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Abstract

A word hyperbolic group G is called GFERF if every quasiconvex subgroup coincides with the intersec-
tion of finite index subgroups containing it. We show that in any such group, the product of finitely many
quasiconvex subgroups is closed in the profinite topology on G.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a finitely generated group. The profinite topology P7 (G) on G is defined by pro-
claiming all finite index normal subgroups to be the basis of open neighborhoods of the identity
element. It is easy to see that G equipped with this topology becomes a topological group. This
topology is Hausdorff if and only if G is residually finite.

A subset P C G will be called separable if it is closed in the profinite topology on G. Thus,
a subgroup H < G is separable whenever it is an intersection of finite index subgroups. The
group G is said to be locally extended residually finite (LERF) if every finitely generated sub-
group H < G is separable.
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A famous theorem of M. Hall states that free groups are LERF. Among other well-known
examples of LERF groups are surface groups and fundamental groups of compact Seifert fibred
3-manifolds [26]. In [25] P. Schupp provided certain sufficient conditions for a Coxeter group to
be LERF. More recently, R. Gitik [7] constructed an infinite family of LERF hyperbolic groups
that are fundamental groups of hyperbolic 3-manifolds.

In 1991 Pin and Reutenauer [23] conjectured that a product of finitely many finitely generated
subgroups in a free group is separable and listed some possible applications to groups and semi-
groups. In 1993 Ribes and Zalesskil [24] showed that the statement of this conjecture is true.
Later a similar question was studied in other LERF groups by Coulbois [5], Gitik [8], Niblo [21],
Steinberg [28] and others.

In particular, Gitik in [8, Theorem 1] proved that in a LERF hyperbolic group, a product of
two quasiconvex subgroups, one of which is malnormal, is separable.

However, many word hyperbolic groups are not LERF. For example, an ascending HNN-
extension of a finite rank free group is never LERF but very often hyperbolic (see [13]). So, it
makes sense to use the weaker notion below.

We will say that a (word) hyperbolic group G is GFERF if every quasiconvex subgroup
H < G is separable. The definition of a GFERF Kleinian group I” was given by Long and Reid
in [17]: I" is called geometrically finite extended residually finite (GFERF) if each geometrically
finite subgroup H < I' is separable. Our definition is in the same spirit because in any word
hyperbolic group (more generally, in any automatic group) a subgroup is geometrically finite if
and only if it is quasiconvex (see [29]).

Long, Reid and Agol gave several examples of GFERF groups [2,17,18]. Hsu and Wise [12]
proved that certain right-angled Artin groups are GFERF. Some negatively curved (i.e., word hy-
perbolic) groups with this property were studied by Gitik in [7]. In the paper [31] Wise provided
another large family of GFERF hyperbolic groups; he also showed that Figure 8 knot group is
GFEREF. The fact that this group is LERF follows from the recent proofs by Agol [1] and Gale-
gari and Gabai [4] of Marden’s “tameness” conjecture. This conjecture provides a new way for
obtaining LERF and GFERF groups as fundamental groups of 3-manifolds.

The main goal of this paper is to prove the following

Theorem 1.1. Assume G is a GFERF word hyperbolic group, G, G, ..., Gy are quasiconvex
subgroups, s € N. Then the product G1G» - - - Gy is separable in G.

Since a finitely generated subgroup of a finite rank free group is quasiconvex, the above the-
orem generalizes the result of Ribes and Zalesskii [24] and provides an alternative proof of the
conjecture [23]. An application of Theorem 1.1 to the case when s = 2 and G5 is malnormal
gives the statement of Gitik’s theorem [8, Theorem 1].

Our proof of Theorem 1.1 uses geometry of quasigeodesics in negatively curved spaces and
basic properties of quasiconvex subgroups.

A subgroup H of a group G will be called almost malnormal if for every x € G \ H the
intersection H N xHx~! is finite. H is said to be elementary if it is virtually cyclic. It is well
known that in a hyperbolic group G any element of infinite order belongs to a unique maximal
elementary subgroup. Thus, any maximal elementary subgroup of G is almost malnormal.

