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It is generally agreed that the galaxies in our Universe form and evolve within haloes
of dark matter. The formation and evolution of the dark matter density field is
believed to leave a profound imprint on the luminous matter that traces galaxy
properties. Although the precise way dark matter haloes shape galaxies is currently
hotly debated, the structural, morphological and dynamical evolution of galaxies are
considered important probes of the interplay between galaxies and their dark matter
haloes. The aim of this thesis is to study galaxy evolution through the lens of galaxy
structure and morphology by taking a holistic approach which encompasses
data-driven and existing physical models. In particular, I devise semi-empirical
models for galaxy structure, which have been introduced only recently, and I also
include novel deep learning methods in the modelling stack.

Firstly, I will use statistical modelling to derive empirical relationships between
galaxies and their dark matter haloes, setting constraints on the physical processes
arising from dark matter that set galaxy structure and dynamics. Secondly, I take
state-of-the-art hydrodynamical simulations of galaxy formation that meet these
constraints, and I evaluate the small-scale structural details of simulated galaxies
against real observations. By treating this problem as an unsupervised Out of
Distribution detection task, I show that simulations are improving over the years, but
they are yet to agree perfectly with observational data. Thirdly, I further test the
semi-empirical models above on the fast structural growth of Massive Galaxies and on
the weak dependence of their size on the large-scale environment, and provide
predictive trends for future observations. Finally, in the spirit of transferring
knowledge from Astronomy and Astrophysics to other fields, I apply similar
modelling techniques to Medicine to assess the effectiveness of current management
strategies for hypertension.
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5.1 Role of the shape of the SMHM and its σSMHM in setting the scatter in
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The black line is the SMHM retrieved from MCMC fitting of the total
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stellar mass cut of the same width (0.75 dex). Their projections onto the
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are expected to reside. Lower panel. The halo size functions resulting
from the stellar mass cuts applied in the upper panel, with the same color
code. Dashed and solid lines indicate predictions for σSMHM = 0.10 dex
and σSMHM = 0.20 dex. No additional scatter in size is added. Higher
stellar mass cuts are naturally mapped in broader distributions. Larger
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5.2 Scatter induced by different choices of γ in the factor f (c) = cγ as a
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5.3 Left: Size functions from the K13 model (eq. 4.9) for values of σK =
0.00, 0.10, 0.15, 0.20. Right: Size functions from the concentration model
(eq. 4.10) for values of γ = −1.6,−1.2,−0.8,−0.4. Models that work best
for a given stellar mass bin are highlighted in each panel by a thicker line. 77

5.4 Left: Size functions from the MMW model (λ model, eq. 4.8). The spin
parameter λ is retrieved either from the log-normal (pink dotted lines,
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5.7 First panel: statmorph Sérsic semi-major axis sizes of the mock observed
Illustris TNG galaxies as a function of Rh. Second panel: statmorph esti-
mates for R50 of the mock observed Illustris TNG galaxies as a function
of Rh. Third panel: statmorph estimates for R80 of the mock observed
Illustris TNG galaxies as a function of Rh. Fourth panel: Physical 3D ra-
dius Re,3D of the same Illutris TNG galaxies as a function of Rh. Red
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salmon shaded areas indicate the 16th and 84th percentiles of the distri-
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consistent with the upper limit provided our semi-empirical model. The
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6.1 The effect of different SMHM relations on the halo occupation distribu-
tion (HOD) of MGs and the size functions implied by a linear Re − Rh
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translates in very different size functions. In particular, the number den-
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6.2 Left column: The SMHM relation of the four models outlined at the be-
ginning of Section 6.3.2. The red line indicates the stellar mass selection
for MGs. The green shaded regions indicate the scatter of the SMHM,
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I display results for z=0,0.5,1,1.5,2,2.5,3. Darker colours indicate higher
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6.5 The number density of CSFMGs (cyan) and CQMGs (red) for Model 1
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8.6 The log-likelihood ratio (LLR) distributions of SDSS (orange solid line),
TNG50 (magenta dot-dashed line), TNG100 (dashed line), Illustris (red
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(bottom row). The color code is the same as in Figure 8.9. Here TNG100
and Illustris have been randomly sampled to the same sample size of
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permission from the author. . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Appendix D.1 Correlation between 3D physical size and the semimajor axis
sizes from statmorph (Rodriguez-Gomez et al. 2019, Huertas-Company
et al. 2019) of galaxies in Illustris TNG morphologically classified as
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Introduction and methods
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Chapter 1

Motivation

Life, the Universe and everything

Since the earliest civilizations, the night sky has inspired in mankind feelings of
immensity and solitude, a tranquil sense of belonging and the search for meaning.
These themes have been recurring in poetry, arts and philosophy for millennia, and
they constitute an important part of what it means to be humans.

The most important of our senses for most scientists, and certainly for astronomers, is
vision. It is through our eyes that we see the world around us and we start wondering
about the origin of the natural phenomena that surround us. The light coming from
planets, the Sun and the other stars that populate our galaxy, the Milky Way, through
the optical filter of the human eye, has been the sole detectable source of information
about the Universe around us for millennia. As telescopes became increasingly more
powerful in the modern history, around the end of the 18th century astronomers
began to realize that the night sky was populated by a class of fuzzy, extended objects
that could not be identified as stars or planets. C. Messier (1730-1817) and J. Herschel
(1792-1871) published catalogs of these “nebulae” which are still used nowadays. The
true nature of these objects was strongly debated until E. Hubble (1889-1953)
measured their distance and found that some of them must have been well outside the
Milky Way (Hubble, 1926). The picture of a much bigger universe than previously
thought and populated by galaxies similar to the Milky Way, as originally
hypothesised by the philosopher E. Kant (1724-1804) in his“ Allgemeine
Naturgeschichte und Theorie des Himmels” was now supported by observational
evidence, and the field of extragalactic astronomy was born. And, as soon as a deep
enough look at the night sky revealed the variety of shapes that characterizes galaxies,
laymen started asking the question where science begins: why?
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The Hubble sequence

The shape of a galaxy is called ”morphology”. The standard morphological
classification scheme for galaxies in the nearby universe is the Hubble sequence
(Hubble, 1926). According to this classification, galaxies can be divided in four broad
categories:

• Elliptical (E) galaxies. These galaxies have a spheroidal shape and are divided
into 8 subtypes: E0,E1...E7. The number is the closest integer to 10(1− b/a)

where b and a are the semimajor and semiminor axes.

• Spiral galaxies are characterized by a disk with spiral arms and, occasionally, a
spheroid in its center. They may be normal spirals (S) or barred spirals (SB) if the
central region hosts a stellar bar. The arms may be more or less tightly wound,
the fraction of luminosity of the central region with respect to total luminosity
varying accordingly. Galaxies with tightly wound arms and high bulge
luminosity to total luminosity fraction are indicated with the letter ”a”, while
less pronounced features are classified with ”b” and ”c” .

• Lenticular (S0) galaxies are an intermediate class between ellipticals and spirals.
They typically have a larger bulge than spirals but their disk shows no or very
little spiral structure.

• Irregular galaxies have no recognisable structure, lacking both a central bulge
and a disk.

It is customary to refer to ellipticals and lenticulars as early type galaxies (ETGs)
whereas spirals and irregulars are referred to as late type galaxies (LTGs).

A powerful extension of the Hubble sequence is given by the TType classification
scheme (e.g., Simien and de Vaucouleurs 1986), where galaxies are assigned a Type
based on the prominence of the bulge. The TType ranges from -5, for elliptical
galaxies, to 10 for irregular galaxies. Typical S0 galaxies have a Type close to zero,
while disk galaxies have Types between zero and eight (e.g, Nair and Abraham 2010).
In the last decade, the manual classifications of hundreds of thousands citizen
scientists, through the Galaxy Zoo project (Lintott et al., 2008, 2011), have been
combined with machine learning techniques to provide large morphological catalogs
of galaxies in the nearby universe (Walmsley et al., 2020).

Today, almost one hundred years after Hubble’s discovery, the origin of galaxy
morphologies still fascinates us. Indeed, accurately reproducing galaxy morphology
in theoretical studies has been one of the hottest topics of research in modern
astrophysics.
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FIGURE 1.1: The Hubble classification scheme of galaxies. Elliptical galaxies lie on the
left of the image, while spiral galaxies are classified as barred and non barred (lower
and higher branch on the right hand side respectively). Lenticulars may be barred
(SB0) or non barred (S0) as well. Irregular galaxies are misshapen objects that cannot
be classified neither as spirals nor as ellipticals. Image credit: Department of Physics,

University of Oregon.

The relationship between morphology, structure, dynamics and star
formation activity in nearby and distant galaxies

As galaxy properties are measured to systematically vary with morphology, it is
agreed that the wide variety of galaxy shapes that we observe must be the product of
distinct physical processes. For example, the most massive elliptical galaxies in the
nearby Universe, which are spheroids supported by random stellar motions and have
a low amount of rotation (some have indeed almost zero rotation), stopped forming
stars a long time ago (i.e. they are “quiescent” or “quenched”). Disk galaxies, which
are supported by ordered, rotational stellar motions, are still actively star forming
today and are usually larger1 than elliptical galaxies.

Earlier in the life of the Universe, galaxies didn’t look the way the do today. On the
one hand, observations show that the Hubble sequence and the present-day number
of galaxies in a given volume of the Universe (i.e., the “number density” or
“abundance”) with a given mass in stars are found to be practically already in place at
z . 1 (i.e. ≈8 billion years ago, that is more than half of the life of the Universe, which
is roughly 13.7 billion years). On the other hand, the galaxy zoo is much more
complicated than the Hubble sequence at high redshift. For example, (e.g.,
Huertas-Company et al., 2016) found that at z & 1 (i.e., ≈11 billion years ago) the
galaxy population was made of a large portion (∼ 70%) of clumpy, irregular and

1The concept of galaxy size is non trivial and it is formally introduced in Section 2.3.1. For the purpose
of this qualitative introduction, the size of a galaxy should intuitively be considered as a measurement of
“how large” the galaxy is.
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highly star forming objects while the remaining ∼ 30% objects had a spheroidal
morphology and were very compact, in addition most of them are quenched.

While the detailed morphology of a galaxy is a powerful probe of the physics of
galaxy, sometimes access to the large-scale properties of a galaxy can provide
extremely valuable information. For example, galaxies of a given mass in stars are
larger today than in the past, their rate of size increase depending on star formation
activity (star forming galaxies display a shallower size increase) and stellar mass
(more massive galaxies display a stronger size increase). Some star forming galaxies at
high redshift are extremely compact and spheroidal, with sizes comparable to those of
later-epoch quenched galaxies - these are often regarded as the ultimate progenitors of
today’s massive elliptical galaxies. Moreover, in the earlier Universe the number
density of galaxies of a given mass in stars was much smaller - galaxies became on
average more massive and more abundant as the Universe aged.

Galaxies may live in close proximity to each other. Aggregations of a few galaxies are
termed groups, while galaxy clusters may host several hundreds or even thousands of
galaxies. In some cases, trends can identified between galaxy properties and the
environment they live in - an indication that some physical processes are enhanced or
suppressed in more or less crowded regions of the Universe. For example, the most
massive galaxies that exist are typically found in very rich environments.

Of course, many other interesting correlations are found in observations. These
involve, e.g., galaxy stellar mass, star formation rate, the properties of the massive
black holes that are thought to lurk at the centre of most galaxies, the chemistry of
stars and gas. A comprehensive review of these is outside the scope of this work, and
the reader is directed to the book by Mo et al. (2010) for further details. Instead, in this
thesis I will focus on the relationship between galaxy morphology, star formation
activity, dynamics and size throughout the history of the Universe, while also
discussing briefly the role of the environment.

Before moving on to introduce how theoretical models try to address galaxy
evolution, it is important to set the framework within which galaxies form and evolve,
which is the aim of the next Section.

The dark Universe

Another reason why the name of E. Hubble still resonates in lecture theatres and
conference halls today is that he, along with G. Lemaitre, discovered that the Universe
is expanding, and that this expansion is faster for more distant galaxies (the so-called
Hubble-Lemaitre law). The origin of the expansion of the Universe, especially in its
very early stages, is a topic that still keeps theoretical cosmologists very busy today,
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and is not the topic of this thesis. The leading cosmological model that instead will be
assumed throughout this work is the so-called Λ Cold Dark Matter (ΛCDM ) model.

In the ΛCDM model, at the origin of time the entire universe was packed in a
space-time singularity, which expanded during a “Big Bang”, following Einstein’s
theory of General Relativity. According to the equations of General Relativity, the
content of matter and energy of the universe regulates its dynamics and geometry -
however, it is estimated that only around 5% of it is in the form of baryonic matter,
that is the matter that we experience in our daily life and which is described by the
Standard Model of particle physics. The pioneering work by F. Zwicky (Zwicky 1933)
and V. Rubin (Rubin et al. 1980), have shown that the dynamics of galaxy clusters and
the shape of the rotation curves of spiral galaxies cannot be explained solely by the
luminous matter. It has now become widely accepted that a substantial fraction of
matter in the universe is not visible: this is called “dark matter”, and it makes around
25% of the matter-energy content of the Universe. Some theories envisage dark matter
particles to be very heavy and slow - hence the denomination ”cold” dark matter. In
the past twenty years or so observations have also consistently pointed out that the
expansion of the universe has accelerated in the past few billion years. This evidence
suggests that a further unexpected component to the matter-energy density of the
universe is at play in regulating its dynamics. This is called “dark energy”, and
current constraints indicate that it accounts for roughly 70% of the energy content of
the Universe.

The ΛCDM model predicts that small perturbations in the dark matter field in the
early Universe grew larger by accreting other smaller perturbations to form
progressively larger haloes of dark matter, in a “bottom-up” fashion2. Dark matter
haloes are distributed along a large scale structure called “cosmic web”, with the most
massive haloes lying at the nodes of the web. Since the perturbations were randomly
distributed in the early Universe, this hierarchical growth is also a random
(“stochastical”) process - no two haloes underwent a perfectly identical formation
history. The hierarchical assembly is such that very few massive haloes formed
compared to less massive ones, and the ones that do form can have very complex and
diverse accretion histories. Haloes also rotate due to the pull of other haloes in their
vicinity (this is the “Tidal Torque Theory“), and are much denser at their centre than at
their outskirts.

Dark matter haloes extend on scales which are of the order of tens to hundreds of the
size of galaxies, and are hundreds to thousands of times more massive than the mass
of the galaxies they host. Yet, a tight relationship between galaxy stellar mass and host
dark matter halo mass (obtained using a combination of observations and theoretical
results), and a further link between galaxy size (e.g., effective radius) and the virial

2As opposed to “top-down” formation theories, where smaller haloes come from the fragmentation of
larger ones, which have been proposed in the past but are in serious disagreement with observations
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radius of the host dark matter halo have been theoretically proposed and
observationally probed. These relations, their origin and their predictive power are at
the heart of this thesis.

Modelling tools

Most current models of galaxy formation are based on ΛCDM cosmological
framework, where galaxies form in the potential well provided by dark matter haloes
out of cold star forming gas and mergers with other galaxies driven by mergers
between their host halos, all occurring as the underlying conditions of the Universe
evolve. The link between galaxies and dark matter is thus considered a powerful
probe of galaxy formation.

A few modelling tools have been developed to study the physical processes that
regulate galaxy evolution in a ΛCDM Universe. These comprise Semi Analytic
Models (SAMs), hydrodynamical simulations, and Semi Empirical Models (SEMs).
The first two attempt to model the whole spectrum of astrophysical processes relevant
to galaxy evolution, which often results in heavily parametrised models. SAMs do so
without explicit spatial information (i.e., galaxies are “points“ in the simulation
space), while this is available in hydrodynamical simulations, which resolve motions
explicitly (which is very useful to constrain models, as discussed below). However,
the benefits of hydrodynamical simulation comes at an enormous computational cost
which makes them unfeasible to quickly explore models, while this is achievable in
SAMs. SEMs, instead, leverage empirical but theoretically informed (hence the
denomination semi-empirical) scaling relations between dark and luminous matter as
input - typically these are retrieve by assuming that larger/more massive galaxies live
in larger/more massive dark matter haloes, where dark matter comes from the ΛCDM
theory. SEMs are thus able to produce data-driven predictions by using fewer
parameters and only little physical modelling (or, indeed, sometimes without any
physical modelling) - they are thus more predictive but narrower in scope.

It is clear from the discussion above, that none of these frameworks is, on its own,
sufficient to constrain galaxy evolution. Rather, models must be combined where
appropriate, and certain techniques are more suitable to attack specific modelling
problems. This is the approach taken in this thesis.

All the models described above are typically constrained and tested on galaxy scaling
relations (that is, the relationships that exist between different galaxy properties).
However, accurately modelling galaxy formation physics goes beyond reproducing
simple scaling relations. For example, although state-of-the-art hydrodynamical
simulations have now achieved a good agreement with observations, it is found that
they provide very degenerate solutions - different implementations of galaxy physics
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achieve a broadly similar level of agreement with observations in terms of global
properties such as size or stellar mass content. Yet, while different physical models
may result in similar global properties, this is not true of the local properties of
galaxies. Therefore the small-scale galaxy features entail essential information that
holds the key to our understanding of the processes driving galaxy formation and
evolution. However, to date, a systematic, comprehensive and quantitative
assessment of hydrodynamical simulations against the spatially-resolved galaxy
features has been carried out with methodologies that present some limitations. Deep
learning is able to generalise upon these techniques, owing to its ability to capture
more subtle features. In particular, deep generative models can produce a metric that
accurately evaluates the resemblance of simulated galaxies to real ones.

Theoretical scenarios

It is worth to stress that, unlike for Particle Physics, a Standard Model for galaxy
evolution has not yet been formulated. Instead, a plethora of models have been
proposed to explain observations, which sometimes lead to contradictory results
and/or lack support from observations.

For example, the accretion of cold gas onto the galaxy from the host dark matter halo
and/or its surroundings is thought to be the key driver for the formation of
present-day star forming, high-angular momentum, large disk galaxies - however,
there is no consensus on a detailed model for star formation and its sustenance. There
is a heated debate on how the cold gas necessary to ignite star formation even gets to
the accrete onto the protogalaxy at the centre of the dark matter potential well (for
example dense streams penetrating the halo from the cosmic web down to galactic
scales have been proposed, but some studies challenged their stability) - although it is
very clear that cold gas is the fundamental ingredient to form stars and, therefore,
galaxies.

The picture is even less clear for quenched galaxies, for which a so-called “two-stage”
formation scenario has been proposed. In this scenario, it is envisaged that an early,
violent, star forming phase was followed by a quiescent phase dominated by gas-poor
galaxy mergers. However, the origin of the early star forming phase where galaxies
are typically smaller is highly debated. On the one hand, gas-rich (”wet”) mergers,
which are thought to be more frequent at high redshift, have been proposed to explain
the compact sizes of galaxies with intermediate-to-high stellar mass, and have also
sometimes been proposed as a means to enhance star formation in compact galaxies at
high redshift (although some hydrodynamical models challenged this idea) and to
decrease angular momentum. On the other hand, other models propose that the high
rates of star formation leading to a fast growth in stellar mass occurred by means of
strong dynamical instabilities, leading to a structural contraction called “compaction”.
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The way star formation is quenched is also still unclear. The inward flow of
detabilised material in both the merger-driven and compaction-driven scenarios
would result in accretion onto the Super Massive Black Hole that sits at the centre of
most galaxies - the resulting high-energy phoenomena (e.g., Active Galactic Nuclei,
AGN) are believed to be at least partially responsible for halting star formation. In
some models, enough material is expelled from the galaxy for it to expand and grow
larger and this constitutes the main mechanism of size increase, as opposed to
gas-poor mergers. Many other channels have been proposed for galaxy quenching,
and they will be discussed in the following Chapter, but the relative contribution of
each of them for galaxies with different morphology at different stages of their
lifetimes is unknown. Although the need for AGN feedback is repeatedly invoked in
models to explain the low numbers of high-mass galaxies, direct observational
evidence of their ability to quench star formation is still lacking.

Finally, it is particularly crucial to recognise that the small-scale details of galaxy
structure are predicted to respond differently to distinct galaxy formation scenarios. In
fact, while traditionally galaxies are arranged in the Hubble classification scheme,
mounting evidence suggest that even within a single morphological class there may
be substantial variation, which is associated with the diversity of the small-scale
properties of the light distribution.

Modelling galaxy evolution in the era of large surveys

Nowadays, thanks to further advances in technology that allowed the construction of
space telescopes and instrumentation that enabled the gathering of multiwavelength
information, we are every day a step closer to understanding the Universe around us
and our place within it. In the next decade, a new generation of observing facilities,
such as the Large Synoptic Survey Telescope, Euclid and the Nancy Grace Roman
Space Telescope, will gather a wealth of data which promise to help deliver solutions
to still unresolved problems in the field of galaxy evolution due to both an improved
resolution and increased sky coverage. In particular, it will be possible to better study
the fundamental but poorly constrained population of massive galaxies which, being
extremely rare, can be detected in sizeable samples only in large-scale surveys.

A few major burdens for theoretical models comes with the data deluge that will
characterise the imminent future of extragalactic astrophysics. Larger and better
quality datasets will pose a greater challenge to current models of galaxy evolution,
and a correspondingly more thorough evaluation of them, down to the very fine
details of galaxy properties, will have to be carried out. The vast sample sizes will
allow to unveil extremely rare subpopulations and further probe galaxy evolution and
cosmology at high redshift to an unprecedented level of accuracy. On the other hand,
current models can be deployed to perform predictions in the light of the upcoming
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observations. Data-driven models, in particular, can provide predictive trends based
on a few simple assumptions and available observations.

The community of astronomers and astrophysicists worldwide has been striving to
prepare to make the most of the upcoming data. Extracting information from the
breadth of data that will be produced requires refining and developing data science
techniques, including deep learning, which are being now implemented in data
analysis pipelines. However, as discussed below, there is scope for deep learning
methods also in theoretical settings.

Populations of galaxies, populations of humans

Along with astronomy and astrophysics, data science and deep learning are
revolutionising many other scientific areas. An example of this is healthcare, where a
growing community of data scientists is seeking to develop and deploy accurate
automated methods for precision medicine, i.e. the delivery of personalised medical
treatment. As a student funded through the Data Intensive Science Centre for
Doctoral Training (DISCnet CDT), I undertook an internship at the Department of
Clinical Pharmacology of the St Thomas’ & Guy’s Hospital, London, in the spirit of
applying astrophysical modelling techniques to other fields.

Similarly to galaxies, humans are incredibly complex systems. Each of us has a
different background and physiological requirements, that stem both from the wealth
of diversity in genetic heritage (enclosed in our DNA) and lifestyles. This translates in
a different response to medical treatment. At the same time, the measurement of both
galaxy properties and biomarkers in humans, although performed with very different
techniques and instrumentation, will always carry an uncertainty that masks the true
values of the parameters of interest.

As current medical management of many common conditions involves initiating or
changing treatment based on certain measured thresholds, as a simple cutoff that
might not reflect individual needs, inter-individual variation to treatment and
measurement errors can hinder the effective and efficient delivery of personalised
clinical care. While there is an awareness of this in the community of clinicians, little is
known about how the compounding effects of measurement error and physiological
variation, especially for conditions that require long-term monitoring involving
potential changes in therapy. This is the case of hypertension, which is the leading
cause of death and disability worldwide.

Modelling the treatment of hypertension for a population of patients can be achieved
using aimed Monte Carlo simulations, where the drug efficacy, standard deviation of
measurement error and physiological variation can be estimated from the medical
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literature. The nature and scope of these simulations strongly resonates with the
data-driven Monte Carlo approach that can be taken to study galaxy populations in a
ΛCDM Universe.

Contributions of this work

In this thesis I will contribute to the ongoing debate on the systematic difference in the
structural properties and star formation activity that is observed in galaxy populations
across cosmic time. I will devise data-driven models and use state-of-the-art physical
models to answer they following key still unanswered questions in modern
astrophysics:

1. What was the role of angular momentum in forming disk galaxies?

2. Were elliptical galaxies produced only by mergers?

3. Can we use emergent deep learning techniques to probe the accuracy of galaxy
morphology in hydrodynamical simulations?

4. Why were Massive Galaxies smaller in the past?

5. Why is there only little difference in the sizes of Massive Galaxies between
galaxy groups and galaxy clusters?

Moreover, I will present a Monte Carlo framework to estimate the proportion of
patients left at risk of cardiovascular events due to poorly controlled hypertension.
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Chapter 2

Galaxy populations across cosmic
time

There is now unprecedented observational evidence that galaxies evolve in the
Universe. The question of how their formation and evolution can be explained on a
theoretical standpoint has been extensively explored in the literature. In particular,
galaxies display a range of physical properties which are thought to arise as a result of
distinct physical processes.

The aim of this Chapter is to review a set of observations that will be relevant
throughout this thesis, and to review current models of galaxy formation, along with
their successes and limitations. I will discuss the relationship between galaxy
morphology, structure, dynamics and star formation activity, also across galaxy
groups and clusters, and how they can help understand the role of mergers and in-situ
processes also in different environments. I will also focus on the class of Massive
Galaxies (MGs, Mstar & 1011.2M�), which are suggested to lie at a special mass scale
for galaxy evolution. I will further show that the Λ Cold Dark Matter (ΛCDM )
cosmological framework can qualitatively explain some of the observations. Current
galaxy formation models are also reviewed, and a brief overview of the upcoming
generation of observing facilities is provided. The reader familiar with the
observational and theoretical literature on galaxy structure, dynamics and star
formation may wish to skip to Section 2.9.
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2.1 The build-up of stars across the cosmic time

2.1.1 The main sequence of star formation

Galaxies acquire their mass by converting cold gas into stars, whereby higher gas
contents translate to higher rates of star formation (Kennicutt, 1998). In turn, a
monotonically increasing relationship between galaxy stellar mass and level of star
formation is observed to hold at all cosmic times (Salim et al., 2007; Elbaz et al., 2011;
Whitaker et al., 2014; Speagle et al., 2014; Schreiber et al., 2015; Renzini and Peng,
2015), and it is called Main Sequence (MS) of star formation. The average star
formation rate (SFR) of galaxies along the MS is found to decrease by a factor of & 10
since z ∼ 3 (e.g., Tasca et al., 2015, although the precise rate of the evolution of the MS
is highly debated), yet the dispersion across the MS is remarkably constant (Popesso
et al., 2019).

Some galaxies do not follow the MS. At fixed Mstar , quenched galaxies have a much
lower-than-average SFR, while starburst galaxies are found to form stars at rates up to
10 times that of typical MS galaxies (Rodighiero et al., 2011; Sargent et al., 2014). In the
local universe, most LTGs are still actively forming stars, while the vast majority of
ETGs are quiescent (Mo et al., 2010). In general, the amount of star formation
occurring in the universe increased from early times up to z ∼ 2, and decreased
afterwards (Madau and Dickinson, 2014), but constraints at z & 2− 3 are still very
debated (e.g., Leja et al., 2019; Loiacono et al., 2021). Interestingly, the activity of Super
Massive Black Holes (SMBHs) that are thought to lurk in the centre of galaxies (Active
Galactic Nuclei, AGN) is observed to increase from early times until its peak around
z ∼ 2, whilst it decreases steadily at z . 2 (Shankar et al., 2009; Delvecchio et al., 2014).
Moreover, a number of scaling relations between SMBH mass and galaxy properties
have been found (see Graham, 2016, for a review). This evidence suggests that galaxies
and their black holes may co-evolve (see, e.g., Heckman and Best 2014 for a review).

Arguably, star formation and its quenching are the two most debated issues in the
literature. The physical mechanisms that regulate stable star formation activity on the
MS and the enhancement of SFR in starburst galaxies are highly debated and include
steady accretion flows (e.g., Bouché et al., 2010) galaxy mergers (e.g., Somerville et al.,
2001), and increased efficiency of star formation driven by in-situ compaction (Lapi
et al., 2018a). Likewise, multiple mechanisms are thought to be at play in quenching
galaxies, such as stellar feedback (e.g., Hopkins et al. 2014, Ceverino et al. 2014), the
activity of the central SMBH (e.g., Di Matteo et al. 2005,Hopkins et al. 2006, Croton
et al. 2006), the stabilizing effect of bulge formation (Martig et al., 2009), the virial
shock heating of cold gas coming from the cosmic web (Dekel and Birnboim, 2006;
Faucher-Giguère et al., 2011). The relative importance of these mechanisms is still
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largely unknown, and it is thought to be different at different scales in galaxy stellar
mass (e.g., Pillepich et al., 2018b).

2.1.2 The galaxy Stellar Mass Function

One of the goals of modern astrophysics is understanding the stellar mass assembly of
galaxies from early epochs to the present day. The fundamental information to
address this issue is the differential comoving number density of galaxies per
magnitude, the galaxy luminosity function. Once this quantity is computed, stellar
population synthesis models (e.g., Bruzual and Charlot 2003) are used to convert
luminosity to stellar masses via a mass-to-light ratio M/L in order to obtain the stellar
mass function (SMF). Fig. 2.1 shows the measurements of the SMF up to z ∼ 5 by
Davidzon et al. (2017). Overall, the shape of the SMF is close to being a power law at
low masses, while the drop in abundance at the high mass end is well described by an
exponential cut. Thus, the SMF is usually modelled by a Schechter function (or a
linear combination thereof):

φ(Mstar) =
( φ0

M0

)(Mstar

M0

)α
exp

(
−Mstar

M0

)
where α, φ0 and M0 are free parameters that determine the low-mass-end slope, the
overall normalization of the SMF and the stellar mass where the exponential cutoff
starts dominating over the power law.

As Figure 2.1 shows, the SMF strongly evolves with redshift, with the high mass end
being built very rapidly up to z ∼ 1 and the knee moving towards higher abundances
and masses. Interestingly, studies that leveraged large-area surveys (e.g., Bernardi
et al., 2016; Bundy et al., 2017; Kawinwanichakij et al., 2020, see Section 2.2)
consistently point out that only little evolution occurred in the number density of the
most massive galaxies since z ∼ 1, i.e. around 8 billion years ago.

The relative contribution of star forming and quiescent galaxies to the SMF is shown
in Figure 2.2. Remarkably, the shape of the SMF of star forming galaxies is similar to
that of the whole population, with faint objects dominating the sample at every
redshift. On the other hand, quiescent galaxies build up progressively with cosmic
time both at the low and high mass end. At low redshifts most galaxies above the knee
(Mstar ≈ 1011M�) are quenched, bright red ellipticals, while at lower masses star
forming, fainter blue disk galaxies dominate the statistics (Bernardi et al., 2013; Lange
et al., 2015).
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FIGURE 2.1: The evolution of the stellar mass function up to z ∼ 6. Figure taken from
Davidzon et al. (2017), with permission from the author.

2.1.3 Systematic uncertainties

A precise estimate of the SMF and its evolution is currently plagued by still
uncontrolled but known systematics. On the observational side, the aperture within
which light is measured and the choice of the photometric fits to the light profile (e.g.,
Simard et al., 2011; Meert et al., 2013) can have a significant effect on the estimation of
galaxy luminosities, especially at the high mass end (Bernardi et al., 2013; Kravtsov
et al., 2018). Moreover, the mass-to-light ratio used to convert luminosity to stellar
mass is subject to assumptions on the Initial Mass Function (IMF), Stellar Population
Synthesis models, dust obscuration and star formation history. For example, some
IMFs provide a higher number of long-lived dwarf stars (e.g., Salpeter, 1955) and
hence higher stellar mass estimates compared to more “bottom-light” IMFs (e.g.,
Chabrier, 2003), with some options in between (e.g., Kroupa, 2001). Moreover, it is not
clear whether the IMF evolves with redshift (e.g., Sonnenfeld et al., 2017), while radial
gradients in the IMF have been shown to be ubiquitous (e.g., La Barbera et al., 2016a;
Domı́nguez Sánchez et al., 2019). The effect of the IMF and its gradients on the SMF
has been studied in detail in Bernardi et al. (2018a,b). Furthermore, the choice of
stellar population synthesis model alone (e.g., Bruzual and Charlot, 2003; Maraston,
2005) can account for differences of up to 0.3 dex in number density at the high mass
end of the SMF (Bernardi et al., 2017). Lastly, different star formation histories can
results in significantly discrepant stellar mass estimates (Lower et al., 2020).
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FIGURE 2.2: Upper panel: the stellar mass function of star forming galaxies. Lower
panel: the stellar mass function of passive galaxies. Figure reproduced from Davidzon

et al. (2017) with permission.
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2.2 Massive galaxies

2.2.1 A special mass scale

As pointed out in several studies (e.g., Bernardi et al. 2011b,a; Cappellari 2016), the
behaviour of the structural scaling relations and the stellar kinematics at the very
massive end of the galaxy populations (i.e. Massive Galaxies, MGs, Mstar & 1011.2M�)
differ from that of less massive galaxies. The colours of MGs are redder, their sizes
larger and their velocity dispersions smaller than expected based on the scaling at
lower stellar masses. In addition, most quenched MGs are “slow rotators“ as opposed
to “fast rotators“ at lower mass scales. MGs are also typically located at the centre of
the most massive clusters (Cappellari, 2016; Huang et al., 2018), where most mergers
are believed to occur (Barnes and Hernquist, 1996), with potentially concurring AGN
activity that may help quench the galaxy (Heckman and Best, 2014) and subsequent
SMBH merger and the related gravitational wave emission (Boco et al., 2019). Deep
potential wells at high redshift are also proposed as the sites of intense star formation
(Lapi et al., 2011) and are the likely sites of formation of MGs (Lapi et al., 2018a).

Thus, the mass scale Mstar ≈ 1011.2M� appears critical to understanding galaxy
evolution, and the extreme nature of MGs hold the promise to probe some of the most
extreme physical phoenomena in the Universe. However, the formation and evolution
of MGs remains still highly elusive. For instance, there is currently a lack of data for
MGs at high redshift, but it seems that current models may not be reliable to provide
forecasts for the next generation of observing facilities. Indeed, some models still
struggle at reproducing the basic properties of MGs (Shankar et al., 2015; Cattaneo
et al., 2020) or do not have the capacity to resolve statistically significant MG
populations with enough resolution (Pillepich et al., 2018b).

While I will discuss the proposed physical scenarios for the formation of MGs in
Section 2.8.3, in the next paragraph I will focus on the observational challenges that
currently limit the study of MGs, especially at high redshift.

2.2.2 On the current scarcity of data for MGs

The limitation in sky coverage of current surveys has been a major roadblock to
unlocking statistically significant samples of massive galaxies in high-redshift studies.
Indeed, MGs are rare objects and large survey areas are required to overcome cosmic
variance limitations (e.g., Stringer et al. 2009; Moster et al. 2011; Bundy et al. 2017;
Kawinwanichakij et al. 2020). Recent photometric surveys have allowed the delivery
of a more robust estimate of the physical and statistical properties of MGs (e.g.,
UltraVISTA (McCracken et al., 2012; Faisst et al., 2017), HST COSMOS-DASH
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(Momcheva et al., 2016; Mowla et al., 2018) and SHELA (Papovich et al., 2016; Wold
et al., 2019). In particular, the structural properties of around ∼ 400 and ∼ 160 MGs
have been measured up to z ∼ 2 and z ∼ 3 for UltraVISTA and COSMOS-DASH
respectively. The volume limitation affecting previous surveys (e.g., Muzzin et al.,
2013; Ilbert et al., 2013; Davidzon et al., 2017) which resulted in noisy estimates for the
number density of MGs have been only very recently overcome by the significantly
larger area covered by SHELA (∼17.5 deg2, or ∼ 0.3 Gpc3). Based on SHELA data,
(Sherman et al., 2020) provided more statistically sound determinations of the SMF for
MGs, but structural measurements are not available yet. However, it is worth keeping
in mind that not only the systematics involved in the stellar mass estimates
highlighted in the previous paragraph apply also at high redshift (Kawinwanichakij
et al., 2020; Leja et al., 2020), but further contributions from heavily dust-obscured
sources at those epochs are still largely unknown, and typically unaccounted for in the
SMF (Franco et al., 2018; Wang et al., 2019; Zhou et al., 2020). On the other hand, only
a handful MGs have been spectroscopically confirmed at z & 2 (e.g., Gobat et al. 2012;
Belli et al. 2014; Kriek et al. 2016; Glazebrook et al. 2017; D’Eugenio et al. 2020;
Valentino et al. 2020) due to the costs associated to the long observing times required
to gather high quality spectra for these distant sources.

2.3 Galaxy structure: the Sérsic profile

The light profile of galaxies is well fit by the Sérsic profile Sersic (1968),

I(R) = Ieexp
[
−bn

( ( R
Re

) 1
n − 1

)]
(2.1)

where the effective radius Re is the radius enclosing half of the total light, Ie ≡ I(Re)

and n is the Sérsic index.

A Sérsic function with higher values of n displays a more centrally peaked light
distribution, as well as brighter tails. The Sérsic profile reduces to an exponential,
which best describes disk galaxies, provided that Re ≈ 1.67Rd, where Rd is the disk
scalelength. Sometimes, a combination of multiple Sérsic functions are needed to
properly account for the faint tails of galaxy light profile and the bulge of
two-component systems. For example, Meert et al. (2015) adopts Sérsic+Exponential
(SerExp) fits. In this case, the effective radius is defined as the radius that contains half
the light of the overall profile.



22 Chapter 2. Galaxy populations across cosmic time

9 10 11 12
logMstar [M ]

0.0

0.5

1.0

1.5

2.0

lo
gR

e
[k

pc
]

LTGs
ETGs

0.5 0.0 0.5 1.0
logRe [kpc]

10 5

10 4

10 3

(R
e)

[M
pc

3 d
ex

1 ]

10 < logMstar/M < 10.5

FIGURE 2.3: Left: The mean size-mass relation and its scatter for ETGs (red) and LTGs
(blue) in the SDSS (Meert et al., 2015). The size function is a ”slice” of the size-mass
relation (gray hatched area). Right: The size function of ETGs and LTGs in a bin of

stellar mass.

2.3.1 The size function

The fundamental relation that underlies this thesis is that between galaxy effective
radius and galaxy stellar mass. Figure 2.3 shows the Re −Mstar relation from the Sloan
Digital Sky Survey (SDSS, Abazajian et al., 2009). It can be seen that LTGs are always
larger than ETGs except at the highest stellar masses, while ETGs lie on a steeper
relation than LTGs (see also Shen et al. 2003). A secondary dependence of these trends
on the specific Hubble type is also observed (Bernardi et al., 2014; Lange et al., 2015)
(see also Chapter 5). However, irrespective of morphology, larger sizes are associated
to more massive galaxies on average.

As shown in Figure 2.3, a given stellar mass range is associated to a distribution of
galaxy sizes. The distribution of galaxy sizes of a given stellar mass is called the size
function and I will indicate it as φ(Re) throughout this thesis. The size function of
galaxies has received little attention in the literature. Most models have focused on
reproducing average trends, as opposed to the detailed information contained in the
shape and scatter of the full size distribution. In particular, the evolution of the size
function over the life of the universe provides (i) an account of the average size
growth of galaxies, and (ii) the relative proportion of compact and extended galaxies
at any one epoch. As I will discuss in Section 2.8.3.2, these features are believed to be
important constraints to galaxy formation physics.

Although the size function may be considered a strong probe of galaxy formation, it
has been explored in fully cosmological models only in a few instances. For example,
Shankar et al. (2010) showed that the level of accuracy needed to match the data was
not yet achievable in semi-analytic models. To the best of my knowledge, the size
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FIGURE 2.4: Current optical-NIR observational constraints on the redshift evolution
of the effective radii of the population of quenched MGs from Mowla et al. (2018),
Patel et al. (2017) and Faisst et al. (2017). It can be seen that star forming MGs tend
to be larger than quenched MGs at all epochs. An important caveat to this picture is
that dust-obscured star forming sources are often measured to lie below the average

optical-NIR relation (e.g., Puglisi et al., 2019, 2021).

functions have never been explored in hydrodynamical simulations of galaxy
evolution.

2.3.2 Structural evolution

There is now substantial evidence that galaxies of a given stellar mass were smaller at
higher redshift than in the local Universe (e.g., Daddi et al. 2005, Trujillo et al. 2007,
Buitrago et al. 2008, van Dokkum et al. 2010, Cassata et al. 2011, Cimatti et al. 2012,
Newman et al. 2012, Huertas-Company et al. 2013a, van Dokkum et al. 2015,
Kawamata et al. 2015, Shibuya et al. 2015, see Figure 2.4 for a compilation of recent
data for MGs). The size evolution of the galaxy population in a given stellar mass bin
is well fitted by a relation of the type

Re(z) ∝ (1 + z)−α (2.2)

where Re is defined as the radius that encloses half of the galaxy light (see, e.g., van
der Wel et al. 2014 for a different fitting function). It is found that in general



24 Chapter 2. Galaxy populations across cosmic time

starforming galaxies follow shallower trends than quiescent galaxies (e.g., van der Wel
et al. 2014), and that the size increase is stronger for more massive galaxies (Mowla
et al., 2018). In particular, α ≈ 1 for quenched galaxies of all masses, while this is the
case for star forming galaxies only at Mstar & 1011.2M� (Faisst et al., 2017).

2.3.3 Compact galaxies

The evidence that galaxies are smaller at earlier times sparked a marked interest in the
study of the population of compact galaxies across the life of the Universe. Compact
star forming galaxies (“blue nuggets” Damjanov et al. 2011) and compact quenched
galaxies (“red nuggets”) are observed to coexist at z & 1, and an evolutionary
sequence between the former and the latter has been proposed using data-driven
continuity arguments (Barro et al., 2013). However, while some groups observed a
declining number density of compact galaxies as the Universe ages (Barro et al., 2013;
van der Wel et al., 2014), others disagree (Carollo et al., 2013; Gargiulo et al., 2017). At
the same time, regardless of their star formation activity, compact galaxies display
very high central stellar velocity dispersion, comparable or even higher than that
observed in massive elliptical galaxies in the local universe (e.g., Barro et al., 2016;
Belli et al., 2014; Tadaki et al., 2020). AGN activity is also observed to occur in compact
galaxies, preferentially in compact star forming galaxies (Kocevski et al., 2017).
Moreover, a still very uncertain proportion of the high-redshift galaxy population
appears to be optically dark (Wang et al., 2019) and thus undetected in large-scale
optical/Near Infrared (NIR) surveys. Yet, from the still small samples available, it
appears that a sequence exists between the different compact phases, where more
compact and more dust-obscured galaxies are typically more star forming (Puglisi
et al., 2021) and progressively less dust-obscured sources are older starbursts
(Gómez-Guijarro et al., 2019). To further complicate the picture, some galaxies that
appear extended in the optical bands and lie on the MS of star formation display
instead very compact sizes in the sub-millimeter, an indication that most of the star
formation may be occurring in a centrally concentrated starburst (Puglisi et al., 2019).

2.4 Galaxy structure: Non-parametric models

The Sérsic profile provides a parametric estimate of the global properties of the light
profile of a galaxy. However, it has the limitation that galaxies may be in general
asymmetric and display more local, higher level features that are simply ignored by
the Sérsic profile. Moreover, despite the practical usefulness of the Hubble and the
TType schemes, recent literature has highlighted the limitations of visual classification
based on labels assigned by humans. For example, Cheng et al. (2021) used an
unsupervised deep learning methodology (see Section 3.3.1) to demonstrate that
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traditional visual classification systems may be intrinsically vague, and that there may
be up to 27 morphological classes which carry more clear-cut physical information
than Hubble types or TTypes.

For these reasons, non-parametric estimators of galaxy shapes that can account also
for small-scale features have been adopted in the literature with the aim of describing
galaxy morphologies with only a few numbers. For example, the popular C− A− S−
statistics (e.g., Abraham et al. 1994, Conselice 2003) evaluates the Concentration (i.e.
the ratio of the radii that include 20% and 80% of the light), Asymmetry (which is and
indicator of what fraction of the light in a galaxy is in non-symmetric components)
and Smoothness (which is related to the clumpiness of the light structure) , the
G−M20 statistics (Lotz et al., 2004), which quantifies the relationship between the
Gini parameter (a measure of how “imbalanced” the light is across the galaxy) and the
second moment of the 20% brightest pixels (which quantifies the off-center
concentration of light). The C− A− S and G−M20 estimators have been applied, for
instance, to galaxy merger identification (Conselice, 2003; Lotz et al., 2008) and to
assess the extent to which the detailed galaxy morphology is reproduced in
hydrodynamical simulations (Snyder et al., 2015; Bignone et al., 2019;
Rodriguez-Gomez et al., 2019).

Non-parametric statistics may still not capture the full complexity of a galaxy image.
In fact, although technically all the pixels are used to retrieve these quantities, their
choice suffers from human bias and may therefore be incomplete (i.e. the
C− A− S− G−M20 spatial diagnostics may in principle be extended, see for
instance Freeman et al. 2013, Wen et al. 2014, Pawlik et al. 2016, Rodriguez-Gomez
et al. 2019). The key point is that all the precious information contained in the pixels of
an image may not be fully accessible with standard techniques. For this reason,
non-parametric estimators are limited in power.

