
Copyright © and Moral Rights for this thesis and, where applicable, any
accompanying data are retained by the author and/or other copyright owners. A copy

can be downloaded for personal non-commercial research or study, without prior
permission or charge. This thesis and the accompanying data cannot be reproduced or

quoted extensively from without first obtaining permission in writing from the
copyright holder/s. The content of the thesis and accompanying research data (where
applicable) must not be changed in any way or sold commercially in any format or

medium without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details
must be given, e.g. Thesis: Author (Year of Submission) “Full thesis title”, University
of Southampton, name of the University Faculty or School or Department, PhD Thesis,

pagination. Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

School of Electronics and Computer Science

Pruning ResNet Neural Networks Block by Block

by

Vlad Sebastian Velici

Thesis for the degree of Doctor of Philosophy

Supervisors: Prof. Adam Prügel-Bennett, Prof. Mahesan Niranjan

January 23, 2022

mailto:vsv1g12@soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
School of Electronics and Computer Science

Thesis for the degree of Doctor of Philosophy

PRUNING RESNET NEURAL NETWORKS BLOCK BY BLOCK

by Vlad Sebastian Velici

Neural network pruning has gained popularity for deep models with the goal of reduc-
ing storage and computational requirements, both for inference and training. Pruning
weights from neural networks to make models sparse has been discussed for a long time
starting with in 1990s. Structured pruning is more recent and it aims to minimize the
size of neural networks as opposed to only introducing sparsity, having the advantage
of not requiring specialized hardware or software. Most structured pruning works focus
on neurons or convolutional filters. ResNet is a model architecture composed of many
blocks that are linked with residual connections. In our work, we explore pruning larger
structures – ResNet blocks, and thoroughly study the feasibility of block by block prun-
ing whilst keeping track of the cost of fine-tuning the pruned networks. We use different
block saliency metrics as well as different fine-tuning schedules and parameters. Pruning
27 blocks (50%) from a ResNet-110, in our best configuration, gives 6.48% test error on
CIFAR-10, a 0.45% loss from the initial model. When pruning 45 blocks to obtain a
similar size to that of a ResNet-20, our best method has a 1.92% loss from initial, 7.95%
error. We observe that training small, standard ResNet configurations gives better re-
sults than pruning and argue that pruning block by block is only effective for pruning
a small number of blocks, or when starting with a model pre-trained elsewhere and the
cost of fine-tuning is of concern (fine-tuning alone can be much cheaper than training
from scratch and give acceptable results, depending on the pruning configuration). Fi-
nally, our pruning work is produced from hundreds of experiments, and a by-product
of running, organising and analysing them is our experiment management framework,
dbx, aims to simplify this process by storing experiments and their results (as logs) in
repositories that can be queried and synchronized between computers.

mailto:vsv1g12@soton.ac.uk

Contents

Acknowledgements xv

Declaration of Authorship xvii

1 Introduction 1
1.1 Neural network pruning . 2
1.2 Experiment management . 3
1.3 Thesis structure . 4
1.4 Early work . 6
1.5 Definitions and clarifications . 6

2 Review of major neural network pruning methods 9
2.1 Choice of prunable unit . 10
2.2 Global or layer-wise pruning . 13
2.3 Prunable units saliency metric . 13

2.3.1 Saliency based on the value of weights 14
2.3.2 Saliency based on activation statistics 15
2.3.3 Saliency based on gradients . 15
2.3.4 Learning masks without explicit saliency evaluation 16

2.4 Fine-tuning method . 17
2.4.1 Amount of fine-tuning steps . 17
2.4.2 Weights to use for fine-tuning . 18
2.4.3 Combined pruning and training . 19

2.5 Static or dynamic pruning . 20
2.6 Soft pruning . 21
2.7 Pruning as compression . 21
2.8 Comparing pruning methods . 22

2.8.1 Oracle pruning . 23
2.8.2 Random pruning . 24
2.8.3 Training from scratch . 24

2.9 Pruning performance depends on starting weights 25
2.9.1 Trained to be pruned . 26

2.10 Training small networks from scratch . 28
2.10.1 Networks designed for compute and size efficiency 29

2.11 Changing task or dataset via pruning . 30
2.12 Chapter summary . 31

3 Pruning ResNet networks block by block 33

v

vi CONTENTS

3.1 Intuition and background . 34
3.1.1 Pruning ResNet blocks . 36

3.2 Baselines . 37
3.3 Block selection methods . 39

3.3.1 Comparing block selection algorithms 40
3.3.2 Other block selection methods . 42
3.3.3 Performance correlation before and after fine-tuning 46
3.3.4 Block selection methods with fine-tuning enabled 47
3.3.5 Blocks removed and parameters removed 50

3.4 Block selection and the initial random initialization 53
3.5 Fine-tuning frequency and amount . 56

3.5.1 The cost of fine-tuning . 56
3.5.2 Single shot fine-tuning . 57
3.5.3 More fine-tuning loops . 60
3.5.4 Fine-tuning at every step . 64
3.5.5 Thresholding accuracy loss to fire a fine-tuning loop 65

3.6 Fine-tuning parameters . 69
3.6.1 Learning rate schedule . 69
3.6.2 Noise the weights . 71

3.7 Dataset used for block selection . 73
3.8 Comparison with related works . 75
3.9 Conclusions for this chapter . 76

4 Different pruning strategies 79
4.1 Low and high training schedule . 79
4.2 Phased fine-tuning . 83
4.3 Block equalisation . 88
4.4 Pruning before training . 89
4.5 Replacement pruning . 91
4.6 Conclusions . 92

5 An experiment management framework 95
5.1 Background . 96

5.1.1 Motivation . 98
5.1.2 Identified issues and requirements 100
5.1.3 Related work . 103

5.2 Requirements . 105
5.2.1 Experiment repository abstraction 105
5.2.2 Experiments and results . 106
5.2.3 Code tracking . 106

5.2.3.1 Compiled languages . 107
5.2.4 Minimally invasive . 107
5.2.5 Extendable . 108

5.3 Our proposed solution . 108
5.3.1 Core objects . 108

5.3.1.1 Experiment . 109
5.3.1.2 Experiment run . 109

CONTENTS vii

5.3.1.3 The log . 110
5.3.1.4 Attachments . 110

5.3.2 Experiment repository . 111
5.3.3 Architecture . 111
5.3.4 Logging and saving experiments . 112
5.3.5 Synchronization . 112
5.3.6 Analysing results . 112

5.3.6.1 Searching experiments . 113
5.3.6.2 Querying logs . 113

Basic filtering. 113
Name query. 113
Selector. 113
Event merging. 114
Position-based query. 114
Compose log queries. 114
Log merging. 114

5.3.7 Creating extensions and plugins . 114
5.3.8 Implementation details . 115

5.4 Project status and future work . 115
5.4.1 Study design and verification framework 116

5.4.1.1 Experiment runner . 116
5.4.1.2 Hyperparameter tuner framework 116
5.4.1.3 Plot and table generator 117

5.5 Conclusion . 117

6 Conclusions and future work 119
6.1 Future work . 121

6.1.1 Evaluation on multiple datasets . 121
6.1.2 Multiple base architectures . 121
6.1.3 Combined prunable units . 121
6.1.4 Transfer learning . 122
6.1.5 Knowledge distillation . 122
6.1.6 Local training . 122
6.1.7 Pruning from random . 123

A Extra results for pruning 125
A.1 Multiple fine-tuning loops . 125
A.2 Phased block pruning . 127

References 129

List of Figures

2.1 A feedforward network with one hidden layer. W andU denote the weight
matrices. Individual weights are pruned on the left (set W1,1, W2,2,
U3,1 = 0) and the same network with an entire neuron pruned is shown
on the right (set Wi,1 = 0 and U1,j = 0, or removing the first column of
W and first row of U). Pruned units in red marked with an "x". 10

2.2 The inputs (3 2D channels), filters and outputs (2 2D channels) of a 2D
convolutional layer. The red highlight (right part) shows that pruning the
second filter of this layer results in removing the second channel of the
output. The green highlight (left part) shows that if one of the inputs is
removed (for example by removing a filter from the previous layer), the
weights for that channel from each filter can be removed. 12

2.3 Diagrams showing different methods of resetting weights throughout a
pruning process. 19

2.4 Three baselines pruned with four different pruning algorithms displaying
the mean and confidence for each baseline. It can be observed that the
baselines are comparable to each other regardless of pruning configuration,
suggesting that pruning is indeed dependent on the starting model. Each
baseline is a ResNet-110 trained with identical hyperparameters with dif-
ferent samples of the random initialization, each pruned block by block
four times, each with a different method, from 54 blocks to 27 blocks. 50
epochs of fine-tuning is performed at every other step. Dataset: CIFAR-
10. Showing the loss from initial model on the validation set. 26

2.5 Stochastic depth and simple baselines pruned block by block without fine-
tuning. 28

3.1 Two ResNet blocks, Hi and Hi+1, connected to each other showing the
basic idea behind the ResNet architecture. 35

3.2 A representation of the ResNet model architecture we use in this work for
the CIFAR-10 dataset. Batch normalisation omitted from the figure – it
is applied before ReLUs. 36

3.3 The effect of pruning a ResNet block with and without downsampling.
The residual connection is drawn at the bottom with the block at the top,
suggesting it can be inserted and removed. 37

3.4 Standard ResNet architectures with equal number of blocks per group
trained on CIFAR-10 from scratch. Each model has 3 groups of blocks. . . 39

3.5 Oracle pruning of a ResNet-110 on CIFAR-10 without fine-tuning compar-
ing different frequencies of computing the saliency of each block. Oracle
is computing the score at every step. The error percentage shown is for
the test set of CIFAR-10. The validation set was used for block selection.
Faded circles highlight the steps where computing of saliency occurred. . . 41

ix

x LIST OF FIGURES

3.6 Kendall’s tau correlation between oracle pruning and reusing the eval-
uation saliency metric (recomputing once, at every 16, 8, 4, or 2 steps).
Kendall’s tau similarity ranges from 1 to -1 for strong agreement to strong
disagreement, respectively. The first step has a similarity of 1 since all
methods shown perform exactly the same saliency metric for the first block. 42

3.7 Pruning a ResNet-110 model on CIFAR-10 without fine-tuning compar-
ing different block selection methods. The error percentage shown is for
the test set of CIFAR-10. The validation set was used for block selec-
tion. Faded circles highlight the steps where computing of saliency oc-
curred. Lines plotted are average results from 6 different baselines and
faded highlight shows confidence. 44

3.8 Kendall’s tau correlation between oracle pruning and other saliency esti-
mation methods: activation diff, activation mean and weights mean. . . . 45

3.9 Fine-tuning every two pruning steps for 50 epochs using activation diff
and oracle group selection methods. Initial model ResNet-110. Observe
that their performance levels are similar. Showing the mean and standard
error for 6 different pruning runs (different starting model) for each series. 46

3.10 Left: CIFAR-10 validation accuracy before and after fine-tuning using a
large collection of pruning configurations: 1,459 fine-tuning loops from
264 pruning experiments. Pearson correlation is 0.59. Right: Relative
improvement on CIFAR-10 validation set after fine-tuning for 50 epochs
(choosing best) over number of parameters of the pruned network. The
legend shows the number of blocks removed. Only single-shot runs have
been selected. 47

3.11 Comparing block selection methods with fine-tuning enabled. 49
3.12 Highlighting that block gradient (max) is a selection method that does

not perform well after fine-tuning in an experiment identical to that of
Figure 3.11: four fine-tuning loops at the steps shown, six pruning runs
with different inital models for each block selection method shown. 50

3.13 CIFAR-10 test accuracy versus percentage of parameters removed when
pruning a single initial ResNet-110 with different block selection meth-
ods and no fine-tuning. Annotated text with arrows denote the number
of blocks removed. Observe that different block selection methods keep
different amounts of parameters based on their choice of blocks to prune.
The final number of parameters can be a factor that impacts the final
accuracy of pruned models and not only the number of blocks removed.
Notably, the oracle pruning method is rather conservative in the number
of weights pruned when compared to activation change and weights mean. 51

3.14 Showing the percentage of parameters removed from ResNet-110 models
by different block selection methods. Pruning was performed for 27 blocks
with four fine-tuning loops, of 50 epochs each, at 6, 12, 18, and 27 blocks
removed, respectively. 52

3.15 Kendall-tau similarity between the order in which blocks have been pruned
from 6 different initial models trained on CIFAR-10. Similarity close to
zero denotes no correlation between the order in which the blocks were
pruned. Overall, this figure suggests that initial randomness is a key
deciding factor in the saliency of blocks. Initial models are ResNet-110
and 50% of the blocks were pruned (27 out of 54). The oracle selection
method was used with no fine-tuning. 54

LIST OF FIGURES xi

3.16 Kendall-tau similarity of the block pruning order (including saliency scores
for non-removed blocks) between pruning the final model (at epoch 354)
and pruning a range of checkpoints throughout the training process. Epoch
0 is the random initialization. Observe there is a steeper increase in cor-
relation for the first tens of epochs and it gets shallower as the training
progresses, suggesting most important blocks can be identified early in the
training process. 55

3.17 Pruning with a single fine-tuning run of 400 epochs 58
3.18 Which block gets removed throughout pruning a ResNet-110. 59
3.19 Pruning with a single fine-tuning run of 50 epochs 59
3.20 Pruning runs with different fine-tuning schedules, pruning a ResNet-110

from 54 to 27 blocks. Showing CIFAR-10 test error. Each series shows
the mean and standard error from 6 runs, each with a different initial
model. Note that in this plot fine-tuning cost is cumulative: it costs more
for more blocks removed as it includes previous fine-tuning loops from the
same pruning run. 61

3.21 One, two, and four fine-tuning loops per pruning run 62
3.22 Pruning a ResNet-110 with 50, 20, 10, or 5 fine-tuning epochs at every

step or every other step. A fixed learning rate of 0.001 was used for all runs. 64
3.23 Showing where fine-tuning is triggered throught the pruning process when

using different accuracy loss thresholds (t). Other common fine-tuning
schedules are included: every other step (every 2), four times (4x) and
once (1x). 66

3.24 Pruning a ResNet-110 with accuracy loss thresholding (t) enabled. Same
experiments as in Table 3.6. 68

3.25 Using a constant learning rate of 0.001 or a learning rate schedule starting
with 0.1, from epoch 10 using 0.01 and finally 0.001 from epoch 20. Total
50 epochs per step for both configurations. Block selection method is oracle. 70

3.26 Pruning a ResNet-110 to the size of a ResNet-56 with four fine-tuning
loops (at plotted pruning steps) with different noise applied to weights
using different values of η (number shown on top of bars). For the noise
grid search, the value plotted is the mean and standard error of 3 runs
with the same initial model. No noise is the mean and standard error
of the same pruning configuration without any noise for 6 initial models,
including the same baseline for the noise search, which is also plotted
separately for reference. 72

3.27 Pruning 27 blocks (50%) from 6 initial ResNet-110 with four steps of
fine-tuning of 50 epochs. Different amounts of noise (scaled by 0.0001
or 0.1112) has been added to the weights before each fine-tuning loop.
Each bar is the mean of 6 runs with standard error bars. Experiments
with noise have slightly lower error rates on average, but their error bars
overlap with no noise. 72

3.28 Pruning using the validation or pruning set without training. 74
3.29 Pruning using the validation or pruning set with 4 training loops. 74
3.30 Pruning 27 blocks from a single ResNet-110. 10% less and full prune the

same blocks in the same order, but 10% less does not use the pruning set
for training. Validation is the regular oracle pruning using the validation
set to pick blocks and the full training set for fine-tuning. 75

xii LIST OF FIGURES

4.1 Fine-tuning with a low and high schedule. 81
4.2 Cost and performance of low schedule compared with accuracy loss thresh-

olding. 82
4.3 Different values of S for phased pruning 86
4.4 Simple and phased pruning with different values of S and total training

epochs . 87
4.5 Pruning with block equalisation constraint 88
4.6 Pruning from a range of intermediary checkpoints taken during original

training. 91
4.7 Replacement pruning . 92

5.1 The logo of the dbx experiment management tool. 95
5.2 Files in a pruning experiment highlighting the experiment log and the

metadata. 99
5.3 The command expdiff which prints out the parameters that are different

between two or more experiments. 99
5.4 This command generates a script that runs (or schedules using sbatch) a

set of experiments with varying parameters. The beginning of the script
contains the command to re-generate itself as a comment. 100

5.5 The generator script when the -testing flag is included. It checks whether
the experiments in the output folder match the expected configuration and
that they are all present. Top shows the output for correct and missing
experiments and the bottom shows sample output for parameter mismatches.101

5.6 Core objects of the dbx system, simplified. k-v stands for key-value. At-
tachments can be referenced from logs, runs or results, not just experi-
ments, but arrows are omitted in the figure for brevity. 108

5.7 System architecture showing one experiment running that saves data both
locally and streams data to a server. It shows that the experiment reposi-
tory can be synchronized local-to-local, server-to-local and local-to-server
and also that various tools can directly work on the local repository with-
out a server via using the library or SDK. None of the components need
to be on the same machine. 111

List of Tables

2.1 EfficientNet, MobileNet v2 and ResNet comparison summary. Latency is
for a single image inference on CPU. Parameters are in millions, FLOPs
in billions. All numbers are from the EfficientNet paper (Tan and Le, 2019). 30

2.2 Summary of results from selected pruning works on CIFAR-10. 31
2.3 Summary of results from selected pruning works on ImageNet. The num-

bers are taken from the respective publications. 31

3.1 ResNet baseline results on CIFAR-10 . 38
3.2 Data points per class after splitting the CIFAR-10 training set. Validation

and training sets used by all experiments (unless stated) is shown in the
first 2 rows. The next 3 rows, marked with *, show the split for the
experiments that included a pruning set of an extra 10% of the original
training set. The test set is the same for all experiments. 38

3.3 Results table from pruning a ResNet-110 with different fine-tuning sched-
ules and block selection methods. "1x", "2x", "4x" denote the number
of uniformly spread fine-tuning loops. t denotes that an accuracy loss
threshold was used. Thresholding and "every 2" runs are continuous and
others are individual prunings experiments (ie. every row with values un-
der "4x" has four fine-tuning loops). All fine-tuning loops use up to 50
epochs. Cost is in epoch-parameters (1e6) shown based on epochs used
when picking best validation error. A * indicates the value is the mean
from 6 runs with different initial models. R% is the percentage of parame-
ters removed, #BR is the number of blocks removed. Err is the test error
% on CIFAR-10. 63

3.4 Fine-tuning at every pruning step . 65
3.5 Cost of fine-tuning for different pruning runs.

∑
symbol denotes that the

value shown is the sum for all fine-tuning steps up to and including the
one in each respective row. The cost is the number of epochs multiplied
by the number of parameters at each fine-tuning loop. Each group of
rows separated by a horizontal line is a single pruning experiment but
at different numbers of blocks removed. t=0.1, 0.05, or 0.01 denotes the
validation accuracy loss threshold to start a fine-tuning loop for e=50 or
20 maximum epochs. Test error is on CIFAR-10 for a single run. All
experiments start with the same initial model, a ResNet-110. 67

xiii

xiv LIST OF TABLES

3.6 Average results of pruning 3 ResNet-110 models to the size of ResNet-
20 (45 blocks removed) using an accuracy loss threshold t and 50 or 20
maximum epochs e per fine-tuning step. 4 loops and every 2 show average
and standard error for 6 initial models. The cost of fine-tuning shown is
the total up to the shown pruning step, in epoch-parameters, for a single
baseline (same as Table 3.5). The 4 loops and every 2 rows are individual
experiments with target sizes at 27 and 45 blocks removed. Thresholding
rows are continued experiments with 45 blocks removed as target size and
a forced fine-tuning loop at 27 blocks removed. 68

3.7 Results summary comparing some of our methods with other works. Ours-
A is a R-110, single shot, oracle, with 18 blocks removed. Ours-B is a
R-110, four shot, oracle, 27 blocks removed. 75

4.1 Cost and CIFAR-10 error of low fine-tuning schedule (with 1 and 3 epochs)
compared with accuracy loss thresholding (t) and fixed fine-tuning sched-
ules. Low experiments are single runs, others are averages over 6 runs
with different starting models. 82

4.2 Phased pruning with different values of S and 10 training epochs per step 84
4.3 Phased pruning and simple pruning for 50 epochs at every step 84
4.4 Total epochs used and accuracy for more phased pruning settings using a

training threshold . 85
4.5 Pruning a ResNet-110 from different checkpoints taken from the initial

training, starting at the random initialization. The Checkpoint column
denotes the epoch when the checkpoint was taken. Showing test error on
CIFAR-10. Each checkpoint was pruned to two different target sizes: 27
and 45 blocks removed, and a single fine-tuning loop at the end of pruning. 90

5.1 Work mode categories for machine learning research projects. 97

A.1 Results table from pruning a ResNet-110 with different fine-tuning sched-
ules and block selection methods. 126

A.2 Detailed phased pruning results for different values of S. 127
A.3 Phased and simple pruning starting from a ResNet-110, using CIFAR-10

dataset. Fine-tuning was performed for 50 epochs at each block removed,
and for phased pruning 10 epochs for phased pruning and 40 for fine-
tuning. Showing mean test accuracy from 5 runs. 128

Acknowledgements

I am extremely grateful to my supervisors, Prof. Adam Prügel-Bennett and Prof.
Mahesan Niranjan, for their guidance, support, and encouragement throughout my PhD,
but also for their teaching during my undergraduate degree which has made me consider
a PhD in the first place.

Many thanks to the VLC Research Group for a great work environment.

I also wish to thank my family and friends for their support.

xv

Declaration of Authorship

I, Vlad Sebastian Velici , declare that the thesis entitled Pruning ResNet Neural Networks
Block by Block and the work presented in the thesis are both my own, and have been
generated by me as the result of my own original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at
this University;

• where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

• where I have consulted the published work of others, this is always clearly at-
tributed;

• where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: Velici, V. (2021). Results and exper-
iment logs for phd thesis "pruning resnet neural networks block by block". DOI:
10.5281/zenodo.4767180.
Velici, V. and Prügel-Bennett, A. (2021a). Object detection for crabs in top-view
seabed imagery. arXiv preprint arXiv:2105.02964.
Velici, V. and Prügel-Bennett, A. (2021b). Rotlstm: Rotating memories in recur-
rent neural networks. arXiv preprint arXiv:2105.00357.

Signed:...

Date:..

xvii

mailto:vsv1g12@soton.ac.uk

Chapter 1

Introduction

Deep learning is a subfield of Machine Learning that has seen significant growth in
recent years, both in terms of academic interest, number of publications and the size
of conferences and also has shown significant impact in industry and it affects a large
number people on a daily basis.

Deep learning techniques have consistently outperformed traditional machine learning
methods in computer vision (Russakovsky et al., 2015), speech recognition, natural lan-
guage processing and understanding, image understanding (LeCun et al., 2015), speech
synthesis (Arik et al., 2017), and more. Deep learning methods and the tooling built for
one domain can be applied across domains. These techniques can be applied to computer
vision, healthcare, financial markets, natural language processing and many other fields.

The downsides of deep learning are the high amounts of data required, the large size
of the models produced and the long time it takes to train models. For a number of
years, reducing these costs was not a concern of the deep learning community, with
trends leading to bigger and bigger networks, trained on bigger and bigger hardware
(in all directions: more computing power specialized for deep learning, more memory,
more storage), and with larger and larger datasets. This has changed in the last few
years. Bigger models are still being developed and trained but there is a very active
and growing area of deep learning and machine learning that now focuses on small
machine learning that can run on mobile devices and even microcontrollers. Initiatives
such as tinyML1 (inaugural tinyML Summit in 2019) are now popular venues for sharing
research in the subfield of small machine learning. Popular deep learning frameworks
such as PyTorch with PyTorch Mobile and Tensorflow with Tensorflow Lite now have
support for exporting and optimizing models for deployment on mobile phones but also
other devices such as the Raspberry Pi.

1https://www.tinyml.org

1

https://www.tinyml.org

2 Chapter 1 Introduction

The deep learning field is also moving very fast. Participation at, and the total number
of papers submitted and accepted in, the top conferences rapidly increased since 2012,
the best performing models for many tasks have outperformed previous architectures
(with significant margins) many times since the explosion of deep learning, and they
continue to do so. Larger and better quality datasets are becoming available as well as
observing fast progress in methods to handle lower quality data and unlabelled data. Not
all the progress is equal, however. Some of the very successful (and possibly other, less
successful) papers in the field of deep learning are hard to reproduce, sometimes missing
critical information or lacking public source code, data or experiment logs (Ding et al.,
2018; Haibe-Kains et al., 2020).

1.1 Neural network pruning

Neural network pruning is a method of removing parts of a neural network typically with
the aim of reducing its size, increasing its performance or for regularization. The idea
of pruning neural networks is not new. The most notable classic works in this field are
Optimal Brain Damange (LeCun et al., 1990) and Optimal Brain Surgeon (Hassibi et al.,
1993) which present pruning techniques that help with increasing generalization.

Small models are ideal for applications where latency is critical, as well as where memory
usage and power consumption are of concern. Small models can be easily deployed on
many devices like embedded hardware, system-on-a-chip computers, mobile phones, and
others. If the accuracy loss is small enough small models can be advantageous on servers
as well since CPU computing is cheaper then GPU or other custom AI hardware2 like
TPUs3.

Early works in pruning explored removing individual weights from a feedforward neural
network to create sparse networks. Modern hardware is optimised to perform batch
calculations efficiently and sparse neural networks do not efficiently make use of these
optimisations. Sparsity does not directly result in smaller and faster models and for
efficient use of sparse models there is a need for specialized hardware and software.
Sparse representations also have a storage overhead. Pruning structural parts of neural
networks, such as entire neurons or convolutional channels, has become popularized in the
litarature where larger parts of a neural network are removed instead of single connections
(Sze et al., 2017). The removed parts can be feature maps from convolutional networks
or entire layers of a neural network. Removing a structural part of a neural network
yields non-sparse networks that have a clear and easy to understand efficiency gain and
size decrease.

2Based on prices of major cloud computing providers as of 21 May 2018, estimated based on online
predictions (not batched jobs).

3TPU: Google’s Tensor Processing Unit: https://cloud.google.com/tpu/.

https://cloud.google.com/tpu/

Chapter 1 Introduction 3

A typical greedy iterative pruning algorithm takes the following form:

Step 1 train a neural network on a dataset,

Step 2 compute saliency of all prunable units,

Step 3 remove the least important prunable unit(s),

Step 4 fine-tune,

Step 5 repeat from Step 2 until enough prunable units are removed.

There is a large variety of methods for selecting the units to prune, for different choices of
prunable unit, presented in the literature. The performance of pruning greatly depends
on unit selection, the amount and schedule of fine-tuning and the starting model.

In this thesis we focus on structured pruning of neural networks with residual connections
– ResNets. ResNet networks have the ResNet block as the core structure, which is
repeated many times across the network. Based on an observation that a few of these
blocks can be removed or re-ordered with minimal loss of performance (Veit et al., 2016)
we seek to explore a larger prunable unit: an entire ResNet block. Chapters 3 and 4
explore iterative block by block pruning with different block saliency metrics and fine-
tuning schedules.

Our research goal is to explore block by block pruning. Specifically we are looking at the
following topics:

• Exploration of pruning ResNet models block by block to understand the impact of
pruning large structured blocks from a deep neural networks.

• How will different block selection methods for pruning perform, what can be learned
from experimentally analysing them, and how important are they for the final
impact on pruning?

• To what extent does pruning differ from training from scratch? How do pruned
networks train and perform as compared to random networks?

• How much fine-tuning is needed during or after pruning? What is the impact of
different fine-tuning schedules to the pruning process?

1.2 Experiment management

A by-product of our research from having over 500 experiments, and having run probably
over 1000, is an experiment management framework, dbx. As part of the pruning work

4 Chapter 1 Introduction

(and earlier work), many small programs have been written to address specific tasks
related to experiment management. Running experiments on multiple machines, copying
them all to a central location, querying and filtering them for generating plots and tables,
finding whether errors occoured (computer crashes, wrong parameters), finding missing
data points, are just a few examples of repetitive, time-consuming tasks.

dbx solve the parts about running experiments anywhere and making results available
from a central location, as well as simplifying fetching experimental data from experiment
logs.

One of the core principles of dbx experiments is the log, where all data produced by the
experiment goes. Instead of compiling results from the experiment code, the focus is on
saving all data that might be required later and separating the plotting, table generation,
data extraction from the code that generates the raw data. Users can also write to an
experiment log later, after the experiment finished; this can be used to add more data,
such as evaluating performance at every pruning step.

It uses the idea of experiment repositories. An analogy to experiment repositories are
git, or other code version control, repositories, but with the difference that experiments
commonly include large files and require a few features on top of simply managing files,
like querying experiments.

The idea of experiment logs has been used for all our pruning experiments, before dbx

was started, and has proven to be an invaluable tool. We logged data that was not
useful at first, such as how long it took to fine-tuning every epoch, and the scores of each
block at each pruning step. These were much later used to compare experiments. For all
experiments we saved all input parameters (including environment variables, hostname,
code version), which has also proven invaluable over time, for fixing errors, re-running
experiments, and search.

Many small utilities were written for our pruning work: find unfinished experiments, gen-
erate plots and tables, check if saved parameters match expected parameters for a whole
directory tree, copy experiments between computers, generate scripts to run batches
of experiments on the University’s supercomputer or different machines, automatically
check if results of generated batches are complete and correct, compare parameters of a
list of experiments, and so on. They serve as the inspiration for starting dbx, which is
presented at length in Chapter 5.

1.3 Thesis structure

In this thesis the topic of pruning neural networks is presented, with a focus on pruning
neural networks with skip connections (also called residual connections) and the original
ResNet architecture.

Chapter 1 Introduction 5

Pruning neural networks is not a new idea. It was first popularized by the paper Optimal
Brain Damage (LeCun et al., 1990), where removing neurons from a feedforward neural
network incresed generalization. With modern deep learning, pruning has been shown
to be useful for a variety of tasks and many pruning methods have been developed.
However, as pointed out by Blalock et al. (2020), the works in the literature on pruning
neural networks is hardly comparable due to uses of different datasets, starting models,
or measure of model size (for instance: FLOPs, MACs, number of parameters, sparcity,
compression rate). There are other dimensions of comparison for pruning works which are
qualitative: does the pruning method require a fully trained, partly trained, or randomly
initialized model? It the pruning method creating sparse or dense models? Are there
measurable time complexity reductions for inference, training, or both? Is the pruning
static, applied once and producing a new model, or is it dynamic, choosing sub-networks
based on input data at inference time? Chapter 2 explores how pruning is presented and
evaluated in the literature and aims to set a common ground for future discussion on the
topic, as well as presenting key contributions and results from the pruning literature.

Based on an observation by Veit et al. (2016) that a few parts of ResNet (He et al., 2016)
networks can be removed or rearranged with only a small loss of accuracy, Chapter 3
presents different types of pruning ResNet networks block by block (as opposed to pruning
smaller units of a network) and discusses the strengths and weaknesses of this method.

The idea of pruning block by block in further explored in Chapter 4, where different prun-
ing settings are discussed: fine-tuning at every step for a few epochs, pruning models
from random initialization or little training, group equalisation – making pruned archi-
tectures more like standard architectures, phased pruning where blocks are trained out
of the model using a linearly decreasing scalar, and finally replacement pruning where
two blocks are pruned at once and replaced by a randomly initialized one.

Another pillar of this thesis is to highlight the importance of systematically running,
logging and desiging experiments that are reproducible. Chapter 5 presents a framework
that was developed as part of this work to improve the management of experiments
and with the aim of improving the workflow of researchers in the deep learning field.
This chapter highlights common patterns in the workflow of a researcher, formulates a
problem that can be solved with software and offers a working, open-source solution for
machine learning experiment management. It includes a comparison with other similar
frameworks.

General conclusions and future plans are presented in Chapter 6.

6 Chapter 1 Introduction

1.4 Early work

Before starting the work on pruning, two other projects were tackled as part of my PhD
work. They are not the core of this thesis but took a significant portion of time. They
are mentioned here for completeness and have been published as technical reports.

The first one, Object detection for crabs in top-view seabed imagery (Velici and Prügel-
Bennett, 2021a), is an eary project aiming to create an object detector with the aim of
counting underwater populations of crabs. There are two defining features of the crabs
dataset. First, the image quality was low, often showing artefacts of a moving camera
or as a result of creating large map-like meshes of the seabed. Second, the species
of underwater animals we were interested in counting live in tightly packed colonies,
resulting in images with no objects of interest or images that were very crowded. We
obtained up to 37.35 mAP for a subset of 3 species (out of the total 6 species available,
the 3 species which were left out have in total less than 1000 data samples, in comparison
to 45,000 for the selected 3 species), and up to 29.93 mAP on the Pascal VOC dataset.

The other project we briefly explored before pruning, RotLSTM: Rotating Memories in
Recurrent Neural Networks (Velici and Prügel-Bennett, 2021b), is about adding rotation
gates to LSTM and GRU cells, obtaining RotLSTM and RotGRU, respectively. We
evaluated the performance of the added gates using a simple architecture on the bAbI
tasks for question answering (Weston et al., 2015). Pairwaise 2D rotations added to the
LSTM cell (RotLSTM) showed improvements in accuracy of up to 20% over the plain
LSTM model on bAbI tasks 5 (three argument relations) and 18 (reasoning about size).
The improvement was not seen on all bAbI tasks and was not at all reproduced with the
GRU and RotGRU experiments.

