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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND THE ENVIRONMENT

INSTITUTE OF SOUND AND VIBRATION RESEARCH

Doctor of Philosophy

ADVANCES IN SOUND FIELD ANALYSIS AND CONTROL

BASED ON CYLINDRICAL COORDINATES

by Falk-Martin Hoffmann

This Ph.D. thesis concerns advances in acoustic transducer array technology for improved sound

field analysis and control performance. Four principal investigations are presented, which address

specific performance limitations of microphone arrays and loudspeaker arrays. The basic model,

on which these investigations are founded, is the general solution of the Helmholtz equation

in cylindrical coordinates. The individual acoustical investigations draw on the analysis of the

eigenvalues and eigenfunctions of the forward operator, providing information on the robustness

of the inverse solutions against non-uniqueness, ill-conditioning and spatial aliasing. A circular

microphone array design based on tangentially aligned pressure gradient sensors is studied.

The theoretical analysis is complemented by a simulation study, comparing the new design to

conventional arrays built from pressure sensors. It is shown that the proposed design can provide

an improved performance at low frequencies, while performing worse at high frequencies due to

spatial aliasing. The effects of the latter can be compensated if the Direction-of-Arrival (DOA)

of the incoming waves is known. A novel DOA estimation method for sound fields measured

with circular microphone arrays is proposed to address this. Using analytical expressions to

model the sound fields of point sources and plane waves, it is studied for which sound fields

the method is applicable and how robust it is against model imperfections. The estimation

accuracy for different numbers of sources and different levels of background noise is investigated

in a simulation study and the method is tested against real data, obtained through acoustic

measurements. The estimation results achieved in simulations and with experimental data

compare well. The general solution to the Helmholtz equation is then applied as a model for

acoustic radiation in wedge-shaped spaces. This investigation aims to improve the performance

of loudspeaker arrays in restricted propagation spaces, e.g. rooms. By introducing boundary

conditions to the general model, different sets of basis functions are implemented in the solution

and it is shown that the model enables Nearfield Acoustical Holography (NAH). Using the same

propagation model, a technique for sound field control with arrays in wedge spaces is developed.

The inverse problem is solved by means of a mode-matching approach, leading to an expression

for the driving signals based on a target beam pattern. Both simulations and experiments with

a hemi-cylindrical loudspeaker array prototype confirm the applicability of the model for both

NAH and beamforming with loudspeaker arrays in wedge spaces. Different beam patterns are

considered and the model is tested through simulations and experiments. The implications of the

findings, how they are linked and what future developments they may lead to is discussed.

mailto:falk-martin.hoffmann@rub.de
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Chapter 1

Introduction

1.1 Historical Background and Placement of this Thesis

into the Scientific Context

The engineering challenge to capture a sound field and control or even reproduce it at another

place and time presented itself with the invention of the first microphones and loudspeakers. A

single pressure sensitive microphone is evidently able to capture sound at that point in space,

while a single loudspeaker can radiate a pressure field that is proportional to the input signal. As

such, both a single microphone and a single loudspeaker are a means to solve the corresponding

problems, however only in a wider sense of interpretation. Being able to reconstruct a wave

field implies that the data observed by the capturing system carries sufficient information on the

original wave field. More rigorously speaking, the capture of an entire sound field requires the

unrestricted knowledge of the pressure and particle velocity at any point within the considered

volume. Equally, controlling a sound field implicates the ability to match both the pressure

and particle velocity within a control volume to an arbitrary target field. Such ambitious

objectives necessitate a sound mathematical model for the physics of any possible wave field

under consideration and the transducer technology to keep the practical limitations of the model

down to an acceptable level. It is known from well-established acoustic models that a system

solving the problem, strictly speaking, requires ideally continuous scanning and a continuous

layer of acoustic sources, respectively, on the boundary of the region of interest.

Substantial theoretical and practical work has been done in this field over the past 140 years since

Thomas Edison invented and patented his phonograph. The quality of transducers for capture

and reproduction was continuously improved, the devices became smaller and more robust. In

parallel the signal processing power increased and the precision of (industrial) machine-assisted

manufacture improved, surpassing levels of human ability. Theoretical ground work on sound

fields inside undisturbed volumes and the acoustic scattering off geometrically simple objects

became the foundation of theoretically powerful and well-researched models. These have been

used and refined to form the basis of the various sound field capture, analysis and reproduction

techniques proposed over the past four decades. Particularly research on sound field analysis

combined signal processing with acoustic modelling, spawning powerful algorithms that identify

1
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the arrival directions of wave fronts impinging into the region of interest from sources located

outside. For certain sound fields, such information can be used to dramatically reduce the data

describing a sound field comprehensively and even provide upscaling mechanisms. The latter serve

to push a system’s spatial resolution beyond the theoretical bounds of its underlying model. It

follows that a model should not only be judged by its baseline accuracy but also by the potential

it bears for further signal processing strategies to be applied as a means of post-processing to

further improve the overall system performance.

This thesis is concerned with advancing developments for sound field analysis and control appli-

cations that can be described through an acoustic wave field model in cylindrical coordinates.

These advances address microphone array designs, signal processing strategies for plane wave

identification, and acoustic field modelling for Nearfield Acoustical Holography (NAH) and beam-

forming in acoustic propagation spaces with specific boundary conditions. These developments

are motivated by both theoretical and practical limitations as well as modelling mismatches of

state-of-the-art transducer arrays, and their associated methods and techniques. These were

well-investigated and described over the past two decades so that now, with a sound understanding

of the shortcomings, the performance and resolution of the associated array systems can be

improved through substantial design changes or advanced signal processing strategies. Especially

the latter have experienced a surge of interest in the research community over the past ten years.

The conducted investigations have a common anchor point in the general solution of the Helmholtz

Equation in cylindrical coordinates as it can be obtained through a variable separation approach.

Among the published research (which often focuses on the audio frequency range), problem

descriptions in cylindrical coordinates predominantly find applications for two-dimensional

approximations of acoustic scenarios but rarely for three-dimensional considerations. It will

be seen in the course of this thesis that cylindrical coordinates also enable convenient three-

dimensional modelling of practically relevant wave propagation spaces, combining high accuracy

with a compact mathematical representation. The option to simplify a consideration to two

dimensions of course remains, since the required steps come inherently trouble-free with the

chosen coordinate system.

The nature of this specific general solution to the Helmholtz Equation facilitates a mathematical

analysis of the solution through methods of functional decomposition, e.g. Eigenvalue Decompo-

sition (EVD) and Singular Value Decomposition (SVD). These provide a powerful framework

to pin-point effects that determine the performance of acoustic transducer array systems to a

physical cause or explanation. From a mathematical point of view, functional analysis provides

a holistic approach to consider the acoustical forward and inverse problems that describe the

applications of sound field capture and control.

1.2 Contributions and Structure of the Thesis

This thesis is conceived as a thesis-by-papers, where the four principal contributions are presented

in four separate chapters, each of which forms the manuscript of a journal paper. These have

either been published, submitted and are currently undergoing revision, or are in the final stage

of preparation for submission to a reputable journal. Each of these chapters thus encompasses an
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individual introduction, a literature review, the main contribution and conclusions. They can

therefore be understood as independent scientific contributions.

The remainder of the thesis is to be understood as a framework that puts the main chapters into

mutual perspective, concludes the overall findings and gives an outlook onto prospective future

research. Additional work that was done through the course of this Ph.D. project is presented in

the appendices. The content of the subsequent chapters and the scientific contributions of this

thesis are summarised in the following.

Chapter 2 gives an overview on previous work and findings that were used as the basis upon

which the presented investigations are founded. It covers wave field models, acoustical inverse

problems, microphone array designs and signal processing strategies, and compact loudspeaker

arrays for sound field control.

The mathematical notation, definitions, functions and coordinate systems used throughout this

thesis are introduced in Chapter 3.

1.2.1 Journal Paper: Theoretical Study of Circular Arrays with Tan-

gential Pressure Gradient Sensors

Chapter 4 is the manuscript of a paper that was published in the IEEE/ACM Transactions

on Audio, Speech and Language Processing. The principal contribution of this chapter is the

investigation of the theoretical performance of a circular microphone array based on sensors that

observe the component of the pressure gradient that is tangential to the array’s rigid corpus (see

Figure 1.1). Such a design with a spherical geometry was proposed by Peter Craven, Chris Travis

Figure 1.1: Illustration of the concept to observe the tangential component of the pressure
gradient rather than the pressure with a circular array on the surface of a rigid cylindrical

scatterer.

and Malcolm Law in 2009, claiming that their design reduces the adverse effects of transducer

noise on the spatial resolution at low frequencies. With their idea, Craven et al. were addressing

the problem that transducer arrays typically have a very narrow frequency band in which they

perform best. If their claims were confirmed, one could hope that such an array would have
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a wider optimal frequency band than conventional arrays based on pressure sensors. To the

knowledge of the author, a rigorous modelling and analysis of the capturing mechanism based

on the observation of the Tangential Pressure Gradient (TPG) had not been presented, which

motivated the work that led to the publication of the results from this Ph.D. project.

The mathematical operator describing the capturing mechanism of such an array was analysed on

the basis of an EVD. An inspection of the eigenvalues that map a generic quantity describing the

sound field to the TPG serves to assess the capturing resolution of the array at different frequencies.

The properties that are responsible for spatial aliasing, ill-conditioning and non-uniqueness of the

inverse solution are thoroughly studied, resulting in the presentation of analytical expressions

for the inverse solution and the spatial aliasing patterns of the design, and the discovery that at

least one pressure sensor is required to solve a non-uniqueness problem that otherwise occurs.

Furthermore, it is shown that the quality of the important sound field component extracted from

the additional pressure sensor depends on information recovered from the TPG sensors. The

discovery of this dependency necessitates the tracing of error propagation in the inverse solution

to predict compromised captured information due to perturbations caused by measurement noise

or spatial aliasing. A simulation study comparing the TPG design to a conventional pressure

sensor design was conducted and discussed.

The manuscript concerns designs for the capture of two-dimensional sound fields, where the

transducers are arranged in a circular layout on an infinite cylindrical baffle. An initial modelling

of a spherical design based on TPG sensors that is fit for three-dimensional sound field capture is

presented in Appendix A.

1.2.2 Journal Paper: DOA Estimation Performance with Circular Ar-

rays in Sound Fields with Finite Rate of Innovation

Chapter 5 is the manuscript of a paper investigating the performance of a novel Direction-of-

Arrival (DOA) estimation method for circular microphone arrays, which was initially proposed

to the research community in a conference paper by the author, Filippo Fazi and Philip Nelson

in [HFN16]. It is based on a work from 2002 by Vetterli, Marziliano and Blu in which they

initially proposed a sampling strategy for signals in the time domain that assumes the signal has a

Finite Rate of Innovation (FRI). This innovative way of approaching the sampling of continuous,

non-band limited signals has since seen further refinement and variants for increased robustness

against measurement noise were proposed.

One contribution of this Ph.D. project is finding that the sampling method for time domain

signals by Vetterli et al. can also be applied to signals in the spatial domain. It was shown by

the author et al. in [HFN16] that the function defining a two-dimensional sound field through

the superposition of plane waves (i.e. the plane wave or Herglotz density) also has a finite rate of

innovation if the sound field consists of a finite number of plane waves (see Figure 1.2). The DOA

can then be estimated from an annihilating filter method, which was also presented in the work

by Vetterli et al. Unlike some recently proposed DOA estimation techniques, the one studied in

this work neither requires the assumption that only one source is present nor that the individual

sources have at least one region in the spectrogram where they are isolated.
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Figure 1.2: Example of a plane wave (or Herglotz) density q(φ) with a finite number of Dirac
pulses, i.e. a finite rate of innovation, within the period of 2π. The periodicity is inherent to

the circular domain.

The findings presented in Chapter 5 are the results of a performance study for the proposed

DOA estimation method. Using well-established basis function expansions for the sound field

of a finite number of plane waves, the accuracy and robustness of the proposed method against

measurement noise and non-ideal acoustic sources is evaluated on the basis of both simulation

studies and experimental data. The basis function expansion decomposes the plane wave density

into circumferential modes, where each mode’s complex amplitude depends on the number and

strength of the plane waves in the sound field. It is shown that the modal coefficients for a single

(ideal) plane wave can be interpreted as the discrete analytic signal einφ0 whose single frequency

is determined by the DOA.

The modal coefficients of non-ideal sources are shown to also form a sequence of a monochromatic

analytic signal but with modulated amplitude. An explanation for the mechanisms behind the

perturbing effect of non-ideal acoustic sources can then be given in analogy to the masking effect

of wide spectra of amplitude-modulated carrier frequencies on (weaker) neighbouring carrier

frequencies in radio transmission systems.

Both the presented simulations and the experimental results are used to validate the method and

provide an initial prospect on the performance that can be expected of it.

In the context of the other three manuscripts presented in this thesis, it shall be pointed out

that the task of DOA estimation is conceptually an extension of the inverse problem of the

microphone array that aims to recover the plane wave density. For this manuscript, it is assumed

that the inverse problem leading to the recovery of the plane wave density can be solved without

compromise, which is practically the case within the optimal frequency band of the microphone

array used for the capture. From the perspective of the DOA estimation problem, the parameters

that define the individual plane wave (i.e. the DOA and the complex amplitude) map to the

plane wave density, which thus defines the forward problem. With the coefficients of the plane

wave density available, the estimation of the DOA poses the corresponding inverse problem.
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1.2.3 Journal Paper: A General Radiation Model for Sound Fields and

Nearfield Acoustical Holography in Wedge Propagation Spaces

Chapter 6 is the manuscript of a paper that introduces a novel radiation model for the sound

propagation and NAH in wedge propagation spaces. The main contributions of this chapter are

the model for the radiation from a curved surface with a given velocity profile and the associated

mechanisms that enable NAH in wedge propagation spaces (see Figure 1.3).

y

x

Wedge flanks

Radiating Surface

Figure 1.3: Birds-eye view into the infinite wedge propagation space with the curved radiating
surface. A finite wedge propagation space has additionally a floor and ceiling at specific values

along the z-axis.

Both finite and infinite wedges can be understood as segments of an infinite cylinder, making the

geometrical description in cylindrical coordinates convenient. Solutions for sound fields in wedge

spaces with acoustic radiation away from the origin (i.e. the vertical coordinate axis) are obtained

from the general solution of the Helmholtz Equation in cylindrical coordinates by introducing a

boundary condition at two different azimuth angles and, in the case of the finite wedge, at two

different planes orthogonal to the vertical axis.

The radiation model proposed in Chapter 6 assumes a curved surface with constant radius around

the origin and a given normal velocity, i.e. another boundary condition. The general solution for

outgoing waves in the wedge space is therefore amended accordingly so that it always satisfies

the boundary condition on the curved surface. The obtained solution is given in the form of an

orthonormal basis function expansion that maps the spatial spectrum of the surface velocity to

the pressure inside the wedge space. Using this model, a Neumann-Green Function (NGF) is

derived for the infinite and the finite wedge, respectively. These NGFs enable the reformulation

of the model for the radiation from the curved surface in a form akin to Rayleigh’s first integral

formula. As a result, two versions of the radiation model are presented, one that links a given

normal velocity spectrum on the curved baffle to the pressure inside the wedge and one that links

the normal velocity itself to the pressure inside the wedge.

The developed radiation models are used to simulate the sound field in infinite and finite wedges

for point and piston sources arranged on the curved rigid surface. These results are later used for

comparison with experimental data.

To enable NAH in wedge spaces, spatial transforms are formulated that link the hologram of the

pressure at a given radius to the corresponding pressure spectrum in the modal (or wave number)
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domain. Mathematically speaking, the spectra of these holograms can be easily propagated

back or forth to different radii, so that the pressure can be calculated at the new radii. The

combination of this spatial translation of the spectra and the exploitation of Euler’s Equation

then forms the basic mechanism enabling NAH in wedge propagation spaces.

Since NAH poses an inverse problem and is prone to ill-conditioning (see Chapter 2), the radial

functions that map the normal spatial velocity spectrum of the curved boundary to the spatial

pressure spectrum at an arbitrary radius are first identified. For the formulation of stable inverse

propagators, these radial functions are analysed to identify those modal combinations that have an

evanescent nature and fall into the region outside the ”radiation circle”. Tikhonov regularisation

is used to stabilise the inverse propagator.

The developed tools that enable NAH are tested on the basis of experimental data obtained with

a prototype of a hemi-cylindrical loudspeaker array. The modal resolution that can be expected

from the measurements is predicted based on the angular and vertical sampling of the hologram

area. Normal velocity reconstructions are performed on both simulated and measured data, to

demonstrate the performance developed radiation model. Experimental data is used for both a

single active loudspeaker and all loudspeakers active at the same time.

The motivation for the modelling of acoustic radiation in wedge propagation spaces lies in

practical relevance. Due to the beneficial effects on the radiation impedance at low frequencies,

loudspeakers are often installed in the corner of a room. The corner of a room with rigid floor,

walls and ceiling is essentially a wedge and can thus be described with the developed model. Using

a scanning aperture as the one presented in Chapter 6 for a loudspeaker installed in the corner of

a room then enables a more accurate description for the radiation pattern of the loudspeaker at

different frequencies.

1.2.4 Journal Paper: Beamforming with Wedge-Shaped Acoustic Ar-

rays

Chapter 7 is the manuscript of a paper that uses the propagation model developed for the

manuscript presented in Chapter 6 and applies it to develop beamforming techniques for sound

field control with loudspeaker arrays in infinite wedge propagation spaces. To simplify the

considerations, only arrays were considered that enable a control of the beam pattern in the

azimuth direction, i.e. loudspeaker arrays that are arranged on an arc (see Figure 1.4).

The loudspeaker array is modelled as a finite number of loudspeakers that are distributed on a

curved rigid baffle with constant radius around the vertical axis of the wedge. A general model

for the normal velocity profile of the entire baffle (including the array) is formulated as a function

of the driving functions for the individual loudspeakers. This model poses the forward problem,

mapping the individual driving functions to the radiated pressure field inside the wedge.

Due to the arc-based layout, the array can only control modes along the azimuth direction to

begin with. This means that any target beam pattern is described by a one-dimensional function,

and thus by a set of modal coefficients. Finding the loudspeaker driving functions that yield a

desired target radiation pattern requires solving the inverse problem. The expedient actions to

obtain the solutions for the driving functions produce a set of intermediate results that determine
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Figure 1.4: Cross section of the infinite wedge propagation space with the loudspeakers
arranged on an arc with radius rS .

the performance of the loudspeaker array. The relation between the target sound field modes

and the actually radiated modes results from a non-exact orthogonality relation at high orders

due to the finite number of loudspeakers. The resulting aliasing pattern describes the deviation

of the radiated beam pattern from the target pattern at high frequencies. The radiation of

the individual modes to the target distance is determined by the newly introduced Arc Radial

Functions. These are defined to describe the modal propagation from the plane that contains

the loudspeaker array to the arc formed by the intersection of the hologram at the target radius

and a target plane that is orthogonal to the vertical axis of the coordinate system. Thorough

evaluation of these arc radial functions reveals the existence of a near field, within which modes

decay at a different rate than in the far field. This is confirmed by a comparison of the arc radial

functions to their stationary phase approximation, i.e. the far-field arc radial functions.

The evanescent behaviour of arc radial functions is analysed for the different modes as a function

of frequency. Strong decay of a mode effects ill-conditioning of the inverse solution for the

loudspeaker driving functions, which may compromise the stability of the system. The effect

of the regularisation for the calculation of the inverse on the directivity of the beam pattern

is predicted from the analysis of the arc radial functions. Furthermore, it is discussed how the

dependency of the arc radial functions on frequency justifies an order truncation for the modelling

of the forward problem when calculating the inverse solution.

The beamforming performance of the described arrays was initially tested by means of simulations.

To validate the model, experimental data was acquired by scanning the hologram of the radiated

sound pressure from a hemi-cylindrical loudspeaker array. The measured beam patterns were

reconstructed for evaluation using the NAH mechanisms presented in Chapter 6.

The experimental results were used to validate the presented model and to confirm the accuracy

of the simulations.

1.2.5 Conclusions and Appendices

The final chapter provides more detailed concluding remarks on the results of the four principal

chapters of this thesis and highlights the connections between the seemingly different topics. The
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final section of this chapter contains a more general outlook on future research work and trends

in the light of the findings in this work and that by other researchers in the field.

The appendices present different aspects and topics that were pursued over the course of this

Ph.D. project, including

• a mathematical formulation of the forward problem describing a spherical microphone array

composed of TPG sensors,

• a study on a signal processing strategy for circular microphone arrays that uses DOA

information acquired in the optimal frequency band to upscale and de-alias data acquired

in corrupted frequency bands,

• the design of a low-noise multichannel conditioning amplifier for microphone arrays,

• the design of a hemi-cylindrical compact loudspeaker array.

• the preprint of the publication: F.-M. Hoffmann, F.M. Fazi, P.A. Nelson. Plane Wave

Identification with Circular Arrays by Means of a Finite Rate of Innovation Approach, In

140th Convention of the Audio Engineering Society, Paris 2016, May.





Chapter 2

Literature Review

The spatial analysis and control of acoustic wave fields requires a multitude of sensors and

actuators, respectively. The expedient evaluation of sensor data and control of acoustic sources,

respectively, requires both accurate yet, from a computational point of view, efficient models of

the acoustic wave fields in the underlying propagation spaces. Once a suitable model is found,

the performance of a loudspeaker array is largely determined by the acoustic properties of the

system itself. With microphone arrays, however, the situation is quite different. The final spatial

resolution of a sound field analysis system is not only dependent on the sound field model, and

the number and distribution of sensors, but also on the post processing of the observed data.

The field of (acoustic) signal processing itself is vast (refer to [Ell01, Idi01, KB02, VT02, Hay02,

HBC08, HL09, Can09, EK12, BIB13]) and only a small fraction is concerned with the spatial

analysis of wave fields.

This chapter is divided into four subsections, where the first two lay crucial ground work that is

equally important to sound field analysis as well as sound field control applications.

Section one introduces the models of acoustic wave fields most commonly used in combination

with both microphone and loudspeaker arrays. The scope for this work is limited to acoustic

modelling in the frequency domain, assuming a steady state of the system.

The second section is dedicated to inverse problems and their relevance in both sound field

analysis and synthesis. Dominant factors adversely affecting inverse solutions are non-uniqueness,

spatial aliasing, ill-conditioning, and transducer noise and misalignment.

The third section focuses on acoustical field analysis with microphone arrays and signal processing

strategies, both developed to improve the performance and/or extend the functionality of

microphone arrays. Particularly, parametric signal processing strategies for Direction-of-Arrival

(DOA)-estimation are considered.

Section four refers to existing work on the design and performance of compact loudspeaker arrays.

In this context, the descriptor ‘compact’ refers to arrays that form sound sources with controllable

directivity, as opposed to large and spatially distributed loudspeaker arrays, which aim to control

the sound field inside the volume they envelop; However, this is only of minor importance in this

work.

11
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2.1 Wave Field Models for Acoustic Transducer Arrays

It has already been stated in this chapter’s introduction that the practical value of a transducer

array is directly linked to the aptitude of the sound field model it is combined with. The models

used frequently today are almost all derived from the wave field propagation model given through

the acoustic Homogeneous Wave Equation (HWE) [FLS63, ABC+70, Wil99, KFCS00, BX08]

∆p =
1

c2
∂2p

∂t2
, (2.1)

where p denotes the pressure. Its derivation can be found in [FLS63, BX08]. The exact expression

for the Laplacian operator ∆ depends on the coordinate system chosen to describe the propagation

space [AW05]. It is obvious from Equation (2.1) that its solution must be a function of both

space and time. An early example of an analytical solution for the one dimensional wave equation

was given by d’Alembert [lRD47, BX08] with the expression for the pressure

p(x, t) = p+

(
t− x

c

)
+ p−

(
t+

x

c

)
. (2.2)

The pressure is composed of two components travelling in opposite directions, where c denotes

the speed of sound. Even though it implicates few major aspects of sound fields described by

the HWE, d’Alembert’s solution is hardly tangible and poses more of a solution in principle,

since it lacks an explicit analytical form for p+ and p−. Typically, Equation (2.1) is solved using

numerical methods, such as the Finite Difference Method (FDM) and the Finite Element Method

(FEM) or more specialised methods that are less computationally demanding than the FDM or

FEM [JKPS11].

It appears that the HWE in its given form needs to either be further simplified or combined

with additional assumptions in order to find a more useful analytical solution. At this point the

problem is typically translated into the frequency domain, where the wave field can be assumed

in a steady state at every single frequency [Wil99]. Applying the Fourier transform (see Chapter

3, Equation (3.42)) to both sides of the equation results in the transformation pair

∆p =
1

c2
∂2p

∂t2
F⇐⇒ ∆p = −k2p, k =

ω

c
. (2.3)

The equation on the right is widely known as the Homogeneous Helmholtz Equation (HHE)

[ABC+70, Wil99, AW05]. A collection of solutions of the HHE in various coordinate systems,

and for different boundary conditions, can be found for electromagnetic and acoustic wave fields

in [ABC+70] and [FM03]. Williams thoroughly derived and introduced analytical solutions in

Cartesian, cylindrical and spherical coordinates for acoustic applications on the basis of an

expansion through orthonormal basis functions, which he obtained through a separation of

variables approach [Wil99].

In particular, the solutions in cylindrical and spherical coordinates have found major interest in

the field of audio related array research. The specific form of a solution differs for loudspeaker

arrays and microphone arrays. The former can be based on a model that describes radiation

from the device (in a given propagation space), where the latter often requires a combination

of the solutions for the case of the undisturbed field and for the radiation case. This is further

discussed in the following subsections.
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2.1.1 Solution of the Homogeneous Helmholtz Equation in Cylindrical

Coordinates

For many considerations in this work it is convenient to consider an undisturbed region Λ around

the origin, with no sources or scattering objects inside an infinite cylinder of radius rΛ (see

Figure 2.1). The HHE shall be satisfied inside Λ and the pressure is finite at the origin. The

Λ

R3 S1

S2

rΛ

Figure 2.1: Sound field scenario where the HHE is valid inside the region Λ, which is centred
around the coordinate system’s origin, and with acoustic source/scatterer distributions S1 and

S2.

general solution of the HHE for the pressure inside of Λ is given through [Wil99]

p(r, φ, z, ω) =

∞∑
n=−∞

einφ
1

2π

∫ ∞
−∞

Cn(kz, ω)Jn(krr)e
ikzzdkz, r < rΛ. (2.4)

Williams denotes Eq. (2.4) as the solution to the interior domain problem. The exterior problem

refers to scenarios in which all sound sources are located inside a cylindrical region V with radius

rV around the origin and infinite length (see Figure 2.2), so that the solution [Wil99]

p(r, φ, z, ω) =

∞∑
n=−∞

einφ
1

2π

∫ ∞
−∞

An(kz, ω)H(1)
n (krr)e

ikzzdkz, r > rV , (2.5)

satisfies the HHE in the remaining part of R3, namely Λ.

S1

S2
rV

V

Λ

Figure 2.2: Sound field scenario where the HHE is valid outside the region V , which is centred
around the coordinate system’s origin and which contains the source/scatterer distributions S1

and S2.



14 Chapter 2 - Literature Review

The above solutions of the HHE have applications in the field of compact transducer arrays

[TK06, PBA15], underwater acoustics and sonar technology [Wil99, KAH04, KA08]; but they

are also used to simplify sound field models for analysis and synthesis applications by reducing

the spatial dimensionality to two, describing a sound field that is invariant along the z-axis

[Pol00, TK06, AS08, KRWB10, FNW12, AR14]. In that case, the integral in Equations (2.4)

and (2.5), respectively, simplifies considerably. In fact, the two-dimensional model appears to be

more frequently used than the three dimensional model, presumably because the rather complex

integrand and the infinite sum in Eqs. (2.4) and (2.5) typically do not permit to write a closed-

form expression for the right hand side1. Along with the practically inevitable discretisation of

the integration domain along the kz-axis and the resulting limitations, this peculiarity makes

the cylindrical model and the associated arrays appear as a highly specified tool and therefore

restricted in its applicability. Given that, it is not surprising that a large part of the research

community focuses on the spherical solution instead, which is presented in the next subsection.

2.1.2 Solution to the Homogeneous Helmholtz Equation in Spherical

Coordinates

Treating all spatial directions in a more homogeneous way, spherical coordinates often enable

a decomposition of the three-dimensional sound field that is less likely to require simplifying

assumptions or numerical approximations than that of cylindrical coordinates. The main difference

compared to the solution in cylindrical coordinates is the replacement of plain Bessel-, Neumann-

and Hankel-functions by their spherical variants [AW05, Wil99]. Just like the solution in cylindrical

coordinates, this solution can be specified for sound fields that have no sources or scatterers

inside a region Λ spreading around the origin with radius rΛ, yielding [Wil99]

p(r, φ, z, ω) =

∞∑
n=0

n∑
m=−n

Cmn(ω)jn(kr)Y mn (θ, φ), r < rΛ, (2.6)

with the spherical harmonics

Y mn (θ, φ) =

√
(2n+ 1)

4π

(n−m)!

(n+m)!
Pmn (cos θ)eimφ

as given by Williams in [Wil99], where Pmn (x) as the associated Legendre Functions.

This solution, or variants of it, are widely used in the field of acoustical array research and form

the foundation of the theory on which the Ambisonics technique is based. Originally, Michael

Gerzon formulated and introduced Ambisonics as one of the first three-dimensional recording

techniques [Ger73, Ger75] and patented it together with Peter Craven [CG74]. Gerzon did not

rigorously link his work on Ambisonics to the solution of the Helmholtz equation given in Eq. (2.6),

although he made use of spherical harmonics when describing the gain structure he proposed

to control the directivity of the microphone arrays associated with the technique. While the

theory was not limited to first order sound fields, it was not until the mid 1990s and early 2000s

that researchers refined both theory and microphone array designs to recover higher sound field

orders using the Higher Order Ambisonics (HOA) technique in combination with the solution

1In his PhD-dissertation, Teutsch derived a solution for the scattering off a truncated cylinder, by neglecting
the boundary condition on the cylinder’s end caps [Teu05, Teu07]
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of the Helmholtz equation in Eq. (2.6) [BV95, Mal99, ME02, DMN03, LDGD04, Raf05, Pol05a,

MDB06, AS08, FNW12].

The performance of the HOA technique for sound field recording depends largely on the corre-

sponding acquisition systems. The performance of spherical microphone arrays was theoretically

analysed by Rafaely [Raf05] based on the solution given in Equation (2.6). He investigated

the effects of sampling the aperture with a finite number of microphones, spatial aliasing as a

result of spatial sampling, transducer noise and inaccurate transducer positions on the array’s

performance, as well as the properties of different spatial sampling schemes. In a more detailed

analysis of spatial aliasing with spherical microphone arrays, Rafaely et al. [RWB07] studied the

aliasing structure between the modes, the influence of the spatial sampling pattern on aliasing,

and theoretically investigated the performance of anti-aliasing filters. In an earlier work [Raf04],

Rafaely described the plane wave decomposition of a sound field based on the recorded pressure

on a sphere, e.g. obtained from a spherical microphone array. In the context of that work, he

also investigated the directivity of the decomposition method based on the order up to which the

coefficients for the spherical expansion of the pressure can be recovered from the microphone

array.

Ambisonics systems are not the only ones making use of spherical coordinates with the objective

to record all three dimensions of a sound field; Meyer and Elko [ME08] proposed a circular array

with an additional sensor at the origin to achieve modal beamforming with some degree of control

in the elevation direction. Their design is based on a three dimensional sound field model using

spherical coordinates.

