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Abstract. Beben and Wu showed that if M is a (2n−2)-connected (4n−1)-dimensional Poincaré

Duality complex such that n ≥ 3 and H2n(M ;Z) consists only of odd torsion, then ΩM can

be decomposed up to homotopy as a product of simpler, well studied spaces. We use a result

from [BT2] to greatly simplify and enhance Beben and Wu’s work and to extend it in various

directions.

1. Introduction

An orientable Poincaré Duality complex is a connected CW -complex whose cohomology satisfies

Poincaré Duality. An orientable manifold is an example. In [BW] Beben and Wu gave a homotopy

decomposition of ΩM where M is any (2n− 2)-connected (4n− 1)-dimensional orientable Poincaré

Duality complex, provided n ≥ 3 and H2n(M ;Z) has no 2-torsion. They used this to show that the

homotopy type of ΩM depended only on homological properties of M . This is in contrast to the

homotopy type of M , which is known to depend on other properties as well. In particular, their

result implies that the homotopy groups of M depend only on its homological properties.

In this paper we revisit Beben and Wu’s result. We give a simpler approach involving much less

spectral sequence calculation, instead relying on a result proved in [BT2]. This allows for the results

to be significantly extended and enhanced in various directions.

It should also be noted that earlier work of Selick [Se] using different methods can be used to give

a p-local homotopy decomposition of ΩM when p is an odd prime and H2n(M ;Z) ∼= Z/prZ. This

has the advantage that it avoids calculating the mod-p homology of ΩM entirely but it also cedes a

level of precision that we will later require; this is explained more fully in Section 3.

For any (2n− 2)-connected (4n− 1)-dimensional Poincaré Duality complex M we have

H2n(M ;Z) ∼= Zd ⊕
⊕̀
k=1

Z/prkk Z
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where d ≥ 0, each pk is prime and each rk ≥ 1. The case when d ≥ 1 has been dealt with in [BT2,

Examples 4.4 and 5.3] (see [Bas] for a different approach to the homotopy type) so we restrict to the

case when d = 0. In this case the description of H2n(M ;Z) implies that the 2n-skeleton M2n of M is

homotopy equivalent to a wedge of Moore spaces, M2n '
∨`
k=1 P

2n(prkk ). If each pk is an odd prime

we show the following. Let m be the least common multiple of {pr11 , . . . , p
r`
` } and let m = p̄r̄11 · · · p̄r̄ss

be its prime decomposition. Notice that {p̄1, . . . , p̄s} is the set of distinct primes in {p1, . . . , p`} and

each r̄j is the maximum power of p̄j appearing in the list {pr11 , . . . , p
r`
` }. By [N], the wedge of Moore

spaces
∨s
j=1 P

2n(p̄
r̄j
j ) is homotopy equivalent to P 2n(m). Write M2n ' P 2n(m) ∨ ΣA where ΣA is

the wedge of the remaining Moore spaces in M2n. Let f be the composite of inclusions f : ΣA −→

M2n −→M and define the space V and the map h by the homotopy cofibration ΣA
f−→M

h−→ V .

We show that V is a Poincaré Duality complex with H2n(V ;Z) ∼= Z/mZ, Ωh has a right homotopy

inverse s : ΩV −→ ΩM and prove the following.

In general, for a space X let ev : ΣΩX −→ X be the canonical evaluation map. Given two maps

a : ΣX −→ Z and b : ΣY −→ Z, let [a, b] : ΣX ∧ Y −→ Z be the Whitehead product of a and b. Let

S2n+1{pr} be the homotopy fibre of the degree pr map on S2n+1.

Theorem 1.1. Let M be a (2n−2)-connected, (4n−1)-dimensional Poincaré Duality complex such

that n ≥ 2. Suppose that

H2n(M ;Z) ∼=
⊕̀
k=1

Z/prkk Z

where each pk is an odd prime. Then with V and A chosen as above:

(a) there is a homotopy fibration

(ΣΩV ∧A) ∨ ΣA
[γ,f ]+f−−−−→M

h−−−−→ V

where γ is the composite γ : ΣΩV
Σs−→ ΣΩM

ev−→M ;

(b) the homotopy fibration in (a) splits after looping to give a homotopy equivalence

ΩM ' ΩV × Ω((ΣΩV ∧A) ∨ ΣA);

(c) there is a homotopy equivalence

ΩV '
s∏
j=1

S2n−1{p̄r̄jj } × ΩS4n−1.

As a notable special case, if the primes pk for 1 ≤ k ≤ ` all equal a common prime p, and r is the

maximum of {r1, . . . , rk} then ΩV ' S2n−1{pr} × ΩS4n−1.

In [BW] the decompositions in parts (b) and (c) of Theorem 1.1 were proved for n ≥ 3. Part (a)

is new as is the n = 2 case for 2-connected 7-dimensional Poincaré Duality complexes. Further,

while [BW] gives no information in 2-torsion cases, in Theorem 5.7 we prove analogues of parts (a)

and (b) when H2n(M ;Z) ∼=
⊕`

k=1 Z/p
rk
k Z ⊕

⊕t
s=1 Z/2rsZ, where each pk is an odd prime, each
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rs ≥ 2, and ` ≥ 1, and in Proposition 6.1 we consider special cases when 2-primary analogues of

part (c) of Theorem 1.1 hold.

An interesting consequence is a rigidity result. In Remark 4.6 we show that (ΣΩV ∧ A) ∨ ΣA is

homotopy equivalent to a wedge W of Moore spaces, so part (b) may be written more succinctly as

ΩM ' ΩV ×ΩW . As observed in [BW], the homotopy types of ΩV and ΩM depend only on informa-

tion from H2n(M ;Z). Thus, if M and M ′ are both (2n−2)-connected (4n−1) dimensional Poincaré

Duality complexes satisfying the hypotheses of Theorem 1.1, and H2n(M ;Z) ∼= H2n(M ′;Z), then

ΩM ' ΩM ′.

We also prove an additional statement that was unaddressed in [BW]. Let I : M2n −→ M be

the inclusion of the 2n-skeleton. We show that there is a homotopy cofibration P 4n−1(m)
G−→

M2n ∨ S4n−1 I+H−→ M where Ω(I + H) has a right homotopy inverse S : ΩM −→ Ω(M2n ∨ S4n−1),

and prove the following.

Theorem 1.2. With the same hypotheses as in Theorem 1.1, there is a homotopy fibration

(P 4n−1(m) ∧ ΩM) ∨ P 4n−1(m)
[G,Γ]+G−−−−→ M2n ∨ S4n−1 I+H−−−−→M

where Γ is the composite ΣΩM
ΣS−→ ΣΩ(M2n∨S4n−1)

ev−→M2n∨S4n−1, and this homotopy fibration

splits after looping to give a homotopy equivalence

Ω(M2n ∨ S4n−1) ' ΩM × Ω((P 4n−1(m) ∧ ΩM) ∨ P 4n−1(m)).

Theorem 1.2 is interesting. Since M2n is homotopy equivalent to a wedge of simply-connected

Moore spaces, it is a suspension. The theorem therefore shows that ΩM retracts off a loop sus-

pension, it identifies the complementary factor, and it explicitly describes how the complementary

factor maps into the loop suspension.

The authors would like to thank the referee for several comments that have improved the paper.

2. Preliminary results

This section contains preliminary results that will be referred to frequently in the subsequent

sections. We start with a general result from [BT2, Proposition 3.5].

Theorem 2.1. Let ΣA
f−→ Y

h−→ Z be a homotopy cofibration. Suppose that Ωh has a right

homotopy inverse s : ΩZ −→ ΩY . Let γ be the composite γ : ΣΩZ
Σs−→ ΣΩY

ev−→ Y . Then there

there is a homotopy fibration

(ΣΩZ ∧A) ∨ ΣA
[γ,f ]+f−−−−→ Y

h−−−−→ Z

which splits after looping to give a homotopy equivalence

ΩY ' ΩZ×Ω((ΣΩZ∧A)∨ΣA). �
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Remark 2.2. As pointed out in [T, Remark 2.2], Theorem 2.1 has a naturality property. If there

is a homotopy cofibration diagram

ΣA
f
//

��

Y
h //

��

Z

��
ΣA′

f ′

// Y ′
h′ // Z ′

and both Ωh and Ωh′ have right homotopy inverses s and s′ respectively such that there is a

homotopy commutative diagram

ΩZ
s //

��

ΩY

��
ΩZ ′

s′ // ΩY ′

then then the homotopy fibration in Theorem 2.1 is also natural.

Next, we prove two general lemmas about the existence of certain right homotopy inverses.

Lemma 2.3. Suppose that there is a homotopy equivalence

e : X × Y f×g−→ ΩZ × ΩZ
µ−→ ΩZ

for some maps f and g, where µ is the loop multiplication, and suppose that there is a map ΩW
Ωh−→

ΩZ. If both f and g lift through Ωh, then Ωh has a right homotopy inverse.

