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Abstract

Background

It is estimated that up to 50% of all disease causing variants disrupt splicing. Due to its com-

plexity, our ability to predict which variants disrupt splicing is limited, meaning missed diag-

noses for patients. The emergence of machine learning for targeted medicine holds great

potential to improve prediction of splice disrupting variants. The recently published SpliceAI

algorithm utilises deep neural networks and has been reported to have a greater accuracy

than other commonly used methods.

Methods and findings

The original SpliceAI was trained on splice sites included in primary isoforms combined with

novel junctions observed in GTEx data, which might introduce noise and de-correlate the

machine learning input with its output. Limiting the data to only validated and manual anno-

tated primary and alternatively spliced GENCODE sites in training may improve predictive

abilities. All of these gene isoforms were collapsed (aggregated into one pseudo-isoform)

and the SpliceAI architecture was retrained (CI-SpliceAI). Predictive performance on a

newly curated dataset of 1,316 functionally validated variants from the literature was com-

pared with the original SpliceAI, alongside MMSplice, MaxEntScan, and SQUIRLS. Both

SpliceAI algorithms outperformed the other methods, with the original SpliceAI achieving an

accuracy of�91%, and CI-SpliceAI showing an improvement at�92% overall. Predictive

accuracy increased in the majority of curated variants.

Conclusions

We show that including only manually annotated alternatively spliced sites in training data

improves prediction of clinically relevant variants, and highlight avenues for further perfor-

mance improvements.
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Introduction

Splicing is a complex biological process which removes introns and combines exons to pro-

duce protein coding transcripts (Fig 1). It is mediated by the spliceosome, and regulated by

numerous cis- and trans- acting factors, including the splice donor and acceptor sites encoded

in the RNA itself [1]. Over 90% of multi-exon genes are believed to undergo alternative splic-

ing, where the same gene can encode multiple different isoforms and therefore proteins [2, 3].

Disruption of splicing is a significant contributor to many disorders, from rare diseases to

cancer. It is estimated that a substantial amount of pathogenic single-nucleotide variants dis-

rupt splicing [9, 10]. While the exact number is hard to quantify due to bioinformatic pipelines

often filtering out synonymous and intronic variants [11], recent studies have shown an

improved diagnostic yield of�35% through inclusion of RNA sequencing [12–14]. Because of

its complexity, predicting which variants disrupt splicing is difficult computationally, leading

to a reliance on expensive and time consuming experimental methods to confirm variant path-

ogenicity. Accurate in silicomethods would reduce costs and increase speed in a clinical

setting.

Many splice prediction tools exist, but there is little consensus on which the best tools are,

what thresholds should be used to detect significant disruptions, and how these applications

should be applied in clinical diagnostics. Recent applications of machine learning to splice site

prediction show great promise, and have been found to be more accurate than older but still

widely used methods such as MaxEntScan (MES) [15–17]. MES models the likelihood of a

splice site given 9 or 23 bases using a maximum entropy model;MMSplice [18] uses neural net-

works to predict splice sites given 18 or 53 nucleotides; SQUIRLS [19] uses carefully engineered

features from around the splice sites to classify using decision trees; and SpliceAI [20] uses five

deep convolutional neural networks to predict splice sites based on 10,000 nucleotides of con-

text. SpliceAI models the splicing process directly on a per-nucleotide basis, which may lead to

insights into the splicing mechanism itself.

The original SpliceAI algorithm was trained on GENCODE v24GRCh37 [21] data, using a

single selected primary isoform per gene, enriched with “novel splice junctions commonly

observed in the GTEx cohort” [20]. The human reference genome in version GRCh37.p5 [22]

provided sequencing input. This means many validated alternative transcripts from GEN-

CODE are not included in the training data, and that unchecked and novel splice sites from

GTEx are. GTEx splice sites not contained within GENCODE may also result from changes in

Fig 1. Schematic diagram of splicing process and major regulatory elements. (A) Frequency diagrams at splice sites reveal nucleotide sequence motifs for the acceptor

and donor site. The branch point is located upstream of the acceptor. (B) Regulatory protein binding sites can occur anywhere around a splice site. (C) Regulatory protein

bind to the motifs and excite or inhibit splicing. (D) The U1 and U2 snRNPs bind to the two splice sites and are attracted to or repelled by regulatory protein. The two

junctions are joined to build (E) the mature mRNA that codes for a specific transcript. Branch point and protein binding motifs taken from [4–8].

https://doi.org/10.1371/journal.pone.0269159.g001
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GTEx participant DNA not present in the reference genome that SpliceAI is trained on, decou-

pling the relationship between DNA sequence input and splicing outcome. To overcome both

issues, we retrained the model using a collapsed isoform set representative of all manually

annotated constitutive and alternative splice sites from GENCODE (Fig 2), also known as

HAVANA annotations.