A famous open problem in Geometric Group Theory addresses the existence of a (word)
hyperbolic group that is not residually finite. The author would like to emphasize the importance
of studying GFERF hyperbolic groups through the proposition below.
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Proposition. The following are equivalent.

(1) There exists a non-residually finite hyperbolic group.
(2) There is a hyperbolic group G having an almost malnormal quasiconvex subgroup H which
is not separable.

Proof. Assume the first condition holds. In this case Kapovich and Wise [14, Theorem 1.2], and,
independently, Ol’shanskii [22, Theorem 2], proved that there exists a non-trivial hyperbolic
group G which has no proper subgroups of finite index at all. Choose an arbitrary maximal
elementary subgroup H of G. Obviously H satisfies the condition (2).

Now, suppose (2) holds. Then, according to a theorem of Kharlampovich and Myasnikov [15,
Theorem 2], the double D = G xg G is a hyperbolic group. If the group D were residually finite
then we could apply the theorem of Long and Niblo [16, §2, Lemma] (see also [21]) stating that
H is separable in G. The latter contradicts our assumptions. Hence, D is not residually finite. O

Presently, the author does not know of any examples of hyperbolic groups that are not GFERF.
So, it seems reasonable to ask

Question. Does there exist a non-GFERF word hyperbolic group?

As one can see from the proposition, this question may be quite difficult.

Finally, we note that in the case when a hyperbolic group G is GFERF, Theorem 1.1 provides
a positive solution for Problem 3.11 posed by D. Wise in [30]. This problem asks whether the
double coset H K is separable if G is residually finite and H, K < G are separable quasiconvex
subgroups.

2. Auxiliary information

Suppose G is a group with a fixed finite symmetrized generating set A. If g € G, |g|g will
denote the length of a shortest word over A representing g. Now we can define the standard

left-invariant word metric d(-,-) on G by setting d(x, y) & |x~!y|g for arbitrary x, y € G. This
metric extends to a metric on the Cayley graph I'(G, A) of the group G after endowing every
edge with the metric of the segment [0, 1] C R.

A subset Q of G is said to be e-quasiconvex (where ¢ > 0) if for any pair of elements u, v € Q
and any geodesic segment p connecting u and v, p belongs to a closed e-neighborhood of Q in
I'(G, A). A subset Q C G is quasiconvex if it is e-quasiconvex for some ¢ > 0.

For any two points x,y € I'(G, A) we fix a geodesic path between them and denote it by
[x,y]. If x, y,w € I'(G, A), then the number

def
x|y =

1
E(d(x, w) +d(y, w) —d(x, y))
is called the Gromov product of x and y with respect to w.

Remark 2.1. Since the metric is left-invariant, for arbitrary x,y, w € G we have (x|y)y, =
™ xlw ).
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Let abc be a geodesic triangle in I'(G, . A). There exist “special” points O, € [b,c],
Oy € [a, cl, O, € [a, b] with the properties: d(a, Op) =d(a, O.) =«,d(b, O;) =d(b, O.) = B,
d(c, 0,) =d(c, Op) = y. It is easy to see that @ = (b|c)4, B = (alc)p, ¥y = (a|b).. Two points
O €[a,b] and O’ € [a, c] are called a-equidistant if d(a, O) = d(a, O") < «. The triangle abc
is said to be §-thin if for any two points O, O’ lying on its sides and equidistant from one of its
vertices, d(O, O’) < 8 holds.

The group G is said to be (word) hyperbolic (or negatively curved) if there is § > 0 such that
every geodesic triangle in I"(G, A) is §-thin (for more theory the reader is referred to [3,6]).

For a hyperbolic group G, the property of a subset to be quasiconvex does not depend on the
choice of a generating set A (see [10]). A quasiconvex subgroup of a finitely generated group
is finitely generated itself [3,27]. A conjugate of a quasiconvex subgroup is quasiconvex as well
[19, Remark 2.2].

