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Abstract. The different constructions of a classifying space for the fibre of the double suspension

by Gray and the authors are shown to be essentially the same, up to a homotopy equivalence. We

go on to compare a variety of maps Ω2S2np+1 −→ S2np−1 that are of degree p on the bottom cell.

1. Introduction

The double suspension E2 : S2n−1 −→ Ω2S2n+1 is the double adjoint of the identity map on S2n+1.

Understanding the relation of E2 to power maps on Ω2S2n+1 is important in determining the ho-

motopy groups of spheres. To elaborate it will be assumed from now on that all spaces and maps

are localized at a prime p.

In [CMN1, CMN2] for p ≥ 5 and in [N] for p = 3, it was shown that there is a map π : Ω2S2n+1 −→

S2n−1 with the property that E2◦π is homotopic to the pth-power map on Ω2S2n+1. The map π was

constructed via a retraction of S2n−1 off the loops on the fibre of the pinch map P 2n+1(p) −→ S2n+1,

where P 2n+1(p) is the mod-p Moore space of dimension 2n + 1. The formulation of π was later

improved by Anick [An] for primes p ≥ 5, and subsequently in a much simpler way by Gray and

the second author [GT] for primes p ≥ 3, by showing that it is the connecting map in an associated

homotopy fibration. Phrased in the np-case that is relevant to this paper, there is a space T and a

homotopy fibration sequence

(1) Ω2S2np+1 π−→ S2np−1 −→ T −→ ΩS2np+1.

The space T and this homotopy fibration sequence have been well studied and satisfy many favourable

properties (see [AG, GT, G2].)

On the other hand, let Wn be the homotopy fibre of E2. In [G1] it was shown that Wn has a

classifying space BWn and there are homotopy fibrations

S2n−1 E2

−→ Ω2S2n+1 ν−→ BWn

BWn
j−→ Ω2S2np+1 φ−→ S2np−1
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where j ◦ ν is homotopic to ΩH, with H : ΩS2n+1 −→ ΩS2np+1 being the pth-James-Hopf invariant.

Harper [H] showed that if p is odd then ΩE2 ◦Ωφ is homotopic to the pth-power map on Ω3S2np+1,

and this was later improved by Richter [R] who showed that if p is any prime then E2 ◦ φ ' p.

It would be ideal if the two constructions were linked. Pre-dating Anick’s fibration, the map π

in (1) was constructed by Cohen, Moore and Neisendorfer [CMN1]. In [CMN2, Introduction] it was

conjectured that if p is odd there is a homotopy equivalence Wn ' ΩD, where D is the homotopy fibre

of π. In light of the existence of Anick’s fibration, D ' ΩT . Combined with Gray’s classifying space

for Wn the conjecture can be strengthened to the existence of a homotopy equivalence BWn ' ΩT .

This would occur, for example, if the maps Ω2S2np+1 π−→ S2np−1 and Ω2S2np+1 φ−→ S2np−1 were

homotopic, up to a self-equivalence of Ω2S2np+1. In [G1] the space BWn was shown to be an H-space

if p is odd, so an even stronger version of the conjecture is that there is a homotopy equivalence of

H-spaces BWn ' ΩT .

In [ST] the authors gave a different construction of a classifying space for Wn at odd primes,

showing that there are homotopy fibrations

S2n−1 E2

−→ Ω2S2n+1 ν′−→ Bn

Bn
j′−→ Ω2S2np+1 φ′−→ S2np−1

where j′ ◦ ν′ ' ΩH. They also used Gray’s construction to produce a potentially different map

Ω2S2np+1 φ−→ S2np−1 with homotopy fibre BWn but satisfying E2 ◦ φ ' p in a much simpler and

more conceptual way than Richter’s argument.

The current state of affairs, then, has two constructions of a classifying space for BWn (a third

by Moore and Neisendorfer [MN, Section 4] was shown in the same paper to be equivalent to Gray’s

in an appropriate manner) and four maps Ω2S2np+1 −→ S2np−1. The purpose of this paper is to

compare the various constructions. First, we show that BWn and Bn are homotopy equivalent in

a manner compatible with the maps ν, ν′ and j, j′. Consequently, Ωφ and Ωφ′ are shown to be

homotopic up to a self-equivalence of ΩS2np−1. Second, we show that Ωφ and Ωφ are homotopic

up to a self-equivalence of Ω3S2np+1. Third, we show that the conjectured H-space equivalence

BWn ' ΩT implies that Ωφ and Ωπ are homotopic up to a self-equivalence of Ω3S2np+1. This

conjecture is known to hold in a small number of cases related to the existence of elements of mod-p

Kervaire invariant one [Am]. Otherwise, the conjecture is very mysterious: we conclude the paper

by giving homological evidence that it is true.