We compare the performance of this Collapsed Isoform SpliceAI (CI-SpliceAI) algorithm

against the original SpliceAI, MMSplice, SQUIRLS and MES using a set of 1,316 variants func-

tionally tested for splicing impact from the literature. The best thresholds on this data are

determined empirically to assist future similar studies. Comparing CI-SpliceAI to SpliceAI, we

report gains in overall accuracy, improvements of scores for the majority of variants tested,

and higher quality of variant effect predictions. We demonstrate modifications in the data

pipeline can improve performance, enhance clinical utility, and highlight areas for further

refinement.

Methods

Splice site recognition

The final SpliceAI algorithm is trained on 19 chromosomes (excluding 1,3,5,7, and 9). We

trained our model twice: 1) on the 19 training chromosomes to allow a fair comparison to the

original SpliceAI algorithm; and 2) on the entire dataset which is used as our final predictive

model. The inclusion of all chromosomes should prevent biasing the model against those

genes held out in the train set.

The model from 1) was then tested on the remainder of chromosomes excluding paralogs,

which were taken from Ensembl BioMart.

GENCODE annotations (v37GRCh38) [21] were filtered to exclude level 3 transcripts

(automated annotation), so all training data was annotated by a human. Exon annotations

were matched to their transcripts by transcript ID. Exon boundaries that aligned with a tran-

script start or end annotation were removed, implicitly removing transcripts/genes consisting

of only one exon. All remaining splice sites for all transcripts per gene were aggregated into

one collapsed representation.

Each transcript region was enlarged by 5,000 nucleotides on both sides to provide 10,000

nucleotides of context, and sequence data was extracted from GRCh38.p13 [23]. Sequences

were sliced into windows of 15,000 bases, where each slice predicts 5,000 nucleotides at a time

given 10,000 bases of flanking context. Genes on the negative strand were reverse-comple-

mented, short slices were padded with ‘N’ (unknown nucleotide) if necessary. Both the

sequence data and the 5,000 ground truth positions (acceptor/donor/neither) were one-hot

encoded.

The training process was reimplemented from SpliceAI [20]. The training data was aggre-

gated into chunks of 100 genes (the last two chunks being combined so no chunk has less than

100 genes). Each of the five models is trained on two GPUs given a random subset of 90% of

chunks, with the remainder functioning as validation data. They are trained for ten times the

number of train chunks by randomly selecting one chunk and iterating over it gene by gene,

and descending the gradient of the categorical cross-entropy error using Adaptive Moment

Estimation (Adam) after each gene. The initial learning rate of 0.001 is halved after 60%, 70%,

80%, and 90% of the total train process.

Curated variant data

Variant data was aggregated from the literature [24–29]. Erroneous Human Genome Variant
Society IDs (HGVS-IDs) [30], such as incorrect annotations on reverse-stranded genes or
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Fig 2. All manually annotated and validated SH3YL1 isoforms on GENCODE v37GRCh38, and the training data used for SpliceAI and CI-SpliceAI. SH3YL1 is the

first gene on the SpliceAI training data with more than one validated transcript. Ambivalent regions that can code for both exons and introns are depicted by dotted

lines. On this gene, 26 (46%) of splice sites in the SpliceAI training data are not in HAVANA; 7 (18%) of our splice sites are not present in SpliceAI training data.

https://doi.org/10.1371/journal.pone.0269159.g002
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outdated transcript identifiers, were adjusted when needed. GRCh38 coordinates were queried

from their HGVS-IDs using ensembl VEP [31]. Duplicates were resolved based on their geno-

mic location. Details about aggregation and manual data correction can be found in S2 Appen-

dix in S1 File.