2.5 Angular momentum

Galaxy dynamics is considered a powerful probe of galaxy evolution. For this reason,
the evolution of the stellar specific angular momentum of galaxies, jstar across the
cosmic time and its dependence on other galaxy properties is a matter of intense
research and debate. Fall (1983) analyzed the specific angular momentum of a sample
of galaxies, finding values for early type galaxies six times as lower compared to late
types. These early results have been confirmed and extended to the bulges of spirals
in a paper by Romanowsky and Fall (2012). Furthermore, Obreschkow and
Glazebrook (2014) found a tight relationship between stellar mass, angular
momentum and bulge-to-total (B/T) ratio, suggesting that these may be the most
fundamental properties shaping galaxies. Overall, these studies propose that galaxy
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formation is only regulated by two fundamental quantities, that is jstar and Mstar (and
the mapping in B/T which depends on them). Unfortunately, measuring angular
momentum at high redshift is very expensive and therefore data at z & 0 are still quite
sparse (Gillman et al., 2019).

2.6 Galaxies in different environments

Galaxies can be found in isolation, in groups and in large clusters. Observations show
that galaxy properties depend in general on the environment that galaxies live in.

For example, a well established result is that disk galaxies tend to inhabit low-density
regions of the universe, while the opposite is true of elliptical galaxies, with S0
galaxies being most prevalent in groups in the nearby universe (Dressler, 1980). At
high redshift the fraction of quenched S0 galaxies is observed to decrease, while disk
galaxies are more common in all environments (Postman et al., 2005). This evidence
suggests that the morphology and star formation activity of disk galaxies galaxies are
profoundly affected in rich environments at relatively late cosmic times. Deep Integral
Field observations have shown that satellite galaxies in clusters can undergo dramatic
stripping of gas (Poggianti et al., 2017), which sometimes generate spectacular
jellyfish-like features (Poggianti et al., 2019). Some groups report evidence for a clear
dependence of galaxy morphology on environment as early as z ∼ 1.7 (Sazonova
et al., 2020). On the other hand, the present-day morphology-density relation appears
to be already established at z ∼ 1 for quenched elliptical galaxies (Smith et al., 2005a).
A more detailed review of how galaxy structure is observed to be affected by the
environment is discussed in Section 2.6.1.

In general, more massive galaxies are observed to be forming stars at a higher rate in
denser environments at higher redshift (Popesso et al., 2012). As an example, a
protocluster at z ∼ 2.5 has been found to host several massive star forming galaxies,
possibly in the process of merging (Wang et al., 2016). This trend quickly inverts at
later epochs, as massive, quenched, spheroidal galaxies are observed to inhabit the
center of clusters around z ∼ 2 (Strazzullo et al., 2013), while satellite galaxies display
a suppressed star formation rate compared to the field (Peng et al., 2010; Strazzullo
et al., 2019; Old et al., 2020). The trend where more massive galaxies quench earlier in
denser environments is referred to as “quenching downsizing”.

Satellites galaxies may undergo quenching either before infalling in groups and
clusters (Donnari et al., 2020a), and as a result of the interaction with the other galaxies
in the environment (e.g, Menci et al. 2014; Binney and Tremaine 2008) or the
intracluster medium and the cluster potential, which generate stripping phoenomena
acting on gas (Poggianti et al., 2017) and stars (Cattaneo et al., 2011; Grylls et al.,
2019a) and strangulation (Peng et al., 2015). Observations and empirical models
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suggested that environmental effects may play a crucial role in quenching satellite
galaxies (Peng et al., 2010, 2012).

2.6.1 Environmental dependence of galaxy sizes

The size growth of satellite galaxies in groups and clusters may be inhibited by some
environmental processes such as tidal stripping (Binney and Tremaine, 2008), which
do not occur in the field. On the contrary, galaxies that sit close to the centre of the
gravitational potential well of a cluster may undergo a significantly higher number of
mergers compared to galaxies in the field, with a correspondingly higher impact on
their sizes (Shankar et al., 2014b). Thus, in principle, like any other property, galaxy
sizes may depend on the environment.

On this topic, contradictory results are sometimes reported in observational studies.
For example, at z . 0.1 Cappellari (2013) report no difference in the sizes of galaxies
between cluster and field, Huertas-Company et al. (2013b) estimate that at most
galaxies in clusters are 40% larger than those in the field (see also Hearin et al. 2019,
who present evidence that satellite galaxies are smaller than centrals at a fixed Mstar ),
while Valentinuzzi et al. (2010), Poggianti et al. (2013) and Cebrián and Trujillo (2014)
present evidence for a mild trend in the opposite direction. This issue is shared by
intermediate-redshift studies (0.2 . z . 1, e.g., Huertas-Company et al. 2013a Cooper
et al. 2012 for two constrasting results). Instead, several groups report a detection of
environmentally dependent galaxy sizes at z & 1 (Lani et al., 2013; Delaye et al., 2014;
Andreon, 2018; Matharu et al., 2019).

Yoon et al. (2017) argue that the conflicting results at low redshift can be partially
explained by the different stellar mass ranges considered in different studies.
Moreover, some studies do not distinguish between satellite and central galaxies, but
rather report the trend for the overall population. Furthermore, as Huertas-Company
et al. (2013b) point out, measurement errors may be at the root of a non-detection of
environmental trends. Lastly, the scarcity of high-redshift data for MGs has made it
challenging to assess the role of the environment on galaxy structure for this
interesting class of objects.

2.7 Upcoming surveys

The next generation of observing facilities is on its way. In the next decade, large and
high-quality datasets will become available, with the potential to change our view on
galaxy evolution. The capabilities of some of the telescopes that will be deployed in
the next years are summarised below.
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Euclid is a space mission that will set tight constraint on cosmology, the nature of dark
matter and galaxy evolution. The two instruments, VIS and NISP, will observe an area
of 15,000 deg2 down to an apparent magnitude of 24 in the optical to near infrared,
while magnitudes of 26 will be probed in a smaller area of 40 deg2. To put this in
perspective, the SHELA survey, one of the largest surveys to date, observed ∼17.5
deg2 down to a magnitude of 24.5 in the optical and 22.7 in near infrared. However,
the resolution of Euclid, of the order of ∼0.2 arcsec, will still be lower than that of the
flagship optical-near infrared instrument, the Hubble Space Telescope (HST).
Amongst the successes of HST is the CANDELS survey (Grogin et al., 2011;
Koekemoer et al., 2011), which provided an unprecedented view of galaxy evolution.
However, due to the small field of view of HST, CANDELS could cover only ∼800
arcmin2. The Nancy Grace Roman Space Telescope, instead, will have a field of view
of 100 times that of HST, but with the same exquisite resolution, which will enable the
observation of the CANDELS field in only half an hour, compared to the 21 days taken
by HST. The depth and coverage of these surveys will provide a superb view on both
the faint, low mass galaxies and the rare MGs.

Moreover, the spatially-resolved properties of galaxies will be measured to an
unprecedented accuracy with the NIRSpec instrument on the James Webb Space
Telescope and the Harmoni instrument on the Extremely Large Telescope.

2.8 Theoretical models

Galaxies form in an evolving universe. Thus, a cosmological model that serves as a
baseline on top of which galaxy formation and evolution occurs is needed. The Λ
Cold Dark Matter (ΛCDM ) framework is thus far the preferred model for cosmology.
Extensive reviews of the ΛCDM model can be found in standard textbooks (e.g., Coles
and Lucchin, 2002; Mo et al., 2010, see also Frenk and White 2012). The main features
of the ΛCDM Universe and their significance to galaxy formation and evolution are
also briefly discussed here for convenience. Current models for the formation of disk,
elliptical and lenticular galaxies based on the ΛCDM cosmogony are reviewed below.

2.8.1 Galaxy formation in a ΛCDM universe

The main features of the ΛCDM model that will serve the purpose of this thesis are as
follows:

• A still theoretically debated form of dark matter, which is only subject to
gravitational forces, constitutes up to 25% of the matter-energy content of a
geometrically flat universe that has been expanding for ∼13.7 Gyr following a
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“hot Big Bang” (Dicke et al., 1965). Dark energy, which accounts for around 70%
of the content of the universe, is responsible for the acceleration of the cosmic
expansion (Planck Collaboration et al., 2016). Only about 5% of the universe is
constituted by the baryons and leptons envisaged in the Standard Model of
particle physics.

• The seeds of the large scale structure of the universe (i.e. haloes of dark matter
interconnected in a “cosmic web”) originate from tiny quantum fluctuations
proposed in the theory of Inflation (Starobinskiǐ, 1979). A clear and defining
prediction of the ΛCDM model is that dark matter haloes grow hierarchically:
less massive haloes form earlier in the universe, and merge with each other in
progressively more massive haloes at later times (Bond et al., 1991). The
bottom-up assembly of dark matter is a stochastic process.

• When two dark matter haloes merge, the less massive halo (called “subhalo”)
sinks towards the center of the parent halo due to a physical process called
“dynamical friction” which causes loss of energy and angular momentum
(Chandrasekhar, 1943). During this process, tidal interactions can disrupt the
subhalo, or strip its outer layers (Binney and Tremaine, 2008).

• The halo virial radius Rh is defined as follows,

Rh =
( 3Mh

4π∆ρc

) 1
3

(2.3)

where ∆ is the virial overdensity with respect to the cosmological critical density,
ρc (Bryan and Norman, 1998) and Mh is the halo virial mass.

• The structure of dark matter haloes can be described by the
Navarro-Frenk-White (NFW) profile (Navarro et al., 1996), which is a function of
the halo virial radius Rh and a scale radius Rs defined through the concentration
parameter, c = Rh/Rs.

• The spin parameter of dark matter (Peebles, 1969; Bullock et al., 2001), λ, is
defined as the ratio between rotational support and random motions in the dark
matter particles of a halo. Tidal interactions (see Appendix ??) between distinct
dark matter haloes generate an almost mass- and redshift-independent
distribution of spin parameters (Hoyle, 1951; White, 1984; Rodrı́guez-Puebla
et al., 2016) with an average close to zero (〈λ〉 ≈ 0.035) and a dispersion of ≈0.25
dex.

The ΛCDM model offers an appealing framework to qualitatively explain a number of
the observations summarised in the previous Sections. In the standard paradigm for
galaxy formation, the hot gas in the primordial universe is drawn towards the deep
potential wells of dark matter overdensities, where it shocks and cools inside-out
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(White and Rees, 1978); star formation occurs by consumption of cold gas. As the
universe is denser at high redshift, gas cooling is more efficient (Cole et al., 1994) and
thus star formation proceeds at higher rates in the early universe (see Section 2.1.1).
The stochastic nature of the bottom-up dark matter halo assembly into more massive
structures via mergers qualitatively accounts for the range of richness and galaxy
properties observed for galaxies in different environments (e.g., Berlind and Weinberg,
2002; De Lucia et al., 2004, see Section 2.6), and the interactions between subhaloes in
high-density regions are thought to at least partially explain the environmental
dependence of quenching mechanisms and morphological transformation for satellite
galaxies in groups and clusters (Binney and Tremaine, 2008). Moreover, dynamical
friction drags subhaloes towards the center of the potential well (see Appendix ??),
thus causing galaxy mergers (Toomre, 1977; Kauffmann, 1996), which are observed to
occur in the universe (e.g. Puglisi et al., 2021) at a still debated rate (e.g., Lotz et al.,
2008; Mundy et al., 2017; Grylls et al., 2020). Lastly, the results of the Tidal Torque
Theory (Appendix ??) have been applied to explain the origin of the angular
momentum of galactic disks (Fall and Efstathiou, 1980; Fall, 1983; Mo et al., 1998) and,
sometimes, also that of bulge-dominated galaxies (Somerville et al., 2018).

2.8.2 Galactic disks

2.8.2.1 The formation of galactic disks

It has been proposed that star forming disk galaxies form as the result of accretion of
cold gas from the surroundings towards the center of a gravitational potential well
(White and Rees, 1978; Mo et al., 1998). The accreted cold gas is assumed to partially
conserve a fraction jd of its original angular momentum J (assumed to be the same as
that of the host dark matter halo) and settle into a disk with angular momentum Jd,
the mass of which is a fraction md of the halo mass, Mdisk = md Mh, and of disk scale
lenght Rd,

Rd =
1√
2

fc f j fRλRh, (2.4)

where f j = jd
md

is the fraction of angular momentum conserved, fc ∝ c−≈0.2 (Jiang et al.,
2019) stems from assuming a NFW profile and fR is a numerical factor of order unity
(Lapi et al., 2018b) that accounts for halo contraction/expansion (Blumenthal et al.,
1986). Here λ is the spin parameter, which is a adimensional measure of the halo
angular momentum; Peebles (1969) defines it as

λP =
J | E | 12

GM
5
2
h

, (2.5)
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(J,E and Mh are respectively the angular momentum, energy and mass of the halo)
whereas Bullock et al. (2001) adopts

λ =
J√

2MhRh
. (2.6)

Although the model outlined above strictly predicts galaxy sizes only, it also sets a
framework in which galaxy angular momenta can be predicted. Indeed, f j can be
recast as

jstar = f j jh

∝ f jλM2/3
h

∝ f jλ f−2/3
star M2/3

star, (2.7)

where fstar = Mstar/Mh.

Eq. 2.4 (Fall and Efstathiou, 1980; Fall, 1983; Mo et al., 1998) provides a linear link
between the size of the host halo and the size of the galaxy, which is determined by
assumptions on angular momentum conservation. The mean relation implied by eq.
2.4 is in remarkably good agreement with observations (e.g., Lapi et al., 2018b).
Moreover, eq. 2.7 predicts a M2/3

star dependence for jstar, which is very close to what is
observed (Romanowsky and Fall, 2012; Obreschkow and Glazebrook, 2014; Posti et al.,
2018b; Lapi et al., 2018b) and supported by hydrodynamical simulations with efficient
feedback (Zavala et al., 2008). However, despite these successes it is unclear whether
this model properly captures the full distribution of the structural and dynamical
properties of disk-dominated galaxies, which may be tighter than the one predicted
(Romanowsky and Fall, 2012; Desmond and Wechsler, 2015b; Desmond et al., 2017).

2.8.2.2 Star formation and gas feeding

In a simple “bathtub model” (White and Rees, 1978; Fall and Efstathiou, 1980; Mo
et al., 1998; Bouché et al., 2010; Lilly et al., 2013; Rodrı́guez-Puebla et al., 2016), the
cold gas reservoir is steadily replenished from the outskirts of the system and
progressively consumed by star formation in a quasi-equilibrium configuration,
generating an inside-out growth (e.g. Avila-Reese et al., 2018) which is supported by
observations (e.g. Garcı́a-Benito et al., 2017). Supernova explosions and stellar winds
further eject gas from the galaxy and enrich the interstellar medium (e.g., Dekel and
Silk, 1986). This simple model predicts that the size and angular momentum of
galactic disks should increase over cosmic time (Zoldan et al., 2018).

The details of how cold gas accretes in the outskirts of galaxy disks are not settled yet.
On the one hand, some studies suggest that cold and dense gas streams from the
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cosmic web can penetrate the dark matter halo and efficiently reach the galaxy at its
centre (Dekel et al., 2009; Ceverino et al., 2010; Danovich et al., 2012; Dekel et al., 2013),
while stream survival has been questioned in other works (e.g,. Nelson et al., 2013;
Mandelker et al., 2019) favouring instead a smoother accretion mode (Nelson et al.,
2016). Furthermore, the details of the physics of stellar feedback-regulated star
formation in galactic disks are still highly debated (e.g., Schaye and Dalla Vecchia,
2008; Krumholz and Thompson, 2012; Agertz et al., 2013; Vogelsberger et al., 2013;
Hopkins et al., 2013b; Agertz and Kravtsov, 2015; Dekel et al., 2019, see Naab and
Ostriker 2017 for a comprehensive review), and different feedback schemes result in
distinct small-scale morphologies for galaxy disks (e.g, Crain et al., 2015).

The uncertainty in the modelling of the mode of gas accretion and the role of
supernova feedback in fuelling, regulating and quenching star formation are relevant
also for in-situ scenarios for the formation of ETGs (see below).

2.8.3 Early Type galaxies

2.8.3.1 Structural contraction: merger versus in-situ models

Gas-rich (“wet”) galaxy mergers have long been recognized as a tempting solution to
achieve both quiescence and a structural contraction (which is sometimes called
compaction, Dekel and Burkert 2014) to justify the presence of compact quenched
spheroidal galaxies at high redshift, whereby star formation is halted by the fast
depletion of gas due to the merger-driven starburst (Hopkins et al., 2009c; Zolotov
et al., 2015), the stabilising effects of bulge formation (Martig et al., 2009) and,
sometimes, also the triggering of accretion on a SMBH, that will shine as an AGN,
heating and dispersing any residual gas (Di Matteo et al., 2005; Hopkins et al., 2006,
2008; Menci et al., 2014; Shankar et al., 2009; Shen, 2009). Other recent zoom-in
simulations have shown that compaction may occur also due to the inflow of high
angular momentum material streaming from the cosmic web into dark matter haloes
(Dekel et al., 2009, 2013), where highly nonlinear interactions generate gravitational
torques that lead to a collapse of the galaxy structure (Danovich et al. 2015; Ceverino
et al. 2010, 2014,Dekel et al. 2009). Whether merger- or in-situ-driven, compaction is
also thought to cause galaxy morphology to become more spheroidal (Dekel and
Burkert, 2014; Lapi et al., 2018a) and to cause loss of angular momentum (Shi et al.,
2017; Danovich et al., 2015).

2.8.3.2 The size growth of ETGs

Three theoretical scenarios have been proposed to explain the puzzling size increase
of quenched galaxies of a given stellar mass (see Section 2.3.2). These include:
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• Mergers. “Dry” (i.e., gas-poor) galaxy mergers provide a natural and intuitive
explanation to the size growth of individual galaxies, as the remnant of two
merging galaxies is predicted to be larger than the progenitors (Naab et al., 2009;
Nipoti et al., 2009b). Bezanson et al. (2009) showed that minor dry mergers are
expected to increase galaxy sizes more effectively than major dry mergers.
However, the rate of minor dry mergers may not be sufficient to account for the
entire size evolution of MGs through cosmic time (Newman et al., 2012; Nipoti
et al., 2009a, 2012). More generally, the exact contribution of dry mergers to the
mass assembly of massive galaxies is still a matter of intense debate among both
theoretical studies (e.g., De Lucia and Blaizot 2007; Hopkins et al. 2010a; Wilman
et al. 2013; Rodriguez-Gomez et al. 2015; Qu et al. 2017; Tacchella et al. 2019;
O’Leary et al. 2020; Grylls et al. 2020) and observational works (e.g., Man et al.
2016; Mundy et al. 2017; Mantha et al. 2018; Duncan et al. 2019). Galaxies in
denser environments may be expected to have undergone a more violent merger
history, and some hierarchical models where internal processes weakly affect
galaxy structure agree qualitatively with this trend (Shankar et al., 2014b).

• Progenitor bias. It has often been debated in the literature whether the size
evolution of galaxies of a given stellar mass stems from the size growth of
individual galaxies or it is a consequence of a “population effect” where newly
formed, larger galaxies enter the mass selection at later epochs thus increasing
the mean size distribution (e.g., Carollo et al. 2013, Shankar et al. 2015, Gargiulo
et al. 2017). This “progenitor bias” effect (van Dokkum and Franx, 1996) has
been usually invoked to explain the size evolution of passive galaxies with
Mstar < 1011M� (e.g. Faisst et al. 2017; Fagioli et al. 2016). Most studies agree on
the lesser role of progenitor bias in the size evolution of MGs at z . 1, in favour
of a more predominant role of (dry) mergers in increasing the sizes of individual
galaxies (e.g., Saglia et al. 2010, Carollo et al. 2013, van der Wel et al. 2014, Fagioli
et al. 2016, Faisst et al. 2017, but see also Gargiulo et al. 2017), however the lack
of data for MGs at z & 1 has insofar made it difficult to quantify the contribution
of progenitor bias at early times. In particular, the disappearance of compact
(e.g., Cassata et al. 2011; Barro et al. 2013) galaxies as the Universe ages is
interpreted as a sign that they must have grown in size individually (van der
Wel et al., 2014) while a constant (or, even, increasing) abundance of compact
galaxies implies that progenitor bias dominates the size growth (Saracco et al.,
2010; Gargiulo et al., 2016, 2017). In this respect, the full distribution of galaxy
sizes at fixed stellar mass, i.e., the size function φ(Re|Mstar), is an invaluable tool
to disentangle galaxy evolution scenarios, providing simultaneous information
on the mean size Re and the number density of compact galaxies (e.g., Shankar
et al. 2010; Carollo et al. 2013).

• AGN feedback. AGN activity may cause the ejection of a significant fraction of
a galaxy mass. Under those circumstances, the correspondingly shallower
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potential well will allow the stellar orbits to become less bound and relax on
larger scales. Thus, invidivual galaxies may undergo a structural expansion as a
result of feedback from the accreting SMBH. In this case, the size increase occurs
in a matter of a few tens Myr. This idea was first developed by Fan et al. (2008)
based on the mass loss model by Biermann and Shapiro (1979). If M and M′ are
the initial and final masses, and if R and R′ are the initial and final sizes, the
model predicts that

R
R′ = 2− M

M′ , (2.8)

so that if M′ > M/2 the system will increase its size, while it can be shown that
M′ < M/2 results in an unbound system. The presence of a dark matter halo
stabilises the system against disruption, as shown in detail by the simulations of
Ragone-Figueroa and Granato (2011), but still allows for substantial expansion
(Choi et al., 2018). AGN feedback during the compact starforming stages of the
evolution of MGs (both in a submm-Far Infrared phase, e.g. Barro et al. 2016,
and an optical “blue nugget” phase, e.g. Martig et al. 2009; Damjanov et al. 2011;
Barro et al. 2013; Fang et al. 2013; Zolotov et al. 2015; Tacchella et al. 2016,) which
are potentially linked in an evolutionary sequence (e.g., Gómez-Guijarro et al.
2019; Puglisi et al. 2021) may also contribute to both size growth and quenching
(Fan et al., 2008, 2010; Kocevski et al., 2017; Lapi et al., 2018a; van der Vlugt and
Costa, 2019), and the relative evolution of compact starforming and quiescent
galaxies can provide tight constraints on these processes.

2.8.3.3 The two stage formation scenario

A purely merger-driven scenario for the formation of ETGs is challenged by
observations and theoretical works. For instance, local elliptical galaxies feature old
ages (Bernardi et al., 2010) suggesting that the main star formation episode must have
occurred at z & 2, and its duration must have been as short as a few hundred Myrs
(Thomas et al., 2005). The advent of FIR/submm observatories in the past decade has
made it possible to detect strongly dust-obscured star formation at z & 1.5, with SFR
as high as a few hundreds, or even thousands M�/yr in the most extreme cases
(Puglisi et al., 2017). However, idealised high-resolution hydrodynamical simulations
have shown that high redshift mergers weakly enhance star formation due to
saturation of the molecular gas compressibility (Fensch et al., 2017), although mergers
can trigger bursts of star formation at low redshift, where gas fractions are lower. It is
also unclear (Schreiber et al., 2015; Grylls et al., 2020) whether mergers occur at a
sufficient rate to induce repeated bursts and allow for the formation of very massive
(Mstar ≈ 1011M�), quiescent, extremely compact (Re ≈1kpc), galaxies that have been
recently unearthed at redshift as high as ∼ 4 (Kriek et al., 2016; Glazebrook et al., 2017;
Valentino et al., 2020; Tadaki et al., 2020; D’Eugenio et al., 2020).
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The so called two phase galaxy formation scenario (Oser et al., 2010) reconciles the merger
and the in-situ formation paradigms. According to this model, the bulk of the stellar
mass of massive galaxies is built at high redshift (z & 2) in a dissipative burst of star
formation, whereas the rest of it comes from dry mergers at z . 1.5 (Hopkins et al.,
2009e; Rodriguez-Gomez et al., 2016). Note that even in this picture both AGN
feedback and progenitor bias may still contribute to the size evolution of the
population of MGs. An example of a two phase scenario where AGN plays an
important role is the model presented in Lapi et al. (2018a).

2.8.3.4 Relics

An interesting prediction of the two-stage formation scenario is that galaxies that did
not undergo any size evolution after the compaction event, either driven by the AGN
or by mergers, must have preserved their small size until the present day (Quilis and
Trujillo, 2013). These objects are called “relics” and their number density, environment
and physical properties are considered important probes of the two-stage formation
scenario (Ferré-Mateu et al., 2015; Buitrago et al., 2018; Spiniello et al., 2020).

2.8.3.5 S0 galaxies

Lenticular galaxies deserve a separate treatment. The joint origin of their velocity
dispersion-dominated bulge surrounded by a featurless disk and their star formation
activity (mostly quenched or transitioning to quenched) are still very debated and
several scenarios for S0 formation have been proposed. For example, in-situ models
envisage that massive star forming clumps sink at the centre of star forming galaxies at
z & 1 within a few orbital times due to violent disk instabilities, thus creating a bulge
component, while the residual gas in the disk will be stabilised by the newly formed
bulge and star formation will thus be halted, and long-term quenching maintained by
AGN feedback (Martig et al., 2009; Bournaud et al., 2011; Lapiner et al., 2021). Other
models instead suggest that gas-rich major mergers can produce a bulge component
through a centrally-concentrated starburst but leave substantial gas to regrow a disk
at later times (Hopkins et al., 2009b). Finally, tidal interactions within a crowded
environment can quench previously formed disk galaxies through strangulation (Peng
et al., 2015) and generate a morphological transformation into S0s (Bekki and Couch,
2011). Although the fraction of S0 galaxies in groups and clusters is observed to
progressively increase at z . 1 (Postman et al., 2005), it is unclear whether this is
mostly driven by cluster-specific processes or whether S0s form before infalling in the
group/cluster environment via in-situ violent disk instabilities or gas-rich mergers.
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2.9 Summary and thesis outline

The picture that emerges from observations is that more massive galaxies form as the
Universe ages, while the average rate of star formation steadily declines along with
AGN activity (Madau and Dickinson, 2014) and the number density of quenched
galaxies increases dramatically. Moreover, the population of galaxies of a given stellar
mass increases in size, an effect that is strongest for the most massive galaxies. Finally,
structural and dynamical measurements suggest that the physical processes
responsible for quenching galaxies also led to a systematic difference in the average
size and angular momentum of star forming and quenched galaxies. Thus, the
interplay between galaxy structure, morphology, dynamics and star formation
activity, seems promising to yield insights in the physics of galaxy formation.

On the other hand, the ΛCDM cosmological model is a viable framework to
understand how galaxies form and evolve with time. Models for the formation of disk
galaxies based on angular momentum conservation seem to capture the average
structural and dynamical scaling relations for LTGs, but may be in tension with their
dispersion. The precise mechanisms of star formation feeding and feedback are hotly
debated, as is the role of mergers and AGN feedback in driving the structural
evolution of galaxies and in affecting star formation activity. Hierarchical models
suggest that galaxies in denser environments are larger, in qualitative agreement with
some low-redshift observations, while models characterised by strong disk
instabilities result in an enhanced environmental dependence. The environment is
also thought to be crucial to quench satellite LTGs and induce a morphological
transformation into S0s, but the role of mergers/in-situ dynamical instabilities prior to
infall in the cluster environments is debated. Finally, future surveys will unveil a
wealth of data that will lead to an improved understanding of galaxy evolution.

In this thesis I will explore the interplay between galaxy structure, star formation
activity, morphology and dynamics using both data-driven and detailed physical
models of galaxy formation based on the ΛCDM cosmogony. To this end, I will take
an holistic approach by using both physical and data-driven models, and exploiting
their relative strengths, as thoroughly detailed in Section 3.4. Specifically,

• I will expand on current efforts to build a coherent empirical framework to link
galaxy and halo properties. In particular, I will explore the link between models
where galaxy stellar mass, Mstar , is proportional to halo virial mass, Mh, and
models where galaxy size, Re, is a function of the host dark matter halo size, Rh

(possibly mediated by halo structural or dynamical properties). This model will
be applied to central galaxies of intermediate-to-high stellar mass in the local
Universe, to probe the structure of central MGs up to high redshift, and to
satellite MGs in the local Universe;
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• While cosmological models can shed light on the general galaxy properties, the
small-scale features can retain memory of the past formation and assembly
history which can be probed via accurate comparisons between hydrodynamical
simulations and observations. I will introduce a novel framework based on
Deep Learning that supersedes approaches based on non-parametric estimators
to assess the accuracy of state-of-the-art hydrodynamical simulations at
reproducing the small-scale galaxy features. As a proof of concept, this
methodology will be applied to the Illustris simulation and its successor, Illustris
TNG.

The outline of this thesis is as follows:

• In Chapter 3 I outline the modelling frameworks that will be used throughout
this work, which are based on the standard ΛCDM cosmological framework.
The models that I will use include Semi-Analytic Models, Semi-empirical
Models, Hydrodynamical simulations. I will also introduce Deep Learning
methods that allow to overcome the shortcomings of non-parametric
morphological estimators illustrated in Section 2.4. A detailed view of the
specific models used in this work is given in Chapter 4.

• In Chapter 5 I will derive empirical relationships between galaxy size and the
galaxy’s dark matter halo virial radius and will use analytical arguments and
cosmological simulations to provide constraints on (i)
angular-momentum-based models for the formation of disk galaxies (ii) the
feasibility of pure merger models for the formation of ETGs and (iii) galaxy
structure, morphology and dynamics in state-of-the-art cosmological
hydrodynamical simulations of galaxy formation;

• In Chapter 8 I will discuss the relationship between the small-scale
morphological features of galaxies, their global structure and level of star
formation activity in fully forward-modelled state-of-the-art hydrodynamical
cosmological simulations compared to observations;

• In Chapter 6, I will apply a constant Re − Rh relation to the still poorly
observationally constrained population MGs up to high redshift, and will
provide predictive trends for the number density evolution of star forming and
quenched, extended and compact MGs, along with continuity arguments to link
the two populations in scenarios where the underlying Mstar −Mh relation is
significantly different. This may translate in distinct galaxy evolution scenarios
that include a different contribution of mergers, AGN feedback and progenitor
bias to the size growth of MGs.

• In Chapter 7, I will show that the same galaxy-halo connection that reproduces
the population of central MGs, is also able to explain the limited environmental
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dependence of the sizes of MGs in the local Universe, and will show that
environmental effects must modify the morphology of star forming satellite
MGs in a few Gyrs. I will also provide predictive trends to be fulfilled by future
surveys for the size difference between field and clusters.

• The data-driven Monte Carlo methods employed in Chapters 5, 6 and 7 will also
be applied to modelling current treatment strategies for hypertension in Chapter
9.

• Finally, conclusions and the outline of future research directions that can be
taken from this work are outlined in Chapter 10.
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Chapter 3

Bottom-up versus top-down
modelling of galaxy formation

Galaxy evolution is a complex process which requires solving a set of nonlinear,
coupled differential equations that model gravitational interactions, radiative
processes, accretion on SMBHs, magnetic fields, star formation and feedback. A few
theoretical tools have been developed to understand how these processes couple to
each other in a cosmological framework. These are briefly outlined in this Chapter. In
all the modelling frameworks described in this Chapter it is assumed that galaxy
formation occurs in dark matter haloes in a ΛCDM universe (White and Rees, 1978).
The specific models used in this thesis will be described in detail in Chapter 4. Here I
also take a step forward, and introduce Deep Learning as a completely data-driven
tool to constrain models of galaxy formation.

The key idea of this thesis is to combine the strengths and weaknesses of the different
approaches to work towards a more comprehensive view of galaxy formation. This
strategy is outlined in Section 3.4, and it constitutes the logical pillar upon which the
next Chapters are developed.

Traditionally, hydrodynamical simulations (e.g., Somerville and Davé, 2015; Naab and
Ostriker, 2017) and Semi-analytic models (SAMs, e.g. Kauffmann 1996; Cole et al.
2000; Baugh 2006; De Lucia and Blaizot 2007; Menci et al. 2014) have been used to
study galaxy formation. While these two approaches are very different in many
aspects, they aim to reproduce observations by implementing numerical methods
which approximate the physics involved. The free parameters involved in these
models are typically tuned to match some (often low-redshift) observables. Models
are then tested on independent data, and used to make predictions for future
observations.
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In Semi-empirical models (SEMs, e.g., Kravtsov et al., 2004; Vale and Ostriker, 2006;
Conroy and Wechsler, 2009; Moster et al., 2013; Behroozi et al., 2013; Hearin and
Watson, 2013; Hopkins et al., 2010b; Behroozi et al., 2019; Shankar et al., 2013;
Rodrı́guez-Puebla et al., 2016; Lapi et al., 2017, 2018a; Hearin et al., 2019, amongst
many others), instead, a more data-driven approach is used to model the relationship
between galaxies and their dark matter haloes, which constitutes a probe for
fully-fledged galaxy formation models. In this thesis I will focus in particular on Halo
Abundance Matching (e.g. Shankar et al., 2006; Behroozi et al., 2010;
Rodrı́guez-Puebla et al., 2013; Aversa et al., 2015; Grylls et al., 2019a; Girelli et al., 2020)
and its connection to galaxy sizes through a galaxy size-halo size relation (Mo et al.,
1998; Kravtsov, 2013), which is one of the main contributions of this work.

3.1 Physical models of galaxy formation

3.1.1 Semi-analytic models

SAMs make use of analytic approximations of the baryonic processes relevant to
galaxy evolution (Cole et al., 2000), which are implemented on top of dark matter halo
merger trees constructed numerically (e.g., Menci et al., 2005) or from dark
matter-only N-body simulations (e.g. De Lucia and Blaizot, 2007). The analytical
nature of SAMs and the consequent lack of both an Euclidean grid or particles imply
that no spatial information is directly available in these models and so dynamical
processes, such as dynamical friction and mergers, are implemented as ansatz
calibrated against the results of N-body simulations (Klypin et al., 2011) and the
physical processes that set galaxy structure have to be implemented explicitly (e.g.
Zoldan et al., 2018). SAMs rely on a set of free parameters which are usually tuned to
reproduce some observables. The flexibility of SAMs is in that specific processes can
be easily switched on and off to test their impact on observables (e.g. Menci et al.,
2014), and different recipes to describe the same data can be used if supported by a
well motivated theoretical background. Moreover, the relatively short computing time
needed to run a full semi-analytic simulation makes it possible to explore a wide
portion of the parameter space and to easily test the most different scenarios in a
reasonable amount of time. On the other hand, the parameter space can be sometimes
very large, with some models employing dozens of free parameters which may lead to
non-trivial degeneracies (Elliott et al., 2021).

A state-of-the-art SAM that will be used in this thesis is presented in Section 4.1.
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FIGURE 3.1: A view of the tradeoff between high resolution and large volumes for
state-of-the-art cosmological simulations. It can be seen that a high resolution gen-
erally corresponds to a lower number of resolved galaxies and vice versa. The top
right corner of the plot is currently scarcely populated. Figure reproduced from

https://www.tng-project.org.

3.1.2 Hydrodynamical simulations

Unlike SAMs, in hydrodynamical simulations the Universe is modelled using
finite-size particles and/or computational cells that represent gas phases, stars and
dark matter and which are evolved using collisionless gravitational dynamics coupled
with the Euler equations of hydrodynamics. Given the availability of spatial
information, in hydrodynamical simulations dark matter halo mergers and the
consequent galaxy mergers arise naturally from Newtonian dynamics. Hence the
coevolution of baryonic matter and dark matter arises naturally in cosmological
simulations, and galaxy properties (such as morphology and star formation) are
spatially resolved, which is a major advantage compared to both SAMs and SEMs.
However, both the limitation of resolution and our current lack of understanding of
the detailed physical mechanisms at play require that simple recipes for the physics of
galaxies be implemented (sometimes called “subgrid physics”), much like in SAMs.
Moreover, the advantage of having spatial resolution comes at a very high
computational cost, with some simulations running over several hundred thousand
(or even millions) hours of CPU time. This results in the major drawback that a full
exploration of the parameter space of the model is unfeasible in practice.

https://www.tng-project.org
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Hydrodynamical simulations come in two flavours which are a natural consequence
of the tradeoff between the number of galaxies that may be simulated and a high
resolution (see Figure 3.1). On the one hand, high-resolution studies of single objects
in isolation or in a cosmological context (zoom-in simulations) are performed to
provide insights into physical processes which are lost at progressively worse
resolutions. However, this comes at the cost of very small sample sizes (typically tens
of galaxies). On the other hand, large-scale cosmological simulations track the
evolution of galaxies since the early times in a comoving volume of universe, thus
providing statistically relevant information about a variety of galaxy populations. The
main disadvantage of cosmological simulations is that they may not be able to resolve
galaxy formation physics in its details, which may result in spurious results driven by
numerical resolution. A prominent example of this is that the time- and
spatially-resolved star formation histories vary substantially at different resolutions
(Sparre and Springel, 2016). It has also been highlighted that different numerical
methods may provide dramatically different solutions at fixed initial conditions
(Scannapieco et al., 2012; Sijacki et al., 2012; Kim et al., 2014).

Two state-of-the-art hydrodynamical cosmological simulations that will be used in
this work are described in Section 4.2.

3.2 Semi-empirical models

SEMs constitute a complementary tool to Hydrodynamical simulations and SAMs.
SEMs offer a transparent methodology to constrain the co-evolution of galaxies and
their dark matter haloes. In SEMs physical processes are not modelled from first
principles. Instead some observables are taken as input assuming that the properties
of galaxies are correlated with those of the host dark matter halo (e.g., Kravtsov et al.,
2018), and physical recipes may be applied to evolve the mock galaxies constructed in
this way (e.g., Shankar et al., 2013). On the other hand, the semi-empirical approach
favours predictive power at the expense of scope and, like SAMs, lacks modelling of
the detailed internal structure of galaxies.

The more data-informed approach that characterizes SEMs is extremely powerful at
dissecting the role of different physical processes in determining galaxy properties
(Shankar et al., 2013) without the requirement to fully model every aspect of galaxy
evolution. Furthermore, the parameter space of SEMs may be efficiently explored
using Monte Carlo Markov Chain algorithms, which is expensive to perform for
SAMs (Henriques et al., 2015) and intractable for hydrodynamical simulations. SEMs
have also been used to assess inconsistencies within data (Grylls et al., 2020) and are
being deployed to perform predictions for the next generation of observing facilities
(Behroozi et al., 2020).
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The SEM used in this work will be described in Section 4.3.

3.3 Deep learning

FIGURE 3.2: The number of refereed (blue) and non-refereed (green) academic pa-
pers that include the word ”galaxy” in combination with ”machine learning” or
”deep learning” from the year 2000 to 2021 as of June 2021 retrieved from the
Nasa Astrophysics Data System, https://ui.adsabs.harvard.edu/, using the query

abs:("galaxy" and ("machine learning" or "deep learning")).

A further step towards a more data-driven approach to understanding galaxy
evolution is offered by Machine Learning (ML). ML is a branch of Artificial
Intelligence where algorithms extract complex, high dimensional information from
the data while learning to perform a certain task during a (sometimes iterative)
training process that optimises an objective function (also called loss function). Once
the training is completed, the algorithm is capable of solving the task at hand for new,
previously unseen data. Deep Learning (DL) is a branch of the field of ML based on
artificial neural networks (NNs).

In the past few years, early efforts (e.g., Firth et al., 2003) in applying ML and DL tools
in Astrophysics have been taken forward and are now becoming increasingly popular
given their flexibility and predictive power. Applications of relevance to the field of
galaxy evolution are gaining significant momentum (see Figure 3.2) and include
forecasts for the next generation of telescopes (e.g., Bretonnière et al., 2021; Hassan
et al., 2020), automated merger detection (e.g., Ferreira et al., 2020) and merger stage
classification (Bottrell et al., 2019), the detection of gravitational lenses (e.g., Cheng
et al., 2020) and low-surface brightness tidal features in galaxies (Walmsley et al.,
2019), the accurate estimation of photometric redshifts (e.g. Hatfield et al., 2020,

https://ui.adsabs.harvard.edu/
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amongst many others) and cluster masses (Yan et al., 2020), the automatic
segmentation of star forming clumps (Huertas-Company et al., 2020), the automatic
classification of galaxy morphology (e.g., Huertas-Company et al., 2011, 2015), and the
production of fast surrogate models by inpainting of galaxies onto N-body dark
matter-only simulations (Moews et al., 2021; Villaescusa-Navarro et al., 2020b). This is
an incomplete list which shows the breadth of applications of ML and DL and their
potential to drastically augment or even substitute current methodologies both for
observational and theoretical astrophysics.

One of the downsides of neural networks is that they can be extremely expensive to
train, up to several days, even in parallel and on Graphic Processing Units (GPUs) or
Tensor Processing Units (TPUs). This issue is exacertabed by the fact that typically
models need to be refined and benchmarked several times, which requires multiple
sequential training phases. The resulting important carbon footprint of neural
networks has been highlighted in the literature (e.g. Strubell et al., 2019; Patterson
et al., 2021) and is a matter of debate in the AI Ethics community. Moreover, although
the optimization algorithm is extremely simple, it is often unclear on the basis of what
features in the data NNs make a decision, e.g., what parts of an image is most related
to the network output (e.g., Agarwal et al., 2020). This is crucial, as automated
decision-making is the final goal of many AI applications, and trust in AI can be
eroded easily without interpretability (e.g., Markus et al., 2021). For example, it would
be highly desirable that the network identifies feature that are relevant for the task at
hand. The user can then be confident that the decision is not driven by e.g.,
background objects in an image (such as stars in the field of view of a galaxy image),
or that the algorithm does not discriminate based on skin colour (Izumo and Weng,
2021).

Thus, a crucial weakness of neural networks is that they are not easily interpretable.
Several techniques have been developed to aid the interpretability of DL methods,
and in particular of CNNs, applied in classification tasks; some examples are
GradCam (Selvaraju et al., 2016) and Saliency Maps (Simonyan et al., 2013). These
algorithms provide a way to visualize the regions of an image a CNN mostly focuses
on to output a certain prediction. Saliency maps have been already applied in galaxy
morphology classification (Huertas-Company et al., 2019), and GradCam in merger
stage identification (Ćiprijanović et al., 2020). However, the field of Explainable
Artificial Intelligence (XAI) is still in its infancy, and therefore neural networks are still
often regarded as “black boxes”.

In the remainder of this Section, I will introduce supervised and unsupervised ML
frameworks. Further, I will outline how neural networks work and summarise some
of their mathematical properties in Appendix B. I will also show that deep generative
neural networks can be used to compare sets of images, and how that can be applied
to assess the morphology of galaxies in hydrodynamical simulations.
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3.3.1 Supervised and unsupervised learning

One of the main goals of ML and DL is to learn from the data X the mapping ψ to a
given label Y. In supervised learning, an algorithm is trained on some example data, for
which both Xtrain and Ytrain are known. If the learned mapping ψ is general enough
then the trained algorithm will be able to assign a prediction Ypred to a previously
unseen data point Xnew. In probabilistic terms, a supervised algorithm learns the
distribution of labels Y given an input X, P(Y|X). Supervised learning includes both
regression and in classification tasks. For regression, the labels Y ∈ R are numbers
which can assume any value in the real domain, such as the mass of a cluster of
galaxies. Instead, in a classification task the labels are discrete; an example of this is
the classification of galaxy morphology.

When the structure of data is unknown, i.e. the Ys are not available, unsupervised
learning can be used. In an unsupervised framework, the objective may be to find
structure in the data, such as clusters, or to estimate the probability distribution
function of the data, P(X). In the former case, clustering algorithms are the most
appropriate to group data according to their features without any human
intervention. The number of clusters may be fixed by the user (like in the
k-Nearest-Neighbour approach) or left as a further degree of freedom for the
algorithm to discover. Learning the probability distribution function of data also falls
in the realm of unsupervised learning. This is the approach that will be taken in this
work, as described in detail in Section 3.3.4.

3.3.2 Neural Networks

Artifical Neural Networks (NNs) are non linear models that approximate a mapping
X → ψ(X). As ψ can be a very complex function, it can be parametrised by millions or
even billions of learnable variables, called weights and biases. Convolutional Neural
Networks (CNNs), are particular types of NNs that are particularly efficient at
capturing spatial information in images. A complete description of NNs and CNNs
for DL tasks is outside the scope of this work, and the reader is directed to textbooks
for a detailed review (such as the excellent “Deep Learning Book“, Goodfellow et al.
2016). Nevertheless, for completeness, I give a broad introduction on NNs and CNNs
in Appendix B.

One property of NNs that is worth mentioning here, is that they are able to
approximate any function ψ to an arbitrary degree of accuracy, provided the NN is
equipped with a high enough number of parameters and can be trained efficiently.
This is called the universal approximation theorem (Cybenko, 1989). Until not too
long ago, a mathematical proof of the universal approximation theorem existed only
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for feedforward fully connected NNs, i.e. Hornik et al. (1989), and so there was no
guarantee that the universal approximation property would apply to CNNs. This has
been proved recently (Zhou, 2020). As a caveat, however, it is important to point out
that, although these theoretical guarantees exist, finding the best DL architecture and
efficiently training it to approximate data to a very high degree of accuracy proves
extremely hard in practice.