2. Comparing constructions for a classifying space of Wn

The comparison of BWn and Bn is based on refining the construction of Bn in [ST]. The latter

was based on linking Milnor’s classifying space construction applied to Ω2S2n+1 and the James

construction on ΩS2n+1.
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In general, let X∧k be the smash product of k copies of X with itself and let X∗k be the join

of k copies of X with itself. Observe that X∗k ' Σk−1X∧k. Milnor’s classifying space construction

applied to Ω2S2n+1 gives, for each k ≥ 1, a homotopy fibration diagram

(2)

Ω2S2n+1
∂k // (Ω2S2n+1)∗(k+1) //

��

Pk(Ω2S2n+1)
evk //

��

ΩS2n+1

Ω2S2n+1
∂k+1 // (Ω2S2n+1)∗(k+2) // Pk+1(Ω2S2n+1)

evk+1 // ΩS2n+1.

The k = 1 case has Pk(Ω2S2n+1) = ΣΩ2S2n+1 and ev1 is the canonical evaluation map. Three

properties will be relevant.

Lemma 2.1. In (2), for k ≥ 1 the following hold:

(a) ∂k is null homotopic;

(b) the map (Ω2S2n+1)∗(k+1) −→ (Ω2S2n+1)∗(k+2) is null homotopic;

(c) the space (Ω2S2n+1)∗(k+1) is (2n(k + 1)− 2)-connected.

Proof. Part (a) follows from the fact that Ωev1 has a right homotopy inverse, so the homotopy

commutativity of the loops on the right square in (2) implies inductively that Ωevk has a right

homotopy inverse. Part (b) is from the fact that the upper direction around the middle square in (2)

is a homotopy cofibration, so the map (Ω2S2n+1)∗(k+1) −→ (Ω2S2n+1)∗(k+2) lifts through ∂k+1,

which is null homotopic by part (a). Part (c) follows from the fact that (Ω2S2n+1)∗(k+1) '

Σk(Ω2S2n+1)∧(k+1). �

The connectivity statement in Lemma 2.1 (c) immediately implies the following.

Corollary 2.2. If X is a CW -complex of dimension ≤ 2n(k+ 1)− 2 then any map X −→ ΩS2n+1

has a unique lift (up to homotopy) through evk to a map X −→ Pk(Ω2S2n+1). �

For a path-connected space X let X×k be the product of k copies of X with itself. Let Jk(X)

be the quotient space obtained from X×k given by identifying (x1, . . . , xi, ∗, xi+2, . . . , xk) with

(x1, . . . , xi, xi+2, ∗, . . . , xk). There is an inclusion Jk(X) −→ Jk+1(X) given by sending (x1, . . . , xk)

to (x1, . . . , xk, ∗), and J(X) is defined as the colimit of the spaces Jk(X). James [J] showed that

there is a homotopy equivalence J(X) ' ΩΣX. In particular, the space Jk(S2n) has dimension 2nk

and the map Jk(S2n) −→ J(S2n) ' ΩS2n+1 can be regarded as the inclusion of the 2nk-skeleton.

Since Jk(S2n) has dimension 2nk, Corollary 2.2 implies the inclusion Jk(S2n) −→ ΩS2n+1 lifts

through evk to a map Jk(S2n) −→ Pk(Ω2S2n+1). From this lift we obtain a homotopy fibration
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diagram

(3)

Ω2S2n+1
δk // Yk //

��

Jk(S2n) //

��

ΩS2n+1

Ω2S2n+1
∂k // (Ω2S2n+1)∗(k+1) // Pk(Ω2S2n+1)

evk // ΩS2n+1

that defines the space Yk and the map δk. Suppose that k ≥ 1 and consider the square

(4)

Jk(S2n) //

��

Jk+1(S2n)

��
Pk(Ω2S2n+1) // Pk+1(Ω2S2n+1).