The solution presented in Equation (2.6) not only serves as a model for sound field acquisition

but also for sound field synthesis. Ahrens and Spors published a number of articles on the sound

field reproduction using spherical (and circular) loudspeaker arrays based on the above equation

[AS08, AS12b, AS12a]. They formulated analytical models for the sound field reproduction

problem through the HOA approach and the Wave Field Synthesis (WFS) approach [Ber88],

where both models draw on the sound field expansion given in Eq. (2.6) [AS08]. In [AS12b],

they proposed a method to convert the coefficients obtained from an HOA recording into the

driving functions of a WFS system. With that work, they enabled the use of a WFS system to

reproduce a sound field that was recorded rather than virtually created. Addressing the issue

of discretisation, which is a problem with sound field reproduction as much as with sound field

acquisition, they investigated the influence of a discrete secondary source distribution as they are

used in sound field reproduction systems on the synthesis performance. Their analysis draws

on the modal structure of the sound field model, which enables them to describe the impact

of the discretisation through the repetition and potential overlap of the spatial spectra in the

modal domain. In that sense, their work corresponds directly to the work by Rafaely et al. on

microphone arrays [RWB07]. The presented findings address analytical reproduction systems

based on the methods of WFS, Near-field Compensated HOA and Spectral Division.

Both the cylindrical and the spherical solution make no assumptions as to what type of sources

or elementary wave fields form the observed sound field. Consequently, they retain a large degree

of generality. The two most elementary entities in acoustics are the field of a point source and

that of a plane wave. The basis functions used in Eqs. (2.4), (2.5) and (2.6) are also found as
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part of specific yet popular sound field models that are based on either a superposition of plane

waves (see Section 2.1.4) or a distribution of point sources (see Section 2.1.5).

2.1.3 Solution of the Homogeneous Helmholtz Equation in Infinite

Wedges

The diffraction of electromagnetic and acoustic waves from the surface of infinite wedges has

long been modelled on the basis of the cylindrical coordinate system. Asvestas et al. [ABC+70]

presented a collection of analytical solutions for the HHE describing the acoustic wave field

originating from point and line sources in the vicinity of infinite wedges with either acoustically

soft or hard boundaries. By choosing the angle of the wedge arbitrarily larger than 180 degrees,

the sources can also be modelled inside the infinite wedge (see Figure 2.3 with the wedge given

in grey). Using the results presented in [ABC+70], the solution of the HHE with acoustically

x

y

φ1

φ2

S

rV

Figure 2.3: Infinite wedge scenario, with the source distribution S located inside the radius
rV , and boundary conditions at φ1 and φ2.

rigid boundary conditions at φ1 and φ2 is given by

p(r, φ, z, ω) =

∞∑
n=0

νn cos
(nπ
κ
φ
)∫ ∞
−∞

An(kz)H
(1)
nπ
κ

(krr)
eikzz√

2π
dkz, r > rV . (2.7)

with κ = φ2 − φ1, φ1 < φ < φ2 and νn =
√

2−δn
κ , where δn denotes the Kronecker delta. The

boundary conditions can be changed from rigid to acoustically soft by replacing the cosine with a

sine in the above expression [ABC+70].

The solution in Eq. (2.7) has applications in the field of shoreline acoustics. Buckingham

[Buc84, Buc89, BT90], and Luo and Zhang [LZ15] previously used this solution to model the

sound field of point sources located between the ocean surface and the sloping sea bed. The

basis functions in Eq. (2.7) pertain to the case where the boundaries at φ1 and φ2 are rigid,

i.e. perfectly reflective. Along the shoreline below the water surface, only the seabed may be

considered (approximately) rigid, while the surface poses a pressure-release boundary. In the case

of the latter, the basis functions in the φ-domain change from cosine to sine, but that as well would

only be a valid model if both boundaries have pressure-release characteristics. To model the case

of mixed boundaries, Buckingham proposed to use the basis functions sin
(
(n+ 1

2 )πκφ)
)

which

satisfy the rigid boundary condition on the seabed (φ = κ) and the pressure-release boundary

condition at φ = 0 [Buc89].
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The wedge solution is effectively a solution of the HHE in cylindrical coordinates that satisfies a set

of boundary conditions. A conceptually similar solution was presented for spherical coordinates

by Pomberger et al. [PZ13, PP14], where the spherically expanding propagation space is limited

by adding a rigid boundary condition. The shape of the surface where the boundary condition

applies is formed by two infinite cones aligned along the z-axis, where the top one is facing

down and the bottom one facing up. Both cones intersect only at the tip point. The resulting

propagation space is then expanded in spherical Slepian functions.

2.1.4 The Herglotz Wave Function

The sound field inside a region Λ (see Figure 2.1) can often be modelled with good approximation

as the superposition of plane waves. The Herglotz Wave Function (HWF) [FNW12]

p(x, ω) =

∫
Ω

H(x, ŷ, ω)q(ŷ, ω)dΩ(ŷ), x ∈ Λ, (2.8)

describes the composition of a sound field through the superposition of plane waves on the basis

of two main components. The propagation model of a plane wave is given by the Herglotz kernel

H(x, ŷ, ω). It models a free field propagation by definition [CK98], but it can be altered by

replacing the kernel to model a combination of the incident field and the scattering off a (from

the perspective of the coordinate system) primitive object, e.g. as given in [PR05]. The phase

and amplitude of each plane wave is determined by the Herglotz Density (HD) q(ŷ, ω). The

integration domain Ω denotes the unit sphere, i.e. it covers all possible directions-of-travel or

directions-of-arrival, respectively. As such, the HWF is very general and surprisingly not as widely

used as its simplified variant, which assumes only a single plane wave [Pol00, ME02, LDGD04,

Raf04, PR05, Raf05, Pol05a, MDB06, TK06, LD07, ME08, AR12, AR14, AR16] while invoking

the principle of superposition. Since the linearity of the model is given, this simplification is

not a restriction to generality of the approach but makes analysis simpler and thus potentially

clearer. Especially, works focussing on microphone arrays in beamforming applications prefer this

approach of modelling only a single plane wave [ME08, LD07, AR12, AR14, AR16]. It enables a

convenient theoretical analysis of practically relevant performance aspects, e.g. aliasing due to

spatial discretisation and beam patterns.

However, the use of the HWF as a model must be considered carefully because it suffers from

two major practical limitations [FNW12]:

• The HWF cannot model the sound field of a single point source with a bounded Herglotz

Density ‖q‖2 <∞, and

• the Herglotz Density may require up to an infinite number of plane waves to represent an

arbitrary sound field, with the exception of sparse sound fields.

With the plane wave being the theoretical equivalent of a point source in the far field (r →∞),

it is not surprising that a sound field can also be modelled by superposition of the sound fields

coming from a number of point sources. This will be introduced in the next subsection.
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2.1.5 The Single Layer Potential

The Single Layer Potential (SLP) is an integral operator that superposes the individual sound

fields originating from a distribution of point sources on a given boundary ∂Λ [CK98, FNW12].

p(x, ω) =

∫
∂Λ

G(x,y, ω)γ(y, ω)dS(y), x ∈ Λ,y ∈ ∂Λ (2.9)

In this expression, Green’s function G(x,y, ω) models the sound field of a single point source

located at y [Wil99] and γ(y, ω) assigns the point source its strength. The integral over all point

sources on the boundary ∂Λ then determines the sound field.

The SLP is of particular practical interest since it overcomes the first limitation of the HWF

mentioned in the previous subsection, and at the same time enables modelling of both the analysis

problem and the synthesis problem [Pol05a, SRA08, Faz10, FNW12, FN12].

The sound field models introduced above have been the basis of many transducer array designs

introduced over the recent decades, each of which connects an observable physical quantity, i.e.

the sound pressure, to a model-specific quantity describing the entire sound field. Inferring the

latter from the observed pressure is an inverse problem and will be described in more detail in

Section 2.2.

2.2 Inverse Problems

The field of inverse problems is an entire research area by itself and only a small fraction has so

far been used or shown relevant for the problems of sound field analysis and control. Tarantola

[Tar04] presented a mathematically very general work on the theory behind inverse problems

and approaches to identify stable solutions. That includes an analysis of the properties inherent

to least-squares (l2-norm minimisation of the error) and sparse (l1-norm minimisation of the

solution, while minimising the l2-norm of the error) solutions, which are both particularly popular

in the field of acoustics (see below).

The mathematical theory behind inverse problems and inverse operators in acoustic scattering

considerations has been described in detail by Colton and Kress [CK98]. The theory of inverse

operators and their limitations have been investigated w.r.t. the problem of sound field reproduc-

tion by Fazi [Faz10]. The focus of his work was to determine the validity of inverse operators,

preservation of the uniqueness of the solution to the inverse problem and spatial aliasing, from

the theory down to application level. Considering inverse problems in sound field analysis, it

can be said that every Ambisonics, HOA or non-Ambisonics related sound field measurement

system makes use of inverse operators or their discrete counterparts, respectively, in order to

recover comprehensive information (e.g. the HD or the SLP) about the sound field from the array

observation.
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2.2.1 Non-Uniqueness of a Solution

Non-uniqueness of a solution to the inverse problem has been a factor with significant impact

on the designs and the performance of both microphone arrays for sound field analysis and

loudspeaker arrays for sound field reproduction applications [Pol00, Pol05a, MDB06, EF07, AS08,

FN10, FN12, ZS13, BP14]. The causes of non-unique inverse solutions can be better understood

by considering the forward problem in the form of a mathematical operator that maps a quantity

describing the sound field (e.g. the HWF or SLP) to the observable pressure. An Eigenvalue

Decomposition (EVD) (or Singular Value Decomposition (SVD) where necessary) of this forward

operator yields a decomposition into a set of eigenfunctions (or left- and -right singular functions)

and corresponding eigenvalues (or singular values) [Kre78, CK98, Faz10]. The eigenvalues (or

singular values) describe how the forward operator maps the orthonormal eigenfunctions (or

left- and -right singular functions) from one domain to the other. Should these eigenvalues (or

singular values) become zero, it means that the corresponding components span the null space of

the operator [Kre78, FN10], i.e. these components do not contribute to the final result. Whether

or not an eigenvalue (or singular value) is zero depends highly on the evaluation point of the

operator, e.g. the location of the sound field observation and the frequency. The inverse solution

then suffers from non-uniqueness if the null space is non-trivial, at all observation points, as a

result of the zero eigenvalue in the forward operator.

A non-unique inverse solution affects sound field analysis and sound field reproduction differently.

For spherical and circular microphone arrays with an open sphere or open cylinder design,

respectively, a non-unique inverse solution occurs when the boundaries containing microphones

fall into zero-crossings of the radial functions in the field expansion [Pol00, AW02, Pol05a,

Raf05, MDB06, EF07, FN10, ZS13]. As a consequence, the component associated with the

radial function that has a zero at the boundary of the microphones may take any value and

contribute to the overall sound field, but it would not be observed by the microphone array.

An identification of the strength of that component is then evidently impossible. The inverse

solution can take any value for that component, and the forward operator would still yield the

same observation at the points of the microphones. Several ways to avoid non-uniqueness issues

with microphone arrays have been proposed. Designs that avoid non-uniqueness issues have

either rigid corpora, use directional transducers or several staggered measurement boundaries

[AW02, ME02, PR05, Raf05, Pol05a, MDB06].

Non-uniqueness also affects the sound field reproduction performance of loudspeaker arrays,

yet in a different manner. It was found that, for this application, the uniqueness of an inverse

solution depends on certain boundary conditions that are assigned during the modelling of

the reproduction problem [AS08, FN10, ZS13]. If the sound field reproduction system can be

constructed entirely in accordance with the Kirchhoff Integral Equation (KIE) then the system

does not suffer from non-uniqueness. However, in practice the quality of the required dipole

speakers does not match that of state-of-the-art 0th order loudspeakers [ZS13]. Therefore, the

sound field reproduction system is commonly described on the basis of the SLP (see Section

2.1.5), which is sometimes also referred to as the simple source formulation [Faz10, ZS13]. The

non-uniqueness arises from the definition of the control volume inside the reproduction system.

Controlling the sound field in a defined control volume corresponds to finding a solution to

the HHE with a Dirichlet boundary condition [Wil99, FN10]. The inverse problem becomes

non-unique at the control volume’s ‘cavity resonances’ or forbidden frequencies [Wil99, AS08].
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An interesting overview on methods to overcome with this problem was presented by Zotter and

Spors [ZS13].

2.2.2 Ill-Conditioning, Transducer Noise, Misalignment and Variation

of Environmental Parameters

Ill-conditioning is one aspect of inverse problems where the effects and their severity depend

highly on the measurement error in the acquired data, and the dynamic range of the non-zero

eigen/singular values of the forward problem, i.e. the condition number of the system [Han98].

If the magnitude of some eigen/singular values take very small values, they may project some

components to pressure levels below the noise floor of the measurement system. That means the

information on the sound field corresponding to that component is effectively lost. Accordingly,

a recovery of that component from the inverse solution can only lead to a random amplified

contribution that stems from the measurement noise. As a consequence, the norm of the inverse

solution is considerably larger than expected [Han98], i.e. the inverse solution is unstable

[Faz10]. Whether or not an ill-conditioned system suffers from the effects of ill-conditioning

is mathematically determined through the abidance or violation of Picard’s two conditions

[Han98, Faz10]. Based on the input data of the inverse problem, Picard’s second condition

determines whether the effects of ill-conditioning can be mitigated or not.

Rafaely [Raf05] and Poletti [Pol05b] both identified noise from the microphone capsules as

significant sources of error in spherical and circular microphone array designs. Poletti has shown

that transducer noise becomes a more severe problem at low frequencies, as a consequence of the

ill-conditioning of the inverse problem. Therefore, even with state-of-the-art microphone capsules,

transducer noise is still a limiting factor in the field of three (and two) dimensional sound field

recordings.

Transducer noise observed at the electrical terminals of a microphone is generated by thermal

agitation of molecules in front of the diaphragm (Brownian motion) [SF74] and electronic noise

[HBR95, Oak97]. The electronic noise itself is composed of:

• Brownian motion of charges in the conductors [Nyq28],

• shot noise (in vacuum tubes and semiconductors) [Sch18, Zie53],

• 1/f noise (from the internal impedance converters) [Off70] and

• flicker noise (as it occurs in MOSFETs, which are typically used as internal impedance

converters) [Sch26].

Further sources of error that shall be mentioned are

• the inaccuracy of sensor positioning in the array, which can result from a limited production

tolerance or inadequate assembly,

• the introduction of phase errors due to the temperature dependency of the speed of sound,

and
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• boundary conditions that are not as ideal in practice as in their model.

Rafaely [Raf05] found that the error induced through inaccurate positioning of the sensors can be

kept at a relatively low level (-40 dB) with practical limitations on the manufacturing tolerance.

A mismatch between the real speed of sound and the one used in the model can however have a

significant impact on the performance of microphone arrays. The expressions given in Eqs. (2.4),

(2.5), (2.6) and (2.7) all depend on the acoustic wave number, k = ω
c , and thus also on the speed

of sound. The use of k as an argument to different basis functions can lead to a phase mismatch

between the model and reality, of the real wave numbers deviate from the modelled ones due to a

temperature difference. Particularly with transducer arrays, where the phase becomes critical for

accurate exploitation of acoustic interference, such a mismatch can have a significant effect on

the system performance.

Elko et al. [EDG03] investigated the impact of room impulse variation due to temperature

changes on the performance of an echo-cancellation system. They found that even a deviation

of 1 ◦C from the temperature associated with the assumed speed of sound can significantly

change the room impulse response and thus affect the echo-cancellation performance. Chen et al.

[CSY07] proposed a wideband beamformer for the near field of a microphone array that is robust

against the phase changes introduced by the mismatched between the assumed speed of sound

and the actual one. Annibale et al. [AFNR13] proposed a method to identify the speed of sound

through the analysis of the time-differences-of-arrival in rooms directly from the microphone data.

If accurately identified, the obtained information can be used to update the array processing

accordingly, thus maintaining a robust system performance. A more general work on the influence

of ambient atmospheric conditions on acoustic measurements was presented by Chapman [Cha14].

2.2.3 Spatial Aliasing

With microphone arrays, spatial aliasing is a result of the (so far) inevitable sampling of the

sound field below the Nyquist rate. It was shown in the past that the specific aliasing pattern

of an array can be anticipated and derived from the array design [LDGD04, LD07, RWB07,

Faz10, KRWB10, AR12, AR14, AR16]. Determinant factors are the chosen coordinate system of

the model, the chosen orthonormal basis functions, the sampling scheme and the array corpus.

Dmochowski et al. [DBA09] presented a broadband beam pattern analysis to evaluate the spatial

aliasing with uniform linear arrays. A thorough analysis of aliasing phenomena in spherical

arrays was presented by Rafaely [Raf05, RWB07], Li and Duraiswami [LD07] and Fazi [Faz10].

Rafaely also suggested to implement a spatial version of an anti-aliasing filter to suppress higher

order components, e.g. by integrating over consecutive measurements of just one microphone

in stationary sound fields or by using pressure sensors with relatively large diaphragms, which

is similar to spatially integrating over the local sound field. But despite extensive ongoing

research in that field, aliasing remains one of the most prominent problems in microphone array

technology. Nevertheless, further potential ways to deal with aliasing arose quite recently. Alon

and Rafaely suggested de-aliasing strategies for single plane waves observed by circular and

spherical microphone arrays [AR12, AR14, AR16]. The proposed method is based on the a priori

knowledge of the aliasing pattern. Other techniques from the field of signal processing have been
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applied to approach the problem of spatial aliasing in a similar manner [EJvS09] (see also Section

2.3.2.2).

With loudspeaker arrays, spatial aliasing is a result of the finite number of sources used to control

the sound field. Effectively an ambiguity problem in the modal domain, spatial aliasing always

occurs, but with high order modes being more prone to evanescent behaviour, the effects only

become prominent beyond the spatial aliasing frequency of the system [AWS10, PB13], which

is determined by the spacing of the loudspeakers in the array [PB13]. Spors and Rabenstein

presented a study on the spatial aliasing with linear and circular arrays that are used with

wave field synthesis systems [SR06]. Afterwards, Ahrens and Spors presented a more in-depth

analysis of the spatial aliasing with sound field reproduction systems within the reproduction area

[AS08]. Epain et al. [EJvS09] proposed to use compressed sensing methods (Section 2.3.2.2) to

reduce reproduction artefacts that occur due to spatial aliasing. Ahrens et al. [AWS10] presented

an analysis of spatial aliasing not from a monochromatic point of view, but in the temporal

domain instead. They found that the discretisation through the finite number of loudspeakers

leads to a series of ‘echoes’ from different directions following the reconstructed wave form in

the time domain. The spectral composition of these echoes was restricted to frequencies above

the loudspeaker system’s Nyquist frequency. Poletti and Betlehem [PB13] presented a work on

compact cylindrical loudspeaker arrays as sources with directivity control, and derived a formula

for the system’s Nyquist frequency for the circumferential modes. The result is a function of the

radius, the modes’ order and the number of loudspeakers. Beyond its (spatial) Nyquist frequency,

a circumferential mode can no longer be controlled and the system produces aliasing artefacts.

2.2.4 Nearfield Acoustical Holography

A prominent specific example of an inverse problem in acoustics is Nearfield Acoustical Holography

(NAH). Maynard et al. proposed the technique of NAH in their original work from 1985 [MWL85].

In an earlier work, Weinreich and Arnold proposed a method the identify the radiation behaviour

of an acoustic source (e.g. a violin) in a non-anechoic environment through measurement of the

pressure on two concentric spheres of different radius [WA80]. Their work can be understood

as a precursor of the NAH work presented by Maynard et al. The mathematical model used by

Weinreich and Arnold was based an expansion similar to that in Eq. (2.6), only did their method

require two sets of coefficients to describe the weights of two sets of radial basis functions, namely

the Hankel functions of the first and the second kind. These are needed to describe the incoming

and outgoing waves as they would occur in the sound field of a non-anechoic room around an

acoustic source.

Williams presented a comprehensive work on NAH in Cartesian, cylindrical and spherical

coordinates [Wil99]. Focussing on the ill-conditioned inverse problems that occur in the field

of NAH, Williams presented a work on regularisation methods for stable solutions [Wil01]. For

situations where there is only a small patch of measurement data available, Williams et al.

proposed a method to reconstruct and thus extend the measurement aperture on the basis of

an iterative Fast Fourier Transform (FFT)-based algorithm that projects the measured data

back and forth, while updating the initially unknown section of the now larger patch [WHH03].

Jacobsen and Jaud [JJ07], and Zhang et al. [ZJBC09] proposed variants of NAH based on

the measurement of pressure and velocity. Jacobsen and Jaud performed the NAH without a



Chapter 2 - Literature Review 23

transform of the data taken in the spatial domain, whereas Zhang et al. based their variant on the

equivalent source method [KSF89]. Both methods enable (within limits) a distinction of waves

that originate from both directions of the plane of the measurement aperture, i.e. when the free

field assumption is not valid on the side of the measurement plane opposite to the source. Klippel

and Bellmann proposed to use NAH to analyse the near-field and far-field radiation behaviour of

loudspeakers [KB16]. During his 2017 workshop held at Dresden University from 13th - 15th

March, Klippel extended their original concept by measuring two holograms at different distances

from the loudspeaker inside a reflective room [Kli17]. This data is then combined with the model

for the exterior and interior domain in spherical coordinates (compare Sections 2.1.1 and 2.1.2).

The inverse problem is then solved through matrix inversion. The extension of the method enables

NAH from data where sound waves are travelling both into and out of the hologram volume.

2.3 Microphone Arrays & Signal Processing Strategies

Most of the aspects concerning the limitations of microphone arrays were already discussed in the

previous section, therefore this section focuses on microphone array designs and signal processing

strategies.

Microphone arrays for sound field acquisition applications are typically (but not exclusively) found

in circular/cylindrical [Pol00, Mey01, KAH04, Pol05b, TK06, ME08, KA08] or spherical sensor

arrangements [AW02, ME02, LDGD04, Pol05a, Raf05, PR05, MDB06, RWB07, LD07, ZDG10].

Pomberger et al. proposed a spherical segment array [PZ13, PP14], where the aperture was

truncated along the elevation direction by the introduction of two rigid cones.

Note that linear microphone arrays are not considered in this work due to their inherent ambiguity

between the fields on either side of the array, i.e. their axially symmetric directivity pattern

[VT02].

2.3.1 Types of Transducers

While most of the designs today apply pressure sensors, the earliest design for an array in

the field of airborne acoustics, presented by Alan D. Blumlein [Blu31, Blu35], is ideally (and

usually) implemented in the form of two coincident pressure gradient (figure-of-eight) microphone

capsules, also referred to as a ”Blumlein-pair”. This recording technology is still used by recording

engineers, yet it enables only a two-dimensional analysis of a sound field.

Poletti [Pol00, Pol05a], and Rafaely [Raf05] both found that the use of directional sensors in

microphone arrays can overcome non-uniqueness problems (see 2.2). Daniel et al. [DMN03] and

also Poletti [Pol05a] found that such a design can reduce the effects noise at low frequencies.

Craven, Law and Travis [CLT09] proposed a spherical array based on tangential velocity sensors.
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2.3.2 Signal Processing Strategies

The limitations affecting the performance of microphone arrays can sometimes be mitigated or

avoided by applying additional signal processing. This subsection gives an overview on the signal

processing strategies proposed in the past for applications relevant to this work.

2.3.2.1 Direction-of-Arrival Estimation

The sampling of a sound field at different spatial locations, as it is done with microphone

arrays, permits the estimation of the DOA for an incoming wave front. Capon presented a

DOA-estimation method that is purely based on the exhaustive search of the maximum of the

array’s angle-dependent output energy, which is calculated on the basis of the beamforming

vector and correlation matrix of the input signals [Cap69]. Capon’s method does not employ a

parametric model of the wave field.

To improve the resolution of the DOA estimation, Schmidt proposed the MUSIC algorithm,

which performs an analysis of the space spanned by the input signal data and uses a subspace

approach to determine the DOA [Sch86]. MUSIC is a parametric method, i.e. it requires a model

of the wave field and exact knowledge of the array aperture. To increase robustness and decrease

computational intensity, Roy and Kailath proposed the ESPRIT method as an alternative to

MUSIC [RK89]. Unlike MUSIC, ESPRIT constrains the structure of the sensor array by imposing

what the authors call translational invariance. Both, MUSIC and ESPRIT are subspace-based

algorithms that make a narrowband assumption for the sources in the sound field. Teutsch and

Kellermann proposed a variant of the ESPRIT algorithm, EB-ESPRIT (EB - Eigenbeam), which

does not apply ESPRIT to the sensor signals but rather to the modal components obtained from

the analysis of circular array data [TK06].

Högbom proposed the CLEAN method, which iteratively subtracts the aperture signature of an

elementary source located at the angle corresponding to the maximum of the aperture response

[H7̈4]. It can be seen as a variant of Mallat and Zhang’s Matching Pursuit algorithm [MZ93], with

the difference that it does not choose from a predefined dictionary of elementary responses. Instead,

CLEAN identifies the best fitting aperture signature of an elementary source by a predetermined

criterion (e.g. maximum of the aperture response or the maximum of the correlation between the

aperture response and the aperture signature of an elementary source).

Karbasi and Sugiyama proposed a DOA estimation method for circular arrays based on the

Circular Integrated Cross Spectrum (CICS) [KS07]. Their algorithm enables the identification

of a single source in slightly reverberant environments, with low computational complexity and

robustness against noise. The use of a circular array helps to resolve issues related to localisation

ambiguities, as they occur with linear arrays. Pavlidi et al. proposed a modified version of

Karbasi and Sugiyama’s algorithm that detects several sources [PPGM12]. Their method requires

that the microphone signals contain ‘constant-time analysis zones’ for each source in the field, i.e.

a tempo-spectral region in the signals where only one source is active. Stefanakis and Mouchtaris

presented a variant of the algorithm by Pavlidi et al. for a circular microphone array in front of a

reflective plane [SM16].
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A method for high resolution plane wave identification called HARPEX was proposed by Berge

and Barrett [BB10b, BB10c]. It uses a parametric decomposition of the B-format signal that

yields two signals, referring to the two dominant directions from which sound waves are incident.

2.3.2.2 Compressed Sensing

It was in the early 2000s that researchers in the field of sampling-based data acquisition started

pushing the boundaries of the well-known Nyquist-Shannon sampling theorem. One of the

methods to reconstruct a signal which was sampled below the Nyquist frequency is based on the

Compressed Sensing (CS) theory (sometimes also referred to as compressive sampling) [CW08].

A very thorough insight into CS from an information theory point of view was given by Donoho

in [Don06]. In order for CS methods to be applicable, two major assumptions on the signal and

its representation domain need to be satisfied:

• the signal itself needs to be sparse and

• the elements in the signal domain should ideally be incoherent to the elements in the

representation domain.

In other words, sparsity is given for signals that can be represented by a smallest possible finite

set of basis components, and the incoherence requirement states that the correlation between

the signal space and the representation space should not exceed a certain threshold. The group

around Epain and Jin applied CS successfully with various types of arrays to improve the sound

field acquisition performance of the acoustical system [EJvS09, WEMJ11, WEJ12]. They also

showed that CS theory can be used to upscale data for use with an HOA reproduction system

with order higher than that of the recorded HOA data. Through this, they achieved a wider

‘sweet-spot’ and more distinct acoustic source positioning.

2.3.2.3 Finite Rate of Innovation Theory

Although it is theoretically more related to a sampling theory than to a signal processing approach,

the Finite Rate of Innovation (FRI) theory provides an interesting new approach to sampling,

signal processing and wave field modelling for sound field acquisition purposes. The main principle

behind FRI theory is based on a periodic signal assumption (which is valid for the observation

of a circular array and presumably also for spherical arrays) and a finite number of parameters

(i.e. ‘innovations’) defining the continuous signal within the period. The sampling interval that

still allows for perfect reconstruction is now determined by the rate of innovations per period.

A sound theoretical description of the theory and associated sampling method was given by

Vetterli [VMB02]. Dragotti and Homann analysed and discussed the performance in noise in a

related work [DH09]. An interesting overview of the connection between sparseness and FRI is

presented in [BDV+08]. The FRI based sampling method is particularly interesting for sound

fields composed of a finite number of plane waves, as will be shown later in this work.

A review of the FRI theory and the associated annihilating filter method for signal reconstruction

is given in Chapter 5.
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2.4 Compact Loudspeaker Arrays

Generally speaking, loudspeaker arrays are sound reproduction systems that are composed of

more than one independently controllable acoustic source, i.e. loudspeaker. That definition

encompasses stereo systems and other multichannel layouts, e.g. commercially available surround

sound systems (in 5.1, 7.1, and similar configurations). While they match the definition, these

types of arrays are mainly expansions of the stereo concept and can only marginally draw upon

the potential of more elaborate array designs. Widely known examples of such are large linear

arrays used in professional audio to optimise the systems directivity for both improved efficiency

and quality of public address systems. Exploiting the nature of sound as a wave phenomenon,

these systems control the individual loudspeakers in such a way that the radiated wave fields

interfere with each other to create/approximate a desired directivity pattern of the combined

system.

Over the past 30 years, the scientific community proposed and investigated large loudspeaker

array systems of linear, spherical and circular geometry with the goal to control entire sound

fields over a preferably large reproduction area. This research effort lead to the extensively

studied WFS and HOA systems. Both aim to synthesise or reproduce a sound field within a

bounded control area using a finite number of loudspeakers. WFS systems were originally limited

to synthesising virtual sound scenes from a model, while HOA systems are capable of both,

reproducing a previously recorded scene or synthesising a virtual sound scene. Ahrens and Spors

proposed a method to overcome this limitation of WFS systems, by relating the WFS driving

functions to the sound field coefficients obtained from an HOA recording [AS12b]. Notable

and important work on WFS systems and HOA and sound field reproduction can be found in

[Ber88, BVV93, WA01, Dan03, DMN03, SR06, SRA08, AS08, EJvS09, AWS10, Faz10, Ahr12,

AS12b, AS12a].

The general downside of arrays that make for well-performing HOA or WFS systems is the

vast number of channels and space they require. While there is potential in the market for a

dedicated commercial installation, built to address large audiences, the domestic application of

WFS systems currently faces negligible interest. This lead researchers to shift their focus to more

compact arrays, small enough to be suitable for domestic or even hand-held applications.

This section gives an overview on published work proposing compact array designs based on

spherical and cylindrical geometries and their applications for sound field control and synthesis.

2.4.1 Designs & Performance

Unlike large loudspeaker arrays that aim to reproduce a sound field in the reproduction area they

envelop, compact loudspeaker arrays aim to provide an acoustic source with controllable directivity.

Early designs based on cylindrical coordinates were proposed by Bédard and Berry [BB05], by

Møller [MOA+10], by Kolundzija et al. [KFV10, KFV11], and by Poletti and Betlehem et al.

[PB13]. Zotter et al. proposed a directional acoustic source, based on spherical coordinates and

a spherical harmonics-based beamforming [ZSH07]. Fazi et al. compared the pressure matching

and mode matching performance of compact circular arrays [FSO+14] and investigated their

low-frequency beamforming performance [FSOF15].
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2.4.2 Applications in Sound Field Control

While full sound field reproduction techniques aim to reproduce a sound field accurately over a

predefined reproduction area, sound field control simplifies the problem by limiting the sound

field control objective to a few (spatially separate) zones. Poletti [Pol08] proposed this for circular

loudspeaker arrays to create a multizone two-dimensional surround sound system through a

least-squares pressure matching approach [Pol07]. Betlehem and Poletti et al. then proposed to

use acoustic sources with controllable directivity (see Section 2.4.1) as the elements in a circular

loudspeaker array for an advanced sound field control/reproduction system that accounts for the

reflections of the room [PAS12, BP14, PBA15].

More suitable for the application of compact loudspeaker arrays are scenarios in which different

zones around the system shall be created, or, more plainly speaking, the sound field surrounding

the compact array shall be controlled. Rafaely investigated the option of using a spherical

loudspeaker array with controllable directivity for advanced active control of the local sound field

by means of simulation [Raf09]. He found that a directional source yields a larger quiet zone

than a standard monopole source. Olivieri et al. investigated the sound zone control performance

of compact loudspeaker arrays driven through a pressure matching approach on the basis of both

measured and analytical transfer functions [OSF+13]. To counter the ill-conditioning affecting

the low-frequency performance of compact loudspeaker arrays, they proposed a control point

selection strategy that is frequency-dependent [OFSN15]. In a more recent work, Olivieri et al.

refined the pressure matching method by adding mechanisms for the creation and flexible control

of private and silent sound zones [OFNF16].

