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Abstract

A word hyperbolic group G is called GFERF if every quasiconvex subgroup coincides with the intersec-
tion of finite index subgroups containing it. We show that in any such group, the product of finitely many
quasiconvex subgroups is closed in the profinite topology on G.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let G be a finitely generated group. The profinite topology PT (G) on G is defined by pro-
claiming all finite index normal subgroups to be the basis of open neighborhoods of the identity
element. It is easy to see that G equipped with this topology becomes a topological group. This
topology is Hausdorff if and only if G is residually finite.

A subset P ⊆ G will be called separable if it is closed in the profinite topology on G. Thus,
a subgroup H � G is separable whenever it is an intersection of finite index subgroups. The
group G is said to be locally extended residually finite (LERF) if every finitely generated sub-
group H � G is separable.

✩ This work was partially supported by the NSF grant DMS #0245600 of A. Ol’shanskii and M. Sapir.
E-mail address: aminasyan@gmail.com.
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A famous theorem of M. Hall states that free groups are LERF. Among other well-known
examples of LERF groups are surface groups and fundamental groups of compact Seifert fibred
3-manifolds [26]. In [25] P. Schupp provided certain sufficient conditions for a Coxeter group to
be LERF. More recently, R. Gitik [7] constructed an infinite family of LERF hyperbolic groups
that are fundamental groups of hyperbolic 3-manifolds.

In 1991 Pin and Reutenauer [23] conjectured that a product of finitely many finitely generated
subgroups in a free group is separable and listed some possible applications to groups and semi-
groups. In 1993 Ribes and Zalesskiı̌ [24] showed that the statement of this conjecture is true.
Later a similar question was studied in other LERF groups by Coulbois [5], Gitik [8], Niblo [21],
Steinberg [28] and others.

In particular, Gitik in [8, Theorem 1] proved that in a LERF hyperbolic group, a product of
two quasiconvex subgroups, one of which is malnormal, is separable.

However, many word hyperbolic groups are not LERF. For example, an ascending HNN-
extension of a finite rank free group is never LERF but very often hyperbolic (see [13]). So, it
makes sense to use the weaker notion below.

We will say that a (word) hyperbolic group G is GFERF if every quasiconvex subgroup
H � G is separable. The definition of a GFERF Kleinian group Γ was given by Long and Reid
in [17]: Γ is called geometrically finite extended residually finite (GFERF) if each geometrically
finite subgroup H � Γ is separable. Our definition is in the same spirit because in any word
hyperbolic group (more generally, in any automatic group) a subgroup is geometrically finite if
and only if it is quasiconvex (see [29]).

Long, Reid and Agol gave several examples of GFERF groups [2,17,18]. Hsu and Wise [12]
proved that certain right-angled Artin groups are GFERF. Some negatively curved (i.e., word hy-
perbolic) groups with this property were studied by Gitik in [7]. In the paper [31] Wise provided
another large family of GFERF hyperbolic groups; he also showed that Figure 8 knot group is
GFERF. The fact that this group is LERF follows from the recent proofs by Agol [1] and Gale-
gari and Gabai [4] of Marden’s “tameness” conjecture. This conjecture provides a new way for
obtaining LERF and GFERF groups as fundamental groups of 3-manifolds.

The main goal of this paper is to prove the following

Theorem 1.1. Assume G is a GFERF word hyperbolic group, G1,G2, . . . ,Gs are quasiconvex
subgroups, s ∈ N. Then the product G1G2 · · ·Gs is separable in G.

Since a finitely generated subgroup of a finite rank free group is quasiconvex, the above the-
orem generalizes the result of Ribes and Zalesskiı̌ [24] and provides an alternative proof of the
conjecture [23]. An application of Theorem 1.1 to the case when s = 2 and G2 is malnormal
gives the statement of Gitik’s theorem [8, Theorem 1].

Our proof of Theorem 1.1 uses geometry of quasigeodesics in negatively curved spaces and
basic properties of quasiconvex subgroups.