1.5 Definitions and clarifications

This section aims to clarify what the meanings of commonly used terms is within this
body of work.

Model architecture, or simply architecture, is the way a machine learning model
is built and does not include its weights or imply any training methods. It is purely how
layers and neurons are connected to each other from the input to the output layer.

Model. A model is the archtecture with its weights. A trained model is a model that
has been trained on some dataset.

Chapter 1 Introduction 7

Prunable unit. In this thesis the term prunable unit is used to describe what is
being pruned from an artificial neural network. It can be a single neuron, a filter from
a convolutional layer, an entire layer or a group of layers. Different methods of pruning
differ in the choice of prunable unit and the method of choosing which units to prune.

Chapter 2

Review of major neural network
pruning methods

Pruning neural networks has been discussed in the machine learning literature for many
years and pruning is the area of deep learning has been of interest in the past decade.
Many pruning methods have been introduced and have been used for different purposes
ranging from the most common uses of reducing model size (Hu et al., 2016; Li et al.,
2016) or inference latency (Park et al., 2016; Molchanov et al., 2016), of increasing
generalisation (LeCun et al., 1990; Hassibi et al., 1993), to the less common uses of
reducing power consumption of neural networks on mobile devices (Yang et al., 2017),
or of finding lucky random initializations for training (Frankle and Carbin, 2019). Very
recent papers combine architecture search and pruning to create performant and efficient
networks (Dong and Yang, 2019; Noy et al., 2020).

Regardless of the reason for pruning or specific method, it is important to be able to
compare different pruning methods for different tasks. As also brought into light by
Blalock et al. (2020), the pruning literature is rather sparse when it comes to comparisons
between different pruning methods or standard metrics to use when comparing pruning
techniques.

Another lens through which pruning work can be compared is simply the aim of pruning.
Different pruning works focus on different goals and as a consequence, different metrics.
Commonly used metrics for pruning (typically over loss or accuracy) are FLOPs and
inference time when pruning for increased inference latency, sparsity, comparession rate
or numbers of parameters when pruning for size reduction.

In this chapter the aim is to present different popular pruning methods and categorise
them by the choice of prunable unit, selection method, fine-tuning and whether the
pruning is dynamic or not. Equally important, this chapter argues that it is difficult to
make direct comparisons between pruning methods and that pruning methods depend

9

10 Chapter 2 Review of major neural network pruning methods

greatly on how fine-tuning is performed, the starting weights, how much of a network is
pruned and the size of the initial model. Pruning methods also tend to be inconsistent
between different starting weights at different target compression ratios.

In Section 2.1 we introduce and explain popular choices of units that can be pruned
form an artificial neural network: weights, neurons, and convolutional layers. Different
methods of evaluating the importance of these units are discussed in Section 2.3. Fine-
tuning is typically performed after pruning and is thoroughly explored in Section 2.4

2.1 Choice of prunable unit

The most critical configuration of a pruning algorithm is what it prunes. In this thesis
the term prunable unit is used to describe the part of a model that a pruning algorithm
removes in one step. Classic works such as LeCun et al. (1990) and Hassibi et al. (1993)
prune individual weights of a model. It is possible to prune neurons (all input weights
set to 0, equivalent to removing them) or larger parts of a model such as convolutional
layer filters (Yang et al., 2017; Li et al., 2016; Luo et al., 2018; Anwar et al., 2017), entire
layers of a model, or in the case of architectures with residual connections, entire blocks
(Wu et al., 2018).

Pruning weights and neurons in a feedforward neural network is illustrated in Figure 2.1.
Notice that if all the input weights of a neuron are pruned (entire row in the weights
matrix is 0), then the neuron can safely be pruned since it will not contribute to the end
result. Similarly the neuron can also be removed if all its output weights are pruned.
This process can be repeated until there are no such neurons left.

1

3

2

1

2

1

2

W U
1

3

2

1

2

1

2

W U

Figure 2.1: A feedforward network with one hidden layer. W and U denote
the weight matrices. Individual weights are pruned on the left (set W1,1, W2,2,
U3,1 = 0) and the same network with an entire neuron pruned is shown on the
right (set Wi,1 = 0 and U1,j = 0, or removing the first column of W and first
row of U). Pruned units in red marked with an "x".

Chapter 2 Review of major neural network pruning methods 11

Convolutional layers can be pruned filter by filter to produce smaller convolutional layers.
A visual example is shown in Figure 2.2, where the effects of removing a convolutional
filter is displayed1. Each convolutional filter has a set of weights for each input channel.
When a convolutional filter is removed from layer i, the layer outputs one less channel
(feature map) and thus all the weights for this channel must be removed from the filters
of layer i+ 1.

Convolutional layers do not typically store a large number of parameters but they often
take most of the computational time. Li et al. (2016) shows that pruning convolu-
tional filters and features maps can reduce inference costs by up 38% for ResNet-110
on CIFAR-10. Their method prunes the filters (and associated feature maps) with the
smaller weights magnitude, and they fine-tune the network at the end of pruning. One
observation from this work is that, on ResNet, the pruned architectures (with some filters
removed, but networks have the same blocks configuration) perform worse when they are
trained from scratch than when they are pruned and fine-tuned. Another observation
is that when removing a small number of filters the accuracy increases slightly without
training.

Yang et al. (2017) shows a method of pruning convolutional neural networks with the
goal of reducing energy use on mobile devices. This is achived via estimating the energy
of CNNs and using these estimates to guide the pruning process. Energy use of neural
networks for mobile devices was also mentioned in Han et al. (2015) as motivation for
pruning. Many other works study or use convolutional filter and feature map pruning
(Anwar et al., 2017; Molchanov et al., 2016; Ding et al., 2018; He et al., 2020; Anwar
and Sung, 2016; van Amersfoort et al., 2020).

When pruning weights, neurons, or convolutional layers the pruning algorithm can select
prunable units globally or from a subset of the network. A common choice is to iterate
pruning and fine-tuning in a layer by layer fashion, starting from the one closest to the
input and finishing with the one closest to the output. For example, in Luo et al. (2018)
each layer is pruned to the desired size in one pruning step, followed by an epoch of
fine-tuning (except last layer, which has 10 epochs of fine-tuning).

Entire layers of convolutional neural networks can be removed as long as the input and
output sizes match, however this type of pruning often result in network configurations
that do not perform well for feedforward networks (Veit et al., 2016) and are likely not
trainable to recover a reasonable portion of the performance of the original network.
Architectures with residual connections are more robust to pruning larger parts of the
network; this will be discussed further in Chapter 3.

In the literature the term structured pruning is used for any choice of prunable unit that
can result in removing parts of the network (as opposed to setting a subset of the weights

1This format of drawing convolutional layers was inspired from the excellent write-up from Stanford
CS231n, available at https://cs231n.github.io/convolutional-networks/.

https://cs231n.github.io/convolutional-networks/

12 Chapter 2 Review of major neural network pruning methods

[:, :, 2]

[:, :, 1]

input channels
output channels
(feature maps or

activations)
filters

[:, :, 0]

[:, :, 1]

first filter

second filter

[:, :, 0]

Figure 2.2: The inputs (3 2D channels), filters and outputs (2 2D channels) of
a 2D convolutional layer. The red highlight (right part) shows that pruning the
second filter of this layer results in removing the second channel of the output.
The green highlight (left part) shows that if one of the inputs is removed (for
example by removing a filter from the previous layer), the weights for that
channel from each filter can be removed.

to 0). Structured pruning methods produce dense models that have less parameters than
the initial model. Similarly, unstructured pruning is the pruning of individual weights
which results in sparse models.

Sparse models do not necessarily yield runtime speed and storage improvements due
to issues that arise with storing sparse tensors and performing sparse and sparse-dense
operations on modern GPUs using any of the major machine learning frameworks. There
has been recent progress developing sparse GPU kernels for deep learning (Gale et al.,
2020; Zhu et al., 2019; Ren et al., 2018; Gray et al., 2017), however, at the time of writing,
they are not readily available2 and structured pruning remains the preferred method
for increasing speed and reducing storage requirements without the use of specialized
libraries or hardware.

2Source code and instructions might be publicly available but we argue that easy integration with
major deep learning frameworks is required for widespread use.

Chapter 2 Review of major neural network pruning methods 13

Unstructured pruning can be successfully used for different applications when sparsity
is desirable or as part of other tasks where the focus is not necessarily to reduce model
size or speed up inference (other applications include studying importance of weights,
interpretability, and pruning to improve generalization as opposed to reduce model size).
Equally, unstructured pruning can be turned into structured pruning by pruning items
from the same structural unit (e.g. weights for the same neruone or convolutional filter).
In this thesis the focus is on structured pruning.

2.2 Global or layer-wise pruning

A very popular method of pruning deep neural networks is layer by layer (layer-wise)
(Han et al., 2015; Abbasi-Asl and Yu, 2017; Li et al., 2016; Han et al., 2015; Molchanov
et al., 2016), where pruning starts either close to the input or close to the output and
is iterated layer by layer until the other end of the network is reached. Typically, a
pruning rate is allocated to each layer. Choosing the pruning rate is a hyper-parameter
optimization problem that is often solved outside of the pruning loop, with a common
choice being an equal fixed pruning rate for all layers that are eligible for pruning. The
saliency metric is applied layer by layer. Fine-tuning is performed after each layer was
pruned; Li et al. (2016) report that fine-tuning once at the end yields worse accuracies
than fine-tuning iteratively.

Global pruning refers to pruning the whole model at once, using a saliency metric to
choose which prunable units to remove from anywhere in the model. Global pruning can
also be performed iteratively with fine-tuning in between pruning steps. Each pruning
step can remove one or more prunable units. Works that use global pruning include van
Amersfoort et al. (2020); Lee et al. (2018); Hu et al. (2016).

2.3 Prunable units saliency metric

In this section the main methods of choosing which prunable units to prune at each
pruning step are presented. Scoring can also be refered to as evaluating or computing
the saliency or importance of prunable units. In this thesis we refer to the algorithm
of computing the score of each prunable unit as the saliency metric. Prunable units
with small score are less important and are pruned first. Unless otherwise specified the
notation S(x) is used to mean the score of prunable unit x.

There are four main categories of saliency metrics based on the computational demand
and whether they require data or not.

• Based on weights. Using the weights and the weights alone to compute the
saliency metric. No data is required and fastest to evaluate.

14 Chapter 2 Review of major neural network pruning methods

• Based on activations. Using the activations to evaluate the saliency. Uses data
but not backpropagation. Most methods can be efficient but slower than weights-
based methods.

• Based on gradients. Using gradients to evaluate the saliency metric. Uses data
and backpropagation. Similar in efficiency with activation-based methods.

• Direct evaluation. Evaluating the model with different weights pruned to esti-
mate saliency. Very inefficient requiring many evaluation runs of the model on a
target dataset.

2.3.1 Saliency based on the value of weights

Since pruning a set of weights is equivalent to setting them to zero, the most intuitive
way to select which weights to prune is by their absolute value,

S(x) = |x|. (2.1)

The weights whose values are closest to zero are pruned. The number of weights to prune
at each step can be chosen dynamically based on the score (for instance with a threshold)
or as a hyperparameter to the pruning algorithm.

This metric can be extended for use with different choices of prunable unit by the use
of norms. Denote the weights in a prunable unit as x ∈ Rn where n is the number of
weights in x. Then, for any choice of prunable unit we can define a saliency metric based
on the absolute mean of the weights (using `1 norm),

Smean =
1

n
‖x‖1, (2.2)

as well as the weights magnitude saliency measure, which is often used in the literature,

Smagnitude(x) =
1

n
‖x‖2. (2.3)

Using the `1 or `2 norm alone is only valid for comparing prunable units that have the
same number of weights n, therefore the score is normalised by n to remediate this issue.

Pruning based on weights alone is an efficient and fast process. It does not require any
data to function and, as such, the pruning can be applied in the same way regardless of
the target dataset (this holds as long as there is no fine-tuning). This method is widely
used in the literature (Frankle and Carbin, 2019; Han et al., 2015; Li et al., 2016).

Chapter 2 Review of major neural network pruning methods 15

2.3.2 Saliency based on activation statistics

The main limitation of computing saliency based on weights alone is that it entirely
ignores the data. Weights that are small and constantly receive large input are similar to
weights that are large but constantly receive small input. Adding data to the equation
of computing saliency has the benefit of helping the pruning algorithm to converge to a
pruned model that is likely to work well on that target dataset.

The simplest metrics based on activations are the same ones that are defined for weights
but adjusted to allow for any number of data inputs. Let y(i)

k be the activation (output)
of the prunable unit at index k with input i. For simplicity let a ∈ Rn×m be the
concatenation of all y(i) where m is the total number of data samples used. Equation 2.3
becomes

Sact. magnitude(a) =
1

n×m
‖a‖2, (2.4)

and Equation 2.2 can be similarly rewritten.

Average percentage of zeros (APoZ), introduced in Hu et al. (2016), is another metric
which uses the `0 norm divided by the number of weights in a prunable unit,

APoZ(x) = 1− ‖a‖0
n

. (2.5)

To use APoZ in our setting we define SAPoZ = 1
n‖a‖0−1 (equivalent to average percentage

of non-zeros) to be consistent in that the smallest scores are pruned first (APoZ as it
was first introduced is used to pruned elements with the largest value).

So far the activation saliency metrics have used the activations of the unit to be pruned
alone. In Luo et al. (2018) the idea of using pruning a layer based on the next layer’s
statistics is evaluated and shown to perfom well. The same idea can be extended such
that the impact of removing unit at index i is evaluated by observing the change later in
the network, for instance at prunable unit i+k where k > 1 is an integer hyperparameter
or at a fixed locations close to the end of the network.

2.3.3 Saliency based on gradients

Optimal Brain Damage (LeCun et al., 1990) (OBD) is a method of unstructured pruning
that computes saliency of weights using the second derivative of the loss function in
regards to the parameters, the salience metric for parameter xi is ∂2L

∂xi
2 , where L is the

loss function. ODB is an iterative method where the original model is (1) first trained to
convergence, (2) saliency is evaluated, (3) a number of weights are removed (set to zero
and frozen), (4) the model is then re-trained, and the process is repeated from (2) until
target size is met.

16 Chapter 2 Review of major neural network pruning methods

Optimal Brain Surgeon (Hassibi et al., 1993) (OBS) is another method of pruning
weights. It uses the inverse of the Hessian matrix of the loss function as a saliency
metric. For parameter xi the saliency is x2

i

2H−1
ii

. The re-training is replaced by updating

the weights by subtracting xiH
−1ei

H−1
ii

where ei is the unit vector corresponding to weight
xi.

The bottleneck of OBS is calculating and storing the Hessian and its inverse, making
it unpractival on large models. Dong et al. (2017) presents a layer-wise extension of
OBS suitable for deep neural networks. It works by calculating a layer by layer error by
comparing the output of the layer with its output with weights removed. The saliency
for weight xi at layer l is xi

2

2[H−1
l]ii

. After a parameter is removed the weights of the layer
are updated similarly to OBS.

In SNIP (Lee et al., 2018) the authors add another set of weights, c, of equal size to
the original weights of the model w. The weights used in the model are then w′i = ciwi.
The saliency of weight i is then computed as |gi|∑

k |gk|
with gj = ∂L

∂Cj
. This saliency metric

computes the connection sensitivity. The value of the loss function is not required in this
formulation, making this method suitable to use before initial training of the network.
In practice a pruning mask with values 1 is created to be the same size of the weights.
At a forward pass, each weight is multiplied by its respective value in the map. The
loss function is calculated with a forward pass and the gradients gi are obtained by
performing a backward pass.

For structured pruning, this is extended such that the mask only has one element corre-
sponding to each prunable unit. For convolutional layers the map has an element for each
output channel. For fully connected layers, the mask has one element for each hidden
unit. The prunable unit is then pruned based on the gradient of the loss in regards to
the mask (van Amersfoort et al., 2020). Both methods (structured and unstructured)
are designed as single-shot pruning methods applied before training. In Section 3.3.2
present a similar saliency metric using a mask with one element for each ResNet block.

2.3.4 Learning masks without explicit saliency evaluation

It is possible to learn pruning masks using backpropagation and reach above random
accuracies without any training of the actual weights (Zhou et al., 2019). A mask with
one element corresponding to each prunable unit (in the case of Zhou et al. (2019) each
weight) is interpreted as a bernoulli distribution and trained with backpropagation. The
loss is calculated by sampling from the distribution and evaluating the cost function
on the target dataset. This method is reported to reach 65.4% accuracy on CIFAR-10
(average of 10 independent samples of the mask) by only learning the mask and without
any training of the randomly initialized weights. The accuracy is low in comparison
to trained networks on CIFAR-10 but this result illustrates that pruning weights of a

Chapter 2 Review of major neural network pruning methods 17

randomly initialized network can be effective. The accuracy of the original randomly
initialized network was not made public, but a random choice is expected to give an
accuracy in the proximity of 10%. A four-layer convolutional network was used, with
the configuration: 4 convolutional layers with filters 64, 64, pooling, 128, 128, pooling,
followed by fully connected layers of sizes 256, 256, and 10.

2.4 Fine-tuning method

Fine-tuning is the process of training a model after it has been pruned to recover as much
of the lost accuracy as possible. Fine-tuning can be applied throughout the pruning
process based on different criteria such as accuracy change or number of pruning steps.
Fine-tuning is typically applied after certain pruning steps based on different criteria (like
a schedule or a threshold) or simply at the end of the pruning process. Alternatively,
the initial model can be pruned and trained at the same time resulting in small models
without the need to fully train large networks.

2.4.1 Amount of fine-tuning steps

A very popular fine-tuning schedule is the one-shot fine-tuning, where only one fine-
tuning loop is used at the end of pruning. This method is used by Li et al. (2016), which
perform a single run of fine-tuning at the end of the pruning process (on CIFAR-10, they
use 40 epochs with a fixed learning rate of 0.001) as fine-tuning is an expensive operation.

In the context of pruning weights, Han et al. (2015) report that training at every pruning
step performs better than aggresively pruning once followed and training at the end.

Multiple fine-tuning runs throughout pruning which are triggered by different criteria
such as accuracy drop, change or a fixed schedule based on the number of pruning steps
or number of parameters pruned. Introducing fine-tuning loops into the pruning process
prevents the model from losing too much accuracy and in some situations it might allow
for less overall fine-tuning as compared to a one-shot configuration.

In the case of greedy iterative pruning algorithms, multiple runs of fine-tuning also have
the benefit of regularly correcting the weights, thus the greedy pruning algorithm can,
intuitively, make better local selections of which prunable units to remove. This is based
on the intuition that training a pruned network is likely to change the sailency of the
remaining weights. Fine-tuning at every pruning, even if done for only a few updates,
step also allows the network to gradually adjust to the new shape. Molchanov et al.
(2016) apply 1000 (or 100) updates after each pruning step in the context of pruning
convolutional filters for transfer learning, which is followed by a larger fine-tuning loop
at the end.

18 Chapter 2 Review of major neural network pruning methods

Fine-tuning is applied after each pruning step in Hu et al. (2016) but the weights are reset
from the initial model before each fine-tuning loop. The authors found that resetting the
weights in this way prevents sending the network to a bad local minima but still allow
the saliency metric to use an updated (recently fine-tuned) network.

In Luo et al. (2018) convolutional filter pruning is applied iteratively layer by layer. The
authors claim that pruning too many units at a time without any fine-tuning damages
the network to a state where the lost accuracy is unrecoverable. After each pruning
iteration, they apply a small fine-tuning loop of 1 or 2 epochs. A longer fine-tuning loop
is performed only at the end of pruning process, after the last layer is pruned.

2.4.2 Weights to use for fine-tuning

Most commonly fine-tuning is what follows after pruning, without any other re-initialization
or copying of the weights. A small variation is to use the best epoch from fine-tuning
according to either the loss or accuracy on a validation set.

Another approach is to rewind the weights at the end or throughout the training process.
For notation (Figure 2.3a) let Wr be the random initalization of a model, Wt the weights
of the model after being fully trained on a dataset and Wp

(i) the (remaining) weights of
a model after pruning step i finished (after fine-tuning, if applicable).

In the context of iterative convolutional filter pruning, where fine-tuning loops are applied
after pruning, Hu et al. (2016) finds that resetting the remaining weights to Wt after
pruning and before fine-tuning (Figure 2.3b) yields better performance. van Amersfoort
et al. (2020) use Wr with a small amount of data to find smaller networks that train
well, eliminating the iterative pruning and fine-tuning process altogether.

In an unstructured pruning setting, Frankle and Carbin (2019) use the weights that
the original model had as initialization, Wr, after pruning, effectively using the pruning
process as a means to find winning lottery tickets - subnetworks that train as well as
the large initial network (Figure 2.3c). Wang et al. (2020) find such subnetworks before
training only analysing Wr.

Chapter 2 Review of major neural network pruning methods 19

Random
initialization Training Pruning Fine-tuning

Wr Wt Wp(i)

(a) Notation of weights at different steps throughout training and pruning.

Random
initialization Training Pruning Weight rewind

from Wt

Wt

(repeat until end)

Fine-tuning

(b) Weight rewind before fine-tuning, as done in Hu et al. (2016).

Random
initialization Training Pruning Weight rewind

from Wr
Final training

Wr
(c) Weight rewind to initial random initalization, as done in Frankle and Carbin (2019).

Figure 2.3: Diagrams showing different methods of resetting weights throughout
a pruning process.

2.4.3 Combined pruning and training

Pruning can be categorized based on the method of pre-training the initial model to
be pruned. Traditional pruning methods take as input a fully trained model and prune
it. Arguably a pruning algorithm must be robust to the method of training for its
input model, since in practice it is useful to prune models that one has no control over
their initial training (ie. pre-trained models used in transfer learning). On the other
hand pruning can be used for the purpose of finding more efficient models or increase
accuracy, in which case it is acceptable to prune at any stage and modify the initial
training method.

Different methods of regularization or other training constraints can be used when train-
ing a model from scratch in an attempt to make the model more suitable for pruning
(Wen et al., 2016; Gomez et al., 2019; Zhou et al., 2016). Regularization can be also
combined with fine-tuning throughout the pruning process. Additional fine-tuning can
be used as a pre-processing step that is applied to a pre-trained model, in preparation
for pruning (Ding et al., 2018).

20 Chapter 2 Review of major neural network pruning methods

Another set of works (Frankle and Carbin, 2019) present the idea of pruning trained or
partially trained models and only using the resulting architecture, which is then trained
from scratch. The critical detail is that, before training from scratch, the model with
the pruned architecture is initialized to the same (initially random) weights (leaving out
the pruned ones) that the original model was initialized with. Recent works introduce
the idea of pruning models from the initial random initialization or after small amounts
of training. Others have combined pruning and training so that the benefits of small
networks are redeemed in both training and inference (Lee et al., 2020; van Amersfoort
et al., 2020; Lee et al., 2018; Wang et al., 2020).

2.5 Static or dynamic pruning

Static pruning is where we start with a model, perform pruning (and fine-tuning), and
obtain another model that is smaller. Data is typically used (not always) throughout the
pruning process to determine which prunable units to remove.

In dynamic (or runtime) pruning a network is dynamically pruned based on the input
data such that only a subset of the weights are active for any given input. There is no
traditional pruning step where a new model is created.

BlockDrop (Wu et al., 2018) is a method of dynamically pruning ResNet networks at
runtime. It works by training a policy network that is very small in comparison with the
large ResNet model. At inference time, the input is first fed through the policy network
which outputs a mask, a binary mapping with a value for each block of the base ResNet
model. The mask is then applied on the large model, turning off the blocks that have a
mask value of 0. The input is then passed through the base model and the output is the
final prediction. The results of BlockDrop show that this method of pruning can speed
up inference time and the final model accuracy is not significantly affected. It also shows
that qualitatively complex inputs (images with small objects, complicated background,
or generally more complex images) trigger using more blocks than simpler images (images
with larger objects and/or simpler backrounds). The only downside to this approach is
that inference has the overhead of running the policy network first, to obtain the block
mask. For large ResNet models, however, this overhead is small compared to the savings
in computation it gives on average.

Another work presenting a method of dynamic pruning is Lin et al. (2017) where a set of
convolutional filters is dynamically selected to be pruned at each layer based on the input
being processed. The decision network is a recurrent neural network which is executed
in parallel to the backbone CNN. The amount of resources the model should use overall
can be adjusted after training by adding a coefficient, therefore the same model can be
deployed on systems with different resources available.

Chapter 2 Review of major neural network pruning methods 21

2.6 Soft pruning

Soft pruning is the idea of running a pruning algorithm to select prunable units, but
instead of removing or setting the weights to zero permanently, the weights are set to
zero and are allowed to change during fine-tuning.

Soft pruning can be combined with training a model from scratch such that at each
training epoch, a soft pruning iteration is run setting a subset of filters to zero. At
the next training epoch the filters are trained normally, thus the capacity of the initial
model is not lost. The process is repeated until convergence. The last iteration can be
one of hard pruning to actually obtain a model of smaller size. The initial model can be
randomly initialized or pre-trained.

Soft pruning was introduced by He et al. (2018) as soft filter pruning (SFP) where filters
of convolutional neural networks are soft pruned. It was later expanded by introducing
asymptotic soft filter pruning (ASFP) (He et al., 2020) which adds a method of soft
pruning different amount of filters as the training progresses.

2.7 Pruning as compression

In the literature pruning is often considered a form of compression. That is, taking a
model and pruning it to find a smaller network that is similar to the orignal one in
representation and as a result in accuracy. In this case the model is the data that gets
compressed. Compression algorithms are compared when compressing the same data;
similarly, pruning algorithms must be compared on the same initial models and same
datasets.

The compression ratio for pruning is defined as

compression ratio =
original size
pruned size

.

A model reduced to half its size has a compression ratio of 2. The compression ratio
does not include any information about the amount of weights (or other prunable units)
removed, it is only a measure of how much has been pruned from the original size. It
also does not suggest any easy to understand upper limit (the maximum compression
ratio depends on the model architecture and choice of prunable unit). Another source of
confusion can come from how the model size is actually calculated. The popular choices
for pruning are number of prunable units and number of parameters (which can also
include or exclude parts of a model). The use of compression ratio in pruning papers
is also pointed out by Blalock et al. (2020) where the authors highlight that different
works use different definitions of compression ratio for pruning, making comparing results
difficult. For instance Han et al. (2015) uses the compression ratio as defiend above (and

22 Chapter 2 Review of major neural network pruning methods

reports in the "2×" format); on the other hand, Dong et al. (2017) defines compression
ratio as pruned size

original size and reports this number as a percentage, except in figures where it is
used as a scalar.

Pruning performance changes drastically depending on how much is pruned in absolute
terms, not only how much is pruned as a function of the original size. It is true that
larger neural networks can be pruned more in absolute terms, a fact that is explained by
having a large over-capacity for fitting the training set to start with as well as having a
much larger capacity in the pruned model.

Furthermore Blakeney et al. (2020) shows that pruning is not merely a compression
method and that even though pruned networks can often match the performance of the
initial models, the internal representations of iterative pruning methods are less and less
similar as the sparsity increases. Up to 30% sparsity gives similar representations and the
similarity decreases as sparsity increases. The representations were analysed using the
Singular Vector Canonical Correlation Analysis (SVCCA) tool (Raghu et al., 2017). The
authors showed this in an unstructured pruning context. Our intuition is that structured
pruning diverges the representation even more.

2.8 Comparing pruning methods

The performance of pruning depends greatly on the starting model and the dataset. As
a result it is rather difficult to directly compare against other published works without
re-running all the relevant experiments with new starting models. Furthermore, the
literature on pruning uses a variation of metrics for evaluating pruning performance such
as FLOPs, number of parameters, compression rate, number of prunable units removed,
or inference time, which adds more nuances when comparing to other works. We argue
that it is critical that the same starting weights and initial model sizes are used when
comparing against other pruning methods.

Not only different works use different metrics for measuring how much of a network was
pruned, but sometimes the numbers are misleading. For instance, in Liu et al. (2018),
the percentage of pruned weights is reported as a percentage of pruned weights from the
set of all convolutional weights, whereas other works, such as Li et al. (2016), report the
percentage of weights removed from the total weights.

This section presents a weak upper bound and a lower bound that can serve as a first point
of comparison or as a guideline for pruning methods. Both the lower bound (random
pruning) and the higher bound (oracle pruning) can be used with or without fine-tuning,
but for the comparison to be valid, the same amount and schedule of fine-tuning must

Chapter 2 Review of major neural network pruning methods 23

be used for the lower bound, upper bound and the pruning method that is to be com-
pared. Finally we discuss the importance and significance of comparing against training
similarly-sized models from scratch.

2.8.1 Oracle pruning

Given a neural network with the set of weights M , we define perfect pruning as finding
the subsetM ′ of a predetermined size s that gives the best performance after fine-tuning.

It is computationally infeasible to perform perfect pruning. The performance after fine-
tuning is not strongly correlated to the performance before fine-tuning (discussed in
Section 3.3.3 in the context of ResNet block pruning) and different amounts and con-
figurations of fine-tuning can greatly impact the end result, meaning that architectures
found by perfect pruning may change based on the amount and schedule of fine-tuning.

The fine-tuning schedule and amount must be kept the same for computing perfect
pruning (or an approximation) and for the pruning method that it is to be compared
with. Note that the critical finding is not the architecture M ′, but rather the resulting
accuracy of the model, to be used as a comparison.

Three simpler versions of perfect pruning can be easily defined. First, instead of fine-
tuning all subsets of size s, only fine-tune the ones that have the best accuracy before
fine-tuning; it still has the drawback of having to evaluate a very large number of weight
combinations. The second option is to remove fine-tuning altogether and make the
comparison without any fine-tuning; this is a weak comparison point since pruning per-
formance greatly depends on fine-tuning. The third option is to perform perfect greedy
pruning without fine-tuning at each step until size s is obtained, as done in Molchanov
et al. (2016) and refered to as oracle pruning.

Oracle pruning is the only feasible calculation for any reasonable choices of initial model,
prunable units and datasets, and fine-tuning can be used throughout the process (after
each pruning step or similar).

The concept of oracle pruning is introduced to serve as a baseline for comparing pruning
methods. It sets an expectation of the performance to obtain via pruning. If a pruning
method underperforms the oracle pruning by a significant margin there is clear room for
improvement, but oracle pruning is only a weak baseline based on a simple heuristic.
The opposite is unknown, it cannot be stated that if a pruning method performs as well
as oracle pruning it cannot be improved.

The performance of the initial model can also be a baseline for pruning performance and
be used as a weak upper bound, but there are cases where pruned models do outperform
their initial models while using less parameters.

24 Chapter 2 Review of major neural network pruning methods

2.8.2 Random pruning

Random pruning refers to randomly selecting prunable units.

Oracle pruning is a baseline for pruning a model to a specified size. Random pruning is
a lower bound. Random pruning is obtaining a subset M ′ of size s that is selected at
random. It serves as a good lower bound for evaluating pruning methods over a specific
starting model and it is cheap to obtain. Random pruning may seem like a trivial target
to beat, but in our experiments, random ResNet block pruning is competitive with
other selection methods when fine-tuning is enabled. Random block pruning is further
discussed in Section 3.3.2.

2.8.3 Training from scratch

Training from scratch is often overlooked, but another comparison to be done beyond the
lower and upper bounds described above is to train similarly-sized models from scratch.
It can be discovered that training from scratch is better than pruning and fine-tuning,
or perhaps that pruning finds useful architectures to be trained from scratch (Liu et al.,
2018).

Another outcome, like that presented in The Lottery Ticket Hypothesis (Frankle and
Carbin, 2019), is that using the initial random weights from the large model combined
with the architecture discovered through pruning, is a winning ticket, which is possible
to train from scratch to a similar accuracy as the bigger inital model even in the case
where the pruned model (with weights from the trained initial model) did not train well.

There are pruning works in the literature which omit comparing their results with training
similarly sized models from scratch (Abbasi-Asl and Yu, 2017; Han et al., 2015). Li
et al. (2016) reports a comparison between pruned architectures trained from scratch
and pruned architectures fine-tuned, but does not train similarly sized networks in a
standard3 configuration. The sizes of filters after pruning might hinder training from
scratch.

It is important to note that fully training a large model, pruning it, and fine-tuning it can
be overall more computationally expensive than training a small model from scratch. It
is then to be noted that when comparing models small trained from scratch and pruned
models, the computenation complexity of both operations must be taken into account.
We further discuss training small models from scratch in Section 2.10.

3A model with equal filters/layer or where the number of filters doubles when spatial size of input
halves (this is a common default configuration known to work reasonably well).

Chapter 2 Review of major neural network pruning methods 25

2.9 Pruning performance depends on starting weights

A pruning algorithm can be defined as a function Pu(I,D, t) where I is the initial model
(architecture and weights), D is the target dataset, t is the target size or alternatively a
stopping criterion, and u(M) is a function that lists all prunable units in the model M .
In typical machine learning tasks where we optimize a function f to fit a dataset D the
goal is to create a model that generalises for data coming from a similar distribution to
that of D, but does not overfit the target dataset. In pruning the starting model is an
input to the algorithm as well as the data and it is not sufficient to evaluate a pruning
algorithm on a single initial model.