Both directions around the diagram are lifts of the map Jk(S2n) −→ ΩS2n+1 through evk, so as the

dimension of Jk(S2n) is 2nk, the uniqueness property in Lemma 2.1 (b) implies that the two lifts

are homotopic. That is, the square homotopy commutes. Mapping all four corners into ΩS2n+1 and

taking homotopy fibres gives homotopy fibration diagrams

(5)

Yk
yk //

��

Yk+1
//

��

(Ω2S2n+1)∗(k+2)

��
Jk(S2n) // Jk+1(S2n) // Pk+1(Ω2S2n+1),

where yk is an induced map of fibres, and

(6)

Yk //

��

(Ω2S2n+1)∗(k+1) //

��

(Ω2S2n+1)∗(k+2)

��
Jk(S2n) // Pk(Ω2S2n+1) // Pk+1(Ω2S2n+1).

Lemma 2.3. In (5) the following hold:

(a) taking fibration connecting maps for the left square gives δk+1 ' yk ◦ δk;

(b) the composite Yk
yk−→ Yk+1 −→ (Ω2S2n+1)∗(k+2) is null homotopic.

Proof. Part (a) is immediate from the definitions of the maps. For part (b), it suffices to show that

the composite

(7) Yk
yk−→ Yk+1 −→ (Ω2S2n+1)∗(k+2) −→ Pk+1(Ω2S2n+1)

is null homotopic. For if so then Yk
yk−→ Yk+1 −→ (Ω2S2n+1)∗(k+2) lifts through ∂k+1, which by

Lemma 2.1 (a) is null homotopic. By (5), the composite (7) is homotopic to

Yk −→ Jk(S2n) −→ Jk+1(S2n) −→ Pk+1(Ω2S2n+1),

which by (4) is homotopic to

Yk −→ Jk(S2n) −→ Pk(Ω2S2n+1) −→ Pk+1(Ω2S2n+1),
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which in turn by (6) is homotopic to

Yk −→ (Ω2S2n+1)∗(k+2) −→ (Ω2S2n+1)∗(k+2) −→ Pk+1(Ω2S2n+1).

But by Lemma 2.1 (b), the map (Ω2S2n+1)∗(k+1) −→ (Ω2S2n+1)∗(k+2) is null homotopic, and

therefore the composite (7) is null homotopic. �

If k ≥ 1 the evaluation map Σ2Ω2S2n+1 −→ S2n+1 can be used iteratively to obtain a map

gk : (Ω2S2n+1)∗(k+1) −→ S2n(k+1)−1.

Define hk by the composite

hk : Yk −→ (Ω2S2n+1)∗(k+1) gk−→ S2n(k+1)−1

and let Bn,k be the homotopy fibre of hk.

Lemma 2.4. For k ≥ 1 there is a lift

Bn,k+1

��
Yk

yk //

<<

Yk+1.

Proof. By Lemma 2.3 (b), the composite Yk
yk−→ Yk+1 −→ (Ω2S2n+1)∗(k+2) is null homotopic. By

definition, hk+1 factors through the right map, so hk+1 ◦ yk is null homotopic. Thus yk lifts to the

fibre Bn,k+1 of hk+1. �

Observe that if k = p− 1 then the homotopy fibration in the top row of (3) is

Ω2S2n+1 ΩH−→ Ω2S2np+1 −→ Jp−1(S2n) −→ ΩS2n+1

where H is the pth-James-Hopf invariant. That is, Yp−1 = Ω2S2np+1 and δp−1 = ΩH. In [ST] it

was observed that hp−1 ◦ ΩH is null homotopic, giving a lift

Bn,p−1

��
Ω2S2n+1 ΩH //

ν̃
88

Ω2S2np+1

for some map ν̃, and that for any choice of lift ν̃ there is a homotopy fibration

S2n−1 E2

−→ Ω2S2n+1 ν̃−→ Bn,p−1.

Thus Bn,p−1 is a classifying space for the fibre of the double suspension.

In light of Lemma 2.4, the lift ν̃ can be chosen more deliberately. Define ν′ by the composite

ν′ : Ω2S2n+1 ∂p−2−→ Yp−2 −→ Bn,p−1

where the right map is from Lemma 2.4.
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Lemma 2.5. If p ≥ 3 then the map ν′ is a lift of ΩH.

Proof. Consider the diagram

Ω2S2n+1
∂p−1

// Yp−2
//

yp−2

��

Bn,p−1

��
Ω2S2n+1 ΩH // Ω2S2np+1 Ω2S2np+1.

Remembering that Ω2S2np+1 = Yp−1, ΩH = δp−1 and Bn = Bn,p−1, the left square homotopy

commutes by Lemma 2.3 (a) and the right square homotopy commutes by Lemma 2.4. Note that

having p ≥ 3 ensures that the map yp−2 exists. The top row of the diagram is the definition of ν′.