A subgroup H of a group G will be called almost malnormal if for every x ∈ G \ H the
intersection H ∩ xHx−1 is finite. H is said to be elementary if it is virtually cyclic. It is well
known that in a hyperbolic group G any element of infinite order belongs to a unique maximal
elementary subgroup. Thus, any maximal elementary subgroup of G is almost malnormal.

A famous open problem in Geometric Group Theory addresses the existence of a (word)
hyperbolic group that is not residually finite. The author would like to emphasize the importance
of studying GFERF hyperbolic groups through the proposition below.
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Proposition. The following are equivalent.

(1) There exists a non-residually finite hyperbolic group.
(2) There is a hyperbolic group G having an almost malnormal quasiconvex subgroup H which

is not separable.

Proof. Assume the first condition holds. In this case Kapovich and Wise [14, Theorem 1.2], and,
independently, Ol’shanskii [22, Theorem 2], proved that there exists a non-trivial hyperbolic
group G which has no proper subgroups of finite index at all. Choose an arbitrary maximal
elementary subgroup H of G. Obviously H satisfies the condition (2).

Now, suppose (2) holds. Then, according to a theorem of Kharlampovich and Myasnikov [15,
Theorem 2], the double D = G ∗H G is a hyperbolic group. If the group D were residually finite
then we could apply the theorem of Long and Niblo [16, §2, Lemma] (see also [21]) stating that
H is separable in G. The latter contradicts our assumptions. Hence, D is not residually finite. �

Presently, the author does not know of any examples of hyperbolic groups that are not GFERF.
So, it seems reasonable to ask

Question. Does there exist a non-GFERF word hyperbolic group?

As one can see from the proposition, this question may be quite difficult.
Finally, we note that in the case when a hyperbolic group G is GFERF, Theorem 1.1 provides

a positive solution for Problem 3.11 posed by D. Wise in [30]. This problem asks whether the
double coset HK is separable if G is residually finite and H,K � G are separable quasiconvex
subgroups.

2. Auxiliary information

Suppose G is a group with a fixed finite symmetrized generating set A. If g ∈ G, |g|G will
denote the length of a shortest word over A representing g. Now we can define the standard

left-invariant word metric d(·,·) on G by setting d(x, y)
def= |x−1y|G for arbitrary x, y ∈ G. This

metric extends to a metric on the Cayley graph Γ (G,A) of the group G after endowing every
edge with the metric of the segment [0,1] ⊂ R.

A subset Q of G is said to be ε-quasiconvex (where ε � 0) if for any pair of elements u,v ∈ Q

and any geodesic segment p connecting u and v, p belongs to a closed ε-neighborhood of Q in
Γ (G,A). A subset Q ⊂ G is quasiconvex if it is ε-quasiconvex for some ε � 0.

For any two points x, y ∈ Γ (G,A) we fix a geodesic path between them and denote it by
[x, y]. If x, y,w ∈ Γ (G,A), then the number

(x|y)w
def= 1

2

(
d(x,w) + d(y,w) − d(x, y)

)

is called the Gromov product of x and y with respect to w.

Remark 2.1. Since the metric is left-invariant, for arbitrary x, y,w ∈ G we have (x|y)w =
(w−1x|w−1y)1G

.
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Let abc be a geodesic triangle in Γ (G,A). There exist “special” points Oa ∈ [b, c],
Ob ∈ [a, c], Oc ∈ [a, b] with the properties: d(a,Ob) = d(a,Oc) = α, d(b,Oa) = d(b,Oc) = β ,
d(c,Oa) = d(c,Ob) = γ . It is easy to see that α = (b|c)a , β = (a|c)b , γ = (a|b)c . Two points
O ∈ [a, b] and O ′ ∈ [a, c] are called a-equidistant if d(a,O) = d(a,O ′) � α. The triangle abc

is said to be δ-thin if for any two points O,O ′ lying on its sides and equidistant from one of its
vertices, d(O,O ′) � δ holds.

The group G is said to be (word) hyperbolic (or negatively curved) if there is δ � 0 such that
every geodesic triangle in Γ (G,A) is δ-thin (for more theory the reader is referred to [3,6]).

