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Abstract—The efficiency of link adaptation in wireless com-
munications relies greatly on the accuracy of channel knowl-
edge and transmission mode selection. In this paper, a novel
deep learning based link adaptation framework is proposed for
the orthogonal frequency-division multiplexing (OFDM) systems
with compressed-sensing-assisted index modulation, termed as
OFDM-CSIM, communicating over millimeter-wave (mmWave)
channels. To achieve link adaptation, a novel multi-layer sparse
Bayesian learning (SBL) algorithm is proposed for accurately and
instantaneously providing the required channel state information.
Meanwhile, a deep neural networks (DNN)-assisted adaptive
modulation algorithm is proposed to choose the best possible
transmission mode to maximize the achievable throughput. Sim-
ulation results show that the proposed multi-layer SBL algorithm
enables more accurate channel estimation than the conventional
techniques. The DNN-based adaptive modulator is capable of
achieving a higher throughput than the learning-assisted solution
based on the k nearest neighbor (k-NN) algorithm, and also
the classic average signal-to-noise ratio (SNR)-based solutions.
Moreover, analysis shows that both the multi-layer SBL algorithm
and the DNN-assisted adaptive modulator achieve better perfor-
mance than their respective conventional counterparts while at
a significantly lower computational complexity cost.

Index Terms—OFDM, mmWave, sparse Bayesian learning,
channel estimation, adaptive modulation, machine learning, neu-
ral networks.

I. INTRODUCTION

M ILLIMETER-wave (mmWave) communication has
been actively studied and considered for the stan-

dardization in the next generation wireless systems, owing
to its potential to meet the continued growing wireless ca-
pacity demands in the numerous wireless applications [1].
Due to its short wavelength, which ranges from 1 mm to
10 mm, mmWave signals suffer from substantial path-loss
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and shadowing losses [2]. However, the mmWave’s short
wavelength allows to implement a large number of antennas
in a relatively small area on both transmitter and receiver
sides. Consequently, advanced beamforming techniques can
be utilized for overcoming the challenges generated by the
propagation characteristics [3]. Furthermore, given the large
available bandwidth at mmWave frequencies, the mmWave
channels are usually frequency selective fading channels [1, 2].
Correspondingly, OFDM-based techniques have been con-
sidered as the typical signalling techniques for operation
with mmWave communications, according to the 5G New
Radio [4, 5].

On the other hand, index modulation (IM) has been intro-
duced as a promising modulation scheme to multi-carrier sys-
tems including OFDM, as it is capable of providing additional
degrees of freedom for data modulation, and the flexibility
to strike a good trade-off between spectral efficiency (SE)
and energy efficiency (EE) [6, 7]. In literature, OFDM with
subcarrier IM (OFDM-IM) was proposed in [6], which was
further developed in [8–12]. In OFDM-IM [9], information
is conveyed by both the conventional amplitude phase mod-
ulation (APM) and the indices of subcarriers. In contrast to
the conventional OFDM, OFDM-IM can achieve better error
performance [9], and also attain a more flexible design trade-
off among SE, EE and complexity [6, 13]. The authors of
[14] proposed two enhanced OFDM-IM schemes. One scheme
extended IM to a new dimension by employing both in-
phase and quadrature components, which allows to further
increase spectral efficiency. With the aid of linear constellation
precoding, the other scheme spreads information symbols over
two adjacent active subcarriers to convey information symbols
over two subcarriers, which achieves additional diversity gain.
Furthermore, by assuming the same number of IM bits, the
scheme in [15] proposes to utilize different constellation sizes
on different subcarriers, which further increases the flexibility
of IM. Moreover, to improve the flexibility of OFDM-IM,
the compressed sensing (CS) concept can be introduced to
form a virtual index space for IM operation [13], forming the
so-called OFDM with CS-assisted IM (OFDM-CSIM). This
arrangement enables OFDM-IM to benefit from CS for further
improving the trade-off between SE and EE [13, 16]. Addi-
tionally, by introducing appropriate interleaving, the OFDM-
CSIM is also capable of attaining an improved performance,
when compared with the OFDM-IM [13, 17].
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It is widely acknowledged that the time-varying nature
of wireless channels is among the most challenging aspects
of wireless system design [2]. To mitigate its effect, link
adaptation was proposed as a powerful technique to optimize
the SE [17]. Conventionally, link adaptation is achieved via
adaptive modulation and coding (AMC) [18], which selects
the appropriate modulation order and coding rate to maximize
throughput, while maintaining a required reliability [18–21].
In the conventional link adaptation, transmission modes are
determined according to the thresholds specified based on
the channel statistics [22–24]. However, the thresholds in the
conventional link adaptation may not be optimal, due to the
various impairments imposed by wireless systems, including
the time-varying channels, the non-linearity of amplifiers, the
transmission frequency instability, etc. [25]. By contrast, ma-
chine learning (ML)-based approaches treat the physical layer
as the transfer between system state and data observations [26],
which have the potential to overcome the challenges faced by
the conventional link adaptation techniques. Owing to this, the
application of ML for link adaptation in wireless communica-
tions has drawn good attention [20, 23, 27]. For example, a
supervised learning algorithm was proposed in [17, 20], where
the observation data correlated with the conditions are directly
used to select the transmission modes.

Link adaptation can be based on the signal-to-noise ratio
(SNR) information in both the conventional and learning-
aided methods. Hence, accurate estimation of SNR is im-
portant for the implementation of link adaptation in wireless
communications. To achieve this, a high-performance channel
estimator is critical for achieving good performance [20].
Specially in mmWave communications, the spatial sparsity can
be effectively exploited to estimate the channel coefficients
of the significant spatial paths. Based on this observation, the
sparse mmWave channels can be estimated with a considerably
decreased pilot overhead using the CS-based methods, such
as the sparse Bayesian learning (SBL) [28–30], orthogonal
matching pursuit (OMP) [31, 32], approximate message pass-
ing (AMP) [33], etc. For the SBL and OMP methods, the
angles of arrival (AoA) and angles of departure (AoD) spaces
are divided into a finite number of grid-points to obtain
the beamspace representation of mmWave channels. In [34],
the mmwave channel estimation problem was formulated as
a structured sparse signal recovery problem with a priori
channel knowledge determined by the channel characteristics.
To further improve the performance of the SBL-based chan-
nel estimation, the authors of [29] developed an expectation
maximization (EM)-based SBL channel estimator. However,
it has high computational complexity, which is challenging,
especially when a high angular resolution is needed. By
contrast, the AMP approach applies the quadratic and Taylor
series approximations to loopy the belief propagation and
achieves low complexity channel estimation [33]. Furthermore,
based on the original AMP, a generalized AMP (GAMP)
algorithm was proposed in [35] to reconstruct signals from
nonlinear measurements. The studies show that although the
Gaussian prior and likelihood case are not sufficient for dealing
directly with the sparse signal recovery problem, it is effective
to use them to replace the inversion step of the standard

EM-based implementation of the SBL [36]. Thus, a GAMP-
based low complexity SBL algorithm was proposed in [36],
which can address the convergence limitations of the AMP,
while reducing the complexity of the SBL. Nevertheless,
for the link adaptation over time-varying wireless channels,
not only accurate but also low-complexity channel estimation
techniques are demanded, so that the estimated SNR can be
fed back to transmitter in a timely fashion to achieve the best
possible performance.

Given the above background, in this contribution, the ben-
efits of adaptive transmission and ML are amalgamated for
the proposed OFDM-CSIM system. In order to realize the full
potential of adaptive systems, accurate and efficient estimation
of channel state information (CSI) is critical. Hence, a low-
complexity SBL-based channel estimation method is proposed
for the adaptive OFDM-CSIM system communicating over
mmWave channels. Explicitly, we first introduce the OFDM-
CSIM system, which takes the advantages of both IM and CS,
in order to attain a good trade-off between SE and EE. Then,
a multi-layer SBL algorithm is developed for the OFDM-
CSIM system operated in mmWave channels. Finally, the
novel adaptive OFDM-CSIM system employing the proposed
multi-layer SBL channel channel estimation is investigated, in
conjunction with the conventional and ML-assisted adaptation,
respectively. In our previous research [17], perfect channel
estimation was assumed and the supervised-learning classifier
was employed to obtain a statistically-consistent solution. To
further improve the system performance, in this paper, a
novel DNN-based multi-label classifier is proposed for the
OFDM-CSIM system. Moreover, we consider the practical
scenario, where the CSI is estimated by an enhanced SBL
algorithm with low complexity, so that the performance of
link adaptation can be guaranteed. To summarize, our novel
contributions are as follows.