Fix an arbitrary GFERF hyperbolic group G. Then for n € N, fo, f1,..., fo» € G and any
quasiconvex subgroups G1, ..., G, < G, the subset

P = foG1fiG2-- fu—1Gun fu )

is called a quasiconvex product (here we use the terminology from [19]). Such a subset is always
quasiconvex [11, Proposition 3.14], [19, Corollary 2.1].

Remark 2.2. Assume that n € N and for any n quasiconvex subgroups of the group G, their
product is closed in P7 (G). Then any quasiconvex product P defined by (1) is also closed in
PT(G).

Indeed, observe that P = fGy---G, where f = fofi--fu € G and G; = (f; fit1---
f) " YGi(fi fis1--- fn)—quasiconvex subgroups of G. By the assumptions, GG, is sepa-
rable, and since G (endowed with P7 (G)) is a topological group, left translation by the element
f~! € G is a continuous operation, hence P is also separable.

Lemma 2.3. Assume that G is a §-hyperbolic group with respect to a finite generating set A
and A, B are e-quasiconvex subgroups. There exists a constant Co = Cy(8, ¢, G, A) > 0 such
that for any a € A, b € B the inequality (a™ |b)1; < Co holds whenever a is a shortest repre-
sentative of the coset a(A N B).

Proof. Define a finite subset of the group G by ® = {g € AB | |g|g < 2¢ + §}. For every g € ®
choose a pair (x, y) € A x B satisfying g =x!y; let 2 C A x B denote the (finite) set of these
pairs. Consider

21={x€A|(x,y) € 2 for some y € B}.

Then one can define the number Co = max{|x|g | x € 21} + & < o0.

Now, assume that (cf1 |b)1; > Co, for some a € A, b € B where a is a shortest represen-
tative of the coset a(A N B). Let o and B denote the “special” points of the triangle 1ga~'b
(in I' (G, A)) on the sides [1¢, a and[lg,b), respectively. Since A and B are e-quasiconvex
there are elements a; € A and b; € B that are e-close to « and 8 correspondingly. Using the
triangle inequality and §-hyperbolicity of the space I" (G, .A) we obtain
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laarlg =d(a~" a1) <d(a™' @) +e=d(a"' 1) —d(@. 1) +¢
=d(a”! 1G) (a='[p),, +¢ <lalg — Co+e,
|lay'b1|, =d(ar, by) <d(ar, o) +d(e, B) +d(B, b)) <26 +6.

By definition, there exists a pair of elements (x, y) € £2 with aflbl = x_ly, thus ajx~! =

biy~' e AN B.Now, a(a;x~") € a(A N B) and this element is shorter than a because
-1
laaix™"|; < laailg + |xl6 < lale — (Co — & — Ix|g) < lalg-
Thus we achieve a contradiction with our assumptions. O

Let p be a path in the Cayley graph of G. Then p_, p4+ will denote the initial and the final
points of p, || p||—its length. We will use elem(p) to denote the element of the group G repre-
sented by the word written on p. A path g is called (A, ¢)-quasigeodesic if there exist 0 < A < 1,
¢ 2 0, such that for any subpath p of ¢ the inequality 1| p|| — ¢ < d(p—, p+) holds.

The statement below is an analog of the fact that in a negatively curved space k-local geodesics
are quasigeodesics for any sufficiently large k.

Lemma 2.4. [_20, Lemma 4.2] Let X > 9
Then for .. = A /4 > 0O there exist ¢ = c(A,

> 1468, C1 =12(Co + 8) + ¢ + 1 be given.

>0, Co
Co) =20 satisfying the statement below.

c
c,
Assume N € N, x; € I'(G, A), i =0,...,N, and q; are (A,¢)-quasigeodesic paths be-
tween x;_1 and x; in I'(G,A), i =1,...,N. If |lgill > (C1 + E)/)_L, i=1,...,N, and
(xXi—1lxit+1)x; S Co foralli =1,..., N — 1, then the path q obtained as a consecutive con-
catenation of q1,q2, - - ., qn is (;, ¢)-quasigeodesic.

For any element x € G and N > O the closed ball centered at x of radius N will be denoted
by On(x) ={y € G |d(x,y) < N}.

