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Lattice quantum chromodynamics has proven to be an indispensable method to determine non-
perturbative strong contributions to weak decay processes. In this white paper for the Snowmass
community planning process we highlight achievements and future avenues of research for lattice
calculations of weak b and c quark decays, and point out how these calculations will help to address
the anomalies currently in the spotlight of the particle physics community. With future increases
in computational resources and algorithmic improvements, percent level (and below) lattice deter-
minations will play a central role in constraining the standard model or identifying new physics.
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I. INTRODUCTION

Processes involving weak decays of b or c quarks may provide a window on new physics not described by the
standard model (SM) of elementary particle physics. For several years such weak decay processes have shown persistent
differences of a few standard deviations between theoretical predictions of the SM and experimental measurements.
The most prominent deviations, commonly referred to as B anomalies, include

• Ratios testing lepton flavor universality for tree-level decays such as B → D(∗)`ν

• Tests of lepton flavor universality for rare, loop-level decays such as B → K(∗)`+`−

• Differences in certain q2 bins/ranges for rare decay differential branching fractions
e.g. B → K∗`+`−, Bs → φ`+`− and corresponding derived angular observables like P ′5

• Some tension in the branching fraction for the rare leptonic decay Bs → µ+µ−

• Tension between exclusive and inclusive determinations of CKM matrix elements |Vub| and |Vcb|

In addition, the use of QCD factorization to describe nonleptonic decays is under scrutiny due to observed large
discrepancies with experimental results. Summaries and further details can be found, for example, in [1–3] and in
recent reviews of lattice calculations [4–7]. Currently no single quantity is considered significant and trustworthy
enough to claim a smoking gun signal for new physics. While deviations in ratios testing lepton flavor universality
mostly point in the same direction and collectively favor some SM extensions over others, the tension between exclusive
and inclusive determinations of Cabbibo-Kobayashi-Maskawa (CKM) matrix elements lacks a good phenomenological
explanation and may hint at underestimated uncertainties. Understanding and resolving the nature of these B
anomalies is the challenge for the coming years.

With ongoing and future experimental measurements from Belle II, LHCb, ATLAS, CMS, and BES III, it is critical
for theoretical predictions to improve to fully leverage increased experimental precision. A key ingredient here are
SM predictions for contributions due to quantum chromodynamics (QCD), which describes the strong interactions of
quarks and gluons. Standard perturbative methods work reliably only at (very) high energies and truly nonperturba-
tive concepts are required to study the low energy range. Lattice field theory (LFT) is a nonperturbative framework
to study QCD processes at low as well as at high energies. Based on first principles, LFT uses the QCD Lagrangian to
simulate the strong interaction using Markov chain Monte Carlo methods. After using a few experimental quantities
to fix input values like bare quark masses, many predictions for QCD processes can be calculated and the accuracy
of the results can be systematically improved.

Specifically, lattice QCD provides theoretical input that enables us to determine parameters of the SM such as
the renormalized quark masses, as well as quantities parametrizing nonperturbative hadronic properties like decay
constants, form factors, bag parameters, or the QCD contribution to lifetimes. Precise knowledge of such quantities
is essential to enhance our understanding of the SM and distinguish, for example, QCD effects from new physics. In
the remainder of this section, we summarize some of the major achievements of and opportunities for lattice QCD for
weak b and c decays, and refer the reader to the relevant part of Section II for more details.

In the heavy quark sector, lattice determinations of the leptonic decay constants fB and fBs are needed for SM
predictions of the rare processes B → µ+µ− and Bs → µ+µ−. Here the lattice community has managed to determine
both decay constants to the sub-percent level (∼ 0.6(0.7)% for fB(fBs

) [4]), so that hadronic uncertainties are now
sub-dominant to other sources of error. For D(s) mesons, fD and fDs

are used to extract |Vcd| and |Vcs| from leptonic
decay measurements. Here also the uncertainties in the decay constants are well below those from experiment. Further
progress can be achieved by including quantum electrodynamics (QED) and strong-isospin breaking effects into the
lattice calculations, and significant advances have been made in this direction [8–14]. The status and physics impact
of heavy meson leptonic decays are expanded on in Section II A.

