COMPARING CONSTRUCTIONS OF THE CLASSIFYING SPACE FOR THE FIBRE OF THE DOUBLE SUSPENSION

PAUL SELICK AND STEPHEN THERIAULT

ABSTRACT. The different constructions of a classifying space for the fibre of the double suspension by Gray and the authors are shown to be essentially the same, up to a homotopy equivalence. We go on to compare a variety of maps $\Omega^2 S^{2np+1} \longrightarrow S^{2np-1}$ that are of degree p on the bottom cell.

1. INTRODUCTION

The double suspension $E^2: S^{2n-1} \longrightarrow \Omega^2 S^{2n+1}$ is the double adjoint of the identity map on S^{2n+1} . Understanding the relation of E^2 to power maps on $\Omega^2 S^{2n+1}$ is important in determining the homotopy groups of spheres. To elaborate it will be assumed from now on that all spaces and maps are localized at a prime p.

In [CMN1, CMN2] for $p \ge 5$ and in [N] for p = 3, it was shown that there is a map $\pi \colon \Omega^2 S^{2n+1} \longrightarrow S^{2n-1}$ with the property that $E^2 \circ \pi$ is homotopic to the p^{th} -power map on $\Omega^2 S^{2n+1}$. The map π was constructed via a retraction of S^{2n-1} off the loops on the fibre of the pinch map $P^{2n+1}(p) \longrightarrow S^{2n+1}$, where $P^{2n+1}(p)$ is the mod-p Moore space of dimension 2n + 1. The formulation of π was later improved by Anick [An] for primes $p \ge 5$, and subsequently in a much simpler way by Gray and the second author [GT] for primes $p \ge 3$, by showing that it is the connecting map in an associated homotopy fibration. Phrased in the np-case that is relevant to this paper, there is a space T and a homotopy fibration sequence

(1)
$$\Omega^2 S^{2np+1} \xrightarrow{\pi} S^{2np-1} \longrightarrow T \longrightarrow \Omega S^{2np+1}$$

The space T and this homotopy fibration sequence have been well studied and satisfy many favourable properties (see [AG, GT, G2].)

On the other hand, let W_n be the homotopy fibre of E^2 . In [G1] it was shown that W_n has a classifying space BW_n and there are homotopy fibrations

$$S^{2n-1} \xrightarrow{E^2} \Omega^2 S^{2n+1} \xrightarrow{\nu} BW_n$$
$$BW_n \xrightarrow{j} \Omega^2 S^{2np+1} \xrightarrow{\phi} S^{2np-1}$$

²⁰¹⁰ Mathematics Subject Classification. Primary 55Q40, Secondary 55P35.

Key words and phrases. double suspension, classifying space, James-Hopf invariant.

where $j \circ \nu$ is homotopic to ΩH , with $H \colon \Omega S^{2n+1} \longrightarrow \Omega S^{2np+1}$ being the p^{th} -James-Hopf invariant. Harper [H] showed that if p is odd then $\Omega E^2 \circ \Omega \phi$ is homotopic to the p^{th} -power map on $\Omega^3 S^{2np+1}$, and this was later improved by Richter [R] who showed that if p is any prime then $E^2 \circ \phi \simeq p$.

It would be ideal if the two constructions were linked. Pre-dating Anick's fibration, the map π in (1) was constructed by Cohen, Moore and Neisendorfer [CMN1]. In [CMN2, Introduction] it was conjectured that if p is odd there is a homotopy equivalence $W_n \simeq \Omega D$, where D is the homotopy fibre of π . In light of the existence of Anick's fibration, $D \simeq \Omega T$. Combined with Gray's classifying space for W_n the conjecture can be strengthened to the existence of a homotopy equivalence $BW_n \simeq \Omega T$. This would occur, for example, if the maps $\Omega^2 S^{2np+1} \xrightarrow{\pi} S^{2np-1}$ and $\Omega^2 S^{2np+1} \xrightarrow{\phi} S^{2np-1}$ were homotopic, up to a self-equivalence of $\Omega^2 S^{2np+1}$. In [G1] the space BW_n was shown to be an H-space if p is odd, so an even stronger version of the conjecture is that there is a homotopy equivalence of H-spaces $BW_n \simeq \Omega T$.

In [ST] the authors gave a different construction of a classifying space for W_n at odd primes, showing that there are homotopy fibrations

$$S^{2n-1} \xrightarrow{E^2} \Omega^2 S^{2n+1} \xrightarrow{\nu'} B_n$$
$$B_n \xrightarrow{j'} \Omega^2 S^{2np+1} \xrightarrow{\phi'} S^{2np-1}$$

where $j' \circ \nu' \simeq \Omega H$. They also used Gray's construction to produce a potentially different map $\Omega^2 S^{2np+1} \xrightarrow{\overline{\phi}} S^{2np-1}$ with homotopy fibre BW_n but satisfying $E^2 \circ \overline{\phi} \simeq p$ in a much simpler and more conceptual way than Richter's argument.

The current state of affairs, then, has two constructions of a classifying space for BW_n (a third by Moore and Neisendorfer [MN, Section 4] was shown in the same paper to be equivalent to Gray's in an appropriate manner) and four maps $\Omega^2 S^{2np+1} \longrightarrow S^{2np-1}$. The purpose of this paper is to compare the various constructions. First, we show that BW_n and B_n are homotopy equivalent in a manner compatible with the maps ν, ν' and j, j'. Consequently, $\Omega \phi$ and $\Omega \phi'$ are shown to be homotopic up to a self-equivalence of ΩS^{2np-1} . Second, we show that $\Omega \phi$ and $\Omega \overline{\phi}$ are homotopic up to a self-equivalence of $\Omega^3 S^{2np+1}$. Third, we show that the conjectured *H*-space equivalence $BW_n \simeq \Omega T$ implies that $\Omega \phi$ and $\Omega \pi$ are homotopic up to a self-equivalence of $\Omega^3 S^{2np+1}$. This conjecture is known to hold in a small number of cases related to the existence of elements of mod-*p* Kervaire invariant one [Am]. Otherwise, the conjecture is very mysterious: we conclude the paper by giving homological evidence that it is true.