A good overview on the recent advances in the general area of sound field control was provided

in various works. Olik et al. presented a study on the comparison of the performance of different

sound zoning methods (e.g. pressure matching [Pol07], acoustic contrast control [CK02] and delay-

and-sum beamforming [VB88]) in reflective environments [OFC+13]. Betlehem et al. presented

a broad overview on the problem of sound zone control, covering different control methods,

loudspeaker arrangements, and arrays of sources with controllable directivity [BZPA15].





Chapter 3

Mathematical Notation,

Definitions and Commonly Used

Functions

This chapter serves the purpose to introduce this work’s general mathematical notation and

applied concepts. Many of those are already well known in the field of acoustics and transducer

arrays, but they are listed here to simplify the access to the presented work.

3.1 Vectors, Matrices and Norms

Both, vectors and matrices are written in bold font, where non-capitals are assigned to vectors

(e.g. x) and capitals are reserved for matrices (e.g. H). Unless stated otherwise, vectors are

always arranged in columns. A vector of dimension m× 1 with the identifier x describes a point

in the space Rm where

x :=


x1

...

xm

 , (3.1)

with x1, . . . , xm ∈ R. The m× 1 vector ŷ depicts a vector that also lies in Rm but has unitary

length. These are typically used to indicate directions. A superscript letter (·)T denotes the

transposition of a vector and a superscript (·)H denotes the hermitian transposition, which is

the transposition and element-wise complex conjugation. The aforementioned two identifiers are

reserved for vectors in Rm where m ∈ {2, 3}. Vectors with other identifiers will be defined and

specified as they are introduced.

A number of norm definitions are useful in the context of this work. The most commonly known

norm is the L2-norm, which is sometimes also referred to as the Euclidean norm of a vector

29
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x ∈ Rm. It is usually used to calculate the length of a vector and is defined as follows

‖x‖2 = |x| =
√

x · x =

√√√√ m∑
n=1

x2
n. (3.2)

The scalar product of two vectors in Rm as it has been used in the equation above is defined as

a · b = a1b1 + a2b2 + . . .+ ambm. (3.3)

The vector product of two vectors in R3 is defined asa1

a2

a3

×
b1b2
b3

 =

a2b3 − b3a2

a3b1 − b1a3

a1b2 − a2b1

 . (3.4)

In relation to compressed sensing theory, two further norm definitions are of importance to assess

the sparseness of a solution. The l0-‘norm’ (the term is commonly used in the field of engineering)

can be thought of as the l1-norm of the Hamming distance [BSMM06] of the vector x to a

zero-vector of the same dimensions. Simply speaking, the l0-’norm’ is the number of non-zero

elements in a vector x. The l0-‘norm’ as such is, technically speaking, not a norm. Firstly, it

does not satisfy the homogeneity relation [BSMM06]

‖ab‖p = |a| · ‖b‖p. (3.5)

Secondly, it can neither be expressed through the general definition of the p-norm in Banach

Spaces with finite dimensions [Don06, BSMM06]

‖x‖p =

(
m∑
n=1

|xn|p
) 1
p

, 1 ≤ p <∞ (3.6)

nor through the general definition for the integral norm of a function f in Lp (also Lebesgue)

spaces [BSMM06]

‖f(µ)‖p =

(∫
D

|f(µ)|pdµ
) 1
p

, 1 ≤ p <∞. (3.7)

The l1-norm is covered by the definitions above and can be simplified to

‖x‖1 =

m∑
n=1

|xn|. (3.8)

Both, the l1-norm and the l0-‘norm’ are used as a measure to optimise sparse solutions to a

problem in the field of signal processing, although it should be pointed out that in practice, the

l1-norm is used almost exclusively.
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3.2 Complex Numbers

With complex numbers being a substantial tool in nearly all considerations hereunder, a few

notational aspects will be provided in the following. The symbol i =
√
−1 denotes the imaginary

unit. A complex number

c = a+ ib = |c|eiφ ∈ C (3.9)

has a real part a ∈ R, an imaginary part b ∈ R or magnitude |c| and a phase angle φ. Its complex

conjugate is given as c∗ = a− ib = |c|e−iφ, such that cc∗ = |c|2.

3.3 Sets

3.3.1 Defining Sets

Even though not of major interest and not within the focus of this work, sets are however needed

to clearly define the different domains involved in modelling and designing microphone arrays. A

set D is either defined directly

D := {x1, x2, . . .} (3.10)

or by providing a criterion for each element in D to satisfy, e.g.

D := {x ∈ N : x < 6} = {0, 1, 2, 3, 4, 5}. (3.11)

3.3.2 A Cylinder of Infinite Height

Equation (3.11) shows that sets can sometimes also be defined in dependence of other sets. An

important closed set (i.e. it contains also its boundary) used in this work is that of all points x

within a cylindrical volume of radius rV around the origin of radius rV and of infinite height

V := {x ∈ R3 :
√
x2

1 + x2
2 ≤ rV }. (3.12)

3.4 Function Spaces

3.4.1 L2 Spaces

Another set whose definition depends on V is that of all square-integrable functions f(x) on the

integration domain V

L2(V ) := {f(x) : ‖f(x)‖2 =

√∫
V

|f(x)|2dS(x) <∞}. (3.13)

In other words, L2(V ) is the Banach or Lebesgue space, where all elements have a finite integral

norm as given in (3.7) for p = 2. As a Banach space, L2(V ) is also complete [BSMM06].
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3.4.2 Scalar Product

The completeness property of Banach spaces is a very powerful one and all it takes to show that

L2(V ) is also a Hilbert space is to find a scalar product (or inner product) that induces the norm

used to define L2(V ). The definition of a suitable scalar product is given by

〈f |g〉V =

∫
V

f(x)g(x)∗dS(x) (3.14)

and it satisfies the following axioms for every element in L2(V ):

〈f |f〉V ≥ 0, with 〈f |f〉V = 0 when f = 0, (3.15)

〈αf |g〉V = α 〈f |g〉V , α ∈ C, (3.16)

〈f + h|g〉V = 〈f |g〉V + 〈h|g〉V , (3.17)

〈f |g〉V = (〈g|f〉V )∗. (3.18)

It is now clear that the integral norm and the scalar product are related as follows.

√
〈f |f〉V =

√∫
V

f(x)f(x)∗dS(x) =

√∫
V

|f(x)|2dS(x) (3.19)

Therefore, with this scalar product inducing its norm, L2(V ) is a Hilbert space. Further

information on Hilbert spaces can be found in [Kre78, CK98, BSMM06] and other textbooks on

functional analysis.

3.4.3 Total Orthonormal Sets

The introduction of a scalar product also provides the concept of orthogonality. Two elements

f, g ∈ L2(V ) are orthogonal if

〈f |g〉V = 0. (3.20)

Just like for the vector space R3, every Hilbert space L2(V ) different from {0} has at least one

Total Orthonormal Set (TOS) [Kre78]. The latter refers to a subset M ⊂ L2(V ) whose span is

dense in L2(V ), i.e.

span{M} = L2(V ). (3.21)

The span itself is defined as the set of all possible linear combinations of the elements of M .

For this work, only those TOSs that are countable are of interest. In separable Hilbert Spaces,

every orthonormal set is countable [Kre78]. As the name already implies, every element in the

set (or family) M = (pn), n ∈ Z is orthonormal, i.e. the elements are pairwise orthogonal

〈pm|pn〉V =

∫
V

pm(x)pn(x)∗dS(x) =

1, if m = n,

0, if m 6= n,
(3.22)

and are of unitary norm

‖pn(x)‖2 = 1,∀n ∈ Z. (3.23)
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Equation (3.22) is also sometimes called orthonormality relation and is a very basic tool of

geometrical sound field analysis, as will be seen later. Another relation for the elements pn of a

TOS is the completeness or closure relation [Wil99]∑
n∈Z

pn(ζ ′)∗pn(ζ) = δ(ζ − ζ ′) (3.24)

with ζ, ζ ′ ∈ V . The Dirac Pulse δ(x) used in the above equation is defined in Section 3.5.1.

3.4.4 Series Representations in L2(V )

With M as a TOS, any element f(x) ∈ L2(V ) can be represented as an infinite series of products

of unique coefficients cn ∈ C and their corresponding basis function pn.

f(x) =
∑
n∈Z

cnpn(x) (3.25)

The orthonormal nature of the elements in M ensures that the coefficients cn are unique [Kre78].

3.5 Special Functions and Distributions

3.5.1 Dirac Pulse

The Dirac pulse δ(x) is a distribution (or generalised function) with the following definition

[Wil99]:

δ(x) =

+∞ , x = 0,

0 , x 6= 0.
(3.26)

with ∫
R
δ(x− x′)dx = 1, x′ ∈ R. (3.27)

For the case of finite integration limits, one obtains

∫ x0

−∞
δ(x− x′)dx =


0 , if x0 < x′,

1
2 , if x0 = x′,

1 , if x0 > x′.

(3.28)

Also worth mentioning is the very useful sifting property∫
R
f(x)δ(x− x′)dx = f(x′), x′ ∈ R. (3.29)
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3.5.2 Rectangular Function

The definition for the rectangular function Π( xT ) is given by

Π
( x
T

)
:=


1 , |x| < T

2

1
2 , |x| = T

2

0 , |x| > T
2 .

(3.30)

3.5.3 Sinc Function

The sinc function is defined defined as follows:

sinc(x) :=

 sin x
x , if x 6= 0

1 , if x = 0.
(3.31)

The value for x = 0 results from the application of L’Hopital’s rule, where

lim
x→0

sinx

x
= lim
x→0

d
dx sinx
d
dxx

= lim
x→0

cosx

1
= 1 (3.32)

3.5.4 Circular Sinc Function

While the sinc function is defined for x ∈ R, the circular sinc function [Faz10] of the order L is

only defined on the interval [−π, π]:

csincL(x) :=


sin(L x2 )

sin( x2 ) , x 6= 0

L , x = 0.
(3.33)

Once more, the value for x = 0 can be derived from L’Hopital’s rule. Alternatively, csincL(x)

can be defined as a finite series of complex exponentials

csincL(x) :=

N∑
n=−N

einx (3.34)

with N = L−1
2 .

Furthermore, using the completeness relation for TOS in (3.24) and using pn(x) = einx√
2π

for the

elements of the TOS, it can be shown that

lim
L→∞

csincL(x) =

∞∑
n=−∞

einx = 2πδ(x). (3.35)
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3.5.5 The Kronecker Delta

The Kronecker delta δn is a sequence that is zero everywhere but for n = 0, where it assumes the

value 1.

δn =

1, if n = 0,

0, if n 6= 0,
(3.36)

It is typically given in the notation δab for two integers a and b and is zero for a 6= b and one for

a = b [Wil99, BSMM06]. In this work however, the notation in (3.36) will be used for the sake of

brevity.

3.6 Fourier Series

In the field of engineering, a very well known Hilbert space is the one spanned by the orthogonal

basis functions {en = einx, n ∈ Z}

L2([−π, π]) :=

{
f(x) : ‖f(x)‖2 =

√∫ π

−π
|f(x)|2dx <∞

}
. (3.37)

Every element in L2([−π, π]) can be represented by an infinite series.

f(x) =

∞∑
n=−∞

cnen =

∞∑
n=−∞

cne
inx (3.38)

This particular series expansion is also known as a Fourier series [BSMM06] and it is typically

used to represent a T -periodic function

g(t) = g(t− kT ), k ∈ Z.

When the interval of the period [0, T ] is mapped onto the interval [−π, π], then g(t) can be

written in the form of a Fourier series

g(t) =

∞∑
n=−∞

cne
i2πn

t−T/2
T .

3.6.1 Definition

Even though typically used in the form given above, in this work, the Fourier series will be used

in a fully normalised form, so that the basis functions form a TOS. The Fourier series is thus

redefined to

f(x) =

∞∑
n=−∞

cnen =

∞∑
n=−∞

cn
einx√

2π
. (3.39)

Since the basis functions en now form an orthonormal set, the scalar product as defined in (3.14)

for L2([−π, π]) can be used to calculate the Fourier coefficients cn ∈ C. Given a function f(x)
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defined by (3.39), the Fourier coefficients are calculated as follows.

cn = 〈f |en〉[−π,π] =

∫ π

−π
f(x)

e−inx√
2π

dx (3.40)

For the considerations in this work, the Fourier series expansion as specified by (3.39) and (3.40)

will be used and the various variables x fall in the interval [−π, π].

3.6.2 Parseval’s Theorem

For the fully normalised Fourier series introduced, the relation

∞∑
n=−∞

| 〈f |en〉[−π,π] |
2 = ‖f‖22, (3.41)

also known as Parseval’s Theorem (also Parseval Relation or Parseval Equation), holds [Kre78,

BSMM06]. It can also be understood as an equation which underlines that all the energy in a

function f(x) is preserved in its Fourier coefficients. This is also due to the orthonormality of the

basis (en).

3.7 Operators

Operators will be represented by capital letters (e.g. H or G) and are individually defined as they

are introduced. The notation for the application of an operator H to a function q is (Hq)(x),

where the variables in x belong to the projection domain of the operator H. A superscript

asterisk on an operator denotes its corresponding adjoint operator.

All operators occurring in this work are mapping operators for functions in an L2 space A to

either the same or a different L2 space B.

3.8 Fourier Transform

3.8.1 Definition

For the transition from time domain considerations to the frequency domain and vice versa, the

Fourier transform (FT) [Wil99, BSMM06] is typically applied. Following the strict normalisation

of the individual Fourier components presented in Section 3.6, the Fourier transform of a time

domain function a(t), t ∈ R is given by

(Fa) (ω) =

∫
R
a(t)

eiωt√
2π
dt, (3.42)
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using the operator notation introduced in the previous section. The corresponding inverse

transform of a frequency domain function A(ω) is then given by

(
F−1A

)
(t) =

∫
R
A(ω)

e−iωt√
2π

dω. (3.43)

The transformation pair is then given by

(
F−1A

)
(t) = a(t)

F⇐⇒ A(ω) = (Fa) (ω) (3.44)

Note that the definition of the Fourier transform and the inverse transform given in Eqs. (3.42)

and (3.43), respectively, is in accordance with the definition used by Williams [Wil99].

3.8.2 Important Properties and Special Transformation Pairs

The definitions and properties of the FT presented in the following are generally well known in

the field, but can all be found in [Wil99, BSMM06] as well. Note that the normalisation of the

basis function in the definition of the FT and its inverse (see (3.42) and (3.43) may in some cases

lead to a difference by a factor of
√

2π.

3.8.2.1 Convolution Theorem

The convolution theorem for two function f(t) and g(t) is given by the transformation pair

f(t) ∗ g(t) :=

∫
R
f(t′)g(t− t′)dt′ F⇐⇒

√
2πF (ω)G(ω), (3.45)

where F (ω) = (Ff) (ω) and G(ω) = (Fg) (ω). Accordingly, the convolution theorem for the

frequency domain is given by

F (ω) ∗G(ω) :=

∫
R
F (ω′)G(ω − ω′)dω′ F⇐⇒

√
2πf(t)f(t). (3.46)

3.8.2.2 Differentiation Property

Taking the inverse FT given by (3.43) while considering (3.44)

a(t) =

∫
R
A(ω)

e−iωt√
2π

dω

and applying the differential operator d
dt to both sides of the equation yields the transformation

pair
d

dt
a(t)

F⇐⇒ −iωA(ω). (3.47)



38 Chapter 3 - Mathematical Notation, Definitions and Commonly Used Functions

3.8.2.3 Plancherel Theorem

The generalised version of Parseval’s theorem in (3.41) for the FT is called Plancherel’s theorem

[Pla10, Tit25]. ∫
R
f(t)∗f(t)dt =

∫
R
F (ω)∗F (ω)dω (3.48)

⇐⇒
∫
R
|f(t)|2dt =

∫
R
|F (ω)|2dω

Despite its proof was not given until Plancherel’s work, this theorem is very often still referred to

as Parseval’s theorem. The equality can be shown by exploitation of the convolution theorem

and the frequency domain representation of the Dirac pulse (see below) and its shifting property.

3.8.2.4 Dirac Pulse

δ(t− t0)
F⇐⇒ eiωt0√

2π
(3.49)

3.8.2.5 Rectangular Function

Π

(
t

T

)
F⇐⇒ T√

2π
sinc

(
ω
T

2

)
(3.50)

3.9 Coordinate Systems

3.9.1 Cartesian Coordinates

Every point x ∈ R3 is expressed through the triple

x = [x1, x2, x3]T . (3.51)

x1

x2

x3

Figure 3.1: Cartesian coordinates with the three orthogonal coordinate axes.



Chapter 3 - Mathematical Notation, Definitions and Commonly Used Functions 39

3.9.2 Cylindrical Coordinates

Every point r ∈ R3 is expressed by the triple [r, φ, z], with the following relations to Cartesian

coordinates.

r =
√
x2

1 + x2
2 (3.52)

φ = arctan
x2

x1
(3.53)

z = x3 (3.54)

and

x1 = r cosφ (3.55)

x2 = r sinφ (3.56)

x3 = z, (3.57)

respectively.

x1

x2

x3

φ

r

z

x

Figure 3.2: Cylindrical coordinates in the context of Cartesian coordinate axes.

3.9.3 Spherical Coordinates

Every point x ∈ R3 is expressed by the triple [r, φ, θ], with the following relations to Cartesian

coordinates.

r =
√
x2

1 + x2
2 + x2

3 (3.58)

φ = arctan
x2

x1
(3.59)

θ = arctan

√
x2

1 + x2
2

x3
(3.60)

and

x1 = r cosφ sin θ (3.61)

x2 = r sinφ sin θ (3.62)

x3 = r cos θ, (3.63)
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respectively.

x1

x2

x3

φ

x

θ

r

Figure 3.3: Spherical coordinates in the context of Cartesian coordinate axes.
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Circular Arrays With Tangential

Pressure Gradient Sensors

Falk-Martin Hoffmann and Filippo Maria Fazi

Abstract

Microphone arrays as a means of sound field acquisition have been the topic of extensive research

for more than eight decades now. A number of designs have been suggested, each trying

to overcome difficulties that are inherent to either the decomposition of the sound field, the

transducers in use or the presence of the array itself. This work presents a theoretical analysis

of circular microphone arrays that do not measure the sound pressure but the component of

its gradient that is tangential to a given boundary. Its performance is compared to that of a

conventional pressure sensor array as a benchmark. The focus of the analysis and subsequent

assessment lies on spatial aliasing and performance in the presence of noise. It is shown that a

TPG sensor array has improved spatial resolution at low frequencies, provided that the TPG

sensors are of comparable quality as pressure sensors with respect to Signal-to-Noise-Ratio

(SNR). The analysis also reveals that such an array is more vulnerable to spatial aliasing at high

frequencies than pressure sensor arrays.

4.1 Introduction

The general idea behind microphone arrays is to record sound not only at one point in space,

but to capture information about the sound field, such as the direction of travel of incoming

wave fronts. Although it is not necessarily the main objective, one ambitious application of

microphone arrays is to make a recording of the entire sound field. While in theory this goal

can be achieved easily [Wil99], there are various limitations in practice that will degrade the

41
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accuracy of the results. Examples of limiting factors are acoustic transducer noise, impractical

requirements on the measurement resolution and assumptions on the sound field that cannot be

satisfied in practice. Therefore, the focus of the latest research has been on finding means and

ways to overcome those limitations.

The field of array technology is vast and certainly not limited to acoustical applications. For

example, Van Veen and Buckley presented a general work on array technologies for beamforming

applications in wave fields [VB88], among which are e.g. antennas, sonar systems and microphone

arrays. Krim and Viberg presented beamforming with sensor arrays as a problem in the field

of signal processing, based on a wave propagation model [KV96] and considering different array

geometries. Even though not conceptually limited, this work focuses on airborne wave fields and

circular (or cylindrical) arrays.

The earliest approach to a pressure sensor array in the field of airborne acoustics that was applied

to make recordings for stereophonic purposes was presented by A. Blumlein [Blu31, Blu35], which

had later been modified into using two coincident pressure gradient (figure-of-eight) microphone

capsules (also referred to as a ”Blumlein-pair”). This recording technology is still used by today’s

recording engineers, yet it only allows for a two dimensional analysis of the sound field. The first

approach to achieve a three dimensional analysis was based on decomposition of the sound field by

means of spherical harmonics and was presented by Craven and Gerzon [CG74], thereby founding

the ambisonics technique. The ambisonics approach and also the Higher Order Ambisonics (HOA)

approach involve the representation of a sound field as a weighted series of elementary functions

in the spatial domain. These functions are determined by the underlying spherical coordinate

system, leading to an infinite set of both radial (Bessel- and Hankel-functions) and angular

(spherical harmonics) functions. Their form is independent of the sound field itself, ergo the

individual weights of the series are sufficient information to know the sound field in its entirety.

This is similar to the Fourier analysis presented in [Wil99]. However, it has proven itself difficult

to find reliable ways to obtain these weights from measurements.

The general approach of preceding works [ME02, Raf05, LD07, ZDG10] relies on the exploitation

of the orthogonality relation of the underlying basis functions and on its application to the array’s

measured data. One variation of this approach was presented by Rafaely and Park [Raf04, PR05],

who proposed to decompose the sound field into plane waves, which however still involves the

exploitation of the orthogonality relation of spherical harmonics. The latter plays a major role in

many microphone array designs, but in order for these relations to hold without exception, the

sound field must be observed at every single point on the observation boundary. This is so far

not feasible in practice, since the number of observation points would need to be infinite. The

practical solution is to sample the sound field on that boundary instead. Sampling is however

bound to cause aliasing if the observed object’s complexity is not within the limitations imposed

by the sampling scheme. This is already well known in the field of digitalisation of time domain

signals. A thorough analysis of aliasing phenomena in spherical arrays is presented in references

[Raf05, RWB07, LD07]. However, aliasing still remains one of the most prominent problems in

microphone array design.

Rafaely also identified noise of the array’s sensors and inaccuracies in their positioning as significant

sources of error, and presented a detailed analysis of these issues in [Raf05]. Supporting these

results, Poletti has shown that noise induced by the capsules of the array is a problem, especially
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at low frequencies, because the recovery of the information describing the sound field from the

array’s observation requires considerably high gain factors for higher order modes. He showed

that, for a spherical array with pressure sensors on a rigid sphere, the presence of noise may

already pose a fundamental problem for the recovery of the fourth order mode, even with a large

dynamic range of 120 dB for each capsule [Pol05a].

Fazi and Nelson presented the theory and analysis of the problem of nonuniqueness [FN12], as

it occurs in the context of sound field acquisition and reproduction, significantly affecting the

design of microphone arrays.

For applications in which it is sufficient to consider the sound field in two dimensions only, circular

arrays have been investigated as an alternative to spherical arrays. One such application would

be a teleconference scenario where one part of the participants is situated at a table and the

array serves to separate the individual speakers into individual audio signals. Another example

is that of a humanoid robot that needs to distinguish between people addressing him from

different directions, so it can then turn towards them. Meyer presented a work on beamforming in

combination with circular microphone arrays mounted on spherical objects and already considered

the use of pressure sensors as well as dipole sensors [Mey01]. Teutsch and Kellermann have

investigated the theory and practicability of a circular array fitted into a cylindrical baffle for

source detection and localisation purposes [TK06]. Kleider et al. [KRWB10] investigated the

aliasing behaviour of circular arrays based on a two dimensional analysis of the sound field, while

Meyer and Elko [ME08] used a circular array to achieve modal beamforming, still assuming a

spherical (three dimensional) sound field model. Poletti [Pol05b] investigated the performance of

circular arrays w.r.t. noise and transducer variability.

Ever since Blumlein proposed the recording technique based on pressure gradient sensors, the

choice of sensors used in microphone arrays was mainly that of pressure sensors. There are

however a few exceptions. Meyer investigated the use of dipole sensors in a circular array arranged

on the equator of a sphere [Mey01]. His work considered radially aligned dipoles as well as

dipoles aligned in the circumferential direction. Hulsebos et al. presented a theoretical study

of a circular microphone array with a large number of cardioid microphones to perform high

directivity beamforming for incoming wave fields [HSdVB03]. Their study is largely based on

simulation and the use of cardioid sensors was motivated by the prospect of a reduced number

of sensors while avoiding zeros in the modal responses of the array (compare to [Pol05a] where

this is related to nonuniqueness of the inverse problem). Using a large number of sensors was

proposed to push spatial aliasing effects to very high frequencies, however, the effective channel

number was further reduced by electrically combining sets of microphones into one virtually

large microphone capsule. This can be related to a work by Rafaely et al. in which the spatial

aliasing behaviour in spherical microphone arrays is studied [RWB07]. The study by Hulsebos et

al. also investigated the system’s directivity for plane waves impinging at an angle to the plane

of the microphone array. Poletti has considered the application of directional sensors in an open

sphere design pointing radially outward, and he found that the problem of nonuniqueness as it

occurs with pressure sensors can be overcome [Pol05a]. Melchior et al. proposed a dual radius

design of a spherical array with cardioid microphones for use in a binaural auralisation system

[MTDG+09]. The dual radius design increases the width of the optimal frequency range. Another

more recent design based on differential sensors was presented by Craven, Law and Travis, who

proposed a spherical array based on tangential velocity sensors [CLT09]. They found that such
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a design allows for a reduced effect of noise at lower frequencies. As theirs was a conceptual

study, a theoretical analysis of the design has so far not been presented. Zaunschirm and Zotter

proposed a circular table-top microphone array with cardioid microphones and a single pressure

sensor for beamforming with both horizontal and vertical steering ability [ZZ14]. They propose a

microphone signal decomposition method that is obtained through the (regularised) inversion

of a MIMO (Multiple Input Multiple Output) system, extracting the coefficients of a spherical

harmonics sound field representation. This enables modal beamforming in the spherical harmonics

domain with their proposed array design. Chen et al. proposed a planar microphone array with

a hybrid configuration of both pressure sensors as well as first-order (dipole) sensors to enable

three-dimensional sound field analysis [CAZ15]. Despite the two-dimensional array aperture,

the mathematical model of the sound field is derived from a spherical harmonics decomposition.

From their theoretical considerations, they propose a specific design procedure for the considered

type of array. They found that the performance of their proposed design compares well to that of

spherical microphone arrays.

On the background of the work of Craven, Law and Travis, it should be noted that, in homogeneous

sound field conditions, the pressure gradient relates to the velocity by Euler’s equation. On the

surface of a rigid object, however, this relation is no longer valid and needs to be replaced by a

set of equations describing the laminar sound field behaviour within the acoustic boundary layer.

These can be derived from the Navier-Stokes equations. A detailed analysis of this is not within

the scope of this work, but should be mentioned for the sake of completeness.

This study aims to mathematically confirm the low frequency improvement predicted by Craven

et al. and perform a full analysis of the spatial aliasing behaviour of tangential pressure gradient

arrays on the basis of a circular array aperture. A theoretical analysis of a circular microphone

array is presented, where the array is composed of sensors that measure the tangential component

of the pressure gradient. An initial study of this design was presented by the authors in reference

[HF14]. This work complements the initial work with further theoretical and numerical in-depth

analysis, as well as with an investigation of the noise and aliasing performance and the array’s

optimal frequency band. In Section 4.2, a mathematical model of the sound field is presented

that is based on the Herglotz Wave Function, modelling a sound field as a superposition of plane

waves. The relation between the sound field and the observation of the microphone array is

expressed by means of an integral operator. This leads to an inverse problem, which is dealt

with in a functional analysis framework. This mathematical approach is not very common in the

field of transducer array research, but it is a very neat and effective tool to perform the type of

analysis this work presents. It has been applied in previous work by Colton and Kress [CK98]

and by Fazi [Faz10]. In Section 4.3, the presented array model is discretised and a thorough

analysis of the array’s aliasing behaviour is undertaken. Section 4.4 provides a simulation based

study of the array’s performance for the measurement of the approximated sound field of a single

plane wave, comparing the recovered sound field information to the theoretical results, evaluating

the overall error of the recovery and discussing the significance of aliasing and transducer noise as

a problem. The final section summarises the findings of this work and gives a brief overview on

upcoming research. It is shown that the predicted improvement of the low frequency performance

is confirmed, provided that the sensors are of comparable quality to state-of-the-art pressure

sensors, particularly w.r.t. their self-noise and achievable SNR. The spatial aliasing behaviour is

shown to be worse than that of conventional arrays with pressure sensors.
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4.2 Model of the Sound Field

For the subsequent analysis, a mathematical model describing the pressure of an arbitrary sound

field within a given region of space (or area, in the two-dimensional case) Λ is needed. The model

x2

x1

Ω

φx

rX

∂V

φy

x3

x1

rV

Λ

Figure 4.1: (left) Schematic description of the volumes and boundaries involved in the sound
field model, (right) schematic description of an infinite cylinder of radius rV .

relies on the assumption that the measured sound field can be represented as the superposition of

an infinite number of plane waves. This model is particularly useful when considering a limited

number of incoming plane waves (see Section 4.4). When dealing with spherical or cylindrical

geometries, it is convenient to represent the plane wave model by means of Fourier expansion.

This is the approach chosen in this work.

4.2.1 Plane-Wave Decomposition

The equation

p(x, ω) =

∫
Ω

H(x, ŷ, ω)q(ŷ, ω)dΩ(ŷ), x ∈ Λ, (4.1)

as given in [FNW12], describes the acoustic pressure at an arbitrary position x as a linear

superposition of an infinite number of plane waves travelling into all possible directions ŷ, where

ŷ is a unitary vector. ω = 2πf denotes the angular frequency corresponding to the acoustic

frequency f and Ω represents the unit sphere or circle in R3 or R2, respectively. The above

integral equation is also referred to as the Herglotz Wave Function (HWF) [FNW12] where the

Herglotz Density (HD) q(ŷ, ω) describes the complex amplitude of the different plane waves.

These are expressed by the kernel H(x, ŷ, ω) = eikx·ŷ, where i =
√
−1 is the imaginary unit and
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k is the acoustic wave number1. In principle, equation (4.1) is valid for Λ = R3 (or Λ = R2),

provided that the sound field satisfies the homogeneous wave equation in that domain. In practice,

this equation is often used to represent a sound field that satisfies the homogeneous wave equation

only in a bounded domain Λ.

This representation is used as a foundation for the theory of the baseline microphone array design,

using pressure sensors only. For the sake of brevity, the argument ω is omitted in all equations

used hereunder, since all calculations are derived for a single frequency ω.

In the subsequent analysis, all considerations are limited to a two-dimensional scenario, assuming

that the sound field is constant along the x3-axis with

p(x1, x2, x3) = p(x1, x2). (4.2)

This is a common means of simplification when a height-invariant sound field is observed on the

boundary δV of an infinitely long cylinder extending along the x3-axis, as depicted in Fig. 4.1.

The assumption given in equation (4.2) then allows for another simplification from cylindrical

coordinates to polar coordinates, so that

x1 = rx · cosφx, and (4.3)

x2 = rx · sinφx, (4.4)

where φx = arctan x2

x1
is the polar angle of a vector x = [x1, x2]T .

Since this study aims at an array design observing the tangential component g of the pressure

gradient, an expression similar to (4.1), relating the HD and the Tangential Pressure Gradient

(TPG) component, needs to be found. With the assumptions made in the previous paragraph,

the latter is defined by the scalar product

g(x)

∣∣∣∣
x∈∂V

= ∇p(x) · b(x). (4.5)

∂V denotes the boundary of the microphone array which embeds all the observation points2 or

sensors, respectively. b(x) represents the unit vector pointing in the direction tangential to ∂V

at the observation point x. It is important to realise that, depending on the chosen coordinate

system and on the shape of ∂V , the analytical expression for g given by (4.5) may become

considerably more complicated.