Semileptonic decay processes are critical inputs for heavy flavor studies, where lattice predictions allow for extraction
of CKM matrix elements and give pure SM predictions of R-ratios and other quantities under study. The most precise
exclusive determinations of |Vub| and |Vcb| come from combining experimental and lattice results for B → π`ν and
B → D(∗)`ν respectively. In recent years, LHCb has given first measurements of processes such as Bc → J/ψ`ν,

Bs → D
(∗)
s `ν, Bs → K`ν, and heavy baryon decays. The lattice community has kept pace with theoretical calculations

of these same processes. Progress and outlook for this important class of decays is explored in more detail in
Section II B.

Meson mixing and lifetimes are discussed in II C. For neutral B-mixing, which is dominated by short-distance
operators, lattice QCD has already delivered ratios of mass differences with precision around 1.5%, compared to
experimental uncertainties of around 0.4%. The dominant sources of systematic error in the lattice QCD calculations
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can be reduced or eliminated with modern techniques. The next five years are likely to see high-precision calculations of
both bag parameters (< 1%) and for ratios (< 0.5%), bringing results to point where QED effects become important.
Neutral D-meson mixing presents a greater challenge both experimentally and theoretically. The short-distance,
CP-violating (∆C = 2) matrix elements have already been determined via lattice QCD with roughly 5% statistical
precision, comparable to experimental measurements.

Quark masses – fundamental parameters of the SM important for high precision tests of the Higgs sector – have
achieved an impressive level of precision (. 1.0(0.5)% for mc (mb) [4]), thanks to long-term efforts from the community.
Here also calculations have reached near to the “QED wall” where electromagnetic effects must be accounted for.
Details of progress in this area are given in Section II D.

Moving beyond these “traditional” areas, members of the community have continued to innovate and expand the
scope of physics accessible to lattice computation. Important examples of this relevant to studies of heavy flavor include
first-principles computation of radiative decay processes (Section II E), development and implementation of theoretical
machinery to handle multi-hadron states (discussed in Sections II B and II C), and exploration of methods to determine
inclusive decay rates, which would be invaluable for resolving inclusive/exclusive discrepancies in determinations of
CKM matrix elements (Section II F). Each of these areas herald a significant advance in our ability to calculate strong
processes from first principles, and in the relevant subsections we have attempted to provide context on the remaining
challenges and potential timeline to make an impact on phenomenology.

We close by briefly touching on the computational aspects needed to pursue the outlined calculations in Sec. III.

II. PROSPECTS AND CHALLENGES

Lattice calculations with charm and bottom quarks face the challenge that in order to keep discretization effects
in simulations with fully relativistic actions under control, the quark mass mq must obey mq < a−1. Here a−1 is the
inverse lattice spacing or cutoff typically given in [GeV], whereas the lattice spacing a is quoted in [fm]. In the past,
but also in certain calculations today, the large mass of charm and especially bottom quarks make it impossible to meet
this requirement, forcing the use of effective actions. By now algorithmic improvements and increased computational
power enable the use of a fully relativistic setup for all quarks and more fully relativistic calculations will be published
in the near future. A fully relativistic setup features a simpler and more accurate handling of the renormalization,
which for most calculations will be performed nonperturbatively. By combining simulations either featuring up/down
quarks at their physical mass or close-to-physical mass bottom quarks, we can already today largely eliminate two
major sources of uncertainty: chiral extrapolation and the need for (partly) perturbative renormalization schemes
at low energies. By further decreasing the lattice spacing to a ≤ 0.044 fm (a−1 & 4.5 GeV), even bottom quarks
can be simulated with the same action as up/down quarks. With further improved numerical performance, fully
dynamical simulations with up/down, strange, charm, and bottom quarks become possible [15], although a practical
improvement due to simulating dynamical bottom quarks is most likely marginal. In addition machine learning
techniques may offer new possibilities for LFT [16]. Complementary to LFT calculations would be to directly perform
quantum simulations [17]. That however requires to have quantum computers with (very) many qubits and long
enough coherence time.

A. Leptonic decays

Determinations of leptonic decay constants for D(s) [18–36], B(s) [22, 23, 26, 32, 35, 37–46], and Bc [47, 48]
mesons, obtained from 2-point lattice correlation functions at zero momentum, showcase the potential of lattice QCD
calculations. Several groups have determined decay constants with high precision and a complete error budget. The
agreement between the different results strengthens the credibility of lattice results overall and leads to even more
precise average values presented by the Flavor Lattice Averaging Group (FLAG) [4]. Using the lattice averages for
fD, fDs

, and fB , together with available experimental data for the corresponding leptonic decays, provides a way of
extracting the CKM matrix elements |Vcd|, |Vcs|, and |Vub|, respectively. For all three cases lattice QCD uncertainties
are well below those of experiment.