2. Comparing constructions for a classifying space of W_n

The comparison of BW_n and B_n is based on refining the construction of B_n in [ST]. The latter was based on linking Milnor's classifying space construction applied to $\Omega^2 S^{2n+1}$ and the James construction on ΩS^{2n+1} . In general, let $X^{\wedge k}$ be the smash product of k copies of X with itself and let X^{*k} be the join of k copies of X with itself. Observe that $X^{*k} \simeq \Sigma^{k-1} X^{\wedge k}$. Milnor's classifying space construction applied to $\Omega^2 S^{2n+1}$ gives, for each $k \ge 1$, a homotopy fibration diagram

The k = 1 case has $\mathcal{P}_k(\Omega^2 S^{2n+1}) = \Sigma \Omega^2 S^{2n+1}$ and ev_1 is the canonical evaluation map. Three properties will be relevant.

Lemma 2.1. In (2), for $k \ge 1$ the following hold:

- (a) ∂_k is null homotopic;
- (b) the map $(\Omega^2 S^{2n+1})^{*(k+1)} \longrightarrow (\Omega^2 S^{2n+1})^{*(k+2)}$ is null homotopic;
- (c) the space $(\Omega^2 S^{2n+1})^{*(k+1)}$ is (2n(k+1)-2)-connected.

Proof. Part (a) follows from the fact that Ωev_1 has a right homotopy inverse, so the homotopy commutativity of the loops on the right square in (2) implies inductively that Ωev_k has a right homotopy inverse. Part (b) is from the fact that the upper direction around the middle square in (2) is a homotopy cofibration, so the map $(\Omega^2 S^{2n+1})^{*(k+1)} \longrightarrow (\Omega^2 S^{2n+1})^{*(k+2)}$ lifts through ∂_{k+1} , which is null homotopic by part (a). Part (c) follows from the fact that $(\Omega^2 S^{2n+1})^{*(k+1)} \simeq$ $\Sigma^k (\Omega^2 S^{2n+1})^{\wedge (k+1)}$.

The connectivity statement in Lemma 2.1 (c) immediately implies the following.

Corollary 2.2. If X is a CW-complex of dimension $\leq 2n(k+1) - 2$ then any map $X \longrightarrow \Omega S^{2n+1}$ has a unique lift (up to homotopy) through ev_k to a map $X \longrightarrow \mathcal{P}_k(\Omega^2 S^{2n+1})$.

For a path-connected space X let $X^{\times k}$ be the product of k copies of X with itself. Let $J_k(X)$ be the quotient space obtained from $X^{\times k}$ given by identifying $(x_1, \ldots, x_i, *, x_{i+2}, \ldots, x_k)$ with $(x_1, \ldots, x_i, x_{i+2}, *, \ldots, x_k)$. There is an inclusion $J_k(X) \longrightarrow J_{k+1}(X)$ given by sending (x_1, \ldots, x_k) to $(x_1, \ldots, x_k, *)$, and J(X) is defined as the colimit of the spaces $J_k(X)$. James [J] showed that there is a homotopy equivalence $J(X) \simeq \Omega \Sigma X$. In particular, the space $J_k(S^{2n})$ has dimension 2nk and the map $J_k(S^{2n}) \longrightarrow J(S^{2n}) \simeq \Omega S^{2n+1}$ can be regarded as the inclusion of the 2nk-skeleton.

Since $J_k(S^{2n})$ has dimension 2nk, Corollary 2.2 implies the inclusion $J_k(S^{2n}) \longrightarrow \Omega S^{2n+1}$ lifts through ev_k to a map $J_k(S^{2n}) \longrightarrow \mathcal{P}_k(\Omega^2 S^{2n+1})$. From this lift we obtain a homotopy fibration diagram

that defines the space Y_k and the map δ_k . Suppose that $k \ge 1$ and consider the square

Both directions around the diagram are lifts of the map $J_k(S^{2n}) \longrightarrow \Omega S^{2n+1}$ through ev_k , so as the dimension of $J_k(S^{2n})$ is 2nk, the uniqueness property in Lemma 2.1 (b) implies that the two lifts are homotopic. That is, the square homotopy commutes. Mapping all four corners into ΩS^{2n+1} and taking homotopy fibres gives homotopy fibration diagrams

where y_k is an induced map of fibres, and

Lemma 2.3. In (5) the following hold:

- (a) taking fibration connecting maps for the left square gives $\delta_{k+1} \simeq y_k \circ \delta_k$;
- (b) the composite $Y_k \xrightarrow{y_k} Y_{k+1} \longrightarrow (\Omega^2 S^{2n+1})^{*(k+2)}$ is null homotopic.

Proof. Part (a) is immediate from the definitions of the maps. For part (b), it suffices to show that the composite

(7)
$$Y_k \xrightarrow{y_k} Y_{k+1} \longrightarrow (\Omega^2 S^{2n+1})^{*(k+2)} \longrightarrow P_{k+1}(\Omega^2 S^{2n+1})$$

is null homotopic. For if so then $Y_k \xrightarrow{y_k} Y_{k+1} \longrightarrow (\Omega^2 S^{2n+1})^{*(k+2)}$ lifts through ∂_{k+1} , which by Lemma 2.1 (a) is null homotopic. By (5), the composite (7) is homotopic to

$$Y_k \longrightarrow J_k(S^{2n}) \longrightarrow J_{k+1}(S^{2n}) \longrightarrow P_{k+1}(\Omega^2 S^{2n+1}),$$

which by (4) is homotopic to

$$Y_k \longrightarrow J_k(S^{2n}) \longrightarrow P_k(\Omega^2 S^{2n+1}) \longrightarrow P_{k+1}(\Omega^2 S^{2n+1}),$$

which in turn by (6) is homotopic to

$$Y_k \longrightarrow (\Omega^2 S^{2n+1})^{*(k+2)} \longrightarrow (\Omega^2 S^{2n+1})^{*(k+2)} \longrightarrow P_{k+1}(\Omega^2 S^{2n+1}).$$

But by Lemma 2.1 (b), the map $(\Omega^2 S^{2n+1})^{*(k+1)} \longrightarrow (\Omega^2 S^{2n+1})^{*(k+2)}$ is null homotopic, and therefore the composite (7) is null homotopic.