For a hyperbolic group G, the property of a subset to be quasiconvex does not depend on the
choice of a generating set A (see [10]). A quasiconvex subgroup of a finitely generated group
is finitely generated itself [3,27]. A conjugate of a quasiconvex subgroup is quasiconvex as well
[19, Remark 2.2].

Fix an arbitrary GFERF hyperbolic group G. Then for n ∈ N, f0, f1, . . . , fn ∈ G and any
quasiconvex subgroups G1, . . . ,Gn � G, the subset

P = f0G1f1G2 · · ·fn−1Gnfn (1)

is called a quasiconvex product (here we use the terminology from [19]). Such a subset is always
quasiconvex [11, Proposition 3.14], [19, Corollary 2.1].

Remark 2.2. Assume that n ∈ N and for any n quasiconvex subgroups of the group G, their
product is closed in PT (G). Then any quasiconvex product P defined by (1) is also closed in
PT (G).

Indeed, observe that P = f Ĝ1 · · · Ĝn where f = f0f1 · · ·fn ∈ G and Ĝi = (fifi+1 · · ·
fn)

−1Gi(fifi+1 · · ·fn)—quasiconvex subgroups of G. By the assumptions, Ĝ1 · · · Ĝn is sepa-
rable, and since G (endowed with PT (G)) is a topological group, left translation by the element
f −1 ∈ G is a continuous operation, hence P is also separable.

Lemma 2.3. Assume that G is a δ-hyperbolic group with respect to a finite generating set A
and A, B are ε-quasiconvex subgroups. There exists a constant C0 = C0(δ, ε,G,A) � 0 such
that for any a ∈ A, b ∈ B the inequality (a−1|b)1G

� C0 holds whenever a is a shortest repre-
sentative of the coset a(A ∩ B).

Proof. Define a finite subset of the group G by Θ = {g ∈ AB | |g|G � 2ε + δ}. For every g ∈ Θ

choose a pair (x, y) ∈ A × B satisfying g = x−1y; let Ω ⊂ A × B denote the (finite) set of these
pairs. Consider

Ω1 = {
x ∈ A

∣∣ (x, y) ∈ Ω for some y ∈ B
}
.

Then one can define the number C0 = max{|x|G | x ∈ Ω1} + ε < ∞.
Now, assume that (a−1|b)1G

> C0, for some a ∈ A, b ∈ B where a is a shortest represen-
tative of the coset a(A ∩ B). Let α and β denote the “special” points of the triangle 1Ga−1b

(in Γ (G,A)) on the sides [1G,a−1] and [1G,b], respectively. Since A and B are ε-quasiconvex
there are elements a1 ∈ A and b1 ∈ B that are ε-close to α and β correspondingly. Using the
triangle inequality and δ-hyperbolicity of the space Γ (G,A) we obtain
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|aa1|G = d
(
a−1, a1

)
� d

(
a−1, α

) + ε = d
(
a−1,1G

) − d(α,1G) + ε

= d
(
a−1,1G

) − (
a−1

∣∣b)
1G

+ ε < |a|G − C0 + ε,

∣∣a−1
1 b1

∣∣
G

= d(a1, b1) � d(a1, α) + d(α,β) + d(β, b1) � 2ε + δ.

By definition, there exists a pair of elements (x, y) ∈ Ω with a−1
1 b1 = x−1y, thus a1x

−1 =
b1y

−1 ∈ A ∩ B . Now, a(a1x
−1) ∈ a(A ∩ B) and this element is shorter than a because

∣∣aa1x
−1

∣∣
G

� |aa1|G + |x|G < |a|G − (
C0 − ε − |x|G

)
� |a|G.

Thus we achieve a contradiction with our assumptions. �
Let p be a path in the Cayley graph of G. Then p−, p+ will denote the initial and the final

points of p, ‖p‖—its length. We will use elem(p) to denote the element of the group G repre-
sented by the word written on p. A path q is called (λ, c)-quasigeodesic if there exist 0 < λ � 1,
c � 0, such that for any subpath p of q the inequality λ‖p‖ − c � d(p−,p+) holds.