Its homotopy commutativity therefore implies that ν′ is a lift of ΩH. �

To summarise, let Bn = Bn,p−1 and let φ′ : Ω2S2np+1 −→ S2np−1 be hp−1. Then there are

homotopy fibrations

S2n−1 E2

−→ Ω2S2n+1 ν′−→ Bn

Bn
j′−→ Ω2S2np+1 φ′−→ S2np−1

where j′ ◦ ν′ ' ΩH and ν′ factors as Ω2S2n+1 ∂p−2−→ Yp−2 −→ Bn.

In comparison, Gray [G1] constructed homotopy fibrations

S2n−1 E2

−→ Ω2S2n+1 ν−→ BWn

BWn
j−→ Ω2S2np+1 φ−→ S2np−1

where j ◦ ν ' ΩH and showed that there is a factorization

(8)

BWn

��
Ω2S2n+1

δ1 //

ν
::

Y1.

Our first main result is to show that there is a homotopy equivalence between Bn and BWn that is

compatible with the maps j′, ν′ and j, ν.

Theorem 2.6. If p ≥ 3 then there is a homotopy commutative diagram

Ω2S2n+1 ν // BWn

j
//

e

��

Ω2S2np+1

Ω2S2n+1 ν′ // Bn
j′

// Ω2S2np+1

where e is a homotopy equivalence.
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Proof. Define e by the composite

e : BWn −→ Y1
y1−→ Y2 −→ · · · −→ Yp−2 −→ Bp−1.

Consider the diagram

Ω2S2n+1

ν

��

Ω2S2n+1

δ1

��

Ω2S2n+1

δ2

��

· · · // Ω2S2n+1

δp−2

��

Ω2S2n+1

ν′

��
BWn

// Y1

y1 // Y2
// · · · // Yp−2

// Bn.

The left square homotopy commutes by (8), the middle squares homotopy commute by Lemma 2.3 (a),

and the right square homotopy commutes by definition of ν′. The bottom row is the definition of e.

Thus the homotopy commutativity of the diagram as a whole implies that e ◦ ν ' ν′.

Since the homotopy fibre of both ν and ν′ is S2n−1, the homotopy e ◦ ν ' ν′ implies that there

is a homotopy fibration diagram

(9)

S2n−1 t // S2n−1 //

E2

��

X

��
S2n−1 E2

// Ω2S2n+1 ν //

ν′

��

BWn

e

��
Bn Bn

that defines the space X and the map t. Since E2 induces an isomorphism on H2n−1, the commu-

tativity of the upper left square implies that t must induce an isomorphism on H2n−1. Thus t is a

homotopy equivalence, implying that X is contractible. Hence e is a homotopy equivalence.

Now consider the diagram

(10)

Ω2S2n+1 ν // BWn

j
//

e

��

Ω2S2np+1

Ω2S2n+1 ν′ // Bn
j′

// Ω2S2np+1.

The left square homotopy commutes by (9). The composites j ◦ ν and j′ ◦ ν′ are both homotopic

to ΩH, so the outer rectangle also homotopy commutes. We wish to show that the right square also

homotopy commutes. It is equivalent to show that the difference d = j − j′ ◦ e is null homotopic.

The homotopy commutativity of the left square and outer rectangle in (10) implies that d ◦ ν is null

homotopic. Thus if d̃ is the double adjoint of d then the composite

Σ2Ω2S2n+1 Σ2ν−→ Σ2BWn
d̃−→ S2np+1

is null homotopic. By [G1], Σ2ν has a right homotopy inverse. Hence d̃ is null homotopic, and

therefore so is d. �
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Theorem 2.6 also lets us compare the maps φ and φ′.

Corollary 2.7. There is a homotopy commutative diagram

Ω3S2np+1
Ωφ
// ΩS2np−1

e′

��
Ω3S2np+1

Ωφ′

// ΩS2np−1

where e′ is a homotopy equivalence.