• We intrinsically amalgamate the concept of adaptive mod-
ulation with the OFDM-CSIM system communicating
over mmWave channels. In our adaptive OFDM-CSIM
system, the modulation order and the number of active
subcarriers are adaptively adjusted according to the com-
munication conditions, with the objective of maximizing
the system’s throughput at a constrained target bit error
ratio (BER). The main advantage of our proposed work,
as compared to the state-of-the-art ones, such as that in
[18, 22], is the attainable high flexibility in system design,
which allows to strike a flexible trade-off among SE, EE
and complexity.

• To realize the potential of the proposed adaptive system,
we propose a multi-layer SBL channel estimation method
for our OFDM-CSIM mmWave system, which has lower
computational complexity than the conventional SBL-
based algorithm. In addition, the proposed multi-layer
SBL channel estimation method enables high degrees of
freedom in system design, allowing for attaining flexible
trade-off between estimation performance and computa-
tional complexity.

• We conceive a novel DNN-based multi-label classifier
for the proposed adaptive OFDM-CSIM system, which
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is shown to be capable of choosing better transmis-
sion modes than the conventional and also the k-NN-
based adaptive schemes. After proper training, the DNN-
based classifier enables a significant improvement of
throughput, while maintaining the required target BER
performance.

The rest of the paper is organized as follows. Section II
introduces the concept of the OFDM-CSIM system employed
for mmWave communications along with the system model.
In Section III, the proposed multi-layer SBL approach is
introduced, along with the Bayesian Cramr-Rao lower bound
(BCRB) analysis to characterize the efficiency of the proposed
channel estimation schemes. In Section IV, both the con-
ventional adaptive modulation and the ML-assisted adaptive
modulation are addressed. In Section V, the simulation results
are presented and analyzed. Finally, the conclusions and some
suggestions for future research are provided in Section VI.

Notations: Lower-case boldface letter aaa and upper-case
boldface letter AAA denote vectors and matrices, respectively;
[·]i denotes the i-th element of a vector; (·)T and (·)H express
transpose and conjugate transpose operations, respectively; Λ
denotes complex signal symbol; CA×B is the set of (A×B)-
element in the complex field; {·}ba is a sequence with the
indices from a to b; E[·] is the expectation operator; diag(aaa)
expresses a diagonal matrix formed from vector aaa; Tr(·) and
| · | represent trace and absolute value, respectively;

(
n
k

)
is the

combination of the selection of k items from a collection of
n items; ‖·‖F is the Frobenius norm; 〈·〉 expresses the inner
product operation; b·c returns the largest integer less than the
value.

II. SYSTEM MODEL

In this section, we introduce the adaptive OFDM-CSIM
system operating in mmWave environment.

Fig. 1 shows the block diagram of the transmitter with
hybrid analog and digital precoder. The information bit se-
quence input to the transmitter is firstly split into G groups
as shown in Fig. 1. The bits for each group is further split
into multiple parts, with one part used to implement the IM
iiig , whilst the other part is used to form the amplitude-phase
modulation (APM) symbols, such as PSK or QAM, to form
sssg . Afterwards, as shown in Fig. 1, a virtual1 OFDM block
XXX is generated by combining the outputs of the IMs and
QAM symbols. Then this virtual OFDM block is compressed
from the virtual domain (high dimension) to the frequency
domain (low dimension) with the aid of a CS matrix AAACS.
Then, a digital precoder is applied to process the transmit
OFDM block. Then the signals are transformed to the time
domain by imposing the inverse fast Fourier transforms (IFFT)
followed by inserting the cyclic prefixes (CP). Finally, as
shown in Fig. 1, analog beamforming is implemented before
the signals are transmitted from the transmit antennas. As
shown in Fig. 1, an adaptive control part is needed to achieve
adaptive modulation, for which the receiver uses the signal-
to-noise ratio (SNR) obtained from multi-layer SBL algorithm

1Virtual domain and frequency domain are used to differentiate the signal
before and after the CS [17].

to select a most suitable transmission mode so as to maximize
the achievable SE of the system. The details of the transmitter
will be detailed in Section IV.

The block diagram of the receiver is shown in Fig. 2, where
the received signal is firstly processed by an analog combiner.
Then, after CP removal and the fast Fourier transform (FFT)
processing, the signal is input to the digital combiner in the
frequency domain. The compressed OFDM blocks YYY m, given
by the outputs of the digital combiner, are divided into several
sub-blocks YYY g for signal detection. Let us describe in detail
the operations in the transmitter and receiver in Fig. 1 and
Fig. 2, respectively.

A. Virtual Domain Processing

Consider an OFDM-based mmWave system employing Nt

transmit antennas with NRF
t RF chains and Nr receive anten-

nas with NRF
r RF chains, which supports Ns data streams on

each subcarrier. For each data stream, the input bit sequence of
length (p1 + p2)G bits is firstly split into G groups with each
group having (p1 +p2) bits in the virtual domain. Within each
group, p1 bits are used to select the active virtual indices for
transmitting the QAM symbols, which convey in total p2 bits
per symbol period. We assume that there are a total Nv number
of indices in the virtual domain and each group occupies Ng

indices, hence Nv = GNg. Then, based on IM, in each virtual
group, Na indices are selected from the Ng to modulate the
Na QAM symbols. Thus p1 =

⌊
log2

[(
Ng

Na

)]⌋
. After the IM,

the active virtual indices of the G groups are represented by
a set as

Sindex = {iii1, iii2, . . . , iiig, . . . , iiiG}, (1)

for the Ns data streams, where iiig ∈ ZNg×1 is an integer matrix
containing only ‘0’ and ‘1’ elements, with ‘1’ denoting an
active index and ‘0’ denoting an inactive index. Hence, there
are only Na ‘1’s in iiig. Then, in each virtual group, p2 =
Na(log2(Q)) bits are used to generate the APM symbols to
be associated with the active indices, where Q is the order of
the APM. The APM symbols of G groups are expressed by a
set as

SAPM = {sss1, sss2, . . . , sssg, . . . , sssG}, (2)

where sssg = [sssg,1, . . . , sssg,Na ]T ∈ CNa×1 contains the APM
symbols of the g-th group, which are conveyed by the virtual
active indices of the g-th group.

Afterwards, the virtual OFDM block is generated by map-
ping the G groups of the APM symbols in (2) to the active
virtual indices in (1). Specifically, the APM symbols in sssg

are mapped to the virtual active indices represented by the
‘1’ elements in iiig. The resultant index modulated symbol of
group g can be expressed as

xxxg,ns = [0, . . . , sg,1, . . . , 0, . . . , sg,Na , . . . , 0]T, (3)

where xxxg,ns
∈ CNg×1, ns = 1, · · · , Ns, Ns is the number

of data streams transmitted in spatial domain. Owing to the
employment of transmit antenna array, we assume that each
active subcarrier conveys Ns APM symbols and each data
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Fig. 1. Block diagram of the adaptive modulation-aided OFDM-CSIM transmitter with hybrid precoder.

stream is able to activate different virtual subcarriers of a
group. Finally, the virtual OFDM block can be expressed as

XXXVD = [x̂xx1, . . . , x̂xxg, . . . , x̂xxG]T ∈ CNv×Ns , (4)

where x̂xxg = [xxxg,1, . . . ,xxxg,Ns
]T ∈ CNs×Ng . Based on the

above discussion, there are in total NsNaG QAM symbols
transmitted in one OFDM symbol period. Note that, the
numbers of active virtual indices in different groups can be
different. However, in this paper, we assume a fixed number
of active virtual indices in each group for simplicity.

B. Compressed Sensing

As shown in Fig. 1, the CS measurement matrix AAACS ∈
CMf×Nv is applied to compress XXXVD from Nv-dimension in
the virtual domain to Mf -dimension in the frequency domain,
where Mf < Nv. Hence, the matrix XXXVD should be a sparse
matrix in order to benefit from the CS. The compressed matrix
in the frequency domain can be expressed as

SSSF = AAACSXXXVD, (5)

where SSSF ∈ CMf×Ns , SSSF = [sss[1], . . . , sss[c], . . . , sss[Mf ]]
T,

sss[c] ∈ CNs×1 contains the Ns data symbols transmitted by
the c-th subcarrier.

Note that in the considered OFDM-CSIM system, the Nv

virtual indices are divided into G groups, with each group
containing Ng indices and Nv = NgG. When compared
with the conventional IM system, which uses no virtual
domain operations, i.e. Mf = Nv, a higher throughput can be
achieved by the OFDM-CSIM system [13, 17]. Furthermore,
in comparison with the conventional OFDM-IM system, the
improved throughput of OFDM-CSIM system is obtained
without consuming additional power or bandwidth.

