The SQ-universality and residual properties of relatively hyperbolic groups

G. Arzhantseva

A. Minasyan *
D. Osin^{\dagger}

Abstract

In this paper we study residual properties of relatively hyperbolic groups. In particular, we show that if a group G is non-elementary and hyperbolic relative to a collection of proper subgroups, then G is SQ-universal.

1 Introduction

The notion of a group hyperbolic relative to a collection of subgroups was originally suggested by Gromov [9] and since then it has been elaborated from different points of view $[3,6,5,21]$. The class of relatively hyperbolic groups includes many examples. For instance, if M is a complete finite-volume manifold of pinched negative sectional curvature, then $\pi_{1}(M)$ is hyperbolic with respect to the cusp subgroups [3, 6]. More generally, if G acts isometrically and properly discontinuously on a proper hyperbolic metric space X so that the induced action of G on ∂X is geometrically finite, then G is hyperbolic relative to the collection of maximal parabolic subgroups [3]. Groups acting on $\operatorname{CAT}(0)$ spaces with isolated flats are hyperbolic relative to the collection of flat stabilizers [13]. Algebraic examples of relatively hyperbolic groups include free products and their small cancellation quotients [21], fully residually free groups (or Sela's limit groups) [4], and, more generally, groups acting freely on \mathbb{R}^{n}-trees [10].

The main goal of this paper is to study residual properties of relatively hyperbolic groups. Recall that a group G is called $S Q$-universal if every countable group can be embedded into a quotient of G [25]. It is straightforward to see that any SQ-universal group contains an infinitely generated free subgroup. Furthermore, since the set of all finitely generated groups is uncountable and every single quotient of G contains (at most) countably many finitely generated subgroups, every SQ-universal group has uncountably many non-isomorphic quotients. Thus the property of being SQ-universal may, in a very rough sense, be considered as an indication of "largeness" of a group.

The first non-trivial example of an SQ-universal group was provided by Higman, Neumann and Neumann [11], who proved that the free group of rank 2 is SQ-universal. Presently

[^0]many other classes of groups are known to be SQ-universal: various HNN-extensions and amalgamated products [7, 15, 24], groups of deficiency 2 [2], most $C(3) \& T(6)$-groups [12], etc. The SQ-universality of non-elementary hyperbolic groups was proved by Olshanskii in [19]. On the other hand, for relatively hyperbolic groups, there are some partial results. Namely, in [8] Fine proved the SQ-universality of certain Kleinian groups. The case of fundamental groups of hyperbolic 3 -manifolds was studied by Ratcliffe in [23].

In this paper we prove the SQ-universality of relatively hyperbolic groups in the most general settings. Let a group G be hyperbolic relative to a collection of subgroups $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$ (called peripheral subgroups). We say that G is properly hyperbolic relative to $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$ (or G is a PRH group for brevity), if $H_{\lambda} \neq G$ for all $\lambda \in \Lambda$. Recall that a group is elementary, if it contains a cyclic subgroup of finite index. We observe that every non-elementary PRH group has a unique maximal finite normal subgroup denoted by $E_{G}(G)$ (see Lemmas 4.3 and 3.3 below).

Theorem 1.1. Suppose that a group G is non-elementary and properly relatively hyperbolic with respect to a collection of subgroups $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$. Then for each finitely generated group R, there exists a quotient group Q of G and an embedding $R \hookrightarrow Q$ such that:

1. Q is properly relatively hyperbolic with respect to the collection $\left\{\psi\left(H_{\lambda}\right)\right\}_{\lambda \in \Lambda} \cup\{R\}$ where $\psi: G \rightarrow Q$ denotes the natural epimorphism;
2. For each $\lambda \in \Lambda$, we have $H_{\lambda} \cap \operatorname{ker}(\psi)=H_{\lambda} \cap E_{G}(G)$, that is, $\psi\left(H_{\lambda}\right)$ is naturally isomorphic to $H_{\lambda} /\left(H_{\lambda} \cap E_{G}(G)\right)$.

In general, we can not require the epimorphism ψ to be injective on every H_{λ}. Indeed, it is easy to show that a finite normal subgroup of a relatively hyperbolic group must be contained in each infinite peripheral subgroup (see Lemma 4.4). Thus the image of $E_{G}(G)$ in Q will have to be inside R whenever R is infinite. If, in addition, the group R is torsionfree, the latter inclusion implies $E_{G}(G) \leq \operatorname{ker}(\psi)$. This would be the case if one took $G=F_{2} \times \mathbb{Z} /(2 \mathbb{Z})$ and $R=\mathbb{Z}$, where F_{2} denotes the free group of rank 2 and G is properly hyperbolic relative to its subgroup $\mathbb{Z} /(2 \mathbb{Z})=E_{G}(G)$.

Since any countable group is embeddable into a finitely generated group, we obtain the following.

Corollary 1.2. Any non-elementary PRH group is $S Q$-universal.
Let us mention a particular case of Corollary 1.2. In [7] the authors asked whether every finitely generated group with infinite number of ends is SQ-universal. The celebrated Stallings theorem [26] states that a finitely generated group has infinite number of ends if and only if it splits as a nontrivial HNN-extension or amalgamated product over a finite subgroup. The case of amalgamated products was considered by Lossov who provided the positive answer in [15]. Corollary 1.2 allows us to answer the question in the general case. Indeed, every group with infinite number of ends is non-elementary and properly relatively hyperbolic, since the action of such a group on the corresponding Bass-Serre tree satisfies Bowditch's definition of relative hyperbolicity [3].

Corollary 1.3. A finitely generated group with infinite number of ends is $S Q$-universal.

The methods used in the proof of Theorem 1.1 can also be applied to obtain other results:

Theorem 1.4. Any two finitely generated non-elementary PRH groups G_{1}, G_{2} have a common non-elementary PRH quotient Q. Moreover, Q can be obtained from the free product $G_{1} * G_{2}$ by adding finitely many relations.

In [18] Olshanskii proved that any non-elementary hyperbolic group has a non-trivial finitely presented quotient without proper subgroups of finite index. This result was used by Lubotzky and Bass [1] to construct representation rigid linear groups of non-arithmetic type thus solving in negative the Platonov Conjecture. Theorem 1.4 yields a generalization of Olshanskii's result.

Definition 1.5. Given a class of groups \mathcal{G}, we say that a group R is residually incompatible with \mathcal{G} if for any group $A \in \mathcal{G}$, any homomorphism $R \rightarrow A$ has a trivial image.

If G and R are finitely presented groups, G is properly relatively hyperbolic, and R is residually incompatible with a class of groups \mathcal{G}, we can apply Theorem 1.4 to $G_{1}=G$ and $G_{2}=R * R$. Obviously, the obtained common quotient of G_{1} and G_{2} is finitely presented and residually incompatible with \mathcal{G}.

Corollary 1.6. Let \mathcal{G} be a class of groups. Suppose that there exists a finitely presented group R that is residually incompatible with \mathcal{G}. Then every finitely presented non-elementary PRH group has a non-trivial finitely presented quotient group that is residually incompatible with \mathcal{G}.

Recall that there are finitely presented groups having no non-trivial recursively presented quotients with decidable word problem [16]. Applying the previous corollary to the class \mathcal{G} of all recursively presented groups with decidable word problem, we obtain the following result.