The statement below is an analog of the fact that in a negatively curved space k-local geodesics
are quasigeodesics for any sufficiently large k.

Lemma 2.4. [20, Lemma 4.2] Let λ̄ > 0, c̄ � 0, C0 � 14δ, C1 = 12(C0 + δ) + c̄ + 1 be given.
Then for λ = λ̄/4 > 0 there exist c = c(λ̄, c̄,C0) � 0 satisfying the statement below.

Assume N ∈ N, xi ∈ Γ (G,A), i = 0, . . . ,N , and qi are (λ̄, c̄)-quasigeodesic paths be-
tween xi−1 and xi in Γ (G,A), i = 1, . . . ,N . If ‖qi‖ � (C1 + c̄)/λ̄, i = 1, . . . ,N , and
(xi−1|xi+1)xi

� C0 for all i = 1, . . . ,N − 1, then the path q obtained as a consecutive con-
catenation of q1, q2, . . . , qN is (λ, c)-quasigeodesic.

For any element x ∈ G and N � 0 the closed ball centered at x of radius N will be denoted
by ON(x) = {y ∈ G | d(x, y) � N}.

Lemma 2.5. Assume G is a δ-hyperbolic group, A and B are ε-quasiconvex subgroups. Then
for any N � 0 there exists N1 = N1(N, δ, ε,G,A) � 0 such that the following holds. Suppose
the subgroups A′ � A and B ′ � B satisfy A∩B = A′ ∩B ′, ON1(1G)∩ (A′ ∪B ′) ⊂ A∩B . Then
for the subgroup H = 〈A′,B ′〉 � G one has

ON(1G) ∩ AHB ⊂ AB.

Proof. First, let Ĉ0 = Ĉ0(δ, ε,G,A) be the constant given by Lemma 2.3. Define C0 =
max{Ĉ0,14δ}, λ̄ = 1, c̄ = 0 and C1 = 12(C0 + δ) + c̄ + 1. Now apply Lemma 2.4 to find
λ = λ̄/4 = 1/4 > 0 and c = c(λ̄, c̄,C0) � 0 from its claim.

Set N1 = (N + c + 2C1)/λ and let A′ � A and B ′ � B satisfy the conditions of the lemma.
Thus,

A′ ∩ON1(1G) ⊂ A ∩ B, B ′ ∩ON1(1G) ⊂ A ∩ B. (2)

Define the subgroup H = 〈A′,B ′〉 � G and consider an arbitrary element g ∈ AHB \ (AB).
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Then

g = x0y1x1y2 · · ·xlyl+1, (3)

where l ∈ N ∪ {0}, x0 ∈ A, xi ∈ A′ \ {1G}, yi ∈ B ′ \ {1G}, i = 1, . . . , l, yl+1 ∈ B . Moreover,
we can assume that x0, x1, . . . , xl, y1, . . . , yl are shortest representatives of their left cosets
modulo A ∩ B (indeed, if there is x̃0 = x0z with z ∈ A ∩ B and |x̃0|G < |x0|G, then x̃0 ∈ A,
g = x̃0(zy1)x1y2 · · ·xlyl+1 where zy1 ∈ B ′ because of the construction of B ′; and then a similar
procedure can be performed for zy1, and so on) and l is the smallest such integer. Therefore

xi ∈ A′ \ (A ∩ B), yi ∈ B ′ \ (A ∩ B), i = 1, . . . , l. (4)

Observe that since g /∈ AB , l � 1 and y1 ∈ B ′ \ (A ∩ B). Choose geodesic paths q1,
q2, . . . , q2l+2 in Γ (G,A) as follows: (q1)− = 1G, elem(q1) = x0, (q2)− = (q1)+, elem(q2) =
y1, . . . , (q2l+2)− = (q2l+1)+, elem(q2l+2) = yl+1. Thus, (q2l+2)+ = g. Using (4) and (2) we
obtain ‖qi‖ > N1 � C1 = (C1 + c̄)/λ̄, i = 2,3, . . . ,2l + 1, and ((qi)−|(qi+1)+)(qi )+ � C0 (by
Remark 2.1 and Lemma 2.3) for i = 1, . . . ,2l + 1.