It has been previously shown that pruning performance depends on the starting model
(Blalock et al., 2020). In Figure 2.4 a simple experiment is used to further highlight
the impact of the starting model on pruning. Baselines A, B, and C have been trained
using the same hyper-parameters and data with the only difference being the random
initialization. Each basline is a ResNet-110 network trained and pruned on CIFAR-10
in a block by block fashion until it matches the size of a ResNet-56 (halving the number
of ResNet blocks). Four different pruning configurations have been used (activation-diff,
activation-mean, mean weights and evaluate, explained in detail in Chapter 3) displaying
the average and confidence. It is possible to observe that the baselines can be compared
to each other in terms of performance at different pruning levels without much overlap
on the validation set (the overlaps are larger on the test set but it is still clear that they
are comparable).

The lottery ticket hypothesis (Frankle and Carbin, 2019) shows that for any over-
parametrized neural network there exists a subset which can be trained to at least match
the performance of the original. A network A is randomly initialised with weights W0,
trained to weights W and pruned obtaining binary mask M (mask has value 0 for pruned
and 1 otherwise, one value for each weight). The pruned network is reset to the random
weights W0 keeping mask M. The newly formed network could be a winning lottery
ticket : a smaller network that trains to perform at least as well as the original, A, when
trained to convergence. This suggests that pruning leads to different subnetworks based
on the initial weights of each network. It also hints that the initial random initialization
is a critical factor in which weights will be the most important after training. Further-
more keeping only the sign of weights in W0 and randomly reinitializing works better
than simply reinitializing (Zhou et al., 2019).

26 Chapter 2 Review of major neural network pruning methods

2 4 6 8 10 12 14 16 18 20 22 24 27
Number of blocks removed

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ac

cu
ra

cy
 lo

ss
 fr

om
 in

iti
al

 (%
)

Baseline A
Baseline B
Baseline C

Figure 2.4: Three baselines pruned with four different pruning algorithms dis-
playing the mean and confidence for each baseline. It can be observed that the
baselines are comparable to each other regardless of pruning configuration, sug-
gesting that pruning is indeed dependent on the starting model. Each baseline
is a ResNet-110 trained with identical hyperparameters with different samples
of the random initialization, each pruned block by block four times, each with a
different method, from 54 blocks to 27 blocks. 50 epochs of fine-tuning is per-
formed at every other step. Dataset: CIFAR-10. Showing the loss from initial
model on the validation set.

2.9.1 Trained to be pruned

Dropout (Srivastava et al., 2014) is the idea of turning parts of a model on and off
randomly during training as a form of regularization. It is equivalent to applying pruning
and restoring at neuron level during training and using the full network on inference.
Intuitively networks trained with dropout should be more robust to at least a small
amout of pruning at the locations where dropout was applied during training.

Gomez et al. (2019) present targeted dropout where dropout is applied throughout train-
ing specifically to weights that are considered of low importance with a simple metric like
magnitude of weights, effectively forcing the model to be robust to pruning specifically
those weights post training. The results of targeted dropout demonstrate that dropout
techniques can be effectively used as regularisation to train models that are robust to
subsequent pruning. Targeted dropout yields accuracies of 68.8% top-1 accuracy on sin-
gle crop ImageNet at 50% sparcity for ResNet-101 (6.7% accuracy loss from baseline) as

Chapter 2 Review of major neural network pruning methods 27

well as a negligible accuracy loss of 0.05% (92.48% accuracy) for a ResNet-32 baseline
on CIFAR-10 pruned at 90% of weights. A similar work is presented in Jia et al. (2018).

Neural networks with skip connections that are trained using training constructs which
arbitrarily turn on and off (either fully or by multiplying with a scalar) parts of the
network, such as those presented in Huang et al. (2016) and Yamada et al. (2019),
intuitively would be more robust to pruning blocks. To test this, we have performed
a small set of preliminary experiments using ResNet-110 networks on the CIFAR-10
dataset. They show that this only holds for a small number of pruning steps and fine-
tuning after pruning such networks is more difficult.

Figure 2.5 displays the results of pruning 6 ResNet-110 simple baselines and 6 trained
with linear decay stochastic depth training (Huang et al., 2016). For the first 15 blocks
removed it seems that the stochastic depth training baseline is better suited for pruning,
however, this changes as the pruning goes further and the performance degrades more
than for the simple baselines. The pruning method is therefore inconsistent in behaviour
depending on the amount of the network pruned and the method of initial training.

When fine-tuning is enabled with four training loops at 7, 14, 20 and the final step
27 blocks removed (half of the initial 54) the stochastic depth network is outperformed
by the simple baselines by a significant margin in the ballpark of 5% on the validation
set, with accuracies of approximatively 88 – 89% and 93-95%. The large difference is
likely caused by the multiplier p — the probability of the block being active — used
in stochastic training; before fine-tuning the value of p for every block is reset to 1. A
further experiment has been performed where stochastic depth training is performed at
fine-tuning time however, once again, this does not improve the accuracy. Finally, an
experiment where p was applied throughout fine-tuning as a regular parameter (same as
in inference), but without any improvement.

This prelimilary experiment has been performed only to further highlight the importance
of the starting weights and not to make a comprehensive statement about stochastic
depth training and its impact on pruning. The conclusion is that the starting weights are
an important factor which impacts the performance after pruning regardless of pruning
method. Similarly, the initial training method does influence the pruning performance
and this is highlighted by the difference in accuracy loss between the baselines trained
with and without stochastic depth training. Most notably the impact is not consistent
with the amount of pruning applied. In our experiment the stochastic training baselines
are more robust to pruning a small number of blocks but the simple baselines perform
better when more blocks are pruned.

A method of preparing a pre-trained convolutional neural network for pruning at filter
level named auto-balanced regularization is contributed by Ding et al. (2018). It works
by first running a pre-pruning fine-tuning loop which aims to move the representation
capacity of the model to a small subset of its filters. The models is then pruned filter by

28 Chapter 2 Review of major neural network pruning methods

0 5 10 15 20 25
Number of blocks removed

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
Er

ro
r i

nc
re

as
e

fro
m

 in
iti

al
 (%

)
Stochastic depth baselines
Simple baselines

Figure 2.5: Six stochastic depth training and six regular baselines trained on
CIFAR-10 and pruned block by block with no fine-tuning. All starting models
are ResNet-110 with 54 basic blocks. The curves show the average reduction
in test error percentage at each block as compared to the initial baseline with
faded background representing the standard error. Observe that the stochastic
depth training models are more robust to pruning a small number of blocks but
the advantage is lost at around 15 blocks removed where the simple baselines
perform better.

filter (with auto-balanced filter pruning and abreast advancing iterative pruning, another
contribution of Ding et al. (2018)) and achieves a reduction in FLOPs of ResNet-56 by
60.86% with an accuracy loss of 0.99% on CIFAR-10. The error rate of the pruned
network is 7.06% with the starting baseline at 6.07%.

2.10 Training small networks from scratch

Pruning is only a worthwhile investment as long as it outperforms training small networks
directly from scratch or provides other benefits such as reduced overall training costs
which can be especially visible when used for transfer learning applications where pruning
a large pre-trained can be cheaper than training a smaller one from scratch.

It is important to acknowledge that pruning and fine-tuning are not always cheap com-
putationally, especially so in cases where fine-tuning is applied at many steps.

Chapter 2 Review of major neural network pruning methods 29

Different types of pruning can also be used to find small architectures that train well
on par with how the authors of Frankle and Carbin (2019) found winning tickets, the
sub-networks that paired with the original random initialisation train to be competitive
with the original network. This, however, requires training a large model once initially,
restriction which can be relaxed by pruning from random initialization (Wang et al.,
2020).

For structured pruning and larger scale datasets (ImageNet as opposed to CIFAR-10
and MNIST) Liu et al. (2018) finds that training from scratch is performing better
than pruning in many cases, including in the cases where the architectures obtained
by pruning are trained from scratch. The authors find contradictory evidence to that
of Frankle and Carbin (2019), where architectures obtained by pruning trained from
random initialization does perform better than the winning ticket (pruned architecture
using original random weights).

Unstructured pruning applied before training is presented in Lee et al. (2018), where
unimportant weights are found by using the gradient of a pruning mask. This is extended
to structured pruning for convolutional filters and single neurons (van Amersfoort et al.,
2020) by using smaller masks where each element corresponds to either a convolution
filter output or output of a neuron. The networks are then trained using regular methods
and for structured pruning the total training time is halved and inferrence time is reduced
3 times with a trade-off of 0.5% lower accuracy on CIFAR-10 for a VGG-19 model.

2.10.1 Networks designed for compute and size efficiency

Another point of comparison to keep in mind is that of networks that are designed to be
small and efficient.

Fast models have been of interest in the field and are still a very active area of research.
The speed of training and inference as well as reducing the size of models is critical for
real-time applications, battery-powered devices and other applications. Many techniques,
such as pruning, are focused on taking a large model and compressing it. Another
approach is to design models to be small from scratch or to be able to scale them to the
available processing or storage capacity for each application.

MobileNet (Howard et al., 2017), MobileNet V2 (Sandler et al., 2018) and most notably
EfficientNets (Tan and Le, 2019), as well as others (Zhang et al., 2018; Ma et al., 2018),
were designed with efficiency as a primary factor and aim to yield good trade-offs between
accuracy, compute efficiency and model size.

30 Chapter 2 Review of major neural network pruning methods

Table 2.1: EfficientNet, MobileNet v2 and ResNet comparison summary. La-
tency is for a single image inference on CPU. Parameters are in millions, FLOPs
in billions. All numbers are from the EfficientNet paper (Tan and Le, 2019).

Model Top-1 Latency Parameters FLOPs

EfficientNet B0 77.1% - 5.3M 0.39B
ResNet-50 76% - 26M 4.1B
MobileNet V2 72% - - 0.3B
EfficientNet B1 78.8% 0.098s 7.8M 0.7B
ResNet-152 77.8% 0.554s 60M 11B

EfficientNets yield impressive performance per parameter values: EfficientNet B0 trains
to 77.1% top-1 ImageNet accuracy with 5.3M parameters compared to 76% for ResNet-
504 at 26M parameters, also summarized in Table 2.1.

2.11 Changing task or dataset via pruning

Transfer learning is shown to be a good fit for pruning. Rapidly removing the weights that
have over-fitted the original target dataset is intuitively a beneficial step to retargeting
a model for a new but related task.

Molchanov et al. (2016) focus on pruning for transfer learning — pruning a model trained
on a large dataset using a smaller target dataset. It is unclear how this method compares
with training a small model from scratch on the large dataset first and then fine-tuning
it (without pruning) on the smaller dataset. The scratch result in the paper is a small
model trained from scratch on the small dataset directly. The scratch model is then
compared with models pruned using the small target dataset but originally trained on
a large dataset (ImageNet). This is an unfair comparison as it is known that transfer
learning improves the accuracy on smaller datasets.

In ThiNet (Luo et al., 2018), the authors recommend performing the pruning and fine-
tuning on the larger dateset (in their case ImageNet), followed by further fine-tuning
(without pruning, only for dataset adaptation) with the target dataset. There is no
empirical comparison between this method and pruning directly on the target dataset.

Gordon et al. (2020) observe that BERT (Devlin et al., 2018) can be pruned to remove
30-40% of parameters and will not significantly affect pre-training loss or performance
on target tasks. The authors claim that, overall, BERT performs better when pruned
whilst pre-training and not when training with the target task.

4ResNet-50 as described in He et al. (2016) (for ImageNet) with bottleneck blocks (3 convolutional
layers per block) and 4 groups of blocks (3 - 4 - 6 - 3) with 64 base filters for the first group, doubling
at each subsequent group. In our pruning chapters we use ResNet networks (as described in the paper
under the CIFAR section) with basic blocks, 16 base filters, and 3 groups with equal blocks.

Chapter 2 Review of major neural network pruning methods 31

Table 2.2: Summary of results from selected pruning works on CIFAR-10. The
numbers are taken from the respective publications. FLOPs are ×108. All
methods perform convolutional filter pruning.

Initial model Fine-tuning Pruned
Name Params Err% FLOP Params Params-% Error FLOP FLOP-%

Li et al. (2016). Abs. weights selection method.
ResNet-56-Pruned-B 0.85M 6.96 1.25 40 epochs 0.73M 13.7% 6.94 0.909 27.6%
ResNet-110-Pruned-B 1.72M 6.47 2.53 40 epochs 1.16M 32.4% 6.7 1.55 38.6%
VGG-16 15M 6.75 3.13 40 epochs 5.4M 64.0% 6.6 2.06 34.2%
He et al. (2018). L2 of weights selection method.
SFP 6.32 2.54 1 epoch/it 7.1 1.21 52.30%
He et al. (2020). L2 of weights selection method.
ASFP-30 6.32 2.53 1 epoch/it 6.63 1.5 40.80%
ASFP-40 6.32 2.54 1 epoch/it 6.9 1.21 52.30%

Table 2.3: Summary of results from selected pruning works on ImageNet. The
numbers are taken from the respective publications.

Initial model Fine-tuning Pruned model
Name Params Accuracy FLOPs Params Params-% Accuracy FLOPs
Luo et al. (2018). Selection method: statistics in next layer. Prunable unit: conv filters.
ThiNet-50
ResNet-50 25.56M 72.88% top-1

91.14% top-5 7.72B

1 eppoch
per layer

and 10 epochs
for the

final layer

12.38M 51.56% 71.01% top-1
90.02% top-5 3.41B

ThiNet-30
ResNet-50 25.56M 72.88% top-1

91.14% top-5 7.72B 8.66M 66.11% 68.42% top-1
88.30% top-5 2.20B

ThiNet-Conv
VGG-16 138.34M 68.34% top-1

88.44% top-5 30.94B 131.44M 4.98% 69.80% top-1
89.53% top-5 9.58B

ThiNet-GAP
VGG-16 138.34M 68.34% top-1

88.44% top-5 30.94B 8.32M 93.98% 67.34% top-1
87.92% top-5 9.34B

ThiNet-Tiny
VGG-16 138.34M 68.34% top-1

88.44% top-5 30.94B 1.32M 99.04% 59.34% top-1
81.97% top-5 2.01B

Han et al. (2015). Selection method: weight value (thresholding). Prunable units: weights.

VGG-16 138M 68.5% top1
88.68% top5

At each pruning
iteration. 10.3M 92.53% 68.66% top-1

89.12% top-5
Li et al. (2016). Selection method absolute weights. Prunable unit: conv filters.
ResNet-34
Pruned-B 21.50M 73.23% top-1 3.64B 20 epochs 19.3M 10.80% 72.17% top-1 2.76B

Hu et al. (2016). Selection method: ApoZ. Prunable unit neuron.

VGG-16 21.50M 68.36 top-1
88.44 top-5

5k iterations,
batch size 256 8.3M 61.39% 70.44 top-1

89.79 top-5
Molchanov et al. (2016). Selection method “Taylor criterion”. Prunable unit: conv filters.
VGG-16 21.50M 89.3% top-5 30.96B 100 updates/iter and,

5 epochs at shown rows.
87.0% top-5 11.5B

VGG-16 21.50M 89.3% top-5 30.96B 84.5% top-5 8.0B
\cite{NIPS2017_7071}. Selection method L-OBS. Prunable unit: neuron.

VGG-16 21.50M 68.34% top-1
89.88% top-5

8.63 ×10^4
Iterations 1.61M 92.50% 67.98% top-1

89.03% top-5

VGG-16 21.50M 68.34% top-1
89.88% top-5 none 1.61M 92.50% 62.68% top-1

85.18% top-5
Wang et al. (2019). Pruned 50% of blocks (params not reported). Prunable unit ResNet Block. Selection: DBP
R101-R50
ResNet-101 77.37% top-1 76.97% top-1

2.12 Chapter summary

In this chapter we have reviewed a few major contributions in pruning and placed pruning
algorithms and methods in different categories. The most important aspects of pruning
algorithms are the choice of prunable unit — weights, neurons, convolutional filters, or
others —, and the fine-tuning settings.

Pruning can be applied in different contexts. It can be applied iteratively layer by layer,
or globally all at once. It can be applied on a model that has been pre-trained, or a

32 Chapter 2 Review of major neural network pruning methods

model that was initialized from random. A pruning method may or may not require a
pre-processing step for the model, such as fine-tuning with special regularization.

Fine-tuning to recover lost accuracy can be done at every pruning iteration, only at the
end of pruning, or anywhere in between.

We have presented two basic baselines to serve as initial comparison points for pruning
method: random pruning and oracle pruning. Random pruning is commonly used, and
oracle pruning was introduced and used by Molchanov et al. (2016). It is important to
note that random pruning must be done more than once, and with the same fine-tuning
schedule as the pruning algorithm to be compared with. Accuracy before fine-tuning is
often but not always a good indicator of after fine-tuning performance.

Runtime, or dynamic, pruning is pruning that is applied at inference time. The typical
setup is a meta-model which outputs a mask for the large model. If the large model is
large enough, the meta model small enough, applying the masks on the large model gives
a noticable increase in inference speed. Similar types of runtime or dynamic pruning may
also be applied at training time, to increase both training and inference speed.

Empirical findings have been mostly omitted throughout the chapter as the focus is on
describing and introducing different pruning techniques. For completeness, some key
results from works cited throughout this chapter are included in Table 2.2 for CIFAR-10
and in Table 2.3 for ImageNet.

Chapter 3

Pruning ResNet networks block by
block

Deep learning has been proven to be the leading method in terms of the performance for
many application domains. Until recently, the trend for new architectures and models
that push the state of the art forward was a steady increase in model size (in number
of parameters, number of layers, or multiply-add operations) and therefore memory and
computational requirements (Khan et al., 2020). Many state of the art deep learning
models have the disadvantage of requiring a large amount of memory and processing
power to run even in inference, making them hard to use on CPUs or mobile devices. In
the last few years the size of deep neural networks has become more widely discussed in
the literature, with venues such as TinyML1, the growing maturity of frameworks that
make inference on low power devices accessible, such as Tensorflow-Lite (Abadi et al.,
2015) and PyTorch Mobile (Paszke et al., 2019), and a growing body of literature that
focuses on small models.

Small models are ideal for applications where latency is critical, as well as where memory
usage and power consumption are of concern. Small models can be easily deployed on
many devices like embedded hardware, system-on-a-chip computers, mobile phones, and
others. If the accuracy loss is small enough small models can be advantageous on servers
as well since CPU computing is cheaper than GPU or other custom AI hardware2 like
TPUs3. A large and growing body of works on finding efficient deep neural network
model architectures exists, focusing on creating model architectures that give good ratios
of complexity to accuracy. EfficientNet (Tan and Le, 2019), MobileNet (Howard et al.,
2017; Sandler et al., 2018) are great examples of such works.

1https://www.tinyml.org
2Based on prices of major cloud computing providers as of 21 May 2018, estimated based on online

predictions (not batched jobs).
3TPU: Google’s Tensor Processing Unit: https://cloud.google.com/tpu/.

33

https://cloud.google.com/tpu/

34 Chapter 3 Pruning ResNet networks block by block

This chapter presents a simple iterative method of pruning convolutional neural networks
with residual connections (architectures based on ResNet (He et al., 2016)). The method
removes entire ResNet blocks as opposed to pruning filters or single convolutional layers,
which is a bigger choice of prunable unit than commonly found in the literature. This
work explores different block selection methods and fine-tuning settings whilst compre-
hensively comparing the accuracy, computing and storage efficiency of pruned models
and models trained from scratch.

Most pruning works in the literature are focused on using smaller prunable units such
individual weights or neurons. Pruning work of this last decade adds in various methods
of pruning filters and features maps from convolutional layers, as noted in Chapter 2.
Residual connections and the structure of ResNet (blocks connected to each other directly
and indirectly via residual connections) welcomed the idea of removing entire blocks from
a network. It has been noticed (most notably by Veit et al. (2016)) that a small number
of ResNet blocks can be removed or reordered with a small impact on performance. The
same does not hold true for feedforward networks without any residual connections, like
VGG (Simonyan and Zisserman, 2014) where one layer feeds only into the next.

The motivation for block by block pruning and a reminder of the ResNet archtecture are
included in Section 3.1. Section 3.2 presents our CIFAR-10 baseline models.

In Section 3.3, seven block saliency metrics used for block by block pruning are defined
and evaluated. They are oracle, activation mean, activation change, activation
change plus one, block gradient, weights mean, and random choice. Section 3.4
evaluates the oracle block selection method on checkpoints taken throughout the training
of an initial model.

Different methods of placing fine-tuning loops throught the pruning process (fine-tuning
schedules) are introduced and evaluated in Section 3.5. Section 3.6 discusses fine-tuning
parameters that do not depend on the schedule: learning rates, random noise, and freez-
ing the classifier.

The validation set was used for evaluating the saliency of blocks, which was done as the
validation set is often used to select the best models or checkpoints. Nonetheless, this
raises the concern of overfitting the validation set. The issue is addressed in Section 3.7.

We compare our results with similar works in Section 3.8, and finally conclude with
Section 3.9.

3.1 Intuition and background

A very successful CNN architecture is ResNet (He et al., 2016). It introduces the idea
of residual connections for convolutional neural networks. The ResNet architecture is

Chapter 3 Pruning ResNet networks block by block 35

Hi Hi+iyi yi+1 yi+2

Figure 3.1: Two ResNet blocks, Hi and Hi+1, connected to each other showing
the basic idea behind the ResNet architecture.

composed of ResNet blocks (also called residual blocks). We denote yi as the input of
the i-th residual block Hi, and its output as

yi+1 = σ(Hi(yi) + yi),

where σ(·) is a non-linear activation function, typically a ReLU. An illustration of two
ResNet blocks is presented in Figure 3.1. Many modifications of the ResNet architecture
have appeared since it was first presented in 2015, like ResNeXt (Xie et al., 2017) and
DenseNet (Huang et al., 2017). Residual connections are now a common feature in recent
neural network architectures (Sandler et al., 2018; Xie et al., 2017; Huang et al., 2017;
Tan and Le, 2019).

There are two different types of ResNet blocks. The basic block is composed of two
convolutional layers of equal filters, both 3x3. The bottleneck block is composed of three
convolutional and the first two layers have a smaller number of filters, having sizes 1x1,
3x3, and 1x1, respectively. We use basic blocks in all our experiments.

The first block of each block group performs a downsampling by using 2D convolutions
with stride 2. The residual connection needs to also be downsampled for the sizes to
match for the element-wise addition. This is achieved by applying a 1x1 convolution
with stride 2 on the residual connection, as described in Hu et al. (2016). To reduce any
ambiguity, a full representation of the architecture we use in this chapter is shown in
Figure 3.2.

Veit et al. (2016) shows an analysis of the ResNet architecture that suggests ResNet
models act like an ensemble of 2N smaller networks, where N is the number of blocks
in the network (N = 16 for ResNet-50, N = 32 for ResNet-101 with Bottleneck blocks;
N = 54 for ResNet-110 with basic blocks). This is shown by removing blocks from the
network and obtaining a slow decrease in performance with the number of blocks cut.
We obtain similar results, shown in Figure 3.5. They also observe that re-ordering blocks
impacts the performance of the network less than it does for other CNN architectures
that have no residual connections like VGG (Simonyan and Zisserman, 2014).

Based on these observations we propose that ResNet architectures are robust to pruning
entire blocks, and that with appropriate retraining iterations we can obtain very small
networks while not affecting the model performance.

36 Chapter 3 Pruning ResNet networks block by block

conv 3x3
16 filters

0 N-1

···

Group 1

N 2N-1

···

Group 2

conv 1x1
stride=2

2N 3N-1

···

Group 3

conv 1x1
stride=2

avgpool

fully
connected

softmax

16 filters

64 filters

32 filters

ReLU ReLU

ReLUReLU

ReLU ReLU

Figure 3.2: A representation of the ResNet model architecture we use in this
work for the CIFAR-10 dataset. Batch normalisation omitted from the figure –
it is applied before ReLUs.

3.1.1 Pruning ResNet blocks

In this section we present a simple yet effective method of pruning entire blocks from a
ResNet4 network while keeping the accuracy loss to a minimum.

We use the following iterative process:

Step 1 train a ResNet network on a dataset,

Step 2 evaluate the importance of each ResNet block,

Step 3 remove the least important ResNet block(s),

Step 4 optionally, fine-tune the network (re-train for a number of epochs),
4This method works with more recent variations of the ResNet network like ResNeXt. In this report

we have only used ResNet.

Chapter 3 Pruning ResNet networks block by block 37

i

Without
downsampling

With
downsampling

i
Active

Pruned

Figure 3.3: The effect of pruning a ResNet block with and without downsam-
pling. The residual connection is drawn at the bottom with the block at the
top, suggesting it can be inserted and removed.

Step 5 repeat from Step 2 until enough units are removed.

The output of a pruned ResNet block is just the output of the previous block, yi+1 = yi.
In the case of the blocks that perform downsampling, the downsampling is still applied
on the residual connection. Visually this is shown in Figure 3.3.

There are two main areas to be explored in our block by block greedy pruning method.
The first is the block selection algorithm: given a ResNet, select the next block to prune.
The second is fine-tuning the model after it has been pruned. It addresses how much
fine-tuning to perform and choosing all the details and hyper-parameters related to fine-
tuning, as well as keeping track of the cost of fine-tuning.

3.2 Baselines

For the majority of experiments in this chapter we use the same ResNet configurations as
He et al. (2016) uses on CIFAR. For training the models from scratch we we use the same
settings as Huang et al. (2016) (constant depth). We train for 500 epochs using the SGD
optimiser with weight decay 10−4, Nesterov momentum 0.9, and a learning rate schedule
starting with 0.1 and dividing by 10 at epochs 250 and 375. The batch size is 128. We
also follow the standard data augmentation for CIFAR datasets, padding by 4 pixels,
random crop of 32 by 32 and random horizontal flip. Our results are slightly better than
that of He et al. (2016) and Huang et al. (2016) due to using a 1x1 convolutional layer
as opposed to a pooling layer for downsampling, and shown in Table 3.1.

For all experiments, unless otherwise stated, the CIFAR-10 validation set is created by
taking the first 10% of the data points from the training set. The validation set and the
remaining training set are the same for all experiments, and they are roughly balanced

38 Chapter 3 Pruning ResNet networks block by block

Table 3.1: Baseline points trained on CIFAR-10. Baseline points are our results
from training the models from scratch. Huang et al. column shows constant
depth results. All numbers are the CIFAR-10 test error %.

Baseline points He et al. (2016) Huang et al. (2016)

ResNet-110 5.71 (6.0±0.3) 6.43 (6.61±0.16) 6.41
ResNet-56 6.21 6.97 -
ResNet-44 6.63 7.17 -
ResNet-32 6.68 7.51 -
ResNet-20 7.54 8.75 -

Table 3.2: Data points per class after splitting the CIFAR-10 training set. Vali-
dation and training sets used by all experiments (unless stated) is shown in the
first 2 rows. The next 3 rows, marked with *, show the split for the experiments
that included a pruning set of an extra 10% of the original training set. The
test set is the same for all experiments.

plane car bird cat deer dog frog horse ship truck

train 4495 4540 4481 4514 4481 4512 4481 4514 4480 4502
val 505 460 519 486 519 488 519 486 520 498

train* 3995 4026 3968 3984 4001 4063 3970 3999 3975 4019
val* 505 460 519 486 519 488 519 486 520 498
prune* 500 514 513 530 480 449 511 515 505 483

test 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

(see Table 3.2 and the code to reproduce experiments using the same split). The data
taken from the training set and put into the validation or pruned set was never used for
training or fine-tuning. We acknowledge that a balanced split (4500 training and 500
validation data points per class) may improve the error rates repored throughout this
thesis although no experiments were run using that configuration.

A baseline point has been trained for every equal block configuration from the size of
ResNet-110 (54 blocks, 18 per group) to ResNet-20 (9 blocks, 3 per group). The results
for both the test and validation set of CIFAR-10 are shown in Figure 3.4. Training was
performed similarly to the baselines in Table 3.1, except training was performed for 400
epochs only. This reduction in number of epochs was applied to reduce runtime and
because we did not see any improvement in performance after epoch 400 in the previous
baselines.

We acknowledge that the baseline accuracies obtained are not state of the art and they
could be improved by further optimizing the hyperparameters, however our focus is on
pruning block by block and not on reaching state of the art results.

Chapter 3 Pruning ResNet networks block by block 39

9152127333948545454 51 48 45 42 39 36 33 30 27 24 21 18 15 12 99
Number of blocks

5.0

5.5

6.0

6.5

7.0

7.5

8.0

CI
FA

R-
10

 e
rro

r (
%

)

R-20R-32R-44R-56R-68R-80R-98R-110

Baseline (test)
Baseline (validation)

Figure 3.4: Standard ResNet architectures with equal number of blocks per
group trained on CIFAR-10 from scratch. Each model has 3 groups of blocks.

3.3 Block selection methods

A simple way to estimate the importance of a ResNet block is to temporarily remove
it and evaluate the model performance on the validation set. The higher the accuracy
of the model is without a block, the less important the block is. This method of block
selection is what we refer to as oracle pruning in Chapter 2. Since oracle pruning is used
to mean that the evaluations are performed at every pruning step we also use the term
evaluate to refer to this method of estimating block saliency but where the saliency is
reused.

This method has the disadvantage of requiring an evaluation run for each possible block
to remove. For ResNet-110 it requires 54 runs at the first iteration, 53 runs at the second
iteration, totalling 2880 evaluations5. This process is fast to compute on small datasets
like CIFAR-10 (1 minute for all blocks in ResNet-110) and CIFAR-100 (Krizhevsky and
Hinton, 2009) but can be problematic on larger datasets such as ImageNet (Deng et al.,
2009).

The performance issue of this block selection algorithm can be addressed by reusing
the calculated scores for more than one iteration or by using less data to perform the

5Each evaluation is slightly cheaper than the previous one since there are less blocks. Allocate the
cost of 1 to an evaluation with all 54 blocks and normalise every evaluation by this cost, the total number
of full cost evaluations is

∑54
i=10

i2

54
≈ 994. This approximation does not take into account that the real

cost of evaluation is not only determined by the number of blocks.

40 Chapter 3 Pruning ResNet networks block by block

evaluation. The feasibility of reusing the scores by only computing them every 2, 4, 8 or
16 steps as well as only computing it once for a full pruning run has been evaluated. On
an experiment without fine-tuning, re-calculating the scores every four steps is almost as
good as evaluating at every pruning step. The validation and test accuracies on CIFAR-
10 for a ResNet-110 (54 blocks) pruned until it reached the same number of blocks as
ResNet-20 (9 blocks) are shown in Figure 3.5. Notice that lower frequencies of saliency
calculation result in higher error rates and the differences are more noticable when more
blocks have been pruned. However, the differences in accuracy are low for re-computing
saliency every 2 or 4 steps, suggesting that it is possible to cache saliency computation for
a few pruning steps without a major penalty in performance. We deduce that the relative
importance of blocks changes as blocks are removed, even without any fine-tuning.

3.3.1 Comparing block selection algorithms

Block selection algorithms, when they are run on the same initial model and without
fine-tuning, can be compared by the saliency scores they compute and the blocks they
select to prune at each step. At each pruning step one block is removed. At step k there
are k removed blocks.

A trivial method of comparing two block selection algorithms is the model accuracy on
some dataset after pruning. This is not suitable if the intent is to compare the actual
choice of blocks as opposed to model performance. For this purpose the set of removed
blocks can be compared between two pruning runs: a similarity score can be computed
based on how many common blocks both algorithms selected up to pruning step k as
compared to k, the total number of blocks removed.

The trivial pruned blocks set comparison above does not take into account the order in
which the blocks have been removed, which is important when fine-tuning is used. It
also ignores the estimated saliency of the remaining blocks.

For a model with n blocks at step k, the ranking of the blocks for a block selection
algorithm is the concatenation of all removed blocks in the order they have been removed
followed by the remaining blocks sorted by saliency (at step k the block at position k+1

is removed). Using Kendall’s tau (Kendall, 1945) as the metric of similarity between two
pruning runs and the ranking defined above we obtain a measure of similarity between
two block selection algorithms at each pruning step. This ranking allows for comparing
a block selection algorithm based on both the past selections (the blocks that have
already been removed) and the saliency of the remaining blocks. Kendall’s tau metric
ranges between 1 for strong agreement (blocks chosen in similar order) and -1 for strong
disagreement.

In Figure 3.6 the similarity based on Kendall’s tau is used to compare evaluation-based
saliency metrics computed at every 2, 4, 8, 16 steps or only once against oracle pruning.

Chapter 3 Pruning ResNet networks block by block 41

0 2 4 6 8 10 12 14
Number of blocks removed

6

8

10

12

14

Te
st

 e
rro

r (
%

)

Oracle
Every 2
Every 4
Every 8
Every 16
Once

(a) Zoomed in on the first 14 out of 54 blocks removed.

0 10 20 30 40 50
Number of blocks removed

20

40

60

80

Te
st

 e
rro

r (
%

)

Oracle
Every 2
Every 4
Every 8
Every 16
Once

(b) Full view up to 45 out of 54 blocks removed.

Figure 3.5: Oracle pruning of a ResNet-110 on CIFAR-10 without fine-tuning
comparing different frequencies of computing the saliency of each block. Oracle
is computing the score at every step. The error percentage shown is for the test
set of CIFAR-10. The validation set was used for block selection. Faded circles
highlight the steps where computing of saliency occurred.

42 Chapter 3 Pruning ResNet networks block by block

0 10 20 30 40 50
Number of blocks removed

0.5

0.6

0.7

0.8

0.9

1.0
Ke

nd
al

l's
 ta

u
Every 2
Every 4
Every 8
Every 16
Once

Figure 3.6: Kendall’s tau correlation between oracle pruning and reusing the
evaluation saliency metric (recomputing once, at every 16, 8, 4, or 2 steps).
Kendall’s tau similarity ranges from 1 to -1 for strong agreement to strong
disagreement, respectively. The first step has a similarity of 1 since all methods
shown perform exactly the same saliency metric for the first block.