Proof. Let s : X −→ ΩW and t : Y −→ ΩW be lifts of f and g respectively through Ωh. Consider

the diagram

X × Y
s×t //

f×g &&MMMMMMMMMM
ΩW × ΩW

µ
//

Ωh×Ωh

��

ΩW

Ωh

��
ΩZ × ΩZ

µ
// ΩZ.

The left triangle homotopy commutes by definition of s and t and the right square homotopy com-

mutes since Ωh is an H-map. The lower direction around the diagram is the defintion of the

homotopy equivalence e, so the upper row is a lift of e through ΩW . Therefore Ωh has a right

homotopy inverse. �

Lemma 2.4. Suppose that there is a homotopy fibration diagram

F
f
//

q

��

F ′

��
E

e //

p

��

E′

��
B

b // B′
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of path-connected CW -complexes, where Ωb, Ωf and Ωp have right homotopy inverses. Then Ωe has

a right homotopy inverse.

Proof. Let r : ΩB′ −→ ΩB, s : ΩF ′ −→ ΩF and t : ΩB −→ ΩE be right homotopy inverses for Ωb,

Ωf and Ωp respectively. Let θ be the composite

θ : ΩB′ × ΩF ′
r×s−−→ ΩB × ΩF

t×Ωq−−→ ΩE × ΩE
µ−−→ ΩE.

Consider the diagram

ΩF ′
s //

i2
��

ΩF
Ωf
//

Ωq

��

ΩF ′

��
ΩB′ × ΩF ′

θ //

π1

��

ΩE
Ωe //

Ωp

��

ΩE′

��
ΩB′

r // ΩB
Ωb // ΩB′

where i2 is the inclusion of the second factor and π1 is the projection onto the first factor. The lower

left square homotopy commutes by definition of θ and Ωp being an H-map. The left column is a

fibration, so the homotopy commutativity of the lower left square implies there is an induced map

of fibres ΩF ′ −→ ΩF . Since θ ◦ i2 = Ωq ◦ s, a choice of map of fibres is s. Thus the left side of the

diagram is a map of homotopy fibrations, as is the right by hypothesis. Therefore the composite

from the left to the right column is a self-map of a homotopy fibration in which the top and bottom

maps are homotopic to the identity. Therefore, by the Five Lemma, Ωe ◦ θ induces an isomorphism

on homotopy groups and so is a homotopy equivalence by Whitehead’s Theorem. �

3. The case when H2n(M ;Z) ∼= Z/prZ

Let V be a (2n− 2)-connected (4n− 1)-dimensional Poincaré Duality complex with H2n(V ;Z) ∼=

Z/prZ where p is a prime. As a CW -complex, V = P 2n(pr) ∪ e4n−1, and there is a homotopy

cofibration

S4n−2 f−→ P 2n(pr)
i−→ V

where f is the attaching map for the top cell and i is the inclusion of the (4n− 2)-skeleton. In this

section we prove Theorems 1.1 and 1.2 in the special case when M = V , assuming that n ≥ 2 and p

is odd. Some 2-primary cases of Theorem 1.1 (c) will be deferred to Section 6.

A decomposition of ΩV was proved by Beben and Wu [BW] for n ≥ 3 and p odd. Their method

was more elaborate as it kept track of homology information in the general case of ΩM where M is

any (2n− 2)-connected (4n− 1)-dimensional Poincaré Duality complex with degree 2n cohomology

consisting only of odd torsion. We give a much simpler approach to the general case in Section 4,

and so only need to keep track of homology information for the special case of V .
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Different methods were used by Selick [Se] to give a p-local decomposition of ΩV for n ≥ 2 and p

odd. He used a generalization of methods developed by Dyer-Lashof and Ganea to produce a p-lcoal

homotopy fibration

S2n−1{pr} ∂−→ S4n−1 h′−→ V

where ∂ is null homotopic, giving a p-local homotopy equivalence ΩV ' S2n−1{pr} × ΩS4n−1,

analogous to our Proposition 3.7. The advantage of Selick’s method is that it avoids homology

calculations entirely. Ideally, we would like this to be an integral result rather than a p-local one;

the method itself cannot be upgraded to do this as it depends on S2n−1 being an H-space which

rarely happens integrally, however a Sullivan square type argument could potentially be used to

rectify this given that V localized at primes not equal to p or rationally is homotopy equivalent to

S4n−1. The real disadvantage of Selick’s method for our purposes is that it does not describe the

homotopy class of the map h′ with enough precision for later use in Lemma 3.8 and Proposition 3.9.

It would be interesting to see if his techniques could be enhanced to do this, but in the meantime

we fall back to homology calculations to deal with ΩV .

Lemma 3.1. In degrees ≤ 4n there is an algebra isomorphism H∗(ΩV ;Z/pZ) ∼= Z/pZ[x, y] where

|x| = 2n− 2 and |y| = 2n− 1.

Proof. Throughout, take cohomology and homology with mod-p coefficients. By Poincaré Duality,

there is an algebra isomorphism H∗(V ) ∼= Λ(a, b) where |a| = 2n− 1, |b| = 2n. Dualizing, there is a

coalgebra isomorphism H∗(V ) ∼= Λ(u, v) where u, v are the duals of a, b respectively. In particular,

if ∆ is the reduced diagonal, then u and v are primitive and ∆(uv) = u⊗ v + v ⊗ u.

Consider the mod-p homology Serre spectral sequence for the principal homotopy fibration ΩV −→

∗ −→ V . We have E2 ∼= H∗(ΩV )⊗H∗(V ) and the spectral sequence converges to H∗(∗). For degree

reasons, the first possible nontrivial differential is d2n−1, and for convergence reasons we must have

d2n−1(u) = x for some x ∈ H2n−2(ΩV ). Also, for convergence reasons we must have d2n(v) = y for

some y ∈ H2n−1(ΩV ). Thus, in the E2-term, we also have the elements x ⊗ u, x ⊗ v, y ⊗ u, y ⊗ v.

Since the spectral sequence is principal, d2n−1 and d2n are differentials, so d2n−1(x ⊗ u) = x2,

d2n−1(y⊗u) = xy and d2n(y⊗v) = y2. We claim that d2n−1(uv) = t ·(x⊗v) for some unit t ∈ Z/pZ.

The diagonal map gives a morphism of fibrations from ΩV −→ ∗ −→ V to ΩV ×ΩV −→ ∗ −→ V ×V

that induces a morphism of mod-p homology Serre spectral sequences. Note that in the product

fibration there is a Künneth isomorphism that lets us regard the homology of the product as the

tensor product of the homologies of the factors. Since the diagonal map induces the coalgebra struc-

ture in homology, this morphism of Serre spectral sequences implies that the differentials commute

with the reduced diagonal. Therefore ∆(d2n−1(uv)) = (d2n−1⊗d2n−1)(u⊗v+v⊗u) = x⊗v+v⊗x

(noting that d2n−1(v) = 0). In particular, ∆(d2n−1(uv)) 6= 0, so d2n−1(uv) 6= 0. For degree reasons,
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this implies that d2n−1(uv) = t · (x ⊗ v) for some unit t ∈ Z/pZ. Thus at the E2n+1-page all ele-

ments of degree ≤ 4n have vanished. Consequently, in degrees ≤ 4n there is an algebra isomorphism

H∗(ΩV ) ∼= Z/pZ[x, y]. �

Next consider the effect of the map ΩP 2n(pr)
Ωi−→ ΩV in mod-p homology. Since n ≥ 2, P 2n(pr)

is a suspension, so by the Bott-Samelson Theorem there is an algebra isomorphism

H∗(ΩP
2n(pr);Z/pZ) ∼= T (x, y)

where T ( ) is the free tensor algebra functor, |x| = 2n− 2, |y| = 2n− 1 and βry = x. Since i is the

inclusion of the (4n− 2)-skeleton, it induces a homotopy equivalence in dimensions ≤ 4n− 3, so Ωi

induces a homotopy equivalence in dimensions ≤ 4n−4. In particular, (Ωi)∗ induces an isomorphism

in degrees 2n− 2 and 2n− 1 in mod-p homology. As (Ωi)∗ is an algebra map, from Lemma 3.1 we

obtain the following.

Lemma 3.2. In mod-p homology, the generator of least degree in the kernel of (Ωi)∗ is [x, y]. �

Let f̃ : S4n−3 −→ ΩP 2n(pr) be the adjoint of f . Let ιm ∈ Hm(Sm;Z/pZ) be a choice of a

generator.

Lemma 3.3. In mod-p homology, there is a choice of ι4n−3 such that f̃∗(ι4n−3) = [x, y].