Now, there can occur four different situations depending on how long the paths q1 and q2l+2
are:

(a) ‖q1‖ < C1 and ‖q2l+2‖ < C1;
(b) ‖q1‖ � C1 and ‖q2l+2‖ < C1;
(c) ‖q1‖ < C1 and ‖q2l+2‖ � C1;
(d) ‖q1‖ � C1 and ‖q2l+2‖ � C1.

Let us consider the situation (b) (the others can be resolved in a completely analogous fash-
ion). Then the path q = q1q2 · · ·q2l+1 satisfies all the conditions of Lemma 2.4, hence it is
(λ, c)-quasigeodesic (for the numbers λ, c defined in the beginning of the proof). Recalling (2)
we get

|g|G � d(q−, q+) − d(q+, g) � λ‖q‖ − c − ‖q2l+2‖ � λ‖q2‖ − c − C1

= λ|y1|G − c − C1 > λ
(
(N + c + 2C1)/λ

) − c − C1 � N.

Similarly, one can show that |g|G > N in the other three situations.
Thus, we have AHB ∩ON(1G) ⊂ AB and the lemma is proved. �
Note that during the proof of Lemma 2.5 for each g ∈ H = 〈A′,B ′〉 we constructed a pre-

sentation (3) and a corresponding quasigeodesic path q = q1 · · ·q2l+2 connecting 1G and g in
Γ (G,A). Since geodesics and quasigeodesics with same ends are mutually close [3, 3.3], the
geodesic [1G,g] will lie in some neighborhood of q . If, in addition, the subgroups A′ and B ′ are
ε′-quasiconvex, q will belong to a closed ε′-neighborhood of H in Γ (G,A). Hence H becomes
quasiconvex itself. Thus, one obtains the statement below, first proved by R. Gitik:

Lemma 2.6. [9, Theorem 1] Let A and B be ε-quasiconvex subgroups of a δ-hyperbolic group G.
There exists a constant C2, which depends only on G, δ and ε, with the following property. For
any quasiconvex subgroups A′ � A and B ′ � B with A′ ∩ B ′ = A ∩ B , if all elements in A′ and
B ′ shorter than C2 belong to A ∩ B , then the subgroup 〈A′,B ′〉 is also quasiconvex in G.
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Corollary 2.7. If G is a GFERF hyperbolic group and A, B are its quasiconvex subgroups then
the double coset AB is separable in G.

Proof. It is enough to show that for arbitrary g ∈ G \ (AB) there exists a closed (in the profi-
nite topology) subset K of G such that AB ⊆ K and g /∈ K . Let C2 be the constant given by
Lemma 2.6. Set N = |g|G and find the corresponding N1 � 0 from the claim of Lemma 2.5. De-
note N2 = max{N1,C2}. Since the subgroups A and B are closed in PT (G), then so is A ∩ B;
therefore there exist subgroups A′ �f A and B ′ �f B (having finite indices in A and B corre-
spondingly) such that A ∩ B ⊂ A′, A ∩ B ⊂ B ′ and ON2(1G) ∩ (A′ ∪ B ′) ⊂ A ∩ B . Applying
Lemma 2.5 to H = 〈A′,B ′〉 � G we achieve g /∈ AHB .

Now, A = ⊔m
i=1 aiA

′, B = ⊔n
j=1 B ′bj for some m,n ∈ N, ai ∈ A, bj ∈ B for all i, j . Since

a finite index subgroup of a quasiconvex subgroup is itself quasiconvex, H is quasiconvex by
Lemma 2.6, hence it is closed in PT (G) as G is GFERF. Therefore the sets aiHbj are closed
for any i, j , and, consequently, their finite union

K
def=

m⋃
i=1

n⋃
j=1

aiHbj

is closed too. It remains to observe that AB ⊂ K = AHB , thus g /∈ K . �
3. Proof of Theorem 1.1

We will use induction on s. If s = 1, the statement follows from the definition of a GFERF
group. The case s = 2 is given by Corollary 2.7. So, we can now assume that s > 2 and the
statement is already proved for a product of any (s − 1) quasiconvex subgroups.