Lemma 2.5. Assume G is a 5-hyperbolic group, A and B are e-quasiconvex subgroups. Then
for any N > 0 there exists N| = N{(N, 8, ¢, G, A) > 0 such that the following holds. Suppose
the subgroups A" < A and B’ < B satisfy ANB=A"NB, On,(1g)N(A'UB’) C AN B. Then
for the subgroup H = (A’, B’ < G one has

On(1g)NAHB C AB.
Proof First, let Co = CO(S g, G, A) be the constant given by Lemma 2.3. Define Cy =
max{Co, 146}, A=1,¢=0and C; = 12(Cy + 8) + ¢ + 1. Now apply Lemma 2.4 to find
A= A/4 =1/4>0andc= c(x, ¢, Co) > 0 from its claim.
Set Ny = (N +c+2Cy)/x and let A’ < A and B’ < B satisfy the conditions of the lemma.
Thus,
A'NOy,(1g) CANB, B'NOy,(1g) CANB. 2)

Define the subgroup H = (A’, B’) < G and consider an arbitrary element g € AHB \ (AB).
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Then

& =XOV1X1Y2 " X[ YI+1, 3)

where l e NU {0}, xo € A, x; € A’ \ {lg}, yi € B\ {lg}, i =1,...,1, yi11 € B. Moreover,
we can assume that xg, x1,..., X7, y1,...,y; are shortest representatives of their left cosets
modulo A N B (indeed, if there is X9 = xgz with z € A N B and |Xg|g < |xolg, then Xo € A,
g = Xo(zy1)x1y2 - - x;y1+1 wWhere zy; € B’ because of the construction of B’; and then a similar
procedure can be performed for zy;, and so on) and / is the smallest such integer. Therefore

xi€ A\ (ANB), vieB\(ANB), i=1,...,1L “4)

Observe that since g ¢ AB, [ > 1 and y; € B’ \ (A N B). Choose geodesic paths ¢,
g2, .., qu+2 in I'(G, A) as follows: (q1)— = lg, elem(q1) = xo, (q2)— = (q1)+, elem(q2) =
Vs ooy (qu42)— = (qa+1)+, elem(qai+2) = Yi41. Thus, (g214+2)+ = g. Using (4) and (2) we

obtain ||g;|| > N1 2 Cy =(C1 + ) /A, i =2,3,...,2l + 1, and ((¢;))-1(gi+1)+) g+ < Co (by
Remark 2.1 and Lemma 2.3) fori =1, ...,2/ + 1.

Now, there can occur four different situations depending on how long the paths g; and ¢2;42
are:

(@ llg1ll < Cy and ||g242ll < C1;
() llg1ll = Cy and |lg2i 421l < C1;
© liq1ll < Cy and |lgz+2l = Cy;
(@ ligill = Cy and ||go 2]l > Cy.

Let us consider the situation (b) (the others can be resolved in a completely analogous fash-
ion). Then the path ¢ = q1q> - - - g21+1 satisfies all the conditions of Lemma 2.4, hence it is
(X, ¢)-quasigeodesic (for the numbers X, ¢ defined in the beginning of the proof). Recalling (2)
we get

Iglc =2 d(q—,q+) —d(q+,8) = Allgll — ¢ — llgu+2ll Z Mgzl — ¢ — Cy
=Ayilg —c—C1>A((N+c+2C)/r)—c—C = N.

Similarly, one can show that |g|g > N in the other three situations.
Thus, we have AHB N Oy (1g) C AB and the lemma is proved. O

Note that during the proof of Lemma 2.5 for each g € H = (A, B’) we constructed a pre-
sentation (3) and a corresponding quasigeodesic path ¢ = g1 - - - g274+2 connecting 1 and g in
I'(G, A). Since geodesics and quasigeodesics with same ends are mutually close [3, 3.3], the
geodesic [1¢, g] will lie in some neighborhood of ¢. If, in addition, the subgroups A’ and B’ are
&’-quasiconvex, g will belong to a closed &’-neighborhood of H in I' (G, A). Hence H becomes
quasiconvex itself. Thus, one obtains the statement below, first proved by R. Gitik:

Lemma 2.6. [9, Theorem 1] Let A and B be ¢-quasiconvex subgroups of a §-hyperbolic group G.
There exists a constant Co, which depends only on G, § and ¢, with the following property. For
any quasiconvex subgroups A’ < A and B’ < B with A’ N\ B’ = AN B, if all elements in A" and
B’ shorter than C, belong to A N B, then the subgroup {A’, B') is also quasiconvex in G.
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Corollary 2.7. If G is a GFERF hyperbolic group and A, B are its quasiconvex subgroups then
the double coset AB is separable in G.