However, the sparse matrix XXXVD should be carefully de-
signed to satisfy the strict sparsity level of Na, i.e., Na � Nv,
in order to achieve a good recovery performance at the receiver
side. Moreover, the CS measurement matrix AAACS plays an

important role when recovery performance is considered,
which should be designed to satisfy the mutual incoherence
property (MIP) [13]. In general, the columns of AAACS should
be as uncorrelated as possible. According to [13], AAACS can be
generated by constructing a sub-matrix from an orthonormal
dictionary, which can guarantee the efficiency of information
recovery [13]. The quality of AAACS can be evaluated by its
mutual coherence µ(AAACS), given as:

µ(AAACS) = max
i 6=j

|〈AAACS,i,AAACS,j〉|
‖AAACS,i‖F ‖AAACS,j‖F

, (6)

where i and j indicate the different columns in AAACS. To
provide a good recovery performance, µ(AAACS) should satisfy
the following specific conditions [13]:√

Mf −Nv

Nv(Mf − 1)
≤ µ(AAACS) ≤ 1

2Na − 1
. (7)

C. Frequency and Time Domain Processing

As shown in Fig. 1, the Ns transmitted symbols sss[c] ∈
CNs×1 on the c-th subcarrier, c = 1, . . . ,Mf , are precoded by
a digital precoder FFFD[c] ∈ CNRF

t ×Ns . Then, the Mf symbols
corresponding to one data stream are transformed to the time-
domain using the Mf -point IFFTs. After adding the CP and
processing by analog precoder FFFRF ∈ CNt×NRFt common
to all subcarriers, the final signal transmitted on the c-th
subcarrier can be represented in a baseband equivalent form
as

uuu[c] = FFFRFFFFD[c]sss[c] = FFF [c]sss[c], (8)

where E
[
||sss[c]||2

]
= Ns, FFF [c] = FFFRFFFFD[c]. Since the analog

part of the hybrid beamforming is implemented by analog
phase shifters, the elements in FFFRF are constrained with
constant magnitude. The transmitted power is constrained by
FFFD[c] so that ‖FFFRFFFFD[c]‖2F = Ns. Assuming a block-fading
channel model, the received signal from the c-th subcarrier is:

yyy[c] = HHH[c]FFFRFFFFD[c]sss[c] +nnn[c], c = 1, 2, · · · ,Mf , (9)
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whereHHH[c] ∈ CNr×Nt is the mmWave channel matrix between
transmitter and receiver, which will be presented later in this
section, and nnn[c] ∼ CN (0, σ2INs) is the vector of additive
white Gaussian noise (AWGN).

At the receiver side shown in Fig. 2, the received signal
of (9) is first processed by an analog combiner WWWRF ∈
CNr×Nr

RF , which is identical for all subcarriers with the
elements of WWWRF constrained as in the analog precoder.
Afterwards, the cyclic prefix is removed and Mf -point fast
Fourier transform (FFT) is applied to recover the frequency
domain signals. Then, the receiver applies the digital com-
biners WWWD[c] ∈ CNr

RF×Ns to generate the decision variables
represented as:

ŷyy[c] = WWWH[c]HHH[c]FFF [c]sss[c] +WWWH[c]nnn[c], (10)

where c = 1, 2, · · · ,Mf , and WWW [c] = WWWRFWWWD[c].
Based on (10), the Ns decision variables are grouped

following the grouping at transmit, forming ŷyyg ∈ CNg×Ns

for the g-th group. Then, the joint maximum likelihood (JML)
detectors are employed to recover the transmitted information,
which can be represented as:

X̂XXVD,g = arg min ‖ŷyyg − ĤHHgAAAcsX̃XXVD,g‖2F, (11)

where g = 1, 2, · · · , G, and X̃XXVD,g is a test matrix for the
Ns(p1 + p2) bits transmitted by the g-th group of subcarriers,
ĤHHg is the resulted channels of the g-th group of subcarriers,
with its elements from WWWH[c]HHH[c]FFF [c], c = 1, 2, · · · ,Mf .

D. mmWave Channel

Using the clustered channel model, the channel matrix HHH
in (9), with Ncl clusters and Nray rays in each cluster, can be
expressed as:

HHHt = τ

Ncl∑
l=1

Nray∑
i=1

αl,ivvvr(θ
r
l,i, φ

r
l,i)vvv

H
t (θt

l,i, φ
t
l,i) (12)

where τ =
√

NtNr

NclNray
is a normalization factor, ψl is propor-

tional to the phase shift of each cluster, αl,i is the complex
channel gain of i-th ray of the l-th cluster, θr

l,i and φr
l,i are

the elevation angle and azimuth angle of arrival, respectively,
while θt

l,i and φt
l,i are the elevation angle and azimuth angle

of departure. vvvr(·) and vvvt(·) express respectively the array
manifold vectors of the transmitter antenna and receiver an-
tenna arrays, which include all the spatial characteristics of
the arrays [17]. Equivalently, the channel for each subcarrier
can be expressed as [4, 37, 38]:

HHH[c] = τ

Ncl∑
l=1

Nray∑
i=1

αl,ivvvr(θ
r
l,i, φ

r
l,i)vvv

H
t (θt

l,i, φ
t
l,i)e

−j2πψl c
Mf

(13)
The channel matrix of (13) per subcarrier can also be written

as:
HHH[c] = VVV rdiag(ααα[c])VVV H

t , (14)

where VVV r ∈ CNr×NclNray and VVV t ∈ CNt×NclNray include the
array manifold vectors of the receiver and transmitter arrays,
respectively, ααα[c] ∈ C(NclNray)×(NclNray) is a diagonal matrix
with the diagonal elements given by {αl,i}.

For example, when the uniform linear arrays (ULA) with
N elements is considered [17], the array manifold vector is

vvvULA(θ) =[vvvULA,0(θ), · · · , vvvULA,N−1(θ)]T,

[vvvULA,n(θ)] =ej(n−
N−1

2 )dz
2π
λ cos(θ), n = 0, · · · , N − 1,

(15)

where λ is the signal’s wavelength, and dz = λ/2 denotes
the distance between adjacent elements. Let us now develop
the sparse channel model for the considered mmWave MIMO
system in the next section, so that channel estimation can be
built on it.

III. SPARSE BAYESIAN LEARNING-BASED CHANNEL
ESTIMATION

Due to the highly directional nature of mmWave propaga-
tion, mmWave channel can be represented using beamspace,
where only some specific directions of the beamspace channel
have non-negligible power [3]. In this section, the sparse
beamspace mmWave channel model for channel estimation is
introduced, and both the conventional SBL and our proposed
multi-layer SBL are explained.

A. Sparse mmWave Channel Model

The beamspace representation of the mmWave channel
matrix for the c-th subcarrier can be expressed as

HHH[c] = DDDr(Θr)HHHb[c]DDDH
t (Θt), (16)

where HHHb[c] ∈ CGr×Gt denotes the equivalent channel matrix
in the beam space. As described in [39, 40], there are usually
only a small fraction of elements in HHHb[c] being non-zero,
owing to the signal propagation nature of mmWave sig-
nals. DDDt(Θt) = [vvvULA(θ1), . . . , vvvULA(θGt)]

T and DDDr(Θr) =
[vvvULA(θ1), . . . , vvvULA(θGr

)]T denote respectively the transmit
and receive array response dictionary matrices, where Θt =
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{θ1, . . . , θgt , . . . , θGt
} and Θr = {θ1, . . . , θgr , . . . , θGr

}, cor-
responding to the transmit and receive antenna arrays, respec-
tively, are chosen to satisfy the conditions of cos θgt = 2

Gt
(gt−

1), 1 ≤ gt ≤ Gt and cos θgr = 2
Gr

(gr − 1), 1 ≤ gr ≤ Gr [29].
For the purpose of channel estimation, the channel matrix

HHH[c] can be represented in a vector form of hhh[c] ∈ CNrNt×1

as [34]

hhh[c] = vec(HHH[c]) = (DDDH
t (Θt)⊗DDDr(Θr)︸ ︷︷ ︸

ΨΨΨ

)hhhb[c], (17)

where hhhb[c] = vec(HHHb[c]) ∈ CGtGr×1 represents the equiva-
lent beamspace channel vector obtained by the column wise
stacking of the beamspace channel matrix HHHb[c], and ⊗
denotes the matrix Kronecker product. ΨΨΨ ∈ CGtGr×NtNr

denotes the angle codebook matrix. Note that, hhhb[c] is ex-
pected to be a sparse vector, most elements of which are
‘0’. By contrast, the non-zero elements in hhhb[c] with non-
negligible power correspond to the significant paths in the
specific directions. The specific directions with the majority of
power share the key elements to recover the original channels
in the beamspace, which is further elaborated in the following
sub-sections.