If $k \ge 1$ the evaluation map $\Sigma^2 \Omega^2 S^{2n+1} \longrightarrow S^{2n+1}$ can be used iteratively to obtain a map

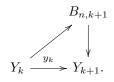
$$g_k \colon (\Omega^2 S^{2n+1})^{*(k+1)} \longrightarrow S^{2n(k+1)-1}$$

Define h_k by the composite

$$h_k: Y_k \longrightarrow (\Omega^2 S^{2n+1})^{*(k+1)} \xrightarrow{g_k} S^{2n(k+1)-1}$$

and let $B_{n,k}$ be the homotopy fibre of h_k .

Lemma 2.4. For $k \ge 1$ there is a lift



Proof. By Lemma 2.3 (b), the composite $Y_k \xrightarrow{y_k} Y_{k+1} \longrightarrow (\Omega^2 S^{2n+1})^{*(k+2)}$ is null homotopic. By definition, h_{k+1} factors through the right map, so $h_{k+1} \circ y_k$ is null homotopic. Thus y_k lifts to the fibre $B_{n,k+1}$ of h_{k+1} .

Observe that if k = p - 1 then the homotopy fibration in the top row of (3) is

$$\Omega^2 S^{2n+1} \xrightarrow{\Omega H} \Omega^2 S^{2np+1} \longrightarrow J_{p-1}(S^{2n}) \longrightarrow \Omega S^{2n+1}$$

where *H* is the p^{th} -James-Hopf invariant. That is, $Y_{p-1} = \Omega^2 S^{2np+1}$ and $\delta_{p-1} = \Omega H$. In [ST] it was observed that $h_{p-1} \circ \Omega H$ is null homotopic, giving a lift

$$\Omega^2 S^{2n+1} \xrightarrow{\Omega H} \Omega^2 S^{2np+1}$$

for some map $\tilde{\nu}$, and that for any choice of lift $\tilde{\nu}$ there is a homotopy fibration

$$S^{2n-1} \xrightarrow{E^2} \Omega^2 S^{2n+1} \xrightarrow{\widetilde{\nu}} B_{n,p-1}$$

Thus $B_{n,p-1}$ is a classifying space for the fibre of the double suspension.

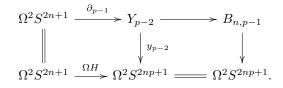
In light of Lemma 2.4, the lift $\tilde{\nu}$ can be chosen more deliberately. Define ν' by the composite

$$\nu' \colon \Omega^2 S^{2n+1} \xrightarrow{\partial_{p-2}} Y_{p-2} \longrightarrow B_{n,p-1}$$

where the right map is from Lemma 2.4.

Lemma 2.5. If $p \ge 3$ then the map ν' is a lift of ΩH .

Proof. Consider the diagram



Remembering that $\Omega^2 S^{2np+1} = Y_{p-1}$, $\Omega H = \delta_{p-1}$ and $B_n = B_{n,p-1}$, the left square homotopy commutes by Lemma 2.3 (a) and the right square homotopy commutes by Lemma 2.4. Note that having $p \ge 3$ ensures that the map y_{p-2} exists. The top row of the diagram is the definition of ν' . Its homotopy commutativity therefore implies that ν' is a lift of ΩH .

To summarise, let $B_n = B_{n,p-1}$ and let $\phi' \colon \Omega^2 S^{2np+1} \longrightarrow S^{2np-1}$ be h_{p-1} . Then there are homotopy fibrations

$$S^{2n-1} \xrightarrow{E^2} \Omega^2 S^{2n+1} \xrightarrow{\nu'} B_n$$
$$B_n \xrightarrow{j'} \Omega^2 S^{2np+1} \xrightarrow{\phi'} S^{2np-1}$$

where $j' \circ \nu' \simeq \Omega H$ and ν' factors as $\Omega^2 S^{2n+1} \xrightarrow{\partial_{p-2}} Y_{p-2} \longrightarrow B_n$.

In comparison, Gray [G1] constructed homotopy fibrations

$$S^{2n-1} \xrightarrow{E^2} \Omega^2 S^{2n+1} \xrightarrow{\nu} BW_n$$
$$BW_n \xrightarrow{j} \Omega^2 S^{2np+1} \xrightarrow{\phi} S^{2np-1}$$

DTT

where $j \circ \nu \simeq \Omega H$ and showed that there is a factorization

(8)
$$\begin{array}{c} BW_n \\ \nu \\ \gamma \\ \Omega^2 S^{2n+1} \xrightarrow{\delta_1} Y_1. \end{array}$$

Our first main result is to show that there is a homotopy equivalence between B_n and BW_n that is compatible with the maps j', ν' and j, ν .

Theorem 2.6. If $p \ge 3$ then there is a homotopy commutative diagram

where e is a homotopy equivalence.