Specific variant effects, such as which specific exon is skipped or which novel/alternative

splice site is used, were parsed manually where available, allowing investigation into prediction

accuracy on exact variant effect.

Algorithmic comparison on variant data

Algorithms. All five algorithms (MES, MMSplice, SQUIRLS, SpliceAI and CI-SpliceAI)

were assessed on this curated variant set.

MES [15] was run in two different ways. 1) As an Ensembl VEP [32] plugin [33], which

checks for donor and acceptor sites within 9 or 23 bases from the variant respectively to calcu-

late one reference and one variant score, which will disregard all cryptic sites. And 2) through

application as a sliding window (similar to [19]) around each variant in a custom python

implementation, enabling detection of newly generated cryptic splice sites.

MMSplice [18] was run through kipoi [34], a python manager for genomic models. The two

most appropriate MMSplice models, namely splicing efficiency and pathogenicity, were run on

a variant call format (VCF) file which was normalised and left aligned.

SQUIRLS was run on the variant VCF file as described in [19].

Both SpliceAI [20] and CI-SpliceAI were run using their respective published python VCF

annotation module, with a maximum distance from the variant set to 5,000. For SpliceAI, we

configured 4,999 nucleotides max-distance as the python library does not support more than

that nucleotides to account for deep variants. Both implementations extract the reference

sequence plus the maximum distance from a variant and a further 5,000 nucleotides providing

context on either side, one-hot encode reference and variant sequences, and run them through

their respective neural networks. They both compensate insertions and deletions by padding

variant predictions with zeros for deletions, or using the max function for insertions, ensuring

alignment with the reference coordinates (more details in S3 Appendix in S1 File). Our VCF

annotation library follows [35] with some optimisations such as allowing to process multi-

nucleotide indels (such as GTT>AA). Our VCF annotation module and its application can be

found through our portal (S1 Application, Data, Code in S1 File).

For the two SpliceAI models and MES, the delta score (difference between reference and

alternative sequence scores) was derived. If the maximum absolute delta score exceeds the

defined threshold at any nucleotide, the variant is determined to be splice affecting. The Spli-

ceAI authors used a main threshold of 0.2 and recommended higher thresholds for more spec-

ificity [20].

For every tool, we report the optimal threshold in our dataset, i.e. the threshold with maxi-

mum accuracy across all possible thresholds. On this data, the percentage deviation (i.e. [36,

37]) decreased predictive performance for all tools and was omitted.

Variant experiment designs. Algorithm performance was assessed in two different ways:

1) the binary classification task which evaluates how well the algorithms predict if a variant

affects splicing or not (all algorithms, full data set, missing predictions are filled as non-affect-

ing); and 2) the exact classification task investigating how well the exact position and effect of

the variant on splicing could be determined. The second experiment could only be conducted

on algorithms that predict scores per offset (SpliceAI, CI-SpliceAI, and the sliding window

MES), and on variants where the exact variant effect was known.
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Results

Training data

The collapsed isoform training set contains more splice sites, genes, and chromosomes

than the original SpliceAI training data (Table 1). When filtered to the same chromosomes,

the number of genes in CI-SpliceAI is slightly smaller due to the newer GENCODE version

containing fewer transcripts of low quality. 18% of start and stop annotations of genes

(primary transcript for SpliceAI, collapsed isoform for CI-SpliceAI) and 58% of splice sites

overlap between the lifted SpliceAI training set and ours when filtered to the same

chromosomes.

Splice site recognition

The five neural networks trained on 19 chromosomes can predict splice sites on the remainder

(excluding paralogs) with 94% area under the PR curve, less than the 98% when trained on pri-

mary isoforms [20, Fig 1E] and more than the 84% on the SpliceAI GENCODE+GTEx dataset

[38].

We used both SpliceAI and CI-SpliceAI (trained on the 19 training chromosomes) to pre-

dict splice sites on the gene CFTR (comparable to [20], Fig 1B), located on chromosome 7

which is excluded from the training data (Fig 3). While SpliceAI has 15 mispredictions, half of

them false positives, CI-SpliceAI has 4 mispredictions, all of them false negatives.

Table 1. Numeric comparison between the original SpliceAI training set and our novel collapsed dataset.