For our convenience, denote k = s − 2, A = Gs−1, B = Gs . Let {Ai | i ∈ N}, {Bi | i ∈ N} be
enumerations of all finite index subgroups containing A∩B in A and B correspondingly. Define
the sequences

A(i) =
i⋂

j=1

Aj , B(i) =
i⋂

j=1

Bj .

Now, due to the construction, A ∩ B ⊂ A(i) �f A and A ∩ B ⊂ B(i) �f B for all i. And (as
we saw in the proof of Corollary 2.7) for every i ∈ N there are m = m(i), n = n(i) ∈ N and
elements a1, . . . , am ∈ A, b1, . . . , bn ∈ B such that

A
〈
A(i),B(i)

〉
B =

m⋃
p=1

n⋃
r=1

ap

〈
A(i),B(i)

〉
br . (5)

Remark 3.1. For any finite index subgroup H of G satisfying A ∩ B � H there exists I ∈ N

such that A(i),B(i) � H for all i � I .

Since A and B are separable in G, their intersection A ∩ B is separable as well, and we have

A ∩ B =
∞⋂

A(i) =
∞⋂

B(i).
i=1 i=1
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Without loss of generality, we can assume that the subgroups G1, . . . ,Gk,A,B are ε-quasi-
convex for a fixed ε � 0. Let Ĉ0 = Ĉ0(δ, ε,G,A) be the constant given by Lemma 2.3. Define
C0 = max{Ĉ0,14δ}, λ̄ = 1, c̄ = 0 and C1 = 12(C0 + δ) + c̄ + 1. Now apply Lemma 2.4 to find
λ = λ̄/4 > 0 and c = c(λ̄, c̄,C0) � 0 from its claim.

Let C2 = C2(δ, ε,G) be the constant from the claim of Lemma 2.6. Since the group B is
GFERF, there exist A′ �f A and B ′ �f B such that A′ ∩ B ′ = A ∩ B and all the elements in
A′ and B ′ shorter than C2 belong to A ∩ B . Therefore, we can find an index I1 ∈ N such that
A(i) � A′, B(i) � B ′ for all i � I1, hence, according to Lemma 2.6, the subgroup 〈A(i),B(i)〉 � G

is quasiconvex.
Arguing by contradiction, suppose there exists g ∈ G \ (G1G2 · · ·GkAB) which belongs to

the closure of G1G2 · · ·GkAB in PT (G). Keeping in mind formula (5) and Remark 2.2, for any
i � I1 we can apply the induction hypothesis to the product

Pi
def= G1G2 · · ·GkA

〈
A(i),B(i)

〉
B

to show that it is closed in PT (G).
Obviously, G1G2 · · ·GkAB ⊆ Pi , hence g ∈ Pi for every i � I1. Thus, for each i � I1 one

can find l = l(i) ∈ N ∪ {0} and elements z
(i)
1 ∈ G1, . . . , z

(i)
k ∈ Gk , x

(i)
0 ∈ A, x

(i)
j ∈ A(i) \ (A∩ B),

y
(i)
j ∈ B(i) \ (A ∩ B), i = 1, . . . , l, y

(i)
l+1 ∈ B satisfying

g = z
(i)
1 · · · z(i)

k x
(i)
0 y

(i)
1 x

(i)
1 · · ·x(i)

l y
(i)
l+1. (6)

Moreover, as in the proof of Lemma 2.5, we can assume that zt is a shortest representative of its
left coset modulo Gt ∩ Gt+1 for t = 1, . . . , k − 1, zk is a shortest representative of its left coset
modulo Gk ∩ A, and x0, xj , yj are shortest representatives of their left cosets modulo A ∩ B for
j = 1, . . . , l.