Proof. Recall the cofibration S4n−2 f−→ P 2n(pr)
i−→ V . Define the space F by the homotopy

fibration F −→ P 2n(pr)
i−→ V and consider the mod-p homology Serre spectral sequence for the

principal fibration ΩV −→ F −→ P 2n(pr). The E2-page of the spectral sequence is given by

H∗(P
2n(pr))⊗H∗(ΩV ). Let u, v be the generators of H∗(P

2n(pr)) in degrees 2n−1, 2n respectively.

By Lemma 3.1, H∗(ΩV ) ∼= Z/pZ[x, y] in degrees ≤ 4n, where |x| = 2n− 2 and |y| = 2n− 1. Since i

is the inclusion of the 2n-skeleton, we have d2n−1(u) = x and d2n(v) = y. As the fibration is

principal, the differentials in the spectral sequence are derivations so we obtain d2n−1(u⊗ x) = x2,

d2n−1(u ⊗ y) = xy and d2n(v ⊗ y) = v2. Thus by the E2n+1-page of the spectral sequence there

is only one element left in degrees ≤ 4n − 2, and that is the image of the E2-page element v ⊗ x.

For degree reasons, this element is in the kernel of all higher differentials and therefore survives the

spectral sequence. Thus the (4n− 2)-skeleton of F is S4n−2.

Returning again to the cofibration S4n−2 f−→ P 2n(pr)
i−→ V , there is clearly a lift

S4n−2

f

��

λ

||xxxxxxxxxx

F // P 2n(pr)

for some map λ. By the Blakers-Massey Theorem, λ is a homotopy equivalence in dimensions less

than 4n − 2, so up to multiplication by a unit, λ may be regarded as the inclusion of the bottom

cell of F . Taking adjoints, f̃ factors as the composite S4n−3 λ̃−→ ΩF −→ ΩP 2n(pr), where λ̃ is
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the adjoint of λ. Now λ̃ is the inclusion of the bottom cell in ΩF , and Lemma 3.2 implies that

the inclusion of this bottom cell has image equal to the generator of least degree in the kernel of

(Ωi)∗, which is [x, y]. Thus there is a choice of generator ι4n−3 in H4n−3(S4n−3;Z/pZ) such that

f̃∗(ι4n−3) = [x, y]. �

The low degree calculations made so far now let us calculate H∗(ΩV ;Z/pZ) and (Ωi)∗ in full.

Proposition 3.4. Let V be a (2n − 2)-connected, (4n − 1)-dimensional Poincaré Duality complex

with H2n−1(V ;Z) ∼= Z/prZ for p a prime and r ≥ 1. Then there is an algebra isomorphism

H∗(ΩV ;Z/pZ) ∼= Z/pZ[x, y]

where |x| = 2n − 2, |y| = 2n − 1 and βry = x, where βr is the rth-Bockstein. Further, in mod-p

homology the map ΩP 2n(pr)
Ωi−→ ΩV induces the algebra epimorphism T (x, y) −→ Z/pZ[x, y].

Proof. In general, if X is a simply-connected CW -complex and R is a ring then there is an Adams-

Hilton model AH(X) for calculating H∗(ΩX;R) as an algebra. The model is a differential graded

algebra of the form T (a1, . . . , ak; d) where T ( ) is the free tensor algebra functor, there is a gener-

ator ai for each cell of X, the degree of ai is one less than the dimension of the corresponding cell,

and d is a differential. There is an algebra isomorphism H(AH(X)) ∼= H∗(ΩX;R).

To describe d, let Xt be the t-skeleton of X and let St
fi−→ Xt attach a (t+ 1)-cell corresponding

to ai. Let AH(Xt) be the Adams-Hilton model obtained from AH(X) by restriction to the generators

corresponding to cells in Xt. Then d(ai) is determined by the image of the adjoint St−1 f̃i−→ ΩXt in

the Adams-Hilton model AH(Xt).

In our case, as V has three cells there is an Adams-Hilton model AH(V ) = T (x, y, z; d) with

|x| = 2n−2, |y| = 2n−1 and |z| = 4n−2, and an algebra isomorphism H(AH(V )) ∼= H∗(ΩV ;Z/pZ).

The inclusion of the (4n− 2)-skeleton of V is the map P 2n(pr)
i−→ V , so AH(P 2n(pr)) = T (x, y; d′)

is an Adams-Hilton model whose homology is isomorphic as an algebra to H∗(ΩP
2n(pr);Z/pZ).

By the Bott-Samelson theorem, the latter is known to be T (x, y), so d′ must be identically zero.

Thus, in this case, AH(P 2n(pr)) ∼= H∗(ΩP
2n(pr);Z/pZ), so to determine the differential dz, which

corresponds to the attaching map S4n−2 f−→ P 2n(pr) for the top cell of V , we need to determine the

image in mod-p homology of the adjoint S4n−3 f̃−→ ΩP 2n(pr). By Lemma 3.3 this image is [x, y].

Thus dz = [x, y], so we obtain algebra isomorphisms

H∗(ΩV ;Z/pZ) ∼= H(AH(V )) ∼= H(T (x, y, z; dz = [x, y])) ∼= Z/pZ[x, y].

Further, the skeletal inclusion P 2n(pr)
i−→ V induces the map of Adams-Hilton models T (x, y; d′) −→

T (x, y, z; d), which upon taking homology gives the projection T (x, y)
(Ωi)∗−→ Z/pZ[x, y]. �

Now specialize to p being an odd prime; we will return to p = 2 in Section 6. By [Bar], for

m ≤ (2n − 2)p the homotopy groups πm(P 2n(pr)) have the property that pr · πm(P 2n(pr)) ∼= 0.
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Notice that 4n− 2 ≤ (2n− 2)p for all n ≥ 2 and p ≥ 3. Thus S4n−2 f−→ P 2n(pr) extends to a map

g : P 4n−1(pr) −→ P 2n(pr), and there is a homotopy cofibration diagram

(1)

S4n−2 // P 4n−1(pr)
q
//

g

��

S4n−1

h

��
S4n−2

f
// P 2n(pr)

i // V

where q is the pinch map to the top cell and h is an induced map of cofibres. Let h̃ : S4n−2 −→ ΩV

be the adjoint of h.

Lemma 3.5. Let p be an odd prime and take mod-p homology. If n ≥ 3 then h̃∗(ι4n−2) = y2. If

n = 2 then h̃∗(ι4n−2) = y2 + t · x3 for some t ∈ Z/pZ.

Proof. Let g̃ : P 4n−2(pr) −→ ΩP 2n(pr) be the adjoint of g and first consider g̃∗. By Lemma 3.3, in

mod-p homology we have f̃∗(ι4n−3) = [x, y]. So if u and v are the generators in dimensions 4n−3 and

4n − 2 of H∗(P
4n−2(pr);Z/pZ) respectively, then the left square in (1) implies that g̃∗(u) = [x, y].

The naturality of the Bockstein therefore implies that [x, y] = g̃∗(u) = g̃∗(β
r(v)) = βr(g̃∗(v)). The

only generator of H4n−2(ΩP 2n(pr);Z/pZ) with a nonzero rth-Bockstein is βr(y2) = xy−yx = [x, y].

Thus g̃∗(v) = y2 + z where βr(z) = 0. If n ≥ 3 then, for degree reasons, the only generator of

H4n−2(ΩP 2n(pr);Z/pZ) is y2. Thus g̃∗(v) = y2. If n = 2 then H4n−2(ΩP 2n(pr);Z/pZ) has one

other generator, that being x3, so g̃∗(v) = y2 + t · x3 for some t ∈ Z/pZ.

Next, consider h̃∗. Note that q is the suspension of the pinch map P 4n−2(pr)
q̄−→ S4n−2. Taking

adjoints for the right square in (1) then implies that Ωi◦ g̃ ' h̃◦ q̄. Since q̄∗(v) is a choice of ι4n−2 and

(Ωi)∗ is an epimorphism by Proposition 3.4, from the description of g̃∗(v) we obtain h̃∗(ι4n−2) = y2

if n ≥ 3 and h̃∗(ι4n−2) = y2 + t · x3 for some t ∈ Z/pZ if n = 2. �

Remark 3.6. Observe that (1) implies that in mod-q homology for q a prime different from p, or

in rational homology, the map h induces an isomorphism.