No. Chroms No. Genes No. Splice Sites Proportion Acceptor/Donor

SpliceAI (Train) 19 13,385 391,515 2.1% more acceptor sites

CI-SpliceAI (Train) 19 13,240 301,835 3.5% more donor sites

CI-SpliceAI (All) 24 18,580 428,475 3.4% more donor sites

The novel collapsed training dataset used for training (bottom row) includes all chromosome, more genes, and more splice sites than SpliceAI. For comparison only, if

filtered to the same chromosomes as SpliceAI (middle row), the collapsed dataset would have slightly fewer genes and splice sites than SpliceAI, due to newer

GENCODE versions and filtering. While the SpliceAI dataset has slightly more acceptor than donor sites, ours has slightly more donor sites.

https://doi.org/10.1371/journal.pone.0269159.t001

Fig 3. Predictions of splice sites in CFTR in comparison to our ground truth from GENCODE. Mispredictions are marked with a red X. The original SpliceAI

algorithm misses one exon, adds one extra, and mispredicts 15 sites in total. When trained on collapsed the curated GENCODE sites (train chromosomes), CI-SpliceAI

misses two exons, does not add any extra exons, and mispredicts 7 sites in total. When trained on the collapsed isoform data and all chromosomes (which includes this

gene), one missing exon is detected correctly and the overall error decreases to 4 mispredicted sites in total.

https://doi.org/10.1371/journal.pone.0269159.g003
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Variant data

1,316 unique variants with functionally validated splicing impact were sourced from the litera-

ture (see S2 Appendix in S1 File). Fig 4 shows that the variants are reasonably balanced

between splice affecting and non-affecting variants as well as the strandedness, preventing

some potential biases, however due many of the publications investigating breast cancer, the

chromosomes are biased towards chr17 (BRCA1) and chr13 (BRCA2). The vast majority of

variants are SNVs, with deletions next most common. 388 variants have exact genomic coordi-

nate annotations that describe the effect, i.e. the genomic coordinates of a loss or gain event, so

that algorithmic effect outputs can be compared more granularly.

Fig 5 shows the variant distribution relative to their closest splice site. As expected, variants

nearer to a splice site are more frequently disruptive. The dataset includes some deep intronic

Fig 4. The final curated variant data set consists of 1,316 unique variants. (A) Literature sources of our data. There is an overlap of 8% of variants (mainly due to

Houdayer et al. citing Leman et al.), all with consensus. (B) Split between splice affecting and non-affecting variants. (C) Split between negatively and positively stranded

genes. (D) Variant location on chromosomes. Chromosomes 1, 11, 13, and 17 make up 73% of the variants. (E) Types of variants. (F) Split of non-SNV variant classes (7%

of the whole data). (G) Functional impact of splicing variants. (H) Type of disruption for the 388 variants where the exact genomic location of the disruption is known

(mostly exon skipping, with 19% using a specific alternative acceptor or donor site).

https://doi.org/10.1371/journal.pone.0269159.g004

Fig 5. All 1,316 variants in relation to their closest splice site and if they affect splicing (shaded area and numerator in the fraction). 57% of sites are closer to a

donor than an acceptor site. 23% of variants are in the consensus motif (equally split between acceptors and donors); 98% of variants within consensus regions are splice

affecting.

https://doi.org/10.1371/journal.pone.0269159.g005
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variants that affect splicing and variants near splice sites that do not, both of which are chal-

lenging to predict.

Algorithmic comparison on variant data

Five splicing prediction algorithms were run on the 1,316 splice tested variants described

above. Table 2 shows the area under the precision-recall and receiver-operater characteristic

curve, the optimal threshold found on the data, its corresponding accuracy, and the coverage

of how many variants have been annotated for all algorithms discussed. The optimal thresh-

olds were empirically calculated to give the greatest accuracy on the large, curated variant set.

The two SpliceAI models outperform the others, with CI-SpliceAI showing improved perfor-

mance over SpliceAI by around one percentage point on all measures and an accuracy of over

92%. The SpliceAI module misses three annotations for which its lookup table contains no

transcripts in that region and seven variants are not annotated because REF and ALT

sequences are both longer than one basepair. CI-SpliceAI annotates all variants and therefore

reaches 100% coverage, together with SQUIRLS and the sliding window MES. While MES, as

run through VEP, provides scores for only 58% of all variants (missing 553 variants where no

overlapping introns were found), its accuracy (>86%) is considerably higher than when

applied as a sliding window (>53%) which in turn provides annotation of all variants. The

pathogenicity model of MMSplice outperforms their splicing efficiency model by a percentage

point. Both models miss 8 predictions, all of which are deep intronic (>100bp).