Proof. From the right square in the statement of Theorem 2.6 we obtain a homotopy fibration

diagram

Ω3S2np+1
Ωφ
// ΩS2np−1 //

e′

��

BWn

j
//

e

��

Ω2S2np+1

Ω3S2np+1
Ωφ′

// ΩS2np−1 // Bp−1

j′

// Ω2S2np+1

that defines the map e′. Since e is a homotopy equivalence, the Five-Lemma implies that e′ induces

an isomorphism on homotopy groups and so is a homotopy equivalence by Whitehead’s Theorem. �

3. Comparing φ and φ

In general, if X is an H-space with multiplication m then there is a homotopy fibration sequence

ΩΣX
r−→ X −→ X ∗X m∗−→ ΣX

where m∗ is the Hopf construction on m and the map r has a right homotopy inverse. If the

multiplication m is homotopy associative then by [St] the map r can be chosen to be an H-map.

In our case, localize at an odd prime p. Then Gray [G1] shows that BWn is a homotopy assso-

ciative H-space and in the homotopy fibration sequence

(11) ΩS2np−1 k−→ BWn
j−→ Ω2S2np+1 φ−→ S2np−1

the maps j and k are H-maps. In [ST] it was shown that there is a homotopy pullback

(12)

Ω2S2np+1
φ
//

g

��

S2np−1

i

��
BWn ∗BWn

m∗ // ΣBWn

where i is the inclusion of the bottom cell and g and φ are induced by the pullback. The maps φ

and φ need not be homotopic. The map φ is interesting because of its immediate association with

BWn; the map φ is interesting because in [ST] a straightforward argument was given to show that

E2 ◦ φ is homotopic to the pth-power map on Ω2S2np+1. We now compare φ and φ.
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Proposition 3.1. If p ≥ 3 then there is a homotopy commutative diagram

Ω3S2np+1
Ωφ
//

e
��

ΩS2np−1

Ω3S2np+1
Ωφ
// ΩS2np−1

where e is a homotopy equivalence.

Proof. From (12) we obtain a homotopy fibration diagram

(13)

ΩS2np−1 h //

Ωi

��

BWn
// Ω2S2np+1

φ
//

��

S2np−1

i

��
ΩΣBWn

r // BWn
// BWn ∗BWn

m∗ // ΣBWn

that defines the maps φ and h. The map r is an H-map since BWn is homotopy associative, so the

homotopy h ◦ r ◦ Ωi in the leftmost square implies that h is also an H-map.

In general, for a path-connected space A, let E : A −→ ΩΣA be the suspension. By the James

construction [J], if Y is a homotopy associative H-space then any map f : A −→ Y extends to an

H-map f : ΩΣA −→ Y , and this is the unique H-map, up to homotopy, such that f ◦ E ' f .

In our case this implies that the H-maps ΩS2np−1 h−→ BWn in (13) and ΩS2np−1 k−→ BWn

in (11) are determined by their restrictions to the bottom cell. In both cases the restrictions are the

same – the inclusion of the bottom cell – so h ' k. This homotopy implies that there is a homotopy

fibration diagram

Ω3S2np+1
Ωφ
//

e

��

ΩS2np−1 k // BWn

Ω3S2np+1
Ωφ
// ΩS2np−1 h // BWn

that defines the map e. The Five-Lemma implies that e induces an isomorphism on homotopy groups

and so is a homotopy equivalence by Whitehead’s Theorem. �

4. Comparing φ and π

There is an analogue of the homotopy pullback (12) with respect to ΩT . In this case the homotopy

fibration involving the Hopf construction extends to

ΩT ∗ ΩT
m∗−→ ΣΩT

ev−→ T,

where ev is the evaluation map. Let i′ : S2np−1 −→ ΣΩT be the inclusion of the bottom cell. Since

ev ◦ i′ is the inclusion of the bottom cell into T , its homotopy fibre is Ω2S2np+1 π−→ S2np−1 and we
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obtain a homotopy pullback

(14)

Ω2S2np+1 π //

g′

��

S2np−1

i′

��
ΩT ∗ ΩT

m∗ // ΣΩT

for some map g′.

We next show that if BWn and ΩT are homotopy equivalent as H-spaces then the maps φ and π

are homotopic, up to a self-equivalence of Ω2S2np+1.

Proposition 4.1. If there is an H-equivalence h : BWn −→ ΩT then there is a homotopy commu-

tative diagram

Ω2S2np+1
φ
//

ε

��

S2np−1

Ω2S2np+1 π // S2np−1

where ε is a homotopy equivalence.