Corollary 1.7. Every non-elementary finitely presented PRH group has an infinite finitely presented quotient group Q such that the word problem is undecidable in each non-trivial quotient of Q.

In particular, Q has no proper subgroups of finite index. The reader can easily check that Corollary 1.6 can also be applied to the classes of all torsion (torsion-free, Noetherian, Artinian, amenable, etc.) groups.

2 Relatively hyperbolic groups

We recall the definition of relatively hyperbolic groups suggested in [21] (for equivalent definitions in the case of finitely generated groups see $[3,5,6]$). Let G be a group, $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$ a fixed collection of subgroups of G (called peripheral subgroups), X a subset of G. We say that X is a relative generating set of G with respect to $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$ if G is generated by X together with the union of all H_{λ} (for convenience, we always assume that $X=X^{-1}$). In this situation the group G can be considered as a quotient of the free product

$$
\begin{equation*}
F=\left(*_{\lambda \in \Lambda} H_{\lambda}\right) * F(X), \tag{1}
\end{equation*}
$$

where $F(X)$ is the free group with the basis X. Suppose that \mathcal{R} is a subset of F such that the kernel of the natural epimorphism $F \rightarrow G$ is a normal closure of \mathcal{R} in the group F, then we say that G has relative presentation

$$
\begin{equation*}
\left\langle X,\left\{H_{\lambda}\right\}_{\lambda \in \Lambda} \mid R=1, R \in \mathcal{R}\right\rangle \tag{2}
\end{equation*}
$$

If sets X and \mathcal{R} are finite, the presentation (2) is said to be relatively finite.
Definition 2.1. We set

$$
\begin{equation*}
\mathcal{H}=\bigsqcup_{\lambda \in \Lambda}\left(H_{\lambda} \backslash\{1\}\right) \tag{3}
\end{equation*}
$$

A group G is relatively hyperbolic with respect to a collection of subgroups $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$, if G admits a relatively finite presentation (2) with respect to $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$ satisfying a linear relative isoperimetric inequality. That is, there exists $C>0$ satisfying the following condition. For every word w in the alphabet $X \cup \mathcal{H}$ representing the identity in the group G, there exists an expression

$$
\begin{equation*}
w={ }_{F} \prod_{i=1}^{k} f_{i}^{-1} R_{i}^{ \pm 1} f_{i} \tag{4}
\end{equation*}
$$

with the equality in the group F, where $R_{i} \in \mathcal{R}, f_{i} \in F$, for $i=1, \ldots, k$, and $k \leq C\|w\|$, where $\|w\|$ is the length of the word w. This definition is independent of the choice of the (finite) generating set X and the (finite) set \mathcal{R} in (2).

For a combinatorial path p in the Cayley graph $\Gamma(G, X \cup \mathcal{H})$ of G with respect to $X \cup \mathcal{H}$, $p_{-}, p_{+}, l(p)$, and $\mathbf{L a b}(p)$ will denote the initial point, the ending point, the length (that is, the number of edges) and the label of p respectively. Further, if Ω is a subset of G and $g \in\langle\Omega\rangle \leq G$, then $|g|_{\Omega}$ will be used to denote the length of a shortest word in $\Omega^{ \pm 1}$ representing g.

Let us recall some terminology introduced in [21]. Suppose q is a path in $\Gamma(G, X \cup \mathcal{H})$.
Definition 2.2. A subpath p of q is called an H_{λ}-component for some $\lambda \in \Lambda$ (or simply a component) of q, if the label of p is a word in the alphabet $H_{\lambda} \backslash\{1\}$ and p is not contained in a bigger subpath of q with this property.

Two components p_{1}, p_{2} of a path q in $\Gamma(G, X \cup \mathcal{H})$ are called connected if they are $H_{\lambda^{-}}$ components for the same $\lambda \in \Lambda$ and there exists a path c in $\Gamma(G, X \cup \mathcal{H})$ connecting a vertex of p_{1} to a vertex of p_{2} such that $\mathbf{L a b}(c)$ entirely consists of letters from H_{λ}. In algebraic terms this means that all vertices of p_{1} and p_{2} belong to the same coset $g H_{\lambda}$ for a certain $g \in G$. We can always assume c to have length at most 1 , as every nontrivial element of H_{λ} is included in the set of generators. An H_{λ}-component p of a path q is called isolated if no distinct H_{λ}-component of q is connected to p. A path q is said to be without backtracking if all its components are isolated.

The next lemma is a simplification of Lemma 2.27 from [21].
Lemma 2.3. Suppose that a group G is hyperbolic relative to a collection of subgroups $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$. Then there exists a finite subset $\Omega \subseteq G$ and a constant $K \geq 0$ such that
the following condition holds. Let q be a cycle in $\Gamma(G, X \cup \mathcal{H}), p_{1}, \ldots, p_{k}$ a set of isolated H_{λ}-components of q for some $\lambda \in \Lambda, g_{1}, \ldots, g_{k}$ elements of G represented by labels $\mathbf{L a b}\left(p_{1}\right), \ldots, \mathbf{L a b}\left(p_{k}\right)$ respectively. Then g_{1}, \ldots, g_{k} belong to the subgroup $\langle\Omega\rangle \leq G$ and the word lengths of g_{i} 's with respect to Ω satisfy the inequality

$$
\sum_{i=1}^{k}\left|g_{i}\right|_{\Omega} \leq K l(q) .
$$

3 Suitable subgroups of relatively hyperbolic groups

Throughout this section let G be a group which is properly hyperbolic relative to a collection of subgroups $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}, X$ a finite relative generating set of G, and $\Gamma(G, X \cup \mathcal{H})$ the Cayley graph of G with respect to the generating set $X \cup \mathcal{H}$, where \mathcal{H} is given by (3). Recall that an element $g \in G$ is called hyperbolic if it is not conjugate to an element of some $H_{\lambda}, \lambda \in \Lambda$. The following description of elementary subgroups of G was obtained in [20].

Lemma 3.1. Let g be a hyperbolic element of infinite order of G. Then the following conditions hold.

1. The element g is contained in a unique maximal elementary subgroup $E_{G}(g)$ of G, where

$$
\begin{equation*}
E_{G}(g)=\left\{f \in G: f^{-1} g^{n} f=g^{ \pm n} \text { for some } n \in \mathbb{N}\right\} \tag{5}
\end{equation*}
$$

2. The group G is hyperbolic relative to the collection $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda} \cup\left\{E_{G}(g)\right\}$.

Given a subgroup $S \leq G$, we denote by S^{0} the set of all hyperbolic elements of S of infinite order. Recall that two elements $f, g \in G^{0}$ are said to be commensurable (in G) if f^{k} is conjugated to g^{l} in G for some non-zero integers k and l.

Definition 3.2. A subgroup $S \leq G$ is called suitable, if there exist at least two noncommensurable elements $f_{1}, f_{2} \in S^{0}$, such that $E_{G}\left(f_{1}\right) \cap E_{G}\left(f_{2}\right)=\{1\}$.

If $S^{0} \neq \emptyset$, we define

$$
E_{G}(S)=\bigcap_{g \in S^{0}} E_{G}(g)
$$

Lemma 3.3. If $S \leq G$ is a non-elementary subgroup and $S^{0} \neq \emptyset$, then $E_{G}(S)$ is the maximal finite subgroup of G normalized by S.