The most precise determinations of |Vcd| at present come from combining experimental measurements of D → `ν`
with the lattice determinations of fD. Until last year, the most precise values of |Vcs| similarly came from Ds → `ν`
and fDs

, but new lattice results for the semileptonic decay D → K`ν [49] are improving on this (see Section II B).
The leptonic determination of |Vub| is not competitive with that from semileptonic decays, but with improvements in
the experimental precision expected from Belle II, it could help to shed light over the inclusive-exclusive tension in
the determination of that parameter.
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With precision around or below the percent level, future progress to reduce uncertainties will require electromagnetic
and strong isospin breaking effects be accounted for. Lattice calculations combining QED and QCD in the heavy
quark sector have already been demonstrated e.g. in the case of charmonium [50] and bottomonium [51]. Further
details on radiative decays, which lift helicity suppression, and radiative corrections are presented in Sec. II E.

Lattice determinations of neutral B meson decay constants are also crucial inputs for the study of rare leptonic
decays. These flavor-changing neutral current (FCNC) processes are highly suppressed in the SM, and provide
important constraints on new physics. They are largely determined by the same QCD matrix elements as the decay
constants, with corrections from subleading operators. The branching ratio for Bs → µ+µ− is rather precisely
determined [52–54] using the lattice input for fBs

, and shows some tension with the current experimental result [55–
57]. For Bd → µ+µ−, the theory error is larger [52, 53], but the result is consistent with the less well-determined
experimental value [56, 57]. Similarly to the extraction of CKM matrix elements, in these comparisons lattice QCD
inputs have now exceeded the precision of corresponding experimental measurements. Further insight on the above
theory-experiment tension could be extracted from a correlated analysis with the parameters that describe B(s) meson
mixing [58].

B. Exclusive semileptonic decays at tree- and loop-level

Semileptonic decays provide a rich variety of hadronic systems to study many different decay processes, extract CKM
matrix elements, and perform stringent tests on the SM. To extract CKM matrix elements, experimental results for
tree-level branching fractions are combined with form factors calculated using lattice QCD. These combinations often
provide the most precise determinations of the relevant CKM matrix elements, as for |V excl.

cs |, |V excl.
ub |, or |V excl.

cb | [4].
Both tree-level weak charged current and loop-suppressed flavor-changing neutral current (FCNC) semileptonic decays
provide tests of the SM via comparison of experimental measurements and SM predictions for differential rates, angular
distributions, or ratios of decays with the same hadronic final state but different generations of final-state leptons.
These ratios test lepton flavor univerality (LFU) and have received substantial attention due to few-σ tensions between
experiment and theoretical predictions for several decay channels. Several experiments have reported such ratios for
tree-level decays (e.g. B → D(∗)`ν [59–62] or Bc → J/ψ`ν [63]) as well as rare loop-level b → {s, d}`` decays
(e.g. B → K(∗)`+`− [64–69] or Bs → φ`+`− [70, 71]) including also baryonic initial and final states (Λ0

b → pK−`+`−

[72] or Λ0
b → Λ+

c τ
−ν̄τ [73]). On the theory side, these ratios are exceptionally clean, and reported tensions with

experimental observations have increased interest in those quantites. While tensions vary for different processes, it
is intriguing that these can be accounted for in a model-independent way by assuming new-physics contributions to
certain Wilson coefficients of the effective weak Hamiltonian. For details see, e.g., Refs. [74–79] as well as references
within. Global fits to b→ s`` and b→ c`ν anomalies provide a basis to build new physics models. Candidates include,
for instance, scenarios with a Z ′ boson [80–83], leptoquarks [84–93], or scenarios related to supersymmetry (SUSY)
[94–96]. For an overview and further details see Ref. [97].

To help confirm or refute the observed deviations, higher-precision calculations of semileptonic form factors are
needed, with systematic and statistical uncertainties commensurate with current and upcoming experiments. From
the perspective of lattice QCD, the simplest processes to compute are semileptonic decays with a pseudoscalar final
state. These calculations involve two-point and three-point correlation functions at zero and non-zero momenta, which
furnish the two form factors f+ and f0 entering at tree-level or also fT for rare loop-level decays. Calculations exist
in the literature for a variety of semileptonic B decays: B → π`ν [98–102], B → π`+`− [103], B → K`+`− [104, 105],
Bs → K`ν [100, 106–110], B → D`ν [111–113], Bs → Ds`ν [108, 110, 113–116] and also for semileptonic D decays:
D → π`ν [117–120], D → K`ν [49, 117, 119–121]. Once the lattice form factors over the full q2 range have been
obtained, it is a simple post-processing task to integrate these form factors over the full q2 range to obtain R-ratios
testing LFU. Hence R-ratios have also been determined for processes like B → π`ν which so far have not been reported
by experiments. The extraction of |V excl.