3.3.3 Beyond non-parametric estimators

As discussed in Appendix 3.3.2, CNNs are ideal tools to create a mapping between an
image X and a value. Being universal approximators, CNNs are able to model
arbitrarily complex patterns in image data, without requiring any explicit choice of
spatial diagnostics or any simplified fit to the light profile. With CNNs, the precious
information contained in the pixels of an image can be fully exploited to provide a
single-valued prediction. Thus, CNNs provide a framework that supersedes
traditional non-parametric morphological estimators (see Section 2.4), which are
derived from a human-biased perspective. Moreover, a combination of
non-parametric estimators is usually needed to assign a label (e.g., merger
identification requires that candidate mergers lie in a certain region of the G−M20

plane, Lotz et al. 2008), while this is learned in an automated fashion in CNNs.

3.3.4 Deep Generative Neural Networks

A major step forward in the field of Machine Learning has been made in the very
recent years with the advent of Deep Generative Models (DGMs). Prominent
examples of DGMs include Generative Adversarial Networks (GANs, Goodfellow
et al. 2014), Variational Autoencoders (VAEs, Kingma and Welling 2014) and
autoregressive models (van den Oord et al., 2016b). Briefly, the objective of DGMs is to
learn the probability of data P(X) without any label. Therefore, DGMs are
unsupervised models1. In DGMs, the internal representations constructed during
training are not used to provide a prediction, but to generate from scratch new
samples drawn from the same distribution of the training set.

3.3.5 Distributional shift between simulated and real galaxies

Supervised classification tasks with neural networks can provide very accurate
predictions for unseen data. However, predictions can be overconfident and,

1In reality, there are examples of DGMs being used for supervised approaches, such as image-to-image
translation (Isola et al., 2018). For the purposes of this work, however, I will use DGMs for unsupervised
tasks.
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sometimes, plain wrong. For instance, a CNN trained to recognise cats and dogs will
still produce an output label for any input image, with the result that, e.g., a horse will
be classified as, e.g., a dog, perhaps even with high confidence. This happens because
the CNN has been trained on the distribution of images P(Y = {cat, dog}|X), while
the test set comes from a different distribution that includes horses. This is called
distributional shift between training and test sets.

Amongst the aims of this thesis is to provide a framework to assess how well galaxy
morphology is reproduced in simulations quantitatively. In previous work
(Huertas-Company et al., 2019), a CNN was trained to classify galaxy morphology
using observations (Nair and Abraham, 2010) as the training set, and it was then
applied to assign a label to fully-realistic mock observations of IllustrisTNG100
galaxies. The implicit assumption made in Huertas-Company et al. (2019) was that the
training and test sets came from the same underlying distribution. However, since in
principle it is not known whether simulations produce realistic galaxy morphologies,
their approach suffered from a potential distributional shift between training and test
data. Since a supervised approach to this problem appears to be ill-posed, it would be
helpful to devise a methodology that is able to deal with the probability distribution
of data explicitly, without any conditioning on specific labels.

Comparing images coming from different datasets is a task that in ML is known as
Out of Distribution detection (OoD). The high-level idea is to have a deep learning
model that learns the details of a dataset and condenses it in a single-valued function
which can be used as a metric to assess candidate OoD images. DGMs (see Section
3.3.4) have been proposed in the literature to perform this kind of assessment. In
short, a DGM trained on a given dataset computes the metric for each of the
in-distribution images (i.e. images that come from the same distribution of the
training set) as well as for all the candidate OoD images (i.e. data not seen by the
network at training time that may or may not come from the same distribution of the
training set). A comparison between the distributions of the metric for both datasets
will reveal whether the candidate OoD sample agrees with the training set (Bishop,
1994). Therefore, comparing observations and simulations can be treated as an OoD
detection problem.

Figure 3.3 illustrates how an OoD detection framework can be applied to perform
quantitative comparison between the small-scale morphology of simulated and real
galaxies. Most importantly, the level of agreement between simulations and
observations critically will depend on the small-scale features in the images - which,
in the specific case of galaxies, are most sensitive to both the physics implemented
(e.g., Koudmani et al., 2019) and the numerical techniques (Kim et al., 2014) adopted
in the simulations. The DGM that will be used in this thesis is PixelCNN (van den
Oord et al., 2016b), which is a probabilistic DGM, and is able to evaluate the likelihood
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FIGURE 3.3: A schematic view of the proposed strategy. Top: During training, the
generative model is exposed to images from observed galaxies and learns their highly
multidimensional distribution P(X). Bottom: At inference time, the model is fed with
images of simulated galaxies and it outputs a measurement of their likelihood of being
realistic (“in distribution”, as opposed to “out of distribution”), based on the learned
distribution of real galaxies. This methodology may be used on single or multi-band
observations, as well as Integral Field maps and stacks thereof (e.g. velocity fields,

stellar age and metallicity). Image credits: STSCI, The Illustris TNG project.

of an image of belonging to the training distribution. An outline of the main features
of PixelCNN can be found in Section 8.3.

3.4 On the complementarity of different approaches

In this Chapter, I have introduced four approaches to understanding galaxy evolution.
The main strengths and drawbacks of each approach are summarised below:

• SAMs are relatively fast and can test physical models quickly. However, they
include some only loosely constrained physical processes, which results in heavy
parametrisation; furthermore spatial information must be modelled explicitly.

• Hydrodynamical simulations naturally provide spatial information but model
exploration is expensive and inefficient, and the subgrid physics is highly
uncertain; furthermore, they may suffer from numerical limitations.

• In SEMs galaxies are modelled according to an underlying galaxy-halo
connection, which can take several forms and which is rooted in data. SEMs are
transparent and flexible, however they are not comprehensive physical models
and, like SAMs, lack explicit spatial information.

http://hubble.stsci.edu/gallery/
https://www.tng-project.org/media/
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• Deep neural networks can model complex information from data with limited or
no human intervention. However, they can be hard to interpret and expensive to
train.

The weaknesses and virtues of these models are highly complementary. For example,
SEMs can provide constraints to the galaxy-halo connection that must be satisfied by
physical models. SAMs allow for a relatively quick exploration of physical models that
are viable to obtain the galaxy-halo connection constrained by SEMs. The galaxy-halo
connection of the SEM can also constrain hydrodynamical simulations, which are able
to naturally produce galaxy morphology and structure. While cosmological models
can shed light on the general galaxy properties, the small-scale features can retain
memory of the past formation and assembly history which can be probed via accurate
comparisons between hydrodynamical simulations and observations.

3.4.1 Strategy adopted in this thesis

In this thesis I aim to shed light on the population-level global galaxy properties using
SEMs coupled with SAMs and hydrodynamical simulations, as well as on the galaxy
small-scale features in hydrodynamical simulations via deep learning. I further focus
on the class of MGs, which will be studied with SEMs.

3.4.1.1 Galaxy structure and morphology in SEMs and physical models

In the first part of the results of this thesis, I will provide constraints on the connection
between galaxy effective radius and halo virial radius at low redshift using SEMs. The
scatter of this relation may be related to distinct physical processes for the formation
of LTGs and ETGs (i.e., the buildup of angular momentum and mergers), and
therefore they must be met by physical galaxy formation models. A purely
hierarchical framework for the formation of ETGs will be tested in a SAM in two
scenarios for the scatter of the Re − Rh relation. I will also discuss whether
hydrodynamical simulations meet the SEM constraints, and exploit their explicit
spatial resolution to explore the origin of the agreement. However, matching scaling
relations is only the starting point for understanding galaxy formation and evolution,
as the small-scale features of galaxies are strong probes of the physics of feedback and
star formation. Deep learning will be used to investigate the relationship between
detailed morphology, star formation and the structural scaling relations in a few
state-of-the art hydrodynamical simulations.
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3.4.1.2 Focus on MGs

The main finding of the deep learning study carried out in this thesis is that compact
quenched galaxies are not well reproduced in hydrodynamical simulations, which
casts doubts on the reliability of these methods to make predictions for the compact
phases of MGs at high redshift. Predictions from SEMs, instead, only rely on input
empirically-motivated relationships and are orders of magnitude faster in probing the
large cosmological volumes needed to study MGs. This is particularly the case of
satellite MGs, which are not statistically resolved in hydrodynamical simulations
being a largely subdominant population. Thus, robust predictions for satellite MGs
can be reliably made only from SEMs currently. The study of central and satellite MGs
will constitute the second part of the results of this work.
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Chapter 4

Methods and data

In this chapter I review the main features of the models used in this thesis. Firstly, I
present state-of-the art physical models (Sections 4.1 and 4.2). In Section 4.3 I describe
the semi-empirical methodology applied throughout this thesis. In Section ?? I
introduce the deep learning model utilised in Chapter 8. In this thesis I will combine
all the models above to gain insight in galaxy formation physics through galaxy
structure and morphology, following the strategy outlined in Section 3.4. Finally, in
Section 4.4.2 I also introduce the dataset that will be used to empirically constrain the
galaxy-halo connection in the local Universe.

4.1 The Rome SAM

In this thesis I will use a state-of-the-art SAM developed by Prof. N. Menci and
collaborators at the Observatory of Rome and described in Menci et al. (2002, 2004,
2005, 2008, 2014); Lamastra et al. (2010). The structure of the Rome SAM is shown in
Figure 4.1. Briefly, in the Rome SAM galaxies form as disks out of cooling in dark
matter haloes following the Mo et al. model outlined in Section 2.8.2.1, and form stars
following an empirical star formation law where cold gas is converted in stars.
Self-regulating feedback from supernoave and the AGN prevent further star
formation and chemically enrich the ISM. Bursty star formation is triggered by
mergers and flybys, while disk instabilities are turned off in the version of the model
used in this thesis. Mergers also generate galaxies with a spectrum of B/T ratios,
including ellipticals.

The Rome SAM broadly reproduces the SMF (Menci et al., 2018), it is in reasonable
agreement with galaxy colours, the distributions of bulge-to-total ratios, the
luminosity function of AGNs (Menci et al., 2014), the star formation rate function up
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FIGURE 4.1: The structure of the Rome SAM. The backbone of the model are numerical
dark matter halo merger trees, in which gas cools and forms disks. The bulges of spi-
rals and elliptical galaxies are formed via merger events which may trigger AGNs and
starbursts in addition to quiescent star formation. Disks and ellipticals are assigned a
size as explained in sections 2.4 and 4.1.1. A stellar population synthesis model and
dust models are employed to compute the spectral energy distribution of the simu-
lated galaxies. The outputs are observable galaxy properties independent on the free

parameters calibration.

to z ∼ 2 (Gruppioni et al., 2015) and the SMBH-galaxy scaling relations (Menci et al.,
2016).

I provide an overview of the salient features of the model in Appendix A, and I will
introduce the modifications to the model for the purposes of this thesis below.

4.1.1 Galaxy morphology and sizes

In the Rome SAM, all galaxies are assumed to form as disks following the model by
(Mo et al., 1998) outlined in Section 2.8.2.1. Although spheroids are believed to form as
a result of both disk instabilities (e.g. Bournaud et al., 2011) and mergers (e.g. Toomre,
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1977), in this thesis I focus on a purely hierarchical scenario, where disk instabilities
are neglected. My contribution to the Rome SAM is presented in the following.

The implementation of merger-driven bulge growth is similar to that proposed by
(Cole et al., 2000). Since galaxies are relaxed, stable, gravitationally bound systems, the
virial theorem applies,

W = −2K, Etot = −K. (4.1)

where K and W are the kinetic and binding energy respectively. Applying energy
conservation, and assuming homology, the classical newtonian treatment of the two
body problem yields

GM2
f in

RH
=

GM2
1

RH,1
+

GM2
2

RH,2
+

forb

c
GM1M2

RH,1 + RH,2
, (4.2)

where M f in = M1 + M2 and forb is 1 for circular orbits, 0 for parabolic orbits and in
between for elliptical orbits and c is a shape parameter that accounts for the Sérsic
index dependence. The dynamical friction timescale of a subhalo is taken from
Tormen (1997).

Major (M1/M2 > 0.3) and minor (M1/M2 < 0.3) mergers affect the morphology of the
remnant differently:

• For a major merger, any cold gas in the merging system is assumed to undergo a
starburst and the stars formed are added to the spheroid component. In this
case, M1 and M2 are the baryonic masses of the progenitors and the outcome is
an elliptical galaxy with stellar mass M f in.

• For a minor merger M1 is the stellar mass of the bulge of the major progenitor
and M2 is the stellar mass of the minor partner. Any gas contained in the latter is
added to the disk. This ansatz applies also if the major partner is an elliptical.

Both major and minor mergers can trigger an AGN, albeit with different efficiencies.
Gas is allowed to cool in a star forming disk around the spheroid at later times.
During a major merger, energy dissipation may occur (Covington et al., 2011), which
will modify the size of the remnant as (Hopkins et al., 2009c)

R(dissipation) =
R(dissipationless)

1 + fgas/0.2
(4.3)

where fgas is the gas fraction of the merging pair.

Since the code lacks a full treatment of the Sérsic index evolution, as a first
approximation I model all spheroids as De Vaucouleur profiles (n = 4), for which
Re ≈ 0.68RH (Shankar et al., 2013), while for disks it can be found analytically that
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Re = 1.67Rd by assuming that light traces mass. The half light radius is then given by

Re =
MbulgeRe,bulge + MdiskRe,disk

Mstar,tot
. (4.4)

4.2 The Illustris Project

In this thesis I will make use of the Illustris Simulation (Vogelsberger et al.
2014a,Vogelsberger et al. 2014b, Genel et al. 2014, Sijacki et al. 2015) and its successor
Illustris The Next Generation (IllustrisTNG, Pillepich et al. 2018a, Nelson et al. 2018b,
Nelson et al. 2018a, Marinacci et al. 2018, Springel et al. 2018, Naiman et al. 2018).
Below I summarise the main features of the physical model underlying Illustris,
highlighting the improvements of IllustrisTNG.

4.2.1 Illustris

Illustris is a hydrodynamical cosmological simulations, run with the AREPO
moving-mesh code (Springel, 2010; Sijacki et al., 2012), with the inclusion of star
formation, stellar evolution, chemical enrichment, primordial and metal-line gas
cooling, stellar feedback-driven galactic outflows, and SMBHs formation, growth, and
feedback.

In the Illustris model, star formation occurs following the Kennicut-Schmidt relation
(see Eq. A.3) in gas above a density threshold of nH = 0.1cm−3 (Springel and
Hernquist, 2003), following a Chabrier (Chabrier, 2003) IMF, and stellar populations
are evolved using the Bruzual & Charlot (Bruzual and Charlot, 2003) model.
Supernovae of Type Ia and II are included in the modelling of the chemical
enrichment of the gas, as well as winds from Asymptotic Giant Branch stars, which
are launched preferentially (but randomly) in a bipolar configuration from the star
forming gas cell. SMBHs form in sufficiently massive haloes and accrete gas from the
surrounding region. At low accretion rates (i.e., below 5% of the Eddington rate), the
radio mode by Sijacki et al. (2007) generates large-scale thermal bubbles, which are
driven away from the galaxy. At higher accretion rates, the quasar mode model by Di
Matteo et al. (2005) injects thermal energy in the surrounding gas continuously but
with a lower coupling efficiency. Galactic-scale outflows are also generated as a result
of feedback from star formation, such that the wind velocity scales with the depth of
the dark matter potential well (Vogelsberger et al., 2013). The free parameters of the
Illustris model were calibrated to reproduce the observed SMF at z = 0 and the cosmic
star formation rate density.

The Illustris simulation has proved capable of qualitatively reproducing several
observables (Vogelsberger et al., 2014b; Genel et al., 2014; Snyder et al., 2015),
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including, most importantly, a broad variety of galaxy morphologies (Vogelsberger
et al., 2014a), which had historically been a challenge for previous simulations.
However, Illustris presented several shortcomings, such as the inefficient quenching
in both low- and high-mass dark matter haloes (which resulted in a too high star
formation density at z . 1), the overestimation of galaxy sizes of up to a factor of two
at Mstar < 1011M�, the overproduction of green-valley galaxies and of extended star
forming rings around compact cores, the too low amount of gas in intermediate-mass
clusters (see Genel et al., 2014; Nelson et al., 2015; Bottrell et al., 2017, for details).
Despite these shortcomings, Illustris proved the viability of a cosmological
hydrodynamical model of galaxy formation where cold gas accretes in the center of
dark matter haloes fuelling self-regulated star formation with the additional feedback
from SMBHs.

4.2.2 IllustrisTNG

Many of the features of the Illustris model are retained in IllustrisTNG, but significant
changes have been made with respect to the Illustris framework. As in Illustris, the
subgrid physics of IllustrisTNG was calibrated against the z = 0 SMF, SMHM relation
and cosmic star formation rate density. Further, IllustrisTNG also was devised to
produce galaxies in the ballpark of the present-day size-mass relation, the stellar
mass-SMBH mass relation and to give halo gas fractions within the range of
observations.

Several papers have pointed out that the inaccurate modelling of feedback
mechanisms may be at the root of the disagreement between the Illustris output and
observation (Genel et al., 2014; Snyder et al., 2015; Bottrell et al., 2017). As for SMBH
feedback, the radio bubble model of Sijacki et al. (2007) was updated with the kinetic
feedback model proposed in Weinberger et al. (2017), which, contrary to Illustris, is
more likely to occur in black holes more massive than MBH ≈ 108M� to ensure
stability of quenching. The new feedback model allows quenching in dark matter
haloes more massive than Mh ≈ 1012M� and galaxies with stellar mass
Mstar & 1010.5M� without expelling too much gas from the halo (Weinberger et al.,
2017); it also provides an improved match at the high mass end of the SMF compared
to Illustris, although it is may still be not enough to fully bring the model in agreement
with data (Pillepich et al., 2018a; Grylls et al., 2019b).

Star formation-driven winds are now launched isotropically from each star forming
cell, with some propagation patterns (e.g., galactic fountains) naturally arising from
the hydrodynamics of the system (Pillepich et al., 2018b). Moreover, in IllustrisTNG
the wind speed is still proportional to dark matter velocity dispersion, but with a
further scaling with Hubble time that allows faster winds to be launched at lower
redshifts (which helped SAMs reproduce the low-mass end of the SMF, Henriques
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et al. 2015), and a minimum wind velocity, which ensures that even galaxies in
low-mass haloes can launch winds due to supernovae explosions. Compared to
Illustris, winds carry both thermal and kinetic energy, and wind energy is a decreasing
function of metallicity as in Schaye et al. (2015). Thermal winds prevent the spurious
star formation occurring in galaxy outskirts in Illustris (Snyder et al., 2015).
Furthermore, stars of mass higher than 8M� are assumed to explode as type II
supernovae, which results in 30% less supernovae compared to the mass floor of 6M�
in Illustris. The mass yields of hydrogen and metals are also updated compared to
Illustris. The new wind model generates more realistic galaxy sizes (Pillepich et al.,
2018b, 2019) than Illustris.

One of the most important updates of the IllustrisTNG model is constituted by the
inclusion of magnetic fields, which make IllustrisTNG a magnetohydrodynamical
simulation. The numerical scheme needed to integrate the relevant equations, while
still based on AREPO, was modified as described in Pillepich et al. (2018b). Pakmor and
Springel (2013); Pakmor et al. (2014) have shown that the additional contribution from
magnetic pressure in the ISM can help suppress star formation, and that the structure
of spiral arms is affected by magnetic fields. Further, several observables are
profoundly affected by magnetic fields but, intriguingly, galaxy sizes are relatively
insensitive to them (Pillepich et al., 2018b).

The IllustrisTNG model provides improved outcomes compared to Illustris; some of
the successes are summarised in the following. The size evolution of galaxies is
broadly reproduced by IllustrisTNG (Genel et al., 2018), and both the high- and
low-mass end of the SMF is now in better agreement with data up to high redshift
(Pillepich et al., 2018a). The stellar content of galaxies in clusters, as well as the
amount of Intra-Cluster Light, are also well recovered (Pillepich et al., 2018a), along
with galaxy colours (Nelson et al., 2018b) and quenched fractions in different
environments (Donnari et al., 2020b). The star formation MS, as well as some
spatially-resolved properties, are in the ballpark of observations (Donnari et al., 2019;
Nelson et al., 2021). Non-parametric estimates of galaxy morphology (see Section 2.4)
compare much better to observations, although there are tensions concerning the
correlation between galaxy colors, size and morphology, a clear prediction of the
model (Rodriguez-Gomez et al., 2019).

4.2.2.1 Runs at different resolutions

The IllustrisTNG simulation was run with identical subgrid physics in three
cosmological volumes of progressively larger sizes and with comparatively lower
resolution. Cosmological boxes of side length 35/h ≈ 50 Mpc, 75/h ≈ 100 Mpc and
205/h ≈ 300 Mpc define IllustrisTNG50, IllustrisTNG100 and IllustrisTNG300. Table
4.1 shows the mass resolution and softening length of Illustris, IllustrisTNG50 and
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Simulations→ Illustris TNG100 TNG50 TNG50-2 TNG50-3
NDM 18203 18203 21603 10803 5403

Ngas 18203 18203 21603 10803 5403

εDM,star [pc] 1480/710 1420/740 288 576 1552
εbaryon [pc] 710 180 50 100 200

mbaryon [105M�] 12.6 14 0.85 6.8 54
mDM [105M�] 62.6 75 4.5 36.3 290

TABLE 4.1: The number of particles, force and mass resolution for Illustris, TNG100,
TNG50 and two low-resolution variants of TNG50.

IllustrisTNG100, which are the simulations that will be used in this work. It is worth
noticing that IllustrisTNG100 shares the same identical initial conditions and box size
of Illustris, as well as a similar mass and force resolution. Each of the IllustrisTNG
volumes were also run with a mass resolution, softening length and number of
particles reduced by a factor of eight at three progressively coarser resolutions.

4.3 Linking galaxy and halo properties in semi-empirical
models

4.3.1 The semi-empirical model

In brief, the SEM that will be used in this thesis is structured as follows1:

1. I extract catalogues of dark matter haloes from the Despali et al. (2016) halo mass
function. Dark matter haloes are considered to follow a Navarro et al. (1996)
density profile.

2. I model the link between galaxies and dark matter via Abundance Matching, and
produce large mock catalogues of galaxies with moderate-to-high stellar masses.

3. I assign a half-light radius Re to each galaxy according to diverse models of
galaxy structure that exploit the galaxy-halo connection (see Section 4.3.3).

I ultimately build a catalogue of dark matter haloes with mass Mh and size Rh and
central galaxies with given stellar mass Mstar and effective radius Re. An accurate
comparison to data will be able to set valuable constraints on the parameters in input
to each of the adopted models.

I provide an introduction to the popular Abundance Matching framework below,
whereas I will describe how SEMs can be equipped with galaxy sizes by exploiting
Re − Rh relations to provide additional constraints to the galaxy-halo connection in
Section 4.3.3.

1To build the model I extensively rely on the open-source Python package COLOSSUS (Diemer, 2017).
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FIGURE 4.2: The recent compilation of SMHM relations from Wechsler and Tinker
(2018). The SMHM features a typical double power-law shape, although different
group report distinct constraints. Dark matter haloes where the SMHM peaks are
were star formation has been most efficient. In dark matter haloes of lower and higher
Mh the efficiency of star formation declined, potentially due to feedback mechanisms
related to exploding supernovae and AGN activity respectively. The low-redshift mor-

phology of typical galaxies inhabiting halos of different mass is also shown.

4.3.2 Abundance matching

The backbone of some SEM (e.g. Grylls et al., 2019a) is the Stellar-Mass-Halo-Mass
relation (SMHM), which models the stellar content of galaxies as a monotonic function
of halo mass. Other SEMs that connect star formation rate to the halo accretion rate
have also been proposed (e.g. Moster et al., 2018).

The SMHM is constructed by means of the so called Abundance Matching paradigm,
the intuition behind which is that galaxies of increasing mass are hosted in
correspondingly more massive dark matter haloes. This is achieved by requiring that
the abundance of halos more massive than a given M̄h matches that of galaxies more
massive than a certain M̄star,

nhalos(> M̄h) = ngal(> M̄star) (4.5)

the former being retrieved from the dark matter halo mass function (Tinker et al.,
2008) and the latter coming from the observed galaxy Stellar Mass Function. The
matching is usually done only for central galaxies, that is those that live in the centre of
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the potential well, which accrete satellites and which are linked to the “main
progenitor” of the dark matter halo merger tree. Nevertheless, it is possible to correct
the SMHM to take into account satellites; such correction is usually small (Grylls et al.,
2019a), and negligible at high stellar masses (Rodrı́guez-Puebla et al., 2013). The
typical double power law shape inferred for the SMHM is shown in Figure 4.2.

A feature that is not captured by Equation 4.5 is that dark matter haloes of a similar
mass may in principle host galaxies with a range of stellar masses. The SMHM can
thus be modelled as a lognormal distribution in stellar mass at fixed halo mass with
scatter σSMHM:

P(Mstar|Mh) ≡ SMHM = (4.6)

=
1√

2πσ2
SMHM

exp
[
− (logMstar − 〈(logMstar〉)2

2σ2
SMHM

]
.

The overall scatter σSMHM stems from a convolution of observational errors σ∗ and the
intrinsic scatter σint. The contribution from each dark matter halo to the abundance of
galaxies of a given stellar mass is therefore computed by weighting the halo mass
function, φ(Mh) with the SMHM,

φ(Mstar) =
∫

SMHM(Mh)φ(Mh)dMh. (4.7)

Retrieving the SMHM from observational constraints on φ(Mstar) involves the
inversion of the integral in eq. 4.7. Thus, abundance matching reproduces the
observed galaxy SMF by design and therefore it can be used to produce realistic mock
catalogs. On the other hand, the equation above predicts a SMF given a theoretical
SMHM relation. This is particularly useful, given the uncertain constraints on the
SMF, especially at high redshift (see Section 2.1.2).

The shape and scatter of the SMHM at high halo masses are thought to bear significant
information on the stellar mass assembly history of massive galaxies, which is thought
to be affected by feedback from accreting Super Massive Black Holes (e.g. Shankar
et al. 2006; Croton et al. 2006; Menci et al. 2008; Pillepich et al. 2018a), mergers (e.g.,
Grylls et al. 2020) and the interplay between virial shocks in massive haloes and dense
cold streams (e.g. Dekel and Birnboim 2006; Cattaneo et al. 2006; Dekel et al. 2013, but
see also Cattaneo et al. 2020). Indeed, the SMHM relation has been shown to be a
fundamental relation which results from different galaxy formation models naturally
leading to a variety of outcomes for the SMF in cosmological simulations (e.g., Guo
et al. 2011; Crain et al. 2015; Pillepich et al. 2018a; Henriques et al. 2019).

Although the Abundance Matching ansatz is in qualitative agreement with direct
measurements of the SMHM with various techniques such as group finding
algorithms (e.g., Yang et al. 2007), satellite kinematics (More et al. 2011), X-ray
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measurements of galaxy clusters (Kravtsov et al. 2018) as well as simulations (e.g.,
Guo et al. 2011, Matthee et al. 2017), admittedly the precise shape and evolution of the
SMHM is still debated (e.g., Wechsler and Tinker, 2018; Girelli et al., 2020, see Figure
4.2). While some studies have suggested a very shallow SMHM at its massive end
(e.g. Moster et al. 2013; Behroozi et al. 2013; Rodrı́guez-Puebla et al. 2017), others have
argued in favour of a steeper slope (e.g. Shankar et al. 2014a; Kravtsov et al. 2018;
Grylls et al. 2019a). Ultimately, the reasons for these discrepancies are thought to
originate from the way stellar masses are measured and, therefore, from the implied
different number densities of MGs (see Section 2.1.3 for a review of the systematics).

It should be noted that in principle LTGs and ETGs may occupy different loci in the
Mstar −Mhalo plane, as suggested by some studies (Dutton et al. 2010, Moster et al.
2018, More et al. 2011). However, as pointed out in Wechsler and Tinker (2018), there
is no agreement between different studies, which sometimes even reach opposite
results (Behroozi et al. 2018, Moster et al. 2018). In the remainder of this thesis, I will
therefore adopt the same SMHM for both LTGs and ETGs.

4.3.3 The galaxy size-halo size connection

Since more massive galaxies that live in more massive, more extended halos have
larger measured sizes, a relationship between Re and Rh is expected to exist.

In this work, I explore three models of galaxy sizes:

1. The MMW model (or λ model). This model is inspired by the classical picture in
which galaxies are born as disks out of cooling from the hot gas in the halo (see
Sect. 2.8.2.1). I recast Eq. 2.4 as

Re = AλλRh, (4.8)

where I defined Aλ = 1.68 fc f j fR/
√

2 and the factor 1.68 comes from
Re ≈ 1.68Rd, appropriate for an exponential profile. In the following, for
completeness, I will adopt both the (Peebles, 1969) and (Bullock et al., 2001)
definitions of spin parameter.

2. The K13 model. This model is based on the empirical findings by Kravtsov (2013).
The author adopted abundance matching techniques similar to the ones
presented in Section 4.3.1 and found evidence that:

Re = AkRh. (4.9)

Here Ak is the normalization which may vary with galaxy stellar mass, star
formation rate or morphology. I add to eq. 4.9 an intrinsic log-normal scatter σK,
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which, as Ak, is a free parameter that can be tuned to match observations. The
K13 model is hence purely empirical and will be applied to both LTGs and
ETGs. Note that the physical meaning of both Ak and σK is not known a priori.

3. The concentration model. Recently, based both on observational and numerical
studies, some groups have suggested that galaxy sizes should scale in a way that
is inversionally proportional to halo concentration, c, (Desmond et al. 2018 Jiang
et al. 2018). Following Jiang et al. (2018), mathematically this model can be
expressed as

Re = Ac
( c

10
)γRh = Ac f (c)Rh (4.10)

with γ < 0, and with f (c) =
(
c/10

)γ Similarly to what assumed in the other two
models, I initially adopt Ac = 0.012 (Jiang et al., 2018) and then rescale the
results to match data. I also adopt the concentration-mass relation by Dutton
and Macciò (2014),

logc = a + b log Mh[M�]/1012/h (4.11)

with a(z) = 0.537 + (1.025− 0.537)exp(−0.718z1.08) and b(z) = −0.097 + 0.024z.
Dutton and Macciò (2014) report a log-normal scatter of about ∼ 0.11 dex, which
is independent on halo mass. No further scatter is included in the concentration
model.

Although I model the link between galaxies and their haloes in terms of the projected
effective radius Re, such relation would be more physically motivated when expressed
in terms of the 3D physical half mass radii of galaxies Re,3D. However, the deprojection
of galaxy shapes is a very hard task. In any event, as discussed in Appendix D.1,
projection effects may increase the variance in the measured effective radii, implying
tighter distributions in intrinsic sizes Re,3D. Accounting for deprojection effects would
then further tighten the measured distribution of 3D galaxy sizes, which would
constitute a harder challenge for models. Nevertherless, in Appendix D.1 I give an
estimate of the (small) biases in AK induced by assuming that Re,2D = Re,3D based on
mock observations of galaxies from the Illustris TNG simulation.

4.4 Sloan Digital Sky Survey Data

4.4.1 The Domı́nguez Sánchez et al. (2018) morphological catalogs

The use of CNNs for image classification has allowed the trivialisation of an otherwise
expensive and slow task. In this thesis, I will use the (Domı́nguez Sánchez et al., 2018,
DS18 hereafter) DL-based TType classification of 670722 galaxies from the Sloan
Digital Sky Survey (see next Section). The DS18 catalog provides an estimate for
galaxy morphology using a fully supervised approach. Specifically, a CNN was
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trained in regression mode to reproduce the TType classification of the Nair and
Abraham (2010) manually annotated catalog, and on classification mode for the
answer to binary Galaxy Zoo (Lintott et al., 2008) questions (e.g., smooth/features,
edge-on/face-on, merger/isolated).

Compared to previous work based on standard ML (Huertas-Company et al., 2011),
the DS18 morphologies are more accurate on average, and the scatter in the predicted
labels is up to ≈20% smaller and comparable to that of professional astronomers.
Furthermore, particular attention is dedicated to the classification of S0 galaxies,
especially as they are easily mislabelled as ellipticals due to the absence of strong
features. In the DS18 catalog, each galaxy is labelled with a probability PS0 of being an
S0.

The DS18 catalog, used in the remainder of this work, provides an unprecedented
statistical power, which is needed to set solid constraints on models of galaxy
evolution for the formation of disk, elliptical and lenticular galaxies.

4.4.2 The SDSS Data Release 7

In the following I will use the SDSS DR7 (Abazajian et al., 2009) spectroscopic sample,
which has a median redshift z ∼ 0.1, as presented in Meert et al. (2015), Meert et al.
(2016) (hereafter M15/16). The Meert et al. catalogues consist of 670722 objects the
photometry of which benefits of substantial improvement both in background
subtraction and fits to the light profiles. In the M15/M16 catalogues galaxies are fit
with a Sérsic+Exponential as well as a Sérsic profile. In this work I only adopt the
r-band best fit between the two. The galaxy stellar masses are computed adopting
such light profiles and the mass-to-light ratio Mstar/L by Mendel et al. (2014), and the
effective radius Re is the truncated semi-major axis half-light radius of the full fit (e.g.,
Fischer et al. 2017).

The DS18 catalogs of galaxy morphology (see Section 4.4.1) are matched with the
M15/M16 catalogs. In this work I define LTGs and ETGs as having TType > 0 and
TType ≤ 0 respectively. S0 galaxies are included as part of the ETGs population,
except in Chapter 7. I further exclude from the selection Elliptical galaxies for which
the Sérsic+Exponential fits provide a bulge-to-total ratio lower than 0.5. Indeed,
visual inspection of a sample of these objects reveal crowded fields, close companions
or classification errors. The SFR measurements from Brinchmann et al. (2004) are also
included.

I also match the Meert et al. catalogues with the Yang et al. (2007, 2012) group
catalogues. For each group I identify the central galaxy as the most luminous, while
the remaining objects in that group are considered to be satellites. From the matched
catalogues, the Vmax-weighted stellar mass functions (SMF) of central galaxies for the
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full catalogues and for both ETGs and LTGs is shown in Figure 4.3. Error bars are
computed via jackknife resampling2.

As for the sizes, I compute the Vmax-weighted size functions φ(Re) similarly to the
SMF. Figure 4.4 shows that φ(Re) is only weakly bimodal (red downward triangles
and blue upward triangles). At low and high masses the distributions are dominated
by LTGs and ETGs respectively, while the bimodality is most pronounced for
1010 ≤ Mstar/M� ≤ 1011. However, most strikingly, it can be seen that the width of
the size functions of ETGs and LTGs are comparable at all masses. It is also worth
noticing that the total size function has a larger scatter than those of LTGs and ETGs
taken singularly, at least for Mstar ≤ 1011M�. Importantly, typical measurement errors
on galaxy sizes amount to ∼ 0.1dex Bernardi et al. (2014) which, along with projection
effects (see Appendix D.1), may imply a weaker bimodality in the distributions of the
physical 3D sizes.

It can be noted that the mass dependence of the peak of the size function of ETGs is
quite strong. Moreover, it is interesting to see that the size functions are somewhat
skewed. While this feature was reported for LTGs also by van der Wel et al. (2014) for
galaxies in CANDELS (Koekemoer et al., 2011; Gnedin et al., 2011), it is the first time
that this is reported for ETGs. I have checked that using circularized sizes3 leads to a
reduced skeweness in the size functions of ETGs (not so for LTGs). However I choose
to use semimajor-axis sizes to enable a more direct comparison with LTGs, for which
circularized sizes would be difficult to interpret physically.

In recent work (Mowla et al. 2019, Miller et al. 2019) it has been proposed to use as
proxy for galaxy size R80, the size that encloses 80% of the light, rather than the
half-light radius Re. This suggestion has been made on the grounds that: i) the sizes of
passive and star-forming galaxies tend to collapse on the same size-stellar mass
relation in the case where R80 is used (Miller et al., 2019); ii) R80 is more closely linked
to the size of the host dark matter halo Re (Mowla et al., 2019). In these works, R80 was
computed from Re using the Sérsic light profile. Figure 4.4 shows a comparison
between the size functions computed for Re and R80 for both ETGs and LTGs in SDSS,
where R80 was computed from the best Sérsic or SerExp truncated profile (Fischer
et al., 2017) by Prof. M. Bernardi (University of Pennsylvania). It appears that the
difference in the size functions of ETGs and LTGs computed using Re is only slightly
reduced when using R80 in the SDSS M15/M16 catalogs. While such difference
appears to be somewhat more pronounced at Mstar > 1011M�, the bimodality of the
size functions φ(Re) seems to be substantially conserved also for φ(R80) at lower
masses. It is also noteworthy that the scatter of the individual size functions is not
affected by the choice of the definition of galaxy size.

2I adopt the publicly available library ASTROPY http://www.astropy.org/
3Defined as Re,circ = Re,maj

√
b/a where b and a are the semiminor and semimajor axis respectively.

http://www.astropy.org/
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FIGURE 4.3: The Vmax weighted morphological SMF from the M15/16 SDSS cata-
logues combined with the DS18 morphological catalogues, for central galaxies.
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FIGURE 4.4: Size functions of ETGs and LTGs from the M15/16 SDSS catalogues com-
bined with the DS18 morphological catalogues. Red downward triangles and blue
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The galaxy size-halo virial size
relation: calibration and predictions





69

Chapter 5

The galaxy size-halo virial size
relation at z ∼ 0.1: semi-empirical
constraints on disk and elliptical
galaxy formation

The aim of this Chapter is to explore the mass dependence of the scatter and
normalization of the different Re-Rh relations to reproduce the measured SDSS size
functions for LTGs and ETGs at z ∼ 0.1 in different stellar mass bins, and to use it as a
constraint for cosmological galaxy formation models. Specifically, I explore the
parameter space of SEMs in which the Re − Rh relation is mediated by either the spin
parameter or the concentration of the host halo, or a simple constant the nature of
which is in principle unknown. To understand the possible physical origin of these
relations, I use the Rome SAM and the Illustris TNG simulation.

5.1 Background

The angular momentum conservation model put forward by MMW (see Section
2.8.2.1) has proven successful at predicting the average structural and dynamical
properties of disk galaxies. A linear relationship between galaxy size and halo size
predicted for LTGs has been found in semi-empirical (Kravtsov, 2013) and
observational (Lapi et al., 2018b) studies at z ∼ 0, with a weak redshift evolution
(Huang et al., 2017; Somerville et al., 2018). Intriguingly, a similar relationship seems
to hold for ETGs (Kravtsov, 2013), although with a lower normalization (Lapi et al.,
2018b). This is reminiscent of the separation in angular momentum at fixed stellar
mass reported by Romanowsky and Fall (2012). Indeed, the power law dependence
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expected for angular momenta as a function of mass in a MMW-like model (see
Equation 2.7) has also been confirmed by observations (Romanowsky and Fall, 2012;
Mancera Piña et al., 2021).

However, some studies questioned the validity of the MMW model based on the fact
that the scatter that it would predict at face value (i.e., ≈0.25 dex) may overestimate
the one found in observations (Lapi et al. 2018b, Desmond and Wechsler 2015a). Thus,
a robust characterisation of the dispersion of the Re − Rh relation, which may be
crucial to pin down models of galaxy formation, is required. Moreover, only a weak
link between galaxy and halo angular momenta is found in cosmological
hydrodynamical simulations (Jiang et al., 2019; Desmond et al., 2017). An
anticorrelation between Re and the halo concentration c (Navarro et al., 1996) with
Re ∝ c−0.7Rh is instead suggested to arise in a cosmological context (Jiang et al., 2019).
Nevertheless, the physical motivation behind this empirical finding is still unclear.

On the other hand, the feasibility of purely merger-driven models for the formation of
ETGs crucially depends on the scaling relations onto which LTGs are born. Thus, any
modelling choice made for the population of LTGs will translate in a concurrent
change in the output population of ETGs. Therefore, in this Chapter I will (i) pin
down the Re − Rh relation of both LTGs and ETGs (ii) aid the interpretation of the
normalisation and scatter in these relations using a SAM and a hydrodynamical
simulation.

In this Chapter, I find that the observed size functions of SDSS require tight Re − Rh

relations (σK . 0.15 dex) for both early-type and late-type galaxies (ETGs,LTGs),
especially for more massive galaxies. These constraints challenge models based solely
on angular momentum conservation, which predict wider distributions of galaxy sizes
and no trend with stellar mass, if taken at face value. I further argue that the measured
tight size distributions of SDSS disk galaxies can be reproduced by semi-empirical
models in which the Re − Rh connection is mediated by the stellar specific angular
momenta jstar. I also show that a model where galaxy sizes are also mediated by
concentration requires a varying intrinsic scatter or a further mass dependence on
concentration.

Lastly, I will show that current hydrodynamical cosmological models of galaxy
formation broadly agree with the derived constraints for LTGs, and justify a strong
link between Re and jstar. However, the tightness of the Re − Rh relation found in these
physical models for ETGs may be in tension with our semi-empirical findings. A SAM
where ETGs form in a purely hierarchical scenario can be brought in good agreement
with the empirically constrained Re − Rh relation (except at high masses) if disks form
with a tighter distribution of angular momenta than predicted by the standard disk
formation model.
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5.2 Sources of scatter in the SEM

As the full distribution of galaxy sizes is a powerful probe of galaxy formation
models, it is important to understand the various sources of scatter in the SEMs
devised in Section 4.3.1.

At fixed bin in stellar mass, the width of the implied size distribution resulting from
the three adopted models depends on a combination of different effects. In all models,
there is always a contribution from the intrinsic scatter in the SMHM, as shown in
figure 5.1. In fact, at fixed stellar mass there is a distribution of possible host haloes, a
feature that is described in terms of the halo occupation distribution function P(Mh|Mstar)
1, which translates into a distribution in halo sizes P(Rh|Mstar) (see eq. 2.3), the main
ingredient in all the models.

The distributions get progressively broader for higher stellar mass cuts, given the
shallow slope of the SMHM at high halo masses in combination with its intrinsic
scatter. As this feature is mainly driven by the double power-law shape of the SMHM,
it would be present even in the case of σSMHM = 0. If zero intrinsic scatter σK in the
K13 model was required to match observations, it could be argued that the same
physics that shapes the SMHM is responsible for the width of the observed size
distributions. On the other hand, wherever σK > 0 is needed to match the data, there
must be some physical processes unrelated to the build-up of the shape of the SMHM
at play in determining the broadness of the observed size functions.

In the MMW and concentration models, the scatter is due to both the halo occupation
distribution and the internal properties of the dark matter hosts. In fact, most of the
scatter of the MMW model derives from the distribution of the spin parameter λ, with a
typical dispersion of σlogλ ≈ 0.25 dex and very weak dependence on halo mass.
Interestingly, I find that for the concentration model one additional source of scatter
derives from the factor cγ in eq. 4.10. As shown in figure 5.2, the (quite tight)
distribution in concentration at fixed halo mass (blue dots) is modified for different
values of γ. Thus, adopting larger absolute values of γ will result in broader
distributions. Such effect is degenerate with the intrinsic scatter in the concentration
model σCM. I set σCM=0 in this work, noting that having σCM > 0 would require
higher values of γ to match the observed size functions, i.e. a reduced dependence on
concentration of galaxy sizes. Therefore the constraints I will provide are lower limits
to γ.

1Which is different from the inverse of P(Mstar|Mh) due to the presence of scatter (Shankar et al. 2014a,
Somerville et al. 2018)
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5.3 Abundance Matching

In this Chapter, I use the parametrization of the SMHM from Behroozi et al. (2013),
which reads:

〈log Mstar〉 = log(εM10) + g(x)− g(0), (5.1)

where
g(x) = δ

log(1 + ex)γ

1 + e10−x − log(10αx + 1) (5.2)

and x = log(Mh/M10). This is a more flexible parametrization compared to the
double-power law used in other studies (e.g., Moster et al., 2013), which may be more
suitable to match more accurately the shape of the size function. A scatter
σSMHM = 0.16 dex is assumed, as suggested by other studies at low redshift (e.g.
Tinker et al. 2017), with no dependence on halo mass, which is a very good
approximation at the high mass end of the SMF (Shankar et al. 2014a).

I run a Markov Chain Monte Carlo2 to fit the parameters of the SMHM to the SMF of
central galaxies in SDSS adopting the Despali et al. (2016) halo mass function for
distinct haloes, and by maximizing the likelihood L ∝ exp(−χ2). The parameters of
the z ∼ 0.1 SMHM are the following:

M10 = 11.632+0.008
−0.009 (5.3)

ε0 = −1.785+0.010
−0.008 (5.4)

α0 = −2.352+0.026
−0.021 (5.5)

δ0 = 3.797+0.052
−0.052 (5.6)

γ0 = 0.600+0.100
−0.013 (5.7)

σSMHM = 0.16 (fixed). (5.8)

It is perhaps not surprising that the uncertainty on the inferred parameters is so low
compared to other works, given the very small error bars on the SMF. Moreover, here
the fit is performed at one redshift only, as opposed to other studies where Multi
Epoch Abundance Matching (e.g., Grylls et al., 2019a) necessarily generates broader
posteriors3.