Proof. Define e by the composite

$$e: BW_n \longrightarrow Y_1 \xrightarrow{y_1} Y_2 \longrightarrow \cdots \longrightarrow Y_{p-2} \longrightarrow B_{p-1}.$$

Consider the diagram

$$\Omega^{2}S^{2n+1} = \Omega^{2}S^{2n+1} = \Omega^{2}S^{2n+1} = \cdots \longrightarrow \Omega^{2}S^{2n+1} = \Omega^{2}S^{2n+1}$$

$$\downarrow^{\nu} \qquad \qquad \downarrow^{\delta_{1}} \qquad \qquad \downarrow^{\delta_{2}} \qquad \qquad \downarrow^{\delta_{p-2}} \qquad \qquad \downarrow^{\nu'}$$

$$BW_{n} \longrightarrow Y_{1} \xrightarrow{y_{1}} Y_{2} \longrightarrow \cdots \longrightarrow Y_{p-2} \longrightarrow B_{n}.$$

The left square homotopy commutes by (8), the middle squares homotopy commute by Lemma 2.3 (a), and the right square homotopy commutes by definition of ν' . The bottom row is the definition of e. Thus the homotopy commutativity of the diagram as a whole implies that $e \circ \nu \simeq \nu'$.

Since the homotopy fibre of both ν and ν' is S^{2n-1} , the homotopy $e \circ \nu \simeq \nu'$ implies that there is a homotopy fibration diagram

that defines the space X and the map t. Since E^2 induces an isomorphism on H_{2n-1} , the commutativity of the upper left square implies that t must induce an isomorphism on H_{2n-1} . Thus t is a homotopy equivalence, implying that X is contractible. Hence e is a homotopy equivalence.

Now consider the diagram

(10)
$$\begin{aligned} \Omega^2 S^{2n+1} & \xrightarrow{\nu} BW_n \xrightarrow{j} \Omega^2 S^{2np+1} \\ & \parallel & \downarrow e & \parallel \\ \Omega^2 S^{2n+1} & \xrightarrow{\nu'} B_n \xrightarrow{j'} \Omega^2 S^{2np+1}. \end{aligned}$$

The left square homotopy commutes by (9). The composites $j \circ \nu$ and $j' \circ \nu'$ are both homotopic to ΩH , so the outer rectangle also homotopy commutes. We wish to show that the right square also homotopy commutes. It is equivalent to show that the difference $d = j - j' \circ e$ is null homotopic. The homotopy commutativity of the left square and outer rectangle in (10) implies that $d \circ \nu$ is null homotopic. Thus if \tilde{d} is the double adjoint of d then the composite

$$\Sigma^2 \Omega^2 S^{2n+1} \xrightarrow{\Sigma^2 \nu} \Sigma^2 B W_n \xrightarrow{\tilde{d}} S^{2np+1}$$

is null homotopic. By [G1], $\Sigma^2 \nu$ has a right homotopy inverse. Hence \tilde{d} is null homotopic, and therefore so is d.

Theorem 2.6 also lets us compare the maps ϕ and ϕ' .

Corollary 2.7. There is a homotopy commutative diagram

$$\begin{array}{c|c} \Omega^3 S^{2np+1} & \xrightarrow{\Omega\phi} & \Omega S^{2np-1} \\ & & & & \downarrow e' \\ \Omega^3 S^{2np+1} & \xrightarrow{\Omega\phi'} & \Omega S^{2np-1} \end{array}$$

where e' is a homotopy equivalence.

Proof. From the right square in the statement of Theorem 2.6 we obtain a homotopy fibration diagram

that defines the map e'. Since e is a homotopy equivalence, the Five-Lemma implies that e' induces an isomorphism on homotopy groups and so is a homotopy equivalence by Whitehead's Theorem. \Box

3. Comparing ϕ and $\overline{\phi}$

In general, if X is an H-space with multiplication m then there is a homotopy fibration sequence

$$\Omega\Sigma X \xrightarrow{r} X \longrightarrow X * X \xrightarrow{m^*} \Sigma X$$

where m^* is the Hopf construction on m and the map r has a right homotopy inverse. If the multiplication m is homotopy associative then by [St] the map r can be chosen to be an H-map.

In our case, localize at an odd prime p. Then Gray [G1] shows that BW_n is a homotopy associative H-space and in the homotopy fibration sequence

(11)
$$\Omega S^{2np-1} \xrightarrow{k} BW_n \xrightarrow{j} \Omega^2 S^{2np+1} \xrightarrow{\phi} S^{2np-1}$$

the maps j and k are H-maps. In [ST] it was shown that there is a homotopy pullback

(12)
$$\Omega^{2}S^{2np+1} \xrightarrow{\overline{\phi}} S^{2np-1}$$
$$\downarrow^{g} \qquad \qquad \downarrow^{i}$$
$$BW_{n} * BW_{n} \xrightarrow{m^{*}} \Sigma BW_{n}$$

where *i* is the inclusion of the bottom cell and *g* and $\overline{\phi}$ are induced by the pullback. The maps ϕ and $\overline{\phi}$ need not be homotopic. The map ϕ is interesting because of its immediate association with BW_n ; the map $\overline{\phi}$ is interesting because in [ST] a straightforward argument was given to show that $E^2 \circ \overline{\phi}$ is homotopic to the p^{th} -power map on $\Omega^2 S^{2np+1}$. We now compare ϕ and $\overline{\phi}$. **Proposition 3.1.** If $p \ge 3$ then there is a homotopy commutative diagram

$$\begin{array}{c|c} \Omega^3 S^{2np+1} & \xrightarrow{\Omega\phi} & \Omega S^{2np-1} \\ & & & \\ & & & \\ & & & \\ & & & \\ \Omega^3 S^{2np+1} & \xrightarrow{\Omega\overline{\phi}} & \Omega S^{2np-1} \end{array}$$

where \overline{e} is a homotopy equivalence.

Proof. From (12) we obtain a homotopy fibration diagram

that defines the maps $\overline{\phi}$ and h. The map r is an H-map since BW_n is homotopy associative, so the homotopy $h \circ r \circ \Omega i$ in the leftmost square implies that h is also an H-map.