ub | from B → π`ν, the most precise channel for that CKM parameter, has
commensurate errors coming from experiment and lattice QCD form factors [4]. For B → D`ν and the extraction
of |V excl.

cb |, experimental uncertainty presently exceeds the theoretical error from lattice QCD [4]. However, improved
theoretical precision will be crucial in both modes in order to make full use of expected improvements in experimental
data from Belle II. Improved precision will also be valuable for understanding the inclusive-exclusive tensions for |Vub|
and |Vcb|. Furthermore, LHCb demonstrated its capabilities to determine the ratio |V excl.

ub /V excl.
cb | by performing a

combined analysis of Bs → Kµν and Bs → Dsµν [122]. With more statistics and a finer resolution of the q2 bins this
approach can be an interesting alternative to determine the ratio of CKM matrix elements.

In particular, the large mass of the B(s) meson in the initial state leads to a large allowed range of momentum

transfer q2 to the outgoing leptons. Maintaining statistical control, especially at low q2, presents a challenge for
these calculations. A common approach in the literature has been to focus on the high-q2 behavior and then extend
the calculation to full kinematic range using the z-expansion [123–126]. Recent work has revived old ideas about
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using dispersive bounds [127–131] to constrain the low-q2 behavior of the form factors given results at high q2. Even
though covering the full q2 range is computationally challenging, comparing the shape of the form factors to the
experimental data across q2 provides further insight on the quality of our theoretical description of the experimental
process. Thanks to the advances in simulating heavy flavors and due to new ensembles with finer lattice spacings,
the range of directly accessible q2 values is increasing. For more than a decade, the full kinematic range has been
accessible to lattice QCD calculations of D semileptonic decays. For heavy-to-heavy decays there has been recent
progress towards the full q2 range: Bs → Ds`ν [115] as well as Bc → Bs,d [132], Bc → D0`ν and Bc → Ds`

+`−

[133]. Near-term progress on extending the q2 range in lattice QCD calculations of B semileptonic decays (especially
B-to-light decays) will be key to improved determinations of CKM matrix elements and more stringent tests of the
SM.

Exclusive semileptonic decays with vector final states are more challenging and for many years lattice results for
heavy-to-heavy transitions were available only at zero recoil (B → D∗`ν [134, 135] and Bs → D∗s`ν [116, 135]).
Recently, the first lattice calculation of the form factors for B → D∗`ν going beyond zero recoil was performed in
Ref. [136]. These results gave the first pure-lattice calculation of the LFU ratio R(D∗). Two additional and entirely
independent determinations of B → D∗`ν form factors at non-zero recoil are expected soon [137, 138]. Experimentally
B → D∗`ν is the preferred channel to extract |V excl.

cb |. Hence the lattice form factor data for B → D∗`ν beyond zero
recoil are critical to shed light on the tension between exclusive and inclusive determinations of |Vcb|, compare shapes
of the form factors, and test the different methods to constrain the low-q2 range using more precise data at high
q2. Improved knowledge of the B → D∗`ν form factors will also benefit the theory prediction of R(D∗), which
presently is in tension with the experimental value [139]. Recent results for tree-level decays with vector final states,
Bs → D∗s`ν [140] and Bc → J/ψ`ν [141], include all four form factors and directly cover most of the physically allowed
q2 range. Both modes provide alternative ways to extract |V excl.

cb | and may provide useful insight into the theory-
experiment tensions for R(D) and R(D∗), especially given expected experimental results from Belle II and LHCb.
One outstanding challenge for the future is including the final state’s decay width as part of the nonperturbative
calculation. For all three processes described above, the vector final-state particle has a very narrow width and can be
treated with chiral perturbation theory extended to heavy mesons, or taken to be QCD-stable. However, the target
precision dictated by forthcoming experimental data will eventually require a more rigorous treatment, especially for
the decay to K∗.