While many studies include satellite galaxies in their models (Behroozi et al. 2013,
Behroozi et al. 2019; Rodrı́guez-Puebla et al. 2013,Rodrı́guez-Puebla et al. 2017, Grylls
et al. 2019a), I choose to restrict the analysis to central galaxies only. Hearin et al.
(2019) have shown that the sizes of satellite galaxies may be linked to their halo mass
at infall time, which is not straightforwardly available in the analytic halo catalogues
that I use here. Satellites will be studied in the case of MGs in Chapter 7.

2I use the publicly available Python package EMCEE, (Foreman-Mackey et al., 2013)
3This may be due to the difficulty in creating an empirical model that links the SMF at different epochs

using only a few parameters.
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Mstar 9.25 9.75 10.25 10.75 11.25 11.75
Ak 0.018 0.019 0.019 0.019 0.024 0.024
Ac 0.034 0.030 0.027 0.026 0.021 0.015
Aλ 0.60 0.60 0.60 0.60 0.60 0.47

TABLE 5.1: Values of Ak, Ac and Aλ in different bins of Mstar, for LTGs. Compare
to table 5.2. The uncertainties on these values, of the order of 25%, stem from the

uncertainty in Re of about (i.e. 0.1 dex)-

Mstar 9.25 9.75 10.25 10.75 11.25 11.75
Ak 0.006 0.007 0.010 0.011 0.015 0.016
Ac 0.012 0.013 0.013 0.013 0.013 0.013

TABLE 5.2: Values of Ak and Ac in different bins of Mstar, for ETGs. Compare to table
5.1. The uncertainties on these values, of the order of 25%, stem from the uncertainty

in Re of about (i.e. 0.1 dex)-

Some studies also include a further dependence of the fraction of LTGs as a function of
Mh (see Rodrı́guez-Puebla et al. 2015 and eq. 6.3). This can have some effects on the
halo occupation distribution of both LTGs and ETGs in principle, but it would only
generate a mildly bimodal size function at low-to-intermediate masses, as can be
inferred from Figure 5.1, which would result in only minor modifications to the values
of the normalisation of the Re − Rh relations explored. For MGs, instead, this cannot
be neglected and will be modelled in the next Chapters.

5.4 Semiempirical constraints on Re − Rh relations

I now proceed to a careful comparison of the three models for the Re − Rh relation to
the size functions extracted from the SDSS photo-morphological catalogues (see
Figure 4.4).

As I am not considering a dependence of the SMHM on morphology, the model size
functions need to be rescaled by a mass-dependent factor that accounts for the varying
proportion of LTGs and ETGs:

φ(Re|Mstar)
LTGs
model = fL(Mstar)obsφ(Re|Mstar)

tot
model (5.9)

φ(Re|Mstar)
ETGs
model = (1− fL(Mstar)obs)φ(Re|Mstar)

tot
model (5.10)

where fL(Mstar) is the fraction of late type galaxies,
fL(Mstar) = φ(Mstar)LTGs

obs /φ(Mstar)tot
obs.

Figures 5.4a, 5.5a and 5.5b show a comparison between the observed size functions
φ(Re) of LTGs and the models (the MMW, K13 and concentration models
respectively). The model galaxies and data are grouped in bins of 0.5 dex in stellar
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FIGURE 5.1: Role of the shape of the SMHM and its σSMHM in setting the scatter in
halo size (and hence in galaxy size according to our models). Upper panel. The black
line is the SMHM retrieved from MCMC fitting of the total SMF in SDSS. Different cuts
in stellar mass highlight different regions of the SMHM with different colours. Each
coloured band corresponds to a stellar mass cut of the same width (0.75 dex). Their
projections onto the x axis select the halo mass range in which galaxies of a given
stellar mass are expected to reside. Lower panel. The halo size functions resulting from
the stellar mass cuts applied in the upper panel, with the same color code. Dashed
and solid lines indicate predictions for σSMHM = 0.10 dex and σSMHM = 0.20 dex.
No additional scatter in size is added. Higher stellar mass cuts are naturally mapped
in broader distributions. Larger values of σSMHM correspond to broader distributions

with an effect that is larger the higher the stellar mass cut.
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FIGURE 5.2: Scatter induced by different choices of γ in the factor f (c) = cγ as a
function of halo mass. Blue dots, orange triangles and green crosses are for γ = 1,−0.4

and −2.0 respectively. Concentrations are from Dutton and Macciò (2014).

mass. The normalization of the different models (Aλ, AK, Ac) in each stellar mass bin
are reported in Table 5.1 for LTGs and 5.2 for ETGs. Figures for ETGs can be found in
Appendix ??.

5.4.1 The MMW model

In figure 5.4a it can be seen that the classical λ-disk model by MMW does not provide
a good fit to data, irrespective of the definition of spin parameter adopted (Peebles,
1969; Bullock et al., 2001). This effect becomes gradually more severe as more massive
populations of LTGs are considered. As for the normalization Aλ note that the values
listed in Table 5.1 imply that Re ≈ 0.6λRh, in good agreement with the study by Lapi
et al. (2018b) based on stacked rotation curves. Notably, given that
Aλ = 1.68 f j fR fc/

√
2, this is consistent with the MMW model with an angular

momentum retention factor f j & 0.54. Thus, I confirm that the average relation
predicted by the MMW model is corroborated by observations, while its scatter is too
large.

4Using the fact that typical values of fR fc are below one, (Jiang et al., 2019)
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5.4.1.1 The case of bulgeless galaxies

To select LTGs from the catalogues by DS18 I applied the cut TType > 0. This cut
might still include galaxies with prominent bulges, which may have a non negligible
contribution in determining the half light radius of the whole galaxy, especially at
high masses (Kormendy, 2016). On the contrary, the MMW model is expected to work
for pure disk galaxies only and therefore comparing the MMW model with LTGs
selected as above may not be entirely accurate.

The size functions of LTGs divided by TType is shown in Figure 5.4b. It can be seen
that for Mstar . 1010.5M� the population is entirely dominated by galaxies with
TType > 3, which represent the largely disk dominated Sc-Sd galaxies according to
the Nair and Abraham (2010) classification against which the CNN in DS18 was
trained. At higher masses earlier types become important, with the peaks of their size
functions being located at lower Re due to the non-negligible contribution of the
bulge. Interestingly, LTGs with TType > 3 display an even tighter size distribution
than that of the overall population. Thus, the MMW model faces an even tougher
challenge when probed on pure disks.5. It might however be argued that the
comparison between model and data may not be ideally set up since not all Sb-Sc-Sd
can be fitted by a pure exponential disk. To check for the latter effect, I further
restricted my analysis to LTGs with TType > 3 and B/T < 0.2 and still did not find
significant changes in the width of the size distributions.

5.4.2 The K13 and concentration models

The size distributions from the K13 and concentration models are reported in figures
5.5a and 5.5b. The free parameters in these models are (Ak, σK) and (Ac, γ)
respectively. The values of Ak and Ac are reported in Table 5.1. As it can be seen in
figures 5.5a and 5.5b, varying σK and γ leads to quite drastic differences in the model
distributions. In each panel of the figures, a thicker line highlights the parameter that
seems to best reproduce observations.

For the K13 model, it can be seen that σK decreases as higher stellar mass bins are
considered, with σK ∼ 0.20 dex for the lowest masses and σK ∼ 0.10 dex for the most
massive galaxies. An intrinsic scatter larger than ∼ 0.20 dex and smaller that ∼ 0.1
dex would be strongly disfavoured by current data.

Turning to the concentration model, at lower stellar masses lower values of γ are
preferred, while for more massive galaxies γ ∼ −0.8 gives a better match to data.

5Also note that the skeweness of the size function is partially explained by the morphological mix of
LTGs, but that for the later types the skeweness still persists.
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FIGURE 5.3: Left: Size functions from the K13 model (eq. 4.9) for values of σK =
0.00, 0.10, 0.15, 0.20. Right: Size functions from the concentration model (eq. 4.10) for
values of γ = −1.6,−1.2,−0.8,−0.4. Models that work best for a given stellar mass

bin are highlighted in each panel by a thicker line.

Adopting γ & −0.4 or γ . −1.6 would produce distributions that are too tight or too
wide respectively, compared to the observed ones.

The same considerations about γ and σK can be applied to ETGs, as shown in Figures
5.3a and 5.3b. The values of Ac and AK, which instead are significantly lower than
those of LTGs, are reported in Table 5.2 (compare to Table 5.1). Thus, I confirm that
ETGs and LTGs define two separate relations in the Re − Rh plane, qualitatively in
agreement with the findings of Huang et al. (2017) and Lapi et al. (2018b).
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FIGURE 5.4: Left: Size functions from the MMW model (λ model, eq. 4.8). The
spin parameter λ is retrieved either from the log-normal (pink dotted lines, i.e. the
Peebles 1969 spin) or Schechter-like (purple dashed lines, i.e., the Bullock et al.
(2001) spin) fits from Rodrı́guez-Puebla et al. (2016). Data points are LTGs from the
photo+morphological SDSS catalogues described in Section 4.4.2. Right: Size func-
tions for LTGs divided in bins of TType. The total distribution is shown with solid
black lines, the distributions for 0 < TType < 1, 1 < TType < 2, 2 < TType < 3 and
TType > 3 are instead shown with red upward triangles, blue downward triangles,

purple circles and yellow squares plus dotted lines respectively.

5.5 What drives the tightness of the observed size
distributions?

5.5.1 Implications for MGs

Part of the scatter σK originates from the shape of the SMHM (i.e. the halo occupation
distribution, see fig. 5.1). The latter contributes very little to the observed size
functions at low masses and further scatter is needed to obtain a good match to data.
On the other hand for MGs the contribution of the halo occupation distribution is the
most relevant source of scatter, with only a very small intrinsic additional scatter
σK . 0.1 necessary to match observations. Thus, the K13 model predicts that the width
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FIGURE 5.5: Left: Size functions from the K13 model (eq. 4.9) for values of σK =
0.00, 0.10, 0.15, 0.20. Right: Size functions from the concentration model (eq. 4.10) for
values of γ = −1.6,−1.2,−0.8,−0.4. Models that work best for a given stellar mass

bin are highlighted in each panel by a thicker line.

of the galaxy size distribution at the high mass end may be entirely determined by
their halo occupation distribution, that is, the information about the broadness of the size
distribution of MGs is already contained in the SMHM. Chapters 6 and 7 will make use of
this property.

5.5.2 The MMW model is consistent with observed dynamical and
structural LTGs scaling relations

I now show that the observed proportionality between Re and Rh, as well as its scatter,
is fully consistent with observations of galaxy angular momenta in angular
momentum-based size models (Romanowsky and Fall 2012, Posti et al. 2018b).
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Recall the mathematical form of the MMW model,

Rd =
λ√
2

fc f j fRRh, (5.11)

and note that f j = jstar/jh with jh ∝ λM2/3
h (see, e.g., Romanowsky and Fall (2012)).

Then, the equation above reads

Rd ' B
jstar

M2/3
h

Rh. (5.12)

Here B is a factor that encloses all the proportionality factors. Note that the factor
λ f j = λjstar/jh ∝ λjstar/λM2/3

h is independent on λ. Posti et al. (2018b) have shown
that for LTGs in the mass range 9 < logMstar/M� < 11 the ratio f̃ j ≡ Bjstar/M2/3

h

depends very weakly on stellar mass6. The only dependence left on stellar mass is in
the factor Rh ∝ M1/3

h ∝ M1/6
star (Dutton et al. 2010), for LTGs with Mstar < 1011M�.

Hence,
Rd ∝ f̃ j M1/6

star. (5.13)

The exponent of 1/6 is consistent with measurements of the logarithmic slope of the
Re −Mstar relation of LTGs (see Shen et al. 2003, Bernardi et al. 2014), plus minor
corrections mainly due to the factor f̃ j

7. The scatter in this relation is entirely governed
by jstar, as for the mass range under consideration the halo occupation distribution is
not critical (see Fig. 5.1) and therefore for this purpose σ f̃ j

≈ σjstar Posti et al. (2018a)
measured the latter to be ≈ 0.20 dex, which is consistent with the scatter of the
Re − Rh relation that I calibrated with the K13 model σK . 0.2 dex. Moreover, the
scatter that would come from fc ∝ c−0.2 (Jiang et al., 2019) is negligible (see fig. 5.2).

Note that to compute jstar some authors adopt the simple scaling

jstar ≈ ReVc, (5.14)

where Vc is the circular velocity of a galaxy assuming a flat rotation curve
(Romanowsky and Fall, 2012). In this case the observed scatter in Re would drive the
one in jstar, making the argument above circular. However, the constraints on the
scatter in jstar by Posti et al. (2018a) quoted above, are found by direct integration of
the observed rotation curves in the SPARC sample (Lelli et al., 2016) and that the
recipe in eq. 5.14 may be inaccurate in practice for a good proportion of galaxies (Posti
et al., 2018b). It is also intriguing that, to first order, eq. 5.12 is consistent with the
empirical finding of eq. 5.14.

6Actually Posti et al. (2018b) constrain f j = jstar/jh ≈ 0.5, but since λ is mass independent the same
applies to f̃ j

7A close look at their figure 5 for the Dutton et al. (2010) SMHM reveals that at most f j ∼ M0.1
star.

Moreover, the factor fc ∝ c−0.2 (see Mo et al. (1998) and Jiang et al. (2018)) depends very weakly on halo
mass (c ∝ M−0.1

h , Dutton and Macciò 2014) and therefore on stellar mass.
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To summarize, the MMW taken at face value is able to recover the median values of
the observables, but it fails at reproducing the width of their distributions. Conversely,
observations of galaxy angular momenta combined with the MMW model recover the
semi-empirically determined constraints on the Re − Rh relation σK . 0.20 dex.
Moreover, I have analytically shown that the MMW model naturally gives the slope of
the Re −Mstar relation. The conclusions presented above further corroborate
theoretical arguments where galaxy sizes are set by angular momentum, while
resolving the issue of the too large scatter predicted by the MMW model.

5.5.3 Insights from hydrodynamic cosmological zoom-in simulations

From the arguments presented above, it is still unclear what the origin of a tight
distribution of angular momenta is. I here argue that the MMW model may be an
oversimplification of a more complex problem.

Using hydrodynamical cosmological zoom-in simulations, Danovich et al. (2015) have
traced the buildup of galaxy angular momentum in four phases that are linked to
different spatial scales, from the cosmic web (R ≈ 2Rh) to the innermost part of the
halo where R . 0.1Rh. The region where 0.1 . R/Rh . 0.3, termed as the “messy
region” (Ceverino et al., 2010), is particularly interesting. This is the zone where the
cold streams coming from 3-5 different independent directions start to interact. These
streams have had their angular momentum set at R ≈ 2Rh, which does not
significantly vary during its transport down to the “messy region”. In this region
substantial angular momentum exchange and torquing occurs, which eventually drive
the baryons down to R . 0.1Rh. The resulting dynamics is such that jstar ≈ 0.5jh, and
that jstar is well described by a lognormal distribution with dispersion of 0.2 dex.

Note that the scenario envisaged in the MMW model is that of a rather smooth
formation history. The gas is assumed to be tight to the overall spin parameter of dark
matter, and to slowly accrete onto the protogalaxy at the centre of the halo. Conversely,
the simulations described in Danovich et al. (2015) reveal a quite more violent scenario
where the gas is funneled towards the inner halo in only a few streams with an
angular momentum higher than that of dark matter, which is then lowered by
gravitational torques in the “messy region”. Indeed, the value of f j ≈ 0.5 found by
Danovich et al. (2015) can be understood in the light of these torques. Notably, in the
MMW framework f j ≈ 0.5 provides a good fit to the mean observed size and angular
momentum distributions, but it is not possible to predict it from first principles.
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5.5.4 Comments on the concentration model

As regards to the concentration model, I have shown that lower values of γ produce
wider distributions, and that γ may be tuned to match the size functions without
adding any intrinsic scatter σCM. As shown in Section 5.4.2, adopting lower values of
γ result in broader distributions. Such effect is degenerate with the intrinsic scatter in
the concentration model σCM. Inspired by the results of Jiang et al. (2019), I discuss
what the consequences of having a mass independent γ ∼ −0.7 would be. It is clear
from figures 5.5b and 5.3b that such a value of γ would account for some of the
observed width of the size functions. In fact, it can be seen that the scatters produced
by γ = −1.6,−1.2,−0.8 and −0.4 are roughly equivalent to those given by
σK = 0.20, 0.15, 0.10 and 0.0. A constant value of γ = −0.7 from Jiang et al. (2018)
would be able to account for ≈ 13%, ≈ 25% and all of the scatter observed for galaxies
with Mstar < 1010M�, 1010 < Mstar/M� < 1011 and 1011 < Mstar/M� < 1012

respectively. Thus, a mass-independent γ implies a mass-dependent σCM.

Overall, the concentration model could be favoured due to its lower intrinsic scatter,
however its explanation from a theoretical standpoint remains a challenge.

5.6 The K13 model in state-of-the-art cosmological
simulations and the formation of ETGs

I now proceed to test whether current cosmological models of galaxy formation are
consistent with the semi-empirical constraints outlined in the previous Sections, i.e.
the existence of a tight relationship Re − Rh, between galaxy size and host halo radius,
and a lower normalization in the relationship Re − Rh relation for ETGs compared to
LTG. To this purpose, I will use the Rome semi-analytic model (the Rome SAM
herafter) and the IllustrisTNG100 simulation.

I produce Re − Rh relations and their scatter at z = 0 for central galaxies only from the
Rome SAM (see Section 3.1.1) in Figure 5.6 and the mock observations of
IllustrisTNG100 (see Appendix C) in Figure 5.7. In the Rome SAM, galaxies are
classified according to their B/T ratio, with “pure disks” being galaxies with
B/T < 0.3, and “pure bulges” those with B/T > 0.7. Models with and without gas
dissipation during major mergers are also shown in the Figure. To enable a closer
comparison to observations, the sizes of the semi-analytic galaxies are convolved with
a measurement error of ∼ 0.1 dex (Bernardi et al., 2014). For IllustrisTNG100, I use the
semi-major axis size of the best Sérsic fit, Re,maj, and the radii of a circular area that
encloses 50% and 80% of the light contained in 1.5 times the Petrosian radius, R50 and
R80. From the SubFind (Springel et al., 2001) catalogue I obtain the physical size Re,3D.



5.6. The K13 model in state-of-the-art cosmological simulations and the formation of
ETGs 83

The correlation between Re,maj and Re,3D and the related (small) difference between the
two due to projection effects is shown in Appendix D.1.

At a first glance, not much difference can be found between the Re − Rh relations
found in IllustrisTNG100 and in the Rome SAM. It is indeed pleasing that both
models predict that ETGs and LTGs lie on two separate relations, in qualitative
agreement with the semi-empirical constraints provided above.

In the SAM, the relation of ETGs is offset by ∼ 0.3 dex and ∼ 0.4 dex with respect to
that of LTGs in the dissipationless and dissipative scenarios, respectively. The two left
panels of Figure 5.6 show that using the distribution of spin parameters taken from
dark matter only simulations result in a scatter σK > 0.2 for both ETGs and LTGs,
which is larger than that found in the SEM above. In the two right panels, instead, I
have assumed that the distribution of spin parameters from which LTGs can form is
σlogλ = 0.15 dex which, once convolved with measurement uncertainty, is consistent
with the upper limits to σK given in Section 5.4.2 (Figure 5.5a). In this case, the scatter
in the Re − Rh relation of ETGs is somewhat reduced, and it becomes consistent with
the SEM, especially at high values of Rh. Dissipation does not affect the scatter in
either case. However, for ETGs, the semi-empirically constrained Re − Rh relation
shows a marked dependence on stellar mass, a sign that the galaxy size-halo size
connection is not a simple power law for ETGs, but it is instead likely to become
steeper at higher Rh.

In IllustrisTNG100 it can be seen that using the semi-major axis size Re,maj gives a
scatter that is somewhat larger than the one in the SEM, while the size R50 of
mock-observed LTGs follows more closely the constraints on the scatter of the Re − Rh

relation. Indeed, for intermediate values of Rh the scatter is just about 0.2 dex,
declining with increasing Rh. However, it seems that for ETGs the scatter is larger than
0.2 dex in both cases. The right panel of Figure 5.7 shows that the distribution of
physical sizes at fixed halo radius is indeed already of the order of 0.2 dex for ETGs
even before the mock observations are performed. On the positive side, it is
noteworthy that such scatter decreases as Rh increases also for ETGs in all cases,
reaching . 0.1 dex at the high-size end, in agreement with the SEM (see Figure 5.3a).
Moreover, IllustrisTNG100 qualitatively reproduces the upturn of the semi-empirical
Re − Rh relation of ETGs, unlike the Rome SAM.

5.6.1 Discussion

5.6.1.1 Disks and ETGs in the Rome SAM

The difficulty of maintaining a tight scatter in the observed structural scaling relations
of ETGs implied by a pure merger scenario has been discussed in, e.g., Nipoti et al.
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(2012), Nipoti et al. (2009a) (see also discussion in Shankar et al. 2014b). In the Rome
SAM, mergers are responsible for the formation of ETGs. As a result of mergers, the
input scatter in the LTGs Re − Rh relation is almost seamlessly propagated to the
relation of ETGs. A very tight distribution for the sizes of LTGs is required, of the
order of ∼ 0.15 dex, to broadly reproduce the SEM constraints on the Re − Rh relation
for ETGs. The lack of a significant upturn in the Re − Rh relation of ETGs might be
related to the well-known issue that hierarchical SAMs where galaxy sizes are set
using energy conservation and the virial theorem are unable to reproduce the strong
size evolution of MGs (Huertas-Company et al., 2013a; Zoldan et al., 2019).

5.6.1.2 Disks and ETGs in hydrodynamical simulations

On the other hand, in hydrodynamical simulations internal torques and mergers arise
naturally from the local and global gravitational fields respectively. The
implementation of IllustrisTNG100 achieves naturally a tight relation between Re and
Rh for LTGs. In Section 5.5.2 I have shown that the MMW model may be consistent
with the observed scaling relations of LTGs if the stellar angular momentum, rather
than the halo spin parameter, is used; specifically, at fixed stellar mass and halo radius
the scatter in Re should be completely driven by that in jstar.

In Figure 5.8 I show the relationship between the stellar angular momentum jstar and
stellar mass in IllustrisTNG100 in tight bins of Rh. I also show the relation for all LTGs
since two highest bins in Rh suffer from low number statistics. It can be seen that the
predicted scatter is about 0.2 dex and decreasing with increasing stellar mass and bin
of Rh. This is consistent with the argument above, and also with the decrease in scatter
in the Re − Rh relation at high halo radii. The connection between galaxy size and
stellar angular momentum is tested more directly in Figure 5.9, where the size
functions of IllustrisTNG100 LTGs in narrow bins of jstar is shown. The first striking
feature of this Figure is that in a given bin of Mstar larger galaxies have a larger specific
stellar angular momentum. Even more remarkable is the fact that the tightness of the
size functions8 is extraordinarily narrow at fixed jstar. These findings suggest that the
link between galaxy sizes and their stellar angular momentum is extremely tight.
Thus, an empirically motivated model where the relationship between Re and Rh is
mediated by stellar angular momentum seems to be supported by IllustrisTNG100.

Contrarywise, the scatter for the ETGs Re − Rh relation may be overestimated by
IllustrisTNG100. A possible reason for this is that the morphology of ETGs is not
well-reproduced by IllustrisTNG100. In this case, at least some of the labels assigned
to IllustrisTNG100 galaxies by the supervised CNN in (Huertas-Company et al., 2019)

8Here I use Re,3D since I wish to investigate the intrinsic relationship between size and angular mo-
mentum.
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FIGURE 5.6: Re − Rh relation in the Rome SAM. Each panel represent a run of the
model where σlogλ is varied or dissipation is included, as labeled. The red and blue
lines are for LTGs and ETGs respectively, while the cyan and salmon shaded areas
indicate the 16th and 84th percentiles of the distributions at fixed Rh. Dashed lines
show a scatter of 0.2 dex from the mean, consistent with the upper limit provided our
semi-empirical model. The relation by Kravtsov (2013) is shown as dot-dashed lines
for comparison. The predicted Re are convolved with an observational scatter of 0.1

dex.

FIGURE 5.7: First panel: statmorph Sérsic semi-major axis sizes of the mock observed
Illustris TNG galaxies as a function of Rh. Second panel: statmorph estimates for R50 of
the mock observed Illustris TNG galaxies as a function of Rh. Third panel: statmorph
estimates for R80 of the mock observed Illustris TNG galaxies as a function of Rh.
Fourth panel: Physical 3D radius Re,3D of the same Illutris TNG galaxies as a function
of Rh. Red and blue lines are for LTGs and ETGs respectively, while the cyan and
salmon shaded areas indicate the 16th and 84th percentiles of the distributions at fixed
Rh. Dashed lines show a scatter of 0.2 dex from the mean, consistent with the upper
limit provided our semi-empirical model. The relation by Kravtsov (2013) is shown as
dot-dashed lines for comparison. The completeness limit on Rh induced by the stellar
mass cut of Mstar & 109.5M� in IllustrisTNG100 is shown as a vertical gray line. The
difference between the left and right panels may be understood in the light of Figure

D.1.

might not be meaningful, given the potential distributional shift between the training
set (i.e., SDSS) and the simulated galaxies (see Section 3.3.5). This might generate
noise in the population of ETGs, and thus a larger scatter in the scaling relations. This
matter is thoroughly investigated in the next Chapter.
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FIGURE 5.8: The relationship between stellar angular momentum and stellar mass for
Illustris TNG LTGs (left), binned in three ranges of halo radius (right).

FIGURE 5.9: Size functions of IllustrisTNG100 galaxies in bins of stellar mass and
color coded by the value of specific stellar angular momentum. The tightness of the

size functions at fixed jstar is remarkable.
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5.7 Comparison to other Semi-Empirical Models

Using a SEM, Somerville et al. (2018) found that the total size distributions observed in
GAMA and CANDELS are in agreement with the MMW model. These findings are
suggestive that both the population of ETGs and LTGs may be described in the MMW
framework. For example, ETGs could be formed in dark matter haloes with
preferentially lower λ, which would account for the fact that the distribution of ETGs
peaks at lower Re than that of LTGs (see also Kravtsov 2013). However, as note by
Romanowsky and Fall (2012), this “spin bias” scenario clashes with the evidence that
ETGs are mainly massive galaxies living in massive haloes, while the mass
dependence of λ is very small (Rodrı́guez-Puebla et al., 2016). Alternatively, since the
normalization of the MMW model bears the dependence on the fraction of the halo
angular momentum f j that was retained by the collapsing gas, ETGs and LTGs could
then be two populations that retained preferentially lower and higher f j respectively.
Such a scenario may also be able explain why ETGs always have smaller sizes than
LTGs. However, although in-situ for ETGs formation do predict both smaller sizes
and angular momenta for ETGs compared to LTGs (e.g., Shi et al. 2017, Lapi et al.
2018a), it is often suggested that ETGs have also likely undergone merger events,
which may have led to an even lower f j on average (Romanowsky and Fall, 2012). I
would thus be cautious in interpreting f j for ETGs at z ∼ 0.1 in the context of the
MMW model. Instead, I have shown that a purely hierarchical model is able to
produce smaller sizes for ETGs, while preserving the linearity of the MMW model. As
a side note, recall that the total size function shown in figure 4.4 is wider than those of
ETGs and LTGs taken individually and therefore it might well be that the agreement
between the MMW model and the total size function found by Somerville et al. (2018)
occurs only by chance.

Another possible explanation for the difference in the normalization of the Re − Rh

relation for LTGs and ETGs is that the size of a galaxy is more tightly bound to that of
its halo at the redshift of formation than to the size of the halo at the time of
observation, as noted by, e.g. Kravtsov (2013). In particular, given the older ages of
ETGs (e.g. Bernardi et al. 2010), they must have formed at high redshift where haloes
were smaller (see eq. 2.3). However, minor dry mergers (which may dominate the late
evolution of ETGs, e.g. Shankar et al. 2013, Oser et al. 2010), will modify the Re − Rh

relation onto which ETGs formed - for instance, Re is modified following eq. 4.2.
Instead, in Chapter 6 I will show that, at least for MGs, a constant and tight
relationship between galaxy size and halo size at the time of observation works well up
to z ∼ 3.

It may also be worth highlighting that the Re − Rh relation for ETGs in the SEM
presented here may not be a simple power law, but it may present an upturn at the
high-size end (see Table 5.2). This is in contrast with the finding of Kravtsov (2013),
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who provided evidence for a linear relation independent on morphology and stellar
mass. A possible origin for this discrepancy is that in Kravtsov (2013) galaxies are
assigned to dark matter haloes using a SMHM relation that is not inclusive of scatter.
As shown in Somerville et al. (2018), this may lead to an overestimation of halo mass,
and, therefore, of Rh, which would flatten the upturn that I instead find when
including scatter in the SMHM relation.

5.7.1 Using R80 instead of Re

As the scatter and bimodality of the morphological size functions are well preserved
when using R80 in the M15/M16 catalogs (see Figure 4.4), adopting R80 rather than Re

would only require an overall higher normalization for the Re − Rh relations studied
here, but the results for the implied scatters remain robust. Also note that the
statmorph estimate of R80 for the mock-observed IllustrisTNG100 galaxies entails a
similar scatter in the galaxy size-halo size relation of LTGs and ETGs compared to that
of R50 (see central panel of Figure 5.7). Moreover, the relations for the two
morphological classes keep being separated also in the R80 − Rh plane also in the case
of IllustrisTNG100. The origin of these tensions compared to the results of Miller et al.
(2019), who argued in favour of statistically indistinguishable size distributions for
star forming and quenched galaxies when using R80, is unclear.

5.8 Conclusions

In this Chapter I have used a semi-empirical approach to study three models of galaxy
sizes, where the sizes of galaxies are linked to that of their haloes by means of the
dynamical (the MMW model, eq. 2.4) or structural (the concentration model, eq. 4.10)
properties of the dark matter halo in which they are hosted, or by a simple constant
(the K13 model, eq. 4.9) the origin of which is a priori unknown.

The main results are:

1. The scatter in the K13 model must decrease for more massive galaxies,
irrespective of galaxy morphology. This implies that most of the information on
the size distributions of the most massive galaxies strongly depends on the
SMHM and hence on the physical processes that determine it.

2. In the concentration model it is found that γ is degenerate with the model
intrinsic scatter σCM. This suggests that a lower σCM may be needed to account
for the width of the size functions, and that γ ∼ −0.8 may account for all the
scatter for MGs. A lower σCM might make the concentration model more
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fundamental than any other model studied here, however its physical origin
remains unclear.

3. Similarly to other studies (Huang et al. 2017, Lapi et al. 2018b) it is found that the
normalization of both the K13 model and concentration model must be different
for ETGs and LTGs. The main caveat of this result is that uncertainties in Re have
not been accounted for. Systematic projection effects may also alleviate this
difference (see Appendix ??).

4. The classical disk model by MMW taken at face value overestimates the tails of
the size and angular momentum distributions of disk galaxies, but is able to
predict the correct normalization and slopes of the structural and dynamical
scaling relations for LTGs. Based on the constraints from the K13 model, I
discuss a scenario where the link between the sizes of LTGs and their dark
matter haloes is mediated by the stellar angular momentum, and where the halo
spin parameter may not play a role. This scenario may be supported by previous
research adopting zoom-in cosmological simulations.

I also investigated whether the semi-empirical constraints are reproduced in current
cosmological models of galaxy formation and evolution.

1. In the Rome SAM, which implements a purely hierarchical scenario where the
MMW model is taken at face value, it is found that mergers of LTGs alone are
able to reproduce the dichotomy of the Re − Rh relation, but overestimate its
scatter. It is shown that with a tighter scatter in the input LTGs Re − Rh relation it
is possible to lower the inferred scatter in the sizes of ETGs at fixed halo radius
to meet the semi-empirical constraints.

2. In IllustrisTNG100, where both mergers and internal torques are at work, the
morphological segregation in the Re − Rh plane is also present, with a scatter
which is within the empirical constraints given in this work for LTGs, and
somewhat higher for ETGs, perhaps due to inaccuracies in the morphological
classification of simulated galaxies that may stem from a distributional shift (see
Section 3.3.5).

3. I exploit the information about the dynamics available from IllustrisTNG100 to
show that the scatter of the galaxy size-halo size connection of LTGs is consistent
with being driven by the stellar specific angular momentum, which corroborates
the empirical model based on the MMW model and the scatter of the K13 model.

In the remainder of this thesis I will investigate some of the issues raised in this
Chapter:
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• IllustrisTNG is in good agreement with the semi-empirical structural scaling
relations. While this is encouraging, the agreement is only a first step towards a
more refined comparison between observations and simulations. Thus, how
accurately can IllustrisTNG reproduce galaxy morphology, especially for ETGs?

• Can a tight and constant K13 model or a scatter-less concentration model be
used to give constraint the structure of central MGs at high redshift?

• Can this model explain the sizes of satellite MGs, and the effect of the
environment on galaxy sizes?
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Chapter 6

The structural evolution of Massive
Central Galaxies

In this Chapter I will focus on the structural evolution of the population of MGs,
which include an early, compact phase, followed by a structural expansion (van der
Wel et al., 2014). As shown in Chapter 8, even the most advanced large-scale
cosmological hydrodynamical simulations suffer from resolution issues which hinder
the study of the compact phases of MGs. Recent literature also suggests that the
properties of compact galaxies are a strong function of resolution (Chabanier et al.,
2020). On the other hand, zoom-in simulations have been used to study the
high-redshift ”compaction” phase of galaxy formation (Dekel et al., 2013), however
statistical samples of MGs cannot be obtained in these models. Moreover, SAMs have
not yet been able to reproduce the observed size increase of MGs; this is an historical
(Huertas-Company et al., 2013a) and still unsolved issue (Zoldan et al., 2019).

SEMs, instead, are more suited to providing predictions for MGs at high redshift and
they will be used in this as well as the next Chapter. The main advantages of the SEM
approach over the other two models discussed above are that (i) it provides
predictions which only rely on input data-driven relations, and (ii) it can be run
quickly in a large cosmological volume to obtain statistically sound predictions.
Firstly, I will confirm and extend published results that show that a constant Re − Rh

relation is sufficient to reproduce the strong size increase of MGs. Secondly, I will
provide predictive trends for the proportion of compact star forming and quenched
galaxies expected in various scenarios for the Mstar −Mh relation, which are possibly
related to a different contribution of mergers, AGN feedback and progenitor bias to
the size evolution of MGs.
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6.1 Background

There is no consensus yet as to why MGs were a factor of 3 to 5 smaller in the past. As
discussed in Section 2.8.3.2, minor dry mergers, feedback from the AGN and
progenitor bias are the mechanisms proposed to achieve the observed average size
growth of MGs. In the same Section, I also highlighted that the full size function of
both star forming and quenched MGs may be a powerful tool to disentangle these
scenarios. Moreover, in Chapter 5 I found that the intrinsic scatter of the Re − Rh

relation of MGs is extremely low at low redshift, which suggests a tight relationship
between the physical processes that regulate both the SMHM and galaxy sizes in this
mass regime.

In this Chapter, I use the SEM described in Section 4.3 to provide constraints on the
structural evolution of MGs through their size function. My work is based on the SEM
by Stringer et al. (2014) (hereafter S14), who combined the Moster et al. (2013) SMHM
relation and a constant Re − Rh relation to build a semi-empirical model which proved
capable to reproduce the size evolution of MGs in the COSMOS field
(Huertas-Company et al., 2013a). S14 attributed the mean size growth of the
population of MGs at z . 2 to a cosmological effect for which (i) the size of the host
dark matter haloes of a given mass become larger as the Universe expands and its
density decreases and (ii) MGs of the same mass form in more massive, extended dark
matter haloes at lower redshift. While these results are encouraging, the effects of
assuming a different SMHM relation in the framework outlined by S14 has remained
relatively unexplored. In fact, the SMHM is currently poorly constrained at the
high-mass end, owing to the systematic uncertainties in the input data, most notably
in the stellar mass function (see Section 2.1.3), or even the lack of data from large
surveys (Kawinwanichakij et al., 2020) at high redshift. Moreover, the scatter of the
SMHM, σSMHM, is notoriously degenerate with the high-mass slope of the SMHM
relation in retrieving the number density of massive galaxies (Shankar et al., 2014a;
Wechsler and Tinker, 2018). The work by Mowla et al. (2019) partially addressed the
possible dependence from the SMHM in this semi-empirical framework, however
they did not consider the scatter of the SMHM which, as I will show, has a sizeable
effect on the number density of the population of compact galaxies, and therefore it is
a significant novelty that I include in the SEM set out in S14.

The main objective of this work is to probe the impact of varying the input SMHM
relation and its dispersion σSMHM on: 1) the mean size evolution of MGs, 2) the full
size function of MGs across cosmic time, and 3) the number density of compact MGs.
The latter point is particularly original and powerful as the time dependence of the
number density of compact MGs is closely linked to progenitor bias: less compact
galaxies at fixed stellar mass would be observed at later epochs if they grow in size
via, e.g., mergers. I will show, in particular, that the scatter in the SMHM relation
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FIGURE 6.1: The effect of different SMHM relations on the halo occupation distri-
bution (HOD) of MGs and the size functions implied by a linear Re − Rh relation
(eq. 4.9). I show that SMHM relations with different high-mass slope δ and scatter
σSMHM (shown as shaded areas in the left panel) can produce the same number den-
sity for MGs (the mass threshold for MGs is shown as a red horizontal line). However,
the halo occupation distribution for the two models is remarkably different (central
panel). This translates in very different size functions. In particular, the number den-
sity of compact galaxies differs by almost a factor of two (I use the Cassata et al. 2013
definition of compactness, i.e. 0.4 dex below the z=0 mean size, against which I cali-
brated the two models following Chapter 5 ). The model indicated with dashed gray
lines is shown to help appreciate the effect of a lower σSMHM, at fixed δ, on the halo
occupation distribution and on the size function (compare to the dot-dashed model).
Although I show results only at a given redshift as an example, the same arguments

apply at any epoch for some choices of δ and σSMHM.

plays a major role in setting the number density of compact MGs, allowing to break
the degeneracy between the scatter and the high-mass slope of the SMHM (see, e.g.,
Figure 6.1). The present work lays out an effective strategy to unveil the evolutionary
pathways of MGs by exploiting the increased statistics of MGs that will become
available from future observations. Data for MGs are in fact at present quite sparse
and uncertain at z & 1 (e.g., Kawinwanichakij et al. 2020), and effective radii have
been measured for only a handful of MGs at z & 2 (e.g., Kubo et al. 2017; Patel et al.
2017; Faisst et al. 2017; Mowla et al. 2018; Stockmann et al. 2020; Lustig et al. 2021).

6.2 Methods

The SEM adopted here closely follows that outlined in Section 4.3.

In the next Section I will present “toy” SMHM relations, which vary in both shape and
dispersion, to probe their impact on the galaxy mocks and on their size distributions
at different epochs. The parametrisation of the SMHM adopted here is a double power
law (Moster et al., 2013),

Mstar(Mh, z) = 2MhN(z)
[( Mh

Mn(z)

)−β(z)
+
( Mh

Mn(z)

)1−δ(z)]−1
. (6.1)
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FIGURE 6.2: Left column: The SMHM relation of the four models outlined at the be-
ginning of Section 6.3.2. The red line indicates the stellar mass selection for MGs.
The green shaded regions indicate the scatter of the SMHM, which increases at higher
redshift for models 2 and 4. The gray line in the center-bottom and bottom panels
indicates the SMHM for Models 1 and 2 as a reference. Central and Right column: The
redshift evolution of the halo occupation distribution φ(Mh|Mstar > 1011.2M�) and
the implied size functions φ(Re|Mstar > 1011.2M�) of MGs for the four models. I
display results for z=0,0.5,1,1.5,2,2.5,3. Darker colours indicate higher redshift. The
gray band in the right column shows the Cassata et al. (2013) definition for compact
galaxies. It can be seen that the increasing σSMHM of Models 2 and 4 results in broader
distributions, which have a median lower Mh and normalised Re compared to Models
1 and 3, where σSMHM = 0.15 dex at all times. An evolving σSMHM also results in a
higher number density of MGs at earlier times. Contrariwise, the flatter high-mass-
end slope of the SMHM in Model 3 results in overall fewer MGs and slightly larger

median halo masses compared to Model 1.
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The parametrisation of the SMHM in Eq. 6.1 is less flexible than that used in Chapter
5, however its parameter space can be more easily explored and it is more easily
interpretable. In particular, I will focus on the slope above the knee of the SMHM
relation, δ (see Figure 6.1), which is related to the high mass end slope of the SMHM
by the following relation,

δ0 ≡
d log Mstar(Mh, z)

d log Mh

∣∣∣∣
Mh>Mn,0

(6.2)

where Mn,0 is where the knee of the SMHM relation is located. δ is the parameter in
the SMHM relation controlling the number density of MGs at a given dispersion. The
precise value of δ, or better of the underlying abundances of MGs in the local and high
redshift Universe, still suffer from substantial systematic uncertainties and that are
hotly debated in the literature.

In the following, unless stated otherwise, I will assume the K13 model for galaxy sizes.

Below I further refine the SEM to take into account the fact that galaxy quenching is a
strong function of cosmic time, as well as stellar and halo mass.

6.2.1 Quenching

To provide a fair comparison to observations, which have so far always distinguished
between starforming and quiescent MGs (e.g., Mowla et al., 2018), a recipe for
quiescence must be included in the galaxy mocks. To this purpose, following the
empirical calibration of Rodrı́guez-Puebla et al. (2015) at z ∼ 0.1, I assume that the
probability of a galaxy being quenched in a dark matter halo of mass Mh is given by
the fraction

fQuench(Mh) =
1

b0 + [M0 × 1012/Mh(M�)]
(6.3)

with b0 ∼ 1 andM0 ∼ 1.51 at z ∼ 0.1. fQuench is a monotonically increasing function of
halo mass, with a characteristic mass scaleM0 above (below) which more (less) than
50% of galaxies are quiescent (starforming).

The fraction of quenched MGs is observed to evolve with redshift (e.g.
Huertas-Company et al. 2016; Mowla et al. 2018). While it is beyond the scope of this
work to set specific constraints on the physical processes that drive quenching (see
Somerville and Davé 2015 for a review), I note that quenching is thought to be more
likely to occur in more massive haloes at higher redshift (see Section 2.6). In my model
this is achieved by replacingM0 with

M(z) =M0 + (1 + z)µ, (6.4)

1This was recalibrated compared to the original results of Rodrı́guez-Puebla et al. (2015).
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where µ > 0 is a free parameter, that regulates the increase in characteristic quenching
halo mass in the younger Universe. Figure D.2 shows examples of the evolution in
fQuench for µ = 1, 3, 5. Note that quiescence is defined in the literature according to
different methods (e.g. 1 σ below the main sequence, different cuts in the color-color
planes, a hard cut in specific star formation rate, see e.g., Donnari et al. 2019) which
can lead to different results (Sherman et al., 2020). Therefore, the value of µ will
depend on the method assumed. For this reason, in the following I simply show
different values of µ, which I will adapt to the specific method used once the
comparison data is fixed.

Quiescent and starforming MGs of similar mass appear to grow in size at the same
rate with redshift, with quiescent galaxies being systematically smaller at all times
(Mowla et al. 2018). Following the results of Chapter 5, I assume that the two
populations live on two separate K13 relations, which are calibrated at z ∼ 0.1, and
which have a scatter σK,SF and σK,Q equal to 0.1 dex. In the remainder of this work, I
assume that this value of σK holds at all times.

6.2.2 Target observables

I will present the results of some toy models (described in Section 6.3.2) for the
following observables:

• the evolution of the galaxy size distribution of MGs (i.e. the size function
φ(Re, z|Mstar > 1011.2M�)) and its integral, the number density of MGs

nMGs(z) =
∫ ∞

−∞
φ(Re, z|Mstar > 1011.2M�)dlogRe; (6.5)

• the mean size of the population of MGs as a function of redshift, 〈Re(z)〉;

• the evolution in the number density of compact MGs ncompact(z). A range of
definitions of compactness have been proposed in the literature (e.g., Saracco
et al. 2010; Fang et al. 2013; Carollo et al. 2013; Barro et al. 2013; van der Wel et al.
2014; Damjanov et al. 2015; van Dokkum et al. 2015; Barro et al. 2017;
Charbonnier et al. 2017; Tacchella et al. 2017; Buitrago et al. 2018; Tortora et al.
2018; Luo et al. 2020 amongst many others). Here I define galaxies as compact
systems if their size is 0.4 dex below the z ∼ 0 Re −Mstar relation of quenched
galaxies (Cassata et al., 2011, 2013),

ncompact(z) =
∫ −0.4

−∞
φ(Re/Re(z = 0), z)dlog(Re/Re(z = 0)). (6.6)

In particular, I will focus on compact quenched MGs (CQMGs) and compact
starforming MGs (CSFMGs).
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Figure D.3 shows that adopting other definitions of compactness based on the effective
radius yields qualitatively similar results to the Cassata et al. (2011) definition. Other
popular definitions of compactness based on, e.g., the stellar mass density in the
central kiloparsec, would require information on the light/mass profile of galaxies
(e.g., the Sérsic index), which requires further modelling which I defer to future work.