For any prime p, let S2n−1{pr} be the homotopy fibre of the degree pr map on S2n−1. The

principal fibration ΩS2n−1 −→ S2n−1{pr} −→ S2n−1 is induced by the degree pr map so the mod-p

homology Serre spectral sequence collapses at the E2-term, giving an isomorphism of Z/pZ-modules

H∗(S
2n−1{pr};Z/pZ) ∼= H∗(S

2n−1;Z/pZ)⊗H∗(ΩS2n−1;Z/pZ)

∼= Λ(a)⊗ Z/pZ[b]
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where |a| = 2n − 1, |b| = 2n − 2 and βr(a) = b. Since P 2n(pr) is the homotopy cofibre of the

degree pr map on S2n−1, there is a homotopy fibration diagram

(2)

ΩS2n−1 //

Ωj

��

S2n−1{pr} //

s

��

S2n−1
pr

//

��

S2n−1

j

��
ΩP 2n(pr) ΩP 2n(pr) // ∗ // P 2n(pr)

where j is the inclusion of the bottom cell and s is an induced map of fibres. Observe that j is

the suspension of the map j̄ : S2n−2 −→ P 2n−1(pr) that includes the bottom cell, and this inclusion

induces an isomorphism in degree 2n− 2 in mod-p homology. The naturality of the Bott-Samelson

Theorem therefore implies that (Ωj)∗ = (ΩΣj̄)∗ is an algebra map sending Z/pZ[b] isomorphically

onto the subalgebra Z/pZ[x] ⊆ T (x, y). The left square in (2) then implies that s∗ sends Z/pZ[b] ⊆

H∗(S
2n−1{pr};Z/pZ) isomorphically onto the subalgebra Z/pZ[x] ⊆ T (x, y). The rth-Bockstein is

a differential, implying that s∗ sends Λ(a) ⊗ Z/pZ[b] isomorphically onto the sub-module Λ(y) ⊗

Z/pZ[x] ⊆ T (x, y).

Let t be the composite

t : S2n−1{pr} s−→ ΩP 2n(pr)
Ωi−→ ΩV.

Then the description of s∗ implies that t∗ is an injection onto the submodule Λ(y) ⊗ Z/pZ[x] ⊆

Z/pZ[x, y]. Let e be the composite

e : S2n−1{pr} × ΩS4n−1 t×Ωh−−−−→ ΩV × ΩV
µ−−−−→ ΩV

where µ is the loop space multiplication. Again, we focus on odd primes, leaving p = 2 to Section 6.

Proposition 3.7. Let p be an odd prime. If n ≥ 2 then the map S2n−1{pr} ×ΩS4n−1 e−→ ΩV is a

homotopy equivalence.

Proof. We will show that after localizing at each prime and rationally, e is a homotopy equivalence.

This would imply that e is an integral homotopy equivalence.

First consider the case when n ≥ 3. Localizing at p, H∗(ΩS
4n−1;Z/pZ) ∼= Z/pZ[c] for |c| = 4n−2.

The restriction of Ωh to the bottom cell of ΩS4n−1 is h̃, so by Lemma 3.5, (Ωh)∗(c) = y2. As (Ωh)∗

is an algebra map, it sends Z/pZ[c] isomorphically onto the subalgebra Z/pZ[y2] ⊆ Z/pZ[x, y]. The

description of t∗ then implies that e∗ induces an isomorphism in mod-p homology, implying that e is

a p-local homotopy equivalence by Whitehead’s Theorem. Localized at a prime q 6= p or rationally,

S2n−1{pr} is contractible, V is equivalent to S4n−1, and Remark 3.6 implies that h is a q-local

or rational homotopy equivalence. Thus, in these cases, e is also a q-local or rational homotopy

equivalence.

Next, consider the case when n = 2. Localize at p. Going back to the description of V as a

CW -complex, observe that the composite S6 f−→ P 4(pr)
q−→ S4 is null homotopic, where q is the
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pinch map to the top cell. This is because the generator of π6(S4) ∼= Z/2Z cannot factor through

an odd primary Moore space. Thus q extends to a map q : V −→ S4. Since q extends q, in mod-p

homology we have Ωq inducing the projection Z/pZ[x, y] −→ Z/pZ[y]. Now consider the composite

ΩS7 Ωh−→ ΩV
Ωq−→ ΩS4. The restriction of Ωh to the bottom cell is h̃, so Lemma 3.5 implies that

(Ωq◦Ωh)∗ is an injection onto the subalgebra Z/pZ[y2] ⊆ Z/pZ[y]. Since ΩS4 ' S3×ΩS7 because of

the existence of an element of Hopf invariant one, there is a projection π : ΩS4 −→ ΩS7 which in mod-

p homology projects Z/pZ[y] onto Z/pZ[y2]. Thus the composition ΩS7 Ωh−→ ΩV
Ωq−→ ΩS4 π−→ ΩS7

induces an isomorphism in homology and so is a homotopy equivalence. Consequently, there is a

homotopy equivalence ΩV ' F × ΩS7 where F is the homotopy fibre of π ◦ Ωq. Notice that as q

extends q, from the definition of s there is a homotopy commutative diagram

S3{pr}
s //

��

ΩP 4(pr)
Ωi //

Ωq

��

ΩV

Ωq

��
S3 E // ΩS4 ΩS4

where E is the inclusion of the bottom cell. The top row is the definition of t. Consequently,

π ◦ Ωq ◦ t is null homotopic, so t lifts to a map t : S3{pr} −→ F . Since t∗ is an injection in mod-p

homology, so is t∗. The decomposition ΩV ' F × ΩS7 implies that F has the same Euler-Poincaré

series as S3{pr}, therefore t∗ is an isomorphism. Hence the map e induces an isomorphism in mod-p

homology and so is a p-local homotopy equivalence by Whitehead’s Theorem. Localizing at a prime

q 6= p or rationally, arguing exactly as in the n ≥ 3 case shows that e is also a q-local or rational

homotopy equivalence. �

We can go further. In general, suppose that there is a homotopy pushout

A
a //

b
��

B

c

��
C

d // D

of simply-connected spaces where A is a suspension. The suspension hypothesis implies that the set

of homotopy classes of maps [A,Z] is a group for any space Z. A Mayer-Vietoris style argument

then shows that there is a homotopy cofibration

A
a−b−−→ B ∨ C c+d−−→ D.

Since P 4n−1(pr) is the suspension of P 4n−2(pr), applying this to the right square in (1) we obtain

a homotopy cofibration

(3) P 4n−1(pr)
g−q−−→ P 2n(pr) ∨ S4n−1 i+h−−→ V.

Lemma 3.8. The map Ω(P 2n(pr) ∨ S4n−1)
Ω(i+h)−−−−→ ΩV has a right homotopy inverse.
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Proof. By Proposition 3.7 there is a homotopy equivalence S2n−1{pr}×ΩS4n−1 t×Ωh−−→ ΩV ×ΩV
µ−−→

ΩV . By Lemma 2.3, to show that Ω(i + h) has a right homotopy inverse it suffices to show that

both t and Ωh lift through Ω(i+ h).

Let i1 : P 2n(pr) −→ P 2n(pr)∨ S4n−1 and i2 : S4n−1 −→ P 2n(pr)∨ S4n−1 be the inclusions of the

left and right wedge summands respectively. Then (i+h) ◦ i1 = i and (i+h) ◦ i2 = h. By definition,

t = Ωi ◦ s, so the composite S2n−1{pr} s−→ ΩP 2n(pr)
Ωi1−→ Ω(P 2n(pr) ∨ S4n−1)

Ω(i+h)−−−−→ ΩV equals t,

while ΩS4n−1 Ωi2−→ Ω(P 2n(pr) ∨ S4n−1)
Ω(i+h)−−−−→ ΩV is Ωh. Thus both t and Ωh lift through Ω(i+ h),

as required. �

Next, the homotopy fibre of Ω(i+ h) is identified. Let s : ΩV −→ Ω(P 2n(pr) ∨ S4n−1) be a right

homotopy inverse for Ω(i+ h). Let γ be the composite

γ : ΣΩV
Σs−→ ΣΩ(P 2n(pr) ∨ S4n−1)

ev−→ P 2n(pr) ∨ S4n−1.

Let g = g − q.

Proposition 3.9. There is a homotopy fibration

(P 4n−1(pr) ∧ ΩV ) ∨ P 4n−1(pr)
[g,γ]+g−−−−→ P 2n(pr) ∨ S4n−1 i+h−−−−→ V

which splits after looping to give a homotopy equivalence

Ω(P 2n(pr) ∨ S4n−1) ' ΩV × Ω((P 4n−1(pr) ∧ ΩV ) ∨ P 4n−1(pr)).

Proof. Since there is a homotopy cofibration P 4n−1(pr)
g−→ P 2n(pr) ∨ S4n−1 i+h−→ V and, by

Lemma 3.8, Ω(i + h) has a right homotopy inverse, the assertions follow immediately from The-

orem 2.1. �

Note that Proposition 3.7 proves Theorem 1.1 in the special case when M = V while Proposi-

tion 3.9 proves Theorems 1.2.