The precision-recall curves are visualised in Fig 6. The smooth shapes of the SpliceAI and

CI-SpliceAI curves illustrate good clinical application due to few fluctuations in predictive per-

formance when selecting for a desired precision/recall trade-off. Irregular shapes (sliding win-

dow MES, VEP MES for high recall, and MMSplice pathogenicity for high precision

predictions) indicate problems in the model that limit clinical application.

When comparing the predictions made by the original SpliceAI vs CI-SpliceAI, the predic-

tion of 78% of variants changed, of which 73% improved (i.e. scores moved towards the results

of functional analysis, Fig 7).

In addition to the binary task of predicting whether or not a variant affects splicing, for a

subset of 388 variants, the exact location of splicing disruption was known. Table 3 compares

the accuracy of predicting the exact genomic coordinates of the variant effect. This is only pos-

sible for algorithms that return one score per nucleotide offset (the two SpliceAI algorithms

and the sliding window MES). The deep learning models outperform MES, with CI-SpliceAI

exceeding or matching SpliceAI’s accuracy on all four effect classes.

Table 2. Binary classification results on the variant data (affecting/non affecting).

Coverage AUC-PR AUC-ROC Optimal Threshold Accuracy

MES (Sliding Window) 100% 55.68% 52.97% 12.500 53.42%

SQUIRLS 100% 91.32% 91.17% 0.074 85.64%

MES (VEP) 58% 92.52% 89.15% 2.109 86.40%

MMSplice (Splicing Efficiency) 99% 93.03% 92.56% 1.119 87.23%

MMSplice (Pathogenicity) 99% 94.13% 92.84% 0.961 88.53%

SpliceAI 99% 96.21% 95.65% 0.300 90.88%

CI-SpliceAI 100% 97.25% 96.75% 0.190 92.17%

Comparison of coverage (i.e. how many variants were annotated by the algorithm), the area under the precision-recall (PR) and receiver-operator characteristic (ROC)

curve, the optimal threshold found, and the accuracy on this threshold for the different algorithms ran on our dataset. This is measured on all 1,316 variants.

https://doi.org/10.1371/journal.pone.0269159.t002
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Application

We release CI-SpliceAI with all its components open source on our portal (S1 Application,

Data, Code in S1 File). The portal also allows annotation of VCF files online for non-commer-

cial use free of charge; these variants are processed on the google cloud and cached to a data-

base to prevent redundant computation.

Discussion

Disruption of splicing is a major contributor to human disease, including rare disorders, can-

cers and neurodegeneration. The ability to accurately predict the impact a variant will have on

the splicing process would improve diagnostics and enhance understanding of disease pro-

cesses. Despite many in silico algorithms for splice prediction being available, there is little con-

sensus on the best tools to use in classifying variants, and the cutoffs to use to gain the greatest

accuracy. Here we assessed the predictive performance of several in silico approaches on a

large curated set of functionally tested splicing variants. We show the greatest accuracy from

the deep learning based algorithm SpliceAI can be further improved upon through the use of

Fig 6. PR curves of algorithms investigated on all 1,316 variants. PR curves demonstrate the capabilities of a model

to trade off precision and recall. The area under each curve is indicated in the legend.

https://doi.org/10.1371/journal.pone.0269159.g006
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collapsed isoform training data, and we suggest thresholds to maximise accuracy for all tools

(Table 2), guiding clinical implementation.

We make the curated variant set (S2 Appendix in S1 File), all training data, the code com-

paring all tools, the CI-SpliceAI training code and the command line tool freely available on

our portal (S1 Application, Data, Code in S1 File).