There is a clear agreement between the metrics compared and it can also be observed that
the longer the saliency computation is reused the lower the similarity with the oracle, as
expected from the previous accuracy plots.

Another way to estimate the stability and reusability of saliency scores is to compare the
ranking of pruning run as defined above with the ranking of the same pruning obtained
by the list of all pruned blocks at the end of pruning. If the similarity is high then the
saliency scores are highly reusable throughout the pruning process. Another use of this
comparison is to check how much the estimated saliency of blocks changes in relation to
fine-tuning.

3.3.2 Other block selection methods

More block selection methods and saliency scores have been evaluated as part of this
work. This subsection introduces them with a small comparison between them as well
as their correlation to oracle pruning.

Chapter 3 Pruning ResNet networks block by block 43

Weights mean scores the blocks by their mean absolute weights in convolutional layers
such that the block with the lowest value is removed first. This method does not require
any data.

Activation mean method uses one forward pass with the validation set to compute the
average absolute activation of each block. The block with the lowest value is removed
first.

Activation change scores the block i based on the impact it has on the input of the
next block6. This is estimated by computing the mean squared error between yi (input
if block i is pruned) and ReLU(Hi(yi) + yi), the input if the block is present. The block
with the lowest value is removed first.

Activation change plus one is similar to activation change but the mean squared
error is applied a block after the removed one, effectively using the output of block i+1

to evaluate the saliency of block i.

Block gradient magnitude is the method presented by van Amersfoort et al. (2020)
but our units are the outputs created by ResNet blocks not individual filters. Our mask
m has one element for each ResNet block. We compute g = ∂loss

∂m and the score for block
i is si = abs(gi), pruning the lowest scores by thresholding or desired target size. This
block selection method was introduced as a single-shot pruning before training method
and was not originally used in the context of greedy iterative pruning. For iterative
greedy pruning, we prune the block with lowest si at each step.

Random choice where blocks are simply picked to be removed at random is used in
certain parts of this work for comparison.

Figure 3.7 illustrates the performance of each of the block picking methods described
above in a similar experiment to that of Figure 3.5: pruning a ResNet-110 block by
block using each of the above block selection methods with no fine-tuning. Evaluating at
every step gives optimal choices but using the activation change method gives a better
tradeoff between computational cost and performance. The magnitude of the weights
alone gives the worst performing results, confirming the intuition that using data for
block selection results in superior choices when compared to no data methods. The
Kendall’s tau correlation between weights mean, activation mean, activation diff,
block gradient, and oracle pruning is shown in Figure 3.8. As expected from the
performance of the pruned models, the saliency metrics that are most similar to oracle
pruning are the ones based on activations.

Throughout the rest of this work, unless otherwise specified, we compute the saliency of
blocks at each pruning step using the evaluation (oracle) method. We find that the cost

6Effectively comparing the activations of the network at the place of output of block i, but to avoid
confusion we use the term input of next block as opposed to output of current block since there is no
output of current block when it is removed.

44 Chapter 3 Pruning ResNet networks block by block

0 2 4 6 8 10 12 14
Number of blocks removed

6

8

10

12

14

16

Te
st

 e
rro

r (
%

)
Weights mean
Activation mean
Activation change
Activation change +1
Block gradient
Oracle
Random

(a) Zoomed in on the first 14 out of 54 blocks removed.

0 10 20 30 40
Number of blocks removed

20

40

60

80

Te
st

 e
rro

r (
%

)

Weights mean
Activation mean
Activation change
Activation change +1
Block gradient
Oracle
Random

(b) Full view up to 45 out of 54 blocks removed.

Figure 3.7: Pruning a ResNet-110 model on CIFAR-10 without fine-tuning com-
paring different block selection methods. The error percentage shown is for the
test set of CIFAR-10. The validation set was used for block selection. Faded cir-
cles highlight the steps where computing of saliency occurred. Lines plotted are
average results from 6 different baselines and faded highlight shows confidence.

Chapter 3 Pruning ResNet networks block by block 45

0 10 20 30 40
Number of blocks removed

0.40

0.45

0.50

0.55

0.60

0.65
Ke

nd
al

l's
 ta

u

Activation mean
Activation diff
Weights mean

Figure 3.8: Kendall’s tau correlation between oracle pruning and other saliency
estimation methods: activation diff, activation mean and weights mean.

of this saliency metric is not a bottleneck in our setup since fine-tuning takes significantly
more time. Using an NVIDIA GeForce GTX 1080 Ti GPU, for the initial pruning step
evaluating 54 blocks, it takes approximatively 1 minute to compute the oracle saliency
metric to remove one block. For the last pruning step, from 10 blocks to 9 blocks, it
takes 7-8 seconds. As comparison, fine-tuning a network with 9 blocks for 50 epochs
takes roughly 10 minutes, or 21 minutes for a network with 27 blocks (pruned 50% from
ResNet-110).

When fine-tuning is added, both activation change, oracle pruning, yield similar results.
This is illustrated in Figure 3.9 where pruning is performed six times for each selection
method, each time with a different initial model. Fine-tuning was performed at every
other pruning step for 50 epochs.

46 Chapter 3 Pruning ResNet networks block by block

5 10 15 20 25
Number of blocks removed

5.00

5.25

5.50

5.75

6.00

6.25

6.50

6.75

7.00
Er

ro
r (

%
)

test

val

Activation diff
Oracle

Figure 3.9: Fine-tuning every two pruning steps for 50 epochs using activation
diff and oracle group selection methods. Initial model ResNet-110. Observe that
their performance levels are similar. Showing the mean and standard error for
6 different pruning runs (different starting model) for each series.

3.3.3 Performance correlation before and after fine-tuning

In this section the hypothesis that the performance of a pruned model before and after
fine-tuning are correlated is tested. The purpose of this test is that our oracle selection
method relies on the performance of a model before fine-tuning to select which blocks to
prune.

Since we already had many pruning experiments (264 used, all from ResNet-110) with
different block selection methods and different fine-tuning configurations, we aggregated
the CIFAR-10 validation accuracy before and after fine-tuning for all data points that we
had available, a total of 1,459 fine-tuning loops after filtering for the number of epochs
used (reporting best epoch accuracy) to be between 10 and 50, inclusive. A number of
1,311 unique sets of blocks removed were found, from which 494 unique block groups
configurations.

A scatter plot of the before fine-tuning and after fine-tuning accuracies is in Figure 3.10.
The Pearson correlation is 0.59. Although we have used a large number of data points, the
data is biased due to the fact that many of our experiments were performed with oracle
pruning (this explains the crowded area in the top right hand side of the plot). Another

Chapter 3 Pruning ResNet networks block by block 47

20 40 60 80
Before fine-tuning

86

88

90

92

94

96

Af
te

r f
in

e-
tu

ni
ng

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Parameters 1e6

0

20

40

60

80

Im
pr

ov
em

en
t %

45
27
22
20
18
16
14
12
11

10
9
8
7
6
5
4
3
2

Figure 3.10: Left: CIFAR-10 validation accuracy before and after fine-tuning us-
ing a large collection of pruning configurations: 1,459 fine-tuning loops from 264
pruning experiments. Pearson correlation is 0.59. Right: Relative improvement
on CIFAR-10 validation set after fine-tuning for 50 epochs (choosing best) over
number of parameters of the pruned network. The legend shows the number of
blocks removed. Only single-shot runs have been selected.

factor adding bias is the fact that we have more data points with a smaller number of
blocks removed, which on average perform better before (and after) fine-tuning.

The observation we make is that a network with a high accuracy before fine-tuning is
likely to yield a high accuracy after fine-tuning, but the correlation is not strong. The
heuristic of choosing the best performing network before fine-tuning (oracle pruning)
gives good results because it is aggressively avoiding possible bad choices, not because it
finds good ones.

It is also worth noting that a very large range of before fine-tuning accuracies starting as
low as 20% yield after fine-tuning accuracies of 91-95%. The range of after fine-tuning
accuracies does not change very much, but there is a small uptrend at very high before
fine-tuning accuracies (85%+).

The accuracy of a model before fine-tuning is a weak indicator of the accuracy after
fine-tuning, but it does not give information about how likely a subnetwork is to train
well.

3.3.4 Block selection methods with fine-tuning enabled

The previous section, Section 3.3.3, highlighted that the correlation between the accuracy
of pruned models before and after fine-tuning is weak. In this section we seek to answer
whether any of our block selection methods has a clear advantage over others after fine-
tuning.

All block selection methods we used are compared with fine-tuning enabled. We used a
fixed fine-tuning schedule for each pruning experiment: four fine-tuning loops uniformly

48 Chapter 3 Pruning ResNet networks block by block

spread across all pruning steps from ResNet-110 to ResNet-27. Precisely, fine-tuning at
6, 12, 18, and 27 blocks removed. Six initial ResNet-110 models were used for each of the
seven block selection methods compared. In Figure 3.11a we show the results after every
fine-tuning iteration, and Figure 3.11b shows the same experiments at every pruning step
(for brevity, only a subset of selection methods is plotted in the second figure).

All fine-tuning was done with the same configuration. SGD optimizer with a learning
rate schedule starting at 0.1, then 0.01 from epoch 10, 0.001 from epoch 20. Training for
50 epochs in total, and restoring the weights from the best epoch on the validation set.
Nesterov momentum 0.9, and weights decay 0.0001.

Three key observations are made:

Inconsistency. The performance of each block selection method is not consistent
throught the amount of pruning performed. For instance, the block gradient selec-
tion method is worst at 27 blocks removed but similar with the other methods otherwise;
activation change plus one is worse than activation change at 18 blocks removed,
but they are similar at every other pruning amount.

Close together. After fine-tuning, all pruning methods are very close together in
mean and their standard errors overlap. There is no significant difference in performance
between them. Interestingly, random pruning is similar to all other methods.

Random is good. The random selection method is similar to all other methods in
performance after fine-tuning, even though it uses no heuristic at all to pick blocks. Since
we have only ran one random run for each baseline, no strong conclusion can be drawn.
Nonetheless this is an important finding to highlight.

Based on the above observations it is key to focus on the fine-tuning part of the pruning
process as opposed to the block selection method. One explanation is the fact that
training can recover the lost error very well in the context of block pruning. Another
contributing factor is the small pool of choices of prunable units (54 for ResNet-110)
which causes all block selection methods, including random, to likely have a significant
overlap with a good subnetwork. This is, however, not likely to hold true for smaller
prunable units such as convolutional filters, neurons, or weights. A smaller prunable
units means a much larger pool of options.

Not all pruning methods do well, even after fine-tuning, proving that there exist subnet-
works that are unsuitable. To show this, we performed the same experiment as above
using the block gradient method, but instead of using the minimum gradient to prune,
we used the maximum. Results in Figure 3.12.

Chapter 3 Pruning ResNet networks block by block 49

6 12 18 27
Number of blocks removed

6.2

6.4

6.6

6.8

7.0

7.2

Te
st

 e
rro

r (
%

)

Oracle
Activation change
Activation change +1
Activation mean

Block gradient
Weights mean
Random

(a) CIFAR-10 test error after fine-tuning.

0 5 10 15 20 25
Number of blocks removed

10

20

30

40

50

Te
st

 e
rro

r (
%

)

Activation change
Block gradient
Evaluate

Weights mean
Random

(b) All pruning steps,with and windout fine-tuning. Lines are the mean and
highlighted background is the standard error from using 6 runs with different
initial models.

Figure 3.11: All block selection methods pruning 50% of blocks from 6 ResNet-
110 initial models with fine-tuning for 50 epochs after pruning 6, 12, 18, and 27
blocks.

50 Chapter 3 Pruning ResNet networks block by block

6 12 18 27
Number of blocks removed

6.5

7.0

7.5

8.0

8.5
Te

st
 e

rro
r (

%
)

Block gradient
Block gradient (max)
Oracle
Random

Figure 3.12: Highlighting that block gradient (max) is a selection method that
does not perform well after fine-tuning in an experiment identical to that of
Figure 3.11: four fine-tuning loops at the steps shown, six pruning runs with
different inital models for each block selection method shown.

3.3.5 Blocks removed and parameters removed

Not every block has the same number of weights or MACs (multiply–accumulate oper-
ations). The wall clock time inference reduction from removing a block is also different
for different blocks. The number of parameters and MACs are the same for blocks that
belong to the same group, excluding the first block from each group, but are different for
blocks that belong to different groups. We now look at the block selection methods in
relation to not only how many blocks are removed and the impact on accuracy, but also
in relation to the percentage of parameters that are removed. See Figure 3.13 for a visual
representation. We observe that oracle pruning tends to preserve the most parameters
as the pruning progresses. Activation change and weights mean selection methods
do prune significantly more of the weights for the same number of blocks when compared
to oracle pruning. Block gradient is similar to or more conservative than oracle in
the number of parameters kept per number of blocks removed, however, the accuracy
without fine-tuning is much lower.

In a simple preliminary experiment (only one initial model was used) with fine-tuning
(four loops of fine-tuning, uniformly placed throughout the pruning process), oracle

Chapter 3 Pruning ResNet networks block by block 51

0 20 40 60 80
Params removed (%)

20

40

60

80
Te

st
 a

cc
ur

ac
y

(%
)

0

9

18

27

36

45

0

9

18

27

36

45

0

9

18

27

36

45

0

9

18

27

36

45
Activation change
Oracle
Block gradient
Weights mean

Figure 3.13: CIFAR-10 test accuracy versus percentage of parameters removed
when pruning a single initial ResNet-110 with different block selection methods
and no fine-tuning. Annotated text with arrows denote the number of blocks
removed. Observe that different block selection methods keep different amounts
of parameters based on their choice of blocks to prune. The final number of pa-
rameters can be a factor that impacts the final accuracy of pruned models and
not only the number of blocks removed. Notably, the oracle pruning method is
rather conservative in the number of weights pruned when compared to activa-
tion change and weights mean.

and block gradient selection methods removed a similar amount of parameters, but
Activation change is similar in accuracy with oracle but it removes more parameters
(Figure 3.14a). Looking at the same data, but from 6 pruning runs for each block selection
method, each starting with a different initial model, we observe that indeed activation
change prunes more parameters for the same number of blocks and comparable accuracy.
Oracle and gradient block are similar in both accuracy and number of parameters
removed but the latter has a much lower time complexity (Figure 3.14b).

The choice of using the number of pruned blocks (our prunable unit) as the main com-
parison axis makes it easy to compare performance of ResNet networks in relation to the
number of pruning iterations that have been performed. Each pruning run, despite having
identical configurations, performs differently based on the starting weights. Our exper-
iments were routinely performed 6 times, each with a different starting model (trained
identically but with different random initialization; they all have similar before-pruning
performance, but different weights). Using the number of blocks removed enables us to

52 Chapter 3 Pruning ResNet networks block by block

10 20 30 40 50 60
Params removed (%)

6.1

6.2

6.3

6.4

6.5

6.6

6.7
Te

st
 e

rro
r (

%
)

Activation change
Oracle
Block gradient

(a) Percentage of parameters removed versus CIFAR-10 test accuracy for a single
pruning run for each block selection method. For each line, the connected points
are plotted for each fine-tuning loop at 6, 12, 18, and 27 blocks removed from left
to right.

40 45 50 55 60
Params removed (%)

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

Te
st

 e
rro

r (
%

)

Act. change Oracle Block gradient

(b) Scatter plot of CIFAR-10 test error versus percentage parameters removed
for 3 block selection methods. Each block selection method has 6 points, each
corresponding to a different initial model. The plot only shows data from 27
blocks removed (50% of blocks of the ResNet-110 inital models).

Figure 3.14: Showing the percentage of parameters removed from ResNet-110
models by different block selection methods. Pruning was performed for 27
blocks with four fine-tuning loops, of 50 epochs each, at 6, 12, 18, and 27 blocks
removed, respectively.

Chapter 3 Pruning ResNet networks block by block 53

have a clear base point for which to create aggregate results (mean and standard error)
to compare them with different pruning methods.

It is true that blocks are different in the number of weights, MACs, and impact on
inference runtime. This combined pruning with different block selection methods and
iterative fine-tuning makes the comparison by number of blocks removed unbalanced:
comparing networks of essentially different sizes. This is a known limitation of our
approach and analysis. The data to study our findings based on different comparison
points is available in our results dataset (Velici, 2021). The choice was made to use
number of blocks removed to be able to compare different pruning settings against a set
of starting weights. We believe that using different starting weights to report results is
essential in pruning, as it is known (see Section 2.9) that pruning performace is affected
by the input model. Averaging the same pruning confiruation over mutiple runs with
different starting weights does mitigate the unbalance but it does not eliminate it.

Different works in the pruning literature (Lee et al., 2018; Molchanov et al., 2016) avoid
using the number of prunable units removed and approach the comparison by setting
fixed targets, in number of weights, inference speed, or an approximative maximum
accuracy loss. Then they perform the comparison of results at those targets, therefor
comparing networks of similar sizes or similar inference speed. Using the inference speed
and number of remaining weights could be used in the future for block by block pruning,
where the number of blocks pruned is simply part of the results and not used as a
predefined target. Molchanov et al. (2016) does not report results for multiple starting
weights.

3.4 Block selection and the initial random initialization

The first question asked is how different is the order in which blocks are selected for
different fully trained baselines. Six ResNet-110 inital models fully trained on CIFAR-
10 were pruned with the oracle block selection method and no fine-tuning. Kendall-tau
similarity of the order of the removed blocks (without remaining saliency scores) between
each pair reveals that the orders of block removal are not correlated — see Figure 3.15.

Since all the six baselines were trained and pruned identically and the only difference
is the initial random initialisation (and subsequent use of randomness during training),
the observation that the pruning order is different for each baseline hints at the fact
that a key deciding factor for the saliency of blocks is indeed the random initialization
of the original model. This begs the question: how early in the training process can the
saliency of blocks be determined?

A single model was trained on CIFAR-10 for 500 epochs saving a checkpoint every 10
epochs, including the random initialization. Each of the checkpoints was then pruned

54 Chapter 3 Pruning ResNet networks block by block

A B C D E F

A

B

C

D

E

F

1.00 0.05 0.06 0.16 -0.07 0.07

0.05 1.00 0.20 -0.04 0.03 -0.03

0.06 0.20 1.00 -0.15 0.28 -0.25

0.16 -0.04 -0.15 1.00 -0.01 0.24

-0.07 0.03 0.28 -0.01 1.00 -0.25

0.07 -0.03 -0.25 0.24 -0.25 1.00

Figure 3.15: Kendall-tau similarity between the order in which blocks have been
pruned from 6 different initial models trained on CIFAR-10. Similarity close to
zero denotes no correlation between the order in which the blocks were pruned.
Overall, this figure suggests that initial randomness is a key deciding factor in
the saliency of blocks. Initial models are ResNet-110 and 50% of the blocks were
pruned (27 out of 54). The oracle selection method was used with no fine-tuning.

using the oracle method with no fine-tuning to observe the similarity of block choices.
The kendall-tau metric is used to compare the block choices between each checkpoint
and the final one. Results, in Figures 3.16a and 3.16b, show that the similarity between
block choices increases as the training progresses, as expected. There is, however, a
sudden increase in similarity early on in training process, which suggests that the most
important blocks can be discovered early in the training process, at around 50 epochs or
even sooner.

The idea that important parts of a neural network are given by its initial random ini-
tialization is not new. The works of Lee et al. (2020); van Amersfoort et al. (2020); Lee
et al. (2018); Rosenfeld and Tsotsos (2019); Wang et al. (2020) and others show that
pruning at or close to the random initialization is possible and yields promising results.
Frankle and Carbin (2019) prune weights of fully trained models and then train the re-
sulting connections starting from the original random initialization obtaining impressive
results — matching performace of initial unpruned model at 95+% of weights pruned,

Chapter 3 Pruning ResNet networks block by block 55

0 10 20 30 40
Number of blocks removed

0.0

0.2

0.4

0.6

0.8

Ke
nd

al
l's

 ta
u

0

10
20

50
100

200
300

(a) Kendall-tau similarty across all numbers of block removed for a selected number
of inital model training epochs (number of epochs for each run is displayed in the
figure).

0 50 100 150 200 250 300
Training epochs for initial model

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ke
nd

al
l's

 ta
u 10

27
45

(b) Kendall-tau similarity across initial model training epochs for a selected set
of number of blocks removed (number of blocks removed shown next to plotted
lines).

Figure 3.16: Kendall-tau similarity of the block pruning order (including saliency
scores for non-removed blocks) between pruning the final model (at epoch 354)
and pruning a range of checkpoints throughout the training process. Epoch 0 is
the random initialization. Observe there is a steeper increase in correlation for
the first tens of epochs and it gets shallower as the training progresses, suggesting
most important blocks can be identified early in the training process.

56 Chapter 3 Pruning ResNet networks block by block

and calling the well-performing subnetworks winning lottery tickets. Simply training
the obtained connections from a new random initialization does not work well, however
Zhou et al. (2019) show that only using the sign of the initial random initialization also
perfoms better than fully random weights, even if using a constant for the weights. An
outstanding result of Zhou et al. (2019) is obtaining 65.4% accuracy on CIFAR-10 by
only training a mask and not the original random initialization (a mask is a bernoulli
distribution, the result was obtained as average of evaluating 10 independent samples).

3.5 Fine-tuning frequency and amount

Fine-tuning the network after pruning is simply re-training the network for a number of
epochs, typically without reinitialising the weights. It can be done after removing each
block, when the accuracy drops below a threshold, or by using a fixed schedule. We use
the terms training loop and fine-tuning loop interchangeably.

The training threshold is a threshold on the loss of validation accuracy between the
current pruning iteration and the last time the network was trained. When the accuracy
loss goes below this threshold, a fine-tuning loop is started.

The fine-tuning schedule is forcing a training loop based on the number of blocks pruned
at the current iteration. The training schedule that is always present is to trigger a fine-
tuning loop when the target size has been reached. Throughout this work we also ex-
periment and evaluate training schedules that add more training loops uniformly spread
across the pruning process, or simply training at every pruning step.

After each fine-tuning loop we resume the pruning process using the weights obtained
at the end of epoch with highest validation accuracy. This is on par with how an early
stopping criterion might be used. Early experiments did not have this reset in place and
the pruning was continued by keeping the weights obtained by the last epoch of fine-
tuning, however the results were underperforming those with the reset. Unless otherwise
stated, the reset from the best performing epoch is present.

3.5.1 The cost of fine-tuning

Fine-tuning is an expensive operation and the goal is to minimize the amount of train-
ing required. It is therefore important to keep track of the cost of fine-tuning. Since
maximizing accuracy is the primary goal, and increasing the amount of fine-tuning is
likely a method of doing so, we focus on finding a reasonable trade-off between the cost
of fine-tuning and final pruned model accuracy. A key comparison point in terms of
training cost is the cost of training a model of similar size from scratch.

Chapter 3 Pruning ResNet networks block by block 57

Given a dataset and a model, the training cost can be defined in terms of the total number
of epochs of training executed, and this is often a sufficient abstraction for comparing
between hyper-parameter choices or similar as long as the model architecture, optimizer
algorithm and size of dataset remain the same. For instance, the cost of training a model
with one learning rate schedule or another can be directly compared based on how many
epochs were required to reach convergence or a target validation accuracy.

For pruning and fine-tuning, the same comparison does not hold as the size of the model
is effectively changed (blocks are removed). Therefore an epoch of training with the inital
model is more expensive than an epoch of training after one or more pruning iterations7.
We define the epoch-parameter to be the cost of fine-tuning as the number of epochs
trained at step i multiplied by the number of parameters in the model at this stage.

3.5.2 Single shot fine-tuning

In this setting there is a single fine-tuning run at the end of the pruning process. To
evaluate sine-shot fine-tuning, a ResNet-110 model fully trained on CIFAR-10, which
has 54 initial blocks, was pruned block by block 53 times, with target number of blocks
53, 52, ..., and 1. For comparison, randomly initialized ResNet models with the same
block structure were fully trained as well for each of the pruning configurations, as well
as ResNet models with standard block structure choices (equal number of blocks in each
group). Pruning was performed with the oracle block selection method.

Pruning followed by a single fine-tuning loop is beneficial for removing a small number
of blocks: 10-12 blocks out of 54 for ResNet-110. Pruning more blocks does not show
a consistent decrease in error when compared to simply training standard ResNet block
configurations from scratch. The block configurations discovered through pruning do not
train well from scratch, being outperformed by both the pruned models and the standard
configurations for most choices of number of blocks in our experiment. This is displayed
in Figure 3.17.

All training for this section, both from scratch and fine-tuning, shares the same param-
eters: 400 epochs, SGD optimiser with Nesterov momentum 0.9, weight decay 10−4,
learning rate starting at 0.1, then 0.01 from epoch 250, and 0.001 from epoch 375, batch
size 128, with the usual data augmentation for CIFAR-10: 4 pixel padding followed by
random 32x32 pixel crop and random horizontal flip.

Training for 400 epochs, the same as training from scratch, is expensive for fine-tuning.
The goal is to perform as little training as possible and recover the lost accuracy with
a the smaller network. A subsequent experiment with a reduced number of fine-tuning
epochs to 50 has been performed using the same parameters as before except the learning

7Please note that this is not always the case for unstructured pruning or when units are only masked
and not removed. In our implementation the pruned blocks are actually removed unless otherwise noted

58 Chapter 3 Pruning ResNet networks block by block

0 10 20 30 40
Number of blocks removed

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0
Te

st
 e

rro
r (

%
)

Scratch, same arch
Scratch, standard arch
One shot prune

Figure 3.17: One shot fine-tuning from a ResNet-110 (54 blocks) model using
CIFAR-10. For pruning, each data point is an independent pruning and fine-
tuning run. For scratch, the models are trained from scratch, either reusing
the block configuration from the corresponding pruning run (same), or using
an equal block per group setting (standard). Both fine-tuning and training is
carried out for 400 epochs.

rate starts at 0.1 and is divided by 10 at epoch numbers 10 and 20. The results are in
Figure 3.19, where it can be noticed that training similar-sized architectures from scratch
constantly outperforms pruning except for up to 6 blocks removed where the accuracies
are similar. Although 50 epochs of fine-tuning is an arguably cheap operation, training
a large network followed by fine-tunig is more computationally expensive than simply
training a small model from scratch.

Chapter 3 Pruning ResNet networks block by block 59

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
Number of blocks removed

0

6

12

18

Bl
oc

ks
 p

er
 g

ro
up

Figure 3.18: Shows the number of blocks per group as the pruning progresses
for the pruning runs in Figure 3.17. The ResNet architecture used has 3 groups.
Each grouping of 3 bars represents the ResNet configuration for one pruning run,
for a fixed number of blocks to be removed. Each bar represents the number
of blocks in a ResNet block group. Alternate colouring is for visualisation only.
Standard configurations such as ResNet-110 (the initial model for this figure),
ResNet-56, ResNet-20 have an equal number of blocks per group, however our
pruning methods create unbalanced groups and tend to prune the middle group
first.

0 10 20 30 40
Number of blocks removed

6

7

8

9

10

Te
st

 e
rro

r (
%

)

One shot prune (50 epochs)
One shot prune (400 epochs)
Scratch, standard arch

Figure 3.19: One shot fine-tuning from a ResNet-110 (54 blocks) model using
CIFAR-10 with 50 epochs of training (with starting learning rate 0.1 and divided
by 10 at epochs 10 and 20) for the fine-tuning loop of each run. For pruning,
each data point is an independent pruning and fine-tuning run. Scratch training
for 400 epochs with equal number of blocks per ResNet group, each point is the
mean of 4 runs (6 for ResNet-110) with vertical lines denoting standard error.
All pruning runs used the same initial model. The same pruning experiment
from Figure 3.17 with 400 epochs of fine-tuning is included for comparison.

60 Chapter 3 Pruning ResNet networks block by block

3.5.3 More fine-tuning loops

The next question we ask is whether adding more fine-tuning loops will improve the
accuracy of pruned models for a lower overall cost of training, as compared to fine-
tuning for 400 epochs. Since fine-tuning will be performed at different stages of pruning,
the metric of epoch-parameter is used to approximate the cost.

Pruning only a few blocks seems to work well for one shot pruning and the performance
decreases as the pruning progresses. More blocks must be removed for pruning to yield
impactful model size reductions and inference time speed-ups. We pick pruning 50% of
the blocks of a ResNet as the main comparison point - pruning from a ResNet-110 with
54 blocks to ResNet-56 with 27 blocks.

A pruning experiment is setup such that the resulting network size is of 27 blocks and
with the following fine-tuning configurations: fine-tuning at every other pruning step,
fine-tuning four times in total, and fine-tuning a single time. All for a fixed amount of
50 epochs per fine-tuning step. All other parameters including the learning rate schedule
for pruning are the same as for the experiment from Figure 3.19. We find that adding
multiple fine-tuning loops does improve the performance of the pruned model, but only
by a small margin (Figure 3.20a). Frequent fine-tuning loops keep the error lower even
for steps with no fine-tuning (Figure 3.20b). However it appears to be easier to recover
the lost accuracy in a single fine-tuning loop when trained for more epochs. Training for
more epochs for a single fine-tuning loop gives better performance overall than adding
more fine-tuning loops for less epochs, even in the case where the total number of epochs
is larger for the latter.

In a different view, Figure 3.21 illustrates the final point of each pruning run from pruning
a ResNet-110 using one, two, or four total fine-tuning loops of 50 epochs. The fine-tuning
loops are uniformly spread throughout all pruning steps with the constraint that the final
pruning step has a fine-tuning loop. Observe that activation change and oracle selection
methods perform similarly well for most target network sizes, although training from
scratch is still the cheapest and most performant overall. The summary of the results
is in Table 3.3. A large table including all numbers of blocks removed and thresholding
accuracy loss is in the appendix, Table A.1.

Regardless of the block selection method, adding more fine-tuning loops has a clear
benefit for improving the performance of the trained model. After removing 35 blocks,
four equally spaced fine-tuning loops of 50 epochs (total 200 epochs) perform at least as
well as 400 epochs of fine-tuning at the end of pruning only.

Chapter 3 Pruning ResNet networks block by block 61

0 5 10 15 20 25
Number of blocks removed

5.8

6.0

6.2

6.4

6.6

6.8

7.0

Te
st

 e
rro

r (
%

)

R-110

R-104 R-98 R-92

R-86 R-80
R-74

R-68
R-62

R-56

every 2 steps
4 loops

1 loop
Scratch

(a) Pruning steps with no fine-tuning are omitted.

0 5 10 15 20 25
Number of blocks removed

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Te
st

 e
rro

r (
%

)

every 2 steps
4 loops

1 loop

(b) Same runs, but includes steps where no fine-tuning was performed. Scratch
runs were omitted for brevity.

Figure 3.20: Pruning runs with different fine-tuning schedules, pruning a
ResNet-110 from 54 to 27 blocks. Showing CIFAR-10 test error. Each series
shows the mean and standard error from 6 runs, each with a different initial
model. Note that in this plot fine-tuning cost is cumulative: it costs more for
more blocks removed as it includes previous fine-tuning loops from the same
pruning run.

62 Chapter 3 Pruning ResNet networks block by block

0 10 20 30 40
Number of blocks removed

6

7

8

9

10

Te
st

 e
rro

r (
%

)

Activation change, 4x
Activation change, 2x
Oracle, 4x
Oracle, 2x
Oracle, 1x
Oracle, 1x, 400 epochs
Scratch, standard arch

0 10 20 30 40
Number of blocks removed

0

1

2

Ep
oc

h-
pa

ra
m

et
er

1e8

Figure 3.21: Top: Comparing one, two, and four fine-tuning loops per pruning
run with oracle and activation change block selection methods. Each data point
is a full pruning run. Bottom: Showing the total cost of fine-tuning is lower for
pruning runs with smaller final network size (right hand side). All fine-tuning
loops performed for 50 epochs (except 400 epochs run, which is the same as
Figure 3.17) with a learning rate of 0.1, 0.01, and 0.001 from the start, epoch
10 and epoch 20, respectively.

Chapter 3 Pruning ResNet networks block by block 63

Table 3.3: Results table from pruning a ResNet-110 with different fine-tuning
schedules and block selection methods. "1x", "2x", "4x" denote the number of
uniformly spread fine-tuning loops. t denotes that an accuracy loss threshold was
used. Thresholding and "every 2" runs are continuous and others are individual
prunings experiments (ie. every row with values under "4x" has four fine-tuning
loops). All fine-tuning loops use up to 50 epochs. Cost is in epoch-parameters
(1e6) shown based on epochs used when picking best validation error. A *
indicates the value is the mean from 6 runs with different initial models. R% is
the percentage of parameters removed, #BR is the number of blocks removed.
Err is the test error % on CIFAR-10.