Let ∂V be a circle of radius rV . Using the Jacobi-Anger expansion [CK98]

eikx·ŷ =

∞∑
n=−∞

inJn(krx)einφxe−inφy , (4.6)

to replace the kernel, equation (4.1) can be reformulated in polar coordinates, thus obtaining

p(rx, φx) =

∞∑
n=−∞

inJn(krx)einφx
∫ 2π

0

e−inφyq(φy)dφy. (4.7)

1Note that the Herglotz Wave Function as given in [FNW12] uses a complex conjugate kernel e−ikx·ŷ instead,
since Fazi et al. define ŷ as the direction of arrival, instead of the direction of propagation.

2This denomination is compliant with the work of Williams [Wil99], chapter 8, page 258.
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φx and φy correspond to the polar angles of x and ŷ, respectively. Jn(krx) denotes the Bessel

function of order n and describes the radial component of the sound field. To allow for modelling

either free field conditions (FF) or the sound field in the presence of a rigid infinite cylindrical

scatterer (CS) of radius rs at the origin, Jn(krx) needs to be replaced by a more general radial

function Rn(krx). For reasons of brevity, the complex factor in in (4.7) is also included in this

radial function, so that the latter is defined by

Rn(krx) = in

Jn(krx) , FF

Jn(krx)− J′n(krs)

H
(1)′
n (krs)

H
(1)
n (krx) , CS

(4.8)

where H
(1)
n (x) denotes the Hankel function of the first kind of order n, and J ′n(krs) and H

(1)′
n (krs)

are the derivatives of the Bessel function and the Hankel function, respectively, evaluated at the

boundary of the rigid cylindrical scatterer. The derivation of Rn(x) can be found in [Wil99],

Section 6.10. For rs = rV , the tangential component of the pressure gradient on ∂V is now a

function of φx only and is given by [Wil99]

g(φx) =
1

rx

∂p(rx, φx)

∂φx

∣∣∣∣
rx=rV

. (4.9)

Equations (4.7) and (4.9) then provide the relation between the HD q(φy) and the pressure on

∂V and its gradient, respectively. In order to obtain q(φy) from the observed pressure p(φx) or

from its gradient g(φx), respectively, the corresponding integral equations need to be solved for

q(φy).

A common approach [Raf05, Pol05a, MDB06] to obtain a solution, based on the observation of

the pressure, is to represent the HD by a Fourier series

q(φy) =

∞∑
m=−∞

qm
eimφy√

2π
, (4.10)

where

qm =

∫ 2π

0

q(φy)
e−imφy√

2π
dφy. (4.11)

Replacing q(φy) in (4.7), replacing inJn(krx) with Rn(krx) and using the orthogonality relation∫ 2π

0

eimφe−inφdφ = 2πδm,n, (4.12)

leads to the expression of the Fourier coefficients

qm =
1

Rm(krV )(2π)
3
2

∫ 2π

0

e−imφxp(φx)dφx,∀m ∈ Z. (4.13)

It is important to realise that this approach leads to a unique solution only if Rm(krV ) 6= 0,∀m ∈
Z,∀k. Similarly, as Rm(krV ) can converge to zero for high values of m, a solution may exist

and be unique, yet be potentially unstable. As shown below, such a solution based only on the

observation of the TPG on a boundary ∂V recovering all coefficients qm,m ∈ Z cannot be found.

This poses a significant problem to the intended array design.
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Nevertheless, a derivation similar to that shown in the previous paragraph and based on equation

(4.9) would lead to a very similar solution, however, only for this particular geometry. For the

sake of a more general approach, the recovery of q(φy) from g(φx) is derived in the following

subsection, using functional analysis as a tool.

4.2.2 Analysis of the Integral Operator G

The two quantities of major interest in the given sound field model are the HD q(φ) and the

pressure gradient g(φ). Both q(φ) and g(φ) are assumed to be square-integrable and are considered

as elements of an open Hilbert space A. Furthermore, it is assumed that q and g can be described

through an infinite weighted sum of orthonormal basis functions an(φ) ∈ A.

q(φ) =

∞∑
n=−∞

qnan(φ), qn ∈ C, and (4.14)

g(φ) =

∞∑
n=−∞

gnan(φ), gn ∈ C. (4.15)

As for the requirement of all functions q(φ) and g(φ) being square-integrable, it is convenient

to make an exception in the case of the Dirac pulse, which is not square-integrable but can be

expressed as an infinite weighted sum of orthonormal basis functions (see Chapter 3, Section

3.24). The Dirac pulse is useful for the considerations made hereunder, e.g. to model the field of

a single plane wave.

Note that, since both functions are elements of A, the indices x and y of both r and φ have been

dropped in the following. The operator H is defined by evaluating equation (4.7) only for x ∈ ∂V
and by replacing Jn(x) by Rn(x), yielding

(Hq) (x) := p(φ, rV ) =

∞∑
n=−∞

Rn(krV )einφ
∫ 2π

0

e−inφ
′
q(φ′)dφ′,x ∈ ∂V, (4.16)

with H : A→ A, which is of no further interest in this study. However, replacing p in (4.9) by

(4.16) leads to the integral equation

g(φ) =

∞∑
n=−∞

Rn(krV )
1

rV

∂

∂φ

(
einφ

)∫ 2π

0

e−inφ
′
q(φ′)dφ′, (4.17)

that is similar to (4.16). This equation defines a new integral operator G : A→ A that maps a

given HD q(φ) to the corresponding pressure gradient g(φ) on ∂V :

(Gq)(x) := g(φ) =

∞∑
n=−∞

Rn(krV )
in

rV
einφ

∫ 2π

0

e−inφ
′
q(φ′)dφ′,x ∈ ∂V. (4.18)

This equation perfectly describes what a TPG sensor located at φ observes in a sound field that

is defined by the HD q(φ). This result was presented before in [HF14] and is also very similar to

what Meyer described in principle for dipole sensors aligned with a circumferential orientation on

the equator of a sphere [Mey01].
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Aiming at a more general approach to aliasing analysis, the following subsection briefly introduces

the eigenvalue decomposition of G.

4.2.3 Eigenvalue Decomposition of G

G has been identified as a mapping operator from a function q(φ) ∈ A to a function in g(φ) ∈ A.

For a better understanding of the relation between q and g, G is analysed w.r.t. how the strength

of a mode (see below) of q is transmitted to the corresponding mode of g.

The eigenvalue decomposition of the operator G is based on the equation

(Gan)(φ) = λnan(φ), (4.19)

where λn denotes the eigenvalue associated to the corresponding eigenfunction an(φ) of G, where

the latter is hereafter referred to as a mode. The eigenvalues and eigenfunctions of G for the case

under consideration are

λn = 2π
inRn(krV )

rV
, (4.20)

an(φ) =
einφ√

2π
. (4.21)

When comparing equation (4.18) to the results of the Eigenvalue Decomposition (EVD) (equations

(4.20) and (4.21)), it can be assumed that the operator G can be written as follows:

(Gq)(φ) =

∞∑
n=−∞

an(φ)λn 〈an|q〉Ω = g(φ). (4.22)

This expression may be interpreted as the spectral decomposition of the compact operator G

[CK98], where 〈f |g〉Ω =
∫

Ω
f∗(x)g(x)dΩ(x) describes the scalar product of two functions in A.

This scalar product serves to extract the coefficient qn of the nth mode an as a component of

q. The extracted mode strength qn is then weighted by the corresponding eigenvalue λn and

multiplied with the mode itself again. This formulation allows for the interpretation of the

eigenvalues as coupling factors that describe how the mode strength in q(φ) is transformed to the

resulting function g(φ) [Faz10].

It is evident that not all eigenvalues are non-zero. The most trivial case is that of λ0 = 0, which

corresponds to the mode a0(φ) = 1√
2π

. This result implies that a constant

q(φ) = κ ∈ C, (4.23)

is an element of the null space N(G) of the operator G. This can be easily proven when evaluating

equation (4.18) for a constant q. In fact, the latter is still of the form given in (4.14) and, hence,

an element of A, where qn = 0,∀n 6= 0. Further zero eigenvalues can arise from an open cylinder

array design when Rn(krV ) = 0. The null space of G has a crucial influence on the existence of a

unique solution to the inverse problem, as shown in subsection 4.2.5.
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4.2.4 The Eigenvalues λn

A deeper analysis of the eigenvalues provides a theoretical insight into the system’s vulnerability

to both aliasing and transducer noise. The latter becomes a problem when the observation g(φ)

is heavily amplified for the recovery of a coefficient qn, while the former is an inherent product of

discretisation. The influence of the eigenvalues on the aliasing behaviour is investigated in more

detail in Section 4.3.

In this section, the noise performance is analysed. First, it is necessary to analyse how the

strength qn of a mode an(φ) in q(φ) is transformed into the corresponding mode strength gn in

g(φ). With g(φ) = (Gq)(φ) and comparing the different factors in equations (4.22) and (4.15), it

can be seen that the following equation must hold:

gn = λn 〈an|q〉Ω = λnqn. (4.24)

As the scalar product simply extracts the strength of the nth mode from q(φ), it is evident that

the eigenvalues serve as complex gain factors. When assessing the theoretical performance of

microphone arrays, it is more interesting to study the above equation after rearranging it for qn.

This yields

qn =
1

λn
gn, for λn 6= 0. (4.25)

This shows that the desired mode strength qn is calculated by extracting gn from the array

observation and then weighting it by 1
λn

. However, for very small λn, the fraction in (4.25)

becomes very large. In such a case, when gn happens to be slightly corrupted by measurement

noise, the resulting qn is very likely to significantly deviate from the actual value, as the noise

component in gn is heavily amplified.

To define if the problem introduced above is of any practical significance, the behaviour of the

eigenvalues as a function of frequency needs to be analysed. Fig. 4.2 shows the graphs of the

magnitude of the first3 seven non-zero eigenvalues (n = 1 . . . 7) within the audible frequency

range. It can be observed that the development of eigenvalues of different orders for a TPG array

10
1

10
2

10
3

10
4

-100

-75

-50

-25

0

25

50

n=1

n=2

n=3

n=4

n=5

n=6

n=7

Figure 4.2: Magnitude of the eigenvalues |λn| of G for n = 1 . . . 7, f = 10 . . . 20× 103 Hz for
an array on a rigid cylindrical structure at the origin with rV = 0.1 m.

3Since the eigenvalues have not been ordered so far, the term ’first’ simply refers to the index n.
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roughly compares to that of the eigenvalues of the operator H

νn = 2πRn(krV ) (4.26)

for a conventional pressure sensor array, which is presented in Fig. 4.3. An analogous plot was

already presented by Meyer [Mey01] for a circular array mounted on the equator of a sphere and

by Elko and Meyer [ME02] for the case of spherical arrays. Poletti presented an equivalent plot

for a spherical array with radially aligned first order sensors [Pol05a].
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Figure 4.3: Magnitude of the eigenvalues |νn| of H of a conventional array based on pressure
sensors on a rigid cylindrical structure with rV = 0.1 m for n = 0 . . . 7, f = 10 . . . 20× 103 Hz.

Two major differences between the two figures are that, firstly, Fig. 4.2 does not include λ0 and,

secondly, the additional component |n|rV , which does not affect the shape of the individual graph

(in a dB scale) but translates them vertically.

In conclusion, similar to an array using radially outward pointing gradient sensors [Pol05a], the

design investigated in this work is expected to achieve a better noise performance than arrays with

pressure sensors [CLT09]. This is not only the case at low frequencies but overall because of the

additional gain component mentioned above. Of course, this statement relies on the assumption

that pressure gradient sensors and pressure sensors are of equal quality. However, for n = 7, the

gain that needs to be applied to the measured g7 for the recovery of q7 is approximately +25 dB

at f = 1 kHz and rV = 0.1 m with the TPG sensor array, while it is more than +50 dB for the

same scenario with a pressure sensor array. This leads to the assumption that a TPG sensor array

allows for an increased spatial resolution in scenarios with transducer noise (see Section 4.4).

While the overall development of the eigenvalues appears to make the array more robust against

noise, the additional component |n|rV , which depends linearly on the order n, reduces the system’s

robustness against aliasing. This is further investigated in Section 4.3.

4.2.5 Solution of the Inverse Problem

In order to retrieve q(φ) from the observation of g, it is necessary to invert G. Considering

equation (4.22) and taking into account that the basis functions are orthonormal, the solution to
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the inverse problem is

q̃(φ) =

∞∑
n=−∞
n 6=0

an(φ)
1

λn
〈an|g〉Ω =

∞∑
n=−∞
n 6=0

an(φ)q̃n. (4.27)

From equation (4.27), it is evident why, in order for q̃ to be bounded, the mode a0(φ) corresponding

to the eigenvalue λ0 = 0 must be excluded from the solution. As a matter of fact, the mode a0(φ)

is in the null space of the adjoint operator G∗ and therefore does not satisfy the first Picard

condition for the uniqueness of a solution [CK98, Faz10]. Furthermore, considering equation

(4.20) it is also evident why the solution does not exist when

Rn(krV ) = 0. (4.28)

The limitation implied by (4.28) is a well-known problem in the field of microphone array research

[Pol05a, FN12], which is often overcome in practice by choosing designs based on a rigid array

structure.

Another requirement for the solution to be bounded is that the expression

∞∑
n=−∞
n6=0

| 〈an|g〉Ω |2

λ2
n

<∞

is satisfied, which corresponds to the second condition of Picard’s theorem. In theory, this is

potentially not satisfied; however, the order truncation discussed in Section 4.3 ensures that this

condition is always satisfied. Finally, the explicit expression of the solution is

q̃(φ) =

∞∑
n=−∞
n 6=0

einφ
−irV

4π2nRn(krV )

∫ 2π

0

e−inφ
′
g(φ′)dφ′. (4.29)

It follows from (4.27), (4.29) and (4.12) that the series coefficients are given by

q̃n =
−irV

(2π)
3
2nRn(krV )

∫ 2π

0

e−inφ
′
g(φ′)dφ′,∀n ∈ Z\{0}. (4.30)

Equations (4.29) and (4.30) have already been presented in [HF14] but they were derived from a

Singular Value Decomposition instead. The result in (4.30) is very similar to that given in (4.13).

The minor difference in the denominator of the fraction is due to the use of the TPG instead of

the pressure itself.

The solution presented above leads to a valid HD. However, it is crucial to realise that, since the

nullspace of G (see eq. (4.23)) is non-trivial, the solution q̃(φ) recovered from the observation of

g may differ from the original HD q(φ) by an additional constant factor α, because any solution

q(φ) = q̃(φ) + α, α ∈ C (4.31)

is also a solution. This must be the case since α = q0 (compare eq. (4.11) for m = 0), which can

also be extracted from q(φ) by exploiting orthogonality (see eq. (4.12)).
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The zero-order mode represents the direct component q0 in (4.14). The physical interpretation of

this mode is most easily understood, considering the source-receiver reciprocity, as the sound field

generated by a breathing cylinder, i.e. an outgoing or incoming wave with a constant magnitude

and phase for all angles at a fixed radius rV . This can be easily proven by evaluating (4.7) for

q(φ) = q0a0(φ) = q0√
2π

. As a consequence, the TPG g is not affected by a direct component q0 of

q, which unfortunately implies that q0 cannot be recovered from the knowledge of g. Moreover,

the implicit assumption made in this section, that q0 = 0, imposes a significant restriction to

generality.

These findings are rather discouraging, considering the original objective to capture an entire

sound field from an array consisting of TPG sensors only. Nevertheless, it is shown below that

this problem can be overcome in certain conditions by adding one or more pressure sensors to

the array.

4.3 Discretisation and Aliasing Analysis

Similar to the sampling of a time domain signal, the sampling of the pressure gradient on a circle

with radius rV leads to spatial aliasing effects, if the sound field contains modes of higher order

than those captured by the array. These higher order modes are bound to corrupt the observed

modes. An odd number L of TPG sensors distributed uniformly on the circle allows for the

recovery of modes an(φ), |n| ≤ N with

N =
L− 1

2
. (4.32)

Note that one might be led to assume that it would suffice to have L = 2N sensors in order to

solve a fully determined linear system of equations to recover the coefficients qn for 1 ≤ |n| ≤ N .

While from a linear algebra point of view that may be true, such a configuration results in

sampling below the Nyquist rate that requires more than two samples within a period of the

highest modal component. As a consequence, the choice of L = 2N would affect the spatial

aliasing behaviour of the system, i.e. the highest order in particular would likely be compromised.

The reconstruction of a sound field containing modes of order higher than N is investigated in

the following. For reasons of brevity, the argument of the radial functions Rn(krV ) has been

omitted hereunder.

The integral in (4.30) is discretised with L sampling points and the equation is then rewritten as

q̃n =
−irV

nRn(2π)
3
2

L∑
l=1

e−in∆φlg(∆φl)∆φ, ∀n ∈ Z\{0} (4.33)

where ∆φ = 2π
L is the angular spacing between neighbouring sensors. Note that a uniform

sampling is not strictly necessary and other sampling schemes (e.g. Golden-Ratio sampling

[KRWB10]) could be considered in principle. In this work, however, only uniform sampling and

the corresponding aliasing pattern (see next section) is considered.
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4.3.1 The Aliasing Pattern

Replacing g by the series expansion given in (4.15) and using (4.21) leads to

q̃n =
1

λn

∞∑
m=−∞

gmAm,n, (4.34)

where the factors

Am,n =
1

L

L∑
l=1

e−in∆φleim∆φl =

1 ,m = n+ uL, u ∈ Z

0 , otherwise
(4.35)

are the elements of a matrix that describes the aliasing pattern of the system. The results in (4.34)

and (4.35) have already been found in a similar form by Poletti in [Pol05b]. Fig. 4.4 shows the

values of (4.35) evaluated for a circular array with L = 15 microphones and n ∈ [−7, . . . , 0, . . . , 7]

and m ∈ [−22, . . . , 0, . . . , 22]. Black cells indicate values of Am,n that are different from zero,

Figure 4.4: Visualisation of the orthogonality matrix Am,n for a circular array with L = 15
microphones. Each cell represents whether two modes am and an are orthogonal (white cell)
or not (black cell), when sampled at L points on a circle. The two light grey lines indicate the

mode range (±N) of the array.

hence indicating a pair of modes that are not orthogonal to each other. As such, Fig. 4.4 is

a good indicator of which modes n recovered by the array are corrupted by modes of order

m of the sound field - in other words, aliasing. For example, a recovered coefficient q̃7 of the

mode corresponding to n = 7 is corrupted by aliasing, if the sound field contains modes of order

m = 7 + uL, u ∈ Z, i.e. m = −8 and m = 22 as given in Fig. 4.4.

Repeating the same steps as above, starting from equation (4.13) leads to the same orthogonality

matrix Am,n for an array composed of pressure sensors. This shows the aliasing scheme to be the

same for both array types.
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Using eq. (4.24) in (4.33) and exploiting (4.35) leads to the following equation describing precisely

the aliasing behaviour

q̃n = qn +

∞∑
u=−∞
u 6=0

λn+uL

λn
qn+uL. (4.36)

Following mathematical passages similar to those presented above, it can be easily shown that

equations (4.24) and (4.36) are the same for a pressure sensor array but with different eigenvalues

νn [Faz10].

The ratio of two eigenvalues λn+uL

λn
in (4.36) has a major effect on the vulnerability to aliasing.

The reason for this can be seen from the graphs of the eigenvalues in Fig. 4.2. The additional

factor |n| leads to an amplified contribution of aliased modes on the TPG observation. It can

therefore be expected that for the proposed design the aliasing induced at high frequencies by

high order modes is worse compared to that of pressure sensor arrays for which the ratio |νn+uL

νn
|

remains close to one (compare to Fig. 4.3 and the results in [Pol05a]). However, since the

maximum of λn shifts towards higher frequencies with increasing n (see Fig. 4.2), this effect is

only relevant up to a certain ua where
λn+uaL

λn
< 1.

Considering the case of n = 0, Fig. 4.4 does not give any information on the aliasing pattern for

the 0th order mode since q0 cannot be recovered from an array using pressure gradient sensors

only. To overcome this limitation, the array needs to be extended by at least one pressure sensor,

leading to an overall amount of L+ 1 sensors.

A linear algebra formulation of the mode recovery problem is introduced in the following subsection

and then one additional pressure sensor is included into the system.

4.3.2 Mode Recovery using Linear Algebra

In the following, the objective is to recover modes up to order N from the data acquired with L

sensors. For a given HD with limited order N (aliasing free case)

q(φ) =

N∑
n=−N

qnan(φ), (4.37)

the result of equation (4.18) can be rewritten as a function of the coefficients qn. Using (4.15),

(4.21) and (4.24) yields a solution for the TPG with limited order N , given by

g(φ) =

N∑
n=−N

in

rV
Rn
√

2πeinφqn. (4.38)
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The expression of (4.38), when evaluated for all L observation points, leads to a system of linear

equations, which can be written using matrix notation:

g =


g(∆φ · 1)

...

g(∆φ · L)


L×1

= HJ



q−N
...

q−1

q1

...

qN


2N×1

= HJq, (4.39)

where

J =
i
√

2πL

rV
· diag(−NR−N , . . . ,−R−1, R1, . . . , NRN ) (4.40)

and

H =
1√
L


e−iN∆φ1 · · · e−i1∆φ1 ei1∆φ1 · · · eiN∆φ1

...
...

...
...

e−iN∆φL · · ·e−i1∆φL ei1∆φL · · ·eiN∆φL

. (4.41)

Note that the mode coefficient q0 is not included in any of these equations. In order to recover

the mode vector q from the observations g, the linear equation system needs to be solved by

matrix inversion. J is a diagonal matrix is therefore trivial to invert. However, with L > 2N , the

overall equation system is overdetermined, hence H needs to be inverted by its Moore-Penrose

Pseudoinverse [Hay02]

H† = (HHH︸ ︷︷ ︸
I2N

)−1HH = HH , (4.42)

where I2N denotes the 2N × 2N unity matrix. The least-squares estimate q̃ of q based on the

observations g is then given by

q̃ = J−1HHg = J−1HHHJ︸ ︷︷ ︸
I2N

q = q (4.43)

and hence even an exact solution. This is because the chosen g has no components in the nullspace

of HH and is order-limited (aliasing free case). An alternative way to obtain the weights qn is

given by equation (4.33).

In the next subsection, the recovery of the 0th mode is described.

4.3.3 Recovery of the 0th Mode using an additional pressure sensor

An additional pressure sensor located at φ = φp is used as a means to recover the coefficient q0,

when all other sensors are TPG sensors.
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Similar to the TPG in (4.38), the pressure at φp can be expressed as a function of qn, where the

HD q(φ) has still a limited order N . Combining (4.16) and (4.10) leads to

p(φ) =

N∑
n=−N

Rn
√

2πeinφqn. (4.44)

This sum can also be expressed using linear algebra:

p(φp) =
[√

2πR0 b
]



q0

q−N
...

q−1

q1

...

qN


(4.45)

with

b =
√

2π
[
R−Ne

−iNφp · · ·R−1e
−i1φp R1e

i1φp · · ·RNeiNφp
]
.

With the recovery of all 2N + 1 coefficients but q0 from the TPG observation, the only unknown

in equation (4.45) is q0. Using the result for q̃, the solution for q̃0 is then given as

q̃0 =
1√

2πR0

[p(φp)− bq̃] = q0, (4.46)

which is also an exact solution when (4.38) is satisfied.

An equivalent formulation of the same result is to comprise the full array observation g and p(φp)

in an extended equation system

ge =

[
p

g

]
= Y

[
q0

q

]
= Yqe, (4.47)

Y =

[√
2πR0 b

0 HJ

]
(L+1)×(2N+1)

, 0 =


0
...

0


L×1

.

The system matrix Y is a composition of different matrices and vectors, which clearly limits the

contribution of the 0th mode to the observed pressure p. The subscript e serves to distinguish

between the original and the extended vectors. In the light of the results found in (4.42), (4.43)

and (4.46), the Moore-Penrose Pseudoinverse of Y is of the form

Y† =

[
1√

2πR0
v

0 J−1HH

]
, (4.48)

which has been confirmed by numerical results. As already implied by eq. (4.48), it is clear that

p in ge is not used to recover any coefficients other than q0, because the contribution of q0 to p

cannot be compensated for, in general, by a linear combination of the elements of g.
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In fact, the analytic expression of the vector v can be derived from the findings above. From

(4.43), (4.46) and (4.48) it is evident that v needs to satisfy

−1√
2πR0

bq =
−1√
2πR0

bJ−1HHg = vg (4.49)

=⇒ v =
−1√
2πR0

bJ−1HH . (4.50)

The L components of v are therefore

vl =
irV
LR0

N∑
n=−N
n 6=0

1√
2πn

einφP e−in∆φl, l ∈ [1, . . . , L]. (4.51)

The expression in (4.49) defines v uniquely, since g can be any element of an L dimensional

vector space.

The final result for all recovered mode coefficients is

q̃e = Y†ge. (4.52)

It has been shown that, provided the HD q(φ) defining the sound field leading to the observation of

ge does not contain any modes an(φ), |n| > N , the application of the Moore-Penrose Pseudoinverse

Y† leads to an exact solution for q̃e, and all coefficients qn, including the 0th order coefficient q0,

are recovered correctly.

Unfortunately, sound fields are typically not order-limited. The aliasing pattern for an array

observing the TPG only has already been presented in subsection 4.3.1; the consequences of

aliasing on the recovery of q0 are investigated in the following subsection.

4.3.4 Robustness of the 0th Order

It has been shown in the previous subsection that the mode coefficient q0 can be recovered

successfully if the condition

qn = 0,∀|n| > N (4.53)

is satisfied (compare to eq. (4.46)). This subsection deals with the recovery of the coefficients qn

in the presence of spatial aliasing.

For a HD of infinite order, equation (4.36) describes exactly how the elements of q̃ are distorted,

yet it does not predict how q̃0 is affected. Evidently, from equation (4.46) it can be seen that a

recovered coefficient vector q̃ corrupted by aliasing also results in an inaccurate recovery of q0,

namely

q̃0 6= q0.

As a consequence, q0 can only be recovered accurately if (4.53) holds. Whenever this condition is

not satisfied, not only are the observed coefficients q̃ degraded in accordance with the scheme

given by orthogonality matrix Am,n, but q0 is subject to aliasing.
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In conclusion, the aliasing pattern of the array with the additional pressure sensor can only

partially be described by Am,n as the corruption of the 0th order mode is not accounted for.

Fig. 4.5 qualitatively indicates the resulting orthogonality matrix Ãm,n obtained after combining

Am,n with the effect that corrupted higher orders q̃n, 0 < |n| ≤ N have on the 0th order.

Figure 4.5: Schematic visualisation of the new orthogonality matrix Ãm,n for a circular array
with L = 15 HD sensors and one pressure sensor. The two light grey lines indicate the mode

range (±N) of the array.

When comparing the aliasing patterns in Fig. 4.4 and Fig. 4.5, it can be seen that the TPG

sensor array with an additional pressure sensor is more vulnerable to aliasing than a system

based only on pressure sensors.

4.3.5 HD Coefficients of the Sound Field of a Plane Wave

The HD of a single plane wave of unity magnitude travelling in the direction φi is given by

q(φ) = δ(φ− φi). (4.54)

This leads to the following TPG

g(φ) =
1

rV

∞∑
n=−∞

inRne
inφe−inφi . (4.55)

The Fourier coefficients of the HD given in (4.54) are

qn =

∫ 2π

0

q(φ)
e−inφ√

2π
dφ =

1√
2π
e−inφi . (4.56)

For comparison with the work of Williams [Wil99], the following equation describes the relation

between the coefficients used in this work and the helical wave coefficients Cn in Williams’ work
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(compare [Wil99], Section 4.3, pp. 121 ff).

qn =
i−n

(2π)
3
2

Cn (4.57)

Equation (4.56) shows that for a single plane wave, the magnitude of all coefficients is 1√
2π

.

4.3.6 Example of Mode Recovery With Spatial Aliasing

Fig. 4.6 shows the mode recovery performance of an array of L = 15 TPG sensors and one

pressure sensor. The simulated sound field has a limited order Ns ≥ N (qn = 0,∀|n| > Ns) and

the coefficients qn are specified by (4.56). The wave field is an approximation of a plane wave

within a radius rPW ≈ Ns
k around the origin [WA01, Ahr12]. The theoretical magnitude of the
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Figure 4.6: Mode recovery performance of a circular array composed of L = 15 TPG sensors
and one pressure sensor with rV = 0.1 m. The incoming sound field has a frequency f = 5 kHz
and the results are shown for Ns = [7, 8, 12, 14]. The dashed grey line indicates the theoretical
values for the magnitude of the HD coefficients, while the black stems display the recovered

coefficients’ magnitude.

HD coefficients is indicated by a dashed grey line in all four graphs. The top left graph shows

that for Ns = 7 = N , the observed mode coefficients are recovered perfectly. The other three

graphs however confirm the findings of subsection 4.3.4 and the aliasing scheme shown in Fig.

4.5. The graph for Ns = 8 shows that q−7, q7 and q0 are affected by aliasing. For Ns = 12, only

the coefficients qn, n ∈ [−2,−1, 1, 2] are still recovered correctly, while for Ns = 14 all coefficients

are distorted by aliasing. This is consistent with the pattern given in Fig. 4.5. The simulated

sound field (φi = 0, f = 5 kHz, c = 343 m
s , Ns = 8) and its reproduction based on the observed

information q̃ can be seen in Fig. 4.7 for Ns = 8. Despite the order limitation, it still resembles

that of a plane wave. The middle picture shows that the shape of the incoming wave fronts are

significantly deformed, even though only three modes have been corrupted by aliasing (compare
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(b) Reproduced Sound Field
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(c) Absolute Amplitude Error in dB

Figure 4.7: Visualisation of the sound field with φi = 0, f = 5 kHz, c = 343 m
s

, limited to
order Ns = 8, (A) original sound field, (B) sound field as reproduced from the observation of q̃n,
using the microphone array described above, (C) absolute amplitude error of the reproduced

field, given in dB.

to Fig. 4.5 and Fig. 4.6). Especially the influence of the corrupted 0th order mode is clearly

visible in the form of the concentric circle around the origin in the bottom graphic depicting the

difference between the original and the reconstructed sound field.

4.4 Simulations and Quantitative Error Analysis

As it has been argued in subsection 4.2.4, it can be expected that TPG sensor arrays are more

robust against measurement noise than pressure sensor arrays. This is due to the considerable

difference in the magnitude of the eigenvalues and is most significant at low frequencies. At the

same time, the findings in subsections 4.3.1 and 4.3.4 indicate that the TPG sensor design is more

vulnerable to spatial aliasing than conventional designs. In order to confirm both hypotheses,

a vast number of simulated measurements of an arbitrary sound field specified by (4.56) with

different φi have been performed in MATLAB. These involve a simulated TPG array with LG = 15

uniformly spaced TPG sensors plus an additional pressure sensor at φp = π
6 , yielding a total

amount of 16 sensors. The simulated conventional array consists of LP = 16 uniformly spaced

pressure sensors. That leaves both arrays with the same number of sensors overall and both had

a radius of rV = 0.1 m. They were both set to recover all the HD coefficients qn for |n| ≤ 7. The

signals observed at the various array sensors have been computed using the analytical solutions

in equation (4.38) for the TPG and (4.44) for the pressure, both accounting for orders up to

|n| = Ns = 40. Note that this will lead to spatial aliasing with the given array at high frequencies.

The needed HD coefficients qn are specified by equation (4.56).
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The following three subsections describe the noise model, the regularisation of the inverse

matrix Y† and the quality measure used in the simulations. Subsection 4.4.4 then presents the

quantitative performance results for both array types.

4.4.1 The Noise Model

In order to compare the robustness of the two different arrays to measurement noise, the simulated

measured signals were corrupted with a noise signal d. The noise in (ultrasonic) transducers

has been identified to originate predominantly from the electronic circuitry [HBR95, Oak97].