Proof. It is enough to show that for arbitrary g € G \ (AB) there exists a closed (in the profi-
nite topology) subset K of G such that AB C K and g ¢ K. Let C, be the constant given by
Lemma 2.6. Set N = |g|¢ and find the corresponding Nj > O from the claim of Lemma 2.5. De-
note Np = max{Nj, C3}. Since the subgroups A and B are closed in P7 (G), then so is AN B;
therefore there exist subgroups A’ <y A and B’ <y B (having finite indices in A and B corre-
spondingly) such that AN B C A’, AN B C B’ and Oy, (1) N (A’ U B") C AN B. Applying
Lemma2.5to H=(A’, B’) < G we achieve g ¢ AHB.

Now, A=| 'L, a;A’", B= |_];'.:l B'b; for some m,n €N, a; € A, bj € B for all i, j. Since
a finite index subgroup of a quasiconvex subgroup is itself quasiconvex, H is quasiconvex by
Lemma 2.6, hence it is closed in P7 (G) as G is GFERF. Therefore the sets a; Hb; are closed
for any 7, j, and, consequently, their finite union

Kdifm n
= UUa,’Hbj

i=1j=1
is closed too. It remains to observe that AB C K = AHB,thusg¢ K. O

3. Proof of Theorem 1.1

We will use induction on s. If s = 1, the statement follows from the definition of a GFERF
group. The case s = 2 is given by Corollary 2.7. So, we can now assume that s > 2 and the
statement is already proved for a product of any (s — 1) quasiconvex subgroups.

For our convenience, denote k =s —2, A=Gs_1, B=G.Let {A; |i e N}, {B; | i € N} be
enumerations of all finite index subgroups containing AN B in A and B correspondingly. Define
the sequences

i i
AD=M4;. BY=()B;.
j=l j=I

Now, due to the construction, AN B C A <; Aand ANB C BY <y B foralli. And (as
we saw in the proof of Corollary 2.7) for every i € N there are m = m(i), n = n(i) € N and
elements ay,...,a, € A, by, ..., b, € B such that

m n
A(A(i), B(i)>B — U Ual’ A(l) B(l) 5)

1r=1

Remark 3.1. For any finite index subgroup H of G satisfying AN B < H there exists / € N
such that A, BO < H foralli > 1.
Since A and B are separable in G, their intersection A N B is separable as well, and we have

e ¢]

AﬂB:ﬁA(i)sz(i).

i=1 i=1
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Without loss of generality, we can assume that the subgroups G, ..., Gg, A, B are e-quasi-
convex for a fixed € > 0. Let C'o = éo (8, €, G, A) be the constant given by Lemma 2.3. Define
Co= max{éo, 148}, »=1,¢=0and C; = 12(Cy + 8) + ¢ + 1. Now apply Lemma 2.4 to find
A= )1/4 >0and c=c(, ¢, Cp) > 0 from its claim.

Let C, = C2(4, &, G) be the constant from the claim of Lemma 2.6. Since the group B is
GFEREF, there exist A’ <y A and B’ <y B such that A’ B’ = AN B and all the elements in
A’ and B’ shorter than C; belong to A N B. Therefore, we can find an index I; € N such that
AD < A’ BD L B foralli > I, hence, according to Lemma 2.6, the subgroup (A®, B®) < G
is quasiconvex.

Arguing by contradiction, suppose there exists g € G \ (G1G2--- Gy AB) which belongs to
the closure of G1 G, --- Gy AB in P7 (G). Keeping in mind formula (5) and Remark 2.2, for any
i > I; we can apply the induction hypothesis to the product

def ] i
P;Z GGy Gy A(AY BB
to show that it is closed in P7 (G).