Act. change, 2x Act. change, 4x Oracle, 1x
#BR Err Cost R% Err Cost R% Err Cost R%

9 6.29 95.3 16.06 6.27 158.7 12.85 5.93 73.3 15.25
13 5.95 91.2 26.75 6.05 118.6 29.95 6.43 35.9 25.95
17 6.34 81.5 40.65 6.00 205.3 40.65 6.38 46.4 29.44
21 6.57 83.6 54.54 6.45 140.4 48.14 6.71 21.6 43.33
25 6.42 77.5 58.83 6.47 177.5 62.04 6.57 41.5 50.02
27 - - - 6.84* 177.8 57.77 6.86 41.4 52.17
29 7.15 43.7 69.53 6.78 130.6 67.92 7.24 28.5 56.71
33 7.67 61.0 78.62 7.71 96.5 78.62 7.15 24.0 69.81
37 8.87 32.7 87.71 8.25 94.8 83.70 8.71 10.7 86.90
41 9.22 45.4 88.79 8.33 93.8 84.78 9.01 7.4 88.79
45 9.15 30.7 89.87 8.39 83.9 85.86 10.17 7.7 89.87

Oracle, 1x, e=400 Oracle, 2x Oracle, 4x
#BR Err Cost R% Err Cost R% Err Cost R%

9 5.79 413.6 15.25 6.12 67.5 15.25 6.06 142.2 11.25
13 6.11 337.1 25.95 6.22 84.2 25.95 6.45 177.8 21.94
17 5.82 436.0 29.44 6.13 85.5 32.64 6.14 156.4 32.64
21 5.98 301.1 43.33 6.45 94.6 40.13 6.28 192.3 35.32
25 6.14 346.0 50.02 6.66 59.8 49.22 6.53 225.4 49.22
27 6.45 279.0 52.17 - - - 6.73* 158.9 46.56
29 6.66 200.0 56.71 7.06 84.8 55.91 6.79 195.2 59.11
33 6.72 161.5 69.81 7.26 57.4 69.00 6.91 145.8 65.00
37 7.75 77.3 86.90 7.55 59.6 82.10 6.95 114.0 74.09
41 8.10 51.0 88.79 8.47 51.2 87.98 7.73 96.1 79.97
45 8.66 69.5 89.87 9.22 52.6 89.06 9.08 110.4 89.87

64 Chapter 3 Pruning ResNet networks block by block

3.5.4 Fine-tuning at every step

The other extreme of fine-tuning once is to fine-tune at every pruning step. In this context
pruning a ResNet-110 to 50% of its blocks requires 27 fine-tuning loops. Pruning down
to the size of a ResNet-20 requires 45 fine-tuning loops. For 50 epochs per fine-tuning
step, this costs 1350 or 2250 epochs, respectively. Training for an epoch decreases in cost
as the pruning progresses, but regardless of the blocks chosen, the cost of fine-tuning at
every step is high.

For the purpose of understanding whether this type of fine-tuning helps improve the
performance and to what extent, a set of experiments was performed. We have pruned a
ResNet-110 initial model with fine-tuning loops at every step using a fixed learning rate
of 0.001 and 50 or 20 epochs per step. The results are in Figure 3.22, and we compare
than with a similar set of experiments but with 50, 20, 10, or 5 epochs of fine-tuning at
every other pruning step. Fine-tuning cost in epoch-parameters and test accuracies are
shown in Table 3.4.

Full fine-tuning for 50 epochs at every step of the pruning is too expensive to be con-
sidered a useful approach to pruning in practice. Not only it is more expensive than
training small models from scratch, but it is also more computationally expensive than

0 10 20 30 40
Number of blocks removed

6

8

10

12

Te
st

 e
rro

r (
%

)

Every step (50)
Every step (10)
Every other step (50)
Every other step (20)
Every other step (10)
Every other step (5)

Figure 3.22: Pruning a ResNet-110 with 50, 20, 10, or 5 fine-tuning epochs at
every step or every other step. A fixed learning rate of 0.001 was used for all
runs.

Chapter 3 Pruning ResNet networks block by block 65

Table 3.4: Fine-tuning at every pruning step and every other pruning step with
different epochs per loop. Fixed learning rate of 0.001 for all runs, and oracle
block selection method.

Blocks removed: 10 28 34 45

Experiment Error Cost Error Cost Error Cost Error Cost

Every step (50) 6.07 266.6 6.85 881.4 7.42 1007.5 9.28 1202.2
Every step (10) 6.53 39.6 7.39 139.7 7.94 168.2 10.38 210.2

Every other step (50) 6.35 206.8 7.04 609.2 7.35 709.3 9.46 802
Every other step (20) 6.37 75 7.32 218.4 7.70 254.6 10.19 284.2
Every other step (10) 6.53 25.2 7.49 88.5 8.07 103.2 11.22 124.1
Every other step (5) 6.74 10.4 7.75 40.5 8.47 48.7 12.93 57.8

training large models from scratch. On a NVIDIA GeForce 10180 Ti it takes approx. 6
hours to train a ResNet-110 for 500 epochs, and 14 hours to prune (of which approx. 13
hours are fine-tuning only). While only using 10 epochs is cheaper, we find it is still more
expensive and less accurate than using a fine-tuning loop schedule (like four uniformly
spread loops or using an accuracy loss threshold).

As pruning in many cases is a post-processing step and this approach does not improve
results on par with the increase in cost, this approach is only used as a reference point
in comparison with other fine-tuning settings. We conclude that fine-tuning at every
pruning step is not a useful practice. On the other hand, the idea of fine-tuning at every
step for a small number of epochs (<3) followed by a larger loop at the end is promising
and discussed in Section 4.1.

3.5.5 Thresholding accuracy loss to fire a fine-tuning loop

Fine-tuning for every pruning step is expensive and manually selecting a fine-tuning
schedule may not be placing the fine-tuning loops where they are most needed. To
address these issues, we introduce a threshold on the accuracy loss from the previous
fine-tuning loop or from the initial model at first. This threshold is used to start a
fine-tuning loop when the accuracy after pruning dropped by more than the tolerated
amount.

The cost of fine-tuning is drastically reduced by this method as the most expensive fine-
tuning loops are at the beginning of the pruning process, where the accuracy drop is
the lowest. Using the thresholds introduces more fine-tuning loops towards the end of
the pruning (where fine-tuning is cheaper) and fewer loops at the beginning, which is
illustrated in Figure 3.23. The cost of fine-tuning using total number of used epochs
(after resuming from best) for the same pruning runs is available is Table 3.5, along with
the total epoch-parameter cost for fine-tuning when removing 27 and 45 blocks. All runs

66 Chapter 3 Pruning ResNet networks block by block

with an accuracy loss threshold have a forced fine-tuning loop at 27 blocks removed, to
create a common comparison point at that size.

2 10 15 20 27 35 40 45
Number of blocks removed

1x

4x

t=0.1

t=0.05

t=0.01

every 2

50 epochs
20 epochs

Figure 3.23: Showing where fine-tuning is triggered throught the pruning process
when using different accuracy loss thresholds (t). Other common fine-tuning
schedules are included: every other step (every 2), four times (4x) and once
(1x).

Using a threshold of 0.1 (1% accuracy loss), with 50 epochs of fine-tuning per step,
to prune a ResNet-110 to ResNet-20 costs 134.5 × 106 epoch-parameters at results in
an average test accuracy (over 3 runs with different initial models) of 8.17%, a similar
accuracy from fine-tuning at every two steps, but for a fifth of the fine-tuning cost.
A 0.1 threshold starts 10 fine-tuning loops and due to their placement throughout the
pruning iterations they produce a more accurate pruned model, 8.17% vs 9.24% test error
(respectively), for overall cheaper fine-tuning, 134.5× 106 vs 143.3× 106 (respectively),
when compared to four uniformly spread fine-tuning loops. For about half the cost of
fine-tuning four times at uniformly spread location, a threshold of 0.05 with 20 epochs
per fine-tuning step yields an average error of 8.45%, a 0.79% improvement. See Table 3.6
and Figure 3.24 for the breakdown of the results.

Since thresholding puts most of the fine-tuning loops toward the end of pruning, the ma-
jority after the 50% (27 blocks removed) mark, our threshold results, with the exception
of t=0.01, have less than four training loops for 27 blocks removed, resulting in slightly
higher test errors than our 4 loops experiment. However, once again, at a much lower
cost of less than half.

A large table containing results from thresholding, four loops, two loop and one loop of
fine-tuning is included in the appendix – Table A.1.

Chapter 3 Pruning ResNet networks block by block 67

Table 3.5: Cost of fine-tuning for different pruning runs.
∑

symbol denotes
that the value shown is the sum for all fine-tuning steps up to and including
the one in each respective row. The cost is the number of epochs multiplied
by the number of parameters at each fine-tuning loop. Each group of rows
separated by a horizontal line is a single pruning experiment but at different
numbers of blocks removed. t=0.1, 0.05, or 0.01 denotes the validation accuracy
loss threshold to start a fine-tuning loop for e=50 or 20 maximum epochs. Test
error is on CIFAR-10 for a single run. All experiments start with the same initial
model, a ResNet-110.

Experiment Num blocks
removed

Params (105)
(% removed)

∑
epochs

∑
cost (106) Test error %

t=0.1, e=50 27 8.56 (51%) 70 62.9 6.35
t=0.1, e=50 45 3.14 (82%) 242 134.5 7.75

t=0.05, e=50 27 8.70 (50%) 78 77.5 6.61
t=0.05, e=50 45 3.14 (82%) 281 165.8 7.77

t=0.01, e=50 27 8.70 (50%) 235 264.7 6.31
t=0.01, e=50 45 2.59 (85%) 717 523.5 7.79

t=0.1, e=20 27 7.86 (55%) 29 24.7 7.13
t=0.1, e=20 45 2.45 (86%) 101 50.4 8.76

t=0.05, e=20 27 8.56 (51%) 41 38.6 6.83
t=0.05, e=20 45 3.14 (82%) 140 79.9 8.12

t=0.01, e=20 27 9.25 (47%) 93 105.5 6.93
t=0.01, e=20 45 3.14 (82%) 291 214.7 8.16

every step, e=20 27 9.39 (46%) 269 344.1 6.55
every step, e=20 45 2.45 (86%) 526 484.8 8.6

4 steps, e=50 11 13.74 (21%) 41 56.3 6.36
4 steps, e=50 22 10.32 (40%) 91 107.9 6.47
4 steps, e=50 33 6.20 (64%) 134 134.6 6.84
4 steps, e=50 45 1.75 (90%) 184 143.3 9.38

68 Chapter 3 Pruning ResNet networks block by block

Table 3.6: Average results of pruning 3 ResNet-110 models to the size of ResNet-
20 (45 blocks removed) using an accuracy loss threshold t and 50 or 20 maximum
epochs e per fine-tuning step. 4 loops and every 2 show average and standard
error for 6 initial models. The cost of fine-tuning shown is the total up to
the shown pruning step, in epoch-parameters, for a single baseline (same as
Table 3.5). The 4 loops and every 2 rows are individual experiments with target
sizes at 27 and 45 blocks removed. Thresholding rows are continued experiments
with 45 blocks removed as target size and a forced fine-tuning loop at 27 blocks
removed.

27 blocks
removed

45 blocks
removed

Experiment Error % Cost ×106 Experiment Error % Cost ×106

t=0.01, e=20 7.04 ± 0.06 105.5 t=0.01, e=20 8.07 ± 0.1 214.7
t=0.01, e=50 6.48 ± 0.09 264.7 t=0.01, e=50 7.97 ± 0.25 523.5
t=0.05, e=20 6.87 ± 0.05 38.6 t=0.05, e=20 8.45 ± 0.2 79.9
t=0.05, e=50 6.82 ± 0.3 77.5 t=0.05, e=50 8.03 ± 0.13 165.8
t=0.1, e=20 7.02 ± 0.06 24.7 t=0.1, e=20 8.67 ± 0.05 50.4
t=0.1, e=50 6.69 ± 0.21 62.9 t=0.1, e=50 8.17 ± 0.23 134.5

4 loops, e=50 6.73 ± 0.15 193.5 4 loops, e=50 9.24 ± 0.27 143.3
every 2, e=50 6.66 ± 0.06 525.6 every 2, e=50 8.2 ± 0.16 690.6

27 45
Number of blocks removed

6.5

7.0

7.5

8.0

8.5

9.0

9.5

Te
st

 e
rro

r (
%

)

t=0.01, e20
t=0.01, e50
t=0.05, e20
t=0.05, e50
t=0.1, e20
t=0.1, e50
4 fine-tuning loops
every 2

Figure 3.24: Pruning a ResNet-110 with accuracy loss thresholding (t) enabled.
Same experiments as in Table 3.6.

Chapter 3 Pruning ResNet networks block by block 69

3.6 Fine-tuning parameters

In this section we discuss parameters of the fine-tuning process that are applied at every
fine-tuning loop. These settings are independent of the scheduling of fine-tuning loops
throughout the pruning process and of the amount of epochs used.

3.6.1 Learning rate schedule

Our initial pruning experiments used a constant learning rate for fine-tuning after prun-
ing. We then identified that adding a learning rate schedule starting with a large learning
rate of 0.1 and dividing it by 10 at 10 epochs and 20 epochs (for a 50 epochs fine-tuning
run) performed well.

A comparison of the two options when pruning a ResNet-110 from 54 to 9 blocks and
fine-tuning for 50 epochs at every other step is shown in Figure 3.25a. We used 6 different
initial models for the experiment. Our hypotheis is that pruning pushes the network in
some local minima that a small learning rate cannot jump out of, and a high learning
rate takes a large enough step allowing the training process to later find an overall better
solution.

The impact of training with and without a learning rate schedule is illustrated in Fig-
ure 3.25b where it can be seen that the large learning rate at the beginning of the schedule
makes the network perform worse and seemingly unstable, and then better later in the
training process when the learning rate is reduced, supporting our local minima hy-
potheis.

70 Chapter 3 Pruning ResNet networks block by block

0 10 20 30 40
Number of blocks removed

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5
Te

st
 e

rro
r (

%
)

LR=0.001
LR=0.1, 0.01, 0.001

(a) Pruning 6 ResNet-110 models with fine-tuning at every other pruning step.
Showing mean and standard error for 6 runs, each with a different initial model.

0 5 10 15 20 25
Number of blocks removed

6

8

10

12

14

16

18

20

Er
ro

r (
%

)

LR=0.1, 0.01, 0.001
LR=0.001

(b) Pruning a ResNet-110 model from 54 to 27 blocks, with four total fine-tuning
loops. Showing validation accuracy, thin lines are the accuracies throughout train-
ing from first to last epoch (50) at each fine-tuning loop.

Figure 3.25: Using a constant learning rate of 0.001 or a learning rate schedule
starting with 0.1, from epoch 10 using 0.01 and finally 0.001 from epoch 20.
Total 50 epochs per step for both configurations. Block selection method is
oracle.

Chapter 3 Pruning ResNet networks block by block 71

3.6.2 Noise the weights

Another approach for pushing the network out of a local minima is to add noise to the
weights before fine-tuning. For the weights of a convolutional layer we sample the noise
from a Gaussian distribution with mean 0 and the same standard deviation as the weights
(all weights of the layer) scaled by a factor η. η is a new parameter for which a value
must be chosen.

We add noise before every fine-tuning loop in combination with using a learning rate
schedule as described in Section 3.6.1 — starting with 0.1, then 0.01 and 0.001 at a set
schedule based on the epoch number, making a learning rate change at epochs 10 and
20, respectively.

An experiment with four fine-tuning loops at 6, 12, 18, and 27 blocks removed (pruning
a ResNet-110 initial model) with 10 different values of η ranging from 0.001 to 0.5 shows
that adding noise to the weights do improve the final pruned model accuracy when
pruning a moderate number of blocks. Smaller values of η work better. Figure 3.26
illustrates the results. Three pruning runs were performed for each value of η on a single
model; the same baseline bar represents pruning this model with the same parameters,
but no noise. The no noise bar shows the average and standard error of pruning six
different initial models, including the one used for the noise grid search. All pruning in
this section is done with the block gradient selection method.

The evidence suggests that adding a small amount of noise to the weights improves
performance of pruned model, but not consistently. To further test this hypothesis we
use the same pruning configuration and prune all 6 initial models with η = 0.0001,
0.1112, and with no noise. The results, in Figure 3.27, illustrate that adding a small
amount of noise slightly improves the average error by 0.1% to 0.2% when compared to
no noise. However there is a large overlap in the standard errors and as a result it cannot
be concluded that adding noise improves performance.

It remains as future work to explore the impact of sampling the noise in relation to
the standard deviation of each individual convolutional kernel, as opposed to the whole
convolutional layer.

72 Chapter 3 Pruning ResNet networks block by block

6 12 18 27
Number of blocks removed

6.0

6.2

6.4

6.6

6.8

7.0
Te

st
 e

rro
r (

%
)

0.
00

01
0.

05
56

0.
11

12
0.

16
67

0.
22

23
0.

27
78

0.
33

34
0.

38
89

0.
44

44
0.

5
no

 n
oi

se
sa

m
e

ba
se

lin
e

Figure 3.26: Pruning a ResNet-110 to the size of a ResNet-56 with four fine-
tuning loops (at plotted pruning steps) with different noise applied to weights
using different values of η (number shown on top of bars). For the noise grid
search, the value plotted is the mean and standard error of 3 runs with the same
initial model. No noise is the mean and standard error of the same pruning
configuration without any noise for 6 initial models, including the same baseline
for the noise search, which is also plotted separately for reference.

6 12 18 27
Number of blocks removed

6.2

6.4

6.6

6.8

7.0

Te
st

 e
rro

r (
%

)

Noise 0.0001
Noise 0.1111
No noise

Figure 3.27: Pruning 27 blocks (50%) from 6 initial ResNet-110 with four steps
of fine-tuning of 50 epochs. Different amounts of noise (scaled by 0.0001 or
0.1112) has been added to the weights before each fine-tuning loop. Each bar
is the mean of 6 runs with standard error bars. Experiments with noise have
slightly lower error rates on average, but their error bars overlap with no noise.

Chapter 3 Pruning ResNet networks block by block 73

3.7 Dataset used for block selection

Throughout this chapter the validation set was used for all block selection methods that
require data. This is justified by the fact that the validation set is normally used for
checking for overfitting the training set, and to select the best model in both the context
of early stopping or choosing from multiple training runs. Pruning can be thought of as
selecting a model. In all places where it was possible, we report test set accuracies for
our results.

There is a remaining concern that using the validation set for block selection causes the
pruned model to overfit the validation set. To address this concern, a subset of our
experiments has been ran with using a subset of the training set (10%, same size as the
validation set) for block selection. We refer to it as the pruning set. For the consistency of
comparison the same initial models were used, and as a result the pruning set is included
in the initial training of the model, but not subsequent fine-tuning.

When no fine-tuning is enabled, the performance difference between using the validation
set or the pruning set is negligible (Figure 3.28). However, when fine-tuning is enabled
using the pruning set performs worse than using the validation set by a noticeable mar-
gin for oracle, activation change, weights mean and block gradient selection methods
(Figure 3.29). The performance gap could be explained by the fact that when using the
pruning set, the training set is 10% smaller as we did not reuse data from the pruning
set for training. Figure 3.30 shows the same block choices as the made with the pruning
set, but fine-tuning with the full training set, confirming that the gap in accuracy was
due to a reduced training set.

To conclude, using the validation set for block selection does not seem to make the model
to overfit.

74 Chapter 3 Pruning ResNet networks block by block

0 10 20 30 40
Number of blocks removed

20

40

60

80
Te

st
 e

rro
r (

%
)

Oracle
Weights mean
Activation change
Block gradient
(validation set)

Figure 3.28: Pruning ResNet-110 models using the validation set (dotted lines)
and the pruning set (solid lines) with 4 different block selection methods and no
fine-tuning.

6 12 18 27
Number of blocks removed

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Te
st

 e
rro

r (
%

)

Oracle
Act. change
Oracle (val)
Act. change (val)

Figure 3.29: Pruning ResNet-110 models using the validation set (marked with
(val)) and the pruning set. Four fine-tuning loops of 50 epochs are used.

Chapter 3 Pruning ResNet networks block by block 75

6 12 18 27
Number of blocks removed

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Te
st

 e
rro

r (
%

)

10% less
Full
Validation

Figure 3.30: Pruning 27 blocks from a single ResNet-110. 10% less and full
prune the same blocks in the same order, but 10% less does not use the pruning
set for training. Validation is the regular oracle pruning using the validation set
to pick blocks and the full training set for fine-tuning.

3.8 Comparison with related works

Table 3.7: Results summary comparing some of our methods with other works.
Ours-A is a R-110, single shot, oracle, with 18 blocks removed. Ours-B is a
R-110, four shot, oracle, 27 blocks removed.

Model Error % Orig. Err % # params Orig. # params Pruned % Fine-tuning
ResNet-110-pruned-A
Li et al. (2016)) 6.45 6.47 1.68 ×10^6 1.72 ×10^6 2.3 40 epochs

ResNet-110-pruned-B
Li et al. (2016) 6.7 6.47 1.16 ×10^6 1.72 ×10^6 32.40 40 epochs

Ours-A8 6.44 5.71 1.14 x 10^6 1.73 x 10^6 33.71 50 epochs
ResNet-110 DBP-0.5
Wang et al. (2019) 6.75 6.03 50% of blocks 300 epochs (3x100)

Ours-B 6.74 5.71 0.93 x 10^6 1.73 x 10^6 49.75 200 epochs (4x50)
ResNet-56 scratch (ours) 6.44 0.85 x 10^6

Pruning ResNet networks block by block is not thoroughly discussed in the literature, but
structured pruning of convolutional neural is a popular approach for making networks
more efficient. In Chapter 2 we gave an overview of pruning in the literature focusing on
structured neural network pruning, and discussing different major approaches. In this
section we compare parts of our results and method.

In Li et al. (2016), a method of pruning convolutional filters layer by layer is introduced
using the magnitude of the weights as the saliency metric. For CIFAR-10, the pruned
networks are then fine-tuned (at the end of pruning) for 40 epochs with a learning rate of
0.001. The authors compare thier method against random pruning and using activations
(feature maps) of each filter. We argue that the comparison included in the paper is not

76 Chapter 3 Pruning ResNet networks block by block

sufficient to draw a strong conclusion as it is only performed without fine-tuning. In the
context of block pruning, we have shown that it is not always the case that configurations
that are better before fine-tuning are always better after, and we believe the same holds
for smaller prunable units.

When pruning a ResNet-110, at 33.71% parameters removed with a similar training
schedule (50 epochs, single fine-tuning loop) we obtain a test error of 6.44% on CIFAR-
10. Li et al. (2016) results in 6.7% error for 32.4% parameters removed.

Discrimination Block Pruning (DBP) (Wang et al., 2019) is a block selection method
that evaluates saliency of blocks by attaching a linear classifier after each block in the
large network (to our interpretation, 54 classifiers for ResNet-110). Each classifier is
trained independently, with the rest of the network frozen, for 3 epochs with a learning
rate of 0.1, 0.01, 0.001 for each epoch, respectively. The authors note that the accuracy
of each classifier increases with the depth of the blocks, with the exception of certain
blocks where the accuracy drops (or does not change). Denote Ai as the accuracy of the
classifier attached to block i. DBP scores block i as Ai − Ai−1 (the change in accuracy
from block i to block i+1), pruning the blocks with lowest scores. The saliency evaluation
is performed only once.

With DBP, pruning a ResNet-110 to 50% of blocks (27 blocks removed) gives 6.75% error
on CIFAR-10, similar to our results with four fine-tuning steps of 50 epochs and oracle
pruning, 6.73%. DBP results used three fine-tuning loops of, we infer, in the proximity of
100 epochs (reported a fifth of baseline model). Our similarly-sized ResNet-56 baseline
trained from scratch outperforms both DBP and our result obtaining 6.44% error. Our
thresholding (t=0.01, e=50) experiment is closer to the baseline at 6.48%.

The authors of DBP also evaluate their method using knowledge distillation for fine-
tuning, althought we had preliminary experiments with knowledge distillation (not in-
cluded in final work) we do not have results that are comparable. They achieve 7.09%
test error on CIFAR-10 when pruning a ResNet-164 to the size of ResNet-20, lower than
our scratch baselines and best runs (our runs start with ResNet-110). Our best results for
pruning a ResNet-110 to ResNet-20 are in the region of 7.97% error, with our ResNet-20
baselines trained from scratch averaging at 7.8%.

The results above are summarized in Table 3.7. ResNet block-level pruning was also
discussed in Huang and Wang (2018) and Wu et al. (2018).

3.9 Conclusions for this chapter

We have presented a simple method of pruning entire ResNet blocks and empirically
evaluated its performance on the CIFAR-10 dataset. Our simple method can cut 50% of
the blocks of a ResNet-110 while only losing 0.48% accuracy on the test set. This is a

Chapter 3 Pruning ResNet networks block by block 77

good reduction in size and performance loss for the model, however, training a standard
ResNet-56 (which has a similar size) from scratch gives similar results. Training from
scratch is computationally cheaper if the cost of the initial training of a large model is
taken into account.

Seven different block selection methods were compared, including random, and we con-
clude that they yield similar error rates for pruned models when fine-tuning is enabled.
Oracle, activation change, and block gradient are the best performing, however this
is not a strong conclusion. Block gradient is the fastest to compute from the three
(not including random and mean weights) as it only requires a single forward and
backward pass with one mini-batch of data. Activation change requires a forward
pass and to save the activations of each block, using the full validation set. Oracle is
the most expensive, requiring one full evaluation for each currently active block, at each
pruning step (although shown to be reusable, we did not reuse saliency metrics).

A notable observation is that random performs reasonably well when fine-tuning is
enabled. We argue this is because the choice pool is not too large and, although hard-
to-train configurations exist, their number is not higher than that of trainable configu-
rations. By using a purpose-built saliency metric (opposite of block gradient, choosing
maximum instead of minimum gradient) we showed that bad choices that do not train
well exist, resulting in significantly higher error rates.

Different fine-tuning options were explored. First, using a learning rate schedule through-
out fine-tuning significantly increases the accuracy of pruned models. As a result, a learn-
ing rate schedule was used for most of our experiments. Adding noise before fine-tuning
and freezing the classifier when fine-tuning did not show promising improvements.

We introduced the epoch-parameter metric for estimating the cost of fine-tuning. It is a
metric that takes into account the size of the model at each fine-tuning loop.

Scheduling fine-tuning loops in the pruning process is a key factor in the final accuracy
of pruned models, however too much fine-tuning results in pruning runs that are too
expensive, even more expensive than training from scratch. Fixed uniformly spread
fine-tuning loops are a quick way to obtain acceptable results for costs that are easy to
estimate. For an improved final accuracy, thresholding the accuracy loss enables starting
of fine-tuning loops when required and often gives better error rates than fixed schedules.
Depending on the threshold, also lower costs. Thresholding the accuracy loss schedules
fine-tuning loops towards the end of the prunig process, where the network is smaller and
where the biggest accuracy gains are obtained from training. This allows thresholding
to keep the cost of fine-tuning low with more fine-tuning loops.

Comparing with related work, our results are equivalent, but a more thorough comparison
is left for future work. Finally, we addressed the issue of using the validation set for
evaluating the saliency of models, concluding it is an acceptable choice.

78 Chapter 3 Pruning ResNet networks block by block

In Chapter 4, we discuss more block by block pruning options including using a small
number of epochs for each fine-tuning loop followed by regular fine-tuning, and pruning
models that were not fully trained.

Chapter 4

Different pruning strategies

This chapter further explores pruning ResNet architectures block by block and analyses
different pruning strategies. This chapter includes additional configurations and settings
for pruning and fine-tuning that were omitted in Chapter 3.

Each section of this chapter introduces and evaluates a single pruning idea, as well as
discusses its motivations, pros, and cons.

The chapter starts with the low and high training schedule (Section 4.1), enabling small
fine-tuning loops at every pruning step to mitigate the accuracy loss and reap the ben-
efit of frequent fine-tuning loops at a much lower cost. Next, in an attempt to help the
network preserve more of the accuracy of the initial model, the phased pruning method
(Section 4.2) scales each pruned block by a decreasing scalar at fine-tuning. Block equal-
isation, in Section 4.3, limits the pool of blocks vailable for pruning at each step to a
single ResNet group, cycling through the groups as the pruning progresses. The idea is
to keep the pruned architectures similar to the standard ResNet architecture that are
known to train well form scratch. In Section 4.4 we look at pruning before training and
pruning after only training the initial model for a small amount. Replacement pruning,
in Section 4.5, uses the idea of soft filter pruning to re-initialize pruned blocks instead
of removing them, in an attempt to increase model performance. Finally Section 4.6
concludes this chapter.

4.1 Low and high training schedule

Fine-tuning often throughout the pruning process was shown to be a useful setting in
Section 3.5. The limitations were the cost of fine-tuning for a significant number of
epochs at every pruning step. To reduce this cost but also fine-tune at every pruning
step, we introduce a low and a high training schedule. The high schedule is the regular
fine-tuning as previously done: 50 epochs of training at predetermined pruning steps.

79

80 Chapter 4 Different pruning strategies

The low schedule is fine-tuning for a small number of epochs at every pruning step the
high schedule isn’t active, effectively replacing no training with small training loops. This
method is also used in the pruning literature especially in the context of pruning filters
from convolutional layers (Molchanov et al., 2016; Luo et al., 2018).

Adding the extra low schedule results in a significant increase in pruned network per-
formance when compared to one shot experiments as well as two and four uniformly
spread fine-tuning loops. This holds true even for only one epoch per low fine-tuning
step and a single fine-tuning loop of 50 epochs at the end. The results are illustrated
in Figure 4.1a using CIFAR-10, starting with a ResNet-110 model and pruning it for a
select number of target network sizes up to removing 45 blocks. Each data point is a full
pruning experiment.

The epoch-parameter cost of using a low schedule of one epoch is on par with having
two fine-tuning loops for all target sizes in our experiments, but the obtained accuracy
is higher for smaller pruned networks. For 3 epochs of low schedule fine-tuning, the cost
is lower than four full training loops up to 30 blocks removed for a similar accuracy. See
Figure 4.1 for costs and performance.

At 45 blocks removed from ResNet-110, a low training schedule of one epoch is similar
in accuracy with a 0.1 accuracy loss threshold, but for half the fine-tuning cost. Three
epochs of low training is on par with a 0.05 threshold for 45 blocks removed both in fine-
tuning cost and accuracy. Table 4.1 and Figure 4.2 show a detailed breakdown of the
accuracy and error for 1 and 3 epochs of low fine-tuning, accuracy loss thresholding, and
fixed fine-tuning schedules. Thresholding results are from continued experiments with
45 blocks removed as target size and a forced fine-tuning loop at 27 blocks removed, all
other runs are independent pruning experiments with target network size at 27 and 45
blocks removed.

Using a low fine-tuning schedule has the advantage of not having to manually select a
threshold, which, for best results, must be separately tuned for each individual target
size of the pruned model.

A low fine-tuning schedule can also be combined with thresholding, where the number
of epochs for the low configuration runs at every pruning step, and if the accuracy loss
is above the threshold after the low loop, the loop will continue up to the high schedule.
Empirically evaluating this combination is left as future work.

Chapter 4 Different pruning strategies 81

0 10 20 30 40
Number of blocks removed

6

7

8

9

10
Te

st
 e

rro
r (

%
)

Low 1
Low 3
One loop
Two loops
Four loops
Scratch, standard arch

(a) CIFAR-10 test accuracy of each pruning run.

0 10 20 30 40
Number of blocks removed

0.0

0.5

1.0

1.5

2.0

Ep
oc

h-
pa

ra
m

et
er

1e8
Low 1
Low 3
One loop
Two loops
Four loops

(b) The epoch-paramter fine-tuning cost of each pruning run.

Figure 4.1: Fine-tuning with a low fine-tuning schedule of 1 or 3 epochs, followed
by 50 epochs of fine-tuning at the last step pruning. One, two, and four loops
do not have a low schedule, only a 50 epoch loop once, twice or four times,
respectively. Each data point is a full pruning experiment.

82 Chapter 4 Different pruning strategies

27 45
Number of blocks removed

6.50

6.75

7.00

7.25

7.50

7.75

8.00

8.25
Te

st
 e

rro
r (

%
)

Low 1
Low 3
One loop
Four loops
Every 2
t=0.1
t=0.05
Scratch, standard arch

27 45
Number of blocks removed

0

2

4

6

Ep
oc

h-
pa

ra
m

et
er

1e8

Figure 4.2: CIFAR-10 test error (top) and cost (bottom) of low fine-tuning
schedule (with 1 and 3 epochs) compared with accuracy loss thresholding (t)
and fixed fine-tuning schedules.

Table 4.1: Cost and CIFAR-10 error of low fine-tuning schedule (with 1 and
3 epochs) compared with accuracy loss thresholding (t) and fixed fine-tuning
schedules. Low experiments are single runs, others are averages over 6 runs
with different starting models.

27 blocks
removed

45 blocks
removed

Experiment Test error % Cost ×106 Experiment Test error % Cost ×106

Low 1 6.50 81.4 Low 1 8.06 61.4
Low 3 6.78 120.7 Low 3 8.03 160.1
One loop 6.95 ± 0.15 35.6 One loop 10.56 ± 0.55 7.4
Four loops 6.73 ± 0.15 158.9 Four loops 9.24 ± 0.27 112
Every 2 6.66 ± 0.06 400.4 Every 2 8.20 ± 0.16 623.4
t=0.1 6.69 ± 0.21 64.9 t=0.1 8.17 ± 0.23 130
t=0.05 6.82 ± 0.30 73.5 t=0.05 8.03 ± 0.13 161.3

Chapter 4 Different pruning strategies 83

4.2 Phased fine-tuning

We introduce the idea of phased block pruning. After a block i has been selected for
pruning, instead of simply removing it, we start a training cycle of S epochs and define
a linearly decaying factor

γe = 1− e

S
,

where e is the epoch number (starting at 1). We rewrite the output of the i-th block as

yi+1 = ReLU(γeHi(yi) + yi).