Electrical noise consists mainly of four components:

• thermal noise due to thermal agitation of charges in conductors [Nyq28],

• shot noise (as it typically occurs in semiconductors and vacuum tubes),

• 1/f noise (e.g. caused by impedance fluctuations in combination with DC currents occurring

in the sensor’s internal impedance converters) and

• flicker noise [Sch26] (e.g. as it occurs in MOSFETs, which are frequently used as internal

impedance converters).

The last three kinds of noise are decaying in level towards higher frequencies, where they are

covered by the thermal noise, which is spectrally white. Assuming transducers with carefully

designed impedance converters in combination with high quality signal pre amplifiers, it is deemed

valid to model the overall noise with a white spectrum. Additionally, it is assumed that the

conversion principle between the acoustic and the electrical quantities as well as the thermal

agitation of the molecules in the fluid before the transducer are negligible compared to the

electrical noise. Therefore, the overall noise can be modelled as a random signal with the same

constant average magnitude at all frequencies for both types of transducers. For an individual

sensor, the additive noise component is then specified by

d = σne
i2πµ, (4.58)

where µ is a uniformly distributed random variable on the interval [0, 1] and σn is the standard

deviation of the noise. To further randomise the nature of the noise, σn was chosen to also be a

random variable

σn = 1 · 10−60/20ξ, (4.59)

where ξ is a normally distributed random variable with unit variance. The average magnitude of

the noise is then set to 60 dB below that of a pressure sensor’s output signal in the undisturbed

field of a plane wave with unit amplitude. Note that on a rigid cylinder, the average magnitude

of the measured signals for either type of sensors depends on the sensor’s position, the frequency

and the direction of travel of the incoming plane wave.

The final signal model for the two sensors is then given as follows:

g̃(φs) = g(φs) + d, (4.60)

p̃(φs) = p(φs) + d. (4.61)
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4.4.2 Regularisation Against Ill-Conditioning

The recovery of the coefficients qn from noisy measurements poses an ill-conditioned problem at low

frequencies due to the excessive gains applied as a consequence of the inversion of the eigenvalues

λn and νn. Therefore, these simulations require a regularised Moore-Penrose Pseudoinverse Y†R
to solve the inverse problem. In this work, a Tikhonov regularisation [Mal08] has been applied.

The regularised pseudoinverse is then defined as

Y†R = (YHY + ΓTΓ)−1YH , (4.62)

where Γ = βI. The matrix I is an (LG + 1)× (LG + 1) identity matrix for the TPG sensor array

and an LP × LP identity matrix for the pressure sensor array, respectively. The value for β

was chosen empirically and set to
√

10
−50
20 , which is equivalent to impose a maximum bound

of 50 dB to the largest eigenvalue of the inverse matrix. An alternative way of choosing β on

the basis of the underlying data is through analysis of the L-curve [Han98, Han00]. A second

alternative based on the measurement SNR was proposed by Alon et al. [ASR15]. In both cases,

β is likely to be frequency dependent. The coefficients q̃n,R are then calculated from the noisy

array observation g̃e using

q̃e,R = Y†Rg̃e. (4.63)

The elements of g̃e are computed for orders up to |n| = 40 and contain noise. The coefficients in

q̃e,R are thus corrupted by measurement noise, regularisation and spatial aliasing effects.

4.4.3 The Quality Measure

The accuracy of the recovered coefficients q̃n,R can be evaluated based on the energy of the error

between the original HD q(φ) and the recovered HD q̃(φ). The Error-to-Signal-Ratio (ESR) in

dB for a given frequency is then given by

ESR = 10 · log10

(∑N
n=−N |q̃n,R − qn|2∑N

n=−N |qn|2

)
dB. (4.64)

4.4.4 Simulation Results

The ESR is used to compare the performance of the TPG array and the pressure array in a

statistical analysis for a finite number of frequencies in the range between 100 Hz and 10 kHz

with a step size of 10 Hz. For each considered frequency f , 100 simulated measurements were

conducted: i.e. 10 iterations each for 10 randomly selected approximated plane wave fields (see

subsection 4.3.6). This allows for a good approximation of the noise model and the aliasing

performance is not biased by the choice of specific directions of incidence for the incoming waves.

Fig. 4.8 shows the result of the analysis, where the black line depicts the performance of the

TPG sensor array and the light grey line the performance of the pressure sensor array. The

plots clearly show the effects of spatial aliasing and noise. While the error at high frequencies

is dominated by the effect of spatial aliasing, the effect of transducer noise is dominant at low

frequencies.
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Figure 4.8: Plots of the average ESR of the recovered coefficients q̃n,R from a simulated TPG
sensor array measurement (black line) and from a simulated pressure sensor array measurement

(light grey line) within the frequency range from 100 Hz to 10 kHz.

As suggested by the findings in subsections 4.3.1 and 4.3.4, the error due to spatial aliasing

at high frequencies is higher with the TPG sensor array than with the pressure sensor array.

Above f = 1.8 kHz the conventional array clearly outperforms the TPG array with the ESR

reaching values below −30 dB, yet it should be mentioned that the conventional array with

LP = 16 > 2N + 1 sensors is more robust to aliasing from higher orders than a conventional

array with LP = 15 = 2N + 1 sensors.

At lower frequencies, the performance of the TPG sensor array is theoretically significantly better

than that of the conventional array. This result needs to be seen with caution as gradient sensors

are known to suffer from high self-noise at low frequencies due to comparably low SNR caused by

the small gradient magnitude.

Judging by the width of the respective frequency band in which the two arrays’ ESR falls below

−15 dB, both arrays achieve a band that is around 2.3 kHz wide. However, w.r.t. the lowest ESR

value, the conventional array outperforms the TPG sensor array by around 6.5 dB.

It is worth noticing that the optimum band of the TPG sensor array is shifted towards lower

frequencies. This can be achieved with a conventional array by increasing its radius, which shifts

the curves of the eigenvalues in Fig. 4.2 and Fig. 4.3 towards lower frequencies due to the

change of the argument in the radial functions. However, comparing a TPG sensor array with a

conventional array of the same radius, it is clear that the former performs better at low frequencies.

Therefore, considering audio applications, the two the arrays combined on one structure would

extend the usable bandwidth of the TPG sensor array by 45 % or that of the conventional array

by 33 %, respectively. This would gain a substantially increased accuracy within a frequency

band where the human ear is very sensitive (compare to the curves of equivalent loudness in ISO

226) and which is very important for localisation (due to interaural time difference and spectral

cues from head and torso reflections [Bla97]).

The following simulation example visualises the effect of the improvement over conventional

designs at low frequencies.
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4.4.5 An Example

With LP = 16 pressure sensors and LG = 15 TPG sensors plus the additional pressure sensor, the

respective arrays allow for the recovery of the coefficients qn, |n| ≤ 7. From Fig. 4.2 and Fig. 4.3

it can be seen that the gain applied to the array observation for the recovery of q−7 and q7 at a

frequency of f = 800 Hz is about 35 dB for the TPG array and about 70 dB for the conventional

array. With a given Signal-to-Noise-Ratio of 60 dB, it can be expected that the noise is going to

affect the measurement of the conventional array considerably more than that of the TPG array.

Fig. 4.9 shows the reconstruction of a plane wave approximation (φi = π
7 , f = 800 Hz, c =

343 m
s , Ns = 15) on the basis of the coefficients q̃ recovered from a TPG sensor array and from a

pressure sensor array for the cases of β =
√

10
−50
20 and β = 0. It shows that the synthesis based

on the measurement of the TPG array with and without regularisation is only marginally different

from the original sound field. With the pressure array, regularisation leads to a suppression of

higher orders, resulting in a reduced size of the region of accurate reconstruction [WA01, Ahr12]

and without regularisation, the noise leads to a spatially distorted synthesis outside the region

where 6th order contributions become significant. This result supports the results in subsection

4.4.4 that TPG sensor arrays are more robust against transducer noise than conventional arrays.

4.5 Conclusions

The performance of a circular microphone array composed of TPG sensors has been investigated

by means of theoretical analysis and numerical simulations. The integral operator describing the

sound field model has been introduced and decomposed by means of the eigenvalue decomposition.

This allows for an entirely separate analysis of transducer noise induced errors and aliasing effects,

since both can be associated with different components of the EVD.

It has been shown that, at low frequencies, a TPG sensor array is more robust against transducer

noise than conventional arrays, while, at high frequencies, it is significantly more vulnerable to

spatial aliasing. In the simulations presented in this work, the lowest achievable ESR of the

TPG sensor array is surpassed by that of a comparable conventional array by approximately

6.5 dB. Furthermore, it was found that the usable optimum frequency band is not extended by

the new design, but it is shifted towards lower frequencies. Finally, even though it has been found

that this new design can potentially gain on former designs in terms of transducer noise, this

is only true under the condition that both transducer types are of equal quality. The costs of

a gradient sensor that matches the quality (w.r.t. noise, symmetry of its directivity, etc.) of a

state-of-the-art pressure sensor are however expected to be considerably higher. It is therefore

possible that what the TPG sensor array gains in robustness at low frequencies is not enough to

compensate for the generally higher transducer noise.

It has also been shown that for the recovery of the 0th mode, at least one pressure sensor needs

to be added to the array. This leads to a change in the spatial aliasing scheme of the TPG array,

making the 0th mode particularly vulnerable to aliasing.
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Figure 4.9: Visualisation of a plane wave approximation with φi = π
7
, f = 800 Hz, c =

343 m
s

, limited to order Ns = 15, (A) original sound field, (B) synthesis based on TPG array

measurement with β =
√

10
−50
20 , (C) synthesis based on pressure array measurement with

β =
√

10
−50
20 , (D) synthesis based on TPG array measurement with β = 0, (E) synthesis based

on pressure array measurement with β = 0.
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Abstract

A plane wave identification method based on a Finite Rate of Innovation (FRI) model for the

wave field has been recently proposed for circular microphone arrays [HFN16] (see Appendix F).

This work presents a more detailed analysis of the method that was originally conceived for the

identification of distinct pulses in a time domain signal. A general model is presented for sound

fields with a finite rate of innovation and the data that can be measured with circular arrays in

such fields. Using different theoretical acoustic source models, an investigation is presented of the

estimation accuracy and robustness of the Direction-of-Arrival estimation method against noisy

data and deviations from the model. The performance is assessed on the basis of the analysis of

results obtained from both simulations and experimental data.

5.1 Introduction

Direction-of-Arrival (DOA) estimation with sensor arrays is a problem of continued relevance,

independent of the kind of wave field. Whether the objective is underwater source localisation

in a submarine or the optimisation of the beam pattern of a controllable source or receiver

(e.g. wireless LAN router, teleconference systems with microphone arrays, etc.), a high accuracy

DOA estimate for a given wave field has become a key element in many transmission systems.
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The associated information can be used as a parameter for a beamformer that optimises the

Signal-to-Noise-Ratio (SNR) in the transmission system.

In applications where the exact source position (i.e. direction and distance) does not provide

any information that is useful to the system beyond the DOA alone, one may want to make

the additional assumption that the receiver is in the far field of the source. If that is indeed

the case, it is common to model the wave field around the receiver as a number of plane waves

[RK89, Raf04, TK06, ZDG10, BB10a]. A Plane Wave (PW) is fully described by its complex

amplitude and DOA, yielding four parameters in 3D space. That makes a wave field composed

of a finite number of PWs eligible for a sparse representation [CW08, WEMJ11]. Sparse wave

fields are particularly suitable for DOA estimation problems as they do not require an infinite

resolution of the estimator.

The DOA estimator presented in [HFN16] (Appendix F) falls into the field of parametric

approaches. Parametric DOA estimation methods rely on a sound field model. Prominent

examples of well established parametric methods are MUSIC [Sch86] and ESPRIT [RK89]. Both

provide a high-resolution DOA estimation performance yet only for a sound field generated by

narrowband sources. To overcome this limitation and enable DOA estimation with wideband

sources, Teutsch and Kellermann derived the EB-ESPRIT algorithm[TK06]. This evolution of

the ESPRIT algorithm takes the latter’s subspace nature and instead of applying it to the sensor

signals directly, it is applied to the modal domain of a circular microphone array. Using the

EB-ESPRIT algorithm, Teutsch and Kellermann reported estimates with less than three degrees

error.

In previous work [HFN16] (Appendix F), the authors found that a sparse sound field with a finite

number of plane waves travelling in the same plane can be described through a periodic function

with a finite rate of innovation [VMB02, BDV+08]. It was shown that the sampling method

for signals consisting of a finite number of Dirac pulses proposed by Vetterli et al. [VMB02]

can be directly transferred to solve the problem of DOA estimation with circular arrays. The

work presented in [HFN16] was based on a perfect observation of an ideal sound field and the

proposed method requires further investigation to assess its realistic performance. Blu et al.

[BDV+08] published further work on FRI signal analysis that addressed, among other things,

how to improve robustness against noise and model imperfections.

This work investigates the robustness of the DOA estimation method based on FRI signal analysis

for sound fields with plane waves travelling in the same plane. The method is tested against noise,

sound field imperfections (i.e. point sources and plane waves that travel in a different plane)

and properties of the circular measurement array. The remainder of this work is organised in six

further sections. The following section introduces the sound field model. Section Three derives

expressions for the data gained from a circular microphone array while observing the different

source types. Section Four recapitulates the robust FRI signal analysis methods proposed by Blu

et al. [BDV+08] and presents a noise model based on the nature of the sensor array observation.

A simulation study of the DOA estimation performance and its results with respect to the

estimation error are described and discussed in Section Five. The results of an experimental

study are presented and discussed in the sixth section.
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5.2 Sound Field Model

This work uses predominantly the cylindrical coordinate system, but sometimes also the elevation

angle θ. These and a basic sketch of the geometric entities relevant for this work are depicted in

Figure 5.1. All considerations pertain to the frequency domain and assume a (quasi-)stationary

Cylindrical Baffle

z

x

y

A

Plane Wave

Point Source

φ

θ

zM R

k

r

z

r

Figure 5.1: Cylindrical coordinate system with r = (r, φ, z)T , the elevation angle θ and other
entities as they are used in this work.

field. The factor e−iωt and the various quantities’ explicit dependency on the angular frequency

ω are omitted for reasons of brevity.

It is furthermore assumed that the sound field within a bounded area under consideration, V , is

in the far field of isolated point sources and satisfies the homogeneous wave equation, so that

the pressure is fully defined through a bounded Herglotz Density (HD) [Faz10, FNW12]. An

expression for the sound field of a number of plane waves is derived hereunder.

5.2.1 Plane Wave Expansion in Cylindrical Coordinates

A single PW of unitary magnitude and zero-phase is defined by its wave number vector k (see

Figure 5.1). In cylindrical coordinates, the latter can be written in the form

k = −

kr cosϕ

kr sinϕ

kz

 , (5.1)
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where ϕ is the azimuth angle associated with the DOA of the PW. The l2-norm of k provides the

wave number

k = ‖k‖2 =
√
k2
r + k2

z =
ω

c
(5.2)

at the angular frequency ω and the speed of sound c. The series expansion of a single PW in

cylinder basis functions is given through (see Appendix 5.8)

eik·r = e−ik cos θz
∞∑

n=−∞
i−nJn(kr sin θ)ein(φ−ϕ). (5.3)

The above expression represents the sound field of a PW through the product of angular and

axial modes, where only one of the latter is required for a single PW. It represents the kernel for

the Herglotz Wave Function (HWF) [CK98] that expresses a sound field as the superposition of

PWs.

5.2.2 The Herglotz Wave Function

The PWs forming the sound field can come from any direction associated with the points on the

sphere

Ω := {r : ‖r‖2 = 1} (5.4)

around the origin. Each PW has an individual complex amplitude q(k), k ∈ Ω. The sound field

is then given through the HWF [CK98]

p(r, φ, z) =

∫
Ω

eikrq(k)dΩ(k), (5.5)

where q(k) is known as the aforementioned HD. The HWF poses an expression for any sound

field that satisfies the assumptions made at the beginning of this section.

5.2.3 Sound Field of L Plane Waves

Let the sound field consist of a finite set of L distinct far-field sources, i.e. PWs. Each PW is

specified through a complex amplitude bl, and a DOA (ϕl, θl). The integral in (5.5) can then be

replaced by a sum, yielding the expression for the pressure

p(r, φ, z) =

∞∑
n=−∞

L∑
l=1

blRn(k(l)
r r)e−ik

(l)
z zΦ∗n(ϕl)Φn(φ), (5.6)

where the notation

k(l)
r = k sin θl (5.7)

k(l)
z = k cos θl (5.8)

Rn(x) = 2πi−nJn(x) (5.9)

and

Φn(φ) =
einφ√

2π
(5.10)
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was introduced for reasons of brevity.

Equation(5.6) is used to describe the measurement signals for a circular microphone array. In

order to test the robustness of the FRI method against non-plane wave components in the sound

field, the expression in Eq. (5.6) can be complemented by adding the series expansion for the

pressure field of a Point Source (PS) (see Appendix 5.9).

5.3 Circular Microphone Array Measurement

Using the developed model, it is now possible to provide expressions for the signals obtained from

circular microphone array measurements.

5.3.1 General PW Sound Field Measurement

Let a circular microphone array sense the pressure of the wave field continuously in the plane

z = zM on the circle (see Figure 5.1)

A := {r : r = R,φ ∈ [0, 2π], z = zM}. (5.11)

The pressure measured on A can be expressed as a Fourier Series [HF15, HFN16]

p(R,φ, zM ) =

∞∑
n=−∞

pnΦn(φ). (5.12)

Multiplying both sides of (5.6) with Φ∗n′(φ) and integrating over A w.r.t. φ yields

pn =

L∑
l=1

blRn(k(l)
r R)e−ik

(l)
z zMΦ∗n(ϕl), n

′ = n, (5.13)

The definition of the factors Rn(k
(l)
r r) in (5.9) differs for a microphone array with a rigid scattering

corpus [Wil99, TK06, HFN16]. For an infinite cylindrical scatterer of radius R (see Figure 5.1),

these radial functions become a combination of Bessel functions, Jn(·), Hankel functions of the

first kind, Hn(·), and their derivatives:

Rn(k(l)
r r) =

2π

in

(
Jn(k(l)

r r)− J ′n(k
(l)
r R)

H ′n(k
(l)
r R)

Hn(k(l)
r r)

)
. (5.14)

For a more thorough analysis of the radial functions of circular microphone arrays, the reader is

referred to the corresponding literature, e.g. [TK06, HF15].
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5.3.2 HD Coefficients of PWs travelling parallel to z = zM

In the case where all L PWs are travelling parallel to the plane z = zM , i.e. {θl}Ll=1 = π
2 , the

expression in (5.13) can be further simplified to (n = n′)

pn = Rn(kR)

L∑
l=1

blΦ
∗
n(ϕl) = Rn(kR)qn. (5.15)

The right hand side of the above equation indicates that the expression for pn can be separated

into a radial function, Rn(kR), and a component describing the plane waves

L∑
l=1

bl
e−inϕl√

2π
= qn. (5.16)

These HD coefficients, qn, fully define the sound field through the corresponding HD

q(φ) =

∞∑
n=−∞

qn
einφ√

2π
=

L∑
l=1

blδ(φ− ϕl). (5.17)

Note that there are no requirements as to the complex amplitudes bl, which implies that the

sources can even radiate coherently. This poses a significant advantage of the proposed DOA

estimation method over established methods such as MUSIC [Sch86] that are based on the

analysis of the autocorrelation matrix of the microphone signals and require the source signals

to be uncorrelated. An example of a HD with L = 5 distinct plane waves of unit magnitude is

shown in Figure 5.2 and it can be seen that q(φ) must be periodic with a period of 2π. The HD

0

0.5

1

0 1 2 3 4 5 6

0

/2

3 /2

0

0.5

1

Figure 5.2: HD for L = 5 distinct plane waves, where the HD is periodic with q(φ) =
q(φ+ u2π), ∀u ∈ Z.

is fully defined by the set of tupels {(ϕl, bl)}Ll=1. The extraction of the qn from the array signals

is crucial for the application of the FRI DOA estimation method.

At a later point it will be shown that a wave field specified by the HD coefficients in (5.16) is

ideal for the application of the FRI DOA estimation method with circular arrays. The next

two subsections present expressions for the HD coefficients of two source types that are likely to
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corrupt the performance of the DOA estimation method in combination with the measurement

aperture under consideration.

5.3.3 HD Coefficients of a Single PW with θl 6= π
2

For a single plane wave impinging on the measurement aperture at an angle θl 6= π
2 , the

corresponding pressure coefficients are given through (5.13), yielding

pn = blRn(k(l)
r R)e−ik

(l)
z zMΦ∗n(ϕl) (5.18)

A factor separation as shown in Equation (5.15) of the result in (5.18) yields HD coefficients of

the form

qn = bl
Rn(k

(l)
r R)

Rn(kR)
e−ik

(l)
z zM︸ ︷︷ ︸

Ψn(k,k
(l)
r ,R)

e−inϕl√
2π

(5.19)

for the sound field of the single PW with θl 6= π
2 . The main difference to Eq. (5.16) is the

additional factor Ψn(k, k
(l)
r , R).

5.3.4 HD Coefficients of a Single Point Source

The derivation of the HD coefficients for the sound field of a single PS

qn = b′
in+1

8π

∫∞
−∞Rn(krR)H

(1)
n (krr

′)dkz

Rn(kR)︸ ︷︷ ︸
ζn(r′)

e−inφ
′

√
2π

(5.20)

is given in Appendix 5.10. Similar to the source type discussed in the previous subsection, the

key difference between Eqs. (5.16) and (5.20) is an additional factor, namely ζn(r′). For both

types of sources, these additional factors are later shown to negatively affect a DOA estimation

using the FRI method in combination with circular measurement apertures.

5.3.5 Practical Limitations of Microphone Arrays

In practice, microphone arrays can only sample the pressure on A and therefore cannot recover all

coefficients qn needed to fully reconstruct the HD. A uniformly distributed circular microphone

array with M sensors can recover the coefficients qn for |n| ≤ N , where N = bM−1
2 c, if no angular

modes with n > N contribute to the pressure field on A (i.e. no spatial aliasing). This is the

case (to a good approximation) for all frequencies that satisfy N ≥ kR [Wil99, AR14, HF15]. At

higher frequencies, the recovered coefficients qn are corrupted by spatial aliasing [AR14, HF15].

It shall for now be assumed that the coefficients qn, |n| ≤ N can be recovered perfectly from the

array measurement, and that the frequency range in questions ensures that no spatial aliasing

occurs.
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5.4 Finite Rate of Innovation Analysis

The form of the HD given in (5.17) represents a set of distinct Dirac-pulses, for which the FRI

theory was originally developed [VMB02, BDV+08]. The key difference between previous work

and that presented here is that the observed signal is not in the time domain but in the spatial

domain.

5.4.1 The System Inherent Sampling Kernel

While the method proposed in [VMB02] requires a sampling kernel (i.e. a lowpass filter) for the

observed time domain signal, that is not always required when applied to the sampled pressure

in the spatial domain. This stems from the fact that the HD cannot be sampled directly but

needs to be extracted from the sampling of the pressure.

It is known that modes of orders higher than a frequency dependent threshold NA hardly

contribute to the pressure observed on the measurement aperture A. Their corresponding radial

functions Rn(kr) act as a system inherent lowpass filter. Therefore, at least for frequencies at

which the array does not suffer from spatial aliasing, the coefficients {qn}Nn=−N can be recovered

practically uncompromised, so that a lowpass filtered version of the HD can be reconstructed

from them.

5.4.2 The Rate of Innovation of the HD

The coefficients qn of the form given by (5.16) describe a (periodic) HD with finite rate of

innovation. Every PW is described through its DOA, ϕl, and its complex amplitude, bl. In other

words, every PW is an entity with two ‘innovations’ for the HD. It follows that a HD with L

PWs incorporates 2L innovations. Due to its 2π periodicity, q(φ) has the rate of innovation

ρ =
2L

2π
=
L

π

that is finite for L <∞ (see also Fig. 5.2). The value of ρ or rather the number of innovations

within the period, 2L, determines how many consecutive coefficients qn are needed to apply the

annihilating filter method [VMB02, BDV+08]. The exact relationship is derived in the following

subsection.

5.4.3 Recovering the DOA Information

The exact procedure for the DOA estimation with ideal coefficients qn is described in [HFN16]. In

practice, however, measured data may be compromised due to imperfections of the measurement

setup and noise. To make the estimator more robust against such, Blu et al. [BDV+08] proposed

the use of a ‘total least-squares approach’. Their method is described hereunder.

The global objective of the DOA estimator mechanism is to find an annihilating filter {ak}Kk=0, K ≤
N , that satisfies

qn ∗ ak = 0, (5.21)
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where ∗ denotes the discrete convolution

K∑
k=0

akqn−k = 0, (−N +K) ≤ n ≤ N. (5.22)

The above equation defines a system of 2N + 1 − K equations that can be expressed in the

algebraic form

Qa = 0, (5.23)

with the Toeplitz matrix

Q =



q−N+K q−N+K+1 · · · q−N

q−N+K+1 q−N+K · · · q−N+1

...
. . .

. . .
...

q−N+2K
. . . q−N+K+1 q−N+K

...
. . .

. . .
...

qN qN−1 · · · qN−K


︸ ︷︷ ︸

(2N+1−K)×(K+1)

(5.24)

and a = [a0, a1, . . . , aK ]T . The vector a denotes an annihilating filter that suppresses the

exponential components in the coefficient matrix Q that are associated with the individual plane

waves in the field. For an ideal sound field with no measurement noise, the system in Eq. (5.23)

is overdetermined for N > K and the rank of Q cannot exceed L. This is due to the nature of

the coefficients qn. They can only lead to K − L+ 1 independent, non-trivial solutions of the

annihilating filter a, one of which has zeros for the last K − L entries [BDV+08]. It follows that

rank(Q) = L, (5.25)

i.e. the number of PWs in the sound field can be identified from the rank of the Toeplitz matrix

Q.

When the coefficients qn are corrupted by noise, there may not be a non-trivial solution that

exactly satisfies Eqs. (5.21) and (5.23). As an alternative, Blu et al. [BDV+08] proposed

to identify a Total Least-Squares (TLS) estimate for the annihilating filter a by solving the

optimisation problem

ã = argmin
a
‖Qa‖2, ‖a‖2 = 1. (5.26)

With the constraint for a, the solution to the above problem can be solved through a Singular

Value Decomposition (SVD) of Q = USVH . This provides the right-singular vectors {vk}Lk=0

(i.e. the columns of V) that all satisfy ‖vk‖2 = 1. The right-singular vector vmin corresponding

to the smallest non-zero singular value σmin then provides a solution to the total least-squares

problem that yields

Qã ≈ 0, with ‖ã‖2 = 1, (5.27)
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where ã = vmin. Unlike the annihilating filter presented in [HFN16], that obtained from the TLS

method can have a leading factor ψ [BDV+08], yielding

ãn = ψ(δn +

K∑
k=1

αkδk−n)

with the z-transform

Ã(z) = ψ

K∏
k=1

(1− ukz−1). (5.28)

The roots {uk}Kk=1 of the characteristic polynomial of Ã(z) contain information on the DOA

[HFN16]. For a given polynomial Ã(z), the roots can be calculated through numerical factorisation,

e.g. using the integrated MATLAB -function roots. From [HFN16] it is known that these roots

are of the form uk = e−iϕk , so that the DOA can be calculated through

ϕk = i ln(uk),∀k = 1 . . .K, (5.29)

where ln(·) denotes the principle value of the complex logarithm. The full process for the DOA

estimation is summarised below.

DOA Estimation Procedure

1. Choose a value K ≤ N , if available K = L,

2. construct Q according to Eq. (5.24),

3. solve the TLS problem in (5.26) to obtain an estimate ã,

4. calculate the roots, {uk}Kk=1, of the z-transform of ã,

5. convert the K roots into DOA estimates using Eq. (5.29),

6. use {ϕ̃l}Nl=1 to calculate the complex amplitudes, {b̃k}Kk=1, by solving the linear equation

system defined (5.16) for a set of coefficients qn.

With respect to this work, the described procedure is the most general approach to the FRI DOA

estimation method, yielding estimates for exactly K PWs, even if L < K or L > N . This is

clearly not ideal and requires further investigation.

For particularly noisy data, additional Cadzow-Denoising [BDV+08] can be applied before the

DOA estimation to fit the data closer to the model. This was done for all applications of the DOA

estimation method presented in this work, where the steps of the Cadzow-Denoising method were

iterated 20 times.

5.4.4 A Measurement Noise Model

The applied noise model is a spatial transform of the transducer noise model for microphone

arrays used in [HF15]. A pressure measurement on a circular aperture around the origin would

lead to a noisy observation

p̃(φ) = p(φ) + d(φ),
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where d denotes the measurement noise. Following the same steps as those that link Eqs. (5.12)

and (5.13) yields

p̃n = pn + σε
ei2πµ√

2π
. (5.30)

Dividing by the radial functions Rn(kR) provides the result for the HD coefficients as they can

be recovered from a circular microphone array

q̃n = qn + εn, ∀|n| ≤ N. (5.31)

Each of the ideal coefficients qn can be corrupted with the additive component

εn =
σε

Rn(kR)

ei2πµ√
2π

(5.32)

that reflects the statistical properties of the measurement noise in microphone arrays. σε denotes

the standard deviation of the noise in the observed pressure signal and µ is a random variable

that is uniformly distributed on the interval [0, 1].

The expected value for the magnitude of εn, E{|εn|}, can be useful to estimate the number of

PWs for the case that L < N . The model assumes that the noise distribution in the pressure

domain is Gaussian, therefore the expected value of the magnitude of the measurement noise in

the pressure domain, |d(φ)|, must be

E{|d(φ)|} =
σε√
2π
. (5.33)

To obtain a useful expected value for the measurement noise in the HD coefficient domain, it

is necessary to consider the influence of the radial functions Rn(kR). From the literature on

microphone arrays, it is known that radial functions as given by (5.14) for k
(l)
r = k and |n| ≤ N

have very different magnitudes for frequencies higher than

fc =
Nc

2πR

[Wil99, TK06, HF15]. This is rather unfavourable, since this property of the radial functions

would be inflicted on the coefficients εn as a consequence of Eq. (5.32). The components of

qn that are associated with the individual PWs are constant in magnitude across the range

|n| ≤ N . Hence it would be difficult to define a clear ‘noise floor’ if the expected value for the

noise magnitude is a function of n. However, at frequencies higher than fc, the magnitude of the

radial functions can be approximated by |R0(kR)|, which can be seen in Figure 5.3. It follows

that the expected value for the magnitude of εn can be approximated by

E{|εn|} ≈
σε√

2π|R0(kR)|
(5.34)

for frequencies higher than fc ≈ 5.1 kHz with R = 0.075 m. This value provides an estimate of

the noise floor.

To acquire a value of σε for a specific array, which may also be frequency dependent [HF15], one

could simply perform a measurement without active sources in an anechoic environment.
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Figure 5.3: Radial functions for a microphone array with radius R = 0.075 m and fc ≈ 5.1 kHz
(N = 7, c = 343 m

s
).

5.4.5 Choosing K with Noisy Coefficients qn

If the number of PWs is known a priori, then the value for K should be simply chosen to be L.

Otherwise it can always be chosen to be the maximum number of DOAs that can be estimated

from the available array data, i.e. K = N . Three cases can then be distinguished for a spatially

stationary PW distribution when the individual PWs’ energy exceeds that of the background

noise:

1. L < N : The DOAs corresponding to the L largest values of |b̃k| would be consistent

irrespective of the sample in time, where the N −L smallest estimates must be expected to

vary with every estimation attempt due to noise.

2. L = N : All DOA estimates describe an individual PW.

3. L > N : The method provides N least-squares DOA estimates.

In the case of L < N , the number of PWs, L, can be estimated from the number of magnitudes

b̃k that exceed the estimate of the noise floor given by Eq. (5.34). This is however only possible

for frequencies higher than fc.