B. Problem Formulation of Sparse mmWave Channel Estima-
tion

To estimate the channels, pilot data are transmitted. Let the
pilot symbols transmitted on the c-th subcarrier be denoted
by ppp[c] ∈ CNRF×1. Then, the received signal from the c-th
subcarrier after the RF combiner can be denoted as:

yyyp[c] = WWWH
RFHHH[c]FFFRFppp[c] +WWWH

RFnnn[c]

=
√
ρ(ppp[c]TFFFT

RF )⊗WWWH
RF︸ ︷︷ ︸

ΦΦΦ[c]

hhh[c] + eee[c], (18)

where eee[c] = WWWH
RFnnn[c] and its covariance matrix is RRR[c] =

E[eee[c]eeeH[c]] = σ2(WWWH
RFWWWRF ) ∈ CNRF×NRF , ΦΦΦ[c] ∈

CNRF×(NtNr).
Note that, at the channel estimation stage, only the RF

precoder FFFRF and the RF combiner WWWRF are employed. Both
of them contain the magnitude normalized elements, whose
phases are randomly drawn with an equal probability from
the following set [34]:

AAA =
{

0, 2π
2Nq

, · · · , (2Nq−1)2π

2Nq

}
, (19)

where Nq denotes the number of the quantization bits of
the phase shifter. Thus, we can express FFFRF = 1√

Nt
ejAAAf

and WWWRF = 1√
Nr
ejAAAw , where AAAf and AAAw are the randomly

selected elements from AAA for FFFRF and WWWRF, respectively.
Substituting (17) into (18), the system model for the estima-

tion of the beamspace channel vector hhhb[c] can be expressed
as

yyyp[c] = ΦΦΦ[c]ΨΨΨhhhb[c] + eee[c]. (20)

As reviewed in Section I, there are the CS-based channel
estimation techniques for solving the mmWave channel es-
timation problem. For example, an adaptive algorithm was
proposed in [40] to estimate the mmWave channel parame-
ters, which employed the orthogonal matching pursuit (OMP)

algorithm. In comparison with the existing CS-based channel
estimation techniques, the SBL algorithm has been demon-
strated to provide a superior signal recovery performance by
overcoming the drawback of the other techniques, such as
that in [39, 41]. Hence, it has been applied in many different
application scenarios [42]. However, the SBL-based channel
estimation suffers from the high computational complexity,
especially in the high resolution scenarios. Since mobile
communications channels may change rapidly, it is of vital
importance to have a channel estimation algorithm that is not
only accurate but also low complexity.

In the following parts of this section, we first present a brief
overview of the conventional SBL algorithm. Then the multi-
layer SBL algorithm with low computational complexity is
introduced. We also derive the Bayesian Cramer-Rao lower
bound (BCRB) so as to characterize the efficiency of the
proposed multi-layer SBL algorithm.

C. Conventional SBL Algorithm

The SBL algorithm begins by assigning the following pa-
rameterized Gaussian prior to the unknown beamspace channel
vector hhhb[c] [29, 30]:

p(hhhb[c];ΓΓΓ[c]) =
∏GtGr

i=1 (πγi[c])
−1exp

(
− |hhhb,i[c]|

γi[c]

)
, (21)

where the hyperparameter γi[c], 1 ≤ i ≤ GtGr, represents
the prior variance of the i-th element of hhhb[c] ∈ CGtGr×1.
ΓΓΓ[c] = diag(γ1[c], · · · , γGtGr [c]) is the diagonal matrix of
the hyperparamaters γi[c]. The a posteriori probability den-
sity function of the beamspace channel vector hhhb[c] can be
evaluated as p(hhhb[c] | yyyp[c];ΓΓΓ[c]) ∼ CN (µµµ[c],ΣΣΣ[c]), where
µµµ[c] ∈ CGtGr×1 and ΣΣΣ[c] ∈ CGtGr×GtGr can be expressed
as[29]

µµµ[c] =ΣΣΣ[c]ΩΩΩH[c]RRR−1yyyp[c],

ΣΣΣ[c] =(ΩΩΩH[c]RRR−1ΩΩΩ[c] + ΓΓΓ[c]−1)−1,
(22)

where ΩΩΩ[c] = ΦΦΦ[c]ΨΨΨ denotes the sensing matrix with ΩΩΩ[c] ∈
CNRF×GtGr . From (22), it can be shown that the estima-
tion of the beamspace channel hhhb[c] can be transformed
to the estimation of the associated hyperparameter γγγ[c] =
[γ1[c], · · · , γGtGr

[c]]T.
The aim of the SBL algorithm is to maximize the Bayesian

evidence p(yyyp[c];ΓΓΓ[c]) to achieve an improved estimation per-
formance of the sparse beamspace channel hhhb[c]. To achieve
this objective, the iterative expectation-maximization (EM)
algorithm can be employed. In the expectation step (E-step),
a function for the expectation of the log-likelihood evaluated
using the current estimation of the parameters is created. In
the maximization step (M-step), the parameters are computed
to maximize the expected log-likelihood found on the E-step.
The computed parameters are then used to determine the
expectation function of the log-likelihood in the next E-step
[43].
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To be more specific, the expectation (E-step) in the k-th
iteration evaluates the average log-likelihood of the complete
data as [29]

L(ΓΓΓ[c] | Γ̂ΓΓ(k−1)
[c]) =

Ehhhb[c]|yyyp[c];Γ̂̂Γ̂Γ(k−1)[c]

{
log
[
p(yyyp[c],hhhb[c];ΓΓΓ[c])

]}
, (23)

where Γ̂ΓΓ
(k−1)

[c] denotes the matrix of the hyperparameter
matrix ΓΓΓ[c] estimated in the (k−1)-th iteration. Then, the M-
step maximizes (23) with respect to the hyperparameter vector
γγγ[c] as [30]

γ̂γγ(k)[c] = arg max
γγγ

GtGr∑
i=1

(
− log γi[c]−

Ehhhb[c]|yyyp[c];Γ̂̂Γ̂Γ(k−1)[c]

{
|hhhb,i[c]|2

}
γi[c]

)
, (24)

where the maximization problem for estimating the hyper-
parameter vector γγγ[c] can be simplified by decoupling the
hyperparameter vector γγγ[c] into the estimates γ̂i[c], which
can be denoted by γ̂

(k)
i [c] in the k-th iteration. Finally, the

mathematical expression of γ̂(k)
i [c] can be given as

γ̂
(k)
i [c] = ΣΣΣ(k)[c](i, i) + |µµµ(k)[c](i)|2, (25)

where ΣΣΣ(k)[c] and µµµ(k)[c] can be obtained from (22), and
ΓΓΓ(k)[c] = diag(γγγ(k)). Upon the convergence, the estimate of
the beamspace channel by the SBL algorithm is determined as
the posteriori mean, i.e., ĥhhb[c] = µµµ(k)[c]. After obtaining the
estimated beamspace channel matrix, the mmWave channel
matrix of the c-th subcarrier in the frequency domain can be
recovered based on (16) as

HHH[c] = DDDr(Θr)vec−1(ĥhhb[c])DDDH
t (Θt), (26)

where vec−1(·) denotes the conversion from the vector form
to the matrix form, which is the inversion operation of (17).

The implementation of the SBL algorithm uses matrix
inversions at each iteration. Hence, its complexity may be too
high in the high resolution case, which is the main challenge
of the SBL algorithm.

D. Algorithm for Multi-Layer SBL Channel Estimation

According to (17), the resolution of the transmit and receive
array response dictionary matricesDDDt(Θt) andDDDr(Θr) signif-
icantly affects the channel estimation performance, the channel
estimation accuracy increases as the resolution of DDDt(Θt)
and DDDr(Θr) increases. However, increasing the resolution
results in an increased channel estimation complexity. To
further improve the estimation performance while without
experiencing the increase of complexity, the multi-layer SBL
algorithm is proposed for channel estimation in this paper.
Compared to the conventional SBL algorithm, the proposed
multi-layer SBL algorithm is able to achieve a similar MSE
performance with lower complexity, when the same resolution
of the dictionary matrices is employed.