During the phased pruning training epochs the weights of the i-th block are frozen so
that they do not adjust to γe but let the rest of the network adjust to removing the
block.

Intuitively this gives the network more time to adjust to the missing block. After finishing
the S epochs of phased pruning, the block(s) are removed and we fine-tune by re-training.

Lazy phased pruning is similar to phased pruning but it is applied for more blocks
at the same time. We perform pruning without training or phased pruning for k blocks,
then we restore the k blocks and perform phased pruning for S epochs by setting γe for
all the k blocks, after which we finally remove the blocks from the model. Lazy phased
pruning is triggered only before regular fine-tuning is scheduled to run, and if training is
done at every pruning step, lazy phased pruning is the same as regular phased pruning.

Phased pruning intuitively helps the network adjust to pruned blocks by giving the model
a smoother transition. The number of epochs of phased pruning, S, is a new parameter
that needs to be picked. We prune a ResNet-110 with a training threshold of 0.01
and a training schedule that triggers re-training at all baseline steps. We train for 50
epochs at every training step, from which S epochs will be for lazy phased pruning (and
regular fine-tuning for 50 − S epochs). The results for S=10, 20, 30, and 40 are shown
in Figure 4.3, and detailed results are in Table A.2. We observe that a value of S=10
shows an increase in performance over simple pruning, however we also notice that, on
average, it uses more training epochs after picking the best epoch on the validation set,
see Table 4.4.

Figure 4.4a presents phased pruning results with S=10 on the test and validation sets,
while training at every pruning step for a total of 50 epochs. Phased pruning only shows
a negligible increase in performance compared to simple pruning in this scenario, and
uses more training epochs after picking the epoch with best validation accuracy. The
results are listed in Table 4.3.

84 Chapter 4 Different pruning strategies

Table 4.2: Simple and phased pruning with different values of S for a total of 10
epochs of training at every pruning step. Showing average test accuracy from 5
runs. Initial model ResNet-110. Dataset used CIFAR-10.

Blocks removed Simple S=1 S=2 S=3 S=4 S=5

ResNet-56 27 (50%) 92.73 92.82 92.60 92.56 92.52 92.76
ResNet-44 33 (61%) 92.23 92.27 92.22 92.27 92.35 92.51
ResNet-32 39 (72%) 91.37 91.65 91.53 91.75 91.66 91.22
ResNet-20 45 (83%) 89.62 89.81 89.52 89.82 88.89 89.53

Table 4.3: Simple and phased pruning for a total of 50 epochs of training at every
pruning step. Showing average accuracy from 5 runs. Initial model ResNet-110.
Dataset used CIFAR-10.

Blocks removed Simple S=10

ResNet-56 27 (50%) 93.24± 0.06 93.20± 0.05
ResNet-44 33 (61%) 92.81± 0.10 92.92± 0.05
ResNet-32 39 (72%) 92.31± 0.06 92.12± 0.08
ResNet-20 45 (83%) 90.72± 0.15 90.92± 0.08

Reducing the total amount of training to 10 epochs per step and using phased pruning
with S=1 and S=2 does improve the performance of pruned models (compared to sim-
ple pruning), as illustrated in Figure 4.4b. Table 4.2 shows more detailed results with
different values of S.

Although intuitively phased pruning forces the network to adjust to a block being re-
moved, our results show that it does not give an advantage over simple fine-tuning. It
is possible that a more fruitful approach is to introduce controlled stochasticity in the
fine-tuning process. This can be done by making γe a binary mask that takes the value
1 with probability 1− e

S . Sampling of γe can be done at every epoch or minibatch. Each
block to be pruned in the lazy version can have a different value for the mask. This
approach is left as future work.

Chapter 4 Different pruning strategies 85

Table 4.4: Number of epochs performed while pruning a ResNet-110 on CIFAR-
10 using a training threshold of 0.01 and training schedule for each baseline
point. Total of 50 epochs per training step (S phased pruning + 50-S fine-
tuning). Picked column shows total number of epochs used after choosing the
best validation accuracy at every pruning step. Showing average values from 5
runs.

Arch
(blocks removed)

Phased Fine-tuning Picked Total # steps
trained Accuracy

ResNet-56
(27 blocks)

S=0 0 243 243 350 7.00 93.06± 0.05
S=10 68 199 268 342 6.83 93.09± 0.07
S=20 133 135 268 333 6.67 92.96± 0.05
S=30 204 80 284 340 6.80 92.95± 0.05
S=40 280 41 321 350 7.00 92.97± 0.05

ResNet-44
(33 blocks)

S=0 0 373 373 560 11.20 92.62± 0.06
S=10 113 335 448 567 11.33 92.76± 0.07
S=20 220 229 449 550 11.00 92.72± 0.10
S=30 324 123 447 540 10.80 92.52± 0.10
S=40 440 58 498 550 11.00 92.59± 0.10

ResNet-32
(39 blocks)

S=0 0 570 570 860 17.20 92.17± 0.10
S=10 173 492 665 867 17.33 92.18± 0.07
S=20 340 358 698 850 17.00 92.17± 0.05
S=30 504 190 694 840 16.80 91.92± 0.10
S=40 680 87 767 850 17.00 92.11± 0.10

ResNet-20
(45 blocks)

S=0 0 781 781 1160 23.20 90.88± 0.05
S=10 233 647 880 1167 23.33 90.70± 0.10
S=20 460 472 932 1150 23.00 90.69± 0.03
S=30 684 273 957 1140 22.80 90.59± 0.12
S=40 920 119 1039 1150 23.00 90.51± 0.08

86 Chapter 4 Different pruning strategies

0 10 20 30 40
Number of blocks removed

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

R-56

R-44

R-32

R-20

R-56

R-44 R-32

R-20

test

val

Simple pruning
Phased, S=10
Baseline (val)
Baseline (test)

0 10 20 30 40
Number of blocks removed

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

R-56

R-44

R-32

R-20

R-56

R-44 R-32

R-20

test

val

Simple pruning
Phased, S=20
Baseline (val)
Baseline (test)

0 10 20 30 40
Number of blocks removed

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

R-56

R-44

R-32

R-20

R-56

R-44 R-32

R-20

test

val

Simple pruning
Phased, S=30
Baseline (val)
Baseline (test)

0 10 20 30 40
Number of blocks removed

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

R-56

R-44

R-32

R-20

R-56

R-44 R-32

R-20

test

val

Simple pruning
Phased, S=40
Baseline (val)
Baseline (test)

Figure 4.3: Lazy phased pruning with different values of S. Using a training
threshold of 0.01, and a schedule for all baseline points. Total number of epochs
at every training loop is 50, S for lazy phased pruning and 50-S for fine-tuning.
Initial model is ResNet-110 trained on CIFAR-10. Baseline points are the stan-
dard ResNet architectures trained from scratch. Lines show mean accuracy for
5 runs.

Chapter 4 Different pruning strategies 87

0 10 20 30 40
Number of blocks removed

0.91

0.92

0.93

0.94

0.95
Ac

cu
ra

cy
R-56

R-44

R-32

R-20

R-56

R-44 R-32

R-20

test

val

Phased pruning
Simple pruning
Baseline (val)
Baseline (test)

(a) Phased pruning S=10 followed by fine-tuning for 40 epochs. Simple prun-
ing with fine-tuning for 50 epochs at every step.

0 10 20 30 40
Number of blocks removed

0.90

0.91

0.92

0.93

0.94

0.95

Ac
cu

ra
cy

R-56

R-44
R-32

R-20
R-56

R-44 R-32

R-20

test

val

Simple pruning
Phased S=1
Phased S=2
Baseline (val)
Baseline (test)

(b) Phased pruning after each block removed with S=1, S=2 followed by 9
and 8 epochs of fine-tuning, respectively. Simple pruning performed with
fine-tuning for 10 epochs after each block removed.

Figure 4.4: Phased pruning with different values of S and different amounts of
fine-tuning. Initial model is ResNet-110 trained on CIFAR-10. Baseline points
are the standard ResNet architectures trained from scratch. Lines show mean
test accuracy for 5 runs and coloured background is mean±standard deviation.

88 Chapter 4 Different pruning strategies

4.3 Block equalisation

We observe that the ResNet architectures with unequal number of groups per blocks
obtained by pruning do not perform as well as the standard equal blocks per group
configurations1, even when trained from scratch (see Figure 3.17).

A new constraint has been added to the pruning method such that the blocks picked for
pruning belong to a given group. At each pruning iteration the chosen group is changed
such that the number of layers per group is equal every 3 pruning steps. Figure 4.5a
shows this block equalisation technique with no training using oracle pruning, and as
expected it is performing slightly worse than when choosing blocks freely. Figure 4.5b
compares the block equalisation method with free block choice with fine-tuning enabled.
Block equalisation with fine-tuning is comparable with the regular pruning method with
fine-tuning, both being outperformed by the baseline models trained from scratch.

We conclude that block equalisation does not help to improve the accuracy of pruned
models despite the forced constraint to use architectures that are known to work well
when trained from scratch. From this it can also be noted that the weights themselves
are more important than the ResNet architecture configuration.

1Note that standard (as used in He et al. (2016)) choices for ResNet configurations trained on Ima-
geNet do not have equal numbers of blocks per group, but the ones for used for CIFAR-10 do.

0 10 20 30 40
Number of blocks removed

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 (v
al

)

Layer equalisation (no training)
Free choice

(a) Block equalisation and free choice pruning
without training.

0 10 20 30 40
Number of blocks removed

0.915

0.920

0.925

0.930

0.935

0.940

0.945

0.950

Ac
cu

ra
cy

 (v
al

)

ResNet-56

ResNet-44

ResNet-32

ResNet-20

Layer equalisation
50 epochs
10/40 epochs
Baseline

(b) Block equalisation trained at every prun-
ing step for 40 epochs and 10 epochs of phased
pruning. 10/40 denotes the same training
schedule but with a free block choice.

Figure 4.5: Block equalisation method for obtaining pruned ResNet configura-
tions similar to the baselines.

Chapter 4 Different pruning strategies 89

4.4 Pruning before training

In this section we ask whether pruning can be effective without a pre-trained model.

We took a randomly initialized ResNet-110 and trained it to convergence using 500 epochs
on CIFAR-10, same as all our baselines in Section 3.2. It has 5.51% test accuracy for
the best performing epoch on validation (475). A checkpoint was saved with the weights
of the random initialization, after first epoch, and after every 10 epochs of training
thereafter. The test accuracies of selected checkpoints are in Table 4.5 (column Initial
error).

Every checkpoint was pruned using the oracle block selection method with a single fine-
tuning loop at the end of pruning. Two target sizes were used, ResNet-56 (27 blocks
removed) and ResNet-20 (45 blocks removed). They are computed in independet exper-
iments. Fine-tuning was performed such that the total training amount is 500 epochs,
for instance the checkpoint 200 was originally trained for 200 epochs and fine-tuned for
300 epochs. A learning rate of 0.1 was used for the start of fine-tuning, and multiplied
by 0.1 as the training progressed, at 50% and 75% marks in the training process (e.g.
epochs 50 and 75 for 100 epochs of fine-tuning).

We observe that, excluding the random initialization, pruning models that were not
trained to converge with a large number of epochs (but combined initial and pruning
training epochs to be equal to 500, the same as our scratch experiments), is on par or
better with pruning models with a small fine-tuning budget (one fine-tuning loop of 50
epochs, one loop in the table), that have been trained to convergence.

Training the initial model as little as one epoch improves pruning performace by over
1% at 27 blocks removed and 4.5% for 45 blocks removed. This is likely explained by
the fact that even one epoch of training changes the weights in such a way that our
oracle saliency metric can effectively avoid removing the most important blocks. The
last two checkpoints we have used, 400 and 450 epochs of training for the initial model,
do not perform very well when pruned. The explanation is that only 100 or 50 epochs,
respectively, are left for the final fine-tuning. We have previously shown that a single
loop of fine-tuning is often worse than other fine-tuning schedules for a small number of
fine-tuning epochs.

When compared with one loop fine-tuning with 400 epochs, checkpoints from epochs
30 to 350 seem to perform similarly well, with the rest of epochs being slightly worse.
The total cost is, however, much lower when starting with checkpoints from early epochs
since fully training the initial model is not required.

90 Chapter 4 Different pruning strategies

Table 4.5: Pruning a ResNet-110 from different checkpoints taken from the initial
training, starting at the random initialization. The Checkpoint column denotes
the epoch when the checkpoint was taken. Showing test error on CIFAR-10.
Each checkpoint was pruned to two different target sizes: 27 and 45 blocks
removed, and a single fine-tuning loop at the end of pruning.

Checkpoint Initial
error %

Fine-tuning
epochs

Error % at
27 blocks pruned

Error % at
45 blocks

Random init 90.00 500 7.80 13.77
1 80.47 499 6.73 9.25
10 32.41 490 6.91 8.70
20 18.22 480 6.95 8.47
30 18.57 470 6.67 8.67
40 13.87 460 6.67 8.25
50 13.12 450 6.73 8.86
100 19.75 400 6.86 8.41
150 11.22 150 6.37 8.38
200 12.73 200 6.69 8.51
250 6.89 250 6.76 9.45
300 5.75 200 6.16 8.79
350 5.66 350 6.39 9.14
400 5.58 100 6.92 9.85
450 5.55 50 7.14 9.88

Scratch 6.21 7.54
Low 3 6.78 8.03

One (e=50) 6.95 10.56
One (e=400) 6.45 8.66

The results are shown in Figure 4.6 as well as detailed in Table 4.5. Note that in this
section we used the pruning set for block selection, and as a result the training set for
fine-tuning was 10% smaller2.

The learning rate for training the initial model started at 0.1, changed to 0.01 at epoch
250, and to 0.001 at epoch 375. This explains the big decrease in error for the initial
model between epochs 200 and 250. Another experiment can be design such that more
models are trained with different epoch budgets, chosen steps ranging from 1 to 500, same
as the previous setup, but for each budget a learning rate and learning rate schedule is
picked independently to best train the model within the given epoch budget. We expect
this to give better results overall, for initial models and for pruned models, especially for
initial training budgets in the region between 50 and 250 epochs. This is, however, left
as future work.

2Unfortunately, this was due to a mistake on our end and time constraints prevented us from re-doing
the experiments.

Chapter 4 Different pruning strategies 91

1 10 20 30 40 50 100 150 200 250 300 350 400 450
Start model epochs

6.0

6.2

6.4

6.6

6.8

7.0

7.2

Te
st

 e
rro

r (
%

)

(a) Target size: 27 blocks removed.

1 10 20 30 40 50 100 150 200 250 300 350 400 450
Start model epochs

8.2

8.4

8.6

8.8

9.0

9.2

9.4

9.6

9.8

Te
st

 e
rro

r (
%

)

(b) Target size: 45 blocks removed.

Figure 4.6: CIFAR-10 test error for pruning different checkpoints taken at differ-
ent epochs from the training of a ResNet-110 model. The random initialization
checkpoint was omitted for brevity. Fine-tuning performed once at the end of
pruning such that the total number of epochs is 500. Pruning was performed
with the oracle block selection method.

Another area of future exploration is using the gradient block selection method in the
same context as van Amersfoort et al. (2020) – pruning all blocks in one saliency evalu-
ation from random initialization. Also to investigate is using different fine-tuning sched-
ules, such as a low and high schedule or accuracy loss thresholding when pruning from
different checkpoints taken throughout the initial training of a large model.

4.5 Replacement pruning

In this type of pruning we keep the number of blocks for the network a constant. When
a block is selected to be pruned, instead of removing it, it is reinitialized with random
weights or set to zero (effectively, replaced). This is effectively not removing any blocks.
However, instead of choosing to prune a single block at a time, we choose a group of
k neighbouring blocks and replace them with one single randomly initialized or zero-
weighted one.

A preliminary experiment indicates that replacement pruning may be a promising method
(see Figure 4.7a), however it is not consistent throughout the pruning process (Fig-
ure 4.7b). In this experiment, k = 2 blocks that are next to each other are pruned at
a time. The saliency metric used is oracle, but in this context it evaluates the accuracy
of the network by iterating over (and temporarily pruning) groups of two consecutive
blocks. We use a low training schedule of 3 epochs followed by 50 epochs at the end of
pruning (with the usual learning rate schedule) for both target sizes (27 and 45 blocks
removed are independent runs).

92 Chapter 4 Different pruning strategies

44 46 48 50 52
Params removed (%)

6.5

6.6

6.7

6.8

6.9

Te
st

 e
rro

r (
%

)

(a) 27 blocks removed.

78 80 82 84 86 88 90
Params removed (%)

8.0

8.5

9.0

9.5

10.0

10.5

11.0

11.5

Te
st

 e
rro

r (
%

)

Low 3
Repl. random
Repl. zero
Every 2
4x
1x

(b) 45 blocks removed.

Figure 4.7: Replacement pruning k = 2 consecutive blocks with a randomly
initialized block or with a block with weights set to zero. 4x and 1x are four and
one fine-tuning loops, respectively. Each data point is an independent pruning
run. Test error is on CIFAR-10.

The performance of replacement pruning in our experiment may be affected by the fact
that two blocks are pruned at once, instead of one, possibly forcing the pruning process
to prune blocks that would otherwise be avoided. Another factor can be the training
schedule: a randomly initialized block might benefit from isolated training (freezing the
rest of the network for a small number of epochs) before the regular fine-tuning loop.

Replacement prunig was inspired by Soft Filter Pruning (He et al., 2018), where convolu-
tional neural networks are soft pruned at first (weights of filters reset to 0, but remaining
trainable), and then hard pruned (filters removed). Our experiment is different in setup
from Soft Filter Pruning, as we do not perform soft pruning. Instead, we remove more
than one prunable units and replace with one, such that the network size decreases at
every step. It is left as future work to experiment with a more similar approach: pre-
processing the large model with block by block soft pruning before starting to prune the
model block by block as in our regular setup.

4.6 Conclusions

In this chapter we have investigated five strategies applied in the context of pruning
ResNet models block by block.

The low and high fine-tuning schedule where training for a small number of epochs is
done at every step, and a regular fine-tuning loop at the end is evaluted. The results
suggest a low training schedule can be a cost effective way to prune without any extra
hyper-parameter (like an accuracy loss threshold), and it works the same for all pruning
steps. Using a low training schedule of 3 epochs followed by 50 epochs at the end of

Chapter 4 Different pruning strategies 93

pruning gives an error rate for pruned models similar to that of training small models
from scratch, for all targer pruning sizes.

Phased fine-tuning is the idea of gradually pruning a block, allowing the network to
adjust to the change. This is achieved by scaling the output of the pruned block by
a linearly decreasing scalar at fine-tuning time, for a subset of the total fine-tuning
epochs. The results show a slight improvement in accuracy for certain target sizes, but
not consistently throughout the pruning process.

Block equalisation guides the pruning so that pruned models are similar in block con-
figuration to the standard ResNet models know to train well from scratch. Despite this
constraint and the fact that pruned configurations do not train well from scratch, this
constraint impairs pruning performance before fine-tuning, and is similar to choosing
blocks freely when fine-tuning is enabled.

Pruning a ResNet-110 starting from different checkpoints taken during the inital training
process, including the random initialization, shows that block by block pruning is possible
without training the initial model to convergence. After only one epoch of initial training,
followed by pruning and fine-tuning of 499 epochs (total epochs same as our baselines),
the error rates are within 2% of the pruning runs which start a fully trained model.
This can be further experimented with different fine-tuning schedules with the purpose
of reducing the total training cost, motivated by previous results which suggest that
adding fine-tuning loops throughout training improves performance for lower cost.

Finally, inspired by soft filter pruning, we introduced replacement pruning, where instead
of selecting one block at a time for pruning, we select two. One is pruned, and the other
one’s weights are reset to either zero or random. Our preliminary experiment shows this
method might be worth further consideration, perhaps in a setup more similar to soft
filter pruning. The accuracy is similar (±0.2%) to that of other pruning methods when
using reset to random, however, we have not studied the effect of pruning two consecutive
blocks at a time in an isolated setting, which is also left as future work.

Chapter 5

An experiment management
framework

Research and development of machine learning systems often involves running a large
number of experiments, some of which take a long time to finalise. Effectively managing
the process of implementing a new idea, running experiments to confirm or dismiss it
and analysing the results is a challenging task when the number of experiments is large.
To make it even harder, software bugs and human coding mistakes are inevitable when
writing code, especially so in research where the code is considered a means to testing
theories and is often not written by following good software engineering principles.

As part of my pruning work I ran over 1000 experiments, probably many more if all
the ones that have been deleted due to human errors or bugs were counted. At times,
I would batch about 100 experiments on the University’s supercomputer. To be able to
handle this number of experiments I started writing small scripts to automate different
tasks, such as finding all experiments in a directory tree that have a specific parameter,
or finding experiments that have similar parameters to a given experiment, and so on.
I have also written utility tools to parse the logs of experiments and derive useful data
from them. Early on in my pruning work I made the decision to save plenty of data the
experiments were generating as structured logs (a simple format: one JSON object per

Figure 5.1: The logo of the dbx experiment management tool.

95

96 Chapter 5 An experiment management framework

line). At the time, there was no plan to use all the data saved in these logs, but later
it proved to be useful. This log format along with a few other experiment storage ideas
have been extremely helpful tools in managing my experiments. The project presented
in this chapter, dbx, is the evolution of my utility scripts and experiment storage format
in the hope that they will become useful for others and to more directly address the most
major pain points in managing machine learning experiments.

This chapter starts with identifying the tasks that need to be performed when doing
machine learning research and working with many experiments, including designing ex-
periments, running them in a reproducible way, storing the results and being able to
efficiently and effectively make use of these results. Some of the required tasks for
analysing results include searching for experiments by parameters and code versions,
querying, plotting and comparing experiment results, and being able to quickly re-run
an experiment with or without changing some of the parameters or code versions.

A set of key requirements for a machine learning experiment software will be presented
and followed by the design of the dbx toolkit and the current implementation, along
with some examples of how it works and our plans for the future. A comparison with
other experiment management solutions is also provided, focusing on comparing with
the solutions that are most similar to ours.

Our toolkit, dbx (Figure 5.1), is a suite of software tools that could aid researchers with
experiment management and analysis. It is a set of small tools that aim to be agnostic
to any machine learning framework, flexible to use in different environments and non-
intrusive such that it allows researchers to work as they normally do.

This work was presented at the Workshop on MLOps Systems1, part of the Third Con-
ference on Machine Learning and Systems (MLSys) 20202 conference in Austin, Texas,
USA.

5.1 Background

Managing experiments and results in machine learning is a challenging task and more
often than not it is the responsibility of the researcher to organise the work in a systematic
and useful manner. Failing to do so results in loss of work, human and computer time and
resources, and delays in the research project at hand. Manually organizing experiments
and results is, however, a tedious and time-consuming task and grows in difficulty with
the number of experiments to keep track of.

Managing machine learning experiments and results is a common problem faced by many
researchers in the field. Although there are tools available to address this problem, many

1https://mlops-systems.github.io/
2https://mlsys.org

https://mlops-systems.github.io/
https://mlsys.org

Chapter 5 An experiment management framework 97

Table 5.1: Work mode categories for machine learning research projects.

Quick experimentation Comprehensive study

Core focus Speed of iteration, learning. Detailed understanding, compre-
hensive analysis.

Experiments Mostly for finding promising re-
sults or validating ideas. Learning
quickly.

Understanding and explaining re-
sults or hypothesis, reproducing
early results on different conditions
(e.g. datasets or model architec-
tures.)

Code The code is written for quick exper-
imentation. Code quality is often
not a priority.

The code quality is important.
Bugs or other errors are of high con-
cern. Code is likely to be reused or
even published.

Metrics and analysis Small number of metrics, quick
analysis. More metrics could be
useful but only if easily obtained.
Metrics may change often between
old and new experiments.

More metrics and detailed analysis.
The metrics used are now consistent
between experiments.

Reproducibility Not of high concern at this stage,
but could be useful if easily ob-
tained.

Needs to be taken into account. Re-
producing results on different condi-
tions (e.g. datasets or model archi-
tectures) becomes important at this
stage.

Visualisations Visualisations that are easy to build
and help iterate quickly. Publica-
tion quality visualisations are not
necessary. New types of visualisa-
tions or interpretable outputs are
produced as the project progresses.
Visualisations are debugging and
learning tools.

The quality of these outputs be-
comes important, especially if the
work is to be published. Iteration
on the actual formats of the visu-
alisations and other similar outputs
becomes part of the process. It is
important that all required data is
easily available. Visualisations are
communication tools.

have different drawbacks like requiring too much setup, not being available for free or
being too restrictive in the way experiment code needs to be written and run. As a result
there is no de facto solution.

The typical work mode of a machine learning researcher can be split in two categories:
the quick experimentation mode and the comprehensive experimentation mode. In quick
experimentation, the goal is to try many ideas and iterate quickly until the work con-
verges to something that can be explored in detail. The comprehensive mode is when a
possibly fruitful idea is found through quick experimentation and it requires more exten-
sive validation. These modes are described in the most vague terms since each project
or idea will required different tasks in each mode. An illustration to aid differentiate
between the two modes is shown in Table 5.1. A researcher or a team might switch
between the two work modes many times. There is no clear separation that can be
defined except that the focus will lean towards either speed of iteration or quality and
comprehensiveness of results.

98 Chapter 5 An experiment management framework

An experiment management framework must be useful for both of these work modes,
and must not add unnecessary processes or limitations. In both work modes there are
tasks that are unavoidable and involve saving and reading data about experiments and
other artefacts. A few examples include: saving experiment results to files or databases,
generating different visualisations, moving data from one format to another or from
one place to another for further processing or understanding, computing aggregate or
some sort of summary results, copying results or artifacts from one computer to another,
and many more. These tasks are not about machine learning research, they are about
managing experiments and results. These are specifically the tasks that experiment
management tools aim to automate or otherwise simplify, and dbx is no different.

In the quick experimentation work mode, dbx improves the iteration speeds by automat-
ing tedious tasks, such as copying results from one computer to another and keeping an
easy to query record of all hyper-parameters and code versions used for each experiment.
In the comprehensive work mode where the focus is on quality, the tools make it easier
to organize and analyse results, produce visualisations, export results in formats that
can be read by others and ensure the experiments are reproducible.

Most of the tasks that dbx automates or provides tools for are tasks that the individual
researcher or team would typically implement themselves. Either by reusing work from
previous projects or implementing tools one by one as they are needed.

This section has justified the importance and potential usefulness of experiment manage-
ment tools and frameworks, but does not yet justify why building yet another one. In the
following subsection the main problems and pain points are clearly identified. They are
followed by a list of software requirements derived from them for what we found (through
experience and discussions) makes a good software solution for experiment management.
Later in this chapter we compare our framework to other works that are available.

5.1.1 Motivation

This project started as small utilities written as part of earlier work, including a large
part of the work on pruning. The goal was to collect all these utilities, package them
into a standalone project and improve upon them to create a fully featured experiment
management framework. The motivation to undertake this comes from the lack of other
suitable solutions and the requirements were drafted and iterated on based on my own
needs. This section will illustrate a selection of the utilities created as part of earlier
works and highlight the problems that they solve.

Early in the pruning work I have made the decision to save experiments in a specified
format. Each experiment is stored in its own folder, using the directory tree to keep
related experiments together. Each experiment has a metadata file and a structured
log as well as all other outputs it produces (example in Figure 5.2). The log must be

Chapter 5 An experiment management framework 99

Figure 5.2: Files in a pruning experiment highlighting the experiment log and
the metadata.

sufficient to analyze all results and the metadata must be sufficient to reproduce the
experiment. This method of organizing is kept for dbx experiments as it has proven to
be extremely useful. Below is a list of some of the utilites that were written and were
very useful for managing the experiments for the pruning work.

getcmd.py <exp> outputs the command needed to run the experiment again, formatted
for easy editing.

expdiff.py prints the parameters that are different for all experiments given (Fig-
ure 5.3).

Figure 5.3: The command expdiff which prints out the parameters that are
different between two or more experiments.

findlike.py finds experiments that have similar parameters to the given experiment.
It helps to answer questions such as "are there results for this but with more epochs per
pruning step?"

list_runs.py shows a table of all or a subset of experiments, with selected summary
values such as final accuracy or pruning block selection method.

100 Chapter 5 An experiment management framework

plot_*.py. There are 21 utilities written as part of the pruning work to plot parts of
experiments. All plotting utilities take experiments in the format above and extract
required information from the log or other experiment artefacts. The organization in
directory trees is used for grouping experiments together for computing aggregated results
(such as the mean and standard error).

Experiment list generators were written to create sets of experiments to be run. All
generators are based on a set of common functions which enable them to set a base
configuration, rotate hyper-parameters (example: generate experiments for oracle and
activation change selection methods with and without a learning rate schedule, fine-
tuning at every 2, 4, and 8 steps). The output of those generated configurations is a
script that could be scheduled with sbatch or run locally. The script has a reference to
re-generate itself in the header (as a comment) and there is an option (add the –testing
flag) to test whether all the experiments were run and correct; this is best explained with
the screenshots in Figures 5.4 and 5.5.

Figure 5.4: This command generates a script that runs (or schedules using
sbatch) a set of experiments with varying parameters. The beginning of the
script contains the command to re-generate itself as a comment.

5.1.2 Identified issues and requirements

Designing and running experiments. Sets of experiments are designed to test a
hypothesis or generate baseline results. It is important for reproducibility that the same
set of experiments can be re-run easily, with or without minor changes (for example to
use a new code version that includes a bug fix, or a slightly different parameter to create
a comparison).

Setting up sets of experiments to run or re-run should be a quick and easy process. From
experiece we suggest that running experiments should be done in a way the researcher

Chapter 5 An experiment management framework 101

Figure 5.5: The generator script when the -testing flag is included. It checks
whether the experiments in the output folder match the expected configuration
and that they are all present. Top shows the output for correct and missing
experiments and the bottom shows sample output for parameter mismatches.

typically runs experiments and the experiment management tool should not impose spe-
cific styles. An experiment management tool can however aid in running experiments
by providing complementary tools. For instance, regardless of how a user initially runs
experiments, the experiment saved should store everything necessary to re-run it: code
version, input paths, hyper-parameters and so on.

Different styles of running experiments refer to how parameters are set and how the
experiment program is run. Parameters can be set through hardcoded variables, config-
uration files, environment variables, command line arguments, and so on. Apart from
discouraging hardcoded variables (because they are impossible to change without editing
the code), an experiment management framework should not favour any specific style.
Experiments can be run directly by executing file (ie. ./train.py), inside containers
(ie. using docker), or through a proxy program (ie. ./proxy ./train.py). Experiment
management software should not add a proxy program to the mix, nor assume container-
isation is to be used or not used. It should simply not interfere with how experiments
are run.

Using a proxy program or requiring containerisation for experiment management limits
the availability and user friendliness of the experiment management tools. On some
systems that experiments are run the researcher may not have full access to freely install
software, nor have a container engine available. Even if the user is allowed to install
a proxy program, it may be difficult to make it available in the PATH, making running
experiments significantly more complicated than it should be.

Different styles of running experiments may be used for the same project, especially
between quick experimentation and comprehensive modes. In quick experimentation,
hand-written command line arguments might be sufficient but config files (of some sort)
might prove more useful for a comprehensive study.

102 Chapter 5 An experiment management framework

Saving artefacts and results. Experiments often take a long time to run. It is
important that each experiment configuration, hyper-parameter, and result is saved such
that it can be easily accessed, searched for, analysed and reproduced. It is also important
for reproducibility to keep strict versioning of artefacts that are used by experiments,
like starting weights for a model.

Code versions and bug fixes. Code changes. Bugs get discovered and fixed. Saving
a reference to the code versions that an experiment was ran with and cross-referencing
with future bug fixes is critical to ensure correctness of results and research conclusions.
It also improves reproducibility by enabling the use of exactly the same source code to
re-run past experiments.

Two useful debug features are code diffs (similar to git diff) between two experiments
or an experiment and the current version of code, and checking out the exact version of
code that an experiment used, perhaps in a new branch in the current project.

A researcher may wish to confirm that all the experiments used in a report or publication
use the version of code that is also made publicly available, or at least be able to check
that no significant changes that may affect results have been made.

Availability of experiment results. Experiments are often run on many computer
systems (clusters, servers, development workstations) and it is critical that experimental
results do not get lost or forgotten but are easily available for analysis through a central
interface. Some of the computer systems may not be able to share experiment results in
real time (for example due to network restrictions on compute nodes) hence synchronizing
experiments between different locations is a critical feature.

Add-on metrics. In a research project it is often discovered at a later stage that not all
required metrics, or not all required evaluations have been run for a set of experiments.
It should be easily possible to run extra programs for each experiment that would fill
in missing values. An example would be running a second script that evaluates the
checkpoints saved at every N epochs on a different dataset split.

The experiment management software should be able to allow for running extra scripts
and adding more information to the experiment log at a later stage, but also to be able
to find experiments that lack such information.

Results. Filtering, sorting and searching experiments by their results (or other core
metrics) is often required. The results, unlike hyper-parameters or other configuration,
change as the experiment progresses or new scripts have been run. The toolkit must
support and save results in a useful format.

Portability and flexiblity. All the tools must be usable regardless of the end users’
computer systems: a good experiment management tool need not impose restrictions on
how experiments are run or on what machines. For example, experiments might run on

Chapter 5 An experiment management framework 103

machines with restricted network access and this must be supported by the experiment
management tools.