The general formalism enabing lattice studies of 1 → 2 hadronic processes, like B → K∗(→ Kπ)`+`−, has been
developed in Refs. [142–151]. The formalism provides a rigorous non-perturbative relation between finite-volume
Euclidean quantities calculable in lattice QCD and the physical, infinite-volume 1 → 2 decay amplitude. Compared
to form factor calculations with single-hadron final states, 1 → 2 hadronic processes require conceptually different
calculations and substantially larger computational effort. For a detailed discussion see Refs. [1, 2] and references
therein. While such calculations have already been performed in the light sector, e.g., for K → ππ [152–156], decays
of B(s) and D(s) mesons are typically more challenging because the large decaying meson mass makes additional
final states kinematically allowed. The level of difficulty is mainly determined by the energy of the two-hadron final
state, so semi-leptonic calculations in which the leptons carry away much of the initial energy are more accessible.
In particular, processes such as B → K∗(→ Kπ)`+`− [150] and B → ρ (→ ππ)`ν are natural starting points for
multi-hadron heavy-flavor decays. Progress in calculating the Kπ → Kπ scattering amplitude, a required input for
the weak decay into this final state, is reported e.g. in Refs. [157, 158].

The kinematics of purely hadronic heavy-flavor decays presents additional challenges. However, by working with an
unphysical setup (e.g. heavier-than-physical u/d quarks or lighter-than-physical b/c quarks) the number of kinemati-
cally allowed final states can also be controlled in other channels. In this way, the methodology used for calculating
K → ππ can be extended in steps towards D → ππ, for instance. However, honest calculation of the physical process
eventually requires a formalism that rigorously treats all important open channels in the decay, including four-particle
states. In this vein, work is ongoing to extend the general 1→ 2 formalism to more particles. The approach to study
weak three-hadron decays, including K → πππ, was recently developed [159, 160].

In the future, this work may open the path to lattice calculations of more advanced phenomenologically interesting
processes such as B0 → D+{K−, π−} [161, 162], or the long distance contribution to neutral D-meson mixing. Long-
distance contributions (in the form of charm resonances) also occur in rare loop-level decays such as B → K(∗)`+`−

and Bs → φ`+`−, where typically an operator product expansion (OPE) is used to express matrix elements of
nonlocal operators in terms of local-operator matrix elements. In Refs. [163–165] the local matrix elements have been
determined on the lattice to extract the seven form factors for B → K∗`+`− and Bs → φ`+`−. In this calculation the
vector final state is treated as a stable particle, not accounting for the associated systematic uncertainties. Since the
observed deviations between theory and experiment for certain q2 bins have persisted for several years, it is of utmost
importance to have well-founded theory predictions. Once again, the kinematics in the light sector is more favorable
for lattice calculations, and a proper treatment of long-distance effects in rare kaon decays has been demonstrated
[166–172]. Very first steps towards the direct computation of nonlocal matrix elements for B → K`+`− have been
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taken in Ref. [173].
In analogy to semileptonic decays of mesons, baryons can decay into a hadronic final state and a lepton pair.

While B-factories are mostly run at the Υ(4s) threshold to create BB̄-pairs, the experiments at the large hadron
collider (LHC) measure decays of any particles originally created from colliding two protons at high energies. LHCb
has reported several measurements of semileptonic decays of Λb and Λc baryons [73, 174–178], while BES III has
also reported semileptonic Λc decays [179–181]. Belle [182] and ALICE [183] have reported semileptonic Ξc decays.
Lattice calculations of baryons tend to suffer from a more severe signal-to-noise problem compared to those of mesons
[184, 185]. Nevertheless, lattice calculations of baryonic decays have been performed for Λc → n`ν and Λc → p`+`−

[186], Λc → Λ`ν [187], Λc → Λ∗`ν [188, 189], Λb → Λcτ ν̄ [190, 191], Λb → p`ν̄ [191, 192], Λb → Λ`+`− [193–195],
Λb → Λ∗c`ν̄ [188, 196], Λb → Λ∗`+`− [197], and Ξc → Ξ`ν [198]. Integrating the form factors for semileptonic
baryon decays over the allowed range of q2, R-ratios testing lepton flavor universality can be defined and compared
to experimental predictions. Likewise CKM matrix elements can be extracted by combining the form factors with
experimental data. However, for baryonic decays to enter global averages, additional calculations performed by
independent groups are needed [4, 199, 200].