Proof. Consider the cube

(15)

Ω2S2np+1
φ

//
ε

((
g

��

S2np−1

Ω2S2np+1 π //

g′

��

i

��

S2np−1

i′

��

BWn ∗BWn
h∗h
((

m∗ // ΣBWn
Σh

&&
ΩT ∗ ΩT

m∗ // ΣΩT

where the map ε is to be defined momentarily. The lower face homotopy commutes since h is an

H-map. The right face homotopy commutes since both i and i′ are the inclusion of the bottom

cell. The rear and front faces are homotopy pullbacks by (12) and (14) respectively. Thus i′ ◦ φ is

homotopic to m∗ ◦ (h ∗ h) ◦ g, implying that there is a pullback map ε such that g′ ◦ ε ' (h ∗ h) ◦ g

and π ◦ ε ' φ. Since π and φ are both degree p on the bottom cell, the homotopy π ◦ ε ' φ implies

that ε is degree 1 on the bottom cell. Since Ω2S2np+1 is atomic [CM], ε is therefore a homotopy

equivalence. �

Combining Propositions 3.1 and 4.1 lets us compare φ and π.

Corollary 4.2. If there is an H-equivalence h : BWn −→ ΩT then there is a homotopy commutative

diagram

Ω3S2np+1
Ωφ
//

ε

��

ΩS2np−1

Ω3S2np+1 Ωπ // ΩS2np−1
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where ε is a homotopy equivalence. �

In general it is not known whether BWn and ΩT are homotopy equivalent, let alone homotopy

equivalent as H-spaces. However, there are a small number of cases where a homotopy equivalence is

known and in all such cases the equivalences is an H-equivalence. In [T2] it was shown that there is

an H-equivalence BWn ' ΩT if p is odd and n ∈ {1, p}, and in [Am] it was shown that there is also

ab H-equivalence if p = 3 and n ∈ {9, 27}. Thus Corollary 4.2 immediately implies the following.

Corollary 4.3. The maps Ω3S2np+1 Ωφ−→ ΩS2np−1 and Ω3S2np+1 Ωπ−→ ΩS2np−1 are homotopic, up

to a self-equivalence of Ω3S2np+1, provided either:

(a) p is odd and n ∈ {1, p};

(b) p = 3 and n ∈ {9, 27}. �

5. Homological evidence for an H-equivalence BWn ' ΩT

Let p be an odd prime and let S2n+1{p} be the homotopy fibre of the pth-power map on S2n+1.

In [S] it was shown that there is a lift

ΩS2np+1{p}

��
Pp−1(Ω2S2n+1)

evp−1
//

S′
33

ΩS2n+1 H // ΩS2np+1

for some map S′. In [S] it was also shown that the composite

s : Ω2S2n+1 E−→ ΩΣΩ2S2n+1 = ΩP1(Ω2S2n+1) −→ ΩPp−1(Ω2S2n+1)

is an H-map (in fact, the same argument shows it is an Ap−1-map, in the sense of Stasheff). Let S

be the composite

S : Ω2S2n+1 s−→ ΩPp−1(Ω2S2n+1)
ΩS′−→ ΩS2np+1{p}.

Then S is an H-map (an Ap−1-map) since it is the composite of H-maps (Ap−1-maps) and as s is

a right homotopy inverse for Ωevp−1, the map S is a lift of ΩH.

There is a potential improvement. In [GT] it was shown that there is a homotopy fibration

T −→ ΩS2np+1{p} −→ BWnp.

Conjecture 5.1. If p ≥ 3 then there is a lift

T

��
Pp−1(Ω2S2n+1)

S′ //

S′′
66

ΩS2np+1{p}

for some map S′′.
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Conjecture 5.1 is a strong form of the conjecture that BWn ' ΩT .

Proposition 5.2. If Conjecture 5.1 holds then there is an H-equivalence BWn ' ΩT .

Proof. Let S be the composite

S : Ω2S2n+1 s−→ ΩPp−1(Ω2S2n+1)
ΩS′′−→ ΩT.

Arguing as in [T1, Lemma 2.2] and using the fact that T is an H-space [GT] implies that from S

one obtain an H-map BWn −→ ΩT . (The statement of [T1, Lemma 2.2] is for p ≥ 5 but the p = 3

case is also valid.) �

We close the paper by giving homological evidence that Conjecture 5.1 is true. Let p be an odd

prime and assume that homology is taken with mod-p coefficients. Theorem 5.4 shows that the

image of S′∗ lifts to H∗(T ).

5.1. The Eilenberg-Moore Spectral Sequence. For a topological group G, the Eilenberg-Moore

spectral sequence for G→ EG→ BG can be identified with the one associated to the filtration

pt = P0(G) ⊂ P1(G) ⊂ . . . ⊂ P∞(G) = BG.