6.3 Results

6.3.1 At the core of the model

The SEM employed here makes use of only two ingredients: (i) the K13 relation (eq.
4.9) and (ii) the SMHM relation.

Figure 6.1 shows that two SMHM relations with different high-mass slope δ and
scatter σSMHM are able to produce the same number density for MGs. The degeneracy
between δ and σSMHM in producing the same abundances of massive galaxies was
already identified in previous studies (e.g., Behroozi et al. 2010; Shankar et al. 2014a).
What I emphasize here, for the first time to the best of my knowledge, is that the
corresponding halo mass distributions (middle panel), and thus the implied size
functions computed via the linear K13 relation (right panel), remain however
significantly distinct, especially below the peaks of the distributions. The larger
abundances of compact MGs is mostly driven by a larger scatter in the input SMHM
relation, as can be inferred by comparing black dot-dashed and gray dashed lines in
Figure 6.1. Thus, the abundance of compact galaxies represents a valuable observable
to break the degeneracy between δ and σSMHM, allowing to set constraints on the
degree of progenitor bias and ultimately to discriminate between different models of
galaxy formation.

6.3.2 Toy models

Motivated by the discussion above, I devise four toy models to show the effect of
varying δ and σSMHM on the target observables (Section 6.2.2):

• Model 1: δ = 0.5 (steep slope), σSMHM = 0.15 dex at all redshifts;

• Model 2: δ = 0.5 (steep slope), σSMHM =
√

(0.1z)2 + 0.152;

• Model 3: δ = 0.35 (shallow slope), σSMHM = 0.15 dex at all redshifts;

• Model 4: δ = 0.35 (shallow slope), σSMHM =
√

(0.1z)2 + 0.152.
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The slope of Model 1 (Model 2) is inspired to the Grylls et al. (2019b) ’PyMorph’
(’cmodel’) SMHM relation, which was obtained by fitting the Bernardi et al. (2017)
’PyMorph’ (’cmodel’) stellar mass function (SMF) at z ∼ 0.1 and the Davidzon et al.
(2017) SMFs at z & 0.2 where their masses have been corrected by 0.15 dex to bring the
two studies in agreement2 (see also Bernardi et al. 2016).3

Although some authors point to distinct SMHM relations for quiescent and
starforming galaxies (e.g., Rodrı́guez-Puebla et al. 2015; Moster et al. 2018; Behroozi
et al. 2019; Posti and Fall 2021), the relative content of stars in starforming and
quiescent galaxies at fixed halo mass is still highly debated (e.g., Wechsler and Tinker,
2018). I here adopt throughout the simplest assumption that quiescent and
starforming galaxies share the same underlying SMHM relation, and note that the
core results will not qualitatively depend on this working assumption.

6.3.3 Halo occupation and implied size function

As a first step, in Figure 6.2 I show the SMHM relation and its scatter for the four toy
models, as well as the distribution of the host halos (i.e. the halo occupation
distribution) and the implied size functions. Figure 6.2 reveals that different SMHM
relations and their scatter σSMHM provide significantly different size functions, that
necessarily stem from distinct host halo occupation distributions. Thus, the size
functions are completely regulated by the way the SMHM relation maps galaxies into
haloes. In particular, it is relevant to highlight the following features when comparing
different models for the input SMHM relation:

• Model 1 vs Model 3. A change in the high-mass slope of the SMHM relation
generates an overall lower number density of MGs, but the mean of the halo
occupation distributions and related size functions are fairly similar in the two
cases.

• Model 1 vs Model 2 and Model 3 vs Model 4. Even when the shape of the
SMHM relation is identical, if I allow for the scatter σSMHM to evolve with
redshift, and in particular to increase at earlier epochs, then the implied halo
occupation distribution drastically changes compared to the case with constant
scatter. In the former case, a higher proportion of small MGs are hosted in less
massive haloes at higher redshift, and the mean halo occupation and galaxy size
exhibit a stronger evolution, as quantitatively described below.

2This was done only for the ’PyMorph’ SMF. The factor of 0.15 dex takes into account the difference in
M/L used in the two studies.

3I also shift by -0.1 dex the knee of the SMF resulting from the Grylls et al. (2019b) SMHM to better
match the SDSS SMF.



6.3. Results 99

6.3.4 Implied size evolution

S14 showed that, on the assumption that Re ∝ Rh at all epochs, the progressive
increase in virial radii and in the number densities of massive dark matter haloes,
were sufficient conditions to produce, when averaging over the full population, a
strong size evolution in the sizes of massive galaxies.

Figure 6.3 confirms and further extends the claim by S14. By using, for each of the four
toy models, a constant proportionality Re = AK × Rh calibrated at z = 0.1, as labelled,
it is always possible to reproduce the strong redshift evolution seen in the available
data (Faisst et al., 2017; Patel et al., 2017; Mowla et al., 2018), irrespective of the exact
input SMHM relation. Models with an evolving σSMHM tend to predict up to less than
50% faster size evolutions, well within the variance currently found in the data. I
distinguish between starforming and quiescent galaxies via the fQuench model with
µ = 2. Varying the µ parameter has little effect on the results, as it can be easily
compensated by a relative variation in AK and/or in the SMHM relation. Indeed, the
AK retrieved for starforming and quenched MGs appear to be systematically different
and such difference persists even when adopting distinct SMHM relations as, for
example, in Moster et al. (2018), for which I find AK,SF ≈ 0.023 and AK,Q ≈ 0.016.

6.3.5 Implied statistics of compact MGs

In Figure 6.2 I showed that the shape and scatter of the SMHM have a significant
impact on the number density of compact galaxies, a feature that was not investigated
by previous studies. I explore these trends more quantitatively here for the toy
models. The top and bottom panels of Figure 6.4 show the predictions of Model 1
(constant scatter) and Model 2 (evolving scatter) for the number density of MGs (left
panels) and for only compact MGs (right panels), separately for quiescent (red) and
starforming (cyan) galaxies and for different values of the quenching parameter µ, as
labelled (the predictions for Models 2 and 3 are very similar and reported in
Appendix D.4). All models predict a similarly sharp rise in the number density of
compact quiescent MGs (red lines) up to z ∼ 1.5− 2 and a subsequent more or less
fast drop depending on the exact value of µ adopted. All models also predict the
abundances of starforming compact MGs (cyan lines) to peak around the same
redshift z ∼ 2.5 with a weak dependence on µ but a strong one on scatter: a larger
σSMHM at early epochs can increase by up to a factor of ten the predicted number
densities of starforming compact MGs (bottom right panel). In Appendix D.3 I show
that adopting other definitions of compactness (e.g., Barro et al., 2013; van der Wel
et al., 2014; Gargiulo et al., 2017) does not alter the main qualitative trends of Figure
6.4.
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FIGURE 6.3: The size evolution from the K13 model for starforming (left) and quies-
cent (right) MGs. The black lines indicate the four toy models outlined at the begin-
ning of Section 6.3.2 and coupled with the fQuench model introduced in Section 6.2.1
with µ = 3, as an example. Data are the sizes of MGs from Mowla et al. (2018) (di-
amonds), Faisst et al. (2017) (circles), Patel et al. (2017) (triangles). I also add SDSS
estimates for the sizes of Massive Late type and Early type galaxies (green and orange
stars respectively). The normalization AK in each panel is chosen to match SDSS ob-
servations. Notably, a constant normalization AK is able to reproduce observations.
Moreover, AK is lower for shallower high-mass-end slopes of the SMHM (Models 1
and 2), while the opposite is true for steeper SMHM relations. This indicates that AK

and δ are degenerate in the model.

The evolution of ncompact that I predict for compact quiescent MGs is in qualitative
agreement with observations of compact galaxies in a lower mass range
(10.5 < logMstar/M� < 11.5, Cassata et al. 2011, 2013; van der Wel et al. 2014; Barro
et al. 2013). However, at present, current observations provide rather uncertain
constraints on nMGs at high redshift (see Kawinwanichakij et al. 2020 for a detailed
discussion of the systematics). In addition, a secure determination of the number
density of, especially compact, MGs is hampered by the seizable but still unknown
number of optically dark starforming galaxies at high redshift (e.g., Franco et al. 2018;
Wang et al. 2019; Zhou et al. 2020; Smail et al. 2021). Nevertheless, the results
presented in Figure 6.4 provide clear predictive trends for the evolution of compact
and large MGs that, when compared with data from the next generation of observing
facilities, will set tight constraints on the quenching mechanisms (µ parameter) and on
the level of progenitor bias in the size evolution of MGs.
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FIGURE 6.4: Left: The number density of starforming and quenched MGs (cyan and
red line respectively) for models 1 and 2. Solid, dashed and dotted lines are obtained
adopting µ = 1, 2, 4 respectively. Right: Prediction for the number density of compact
MGs for the two models and the different values of µ. Note that the fraction of compact
MGs increases at early times. Filled diamonds and crosses indicate the time where 20%
and 70% of the population of MGs (either starforming or quenched) are compact. The
comparison data in the left column are from the SDSS ’PyMorph’ photometry at z=0.1
(Meert et al., 2015), Davidzon et al. (2017) and McLeod et al. (2020) (in the wo latter
cases the masses have been shifted by 0.15 dex to account for M/L differences with
SDSS data, see Grylls et al. 2019b). Note that the data points were retrieved from the
Schechter fits provided in the two studies, extrapolated in the MGs mass range. With
the caveat that different definitions of quiescence are adopted in observations, it can
be noted that Model 1 is favoured by current data if µ ≈ 2− 3. Model 2 might provide
a better fit to data if the number density of starforming MGs is underestimated at high

redshift (Franco et al., 2018; Smail et al., 2021).

6.4 Discussion

6.4.1 Progenitor bias scenarios and continuity equation

I have demonstrated that all the models are able to produce a strong evolution in the
average effective radius of the MG populations (Figure 6.3). On the other hand,
Figures 6.4 and D.4 clearly show that in all models ncompact decreases below
z ∼ 1.5− 2. The peak of the abundance of compact quenched MGs corresponds to
compact fractions of ∼ 20− 40%. Thus, the ensuing disappearance of compact
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FIGURE 6.5: The number density of CSFMGs (cyan) and CQMGs (red) for Model 1 (top
row) and Model 2 (bottom row). I adopt mu µ = 2 (dotted lines, left columns) and
µ = 3 (solid lines, right column). The number density of compact starforming galaxies
that would be obtained from continuity arguments (see eq. 6.7) is shown for different
values of the quenching timescale ∆Tquench. Increasingly larger values of ∆Tquench are
shown with increasing brightness. Model 2 disfavours a continuity scenario. In Model
1 continuity is broadly achieved if ∆Tquench ≈ 200− 400 Myr for µ = 2 and µ = 3
respectively. Results for Models 3 and 4 can also be found in Appendix D.4, and are

qualitatively similar.

galaxies as the Universe ages strongly suggests that ∼ 20− 40% of the quenched MGs
that were present at z ∼ 1.5− 2 have grown in size individually (e.g., Trujillo et al.,
2011; Carollo et al., 2013; van der Wel et al., 2014; Fagioli et al., 2016; Faisst et al., 2017;
Stockmann et al., 2020). However, it is worth pointing out that this corresponds to
only ∼ 10− 15% of the quenched MGs that are present today (for the case of constant
and evolving σSMHM respectively).

At z & 2 all models instead predict a strong increase in the number density of compact
MGs, suggesting that, in line with a number of observational studies (e.g., Barro et al.,
2013; Cassata et al., 2013), a significant fraction of MGs form in a compact phase at
early epochs, most probably due to gas dissipation following a merger (e.g., Sparre
and Springel, 2016) or an in-situ burst of star formation (e.g., Lapi et al., 2011).
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An interesting question that has been discussed in the literature is whether compact
quenched galaxies are the descendants of compact starforming galaxies (e.g., van
Dokkum et al., 2015; Barro et al., 2017; Gómez-Guijarro et al., 2019). For example,
based on number density conservation arguments, Barro et al. (2013) proposed that
compact starforming galaxies with 10.5 < logMstar/M� < 11.5, passively evolve into
quenched compact galaxies in a timescale of ∼ 800Myr. Following Barro et al. (2013), I
here develop basic continuity equation models without mergers in which compact
starforming MGs (CSFMGs) naturally evolve into compact quenched MGs (CQMGs)
on a given timescale ∆Tquench as

nCSFMGs(t) = nCQMGs(t + ∆Tquench)− nCQMGs(t) (6.7)

in which ∆Tquench is allowed to vary between 100 and 900 Myr, t is the age of the
Universe, and nCQMGs(t) and nCSFMGs(t) are the cumulative number densities of
quiescent and starforming compact MGs above Mstar > 1011.2 M�. Figure 6.5 shows
the results of applying Eq 6.7 to the nCSFMGs extracted from Models 1 and 2 with
quenching parameters µ = 2, 3 as a reference (the results derived for other values of µ

and for Models 3 and 4 are included in Appendix D.4.)

As reported in the bottom panel of Figure 6.5, models characterised by a scatter σSMHM

increasing at earlier epochs tend to disfavour a continuity scenario in which all
CSFMGs gradually transition into CQMGs, as the number densities of CSFMGs (cyan
lines) are always significantly larger than those of compact quiescent galaxies (red
lines). Instead, models with a fixed σSMHM (Model 1, top row of Figure 6.5) are broadly
consistent with a progenitor-descendant scenario between CSFMGs and CQMGs for
some choices of ∆Tquench. In the specific, it is found that ∆Tquench ≈ 200, 300, 400, 900
Myr for µ = 2, 2.5, 3, 4 (data shown only for µ = 2, 3, see for µ = 2.5, 4). Thomas et al.
(2005) estimated an upper limit to the main star formation episode of local MGs
around ∆Tquench . 300Myr (see their eq. 5), which would be consistent, at face value,
with continuity in the constant σSMHM models with 2 . µ . 3, in line with the
preferred values of µ adopted in Figures 6.4 and D.4. Continuity arguments applied to
Models 3 and 4 (see Appendix D.4) yield results that are qualitatively similar to
Models 1 and 2 respectively.

In a continuity scenario between CSFMGs and CQMGs (which can be produced by
Models 1 and 3), little or no size evolution occurs during quenching. This conflicts
with theoretical models where both size evolution and quenching occur almost
simultaneously as a result of AGN activity, with a predicted expansion in size of a
factor of & 2 over very short timescales (i.e., 50− 100 Myr, Ragone-Figueroa and
Granato 2011; Lapi et al. 2018a). In other words, assuming a constant scatter σSMHM in
the input SMHM relation, would be consistent with a two-stage formation scenario in
which galaxies first quench and then grow via stochastic mergers (e.g., Hopkins et al.,
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2009d; Oser et al., 2012). Alternatively, an increasing σSMHM at earlier epochs would
necessarily require that only a relatively minor fraction of the CSFMGs quench during
their compact phase, a scenario more consistent with an AGN-driven size evolution. It
should however be noted that an unbiased view of the size growth of MGs requires
both optical-NIR observations as well as FIR-submm observations (e.g., Barro et al.,
2016; Tadaki et al., 2020; Sun et al., 2021). Compact dust-enshrouded star formation
activity can in fact occur over spatial scales a factor of ∼3 smaller that the Re measured
in optical-NIR (e.g., Puglisi et al., 2019; Jiménez-Andrade et al., 2019). AGN activity in
these galaxies might cause, along with quenching, a considerable evolution in size in a
very short timescale (e.g., Lapi et al., 2018a).

I conclude this Section by stressing the fact that the continuity models strictly apply to
compact MGs, which amount to a substantial fraction of the total population of
quiescent MGs only at z & 2 (see diamonds and crosses on Figure 6.4). It is evident
from Figure 6.4, that all models predict an increase in the number density of the
overall quiescent population at z < 2 by up to an order of magnitude, a trend that
cannot be driven by solely quenching of the starforming MGs as the number density
of the latter is always significantly lower that those of quenched MGs at late epochs.
Additional physical processes must be at play at z < 2 in regulating the formation and
sustenance of non-compact starforming MGs as well as the appearance of a large
population of non-compact quenched MGs.

6.4.2 The sizes of MGs as effective constraints to the galaxy-halo
connection

Providing firm constraints to the SMHM relation at different epochs can yield
invaluable information on, e.g., the merger rates of MGs (Grylls et al., 2020), the
interplay between dark matter and baryonic physics (Gu et al., 2016; Matthee et al.,
2017), the physical processes behind galaxy quenching (Tinker, 2017). Unfortunately,
the shape and scatter of the SMHM relation are still highly debated (e.g.,Bernardi et al.
2017). In particular, there is a well-known degeneracy between the high-mass slope, δ,
and the dispersion, σSMHM, of the SMHM relation (e.g. Shankar et al. 2014a). Similarly
to Grylls et al. (2020), in the previous Sections I made use of toy models where only
these two parameters are changed to explore their impact on the sizes of MGs. As
shown above, SMHM relations with different values of δ and σSMHM result in distinct
rates of size increase (Figures 6.3) and number density evolution of compact MGs
(Figures 6.4 and Figure D.4), which are ultimately a consequence of the different
implied halo occupation distribution (Figure 6.1). My results therefore suggest that the
δ− σSMHM degeneracy may be broken by simultaneously fitting the size growth of
MGs, the redshift evolution of the number density of compact MGs, and the number
density evolution of the overall population of MGs, in other words by an accurate
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measurement of the full size function of MGs at different epochs, a goal that should be
achievable with the aid of the next-generation observational facilities such as Euclid
and LSST. I note that several previous semi-empirical studies aimed at probing the
structural evolution of galaxies (e.g., Rodrı́guez-Puebla et al. 2017; Behroozi et al.
2021). However, they were are all limited by the use of only one SMHM relation and
dispersion, which instead, if allowed to vary, can provide distinct structural
evolutionary tracks for MGs.

6.4.3 Interpretation

I showed that a simple, constant and tight linear relation between effective radius and
halo radius can match a number of observables for both Q and SF galaxies. The very
existence of such a close correlation between two widely different scales is however
far from trivial and extremely challenging to explain. Some works have even shown
that the size and mass evolution of dark matter haloes defined as virial overdensities
(see eq. 2.3) may just be a mere artifact of a non-physical pseudo-evolution (Diemer
et al., 2013), although it should be noted that for the most massive haloes, which host
MGs, pseudo-evolution is less severe (Diemer et al., 2013).

It could be speculated that the link between effective radius and host halo radius may
indeed be mirroring an underlying connection between effective radius and cosmic
time. To first order, in fact, the growth in the effective radius of MGs implied by the
growth of the dark matter virial radius via the K13 relation actually traces the dilution
of the cosmic density, which roughly scales as H−2/3. The related timescales,
∝ H−1 ∼ (1 + z)−1, are similar to those of star formation (i.e., ∼Gyr, e.g. Tacconi et al.
2018). Therefore, the tight relation between galaxy size and halo size that I find may
simply be a consequence of the universality of main sequence star formation as
regulated by gas accretion (e.g., Bouché et al. 2010; Rodrı́guez-Puebla et al. 2016).
Moreover, the merger timescales, regulated by dynamical friction, scale with the
dynamical time of distinct haloes as tdyn ∝ H−1 (e.g., Jiang and van den Bosch 2016).
Whether a minor merger scenario for the late evolution of MGs is consistent with a
constant Re − Rh relation remains to be seen.

However, the nature of the semi-empirical methodology prevents me from answering
these questions directly, which instead will have to be addressed by physical models.
The next generation of hydrodynamical simulations, coupled to aimed surrogate deep
learning models (e.g., Horowitz et al., 2021; Villaescusa-Navarro et al., 2020a), will be
performed in the large volumes needed to efficiently probe a statistically significant
population of MGs in a cosmological context where both gas accretion and mergers
occur naturally.
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6.4.4 The concentration model

All the results of this Chapter so far pertain to the K13 model. Instead, the results from
the concentration model with γ = −0.4,−0.6,−0.8 are reported in Figure 6.6 for the
four toy models explored in this Chapter (see Section 6.3.2). The most important
feature of this Figure is that all models struggle to reproduce the size evolution of
MGs, except for Model 4 characterised by a flat high-mass SMHM slope δ and an
evolving scatter σSMHM. All models predict an increase in size at fixed stellar mass,
with higher (absolute) values of γ generating a shallower evolution. As γ approaches
zero, the trend tends to reduce to that of the K13 model, as expected. The departure
from the K13 model is explained by the evolution of the factor f (c) =

(
c/10

)γ

(equation 4.10, Figure 6.7), which has the effect of slowing down the evolution with
respect to the K13 model. The predicted relatively slower size evolution in the
concentration model is roughly independent of the input SMHM due the shallow
correlation between halo mass and concentration. The tension between the
concentration model and the size evolution of MGs calls into question whether the
concentration model is physically viable, even though it may entail an almost null
scatter for MGs, as found in Chapter 5.

6.5 Conclusions and future outlook

In this Chapter I used the SEM outlined in Section 4.3 and coupled with an empirical
recipe for quenching to study the evolution of the size (effective radius Re) function of
MGs. I varied the input SMHM relation to reflect the still substantial systematic
uncertainties in the stellar mass function at both low and high redshift. More
specifically, I devised four toy models with different high-mass slopes and/or
dispersions at fixed halo mass, σSMHM, to probe their impact on the size function of
MGs. In particular, I focused on the mean size growth and number density evolution
since z ∼ 3 of compact starforming and quiescent MGs. The main results can be
summarised as follows:

• The shape and evolution of the size function is completely determined by the
halo occupation distribution implied by each model. In particular, the number
density of compact galaxies, ncompact, is a strong function of the scatter σSMHM

(Figures 6.1 and 6.2).

• All models are able to broadly reproduce the fast size growth of starforming and
quiescent MGs by simply assuming a redshift-independent Re − Rh relation with
a different zero point for the two populations (Figure 6.3), in ways largely
independent of the shape of the input SMHM relation and of its scatter and, in
any case, well within the scatter found in independent observations.
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FIGURE 6.6: Size evolution inferred from the concentration model for γ =
−0.4,−0.6,−0.8 (dot-dashed,dotted and dashed lines respectively). Top left is for
Model 1, top right for Model 2, bottom left for Model 3 and bottom right for Model 4.
In all panels, solid lines indicate the K13 model). The cyan shaded area broadly indi-
cates the range of observational constraints allowed by current data ( Re ∝ (1 + z)−α

with −1.2 < α < −0.8, see Faisst et al. (2017); Patel et al. (2017); Mowla et al. (2018)).
All models struggle to reproduce the observed size evolution. Model 4, which has a
shallow high-mass slope in the SMHM and for which an evolving σSMHM is imple-

mented, provides a better match to the observed trend for some values of γ.

• In all models, the number density of compact starforming MGs peaks at around
z ∼ 2.5 and sharply declines at later times, while the peak in the number density
of compact quiescent MGs is always delayed by a characteristic timescale which
depends on the specific model (Figure 6.4). These findings thus suggest a size
growth driven by newly formed MGs at z & 1.5− 2, e.g. “progenitor bias”,
which plays a gradually lesser (but still important) role at z . 1.5.

• In models in which the scatter σSMHM is strictly constant in time, it is found that
the predictions are consistent with a two-phase evolution scenario, in which
compact starforming MGs first quench into compact quiescent MGs on a
timescale of a few hundred Myr (Figure 6.5), and then grow in size (possibly via
dry mergers). In models in which σSMHM is instead allowed to increase at earlier
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epochs, a significant proportion of quiescent MGs must increase their sizes
before final quenching as in, e.g., AGN-driven size growth.

• The results above strictly pertain to the K13 model. Instead, the concentration
model taken at face value struggles at reproducing the fast size growth of the
population of MGs (Figure 6.6).

All in all, these results support the view that an accurate measurement of the full size
function of MGs, which will become available with the next generation of observing
facilities such as EUCLID and the Nancy Grace Roman Space Telescope, will be able to
set constraints on: i) the high-mass slope and scatter of the SMHM relation, ii) the rate
of evolution of the number density of compact quiescent and starforming MGs and
the related degree of progenitor bias, iii) the quenching timescales of starforming
MGs, and iv) the evolutionary processes (mergers versus AGN feedback) driving the
structural evolution of MGs.
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Chapter 7

The sizes of MGs in different
environments

In this Chapter I will study the effect of the environment on the sizes of central and
satellite MGs. At the mass scale of MGs, the fraction of satellite galaxies is rather small
in the local Universe (. 20%) and even smaller at earlier times. Studying this
population thus requires large cosmological volumes, for reasons similar to those
outlined in the Introduction of Chapter 6. Therefore, here I will adopt the SEM used
throughout this thesis.

7.1 Background

In Chapters 5 and 6 I calibrated and deployed the SEM described in Section 4.3 only
for central galaxies, in this Chapter I will focus on the environmental dependence of
galaxy sizes predicted by the Re − Rh framework. The following points will be
addressed:

• As mergers are a key component of galaxy formation models, they are expected
to affect more heavily galaxies living in crowded environments. In the MGs
regime, dry mergers are candidates to increase the sizes of individual galaxies,
yet, at z ∼ 0.1 some studies suggest only a mild difference in the sizes of MGs
from field to clusters. I will test whether my SEM is in agreement with the
limited environmental dependence observed for the sizes of both central and
satellites MGs (see Section 2.6.1), also accounting for the effects of tidal stripping.

• As discussed in Section 2.8.3.5, whether S0 galaxies in groups and clusters form
prior to infall is a debated matter. The class of S0 MGs, in particular, has still
received little attention so far due to the lack of large catalogs with
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morphological information. By exploiting the (Domı́nguez Sánchez et al., 2018)
catalog of morphologies, I aim to probe the viability of a model in which
massive spirals infalling into groups and cluster transform in massive S0s over a
given timescale (e.g., Smith et al. 2005b; Deeley et al. 2020).

• Early forming, massive and quenched galaxies are expected to be found in the
local Universe as “relics” in groups and clusters (e.g., Buitrago et al., 2018, see
Section 2.8.3.4). These objects are particularly interesting as they offer a ”frozen”
view of galaxy formation at high redshift, and as such they are key probes of the
in-situ phase of the two-stage formation scenario, while their number density
mya provide constraints to the ensuing expansion phase driven by mergers.
While ”relics” have started to be investigated at Mstar ≈ 1011M� (Spiniello et al.,
2020), predictions for their existence at even higher masses are still lacking. Here
I will investigate, within the Re − Rh framework, how many ”relics” are
expected in the MGs regime, and how much such predictions depend on the
assumed underlying galaxy-halo connection.

7.2 Methods

The methodology closely follows the SEM outlined in Section 4.3. However, for the
dark matter halo catalogues I use the publicly available1 data products from the
MultiDark-Planck (MDPL) simulation (Klypin et al., 2016) from the MultiDark project
(Prada et al., 2012; Riebe et al., 2013). The MDPL simulation consists of 30483 dark
matter particles evolved with the L-GADGET-2 code (based on Springel et al. 2005) in a
cosmological box of 1 Gpc/h a size. The choice of using an N-body simulation is
motivated by the fact that information about subhaloes and their parent haloes is
readily available.

For unmerged subhaloes at z ∼ 0.1 I adopt the peak virial mass Mpeak attained during
their mass assembly history, before accretion. Note that mergers between satellite and
central galaxies are not modeled.

Moreover, I assume the z ∼ 0.1 SMHM relation by Grylls et al. (2019b), which was
obtained by fitting the Bernardi et al. (2017) ’PyMorph’ SerExp stellar mass function
(SMF). The stellar mass of Bernardi et al. (2017) are obtained without the truncation of
the light profile (e.g., Fischer et al. 2017). However, the truncation adopted here (see
Section 4.4.2) results in the high mass end of the SMF being slightly less populated,
requiring fine-tuning in two of the Grylls et al. (2019b) parameters, namely γ0 ≈ 0.57
and M10 ≈ 11.95.

1https://www.cosmosim.org/cms/simulations/mdpl/

https://www.cosmosim.org/cms/simulations/mdpl/
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The relative fraction of MSFGs and MQGs is modelled following the fQuench model
presented in Section 6.2.1. In Chapter 6, I have shown that µ is likely to lie at
intermediate values, µ ≈ 2.5. I will use µ = 2.5 as a reference but will explore other
possible values in the next Section. I also setM0=1.5. It is important to note that the
fQuench model applies strictly only to central galaxies. In particular, satellites have their
star formation activity set at a time when they were central, zpeak, but may be modified
by environmental effects.

In what follows I will include models with stellar stripping following the results from
the N-body simulations by Smith et al. (2016), who suggest a mass loss given by
Mstar,strip/Mstar = exp[1− 14.2 fDM], with fDM the dark matter fraction. I then update
the sizes following Shankar et al. (2014b) and Hearin et al. (2019), who assume that Re

decreases proportionally to the decrease in stellar mass along the Re −Mstar relation.

It is believed that at least some star forming galaxies are quenched and
morphologically transformed in S0 galaxies by the environment (e.g., Smith et al.
2005b). Therefore, I will also consider models in which some MSFGs are quenched
and morphologically transformed in S0 galaxies by the environment (e.g., Smith et al.
2005b) over a given timescale ∆Ttransf.

7.3 The local size function of starforming and quenched
massive satellite galaxies

I will adopt as a reference throughout a basic “Frozen & Stationary” (F+S) model in
which the SMHM relation does not depend on cosmic time and satellites do not
evolve after infall. I will discuss below the possible impact of relaxing any of the
assumptions in the F+S model. The left and right panels in Figure 7.1 show,
respectively, the size function of starforming (MSFGs) and quiescent (MQGs) MGs
extracted from SDSS and divided into central (orange diamonds) and satellite (blue
triangles) galaxies. I compare these data with the F+S model (solid coloured lines). I
first confirm the results of Chapter 5: the model provides an excellent match to the
size function of central MGs. Here I show that, in addition, without any extra
fine-tuning, the same model provides a good match also to the size function of satellite
MGs, especially for the quenched ETG population (and in agreement with previous
work, Hearin et al. 2019). It is also clear from Figure 7.1 that the vast majority of
satellite MGs have been accreted at zpeak < 0.5 (violet lines).
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7.3.1 Limited environmental dependence of galaxy sizes

In Figure 7.2 I further dissect the size function of the model MQGs in bins of host halo
mass that are representative of low-mass groups (12.5< log Mh/M� < 13.3), groups
and low-mass clusters (13.3 < log Mh/M� < 14), and massive clusters
(log Mh/M� > 14). The mean size (arrows at the bottom) show a weak dependence
on parent halo mass, with an increase in normalised size of ∆γ . 45% (inset in Figure
7.2), in line with what seen for central galaxies for which ∆γ . 55% (insets in
Figure 7.1). As emphasized by some groups (e.g., Huertas-Company et al., 2013b;
Sonnenfeld et al., 2019), the mass-normalized mean size γ of central and satellite MGs
has a weak dependence on host halo mass, amounting to ∆γ . 40%, when moving
from field to clusters and after accounting for statistical measurements errors in host
halo mass. The model used here naturally generates a weak trend of mean size with
halo mass mainly induced by the underlying assumption of a universal
Re ∝ Rh ∝ M1/3

h relation, in which the halo mass dependence is further washed out by
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dispersions in the relations and, in the case of satellites, by the stochastic assembly of
haloes. As discussed by Shankar et al. (2014b), a weak dependence of the mean size
with halo mass contrasts instead with some galaxy formation models, especially those
characterised by strong disk instabilities.

7.3.2 Massive relics live in massive clusters

Figure 7.2 also shows that only very few MGs formed at zpeak > 1.5 and survived until
the present day. Most of the “relic” satellites live today in massive clusters, but with a
low number density, amounting to approximately nrelics ∼ 4x10−8Mpc−3. If I allow
σ2

SMHM = 0.152 + (0.1z)2 (i.e., Model 2 of Chapter 6, which generates an enhanced
abundance of small galaxies at high redshift) I find that the number density of relics
roughly doubles, nrelics ∼ 6x10−8Mpc−3. If I adopt the SMHM relation inferred from
an MCMC fit of the MQGs size function (see below), I find nrelics ∼ 1x10−8Mpc−3.

While distinct SMHM relations predict a variety of outcomes for the number density
of massive ”relics”, I find that the latter are always preferentially hosted in the most
massive haloes, irrespective of the SMHM relation. This is because massive satellite
galaxies form as centrals in the most massive dark matter haloes at high redshift. The
host halo will become a subhalo of the present-day cluster-sized haloes. Some of these
massive subhaloes will survive until the present day, along with the relic that they
host.

These results inform the future hunt for massive ”relics” (e.g., Scognamiglio et al.
2020; Spiniello et al. 2020). In particular, the median size of these “relics”, Re ≈3 kpc, is
larger than the usual Re . 1.5 kpc usually adopted to select candidate relics for
observational follow-ups (e.g. Tortora et al. 2020), which suggests that current
observational campaigns are targeting only a fraction of relics, or that MGs infalling at
zpeak > 1.5 had already undergone a significant size increase. Alternatively, it could
also be that the abundance of compact relics is a strong function of stellar mass (as
compact relics are indeed found at Mstar ≈ 1011M�, e.g., Ferré-Mateu et al. 2015), or
that this population may generate a distinct peak in the size function that may not be
captured by the simple unimodal K13 model.

7.3.3 Dependence on input parameters

The results outlined above are largely independent of the specific inputs of the F+S
model. For example, the top panels of Figure 7.3 show that similar size functions are
generated when varying the quenching model (brown dotted lines, as labelled), or
when allowing for some redshift evolution in the Re − Rh relation with AK ∝ (1 + z)0.2,
still broadly allowed by the high-redshift data on the sizes of MGs (see Chapter 6).
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7.3.3.1 The concentration model

While in this Chapter I have used only the K13 model, I briefly comment on the
concentration model here. The results for this model are shown in Figure 7.4 for
Re ∝ c−0.4 and Re ∝ c−0.8, as loosely constrained by the local size functions of MGs in
Chapter 5. The concentration model always results in a stronger environmental
dependence, in tension with the results by Huertas-Company et al. (2013b). The origin
of this trend is the anticorrelation between concentration and halo mass. Indeed, since,
c ∝ M−0.1

h , one has that, for instance, c−0.8 ∝ M0.8
h ∝ R2.4

h , which induces a superlinear
Re − Rh relation and therefore larger sizes in more massive haloes, compared to the
linear K13 model.
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7.3.4 Remaining tensions

7.3.4.1 MQGs

Despite the successes described so far, the model predictions are not perfect and
present two main discrepancies from the data. Firstly, the predicted number density of
satellite MSFGs tends to be progressively overestimated with respect to the SDSS data
by a factor of 2− 10 below Re ∼ 10 kpc (e.g., left top panel of Figure 7.3). Secondly, the
model predicts a size function of MQGs very similar in shape to the measured one but
shifted by ∼ 0.05 dex towards lower sizes (see right panels of Figure 7.3). Despite
being relatively small discrepancies, especially in the case of the MQG population, it is
a non-trivial task to reconcile the models with the data by simply fine-tuning some of
the input parameters. To prove this point, the magenta dashed line in the top right
panel of Figure 7.3 marks the outcome of a model in which I allow the input SMHM
relation to vary with redshift. More specifically, I used a Markov Chain Monte Carlo
algorithm (Foreman-Mackey et al., 2013) with Gaussian priors centred on the mean of
the posterior distributions shown in Appendix A of Grylls et al. (2019b). Although the
resulting best-fit SMHM relation provides an improved fit to the low-size tail of the
size function of MQGs, it still falls somewhat short at the high-size end. Even a model
in which I include stellar stripping at the rate suggested by Smith et al. (2016), does
not significantly alter the predicted size function of MQGs from the benchmark F+S
model (cyan dashed line, top right panel of Figure 7.3). Simpler solutions to the
(small) discrepancy in the predicted size function of MQG with respect to the data can
be ascribed to, e.g., a possible overestimation of the sizes in satellite galaxies due to
background subtraction effects, and/or a small deviation in the adopted Re − Rh

relation in satellite galaxies with respect to their central counterparts.

7.3.4.2 Environment-driven morphological transformation for LTGs

As anticipated above, the most prominent discrepancy with the data lies in the
overproduction of the number density of MSFGs, progressively increasing towards
lower sizes (left panels of Figure 7.3). Although part of the mismatch may also be
caused by incompleteness due to fiber collisions(e.g., Taylor et al., 2010) , in what
follows I will only focus on the modelling side. Simply varying the relevant input
parameters has no noticeable impact on the shape of the predicted size function of
MSFGs (top left panel), thus calling for additional assumptions in the model. In the
bottom panels of Figure 7.3 I explore the impact of a physically-motivated hypothesis
(e.g., Cava et al. 2017; Joshi et al. 2020a) in which MSFGs are morphologically
transformed, into massive lenticulars (MS0s) via the effect of the gas in the intra-group
and intra-cluster media on a typical timescale of ∆Ttrans f ≈ 2− 4 Gyr since zpeak

(coloured lines as labelled). This simple addition to the baseline model provides a
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nearly perfect match to the size function of MSFGs when adopting ∆Ttrans f ≈ 3− 4
Gyr. The number of MS0 formed via this channel amounts, however, to only a few
percent of the total population of MQGs (inset in bottom-left panel) and ∼ 10% of the
population of SDSS MS0 galaxies (bottom right panel), suggesting that the vast
majority of MS0s may preferentially form before accreting in the cluster environment
(e.g., Hopkins et al. 2009b; Saha and Cortesi 2018). Note that if any stellar mass loss
from stripping (e.g., Bekki and Couch 2011) or evolving stellar populations (e.g.,
Moster et al. 2018) is allowed during the morphological transformation, the predicted
abundance of environmentally-formed MS0s would be even lower, thus further
highlighting the need for a secondary channel for S0 formation. Contrariwise, I have
so far neglected the possibility that further star formation occurs once galaxies are
accreted in a denser environment (as is instead suggested in some models, e.g., Wetzel
et al. 2013). Thus, I used the Tomczak et al. (2016) star formation rates to infer the
number density of star forming galaxies with mass Mstar . 1011.2M� that would enter
the MGs selection due to residual star formation after infall, and have found this to
yield a correction of the order of . 2% to the results.

7.4 Predicted environmental dependence of galaxy sizes at
high redshift

Now that I have established that the SEM used throughout this work is in agreement
with available constraints on the little environmental dependence of galaxy sizes at
z=0.1, it is useful to provide forecasts at high redshift that can be validated by the next
generation of observing facilities, given the unprecedented statistics for MGs in the
high-redshift Universe that they will provide.

In Figure 7.5 I show the predicted environmental dependence from the K13 model for
the sizes of central MGs, in the local Universe and at z=2, according to four models
characterised by different high-mass slope δ of the SMHM, in the case of a constant or
an evolving scatter σSMHM. It is readily appreciable that for a fixed slope, and in the
case of a constant scatter, the models imply a redshift-independent γ. Conversely,
models with a shallower slope provide a stronger environmental dependence, the
addition of an evolving scatter σSMHM also working in the same direction. In
particular, low values of δ consistent with some models in the literature (Moster et al.,
2013) predict a very strong environmental dependence in stark disagreement with
observational constraints.

As already discussed, constraints on the SMHM at z > 0.1 are currently highly
uncertain. The results above imply that, should the high-mass slope δ flatten at earlier
times, a stronger environmental dependence should be measured. Although data of
this nature are not available at z ∼ 2 for MGs, to the best of my knowledge, studies of
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FIGURE 7.5: The environmental dependence of galaxy sizes, for central MGs, at z=0.1
(solid lines) and z=2 (dotted and dashed lines) for models with various slopes δ of the
high mass end of the SMHM relation, and for the models with an evolving scatter in
the SMHM as in Chapter 6 (dashed lines). At fixed δ, and in the case of a constant scat-
ter, the models predict an almost redshift-independent environmental dependence,
whereas an increased scatter at high redshift generates a stronger trend. Models with

shallower slopes δ induce a stronger environmental dependence.

galaxies in a lower mass range (e.g. Delaye et al., 2014; Matharu et al., 2019) report a
more marked difference between the sizes of galaxies in the cluster and in the field at
z ∼ 1− 1.5 compared to z ∼ 0.1. This could be reconciled with some works (e.g. Grylls
et al., 2020), which do predict a progressively shallower δ at higher redshifts.

7.5 Conclusions

In the previous Chapters I showed that assuming a universal Re = AKRh relation
provides an excellent match to the local size function of SDSS galaxies and to the
strong size evolution of massive galaxies. Here I further demonstrate that
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• a basic “frozen & stationary” model where (i) the SMHM and the Re − Rh (where
the halo properties are taken at zpeak for satellites) relations remain unchanged
since z ∼ 1.5 and (ii) the environment does not affect galaxies after infall,
predicts a local size function of massive satellite galaxies in good agreement
with the data, particularly for massive quenched galaxies (MQGs).

• The same model generates an overall mild dependence of galaxy sizes on host
halo mass for satellites , amounting to ∆γ . 45%, in agreement with
observational studies (Huertas-Company et al., 2013b). These results are robust
against sensible (time) variations in the Re − Rh and/or SMHM relation,
inclusion of stellar stripping, or variations in the quenching model. Instead, the
concentration model taken at face value and calibrated on the z ∼ 0.1 size
function of central MGs, predicts a stronger environmental dependence than
observed.

• A population of early-forming (zpeak > 1.5) satellite MGs survives until the
present day only in massive clusters with number densities around 10−8Mpc−3.
However, the median size of these “relics”, Re ≈3 kpc, is larger than the usual
Re . 1.5 kpc usually adopted to select candidate relics for observational
follow-ups, which suggests that current observational campaigns may be
targeting only a fraction of relics, or that MGs infalling at zpeak > 1.5 had already
undergone a phase of structural growth.

• On the other hand, the model overpredicts the number density of massive star
forming galaxies (MSFGs), especially at lower sizes. It is found that by allowing
for MSFGs to quench and transform into massive S0 galaxies in a timescale of
∆Ttrans f ≈ 3− 4 Gyr, yields a nearly perfect match to the size function of MSFGs.
However, the fraction of S0 galaxies formed via the environmental channel
would only amount to ∼ 10% of the total number of massive S0s in SDSS, the
vast majority of which must have preferentially formed before infall.

Furthermore, I provide clear predictive trends on the environmental dependence of
the sizes of MGs for future high-redshift observations, where shallower slopes of the
SMHM result in stronger difference in galaxy sizes between clusters and field.
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Part III

New tools and applications
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Chapter 8

Galaxy structure and morphology in
observations and simulations with
deep learning

In Chapter 5 I have shown that current hydrodynamical cosmological simulations of
galaxy formation achieve a good agreement with semi-empirically derived structural
scaling relations of the type Re − Rh. However, it has been shown that the detailed
subgrid physics implemented in hydrodynamical models may significantly affect the
small-scale details of galaxy structure while still preserving a similar Sérsic profile
(e.g., Pillepich et al., 2018a). In this Chapter I will therefore investigate the capability
of state-of-the-art hydrodynamical simulations to reproduce the detailed light
distribution of galaxies, which are a powerful probe of galaxy formation. The results
of this Chapter, obtained using advanced DL methods, unveil the need for a still
substantial improvement in the physical modelling of galaxy formation for both star
forming and quenched systems, and highlight the still too coarse resolution of a
simulation which currently attains the best trade-off between resolution and
cosmological volume probed.

Notably, some of the simulations used here have been calibrated on the observed
structural scaling relations at the redshift where I carry out the investigation. The
tension with observations in the small-scale features of galaxy morphology highlights
the need to account for them during the calibration of hydrodynamical models. The
methodology proposed in this Chapter allows to probe galaxy formation to an
unprecedented level of detail, and it may be used in the future to aid the calibration of
the next generation of hydrodynamical simulations of galaxy formation.
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8.1 Background

In the recent years, cosmological hydrodynamical simulations of galaxy formation and
evolution have reached unprecedented accuracy. Recent efforts (e.g. Croft et al. 2009,
Crain et al. 2009, Schaye et al. 2010, Nuza et al. 2010, Di Matteo et al. 2012) have paved
the way to state-of-the art simulations (Vogelsberger et al. 2014b,Schaye et al. 2015,
Dubois et al. 2014,Davé et al. 2019, Pillepich et al. 2018b), which broadly agree with a
number of observations. In particular, it has been found that galaxy morphologies
naturally arise in a Λ cold dark matter (ΛCDM) cosmogony where the primordial gas
cools at the center of dark matter haloes and star formation is regulated and/or halted
by feedback processes from stars and accreting super massive black holes.