C. Meson mixing and lifetimes

Although a loop-level process, neutral Bs- and B-meson mixing is the preferred experimental channel for extracting
the CKM matrix elements |Vts| and |Vtd|. Experiments measure oscillation frequencies with high precision, and global
averages [201], dominated by the latest LHCb results [202, 203], show sub-percent level uncertainties. In the SM and
beyond, the hadronic contribution to these processes is governed by five local, four-fermion (∆B = 2) operators. The
relevant matrix elements are calculable in lattice QCD via two-point and three-point correlation functions at zero
momentum. The SU(3)-breaking ratio ξ [204], formed using the ratio of Bs- and B-meson mixing parameters, is an
important input for global CKM unitarity triangle fits [199, 200]. Lattice calculations of ξ have reached percent-level
precision [26, 37, 42, 54, 205–208], but further progress is needed to achieve the same level of precision for the matrix
elements (expressed, e.g., as “bag parameters”) of the individual mixing processes, presently determined at the few
percent level. The next five years are likely to see high-precision calculations of both bag parameters (< 1%) and for
ratios (< 0.5%), bringing results to point where QED effects become important.

At present, tensions exist among the lattice calculations for some ∆B = 2 operators. Calculations by different
groups employ different renormalization schemes, lattice discretizations, and numbers of dynamical quark flavors
[26, 37, 42, 54, 207, 209]. Understanding and resolving these tensions is essential for answering the experimental
question of whether or not new physics is present in netural B-meson mixing [210–212]. As precision improves,
higher dimensional operators of the effective weak Hamiltonian become important, particularly for determination of
the lifetime difference ∆Γ, which can provide a complementary test for the SM. A pioneering study calculated the
dimension-7 operators for neutral meson mixing [213], and confirmation by an independent calculation is desirable.

Neutral D-meson mixing offers complementary constraints on the CKM matrix. Hadronic contributions to this
process enter in two classes: short-distance, CP-violating (∆C = 2) matrix elements and long-distance, CP-preserving
(∆C = 1) matrix elements. The ∆C = 2 matrix elements have already been determined via lattice QCD with
roughly 5− 10% statistical precision [214–216], comparable to experimental measurements. Over the next five years,
experimental precision is expected to improve by an order of magnitude [217]. For continued impact, improved lattice
calculations are needed on the same timescale. The long-distance ∆C = 1 contributions present a much harder
theoretical problem, but the kinematically simpler case of kaon-mixing has been investigated [218–220]. Further
development of lattice methods for multi-hadron states will be necessary for direct calculations (see remarks in the
previous subsection). Support for ongoing theoretical and algorithmic work is needed to enable controlled lattice
QCD calculations of the long-distance ∆C = 1 matrix elements on the ten-year timescale.
B-meson lifetimes are important targets for lattice QCD. Besides the ∆B = 2 operators appearing in mixing,

calculations of hadron lifetimes also require ∆B = 0 operators. In particular, lifetime ratios provide valuable tests of
expectations from heavy quark effective theory (HQET) (see [221] for a review). While the ratios τ(B+)/τ(Bs) and
τ(B0)/τ(Bs) are in good agreement with the HFLAV average [201], the recent ATLAS measurement [222] deviates
substantially from recent measurements by LHCb [223, 224] and CMS [225]. To bolster confidence in the theory
predictions, currently dominated by QCD sum-rule calculations [210, 226], a state-of-the-art lattice calculation is
desirable. Despite early attempts [227–231], no lattice calculation with a complete systematic error budget exists
to date. A lattice calculation of lifetimes faces the challenge that operators of different mass dimension mix under
renormalization. A breakthrough on that issue could be made by taking advantage of the gradient flow [232–235] and
the concept of the short-flow-time expansion [236–239] to define a new, nonperturbative renormalization scheme [240–
243]. A further challenge arises from quark-line disconnected contributions, which are notoriously hard to compute
with sufficient statistical precision.
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D. b and c quark masses

In addition to providing SM predictions of heavy meson and baryon properties, lattice QCD simulations are well-
suited to the precision determination of charm and bottom quark masses. These fundamental parameters are needed
to stringently test the Higgs sector of the SM [244], by comparing Higgs couplings to b and c quarks measured
in experiment with the determinations of quark masses computed via lattice QCD. The precision computation of
quark masses has made good progress in recent years [245], with lattice now delivering charm and bottom mass to
a (sub-)percent level of precision, laying the groundwork for future experimental tests. Measurements from HL-LHC
will be able to pin down coupling to bottom at the few-percent level, and first evidence of coupling to charm may also
be achievable [246, 247]. Next generation accelerators could improve these coupling measurements to a level roughly
commensurate with present lattice determinations [244, 248].