In general, for a path-connected space A, let $E: A \longrightarrow \Omega \Sigma A$ be the suspension. By the James construction [J], if Y is a homotopy associative H-space then any map $f: A \longrightarrow Y$ extends to an H-map $\overline{f}: \Omega \Sigma A \longrightarrow Y$, and this is the unique H-map, up to homotopy, such that $\overline{f} \circ E \simeq f$.

In our case this implies that the *H*-maps $\Omega S^{2np-1} \xrightarrow{h} BW_n$ in (13) and $\Omega S^{2np-1} \xrightarrow{k} BW_n$ in (11) are determined by their restrictions to the bottom cell. In both cases the restrictions are the same – the inclusion of the bottom cell – so $h \simeq k$. This homotopy implies that there is a homotopy fibration diagram

that defines the map \overline{e} . The Five-Lemma implies that \overline{e} induces an isomorphism on homotopy groups and so is a homotopy equivalence by Whitehead's Theorem.

4. Comparing ϕ and π

There is an analogue of the homotopy pullback (12) with respect to ΩT . In this case the homotopy fibration involving the Hopf construction extends to

$$\Omega T * \Omega T \xrightarrow{m^*} \Sigma \Omega T \xrightarrow{ev} T,$$

where ev is the evaluation map. Let $i': S^{2np-1} \longrightarrow \Sigma \Omega T$ be the inclusion of the bottom cell. Since $ev \circ i'$ is the inclusion of the bottom cell into T, its homotopy fibre is $\Omega^2 S^{2np+1} \xrightarrow{\pi} S^{2np-1}$ and we

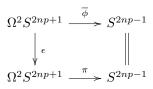
obtain a homotopy pullback

(14)
$$\begin{aligned} \Omega^2 S^{2np+1} & \xrightarrow{\pi} S^{2np-1} \\ & \downarrow^{g'} & \downarrow^{i'} \\ \Omega T * \Omega T & \xrightarrow{m^*} \Sigma \Omega T \end{aligned}$$

for some map g'.

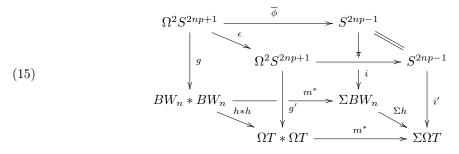
We next show that if BW_n and ΩT are homotopy equivalent as *H*-spaces then the maps $\overline{\phi}$ and π are homotopic, up to a self-equivalence of $\Omega^2 S^{2np+1}$.

Proposition 4.1. If there is an *H*-equivalence $h: BW_n \longrightarrow \Omega T$ then there is a homotopy commutative diagram



where ϵ is a homotopy equivalence.

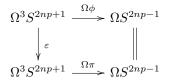
Proof. Consider the cube



where the map ϵ is to be defined momentarily. The lower face homotopy commutes since h is an H-map. The right face homotopy commutes since both i and i' are the inclusion of the bottom cell. The rear and front faces are homotopy pullbacks by (12) and (14) respectively. Thus $i' \circ \overline{\phi}$ is homotopic to $m^* \circ (h * h) \circ g$, implying that there is a pullback map ϵ such that $g' \circ \epsilon \simeq (h * h) \circ g$ and $\pi \circ \epsilon \simeq \overline{\phi}$. Since π and $\overline{\phi}$ are both degree p on the bottom cell, the homotopy $\pi \circ \epsilon \simeq \overline{\phi}$ implies that ϵ is degree 1 on the bottom cell. Since $\Omega^2 S^{2np+1}$ is atomic [CM], ϵ is therefore a homotopy equivalence.

Combining Propositions 3.1 and 4.1 lets us compare ϕ and π .

Corollary 4.2. If there is an *H*-equivalence $h: BW_n \longrightarrow \Omega T$ then there is a homotopy commutative diagram



where ε is a homotopy equivalence.

In general it is not known whether BW_n and ΩT are homotopy equivalent, let alone homotopy equivalent as *H*-spaces. However, there are a small number of cases where a homotopy equivalence is known and in all such cases the equivalences is an *H*-equivalence. In [T2] it was shown that there is an *H*-equivalence $BW_n \simeq \Omega T$ if p is odd and $n \in \{1, p\}$, and in [Am] it was shown that there is also ab *H*-equivalence if p = 3 and $n \in \{9, 27\}$. Thus Corollary 4.2 immediately implies the following.

Corollary 4.3. The maps $\Omega^3 S^{2np+1} \xrightarrow{\Omega\phi} \Omega S^{2np-1}$ and $\Omega^3 S^{2np+1} \xrightarrow{\Omega\pi} \Omega S^{2np-1}$ are homotopic, up to a self-equivalence of $\Omega^3 S^{2np+1}$, provided either:

(a)
$$p \text{ is odd and } n \in \{1, p\};$$

(b) $p = 3 \text{ and } n \in \{9, 27\}.$

5. Homological evidence for an H-equivalence $BW_n \simeq \Omega T$

Let p be an odd prime and let $S^{2n+1}\{p\}$ be the homotopy fibre of the p^{th} -power map on S^{2n+1} . In [S] it was shown that there is a lift

$$\mathcal{P}_{p-1}(\Omega^2 S^{2n+1}) \xrightarrow{ev_{p-1}} \Omega S^{2n+1} \xrightarrow{H} \Omega S^{2np+1}$$

for some map S'. In [S] it was also shown that the composite

$$s \colon \Omega^2 S^{2n+1} \xrightarrow{E} \Omega \Sigma \Omega^2 S^{2n+1} = \Omega \mathcal{P}_1(\Omega^2 S^{2n+1}) \longrightarrow \Omega \mathcal{P}_{p-1}(\Omega^2 S^{2n+1})$$

is an *H*-map (in fact, the same argument shows it is an A_{p-1} -map, in the sense of Stasheff). Let *S* be the composite

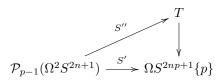
$$S: \Omega^2 S^{2n+1} \xrightarrow{s} \Omega \mathcal{P}_{p-1}(\Omega^2 S^{2n+1}) \xrightarrow{\Omega S'} \Omega S^{2np+1}\{p\}.$$

Then S is an H-map (an A_{p-1} -map) since it is the composite of H-maps (A_{p-1} -maps) and as s is a right homotopy inverse for Ωev_{p-1} , the map S is a lift of ΩH .