Proof. Indeed, if a finite subgroup $M \leq G$ is normalized by S, then $\left|S: C_{S}(M)\right|<\infty$ where $C_{S}(M)=\left\{g \in S: g^{-1} x g=x, \forall x \in M\right\}$. Formula (5) implies that $M \leq E_{G}(g)$ for every $g \in S^{0}$, hence $M \leq E_{G}(S)$.

On the other hand, if S is non-elementary and $S^{0} \neq \emptyset$, there exist $h \in S^{0}$ and $a \in$ $S^{0} \backslash E_{G}(h)$. Then $a^{-1} h a \in S^{0}$ and the intersection $E_{G}\left(a^{-1} h a\right) \cap E_{G}(h)$ is finite. Indeed if $E_{G}\left(a^{-1} h a\right) \cap E_{G}(h)$ were infinite, we would have $\left(a^{-1} h a\right)^{n}=h^{k}$ for some $n, k \in \mathbb{Z} \backslash\{0\}$, which would contradict to $a \notin E_{G}(h)$. Hence $E_{G}(S) \leq E_{G}\left(a^{-1} h a\right) \cap E_{G}(h)$ is finite. Obviously, $E_{G}(S)$ is normalized by S in G.

The main result of this section is the following
Proposition 3.4. Suppose that a group G is hyperbolic relative to a collection $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$ and S is a subgroup of G. Then the following conditions are equivalent.
(1) S is suitable;
(2) $S^{0} \neq \emptyset$ and $E_{G}(S)=\{1\}$.

Our proof of Proposition 3.4 will make use of several auxiliary statements below.
Lemma 3.5 (Lemma 4.4, [20]). For any $\lambda \in \Lambda$ and any element $a \in G \backslash H_{\lambda}$, there exists a finite subset $\mathcal{F}_{\lambda}=\mathcal{F}_{\lambda}(a) \subseteq H_{\lambda}$ such that if $h \in H_{\lambda} \backslash \mathcal{F}_{\lambda}$, then ah is a hyperbolic element of infinite order.

It can be seen from Lemma 3.1 that every hyperbolic element $g \in G$ of infinite order is contained inside the elementary subgroup

$$
E_{G}^{+}(g)=\left\{f \in G: f^{-1} g^{n} f=g^{n} \text { for some } n \in \mathbb{N}\right\} \leq E_{G}(g),
$$

and $\left|E_{G}(g): E_{G}^{+}(g)\right| \leq 2$.
Lemma 3.6. Suppose $g_{1}, g_{2} \in G^{0}$ are non-commensurable and $A=\left\langle g_{1}, g_{2}\right\rangle \leq G$. Then there exists an element $h \in A^{0}$ such that:

1. h is not commensurable with g_{1} and g_{2};
2. $E_{G}(h)=E_{G}^{+}(h) \leq\left\langle h, E_{G}\left(g_{1}\right) \cap E_{G}\left(g_{2}\right)\right\rangle$. If, in addition, $E_{G}\left(g_{j}\right)=E_{G}^{+}\left(g_{j}\right), j=1,2$, then $E_{G}(h)=E_{G}^{+}(h)=\langle h\rangle \times\left(E_{G}\left(g_{1}\right) \cap E_{G}\left(g_{2}\right)\right)$.

Proof. By Lemma 3.1, G is hyperbolic relative to the collection of peripheral subgroups $\mathfrak{C}_{1}=\left\{H_{\lambda}\right\}_{\lambda \in \Lambda} \cup\left\{E_{G}\left(g_{1}\right)\right\} \cup\left\{E_{G}\left(g_{2}\right)\right\}$. The center $Z\left(E_{G}^{+}\left(g_{j}\right)\right)$ has finite index in $E_{G}^{+}\left(g_{j}\right)$, hence (possibly, after replacing g_{j} with a power of itself) we can assume that $g_{j} \in Z\left(E_{G}^{+}\left(g_{j}\right)\right)$, $j=1,2$. Using Lemma 3.5 we can find an integer $n_{1} \in \mathbb{N}$ such that the element $g_{3}=$ $g_{2} g_{1}^{n_{1}} \in A$ is hyperbolic relatively to \mathfrak{C}_{1} and has infinite order. Applying Lemma 3.1 again, we achieve hyperbolicity of G relative to $\mathfrak{C}_{2}=\mathfrak{C}_{1} \cup\left\{E_{G}\left(g_{3}\right)\right\}$. Set $\mathcal{H}^{\prime}=\bigsqcup_{H \in \mathfrak{C}_{2}}(H \backslash\{1\})$.

Let $\Omega \subset G$ be the finite subset and $K>0$ the constant chosen according to Lemma 2.3 (where G is considered to be relatively hyperbolic with respect to \mathfrak{C}_{2}). Using Lemma 3.5 two more times, we can find numbers $m_{1}, m_{2}, m_{3} \in \mathbb{N}$ such that

$$
\begin{equation*}
g_{i}^{m_{i}} \notin\left\{y \in\langle\Omega\rangle:|y|_{\Omega} \leq 21 K\right\}, \quad i=1,2,3, \tag{6}
\end{equation*}
$$

and $h=g_{1}^{m_{1}} g_{3}^{m_{3}} g_{2}^{m_{2}} \in A$ is a hyperbolic element (with respect to \mathfrak{C}_{2}) and has infinite order. Indeed, first we choose m_{1} to satisfy (6). By Lemma 3.5, there is m_{3} satisfying (6), so that $g_{1}^{m_{1}} g_{3}^{m_{3}} \in A^{0}$. Similarly m_{2} can be chosen sufficiently big to satisfy (6) and $g_{1}^{m_{1}} g_{3}^{m_{3}} g_{2}^{m_{2}} \in A^{0}$. In particular, h will be non-commensurable with $g_{j}, j=1,2$ (otherwise, there would exist $f \in G$ and $n \in \mathbb{N}$ such that $f^{-1} h^{n} f \in E\left(g_{j}\right)$, implying $h \in f E\left(g_{j}\right) f^{-1}$ by Lemma 3.1 and contradicting the hyperbolicity of h).

Consider a path q labelled by the word $\left(g_{1}^{m_{1}} g_{3}^{m_{3}} g_{2}^{m_{2}}\right)^{l}$ in $\Gamma\left(G, X \cup \mathcal{H}^{\prime}\right)$ for some $l \in \mathbb{Z} \backslash\{0\}$, where each $g_{i}^{m_{i}}$ is treated as a single letter from \mathcal{H}^{\prime}. After replacing q with q^{-1}, if necessary, we assume that $l \in \mathbb{N}$. Let $p_{1}, \ldots, p_{3 l}$ be all components of q; by the construction of q, we have $l\left(p_{j}\right)=1$ for each j. Suppose not all of these components are isolated. Then one can find indices $1 \leq s<t \leq 3 l$ and $i \in\{1,2,3\}$ such that p_{s} and p_{t} are $E_{G}\left(g_{i}\right)$-components of $q,\left(p_{t}\right)_{-}$and $\left(p_{s}\right)_{+}$are connected by a path r with $\mathbf{L a b}(r) \in E_{G}\left(g_{i}\right), l(r) \leq 1$, and $(t-s)$ is minimal with this property. To simplify the notation, assume that $i=1$ (the other two cases are similar). Then $p_{s+1}, p_{s+4}, \ldots, p_{t-2}$ are isolated $E_{G}\left(g_{3}\right)$-components of the cycle $p_{s+1} p_{s+2} \ldots p_{t-1} r$, and there are exactly $(t-s) / 3 \geq 1$ of them. Applying Lemma 2.3, we obtain $g_{3}^{m_{3}} \in\langle\Omega\rangle$ and

$$
\frac{t-s}{3}\left|g_{3}^{m_{3}}\right|_{\Omega} \leq K(t-s)
$$

Hence $\left|g_{3}^{m_{3}}\right|_{\Omega} \leq 3 K$, contradicting (6). Therefore two distinct components of q can not be connected with each other; that is, the path q is without backtracking.