4. The general case when H2n(M ;Z) is odd torsion

Let M be a (2n− 2)-connected (4n− 1)-dimensional Poincaré Duality complex such that n ≥ 2

and

H2n(M ;Z) ∼=
⊕̀
k=1

Z/prkk Z

where each pk is an odd prime. Then the 2n-skeleton M2n of M is homotopy equivalent to a wedge

of Moore spaces

M2n '
∨̀
k=1

P 2n(prkk ).

For 1 ≤ k ≤ `, let ak ∈ H2n−1(M ;Z/pkZ) and bk ∈ H2n(M ;Z/pkZ) be generators corresponding to

the wedge summand P 2n(prkk ) of M2n. In [BW, Section 6], Beben and Wu used a Poincaré Duality

argument to prove the following.



LOOP SPACES OF POINCARÉ DUALITY COMPLEXES 13

Lemma 4.1. Let p ∈ {p1, . . . , p`} be an odd prime. Let {i1, . . . , it} ⊆ {1, . . . , `} be the subset

satisfying pij = p and let r = max{ri1 , . . . , rit}. If p
rij
ij

= pr then aij ∪ bij is a generator of

H4n−1(M ;Z/pZ). �

As in the Introduction, let m be the least common multiple of {pr11 , . . . , p
r`
` } and let m = p̄r̄11 · · · p̄r̄ss

be its prime decomposition. Notice that {p̄1, . . . , p̄s} is the set of distinct primes in {p1, . . . , p`} and

each r̄j is the maximum power of p̄j appearing in the list {pr11 , . . . , p
r`
` }. In general, if a and b are

coprime then by [N, proof of Proposition 1.5] there is a homotopy equivalence P t(ab) ' P t(a)∨P t(b).

In our case, since {p̄1, . . . , p̄s} are distinct primes and m = p̄r̄11 · · · p̄r̄ss , there is a homotopy equivalence

P 2n(m) '
s∨
j=1

P 2n(p̄
r̄j
j ).

Therefore M2n can be rewritten as

(4) M2n ' P 2n(m) ∨ ΣA

where ΣA is the wedge of the remaining Moore spaces in M2n.

Define j′ and j by the composites

j′ : P 2n(m) ↪→ P 2n(m) ∨ ΣA
'−→M2n −→M

j : ΣA ↪→ P 2n(m) ∨ ΣA
'−→M2n −→M.

Define the space V and the map h by the homotopy cofibration

ΣA
j−→M

h−→ V.

Then V is a three-cell complex, V = P 2n(m) ∪ e4n−1, and the inclusion of the (4n − 2)-skeleton is

given by the composite

i : P 2n(m)
j′−→M

h−→ V.

Observe that Lemma 4.1 implies that V is a Poincaré Duality complex since the power of each p̄j

appearing as a factor of m = p̄r̄11 · · · p̄r̄ss is maximal.

Let F : S4n−2 −→ M2n be the attaching map for the top cell of M . Define f by the composite

f : S4n−2 F−→ M2n
q−→ P 2n(m) where q collapses ΣA in M2n ' P 2n(m) ∨ ΣA to a point. Observe

that there is a homotopy pushout diagram

(5)

ΣA

��

ΣA

j

��
S4n−2 F // M2n

//

q

��

M

h

��
S4n−2

f
// P 2n(m)

i′ // V
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that defines the map i′. By definition of q the composite P 2n(m) ↪→ P 2n(m) ∨ ΣA
'−→ M2n

q−→

P 2n(m) is the identity map. Therefore i′ is homotopic to the composite P 2n(m) ↪→ P 2n(m)∨ΣA
'−→

M2n −→ M
h−→ V , which, by definition of j′, is h ◦ j′. But h ◦ j′ is the definition of i, so we have

i′ = i. Therefore f is the attaching map for the top cell of V , and F is a lift of f through q.

We wish to show that Ωh has a right homotopy inverse. Doing so will involve decomposing ΩV

in a manner analogous to that for the special case when m = pr in Section 3. We first aim for the

analogue of (1).

Lemma 4.2. The map S4n−2 F−→M2n extends to a map G : P 4n−1(m) −→M2n.

Proof. It is equivalent to show that the map F has order m, and showing this is equivalent to

showing that the adjoint F̃ : S4n−3 −→ ΩM2n of F has order m.

Since M2n '
∨`
k=1 P

2n(prkk ), by the Hilton-Milnor Theorem

ΩM2n '
∏̀
k=1

ΩP 2n(prkk )×
(`
2)∏
j=1

Ω(ΣP 2n−1(p
rj1
j1

) ∧ P 2n−1(p
rj2
j2

))×N

where 1 ≤ j1, j2 ≤ `, j1 6= j2, and N is (4n − 2)-connected. Thus F̃ is a sum of maps of the

form F̃k : S4n−3 −→ ΩP 2n(prkk ) and F̃j : S4n−3 −→ Ω(ΣP 2n−1(p
rj1
j1

) ∧ P 2n−1(p
rj2
j2

)). As before,

by [Bar] each map F̃k has order at most prkk . As prkk is a factor of m, we obtain a null homotopy for

F̃k ◦m, for 1 ≤ k ≤ `. By [N, Corollary 6.6], if p and q are distinct primes then P a(pr) ∧ P b(qs)

is contractible, and if r ≤ s and pr 6= 2, then P a(pr) ∧ P b(ps) ' P a+b(pr) ∨ P a+b−1(pr). Thus if

pj1 6= pj2 then F̃j is null homotopic, while if pj1 = pj2 and we assume without loss of generality that

rj1 ≤ rj2 , then for dimensional reasons the Hilton-Milnor Theorem implies that F̃j factors through

F̂j : S4n−3 −→ ΩP 4n−1(p
rj1
j1

)× ΩP 4n−2(p
rj1
j1

). For dimension and connectivity reasons, F̂j is trivial

on the ΩP 4n−1(p
rj1
j1

) factor and is a multiple of the inclusion of the bottom cell on the ΩP 4n−2(p
rj1
j1

)

factor. This inclusion has order p
rj1
j1

, so as p
rj1
j1

is a factor of m, we obtain a null homotopy for

F̂j ◦m, and therefore one for F̃ ◦m. Hence F ◦m is null homotopic. �

Lemma 4.2 implies that there is a homotopy cofibration diagram

(6)

S4n−2 // P 4n−1(m)
q
//

G

��

S4n−1

H

��
S4n−2 F // M2n

I // M
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where I is the skeletal inclusion, q is the pinch map to the top cell, and H is an induced map of

cofibres. Combining this with (5) gives an iterated homotopy pushout diagram

(7)

S4n−2 // P 4n−1(m)
q
//

G

��

S4n−1

H

��
S4n−2 F // M2n

I //

q

��

M

h

��
S4n−2

f
// P 2n(m)

i // V.

We now give a homotopy decomposition of ΩV . By definition, P 2n(m) '
∨s
j=1 P

2n(p̄
r̄j
j ). For

1 ≤ j ≤ s, define Sj by the composite

Sj : S2n−1{p̄r̄jj }
sj−→ ΩP 2n(p̄

r̄j
j )

Ωij−→ ΩP 2n(m)

where sj is from (2) and ij is the inclusion of the jth-wedge summand. Define S by the composite

S :

s∏
j=1

S2n−1{p̄r̄jj }
∏s

j=1 Sj

−−−−→
s∏
j=1

ΩP 2n(m)
µ−−−−→ ΩP 2n(m)

and define T by the composite

T :

s∏
j=1

S2n−1{p̄r̄jj }
S−→ ΩP 2n(m)

Ωi−→ ΩV.

Finally, define e by the composite

e :

( s∏
j=1

S2n−1{p̄r̄jj }
)
× ΩS4n−1 T×Ω(h◦H)−−−−−−→ ΩV × ΩV

µ−−−−−−→ ΩV.

Proposition 4.3. If n ≥ 2 then the map e is a homotopy equivalence.

Proof. We will show that after localizing at each prime p and rationally, e is a homotopy equivalence.

This would imply that e is an integral homotopy equivalence.

Localize at a prime p where p = p̄j for some 1 ≤ j ≤ s. Let r = r̄j . If q is a prime distinct from p

then the Moore space P a(qs) is contractible for a ≥ 2. Therefore, as P a(m) '
∨s
j=1 P

a(p̄
r̄j
j ) and

the primes p̄1, . . . , p̄s are distinct, there is a p-local homotopy equivalence.

P a(m) ' P a(pr).

Applying this to (7) we obtain a p-local homotopy cofibration diagram

S4n−2 // P 4n−1(pr)
q
//

g

��

S4n−1

h

��
S4n−2

f
// P 2n(pr)

i // V
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where g = q ◦ G and h = h ◦H. This is a p-local version of (1) so we may argue as in Lemma 3.5

and Proposition 3.7 to show that the composite

S2n−1{pr} × ΩS4n−1 ↪→
( s∏
j=1

S2n−1{p̄r̄jj }
)
× ΩS4n−1 e−→ ΩV

is a p-local homotopy equivalence. Notice that the spaces S2n−1{p̄r̄jj } are contractible if p̄j 6= p, so

in fact we have shown that e is a p-local homotopy equivalence.