There is a potential improvement. In [GT] it was shown that there is a homotopy fibration

$$T \longrightarrow \Omega S^{2np+1}\{p\} \longrightarrow BW_{np}$$

Conjecture 5.1. If $p \ge 3$ then there is a lift



for some map S''.

Conjecture 5.1 is a strong form of the conjecture that $BW_n \simeq \Omega T$.

Proposition 5.2. If Conjecture 5.1 holds then there is an H-equivalence $BW_n \simeq \Omega T$.

Proof. Let S be the composite

$$\mathcal{S}\colon \Omega^2 S^{2n+1} \xrightarrow{s} \Omega \mathcal{P}_{p-1}(\Omega^2 S^{2n+1}) \xrightarrow{\Omega S''} \Omega T.$$

Arguing as in [T1, Lemma 2.2] and using the fact that T is an H-space [GT] implies that from S one obtain an H-map $BW_n \longrightarrow \Omega T$. (The statement of [T1, Lemma 2.2] is for $p \ge 5$ but the p = 3 case is also valid.)

We close the paper by giving homological evidence that Conjecture 5.1 is true. Let p be an odd prime and assume that homology is taken with mod-p coefficients. Theorem 5.4 shows that the image of S'_* lifts to $H_*(T)$.

5.1. The Eilenberg-Moore Spectral Sequence. For a topological group G, the Eilenberg-Moore spectral sequence for $G \to EG \to BG$ can be identified with the one associated to the filtration

$$pt = \mathcal{P}_0(G) \subset \mathcal{P}_1(G) \subset \ldots \subset \mathcal{P}_\infty(G) = BG.$$

Let $\alpha_{j,k}(G) : \mathcal{P}_j(G) \to \mathcal{P}_k(G)$ denote the inclusion and write $\alpha_k(G)$ for $\alpha_{k,\infty}(G)$. As there is a homotopy cofibration $G^{*k} \longrightarrow \mathcal{P}_{k-1}(G) \longrightarrow \mathcal{P}_k(G)$, there is a commutative diagram

$$\mathcal{P}_{k-1}(G) \xrightarrow{\alpha_{k-1,k}(G)} \mathcal{P}_{k}(G) \longrightarrow \Sigma(G)^{*k}$$

$$\downarrow^{\alpha_{k}(G)}$$

$$\mathcal{P}_{\infty}(G)$$

where the row is a cofibration and $\Sigma(G)^{*k} \simeq \Sigma^k G^{\wedge k}$. We examine $\alpha_k(G)_*$.

For $v \in \text{Im } \alpha_{k-1,k}(G)_*$ the map is determined by its restriction to $\mathcal{P}_{k-1}(G)$. Given $v \in H_*(\mathcal{P}_k(G))$ write $v = \alpha_{k-1,k}(G)_*(v') + w'$ where w' has image w in $H_*(\Sigma(G)^{*k})$. Working modulo the inductively known image of $\alpha_{k-1}(G)_*$ we have the following. By exactness $w \in \ker H_*(\Sigma(G)^{*k}) \to$ $H_*(\Sigma\mathcal{P}_{k-1}(G))$. Since $w \mapsto 0$ under $\mathcal{P}_k(G)/\mathcal{P}_{k-1}(G) = \Sigma(G)^{*k} \to \mathcal{P}_{k-1}(G)/\mathcal{P}_{k-2}(G)$ which is the d^1 differential of the spectral sequence, it represents an element [w] in E^2 . If [w] is in the image of some differential d_r then $v \mapsto \alpha_{k-1,r}(v')$ under $\alpha_{k,r} : \mathcal{P}_k(G) \to \mathcal{P}_r(G)$, and in particular $\alpha_k(v) = \alpha_{k-1}(v')$. Otherwise [w] survives to E^{∞} and contributes to the filtration quotient for some element of $H_*(BG)$, which gives the equivalence class modulo lower filtration of the image of v under $\alpha_{k,\infty}^* : H_*(\mathcal{P}_k(G)) \to H_*(\mathcal{P}_\infty(BG))$. 5.2. Known homology. We record the homology of several spaces. This is often phrased in terms of Dyer-Lashof operations Q_t and the calculations can be found in [CLM]. By Q_t^j we mean j copies of Q_t composed with itself. First, there are Hopf algebra isomorphisms

$$H_*(\Omega^2 S^{2n+1}) \cong H_*(S^{2n+1}) \otimes H_*(BW_n) \cong \Lambda[\{a_j\}_{j=0}^\infty] \otimes \mathbf{Z}/p[\{b_j\}_{j=1}^\infty]$$

where $a_j = Q_{p-1}^j(a_0)$ and $b_j = \beta(a_j)$ and $|Q_{s(p-1)}y| = p|y| + s(p-1)$. Thus $|a_j| = 2np^j - 1$ and $|b_j| = 2np^j - 2$. We will also alternatively write

$$H_*(\Omega^2 S^{2n+1}) \cong \Lambda[\{Q_{p-1}^j(\iota_{2n-1})\}_{j=0}^\infty] \otimes \mathbf{Z}/p[\{\beta Q_{p-1}^j(\iota_{2n-1})\}_{j=1}^\infty].$$