To finish the proof of Lemma 3.6 we need an auxiliary statement below. Denote by \mathcal{W} the set of all subwords of words $\left(g_{1}^{m_{1}} g_{3}^{m_{3}} g_{2}^{m_{2}}\right)^{l}, l \in \mathbb{Z}$ (where $g_{i}^{ \pm m_{i}}$ is treated as a single letter from $\left.\mathcal{H}^{\prime}\right)$. Consider an arbitrary cycle $o=\operatorname{rqr}^{\prime} q^{\prime}$ in $\Gamma\left(G, X \cup \mathcal{H}^{\prime}\right)$, where $\mathbf{L a b}(q), \mathbf{L a b}\left(q^{\prime}\right) \in \mathcal{W}$; and set $C=\max \left\{l(r), l\left(r^{\prime}\right)\right\}$. Let p be a component of $q\left(\right.$ or $\left.q^{\prime}\right)$. We will say that p is regular if it is not an isolated component of o. As q and q^{\prime} are without backtracking, this means that p is either connected to some component of q^{\prime} (respectively q), or to a component of r, or r^{\prime}.

Lemma 3.7. In the above notations
(a) if $C \leq 1$ then every component of q or q^{\prime} is regular;
(b) if $C \geq 2$ then each of q and q^{\prime} can have at most $15 C$ components which are not regular.

Proof. Assume the contrary to (a). Then one can choose a cycle $o=r q r^{\prime} q^{\prime}$ with $l(r), l\left(r^{\prime}\right) \leq$ 1, having at least one $E\left(g_{i}\right)$-isolated component on q or q^{\prime} for some $i \in\{1,2,3\}$, and such that $l(q)+l\left(q^{\prime}\right)$ is minimal. Clearly the latter condition implies that each component of q or q^{\prime} is an isolated component of o. Therefore q and q^{\prime} together contain k distinct $E\left(g_{i}\right)$ components of o where $k \geq 1$ and $k \geq\lfloor l(q) / 3\rfloor+\left\lfloor l\left(q^{\prime}\right) / 3\right\rfloor$. Applying Lemma 2.3 we obtain $g_{i}^{m_{i}} \in\langle\Omega\rangle$ and $k\left|g_{i}^{m_{i}}\right| \Omega \leq K\left(l(q)+l\left(q^{\prime}\right)+2\right)$, therefore $\left|g_{i}^{m_{i}}\right| \Omega \leq 11 K$, contradicting the choice of m_{i} in (6).

Let us prove (b). Suppose that $C \geq 2$ and q contains more than $15 C$ isolated components of o. We consider two cases:

Case 1. No component of q is connected to a component of q^{\prime}. Then a component of q or q^{\prime} can be regular only if it is connected to a component of r or r^{\prime}. Since q and q^{\prime} are without backtracking, two distinct components of q or q^{\prime} can not be connected to the same component of r (or r^{\prime}). Hence q and q^{\prime} together can contain at most $2 C$ regular components. Thus there is an index $i \in\{1,2,3\}$ such that the cycle o has k isolated $E\left(g_{i}\right)$-components, where $k \geq\lfloor l(q) / 3\rfloor+\left\lfloor l\left(q^{\prime}\right) / 3\right\rfloor-2 C \geq\lfloor 5 C\rfloor-2 C>2 C>3$. By Lemma 2.3, $g_{i}^{m_{i}} \in\langle\Omega\rangle$ and $k\left|g_{i}^{m_{i}}\right|_{\Omega} \leq K\left(l(q)+l\left(q^{\prime}\right)+2 C\right)$, hence

$$
\left|g_{i}^{m_{i}}\right|_{\Omega} \leq K \frac{3(\lfloor l(q) / 3\rfloor+1)+3\left(\left\lfloor l\left(q^{\prime}\right) / 3\right\rfloor+1\right)+2 C}{\lfloor l(q) / 3\rfloor+\left\lfloor l\left(q^{\prime}\right) / 3\right\rfloor-2 C} \leq K\left(3+\frac{6+8 C}{2 C}\right) \leq 9 K
$$

contradicting the choice of m_{i} in (6).
Case 2. The path q has at least one component which is connected to a component of q^{\prime}. Let $p_{1}, \ldots, p_{l(q)}$ denote the sequence of all components of q. By part (a), if p_{s} and p_{t}, $1 \leq s \leq t \leq l(q)$, are connected to components of q^{\prime}, then for any $j, s \leq j \leq t, p_{j}$ is regular. We can take s (respectively t) to be minimal (respectively maximal) possible. Consequently $p_{1}, \ldots, p_{s-1}, p_{t+1}, \ldots, p_{l(q)}$ will contain the set of all isolated components of o that belong to q.

Without loss of generality we may assume that $s-1 \geq 15 C / 2$. Since p_{s} is connected to some component p^{\prime} of q^{\prime}, there exists a path v in $\Gamma\left(G, X \cup \mathcal{H}^{\prime}\right)$ satisfying $v_{-}=\left(p_{s}\right)_{-}, v_{+}=$ $p_{+}^{\prime}, \mathbf{L a b}(v) \in \mathcal{H}^{\prime}, l(v)=1$. Let \bar{q} (respectively \bar{q}^{\prime}) denote the subpath of q (respectively q^{\prime}) from q_{-}to $\left(p_{s}\right)_{-}$(respectively from p_{+}^{\prime} to q_{+}^{\prime}). Consider a new cycle $\bar{o}=r \bar{q} v \bar{q}^{\prime}$. Reasoning as before, we can find $i \in\{1,2,3\}$ such that \bar{o} has k isolated $E\left(g_{i}\right)$-components, where $k \geq\lfloor l(\bar{q}) / 3\rfloor+\left\lfloor l\left(\bar{q}^{\prime}\right) / 3\right\rfloor-C-1 \geq\lfloor 15 C / 6\rfloor-C-1>C-1 \geq 1$. Using Lemma 2.3, we get $g_{i}^{m_{i}} \in\langle\Omega\rangle$ and $k\left|g_{i}^{m_{i}}\right|_{\Omega} \leq K\left(l(\bar{q})+l\left(\bar{q}^{\prime}\right)+C+1\right)$. The latter inequality implies $\left|g_{i}^{m_{i}}\right|_{\Omega} \leq 21 K$, yielding a contradiction in the usual way and proving (b) for q. By symmetry this property holds for q^{\prime} as well.