Now we have to consider several possibilities.

Case 1. For some t ∈ {1, . . . , k} we have lim infi→∞ |z(i)
t |G < ∞.

Then, by passing to a subsequence, we can assume that z
(i)
t = zt ∈ Gt for all i. Using (6) and

our assumptions on g we obtain

g ∈ G1 · · ·Gt−1ztGt+1 · · ·GkA
〈
A(i),B(i)

〉
B and

g /∈ G1 · · ·Gt−1ztGt+1 · · ·GkAB for all i. (7)

By Remark 2.2 and the induction hypothesis, the subset

G1 · · ·Gt−1ztGt+1 · · ·GkAB

is closed in PT (G), consequently, there exists a normal subgroup K of finite index in G such
that

gK ∩ G1 · · ·Gt−1ztGt+1 · · ·GkAB = ∅.

Since BK = KB = KBB ,

g /∈ G1 · · ·Gt−1ztGt+1 · · ·GkAKB = G1 · · ·Gt−1ztGt+1 · · ·GkAHB, (8)
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where H = KB is a finite index subgroup of G containing A ∩ B . Applying Remark 3.1 we
achieve that 〈A(i),B(i)〉 � H for every sufficiently large i, thus

Gt−1ztGt+1 · · ·GkA
〈
A(i),B(i)

〉
B ⊆ Gt−1ztGt+1 · · ·GkAHB. (9)

Combining (7), (8) and (9) together we obtain a contradiction.

Case 2. Suppose lim infi→∞ |x(i)
0 |G < ∞.

Again, by passing to a subsequence, we are able to assume that x
(i)
0 = x0 ∈ A for all i. Thus,

g ∈ G1 · · ·Gkx0
〈
A(i),B(i)

〉
B for all i. (10)

Now, since the subset G1 · · ·Gkx0B is closed in PT (G), we can find a normal subgroup K

having finite index in G and satisfying

g /∈ G1 · · ·Gkx0KB = G1 · · ·Gkx0HB, (11)

where H = KB �f G and A∩B � H . Similarly to Case 1, formula (11) leads to a contradiction
with formula (10).

Case 3. Suppose lim infi→∞ |y(i)
l+1|G < ∞ (though l may depend on i, it does not matter for us).

This case can be resolved in the same way as Case 2.
And, finally, the last

Case 4. For every t ∈ {1, . . . , k} we have limi→∞ |z(i)
t |G = ∞ and, in addition, limi→∞ |x(i)

0 |G =
limi→∞ |y(i)

l+1|G = ∞.

Then for some i > I1, we will have |z(i)
t |G > C3 for t = 1, . . . , k, |x(i)

0 |G > C3, |x(i)
j |G > C3

(since x
(i)
j ∈ A(i) \ (A∩B) and A∩B = ⋂∞

i=1 A(i)), |y(i)
j |G > C3 for j = 1, . . . , l, |y(i)

l+1|G > C3,
where

C3
def= max

{
C1 + c̄

λ̄
,
|g|G + c

λ

}
.

Choose the geodesic paths q1, . . . , qk+2l+2 in Γ (G,A) as follows: (q1)− = 1G, elem(q1) =
z
(i)
1 , . . . , (qk)− = (qk−1)+, elem(qk) = z

(i)
k , (qk+1)− = (qk)+, elem(qk+1) = x

(i)
0 , (qk+2)− =

(qk+1)+, elem(qk+2) = y
(i)
1 , . . . , (qk+2l+2)− = (qk+2l+1)+, elem(qk+2l+2) = y

(i)
l+1. Recalling

(6) we see that (qk+2l+2)+ = g.
Now, by the construction of presentation (6), we can first apply Lemma 2.3 and then

Lemma 2.4 to the broken line q = q1 · · ·qk+2l+2. Thus, q is (λ, c)-quasigeodesic. Since q− = 1G,
q+ = g, we get

|g|G = d(q−, q+) � λ‖q‖ − c � λ‖q1‖ − c > λC3 − c � |g|G.

The contradiction achieved finishes the proof. �
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