There are now several different strategies for determining quark mass — among these are approaches based on
moments of current-current correlators [249, 250], the implementation of momentum subtraction schemes on the
lattice [251, 252], spectroscopy of heavy meson masses and HQET [253, 254], nonperturbative HQET determina-
tions [255] and computations involving step-scaling in small volume [256, 257]. These methods, though all relying
crucially on lattice simulation, differ substantially in approach and are hence subject to differing sources of systematic
uncertainty. The good agreement amongst results from these approaches [4] gives confidence in the robustness of the
determinations at this level of precision. Recently, the effects of adding QED have been quantified, introducing small
(but significant at this level of precision) shifts to mc [50] and mb/mc [258]. Moving forward, it will be important to
hone the efficacy of existing strategies and also develop new ideas, while the widespread use of multiple techniques
will help ensure robust error estimates as values continue to improve.

E. Radiative decays and corrections

The ability to calculate radiative decay processes from first principles is an exciting advance that offers opportunities
for precision flavor physics, BSM physics, and hadronic structure. The development of lattice QCD methods to
calculate radiative decay processes is relatively recent [8]. The general procedure for the lattice calculations has been
demonstrated [11, 14, 259].

The determination of CKM matrix elements from leptonic decays (cf. Sec. II A) at O(αem) requires the evaluation of
amplitudes with a real photon [8]. Thus, this technology can directly address radiative corrections in leptonic decays
and advance lattice calculations beyond the “QED wall” for these important processes. First-principles computations
are in progress or planned for the structure-dependent form factors for B(s) → `ν`γ, D(s) → `ν`γ and B(s) → `+`−γ

and D(s) → `+`−γ, with a broad photon energy spectrum [260]. For B decay, an enhancement of the radiative
corrections may be expected due to the nearby B∗ resonance [261]. Currently only model-dependent predictions of
the decay rates are available in the literature based on QCD factorization and sum rules [262–272]. A fully non-
factorized, nonperturbative calculation could lead to improved precision in the determination of the corresponding
CKM matrix elements.

Adding a hard photon in the final state for leptonic decay of a pseudoscalar meson lifts helicity suppression [273],
providing sensitivity to a larger set of operators in the weak effective Hamiltonian. For example the processes
B0 → `+`−γ and Bs`

+`−γ probe additional operators beyond those of the corresponding purely leptonic decays,
which can bear on global fits for b→ s`+`−, and are well-suited for testing LFU with light leptons [259].

Radiative processes also give important information on hadron structure. For large photon energy the process
B → `ν`γ is the cleanest probe of the first inverse moment, 1/λB , of the B meson lightcone distribution amplitude,
an important input for QCD factorization predictions for nonleptonic B decays [274, 275]. Using the upper limit for
B(B− → `−ν̄`γ, Eγ > 1 GeV) from Belle [276] or a lattice form factor calculation can constrain λB [277]. A similar
calculation in the charm sector would allow to make comparisons with BES III results for D+

(s) → e+νeγ [278, 279].

An alternate approach, based on recent developments in computing x-dependent hadron structure, may also provide
information on the B and D meson distribution amplitudes [280].

F. Inclusive decays

SM predictions for the CKM matrix elements |Vub| and |Vcb| have been computed based on both inclusive [201, 281–
283] and exclusive [4, 98–100, 134, 136] decay channels. The results have exhibited a long-standing tension, with the
size of the tension varying between computations. Compared to their exclusive counterparts, inclusive semileptonic
decays present an additional theoretical challenge for lattice QCD. The essential difficulty is extracting Minkowski-
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space spectral densities from finite-volume Euclidean correlation functions. However, novel and promising ideas
[284–288] may have overcome this theoretical hurdle, paving the way for calculations of fully inclusive decay rates
from lattice QCD simulations. The new method also opens the door for further applications, such as moments of
the lepton energy and the hadronic invariant mass. Exploratory numerical studies now exist [284, 289, 290], raising
hopes for future work with physical parameters and controlled systematic uncertainties. These calculations may play
a significant role in resolving the tension between inclusive and exclusive determinations of CKM matrix elements.
Methods in this entirely new direction in lattice QCD are still in the early stages of development. It is conceivable,
however, that results with controlled systematics that are sufficiently precise to allow for meaningful SM tests could
become available in the next decade.