AoD

0 2π

Θt,1 θt,1,1 θt,1,4

Θt,2 θt,2,1 θt,2,8

...

Θt,J

θt,J,6 θt,J,JN

Fig. 3. The method of updating response dictionary for J layers.

Assume that there are J layers in the multi-layer SBL algo-
rithm. Then the proposed algorithm can be detailed as follows.
Let us use ĥhhb,j [c], j = 1, . . . , J , to denote the estimated
beamspace equivalent channel at the j-th layer. Firstly, the
conventional SBL algorithm is employed at the first layer to
estimate a beamspace vector equivalent channel ĥhhb,1[c]. In the
proposed multi-layer SBL algorithm, to reduce the estimation
complexity, the lower resolution response dictionary matrices
DDDt,j and DDDr,j are used at the first layer. As mentioned in
Section III-B, the RF precoder and combiner employed at the
first SBL layer are generated randomly, as CSI is unknown at
this stage. Correspondingly, the beamspace channel ĥhhb,1[c] and
ĤHH1[c] are the outputs of the first layer. Then, both the response
dictionary matrices, precoder and combiner are updated based
on the CSI obtained from the first layer of channel estimation.
As an example, the transmitter array response dictionary
matrix is updated as seen in Fig. 3. Specifically, for j = 1,
the angle range [0, 2π] is divided into N1 sections, where N1

is referred to as the resolution of the response dictionary at
the first layer. In this example, a low resolution of N1 = 4 is
considered. Since hhhb[c] is a sparse vector, we can know that
most of the elements of ĥhhb,1[c] should be close to zero. Hence,
the proposed multi-layer SBL algorithm filters the elements
[29], so as to further enhance its performance. Specifically, in
this paper, two threshold-based approaches are introduced to
determine the dominant elements:

• Approach-1: let ν be a value-wise threshold. Then, any
beamspace channel elements with their values higher than
ν are flagged as the channels with dominant power.

• Approach-2: let a percentage threshold be 95%, Then, the
beamspace channel elements with their total power being
95% of the total power are flagged as the channels with
dominant power.

The above two approaches are independently applied, only
those elements flagged by both approaches are kept for further
consideration, while the rest are set to zero values.

After identifying the close-to-zero elements, the positions
of the non-zero elements in ĥhhb,1[c] correspond to the rows in
DDDt,1 and the columns in DDDr,1, as shown in (26), which convey
the main channel power in the AOA direction of (ΘΘΘ)t,1 and
AOD direction of (ΦΦΦ)t,1. As shown in Fig. 3, θt,1,1 is selected
according to the positions of the non-zero elements in ĥhhb,1[c].
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Then, the updated response dictionary DDDt,2, with a higher
resolution of N2 = 8 as shown in the example of Fig. 3, is em-
ployed at the 2nd layer. Simultaneously, the RF precoder FFFRF

and combiner WWWRF are given by FFF SVD and WWW SVD, which
are obtained from the singular value decomposition (SVD) of
ĤHH1[c] obtained from the first layer [3]. Note that, during the
2nd layer search, only the selected angle ranges in DDDt,1 that
correspond to the non-zero elements in hhhb,1[c] are considered
in DDDt,2. This allows to achieve more accurate estimation of
ĥhhb,2[c], while simultaneously at a lower complexity, when
compared to the approach searching all the possible angles. In
layer J , the resolution is NJ = 2(J−1)N1, which tends to be a
large number. However, with our multi-layer SBL algorithm,
only the angles inDDDt,J−1 that are identified with desired signal
power are considered. Hence, the search space at layer J is
small, meaning a relatively low complexity.

A summary of the proposed multi-layer SBL algorithm for
OFDM mmWave system is given as Algorithm 1. Notice that,
the hybrid precoder (FFFRF, FFFD[c]) and the combiner (WWWRF,
WWWD[c]) in Algorithm 1 can be designed based on FFF SVD,J

and WWW SVD,J , respectively [3]. Since the focus of this paper is
not on the design of the hybrid beamformers, but on the multi-
layer SBL assisted adaptive IM, the approach in [3] is directly
employed for the hybrid beamformer/combiner design.

More specifically, the proposed channel estimation algo-
rithm is an iterative algorithm, where the codebook matrix of
ΨΨΨ, the precoder of FFF and the combiner of WWW are updated after
each layer of the SBL algorithm, which are then fed to the
next layer for further enhancement. In comparison with the
algorithms using the full high resolution dictionary matrix,
the proposed algorithm only needs to consider a fraction
of the high resolution dictionary matrix after the first layer
of operation. Hence, it is capable of achieving a similar
estimation performance as the approach using the full high
resolution dictionary, but with a substantially reduced com-
plexity. Furthermore, as the number of layers of J increases,
the accuracy of channel estimation improves and hence more
accurate precoders and combiners can be obtained, which
ensures an improved channel estimation in the following layers
of estimation and finally an improved performance of the
system.

E. Bayesian Cramer-Rao Bound of Multi-Layer SBL Channel
Estimator

This section derives the BCRB as a lower bound on the MSE
of the proposed multi-layer SBL assisted channel estimator.
The BCRB for the beamspace channel hhhb[c] of the c-th
subcarrier is given by the inverse of the Bayesian Fisher
information matrix (FIM) JJJF expressed as:

JJJF = −E(yyyp[c],hhhb[c])

{
∂2L(yyyp[c] | hhhb[c];ΓΓΓ[c])

∂hhhb[c]∂hhhH
b [c]

}
︸ ︷︷ ︸

JJJD

−

Ehhhb[c]

{
∂2L(yyyp[c];ΓΓΓ[c])

∂hhhb[c]∂hhhH
b [c]

}
︸ ︷︷ ︸

JJJP

, (27)

Algorithm 1: Multi-layer SBL-based OFDM mmWave
channel estimation

Input: Observation yyyp[c], sensing matrix ΩΩΩ = ΦΦΦΨΨΨ, where
ΦΦΦ =

√
ρ(ppp[c]TFFFT

RF )⊗WWWH
RF and ΨΨΨ = DDDH

T,1(Θt)⊗DDDR,1(Θr),
noise covariance RRR, maximum number of iterations kmax,
stopping parameter ε

Output: HHHJ [c] = D̂DDr,Jµµµ
(k)
J [c]D̂DD

H

t,J

1: Initialization: Γ̂ΓΓ
0
[n] = III , Γ̂ΓΓ

−1
[n] = 0, FFFRF = 1√

Nt
ejAAAf ,

WWWRF = 1√
Nr
ejAAAw , k = 1

2: for j = 1, 2, . . . , J, do
3: k ← k + 1
4: E-step: Evaluate the posteriori probability density
5: µµµ

(k)
j [c] = ΣΣΣjΩΩΩ

H
j RRR
−1
j yyyp,v,j [c]

6: ΣΣΣ
(k)
j [c] = (ΩΩΩH

j RRR
−1
j ΩΩΩj + ΓΓΓ

(k)
j [c]−1)−1.

7: M-step: Estimate the hyperparameters:
8: for i = 1, 2, . . . , GtGr, do
9: i = i+ 1

10: γ̂
(k)
i [c] = ΣΣΣ(k)[c](i, i) + |µµµ(k)[c](i)|2

11: end for
12: if ‖Γ̂ΓΓk

j [n]− Γ̂ΓΓ
(k−1)

j [n]‖2 ≥ ε and k < kmax then
13: go 4
14: end if
15: HHHj [c] = DDDrµµµ

(k)
j [c]DDDH

t

16: SVD(HHHj [c]) = UUU jΠΠΠjVVV
−1
j

17: FFF SVD,j = UUU1:Ns,1:Nt
j , WWW SVD,j = VVV 1:Ns,1:Nr

j

18: update: DDDt ← D̂DDT,j , DDDr ← D̂DDR,j

FFFRF ← FFF SVD,j , WWWRF ←WWW SVD,j

19: end for
20: return HHHJ [c];

where the matrices JJJD and JJJP denote the FIMs of the
observation vector yyyp[c] and the parameter vector hhhb[c], re-
spectively. Upon applying the results from [29, 30, 44] along
with some further simplification, JJJD and JJJP can be formulated
as JJJD = ΩΩΩH[c]RRR[c]ΩΩΩ[c] and JJJP = ΓΓΓ−1[c]. Finally, the BCRB
for the MSE of the estimated beam space channel ĥhhb[c] of the
c-th subcarrier satisfies:

E
{∥∥∥ĥhhb[c]− hhhb[c]∥∥∥2

}
≥ Tr

{(
ΩΩΩH[c]RRR[c]ΩΩΩ[c] + ΓΓΓ[c](−1)

)−1
}
.