Second, there is a Hopf algebra isomorphism

$$H_*(\Omega^3 S^{2n+1}) \cong \mathbf{Z}/p[\{Q_{2(p-1)}^j \iota_{2n-2}\}_{j=0}^\infty] \otimes \\ \Lambda[\{Q_{p-1}^i \beta Q_{2(p-1)}^j \iota_{2n-2}\}_{j=1}^\infty] \otimes \mathbf{Z}/p[\{\beta Q_{p-1}^i \beta Q_{2(p-1)}^j \iota_{2n-2}\}_{j=1}^\infty].$$

Third, there is a Hopf algebra isomorphism

$$H_*(\Omega^2 S^{2np+1}\{p\}) \cong H_*(\Omega^3 S^{2np+1}) \otimes H_*(\Omega^2 S^{2np+1}).$$

We will denote algebra generators of $H_*(\Omega^2 S^{2np+1}\{p\})$ which are images under $H_*(\Omega^3 S^{2np+1}) \rightarrow H_*(\Omega^2 S^{2np+1}\{p\})$ by their names in $H_*(\Omega^3 S^{2np+1})$ and abuse notation by writing our choice of preimages of generators in $H_*(\Omega^2 S^{2np+1})$ by their names in $H_*(\Omega^2 S^{2np+1})$, written in Dyer-Lashof notation. We have $\beta(\iota_{2np-1}) = \iota_{2np-2}$, and otherwise the Bockstein is given on the generators by their Bocksteins in $H_*(\Omega^3 S^{2np+1})$ and $H_*(\Omega^2 S^{2np+1})$ respectively.

Fourth, there is a Hopf algebra isomorphism

$$H_*(\Omega S^{2np+1}\{p\}) \cong H_*(\Omega^2 S^{2np+1}) \otimes H_*(\Omega S^{2np+1}).$$

The naming convention for generators follows as in $H_*(\Omega^2 S^{2np+1}\{p\})$, and the Bockstein is given by $\beta(\iota_{2np}) = \iota_{2np-1}$ and the Bocksteins in $H_*(\Omega^2 S^{2np+1})$. Alternatively, using $H_*(\Omega^2 S^{2np+1}) \cong$ $H_*(S^{2np-1}) \otimes H_*(BW_{np})$ we also have

$$H_*(\Omega S^{2np+1}\{p\}) \cong H_*(T) \otimes H_*(BW_{np}).$$

5.3. The images of S_* and S'_* . The map $\Omega^2 S^{2n+1} \xrightarrow{S} \Omega^2 S^{2np+1} \{p\}$ is an A_{p-1} -map in the sense of Stasheff. In particular, as S is an H-map, the description of $H_*(\Omega^2 S^{2n+1})$ implies that S_* is determined by its images of the odd degree generators and the Bockstein.

Lemma 5.3. $S_*(a_j) = Q_{p-1}^{j-1} \iota_{2np-1}$ where by convention $Q_{-1} = 0$.

Proof. Since S is a lift of ΩH and a_j is primitive, we have $S_*(a_j) = Q_{p-1}^{j-1}\iota_{2np-1} + X$ for some primitive $X \in H_*(\Omega^3 S^{2np+1})$. The odd degree primitives in $H_*(\Omega^3 S^{2np+1})$ are $Q_{p-1}^i \beta Q_{2(p-1)}^j \iota_{2np-2}$. Observe that

$$|Q_{2(p-1)}^{j}\iota_{2np-2}| = 2np^{j+1} - 2$$

so

$$|Q_{p-1}^i\beta Q_{2(p-1)}^j\iota_{2np-2}| = 2np^{j+1+i} - 2p^i - 1.$$

Given j, there is no pair (j', i) for which $2np^{j+1} - 1 = 2np^{j'+1+i} - 2p^i - 1$ since it simplifies to $np^{j+1-i} = np^{j'+1} - 1$ which has the wrong congruence modulo p except possibly when i = j + 1 in which case the right is larger than the left. Therefore X = 0 giving $S_*(a_j) = Q_{p-1}^{j-1}\iota_{2np-1}$.

The map $\Omega^2 S^{2n+1} \xrightarrow{S} \Omega^2 S^{2np+1}\{p\}$ does not induce a map of Eilenberg-Moore spectral sequences with respect to the classifying space construction since it is not a loop map. However, as it is an A_{p-1} map, for k < p we do have

$$\mathcal{P}_{k-1}(\Omega^2 S^{2n+1}) \longrightarrow \mathcal{P}_k(\Omega^2 S^{2n+1}) \longrightarrow \Sigma(\Omega^2 S^{2n+1})^{*k}$$

$$\downarrow^{\mathcal{P}_{k-1}(S)} \qquad \qquad \downarrow^{\mathcal{P}_k(S)} \qquad \qquad \downarrow^{\Sigma S^{*k}}$$

$$\mathcal{P}_{k-1}(\Omega^2 S^{2np+1}\{p\}) \longrightarrow \mathcal{P}_k(\Omega^2 S^{2np+1}\{p\}) \longrightarrow \Sigma(\Omega^2 S^{2np+1}\{p\})^{*k}$$

$$\qquad \qquad \qquad \downarrow^{\alpha_k(\Omega^2 S^{2np+1}\{p\})}$$

$$\mathcal{P}_{\infty}(\Omega^2 S^{2np+1}\{p\}) = \Omega S^{2np+1}\{p\}.$$

We wish to compute $(\alpha_k(\Omega^2 S^{2np+1}{p}) \circ \mathcal{P}_k(S))_*$. Note that $S' = \alpha_{p-1}(\Omega^2 S^{2np+1}{p}) \circ \mathcal{P}_{p-1}(S)$. Assume by induction that $(\alpha_{k-1}(\Omega^2 S^{2np+1}{p}) \circ \mathcal{P}_{k-1}(S))_*$ is understood. Let $v \in H_*(\mathcal{P}_k(\Omega^2 S^{2n+1}))$ and write v = v' + w' where $v' \mapsto 0$ under $H_*(\mathcal{P}_k(\Omega^2 S^{2n+1})) \to H_*(\Sigma(\Omega^2 S^{2n+1})^{*p})$ and w' has image $w \in H_*(\Sigma(\Omega^2 S^{2n+1})^{*p})$. Applying Lemma 5.3 and our knowledge of the Eilenberg-Moore spectral sequence for $\Omega^2 S^{2np+1}{p}$, we see that the only elements w for which $\Sigma(S^{*k})_*(w)$ survives the spectral sequence for $\Omega^2 S^{2np+1}{p}$ are $\underbrace{\sigma(a_j) \otimes \sigma(a_j) \cdots \otimes \sigma(a_j)}_{k \text{ times}}$ for some j, which become represen-