A key challenge for simulations is to try to reproduce the well known correlation
between galaxy morphology and star formation activity (e.g., Eales et al. 2017), and
how it propagates onto the galaxy scaling relations, which are observed to be different
in the two cases (i.e. star forming vs quiescent, e.g., Shen et al. 2003,Wuyts et al.
2011,Bell et al. 2012). A puzzling result is that simulations (including the Illustris TNG
simulation which I have used in Chapter 5) that use an array of different physical
models have all been shown to broadly reproduce the galaxy scaling relations.
Instead, the small-scale structural properties of simulated galaxies can be highly
sensistive to the details of galaxy physics implemented in different simulations
(Pakmor et al., 2014; Koudmani et al., 2019). Thus, the detailed resemblance of the
simulated galaxies to real ones may be considered an important hallmark of the
quality of simulations and hence a crucial assessment of our knowledge of the
relevant physical processes implemented therein.

Assessing the level of agreement between the morphologies of the full populations of
observed and simulated galaxies is a hard task. The approach followed by some
authors (Snyder et al. 2015, Bottrell et al. 2017, Bottrell et al. 2017, Rodriguez-Gomez
et al. 2019, Bignone et al. 2019, Baes et al. 2020) consisted in making use of integrated,
parametric and nonparametric quantities as diagnostics with the aim of describing
galaxy morphology with only a few numbers. The shortcomings of this approach
have been discussed in Section 2.4. A recent attempt to generalise over nonparametric
techniques has been carried out in Huertas-Company et al. (2019) where a supervised
deep learning framework was devised to classify the morphology of simulated
galaxies. Using Bayesian Neural Networks Gal and Ghahramani (2016),
Huertas-Company et al. (2019) were able to identify galaxies in the simulation for
which the network would produce a high variance in the output label - a sign that the
the network struggled to assign a clear morphology to some objects (mainly small
galaxies), which therefore may not be very realistic.
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I here introduce an unsupervised approach to compare the morphologies of simulated
galaxies with observations. The methodology is based on an OoD approach (see
Section 5.5), carried out using PixelCNN networks (see Section 8.3). The methodology
devised here is sensitive to the relationship between the fine morphological structure
and the global properties of the galaxies’ light profile, which is a very stringent test for
simulations.

The aim of this proof-of-concept work is to quantitatively assess the fidelity of the
stellar morphologies of galaxies produced by the Illustris and IllustrisTNG
simulations by comparing them with available observations. I further explore whether
an increase in resolution may be able to lead to an even better agreement between the
morphology of simulated and observed galaxies by exploiting the higher resolution
offered by a realization of IllustrisTNG in a smaller cosmological box, TNG50, and
how this depends on star formation activity.

The new methodology is able to quantitatively identify the improvements of
IllustrisTNG, particularly in the high-resolution TNG50 run, over the original Illustris.
However,it is found that the fine details of galaxy structure are still different between
observed and simulated galaxies. This difference is mostly driven by small, more
spheroidal, and quenched galaxies which are globally less accurate regardless of
resolution and which have experienced little improvement between the three
simulations explored. I speculate that this disagreement, that is less severe for
quenched disky galaxies, may stem from a still too coarse numerical resolution, which
struggles to properly capture the inner, dense regions of quenched spheroidal
galaxies, even in the quasi-zoom-in regime of TNG50.

8.2 Data

In this Chapter I use the data products of the Illustris and Illustris TNG simulations, as
well as SDSS observations and a synthetic dataset derived from the latter. Example
images from each dataset are shown in Figure 8.2.

8.2.1 Simulations

From the Illustris and the Illustris TNG simulations I select galaxies with
Mstar > 109.5M� at z = 0.04851, for a total of ∼ 12, 500 galaxies for Illustris and
TNG100 and ∼ 1, 700 objects for TNG50. The radiative transfer modelling of the
simulated galaxies is described in Appendix C. The simulated galaxies are
mock-observed in the SDSS r−band at z = 0.0485 along a random line of sight with
the pixel scale of the SDSS telescope (≈ 0.396′′/pix).

1snapshot 95 for IllustrisTNG and 131 for Illustris.
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FIGURE 8.1: The normalized stellar mass distributions for SDSS (solid orange line),
TNG50 (dot-dashed magenta line), TNG100 (teal dashed line) and Illustris (red dotted
line). The vertical lines indicate the median mass of each distribution. It can be seen
that SDSS is incomplete at Mstar . 1010M�, but overall the mass distributions are

similar.

8.2.2 Observations

In the following I will use r−band SDSS observations, which mostly probes the stellar
mass distribution. Although the spectral energy distribution of galaxies contains
information which is critical to understand the physical processes that regulate galaxy
formation - for example, longer (shorter) optical wavelengths probe dust (recent star
formation) more closely. In this exploratory work I choose to adopt only r-band
images as a proof of concept, and the results obtained strictly pertain to that band.
Galaxy images where downloaded from skyserver.sdss.org/, and the
corresponding data products are summarised in Section 4.4.2.

To match the stellar mass range used in the simulations, I use the images of SDSS
galaxies that have a stellar mass Mstar > 109.5M� as the training sample. An important
issue that must be dealt with is that of the redshift evolution of the angular diameter
distance driven by cosmology. Indeed, the pixel physical scale2 is a strong function of
redshift, which means that the training sample must be chosen so that the average
pixel scale is as close as possible to the pixel scale at the redshift of the snapshot that I
use for the simulations (i.e. z ∼ 0.0485). Hence, I also limit the redshift range of the
SDSS training sample to 0.033 < z < 0.055, which gives a median pixel scale only 7%
larger than the pixel scale at z = 0.0485. This redshift cut leaves ≈44000 galaxies in
SDSS, of which I use ≈ 32000 for training and ≈ 12000 for testing. Note that in
principle with the pixel scale of the SDSS camera (i.e. 0.396”/pix) the minimum
physical scales probed at z∼0.0485 would be around ∼0.3 kpc. However, when the
SDSS PSF (& 1”∼3-4 pixels) is accounted for, the smallest scales that can be probed are

2i.e. kpc/pix

skyserver.sdss.org/
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FIGURE 8.2: (a-d): Examples of test data in order of increasing likelihood of the pθSDSS
model as labelled. (a): An example of galaxy from the Illustris TNG simulation with a
likelihood below the 0.1 percentile of the likelihood distribution of SDSS. (b): A spiral
galaxy with a Milky Way star in the field of view. (c): An elliptical galaxy. (d): The best
Sérsic fit of panel (b). (e): Same as (d) but before applying RealSim (i.e. this image is not
used for testing). In panels (a-d) the darker pixels are a realization of the instrumental
noise while in panel (e) they are zeros. More complex objects are assigned a lower

likelihood in general (labels of each panel).

of the order of ∼ 1 kpc. Such low resolution is still enough for some trends to arise, as
shown in the following Sections.

In Figure 8.1 I compare the stellar mass distribution of SDSS with that of the
simulations. The slightly higher median mass of SDSS compared to Illustris and
IllustrisTNG results from the incompleteness of observations below Mstar . 1010M�.
The distributions have a very similar median value if only galaxies above that mass
are considered. In the remainder of this Chapter, I will break down the results above
and below the completeness threshold.

8.2.3 Galaxy archetypes

The OoD methodology described in Section 8.4 implies training a second DGM on a
simplified version of the same galaxies used to train the first one. In other words, I
would like to have a second dataset where the global properties of SDSS (such as
brightness, size, ellipticity and Sérsic index) are retained, but where more complex
features, such as the spiral arms of a disk galaxy, are ignored. Thus, I produced I
synthetic dataset constructed using GalSim (Rowe et al., 2015) and the values of the
best-fitting r−band Sérsic parameters provided in the SDSS data products. Full
observational realism is also included, as for the simulations, following Bottrell et al.
(2019) (see Appendix C).

8.2.4 Volume effects

Given that the cosmological volume spanned by the TNG100 and Illustris simulations
is more than 8 times larger than that of TNG50, cosmic variance may be a cause of
worry. Indeed, Genel et al. (2014) showed that the statistics of galaxy populations may
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FIGURE 8.3: The likelihood of PixelCNN (see eq. 8.1) is autoregressive. Here, the red
pixel is conditioned only on the blue pixels.

vary quite substantially in sub-boxes of 25/h≈35 Mpc a side in the Illustris
simulation. Therefore, it is very much possible that the volume probed by TNG50
results in a biased galaxy population.

The way I address this issue in the following is by creating several realizations of
SDSS, TNG100 and Illustris of the same sample size of TNG50, and then use the mean
and variance of the bootstrapped distributions where possible.

In principle, cosmic variance could also affect the comparison between SDSS and
simulations. However, the test set of SDSS that will be used in the following shares a
very similar sample size with Illustris and TNG100. While this is not strictly a
measure of the volume spanned by SDSS, it can be reasonably assumed that a similar
sample size should enable a meaningful comparison between observations and those
two simulations, since they have similar stellar mass distributions.

8.3 PixelCNN

PixelCNN (van den Oord et al. 2016a,b) is an autoregressive generative model where
the distribution of images is modelled explicitly. Given an image X, the likelihood of
PixelCNN is “autoregressive” in the sense that the likelihood a given pixel is assigned
is conditioned on all the previous pixels of the image (which sometimes are
collectively called ”context”), so that the likelihood of the whole image can be
expressed as

pθ(X) =
N2

∏
i=1

pθ(Xi|X1...i−1), (8.1)

where N is the pixel width/height of the square cutout. Here pθ(Xi|X1...i−1) is the
probability distribution function of pixel i evaluated at Xi and conditioned on all the
previous X1...i−1 pixels (see Figure 8.3), and θ are the weights of the network.
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FIGURE 8.4: The architecture of PixelCNN++ used in this work. Each layer is con-
structed by combining an horizontal and a vertical stack via an adjustable number of
gates (set to six in the original paper, which I brought down to three, see Appendix
B.1). The output of each layer is downsampled and subsequently upsamples twice;
shortcut connections link layers with the same dimensions in the downsampling and

upsampling paths.

It is worth stressing again that eq. 8.1 models explicitly the likelihood of the training
sample. Specifically, PixelCNN maps a distribution of images into a distribution of
likelihoods. This feature is in principle extremely powerful, since it allows to collapse
the complexity that characterizes images into a single-valued distribution.

PixelCNN is a probabilistic model, and an assumption for the form of each
pθ(Xi|X1...i−1) must be made. In the absence of prior knowledge, the simplest
assumption is that each p is a Gaussian with mean µ and variance σ. In the
implementation of the PixelCNN++ architecture proposed by Salimans et al. (2017)3,
which Dr. F. Lanusse (CEA Saclay) and I interfaced with a higher level Tensorflow
API4, the last layer of the network models µ and σ explicitly at each pixel of the
output. Training is performed by maximising the likelihood in eq. 8.1 or, equivalently,
minimising (see Appendix B for details) the negative log-likelihood, which is less
prone to floating point limitations,

L ≡ − log pθ(X) = −
N2

∑
i=1

log pθ(Xi|X1...i−1). (8.2)

The ansatz of eq. 8.1 imposes the choice of an ordering for the pixels. I follow the
prescription according to which the image is scanned from top left to bottom right,
row by row (see Figure 8.3). This is a standard implementation of PixelCNN that takes
advantage of the way convolutions are typically implemented in deep learning
frameworks such as TensorFlow (Abadi et al., 2015). The autoregressive nature of
PixelCNN can be achieved by means of a particular type of convolutions that mask
the pixels to the right and bottom of the current pixel, so that the network is forced to
learn the relationship between each pixel and the previous context only, as shown in

3Available at https://github.com/openai/pixel-cnn
4Available at https://github.com/pmelchior/scarlet-pixelcnn

https://github.com/openai/pixel-cnn
https://github.com/pmelchior/scarlet-pixelcnn
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FIGURE 8.5: In masked convolution, the pixels to the right and bottom of the present
pixel are masked with zeroes. An example of this is shown in the right for a 5x5
convolution. Masked convolutions enforce the autoregressive property of PixelCNN.
However, masked convolutions generate blind spots. The progressive growth of the
effective receptive field of a 3×3 masked filter over the input image is shown on the
right. Therefore an horizontal and a vertical convolutional stack are combined using a
Gate (see Appendix B.1). Adapted from van den Oord et al. (2016a) with permission.

Figure 8.5 (van den Oord et al., 2016b,a)). In reality, the use of masked convolutions
leads to the creation of a blind spot, where the network is unable to learn efficiently.
Therefore, one vertical and one horizontal convolutional stacks are applied separately
and combined at each layer by means of a Gated PixelCNN layer (see Appendix B.1)
in a way that preserves the autoregressive nature of the model.

The architecture of PixelCNN++ is shown in Figure 8.4. PixelCNN++ is a fully
convolutional NN, where the input is downsampled in subsequent stages and
upsampled to to reproduce the original image. Each stage consists of three Gated
PixelCNN layers (van den Oord et al. 2016a, He et al. 2015, see Appendix B.1) which
entail padded convolutions to preserve dimensionality, and the number p of feature
maps is set to 64 at all layers. Convolutions and transposed convolutions with a stride
of 2 (see Section 3.3.2) are implemented to achieve downsampling and upsampling
after each stage. Stages in the downsampling and upsampling parts of the network
with the same dimensionality are connected with shortcut connections to ensure that
part of the information lost in the downsampling is efficiently recovered (Ronneberger
et al., 2015).

The interested reader is referred to Salimans et al. (2017) and van den Oord et al.
(2016a,b) for further details of the implementation.

8.4 Strategy and the log-likelihood ratio (LLR) metric

The likelihood of generative models such as PixelCNN has been proposed as a tool to
compare different datasets on the grounds that the likelihood distribution of a
candidate OoD dataset should peak at lower values (Bishop, 1994). However, the
interpretation of the likelihood is not an easy task, as discussed in the following.
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Firstly, the background of an image is thought to play an important role in
determining the likelihood of a given sample (Ren et al., 2019). This is because the
log-likelihood is an additive quantity, and therefore all the pixels will contribute to it,
including those where the subject (i.e., the galaxy in our case) is not present. The
reader is directed to Appendix E.2 for more details. To factor out the undesired
contribution of the background Ren et al. (2019) proposed the use of two DGMs, where
the second network is trained on a dataset that has similar background statistics to the
training set of the first. In the case at hand, I train two networks, one on SDSS galaxies,
pθSDSS , and one on the synthetic Sérsic profiles pθsersic . Both networks are trained to
learn a similar sky background by construction. The likelihood of a test image Xtest

evaluated by both models can be decomposed simply in the roughly independent
contributions of the background pixels Xbackground and pixels of the subject, Xsubject,

pθi (Xtest) = pθi (Xbackground)pθi (Xsubject) (8.3)

with i = SDSS, sersic. Then the log-likelihood ratio (LLR)

LLR = log
{ pθSDSS(Xtest)

pθsersic(Xtest)

}
(8.4)

= log
{ pθSDSS(Xbackground)pθSDSS(Xsubject)

pθsersic(Xbackground)pθsersic(Xsubject)

}
(8.5)

should not depend on the background pixels, since both models capture the
background equally well.

Secondly, the complexity of an example image (both background and subject) has
been found to anticorrelate with the likelihood (Serrà et al., 2019) (see also Appendix
E.2). However the aim of this work is to account for the complexity of the galaxy
explicitly, Xsubject, and its relationship to the galaxy’s global features such as
brightness, size, ellipticity and Sérsic index, Xglobal. Indeed, the expression in eq. 8.4
also provides information about the small-scale morphological details, Xdetails. In fact,
the contribution of the subject of the image Xsubject can be decomposed in the
contributions from Xglobal and Xdetails using the theorem of compound probability,

pθi (Xsubject) = pθi (Xdetails, Xglobal) (8.6)

= pθi (Xdetails|Xglobal)pθi (Xglobal) (8.7)

where I have accounted for the dependence of certain morphological features from
global properties in the term pθi (Xdetails|Xglobal) (e.g., spiral galaxies, which have very
distinctive features, also tend to be larger than spheroids). The log-likelihood ratio,
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LLR (where only the contribution of Xsubject remains, see eq. 8.4), is now

LLR = log
{ pθSDSS(Xsubject)

pθsersic(Xsubject)

}
= log

{ pθSDSS(Xdetails|Xglobal)pθSDSS(Xglobal)

pθsersic(Xglobal)

}
(8.8)

where I have used the fact that the best Sérsic fits are featureless and so a model
trained on them will only learn about Xglobal. If pθSDSS and pθsersic are able to learn the
global features equally well (and they should), then the only contribution left to the
LLR is

LLR ≈ log
{

pθSDSS(Xdetails|Xglobal)
}

. (8.9)

Therefore the LLR should be able to capture only the relationship between the fine
morphological details and the global properties, without the contribution from the
latter alone. I show examples of this in Appendix E.2.

8.4.1 The LLR is informative of the agreement between simulations and
observations

A key property of the LLR is that it serves as a metric to assess which of two
competing models (such as the pθSDSS and pθsersic models) gives a better fit to the data.
Suppose that the samples Xtest,j are extracted from a test distribution q, i.e Xtest ∼ q.
Xtest,j represents a single image from one of the simulations used in this work, and q is
the collection of all these images. The expected value of the LLR reads

Ex∼q[LLR] ≡
M

∑
j=1

log
{ pθSDSS(Xtest,j)

pθsersic(Xtest,j)

}
q(Xtest,j) (8.10)

=
M

∑
j=1

{
log
[ q(Xtest,j)

pθsersic(Xtest,j)

]
q(Xtest,j) (8.11)

− log
[ q(Xtest,j)

pθSDSS(Xtest,j)

]
q(Xtest,j)

}
(8.12)

= DKL(q||pθsersic)− DKL(q||pθSDSS), (8.13)

where the second equation is obtained by dividing and multiplying the argument of
the logarithm by q(Xtest,j). Here DKL( f ||g) = ∑N

i=1[log f (xi)/g(xi)] f (xi) is the
Kullback-Leibler divergence, which is a way to quantify the distance between two
distributions (Kullback and Leibler, 1951). Thus, if Ex∼q[LLR] > 0, then
DKL(q||pθsersic) > DKL(q||pθSDSS), that is, the distance of q from the pθsersic model is larger
than that from the pθSDSS model, and therefore q is closer to the distribution of SDSS
galaxy images. Hence, Eq. 8.13 leads us to conclude that the larger the expected value of
the LLR, the more similar q is to pθSDSS .
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A clear indication of this mathematical derivation is that SDSS should have the
highest mean LLR (i.e., q ≡ pθSDSS). Conversely, the collection of galaxies coming from
a given simulation (i.e. q 6= pθSDSS) should ideally have a mean LLR that is as close as
possible to that of SDSS, but it is predicted that the condition 〈LLR〉 ≤ 〈LLRSDSS〉
should hold. More formally, I can quantify how much simulations depart from SDSS
by computing the difference between the mean LLR of simulated galaxies and that of
SDSS, ∆〈LLR〉 ≡ 〈LLR〉 − 〈LLRSDSS〉. Since Ex∼q[LLR] is highest for observations by
construction then the largest value that ∆〈LLR〉 can assume is zero. To make it
abundantly clear, this means that the closer the ∆〈LLR〉 is to zero, the more consistent
a data set is with SDSS. A simulation for which ∆〈LLR〉 = 0 perfectly reproduces the
observed galaxy morphologies. I stress again that the level of agreement between
simulations and data is independent of both the sky background and global
morphology with this metric, and depends only on the small-scale structural details of
simulated galaxies (see eq. 8.9). I also emphasize that this study is limited by the
relatively low resolution of SDSS images, which is mimicked in the mock observations
of Illustris and IllustrisTNG galaxies. In principle the same identical framework may
be applied to higher-resolution imaging.

The framework outlined above applies if all the global parameters are the same, i.e.
for galaxy samples with reasonably compatible global scaling relations, which is
roughly true in this case (but see Section 8.9.4). On the other hand, should the
simulated galaxy population be extremely biased, this methodology would not be
applicable. For example, ad absurdum, let’s take the case of an hypothetical
cosmological simulation that produces only a single, perfectly realistic galaxy, or
multiple identical copies thereof. The galaxy population in this simulation, as a whole,
is clearly not realistic, since real galaxies span a range of properties. However, the LLR
distribution of the simulated sample would be a delta-Dirac function centered at a
high value of LLR, resulting in a very high, or even positive, ∆〈LLR〉. It is clear that
such value of the ∆〈LLR〉 does not indicate a good agreement between the small-scale
morphology of the population of simulated and real galaxies.

Other techniques to compare distributions, such as the popular Kolmogorov-Smirnov
(KS) test, are available in the literature. However, I found that the KS test is not
sensitive enough to describe the difference between the LLR distributions of observed
and simulated galaxies. Indeed, the p-value of a KS test under the null hypothesis that
the LLR distributions of SDSS and each simulation are identical is always zero -
perhaps not surprisingly, since the distributions that I will present in the following are
significantly different. A p-value of zero in all cases prevents a quantification of the
improvement between the various simulations. Therefore, in the following I will use
the LLR as a metric to compare observations and simulations. I discuss the robustness
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FIGURE 8.6: The log-likelihood ratio (LLR) distributions of SDSS (orange solid line),
TNG50 (magenta dot-dashed line), TNG100 (dashed line), Illustris (red dotted line)
and the best Sérsic fits (green long dashed line), for galaxies with Mstar > 109.5M�. The
shaded regions show the 1 sigma confidence level obtained by bootstrapping SDSS,
TNG100 and Illustris 1000 times to the same sample size of TNG50. The ∆〈LLR〉 for
each simulation is also reported, inclusive of the 1σ confidence interval resulting from
the bootstrapping. The higher the value of the ∆〈LLR〉, the more similar a dataset is
to SDSS. Therefore, TNG50 is the simulation that best reproduces the morphology of

SDSS galaxies, followed by TNG100 and Illustris.

of this approach compared to using the likelihood of the pθSDSS model only in
Appendix E.2.

8.4.2 Training

The images which originally were of size of 128x128 pixels, are augmented 10 times
with random rotations and then cropped to 64x64 and degraded to reach the size of
32x32 pixel5 in order to meet memory and time constraints.

To train PixelCNN I use 32000 galaxies randomly extracted from the SDSS sample,
corresponding to the 75% of the dataset. I also trained a second PixelCNN on the best

5I use the publicly available scipy library.
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r-band Sérsic fits of the same SDSS galaxies. The likelihood distributions in the two
cases are shown in Figure E.1.

One complication that astronomical images suffer compared to standard applications
which use png images is that in the latter case the range of values that a pixel can take
is limited (i.e. from 0 to 255), while this does not apply to the astronomical standard
where the value of each pixel of a fits image is a flux and hence it is not bounded in
principle. Here I use fits images for both SDSS and the simulations. Therefore eq. 8.1
should be interpreted as the product of the conditional probability distribution
functions evaluated at Xi, rather than the probability mass. To ensure the stability of
training, I reduce the dynamical range of pixel values by dividing each image by 1000
and then applying the arcsinh function. I further impose a hard upper limit of 1 to
the rescaled flux per pixel. The choice of this threshold involves a trade-off between
training convergence and information lost in the small-scale details of the images.
With the choice of 1 as an upper limit, I could not see any trends between the LLR and
the fraction of pixels that are above the chosen threshold, which is less than 1.5% for
the vast majority of the images in the samples.

8.5 PixelCNN can distinguish simulations and observations

The LLR distributions for Illustris, TNG100, TNG50 and the test sets of SDSS and their
best-fitting Sérsic profiles are shown in Figure 8.6, which constitutes the main result of
this Chapter. The first consideration to emphasize is that the SDSS test set is the one
with highest LLR, while the best Sérsic fits of SDSS galaxies have a negative LLR. This
confirms the findings outlined at the end of the previous Section: a higher LLR is a
signature that a dataset is better represented by SDSS observations and, conversely,
the smaller the LLR the more the dataset is similar to featureless Sérsic profiles.

With this in mind, I now bring the reader’s attention to a very clear trend: the
distribution of SDSS peaks at the highest LLR followed, in order, by TNG50, TNG100
and Illustris. This results in values of ∆〈LLR〉 of -49.67±1.85, -69.32±1.93 and
-81.37±2.09. This means that Illustris is the simulation that gives the worst
performance of the three. The IllustrisTNG implementation markedly improves over
Illustris, with TNG50 being the closest to SDSS. Recall that Illustris and the two
IllustrisTNG simulations differ in the implementation of the physics that shapes
galaxies while their resolution is comparable. Therefore, it must be concluded that the
physical modelling implemented in IllustrisTNG is able to generate more realistic
galaxies compared to the original Illustris model. Moreover, TNG50 features a factor
of 2.5 improved spatial resolution compared to the other two simulations used here. I
then conclude that the improvement in resolution in TNG50 leads to further
agreement with observations.
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It is noteworthy, however, that even the newest generation of simulations, although
remarkably more accurate compared to earlier efforts, still struggles to reproduce the
small-scale morphological details of SDSS observed galaxies, down to scales of ≈ 1
kpc (see Section 8.4.2).

8.6 The small-scale stellar morphology of quiescent galaxies is
not well reproduced by simulations

8.6.1 Star forming galaxies vs quiescent galaxies

In the previous Section I have demonstrated that the latest generation of simulations
of galaxy formation still struggles to produce realistic galaxy morphologies in the
small-scale regime. So, what is it that simulations are yet to reproduce in order to
make more realistic-looking galaxies?

Here I try to answer this question by raising one issue that has been broadly debated
in the literature, that is, the accuracy of the implementations of the subgrid physics
that regulates star formation and quenching. In the following I will advocate that most
of the discrepancy between observations and simulation stems from an imperfect
relationship between star-formation activity and small-scale morphological features.

The LLR distributions for star forming (log sSFR/yr−1 > −11) and quiescent
(log sSFR/yr−1 < −11) galaxies in simulations and SDSS are shown in the upper
panel of Figure 8.7. The left top panel of Figure 8.7 shows that the mean of the LLR
distribution for simulated star forming galaxies is the closest to SDSS for TNG50,
followed by TNG100 and with Illustris being the furthest away from it. The higher
LLR of TNG100 with respect to Illustris is suggestive that the improved physical
model for galaxy formation adopted in the IllustrisTNG framework is overall an
improvement compared to the original Illustris implementation (Pillepich et al.,
2018b). Furthermore, the unprecedented agreement with observations reached by
TNG50 star forming galaxies is also a sign that a higher resolution is key to effectively
model star formation. However, note that all simulated data sets are still inconsistent
at the 1 sigma level with SDSS.

On the other hand, it can be seen that the improvement noted for star forming galaxies
does not seem to propagate to quiescent galaxies as well (top right panel of Figure
8.7). In this case Illustris galaxies show a tail of high LLR that is consistent with
IllustrisTNG at the 1 sigma level. However the large variance suggests that this tail is
very scarcely populated, whereas the very small variance found for the spike at low
LLR is indicative that the bulk of the population of Illustris quiescent galaxies lies
there, i.e. they are very far from reproducing SDSS. Yet, while there seems to be an
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FIGURE 8.7: Upper row: The log-likelihood ratio (LLR) distribution of star forming
(left) and quiescent (right) galaxies for SDSS (orange), TNG50 (magenta), TNG100
(teal) and Illustris (red). Middle row: The LLR distributions of star forming galaxies
in three bins of galaxy stellar mass. Bottom row: The LLR distributions of quiescent
galaxies in three bins of stellar mass. Colors and line styles in the Middle and Bottom
rows are as in Upper row. The shaded regions show the 1 sigma confidence level ob-
tained by bootstrapping SDSS, TNG100 and Illustris 100 times to the same sample size
of TNG50. For star forming galaxies the ∆〈LLR〉 is the lowest for TNG50, followed
by TNG100 and Illustris, indicating that TNG50 is the simulation that best models
star forming galaxies. Instead, all simulations struggle to accurately model quiescent
galaxies, for which the ∆〈LLR〉 remains low in all cases. These trends are robust across

the stellar mass bins considered.
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overall improvement from the original Illustris framework to IllustrisTNG, the better
resolution offered by TNG50 over TNG100 does not appear to significantly modify the
overall LLR distribution for quiescent galaxies. Indeed, the distributions of the two
IllustrisTNG volumes are practically consistent but at very high LLR, where the
probability density of TNG50 is slightly higher.

In short, the top of Figure 8.7 shows that there has been a clear amelioration from the
Illustris to the IllustrisTNG framework, in both the modelling of star formation
regulation and of quenching, yet IllustrisTNG still produces small-scale stellar
morphological details which differ from those in SDSS, and especially so for quiescent
galaxies. Most importantly, while the higher resolution featured by TNG50 generates
a sizeable improvement in the morphology of star forming galaxies, this is not the case
for quiescent galaxies. This is suggestive that the physics which couples small-scale
stellar morphological details to star-formation quenching in the IllustrisTNG
simulations warrants improvement, or that an even higher resolution is needed to
accurately model the processes that lead to quiescence.

8.6.2 Mass dependence

The physical mechanisms that quench star formation in a galaxy are thought to
depend on stellar mass. At low masses, it is generally accepted that quiescence mainly
occurs in satellite galaxies due to environmental processes (e.g., Peng et al. 2010) – this
behaviour naturally emerging also in IllustrisTNG (Joshi et al., 2020b; Donnari et al.,
2020a). Conversely, a plethora of possible mechanisms has been identified for
quenching higher-mass galaxies (see Introduction). In IllustrisTNG, AGN feedback is
responsible for halting star formation in galaxies with Mstar & 1010.5M� (e.g.
Weinberger et al., 2017; Zinger et al., 2020), regardless of whether they are centrals or
satellites (Donnari et al., 2020a). Therefore, I break down the upper panel of Figure 8.7
in the following bins of galaxy stellar mass:
109.5 < Mstar/M� < 1010,1010 < Mstar/M� < 1010.5 and Mstar > 1010.5M�. The choice
of these bins is not casual. Indeed, the lowest mass bin is where SDSS is incomplete
and so the comparison between the datasets should be taken with a grain of salt. The
other two bins are chosen to be around a mass scale that is thought to be key in galaxy
formation, namely Mstar ≈ 3x1010M� ≈ 1010.5M� (e.g., Cappellari 2016). In
IllustrisTNG that is roughly the mass scale where the AGN feedback mode switches
from thermal to kinetic (Weinberger et al. 2017, Terrazas et al. 2020).

For star forming galaxies, it can be seen that the trend of the top panel of Figure 8.7
persists across all masses: star forming galaxies are best reproduced by TNG50,
followed by TNG100 and Illustris, from the least massive to the most massive galaxies.
In particular, it is noteworthy that the ∆〈LLR〉 of massive star forming galaxies in
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TNG50 is consistent with zero at the 1σ level, meaning that these galaxies are
reproduced extremely well by TNG50.

Quiescent galaxies, instead, feature a significantly worse, i.e. lower, ∆〈LLR〉
consistently across all masses and for all simulations. It can be seen that the higher
resolution of TNG50 improves only marginally on TNG100 and Illustris in the lower
mass bins, but it is more significant for massive galaxies. This evidence suggests that
environmental quenching in all simulations always produces galaxy morphologies
that differ from those of SDSS, with a weak dependence on resolution. For massive
galaxies (Mstar & 1010.5M�), in TNG100 the ∆〈LLR〉 is lower than in Illustris (although
they are consistent at the 1σ level), while TNG50 improves on both. The fact that
quenched galaxies in Illustris and TNG100 have a similar performance is puzzling. In
fact, the distinct implementations of AGN feedback in the two simulations may be
expected to generate different levels of agreement with SDSS. I speculate below on the
possible reasons for this somewhat unexpected result.

One possibility is that the exact implementation of AGN feedback does not
significantly affect morphology at the resolution of Illustris and TNG100, at least at the
redshift probed here, z ≈ 0.05. It could be possible that AGN feedback may have an
impact on morphology at higher redshift, but then major mergers substantially change
the morphology of quiescent galaxies (e.g. Rodriguez-Gomez et al. 2017, Clauwens
et al. 2018, Martin et al. 2018, Tacchella et al. 2019), at which point the small-scale
collisionless dynamics of the stars in the merger remnant depends on numerical
resolution. This argument would be favoured by the fact that major mergers are
observed to occur with similar rates in Illustris (Rodriguez-Gomez et al., 2016) and
TNG100 (Huertas-Company et al., 2019) for massive galaxies. In the pictures outlined
above, the better match of TNG50 with SDSS could simply be due to an improved
resolution, but not necessarily a better physical model for AGN feedback.

8.6.3 Does environment matter?

I show the LLR distributions of quiescent and star forming central and satellite
galaxies in Figure 8.8. Let’s start by comparing the trends for star forming galaxies. It
is clear that in this case both satellites and centrals markedly improve from Illustris to
TNG100, and from the latter to TNG50, as was shown in Figure 8.7 for the full
population. It is also interesting to note that the ∆〈LLR〉 for star forming centrals and
satellites are almost identical for all simulations. In fact, this is a trend that can be
observed also for the quenched population: by comparing the ∆〈LLR〉 quoted in the
right column of Figure 8.8 for central and satellite quiescent galaxies, similarly low
values are achieved. The only exception is for TNG50, where central quiescent
galaxies feature a significantly higher ∆〈LLR〉 compared to quiescent satellites. Since
the population of quenched quiescent galaxies is dominated by massive galaxies in



140
Chapter 8. Galaxy structure and morphology in observations and simulations with

deep learning

0 100 200 300 400
LLR

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

#
LLR = 25.36 ± 2.17

46.27 ± 2.54

60.69 ± 2.48

star forming
SDSS
TNG50
TNG100
Illustris

0 100 200 300 400
LLR

LLR = 63.38 ± 4.22

94.37 ± 5.21

84.56 ± 8.8

centrals

quiescent

(A)

0 100 200 300 400
LLR

0.000

0.005

0.010

0.015

0.020

0.025

0.030

#

LLR = 27.93 ± 3.4
46.65 ± 3.98
60.73 ± 3.86

star forming
SDSS
TNG50
TNG100
Illustris

0 100 200 300 400
LLR

LLR = 89.95 ± 4.67
99.99 ± 5.19
101.12 ± 6.51

satellites

quiescent

(B)

FIGURE 8.8: The log-likelihood ratio (LLR) distributions of quiescent and star forming
galaxies for centrals (top) and satellites (bottom). The LLR distributions of star form-
ing centrals and satellites follow the same trends highlighted in Figure 8.7. Contrary
to star forming galaxies, quiescent galaxies display a lower ∆〈LLR〉 both for centrals
and satellites: this indicates that quiescent galaxies are not well reproduced in simula-
tions regardless of the quenching mechanism (environmental quenching for low mass

satellites, AGN for centrals and massive satellites).

IllustrisTNG, I refer the reader to the discussion at the end of the previous Section for
a speculative explanation of this behaviour.

In summary, Figure 8.8 suggests that the different processes that quench central and
satellite galaxies result in a similar disagreement with observations. This in turn
suggests that the main culprit for the disagreement is not necessarily to be searched in
the way gas is removed and star formation halted (e.g. via ram-pressure stripping vs
gas expulsion via BH feedback in the TNG runs) but rather on how the stellar light
distribution is realized in the numerical models in the case of quenched galaxies. The
possible related physical and numerical shortcomings are discussed more in detail
below.
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8.7 The realism of simulated galaxies across scaling relations
and the role of quenching

The neural networks used here are aware of galaxy structure only by design and are
not trained with any direct information about star formation activity. Yet, I have just
shown that the morphologies of quiescent and simulated galaxies are not reproduced
equally well by simulations according to my deep learning framework. The reason for
this behaviour must therefore be investigated more thoroughly.

One way to address this issue is to explore the quality of simulations across galaxy
scaling relations. More specifically, I study how the average LLR of simulated galaxies
deviates from the average LLR of SDSS galaxies at each point on the planes defined by
scaling relations. Thus, in this case the ∆〈LLR〉 gives an indication of how realistic
simulated galaxies are in a given region of the planes defined by galaxy properties.
Note that this kind of analysis is possible only because simulations are in the ballpark
of observations, at least at the redshift of interest. Yet some data points for simulations
still lie outside of the manifold, and therefore I exclude them in the following. To
make this abundantly clear, the blank space in the following Figures may mean either
that SDSS observations or simulated galaxies are not present in that region of the
manifold. Nevertheless, I show contours in each panel for the distributions of SDSS
(orange solid curves) and the simulated (magenta dashed curves) galaxies to give an
idea of how the different samples populate the depicted planes.

As an example, I take three scaling relations that have been widely studied in the
literature: the Re −Mstar relation (size-mass relation, e.g. Shankar et al. 2010,Bernardi
et al. 2014, Lange et al. 2015, Zanisi et al. 2020), the nser − Re relation (Sérsic index-size
relation e.g. Trujillo et al. 2001, Ravikumar et al. 2005) and the sSFR−Mstar relation
(specific star formation rate-stellar mass relation, e.g. Salim et al. 2007, Elbaz et al.
2011). These are shown for each simulation in Figure 8.9, and are color coded by the
∆〈LLR〉. I discuss each of these relations separately at first, and I then propose an
interpretation.

In the size-mass relations of both IllustrisTNG simulations there is a clear gradient in
∆〈LLR〉, where at fixed stellar mass larger galaxies deviate the least from SDSS and
smaller ones are progressively less realistic. Instead, this behaviour is not present in
Illustris, due to the well-known lack of small galaxies in this simulation at low redshift
(Snyder et al., 2015). Interestingly, massive galaxies seem to be better reproduced in
Illustris compared to TNG100. As Illustris massive galaxies are typically more star
forming than TNG100 galaxies (Donnari et al., 2020b), and since star forming galaxies
are on average better reproduced, then the ∆〈LLR〉 is likely biased high for Illustris
massive galaxies when no cut on star formation activity is made. I will discuss trends
for star forming and quenched galaxies separately later in this Section.
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FIGURE 8.9: The size-mass relation (top panel), sSFR− Mstar relation(middle panel)
and the Sérsic index-size relation (bottom panel) for the three simulations studied in
this work as labelled. The color code is the difference between the mean LLR of each
simulation and the mean LLR of SDSS at each point of the scaling relations. A brighter
color indicates a better agreement with SDSS. In the middle panel I also show with a
red dashed line the sSFR threshold that defines star forming (log sSFR/yr−1 & −11)
and quiescent(log sSFR/yr−1 . −11) galaxies. I also impose a strict lower limit on
the sSFR at log sSFR/yr−1 = −12.5. I show with orange solid contours the 10th, 50th
and 90th percentiles of the 2D distributions for SDSS galaxies for galaxies above the
mass completeness threshold of Mstar ≈ 1010M�. Contours for the same mass cut are
also shown with magenta dashed lines for simulations, which are in the ballpark of
the observed scaling relations (especially so for TNG50, less so for Illustris). It can be
seen that quenched, concentrated, small galaxies are the ones with the lowest ∆〈LLR〉,

and so their fine stellar morphology substantially disagrees with observations.
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The sSFR−Mstar relations reveal that star forming galaxies notably improve from
Illustris to TNG100 and from the latter to TNG50. In particular, it is worth noticing
that massive star forming galaxies seem to be slightly more accurate than less massive
ones. On the contrary, it can be seen that on average passive galaxies differ the most
from SDSS. Lastly, it is also worth reminding the reader of the well-known
uncertainties in retrieving SFR from the observed optical colours only (e.g. Donnari
et al. 2019, Eales et al. 2017, 2018), which could affect dramatically the distribution of
SDSS observations for log sSFR/yr−1 . −11 and hence this kind of region-wise
comparison with simulations. I will address this point in the following.

Finally, the bottom panels of Figure 8.9 show the nser − Re relations for the three
simulations. Although the trends are somewhat less obvious is this case, a close
inspection of the figure reveals a few interesting details. First of all, Illustris is not able
to produce galaxies with medium-to-low sizes and high Sérsic indices, as already
noted by Bottrell et al. (2017). While this is something that is reproduced in TNG100, it
can be noted that high Sérsic index galaxies tend to differ the most from their SDSS
counterpart. In TNG50, instead, it can clearly be seen that high mass galaxies with a
high nser are much better in agreement with SDSS.

To summarize these findings, simulations seem to still struggle at reproducing the
small-scale stellar structural features of galaxies that are more concentrated and
smaller in size, at fixed stellar mass. To further explore how the quality of simulated
galaxies across the scaling relations studied here depends on star formation activity, I
split the data sets in star forming and quiescent galaxies, as done in the previous
Section.

There is an important caveat to mention before proceeding. As already discussed, not
all galaxy populations may be statistically well represented in the volume of TNG50,
which is more than 8 times smaller compared to the other simulations. This would
explain, for instance, the fact that in TNG50 the quiescent region of the sSFR−Mstar

relation seems to be less densely populated in Figure 8.9. I alleviate this issue in the
following by showing random realizations of TNG100 and Illustris of the same sample
size of the smaller IllustrisTNG volume, as done previously.

Figure 8.10 shows the well-known trend where on average star forming and quiescent
galaxies lie above and below the mean of the size-mass relation at fixed stellar mass
respectively for the IllustrisTNG simulations (Genel et al., 2018). This trend agrees
with observations and it is something that is not seen in Illustris. Indeed the absence
of this differential size-mass relation in Illustris was raised as a cause of concern by
Bottrell et al. (2017). I note that the overall too-large sizes of Illustris galaxies,
independent of color/SFR, were re-calibrated in the Illustris TNG model (Pillepich
et al., 2018b). However, it is clear from Figure 8.10 that quiescent galaxies in both
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FIGURE 8.10: The size-mass relation for star forming (top row) and quiescent galaxies
(bottom row). The color code is the same as in Figure 8.9. Here TNG100 and Illustris
have been randomly sampled to the same sample size of TNG50. I also show with
orange solid contours the 10th, 50th and 90th percentiles of the 2D distributions for
SDSS galaxies for galaxies above the mass completeness threshold of Mstar ≈ 1010M�.
Contours for the same mass cut are also shown with magenta dashed lines for simu-
lations. It can be seen that quiescent galaxies are in general less well reproduced, with
the exception of massive quenched TNG50 galaxies. Note that although the morphol-
ogy of star forming galaxies is better reproduced by simulations, smaller simulated
star forming galaxies feature a lower ∆〈LLR〉 compared to larger ones at fixed stellar

mass.

IllustrisTNG volumes have a consistently lower ∆〈LLR〉 value compared to star
forming galaxies, with the exception of massive quiescent galaxies in TNG50.

The nser − Re relations for star forming and quiescent galaxies are shown in Figure
8.11. For star forming galaxies there is a definite improvement from TNG100 to
TNG50, especially for large, high-nser galaxies. In the original Illustris simulation very
few star forming extended, high Sérsic index galaxies even exist. For quiescent
galaxies, the improvement is less marked from Illustris to TNG100. However when
comparing the latter to TNG50 quiescent galaxies, hints can be seen that extended
galaxies with 3 . nser . 4 are better reproduced in the smaller IllustrisTNG volume.
Interestingly, TNG50 is able to produce compact, highly concentrated galaxies, which
however still differ more from SDSS galaxies in terms of their small-scale stellar
morphological details.

In summary, the variation of the quality of simulations across galaxy structural scaling
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FIGURE 8.11: The Sérsic index-size relation for star forming (top row) and quiescent
galaxies (bottom row). The color code is the same as in Figure 8.9. Here TNG100
and Illustris have been randomly sampled to the same sample size of TNG50. I also
show with orange solid contours the 10th, 50th and 90th percentiles of the 2D dis-
tributions for SDSS galaxies for galaxies above the mass completeness threshold of
Mstar ≈ 1010M�. Contours for the same mass cut are also shown with magenta
dashed lines for simulations. Note the absence of small, high-Sérsic index galaxies
in Illustris and (although to a less extent) TNG100. Also not that this population is
instead present in the higher resolution TNG50. Moreover, it is worth observing that
large galaxies with a medium-to-high Sérsic index are better reproduced in TNG50,

both in the quiescent and star forming populations, compared to TNG100.

relations, as quantified by the ∆〈LLR〉, seems to support the idea that simulations do
not generate realistic small-scale features in the stellar morphology of quenched
galaxies, particularly those small in size and/or highly concentrated. This holds true
even in the IllustrisTNG simulations, where the bimodality of structural scaling
relations is broadly reproduced, and even at the high resolution of TNG50.

8.8 Interpreting the LLR

The interpretability of the outcome of deep learning studies is sometimes problematic.
PixelCNN, however, has the very amenable feature that the likelihood is constructed
pixel by pixel, and so is the LLR, which is the ratio of the likelihood of two PixelCNN
networks. Therefore, it is possible to identify which pixels contribute the most to the
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FIGURE 8.12: Thumbnails of TNG50 (top left) and SDSS (bottom left) quenched galax-
ies with Re < 3”, nser > 4. The top right and bottom right panels show the pixel-wise
contributions to the LLR for the TNG50 and SDSS galaxies respectively. Each panel is
labelled with its value of the LLR. The color scale in the right column is identical for all
the panels. Note that I have manually limited the color scale to values from -2 to 4 for
practical reasons, but pixels can assume also higher and lower values. For instance,
if the contribution of a given pixel is 100, it will saturate to the color corresponding
to the value of 4. It can be seen that the central regions of TNG50 galaxies are much
less prominent in the LLR maps compared to SDSS, despite the thumbnails of real
and simulated galaxies look fairly similar. This indicates a failure in the simulation to

properly capture the densest regions of quenched galaxies.