(28)
Correspondingly, the MSE of the estimated mmWave chan-

nel in the frequency domain can be obtained by substituting
(17) into (28), satisfying:

E
{∥∥∥ĤHH[c]−HHH[c]

∥∥∥2
}
≥

Tr

{
ΨΨΨ

(
ΩΩΩH[c]RRR[c]ΩΩΩ[c] + ΓΓΓ[c](−1)

)−1

ΨΨΨH

}
. (29)

Above we have addressed the channel estimation in
mmWave OFDM systems. In practice, mmWave communica-
tion environment is time varying. In this case, it is expected
that the mmWave communications systems’ throughput can
be improved with the adoption of adaptive modulation [17].
To implement adaptive modulation, the required CSI can be
obtained from the proposed multi-layer SBL-based channel
estimation. However, in real-time adaptive modulation, it is
often difficult to switch the transmission mode at the right
point, as the switching point depends on the SNR, which
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in turn on the time-varying channel. Therefore, it is highly
challenging for the transmitter to switch at the near optimum
point. In order to circumvent this problem, below we introduce
a learning-assisted adaptive modulation scheme, which does
not depend on thresholds for switching modulation mode,
but learns based on the observation of the communication
environment.

IV. ADAPTIVE MODULATION

In our OFDM-CSIM system, the transmissions parameters
that may be adapted include the modulation order Q, the
number of active indices Na per virtual sub-block, the total
number Nv of virtual indices, and the number of subcarriers
Ng of a sub-block, etc.. As introduced in Section II, the
transmitted information is not only carried by the APM sym-
bols, but also by the virtual indices, which are mapped to the
symbols transmitted by a sub-block of subcarriers. Therefore,
the system throughput can be adjusted via adaptively setting
transmissions parameters, which also affect the achievable
BER performance.

In the following two subsections, we present the conven-
tional threshold-based adaptive modulation, followed by the
learning-aided adaptive modulation. In our adaptive modula-
tion schemes, the post-processing SNR is used as the metric
for selecting the parameters Q, Nv, Na, and Ng in the OFDM-
CSIM system. The post-processing SNR can be expressed
as [23]:

ξ = E
{∑Mf

c=1

Tr
{

(WWWH[c]HHH[c]FFF [c])HWWWH[c]HHH[c]FFF [c]
}

Tr
{
WWW [c]WWWH[c]σ2[c]

} }
, (30)

where WWW [c] = WWWRFWWWD[c] and FFF [c] = FFFRFFFFD[c].

A. Conventional Adaptive Modulation

In the conventional adaptive modulation, the parameters
Q, Nv, Ng, and Na can be selected according to the post-
processing SNR by referring to the pre-defined thresholds
set to maximize throughput, while maintaining a target BER.
Specifically, the number of combinations of Q, Nv, Ng, and
Na can be defined as MODEs, expressed as MODE1, MODE2,
· · · , respectively, and each mode corresponds to a given data
rate. Note that the number of modes M can be any value
not exceeding the total number of combinations, depending
on the trade-off between the implementation complexity and
throughput.

As an example, Fig. 4 shows the BER performance of
three different transmission modes, where the transmission
parameters and corresponding data rates provided by these
three modes are shown in Table I. Assume that the target BER
is 10−3. Then, as shown in Fig. 4, the specific SNR values
T1 and T2 can be selected as the thresholds for determining
the system to be operated in MODE1, MODE2 or MODE3. In
detail, MODE1 is operated in the SNR range lower than T1.
MODE2 with a higher data rate than MODE1 is employed
when the SNR is between T1 and T2, while MODE3 with the
highest rate is employed when the SNR is higher than T2.
Therefore, in order to implement the adaptive modulation, the
receiver needs to decide the transmission mode by comparing

−5 0 5 10 15 20

10−4

10−3

10−2

10−1

100

T1 T2

SNR (dB)

B
E
R

MODE1 0.3125 bps/Hz

MODE2 1.125 bps/Hz

MODE3 1.75 bps/Hz

Fig. 4. BER versus SNR performance of the OFDM-CSIM system under
different transmission modes, when the multi-layer SBL channel estimation
is adopted.

TABLE I
SYSTEM PARAMETERS USED IN SIMULATIONS

Q Na Nv Ng R (bps/Hz)

MODE1 2 1 31 16 0.3125

MODE2 4 3 31 16 1.125

MODE3 16 2 16 8 1.75

the instantaneous post-processed SNR against the thresholds
and feed back the selected mode to transmitter. In general, a
higher data rate can be achieved if more optional modes are
used, and the post-processing SNR is measured with higher
accuracy. However, these are hard to achieve in the OFDM-
CSIM systems, due to the many factors involved. Hence, in
the next subsection, we propose the learning-based adaptive
modulation for the OFDM-CSIM system to maximize its
throughput.

B. Machine-Learning Aided Adaptive Modulation

The operation of adaptive modulation can be understood as
a classification problem, which can hence be solved using ML
techniques. Specifically in our system, adaptive modulation is
the process of selecting a transmission mode from a range
of candidate modes for a given post-processing SNR, which
reflects the channel state. Let us use m as the index of
a class. Then, each MODEm corresponds to a given data
rate. Therefore, for a given channel state, adaptive modulation
selects a class m that maps to a specific transmission mode
MODEm, so as to achieve the highest data rate under the
constraint of the target BER. In this paper, both the k-NN and
DNN techniques are investigated in the context of adaptive
modulation.

There are two phases in the ML-aided adaptive modulation,
namely the training phase and the learning phase. Firstly, the
training data is generated separately from the testing data used
in the learning phase, so as to avoid any correlation between
them. In the proposed learning-based adaptive modulation sys-
tem, for a MODEm of the modulation modes, a large number
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Fig. 5. Block diagram of the DNN-based classifier at the receiver side.

of post-processing SNR values are randomly generated, and
the corresponding BER is evaluated. Then, a total Nm of
the post-processings SNR values having the BER below the
target of 10−3 are recorded and stored in a training set TTT (m),
expressed as

TTT (m) = [ξm1 , . . . , ξ
m
n , . . . , ξ

m
Nm ]T, (31)

where m = 1, 2, . . . ,M , n = 1, 2, . . . , Nm, and ξmn is the n-th
generated SNR and a feature in the training set TTT (m), with m
being the corresponding label. Also note that

∑
m=1Nm = N .

Then, the complete training set employed in the learning phase
can be expressed as:

TTT = [TTT (1), . . . ,TTT (m), . . . ,TTT (M)]T,m = 1, 2, . . . ,M. (32)

After the training data is generated, the normalization of the
feature set in (32) is implemented, in order to avoid any bias
in the learning phase. The procedure of the normalization is
expressed as:

ξ̃mn =

(
ξmn −E{TTT}

)(
max(TTT )−min(TTT )

) . (33)

In the learning phase, the learning system is established
based on the normalized feature set and the corresponding
labels. When the learning process is completed, a classifier
capable of predicting the class labels for newly observed
data is obtained. Below, we first employ a supervised-learning
classifier (k-NN) to solve the adaptive modulation problem.
Then, a DNN-based multi-label classifier is proposed to further
improve the performance of the adaptive modulation system.

1) k-NN-Assisted Adaptive Modulation: k-NN and its vari-
ants are popular classification techniques due to the easy im-
plementation and excellent classification performance [45]. In
the context of the ML-based adaptive modulation supported by
the k-NN based classification, the principle can be explained
as follows:
• When a new observation data, which is given by the

post-processing SNR ξnew, is available, its normalization
feature set ξ̃new is first obtained using (33). Then, the
classifier searches over TTT to find the k nearest neighbors
and their corresponding labels in the training sets, based
on the distance metric d(·). When the Euclidian distance
is employed, we have

d(ξ̃mn , ξ̃new) = ‖ξ̃mn − ξ̃new‖2F. (34)

• Based on (34) and for a given value of k, the transmission
mode is selected by the majority vote rule on the labels of
the k nearest neighbors, as the one providing the highest
number of neighbors to the observation data. Note that,
it is possible that two or more MODEs provide the same
maximum number of neighbors. In that case, the mode
yielding the highest throughput is selected.

k-NN has the advantages of achieving the classification
without requiring the information about the functional map-
ping between classifier and feature sets, and also has good
performance for noisy training data [25, 46–48], but it is
sensitive to the parameter setting and the value of k is the
most important parameter to the classification performance of
k-NN. The optimal value k should be searched for all test data
before the training phase. In this adaptive system, the optimal
value k is determined by considering the trade-off between the
BER and throughput performance, as the maximum throughput
is pursued under the requirement of target BER. Other chal-
lenges of k-NN include the high computational complexity for
searching the nearest neighbors and the large memory space
required for storing the training data, implying that the k-NN
may be hard to implement in practice. More details can be
found in [17].