k timestatives for $\iota_{2np}^{kp^j} \in H_*(\Omega S^{2np+1}\{p\})$. The restriction to $\mathcal{P}_1(\Omega^2 S^{2n+1})$ is determined by $a_0 \mapsto 0$ and $\sigma(a_j) \mapsto \iota_{2np}^{p^{j-1}}$ together with the action of the Bockstein which is determined by $\beta(\iota_{2np}) = \iota_{2np-1}$. Thus $\operatorname{Im}(\alpha_k(\Omega^2 S^{2np+1}\{p\}) \circ \mathcal{P}_k(S))_*$ equals

$$\operatorname{Im}(\alpha_{k-1}(\Omega^2 S^{2np+1}\{p\}) \circ \mathcal{P}_k(S))_* + \langle \{\iota_{2np}^{kp^j}\}_{j=1}^{\infty} \rangle = \langle (\{\iota_{2np}^{ip^j}\}_{j=1}^{\infty})_{i=1}^k \rangle$$

together with their Bocksteins. Thus, inductively, for k = p - 1 we obtain

$$\operatorname{Im} S'_* = \langle (\{\iota_{2np}^{ip^j}\}_{j=1}^\infty)_{i=1}^{p-1} \cup (\{\beta(\iota_{2np}^{ip^j})\}_{j=1}^\infty)_{i=1}^{p-1} \rangle.$$

The right side of this equation, via the quotient map $H_*(\Omega S^{2np+1}\{p\}) \longrightarrow QH_*(\Omega S^{2np+1}\{p\})$, identifies with the submodule of indecomposables in $H_*(\Omega S^{2np+1}\{p\})$ obtained from the image in homology of the map $T \longrightarrow \Omega S^{2np+1}\{p\}$. That is, $\operatorname{Im} S'_*$ identifies with $QH_*(T)$. Consequently, we obtain the following.

Theorem 5.4. Conjecture 5.1 holds homologically.

References

- [Am] S. Amelotte, The fibre of the degree 3 map, Anick spaces and the double suspension, Proc. Edinb. Math. Soc. 63 (2020), 830-843.
- [An] D. Anick, Differential algebras in topology, Research Notes in Math 3, AK Peters, 1993.
- [AG] D. Anick and B. Gray, Small H spaces related to Moore spaces, Topology 343 (1995), 859-881.
- [CLM] F.R. Cohen, T.J. Lada and J.P. May, The homology of iterated loop spaces, Lecture Notes in Mathematics 533, Springer-Verlag, Berlin-New York, 1976.
- [CM] F.R. Cohen and M.A. Mahowald, A remark on the self-maps of $\Omega^2 S^{2n+1}$, Indiana Univ. Math. J. **30** (1981), 583-588.
- [CMN1] F.R. Cohen, J.C. Moore and J.A. Neisendorfer, Torsion in homotopy groups, Ann. of Math. 109 (1979), 121-168.
- [CMN2] F.R. Cohen, J.C. Moore and J.A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. 110 (1979), 549-565.
- [G1] B. Gray, On the iterated suspension, Topology 27 (1988), 301-310.
- [G2] B. Gray, Abelian properties of Anick spaces, Mem. Amer. Math. Soc. 246 (2017), No. 1162.
- [GT] B. Gray and S. Theriault, An elementary construction of Anick's fibration, Geom. Topol. 14 (2010), 243-276.
- [H] J.R. Harper, A proof of Gray's conjecture, Contemp. Math. 96 (1989), 189-195.
- [J] I.M. James, Reduced product spaces, Ann. of Math. 62 (1955), 170-197.
- [MN] J.C. Moore and J.A. Neisendorfer, Equivalence of Toda-Hopf invariants, Israel J. Math. 66 (1989), 300-318.
- [N] J.A. Neisendorfer, 3-Primary Exponents, Math. Proc. Camb. Phil. Soc. 90 (1981), 63-83.
- [R] W. Richter, A conjecture of Gray and the p^{th} -power map on $\Omega^2 S^{2np+1}$, Proc. Amer. Math. Soc. **142** (2014), 2151-2160.
- [S] P.S. Selick, Odd primary torsion in $\pi_k(S^3)$, Topology 17 (1978), 407-412.
- [ST] P. Selick and S. Theriault, New perspectilves on the classifying space of the fibre of the double suspension, Proc. Amer. Math. Soc. 147 (2019), 1325-1333.
- [St] J. Stasheff, On homotopy abelian H-spaces, Math. Proc. Cambridge Philos. Soc. 57 (1961),734-745.
- [T1] S. Theriault, Proofs of two conjectures of Gray involving the double suspension, Proc. Amer. Math. Soc. 131 (2003), 2953-2962.
- [T2] S.D. Theriault, A case when the fiber of the double suspension is the double loops on Anick's space, Canad. Math. Bull. (2010) 53, 730-736.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO ON, M5S 2E4, CANADA *E-mail address*: selick@math.toronto.edu

MATHEMATICAL SCIENCES, UNIVERSITY OF SOUTHAMPTON, SOUTHAMPTON SO17 1BJ, UNITED KINGDOM *E-mail address*: S.D.Theriault@soton.ac.uk