Continuing the proof of Lemma 3.6, consider an element $x \in E_{G}(h)$. According to Lemma 3.1, there exists $l \in \mathbb{N}$ such that

$$
\begin{equation*}
x h^{l} x^{-1}=h^{\epsilon l}, \tag{7}
\end{equation*}
$$

where $\epsilon= \pm 1$. Set $C=|x|_{X \cup \mathcal{H}^{\prime}}$. After raising both sides of (7) in an integer power, we can assume that l is sufficiently large to satisfy $l>32 C+3$.

Consider a cycle $o=\operatorname{rqr}^{\prime} q^{\prime}$ in $\Gamma\left(G, X \cup \mathcal{H}^{\prime}\right)$ satisfying $r_{-}=q_{+}^{\prime}=1, r_{+}=q_{-}=x$, $q_{+}=r_{-}^{\prime}=x h^{l}, r_{+}^{\prime}=q_{-}^{\prime}=x h^{l} x^{-1}, \mathbf{L a b}(q) \equiv\left(g_{1}^{m_{1}} g_{3}^{m_{3}} g_{2}^{m_{2}}\right)^{l}, \mathbf{L a b}\left(q^{\prime}\right) \equiv\left(g_{1}^{m_{1}} g_{3}^{m_{3}} g_{2}^{m_{2}}\right)^{-\epsilon l}$, $l(q)=l\left(q^{\prime}\right)=3 l, l(r)=l\left(r^{\prime}\right)=C$.

Let $p_{1}, p_{2}, \ldots, p_{3 l}$ and $p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{3 l}^{\prime}$ be all components of q and q^{\prime} respectively. Thus, $p_{3}, p_{6}, p_{9}, \ldots, p_{3 l}$ are all $E_{G}\left(g_{2}\right)$-components of q. Since $l>17 C$ and q is without backtracking, by Lemma 3.7, there exist indices $1 \leq s, s^{\prime} \leq 3 l$ such that the $E_{G}\left(g_{2}\right)$-component p_{s} of q is connected to the $E_{G}\left(g_{2}\right)$-component $p_{s^{\prime}}^{\prime}$ of q^{\prime}. Without loss of generality, assume that $s \leq 3 l / 2$ (the other situation is symmetric). There is a path u in $\Gamma\left(G, X \cup \mathcal{H}^{\prime}\right)$ with $u_{-}=\left(p_{s^{\prime}}^{\prime}\right)_{-}, u_{+}=\left(p_{s}\right)_{+}, \mathbf{L a b}(u) \in E_{G}\left(g_{2}\right)$ and $l(u) \leq 1$. We obtain a new cycle $o^{\prime}=u p_{s+1} \ldots p_{3 l} r^{\prime} p_{1}^{\prime} \ldots p_{s^{\prime}-1}^{\prime}$ in the Cayley graph $\Gamma\left(G, X \cup \mathcal{H}^{\prime}\right)$. Due to the choice of s and l, the same argument as before will demonstrate that there are $E_{G}\left(g_{2}\right)$-components $p_{\bar{s}}, p_{\bar{s}^{\prime}}^{\prime}$ of q, q^{\prime} respectively, which are connected and $s<\bar{s} \leq 3 l, 1 \leq \bar{s}^{\prime}<s^{\prime}$ (in the case when $s>3 l / 2$, the same inequalities can be achieved by simply renaming the indices correspondingly).

It is now clear that there exist $i \in\{1,2,3\}$ and connected $E_{G}\left(g_{i}\right)$-components $p_{t}, p_{t^{\prime}}^{\prime}$ of $q, q^{\prime}\left(s<t \leq 3 l, 1 \leq t^{\prime}<s^{\prime}\right)$ such that $t>s$ is minimal. Let v denote a path in $\Gamma\left(G, X \cup \mathcal{H}^{\prime}\right)$ with $v_{-}=\left(p_{t}\right)_{-}, v_{+}=\left(p_{t^{\prime}}\right)_{+}, \mathbf{L a b}(v) \in E_{G}\left(g_{i}\right)$ and $l(v) \leq 1$. Consider a cycle $o^{\prime \prime}$ in $\Gamma\left(G, X \cup \mathcal{H}^{\prime}\right)$ defined by $o^{\prime \prime}=u p_{s+1} \ldots p_{t-1} v p_{t^{\prime}+1}^{\prime} \ldots p_{s^{\prime}-1}^{\prime}$. By part a) of Lemma 3.7, p_{s+1} is a regular component of the path $p_{s+1} \ldots p_{t-1}$ in $o^{\prime \prime}$ (provided that $t-1 \geq s+1$). Note that p_{s+1} can not be connected to u or v because q is without backtracking, hence it must be connected to a component of the path $p_{t^{\prime}+1}^{\prime} \ldots p_{s^{\prime}-1}^{\prime}$. By the choice of t, we have
$t=s+1$ and $i=1$. Similarly $t^{\prime}=s^{\prime}-1$. Thus $p_{s+1}=p_{t}$ and $p_{s^{\prime}-1}^{\prime}=p_{t^{\prime}}^{\prime}$ are connected $E_{G}\left(g_{1}\right)$-components of q and q^{\prime}.

In particular, we have $\epsilon=1$. Indeed, otherwise we would have $\mathbf{L a b}\left(p_{s^{\prime}-1}\right) \equiv g_{3}^{m_{3}}$ but $g_{3}^{m_{3}} \notin E_{G}\left(g_{1}\right)$. Therefore $x \in E_{G}^{+}(h)$ for any $x \in E_{G}(h)$, consequently $E_{G}(h)=E_{G}^{+}(h)$.

Observe that $u_{-}=v_{+}$and $u_{+}=v_{-}$, hence $\mathbf{L a b}(u)$ and $\mathbf{L a b}(v)^{-1}$ represent the same element $z \in E_{G}\left(g_{2}\right) \cap E_{G}\left(g_{1}\right)$. By construction, $x=h^{\alpha} z h^{\beta}$ where $\alpha=\left(3 l-s^{\prime}\right) / 3 \in \mathbb{Z}$, and $\beta=-s / 3 \in \mathbb{Z}$. Thus $x \in\left\langle h, E_{G}\left(g_{1}\right) \cap E_{G}\left(g_{2}\right)\right\rangle$ and the first part of the claim 2 is proved.

Assume now that $E_{G}\left(g_{j}\right)=E_{G}^{+}\left(g_{j}\right)$ for $j=1,2$. Then $h=g_{1}^{m_{1}}\left(g_{2} g_{1}^{n_{1}}\right)^{m_{3}} g_{2}^{m_{2}}$ belongs to the centralizer of the finite subgroup $E_{G}\left(g_{1}\right) \cap E_{G}\left(g_{2}\right)$ (because of the choice of g_{1}, g_{2} above). Consequently $E_{G}(h)=\langle h\rangle \times\left(E_{G}\left(g_{1}\right) \cap E_{G}\left(g_{2}\right)\right)$.

Lemma 3.8. Let S be a non-elementary subgroup of G with $S^{0} \neq \emptyset$. Then
(i) there exist non-commensurable elements $h_{1}, h_{1}^{\prime} \in S^{0}$ with $E_{G}\left(h_{1}\right) \cap E_{G}\left(h_{1}^{\prime}\right)=E_{G}(S)$;
(ii) S^{0} contains an element h such that $E_{G}(h)=\langle h\rangle \times E_{G}(S)$.