Making results useful. Saving and organizing the experiments and their results is
the first step, but not a very useful step unless those results are easy to query and
analyse. The most important issues are finding experiments by name, hyper-parameters,
results, code versions or a combination thereof, and extracting only the information that
is required from experiment logs (example: validation accuracy vs epoch number).

Easily extensible. Each research project is different and an experiment management
tool needs to be flexible and extensible to allow use cases not thought of before. This
can be achieved by embracing the UNIX philosophy and splitting the toolset into many
independent tools that communicate through well-specified protocols and file formats
rather than creating a monolithic project.

Each tool can have different points where it can be extended. A web UI can have the pos-
siblity to add custom pages or visualisations. The command line tool and loggers should
be extensible to allow new storage back-ends. The whole ecosystem can be extended
with additional tools that use the common APIs and file formats.

5.1.3 Related work

The most similar project to ours is Weights and Biases (Biewald, 2019). It offers a
solution to save experiments, experiment metadata (via wandb.config), an experiment
log similar to ours and files related to each experiment. The cloud solution comes with
a handy web-based interface where users can see various plots generated from logs and
analyse results as well as access all the saved experiments, metadata and files. It comes
with handy integrations for popular machine learning frameworks like PyTorch (Paszke
et al., 2017) and TensorFlow (Abadi et al., 2015) making the logging very simple. The
two apparent downsides are the fact that it is not open-source, thus it cannot be easily
customised or self-hosted 3 and it seems that experiments need to be run on machines
with full internet access4.

Neptune.ML (Inc., 2019) is a similar cloud service that offers a simple python experiment
and results tracker easy to integrate with any machine learning platform but it is not
open-source (but it has a free tier). Like most cloud services it lacks the ability to run
experiments on machines on restricted networks.

Signac (Adorf et al., 2018, 2019) is a Python framework for tracking experiments and
workflows and is released as open-source but is not focused on machine learning. It offers

3Hosting on premise might be available for enterprise customers.
4Or by storing the experiment data locally and manually importing it when online, however this

functionality is not supported via the Weights and Biases libraries and will have to be implemented by
the user

104 Chapter 5 An experiment management framework

a simple method to track parameters and values for different experiments but seems to
lack many of the required functionalities that would be needed for effective machine
learning research, like a system for storing experiment logs or synchronizing experiment
results between different machines or storing large files.

ModelDB (Vartak et al., 2016) is an model and experiment tracker that aims to save
all the experiment metadata and results and make them available via a web user in-
terface. The documentation seems to be incomplete and the focus to have changed to
a new version, currently unreleased, ModelDB 2 which might also become available as
a commercial service via the verta.ai website. The current ModelDB seems to focus
on integrations with the spark.ml (Meng et al., 2016) and scikit-learn (Pedregosa et al.,
2011) frameworks.

DVC (Iterative, 2019) is an approach to experiment management by tightly integrating
the machine learning research workflow with the source code version control system git.
DVC works by creating branches for different experiments and allowing researchers to
define workflows to run experiments. DVC tracks large files, metrics as well as source
code. It is different from our approach since we create a tool entirely separated from
source version control systems, and we belive that tracking experiments and their results
have fundamentally different requirements from tracking source code.

Sacred (Klaus Greff et al., 2017) is a python framework that is similar to our proposal
in the way that it stores experiment metadata and results in a database to make them
easily available later. To use this tool the researcher needs to structure the experiment
code in a specific manner to integrate with the framework, which is a disadvantage
especially when porting existing projects. It also imposes restrictions in how the python
scripts for the experiments are run and how their command line arguments are passed.
A considerable advantage is the availability of many front-end interfaces that work with
Sacred: Omniboard, Incense, Sacredboard, Neptune, and SacredBrowser.

Trains.ai (Allegro.ai, 2019) is an open-source python tool that integrates with popular
machine learning frameworks and logs experiments and results by sending data to a
server (also provided as open-source). It lacks the possiblity of running experiments in
a constrained network environment. The logger supports saving custom data as well as
automatically collecting plenty of useful information. The integration with existing code
is done with a few lines of code.

Studio.ML (Studio.ML, 2019) is an open-source experiment manager that can save the
environment and metadata, but it seems to require users to run experiments in a certain
way (e.g. using the studio command). Similarly, Datmo (Acusense Technologies, 2019)
is an open-source tool for model management focused on managing the workflow from
training models to deploying them to production. Datmo forces users to run experiments
in Docker containers and seems to lack the ability to store structured logs.

verta.ai

Chapter 5 An experiment management framework 105

Other similar projects include FGLab, Guild.AI (TensorHub, 2019), MLFlow, Mod-
elChimp. There are various cloud services providing experiment management solutions,
like Comet.ml (2019) and valohai.com (2019). FORGE (Kosiorek, 2019) is a small tool
that helps with defining and separating models, datasets and experiments, but it is not
enough for effective experiment tracking and management.

TensorBoard (Abadi et al., 2015) is a visualization tool that can aid with experiment
management. It is tightly integrated with the TensorFlow framework but packages ex-
ist to save TensorBoard logs from other frameworks (like tensorboard-x for PyTorch).
TensorBoard can show logs from many experiments and has experiment and log filter-
ing features. It works well for comparing a small number of experiments but it slows
down for a large number and lacks other experiment management features like showing
experiment metadata, search by hyperparameters. Visdom (Facebook Research, 2019) is
a tool for visualizing live data and works well with PyTorch and Numpy. It can be used
to plot live updates from running machine learning experiments.

5.2 Requirements

The issues that need to be addressed are presented in 5.1.2. Based on these issues we pro-
pose the following requirements for a software solution that aids experiment management
and machine learning research.

5.2.1 Experiment repository abstraction

Machine learning projects are made of many experiments. A key requirement for experi-
ment management is to be able to perform operations with sets of experiments: searching
through them by different criteria, comparing aggregate results and comparisons, adding
new experiments to the set, copying the set to a different location (or machine), and
other related operations.

A repository of experiments is an abstraction used to represent a set of experiments.
It must be easy to clone and synchronise with other repositories, such that distributed
work (in a team or using many computer systems) can be easily handled.

Partial repository imports and exports must be supported. For example, a compute node
may create a new local repository where it saves all experiments it runs, and it imports
all these experiments into a central repository at a later stage.

106 Chapter 5 An experiment management framework

5.2.2 Experiments and results

An experiment is loosely defined as running one or more programs that generates one
or more related artefacts. A simple example is training a neural network on a dataset
producing a trained model. A second script could be evaluating the model from the
previous step on a test dataset. Both scripts are part of the same experiment.

For good management of experiment results we propose that each experiment must have:

• a human-readable name,

• a type (user-defined type, ie. training, pruning, baseline),

• a unique ID,

• a set of parameters,

• a results object,

• one or more runs (invocations of a script or program),

• one or more logs,

• attachments.

The experiment metadata is a key-value store for saving information about the experi-
ment, such as the parameters used, other user-specified configuration, experiment name,
kind and so on are saved in the metadata. Each run also has metadata saving infor-
mation about the version of code used, system environment, timestamps, command line
arguments, and anything else that might be required for reproducibility.

The experiment log is for storing all the events that happen during the experiment.
The experiment log is an append-only list of immutable events. Each event has a name
and arbitrary key-value data supplied by the user. Files stored outside of the log can
be referenced. The experiment log is the main resource of information for analysing
experiments and their results.

Experiment attachments can be external or tracked by the tool but must always have
a checksum stored within the experiment (metadata or log, or anywhere else they are
referenced). The checksum is critical for reproducibility, since external files may be
changed or moved.

5.2.3 Code tracking

The code for any software project changes and research code is no exception. Each
experiment run is using a specific version of the codebase and it is important to track

Chapter 5 An experiment management framework 107

it for debugging, reproducibility and understanding. To address this, each experiment
saves a reference to the version of code that it uses when it is run. This can be done by
saving the VCS version (e.g. git commit checksum, branch and repository) along with a
patch containing all uncommited changes if there are any.

This way the experiment can be reproduced by using exactly the same source code.

The code used for an experiment should be easily compared with the current codebase or
the code used for another experiment. Command line utilities or simple to use interfaces
for comparing code must be provided. Integrations with common VCS must be done
through small external programs or isolated packages such that more integrations can be
added with ease.

5.2.3.1 Compiled languages

Although interpreted languages are by far the most widely used for machine learning
research, it is important to support compiled languages throughout the experiment man-
agement framework.

With compiled languages the source code does not need to co-exist with the binary
being executed. Also the compiled binary does not need to be produced with the current
version of the source code. Thus tracking the source code may be meaningless in this
setup.

Depending on the project setup, saving the compiled binary as an experiment attachment
(which can then be compared by checksum with other experiments), tracking the code,
compilation commands or a combination thereof can be a sufficient workaround. An
addition can be having the binary output the code version (ie. commit hash from compile
time) when a special command line flag is used (e.g. ./program –version) and logging
this output in the experiment manager.

5.2.4 Minimally invasive

Each project has different requirements and uses different frameworks, programming
languages and tools. Each researcher, department or company has different computer
systems available but also different preferences. A system that helps rather than hinders
experiment management will not impose any requirements on how experiment scripts
are written or run, but rather aids the researcher with minimal required setup in the
code and plenty of optional helpers.

Experiment management frameworks must not force the users to adopt any particular
method of setting experiment parameters, running experiments, loading data or ref-
erencing, packaging code, saving files, logging, tuning hyperparameters or producing

108 Chapter 5 An experiment management framework

visualisations and other figures. The job of the experiment management tool is aiding
most of the aforementioned tasks by providing methods to simplify auxiliary tasks such
as fetching the correct data for a visualisation or providing methods for verifying the
integrity of saved or loaded files.

5.2.5 Extendable

The system must be based on APIs, protocols and file formats rather than specific
software solutions. The system must be usable wholly or partially and it must allow for
third party extensions and applications to integrate seamlessly. Users must be able to
modify existing parts or create new parts to fit their particular needs.

5.3 Our proposed solution

Our solution, dbx, is a set of tools that, when used together, provide a full platform for
machine learning experiment management that fulfills all of the identified requirements.
First we present the abstract ideas of what an experiment is, what the experiment log is
and then we detail the architecture of the software solution.

5.3.1 Core objects

The most important objects of dbx are illustrated in Figure 5.6, which shows a simplified
schema of the system. The following subsections present each object type in more detail.

1..Nhas

Run

ID

Timestamps

Environment

Args

Code versioning

Host info

Experiment Log
combined log of all runs

Experiment

ID

Name

Params (k-v, immutable)

Results (k-v, editable)

has one
has

1..N

Log Stream

Append-only list of
immutable events

1

is the result of merging

Attachment

Name

Checksum

Path (local or remote)

has

0..N

0..N

1

Figure 5.6: Core objects of the dbx system, simplified. k-v stands for key-value.
Attachments can be referenced from logs, runs or results, not just experiments,
but arrows are omitted in the figure for brevity.

Chapter 5 An experiment management framework 109

5.3.1.1 Experiment

At the core of dbx is the Experiment object. It represents a machine learning experi-
ment, and can be composed of one or more Runs. It provides all information about the
experiment: name, kind, parameters, the log, and results. It is identified by a randomly
generated unique ID.

The experiment name is a human-readable string that aims to help recognize experiments
but also to organize them. The name accepts the forward slash character / as a separator
and experiments can be looked up by partial names – similar to how files and folders work.
The experiment names need not be unique, experiments are uniquely identified only by
their ID. This naming scheme allows us to build an interactive experiment browser that
behavies in a familiar way (like the filesystem). In local repositories, experiments are
stored in eponymous folders followed by their unique id.

The experiment kind is also a human-readable string aiding organization of experiments,
but only aiming to group them by a single category, typically one word. The kinds of
experiments to be set are project-specific and the following examlpes show the intent of
this feature: train, prune, baseline, baseline-state-of-art.

The experiment parameters are all the inputs required to reproduce this experiment. All
hyper-parameters and other configurations go here. The parameters are saved as any
valid JSON object and can be used in filtering experiments. Nested JSON objects are
permitted, althought it is recommended for readability to keep the hierarchies small in
depth. We use dot-notation to nagivate through hierarchies of parameters; optimizer.lr
attempts to fetch parameters[’optimizer’][’lr’]. As such, the dot character . is
not accepted in parameter names. The parameters are immutable and only set when the
experiment is initially created.

The results are similar to parameters in how they are stored and accessed, but they are
mutable and written to as results are obtained. The results can also be used for filtering
experiments, and are useful for storing summary results for quick access.

5.3.1.2 Experiment run

Each experiment can have more runs. A Run represents a program that ran for an
experiment and saves information that is helpful to execute theRun again. This includes
the command line arguments including the script name, code version (git commit hash)
and local patch if there are uncommited changes, and environment variables.

There is one log allocated for each run.

110 Chapter 5 An experiment management framework

5.3.1.3 The log

The experiment log is the concatenation of the logs of all runs that belong to that
experiment. The log is an append-only list of events. Each event is immutable and can
store any information (as a JSON5 object). Log events have a name and unique ID.

The events are stored in the order they have been created and are hierarchical by name.
The name hierarchy is similar to that of a filesystem and uses the character / as a
separator. It enables grouping of events by name and not only by the order in which
they have been created and serves as a basis for easily quering relevant information from
the log. Events with the same name are treated as one with the most recent data taking
priority, allowing runs (same or different) to override or add information to different log
events after they have been initially logged. Since logs are append-only no information
is lost and overriden values can still be accessed.

Hierarchical event names are not mandatory but recommended for easy filtering and
querying when analysing results. Event names such as training/epoch/0/train and
training/epoch/0/eval are more useful than training-epoch and training-epoch-eval

for the purpose of analysing such logs.

When saved on disk, a log is a single file with the extension jsonl, with one JSON object
per line. Each object represents a log event. The keys event and id are reserved for
saving the event name and its ID, respectively.

5.3.1.4 Attachments

Attachments represent blobs that are saved outside of the results, params or the log and
are referenced from them. An attachment can be referenced from many experiments (ie.
an experiment that starts from a checkpoint generated by another experiment).

Attachments may or may not be managed by dbx. Managed attachments are the ones
that are copied when experiment repositories are synchronized and can be downloaded
with dbx.

An attachment is referenced by its path and a checksum. The path of an attachment
can be a local path on the filesystem (in which case it is not automatically copied on
sync), or a path inside a repository.

5The MongoDB Extended JSON v2 (relaxed) is used for representing values not available in JSON,
such as infinity and NaN.

Chapter 5 An experiment management framework 111

Experiment
runner

Local storage

Server
Stream

Sync

Save

Host A Host Bnetwork

CLI

Web UI

Testing
framework

(other)
Local storage

Sync

Other tools

Library/SDK

Figure 5.7: System architecture showing one experiment running that saves
data both locally and streams data to a server. It shows that the experiment
repository can be synchronized local-to-local, server-to-local and local-to-server
and also that various tools can directly work on the local repository without a
server via using the library or SDK. None of the components need to be on the
same machine.

5.3.2 Experiment repository

In dbx all experiments are saved as part of an experiment repository that can be either
local or remote. Local repositories are saved on disk as plain text files where each
experiment is saved in its own folder. A remote repository is saved remotely, experiment
data is sent and accessed through the network.

5.3.3 Architecture

In this section we present the architecture of our solution and how all the tools work
together. A visual summary can be seen in Figure 5.7.

Experiments, their results and artefacts can be stored either locally in a local repository
located directly on the filesystem, or remotely via a server. Experiment repositories can
be synchronized local-to-remote, remote-to-local and local-to-local by using a command
line tool. The synchronization does not create duplicate experiments even if they are
stored in different folder hierarchies or there are experiment name duplicates.

In local repositories, experiment are stored each in their own folder that contains, at a
minimum, a meta.json file with all the experiment metadata, a log-N.jsonl file for the
log and a run-N.json file for each run. Additional files can be saved if required - large
files or files required by extensions to the core libraries. Server-side, the experiments
and logs are saved in MongoDB; each log event is a document. Large files are stored in

112 Chapter 5 An experiment management framework

a content-addressable way either in the local filesystem (where the server runs) or on a
networked drive or using a cloud provider API.

5.3.4 Logging and saving experiments

A python6 package is provided that allows users to easily define experiments by passing
a dict of metadata, a local path and optionally a server URL.

The package takes logs and metadata from the experiment program and saves them into
the local experiment repository. If a server URL is passed it also streams the logs to the
server. The logging happens in a background process so it will not block the experiment
code waiting for I/O.

The logger can also save information in the experiment results and update the experiment
state and progress. A python interface similar to that of the tqdm package is provided
for sharing progress with the server.

5.3.5 Synchronization

Synchronization can be performed using the command line tool and it is ideal for situa-
tions where a server cannot be used or cannot be accessed from the machine that runs
the experiments. Other use cases are collaboration and sharing results with others but
also for quickly analysing experiment files with standard unix tools.

Synchronization can be performed in any direction from local to server, server to server
or local to local.

5.3.6 Analysing results

The command line tool can also list, filter and search experiments by name or metadata.
It can also extract data from logs by using event names and custom conditions on any of
the fields saved to events. These operations can be combined with other tools to easily
extract required information, create visualisations and plots and compares experiments
with each other.

The server exposes an API that is capable of performing queries on logs (filter events
and select parameters), and these queries can be ran once or as a listener. When they
are run once, the filtering and selecting is done once and the result is returned. When
a query is registered as a listener it can be used to create live visualisations or other
analysis as new data comes in from the experiment runners.

6Python is the most popular machine learning language. Loggers for other languages can be added
later.

Chapter 5 An experiment management framework 113

Experiment searching and filtering is used to get a reference to all experiments that are
needed and log querying and merging is then used to select the final values required for
analysis.

5.3.6.1 Searching experiments

Sets of experiments from a repository can be fetched by applying filters on any of
the metadata, parameters or results that the experiment has. An example of a com-
plex query: get all experiments with kind prune, name prefixed by idea45/ that were
generated in the last week, have the parameter optimizer set to adam and the result
best_val_acc less than 0.8.

5.3.6.2 Querying logs

The experiment log is intended to be the primary source of data for analysis. The logs
can be selected and filtered by name and parameters. Querying logs is for extracting
information about the experiment. The following concepts allow for a powerful and
simple to use method of extracting log data.

Basic filtering. The log can be filtered by event name or any other key-value element
events have. This includes checks for existance of a key and comparing a value to a given
parameter (equality check, less than, greater than, regular expression match for strings).
All the basic filtering can be composed using logical operations AND, OR, NOT.

Name query. The first selection of logs is via the name of the event. Event name
querying can be done by path (separated by /), where a query can be matching event
names fully or partially and can include special parameters:

• wildcard *, matches anything in a single hierarchy level (equivalent to the [^/]

regular expression),

• variable :name, same as the wildcard but the matching value will be available as
name in the results object),

• path wildcard **, matches none or more hierarchy levels (equivalent to any num-
ber of wildcards and attempts to match as many as possible).

Selector. Similar to the well-known SELECT keyword from SQL, the selector allows
to specify what parameters from log events to return. It is also possible to use variables
specified in the name filter, as well as variables obtained from the state.

114 Chapter 5 An experiment management framework

Event merging. Events can be merged (by name query) to yield a concatenation
of data (union of JSON objects). Events in a group are processed in the order they
were logged. If data is overriden the values from the latest event is used. If new data is
added, the result is treated as a larger object. An example use case is fetching all events
with a similar name pattern where the events with the same name are grouped; this is
particularly useful in the case where different runs log the same event name but with
different data (e.g. training script logs the loss per epoch, another script logs training,
validation and test accuracies for all saved checkpoints).

Position-based query. Each event has a position in the log. The events in the
vicinity of a selected event can be used for additional information when querying data
from logs. An example use case is to fetch the latest validation or test accuracy obtained
and the epoch it was obtained at assuming it does not get evaluated at every epoch in a
training loop. Another example in the context of our pruning work is to select all logged
events before or after a given pruning step.

Compose log queries. The above operations are applied on a log, and they produce
another log, which can then be queried again.

Log merging. One or more logs (not log events) can be merged by applying an
aggregate function. This can be for the purpose of computing aggregates per event (e.g.
computing mean and standard error accuracies per epoch or pruning step) or simply
concatenating more logs.

5.3.7 Creating extensions and plugins

No research project is the same and the core features provided by any software manage-
ment solution might need to be augmented. Our system is built from many independent
parts (loggers, command line utilities, a server that exposes an API, a web interface and
a testing framework) that can be replaced or adapted, or new parts can be added.

The server APIs can be used to create new user interfaces, testing or verification frame-
works, experiment design scripts, and so on.

New loggers can be created to further automate and simplify the logging of various met-
rics and deeply integrate with popular machine learning frameworks. Custom importers
can be created such that logs from TensorBoard or other machine learning experiment
management systems can be imported to the server.

Chapter 5 An experiment management framework 115

5.3.8 Implementation details

The project is split into many programs, each fulfilling a certain task and each being
usable as standalone.

The server. A server written in Go that exposes a REST and a gRPC API that can
perform synchronization operations, accept incoming streams and exposes the experi-
ment metadata and logs. It can also perform queries (select and filter) on logs, both
on streaming logs (by registering a query as a listener) and on logs that are finished.
The API exposes methods to search experiments by name or hyperparameters and find
experiments similar to another.

The server can be configured to use different storage mechanisms for large files. For
experiment data excluding the logs a MongoDB database is used and Redis streams are
used for logs.

Loggers. A logger is the software package that is used in the experiment code to send
logs to the server or save them to disk locally (or both at the same time). A python
logger library is released and available at github.com/vladvelici/dbxlogger, where
the experiment repository format is specified such that third party implementations and
integrations are possible. A logger simply saves data produced by the experiment script
as well as information about the runtime environment and code version.

Command line tool. The command line tool can be used as a primary interface to the
system and it can work with the server or directly with local experiment repositories. It
has commands for searching for experiments by metadata or name, filtering logs by event
name and selecting specific fields, synchronizing experiment repositories to and from the
server or each other, and more.

Web interface or GUI. An web user interface that allows easy exploration, comparison
and analysis of the experiments and results. It can plot data from experiment logs
and compare experiments between each other as well as aid in saving notes for each
experiment.

5.4 Project status and future work

This project is a work in progress. The Python logger is currently available at github.
com/vladvelici/dbxlogger. Real-time capabilities are not yet implemented. Synchro-
nization is currently done via the rsync utility, however it has certain limitations es-
pecially when it comes to synchronizing logs and deleted experiments. Querying and
filtering experiments is not part of the released logger. The functionality described is
under construction as a command line tool, originally written in Go but it will likely
be ported to python or implemented at the same time as python bindings. There are

github.com/vladvelici/dbxlogger
github.com/vladvelici/dbxlogger
github.com/vladvelici/dbxlogger

116 Chapter 5 An experiment management framework

plans to combine the logger and the "fetcher" (log and experiment queries, downloading
checkpoints or large files) to be available via a single Python package, allowing users to
not only write data to dbx from experiment code, but also fetch data (e.g. for resuming
training or resolving assets like start checkpoints from experiment or asset IDs and not
file paths).

5.4.1 Study design and verification framework

Repetitively running the same experiments with slightly different parameters is prone
to human error. Mistakes like running all experiments with a slightly different param-
eter than intended are hard to catch but fortunately automated tests that can verify
experiments after they ran are possible.

The first step is to design the Study, the set of experiments to be run and have a program
that generates the commands required to run those experiments. This program can then
be used to generate the expected metadata or certain constraints on the experiment
logs and a testing framework will verify that all experiments in the Study comply. If a
human error was made when designing the Study, simply fixing it and running the test
framework will highlight all experiments affected by the mistake.

Such a tesing framework can be implemented to work with the system described above
by using the library behind the command line tool to fetch experiment data from both
with the server and local experiment repositories.

5.4.1.1 Experiment runner

A separate tool that can schedule experiments to be run and an extension for the server to
keep track of planned experiments as opposed to only those that were already run. Stud-
ies of many experiments can be designed further in advance and they will be scheduled
on computer resources when decided they need to be run.

This is not a job queue but a tool that can be used to design sets of jobs to be sent to a
job queue system where they get executed.

5.4.1.2 Hyperparameter tuner framework

Hyperparameter tuning is a common feature of experiment management frameworks. A
hyperparameter tuner framework can be easily built on top of our server and command
line tools. Using our server, a hyper-parameter tuner tool could schedule experiments to
be run and then register log listeners on them. If experiments underperform they can be
stopped and replaced with other configurations; this can be used to implement different

Chapter 5 An experiment management framework 117

early stopping crtieria but also to wait until experiments finish and use partial results to
generate new configurations.

Our framework can be the connecting platform between different implementations of
hyperparameter tuning strategies.

5.4.1.3 Plot and table generator

An independet utility to generate publication-ready and reproducible plots and tables
directly from data, either from dbx or other source. In our pruning work, most plotting
scripts take many command line arguments as input, fetch data directly from experi-
ments, and generate a plot, a LaTeX table, and a script. The script is human-readable,
easy to edit, and is used to regenerate the plots, for example if data has changed or style
changes must be applied.

5.5 Conclusion

We have identified a list of issues to be addressed to help researchers with managing ma-
chine learning experiment results and written requirements for software solutions. We
reviewed a list of projects that tackle this problem, both in the open-source commu-
nity and commercial options and highlighted that no existing solution satisfies all the
requirements.

We then propose a software architecture that addresses the majority of the issues and
requirements with the possiblity to be extended later via plugins and new tools to im-
prove in the areas not thoroughly solved by the core tools. Our framework dbx is under
construction with some parts available as open-source7 whilst others are still being de-
veloped.

7At https://github.com/vladvelici/dbxlogger

https://github.com/vladvelici/dbxlogger

Chapter 6

Conclusions and future work

In this thesis we presented a thorough exploration of pruning ResNet models block by
block, using seven block selection methods and many configurations of fine-tuning sched-
ules and amounts.

We implemented and evaluated 7 block saliency metrics: oracle, activation mean,
activation change, activation change plus one, block gradient, weights mean,
and random choice. Oracle is the best performing by a noticeable margin when no
fine-tuning is used and randomly picking blocks is worst, however, when fine-tuning is
enabled the difference between block selection methods diminishes. On the other hand,
it is possible to design a badly performing saliency metric (we used block gradient, and
selected the maxium gradients instead of minimum); this resulted in pruned models that
did not train to recover the lost accuracy, with errors significantly higher than other
block selection methods, including random.

How will different block selection methods for pruning perform, what can
be learned from experimentally analysing them, and how important are they
for the final impact on pruning? Some block selection methods perform better than
others when no fine-tuning is enabled. This is easily understood by the fact that we prune
greedily, and the before fine-tuning performance is simply the best local choice given the
selection method. It is no surprise that oracle pruning performs the best, followed by
block gradient magnitude, activation-based methods, and finally mean of weights. At the
same time, when fine-tuning is used, even randomly pruning blocks is relatively on par
with other selection methods. From this we conclude that most block selection methods
avoid bad choices as opposed to making optimal ones. We showed that bad choices do
exist by using the block gradient (max) saliency metric.

To what extent does pruning differ from training from scratch? How do
pruned networks train and perform as compared to random networks? For
pruning only a few blocks, pruning can perform better without fine-tuning or with very

119

120 Chapter 6 Conclusions and future work

little fine-tuning. For pruning more blocks, training from scratch often outperforms
pruning. We argue that pruning block by block is better for pruning a small number of
blocks, or when starting with a model pre-trained elsewhere and the cost of fine-tuning
is of concern. Fine-tuning alone can be much cheaper than training from scratch and
give acceptable results, depending on the pruning configuration. Pruned networks are
best fine-tuned with a learning rate schedule similar to that of the original training; we
obtain significantly better results when starting fine-tuning with a large learning rate of
0.1 for the first 10 (out of 50) epochs (or 2 epochs in some configurations). This helps
the model to jump out of any local minima the pruning process liekly pushed it into.

How much fine-tuning is needed during or after pruning? What is the impact
of different fine-tuning schedules to the pruning process? We introduced a
method of estimating the cost of fine-tuning, the epoch-parameter, which takes into
account the network size at fine-tuning steps throughout pruning. We reported the
cost of fine-tuning for different fine-tuning configurations, and we conclude that a small
budget can be effective, but not the best.

The location and amount of fine-tuning is critical for the final pruned model performance,
and we showed that using a threshold on the accuracy loss to start a fine-tuning loop is a
simple yet effective way to keep the cost of fine-tuning under control and obtain efficient
models. Thresholding schedules more fine-tuning loops toward the end of the pruning
process, when the model is smaller and faster to train. Also, the biggest accuracy gains
from training are also seen closer to the end of pruning.

The downside of thresholding is having to choose a threshold, which to be effective
depends on the target network size. An alternative is to schedule a small number of
epochs (we called it the low schedule) at every pruning step, and a longer fine-tuning
loop at the end (the high schedule). This results in costs and performance levels on par
with thresholding.

Is pruning block by block an effective way of pruning ResNet models? Pruning
27 blocks (50%) from a ResNet-110, in our best configuration, gives 6.48% test error on
CIFAR-10, a 0.45% loss from the initial model. When pruning 45 blocks to obtain a
similar size to that of a ResNet-20, our best method has a 1.92% loss from initial, 7.95%
error. We observe that training small, standard ResNet configurations gives better results
than pruning.

Block by block pruning can be effective and useful if larger pre-trained models are avail-
able from elsewhere (e.g. model zoos) and small models are required at a low cost of
fine-tuning. If model complexity or size is of high concern, pruning a few blocks with-
out fine-tuning is a viable option for preparing a large model for further pruning or
compression by other means.

Chapter 6 Conclusions and future work 121

Pruning block by block has the advantage of being simple and easy to implement, highly
effective for a small number of blocks, and it is possible to further combine it with other
pruning or network compression methods.

Another observation is that pruning block by block is effective even when starting with
models that have not been trained to convergence, showing promising final results for
pruned networks even if the initial model was only trained for one epoch.

6.1 Future work

This section highlights key areas of improvement for this work and possible future direc-
tions.

6.1.1 Evaluation on multiple datasets

This thesis is introducing the idea of pruning ResNet networks block by block. Through-
out this thesis we have only used a small dataset, CIFAR-10, for our experiments. Re-
running key experiments on ImageNet for image classification, and expanding the work
to include other tasks such as object detection on the Pascal VOC as well as MS COCO
datasets would help strengthen our findings.

6.1.2 Multiple base architectures

Our purning work is focused on removing blocks from ResNet networks but it can be
easily extended to use other base architectures with residual connections, whilst keeping
the goal of pruning large parts of a network at once.

6.1.3 Combined prunable units

Another area to be explored is combining more pruning methods. Intuitively a hybrid
pruning method which first selects large prunable units and moves to smaller and smaller
ones as pruning progresses might be able to yield similar results as pruning smaller units
from the beginning, but in fewer steps. There is clear advantage of pruning large units
(ResNet blocks) of a network at once: a big reduction in complexity in a single iter-
ation. The limitation is that not too many blocks can be removed until the network
is not performing as well as the inital model, but if as many ResNet blocks as possi-
ble are removed the pruning process can likely continue with a smaller prunable unit
(convolutional filters) without significant loss of accuracy.

122 Chapter 6 Conclusions and future work

6.1.4 Transfer learning

Adjusting a model to a new, smaller dataset seems to be a good fit for removing parts
of a neural network. Starting with a pre-trained model trained on a large dataset (such
as ImageNet) and pruning it to fit smaller tasks (such as CIFAR-10, Birds-100, SVHN),
is something to be explored. A key question to ask is whether fine-tuning the model to
fit the new dataset should be done before, throughout, or after pruning, and whether
the cost of training can be minimized. The accuracy of each of the three choices is to
be compared also with training a small model from scratch on the large dataset and
fine-tuning it for the small dataset.

6.1.5 Knowledge distillation

Knowledge distillation is a technique for training small (student) networks bsaed on the
learnt knowledge of (bigger) teacher networks. We had minimal preliminary work to
use knowledge distillation for fine-tuning pruned networks, but it was not sufficiently
examined to be included in the thesis. We leave as future work to thoroughly explore
fine-tuning pruned networks with knowledge distillation using the initial model. A small
number of experiment results are available in the published dataset (Velici, 2021) in the
folder organised/distillation.

6.1.6 Local training

Removing a ResNet block damages the model. This damage should be repaired in order
for the model to recover the lost performance. Intuitively, the damage caused by removing
a block is local to where the block is and, through fine-tuning, the network should be
able to adjust the weights in the vicinity of the damage.

At each fine-tuning step, a selected part of the network is trained and the remaining
is kept frozen. The intuition is that we aim to fix the local damange relative to where
blocks have been pruned. In phased local training we gradually expand this vicinity until
it eventually includes the full network.

Two new parameters, BL and BR, are introduced. They represent the number of blocks
to fine-tune at the left and at the right of the pruned block, respectively. Local fine-
tuning is performed for a small number of epochs at every pruning step, similar to the
low training schedule in Section 4.1, and is followed by regular fine-tuning at the end of
the pruning process.

Obtaining empirical data evaluating local training with different choices of BL and BR

is left as future work.

Chapter 6 Conclusions and future work 123

We have done preliminary experiments for local training but has not been thoroughly ex-
plored and it was left out of the thesis. A small number of experiment results are available
in the published dataset (Velici, 2021) in the folder organised/local_training.

6.1.7 Pruning from random

We have explored pruning from random weights or little training in Section 4.4, and
the topic can be investigated further. Namely, different fine-tuning schedules can be
evaluated in an attempt to reduce the total training cost and perhaps further improve
model performance.