2) DNN-Aided Adaptive Modulation: In the spirit of further
reducing the processing complexity as well as the requirement
for memory resource, in this section, we present a DNN-
based classifier as a superior alternative to the k-NN solution
discussed above. Fig. 5 shows the block diagram of the
feed-forward DNN implemented at receiver side. In the pre-
processing part, the system takes the estimates from the SBL
algorithm of Section III to form a complex-valued channel
matrix HHH . A real-valued counterpart is subsequently obtained
by calculating the corresponding post-processing SNR based
on HHH , which is then forwarded to the input layer of the DNN

The DNN is initially trained and then tested. As shown on
the right side of Fig. 5, the feed-forward DNN consists of
L layers of each having Nl neurons, where each layer has
the input vvvl−1

m ∈ RNl−1×1 obtained from its previous layer.
During the training phase, the training data ξ̃ξξm is sent to the
first layer of DNN, we have vvv(0)

m = ξ̃ξξm. The operation on the
l-th layer (1 ≤ l ≤ L− 1) can be expressed as

vvv(l)
m = max(WWW (l)vvv(l−1)

m + bbb(l), 0), (35)
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where WWW (l) ∈ RNl×Nl−1 is the weight matrix, and bbb(l) ∈
RNl×1 is the bias of the l-th layer, while max(·, 0) is the
Rectifier linear unit (ReLU) activation operation. Finally, at
the last hidden layer (l = L), a softmax function is employed
to replace the ReLU function, which is expressed as

vvvout
m = vvv(L)

m = softmax(WWW (L)vvv(l−1)
m + bbb(L))

=
exp(WWW (L)vvv(l−1)

m +bbb(L))∑NL
q=1 exp([WWW (L)vvv

(l−1)
m +bbb(L)]q)

.
(36)

Note that the last layer has M outputs, corresponding to the
probabilities of the input ξ̃ξξm belonging to the M classes,
respectively. Note additionally that the actually desired label
m of the input ξ̃ξξm can be generated and formatted in a one-hop
style as [49]

vvvdesire
m = foh(m) = [I(m = 1), I(m = 2), . . . , I(m = M)],

(37)
where foh(m) is the one-hop mapping function, while I(m =
m′) is the indicator function, whose value is 1 only when the
condition (m = m′) is true and 0 otherwise. For example, the
one-hot mapping for M = 3 possible classes is defined as

m = 1 ⇐⇒ vvvdesire
1 = foh(1) = [1, 0, 0],

m = 2 ⇐⇒ vvvdesire
2 = foh(2) = [0, 1, 0],

m = 3 ⇐⇒ vvvdesire
3 = foh(3) = [0, 0, 1].

(38)

Furthermore, during the training phase of the DNN, the
weights WWW (l) and the bias bbb(l) of all layers are tuned using the
Adam’s algorithm [50] and a cross-entropy-based cost function
L is employed, which is formulated as

Lm(vvvdesire
m , vvvout

m ) = −∑q vvv
desire
m [q] log(vvvout

m [q]), (39)

where vvvout
m [q] denotes the q-th element of vvvout

m and represents
the predicted probability of the feature data ξ belonging to
class m.

After the DNN is trained, the system can provide an output
vvvnew for any new SNR observation ξ̃ξξnew by going through the
network based on (35)-(39), and the index of the element in
vvvnew having the highest value (probability) is the predicted
class, i.e, mnew = arg maxq vvvnew, yielding the selected
modulation mode.

C. Complexity Analysis

In this subsection, the computational complexity of the
proposed ML-based adaptive modulation is evaluated. Since
the training phase can be processed off-line, we concentrate
on the analysis of the testing phase. The complexity of
the k-NN algorithm can be analysed from two perspectives,
namely the memory required for storing the training data
and the computational requirement for searching the nearest
neighbors. The requirement of a large memory space is a
major disadvantage of the k-NN algorithm, especially when
single-chip devices are considered. In the meantime, a brute-
force search for the nearest neighbors demands a high search
complexity of O(kd̂M), where d̂ represents the dimensions of
the feature set.

For the proposed DNN-based algorithm, the computational
complexity of the testing phase depends on the structure of

TABLE II
PARAMETERS USED FOR SIMULATIONS IN SECTION V

Parameter Value

mmWave Channel
Carrier frequency (fc) 28 GHz
Number of channel clusters (Ncl) 4

Number of rays per cluster (Nray) 1

Number of transmit antenna (Nt) 8

Number of receive antenna (Nr) 8

Number of RF chains in transmitter (Nt
RF) 4

Number of RF chains in receiver (Nr
RF) 4

Distance between adjacent antennas (dt = dr) λ/2

Number of subcarriers (Nsub) 1024

SBL Channel Estimation
Maximum number of iterations (kmax) 300

Stopping parameter (ε) 10−6

Number of SBL layers (J) 2

Adaptive Modulation
Number of channel realizations for training 160000

Number of channel realizations for testing 5000

Number of neighbors in k-NN searching k 20

Number of fully-Connected (FC) layers in DNN (L) 3

Number of neurons in each FC layer [64, 128, 256]

Activation functions after each FC layer ReLU
Number of neurons on the output layer (M )
Number of transmission modes / Classes (M )

3

Activation function after the output layer soft max

the network, which includes the number of layers and the
number of neurons in each layer. Also, the different acti-
vation functions lead to different computational complexity.
More specifically, the complexity of the fully-connected layer
with ReLU activation function is dominated by computing
vvvlm = max(WWW lvvvl−1

m + bbbl, 0), which is O(2NlNl−1 − Nl−1).
For the last fully-connected layer with softmax activation
function, the complexity depends on the computation of
vvvLm = softmax(WWWLvvvL−1

m + bbbL, 0), which has the complexity
of O(2NLNL−1 −NL−1 + 2NL−1). Thus, the computational
complexity of the DNN-based algorithm in total is:

C = O
(∑L

l−1(2NlNl−1 −Nl−1) + 2NL−1

)
. (40)

Based on the above analysis, it is obvious that DNN is able to
avoid the large storage required for saving the training data.
The testing efficiency of DNN is also much higher than that
of the brute-force search of k-NN. Moreover, the DNN-based
adaptive modulation system is capable of achieving higher
throughput than the conventional and k-NN-based systems,
as detailed in the following Section V.

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we evaluate the performance of the OFDM-
CSIM systems with our proposed multi-layer SBL channel
estimation. We start by comparing the channel estimation per-
formance of our multi-layer SBL algorithm assisted channel
estimator and of the classic methods, which are also compared
with the benchmarks of BCRBs. Then the performance of
the OFDM-CSIM systems is compared when receiver for
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Fig. 6. BER performance comparison of OFDM mmWave systems with
perfect CSI, the conventional SBL and multi-layer SBL algorithms assisted
channel estimation.

comparing the k-NN- and DNN-based adaptive modulations
are involved. Finally, the computational complexity of the
proposed scheme is investigated. Unless otherwise specified,
the parameters of Table II are adopted for all the simulations in
this section. Moreover, the elevation- and azimuth-angles for
both the arrival and the departure rays are assumed to obey
the Laplace distribution [3].

A. Multi-Layer SBL Channel Estimation

We first study the multi-layer SBL algorithm by comparing
the system’s BER and MSE performance, as well as the
computational complexity, when the single- and multi-layer
SBL algorithms are employed. It is worth mentioning that we
adopted J = 2 layers in our multi-layer SBL algorithm for the
sake of simplicity, while more layers can be added if required.

1) BER Performance: Fig. 6 shows the BER performance
comparison of an OFDM system over mmWave channels using
respectively the single- and multi-layer SBL algorithms, while
the case with perfect CSI is also provided. It is clear from
Fig. 6 that both the single- and multi-layer SBL algorithms
are capable of providing near accurate channel estimation to
achieve the similar BER performance as that with perfect
CSI. Moreover, the multi-layer SBL shows slightly better BER
performance than the single-layer SBL algorithm, especially
in the low SNR region.