Proof. Choose an element $g_{1} \in S^{0}$. By Lemma 3.1, G is hyperbolic relative to the collection $\mathfrak{C}=\left\{H_{\lambda}\right\}_{\lambda \in \Lambda} \cup\left\{E_{G}\left(g_{1}\right)\right\}$. Since the subgroup S is non-elementary, there is $a \in S \backslash E_{G}\left(g_{1}\right)$, and Lemma 3.5 provides us with an integer $n \in \mathbb{N}$ such that $g_{2}=a g_{1}^{n} \in S$ is a hyperbolic element of infinite order (now, with respect to the family of peripheral subgroups \mathfrak{C}). In particular, g_{1} and g_{2} are non-commensurable and hyperbolic relative to $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$.

Applying Lemma 3.6, we find $h_{1} \in S^{0}$ (with respect to the collection of peripheral subgroups $\left.\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}\right)$ with $E_{G}\left(h_{1}\right)=E_{G}^{+}\left(h_{1}\right)$ such that h_{1} is not commensurable with $g_{j}, j=$ 1,2 . Hence, g_{1} and g_{2} stay hyperbolic after including $E_{G}\left(h_{1}\right)$ into the family of peripheral subgroups (see Lemma 3.1). This allows to construct (in the same manner) one more element $h_{2} \in\left\langle g_{1}, g_{2}\right\rangle \leq S$ which is hyperbolic relative to $\left(\left\{H_{\lambda}\right\}_{\lambda \in \Lambda} \cup E_{G}\left(h_{1}\right)\right)$ and satisfies $E_{G}\left(h_{2}\right)=E_{G}^{+}\left(h_{2}\right)$. In particular, h_{2} is not commensurable with h_{1}.

We claim now that there exists $x \in S$ such that $E_{G}\left(x^{-1} h_{2} x\right) \cap E_{G}\left(h_{1}\right)=E_{G}(S)$. By definition, $E_{G}(S) \subseteq E_{G}\left(x^{-1} h_{2} x\right) \cap E_{G}\left(h_{1}\right)$. To obtain the inverse inclusion, arguing by the contrary, suppose that for each $x \in S$ we have

$$
\begin{equation*}
\left(E_{G}\left(x^{-1} h_{2} x\right) \cap E_{G}\left(h_{1}\right)\right) \backslash E_{G}(S) \neq \emptyset \tag{8}
\end{equation*}
$$

Note that if $g \in S^{0}$ with $E_{G}(g)=E_{G}^{+}(g)$, then the set of all elements of finite order in $E_{G}(g)$ form a finite subgroup $T(g) \leq E_{G}(g)$ (this is a well-known property of groups, all of whose conjugacy classes are finite). The elements h_{1} and h_{2} are not commensurable, therefore

$$
E_{G}\left(x^{-1} h_{2} x\right) \cap E_{G}\left(h_{1}\right)=T\left(x^{-1} h_{2} x\right) \cap T\left(h_{1}\right)=x^{-1} T\left(h_{2}\right) x \cap T\left(h_{1}\right)
$$

For each pair of elements $(b, a) \in D=T\left(h_{2}\right) \times\left(T\left(h_{1}\right) \backslash E_{G}(S)\right)$ choose $x=x(b, a) \in S$ so that $x^{-1} b x=a$ if such x exists; otherwise set $x(b, a)=1$.

The assumption (8) clearly implies that $S=\bigcup_{(b, a) \in D} x(b, a) C_{S}(a)$, where $C_{S}(a)$ denotes the centralizer of a in S. Since the set D is finite, a well-know theorem of B. Neumann
[17] implies that there exists $a \in T\left(h_{1}\right) \backslash E_{G}(S)$ such that $\left|S: C_{S}(a)\right|<\infty$. Consequently, $a \in E_{G}(g)$ for every $g \in S^{0}$, that is, $a \in E_{G}(S)$, a contradiction.

Thus, $E_{G}\left(x h_{2} x^{-1}\right) \cap E_{G}\left(h_{1}\right)=E_{G}(S)$ for some $x \in S$. After setting $h_{1}^{\prime}=x^{-1} h_{2} x \in S^{0}$, we see that elements h_{1} and h_{1}^{\prime} satisfy the claim (i). Since $E_{G}\left(h_{1}^{\prime}\right)=x^{-1} E_{G}\left(h_{2}\right) x$, we have $E_{G}\left(h_{1}^{\prime}\right)=E_{G}^{+}\left(h_{1}^{\prime}\right)$. To demonstrate (ii), it remains to apply Lemma 3.6 and obtain an element $h \in\left\langle h_{1}, h_{1}^{\prime}\right\rangle \leq S$ which has the desired properties.

Proof of Proposition 3.4. The implication $(1) \Rightarrow(2)$ is an immediate consequence of the definition. The inverse implication follows directly from the first claim of Lemma 3.8 (S is non-elementary as $S^{0} \neq \emptyset$ and $\left.E_{G}(S)=\{1\}\right)$.

4 Proofs of the main results

The following simplification of Theorem 2.4 from [22] is the key ingredient of the proofs in the rest of the paper.

Theorem 4.1. Let U be a group hyperbolic relative to a collection of subgroups $\left\{V_{\lambda}\right\}_{\lambda \in \Lambda}$, S a suitable subgroup of U, and T a finite subset of U. Then there exists an epimorphism $\eta: U \rightarrow W$ such that:

1. The restriction of η to $\bigcup_{\lambda \in \Lambda} V_{\lambda}$ is injective, and the group W is properly relatively hyperbolic with respect to the collection $\left\{\eta\left(V_{\lambda}\right)\right\}_{\lambda \in \Lambda}$.
2. For every $t \in T$, we have $\eta(t) \in \eta(S)$.

Let us also mention two known results we will use. The first lemma is a particular case of Theorem 1.4 from [21] (if $g \in G$ and $H \leq G, H^{g}$ denotes the conjugate $g^{-1} H g \leq G$).

Lemma 4.2. Suppose that a group G is hyperbolic relative to a collection of subgroups $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$. Then
(a) For any $g \in G$ and any $\lambda, \mu \in \Lambda, \lambda \neq \mu$, the intersection $H_{\lambda}^{g} \cap H_{\mu}$ is finite.
(b) For any $\lambda \in \Lambda$ and any $g \notin H_{\lambda}$, the intersection $H_{\lambda}^{g} \cap H_{\lambda}$ is finite.

The second result can easily be derived from Lemma 3.5.
Lemma 4.3 (Corollary 4.5, [20]). Let G be an infinite properly relatively hyperbolic group. Then G contains a hyperbolic element of infinite order.

Lemma 4.4. Let the group G be hyperbolic with respect to the collection of peripheral subgroups $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$ and let $N \triangleleft G$ be a finite normal subgroup. Then

1. If H_{λ} is infinite for some $\lambda \in \Lambda$, then $N \leq H_{\lambda}$;
2. The quotient $\bar{G}=G / N$ is hyperbolic relative to the natural image of the collection $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$.

Proof. Let $K_{\lambda}, \lambda \in \Lambda$, be the kernel of the action of H_{λ} on N by conjugation. Since N is finite, K_{λ} has finite index in H_{λ}. On the other hand $K_{\lambda} \leq H_{\lambda} \cap H_{\lambda}^{g}$ for every $g \in N$. If H_{λ} is infinite this implies $N \leq H_{\lambda}$ by Lemma 4.2.