In the case of L > N , the rate of innovation is too high for the available range of coefficients

|n| ≤ N , i.e. the sampling of the sound field is insufficient. The estimator can only provide

K = N DOA estimates, which will be shown to become increasingly inaccurate as L approaches

N . One explanation for this is that the TLS solution for the annihilating filter ‘groups’ the L−N
surplus PWs together with the closest neighbours within the set of the remaining L PWs. This

is more thoroughly investigated in Section 5.5.1.

5.4.6 Interpretation of the Annihilating Filter

The structure of the annihilating filter given in Eq. (5.28) describes a system that cancels out

distinct ’spatial frequencies’ in the z-domain of the sequence of HD coefficients. From Eq. (5.16)

it follows that the sequence given by the HD coefficients of a sound field with L distinct PWs

travelling in parallel to the plane of the measurement aperture have L distinct spatial frequency
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components in the z-domain. The annihilating filter precisely cancels these spatial frequencies

from the sequence.

In this light, it can now be understood why both a PS and a PW with θ 6= π
2 are likely to

compromise the performance of the FRI method. The sequences of the HD coefficients given

in (5.19) and (5.20) both describe an amplitude modulation of the carrier sequence e−inφ
′
/
√

2π

with the sequence Ψ(k, k
(l)
r , R) and ζn(r′), respectively. From the theory of the spectra of AM

signals, it follows that the corresponding HD coefficient sequences contain more than one distinct

spatial frequency in the z-domain. The difference between the spatial spectrum of the sequence

of a PW and that of a PS is conceptually depicted in Figure 5.4. While the PW is responsible

PW component
PS carrier

Modulation components

ϕPW ϕPS

ϕ

Magnitude

Figure 5.4: Conceptual z-domain spectrum of the HD coefficients for the sound field of a PW
and a PS.

for just a single spatial frequency component, the PS has a ’carrier’ component that refers to

the position of the PS and modulation components resulting from the term ζn(r′) described in

Eq. (5.20). The same can be shown for the PW with θ 6= π
2 , where the term Ψn(k, k

(l)
r , R) is

responsible for the modulation components.

Nevertheless, depending on the modulating sequence, the carrier sequence e−inφ
′
/
√

2π may still

be the dominant frequency component. In that case, the FRI method may still be able to detect

the DOA of these types of sources. The TLS solution would then provide a filter that attempts to

suppress the strongest spatial frequency components in the sequence, i.e. that of the individual

carriers. The directions of arrival can then be identified as usual from the roots of the annihilating

filter’s z-transform. However, it must be expected that the estimation accuracy is adversely

affected for these types of sources, e.g. if the different sources significantly differ in magnitude or

for very close PSs. This is confirmed by means of simulation results given in Section 5.5.

5.5 Simulations

For all simulations discussed hereunder, the DOA estimation method was set to identify K = N

plane waves by choosing the matrix Q accordingly. When the number of plane waves L is known

a priori, only those DOA estimates associated with the largest magnitudes b̃l were taken into

account. For those cases when L > N , only N DOA estimates are provided due to the inherent

limitation of the method. Note that in this section, a DOA estimate refers to a value for ϕl.

All sound fields were calculated directly in the cylindrical harmonics domain for f = 1 kHz, using

the equations presented in the preceding sections. That way the estimation method’s accuracy
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and robustness can be studied without the influence of effects that stem from the microphone

array (e.g. spatial aliasing, ill-conditioning etc.).

Before looking more closely at the simulation performance for the unrestricted case, L ≤ N , the

estimation behaviour for L > N is investigated by means of a number of selected samples.

5.5.1 Estimation Behaviour for L > N

The effects occurring when estimating K = N directions of arrival from the HD coefficients of a

sound field with L > N PWs were briefly mentioned in Section 5.4.5. Figure 5.5 shows a selection

of estimation results for L = 5 and N = K = 4.
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(a) Two PWs grouped (Example I)
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(b) Two PWs grouped (Example II)
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(c) Interpolation

Figure 5.5: Results of different FRI estimation performances for L = 5 and N = K = 4.

Figure 5.5a shows an example of the aforementioned grouping behaviour. The estimates of the

plane waves with a DOA at around 0.25, 1.25 and 1.625 (on the abscissa) are very accurate, as

are the estimated magnitudes. Only for the second estimate on the right it can be noticed that

its magnitude is slightly lower than the true value. The estimate beyond 1.75 on the abscissa

‘groups’ two true PWs with very small difference in their individual DOA around itself. That is

likely to explain why its estimated magnitude is larger than that of the two true plane waves.

A similar behaviour of the method can be observed from the result shown in Figure 5.5b. The

estimates of magnitude and DOA beyond 0.5 on the abscissa show good accuracy. The leftmost
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estimate ‘groups’ two plane waves, not quite as closely aligned as those in the previous example,

and shows a significantly higher magnitude. In this case, the estimate to the right of 0.25 not

only shows a magnitude mismatch but also a DOA estimate deviation from the true value.

The result in Figure 5.5c is very different from the others. A grouping behaviour cannot be

detected. Only three of the DOA estimates are close to true plane waves, but the magnitude

estimate of one of them is significantly low. The fourth estimate is significantly inaccurate.

While there are cases where some estimates may still be of value, it becomes clear that the

estimation accuracy decreases when L > N . That makes the method unreliable in such cases.

For predominantly isotropic sound fields with L < N distinct sources of sufficiently high level,

the method may prove more robust, as will be seen in the next subsection.

5.5.2 The DOA Estimation Error (DEE)

As a measure to evaluate the quality of the estimated directions of arrival, {ϕ̃k}Kk=1, this work

uses the Direction Estimation Error (DEE) in percent, which is defined as

DEE = (|ϕ̃k − ϕk| mod π) · 100 %, (5.35)

where mod denotes the modulo operator. A DEE of 100 % corresponds to the maximum

difference between estimate and true value of π ≡ 180◦.

5.5.3 Mean & Median DEE

In order to assess the estimation accuracy of the FRI DOA estimation method, a simulation study

was conducted for different SNR values and different number of PWs. For each combination of

SNR and L, 10,000 samples of randomised PW fields were simulated.

The clean HD coefficients were calculated through Eq. (5.16). The complex magnitudes bl of the

individual plane waves were calculated through

bl = (0.01 + 0.99ν)e−i2πµ, (5.36)

where ν, µ are uniformly distributed on the interval [0, 1]. The maximum difference between the

magnitudes of the individual plane waves is thus 40 dB. The corresponding DOA parameters, ϕl,

are uniformly distributed on the interval [0, 2π].

The noise was generated directly in the HD coefficient domain using

εn = σεξe
i2πµ,

where ξ is a normally distributed random variable and µ is uniformly distributed on the interval

[0, 1]. The value σε was chosen so that the noisy coefficients q̃n = qn + εn have a specified SNR

given by

SNR = 10 log10

(∑
|n|≤N |qn|2∑
|n|≤N |εn|2

)
. (5.37)
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Figure 5.6 shows the results of a simulation study for the mean/median DEE in percent. The

(a) Mean DEE (b) Median DEE

Figure 5.6: Mean performance of the FRI estimator over 10,000 samples for different combi-
nations of SNR and L.

algorithm was applied to the noisy coefficients

q̃n = qn + εn

within the range |n| ≤ 7. This corresponds to the HD coefficient data that can be obtained from

a microphone array measurement with M = 15 sensors. The maximum number of plane waves

whose DOA can be estimated is K = N = 7. For the conducted simulations, the algorithm

parameter for the number of plane waves was chosen so that K = min(L,N). Note that with

the given dynamic range of the PW magnitudes specified in Eq. (5.36), some of them may be

covered by the noise floor.

The result in Fig. 5.6a shows that the mean accuracy of the DOA estimates increases with the

SNR and decreases with the number of sources. At 0 dB SNR the values for more than one PW

range around a DEE of 20 %, with a maximum at L = 3 PWs . At high values of SNR, the DEE

increases significantly for more than L = 7 plane waves, as a result of the limitation due to the

available range of coefficients qn.

The results for the median DEE given in Fig. 5.6b are similar w.r.t. the overall trend, however

the maximum values are significantly lower than those shown in the mean results. This suggests

that, for a given combination of SNR and value L, 50 % of the estimates’ DEE are lower than

the displayed value. Accordingly, the other 50 % of estimates may suffer from ‘outliers’ that are

significantly wrong compared to the true value. These outliers cause the mean to be significantly

higher than the median DEE values.

5.5.4 Sound Fields with PWs not travelling parallel to the Measure-

ment Plane

The coefficients describing the sound field of a PW that is not travelling parallel to the measurement

plane z = zM is given in Eq. (5.19). Such a plane wave is henceforth referred to as an Out-Of-

Plane Plane Wave (OOP-PW). It was postulated in Section 5.4.6 that the effect of the additional

factor Ψn(k, k
(l)
r , R) in the specific form of the coefficients qn would have a negative effect on the
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accuracy of the DOA estimates for more than one PW. It was also argued that the FRI method

may provide an adequate estimate of the DOA for a single such plane wave regardless.

5.5.4.1 A Single OOP-PW

This subsection serves to investigate the influence of the elevation angle θl of a single OOP-PW

on the DOA estimation performance. Figure 5.7 shows the mean DEE for a single OOP-PW

for randomly chosen DOA component ϕl. The elevation angle associated with the OOP-PW
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Figure 5.7: DEE for a single OOP-PW for 0.01π ≤ θl ≤ 0.99π, averaged over 100 samples
with randomly chosen ϕl.

was tested for 0.01π ≤ θl ≤ 0.99π. The DOA estimation would naturally fail for values θl = 0

and θl = π, which were thus not tested. The estimates were obtained from the coefficients

{qn}|n|≤1, which suffice to estimate the DOA of N = 1 plane wave. The average result is below

1.6× 10−14 %.

The same simulation was repeated for a greater range of coefficients, {qn}|n|≤5, and the result is

shown in Figure 5.8. While for some values of θl there appears to be no difference, the mean DEE
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Figure 5.8: DEE for a single OOP-PW for 0.01π ≤ θl ≤ 0.99π, averaged over 100 samples
with randomly chosen DOA, as obtained with a greater coefficient range.

is significantly higher for angles 0.07π ≤ θl ≤ 0.35π and 0.65π ≤ θl ≤ 0.93π. This suggests that

the estimation corrupting effect of the additional factor Ψn(k, k
(l)
r , R) increases towards higher

values of |n|.

5.5.4.2 One PW and one OOP-PW

The DEE performance for two PWs, where one is an OOP-PW, is shown in Figure 5.9. Following

the findings in Section 5.5.4.1, the coefficient range was chosen to |n| ≤ 2 = L so that both PWs

can be identified but the coefficient range is kept as low as possible. Both PWs had the same
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Figure 5.9: DEE for one OOP-PW with θ2 ∈ [0.01π . . . 0.99π] and one with θ1 = π
2

, averaged
over 100 samples with randomly chosen ϕ1 and ϕ2.

magnitude. One plane wave is impinging at θ1 = π
2 and the other is simulated at different angles

θ2. The two parameters ϕ1 and ϕ2 were randomly chosen for every iteration. It can be observed

that the accuracy of the DOA estimates decreases up to a DEE of approximately 12 % as the

parameter θ2 deviates from π
2 .

5.5.5 Sound Fields with Point Sources

As with the plane waves discussed in Section 5.5.4, the specific form of the coefficients qn describing

the sound field of a single PS in the plane of the microphone array were predicted to have a

negative effect on the accuracy of the DOA estimates associated with the waves impinging from

more than one PS. This is now investigated further through a set of simulations.

5.5.5.1 Estimation Accuracy for a Single PS

Figure 5.10 shows the mean DEE for the DOA estimates obtained over 100 iterations of the sound

field with a randomly positioned (w.r.t. the angle φ′) single PS as a function of the position

parameter r′. The set of coefficients {qn}|n|≤1 were calculated from Eq. (5.20), i.e. the point
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Figure 5.10: Mean DEE for a randomly positioned PS as a function of the radius, averaged
over 100 samples per evaluation radius.

sources lie in the same plane as the microphones. The simulated array radius was R = 0.1 m and

the FRI algorithm was set to detect one source only (K = 1). It can be seen that a very high

estimation accuracy was obtained that supports the reasoning given in Section 5.4.6. Note that

the simulation did not include any noise.

The influence of the compromising factor ζn(rl) in the coefficients qn was found to increase with

the range of coefficients used for the estimation, as it was observed for the OOP-PW in the

previous subsection, thus negatively affecting the performance.
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5.5.5.2 Estimation Accuracy for Two Point Sources

A similar simulation was conducted for two PSs, where the coefficients are given through Eq.

(5.20) and superposition as

qn = b1
e−inϕ1

√
2π

ζn(r1) + b2
e−inϕ2

√
2π

ζn(r2).

Three different scenarios were investigated using the parameters b1 = b2 = 1, r2 = 0.2 . . . 9.7 m

and:

1. First source located closely (r1 = 0.2 m),

2. first source located distantly (r1 = 9.7 m), and

3. both sources at the same distance, i.e. r1 = r2.

The FRI algorithm was set to detect two sources, i.e. K = 2, using the set of coefficients {qn}|n|≤2.

The results are shown in Figure 5.11. It can be observed that the average DEE has drastically
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Figure 5.11: Mean DEE for two randomly positioned PSs as a function of r2, averaged over
100 samples per evaluation radius.

increased just by adding a second PS. The severity however differs between the three scenarios.
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In the first scenario, the results in Fig. 5.11a show that for all radii r2 > 1 m the mean DEE is

higher than 20 %. When r2 < 1 m then the accuracy for both sources remains below 10 %.

In the second scenario, the results in Fig. 5.11b show that the DEE is larger than 10 % for radii

smaller than 1 m. For larger radii, the DEE drops significantly below 10 %, reaching values less

than 1 % for r2 > 3.2 m. The mean DEE appears to have a decreasing trend as the sources move

to larger radii. This can be expected since the wave field of a PS that is far away approximates

that of a plane wave.

As in the second scenario, the results of the third scenario also describe a decreasing trend for

the DEE as shown in Fig. 5.11c. At r1 = r2 = 0.2 m the mean DEE is already clearly below 10 %

and dropping further. The DEE drops significantly below 1 % for r1 = r2 > 2 m.

5.5.6 Discussion of Simulation Results

The simulation study of the DOA estimation performance for different values of SNR and numbers

of PWs confirm the degrading influence of noise on the estimation accuracy. The number of

sources in the field also affect the accuracy. As stated by Blu et al. [BDV+08], using a surplus of

coefficients (i.e. N > L) increases the robustness against noise for an observation, i.e. the HD,

with distinct Dirac pulses (compare Section 5.5.6.6). The significant difference between the mean

and the median results suggest that 50 % of the estimates have an accuracy with less than 7 %

error, while the other 50 % may suffer from outliers with DEE values larger than 20 %.

The relatively high DEE values would be lower if the difference in magnitude between the individual

PWs were smaller (it was simulated as 40 dB). Due to the large differences in magnitude, some

of the plane waves may either vanish below the noise floor or the estimates would be degraded

due to a low SNR for that specific source.

5.5.6.1 Single OOP-PW

As it was argued in Section 5.4.6, the modulating sequence Ψn(k, k
(l)
r , R) had little effect on the

DOA estimation accuracy, but only when using a small range of coefficients, |n| ≤ 1. When

increasing the latter to |n| ≤ 5, the performance degraded significantly for a distinct range of

angles. This suggests that the overall modulation due to the factor Ψn(k, k
(l)
r , R) is so strong

that it overpowers the carrier in the extended sequence q−5, . . . , q5 and thus leads to a high DEE

(see also Section 5.5.6.6).

5.5.6.2 One PW and one OOP-PW

In light of the theoretical considerations made in Section 5.4.6, the severe loss of accuracy with

the obtained estimates suggests that the modulating sequence Ψn(k, k
(2)
r , R) is very strong in

magnitude and its contribution cloaks both carriers e−inϕ1/
√

2π and e−inϕ2/
√

2π, and strongly

alters the roots of the annihilating filter. The result is compromised DOA estimates.
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5.5.6.3 Single Point Source

Similar to the results for the single OOP-PW, the estimation performance for the single point

source have shown results of high accuracy. Following the performance dependency on the range

of coefficients qn found for the single OOP-PW, it was found that the same applies for the field

of a single point source, though the results were not presented for reasons of brevity. Accordingly,

the modulation of the additional factor ζn(r′) is also strong enough to affect the estimation

accuracy when using a wider range of coefficients.

5.5.6.4 Two Point Sources

The scenario where the first PS is located at a small radius (r1 = 0.2 m) and the second source is

moved from r2 = 0.2 m to r2 = 9.7 m shows the worst performance among the results for two

PSs. This suggests that the modulation component around the ‘carrier’ of the close PS (see Sec.

5.4.6) in the spatial frequency spectrum of qn is cloaking the ‘carrier’ of the far PS, even at radii

where r2 is only slightly larger than or equal to r1. The DOA estimate for ϕ2 therefore becomes

strongly inaccurate, leading to the comparably high mean DEE of more than 20 %.

In the scenario where the first PS is located far away (r1 = 9.7 m), the DEE improvement that

occurs as the distance of the second source increases can be explained by looking at the source

strength. As discussed in Section 5.4.6, a strong difference in strength of the PSs’ components in

qn might cause the modulation contributions to mask the ‘carrier’ associated with the weaker

source. That would lead to a bad DOA estimate for the more distant PS, hence causing an

elevated mean DEE for r2 < 2 m. Once the levels become more comparable, the mean DEE is

similar to that obtained in the third scenario.

The third scenario had both PSs located at the same distance from the origin. While still above

4 % for r1 = r2 = 0.2 m, the mean DEE drops quickly towards very small values as the source radii

increase. The field of the PSs eventually effectively resembles that of plane waves. Since their

source strength is equal, their estimates would on average be of similar quality. The high mean

DEE at very close range, r1 = r2 < 1 m, suggests that the modulation components occurring in

the coefficient sequence are strong enough to cloak the dominance of their carriers, leading to

elevated DEE results.

5.5.6.5 Practical Implications of the Results for Point Sources and OOP-PW

Point sources and OOP-PW are very relevant for any practical implementation. The point source

can model any source whose dimensions are small compared to the wave length that is located

within close distance to the measurement aperture. However, even if a sound source is far enough

away for its wave fronts to resemble those of a plane wave travelling parallel to the measurement

plane, there may be floor or ceiling reflections that lead to an OOP-PW in the sound field.
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5.5.6.6 Influence of the Range of Coefficients

As stated by Blu et al. [BDV+08], using the highest possible number of coefficients as input to

the estimation stage increases the robustness of the estimates against noise through redundancy.

It was however found in this work that this only applies for sound fields with distinct plane waves

that propagate in the plane of the measurement aperture.

The simulations of both the point sources and the plane waves travelling out of the measurement

plane have revealed that the imperfection introduced by the additional factors ζn(r′) and

Ψn(k, k
(l)
r , R), respectively, affect the performance of the DOA estimates. For single sources, the

influence of the additional factors can be overridden by keeping the range of coefficients qn fed

into the DOA estimation algorithm as small as possible. As the number of sources increases,

the estimator requires a higher number of coefficients (see Section 5.4.3). At the same time,

however, the influence of the modulating factors compromises the performance of the estimator

(see Section 5.5.4.1).

5.6 Experimental Results

This section investigates the DOA estimation accuracy based on measured sound fields. The sound

fields were created using ten different sources, both individually and in various combinations.

One goal of the experiments was to test the dependency of the accuracy of the DOA estimates

as a function of the number of sources in the sound field. In order to do that, the data of the

individual sources were linearly combined to generate arbitrary fields with multiple sources. The

data that was measured with several sources active at the time was used to validate the results

obtained through the linear combination of the individual data.

5.6.1 Measurement Setup

The measurement array consists of 15 electret microphones arranged in a circle with uniform

distribution on an acrylic cylindrical baffle with radius R = 7.5 cm (see Figure 5.1). The array

was set up in the anechoic chamber of the ISVR. Nine Genelec 8020C loudspeakers were arranged

at different angles to the array at a distance larger than r = 2.5 m, while one was deliberately

put at a one meter distance to simulate a point source. A sketch of the arrangement is shown in

Figure 5.12. The floor of the anechoic chamber consists of a steel grid over a volume of absorbing

fibre glass wedges. To reduce the amount of reflections additional wedges were used to cover the

floor between the loudspeakers and the microphone array.

Exponential sweeps of 10 seconds duration were used as measurement signals to exclude non-linear

effects from the data and obtain a high measurement SNR, using the method proposed by Farina

[Far00, Far07]. The impulse responses obtained from the inverse filtering were then transformed

into the frequency domain by using the MATLAB implementation of the Fast Fourier Transform

(FFT). As an alternative, the same measurements were performed with band-limited noise (1 to

8 kHz) for comparison. All data was evaluated at the optimal frequency fc ≈ 5.1 kHz (compare

Eq. 5.4.4).
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Figure 5.12: Sketch of the arrangement of microphone array and sound sources inside the
anechoic chamber.

5.6.2 Measured DOA of the Sources

The DOA of the ten loudspeakers was individually measured using a laser angle gauge, located

at the origin of the coordinate system. The loudspeakers were adjusted so that the laser pointed

at the middle of the tweeter (see Fig. 5.13), ensuring all tweeters are in the same plane with the

15 microphone capsules. The distance of each tweeter from the origin was obtained with a tape

Figure 5.13: (Left) Angle laser gauge with Genelec 8020C, (Right) Close-up view of tweeter
with laser reflection on the diaphragm.

measure. The results are noted down in Table 5.1.

The depicted values will be used as reference for the testing of the DOA estimation performance

based on the linear combinations of individual sound fields. The SNR was estimated using Eq.

(5.37), where the value of the measured data q̃n was used in the numerator. The noise coefficients

εn were estimated from data taken from the tail of the estimated impulse responses as proposed

by Stan et al. [SEA02]. The SNR data suggests that the level difference between the strongest

and weakest source is approximately 19.5 dB.
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Source No. Dist. to Origin ϕl ϕ̃l SNR/dB
1 2.88 m 0◦ 2.5◦ 73.0
2 3.47 m 30◦ 31.6◦ 72.9
3 1.04 m 45◦ 46.1◦ 80.6
4 3.45 m 60◦ 55.6◦ 69.1
5 4.20 m 135◦ 139.4◦ 65.9
6 3.08 m 180◦ 179.6◦ 61.1
7 3.24 m 230◦ 234◦ 73.4
8 2.52 m 275◦ 276.7◦ 68.0
9 2.56 m 280◦ 280.8◦ 77.3
10 3.35 m 315◦ 314.7◦ 72.1

Table 5.1: Reference location information for all ten loudspeakers, estimated (ϕ̃l) DOA given
in degrees and SNR obtained from measurements of the individual sources at f ≈ 5.1 kHz,

N = 7.

5.6.3 Mean & Median DEE for Linear Combinations of Individual

Measurements

The mean and median results for the DEE of DOA estimates obtained from measurements are

shown in Figure 5.14a. The results for each number of sources were averaged over 1,000 iterations,
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Figure 5.14: Mean and median of the DEE in %, averaged over 1,000 randomised iterations
for various number of sources.

during which sources were randomly chosen, where the near-field source (No. 3) was excluded.

The algorithm was set to detect N = 7 sources, but only the L sources with the largest magnitude

|bl| were chosen for these results.

It can be seen that both the mean and the median have a rising trend as L increases. The mean

rises to approx. 9.7 % for L = 6 and the median reaches slightly under 4.7 % for L = 7. That

makes for an uncertainty of ±17.46◦ and 8.5◦, respectively.

Figure 5.14b shows the results of the same experiment, only the near source was included in pool

of sources this time. Both mean and median have a rising trend as L increases. The mean peaks

at approx. 11.6 % for L = 7 and the median reaches slightly under 3.3 %. That makes for an

uncertainty of ±20.9◦ and ±5.9◦, respectively.

The results of Table 5.1 indicates that the reference position of sources 4,5 and 7 may suffer from

setup imperfections. The influence of these were investigated by repeating the analysis using

the estimated values ϕ̃l in Table 5.1 as reference. It was found that the mean and median DEE

results then improve slightly for L < 5, compared to the results given in Figure 5.14.
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5.6.4 Example: Measurement of Six Sources

To confirm that the DOA estimation also works for fields with several sources playing (uncorrelated)

noise at the same time, measurement data with six active sources were analysed. The results are

given in the table below.

Source 1 3 5 7 9 10

ϕ̃l (est.) in [deg] -0.2 46.3 139.1 220.9 270.8 310.7
ϕl (true) in [deg] 0 45 135 234 280 315

Table 5.2: Estimates from measurement signals obtained in a field with six sources active at
the same time, with a mean DEE of 2.6 %.

5.6.5 Discussion

The values obtained for the mean and median of the DEE compare well to those obtained from

the simulations with additional noise presented in Section 5.5.3. The discrepancy between mean

and median results suggest that the estimates’ accuracy sometimes suffers from outliers. The

effect of the near-field source was reflected in the slightly degraded mean performance, yet the

median remains nearly entirely unaffected by it; it even improves at high values of L, probably

due to a relatively high SNR. This suggests that real sources are sufficiently different from ideal

point sources to not entirely compromise the DOA estimation performance.

It must be expected that the close angular distance of sources 8 and 9 has an negative effect

on the estimation performance. If the resolution of the method is not high enough to resolve

the difference between the two sources, then this would potentially lead to worse DEE results

whenever these two sources were randomly selected into the same set. The relatively good result

of the multi-source measurement supports this hypothesis.

Another aspect that needs to be considered is the influence of the semi-anechoic nature of the

measurement environment. The metal mesh of the floor may produce floor reflections, resulting

in a wave field with plane waves that are not travelling parallel to the measurement plane zM . It

was shown in Section 5.5 that OOP-PW can degrade the performance of the DOA estimation

mechanism due to the additional modulation of the sequence of coefficients qn. It must thus be

expected that the estimation performance with the measured data may have been suffering from

degradation due to floor reflections. While this type of vulnerability of the estimation method is

undesirable, it should be seen with relation to the fact that the measurement aperture is designed

for two-dimensional measurements to begin with. It may be argued that this is actually not a

fault of the method but of the two-dimensional measurement aperture.

5.7 Conclusions

A thorough analysis of a previously proposed DOA estimation method was presented. The work

is based on theoretical considerations, simulation and experimental results. The DOA estimation

method uses data obtained from circular arrays in sound fields with a finite rate of innovation.



92
Chapter 5 - DOA Estimation Performance with Circular Arrays in Sound Fields with Finite Rate

of Innovation

A set of theoretical models for the array output in such sound fields was derived, considering

both plane waves and point sources. It was found through theoretical considerations that the

DOA estimates may suffer from point sources located within close range of the array and plane

waves that do not travel parallel to the plane of the measurement aperture (OOP-PW).

The sound source models were applied in a simulation study to investigate the robustness and

accuracy of DOA estimates against measurement noise and model imperfections. Percentages of

average estimation errors were given, indicating the dependency of the DOA accuracy on the

SNR and the number of plane waves in the field. It was found that the DOA estimation error

for ideal sound fields increases significantly for sound fields where the rate of innovation exceeds

what can be captured by the array.

Experimental results confirmed the findings on the performance in ideal sound fields of the

simulation study. It was observed in both simulation and experimental results, that the mean

accuracy is notably higher than its median. This suggests that the estimation method produces

outliers that deviate from the median by a significant step, while 50 % of the time, the estimates

have a much higher accuracy than is suggested by the mean accuracy.

Point sources and OOP-PW were shown to severely degrade the DOA estimation performance if

their number in the field is larger than one. These types of sources were argued to be practically

relevant and thus pose an important factor to consider in practical implementations. It can be

concluded that, since it captures only a two-dimensional subset of the sound field, a circular array

and the data obtained from it are particularly vulnerable to any sound field components that

deviate from a two-dimensional scenario.

It is noteworthy that the proposed method does not require the signals associated with the

incoming plane waves to be mutually uncorrelated. In fact, the developed sound field model even

allows for them to be coherent. This is a major advantage over well established methods like

MUSIC.

5.8 Appendix I: General Plane Wave Expansion in Cylin-

drical Coordinates

Using Eq. (5.1), the propagation term of the PW is given through

eik·r = e−ikrr(cosϕ cosφ+sinϕ sinφ)e−ikzz, (5.38)

where r = (r cosφ, r sinφ, z)T . Using the product theorems of the sine and cosine functions

[BSMM06] and exploiting the symmetry of the latter yields

eik·r = e−ikrr cos(φ−ϕ)e−ikzz. (5.39)

The z-component of k can alternatively be written as a function of the elevation angle θ associated

with the DOA, so that kz = k cos θ. It then follows from (5.2) that kr = k sin θ.
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Using the Jacobi-Anger expansion [CK98] to expand the first term of Eq. (5.39) provides the

expression

e−ik sin θ r cos(φ−ϕ) =

∞∑
n=−∞

inJn(−kr sin θ)ein(φ−ϕ). (5.40)

It follows from the series expansion of the Bessel function Jn(z) [Wil99] that Jn(−z) = (−1)nJn(z).

The conjunction of this and the result in (5.40) applied to Eq. (5.39) leads to the series expansion

of a single PW in cylinder basis functions [Wil99]

eik·r = e−ik cos θz
∞∑

n=−∞
i−nJn(kr sin θ)ein(φ−ϕ). (5.41)

5.9 Appendix II: Series Expansion for the Sound Field of

a Point Source

In cylindrical coordinates, the Green function of the Helmholtz equation can be expressed through

cylinder basis functions [ABC+70, FM03], yielding

G(r|r′) =
i

4

∞∑
n=−∞

inΦ∗n(φ′)Φn(φ)

∫ ∞
−∞

eikz(z−z′)

2π
Rn(krr)H

(1)
n (krr

′)dkz (5.42)

for r < r′.

Note that the integral in (5.42) is not trivial to solve and typically needs to be either calculated

numerically or approximated through a stationary phase approximation [Wil99, KFCS00].

5.10 Appendix III: HD Coefficients for the Sound Field of

a Point Source

The pressure field of a single PS measured on the circle A in the plane z = zM yields the result of

the form in Eq. (5.12). A comparison of the factors with those in Eq. (5.42) yields the expression

for the pressure coefficients

pn = b′
in+1

4
Φ∗n(φ′)

∫ ∞
−∞

eikz(zM−z′)

2π
Rn(krR)H(1)

n (krr
′)dkz.

If the PS is located within the plane, i.e. z′ = zM , this expression simplifies to

pn = b′Φ∗n(φ′)
in+1

8π

∫ ∞
−∞
Rn(krR)H(1)

n (krr
′)dkz. (5.43)

Equating the right hand side expression with Rn(kR)qn (compare Eq. (5.15)) and rigorous

reformulation of Eq. (5.43) yields the expression for the HD coefficients:

qn = b′
e−inφ

′

√
2π

in+1

8π

∫∞
−∞Rn(krR)H

(1)
n (krr

′)dkz

Rn(kR)
(5.44)
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Abstract

This work introduces a solution to the acoustic Helmholtz equation for wedge propagation spaces

that is suitable for Nearfield Acoustical Holography (NAH). Such propagation spaces represent

realistic scenarios for many acoustical problems where a free field assumption is not eligible. The

proposed sound field model is derived from the general solution of the wave equation in cylindrical

coordinates, using sets of orthonormal basis functions. The latter are modified to satisfy several

boundary conditions representing the reflective behaviour of wedge-shaped propagation spaces. It

is shown that the obtained solutions are suitable for NAH as well as the formulation of Neumann

Green functions.

The model and its suitability for NAH are demonstrated through both numerical simulations

and measured data, where the latter was acquired for a specific case with several individually

controlled sources of vibration.