Obviously, G{G2---GyAB C P;, hence g € P; for every i > I;. Thus, for each i > I one

can find I =1(i) € NU{0} and elements z{ € G1, ... z;” € G, x) € A, x) € A\ (AN B),

y;i) e B® \(ANB),i=1,...,1, yH_1 € B satisfying

R Y IO ©

Moreover, as in the proof of Lemma 2.5, we can assume that z; is a shortest representative of its
left coset modulo G; N G;41 fort =1,...,k — 1, zx is a shortest representative of its left coset
modulo Gy N A, and xo, x;, y; are shortest representatives of their left cosets modulo A N B for
j=1,..., 1

Now we have to consider several possibilities.

Case 1. For some r € {1, ..., k} we have liminf;_, |z§i)|(; < 00.

Then, by passing to a subsequence, we can assume that z( D= =z; € G, for all i. Using (6) and
our assumptions on g we obtain

g€G1---Gi12:Gi11 --~GkA(A(i), B(i)>B and
g¢G1---Gi—12/Gyy1---GrAB foralli. 7
By Remark 2.2 and the induction hypothesis, the subset

Gi--Gi12tGyy1---GLAB

is closed in P7 (G), consequently, there exists a normal subgroup K of finite index in G such
that

gKNG--Gi_12:Gry1 - Gk AB =10.
Since BK = KB =KBB,

8 ¢ G] e G[_IZ[GtJ,_] . GkAKB = Gl s 'G[_1Z[G[+l < GkAHB, (8)
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where H = K B is a finite index subgroup of G containing A N B. Applying Remark 3.1 we
achieve that (A(’), B(’)) < H for every sufficiently large i, thus

Gi-12Gry1 -+ Gy A(AV, BY)B C G,-12,Gry1--- GrAHB. )
Combining (7), (8) and (9) together we obtain a contradiction.

Case 2. Suppose liminf;_, |x(()i)|G < 00.

i)

Again, by passing to a subsequence, we are able to assume that x( =xp € A for all i. Thus,

g€ Gy GrxoAD, BO)B  foralli. (10)

Now, since the subset G| ---GgxoB is closed in P7(G), we can find a normal subgroup K
having finite index in G and satisfying

g8¢G1--GixoKB=G---GrxoHB, a1

where H =K B <y G and AN B < H. Similarly to Case 1, formula (11) leads to a contradiction
with formula (10).

Case 3. Suppose liminf;_, o |yl(jr)] |G < oo (though [ may depend on i, it does not matter for us).

This case can be resolved in the same way as Case 2.
And, finally, the last

Cased4.Foreveryt € {1, ..., k} we have lim;_, szi) |G = oo and, in addition, lim; _, o |xéi)|(; =

lim; _, o0 Iy;.?l lg = oo.

Then for some i > I, we will have |zt(i)|G >Csyfort=1,...,k, |x(§i)|G > Cs, |x](.i)|G > C3
(sincexj.’) e AO\(ANB)and ANB =2 AD), |yP g > C3forj=1.....1, G > Ca,
where

def Ci+c |glg+c
GEmax) e

A
Choose the geodesic paths qi, ..., gkt+2+2 in I'(G, A) as follows: (q1)— = 1g, elem(q1) =
2, (@o)- = (e 1)+, elem(qr) = 2, (qes1)— = (qi)+. elem(qrs1) = xg . (@r42)— =
@+ 1)+ elem(@in) = ¥\, ooy @ra212)— = @raai1)+, elem(@riais) = y,+1 Recalling

(6) we see that (gx+21+2)+ = &
Now, by the construction of presentation (6), we can first apply Lemma 2.3 and then
Lemma 2.4 to the broken line g = g1 - - - qk+21+2. Thus, g is (X, ¢)-quasigeodesic. Since g— = 1¢,

q+ =g, we get
Iglc =d(g—,q+) =2 Allgll —c = Mqill — ¢ > AC3 —c > [glG-

The contradiction achieved finishes the proof. 0O
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