To prove the second assertion, suppose that G has a relatively finite presentation (2) with respect to the free product F defined in (1). Denote by \bar{X} and \bar{H}_{λ} the natural images of X and H_{λ} in \bar{G}. In order to show that \bar{G} is relatively hyperbolic, one has to consider it as a quotient of the free product $\bar{F}=\left(*_{\lambda \in \Lambda} \bar{H}_{\lambda}\right) * F(\bar{X})$. As G is a quotient of F, we can choose some finite preimage $M \subset F$ of N. For each element $f \in M$, fix a word in $X \cup \mathcal{H}$ which represents it in F and denote by \mathcal{S} the (finite) set of all such words. By the universality of free products, there is a natural epimorphism $\varphi: F \rightarrow \bar{F}$ mapping X onto \bar{X} and each H_{λ} onto \bar{H}_{λ}. Define the subsets $\overline{\mathcal{R}}$ and $\overline{\mathcal{S}}$ of words in $\bar{X} \cup \overline{\mathcal{H}}$ (where $\overline{\mathcal{H}}=\bigsqcup_{\lambda \in \Lambda}\left(\bar{H}_{\lambda} \backslash\{1\}\right)$) by $\overline{\mathcal{R}}=\varphi(\mathcal{R})$ and $\overline{\mathcal{S}}=\varphi(\mathcal{S})$. Then the group \bar{G} possesses the relatively finite presentation

$$
\begin{equation*}
\left\langle\bar{X},\left\{\bar{H}_{\lambda}\right\}_{\lambda \in \Lambda} \mid \bar{R}=1, \bar{R} \in \overline{\mathcal{R}} ; \bar{S}=1, \bar{S} \in \overline{\mathcal{S}}\right\rangle . \tag{9}
\end{equation*}
$$

Let $\psi: F \rightarrow G$ denote the natural epimorphism and $D=\max \{\|s\|: s \in \mathcal{S}\}$. Consider any non-empty word \bar{w} in the alphabet $\bar{X} \cup \overline{\mathcal{H}}$ representing the identity in \bar{G}. Evidently we can choose a word w in $X \cup \mathcal{H}$ such that $\bar{w}={ }_{\bar{F}} \varphi(w)$ and $\|w\|=\|\bar{w}\|$. Since $\operatorname{ker}(\psi) \cdot M$ is the kernel of the induced homomorphism from F to \bar{G}, we have $w=_{F} v u$ where $u \in \mathcal{S}$ and v is a word in $X \cup \mathcal{H}$ satisfying $v={ }_{G} 1$ and $\|v\| \leq\|w\|+D$. Since G is relatively hyperbolic there is a constant $C \geq 0$ (independent of v) such that

$$
v={ }_{F} \prod_{i=1}^{k} f_{i}^{-1} R_{i}^{ \pm 1} f_{i},
$$

where $R_{i} \in \mathcal{R}, f_{i} \in F$, and $k \leq C\|v\|$. Set $\bar{R}_{i}=\varphi(R) \in \overline{\mathcal{R}}, \bar{f}_{i}=\varphi\left(f_{i}\right) \in \bar{F}, i=1,2, \ldots, k$, and $\bar{R}_{k+1}=\varphi(u) \in \overline{\mathcal{S}}, \bar{f}_{k+1}=1$. Then

$$
\bar{w}=\bar{F} \prod_{i=1}^{k+1} \bar{f}_{i}^{-1} \bar{R}_{i}^{ \pm 1} \bar{f}_{i}
$$

where

$$
k+1 \leq C\|v\|+1 \leq C(\|w\|+D)+1 \leq C\|\bar{w}\|+C D+1 \leq(C+C D+1)\|\bar{w}\| .
$$

Thus, the relative presentation (9) satisfies a linear isoperimetric inequality with the constant $(C+C D+1)$.

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. Observe that the quotient of G by the finite normal subgroup $N=$ $E_{G}(G)$ is obviously non-elementary. Hence the image of any finite H_{λ} is a proper subgroup of G / N. On the other hand, if H_{λ} is infinite, then $N \leq H_{\lambda} \supsetneqq G$ by Lemma 4.4, hence its image is also proper in G / N. Therefore G / N is properly relatively hyperbolic with respect to the collection of images of $H_{\lambda}, \lambda \in \Lambda$ (see Lemma 4.4). Lemma 3.3 implies $E_{G / N}(G / N)=\{1\}$. Thus, without loss of generality, we may assume that $E_{G}(G)=1$.

It is straightforward to see that the free product $U=G * R$ is hyperbolic relative to the collection $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda} \cup\{R\}$ and $E_{G * R}(G)=E_{G}(G)=1$. Note that G^{0} is non-empty by Lemma 4.3. Hence G is a suitable subgroup of $G * R$ by Proposition 3.4. Let Y be a finite generating set of R. It remains to apply Theorem 4.1 to $U=G * R$, the obvious collection of peripheral subgroups, and the finite set Y.

To prove Theorem 1.4 we need one more auxiliary result which was proved in the full generality in [21] (see also [6]):

Lemma 4.5 (Theorem 2.40, [21]). Suppose that a group G is hyperbolic relative to a collection of subgroups $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda} \cup\left\{S_{1}, \ldots, S_{m}\right\}$, where S_{1}, \ldots, S_{m} are hyperbolic in the ordinary (non-relative) sense. Then G is hyperbolic relative to $\left\{H_{\lambda}\right\}_{\lambda \in \Lambda}$.

Proof of Theorem 1.4. Let G_{1}, G_{2} be finitely generated groups which are properly relatively hyperbolic with respect to collections of subgroups $\left\{H_{1 \lambda}\right\}_{\lambda \in \Lambda}$ and $\left\{H_{2 \mu}\right\}_{\mu \in M}$ respectively. Denote by X_{i} a finite generating set of the group $G_{i}, i=1,2$. As above we may assume that $E_{G_{1}}\left(G_{1}\right)=E_{G_{2}}\left(G_{2}\right)=\{1\}$. We set $G=G_{1} * G_{2}$. Observe that $E_{G}\left(G_{i}\right)=E_{G_{i}}\left(G_{i}\right)=\{1\}$ and hence G_{i} is suitable in G for $i=1,2$ (by Lemma 4.3 and Proposition 3.4).

By the definition of suitable subgroups, there are two non-commensurable elements $g_{1}, g_{2} \in G_{2}^{0}$ such that $E_{G}\left(g_{1}\right) \cap E_{G}\left(g_{2}\right)=\{1\}$. Further, by Lemma 3.1, the group G is hyperbolic relative to the collection $\mathfrak{P}=\left\{H_{1 \lambda}\right\}_{\lambda \in \Lambda} \cup\left\{H_{2 \mu}\right\}_{\mu \in M} \cup\left\{E_{G}\left(g_{1}\right), E_{G}\left(g_{2}\right)\right\}$. We now apply Theorem 4.1 to the group G with the collection of peripheral subgroups \mathfrak{P}, the suitable subgroup $G_{1} \leq G$, and the subset $T=X_{2}$. The resulting group W is obviously a quotient of G_{1}.