The curated set of 1,316 variants derived from the literature is one of the most extensive

sets of tested splicing variants to date. On this data, CI-SpliceAI had the greatest accuracy of all

tools tested on both the binary task and when predicting the exact variant effect. SpliceAI has

performed favourably in many comparisons since its release in 2019 [16, 17, 20, 24, 29], and it

was suggested that the simultaneous prediction of thousands of nucleotides around a variant is

the key advantage for its success: the big window sizes might allow SpliceAI to recognise pairs

of acceptors and donors and other co-dependent features not only near splice sites, but also

deep within the exon or intron. Feature maps within a convolutional neural network that rec-

ognise patterns in data are applied as a sliding window, allowing splicing factors such as bind-

ing sites or the branch point to be recognised independent of their offset to a splice site, and

variants within their motifs are considered in the classification. This per-nucleotide modelling

of the splicing process also allows more granular predictions of the variant effect on the

mRNA.

In this study, we show that modifications to the data used to train SpliceAI, while maintain-

ing the same fundamental architecture, can improve predictive performance of splice site dis-

ruptions by over 1 percentage point. As accuracies approach 100%, it is to be expected that

Fig 7. Comparison of the predictive error between SpliceAI and CI-SpliceAI on all 1,316 variants. The predictive error is the absolute difference

between the most significant predicted annotation and the ground truth. 78% of predictions in CI-SpliceAI have a different output than when

annotated with SpliceAI, out of which 73% have a smaller predictive error. (A) Predictions for CI-SpliceAI improved relative to SpliceAI for almost

every position; there is no obvious bias where predictions worsened at a specific distance from a splice site, neither for the type of splice site nor the

distance. (B) The magnitude of the change in predictive error. Variants on the identity line did not change their score; points lying above the identity

line improved, points below worsened. The big cluster at the bottom left corner represents points where our algorithm shows improved confidence in

correct predictions. A cluster of mispredicted variants of high confidence have worsened (top right corner).

https://doi.org/10.1371/journal.pone.0269159.g007

Table 3. Exact classification results on the curated variant data.

Acceptor Gain Acceptor Loss Donor Gain Donor Loss

MES (Sliding Window) 0.00% 1.16% 2.33% 2.25%

SpliceAI 87.50% 77.10% 79.07% 78.93%

CI-SpliceAI 93.75% 78.55% 79.07% 82.02%

Comparison of the accuracy of predicting the exact location of the splice disruption on the 388 variants with known exact disruption coordinates. Except for donor

gains, where CI-SpliceAI and the original SpliceAI have equal accuracy, CI-SpliceAI outperforms other models.

https://doi.org/10.1371/journal.pone.0269159.t003
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performance improvements will be modest and incremental. There are likely several factors

responsible for this improved accuracy. Firstly, the original SpliceAI included novel junctions

from GTEx data that have not necessarily been verified, whereas CI-SpliceAI included only

GENCODE splice sites that have been manually annotated. We argue this filtering increases

the quality of training annotations. As the exact GTEx data pipeline used by SpliceAI was not

published, analysis of their exact method and filtering is non-trivial. Secondly, by including

GTEx specific splicing events but not their respective genomic sequence input, a mismatch

may be created between DNA input and splicing output annotations. The algorithm may

therefore misattribute splicing events subject to specific GTEx participants to the human refer-

ence genome sequence that is not spliced. This would also explain why the PR-AUC of Spli-

ceAI on the shared GENCODE+GTEx data is so low, and why measures on HAVANA

annotations improved. Thirdly, we included all chromosomes in our training data, whereas

SpliceAI excluded chromosomes 1,3,5,7, and 9. We have verified that this is not the single

cause of why CI-SpliceAI is better: When including all chromosomes within the SpliceAI train-

ing algorithm, the performance improvement was only 0.05% PR-AUC on the clinical data.

Finally, SpliceAI was trained using GENCODE v24 and the GRCh37 reference build, both of

which have been superseded by more recent versions. Although newer versions improve accu-

racy and coverage of both resources [39, 40], and we too observed a higher quality of data,

comparisons of models trained on new and old versions revealed differences in accuracy were

negligible.

