splicing reads and their statistical significance. 389

For LNMA, the RefSeq ID NM 170707.4 was used, MYBPC3 was translated to 390

NM 000256.3. Variants NM 170707.4:c.89C>A, NM 170707.4:c.95C>T, and 391

NM 170707.4:n.890G>T have mismatching reference annotations, likely due to updates 392

of the reference genome. These variants were not splice affecting and were removed. 393
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The remaining 267 variants were extracted. Following their paper, variants with an 394

annotated P-Value < 0.01 were annotated as splice affecting; the remainder as 395

non-affecting. 396

Incorporating Ellingford et al. 397

Table 1 of [29] published 21 variants and their functional assessment of splice 398

disruption which have been extracted manually. 399

Incorporating MutSpliceDB 400

MutSpliceDB [43] is a freely accessible genome database consisting of, at the time of 401

writing, 86 variants and their effects on splicing. All variants are disruptive. Variants 402

were exported using their web interface. 403

Extraction of Genomic Coordinates 404

GRCh38 coordinates for the HGVS IDs were fetched automatically using ensembl 405

VEP [31]. 406

Errors returned by this service were resolved manually by querying the RefSeq ID in 407

NCBI Nucleotide [44] that will link to the latest RefSeq transcript version. For some 408

IDs this still failed, in which the version was removed completely. If both strategies 409

failed, manual investigation revealed some faults that could be rectified (missing colons, 410

mangled protein annotations, missing right-bounds); the remainder of incorrect HGVS 411

IDs (mismatching reference annotations, deprecated transcripts, missing variant 412

annotations, or ambivalent range annotations) were dropped. 413

S3 Dataset. The dataset of all 1,316 variants, their functionally validated impact on 414

splicing, literature source, and exact variant effect annotation. 415

S4 Appendix. Calculation of the Delta Score and indel compensation. 416

The difference between predictions for canonical and alternative sequences build the 417

δ-score, which in most cases translates into subtracting the two predictive matrices 418

directly, i.e. δ = Pv − Pr. This however does not work for indels, where the shape of the 419

predictive matrices differ and therefore cannot be subtracted directly. Following [35], 420

the variant annotations are changed by either padding deletions or truncating insertions 421

using a max function (Pv′ , Fig 8). This method prevents offsets by aligning indels back 422

to the reference genome. 423

Given the delta matrix, the delta position (DP) and delta score (DS) for the most 424

significant events for the events acceptor gain (AG), acceptor loss (AL), donor gain 425

(DG) and donor loss (DL) are commonly extracted (see last step in Fig 8). For those 426

data points, where the exact effect and position of the variant is known, the significance 427

and position is compared to the annotations in the exact classification task 428
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Output (SpliceAI Format)

DS_AG

DS_AL

DS_DG

DS_DL

DP_AG

DP_AL

DP_DG

DP_DL
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Donor
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Same as Pv

Fig 8. How the delta score is calculated. The blue rectangle indicates an indel
event where the output matrices Pr and Pv for reference and variant predictions do not
align and need to be compensated. Pv′ is the re-aligned variant matrix, which either
pads deletion predictions with zeros or truncates insertion predictions with a max
function. The delta score can then be calculated by subtraction. SpliceAI annotations
return the delta score (DS) and delta position (DP) for the maximum and minimum
values on the acceptor and donor row, quantifying and locating the events acceptor
gain/loss (AG/AL) and donor gain/loss (DG/DL).
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9. López-Bigas N, Audit B, Ouzounis C, Parra G, Guigó R. Are splicing mutations 451
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