Observe that W is hyperbolic relative to (the image of) the collection $\left\{H_{1 \lambda}\right\}_{\lambda \in \Lambda} \cup$ $\left\{H_{2 \mu}\right\}_{\mu \in M}$ by Lemma 4.5. We would like to show that G_{2} is a suitable subgroup of W with respect to this collection. To this end we note that $\eta\left(g_{1}\right)$ and $\eta\left(g_{2}\right)$ are elements of infinite order as η is injective on $E_{G}\left(g_{1}\right)$ and $E_{G}\left(g_{2}\right)$. Moreover, $\eta\left(g_{1}\right)$ and $\eta\left(g_{2}\right)$ are not commensurable in W. Indeed, otherwise, the intersection $\left(\eta\left(E_{G}\left(g_{1}\right)\right)\right)^{g} \cap \eta\left(E_{G}\left(g_{2}\right)\right)$ is infinite for some $g \in G$ that contradicts the first assertion of Lemma 4.2. Assume now that $g \in E_{W}\left(\eta\left(g_{i}\right)\right)$ for some $i \in\{1,2\}$. By the first assertion of Lemma 3.1, $\left(\eta\left(g_{i}^{m}\right)\right)^{g}=\eta\left(g_{i}^{ \pm m}\right)$ for some $m \neq 0$. Therefore, $\left(\eta\left(E_{G}\left(g_{i}\right)\right)\right)^{g} \cap \eta\left(E_{G}\left(g_{i}\right)\right)$ contains $\eta\left(g_{i}^{m}\right)$ and, in particular, this intersection is infinite. By the second assertion of Lemma 4.2, this means that $g \in \eta\left(E_{G}\left(g_{i}\right)\right)$. Thus, $E_{W}\left(\eta\left(g_{i}\right)\right)=\eta\left(E_{G}\left(g_{i}\right)\right)$. Finally, using injectivity of η on $E_{G}\left(g_{1}\right) \cup E_{G}\left(g_{2}\right)$, we obtain

$$
E_{W}\left(\eta\left(g_{1}\right)\right) \cap E_{W}\left(\eta\left(g_{2}\right)\right)=\eta\left(E_{G}\left(g_{1}\right)\right) \cap \eta\left(E_{G}\left(g_{2}\right)\right)=\eta\left(E_{G}\left(g_{1}\right) \cap E_{G}\left(g_{2}\right)\right)=\{1\} .
$$

This means that the image of G_{2} is a suitable subgroup of W.
Thus we may apply Theorem 4.1 again to the group W, the subgroup G_{2} and the finite subset X_{1}. The resulting group Q is the desired common quotient of G_{1} and G_{2}. The last property, which claims that Q can be obtained from $G_{1} * G_{2}$ by adding only finitely many relations, follows because $G_{1} * G_{2}$ and G are hyperbolic with respect to the same family of peripheral subgroups and any relatively hyperbolic group is relatively finitely presented.

References

[1] H. Bass, A. Lubotzky, Nonarithmetic superrigid groups: counterexamples to Platonov's conjecture, Ann. of Math. 151 (2000), no. 3, 1151-1173.
[2] B. Baumslag, S.J. Pride, Groups with two more generators than relators, J. London Math. Soc. (2) 17 (1978), no. 3, 425-426.
[3] B.H. Bowditch, Relatively hyperbolic groups, preprint, Southampton, 1998.
[4] F. Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003), 933-963.
[5] C. Drutu, M. Sapir, Tree graded spaces and asymptotic cones, with appendix by D. Osin and M. Sapir, Topology 44 (2005), no. 5, 959-1058.
[6] B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998), no. 5, 810-840.
[7] B. Fine, M. Tretkoff, On the SQ-universality of HNN groups, Proc. Amer. Math. Soc. 73 (1979), no. 3, 283-290.
[8] B. Fine, On power conjugacy and SQ-universality for Fuchsian and Kleinian groups, Modular functions in analysis and number theory, 41-54, Lecture Notes Math. Statist. 5 (1983), Univ. Pittsburgh, Pittsburgh, PA.
[9] M. Gromov, Hyperbolic groups, Essays in Group Theory, MSRI Series 8 (1987), (S.M. Gersten, ed.), Springer, 75-263.
[10] V. Guirardel, Limit groups and groups acting freely on \mathbb{R}^{n}-trees, Geometry \& Topology 8 (2004), 1427-1470.
[11] G. Higman, B.H. Neumann, H.Neumann, Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247-254.
[12] J. Howie, On the SQ-universality of $T(6)$-groups, Forum Math. 1 (1989), no. 3, 251272.
[13] G.C. Hruska, B. Kleiner, Hadamard spaces with isolated flats, Geom. Topol. 9 (2005) 1501-1538.
[14] R.C. Lyndon, P.E. Shupp, Combinatorial Group Theory, Springer-Verlag, 1977.
[15] K.I. Lossov, $S Q$-universality of free products with amalgamated finite subgroups, (Russian) Sibirsk. Mat. Zh. 27 (1986), no. 6, 128-139, 225.
[16] Ch. F. Miller III, Decision problems for groups-survey and reflections, Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), 1-59; Math. Sci. Res. Inst. Publ. 23 (1992), Springer, New York.
[17] B.H. Neumann, Groups covered by permutable subsets, J. London Math. Soc. 29 (1954), 236-248.
[18] A.Yu. Olshanskii, On the Bass-Lubotzky question about quotients of hyperbolic groups, J. Algebra 226 (2000), no. 2, 807-817.
[19] A.Yu. Olshanski, SQ-universality of hyperbolic groups, (Russian) Mat. Sb. 186 (1995), no. 8, 119-132; English translation in Sb. Math. 186 (1995), no. 8, 1199-1211.
[20] D.V. Osin, Elementary subgroups of relatively hyperbolic groups and bounded generation, Internat. J. Algebra Comput. 16 (2006), no. 1, 99-118.
[21] D.V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179 (2006), no. 843, vi+100 pp.
[22] D.V. Osin, Small cancellations over relatively hyperbolic groups and embedding theorems, Annals of Math., to appear.
[23] J. Ratcliffe, Euler characteristics of 3-manifold groups and discrete subgroups of SL $(2, C)$, Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985). J. Pure Appl. Algebra 44 (1987), no. 1-3, 303-314.
[24] G.S. Sacerdote, P.E. Schupp, SQ-universality in HNN groups and one relator groups, J. London Math. Soc. (2) 7 (1974), 733-740.
[25] P.E. Schupp, A survey of $S Q$-universality, Conference on Group Theory (Univ. Wisconsin-Parkside, Kenosha, Wis., 1972), pp. 183-188. Lecture Notes in Math. 319 (1973), Springer, Berlin.
[26] J. Stallings, Group theory and three-dimensional manifolds, Yale Mathematical Monographs 4 (1971), Yale University Press, New Haven, Conn.-London.
G. Arzhantseva, Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, Case postale 64, 1211 Genève 4, Switzerland

Email: Goulnara.Arjantseva@math.unige.ch
A. Minasyan, Université de Genève, Section de Mathématiques, 2-4 Rue du Lièvre, Case postale 64, 1211 Genève 4, Switzerland

Email: aminasyan@gmail.com
D. Osin, NAC 8133, Department of Mathematics, The City College of the City University of New York, Convent Ave. at 138th Street, New York, NY 10031, USA

Email: denis.osin@gmail.com

[^0]: *The work of the first two authors was supported by the Swiss National Science Foundation Grant \sharp PP002-68627.
 ${ }^{\dagger}$ The work of the third author has been supported by the Russian Foundation for Basic Research Grant \# 03-01-06555.