Of the other tools tested, all achieved accuracies >85%, with the exception of the sliding

window MES application, which did not perform notably better than random chance. This

approach was implemented because MES as run through VEP was only able to provide predic-

tions for�60% of variants, limited to variants that occur within the vicinity of known splice

sites. These predictions will necessarily miss disrupting deep intronic/exonic variants and

those creating alternative splice sites, restricting its clinical utility. While the sliding window

approach mitigated this limitation, clinical application is inadvisable due to poor predictive

performance. MMSplice and SQUIRLS both gave good coverage of variants (>99%) and had

relatively high accuracy (� 86 − 88%). Their design however means that neither can predict

the actual variant effect and its position. Accurate determination of the precise splicing impact

has implications for clinical interpretation, for example, in determining whether the splicing

change disrupts the reading frame and is likely to lead to nonsense mediated decay. The design

of SpliceAI and CI-SpliceAI models the splicing process on a per-nucleotide basis, which

allows predictions of the actual variant effect with high accuracy. CI-SpliceAI outperforms or

equals other tools on all measures, again, demonstrating the benefits of the collapsed training

set.

Many bioinformatic tools require time and computational expertise to be set-up, especially

deep learning tools with dependencies on computational graphic cards. But out of the tools

evaluated on this data, deep learning tools are significantly better in predicting splice site dis-

ruptions, so efforts to improve and encourage their wide spread use in the clinical setting are

certainly warranted. Alamut Visual [41] simplifies access to open source splice prediction soft-

ware (and more) to a common interface, however it is a commercial tool not accessible in the

public domain. Ensembl VEP [32] is an open source tool with a freely accessible web interface

that allows third-party tools to be run as a plugin. The web interface supports outputs of pre-

computed SpliceAI and MES scores for canonical splice sites. We believe that open source and

simplified access is vital to research and clinical application, and therefore release CI-SpliceAI

both as an open source tool and through a freely accessible web interface.

Under American College of Medical Genetics (ACMG) guidelines [11], in silicomethods

for splice prediction may be used as supporting evidence only where multiple lines of
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computational evidence suggest no impact (BP4) or deleterious impact (PP3) on gene func-

tion. The results presented here highlight the most appropriate tools to use, and suggest empir-

ically derived thresholds to obtain optimal accuracy.

Although the variant set used to test the algorithms is one of the largest curated to date, it is

still limited in size, particularly when assessing the exact variant effects. Most data sources did

not report the specific splicing change with base-pair resolution, limiting the number of vari-

ants available for this assessment. The variant set is also subject to various biases in ascertain-

ment from the sources used. For example, a large proportion of the variants are derived from

papers with a focus on breast cancer, leading to an over-representation of certain chromo-

somes which harbour the BRCA genes. Other sources pre-filtered variant candidates computa-

tionally. This may limit the generalisability of the findings, both for tool performance and

optimal thresholds reported, to the wider clinical setting. We have also identified a cluster of

high confidence mispredictions (Fig 7 top-right corner) where the inclusion of alternative

splice sites increased the scores to be even more confident. This might indicate problems in

the variant data that can only be resolved by re-evaluation through functional analysis.

While accuracies >90%, as observed for the SpliceAI models, are impressive, there is still

clearly room for improvement before in silico predictions can be fully trusted in clinical variant

interpretation. While CI-SpliceAI does show improved accuracy over SpliceAI, this improve-

ment is modest, impacting 972 out of 1316 variants (73.86%); the accuracy on the remainder

decreased. Naturally, the greater the accuracy of a tool, the smaller the room for improvement.

However, this study shows that relatively minor adjustments in model development can make

an impact on overall performance. Apart from potential simplifications on the model architec-

ture for faster classification, further data engineering (e.g. incorporation of conservation

scores, splicing factor binding sites, tissue specific splice site usage levels) could enhance pre-

dictive accuracy and timely diagnosis further.

To our knowledge, this study was the first to investigate computational modelling of the

actual variant effect, moving away from a simple binary affecting/non-affecting problem for-

mulation and towards predicting the actual impact of a variant on the mRNA sequence. We

encourage future splicing studies to report the exact variant effect at base-pair resolution

where possible to allow extending this analysis further. We believe that more granular model-

ling and investigation of potential biases in both training and variant data will enable even

more accurate diagnosis of splicing related disease.

Conclusion

In summary, we compiled an extensive set of functionally validated splicing variants, and used

these to test a variety of in silico splice prediction methods. We found SpliceAI outperformed

other methods, and that its predictions could be improved upon through the incorporation of

alternative splicing sites in training data. For each tool, we calculated optimal thresholds for

use in the clinical setting. All data and models are made available to facilitate adoption of the

method in clinical practice, and further improvements to model performance.
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