6.1 Introduction

Analytical sound field models exist in a variety of mathematical forms that can differ to suit

different types of acoustic environments. Most rigorous analytical models are solutions to the

95
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acoustic wave equation (at least within a problem-specific region of validity). Some models

are simply based on a specific coordinate system that best describes a given problem. Some

more specific models employ boundary conditions to include diffraction of scattering objects

within the sound field. However, adding boundary conditions to a problem quickly makes it

difficult to formulate an analytical model, which is where numerical methods can be applied

instead. Especially models that are based on functional analysis are widely used for both sound

field capture/analysis [Buc84, Wil99, Mey01, AW02, ME02, LDGD04, MDB06, TK06, LZ15] and

reproduction/control [DMN03, AS08, FNW12, Ahr12, SAP14]. A typical approach to modelling a

specific acoustic scenario is to take the solution pertaining to the free and undisturbed field (within

a bounded volume) for the most suitable coordinate system for the given problem. All sound

sources are typically assumed to be located outside of a bounded volume of interest and modelled

on the basis of the superposition of either plane waves or point sources [CK98, Wil99, Faz10].

These solutions may be sufficient for many acoustic problems, yet those where scattering has a

significant impact on the sound field require more accurate solutions. For example, the sound field

models for acoustic transducer arrays often need to be modified to account for the scattering due to

the array’s own physical presence in the sound field. This is achieved by superimposing the specific

solution for the sound field radiated from a source distribution to the free field solution, so that

the sum satisfies the boundary condition [Wil99, Mey01, AW02, ME02, TK06, KFV10, KFV11].

The example of the model for the sound field of acoustic transducer arrays shows how introducing

boundary conditions to a problem can serve to better describe the characteristics of a specific

acoustic environment. Further examples for acoustic environments that require several boundary

conditions are ducts and transmission lines [Web19, BX08], rooms [AB79, KFCS00] and under-

water shorelines [Buc84, Buc89, LZ15]. Asvestas et al. [ABC+70] described the wave equation

as separable inside infinite wedges for both the Dirichlet and the Neumann boundary condition,

yielding analytical expressions for the field of plane waves, and point and line sources through

an infinite series expansion and infinite integration in the wavenumber domain. Buckingham

[Buc84, Buc89] adopted their point source model to the field of shoreline underwater acoustics

for different boundary conditions on the faces of the wedge. Luo and Zhang [LZ15] recently

published exact solutions for both the Dirichlet and Neumann boundary conditions in the infinite

wedge, including a numerical approach to integrate over potentially occurring singularities.

Boundary conditions also play a role in the application of Rayleigh’s First Integral formula to

describe the radiation from a piston integrated into an infinite baffle [KFCS00, BX08]. While

this formula is a well established tool to model the radiation from panels, loudspeaker drivers or

similar structures, it is still derived for a practically non-existent environment. Williams [Wil99]

introduced the concept of Rayleigh-like formulae to transfer the principle to other coordinate

systems and geometries.

In principle, these Rayleigh-like formulae project the behaviour of one specific boundary to any

other point in space. NAH extends this concept to link two boundaries within a given sound

field through propagators, which makes NAH particularly well suited for the use with coordinate

systems in which the acoustic wave equation is separable [MWL85, Wil99, Wil01, WHH03]. Their

solutions enable propagation of holograms either further away from, or back towards their source.

These forward or inverse problems, respectively, can be solved through either an eigenvalue

decomposition or a singular value decomposition of the solutions of the wave equation. Williams

et al. presented an overview for planar and cylindrical NAH in [Wil01]. One prominent application
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of NAH is to identify the vibration pattern on the surface of an object [Wil99, Wil01, WHH03],

which makes it conceptually the inverse of Rayleigh-like formulae. Another application is to

investigate the directivity of sound sources by looking at the pressure field directly [KB16] or by

evaluating the intensity field from the reconstructed pressure and velocity holograms [WVHK06].

One key issue with NAH is that inverse problems are known to suffer from ill-conditioning when

very small eigen/singular values meet measurement noise. In that case, regularisation of the

inverse yields a stable solution at the cost of reducing spatial resolution [Han98, Wil01, FN07].

This work introduces a radiation model for propagation spaces that are relevant for many practical

acoustical applications. It adopts the solution of the wave equation in acoustical wedges by

Asvestas et al. [ABC+70] as the basic model and extends it by yet another boundary condition.

The final model enables the deduction of a Neumann-Green Function (NGF) and the formulation

of a Rayleigh-like formula. Both provide tools to describe the acoustic radiation from sources in

rooms or other wedge-shaped propagation spaces, e.g. a corner between two walls. Furthermore,

it is shown that the model can be used for NAH. The findings are confirmed through both

simulated and measured data.

The remainder of this work is organised as follows. Section 6.2 introduces the sound field model in

the form of the solution to the acoustic Helmholtz equation in finite and infinite wedge propagation

spaces. On the basis of the two models, Rayleigh-like formulae and NGFs are derived in Section

6.3. Section 6.4 defines the radial functions associated with the combination of the spatial modes,

enabling the study of the propagation behaviour of individual wave components. Using these

radial functions, the propagators needed for the reconstruction of both velocity and pressure from

a measured pressure hologram are defined in Section 6.5. Section 6.6 presents simulated sound

fields for two elementary types of source, one of which is later used to provide a comparison to

measured data. The results of NAH with measured holograms obtained from a specially designed

measurement rig are presented and discussed in Section 6.7 before the findings of this work are

summarised in the final section.

6.2 Sound Field Model

6.2.1 General Solution of the Helmholtz Equation in the Infinite Wedge

The reference geometry used throughout this paper is based on the cylindrical coordinate system

shown in Fig. 6.1. This enables a compact description of the boundary conditions for wedge-

shaped propagation spaces. The model is developed in two stages, starting from the sound field

in the free space.

The well-known general solution of the Helmholtz equation (without wedge) in cylindrical

coordinates is determined through a separation of variables approach in the frequency domain

[Wil99], yielding the series-integral representation

p(r, ω) =

∞∑
n=−∞

Φn(φ)

∫ ∞
−∞

An(kz, ω)Rn(kr, r)Z(kzz) dkz, (6.1)
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Figure 6.1: Cylindrical Coordinates with radius r, azimuth angle φ and height z, as well as
further boundaries and specific angles needed in this work.

with r = (r, φ, z)T , the basis functions

Φn(φ) =
einφ√

2π
, (angular basis functions) (6.2)

Z(kzz) =
eikzz√

2π
, (axial basis functions) (6.3)

Rn(kr, r) = H(1)
n (krr), (radial basis functions) (6.4)

and

kr =
√
k2 − k2

z , (6.5)

where k = ω
c denotes the wave number as a function of the angular frequency, ω, and the speed

of sound, c. Since this work is devoted to the radiation of sound away from the coordinate

origin, only the Hankel functions (of the first kind) are considered as radial basis functions in the

following [Wil99]. Accordingly, the coefficients An(kz, ω) describe a sound field radiated from

sources located within a cylinder of radius rS around the origin[Wil99]. The parameter ω is

omitted hereunder for the sake of brevity.

The propagation space shall now be restricted to an infinite wedge by introducing two planes

whose intersection coincides with the z-axis. The distinct angles φ1 and φ2 indicate the positions

of the two planes (see Fig. 6.1).

Two types of boundary conditions are considered below. A pressure release boundary requires for

the acoustic pressure to vanish at the angles φ1 and φ2 and is formally given by

p(r)
∣∣∣
φ=φ1,φ2

= 0. (6.6)

A rigid boundary affects the velocity vector field

v(r) = vr(r) · er + vφ(r) · eφ + vz(r) · ez (6.7)



Chapter 6 - A General Radiation Model for Sound Fields and Nearfield Acoustical Holography in
Wedge Propagation Spaces 99

by forcing the velocity component coincident with and normal to the boundary to zero, i.e.

vφ(r)
∣∣
φ=φ1,φ2

= 0.

The above result can also be expressed as a boundary condition for the pressure gradient, using

Euler’s equation in the frequency domain

iρ0ck~v(r) = ∇p(r), (6.8)

to obtain
∂

∂φ
p(r)

∣∣∣
φ=φ1,φ2

= 0, (6.9)

where φ1 < φ2.

The two boundary conditions specified in (6.6) and (6.9) individually lead to a new countable

Total Orthonormal Set (TOS) [Kre78] of basis functions

Φn(φ) = νn

sin
(
nπ
κ (φ− φ1)

)
, (Pressure Release BC)

cos
(
nπ
κ (φ− φ1)

)
, (Rigid BC)

(6.10)

with

νn =

√
2− δn
κ

, and κ = φ2 − φ1,

where δn denotes the Kronecker Delta, n ∈ N and φ1, φ2 ∈ [0, 2π). In either case it holds that the

basis functions Φn(φ) are all real-valued and hence describe exclusively standing wave components

along the φ-direction. The corresponding solutions to Bessel’s now modified equation are Hankel

functions of non-integer order

Rn(krr) = H
(1)
nπ
κ

(krr), n ∈ N0. (6.11)

Note that the solution for the radial functions is the same for both types of boundary conditions.

The solution for sound fields in the infinite wedge is then given by

p(r) =

∞∑
n=0

Φn(φ)

∫ ∞
−∞

An(kz)Rn(krr)Z(kz, z)dkz. (6.12)

The solution in (6.12) is identical to the one presented in [Buc84, Buc89, LZ15].

The model in Eq. (6.12) requires the uncountable set {Z(kz, z)}kz∈R to enable the description of

any arbitrary pressure field. This is in analogy to the inverse Fourier Transform, mapping from

the frequency domain to the time domain. An infinitely spreading propagation space however

hardly applies to real life conditions; On the contrary, most of the time it is necessary to consider

the sound field in a room with a floor at z = z1 and a ceiling at z = z2, i.e. there is an additional

boundary condition for those values of z.

The following subsection introduces a pair of boundary conditions along the z-axis to restrict the

model to finite wedges.
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6.2.2 General Solution in the Finite Wedge

The propagation space is now further restricted to a finite wedge by introducing two parallel

planes z = z1 (the floor) and z = z2 (the ceiling), effecting a wedge-shaped waveguide. As for

the angular boundary conditions, the model should allow for either a pressure release or a rigid

boundary condition at the floor and ceiling. Following similar steps to those described in Section

6.2.1, the expression for the pressure release boundary condition is

p(r)
∣∣∣
z=z1,z2

= 0 (6.13)

and for the rigid boundary condition

d

dz
p(r)

∣∣∣
z=z1,z2

= 0. (6.14)

Accordingly, the TOSs of basis functions that satisfy Eqs. (6.13) and (6.14), respectively, are

given by

Z

(
kz =

mπ

ζ
, z

)
= Zm,ζ(z) = µm

sin
(
mπ
ζ (z − z1)

)
, (Pressure Release BC)

cos
(
mπ
ζ (z − z1)

)
, (Rigid BC)

(6.15)

with

µm =

√
2− δm
ζ

and ζ = z2 − z1,

where z1, z2 ∈ R, z1 < z2 and m ∈ N. Note that the TOS {Zm (z)}m∈N is now also countable,

likewise yielding an infinite yet countable set of axial wave numbers

{kmz }m∈N0 :=

{
kmz =

mπ

ζ
: m ∈ N

}
(6.16)

associated with the propagation along the z-axis. As a consequence, Eq. (6.12) can now be

rewritten without the integral but with a double sum instead:

p(r) =

∞∑
n=0

∞∑
m=0

Amn Rn (kmr r) Φn(φ)Zm,ζ(z). (6.17)

Note that Eq. (6.5) now needs to be reformulated in accordance with (6.16), so that the radial

wave numbers

kmr =

√
k2 −

(
mπ

ζ

)2

, m ∈ N (6.18)

form the now countable set {kmr }m∈N. The new basis functions Φn(φ) ∈ R and Zm (z) ∈ R no

longer describe propagating waves along the circumferential and axial direction, respectively, but

exclusively standing wave components instead.

Eqs. (6.12) and (6.17) represent the general solutions to the acoustic Helmholtz equation inside

infinite and finite (in z) wedge spaces, respectively, and the coefficients An(kz) and Amn describe

sound fields in the respective propagation spaces. The next subsection describes how these
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coefficients are related to the pressure and velocity spectrum and how the latter two can be

identified from pressure holograms.

6.2.3 Pressure and Velocity Spectrum

Let {p(r)}r∈Λ be a hologram of the pressure at a given radius rH with

Λ :=

{r : r = rH , φ ∈ [φ1, φ2], z ∈ R}, infinite wedge,

{r : r = rH , φ ∈ [φ1, φ2], z ∈ [z1, z2]}, finite wedge.
(6.19)

Taking the scalar product [Kre78, CK98] of the hologram and the model’s basis functions defines

the spatial analysis transform, the result of which provides the holograms’ spectrum for an infinite

wedge as

Pn(kz, rH) =

∫ φ2

φ1

∫ ∞
−∞

p(rH , φ, z)Φn(φ)Z∗(kzz) dz dφ, (6.20)

and for a finite wedge as

Pmn (rH) =

∫ φ2

φ1

∫ z2

z1

p(rH , φ, z)Φn(φ)Zm (z) dz dφ. (6.21)

Exploiting the orthonormality relation of TOSs to invert the expressions in (6.20) and (6.21)

provides the corresponding spatial synthesis transforms

p(rH , φ, z) =

∞∑
n=0

∫ ∞
−∞

Pn(kz, rH)Φn(φ)Z(kzz) dkz (6.22)

and

p(rH , φ, z) =

∞∑
n=0

∞∑
m=0

Pmn (rH)Φn(φ)Zm (z) , (6.23)

respectively.

Replacing the expression for the pressure in Eqs. (6.20) and (6.21) by the expressions in

(6.12) and (6.17), respectively, and exploiting of the orthonormality relation of orthonormal sets

[Kre78, CK98] yields the relation between the sound field coefficients and the pressure spectrum

for the infinite wedge

An(kz)Rn(krrH) = Pn(kz, rH), (6.24)

and the finite wedge

Amn Rn (kmr rH) = Pmn (rH). (6.25)

Both equations can be rewritten for An(kz) and Amn , respectively, if

|Rn(krrH) | 6= 0 and |Rn (kmr rH) | 6= 0,

which applies for the Hankel functions of the first kind for 0 < |αrH | <∞ and rH ∈ R, where

α = kr and α = kmr as defined in (6.5) and (6.18), respectively [CS82].
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In accordance with what is shown for the pressure hologram above, the expression for the spectrum

of a particle velocity hologram in the infinite wedge is given by

Vn(kz, rH) =

∫ φ2

φ1

∫ ∞
−∞

v(rH , φ, z)Φn(φ)Z∗(kzz) dz dφ. (6.26)

and for the finite wedge by

Vm
n (rH) =

∫ φ2

φ1

∫ z2

z1

v(rH , φ, z)Φn(φ)Zm (z) dz dφ. (6.27)

Since v(r) is a vector, it follows that the resulting spectra must have the same dimensions.

At this point, the model for sound propagation in infinite and finite wedges is complete, however,

some applications can benefit from some more convenient solutions. The following section presents

the derivation of Rayleigh-like formulae [Wil99] and NGFs on the basis of the developed model.

6.3 Rayleigh-like Formulae and Neumann-Green Functions

Rayleigh-like formulae describe the pressure field radiated from the velocity distribution on a

given rigid boundary

V :=

{r : r = rS , φ ∈ [φ1, φ2], z ∈ R}, infinite wedge,

{r : r = rS , φ ∈ [φ1, φ2], z ∈ [z1, z2]}, finite wedge,
(6.28)

inside the propagation space and are thus conceptually similar to Rayleigh’s first integral formula

[Wil99]. Since the velocity at V causes acoustic radiation, the entire boundary effectively becomes

a source. The developed models both already support this premise through the choice of the

radial basis functions in (6.11). It can be assumed that the velocity of V is limited to a radial

component, i.e. v(rS , φ, z) = vr(rS , φ, z) · er (see Fig. 6.2) [Wil99].

y

x

rS

S′

vr(rS , φ, z)

V

Figure 6.2: Concept of the radiation from a curved boundary V with the given velocity profile
vr(rS , φ, z) inside the wedge defined by the rigid boundaries S′.
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6.3.1 Pressure Radiated from the Boundary V for Infinite Wedges

The nature of the velocity v(rS , φ, z) implies that

Vn(kz, rs) = Vn(kz, rS) · er.

In this case, Euler’s equation reduces to

Vn(kz, r) =
−i
ρ0ck

∂

∂r
Pn(kz, r). (6.29)

Since the coefficients An(kz) fully describe a sound field inside the infinite wedge, it can be

derived from Eq. (6.24) that the relation between two pressure spectra at different radii is

Pn(kz, r) =
Rn(krr)

Rn(krrS)
Pn(kz, rS). (6.30)

Using the above to replace Pn(kz, r) in (6.29) yields

Vn(kz, r) =
−ikr
ρ0ck

R′n (krr)

Rn(krrS)
Pn(kz, rS), (6.31)

where

R′n,κ(x) =
∂

∂x
Hnπ

κ
(x). (6.32)

Provided that krR
′
n (krr) 6= 0, transposing Eq. (6.31) for the pressure spectrum Pn(kz, r) and

exchanging r with rS yields

Pn(kz, r) = iρ0ck
Rn(krr)

krR′n (krrS)
Vn(kz, rS), r ≥ rS . (6.33)

The synthesis of the pressure p(r) at radius r from the result in (6.33) through (6.22) leads to

the expression for the pressure as a function of the velocity spectrum on the boundary V

p(r) = iρ0ck

∞∑
n=0

∫ ∞
−∞

Rn(krr)

krR′n (krrS)
Vn(kz, rS)Φn(φ)Z(kzz) dkz. (6.34)

An analytic expression for (6.34) is hard to find due to the rather complex integral. Therefore it

is common to limit the bounds of integration and solve it numerically instead. When attempting

that, it is important to deal with the case when kr = 0 as it poses a singularity. To solve that

issue, Luo and Zhang proposed to marginally shift the integration path into the complex plane

in order to avoid the singularity [LZ15]. Furthermore, it is necessary to limit the integration

bounds for the numerical calculation. The error introduced by this limitation can be controlled by

considering the evanescent behaviour of higher order components [Wil99]. This is more thoroughly

discussed in Section 6.4.
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6.3.2 Pressure Radiated from the Boundary V for Finite Wedges

The expression corresponding to (6.34) for the finite wedge can be derived in a similar way.

Following the same steps of the previous section but with the model for the finite wedge yields

p(r) = iρ0ck

∞∑
n=0

∞∑
m=0

Rn (kmr (ζ)r)

kmr (ζ)R′n (kmr (ζ)rS)
V mn (rS)Φn(φ)Zm (z) . (6.35)

The dependency of kmr on ζ is omitted in the remainder of this work for the sake of brevity.

One major advantage of the expression in (6.35) over the one in (6.34) is that it does not require

(numerical) integration. The summations should be infinite, however, the series truncation error

can be kept below a reasonable limit since the higher order components of Φn(φ) and Zm (z)

become evanescent [Wil99] when
nπ

κ
> kmr r,

potentially leading to a negligible contribution of that particular component, depending on the

observation radius r. This is further discussed in Section 6.4.

6.3.3 Rayleigh-like Formula and Neumann-Green Function for Infinite

Wedges

Equation (6.34) can be used to derive both the Rayleigh-like formula and the NGF for radiation

problems based on the normal velocity distribution vn on a boundary S = V ∪ S′ (see Fig. 6.2),

where

S′ := {r : r > rS , φ = [φ1, φ2] , z ∈ R} (6.36)

The defining condition of an NGF is that it satisfies

∂GN
∂n

∣∣∣∣
S

= 0, (6.37)

where n denotes the geometrical dimension that locally corresponds to the normal vector on S.

However, for the infinite and the finite wedge, this condition is inherent to the flanking walls for

the developed sound field model (compare Eq. (6.9)), and in the case of the finite wedge also for

the roof and floor (compare Eq. (6.14)) of the propagation space, respectively. This entails that

the NGF for infinite and finite wedges depends solely on the boundary condition

∂GN
∂r

∣∣∣∣
V

= 0. (6.38)

Referring to the Kirchhoff Integral Equation (KIE) as given in [Wil99], the Rayleigh-like formula

for the infinite wedge is based on the NGF and must be of the form

p(r) = iρ0ck

∫ φ2

φ1

∫ ∞
−∞

GN (r|r′)vn(r′)rSdz
′dφ′ (6.39)
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with r′ = (rS , φ
′, z′). Using (6.26) to compare the Rayleigh-like formula to the expression in

(6.34) yields the Neumann-Green function for the infinite wedge

GN (r|r′) =

∞∑
n=0

∫ ∞
−∞

1

rS

Rn(krr)

krR′n (krrS)
Φn(φ′)Z∗(kzz

′) Φn(φ)Z(kzz) dkz. (6.40)

To confirm that this results satisfies (6.38), (6.40) is derived w.r.t. r and the result evaluated for

r ∈ V , yielding

∂GN (r|r′)
∂r

∣∣
r∈V =

∞∑
n=0

∫ ∞
−∞

1

rS
Φn(φ′)Z∗(kzz

′) Φn(φ)Z(kzz) dkz. (6.41)

From the completeness relation of total orthonormal sets [Kre78][Wil99], it follows that

∂GN (r|r′)
∂r

∣∣∣∣
r∈V

=
1

rS
δ(φ− φ′)δ(z − z′). (6.42)

This confirms that the normal derivative of the NGF is indeed equal to zero everywhere on the

boundary V but at the position of the singularity/point source r′ = (rS , φ
′, z′)T (compare to

Chapter 8 in [Wil99]).

6.3.4 Rayleigh-like Formula and Neumann-Green Function for Finite

Wedges

Following a similar procedure as in the previous subsection for finite wedges yields the expression

for the NGF

GN (r|r′) =

∞∑
n=0

∞∑
m=0

1

rS

Rn (kmr r)

kmr R
′
n (kmr rS)

Φn(φ′)Zm (z′) Φn(φ)Zm (z) (6.43)

that likewise satisfies the boundary condition

∂GN (r|r′)
∂r

∣∣
r∈V =

1

rS
δ(φ− φ′)δ(z − z′) (6.44)

everywhere but at the position of the singularity/point source r′ = (rS , φ
′, z′)T . The Rayleigh-like

formula for the finite wedge is then given by

p(r) = iρ0ck

∫ φ2

φ1

∫ z2

z1

GN (r|r′)vn(r′)rSdz
′dφ′. (6.45)

With both Rayleigh-like formulae given in explicit form through (6.39) and (6.45), it is now

possible to describe the radiated sound field from arbitrary source distributions on the boundary

V .
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6.4 Radial Functions

The practical implementation of Eqs. (6.34) and (6.35), as well as Eqs. (6.39) and (6.45)

require limitation of the integration bounds or truncation of the sum, respectively. The following

considerations are equally relevant for both the Rayleigh-like formulae and the NGFs, but their

meaning becomes more intuitive when evaluating the expressions in (6.34) and (6.35) instead.

The determining factor for the limitation/truncation is the transfer function of the velocity modes

on the boundary to the corresponding pressure modes at a given observation radius r. These

transfer functions are also referred to as ’radial functions’ and can be identified from Eqs. (6.34)

and (6.35) as shown in the following subsection.

6.4.1 Identifying the Radial Functions

Considering that both axial and angular basis functions are orthonormal, the radial functions for

the infinite wedge are identified as

Γn(kz, r, rS , κ) = iρ0ck
Rn(krr)

krR′n (krrS)
. (6.46)

The dependency on kz stems from Eq. (6.5).

Similarly, the radial functions for the finite wedge are given by

Γmn (r, rS , κ, ζ) = iρ0ck
Rn (kmr r)

kmr R
′
n (kmr rS)

. (6.47)

In both cases the radial functions describe a discrete spectrum in the angular domain; However,

Eq. (6.46) is continuous in the kz-domain while (6.47) also has an entirely discrete spectrum.

Comparing the model descriptions at hand to the interrelations of Fourier Transform and Fourier

Series, this is not at all surprising.

6.4.2 Properties

Figure 6.3 shows an example of Γn for r = 2 m, rS = 0.15 m, κ = π and f = 5 kHz. To help with

legibility, the plot is continuous along the n-axis, but only discrete points of n are relevant. It

can be observed that modal combinations (n, kz) with axial wave numbers kz > k are heavily

attenuated, i.e. they decay as evanescent wave components. The same applies for evanescent

angular modes n > k rSκπ , only their descent is not as steep as for the axial wave numbers [Wil99].

The radial functions describe the physics of the propagation inside wedge spaces: While purely

axial modes (n = 0) cannot transition from evanescent into propagating modes as the radius

increases, purely angular modes (kz = 0) can. The reason is simply that a mode n may oscillate

too densely in space at a smaller radius, so that across a small arc section it ’shuffles’ air between

its maxima and minima, while at a larger radius, the same mode now oscillates across a longer

arc length, no longer effecting an acoustic ’short circuit’. This principle does not hold for axial

modes, but it does for modal combinations (n, kz). With view on the NAH performance prospect,
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Figure 6.3: Magnitude of the radial functions Γn(kz, r, rS , κ) in [dB] with reference to unity,
r = 2 m, rS = 0.15 m, κ = π, f = 5 kHz.

this finding suggests that having a small standoff distance, i.e. the gap between hologram

(measurement) plane and V , is less critical for the NAH resolution in the φ-domain than for the

resolution in the z-domain (see Section 6.5).

These properties equally apply to the radial functions for the finite wedge, since they are but a

sampled version with kmz = πm
ζ , n ∈ N.

6.4.3 Truncation and Limitation of the Solutions

As a consequence of the propagating modes accumulating around the origin of the n-kz-plane

or the n-m-plane, respectively, the integrations and summations in (6.34) and (6.35) can be

truncated while maintaining a good approximation of the actual sound field, provided that An(kz)

and Amn have a similar, finite magnitude for all combinations (n, kz) and (n,m), respectively.

In the case of (6.34), the integration limit Kz > k and the final term of the truncated sum n = N

can be chosen such that

p̃(r) =

N∑
n=0

∫ Kz

−Kz
Γn(kz, r, rS , κ)Vn(kz, rS)Φn(φ)Z(kz, z)dkz (6.48)

approximates the actual p(r) adequately. This requires however the a priori knowledge of all

coefficients Vn(kz, rH) to determine the contribution of evanescent modes in comparison to the

propagating modes.

In the case of (6.35), suitable limits N and M can be found that truncate the double sum so that

p̃(r) =
N∑
n=0

M∑
m=0

Γmn (r, rS , κ, ζ)V mn (rS)Φn(φ)Zm (z) (6.49)

approximates p(r) with reasonable error.
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Not only is the evaluation of the radial functions useful for the numerical calculation of sound

fields, but they also provide valuable information when attempting to solve inverse problems

[CK98, Wil99]. Inverse problems are a key component of NAH, whose methods are adapted for

both infinite and finite wedges in the subsequent section.

6.5 Holography in Infinite and Finite Wedges

This section introduces the equations that enable acoustic holography, i.e. the reconstruction

of the pressure (and also the particle velocity) at any point within the wedge space from the

knowledge of a hologram {p(r)}r∈Λ (see Section 6.2.3).

Equation (6.30) links pressure spectra obtained from different radii for infinite wedges. An

equivalent version can be formulated for the finite wedge, yielding

Pmn (r) =
Rn (kmr r)

Rn (kmr rS)
Pmn (rS). (6.50)

Equivalently, replacing the expression for the pressure in Eqs. (6.20) and (6.21) by Eqs. (6.34)

and (6.35) (evaluated at r = rH), respectively, shows that the radial functions in (6.46) and

(6.47) link the pressure spectra of the hologram at radius rH to the normal velocity spectra at

the radius rS , yielding

Pn(kz, rH) = Γn(kz, rH , rS , κ)Vn(kz, rS) (6.51)

and

Pmn (rH) = Γmn (rH , rS , κ, ζ)V mn (rS), (6.52)

respectively. A key component of NAH is to reformulate both the above equations as an expression

to calculate the velocity spectra, which can be obtained by multiplying both sides of the equations

by the reciprocals of the radial functions. However, the evanescent nature of the higher order

modes reflects in an extremely small magnitude of the radial functions for modes outside the

”radiation circle” defined by k =
√
k2
z + ( πnκrS )2 (see Section 6.4.2). Accordingly, their reciprocals

take extremely large values, effecting heavy amplification of the corresponding pressure modes.

While no problem in theory, the measurement noise of the hologram data in practice also manifests

itself in the derived pressure spectra. When heavily amplified, the noise in the spectra can severely

corrupt the results for Vn(kz, rS) and V mn (rS), respectively. This common issue in the field of

inverse problems can be addressed by introducing a Tikhonov regularisation to the reciprocal of

the radial functions. The regularised solutions for the velocity spectra Ṽn(kz, rS) and Ṽ mn (rS)

are then given by

Ṽn(kz, rS) =
Γ∗n(kz, rH , rS , κ)

|Γn(kz, rH , rS , κ)|2 + β2
V

P̂n(kz, rH) (6.53)

and

Ṽ mn (rS) =
Γm∗n (rH , rS , κ)

|Γmn (rH , rS , κ)|2 + β2
V

P̂mn (rH), (6.54)

respectively. The ·̂ symbol on the pressure spectra denotes that they were calculated from

holograms measured at rH by evaluating equations (6.20) and (6.21), respectively. A suitable

regularisation parameter βV that is optimal for minimising the impact of noise in the measured

data can be chosen through the L-Curve analysis [Han98, Han00] or other techniques.
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From the literature it is known that regularisation of the inverse problem is equivalent to a spatial

lowpass filtering of the synthesised sound field quantity (pressure and velocity). Examples of

such surface velocity reconstructions from measured data and further practical aspects of the

mechanisms described above are presented in the Section 6.7.

Once the normal velocity spectra have been obtained from (6.53) or (6.54), respectively, the

velocity on V can be reconstructed using the synthesis equation

ṽr(rS , φ, z) =

∞∑
n=0

∫ ∞
−∞

Ṽn(kz, rS)Φn(φ)Z(kzz) dkz (6.55)

for the infinite wedge or

ṽr(rS , φ, z) =

∞∑
n=0

∞∑
m=0

Ṽ mn (rS)Φn(φ)Zm (z) (6.56)

for the finite wedge (compare to Eqs. (6.22) and (6.23)).

6.6 Sound Field Simulations

The numerical calculation of the pressure field was accomplished on the basis of the truncated

synthesis equations (6.48) and (6.49). In the case of (6.48) it is additionally necessary to

numerically solve the integration. For the results in this work, the truncated integration was

numerically solved using the trapezoidal rule [BSMM06] (1st order approximation) with the

integration limits

Kz =

⌈
Qk

∆kz

⌉
∆kz, Q ∈ R ≥ 1, (6.57)

and the step size ∆kz for the integration variable, where d·e denotes the ceiling operator. The

ceiling operator ensures that all propagating wave components are definitely part of the synthesis.

The parameter Q can be adjusted to control the amount of evanescent components included in the

calculation. Alternatively, the integral in (6.48) can be solved using the IFFT [Wil99, WHH03],

which is commonly done in the field of NAH as it may increase the speed of the calculation. The

limits for the truncation of the sums were chosen as

N = dQkrSe (6.58)

for the angular components and

M =

⌈
Qkζ

π

⌉
(6.59)

for the axial components.

The following subsections introduce two elementary types of sources mounted on the baffle for

both propagation spaces.
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(a) Infinite Wedge (b) Finite Wedge

Figure 6.4: Pressure field of a point source located at (0.2 m, π
4
, 0)T , Q = 1.5, ∆kz = 0.01 rad

m
.

6.6.1 Point Source Model

The NGFs presented in Sections 6.3.3 and 6.3.4 can be applied to model the sound field of a

point source on the rigid baffle V located at (rS , φ
′, z′)T for the infinite and the finite wedge,

respectively. The resulting pressure field can be calculated from Eq. (6.39) and Eq. (6.45),

respectively, where

vn(r′) = vr(r
′) =

1

rS
δ(r − rS)δ(φ− φ′)δ(z − z′). (6.60)

Figure 6.4a shows the magnitude of the pressure field in the xy-plane (z = 0) for an infinite

wedge with κ = π
2 , rS = 0.2 m, φ′ = π

4 and z′ = 0. The interference between the radiated waves

and the reflections from the rigid walls generate a clear radiation pattern. Particularly two angles

at which destructive interference occurs point distinct nulls in the radiation pattern.