Next, localize at a prime p /∈ {p̄1, . . . , p̄s}. Then P a(m) for a ≥ 2 and the Moore space wedge

summands of M2n are all contractible. Therefore in (7) both M and V are homotopy equivalent

to S4n−1 and the maps H and h are both homotopy equivalences. On the other hand, the spaces

S2n−1{p̄r̄jj } are also contractible so e reduces to Ω(h ◦H), which we have just seen is a homotopy

equivalence. The same argument shows that e is also a rational homotopy equivalence. �

Proposition 4.3 will be used to show that the map ΩM
Ωh−→ ΩV has a right homotopy inverse.

Thinking ahead, this is drawn from a slightly stronger statement.

Lemma 4.4. The composite Ω(P 2n(m) ∨ S4n−1)
Ω(j′+H)−−−−→ ΩM

Ωh−−−−→ ΩV has a right homotopy

inverse.

Proof. By Proposition 4.3 there is a homotopy equivalence( s∏
j=1

S2n−1{p̄r̄jj }
)
× ΩS4n−1 T×Ω(h◦H)−−−−−−→ ΩV × ΩV

µ−−−−−−→ ΩV.

By Lemma 2.3, to show that Ωh ◦ Ω(j′ + H) has a right homotopy inverse it suffices to show that

both T and Ω(h ◦H) lift through Ωh ◦ Ω(j′ +H).

By definition, T is the composite
∏s
j=1 S

2n−1{p̄r̄jj }
S−→ ΩP 2n(m)

Ωi−→ ΩV and, by definition, i is

the composite P 2n(q)
j′−→M

h−→ V . Thus T = Ωh◦Ωj′◦S. This implies that T lifts through Ωh◦Ωj′

and hence through Ωh ◦ Ω(j′ +H). Clearly, Ω(h ◦H) ' Ωh ◦ ΩH lifts through Ωh ◦ Ω(j′ +H). �

Corollary 4.5. The map ΩM
Ωh−→ ΩV has a right homotopy inverse. �

We can now prove Theorem 1.1.

Proof of Theorem 1.1. From the homotopy cofibration ΣA
j−→ M

h−→ V and the right homotopy

inverse of Ωh in Corollary 4.5, parts (a) and (b) follow immediately from Theorem 2.1. Part (c) is

Proposition 4.3. �

Remark 4.6. By Theorem 1.1, ΩM ' ΩV ×Ω((ΣΩV ∧A)∨ΣA). We claim that (ΣΩV ∧A)∨ΣA

is homotopy equivalent to a wedge W of spheres and odd primary Moore spaces. If so then we may

more simply write ΩM ' ΩV × ΩW . To prove the claim, fist consider

ΣΩV ' Σ

(( s∏
j=1

S2n−1{p̄r̄jj }
)
× ΩS4n−1

)
.
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In general, if B and C are path-connected spaces then Σ(B × C) ' ΣB ∨ ΣC ∨ (ΣB ∧ C); by [J]

the space ΣΩSt+1 is homotopy equivalent to a wedge of suspended spheres; by [CMN] the space

ΣS2n−1{pr} is homotopy equivalent to a wedge of mod-pr Moore spaces; and by [N, Corollary 6.6]

there is a homotopy equivalence P a(pr)∧P b(ps) ' P a+b(ps)∨P a+b−1(ps) if s ≤ r and p is odd while

P a(pr) ∧ P b(qs) is contractible if p and q are distinct primes. Collectively, these statements imply

that ΣΩV is homotopy equivalent to a wedge of spheres and odd primary Moore spaces. Since A is

defined as a wedge of odd primary Moore spaces, we therefore also obtain that (ΣΩV ∧A) ∨ ΣA is

homotopy equivalent to a wedge of spheres and odd primary Moore spaces.

Next, we consider the analogue of Proposition 3.9. This will be done in two steps, first with

respect to P 2n(m)
i−→ V and then with respect to M2n

I−→M . First, the homotopy pushout

P 4n−1(m)
q
//

q◦G
��

S4n−1

h◦H
��

P 2n(m)
i // V

in (7) implies that there is a homotopy cofibration

P 4n−1(m)
(q◦G)−q−−−−→ P 2n(m) ∨ S4n−1 i+(h◦H)−−−−→ V.

Lemma 4.7. The map Ω(P 2n(m) ∨ S4n−1)
Ω(i+(h◦H))−−−−−−→ ΩV has a right homotopy inverse.

Proof. This follows immediately from Lemma 4.4 since i = h ◦ j′. �

Second, the homotopy pushout in (6) implies that there is a homotopy cofibration

P 4n−1(m)
G−q−−−−→M2n ∨ S4n−1 I+H−−−−→M.

Lemma 4.8. The map Ω(M2n ∨ S4n−1)
Ω(I+H)−−−−→ ΩM has a right homotopy inverse.

Proof. The plan is to use the right homotopy inverse for Ω(i + (h ◦ H)) in Lemma 4.7 and the

naturality of Remark 2.2. This will be done in steps.

Step 1. By (4), M2n ' ΣA ∨ P 2n(m). Let ΣA
a−→ M2n be the inclusion of the wedge summand

and recall that the composite ΣA
a−→ M2n

I−→ M is the definition of the map j appearing in (5),

whose cofibre is the map M
h−→ V . From this and the homotopy cofibration P 4n−1(m)

G−q−−−−→

M2n ∨ S4n−1 I+H−−−−→M we obtain a homotopy pushout diagram

P 4n−1(m)

i2

��

P 4n−1(m)

G−q
��

ΣA ∨ P 4n−1(m)
a+(G−q)

//

p1

��

M2n ∨ S4n−1
h
//

I+H

��

V

ΣA
j

// M
h

// V



18 RUIZHI HUANG∗ AND STEPHEN THERIAULT

where i2 is the inclusion of the second wedge summand, p1 is the pinch map onto the first wedge

summand, and h is defined as h ◦ (I +H).

Step 2. By Lemma 4.4, Ωh has a right homotopy inverse s : ΩV −→ Ω(M2n ∨ S4n−1). Let s′ be the

composite s′ : ΩV
s−−−−→ Ω(M2n ∨ S4n−1)

Ω(I+H)−−−−→ ΩM . Then s′ is a right homotopy inverse for Ωh

and there is a homotopy commutative diagram

(8)

ΩV
s // Ω(M2n ∨ S4n−1)

Ω(I+H)

��
ΩV

s′ // ΩM.

Step 3. The homotopy cofibration ΣA
j−→M

h−→ V and the existence of a right homotopy inverse s′

for Ωh led to the identification of the homotopy fibre of h as (ΣΩV ∧ A) ∨ ΣA via Theorem 2.1.

Similarly, the homotopy cofibration ΣA∨P 4n−1(m)
a+(G−q)−−−−→ M2n∨S4n−1 h̄−−−−→ V and the existence

of a right homotopy inverse s for Ωh lets us use Theorem 2.1 to identify the homotopy fibre of h as

(ΣΩV ∧ (A∨P 4n−2(m)))∨ (ΣA∨P 4n−1(m)). The compatibility of the s and s′ in (8) lets us apply

the naturality property in Remark 2.2 to obtain a homotopy fibration diagram

(9)

(ΣΩV ∧ (A ∨ P 4n−2(m))) ∨ (ΣA ∨ P 4n−1(m)) //

(Σ1∧p1)∨Σp1

��

M2n ∨ S4n−1
h
//

I+H

��

V

(ΣΩV ∧A) ∨ ΣA // M
h

// V.

Step 4. Finally, observe that the map (Σ1∧ p1)∨Σp1 has a right homotopy inverse, and clearly the

identity map on V does as well. Since Ω(i + (h ◦H)) has a right homotopy inverse by Lemma 4.7

and it factors as

Ω(i+ (h ◦H)) : Ω(P 2n(m) ∨ S4n−1) −−−−−−→ Ω(M2n ∨ S4n−1)
Ωh−−−−−−→ ΩV,

Ωh also has a right homotopy inverse. Therefore, Lemma 2.4 implies that Ω(I + H) has a right

homotopy inverse. �

Now we can prove Theorem 1.2.