LLR, and therefore infer information about the regions of an image that are most in
tension with observations.

As an example, I focus here on a population of galaxies which is poorly reproduced in
simulations, that is, small, concentrated quiescent galaxies (see previous Section). A
sample of this population for SDSS and TNG50 is shown in Figure 8.12 (left column),
along with the pixel-wise contributions to the LLR (“LLR maps”, right column). The
colour scale of the LLR maps saturates at values of 4 and -2 for practical reasons, but
the LLR contribution of individual pixels can be much higher or lower. First and
foremost, note that it is impossible for the human eye to observe any difference
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between SDSS galaxies and simulated ones. Admittedly, it is also not obvious to
identify clear patterns in the behaviour of the pixel-wise contribution to the LLR. At a
closer look, however, it can be seen that the central regions of SDSS galaxies contribute
much more to the LLR compared to TNG50. This means that the simulated galaxies
are most inaccurate in the central parts. Indeed, for some simulated galaxies the LLR
map is almost featureless, despite the fact that the galaxies themselves (the two central
galaxies in the bottom row in the top left panel of Figure 8.12) look reasonably
realistic. Also note that the deviation from a Sérsic profile may occur at different levels
in different parts of a galaxy with a non-trivial spatial distribution. This is because,
while the galaxy light distribution may not display any interesting feature at a visual
inspection, the interplay between the likelihoods of the two networks will determine
the complex behaviour observed in the LLR maps.

Given the behaviour of the LLR, it is entirely possible that the light profiles of
simulated galaxies differ substantially from SDSS. This may be because the resolution
elements are still too coarse to properly capture the inner regions of the light
distribution, as discussed in Sections 8.9.5 and 8.9.6.

8.9 Related work, caveats and discussion

In this study I used deep generative neural networks to perform a quantification of the
extent to which the morphologies of galaxies produced in simulations of galaxy
formation agree with observations. I compare the framework used here with other
works, in which either more classical techniques or other deep learning methods were
used, bearing in mind that a full assessment of their relative performance is out of the
scope of this work. In Section 8.9.3 I also discuss a caveat that previous studies share
with the present work.

8.9.1 Non-parametric morphologies

One way to study the details of galaxy morphology that go beyond the simple Sérsic
index is to use the model-independent non-parametric morphologies (see Section
8.9.1). Snyder et al. (2015) found a good agreement between the non-parametric
morphologies of Illustris galaxies and SDSS observations, also across scaling relations.
That being said, in Rodriguez-Gomez et al. (2019) it was also shown that in fact
TNG100 much better reproduces observed PanSTARRS morphologies compared to the
original Illustris implementation. This is also the case for the EAGLE simulation, as
shown with similar techniques in Bignone et al. (2019). Although a direct, quantitative
comparison with non-parametric approaches is not possible, my deep learning-based
analysis qualitatively agrees with the findings of Rodriguez-Gomez et al. (2019), as
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shown in Figure 8.6. I further proved that the improved resolution provided by
TNG50 is key to reproducing star forming galaxies, while quiescent galaxies appear to
be the most dissimilar from SDSS for both IllustrisTNG realization. The lack of small,
quiescent, bulge-dominated galaxies of Illustris was identified in Snyder et al. (2015)
and Bottrell et al. (2017), but the dependence of galaxy morphology on star formation
activity for TNG100 is something that was not addressed explicitly in
Rodriguez-Gomez et al. (2019). Nevertheless, Rodriguez-Gomez et al. (2019) argued
that the correlations between galaxy morphology, size and color in TNG100 is in
tension with PanSTARRS observations, which qualitatively agrees with my results.

8.9.2 Other deep learning frameworks

In Huertas-Company et al. (2019) a CNN was trained on images from Nair and
Abraham (2010) to perform a supervised classification of galaxy morphology and it
was then applied to both SDSS and the IllustrisTNG simulation. Huertas-Company
et al. (2019) found a remarkable agreement between the morphological scaling
relations of observed and simulated galaxies. However the fully supervised approach
taken in Huertas-Company et al. (2019) works under the non-trivial assumption that
the training (SDSS) and the test (IllustrisTNG) data come from the same underlying
distribution. This is a critical assumption, since it is not known a priori whether
simulations agree with observations (see Section 3.3.5). In Huertas-Company et al.
(2019) this issue was addressed by using Monte Carlo dropout, which is equivalent to
Bayesian Neural Networks (Gal and Ghahramani, 2016). Monte Carlo dropout
consists in making repeated label predictions for any given image, each time
randomly setting to zero a number of weights in the CNN. This technique allowed to
select objects for which the network finds a high variance in the output label, that is to
identify galaxies in IllustrisTNG which do not look realistic. Interestingly, it was
found that for compact TNG100 galaxies, the prediction uncertainty was the highest,
something which qualitatively agrees with my finding that the morphology of those
galaxies may be in tension with observations.

More recently, other unsupervised approaches based on generative models, like the
one used here, have been proposed to compare simulations and observations. In
Margalef-Bentabol et al. (2020) a Generative Adversarial Network (GAN,Goodfellow
et al. 2014) was used for the first time with the aim of comparing CANDELS
high-redshift observations (Koekemoer et al., 2011; Grogin et al., 2011) with galaxies
produced by the Horizon-AGN simulation (Dubois et al., 2014). As done in this work,
Margalef-Bentabol et al. (2020) treated the problem as an OoD detection task.
However, while I adopt a generative model with an explicit likelihood for this
purpose, in the case of a GAN the likelihood is not explicit. Therefore,
Margalef-Bentabol et al. (2020) resorted to the anomaly score, a single-valued metric
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FIGURE 8.13: The LLR distribution of TNG50 for the case of dust-inclusive radiative
transfer, which I used throughout this work (magenta dot-dashed line), and the case
where dust was not modelled (i.e., only stellar light contributes to galaxy morphology,
with no dust absorption or emission, purple dashed line). Not including dust results
in a better performance for the simulation. This Figure highlights the challenge faced
by dust radiative transfer models. The main results presented in this paper remain

valid as dust was included in all the simulations in the same way.

that measures how well a trained GAN can reproduce a test image. Objects with a
higher anomaly score are considered outliers. Moreover, a difference in the distribution
of anomaly scores of a test set compared to that of the training sample is interpreted as
a sign that the two populations differ as a whole. Using an anomaly score-based
comparison between CANDELS observations and the Horizon-AGN simulation,
Margalef-Bentabol et al. concluded that the two populations differ statistically. Again,
they also report the highest anomaly score for spheroidal, small, high-Sérsic index
galaxies. This is in agreement with my results at low redshift.

8.9.3 A note on synthetic images

The generation of galaxy images from simulations comes with a number of crucial
assumptions that may significantly affect the comparison with observations. For
example, the fluxes measured from synthetic images strongly depend on the assumed
stellar initial mass function (IMF), the assumed stellar population synthesis model and
the adopted model for dust effects, such as obscuration and scattering. Different
implementations can potentially generate substantial variance in the resulting galaxy
morphology. All the simulations that I use in this work have been processed
identically, and therefore any uncertainty in the image generation process is
propagated in the same way across simulations. Moreover, I stress once again that the
mock images of observed galaxies have been convolved with real SDSS PSF and
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feature a realistic sky background that includes interlopers and the known sources of
noise. Therefore I believe that any difference between real and mock observations
stems from the galaxy in the center of the cutouts.

A major uncertainty comes from the fact that dust is not explicitly traced in the
simulations used here (see McKinnon et al. 2017 for a simulation where this is done),
and hence important assumptions must be made for dust production in star forming
regions and in the interstellar medium , as shown in detail in Trayford et al. (2017).
The uncertainty in dust modelling results in different dust geometries, and hence
varied obscuration patterns (Rodriguez-Gomez et al., 2019). Dust is ubiquitous in star
forming galaxies (e.g. Galliano et al. 2018). The discrepancy found between simulated
and real star forming galaxies, as quantified by the LLR in Figure 8.7, may be partially
explained by the way dust is modelled in the SKIRT pipeline (see Section C and
Rodriguez-Gomez et al. 2019). However, since the simulations are processed in exactly
the same way, the relative trends seen (i.e. IllustrisTNG is overall better than Illustris
and that a higher resolution improves performance for star forming galaxies) are
robust. Yet, it is entirely possible that the performance of simulations is
underestimated in this instance, since I would expect simulations to reach a better
(worse) agreement with observations, i.e. a higher (lower) ∆〈LLR〉, with an optimal
(non optimal) treatment of dust. I tested this directly by using mock-observed galaxies
from TNG50 where dust radiative transfer was not included. The higher ∆〈LLR〉
achieved in the dust-less case (see Figure 8.13) supports the idea that dust modelling is
a non trivial task, and that it can lead to worse agreement with the small-scale light
distribution of observed galaxies.

As for passive galaxies, their dust content is a topic widely discussed the literature
(e.g., Goudfrooij et al. 1994; Temi et al. 2004; Smith et al. 2012; Yıldız et al. 2020
amongst many others). In this work the full dust-inclusive radiative transfer is run
only if the fraction of star forming gas exceeds 1% of the total baryonic mass.
Therefore, the very low star forming gas content of the passive simulated galaxies
implies, at given gas metallicity, that they are essentially dust-free in this model, which
may affect the comparison to SDSS observations. While I have not explicitly tested the
impact of such small amounts of dust on the detailed structural morphologies of
simulated quiescent galaxies in terms of the LLR, V. Rodrı́guez-Gomez (UNAM)
found no discernible differences in the population average stellar size, Gini coefficient,
Asymmetry, M20 and Sérsic index of very gas-poor galaxies with and without explicit
treatment of dust in SKIRT. Hence, I speculate that the fact that the morphology of
quiescent galaxies does not seem to compare well to that observed for SDSS is unlikely
to be related to the dust modelling in simulated passive galaxies. It would be
interesting to test the LLR framework directly on other simulations where dust is
explicitly created and destroyed by detailed physical mechanisms (e.g., SIMBA, Davé
et al. 2019; Li et al. 2019), and no a-posteriori modelling of dust is required.
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FIGURE 8.14: The ∆〈LLR〉 as a function of galaxy stellar mass for TNG50 (magenta
triangles), TNG100 (teal stars) and Illustris (red dots). Star forming and quenched
galaxies are shown with filled and empty markers respectively. The left panel shows
the results for all galaxies, while the central and right panels are for central galaxies
and satellite galaxies respectively. The data points for different simulations are offset
for clarity. The error bars represent the 1σ uncertainty of 100 bootstrapped realizations

of the datasets, of the size of TNG50. See Section 8.9.4 for more details.

I conclude this Section with one last caveat. Given the relatively low amount of star
forming gas in the simulated passive galaxies, most objects in this population are
modelled using simple stellar populations evolving on the ’Padova 1994’ evolutionary
tracks and a Chabrier (2003) Initial Mass Function (IMF, see Rodriguez-Gomez et al.
2019 for more details). However, several observational studies have also reported IMF
gradients in passive galaxies (e.g., La Barbera et al. 2016b; Conroy et al. 2017;
Domı́nguez Sánchez et al. 2019 only to name a few), which are not modelled here.
Since all stars are formed according to a Chabrier (2003) IMF in the simulations
(Vogelsberger et al., 2013; Pillepich et al., 2018b), I am unable to quantify how the
assumption of a universal IMF affects the results.

8.9.4 Summary of mass, star formation activity and environmental
dependence

I have presented how the ∆〈LLR〉 depends on galaxy stellar mass, star formation
activity and environment in Section 8.6. A comprehensive view of the trends found
therein is displayed in Figure 8.14, and is briefly summarised below for convenience:

• The morphology of star forming galaxies (solid markers) is always better
reproduced by simulations compared to quiescent galaxies (empty markers),
irrespective of the environment or the stellar mass bin considered;

• At fixed stellar mass and star formation activity, TNG50 provides the highest
level of agreement between the small-scale morphological details of simulated
and observed galaxies, while TNG100 achieves the second-best ∆〈LLR〉 scores.
Illustris features the lowest ∆〈LLR〉, as sign that the disagreement with SDSS is
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the strongest for this simulation. In the highest stellar mass bin the trend for
Illustris and TNG100 are reversed, something that may be due to a combination
of different implementations of AGN feedback and the effects of major mergers,
as discussed in Section 8.6.2.

• For any given simulation, at fixed star formation activity, it is hard to identify
clear trends in the relationship between ∆〈LLR〉 and stellar mass. Perhaps the
only significant trend is that, irrespective of a galaxy being central or satellite, for
TNG100 and Illustris star forming galaxies the ∆〈LLR〉 declines steadily from
Mstar ∼ 109.5M� to Mstar ∼ 1011M� while in TNG50 the trend is stable. This
finding is actually quite puzzling: it would be expected that better sampled
galaxies (i.e. higher mass galaxies with larger particle numbers) should be in
better agreement with SDSS than lower-mass galaxies. While this is true for
TNG50, it is exactly the opposite for TNG100 and Illustris. A possible
explanation for this peculiar behaviour is that observed higher mass galaxies
may display comparatively more subtle features than low mass galaxies: the
number of particles per galaxy at the resolution of TNG100 and Illustris may still
not be enough to properly capture them well, as opposed to the higher
resolution of TNG50.

• Figure 8.14 also remarks the little difference in the ∆〈LLR〉 of central and
satellite galaxies. While in Section 8.6.3 and Figure 8.8 I have shown this for
galaxies of all stellar masses, here I further observe that the broad independence
on environment applies to all mass scales.

I also note that TNG50 and Illustris star forming galaxies seem to have a ∆〈LLR〉 > 0
at the highest masses, which seems counter-intuitive given that I expect the LLR to be
the highest for SDSS (see Section 8.4). This may be because there are very few SF
galaxies in SDSS with stellar mass above 1011M�. Indeed, the large bootstrapped
resampling variance at these masses for star forming galaxies is indicative of a poorly
represented and potentially biased population.

8.9.5 Convergence study

As the TNG simulations were run at different resolutions, a direct convergence test
can be performed. Specifically, mock-observations of two lower-resolution runs of
TNG50, TNG50-2 (medium resolution) and TNG50-3 (low resolution, see Pillepich
et al. 2019), were produced as detailed in Appendix C. Resolution is known to
generate non-trivial changes in the physical properties of simulated galaxies (see for
example also Appendix B1 of Pillepich et al. 2019, and, e.g., Sparre and Springel 2016;
Chabanier et al. 2020). This is something that I wish to marginalise on, since the aim
here is to test to what extent an improved resolution brings the small-scale
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FIGURE 8.15: The LLR distributions of SDSS (orange solid line), TNG50 (dashed ma-
genta line), TNG50-2 (dotted gray line) and TNG50-3 (dot-sashed green line). The
∆〈LLR〉 increases with improved resolutions, a sign that simulations are converging.
Future higher-resolution simulations are likely to be in even better agreement with
SDSS. Note that the value of the ∆〈LLR〉 for the highest resolution run of TNG50 is
not comparable to those for TNG50 found in the paper, as I am only considering sub-
sets of the TNG50 simulations and SDSS to match the joint magnitude-Sérsic index-Re

distribution.

morphology of simulated galaxies into better agreement with that of real galaxies,
regardless of the overall structure. Therefore, I match the three TNG50 simulations
and SDSS to obtain an identical joint distribution of their global properties, i.e. size,
magnitude and Sérsic index, which are the key observables learned by the pθsersic

model. This allows to isolate the effect of resolution on the relationship between the
global and local properties of galaxies, as quantified by the LLR.

The ∆〈LLR〉 (see Figure 8.15) is the highest for the highest resolution run, TNG50,
which is followed by TNG50-2, and TNG50-3, the run with the lowest resolution. This
result shows that the small-scale morphology of simulated galaxies is converging for
progressively improved resolutions, and it is likely that a further improvement in
resolution would result in an even better agreement with SDSS. I stress that this
methodology is able to quantify with just one number, for the first time, the effects of
resolution on the detailed morphology of simulated galaxies.

Note that both the spatial and mass resolution decrease in TNG50-2 and TNG50-3 (see
Pillepich et al. 2019 for details), and therefore I am not able to disentangle the
contributions of the two here.

8.9.6 Possible shortcomings of the numerical simulations

In this study I have shown that although the IllustrisTNG simulations agree extremely
well with the SDSS structural scaling relations (see also Huertas-Company et al. 2019
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FIGURE 8.16: The LLR distributions of star forming (left) and quiescent (right) disks
for TNG50 (magenta dot-dashed lines), TNG100 (teal dashed lines) and SDSS (orange
solid lines). The cyan and light orange coloured regions indicate the 1σ uncertainty
of 100 realizations of TNG100 and SDSS with the same sample size of TNG50. Disky
galaxies are selected in SDSS and in simulations using the thresholds nser < 2 and
Re > 2arcsec≈ 2kpc at z=0.05. The lower ∆〈LLr〉 featured by quiescent disky galax-
ies is indicative that the processes that lead to quiescence without affecting the stellar
morphology (and hence dynamics) still produce a worse agreement with data com-

pared to star forming disks.

and Genel et al. 2018), the IllustrisTNG model cannot yet reproduce the detailed
distribution of stellar light in comparison to SDSS, particularly for quenched galaxies
and regardless of whether quenching is the result of environmental processes like
ram-pressure stripping or BH feedback. Earlier in this Section I have also discussed
the results of other deep learning studies that reached similar conclusions for TNG100
and the Horizon-AGN simulation using supervised Bayesian Neural Networks or the
anomaly scores of a GAN. The more classical approach used in Rodriguez-Gomez
et al. (2019) also highlights similar tensions in TNG100. Therefore, there are now
multiple independent indications that the detailed morphology of quiescent galaxies
in cosmological hydrodynamical simulations of galaxy formation is in tension with
that of galaxies in our Universe. I speculate below on the possible reasons of this
discrepancy, by focusing on the case of the IllustrisTNG simulations.

8.9.6.1 The difficulty of reproducing highly-concentrated stellar distributions

Quenched galaxies in TNG100 (and Illustris) systematically fail at populating the
region of high Sérsic index and small size in the nser − Re plane. TNG50 can produce
compact quiescent galaxies, and yet small-size and high-Sérsic index quiescent objects
exhibit the worst disagreement with SDSS, also in TNG50. To attempt to disentangle
the effects of quenching with possible issues related to the global stellar morphology,
in Figure 8.16 I contrast TNG100 and TNG50 simulated disky galaxies to SDSS, divided
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according to their star formation state: star-forming disks on the left, quiescent disks
on the right.

For disky quiescent galaxies TNG100 features ∆〈LLR〉 ∼ −65, while TNG50 has
∆〈LLR〉 ∼ −45. In comparison to the differences between star-forming and quiescent
galaxies of Figure 8.7 without any “diskiness selection” (i.e. ∆〈LLR〉 ∼ −101 and
∼ −83 for TNG100 and TNG50 respectively), it can be seen that the disagreement
between the real and simulated populations of quenched disks is much less dramatic
than that featured by the overall population of quiescent galaxies, which is dominated
by smaller spheroids (Huertas-Company et al. 2019; Joshi et al. 2020b). In other words,
the TNG simulations return more realistic quenched disk galaxies than quenched
galaxies in general: in fact, the TNG model always produces more realistic disk
galaxies, whether they are quenched or not. This suggests that what seems to mostly
drive the discrepancy between the TNG and SDSS quiescent populations is not the
property of being quenched but rather the fact of being non-disky, with stellar
particles mostly in non-rotationally supported orbits.

8.9.6.2 The limits of resolution at reproducing high stellar densities

Since lower-mass galaxies are represented by a lower number of stellar particles in
simulations, it could be argued that resolution plays a key role in making quiescent
(mostly spheroidal) galaxies look less realistic than the more extended (mostly disky)
star forming galaxies. The fact that quiescent galaxies are better reproduced by
TNG50, which offers a higher resolution, seems to support this argument. In fact, even
within the star forming population, smaller galaxies have a lower ∆〈LLR〉 in TNG50
and TNG100 (see Figure 8.9a).

As highlighted above, differently than TNG100, TNG50 is able to produce compact
quiescent galaxies. Moreover, TNG50 features a higher ∆〈LLR〉 for quenched
extended galaxies with an intermediate nser compared to TNG100. This further
evidence suggests, again, that an improved resolution is able to better capture the
small details of the stellar structure of quenched galaxies. I briefly speculate on the
possible physical reason for this.

Quiescent galaxies in the TNG simulations tend to be smaller at fixed stellar mass
compared to star forming galaxies, in good agreement with observations (see Figure
8.10). Furthermore, the quiescent TNG population tends to be dominated by
spheroidal galaxies (Huertas-Company et al., 2019; Joshi et al., 2020b), with the stellar
orbits mostly dominated by random motions. Thus, the finite resolution of the
simulations may not reproduce these orbits faithfully. However, because the levels of
(dis)agreement with SDSS do not seem to correlate strongly with a galaxy stellar mass
once TNG50 or TNG100 are considered separately (see Figure 8.14), the issue may be
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more related to the spatial, rather than the mass, resolution underlying the numerical
models I have considered in this work.

Lastly, the fact that the central densities of quenched galaxies appear problematic may
be related to an issue that was already identified in the Illustris simulation by Sparre
et al. (2015), where it was found that the simulation did not reproduce well the
number of starbursting galaxies at the Illustris and TNG100 resolution. If at least some
quenched elliptical galaxies formed through gas-rich mergers which drove large
amounts of gas into the centers of the merger remnants, the resulting high central
densities, may not be resolved in most of the cosmological simulations studied here.
Indeed, the departure from pure Sérsic profiles in the form of power-law “cusps”
observed in high-resolution imaging (e.g., Lauer et al. 1995; Faber et al. 1997;
Kormendy 1999) has been interpreted of a signature of previous dissipational mergers
(Hopkins et al., 2009a), and Sparre and Springel (2016) showed that higher-resolution
zoom-in resimulations of selected major mergers in Illustris are able to produce denser
starbursts compared to the lower resolution Illustris run. Hopkins et al. (2009e) have
also proposed that the inner stellar “cores” observed in some elliptical galaxies (e.g.,
Lauer et al. 1995) are the result of dry mergers involving previously formed “cuspy”
ellipticals. If the resolution of TNG50 and TNG100, as well as Illustris, is not able to
capture the formation of “cusps”, as indirectly suggested by Sparre and Springel
(2016), then also the formation of stellar “cores” in these simulations may be
unresolved.

8.9.6.3 Quenching may affect the small-scale morphology by modifying the
underlying gas distribution

I conclude with a final remark. Figure 8.10 shows that even quenched galaxies with
relatively large sizes are not fully reproduced by simulations. In particular, at
Mstar . 1011M�, some of the larger galaxies where star formation has been halted
belong to the population of quenched disks (e.g., Zhang et al. 2019). Furthermore, as
shown in Figure 8.16, TNG quenched disks are still in worse agreement with SDSS
than star-forming disk, the ∆〈LLR〉 of quenched disks being twice as lower than that
of star forming disks. This is somewhat unexpected, as the quenching mechanism that
operates on them has preserved the bulk of the ordered stellar motions proper of disk
galaxies. A possible explanation for this is that the mechanisms that quench disks may
displace the distribution of gas within the galaxy, thus affecting the distribution of
dust and hence the small-scale light distribution.
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8.10 Conclusions and future outlook

Since the time of Hubble (1926), the astronomical community has strived to
understand the physical origin of the variety of morphologies that galaxies display in
our Universe. The simulations of galaxy evolution available to date have achieved an
unprecedented accuracy in reproducing galaxy properties, and, with them, a plethora
of galaxy morphologies. Assessing how exactly the small-scale morphological details
of simulated galaxies agree with the real ones is a crucial test for models of galaxy
formation and evolution. My contributions to this topic are summarized as follows:

• I have introduced an unsupervised deep learning method to accurately and
quantitatively compare the small-scale stellar morphology of galaxies produced
by cosmological hydrodynamical simulations with that of real galaxies. This
assessment is based on a single-valued metric which is the combination of the
likelihood of two deep generative models, the log-likelihood ratio, LLR (Section
8.4). I demonstrate that the LLR is broadly independent from the sky
background statistically, and specifically is mostly sensitive to internal,
small-scale morphological structure. The behaviour of the LLR indeed follows
these expectations, as shown in Appendix E.2. I also prove that the LLR is a
metric that can be used to assess the similarity of two datasets based on the
mean value of its distribution, and I adopt the ∆〈LLR〉 ≡ 〈LLR〉 − 〈LLRSDSS〉 to
assess the quality of the small scale light structure of fully realistic mock
observations of galaxies from the Illustris, TNG50 and TNG100 simulations
against observations from the SDSS.

• In Figure 8.6 I show that my approach can identify TNG50 as the simulation that
is able to produce galaxies with small-scale morphological features that most
closely resemble observations, followed by TNG100 and the original Illustris
implementation, which performs the worst. This can be interpreted as a sign that
the improvement in the modelling of galaxy formation physics featured by the
more recent IllustrisTNG simulations is more effective than that implemented in
Illustris. Rodriguez-Gomez et al. (2019) reached similar conclusions using
non-parametric morphologies. Moreover, I find that the improved resolution of
TNG50 results in an even better match to SDSS morphologies.

• I split the data sets in star forming (sSFR/yr−1 > −11) and quiescent
(sSFR/yr−1 < −11) galaxies and show the respective LLR distributions in the
upper panel of Figure 8.7. I find a marked improvement in the morphology of
star forming galaxies from Illustris to TNG100 and from the latter to TNG50,
which indicates that a better treatment of star formation regulation and an
improved resolution are key to accurately reproduce the morphology of star
forming galaxies. On the other hand, only a marginal improvement for
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quiescent galaxies from Illustris to its successor IllustrisTNG can be seen, and I
note that the better resolution offered by TNG50 over TNG100 does not lead to a
significantly better agreement with SDSS.

• I find the trends with star formation activity to be weakly dependent on stellar
mass (middle and lower panels of Figure 8.7) and environment (Figure 8.8), so
that simulated quenched galaxies are in similar disagreement with SDSS
regardless of the nature of the quenching mechanism i.e. regardless of whether
quenching is driven by e.g. ram-pressure stripping or AGN feedback in the
simulation. This information is displayed in a more self-contained way in Figure
8.14.

• I study how well simulated galaxies are reproduced across scaling relations of
galaxy size, star formation rate and Sérsic index in Figures 8.9, 8.10 and 8.11. I
note a significant change in the quality of simulated galaxies, whereby large, star
forming, disky objects are the most similar to SDSS, while the smaller,
high-Sérsic index, quenched galaxies are found less realistic by my deep
learning framework. I also note that even within the structural scaling relations
of star forming and quiescent galaxies some trends are appreciable. More
massive, extended galaxies are more realistic in both quenched and star forming
TNG50 galaxies, while the same is true of TNG100 star forming galaxies only.

• My main finding is that reproducing the small-scale morphological features of
quiescent, small and/or concentrated galaxies remains a challenge for
state-of-the-art hydrodynamical cosmological simulations of galaxy formation. I
show that this kind of evidence has started to emerge in the literature in Sections
8.9.1 and 8.9.2. I speculate that a limited resolution may be at the origin of these
findings. First, I carry out a specific convergence test in Section 8.9.5, where I
show that the lower-resolution runs TNG50-2 and TNG50-3 perform worse than
the flagship, better-resolution TNG50 simulation. Secondly, in Section 8.9.6 I also
argue that the high density of stellar particles in the central regions of quenched
galaxies may not be properly captured by the finite resolution of simulations, as
also shown by the ”LLR maps” in Figure 8.12. This argument is also supported
by the similar level of (dis)agreement with SDSS observations reached by both
Illustris and TNG100 for massive quenched galaxies (see Fig. 8.7), despite the
AGN feedback mechanism implemented in the two simulations is substantially
different. In fact, the formation histories of these galaxies are affected by similar
rates of major mergers that cause a similar change in the stellar dynamics, since
the resolution of the two simulations is comparable. I also speculate that the
displacement of gas, and the consequent dust obscuration patterns, that
quenching mechanisms cause within a galaxy, may also partially explain the
lesser agreement between simulated and real quenched galaxies.
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• Finally, I remark that the results listed above have been obtained at the
seeing-limited resolution of SDSS, i.e. ≈ 1kpc, which means that the some of
small-scale details of the stellar light structure that characterizes galaxies have
been lost. Future work that will exploit higher resolution images may be able to
unveil some trends that are not found in this exploratory study.

The deep learning framework outlined here provides a useful tool to evaluate the
performance of hydrodynamical simulations of galaxy formation, that generalizes
over the parametric and non-parametric approaches taken in the past. With this
strategy, meaningful physical information encoded in the galaxy structure can be
identified, which proves key in identifying the shortcomings and successes of
simulations. This methodology still works only in a statistical sense, given the not
completely null contribution of the sky background to the metric used (see Appendix
E.2.1.1). However, future work in this direction will make it possible to evaluate the
morphology of simulated galaxies at the time of calibrating the next generation of
simulations of galaxy formation and evolution.

Lastly, Out of Distribution detection tasks are of paramount importance in Astronomy
since they are able to unearth the potentially most interesting objects in a dataset, and
will be even more important when the next observing facilities such as EUCLID and
JWST will come online and collect an unprecedented load of data. The framework
presented here may be applied also in this context, similarly to Margalef-Bentabol
et al. (2020).
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Chapter 9

Data-driven population modelling
in healthcare

9.1 Background

Many decisions in medicine, particularly those involving the assessment of the
response to treatment, are subject to measurement error and physiological variation so
that treatment decisions (selecting treatment, increasing or decreasing drug doses)
may be made erroneously. These errors are often not considered explicitly in clinical
management algorithms, limiting the efficacy and efficiency of clinical care.
Management of high systolic blood pressure (SBP), a condition also known as
hypertension, is a typical example. Hypertension affects approximately 1 in 3 adults
and is the single largest cause of mortality and morbidity worldwide. Because of the
measurement error and inherent variability of blood pressure, it is likely that a
substantial proportion of decisions regarding intensification of treatment are taken
erroneously. The effects of measurement error on the medical decision exacerbate the
more general issue that each individual responds differently to a given drug, and so a
group of patients will display a range of SBP, even if their SBP prior to treatment was
identical.

In this Chapter, I present a modelling study of the effects of measurement error and
physiological variation on achieving SBP control in a population of hypertensive
patients. To do so, I use Monte Carlo simulations similar to those adopted in Chapters
5, 6 and 7. Previous studies have used simulations to investigate how measurement
error can impact on the diagnosis of hypertension, with both inadequate device
calibration and normal physiological variation contributing to misdiagnosis (e.g.,
Turner et al., 2006). This study is the first simulation to investigate how measurement
error impacts on achieving a blood pressure target for multiple drug titration steps
and considers the impact of this on the proportion of individual achieving BP control.
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In particular, the focus of this work is on SBP (rather than dyastolic BP) due to its
predictive validity with outcomes, and recent focus in major treat-to-target studies
(e.g., Forouzanfar et al., 2017). In current practice it is recommended that SBP<140
mmHg.

I will show that current strategies are likely to not achieve SBP control for a substantial
proportion of individuals, thus leaving patients at risk of complications, including
fatal cardiovascular events. Further, I will discuss briefly the opportunities to optimise
and personalise SBP management strategies offered by aimed in-silico Monte Carlo
simulations.

9.2 Methods

The key quantities in the model are the true systolic BP (tSBP) which is a hypothetical
value as it is made without measurement error or physiological variability, and
measured SBP (mSBP) which is a value obtained by the observer and includes varying
degrees of error. Each BP measurement event represents the outcome of a clinical
encounter, for example, an office BP reading.

Observed BP variation arises from the sum of measurement error and physiological
variation (characterised by the standard deviation of repeated measurements over
time, σmeas), and by the variation in response to a drug, σdrug. Given the average
response to drug treatment druge f f (i.e., the average lowering in tSBP), after treatment
the tSBP of an individual is lowered by an amount

tSBPt+1 ∼ N (tSBPt − druge f f , σdrug) (9.1)

where N (µ, σ) is a gaussian distribution with mean µ and standard deviation σ. After
treatment, the BP of patients will be measured in a clinical encounter, and will be
subject to measurement error,

mSBP ∼ N (tSBP, σmeas). (9.2)

In the following, patients are defined as undertreated as tSBP > 140mmHg, controlled
as 120 < tSBP/mmHg < 139, and overtreated as tSBP < 120 mmHg (Boffa et al.,
2019).

In the simulations, individuals with mSBP <140 mmHg exit treatment and received
no further drugs, as to the observer they appeared to have achieved target.
Individuals with mSBP > 140 mmHg (irrespective of tSBP) progress to Step 2 and
receive another drug. This process of drug titration continued for each individual
until their mSBP < 140 mmHg. The number of steps for each individual represents
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FIGURE 9.1: The distribution of mSBP and tSBP after a single antihypertensive titra-
tion for a population with initial SBP of 150 mmHg. A subpopulation of individuals
would appear controlled based on mSBP, although their tSBP > 140mmHg. Parame-

ters used: σmeas =10 mmHg, σdrug =5 mmHg, druge f f =10 mmHg.

the number of drugs received. The typical expected distribution of tSBP and mSBP for
a virtual population in response to a single antihypertensive titration is shown in
Figure 9.1. In this example it can be seen that for an initial tSBP of 150 mmHg, the use
of a drug with druge f f = 10 mmHg and σdrug 5 mmHg results in a mean tSBP 140
mmHg. As drug effect is normally distributed in the simulation, the tSBP of the
population will evenly split between tSBP < 140mmHg and tSBP > 140mmHg. The
mean SBP values obtained by an observer (mSBP with σmeas =10 mmHg) will also be
140mmHg and normally distributed. However, due to the stochasticity of the
measurement process, some patients with mSBP < 140mmHg are incorrectly
considered in the controlled regime.

9.3 Results

The efficacy of the strategy implemented at controlling the population SBP was
studied for a few clinically relevant values of the model parameters in three different
regimes of initial tSBP: 150, 160 or 170 mmHg.

9.3.1 The clinician’s perspective

The relative effects of the input parameters on the proportion of individuals who
appear to achieve target (mSBP<140 mmHg) are presented in Figure 9.2. It can be seen
that varying druge f f has the largest impact on this simulation with the effect greatest
at higher initial tSBP. For example, with an initial tSBP of 170 mmHg, mSBP < 140
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FIGURE 9.2: Proportion of individuals achieving a measured systolic blood pressure
(mSBP) lower than 140 mmHg with increasing drug titration. Simulation inputs
were varied based on initial true SBP (tSBP, shown at top of figure), drug response

(druge f f ± σdrug) and standard deviation of SBP measurement (σmeas).

mmHg was achieved in <20% for three drugs when drug response was 5±5 mmHg,
compared to >90% when drug response was 15±5 mmHg. Variation in measurement
error has no effect on the maximal proportion achieving the mSBP target, since this
error is not apparent to the observer.

9.3.2 True proportion of controlled individuals

The relative effects of the input parameters on the proportion of individuals who
achieved target (tSBP < 140 mmHg) are presented in Figure 9.3. Initial tSBP,
measurement error and drug response all influenced the proportion of the population
who would achieve target should the simulation be run infinitum. Measurement error
accounted for a difference of almost 30% at initial tSBP=170 mmHg, compared to
<10% at 150 mmHg. When measurement error was reduced to below that achieved in
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FIGURE 9.3: Proportion of individuals achieving a true systolic blood pressure (tSBP)
lower than 140 mmHg with increasing drug titration. Simulation inputs were varied
based on initial true SBP (tSBP, shown at top of figure), drug response (druge f f ± σdrug)

and standard deviation of SBP measurement (σmeas).

clinical practice (σmeas =5 mmHg) the proportion who failed to achieve tSBP <140
mmHg remained high at approximately 30% for initial tSBP 170 mmHg. In general, an
inverse relationship between measurement error and the proportion achieving
tSBP < 140 mmHg can be observed.

9.3.3 Exploring new strategies

I showed above that measurement error is a roadblock to achieving the target tSBP. It
is worth investigating whether repeated sets of readings might mitigate this.
Fortunately, the flexibility of the Monte Carlo model allows for a trivial exploration of
further treatment strategies. A view of the outcome of different treatment strategies at
the 9th treatment step (a hypothetical treatment outcome) is shown in Figure 9.4.
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FIGURE 9.4: Classification of true systolic blood pressure (tSBP) for individuals exit-
ing the simulation based on single mSBP (top row), and compared to repeated mea-
surement when the first mSBP was between 120 and 150 mmHg with large (middle
row) and small (bottom row) measurement standard deviation. Fixed parameters:

sigmadrug =5 mmHg, druge f f =10 mmHg.

A second, independent measurement at each step for an “at risk” population with
mSBP 120-150 mmHg was simulated. If the first and second measurements had the
same high error, sgimameas =15 mmHg (consistent with clinical practice) the
proportion of individuals with controlled tSBP increases from ≈45% to ≈57% initial
tSBP 170 mmHg, and a decrease in individuals with uncontrolled hypertension across
the range of initial tSBP. When a method of SBP measurement with a lower
measurement error was used for the second measurement, σmeas =5mmHg (currently
unachievable in clinical practice), the proportion of individuals with controlled tSBP
increased further (approximately 72% for the most at-risk subpopulation).
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9.4 Discussion and conclusions

The results of the simulations indicate that a large proportion of hypertensive
individuals in whom SBP is thought to be at target following an initial drug titration,
are in fact over- or undertreated. These individuals remain at either an increased risk
of cardiovascular events or have an increased risk of side-effects from excessive
medication.

Several important findings have emerged from exploring the parameter space of the
model. Firstly, the mean drug response and/or standard deviation of this response
principally influence the number of titration steps required to achieve mSBP < 140
mmHg. Where the number of titration steps are unlimited (a hypothetical scenario),
all individuals will eventually achieve mSBP < 140 mmHg. However, each titration
step provides an opportunity for incorrect classification of SBP and it is for this reason
that the proportion of individuals achieving target was lower when druge f f was
reduced.

Secondly, the variation in SBP measurement has no effect on the maximal proportion
achieving mSBP < 140 mmHg as the clinician is blinded to measurement error.
However, a large effect is seen for tSBP values, with a lower proportion achieving
control at higher initial tSBPs. Again, this represents the number of titration steps and
thus the number of opportunities for measurement error.

Thirdly, the proportion of individuals misclassified can be reduced by an
independent, second measurement when mSBP lies within a range that is ‘at risk’
from measurement error. The proportion misclassified was reduced further when the
second measurement had lower variation than the first. The origin of this behaviour
can be understood in terms of the phenomenon called regression towards the mean, for
which samples that lie at the tail of a distribution are more likely to be resampled
closer to the mean in a second measurement. As the mean of the tSBP lies above
target, a certain proportion of patients can be recognised as undertreated, despite the
first measurement was mSBP < 140mmHg.

Furthermore, I demonstrated that individuals are most likely to have their SBP
misclassified if (i) they have a high initial tSBP, (ii) receive drugs of low efficacy, and
(iii) have titration decisions based on a single SBP measurement with high variability.
Options to reduce measurement error include the use of single measurement events
with increased precision, or repeated measurements that are averaged over longer
periods (e.g., the use of wearable technology). Such an approach could be applied
selectively to individuals with measurements close to threshold values to reduce the
measurement burden, or to those who exhibit high variability to improve accuracy.

Yet, even with an accuracy greater than that usually achieved in clinical practice, a
substantial proportion of individuals will still be misclassified and receive suboptimal
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management. An alternative approach would be to recognise that as a high
proportion of individuals are undertreated due to misclassification, the target window
could be lowered to reduce this number. This would result in fewer individuals with
uncontrolled BP but a larger number with relatively low BP. Whether a low BP might
be associated with increased morbidity and/or mortality is uncertain and such a
strategy would have to be formally tested in clinical trials. The challenge of balancing
SBP targets with measurement method can be observed in the varying response by
guideline committees to the results from the Systolic Blood Pressure Intervention Trial
(Whelton et al., 2018; Wright et al., 2015). The SBP target selected for this simulation is
consistent with UK primary prevention guidelines, but the findings are applicable to
alternative targets and healthcare systems (Boffa et al., 2019).

It is important to stress that the simulation exercise presented here is primarily for
illustrative purposes since there are several assumptions and simplifications inherent
to the model. The simulation is designed to investigate the number of treatment steps
required to achieve mSBP < 140 mmHg and so does not consider options for drug
de-escalation as a response to either medication side-effects or overtreatment. The
limited time horizon does not consider long-term SBP control. However, the
proportion of individuals requiring three of more drugs to achieve mSBP < 140
mmHg with clinically relevant parameters, corresponds to the prevalence of resistant
hypertension both globally and in the UK (Boffa et al., 2019). The main findings of this
study would remain true if a more sophisticated simulation was used whereby drug
response varied depending on SBP and the number of titrations (Augustin et al., 2021).

9.5 Future work

The strength of the Monte Carlo simulation devised here is that it allows the
exploration of various management scenarios as a function of the burden of achieving
more accurate measurements. Such an approach could inform the best strategies to be
tested in clinical trials and provide more accurate data for health economic analyses.
Modern technology, such as a wearable wrist monitor, if sufficiently free from
systematic bias, could potentially improve estimations of tSBP through the capacity to
take high numbers of BP readings which would be sampled from the full range of
potential measurement error.

The Monte Carlo approach to simulating uncertainty can also be applied to questions
which have either not been fully addressed in clinical trials or for which there remains
uncertainty in interpretation of the evidence. One prominent example is the use of
initial dual antihypertensive therapy which is recommended by both European and
US guidelines (Williams et al., 2018; Whelton et al., 2018). In contrast, the recent UK
guidelines were unable to recommend this approach due to a lack of cardiovascular
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outcome data (Boffa et al., 2019). By combining simulated tSBP data with a
cardiovascular outcome model (in which benefit is proportional to SBP reduction, Law
et al. 2009) it may be possible to add clarity to the issue. Furthermore, such an
approach could be extended to situations which have not been addressed in
cardiovascular outcome studies such as initial triple antihypertensive therapy,
decision making based on repeated measures and combinations of half-dose/full-dose
antihypertensives.
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Part IV

Conclusions
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Chapter 10

Contributions of this thesis and
future work

In this thesis I have used a mixture of semi-empirical and physical models to constrain
galaxy evolution through galaxy size (Re), dynamics (jstar) and morphology.
Furthermore, similar numerical techniques as those used in the semi-empirical
framework used in this thesis were used to model the compounding effects of
variance in response to treatment and measurement error in a population of
hypertensive patients.

Firstly, I explored semi-empirical models based on a stellar-to-halo mass relation
(SMHM) where galaxy sizes are linked to the structural and/or dynamical properties
of the host dark matter halo. Specifically, I tested the feasibility of (i) the Mo, Mao &
White (Mo et al., 1998) model of disk formation based on angular momentum
conservation, (ii) a model where galaxy size scales as a power law of halo
concentration c (Re ∝ Rhcγ, Jiang et al. 2019, concentration model) and (iii) a linear
Re − Rh relationship with normalisation AK and scatter σK are free parameters
(Kravtsov, 2013, K13 model). I applied this semi-empirical framework to provide
constraints on galaxy formation in physical models at low redshift in Chapter 5, and
have focused in particular on the class of Massive Galaxies (MGs, Mstar > 1011.2M�) in
Chapters 6 and 7, to both test the structural evolution of central MGs and the
environmental dependence of galaxy sizes, including for satellite MGs. Secondly, I
have used deep learning to further probe the relationship between morphology,
structure and star formation activity in state-of-the-art cosmological hydrodynamical
simulations.
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10.1 Summary of the results

10.1.1 Galaxy morphology, structure and dynamics at z ∼ 0.1: the
formation of disk and elliptical galaxies

In Chapter 5 I provide constraints on the normalization and scatter of the Re − Rh

relation based on the size function of central galaxies in the Sloan Digital Sky Survey,
following the methodology outlined in Section 4.3. Tight relations are required for
both early-type and late-type galaxies (ETGs,LTGs), which also feature a different
normalisation in the Re − Rh relation. Models for disk formation based on angular
momentum conservation (i.e., the Mo, Mao & White model, Mo et al. 1998) are
challenged by these constraints, but I show that the normalisation and scatter of a
linear Re − Rh relation are consistent with a tight link between Re and jstar, which is
also found in the cosmological hydrodynamical simulation Illustris TNG. The origin
of a tight distribution of angular momenta may originate from gravitational torques in
the inner regions of dark matter haloes, as found in the zoom-in simulations of
Danovich et al. (2015), however it is unknown whether the same mechanism is at play
in Illustris TNG. Moreover, a pure merger scenario where ETGs form as a result of
mergers between disks, as implemented in a semi-analytic model, broadly reproduces
the semi-empirical constraints if the scatter in the input disk Re − Rh relation is tighter
than that predicted in Mo et al. (1998). Finally, the scatter found in the K13 model is
very small for MGs, σK < 0.1 dex. I also provide lower limits to the power-law
dependence of the concentration model, and find plausible values of γ ≈ −0.8,−0.4
for MGs, with an implied almost null scatter in the model.