2) MSE Performance: In Fig. 7, we depict the MSE
performance comparison of the single- and multi-layer SBL
algorithms with different resolutions. The performance is also
benchmarked against their corresponding BCRBs developed
in Section III-E. It is clear that the MSE performance can be
improved by using higher resolution provided by larger N ,
which leads to lower MSE in both the single- and the multi-
layer SBL cases. Meanwhile, observe from Fig. 7 that the
conventional single-layer SBL with N = 16 is outperformed
by the proposed 2-layer SBL with N = [8, 16], as shown by
both the simulated MSE and the respective BCRBs. The same
observation applies to the single-layer SBL with N = 32 and
the multi-layer SBL with N = [16, 32], where the latter one
achieves lower MSE than the former, implying that more accu-
rate angle estimation can be obtained by the multi-layer SBL
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Fig. 7. MSE comparison of the conventional single-layer and the multi-
layer SBL algorithms with different resolutions N , benchmarked against their
corresponding BCRBs.
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Fig. 8. MSE performance comparison of OFDM mmWave systems with dif-
ferent channel estimation techniques. The multi-layer SBL has the resolution
of N = [8, 16], while for the rest cases of N = 16.

algorithm. Furthermore, as the SVD-based hybrid beamformer
is employed to replace the random-generated RF beamformer
after the first layer of the multi-layer SBL algorithm, the
sensing matrix becomes more efficient and accurate. This can
be an additional contributor for achieving an improved MSE
performance, in comparison with the conventional one.

Moreover, Fig. 8 compares the multi-layer SBL estimator
with the other channel estimation techniques, including the
single-layer SBL, adaptive codebook [40], OMP [39] and
AMP [51] based estimators. For comparison, we adopt the
resolution of N = [8, 16] for the 2-layer multi-layer SBL,
while N = 16 is assumed with the other four techniques
considered in Fig. 8. From the results we can clearly see
that the proposed multi-layer SBL outperforms all the other
channel estimators, when given the same value of resolution.
The advantage of the multi-layer SBL estimator becomes more
explicit in the high SNR region, as the performance of the
OMP-based techniques are bottlenecked by the sensitivity of
the dictionary matrix selection and the stopping criterion,
which the SBL-based estimators can avoid.

3) Computational Complexity: According to Section III-C,
the overall computation task in the SBL-based algorithms is
predominately contributed by calculating (22) and (25). There-
fore, their computational complexity can be characterized by
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the number of multiplications in these two equations. Fig. 9
shows the relationship between the number of multiplications
and the value N 2 of the resolution. It can be observed that the
complexity of both algorithms increases as the resolution N
increases. Moreover, the deviation between the two approaches
increases with the increase of N . This in turn means that, when
compared with the conventional SBL, a significant complexity
reduction of the multi-layer SBL can be available, in particular,
when high resolution dictionaries are employed. It is worth
noting that the number of multiplications from the SVD
employed in the multi-layer SBL is negligible, when compared
to (22) and (25), and thus it can be ignored [52].

B. Adaptive Modulations

In this section, we apply the 2-layer SBL assisted detector
having a resolution of N = [16, 32] to the k-NN- and DNN-
based adaptive modulation systems proposed in Section IV.
For the sake of a fair comparison, we use the data sets of the
same size for both training and testing the k-NN- and DNN-
based systems, as detailed in Table II.

Fig. 10 shows the probability distribution of choosing dif-
ferent transmission modes versus channel SNR for the conven-
tional, k-NN-based and DNN-based adaptive modulations. It is
worth noting that Fig. 10 is plotted against the actual channel
SNR experienced by the signal, while the mode decisions
are made based on the multi-layer SBL estimated SNR, thus
gradual transitions from one mode to another are observed for
all cases. According to the analysis in Section IV and Fig. 4,
the switching thresholds for conventional adaptive modulation
are T1 = 11.3 dB and T2 = 16 dB. Correspondingly, the
conventional adaptive modulation of Fig. 10(a) uses MODE1

when SNR < T1, while the probability of choosing MODE2

gradually arises after T1 and reaches its peak at T2, when
the probability of choosing MODE3 starts to increase. On
the other hand, the two machine-learning-aided adaptive mod-
ulators, namely the k-NN-based one of Fig. 10(b) and the
DNN-based one of Fig. 10(c), generally switch to higher SE
modes at lower SNRs than the conventional one. Explicitly,

2For multi-layer SBL, N stands for the resolution for the second layer,
while the resolution of the first layer is 2N .

at T1 = 11.3 dB, when the conventional adaptive modulator
just starts switching to use MODE2 with a probability of
around 2%, the probabilities of the same mode have already
reached 3% and 5% for the k-NN and DNN, respectively.
As another example, both the k-NN- and the DNN-based
adaptive modulators manage to fully switch to MODE3 after
SNR > 20 dB, just about 4 dB higher than the conventional
one, which results in a reduced achievable rate.

The reason behind the observations is that the learning-
assisted adaptive modulations are capable of utilizing the
instantaneous post-processing SNR to select a best possible
mode, while the conventional adaptive modulation has to use
the pre-defined average SNR-based thresholds for mode selec-
tion. Consequently, the learning-assisted designs are capable of
making more accurate decisions than the conventional design,
resulting in a significantly improved throughput for a given
SNR, as seen in Fig. 11. Furthermore, the DNN-based adaptive
modulation is able to achieve higher throughput than the k-
NN-based one, where more accurate decisions can be made
by the DNN classifier than the k-NN classifier.

Fig. 12 shows the BER versus SNR performance of the
conventional and the two learning-assisted adaptive modula-
tion systems, where the BER curves of the three individual
modulation modes are also included. Explicitly, all three
adaptive modulations have the same BER performance as the
MODE1 curve until SNR reaches about 9 dB, i.e. when the
10−3 BER target is met. Afterwards, the adaptive modulation
systems gradually switching to the next mode, in order to
achieve higher throughput, while trying to retain the same BER
level. It is however clear from Fig. 12 that the two learning-
assisted adaptive modulations are capable of retaining the
BER closer to the 10−3 target than the conventional adaptive
modulation and hence attaining a higher throughput. Similarly,
the DNN-based adaptive modulation is even closer to the BER
target than k-NN-based design, as seen in Fig. 11.

Finally, we compare the computational complexity of the
k-NN- and DNN-based adaptive modulations in Table III. We
can see that the complexity of the DNN-based adaptive mod-
ulation is about 40 times lower than the k-NN one, due to the
fact that k-NN requires to execute the exhaustive search over
all possible CSI realizations, while DNN can be trained off-
line for choosing the best transmission mode. Compared with
k-NN, the complexity of the DNN-based adaptive modulation
is dominated by the number of fully-connected layers and the
size of each layer, rather than the number of components
in the training set. Consequently, there is no requirement
for memory to store the training data in the DNN-based
adaptive modulation. It is noteworthy that in the conventional
adaptive modulation, the transmission modes are selected by
referring to the pre-defined thresholds, which do not consider
the reserved memory or search complexity compared with the
ML-based approaches. However, its achievable data rate may
be significantly lower than that of the ML-based approaches.

VI. CONCLUSION

A deep-learning-assisted adaptive modulation relying on
the multi-layer SBL channel estimation was proposed for
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Fig. 10. Probabilities for the adaptive system employing MODE1, MODE2 and MODE3.
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TABLE III
COMPLEXITY ORDERS OF THE ML-ASSISTED ADAPTIVE SCHEMES

System Complexity Equation Complexity Order

k-NN O(kd̂M) 3.2× 106

DNN (40) 8.8× 104

supporting the OFDM-CSIM systems communicating over
mmWave channels. It is shown that the multi-layer SBL
algorithm is capable of providing more accurate estimation at a
lower cost of computational complexity, while achieving better
BER and MSE performance, when compared with the conven-
tional single-layer SBL algorithm and the other approaches
relying on, such as, adaptive codebook and OMP. Then, a
DNN-based adaptive modulator was conceived for utilizing
the channel estimation to maximize the system throughput
under a given BER target. Simulation results show that this
DNN-based approach outperforms the conventional average-
SNR-based adaptive modulations. Furthermore, it also has a
lower computational complexity but a higher throughput than
the previously proposed k-NN-based approach. Our studies
imply that the ML-based adaptive modulation is able to “learn
through experience”, leveraging the existing training data to
self-optimize on fly. Consequently, it is able to make more
accurate decision and hence, attain higher throughput.

One of the most important applications of ML is the data-
driven decision making, which enables adaptive transmission
without CSI or SNR. A critical extension of our work is
to directly use the received signals as the feature set, so
as to reduce the complexity of channel estimation. In this
case, however, the other techniques should be correspondingly
designed for detecting the OFDM-CSIM signals.
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