Let αj,k(G) : Pj(G) → Pk(G) denote the inclusion and write αk(G) for αk,∞(G). As there is a

homotopy cofibration G∗k −→ Pk−1(G) −→ Pk(G), there is a commutative diagram

Pk−1(G)
αk−1,k(G)

//

αk−1(G) ((

Pk(G) //

αk(G)

��

Σ(G)∗k

P∞(G)

where the row is a cofibration and Σ(G)∗k ' ΣkG∧k. We examine αk(G)∗.

For v ∈ Imαk−1,k(G)∗ the map is determined by its restriction to Pk−1(G). Given v ∈ H∗
(
Pk(G)

)
write v = αk−1,k(G)∗(v

′) + w′ where w′ has image w in H∗
(
Σ(G)∗k

)
. Working modulo the induc-

tively known image of αk−1(G)∗ we have the following. By exactness w ∈ kerH∗
(
Σ(G)∗k

)
→

H∗
(
ΣPk−1(G)

)
. Since w 7→ 0 under Pk(G)/Pk−1(G) = Σ(G)∗k → Pk−1(G)/Pk−2(G) which is

the d1 differential of the spectral sequence, it represents an element [w] in E2. If [w] is in the

image of some differential dr then v 7→ αk−1,r(v
′) under αk,r : Pk(G) → Pr(G), and in particular

αk(v) = αk−1(v′). Otherwise [w] survives to E∞ and contributes to the filtration quotient for some

element of H∗(BG), which gives the equivalence class modulo lower filtration of the image of v under

α∗k,∞ : H∗
(
Pk(G)

)
→ H∗

(
P∞(BG)

)
.
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5.2. Known homology. We record the homology of several spaces. This is often phrased in terms

of Dyer-Lashof operations Qt and the calculations can be found in [CLM]. By Qjt we mean j copies

of Qt composed with itself. First, there are Hopf algebra isomorphisms

H∗(Ω
2S2n+1) ∼= H∗(S

2n+1)⊗H∗(BWn) ∼= Λ[{aj}∞j=0]⊗ Z/p[{bj}∞j=1]

where aj = Qjp−1(a0) and bj = β(aj) and |Qs(p−1)y| = p|y| + s(p − 1). Thus |aj | = 2npj − 1 and

|bj | = 2npj − 2. We will also alternatively write

H∗(Ω
2S2n+1) ∼= Λ[{Qjp−1(ι2n−1)}∞j=0]⊗ Z/p[{βQjp−1(ι2n−1)}∞j=1].

Second, there is a Hopf algebra isomorphism

H∗(Ω
3S2n+1) ∼= Z/p[{Qj2(p−1)ι2n−2}∞j=0]⊗

Λ[{Qip−1βQ
j
2(p−1)ι2n−2}∞j=1

∞
i=0]⊗ Z/p[{βQip−1βQ

j
2(p−1)ι2n−2}∞j=1

∞
i=0].

Third, there is a Hopf algebra isomorphism

H∗(Ω
2S2np+1{p}) ∼= H∗(Ω

3S2np+1)⊗H∗(Ω2S2np+1).

We will denote algebra generators of H∗(Ω
2S2np+1{p}) which are images under H∗(Ω

3S2np+1) →

H∗(Ω
2S2np+1{p}) by their names in H∗(Ω

3S2np+1) and abuse notation by writing our choice of

preimages of generators in H∗(Ω
2S2np+1) by their names in H∗(Ω

2S2np+1), written in Dyer-Lashof

notation. We have β(ι2np−1) = ι2np−2, and otherwise the Bockstein is given on the generators by

their Bocksteins in H∗(Ω
3S2np+1) and H∗(Ω

2S2np+1) respectively.

Fourth, there is a Hopf algebra isomorphism

H∗(ΩS
2np+1{p}) ∼= H∗(Ω

2S2np+1)⊗H∗(ΩS2np+1).

The naming convention for generators follows as in H∗(Ω
2S2np+1{p}), and the Bockstein is given

by β(ι2np) = ι2np−1 and the Bocksteins in H∗(Ω
2S2np+1). Alternatively, using H∗(Ω

2S2np+1) ∼=

H∗(S
2np−1)⊗H∗(BWnp) we also have

H∗(ΩS
2np+1{p}) ∼= H∗(T )⊗H∗(BWnp).