This chapter provides a proof of concept for a framework where the Re − Rh relation is
used to constrain physical models of galaxy formation.

10.1.2 Assessing galaxy morphology and star formation activity in
hydrodynamical simulations with deep learning

It is worth asking whether simply reproducing the galaxy-halo connection and, in
general, observed galaxy scaling relations in cosmological hydrodynamical
simulations, such as Illustris TNG, is a sufficient condition to also accurately
reproduce galaxy morphology and its relationship with star formation activity. The
way the morphological types are distributed across galaxy scaling relations are
important probes of our knowledge of galaxy formation physics. Although there is
awareness in the community that different physical recipes may reproduce similar
scaling relations but different small-scale features, these are overlooked in the
calibration of simulations.
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Thus, the small-scale details of galaxy morphology provide a very stringent test for
galaxy formation models. This test can be performed robustly by using a
single-valued metric that overcomes the limitations of non-parametric estimators such
as the C− A− S− G−M20 parameters (Lotz et al., 2004). In Chapter 8 I proposed an
unsupervised deep learning approach to test the fine morphological structure of
galaxies coming from the Illustris simulation and the improved Illustris TNG
(TNG100 and TNG50) model against observations from a subsample of the Sloan
Digital Sky Survey. This can be treated as an Out of Distribution detection task, where
a deep learning (DL) algorithm identifies a potential difference in the distribution of
between observed and simulated galaxies (distributional shift, see Section 3.3.5). The
framework that I devised is based on PixelCNN, an autoregressive model for image
generation which models the probability distribution of images explicitly, and that is
able to isolate the small-scale morphological details of galaxies from the sky
background and the global galaxy properties.

Illustris TNG was shown to be quantitatively in better agreement with observations
compared to Illustris, and particularly so in the high-resolution TNG50 run. This
quantitative assessment, performed with a single-valued metric in a probabilistic
framework, is a first-of-a-kind achievement. However, the fine details of galaxy
structure in simulations are still in tension with observations, although the
disagreement is less severe for star forming galaxies. Instead, small, more spheroidal,
and quenched galaxies are globally less accurate regardless of resolution and have
experienced little improvement between the three simulations explored. A possible
explanation is that the still limited resolution of simulations is not able to capture
some physical processes, such as star formation in dense gas, or the dynamics of stars
in the tightly packed central galaxy regions. Nevertheless, the deep learning strategy
employed also captures the small-scale details induced by physical models, as
indicated by the clearly distinct levels of agreement with data for Illustris and
TNG100, which have a similar resolution.

The DL framework that I set up can be improved to include multiband information,
and can be used both in the calibration phases of hydrodynamical simulations and to
test them against the data coming from the upcoming, deep and wide sky surveys also
at high redshift.

10.1.3 The structural evolution of Massive Galaxies

The mean effective radius of MGs is observed to increase steadily with cosmic time. It
is still unclear whether this trend originates from the size growth of individual
galaxies (via, e.g., mergers and/or AGN feedback) or from the inclusion of larger
galaxies entering the selection at later epochs (progenitor bias). Building on previous
work, I explored semi-empirical models based on a time-independent Re − Rh



176 Chapter 10. Contributions of this thesis and future work

connection coupled with a stellar mass-halo mass (SMHM) relation. Specifically, I
study toy models where the scatter σSMHM and the high-mass slope of the SMHM, δ,
are allowed to vary. This choice is motivated by the fact that these parameters are
notoriously degenerate at reproducing the number density of MGs. Instead, I find a
clear difference in the size function of MGs predicted by models where the degeneracy
above would hold. This finding holds the promise to constrain the shape and scatter of
the SMHM relation in future determinations of the high-redshift size function of MGs.

Using the toy models briefly outlined above, it is found that 1) the fast mean size
growth of MGs is well reproduced independently of the shape of the input SMHM
relation; 2) the numbers of compact MGs grow steadily until z & 2 and fall off at lower
redshifts, suggesting a lesser role of progenitor bias at later epochs; 3) a
time-independent scatter σSMHM is consistent with a scenario in which compact
starforming MGs transition into quiescent MGs in a few 108yr with a negligible
structural evolution during the compact phase, while a scatter increasing at high
redshift implies significant size growth during the starforming phase.

The predictions from this Chapter can be considered more reliable compared to those
of hydrodynamical simulations and semi-analytic models. In fact, the first suffer from
either a too coarse resolution that may not capture the compact phases of MGs (see
Chapter 8 and Chabanier et al. 2020), while the second have historically struggled to
reproduce the structural growth of MGs (Huertas-Company et al., 2013a; Zoldan et al.,
2019).

10.1.4 Galaxy structure in different environments

It is observed that the difference in the mean size of MGs between clusters and the
field amounts to .45%. This constitutes a further constraint for semi-empirical
models based on a Re − Rh relation. I find that without any additional calibration and
irrespective of the fraction of quenched galaxies or level of stellar stripping, a linear
and constant K13 model is able to reproduce the puzzling weak dependence of mean
size on host halo mass for both central and satellite galaxies, in addition to
reproducing the local size function of quiescent satellite MGs in SDSS.

It is also envisaged that the environment may quench star forming galaxies by, e.g.,
starvation (Peng et al., 2015), and change their morphology due to tidal interactions
(Bekki and Couch, 2011). The model described in the previous paragraph also matches
the size function of starforming satellite MGs, after assuming that some of them
transform into massive lenticulars in a ≈ 3 Gyr after infalling in the group/cluster
environment. However, the vast majority of massive lenticulars living as satellites in
groups and clusters is predicted to form before infall. This result supports the
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feasibility of models where S0 galaxies form either as the result of in-situ violent disk
instabilities or gas-rich mergers followed by disk regrowth.

Moreover, similarly to what I did in Chapter 6, I explored the outcome of toy models
with varying input shape and scatter of the SMHM relation. I found that SMHM
relations with a flatter high-mass slope, δ, predict a more marked environmental
dependence of galaxy sizes, along with models with a larger scatter in the earlier
Universe. Models with a constant scatter and δ, instead, predict similar trends at all
times. Low values of δ, consistent with some models in the literature, predict a very
strong environmental dependence, in stark disagreement with observational
constraints.

Finally, the concentration model taken at face value and calibrated on the local size
function of MGs would induce a too strong environmental dependence.

10.1.5 Medical applications of Monte Carlo statistical models

Hypertension is a major cause of morbidity and mortality globally, with more than
30% of adults requiring drug treatment. Currently adopted hypertension management
strategies envisage the increase of medication to achieve a systolic blood pressure
(SBP) of 140mmHg or lower to reduce cardiovascular disease risk. Measurement
errors inherent to the measurement process and physiological variation in response to
treatment are major roadblocks to achieving blood pressure control on the population
of hypertensive patients.

In a collaboration with the St Thomas’ & Guy’s Hospital, London, I used Monte Carlo
simulations to assess the efficacy of current strategies for managing hypertension.
Specifically, I investigate the parameter space of a numerical model inclusive of
measurement error σmeas, drug efficacy at reducing the average SBP druge f f and the
inter-patient variability in response to medication σdrug. The main finding was that a
significant proportion of a population undergoing treatment is left with a true SBP
above target, whereas all patients would appear to have achieved the SBP target due
to measurement error.

The Monte Carlo model devised allows to explore and optimise new treatment
strategies. As an example, a treatment strategy where the measurement is repeated in
an ”at risk” population before making a decision of whether to increase/not increase
treatment resulted in better outcomes in all models and for all values of initial SBP.
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10.2 Discussion and future work

The work presented in this thesis provides two data-driven theoretical frameworks to
study galaxy evolution. As discussed below, these frameworks can be used to gain
further insight in the physical processes that drive galaxy formation and evolution
and may affect galaxy structure - in particular, the roles of mergers, angular
momentum, the environment, AGN feedback and the contribution of progenitor bias.
Future research directions and explicit are also discussed. Moreover, the Monte Carlo
model to assess the efficacy of current hypertension treatment strategies is currently
being developed to assist clinical decision-making.

10.2.1 Galaxy structure and its link to dark matter halo properties

The models of the Re − Rh connection explored here can give constraints on galaxy
physics. The tight (σK . 0.2 dex) distribution of effective radius at fixed halo virial
radius suggests that models based on angular momentum conservation may not
work. However, angular momentum buildup may still be related to dark matter
through cold streams tracing the cosmic web filaments and gravitational torques in a
way that generates a tight distribution of angular momenta and sizes. These are
highly non-linear processes that can be resolved only via explicit hydrodynamical
simulations. The Re − Rh relation, in this model, is mediated by the galaxy’s angular
momentum. Observations of tight distributions of galaxy angular momenta at high
redshift may be interpreted in support of this model.

The concentration model, inspired by zoom-in hydrodynamical simulations, was
explored for galaxies with intermediate-to-high mass at z ∼ 0.1, and for MGs up to
z ∼ 3. This model, taken at face value, may entail a lower intrinsic scatter. However, I
find that this model struggles to reproduce (i) the average evolution of the effective
radius of MGs and (ii) the weak dependence of galaxy sizes on environment. If the
evolution for the physical radius (i.e., Re,3D) is weaker than that of Re due to color
gradients, as proposed by some groups for galaxies with lower Mstar , then the
concentration model might be more fundamental than the linear K13 model. Studies
of how color gradients affect the environmental dependence of Re,3D which are lacking
at the moment, have the potential to further discriminate between the two models.

The effective radii of ETGs are lower than the sizes of LTGs at fixed halo radius. A
pure merger scenario is a sufficient condition to reproduce this trend. However,
hydrodynamical simulations, where some spheroidal galaxies may form without
mergers, also loosely respect these constraints. A possible explanation for the
difference in the normalization of the Re − Rh relation is that the size of a galaxy is
more tightly bound to that of its halo at the redshift of formation than to the size of the



10.2. Discussion and future work 179

halo at the time of observation. The late evolution of ETGs, which is affected by minor
dry mergers, will however modify the Re − Rh relation onto which ETGs formed.
Instead, I show that a constant Re − Rh relation with a different normalisation for
ETGs and LTGs at the time of observation is sufficient to reproduce the size growth of
MGs. As a caveat, it is important to recall that typical measurement errors on Re may
alleviate the difference between the zero point of the Re − Rh for LTGs and ETGs, and
that the physical 3D sizes may be even closer due to line of sights projection.

It is worth stressing that this thesis provides a strong case for the joint use of
semi-empirical models and deep learning to achieve a better theoretical
understanding of galaxy formation. Without deep learning, the large and accurate
morphological catalogs used here would not be available. Consequently, a robust
determination of the size functions for different morphological types, used as a
constraint for the galaxy-halo connection throughout this work, would have not been
possible. It is fair to say that without the deep learning-based morphological catalog
by Domı́nguez Sánchez et al. (2018), some the theoretical results of this thesis would
have not been achieved.

A key takeaway of this work is that a model of the Re − Rh connection that accounts
for concentration explicitly does not provide a good fit to a few important
observations, namely the size evolution of MGs and the environmental dependence of
their sizes, as opposed to the K13 model which proved more successful with less
parameters. While the free parameters of the concentration model can be tweaked to
match the observed size distribution at low redshift, it is unclear what the benefit of
the extra concentration dependence is from the modelling point of view. The Occam’s
razor principle states that ”numquam ponenda est pluralitas sine necessitate”1 - I
believe that this principle leads us to favour the simpler K13 model over the
concentration model.

10.2.2 Predictive trends for the structural evolution of MGs

The semi-empirical model used in this thesis can generate clear predictive trends for
the structural evolution of MGs, which will be validated by the next generation of
observing facilities, such as the Nancy Grace Roman Space Telescope and Euclid. In
particular, different continuity scenarios between compact star forming and quenched
MGs are predicted by different models, which suggest a distinct role of the currently
proposed mechanisms affecting galaxy structure (i.e., mergers versus AGN feedback).
Thus, it is anticipated that the unprecedented observational determinations on the size
function of MGs from future observational works will provide new constraints on the
SMHM connection and, by extension, on models of galaxy evolution.

1”Plurality must never be assumed without necessity”, translation by the author of this thesis.
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On the other hand, it is found that the environmental dependence of galaxy sizes is a
function of the parameters regulating the high-mass slope δ and scatter σSMHM of the
SMHM. The exploration carried out in Chapter 7 revealed that an increased difference
between the average size of MGs in the cluster and the field should be detected at high
redshift, should existing models where a constant σSMHM but decreasing δ hold. This
trend would be further strengthened in some state-of-the-art semi-empirical models
where both a decreasing δ and an increasing σSMHM are predicted.

Moreover, “relic” MGs that formed at zpeak > 1.5 are predicted to survive as satellites
until the present day only in massive clusters with low number densities (
nrelics ≈ 10−8Mpc−3). However, their median size, Re ≈3 kpc, is larger than the usual
Re . 1.5 kpc adopted to select candidate relics for observational follow-ups, which
suggests that (i) either current observational campaigns may be targeting only a
fraction of relics, or (ii) MGs that infall at z > 1.5 had already undergone a significant
structural size growth.

Finally, the semi-empirical framework devised in this thesis can be applied to study
galaxies with lower stellar mass content at z > 0.1. In particular, progenitor bias
scenarios, as well as the environmental dependence of galaxy sizes, can be tested as a
function of the shape and scatter of the SMHM relation for Mstar . 1011M�.

The main strength of the semi-empirical approach adopted is its dependence on
data-driven relations that allow a quick exploration of the parameter space of the
model and enable predictions in large cosmological volumes. However, the
assumption of a unimodal Re − Rh at fixed morphology/star formation activity has
been proven only at z ∼ 0.1. Without secure high-redshift data that could further
prove this at earlier cosmic times, I opted to follow the Occam’s razor and avoid
introducing modelling ingredients that seem unnecessary at this time. All the
predictions for the structural growth of MGs (and in particular for compact MGs) at
high redshift are subject to this modelling uncertainty.

10.2.3 Stringent tests of galaxy formation models with deep learning

State-of-the-art simulations of galaxy formation and evolution have now achieved a
good agreement with observations. In particular, galaxy scaling relations and galaxy
morphologies naturally arise in a ΛCDM hierarchical Universe where baryons cool in
dark matter haloes, and also provide feedback that prevents further star formation.
The time is now ripe to push for a quantitative comparison between simulations and
observations that goes beyond simple global properties, such as stellar mass, size or
gas content. The next challenge is to refine models of galaxy evolution to reproduce (i)
the fine details of galaxy morphology and (ii) the spatially-resolved physical
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properties of galaxies, measured observationally using integral field spectroscopy
(IFS).

As shown in this thesis, deep learning enables an accurate and quantitative
comparison between simulations and observations. Although the current deep
learning model is only able to deal with single-band images, it can be expanded to
include multi-channel information, from photometry to IFS data cubes. An efficient
way of doing this would be to combine PixelCNN with a Normalising Flow (e.g.,
Papamakarios et al., 2018). Normalising Flows allow to model the relationship
between the different channels in an unsupervised fashion, while retaining an explicit
likelihood. The inclusion of multi-channel information will provide an even more
stringent test for models of galaxy formation.

Although the model was used only at z ≈ 0.05, it can be applied to use the small-scale
galaxy properties at any redshift as a probe of galaxy formation physics. Of particular
interest is the case of the AGORA suite of zoom-in cosmological simulations of Milky
Way-like galaxies with seven of the leading hydrodynamical codes (Kim et al., 2014).
Accurate comparisons between observations and the ongoing AGORA project will
help to clarify the differences that arise between different simulation methods —
including the way they implement subgrid recipies for star formation and feedback.
For example, the deep learning-based methodology proposed here can be applied to
help pin down the hotly debated origin and fate of massive star forming clumps (e.g.,
Bournaud et al., 2014; Hopkins et al., 2013a) which is thought to significantly depend
on stellar feedback models (e.g., Moody et al., 2014; Oklopčić et al., 2017). My deep
learning framework was envisaged in an aimed James Webb Space Telecope proposal
(PI: J. Primack)2 to discriminate between models of galaxy formation also based on
predictions for the clump population.

The spatially-resolved galaxy properties that can be inferred from IFS data (such as
local age, metallicity and velocity fields) provide an even stronger constraint for
galaxy formation models. The ongoing MAGPI survey (Foster et al., 2020) will provide
for the first time a sizeable IFS sample of galaxies in the late cosmic middle ages,
around four billion years ago, and at comparable physical resolution to IFS surveys of
the local Universe such as MaNGA (Bundy et al., 2015). A detailed comparison
between MAGPI data and mock observations from current hydrodynamical
simulations at the spaxel level will give the community great insight in the processes
that drive galaxy evolution and that reflect in the relationship between local galaxy
morphology, age, metallicity, velocity fields and in general all the quantities that can
be derived from IFS data cubes. The MAGPI collaboration has approved a proposal
led by me to perform such a comparison using deep learning methods.

2Unfortunately unsuccessful, but with very positive feedback.
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10.2.4 A smart treatment algorithm for hypertension

My pilot study on optimising hypertension management strategies served as the basis
for obtaining research grants from STFC, the Alan Turing Institute and the Global
Challenges Research Fund (PI: F. Shankar) to devise better and personalised treatment
algorithms. An app based on a refined version of my model (Augustin et al., 2021),
inclusive also of the related cardiovascular risk at any given time during treatment, is
currently being developed in collaboration with the startup Cranworth Medical LTD
to support clinical decision-making.

10.3 Take-home message

In summary,

1. I presented semi-empirical models of galaxy evolution based on the galaxy-dark
matter halo scaling relations. The simplest model, based on a linear Re − Rh

relation, was able to set constraints to be met by detailed physical models, which
were used to investigate the possible physical origin of the galaxy size-halo virial
radius connection. The model was also able to reproduce the strong size increase
of both star forming and quenched MGs, as well as the limited difference in the
sizes of MGs between field and clusters. Moreover, the model allowed to
produce clear forecasts for the population of MGs with regard to (i) the early
compact phases of MGs and (ii) the environmental dependence of galaxy sizes at
high redshift. These will be confirmed by upcoming, wider and deeper surveys.

2. Multiple hydrodynamical simulations are able to match observed scaling
relations using sometimes very different physical recipes. However, this does
not constitute a guarantee that simulations will agree with other observables.
For example, the small-scale details of galaxy structure are highly sensitive to
the subgrid physics and are thus strong probes of galaxy formation. I showed
that deep learning is a promising tool to accurately and quantitatively perform
stringent tests of hydrodynamical simulations of galaxy formation and evolution
based on the small-scale galaxy properties. As an example, a deep generative
neural network was used to show that both an improved resolution and
implementation of galaxy physics achieved in recent simulations lead to better
agreement with the observed relationship between galaxy morphology, structure
and star formation activity, although this is less true of simulated quenched
galaxies possibly because of a still too coarse resolution. Similar deep learning
methods where also multi-channel information is included can be adopted in the
future to constrain the physical processes (such as, e.g., stellar feedback) that
determine the local properties of galaxies. These methods may be deployed at
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the time of both calibrating and testing the next generation of simulations of
galaxy formation.

3. I demonstrated that Monte Carlo methods similar to those implemented in
semi-empirical models can be applied to model stepwise treatment strategies to
reduce systolic blood pressure in the presence of both measurement error and
physiological variation in response to treatment. These methods can be used to
investigate the efficacy of new treatment strategies to inform real-world clinical
trials.
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Appendix A

Details of the Rome SAM

As in many other SAMs (e.g. Guo et al., 2011), in the Rome SAM it is assumed that
each halo contains its ”fair share” of the cosmic abundance of baryons, that is
Mgas = fbar Mhalo with fbar = Ωbar/Ωm. At the start of the simulation it is assumed that
the gas is shock-heated at the virial temperature of the halo,

Tvir =
1
2

µmHV2
c

kB
(A.1)

and it reaches an equilibrium configuration following the DM density profile. Here µ

is the mean atomic weight, mH is the proton mass and kB the Boltzmann constant.
Efficient cooling processes must be at work in order to produce a protogalaxy at the
center of the potential well. In fact, as cooling proceeds pressure is removed and the
gas is conveyed to the centre of the host halo. Cooling is predicted to be faster in
denser gas haloes. Assuming spherical symmetry and a monothonically decreasing
gas density profile, the cooling radius rcool is the distance from the centre of the halo at
which the cooling time equals the age of the halo. Therefore, the mass of the cool gas
is that enclosed in rcool . As more cooling occurs, the cooling radius propagates
outwards and more gas is accreted onto the central protogalaxy.

In the Rome SAM, the star formation rate (SFR) of a galaxy is given by

SFR =
Mcold

εSFτd
. (A.2)

Here τd is the dynamical time of the disk, τd = Rd/Vd and εSF is a free parameter and
Mcold is the gas mass that has cooled. This scaling is roughly consistent with the
empirical evidence that the SFR surface density is proportional to the gas surface
density divided by the dynamical time of the disk,

Σ̇star ∝
Σgas

τd
. (A.3)



188 Chapter A. Details of the Rome SAM

Other SAMs (e.g., Lagos et al., 2018) differentiate between molecular and atomic gas,
as star formation is thought to occur in both gas phases (e.g., Krumholz, 2012). This is
not modelled in the Rome SAM.

Impulsive star formation may occur both during wet mergers and binary interactions
between galaxies residing in the same host halo. When such events occur,
gravitational torques trigger an inflow of gas in the central regions of the galaxy. The
destabilized gas will undergo further star formation adding up to the quiescent phase
and following the same SFR law, resulting in bursts that change the galaxy colour
(starburst galaxies are bluer) and enhance the total stellar mass of the galaxy.

Cooling in the most massive halos would produce very massive, star forming objects
in SAMs even at low redshift, which are not seen in observations. This “overcooling”
phenomenon is prevented in two ways in the Rome SAM via AGN feedback. Quasar
mode feedback is implemented as a blast wave following Lapi et al. (2005) and Menci
et al. (2008). According to this model, a large quantity of energy is released in the
central sub-parsec regions by the highly supersonic winds of the AGN, that compress
the interstellar medium generating a shock wave which expands throughout the
galaxy, clearing it up from cold gas. Star formation is thus halted, however the gas is
allowed to cool again at later times.

The AGN is thought to contribute to quenching galaxies also through the so-called
“radio mode” feedback, which consists in radio jet-driven heating of the intra-cluster
medium (Fabian, 2012). Unfortunately, the details of radio mode feedback are still
poorly understood. Although recent attempts to consistently model radio mode
feedback in SAMs have been carried out (Raouf et al., 2017), in the Rome SAM this is
implemented as a cut in halo mass, Mh,crit = 1013.5M�, above which cooling is
artificially suppressed (as in, e.g., Croton et al., 2006).

Star formation is strongly coupled to the hot and cold gas phases of the host halo.
Indeed, cold gas is consumed to form stars and supernova explosions and stellar
winds heat the ISM and lead to its chemical enrichment. Some of the gas may even be
expelled from the galaxy if its velocity is greater than the escape velocity, thus
preventing further star formation to occur. The energy provided by supernovae is
related to the number of supernovae coming from the stars formed in a given
timestep, which depends on the Initial Mass Function. The ISM is thus shocked to
high temperatures and blown to supersonic velocities, which may be higher than the
escape velocity of the galaxy. If this is the case, the ISM is pushed away from the
potential well of the galaxy and becomes part of the hot medium in the halo, which
may cool again in the next timesteps. The metallicity of the gas in the halo is modified
accordingly. This kind of feedback is considered efficient only for low mass galaxies
with virial velocity lower than ∼ 100km/s.
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Appendix B

Additional information on NNs

B.1 Gated PixelCNN

Gates are modules with learnable parameters that combine multiple inputs
non-linearly, and which are experimentally proven to aid learning. In Figure B.1, the
gate used in PixelCNNs is shown. The left path takes as input the vertical stack shown
in Figure 8.5 and processes it with convolutions, the outputs of which are then
multiplied with each other and fed to the next layer. The horizontal stack is modelled
following the path on the right. A 1x1 convolution connects the vertical and
horizontal stacks; this is the downward path in Figure 8.4.

FIGURE B.1: A gated PixelCNN module used in the PixelCNN architecture shown in
Figure 8.4. Figure taken from van den Oord et al. (2016a) with permission from the

author.
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Appendix C

Mock observations of Illustris and
Illustris TNG

Mock observations from the outputs of Illustris and IllustrisTNG were obtained by V.
Rodrı́guez-Gomez with a joint use of the radiative transfer code SKIRT (Baes et al.
2011, Camps and Baes 2015), the nebular modelling code MAPPINGS-III (Groves et al.,
2008) and the Bruzual and Charlot (2003) GALAXEV stellar population synthesis code.
The methodology is described in detail in Rodriguez-Gomez et al. (2019). Briefly, each
stellar particle in either simulation (which represents a coeval stellar population) is
modelled with GALAXEV for stellar particles older than 10 Myr, while younger stellar
particles are treated as a starbursting population with MAPPINGS-III. To model dust, it
is assumed that the diffuse dust content of each galaxy is traced by the star-forming
gas, that the dust-to-metal mass ratio is constant and equal to 0.3 (Camps et al., 2016),
and that dust is a mix of graphite grains, silicate grains, and polycyclic aromatic
hydrocarbons (Zubko et al., 2004). Full dust-inclusive radiative transfer is run only if
the fraction of star forming gas exceeds 1% of the total baryonic mass.

For a fair comparison with observation the same kind of observational effects that are
found in SDSS are included in the mocks, that is, the presence of a noisy sky
background and interlopers, as well as the convolution with the SDSS Point Spread
Function. Bottrell et al. (2017) and Bottrell et al. (2017) presented RealSim, an
algorithm that enables such procedure. RealSim was applied to the output of the
simulated images, inclusive of radiative transfer modelling, by Dr. C. Bottrell
(University of Victoria).

The structural properties of the mock-observed simulated galaxies, such as the
effective radius Re and the Sérsic index nser, are obtained with STATMORPH

(Rodriguez-Gomez et al., 2019). STATMORPH is a Python package1 for calculating
non-parametric morphological diagnostics of galaxy images, as well as fitting 2D

1Available at https://statmorph.readthedocs.io/en/latest/

https://statmorph.readthedocs.io/en/latest/
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Sérsic profiles. The stellar mass of galaxies is computed as the mass of all the bound
stellar particles within 30kpc from the galaxy center, while the star formation rates
(SFR) are computed within twice the half-mass radius of each galaxy.

Morphological information is also available for the mock galaxies in IllustrisTNG.
Using the Nair and Abraham (2010) catalog as training set, Huertas-Company et al.
(2019) trained an ensemble of CNNs in binary classification mode to distinguish LTGs
from ETGs; a finer within-class classification is also available. The mock images from
Illustris TNG galaxies are then classified as LTGs or ETGs using the same neural
networks. Huertas-Company et al. (2019) have found that the morphologically
classified Illustris TNG galaxies follow the same scaling relations of SDSS galaxies
almost everywhere. The issue of how exactly the morphologies of simulated galaxies
resemble observations is the subject of Chapter 8. Furthermore, for each of the
IllustrisTNG100 galaxies, P. Duckworth (University of St Andrews) computed the
specific angular momentum of the stellar particles following Duckworth et al. (2019).
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Appendix D

Further material on the SEM

D.1 The role of projection effects

In the SEM I link the halo size directly to the observable 2D effective radius
Re ≡ Re,2D, which is a projection of the true galaxy shape on the sky. However
perhaps the link between physical half-light radius Re,3D and Rh, which may be
different from Re, might be more physically motivated. Projection effects are also
likely to increase the intrinsic scatter in the size distributions.

To explore how projection effects affect my analysis of Illustris TNG, I have used the
catalog of optical morphologies and photometric mock observations of
IllustrisTNG100 presented in Huertas-Company et al. (2019) and I plot Re,maj from the
mock observations against the intrinsic 3D size Re,3D in Figure D.1. It can be seen that
the measured Re,maj for LTGs (ETGs) are only about ∼ 0.03 (0.06) dex higher (lower)
than their physical size, while the slope of the correlation is close to 1 in both cases.
Interestingly, the dispersion of the residuals of both the Re,maj − Re,3D relations are
quite small, of the order of ∼ 0.1 dex. This is even more striking in the light of the fact
that the estimate of Re,maj is prone to both projection effects (as galaxies are mock
observed along random lines of sight) and photometric errors. Based on the analysis
above and on the fact that galaxy morphologies in IllustrisTNG100 are reasonably
well reproduced I conclude that projection effects may not strongly bias the
comparison between observations and models that predict the 3D sizes of galaxies.

D.2 The fQuench(z) relation

In Figure D.2 I show the evolution of fQuench from eqs. 6.3 and 6.4 for µ = 1, 3, 5. It can
be seen that in models with a higher µ the halo mass scale above which galaxies are
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FIGURE D.1: Correlation between 3D physical size and the semimajor axis sizes from
statmorph (Rodriguez-Gomez et al. 2019, Huertas-Company et al. 2019) of galaxies
in Illustris TNG morphologically classified as ETGs and LTGs using the threshold
P(Late) = 0.5. The flag flag sersic has been enforced to ensure that only good
photometric Sérsic fits are used. Red downward triangles and blue upward triangles
indicate ETGs and LTGs respectively, while the solid cyan and salmon dashed lines
are the best linear fit to the relations. The inset shows the distribution of residuals
around the best fit for each relation, where the best fit gaussian to the residuals has

been superimposed in both cases.

statistically quenched evolves much faster with redshift, and is higher at earlier
cosmic times.

D.3 Definitions of compactness

In Figure D.3 I show the number density evolution of compact quenched and compact
starforming MGs, for different definitions of compactness, and for Model 1 of Chapter
6.
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Figure 6.4. Compactness is defined as in Cassata et al. (2011) (left), van der Wel et al.
(2014) (center left), Gargiulo et al. (2017) (center right) and Barro et al. (2013) (right).
Distinct definitions of compactness yield qualitatively very similar results, although

quantitatively different.

D.4 Compacts in models 3 and 4

Figure D.4 shows the evolution of the number density of MGs and the corresponding
predictions for the numbers of CQMGs and CSFMGs for Models 3 and 4. The results
are qualitatively (but not quantitatively) similar to Models 1 and 2 (see Figure 6.4). In
particular, most quenching models seem to disagree with the current data for
starforming galaxies.

Figure D.5 shows the results of applying the continuity equation Eq 6.7 to the nCSFMGs

extracted from Models 3 and 4 (compare with Figure 6.7= with quenching parameters
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FIGURE D.4: Left: The number density of starforming and quenched MGs (cyan and
red line respectively) for models 3 and 4. Solid, dashed and dotted lines are obtained
adopting µ = 1, 2, 4 respectively. Right: Prediction for the number density of compact
MGs for the two models and the different values of µ. The comparison data in the left
column are from the SDSS ’cmodel’ photometry at z=0.1, and Davidzon et al. (2017);
McLeod et al. (2020) (not corrected for the M/L as it was done in Figure 6.4, see Grylls

et al. 2020) at higher redshift.

µ = 2, 3 as a reference. Quenching parameters of µ = 2.5, 4 are shown in Figure D.6 for
Models 1 and 2 and in Figure D.7 for Models 3 and 4.

The trends and continuity scenarios are robust to the choice of SMHM relation, but
critically depend on σSMHM.

D.5 Using other size estimators

Recent works have explored different definitions for the size of a galaxy. For instance,
Mowla et al. (2019) and Miller et al. (2019) put forward the idea that the radius that
encloses 80% of the light, R80, might be more fundamental than Re. This claim is based
on the observation that (i) the size distributions of starforming and quenched galaxies
are almost identical when using R80 as opposed to the use of Re, and (ii) that the shape
and evolution of the R80 −Mstar is reminiscent of the SMHM relation. Although I
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FIGURE D.5: The number density of CSFMGs (cyan) and CQMGs (red) for Model 3
(top row) and Model 4 (bottom row). I adopt mu µ = 2 (dotted lines, left columns) and
µ = 3 (solid lines, right column). The number density of compact starforming galaxies
that would be obtained from continuity arguments (see eq. 6.7) is shown for different
values of the quenching timescale ∆Tquench. Increasingly larger values of ∆Tquench are
shown with increasing brightness. Model 4 disfavours a continuity scenario. In Model
3 continuity is broadly achieved if ∆Tquench ≈ 200− 400 Myr for µ = 2 and µ = 3

respectively. Compare to Figure 6.5.

make explicit mention of Re throughout this thesis, the SEM can be used to make
predictions for the size evolution and the number density evolution of compact MGs,
regardless of star formation activity, which may be interpreted in terms of R80, rather
than Re. In particular, the K13 model would read

R80 = AK,80Rh. (D.1)

Using the values of R80 for SDSS (see Section 4.4.2), I find that that for MGs
〈R80〉 ≈ 4.2〈Re〉, implying AK,80 ≈ 4.2AK.

Trujillo et al. (2020) and Chamba et al. (2020) used deep imaging of local galaxies to
define R1 as the radius that encloses the region within a physically-motivated mass
surface density of 1M� pc−2 (see also Sánchez Almeida 2020). Trujillo et al. (2020)
found that the scatter in the R1 −Mstar relation is of the order of only ≈ 0.06 dex
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FIGURE D.6: The number density of CSFMGs (cyan) and CQMGs (red) for Model 1
(top row) and Model 2 (bottom row) and for µ = 2.5 (dotted lines, left columns) and
µ = 4 (solid lines, right column). The number density of compact starforming galaxies
that would be obtained from continuity arguments (see eq. 6.7) is shown for different
values of the quenching timescale ∆Tquench. Increasingly larger values of ∆Tquench are
shown with increasing brightness. Model 4 disfavours a continuity scenario. In Model
3 continuity is broadly achieved if ∆Tquench ≈ 400− 900 Myr for µ = 2.5 and µ = 4

respectively. Compare to Figure 6.5.

across five orders of magnitude, including the regime of MGs for which the relation,
which is linear at lower masses, breaks. The R1 − Rh relation would read

R1 = AK,1Rh. (D.2)

Using the publicly available catalog of R1 measurements from Trujillo et al. (2020) and
Chamba et al. (2020) I find that 〈R1〉 ≈ 7.8〈Re〉, which implies that the normalization
of the K13 relation in eq. D.2, AK,1 ≈ 7.8AK. In Section 6.3.4 (Figure 6.3) I have shown
that using a constant value of AK works remarkably well to describe the evolution of
Re. Whether this will be the case also for R1 will be revealed by future deep
high-redshift observations.

Lastly, I would like to highlight the fact that different size definitions provide different
pieces of information: while Re is tight to the concentration of the light profile (see
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FIGURE D.7: The number density of CSFMGs (cyan) and CQMGs (red) for Model 3
(top row) and Model 4 (bottom row) and for µ = 2.5 (dotted lines, left columns) and
µ = 4 (solid lines, right column). The number density of compact starforming galaxies
that would be obtained from continuity arguments (see eq. 6.7) is shown for different
values of the quenching timescale ∆Tquench. Increasingly larger values of ∆Tquench are
shown with increasing brightness. Model 4 disfavours a continuity scenario. In Model
3 continuity is broadly achieved if ∆Tquench ≈ 400− 900 Myr for µ = 2.5 and µ = 4

respectively. Compare to Figure 6.5.

Chamba et al. 2020), R80 probes also the outer regions of the galaxy. Likewise, R1 has
been proposed based on the gas mass density threshold required to initiate star
formation. I believe that this does not necessarily make a definition of size more
fundamental than another. Thus, it is possible that distinct definitions of galaxy sizes
may be related to different physical processes generated by distinct galaxy-halo
coevolution paths.
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Appendix E

Likelihood versus LLR

In Chapter 8 I have extensively used the fact that the LLR is a good metric to compare
the morphology of observed and simulated galaxies. Conversely, in Section 8.4 I
argued that the likelihood alone may not be as good as a metric. The reliabilty of the
likelihood of DGMs for OoD detection tasks has been questioned in the literature. In
particular, Serrà et al. (2019) found that the likelihood a DGM computed for a test
image is a function of the image complexity with contributions from both the
background and the subject. Moreover, it has also been found that the image
background can have a significant confounding effect on the likelihood that the
network computes. For example, Ren et al. (2019) showed that the likelihood
correlates with the number of pixels that have a value of zero. By combining the
likelihood of two DGMs trained on datasets that share a similar background, Ren et al.
showed that the contribution of the subject of the image may be isolated. Here I take a
step forward and try to overcome the issues highlighted in Ren et al. (2019) and Serrà
et al. (2019) by combining the likelihood of two DGMs in a way that factors out both
the contribution of the background and that marginalizes over the trivial properties of
galaxy light profiles.

E.1 Training

The likelihood distributions of training and test sets for both models are shown in
Figure E.1. The good agreement between the training and test sets is indicative of the
convergence of the models.



202 Chapter E. Likelihood versus LLR

3000 3250 3500 3750 4000 4250 4500
logp SDSS

0.000

0.001

0.002

0.003

0.004

0.005

#

SDSS - train
SDSS - test

3000 3500 4000 4500
logp sersic

sersic - train
sersic - test

FIGURE E.1: Left: The likelihood distribution of the SDSS training set (black thin line)
and test set (orange thick line). Right: The likelihood distribution of the training (black)
and test (green) sets for the best Sérsic models. The overlap between the distributions

shows that the model has converged.
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FIGURE E.2: Likelihood distributions of SDSS (solid orange lines), TNG100 (teal
dashed lines), TNG50 (magenta lines), Illustris (dotted red lines) and the best Sérsic
fits (dot-dashed green lines) according to the pθSDSS (left) and the pθsersic (right) models.
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FIGURE E.3: Typical galaxies at low (left panel) medium (central panel) and high (right
panel) likelihood. The values of the likelihood are reported in the title of each panel.
The first row of each panel shows SDSS galaxies, the second TNG50 galaxies, and
the third and fourth TNG100 and Illustris galaxies. It can be seen that images with
a lower likelihood tend to be those of more complex, larger galaxies, while smaller
galaxies have the highest contribution to the likelihood from the sky background. The
high contribution from the background makes the likelihood unsuitable as a metric.
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FIGURE E.4: (a):A galaxy from IllustrisTNG that was assigned a sky patch with both
a large and a small Milky Way star by RealSim. (b): The pixel-wise likelihood of the
pθSDSS model. (c): The pixel-wise LLR for (a). The net contribution of the pure sky
noise is zero, while the galaxy contributes positively to the LLR. The spikes and edges
of the larger star as well as the smaller star contribute negatively. The contribution
of the larger star itself is mostly null. (d): An SDSS galaxy in an empty background.
(e): This galaxy has a lower likelihood compared to the rest of the sky. (f): The galaxy

gives the largest positive contribution to the LLR.

E.2 Robustness of the methodology

The likelihood distributions of our datasets for both the pθSDSS and the pθsersic models
are shown in Figure E.2 . It can be seen that in the former case the distributions of
simulations are displaced at slightly lower likelihoods and feature a higher variance
compared to SDSS. This is less severe for both the IllustrisTNG realizations, and more
substantial for Illustris. Interestingly, the best Sérsic fits appear to peak at a higher
likelihood than all the other datasets, including SDSS. This fact is suggestive that
simpler images have a higher likelihood compared to more complex samples,
including the training set (SDSS in this case), since the best Sérsic fits are simple,
smooth objects. To further explore this hypothesis, already formulated in Serrà et al.
(2019), in Figure E.3 Ishow random samples of SDSS and simulated galaxies in three
narrow bins of likelihood. It is readily appreciable that indeed more extended galaxies
with a complex structure and the presence of interlopers dominate the low likelihood
tail of the distributions, while smaller, smoother objects are located at very high
likelihood values. Figure E.3 raises two important issues that undermine the use of the
likelihood alone to compare simulations and observations. I discuss them in the
following.

E.2.1 The role of the sky background

First of all, the fact that large and small galaxies are at the opposite ends of the
likelihood spectrum is suggestive that the number of sky pixels in an image is an



204 Chapter E. Likelihood versus LLR

important predictor of the likelihood. This is not really a surprise, since the overall
log-likelihood of an image is the sum of that of all pixels, but it is certainly not
desirable that the sky background plays such an important role, given that what it is
of interest is, of course, only the structure of the galaxy.

In Section 8.4 I have hypothesized that the pθSDSS and the pθsersic models are able to
capture the background equally well, and therefore their LLR should isolate the
contribution of the galaxy alone. I show that this is indeed the case in the third column
of Figure E.4, where most of the sky pixels have an LLR close to zero, whereas in the
middle panels of Figure E.4 is shown that the sky background gives the most positive
contribution to the likelihood.

E.2.1.1 The sky generates variance in the LLR

Figure E.4 reveals also that bright interlopers (first row) may still contribute
significantly to the LLR. It is important to recall that Iimplement observational realism
on simulations by assigning a simulated galaxy to a random SDSS field. Given the
potential presence of interlopers in that field, I expect this to be a process that
generates some variance in the LLR of a given galaxy cutout. Therefore, the LLR of
any single object should not be strictly interpreted as a measure of its quality
compared to observations. However, the mean LLR of selected subpopulations can
still be robustly compared.
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Vidal Pérez, Marko Stalevski, and Sander Valcke. Efficient Three-dimensional NLTE
Dust Radiative Transfer with SKIRT. , 196(2):22, Oct 2011. .

Maarten Baes, Angelos Nersesian, Viviana Casasola, Simone Bianchi, Letizia P.
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C. Cortijo-Ferrero, R. López Fernández, A. L. de Amorim, E. A. D. Lacerda, N. Vale
Asari, and S. F. Sánchez. The spatially resolved star formation history of CALIFA
galaxies. Cosmic time scales. , 608:A27, December 2017. .



222 REFERENCES

A. Gargiulo, P. Saracco, S. Tamburri, I. Lonoce, and F. Ciocca. Ultramassive dense
early-type galaxies: Velocity dispersions and number density evolution since z =
1.6. , 592:A132, August 2016. .

A. Gargiulo, M. Bolzonella, M. Scodeggio, J. Krywult, G. De Lucia, L. Guzzo,
B. Garilli, B. R. Granett, S. de la Torre, U. Abbas, C. Adami, S. Arnouts, D. Bottini,
A. Cappi, O. Cucciati, I. Davidzon, P. Franzetti, A. Fritz, C. Haines, A. J. Hawken,
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Rüdiger Pakmor and Volker Springel. Simulations of magnetic fields in isolated disc
galaxies. , 432(1):176–193, June 2013. .
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B. Magnelli, T. Wang, H. Aussel, E. Daddi, S. Juneau, X. Shu, M. T. Sargent, V. Buat,
S. M. Faber, H. C. Ferguson, M. Giavalisco, A. M. Koekemoer, G. Magdis, G. E.
Morrison, C. Papovich, P. Santini, and D. Scott. The Herschel view of the dominant
mode of galaxy growth from z = 4 to the present day. , 575:A74, March 2015. .

Diana Scognamiglio, Crescenzo Tortora, Marilena Spavone, Chiara Spiniello, Nicola R.
Napolitano, Giuseppe D’Ago, Francesco La Barbera, Fedor Getman, Nivya Roy,
Maria Angela Raj, Mario Radovich, Massimo Brescia, Stefano Cavuoti, Léon V. E.
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R. S. Somerville and R. Davé. Physical Models of Galaxy Formation in a Cosmological
Framework. , 53:51–113, August 2015. .



250 REFERENCES

R. S. Somerville, P. Behroozi, V. Pandya, A. Dekel, S. M. Faber, A. Fontana, A. M.
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Napolitano, M. Spavone, D. Scognamiglio, M. Arnaboldi, A. Gallazzi, L. Hunt,
S. Moehler, M. Radovich, and S. Zibetti. INSPIRE: INvestigating Stellar Population
In RElics – I. Survey presentation and pilot program. arXiv e-prints, art.
arXiv:2011.05347, November 2020.

Volker Springel. E pur si muove: Galilean-invariant cosmological hydrodynamical
simulations on a moving mesh. , 401(2):791–851, Jan 2010. .

Volker Springel and Lars Hernquist. Cosmological smoothed particle hydrodynamics
simulations: a hybrid multiphase model for star formation. , 339(2):289–311,
February 2003. .

https://doi.org/10.1093/mnras/stw1793


REFERENCES 251

Volker Springel, Simon D. M. White, Giuseppe Tormen, and Guinevere Kauffmann.
Populating a cluster of galaxies – I. Results at z = 0. Monthly Notices of the Royal
Astronomical Society, 328(3):726–750, 12 2001. ISSN 0035-8711. . URL
https://doi.org/10.1046/j.1365-8711.2001.04912.x.

Volker Springel, Simon D. M. White, Adrian Jenkins, Carlos S. Frenk, Naoki Yoshida,
Liang Gao, Julio Navarro, Robert Thacker, Darren Croton, John Helly, John A.
Peacock, Shaun Cole, Peter Thomas, Hugh Couchman, August Evrard, Jörg
Colberg, and Frazer Pearce. Simulations of the formation, evolution and clustering
of galaxies and quasars. , 435(7042):629–636, June 2005. .
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