Appendix A

Extra results for pruning

A.1 Multiple fine-tuning loops

A results table (Table A.1) is included here for completeness for pruning a ResNet-
110 with different fine-tuning schedules and block selection methods. "1x", "2x", "4x"
denote the number of uniformly spread fine-tuning loops. t denotes that an accuracy
loss threshold was used. Thresholding and "every 2" runs are continuous and others are
individual prunings experiments (ie. every row with values under "4x" has four fine-
tuning loops). All fine-tuning loops use up to 50 epochs. Cost is in epoch-parameters
(1e6) shown based on epochs used when picking best validation error. Cost of 0 means
training didn’t improve accuracy. A * indicates the value is the mean from 6 runs with
different initial models.

125

126 Appendix A Extra results for pruning

T
ab

le
A
.1
:
R
es
ul
ts

ta
bl
e
fr
om

pr
un

in
g
a
R
es
N
et
-1
10

w
it
h
di
ffe

re
nt

fin
e-
tu
ni
ng

sc
he

du
le
s
an

d
bl
oc
k
se
le
ct
io
n
m
et
ho

ds
.

A
ct
iv
at
io
n
ch
an

ge
,2

x
A
ct
iv
at
io
n
ch
an

ge
,4

x
O
ra
cl
e,

1x
O
ra
cl
e,

1x
,4

00
ep

oc
hs

O
ra
cl
e,

2x
O
ra
cl
e,

4x
O
ra
cl
e,

ev
er
y
2
*

O
ra
cl
e,

t=
0.
01

*
O
ra
cl
e,

t=
0.
1
*

#
bl
oc
ks

re
m
ov
ed

E
rr

C
os
t

R
%

E
rr

C
os
t

R
%

E
rr

C
os
t

R
%

E
rr

C
os
t

R
%

E
rr

C
os
t

R
%

E
rr

C
os
t

R
%

E
rr

C
os
t

R
%

E
rr

C
os
t

R
%

E
rr

C
os
t

R
%

1
-

-
-

-
-

-
5.
77

0.
0

1.
07

5.
70

66
0.
9

1.
07

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
2

-
-

-
-

-
-

5.
92

0.
0

2.
14

5.
47

64
0.
2

2.
14

-
-

-
-

-
-

6.
22

0.
0

0.
54

-
-

-
-

-
-

3
-

-
-

-
-

-
6.
07

0.
0

6.
42

5.
67

61
5.
5

6.
42

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
4

-
-

-
-

-
-

5.
88

75
.9

6.
69

5.
69

54
9.
1

6.
69

-
-

-
-

-
-

6.
50

24
.5

2.
68

-
-

-
-

-
-

5
-

-
-

-
-

-
5.
91

57
.5

7.
76

5.
70

50
9.
2

7.
76

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
6

-
-

-
-

-
-

6.
01

41
.0

8.
83

5.
52

61
5.
3

8.
83

-
-

-
-

-
-

6.
63

49
.0

4.
83

-
-

-
-

-
-

7
-

-
-

-
-

-
6.
18

67
.0

9.
91

5.
62

57
5.
4

9.
91

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
8

-
-

-
-

-
-

6.
17

55
.0

14
.1
8

5.
83

45
8.
9

14
.1
8

-
-

-
-

-
-

6.
51

78
.8

10
.1
8

-
-

-
-

-
-

9
6.
29

95
.3

16
.0
6

6.
27

15
8.
7

12
.8
5

5.
93

73
.3

15
.2
5

5.
79

41
3.
6

15
.2
5

6.
12

67
.5

15
.2
5

6.
06

14
2.
2

11
.2
5

-
-

-
-

-
-

-
-

-
10

-
-

-
-

-
-

6.
44

30
.4

16
.3
3

5.
68

54
3.
1

16
.3
3

-
-

-
-

-
-

6.
44

12
3.
1

15
.5
2

-
-

-
-

-
-

11
-

-
-

-
-

-
6.
35

30
.2

20
.6
0

5.
66

50
4.
3

20
.6
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
12

-
-

-
-

-
-

6.
61

36
.6

21
.6
7

5.
84

40
1.
3

21
.6
7

-
-

-
-

-
-

6.
32

16
3.
5

16
.8
7

-
-

-
-

-
-

13
5.
95

91
.2

26
.7
5

6.
05

11
8.
6

29
.9
5

6.
43

35
.9

25
.9
5

6.
11

33
7.
1

25
.9
5

6.
22

84
.2

25
.9
5

6.
45

17
7.
8

21
.9
4

-
-

-
-

-
-

-
-

-
14

-
-

-
-

-
-

6.
27

45
.5

27
.0
2

5.
63

49
0.
1

27
.0
2

-
-

-
-

-
-

6.
47

20
4.
2

18
.2
1

-
-

-
-

-
-

15
-

-
-

-
-

-
6.
39

58
.5

28
.0
9

5.
40

44
1.
8

28
.0
9

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
16

-
-

-
-

-
-

6.
49

38
.0

29
.1
7

5.
78

43
1.
5

29
.1
7

-
-

-
-

-
-

6.
47

25
3.
3

23
.5
6

-
-

-
-

-
-

17
6.
34

81
.5

40
.6
5

6.
00

20
5.
3

40
.6
5

6.
38

46
.4

29
.4
4

5.
82

43
6.
0

29
.4
4

6.
13

85
.5

32
.6
4

6.
14

15
6.
4

32
.6
4

-
-

-
-

-
-

-
-

-
18

-
-

-
-

-
-

6.
44

53
.9

33
.7
1

5.
67

38
3.
2

33
.7
1

-
-

-
-

-
-

6.
39

29
0.
5

28
.9
0

-
-

-
-

-
-

19
-

-
-

-
-

-
6.
28

49
.4

37
.9
8

5.
73

35
5.
3

37
.9
8

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
20

-
-

-
-

-
-

6.
65

34
.0

42
.2
6

5.
94

30
7.
8

42
.2
6

-
-

-
-

-
-

6.
44

33
4.
8

33
.4
5

-
-

-
-

-
-

21
6.
57

83
.6

54
.5
4

6.
45

14
0.
4

48
.1
4

6.
71

21
.6

43
.3
3

5.
98

30
1.
1

43
.3
3

6.
45

94
.6

40
.1
3

6.
28

19
2.
3

35
.3
2

-
-

-
-

-
-

-
-

-
22

-
-

-
-

-
-

6.
70

41
.4

44
.4
0

5.
94

35
8.
9

44
.4
0

-
-

-
-

-
-

6.
45

37
1.
8

34
.7
9

-
-

-
-

-
-

23
-

-
-

-
-

-
6.
61

26
.6

48
.6
8

5.
91

34
2.
0

48
.6
8

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
24

-
-

-
-

-
-

6.
63

14
.8

49
.7
5

5.
94

30
1.
8

49
.7
5

-
-

-
-

-
-

6.
59

40
4.
0

39
.3
3

-
-

-
-

-
-

25
6.
42

77
.5

58
.8
3

6.
47

17
7.
5

62
.0
4

6.
57

41
.5

50
.0
2

6.
14

34
6.
0

50
.0
2

6.
66

59
.8

49
.2
2

6.
53

22
5.
4

49
.2
2

-
-

-
-

-
-

-
-

-
26

-
-

-
-

-
-

6.
89

36
.4

51
.0
9

6.
36

25
0.
5

51
.0
9

-
-

-
-

-
-

6.
52

44
0.
4

44
.6
8

-
-

-
-

-
-

27
-

-
-

6.
84
*

17
7.
8

57
.7
7

6.
86

41
.4

52
.1
7

6.
45

27
9.
0

52
.1
7

-
-

-
6.
73
*

15
8.
9

46
.5
6

-
-

-
6.
69

64
.9

50
.5
6

6.
48

23
9.
0

49
.7
6

28
-

-
-

-
-

-
6.
83

22
.6

56
.4
4

6.
49

23
3.
7

56
.4
4

-
-

-
-

-
-

6.
60

47
2.
6

46
.0
2

-
-

-
-

-
-

29
7.
15

43
.7

69
.5
3

6.
78

13
0.
6

67
.9
2

7.
24

28
.5

56
.7
1

6.
66

20
0.
0

56
.7
1

7.
06

84
.8

55
.9
1

6.
79

19
5.
2

59
.1
1

-
-

-
-

-
-

-
-

-
30

-
-

-
-

-
-

7.
34

10
.8

60
.9
9

6.
33

26
6.
0

60
.9
9

-
-

-
-

-
-

6.
64

50
5.
7

47
.3
7

-
-

-
-

-
-

31
-

-
-

-
-

-
7.
35

28
.3

65
.2
6

6.
48

18
1.
6

65
.2
6

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
32

-
-

-
-

-
-

6.
97

20
.9

65
.5
3

6.
37

22
9.
7

65
.5
3

-
-

-
-

-
-

6.
79

53
2.
0

55
.9
2

-
-

-
-

-
-

33
7.
67

61
.0

78
.6
2

7.
71

96
.5

78
.6
2

7.
15

24
.0

69
.8
1

6.
72

16
1.
5

69
.8
1

7.
26

57
.4

69
.0
0

6.
91

14
5.
8

65
.0
0

-
-

-
-

-
-

-
-

-
34

-
-

-
-

-
-

7.
33

20
.2

74
.0
8

6.
51

15
3.
4

74
.0
8

-
-

-
-

-
-

6.
78

55
1.
0

61
.2
6

-
-

-
-

-
-

35
-

-
-

-
-

-
7.
82

18
.7

78
.3
5

6.
97

10
3.
8

78
.3
5

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
36

-
-

-
-

-
-

8.
61

4.
8

82
.6
3

7.
25

78
.5

82
.6
3

-
-

-
-

-
-

6.
93

56
7.
5

61
.8
0

-
-

-
-

-
-

37
8.
87

32
.7

87
.7
1

8.
25

94
.8

83
.7
0

8.
71

10
.7

86
.9
0

7.
75

77
.3

86
.9
0

7.
55

59
.6

82
.1
0

6.
95

11
4.
0

74
.0
9

-
-

-
-

-
-

-
-

-
38

-
-

-
-

-
-

9.
02

7.
3

87
.9
8

7.
88

53
.3

87
.9
8

-
-

-
-

-
-

7.
04

58
8.
9

67
.1
5

-
-

-
-

-
-

39
-

-
-

-
-

-
9.
06

9.
4

88
.2
5

7.
69

55
.5

88
.2
5

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
40

-
-

-
-

-
-

9.
17

4.
2

88
.5
2

7.
78

78
.7

88
.5
2

-
-

-
-

-
-

7.
23

60
3.
6

71
.6
9

-
-

-
-

-
-

41
9.
22

45
.4

88
.7
9

8.
33

93
.8

84
.7
8

9.
01

7.
4

88
.7
9

8.
10

51
.0

88
.7
9

8.
47

51
.2

87
.9
8

7.
73

96
.1

79
.9
7

-
-

-
-

-
-

-
-

-
42

-
-

-
-

-
-

9.
39

8.
9

89
.0
6

7.
91

57
.4

89
.0
6

-
-

-
-

-
-

7.
57

61
5.
0

76
.2
4

-
-

-
-

-
-

43
-

-
-

-
-

-
9.
43

3.
9

89
.3
3

7.
84

49
.9

89
.3
3

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
44

-
-

-
-

-
-

9.
74

6.
1

89
.6
0

8.
34

49
.5

89
.6
0

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
45

9.
15

30
.7

89
.8
7

8.
39

83
.9

85
.8
6

10
.1
7

7.
7

89
.8
7

8.
66

69
.5

89
.8
7

9.
22

52
.6

89
.0
6

9.
08

11
0.
4

89
.8
7

8.
20

62
3.
4

85
.0
6

8.
17

13
0.
0

81
.8
6

7.
97

50
5.
5

85
.0
6

Appendix A Extra results for pruning 127

A.2 Phased block pruning

Results for phased pruning with a threshold of 0.01 at every training point are shown
in Table A.2. They were used for Section 4.2, Figure 4.3. In the main body only the
accuracies for networks with the same number of blocks as the standard baseline networks
were shown.

Table A.3 shows a detailed comparison between phased pruning and simple pruning for
50 epochs of total training for each block removed, starting from a ResNet-110. Simple
pruning and phased pruning perform about the same overall.

Table A.2: Average test accuracy for 5 runs of phased pruning for different
values of S. Phased pruning for S epochs and fine-tuning for 50-S epochs at
every training loop. Training threshold 0.01 and a schedule for all baseline
points. Initial network is ResNet-110. Dataset is CIFAR-10. Only showing the
points where all runs performed a training loop.

Blocks removed Simple S=10 S=20 S=30 S=40

8 94.04± 0.03 93.98± 0.03 93.96± 0.03 93.98± 0.02 93.88± 0.03
ResNet-56 27 93.06± 0.05 93.09± 0.07 92.96± 0.05 92.95± 0.05 92.97± 0.05
ResNet-44 33 92.62± 0.06 92.76± 0.07 92.72± 0.10 92.52± 0.10 92.59± 0.10

34 92.68± 0.10 92.66± 0.03 92.71± 0.10 92.60± 0.07 92.52± 0.13
35 92.46± 0.09 92.62± 0.05 92.44± 0.10 92.59± 0.09 92.44± 0.08
36 92.40± 0.07 92.51± 0.05 92.43± 0.04 92.44± 0.07 92.33± 0.09
37 92.31± 0.08 92.40± 0.07 92.41± 0.12 92.28± 0.04 92.30± 0.06
38 92.29± 0.07 92.28± 0.10 92.14± 0.10 92.12± 0.08 92.25± 0.09

ResNet-32 39 92.17± 0.10 92.18± 0.07 92.17± 0.05 91.92± 0.10 92.11± 0.10
40 92.01± 0.11 92.07± 0.08 91.95± 0.18 91.91± 0.05 92.01± 0.11
41 91.89± 0.10 91.82± 0.04 91.81± 0.09 91.62± 0.05 91.88± 0.04
42 91.71± 0.07 91.66± 0.09 91.59± 0.08 91.66± 0.05 91.54± 0.09
43 91.38± 0.10 91.41± 0.10 91.46± 0.07 91.32± 0.09 91.44± 0.08
44 91.24± 0.06 91.10± 0.09 91.25± 0.22 91.11± 0.13 91.34± 0.08

ResNet-20 45 90.88± 0.05 90.70± 0.10 90.69± 0.03 90.59± 0.12 90.51± 0.08

Times highest 5 6 3 0 1

128 Appendix A Extra results for pruning

Table A.3: Phased and simple pruning starting from a ResNet-110, using
CIFAR-10 dataset. Fine-tuning was performed for 50 epochs at each block
removed, and for phased pruning 10 epochs for phased pruning and 40 for fine-
tuning. Showing mean test accuracy from 5 runs.

Blocks removed Simple Phased S=10

1 94.30± 0.03 94.27± 0.02
2 94.28± 0.02 94.28± 0.04
3 94.29± 0.04 94.18± 0.05
4 94.23± 0.02 94.23± 0.04
5 94.15± 0.04 94.18± 0.02
6 94.12± 0.04 94.10± 0.03
7 94.04± 0.05 94.04± 0.03
8 93.93± 0.10 93.98± 0.02
9 93.96± 0.02 93.95± 0.04

10 93.93± 0.09 93.90± 0.04
11 93.77± 0.08 93.83± 0.05
12 93.85± 0.04 93.75± 0.06
13 93.80± 0.05 93.70± 0.03
14 93.74± 0.04 93.65± 0.05
15 93.73± 0.06 93.65± 0.03
16 93.72± 0.05 93.68± 0.04
17 93.81± 0.02 93.61± 0.06
18 93.68± 0.02 93.62± 0.05
19 93.56± 0.05 93.50± 0.06
20 93.50± 0.02 93.53± 0.07
21 93.62± 0.06 93.56± 0.07
22 93.53± 0.04 93.49± 0.08
23 93.58± 0.03 93.33± 0.06
24 93.47± 0.05 93.36± 0.03
25 93.38± 0.03 93.35± 0.04
26 93.43± 0.03 93.30± 0.04

ResNet-56 27 93.24± 0.06 93.20± 0.05
28 93.15± 0.03 93.15± 0.05
29 93.13± 0.11 93.02± 0.04
30 93.00± 0.04 93.02± 0.03
31 93.00± 0.05 92.92± 0.04
32 92.86± 0.09 92.95± 0.06

ResNet-44 33 92.81± 0.10 92.92± 0.05
34 92.58± 0.08 92.73± 0.10
35 92.53± 0.10 92.62± 0.08
36 92.44± 0.05 92.47± 0.08
37 92.54± 0.05 92.35± 0.07
38 92.40± 0.06 92.31± 0.05

ResNet-32 39 92.31± 0.06 92.12± 0.08
40 92.07± 0.08 92.04± 0.11
41 91.83± 0.07 91.75± 0.11
42 91.58± 0.08 91.48± 0.07
43 91.48± 0.06 91.54± 0.05
44 90.92± 0.21 91.33± 0.17

ResNet-20 45 90.72± 0.15 90.92± 0.08

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,
Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Software avail-
able from tensorflow.org.

Abbasi-Asl, R. and Yu, B. (2017). Structural compression of convolutional neural net-
works based on greedy filter pruning. arXiv preprint arXiv:1705.07356, 21.

Acusense Technologies, I. (2019). Datmo.

Adorf, C. S., Dodd, P. M., Ramasubramani, V., and Glotzer, S. C. (2018). Simple
data and workflow management with the signac framework. Comput. Mater. Sci.,
146(C):220–229.

Adorf, C. S., Ramasubramani, V., Dice, B. D., Henry, M. M., Dodd, P. M., and Glotzer,
S. C. (2019). glotzerlab/signac.

Allegro.ai (2019). Trains.

Anwar, S., Hwang, K., and Sung, W. (2017). Structured pruning of deep convolu-
tional neural networks. ACM Journal on Emerging Technologies in Computing Systems
(JETC), 13(3):1–18.

Anwar, S. and Sung, W. (2016). Compact deep convolutional neural networks with coarse
pruning. arXiv preprint arXiv:1610.09639.

Arik, S. O., Chrzanowski, M., Coates, A., Diamos, G., Gibiansky, A., Kang, Y., Li,
X., Miller, J., Raiman, J., Sengupta, S., et al. (2017). Deep voice: Real-time neural
text-to-speech. arXiv preprint arXiv:1702.07825.

Biewald, L. (2019). Weights and biases.

129

130 REFERENCES

Blakeney, C., Yan, Y., and Zong, Z. (2020). Is pruning compression?: Investigating
pruning via network layer similarity. In The IEEE Winter Conference on Applications
of Computer Vision, pages 914–922.

Blalock, D., Gonzalez Ortiz, J. J., Frankle, J., and Guttag, J. (2020). What is the state
of neural network pruning? In Proceedings of Machine Learning and Systems 2020,
pages 129–146.

Comet.ml (2019). Comet.ml.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Ding, X., Ding, G., Han, J., and Tang, S. (2018). Auto-balanced filter pruning for
efficient convolutional neural networks. In AAAI, volume 3, page 7.

Dong, X., Chen, S., and Pan, S. (2017). Learning to prune deep neural networks via
layer-wise optimal brain surgeon. In Guyon, I., Luxburg, U. V., Bengio, S., Wal-
lach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems 30, pages 4857–4867. Curran Associates, Inc.

Dong, X. and Yang, Y. (2019). Network pruning via transformable architecture search.
In Advances in Neural Information Processing Systems, pages 760–771.

Facebook Research (2019). Visdom.

Frankle, J. and Carbin, M. (2019). The lottery ticket hypothesis: Finding sparse, train-
able neural networks. In International Conference on Learning Representations.

Gale, T., Zaharia, M., Young, C., and Elsen, E. (2020). Sparse GPU kernels for deep
learning. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC 2020.

Gomez, A. N., Zhang, I., Kamalakara, S. R., Madaan, D., Swersky, K., Gal, Y., and
Hinton, G. E. (2019). Learning sparse networks using targeted dropout. arXiv preprint
arXiv:1905.13678.

Gordon, M. A., Duh, K., and Andrews, N. (2020). Compressing bert: Studying the
effects of weight pruning on transfer learning. arXiv preprint arXiv:2002.08307.

Gray, S., Radford, A., and Kingma, D. P. (2017). Gpu kernels for block-sparse weights.
arXiv preprint arXiv:1711.09224, 3.

REFERENCES 131

Haibe-Kains, B., Adam, G. A., Hosny, A., Khodakarami, F., Waldron, L., Wang, B.,
McIntosh, C., Goldenberg, A., Kundaje, A., Greene, C. S., et al. (2020). Transparency
and reproducibility in artificial intelligence. Nature, 586(7829):E14–E16.

Han, S., Pool, J., Tran, J., and Dally, W. (2015). Learning both weights and connections
for efficient neural network. In Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and
Garnett, R., editors, Advances in Neural Information Processing Systems, volume 28,
pages 1135–1143. Curran Associates, Inc.

Hassibi, B., Stork, D. G., and Wolff, G. J. (1993). Optimal brain surgeon and general
network pruning. In Neural Networks, 1993., IEEE International Conference on, pages
293–299. IEEE.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recogni-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778.

He, Y., Dong, X., Kang, G., Fu, Y., Yan, C., and Yang, Y. (2020). Asymptotic soft filter
pruning for deep convolutional neural networks. IEEE Transactions on Cybernetics,
50(8):3594–3604.

He, Y., Kang, G., Dong, X., Fu, Y., and Yang, Y. (2018). Soft filter pruning for ac-
celerating deep convolutional neural networks. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18, pages 2234–2240.
International Joint Conferences on Artificial Intelligence Organization.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861.

Hu, H., Peng, R., Tai, Y.-W., and Tang, C.-K. (2016). Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures. arXiv preprint
arXiv:1607.03250.

Huang, G., Liu, Z., Weinberger, K. Q., and van der Maaten, L. (2017). Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, volume 1, page 3.

Huang, G., Sun, Y., Liu, Z., Sedra, D., andWeinberger, K. Q. (2016). Deep networks with
stochastic depth. In Leibe, B., Matas, J., Sebe, N., and Welling, M., editors, Computer
Vision – ECCV 2016, pages 646–661, Cham. Springer International Publishing.

Huang, Z. and Wang, N. (2018). Data-driven sparse structure selection for deep neural
networks. In Proceedings of the European conference on computer vision (ECCV),
pages 304–320.

Inc., N. L. (2019). Neptune.ml.

132 REFERENCES

Iterative, I. (2019). Dvc.

Jia, H., Xiang, X., Fan, D., Huang, M., Sun, C., Meng, Q., He, Y., and Chen, C. (2018).
Droppruning for model compression. CoRR, abs/1812.02035.

Kendall, M. G. (1945). The treatment of ties in ranking problems. Biometrika, pages
239–251.

Khan, A., Sohail, A., Zahoora, U., and Qureshi, A. S. (2020). A survey of the recent
architectures of deep convolutional neural networks. Artificial Intelligence Review,
53(8):5455–5516.

Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and Jürgen Schmidhuber
(2017). The Sacred Infrastructure for Computational Research. In Katy Huff, David
Lippa, Dillon Niederhut, and Pacer, M., editors, Proceedings of the 16th Python in
Science Conference, pages 49 – 56.

Kosiorek, A. R. (2019). Forge.

Krizhevsky, A. and Hinton, G. (2009). Learning multiple layers of features from tiny
images.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–
444.

LeCun, Y., Denker, J. S., and Solla, S. A. (1990). Optimal brain damage. In Advances
in neural information processing systems, pages 598–605.

Lee, N., Ajanthan, T., Gould, S., and Torr, P. H. S. (2020). A signal propagation
perspective for pruning neural networks at initialization. In International Conference
on Learning Representations.

Lee, N., Ajanthan, T., and Torr, P. H. (2018). Snip: Single-shot network pruning based
on connection sensitivity. arXiv preprint arXiv:1810.02340.

Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. (2016). Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710.

Lin, J., Rao, Y., Lu, J., and Zhou, J. (2017). Runtime neural pruning. In Guyon, I.,
Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,
R., editors, Advances in Neural Information Processing Systems 30, pages 2181–2191.
Curran Associates, Inc.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T. (2018). Rethinking the value of
network pruning. arXiv preprint arXiv:1810.05270.

Luo, J., Wu, J., and Lin, W. (2018). Thinet: A filter level pruning method for deep
neural network compression. In 2017 IEEE International Conference on Computer
Vision (ICCV), volume 00, pages 5068–5076.

REFERENCES 133

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). Shufflenet v2: Practical guidelines
for efficient cnn architecture design. In Proceedings of the European conference on
computer vision (ECCV), pages 116–131.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J.,
Tsai, D., Amde, M., Owen, S., et al. (2016). Mllib: Machine learning in apache spark.
The Journal of Machine Learning Research, 17(1):1235–1241.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J. (2016). Pruning convolu-
tional neural networks for resource efficient inference.

Noy, A., Nayman, N., Ridnik, T., Zamir, N., Doveh, S., Friedman, I., Giryes, R., and
Zelnik, L. (2020). Asap: Architecture search, anneal and prune. In International
Conference on Artificial Intelligence and Statistics, pages 493–503. PMLR.

Park, J., Li, S., Wen, W., Tang, P. T. P., Li, H., Chen, Y., and Dubey, P. (2016).
Faster cnns with direct sparse convolutions and guided pruning. arXiv preprint
arXiv:1608.01409.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., and Lerer, A. (2017). Automatic differentiation in pytorch.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). Pytorch: An imperative style, high-performance deep learning library. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R., editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine
learning in python. Journal of machine learning research, 12(Oct):2825–2830.

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J. (2017). Svcca: Singular
vector canonical correlation analysis for deep learning dynamics and interpretability.
In Advances in Neural Information Processing Systems, pages 6076–6085.

Ren, M., Pokrovsky, A., Yang, B., and Urtasun, R. (2018). Sbnet: Sparse blocks network
for fast inference. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 8711–8720.

Rosenfeld, A. and Tsotsos, J. K. (2019). Intriguing properties of randomly weighted
networks: Generalizing while learning next to nothing. In 2019 16th Conference on
Computer and Robot Vision (CRV), pages 9–16. IEEE.

134 REFERENCES

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 115(3):211–252.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4510–4520.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of Ma-
chine Learning Research, 15(56):1929–1958.

Studio.ML (2019). Studio.ml.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. (2017). Efficient processing of deep
neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329.

Tan, M. and Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convolutional
neural networks. arXiv preprint arXiv:1905.11946.

TensorHub, I. (2019). Guild ai.

valohai.com (2019). Valohai.

van Amersfoort, J., Alizadeh, M., Farquhar, S., Lane, N., and Gal, Y. (2020). Single
shot structured pruning before training. arXiv preprint arXiv:2007.00389.

Vartak, M., Subramanyam, H., Lee, W.-E., Viswanathan, S., Husnoo, S., Madden, S.,
and Zaharia, M. (2016). M odel db: a system for machine learning model management.
In Proceedings of the Workshop on Human-In-the-Loop Data Analytics, page 14. ACM.

Veit, A., Wilber, M. J., and Belongie, S. (2016). Residual networks behave like ensembles
of relatively shallow networks. In Advances in Neural Information Processing Systems,
pages 550–558.

Velici, V. (2021). Results and experiment logs for phd thesis "pruning resnet neural
networks block by block". DOI: 10.5281/zenodo.4767180.

Velici, V. and Prügel-Bennett, A. (2021a). Object detection for crabs in top-view seabed
imagery. arXiv preprint arXiv:2105.02964.

Velici, V. and Prügel-Bennett, A. (2021b). Rotlstm: Rotating memories in recurrent
neural networks. arXiv preprint arXiv:2105.00357.

Wang, C., Zhang, G., and Grosse, R. (2020). Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376.

REFERENCES 135

Wang, W., Zhao, S., Chen, M., Hu, J., Cai, D., and Liu, H. (2019). Dbp: Dis-
crimination based block-level pruning for deep model acceleration. arXiv preprint
arXiv:1912.10178.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. (2016). Learning structured sparsity
in deep neural networks. Advances in neural information processing systems, 29:2074–
2082.

Weston, J., Bordes, A., Chopra, S., and Mikolov, T. (2015). Towards ai-complete question
answering: A set of prerequisite toy tasks. CoRR, abs/1502.05698.

Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L. S., Grauman, K., and Feris, R.
(2018). Blockdrop: Dynamic inference paths in residual networks. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8817–8826.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. (2017). Aggregated residual trans-
formations for deep neural networks. In Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on, pages 5987–5995. IEEE.

Yamada, Y., Iwamura, M., Akiba, T., and Kise, K. (2019). Shakedrop regularization for
deep residual learning. IEEE Access, 7:186126–186136.

Yang, T.-J., Chen, Y.-H., and Sze, V. (2017). Designing energy-efficient convolutional
neural networks using energy-aware pruning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5687–5695.

Zhang, X., Zhou, X., Lin, M., and Sun, J. (2018). Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 6848–6856.

Zhou, H., Alvarez, J. M., and Porikli, F. (2016). Less is more: Towards compact cnns.
In European Conference on Computer Vision, pages 662–677. Springer.

Zhou, H., Lan, J., Liu, R., and Yosinski, J. (2019). Deconstructing lottery tickets: Zeros,
signs, and the supermask. In Advances in Neural Information Processing Systems,
pages 3597–3607.

Zhu, M., Zhang, T., Gu, Z., and Xie, Y. (2019). Sparse tensor core: Algorithm and hard-
ware co-design for vector-wise sparse neural networks on modern gpus. In Proceedings
of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, MI-
CRO ’52, page 359–371, New York, NY, USA. Association for Computing Machinery.

	Acknowledgements
	Declaration of Authorship
	1 Introduction
	1.1 Neural network pruning
	1.2 Experiment management
	1.3 Thesis structure
	1.4 Early work
	1.5 Definitions and clarifications

	2 Review of major neural network pruning methods
	2.1 Choice of prunable unit
	2.2 Global or layer-wise pruning
	2.3 Prunable units saliency metric
	2.3.1 Saliency based on the value of weights
	2.3.2 Saliency based on activation statistics
	2.3.3 Saliency based on gradients
	2.3.4 Learning masks without explicit saliency evaluation

	2.4 Fine-tuning method
	2.4.1 Amount of fine-tuning steps
	2.4.2 Weights to use for fine-tuning
	2.4.3 Combined pruning and training

	2.5 Static or dynamic pruning
	2.6 Soft pruning
	2.7 Pruning as compression
	2.8 Comparing pruning methods
	2.8.1 Oracle pruning
	2.8.2 Random pruning
	2.8.3 Training from scratch

	2.9 Pruning performance depends on starting weights
	2.9.1 Trained to be pruned

	2.10 Training small networks from scratch
	2.10.1 Networks designed for compute and size efficiency

	2.11 Changing task or dataset via pruning
	2.12 Chapter summary

	3 Pruning ResNet networks block by block
	3.1 Intuition and background
	3.1.1 Pruning ResNet blocks

	3.2 Baselines
	3.3 Block selection methods
	3.3.1 Comparing block selection algorithms
	3.3.2 Other block selection methods
	3.3.3 Performance correlation before and after fine-tuning
	3.3.4 Block selection methods with fine-tuning enabled
	3.3.5 Blocks removed and parameters removed

	3.4 Block selection and the initial random initialization
	3.5 Fine-tuning frequency and amount
	3.5.1 The cost of fine-tuning
	3.5.2 Single shot fine-tuning
	3.5.3 More fine-tuning loops
	3.5.4 Fine-tuning at every step
	3.5.5 Thresholding accuracy loss to fire a fine-tuning loop

	3.6 Fine-tuning parameters
	3.6.1 Learning rate schedule
	3.6.2 Noise the weights

	3.7 Dataset used for block selection
	3.8 Comparison with related works
	3.9 Conclusions for this chapter

	4 Different pruning strategies
	4.1 Low and high training schedule
	4.2 Phased fine-tuning
	4.3 Block equalisation
	4.4 Pruning before training
	4.5 Replacement pruning
	4.6 Conclusions

	5 An experiment management framework
	5.1 Background
	5.1.1 Motivation
	5.1.2 Identified issues and requirements
	5.1.3 Related work

	5.2 Requirements
	5.2.1 Experiment repository abstraction
	5.2.2 Experiments and results
	5.2.3 Code tracking
	5.2.3.1 Compiled languages

	5.2.4 Minimally invasive
	5.2.5 Extendable

	5.3 Our proposed solution
	5.3.1 Core objects
	5.3.1.1 Experiment
	5.3.1.2 Experiment run
	5.3.1.3 The log
	5.3.1.4 Attachments

	5.3.2 Experiment repository
	5.3.3 Architecture
	5.3.4 Logging and saving experiments
	5.3.5 Synchronization
	5.3.6 Analysing results
	5.3.6.1 Searching experiments
	5.3.6.2 Querying logs
	Basic filtering.
	Name query.
	Selector.
	Event merging.
	Position-based query.
	Compose log queries.
	Log merging.

	5.3.7 Creating extensions and plugins
	5.3.8 Implementation details

	5.4 Project status and future work
	5.4.1 Study design and verification framework
	5.4.1.1 Experiment runner
	5.4.1.2 Hyperparameter tuner framework
	5.4.1.3 Plot and table generator

	5.5 Conclusion

	6 Conclusions and future work
	6.1 Future work
	6.1.1 Evaluation on multiple datasets
	6.1.2 Multiple base architectures
	6.1.3 Combined prunable units
	6.1.4 Transfer learning
	6.1.5 Knowledge distillation
	6.1.6 Local training
	6.1.7 Pruning from random

	A Extra results for pruning
	A.1 Multiple fine-tuning loops
	A.2 Phased block pruning

	References