Proof of Theorem 1.2. From the homotopy cofibration P 4n−1(m)
G−→ M2n ∨ S4n−1 I+H−→ M , where

G = G − q, and the right homotopy inverse for Ω(I + H) in Lemma 4.8, the assertions follow

immediately from Theorem 2.1. �

5. An extension to some 2-torsion cases I

In this section we consider a partial extension for parts (a) and (b) of Theorem 1.1 to cases

involving 2-torsion. A full extension may not be possible due to issues involving Poincaré Duality
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as indicated by the lack of a 2-primary analogue of Lemma 4.1. Let M be a (2n − 2)-connected

(4n− 1)-dimensional Poincaré Duality complex such that n ≥ 2 and

H2n(M ;Z) ∼=
⊕̀
k=1

Z/prkk Z⊕
t⊕

s=1

Z/2rsZ

where each pk is an odd prime and ` ≥ 1. Then the 2n-skeleton M2n of M is homotopy equivalent

to a wedge of Moore spaces

M2n '
∨̀
k=1

P 2n(prkk ) ∨
t∨

s=1

P 2n(2rs).

Note the absence of mod-2 Moore spaces: this has to do with the smash product of two mod-2

Moore spaces as described in Remark 5.2.

As in the Introduction and Section 4, let m be the least common multiple of {pr11 , . . . , p
r`
` } and let

m = p̄r̄11 · · · p̄r̄ss be its prime decomposition. Notice that {p̄1, . . . , p̄s} is the set of distinct primes in

{p1, . . . , p`} and each r̄j is the maximum power of p̄j appearing in the list {pr11 , . . . , p
r`
` }. Therefore

M2n can be rewritten as

(10) M2n ' P 2n(m) ∨
t∨

s=1

P 2n(2rs) ∨ ΣA

where ΣA is the wedge of the remaining Moore spaces in M2n.

Define j and j′ by the composites

j : ΣA ∨
t∨

s=1

P 2n(2rs) ↪→ P 2n(m) ∨
t∨

s=1

P 2n(2rs) ∨ ΣA
'−→M2n −→M,

j′ : ΣA ↪→ P 2n(m) ∨
t∨

s=1

P 2n(2rs) ∨ ΣA
'−→M2n −→M.

Define the spaces V and V ′, and the maps h and h′, by the homotopy pushout diagram

(11)

ΣA

��

ΣA

j′

��
ΣA ∨

∨t
s=1 P

2n(2rs)
j
//

��

M
h
//

h′

��

V

∨t
s=1 P

2n(2rs) // V ′ // V.

Then V = P 2n(m) ∪ e4n−1 and V ′ =
(
P 2n(m) ∨

∨t
s=1 P

2n(2rs)
)
∪ e4n−1. Observe that the bottom

row implies that there is a p-local homotopy equivalence V ' V ′ for any odd prime p.

We wish to show that Ωh′ has a right homotopy inverse. That is, the analogue of Theorem 1.1 we

aim to prove is based on a decomposition of ΩM involving ΩV ′ as a factor rather than ΩV . To do

so we will take a local-to-global approach by applying the fracture theorem of [MP, Theorem 8.1.3].

However, first we need a functional version of Lemma 4.2 and a modification of Proposition 4.3.
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Let F : S4n−2 −→ M2n be the attaching map for the top cell of M . Define f and f ′ by the

composites

f : S4n−2 F−→M2n
q−→ P 2n(m)

f ′ : S4n−2 F−→M2n
q′−→ P 2n(m) ∨

t∨
s=1

P 2n(2rs)

where q and q′ collapse ΣA∨
∨t
s=1 P

2n(2rs) and ΣA in M2n to a point respectively. Then f and f ′

are the attaching maps for the top cell of V and V ′ respectively. In particular, there is a homotopy

pushout

(12)

S4n−2 F // M2n
//

q

��

M

h

��
S4n−2

f
// P 2n(m)

i // V

where i is the inclusion of the 2n-skeleton.

Let m̂ be the least common multiple of {pr11 , . . . , p
r`
` } ∪ {2r1 , . . . , 2rt}. In particular, m̂ = 2vm

with 2v = max{2r1 , . . . , 2rt}. Anticipating that the upper bound on the exponent for π∗(P
2n(2r))

in [Bar] is higher than for odd primes, let ṽ = v + 1 and let m̃ = 2ṽm. By [N, proof of Proposition

1.5], there is a canonical morphism of homotopy cofibrations

(13)

S4n−2 // P 4n−1(m̃)
q̃
//

Q

��

S4n−1

2ṽ

��
S4n−2 // P 4n−1(m)

q
// S4n−1,

where Q collapses P 4n−1(m̃) ' P 4n−1(2ṽ)∨P 4n−1(m) to P 4n−1(m) and q̃ and q are the pinch maps

to the top cell. The following lemma is the analogue of Lemma 4.2.

Lemma 5.1. The maps S4n−2 F−→M2n and S4n−2 f−→ P 2n(m) extend to maps G : P 4n−1(m̃) −→

M2n and g : P 4n−1(m) −→ P 2n(m) respectively. Moreover, the extensions are compatible, that is,

there is the homotopy commutative diagram

P 4n−1(m̃)
G //

Q

��

M2n

q

��
P 4n−1(m)

g
// P 2n(m).

Proof. The existence of G follows exactly as in the proof of Lemma 4.2, using the fact that [Bar]

implies that 2r+1 · π4n−2(P 2n(2r)) ∼= 0 if r ≥ 2.

A choice of the map g is given by Lemma 4.2, but we need to make sure that a choice is made

that also gives the asserted homotopy commutative diagram. Notice that there is a homotopy



LOOP SPACES OF POINCARÉ DUALITY COMPLEXES 21

cofibration P 4n−1(2ṽ)
ω−→ P 4n−1(m̃)

Q−→ P 4n−1(m) where ω is the inclusion into P 4n−1(m̃) '

P 4n−1(m) ∨ P 4n−1(2ṽ). If the composite

P 4n−1(2ṽ)
ω−→ P 4n−1(m̃)

G−→M2n
q−→ P 2n(m)

is null homotopic then q ◦ G extends along Q to a map g : P 4n−1(m) −→ P 2n(m) and we are

done. To see that q ◦ G ◦ ω is null homotopic, observe that it represents an element of 2-torsion

in π4n−2(P 2n(m)). But the space P 2n(m) is 2-locally contractible since m is a product of odd

primes. �

Remark 5.2. It is the use of Lemma 4.2 that prevents us from considering 2-torsion in the co-

homology of M . Its proof uses the property that the smash product P a(pr) ∧ P b(pr) is homotopy

equivalent to a wedge of two mod-pr Moore spaces: this only holds if pr 6= 2.

From the extension of F to G in Lemma 5.1 we obtain a homotopy cofibration diagram

(14)

S4n−2 // P 4n−1(m̃)
q̃
//

G

��

S4n−1

H

��
S4n−2 F // M2n

I // M

where I is the skeletal inclusion and H is an induced map of cofibres.

Lemma 5.3. There is a homotopy commutative diagram

S4n−1 H //

2ṽ

��

M

h

��
S4n−1 h // V

for a map h satisfying h ◦ q ' i ◦ g.

Proof. Consider the cube

P 4n−1(m̃)
q̃

//
Q

''OOOOOO

G

��

S4n−1

2ṽ

$$JJJJJJ

P 4n−1(m)
q

//

g

��

H
��

S4n−1

���
�
�
�
�

h
M2n

I

q

((PPPPPPP
// M

h

%%JJJJJJJ

P 2n(m)
i // V

where the map h will be defined momentarily. The top face is a homotopy pushout by (13), the

rear face homotopy commutes by (14), the left face homotopy commutes by Lemma 5.1, and the

bottom face homotopy commutes by (12). The homotopy commutativity of these four faces implies

that i ◦ g ◦Q ' h ◦H ◦ q̃. Therefore, as the top face is a homotopy pushout, there is a pushout map
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h : S4n−1 −→ V such that h◦ q ' i◦g and h◦2ṽ ' h◦H. In particular, the homotopy h◦2ṽ ' h◦H

gives the homotopy commutative diagram asserted by the lemma. �

Next, we modify Proposition 4.3. Similarly to the map e in Section 4, define e′ by the composite

e′ :

( s∏
j=1

S2n−1{p̄r̄jj }
)
× ΩS4n−1 T×Ωh−−−−−−→ ΩV × ΩV

µ−−−−−−→ ΩV.

Notice that e′ replaces the map h ◦ H in the definition of e appearing in Section 4 by h, but the

property from Lemma 5.3 that h◦q ' i◦g ensures that the argument for Proposition 4.3 also applies

to e′.

Proposition 5.4. If n ≥ 2 then the map e′ is a homotopy equivalence. �

Finally, we show that Ωh′ has a right homotopy inverse using a local-to-global approach. Let To

be the set of odd primes and Te = {2}.

Lemma 5.5. The map ΩM
Ωh′−→ ΩV ′ has:

(i) a To-local right homotopy inverse θo : ΩV ′ −→ ΩM and

(ii) a Te-local right homotopy inverse θe : ΩV ′ −→ ΩM ,

both of whose rationalizations are the identity map on ΩS4n−1.