5.3. The images of S∗ and S′∗. The map Ω2S2n+1 S−→ Ω2S2np+1{p} is an Ap−1-map in the sense

of Stasheff. In particular, as S is an H-map, the description of H∗(Ω
2S2n+1) implies that S∗ is

determined by its images of the odd degree generators and the Bockstein.

Lemma 5.3. S∗(aj) = Qj−1
p−1ι2np−1 where by convention Q−1 = 0.

Proof. Since S is a lift of ΩH and aj is primitive, we have S∗(aj) = Qj−1
p−1ι2np−1+X for some primitive

X ∈ H∗(Ω3S2np+1). The odd degree primitives in H∗(Ω
3S2np+1) are Qip−1βQ

j
2(p−1)ι2np−2. Observe

that

|Qj2(p−1)ι2np−2| = 2npj+1 − 2
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so

|Qip−1βQ
j
2(p−1)ι2np−2| = 2npj+1+i − 2pi − 1.

Given j, there is no pair (j′, i) for which 2npj+1 − 1 = 2npj
′+1+i − 2pi − 1 since it simplifies to

npj+1−i = npj
′+1 − 1 which has the wrong congruence modulo p except possibly when i = j + 1 in

which case the right is larger than the left. Therefore X = 0 giving S∗(aj) = Qj−1
p−1ι2np−1. �

The map Ω2S2n+1 S−→ Ω2S2np+1{p} does not induce a map of Eilenberg-Moore spectral sequences

with respect to the classifying space construction since it is not a loop map. However, as it is an

Ap−1 map, for k < p we do have

Pk−1(Ω2S2n+1) //

Pk−1(S)

��

Pk(Ω2S2n+1) //

Pk(S)

��

Σ(Ω2S2n+1)∗k

ΣS∗k

��
Pk−1(Ω2S2np+1{p}) // Pk(Ω2S2np+1{p}) //

αk(Ω2S2np+1{p})
��

Σ(Ω2S2np+1{p})∗k

P∞(Ω2S2np+1{p}) = ΩS2np+1{p}.

We wish to compute
(
αk(Ω2S2np+1{p})◦Pk(S)

)
∗. Note that S′ = αp−1(Ω2S2np+1{p})◦Pp−1(S).

Assume by induction that
(
αk−1(Ω2S2np+1{p})◦Pk−1(S)

)
∗ is understood. Let v ∈ H∗

(
Pk(Ω2S2n+1)

)
and write v = v′+w′ where v′ 7→ 0 under H∗

(
Pk(Ω2S2n+1)

)
→ H∗

(
Σ(Ω2S2n+1)∗p

)
and w′ has image

w ∈ H∗
(
Σ(Ω2S2n+1)∗p

)
. Applying Lemma 5.3 and our knowledge of the Eilenberg-Moore spectral

sequence for Ω2S2np+1{p}, we see that the only elements w for which Σ(S∗k)∗(w) survives the

spectral sequence for Ω2S2np+1{p} are σ(aj)⊗ σ(aj) · · · ⊗ σ(aj)︸ ︷︷ ︸
k times

for some j, which become represen-

tatives for ιkp
j

2np ∈ H∗(ΩS2np+1{p}). The restriction to P1(Ω2S2n+1) is determined by a0 7→ 0 and

σ(aj) 7→ ιp
j−1

2np together with the action of the Bockstein which is determined by β(ι2np) = ι2np−1.

Thus Im
(
αk(Ω2S2np+1{p}) ◦ Pk(S)

)
∗ equals

Im
(
αk−1(Ω2S2np+1{p}) ◦ Pk(S)

)
∗ + 〈{ιkp

j

2np}∞j=1〉 = 〈({ιip
j

2np}∞j=1)ki=1〉

together with their Bocksteins. Thus, inductively, for k = p− 1 we obtain

ImS′∗ = 〈({ιip
j

2np}∞j=1)p−1
i=1 ∪ ({β(ιip

j

2np)}∞j=1)p−1
i=1 〉.

The right side of this equation, via the quotient map H∗(ΩS
2np+1{p}) −→ QH∗(ΩS

2np+1{p}),

identifies with the submodule of indecomposables in H∗(ΩS
2np+1{p}) obtained from the image in

homology of the map T −→ ΩS2np+1{p}. That is, ImS′∗ identifies with QH∗(T ). Consequently, we

obtain the following.

Theorem 5.4. Conjecture 5.1 holds homologically. �
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