III. COMPUTATIONAL RESOURCES

The calculations outlined in this white paper require post-exascale computational resources [291]. A comprehensive
research program on weak b and c decays aimed at percent (or subpercent) precision requires gauge-field ensembles
where the wavefunctions of both heavy and light degrees of freedom are well resolved and can be studied without
distortion. This translates into gauge fields with both small lattice spacings a ≤ 0.044 fm (a−1 & 4.5 GeV) and with
large physical volumes Mπ ·L > 4. Such simulations require increased lattice sizes. For example, a 2563 × 512 lattice
at a lattice spacing a = 0.040 fm (a−1 ≈ 5 GeV) would allow for simulation of up/down, strange, charm, and bottom
quarks at their physical mass in a 10 fm box with Mπ · L ≈ 7. Such an ensemble would provide sufficient physical
distance between hadronic initial and final states to isolate the required matrix elements in calculations of form
factors or meson mixing. Moreover, such large lattices will allow for new analysis concepts based e.g. on masterfields
[292]. Simulating all quarks at their physical mass is particularly beneficial for systematic control of calculations like
B → ρ`ν, where no effective field theory is available to guide extrapolations to physical masses. The large 10 fm box
suppresses finite volume effects, which is especially critical for studying processes with multiple hadrons.

Today, lattice simulations already tackle lattice sizes of 963×192 or 1443×288, and research is ongoing to address al-
gorithmic and computational challenges when simulating finer and larger lattices. Due to the algorithmic phenomenon
of critical slowing down, development of new alogirithms is likely needed to accelerate sampling the QCD path integral
in hadronic systems with multiple length scales. On the computational side, harnessing the rapid increase of com-
putational (GPU) performance is constrained by the stagnating network performance. Communication-suppressing
algorithms [293, 294] are promising candidates to meet that challenge and with an anticipated tenfold performance
increase with the next generation of machines, a 2563×512 lattice could already become viable. Professional software
support is essential to ensure that algorithmic advances are leveraged to their full potential (e.g., by using advances
in generating gauge field configurations in programs that perform measurment tasks). Post-exascale computing re-
sources, when combined with new and more precise experimental data, will enable tests of the SM in the heavy quark
sector with unprecedented precision.
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[160] Maxwell T. Hansen, Fernando Romero-López, and Stephen R. Sharpe, “Decay amplitudes to three hadrons from finite-
volume matrix elements,” JHEP 04, 113 (2021), arXiv:2101.10246 [hep-lat].

[161] Marzia Bordone, Nico Gubernari, Tobias Huber, Martin Jung, and Danny van Dyk, “A puzzle in B̄0
(s) → D+

(s){π
−,K−}

decays and extraction of the fs/fd fragmentation fraction,” Eur. Phys. J. C 80, 951 (2020), arXiv:2007.10338 [hep-ph].
[162] E. Waheed et al. (Belle), “Study of B0 → D+h−(h = K/π) decays at Belle,” Phys. Rev. D 105, 012003 (2022),

arXiv:2111.04978 [hep-ex].
[163] Ronald R. Horgan, Zhaofeng Liu, Stefan Meinel, and Matthew Wingate, “Calculation of B0 → K∗0µ+µ− and B0

s →
φµ+µ− observables using form factors from lattice QCD,” Phys. Rev. Lett. 112, 212003 (2014), arXiv:1310.3887 [hep-ph].

[164] Ronald R. Horgan, Zhaofeng Liu, Stefan Meinel, and Matthew Wingate, “Lattice QCD calculation of form factors
describing the rare decays B → K∗`+`− and Bs → φ`+`−,” Phys. Rev. D 89, 094501 (2014), arXiv:1310.3722 [hep-lat].

[165] R. R. Horgan, Z. Liu, S. Meinel, and M. Wingate, “Rare B decays using lattice QCD form factors,” PoS LATTICE2014,
372 (2015), arXiv:1501.00367 [hep-lat].

[166] N. H. Christ, X. Feng, A. Portelli, and C. T. Sachrajda (RBC, UKQCD), “Prospects for a lattice computation of rare
kaon decay amplitudes: K → π`+`− decays,” Phys. Rev. D 92, 094512 (2015), arXiv:1507.03094 [hep-lat].

[167] Norman H. Christ, Xu Feng, Andreas Juttner, Andrew Lawson, Antonin Portelli, and Christopher T. Sachrajda, “First
exploratory calculation of the long-distance contributions to the rare kaon decays K → π`+`−,” Phys. Rev. D 94, 114516
(2016), arXiv:1608.07585 [hep-lat].
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