Proof. For (i), by (11) the composite M
h′−→ V ′ −→ V is homotopic to M

h−→ V . As V ′ −→ V is

a To-local equivalence, to show that Ωh′ has a To-local right homotopy inverse it suffices to prove

that Ωh has a To-local right homotopy inverse θ′o : ΩV −→ ΩM . We then take θo to be the composite

ΩV ′
'−→ ΩV

θ′o−→ ΩM .

Localize spaces and maps at To. Arguing as for Lemma 4.4 and using Lemma 5.3 gives a homotopy

commutative diagram

(15)

Ω(P 2n(m) ∨ S4n−1)
Ω(j′+H)

// ΩM

Ωh

��(∏s
j=1 S

2n−1{p̄r̄jj }
)
× ΩS4n−1

T×Ωh //

µ◦(S×Ω( 1

2ṽ
))

55jjjjjjjjjjjjjjj

ΩV × ΩV
µ

// ΩV

while Proposition 5.4 implies that the bottom row is the homotopy equivalence e′. Therefore θ′o =

Ω(j′ + H) ◦ µ ◦ (S × Ω( 1
2ṽ )) ◦ e′ is a (To-local) right homotopy inverse for Ωh. Rationally, h is the

identity map on S4n−1, as is h since e′ is an integral homotopy equivalence (technically, h could have

degree ±1 but if it is degree −1 we can replace h by its negative). Thus the homotopy commutativity

of (15) implies that, rationally, θ′o must be the identity map on ΩS4n−1.

For (ii), the homotopy cofibration ΣA
j′−→ M

h′−→ V ′ from (11) implies that h′ is a Te-local

homotopy equivalence since ΣA is a wedge of odd primary Moore spaces and so is contractible when

localized at 2. Therefore h′ has a Te-local right homotopy inverse θ′e. Further, as the rationalization
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of h′ is the identity map on S4n−1, so is the rationalization of θ′e. Thus θe = Ωθ′e is a Te-local right

homotopy inverse for Ωh′ whose rationalization is the identity map on ΩS4n−1. �

The local right homotopy inverses for Ωh′ in Lemma 5.5 are now assembled into an integral one.

Lemma 5.6. The map ΩM
Ωh′−→ ΩV ′ has a right homotopy inverse θ.

Proof. By the fracture theorem of [MP, Theorem 8.1.3], for any simply-connected space X there is

a homotopy pullback

X //

��

XQ

∆

��
XTo ×XTe

r // XQ ×XQ

where XTo , XTe and XQ are the To, Te and Q-localizations of X respectively, r is rationalization

and ∆ is the diagonal map. In our case, consider the diagram

ΩV ′To
× ΩV ′Te

r //

θo×θe
��

ΩV ′Q × ΩV ′Q

θQ×θQ
��

ΩV ′Q
∆oo

θQ

��
ΩMTo

× ΩMTe

r // ΩMQ × ΩMQ ΩMQ
∆oo

where θo and θe respectively are the To and Te-local right homotopy inverses for Ωh′ in Lemma 5.5

and θQ is the rationalization of the identity map on ΩS4n−1. The left square homotopy commutes

by Lemma 5.5 and the right square commutes by the naturality of the diagonal map. By the fracture

theorem, the homotopy pullback of the maps in the top row is ΩV ′ and the homotopy pullback of the

maps in the bottom row is ΩM . The pullback property for ΩM and the homotopy commutativity

of the two squares implies that there is a pullback map θ : ΩV ′ −→ ΩM with the property that its

Te-localization is θe, its To-localization is θo and its rationalization is θQ. Thus θ is a right homotopy

inverse for Ωh′ because it is when localized at any prime or rationally. �

From the homotopy cofibration ΣA
j′−→ M

h′−→ V ′ and the right homotopy inverse θ of Ωh′ in

Lemma 5.6, the following theorem follows immediately from Theorem 2.1.

Theorem 5.7. Let M be a (2n− 2)-connected (4n− 1)-dimensional Poincaré Duality complex such

that n ≥ 2 and

H2n(M ;Z) ∼=
⊕̀
k=1

Z/prkk Z⊕
t⊕

s=1

Z/2rsZ

where each pk is an odd prime, each rs ≥ 2, and ` ≥ 1. Then with V ′ and A chosen as above:

(a) there is a homotopy fibration

(ΣΩV ′ ∧A) ∨ ΣA
[γ,j′]+j′−−−−→ M

h′−−−−→ V ′

where γ is the composite γ : ΣΩV ′
Σθ−→ ΣΩM

ev−→M ;
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(b) the homotopy fibration in (a) splits after looping to give a homotopy equivalence

ΩM ' ΩV ′ × Ω((ΣΩV ′ ∧A) ∨ ΣA).

Note that when t = 0, Theorem 5.7 reduces to part (a) and (b) of Theorem 1.1. Note also that,

unlike Theorem 1.1, Theorem 5.7 does not decompose ΩV ′ any further.

6. An extension to some 2-torsion cases II

Finally, we consider an extension for part (c) of Theorem 1.1 to certain special cases involving

2-torsion. In general, when V = P 2n(2r) ∪ e4n−1 it is unreasonable to expect a decomposition

ΩV ' S2n−1{2r} × ΩS4n−1 since this implies that the space S2n−1{2r} is an H-space. Often this

is not the case, for example, if n = 3 or n ≥ 5 then S2n−1{2} is not an H-space [C2]. A full

classification of when S2n−1{2r} is an H-space seems not to appear in the literature. However,

by [C1, Corollary 21.6] it is known that S3{2r} is an H-space if r ≥ 3 and S7{2r} is an H-space

if r ≥ 4. In these cases we show that the arguments in Section 3 hold, giving a decomposition of ΩV .

Lemma 3.3 and Proposition 3.4 were proved for all primes p. The first point in Section 3 where the

restriction p ≥ 3 occurred was in the the existence of the extension g for f in (1). In general, it may

not be the case that 2r · π4n−2(P 2n(2r)) ∼= 0. However, Sasao [Sa] showed that 2r · π6(P 4(2r)) ∼= 0

if r ≥ 3 and 2r · π14(P 8(2r)) ∼= 0 if r ≥ 4. Thus in these cases we obtain a homotopy cofibration

diagram as in (1). The argument for Lemma 3.5 now goes through in exactly the same manner. The

maps s, t and e following Lemma 3.5 were defined for all primes p, and the restriction to odd primes

in Proposition 3.7 was present only to: (i) invoke Lemma 3.5 and (ii) in the n = 2 case, ensure that

the composite S6 f−→ P 4(2r)
q−→ S4 is null homotopic so that there is an extension of q to a map

V −→ S4. Therefore Proposition 3.7 will hold: (i) for n = 4 and r ≥ 4, and (ii) for n = 2 and r ≥ 3

with the extra assumption that there is a map V −→ S4 inducing a surjection in mod-2 homology.

Proposition 6.1. Let V = P 2n(2r) ∪ e4n−1 be a Poincaré Duality complex.

(a) If n = 2, r ≥ 3 and there is a map V −→ S4 inducing a surjection in mod-2

homology, then there is a homotopy equivalence ΩV ' S3{2r} × ΩS7;

(b) if n = 4 and r ≥ 4 then there is a homotopy equivalence ΩV ' S7{2r} × ΩS15. �

For example, if τ(S2n) is the unit tangent bundle of S2n then, as a CW -complex, τ(S2n) =

P 2n(2) ∪ e4n−1, and there is a fibration S2n−1 −→ τ(S2n) −→ S2n. For r ≥ 2, define the “mod-2r

tangent bundle” by the homotopy pullback

S2n−1 // τr(S2n) //

��

S2n

2r−1

��
S2n−1 // τ(S2n) // S2n
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where 2r−1 is the map of degree 2r−1. As a CW -complex, τr(S
2n) = P 2n(2r)∪e4n−1 andH∗(τr(S

2n))

satisfies Poincaré Duality. Proposition 6.1 implies that there are homotopy equivalences Ωτr(S
4) '

S3{2r} × ΩS7 if r ≥ 3 and Ωτr(S
8) ' S7{2r} × ΩS15 if r ≥ 4.

Remark 6.2. The argument for Proposition 6.1 is independent of prior knowledge that S3{2r} for

r ≥ 3 or S7{2r} for r ≥ 4 are H-spaces. So the loop space decompositions of the mod-2r tangent

bundles is a new proof of this property, since the retractions of S3{2r} for r ≥ 3 and S7{2r} for

r ≥ 4 off loop spaces imply that they are H-spaces. The previous argument in [C1] examined the

H-deviation of the degree 2r map.

Generalizing to the case V = P 2n(2m)∪e4n−1 where m is divisible by more than one prime seems

to be much more difficult. Our argument breaks down with the loss of Lemma 4.1. It would be

interesting to know if a different argument can be used to make progress.
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