The same scenario for a finite wedge with κ = π
2 and ζ = 2 m, where z1 = −1 m and z2 = 1 m, is

shown in Fig. 6.4b. In comparison to the field shown in Fig. 6.4a, the field in the finite wedge also

suggests a weakened radiation in those same directions where Fig. 6.4a shows distinct destructive

interference, the attenuation however being nowhere near as strong. This must be due to the

now occurring reflections from the floor and ceiling that overlay their own interference pattern.

The latter is responsible for increased maxima and minima observed when increasing the radius

along the angle φ = φ′.

6.6.2 Piston Source Model

Another type of source that is simple to simulate with the given model is that of a piston source

on the baffle. It can be modelled as a patch in the radial component of the velocity profile on the

boundary V where vr(rS , φ
′, z′) 6= 0. For a patch located centrally on V , of angular width α and

axial width B, the velocity profile is given by the product

vr(rS , φ, z) = Π

(
φ− κ

2

α

)
Π
( z
B

)
(6.61)
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where Π(·) denotes the rectangular function

Π (φ) =

1, |φ| ≤ 1
2 ,

0, |φ| > 1
2 .

(6.62)

The corresponding radial component of the velocity spectra for the infinite and finite wedge, as

calculated from (6.26) and (6.27), are

Vn(ω, kz, rS) = αBsinc

(
kz
B

2

)
Z∗(kz0) sinc

(nπ
κ

α

2

)
Φn

(π
4

)
(6.63)

and

V mn (ω, rS) = αBsinc

(
mπ

ζ

B

2

)
Zm

(
ζ

2

)
sinc

(nπ
κ

α

2

)
Φn

(π
4

)
, (6.64)

respectively. In this case Eqs. (6.34) and (6.35), respectively, are more suitable to directly

calculate the sound fields. The results for the infinite and finite wedge are shown in Figures 6.5a

and 6.5b, respectively. With the piston size in a similar order of magnitude as the wave length,

(a) Infinite Wedge (b) Finite Wedge

Figure 6.5: Pressure field of a piston located at (0.2 m, π
4
, 0)T , Q = 1.5, ∆kz = 0.01 rad

m
,

α = π
6

, B = 0.1 m.

the fields in Fig. 6.5 show similar characteristics as those in Fig. 6.4a, yet the attenuation with

propagated distance is smaller than that of the point source. The overall level difference between

the results for the point source and those for the piston source stems from the leading factor αB

in Eqs. (6.63) and (6.64).

6.7 Measurements

In order to support the developed theory and model, holographic measurements of piston-like

sources were conducted inside a quasi-infinite wedge with κ = π. The prototype of a hemi-

cylindrical loudspeaker array [HFF16] with 15 Tang Band W1-1070SH drivers was used as a

radiating source with rS = 0.1426 m. The measured hologram data is compared to simulated

data, assuming the sound field of rectangular pistons with an edge length equal to the diameter of
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the drivers in the prototype, each located in the corresponding positions. Pressure spectra were

calculated from the measured holograms in order to perform NAH. The reconstructed velocity

profile of the radiating surface is then compared against the underlying actual source profile.

The next subsection introduces the measurement rig in detail.

6.7.1 Measurement Rig

The prototype was placed on a large planar baffle inside an anechoic chamber (see Fig. 6.6).

Absorbing material was placed at the edges of the planar baffle to reduce the reflections caused

Figure 6.6: The measurement setup with a measurement array consisting of 30 G.R.A.S.
40PL array microphones fitted on an arch over the HCA with radius rH = 0.3 m.

by the locally occurring change of acoustic impedance. The prototype was extended with wooden

hemi-cylinders to locally provide conditions similar to those of an infinite hemi-cylinder.

Two sliding rails were fitted underneath the baffle, running parallel to the axis of the HCA on

either side. Each held two carriers: one pair to support a wooden arc with radius rH = 0.3 m,

holding 30 G.R.A.S. 40PL array microphones (see Fig. 6.6) and one pair to hold a strain relief

feeding the microphone cables to the array along the vertical axis. This arrangement avoids

feeding a large number of cables along the microphone arc itself, thereby minimising the acoustic

obstruction posed by the measurement arc. This setup allows for iterative scanning of the sound

field radiated from the HCA along the vertical axis. The gaps in the baffle exposing the two rails

were covered with pieces of timber to mitigate the acoustic impedance change occurring at the

gap and thereby reducing reflections.

6.7.2 Angular Sampling and Resolution

The Sφ = 30 microphones were arranged on the arc at the angles

φu =
π

Sφ

(
u− 1

2

)
, u = 1 . . . Sφ, (6.65)

yielding a uniform sampling pattern. Given the nature of the angular basis functions Φn(φ) with

the fixed phase relation, it follows from the sampling theorem that this microphone arrangement
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allows for the recovery of orders up to

n = NM = Sφ − 1 = 29.

However, Figure 6.3 suggests that, up to a certain frequency, high angular orders will have already

decayed below the noise floor once they have propagated to the measurement aperture given their

evanescent nature. To investigate this further, one can look at the magnitude of the sum over

the axial component of the radial functions

Γ(C)
n (r, rS , κ) =

∫ Kz

−Kz
Γn(kz, r, rS , κ)dkz (6.66)

as a function of both radius and frequency. Figure 6.7 shows the magnitude of Γ
(C)
n normalised

to the modal strength at r = rS . This result suggests it is unlikely that orders higher than n = 11

Figure 6.7: Modal decay from source surface (rS = 0.1426 m) to hologram surface (rH = 0.3 m)

computed from Γ
(C)
N within the audible frequency band. The data is normalised to the model

strength on the surface of the loudspeaker array.

can be observed above the noise floor when they reach the measurement aperture at rH = 0.3 m

for frequencies below 10 kHz.

6.7.3 Vertical Sampling and Resolution

For the vertical extent of the measurement aperture, two different hologram lengths were used.

Holograms with a single active driver were measured for z ∈ [−0.5, 0.5]m, covering AZ = 1 m with

SZ = 51 samples. Holograms with multiple active drivers were measured from z ∈ [−0.98, 0.98] m

with SZ = 99 samples and an aperture length AZ = 1.96 m. In either case, the sampling positions

along the z-axis are

zw = ∆z

(
w − SZ + 1

2

)
, w = 1 . . . SZ . (6.67)
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It follows from the sampling theorem that the vertical sample spacing enables capture of axial

components kz up to

kz,max =
π

∆z
≈ 157.1

rad

m
. (6.68)

Due to the finite hologram aperture along the z-axis, a spatial 8-point Tukey window [Wil99] is

applied to the sampled data to attenuate otherwise salient higher spatial frequency components,

which would occur due to the discontinuity at the edges of the hologram data. Afterwards, all

holograms were zero-padded to an aperture length ranging from −3 m to 3 m, so that AZ = 6 m

and SZ = 301.

6.7.4 Analysis Equations

The analysis equation for the finite measurement aperture and set of samples is given by

P̂n(kz, rH) =
κ

Sφ

Sφ∑
u=1

Φn(φu) ∆z

SZ∑
w=1

Z∗(kzzw) p̂(φu, zw), (6.69)

where p̂(φm, zw) is the pressure measured at the mth microphone at the height zw at the hologram

radius rH = 0.3 m, where the spatial window has already been applied. Similar to the frequency

domain resolution of the Discrete Time Fourier Transform (DTFT), the pressure spectrum

P̂n(kz, rS) can be obtained at an arbitrary resolution in the kz domain from the measurement

data p̂(φm, zm′). For the acquired holograms, the analysis was performed with a resolution of

∆kz =
2kz,max

SZ
, matching that of a standard FFT operation.

6.7.5 Result for a Single Driver

The measured holograms were not absolutely calibrated, so any given pressure data does NOT

represent the actual SPL. To put the measured and the simulated holograms into perspective,

the former were normalised to the latter, either at the measurement point closest to the centre of

the active driver or at the measurement point closest to the strongest active driver.

Figure 6.8 shows the magnitude and phase of the holograms obtained for the field of a driver/piston

located at (rS ,
π
2 ,+0.0315 m)T . Both magnitude and phase show the effects of reflections from

the walls at the angles φ = 0 and φ = π in both holograms.

The magnitude of the pressure spectra P̂n(kz, rH) of both holograms are shown in Fig. 6.9.

The most striking difference between the measured and the simulated data is the presence of

measurement noise in the left plot. Due to the perfectly symmetric position of the driver, the

simulated data does not show any contribution of odd angular orders n. This is also reflected

in the spectrum from measured data with its prominent contributions for even orders up to

approximately n = 26. However, it can also be observed that the entire spectrum has an intrinsic

noise floor, next to other artefacts which might be attributed to further imperfections in the

measurement rig.

Using the pressure spectrum P̂n(kz, rH), the radial component of the velocity spectrum on the

boundary of the prototype (rS = 0.1426 m) can be obtained from Eq. (6.53). The radial velocity
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(a) Measured Hologram (b) Simulated Hologram

Figure 6.8: Magnitude and phase of both the measured data and the piston simulation for a
driver at (rS ,

π
2
, 0.0315 m)T , f = 8 kHz.

Figure 6.9: Spatial spectrum of the measured data vs. simulated measurement.

can be synthesised from numerical evaluation of Eq. (6.55). It was observed from the work with

the measured data that the exact knowledge of the hologram radius rH and the baffle radius rS

is critical when it comes to accurate reconstruction of the spreading of the radiation source along

the z-axis.

The resulting radial velocity reconstruction, Fig. 6.10, shows a very clear maximum of the radial
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(a) Velocity Reconstruction (b) Detail with Driver Position

Figure 6.10: (A) Velocity Reconstruction on the prototype surface, (B) Detailed excerpt with
outline of driver, f = 8 kHz.

velocity component vr. Note that the φ-axis was translated into a position x along the arc, where

x(φ) = rSφ, φ ∈ [0, κ].

In the more detailed plot on the right, the overlaid circle indicates the actual driver’s position and

dimension. It can be observed that the extent of the maximum along the arc (i.e. the φ-domain)

matches the size of the driver with good approximation, however the spread along the z-axis is

slightly larger. This can be explained by the rather large standoff distance dS = rH − rS ≈ 15 cm.

A consequence of the latter is that the necessary regularisation effectively reduces the spatial

resolution of the reconstruction. The cause of the side lobes occurring next to the area associated

to the driver is deemed to be the combination of a relatively short measurement aperture and the

aforementioned reduced spatial resolution due to regularisation. If the regularisation could be

reduced without introducing the artefacts of amplified measurement noise, then these sidelobes

would be decreased and the area of the maximum associated with the driver would be even more

distinctly shaped like a circle.

6.7.6 Result for 15 Active Drivers

Figure 6.11 shows both the measured and simulated hologram for all 15 drivers active. The

individual source strength and phase was set to radiate a certain beam pattern (see [HFF16]).

The interference between the fields radiated from the individual drivers is clearly seen in the

beam patterns shown in the magnitude plots of both the measured and simulated holograms.

The corresponding spectra are shown in Fig. 6.12. The spectrum from measured data shows the

underlying noise floor, as did the spectrum for the single driver previously; However, its overall

structure is substantially different, except of course for the distinction of the strength of modes

within the radiation ‘circle’. When looking at the velocity reconstruction results in Fig. 6.13,

it can be seen that not all of the drivers appear active. This can be explained by the strong

difference in the level of driving signals needed for the beamforming. Fig. 6.14 shows the source

strength of the different drivers. Particularly, the driving signal at drivers 13 to 15 is more than
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(a) Measured Hologram (b) Simulated Hologram

Figure 6.11: Measured pressure data vs. simulated data from piston model for all 15 drivers
active, f = 8 kHz.

Figure 6.12: Spatial spectrum of the measured vs. simulated pressure, f = 8 kHz.

Figure 6.13: Reconstruction of vr on the prototype surface with overlaid circles to indicate
the driver positions from both measured (left) and simulated data (right), f = 8 kHz. Note

that the horizontal axis is given as x(φ) = φrS .
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Figure 6.14: Normalised driving signal strength of the 15 drivers, f = 8 kHz.

28 dB below that of the strongest driver. These drivers are thus likely not to be recovered from

the hologram data due to noise.

6.7.7 Discussion

From the presented hologram data, it can be seen that there is generally a good match between

the measurements and simulations, especially considering that the piston shape of measurement

and simulation is slightly different. Physical effects such as the reflections from the rigid baffles

at φ = 0 and φ = π can be observed in both holograms, as expected from Section 6.6.

The results of the velocity reconstructions from NAH show an overall convincing match with

the expectation. The occurring artefacts might be attributed to a relatively short scanning

aperture and a relatively large standoff distance; a smaller hologram radius rH would provide a

better SNR and require less regularisation, which would increase the spatial resolution of the

velocity reconstruction at the baffle radius rS and thus reduce the level of the sidelobes. There is,

however, a tradeoff to be made since a reduction of rH shifts spatial aliasing effects down to lower

frequencies as higher order wave components are stronger near the source. Some artefacts may

also result from imperfections in the measurement setup, e.g. reflections from sudden impedance

changes (transitions between elements of the hemi-cylindrical baffle, trenches housing the rails

for the scanning arc and the latter itself, etc.).

The hypothesis made in Section 6.4.2 is supported by the velocity reconstruction results, since

the spatial resolution (given the standoff distance) was sufficient to clearly distinguish the driver’s

diaphragm from the side lobes in the φ-domain yet not in the z-domain.

6.8 Summary & Outlook

Acoustic models for the propagation of waves and radiation from sources in infinite and finite wedge-

shaped propagation spaces have been presented. From a basic expansion through orthonormal

basis functions proposed for both types of propagation spaces, Rayleigh-like formulae as well as

corresponding NGFs were derived from a basic expansion. These have been shown to provide

simulated data that are well-matched with hologram data obtained from measurements. The

identification of radial functions from the Rayleigh-like formulae enabled the formulation of a

set of forward and inverse propagators that were then applied to perform NAH on the basis of

the measured hologram data. Using the proposed NAH method, reconstructions of the normal
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component of the velocity on a hemi-cylindrical baffle obtained from measured holograms were

presented to confirm both the developed sound field model and its NAH suitability. A criterion

for truncation of the model’s series and integrals has been proposed.

It was found from the measurement results that a smaller standoff distance would produce more

accurate results. The spatial resolution that remained after regularisation reduced the accuracy

of the velocity sources along the vertical axis by comparison to the actual driver layout. A

hypothesis suggesting that the angular resolution is less sensitive to an inadequate choice for the

standoff distance than the axial resolution was proposed and confirmed from the measurement

data.
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Abstract

This work derives a 3D sound field model for the pressure field radiated from loudspeaker arrays in

acoustic wedge spaces. These wedge arrays are described through their normal velocity profile at a

given boundary with constant radius around the origin. Using this model, a suitable beamforming

technique with two different beam patterns is derived based on a mode-matching approach. The

model is then used to study the beamforming performance as a function of frequency and distance

from the array by analysing the newly introduced Arc Radial Functions (ARFs). The theory is

tested on the basis of simulation results for different wedges and validated through holographic

measurements with a hemi-cylindrical array. It is found that for greater distances, a far-field

approximation of the model can be used to drive the array, whereas at short distances, the general

model must be applied to yield accurate results.

7.1 Introduction

Loudspeaker arrays have grown to become established means for sound field control applications

in various types of environments. Until recently, research was dominated by three principal array

configurations: linear arrays (e.g. for line arrays in PA applications, 2D Wave Field Synthesis

(WFS) etc.) [Ols57, BVV93], spherical arrays [DMN03, Pol05a, AS08] and cylindrical/circular

arrays [KFV10, PB13, PBA15]. Linear arrays are probably the most visible/available to the

public, ranging from PA applications to personal audio systems in the form of soundbars.

Cylindrical/circular and spherical arrays are often found in the form of large installations for

Wave Field Synthesis (WFS) or Higher Order Ambisonics (HOA) systems [DMN03, Pol05a, AS08,

121
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SRA08, AWS10, Faz10, Ahr12], but also in compact form for sound sources with directivity

control [ZSH07, MOA+10, KFV10, KFV11, PB13, SFNH14].

The term ‘sound field control’ can be interpreted in a relatively wide sense. The most classic

form is probably the generation of a sound field in a dedicated reproduction area with holophony

as the objective [BVV93, DMN03, PBA15]. Acoustic contrast control and pressure matching, as

well as acoustic beamforming are also forms of sound field control [KFV10, CJO+13, FSO+14,

FSOF15, FC16]. All those techniques can (but do not have to) be derived on the basis of wave

propagation models, between which the physical accuracy may vary for a given environment. Two

major assumptions are typically made to simplify such models: first, that the array is located in

an infinite propagation space and, second, that the transducers are acoustically transparent (i.e.

free field conditions). Both assumptions are typically not valid in practice, thus effecting a less

than ideal performance of the real system. A good amount of work is published on the modelling

of the diffraction as it occurs on spherical and cylindrical boundaries housing transducer arrays

[Wil99, Mey01, ME02, Raf05, ZSH07, ZDG10], but also modelling of the reflections caused by

the environment has been proposed to improve sound field control in reflective environments

[BP14, BZPA15]. Pomberger et al. described the diffraction as it occurs on a rigid sphere in

an infinite propagation space with limited range of directions [PZ13, PP14]. A special case of

practical importance receiving so far only limited attention is a model for loudspeaker arrays

radiating into the half-space.

An initial attempt to model a loudspeaker array arranged on an infinite, planar and rigid baffle

was presented in [HFF16]. The proposed hemi-cylindrical arrays were designed to be mounted to

an infinite planar baffle (e.g. a wall) and perform beamforming into the half-space. The proposed

beamforming method is based on a far field wave propagation model and therefore may not model

the near field of the array accurately. It is worth noting that the half-space is in fact a special

case of a wedge-shaped propagation space, and thus the hemi-cylindrical array is a special case

of a wedge-shaped array. The acoustic environment where such wedge arrays become relevant

ranges from in-room applications (e.g. soundbars, PA systems, etc.) to cars or other means of

transport, where the propagation space is inherently limited and can be described specifically or

more abstractly as a wedge.

This work presents the derivation of a beamforming technique for loudspeaker arrays in infinite

wedge propagation spaces [ABC+70]. The wave field models and basis functions for such

propagation spaces have already found frequent use in the field of underwater acoustics [Buc84,

LZ15] and a work on Nearfield Acoustical Holography (NAH) in wedge spaces was recently

presented by the author in Chapter 61. Using the existing models, two types of control filters for

wedge arrays are proposed and tested in both simulations and experimental work.

The remainder of this work is organised as follows. The second section reviews the model for

acoustic radiation from a boundary in wedge propagation spaces and develops a general expression

for the velocity produced from an array of loudspeakers located on that boundary. The third

section applies the developed array radiation model to solve the inverse problem and calculate the

loudspeaker driving functions for a desired pressure field through a mode-matching approach. In

that context, the low frequency behaviour and the occurrence of spatial aliasing caused by a finite

number of loudspeakers are investigated. In Section four, the two types of beam patterns that are

1This manuscript draws on the findings of the (already submitted) manuscript presented in Chapter 6. The
version that will be submitted for publication is going to refer to the other manuscript or paper, respectively.
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used for the simulations and measurements are introduced. Section five presents and discusses

the simulations of radiated beam patterns across frequency for two examples of wedge arrays,

where one of them serves to introduce the prototype used for the experiments. The obtained

experimental results are described and discussed in Section six, and the final section summarises

the findings and gives an outlook on upcoming research.

7.2 Sound Field Model

This work uses the sound field model for the radiation from a velocity distribution on a curved

baffle V around the origin of an infinite wedge propagation space, as presented in Chapter 6.

Note that all considerations are made for the (quasi-)stationary case, where the factor e−iωt and

the different quantities’ dependency on ω was omitted for reasons of brevity.

The geometrical description of the infinite wedge is based on the cylindrical coordinate system,

as given in Figure 7.1. A projection of the propagation space onto the xy-plane with the added

y
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z

r

φ2

φ

Wedge Boundaries

Figure 7.1: Propagation space with wedge boundaries described in cylindrical coordinates.

curved baffle V holding the loudspeaker array is shown in Figure 7.2.

The set of points within the propagation space W is uniquely defined through

W :=
{
r = (r, φ, z)T : r ≥ rS , φ ∈ [φ1, φ2], z ∈ R

}
, (7.1)

where rS is the radius of the curved baffle around the origin. The wedge angle κ = φ2 − φ1 can

take any value from the interval [0, 2π]. The boundaries of the propagation space comprise the

curved baffle

V := {r : r = rS , φ ∈ [φ1, φ2], z ∈ R}

and the wedge’s flanks

S′ := {r : r > rS , φ = φ1, φ2, z ∈ R} .
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Figure 7.2: Wedge boundaries projected into the xy-plane with the loudspeaker array mounted
on the curved baffle.

In the case of wedge arrays, all loudspeakers, i.e. all active acoustic sources, are located on

V . Accordingly, the acoustic velocity on V is defined by the driving functions and the physical

dimensions of the transducers. Without loss of generality but to simplify notation, it is assumed

in the remainder of this work that φ1 = 0 and φ2 = κ.

The following subsection describes the mathematical model for the pressure radiated by a wedge

array.

7.2.1 General Pressure Model

The general solution for the pressure field radiated from a given velocity distribution on V inside

an infinite wedge with rigid boundaries was presented in Chapter 6 and is given by the expression

p(r, φ, z) =

∞∑
n=0

Φn(φ)

∫ ∞
−∞

Γn(kz, r)Vn(kz, rS)Z(kzz) dkz, (7.2)

with

Γn(kz, r) = iρ0ck
Hnπ

κ
(krr)

krH ′nπ
κ

(krrS)
(7.3)

Φn(φ) = νn cos
(nπ
κ
φ
)
, (7.4)

Z(kzz) =
eikzz√

2π
, (7.5)

where

kr =
√
k2 − k2

z and νn =

√
2− δn
κ

,

κ is the wedge angle, k represents the acoustic wave number and δn denotes the Kronecker

Delta. Hnπ
κ

(x) refers to the Hankel function of the first kind2 of order nπ
κ , where the latter

2The superscript (1) commonly used to distinguish the Hankel functions of the first from that of the second
kind is omitted for reasons of brevity.
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is exclusively integer only for κ = π. The angular basis functions Φn(φ) and the axial basis

functions Z(kzz) are the elements of two Total Orthonormal Sets (TOS) [Kre78]. Their product

creates a two-dimensional TOS. Γn(kz, r) denotes the corresponding radial functions for the

radiation problem in the wedge space (see Chapter 6, Section 6.4), where the dependency on κ

and rS was omitted for the sake of brevity. The same applies for the angular basis functions’

dependency on κ and φ1.

The spatial velocity spectrum Vn(kz, rS) in (7.2) is calculated as the spatial transform of the

normal velocity (or vibration) profile v(rS , φ, z) describing the particle displacement in the normal

direction on the boundary V (see Chapter 6)

Vn(kz, rS) =W [v(rS , φ, z)]

=

∫ κ

0

∫ ∞
−∞

v(rS , φ, z)Φn(φ)Z∗(kzz) dz dφ, (7.6)

where (·)∗ denotes the complex conjugate and the operator W abbreviates the spatial transform.

Inversely, v(rS , φ, z) is obtained from Vn(kz, rS) through the inverse operator

v(rS , φ, z) =W−1[Vn(kz, rS)]

=

∞∑
n=0

∫ ∞
−∞

Vn(kz, rS)Φn(φ)Z(kzz) dkz. (7.7)

Equations (7.6) and (7.7) define a transformation pair that may be regarded as generalised Fourier

transform.

With the general sound field model at hand, the sound field control problem can now be

theoretically solved by taking a mode-matching approach that yields a relation between the

pressure spectrum

Pn(kz, r) =W[p(r, φ, z)], (7.8)

of a desired pressure field p(r, φ, z) at the radial coordinate r and the velocity spectrum Vn(kz, rS)

on V .

7.2.2 The General Solution to the Inverse Problem

Finding the required vibration profile v on V that yields a specific target pressure field p is an

inverse problem that needs solving.

Applying the inverse operator W−1[·] defined in Eq. (7.7) to both sides of Eq. (7.2) yields

Pn(kz, r) = Γn(kz, r)Vn(kz, rS). (7.9)

Equation (7.9) can be transformed into an expression for Vn(kz, rS)

Vn(kz, rS) =
1

Γn(kz, r)
Pn(kz, r), (7.10)

if k > 0. The required normal velocity on the boundary V can then be obtained by replacing the

velocity spectrum in (7.7) with the result in (7.10). From this it follows that a vibrating baffle
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that is infinite along the z-axis is required to enable the reconstruction of any desired pressure

field p(r, φ, z) that satisfies the homogeneous Helmholtz equation in W .

Controlling the vibration profile on the entire surface V is impractical. Therefore this work

focusses on sound field control inside an arbitrary plane z = zB using an array with a finite

number of loudspeakers arranged on an arc. These are henceforth referred to as wedge arrays.

Before presenting the methods to identify the individual loudspeakers’ driving functions, a general

expression for the velocity spectrum of arbitrary wedge arrays is defined in the next subsection.

7.2.3 Velocity Spectrum of an Arbitrary Wedge Array

Let a wedge array be composed of L loudspeakers. Each speaker unit is described through the

location of its geometrical centre (rS , φl, zl)
T ∈ V and its diaphragm’s velocity profile vl(rS , φ, z).

The index l is used to refer to the lth speaker in the array. In general, the corresponding velocity

spectra, V ln(kz), are determined through the operator W defined in (7.6).

It shall be assumed that the diaphragm is a rectangular piston (see Chapter 6, Section 6.6.2) of

angular width Θ and vertical length B. The corresponding velocity profile of the lth loudspeaker

is then given by

v(rS , φ, z) = Π

(
φ− φl

Θ

)
Π

(
z − zl
B

)
,

where Π (·) denotes the rectangular function. Applying W[·] to the above equation yields the

diaphragm’s velocity spectrum

V ln(kz) = V Dn (kz)Φn(φl)Z
∗(kzzl) (7.11)

with

V Dn (kz) = Θ sinc

(
nπ

κ

Θ

2

)
B sinc

(
kz
B

2

)
. (7.12)

The explicit dependency of V ln(kz) on rS has been omitted for the sake of brevity. The expression

in (7.11) was deliberately separated into a factor defining the shape of the diaphragm, V Dn (kz),

and two factors defining the position. Although this form may suggest otherwise, the general

shift property is not valid for the transform W[·].

For the velocity spectrum of the full wedge array it is convenient to assume that all loudspeakers

have the same shape, i.e. V Dn (kz) is equal for all L loudspeakers. This step is not strictly necessary

in general, but it serves to simplify notation. Assuming linearity, the superposition principle

enables the description of the overall velocity spectrum, Vn(kz, rS), as a linear combination of

the loudspeakers’ velocity spectra V ln(kz). Weighting each of the latter with a driving function ql

yields

Vn(kz, rS) = V Dn (kz)

L∑
l=1

qlΦn(φl)Z
∗(kzzl) . (7.13)

The triple (ql, φl, zl) defines each loudspeaker’s driving function, angular position and axial

position, respectively. The specific form of (7.13) will proof useful in Section 7.3.

The result for Vn(kz, rS) in (7.13) can now be used to formulate the array-specific forward problem

in the modal domain.
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7.2.4 The Array-Specific Forward Problem

Replacing Vn(kz, rS) in (7.9) by the expression in (7.13) provides the relation of the array’s

driving functions, ql, to the radiated pressure spectrum

Pn(kz, r) = Γn(kz, r)V
D
n (kz)

L∑
l=1

qlΦn(φl)Z
∗(kzzl) (7.14)

for n ∈ N and kz ∈ R. This poses a highly overdetermined equation system since the L driving

functions ql are to control an infinitely long vector of constants given by Pn(kz, r). Such a system

may have a solution, but it cannot be solved exactly by a least-squares approach, unless one were

to truncate the range of n and to sample and truncate the range of kz; In that case one would

obtain an approximation of the target pressure.

The modal combinations (n, kz) falling into the region outside the ”radiation circle”, defined

by k ≤
√
k2
z + ( nπκrS )2 [Wil99], are evanescent in their nature. Therefore their corresponding

magnitudes |Pn(kz, r)| are subject to a steep decay as the radial coordinate r increases. This

physical effect is mathematically described in Eq. (7.14) through to the magnitude of the radial

functions Γn(kz, r). As a consequence, mostly coefficients Pn(kz, r) from within, or marginally

outside the ”radiation circle” need to be considered for a good approximation of the desired

sound field. Therefore, limiting the range of n and kz may not have a severely aggravating effect

on the result. However, due to the uncountable nature of the elements within the interval along

the kz-axis, the vector formed by the Pn(kz) would still have an infinite number of entries, hence

necessitating sampling of kz for a least-squares solution.

The considerations made during the course of this section suggest that full control of the sound

field inside the infinite wedge cannot be achieved with a finite set of transducers arranged within

a finite area on V . This situation changes when the objective is simplified to controlling the

sound field on an arc with radius rB in the plane z = zB with loudspeakers arranged on the

intersection of V with the plane z = zS . In that case, the driving functions ql can be identified

through a mode-matching approach, which is shown in the following section.

7.3 Loudspeaker Driving Functions

7.3.1 Diaphragm Velocity as a Function of Driving Voltage

The driving functions derived in this section relate directly to the individual loudspeaker’s

velocity. When operating a classical electrodynamic transducer above its resonance frequency

as a loudspeaker connected to an (ideal) voltage source, the applied voltage does not generate

a proportional velocity v of the diaphragm but a proportional acceleration v̇ instead (compare

[BX08] p. 61, Figure 5.7). In the frequency domain, the relation between voltage u and velocity

v is therefore given by
u(ω)

ω
∼ v(ω), (7.15)

which corresponds to a integration in the time domain. It is therefore necessary to amend

the driving signals ql(ω) appropriately when operating an array built from electrodynamic
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loudspeakers through a conventional power amplifier. Note that Equation (7.15) is only an

approximation where it is assumed that the electrical impedance is predominantly resistive and

that the mechanical impedance is dominated by the moving mass.

7.3.2 Model for the Mode-Matching Approach

From the completeness relation of TOSs [Kre78], it follows that an arbitrary target pressure field

on the arc

Ψ := {r : r = rB , φ ∈ [0, κ], z = zB}

can be expressed as the infinite series expansion

p(rB , φ, zB) =

∞∑
n=0

PnΦn(φ) . (7.16)

To find a solution for the L <∞ driving functions ql dependent on the target coefficients Pn, the

driving functions need first be expressed as a finite series expansion

ql =

N∑
m=0

QmΦn(φl) , ∀l ∈ [1, L], N = L− 1. (7.17)

The above expression poses a linear system of equations. Due to linear independence of Φn(φ)

for different orders, the system matrix has full rank and a unique solution for the coefficients Qm

exists, if all L angles φl are distinct.

Applying Eq. (7.17) in (7.13) and rearranging the double sum yields the expression

Vn(kz, rS) = V Dn (kz)

N∑
m=0

Bn,m(kz)Qm, (7.18)

with

Bn,m(kz) =

L∑
l=1

Φm(φl) Φn(φl)Z
∗(kzzl) . (7.19)

Equation (7.18) describes the modal relations between the velocity spectrum Vn(kz) and the

coefficients Qm for the most general case. The function Bn,m(kz) is determined by the positions

of the loudspeakers, (φl, zl). It is shown in the next section how a convenient choice of the latter

is useful for the mode-matching approach.

7.3.3 Loudspeaker Positioning

The loudspeaker positions are now chosen as uniformly distributed along the intersection of V

and z = zS , i.e.

φl =
κ

L

(
l − 1

2

)
and zl = zS , ∀l ∈ [1 . . . L]. (7.20)
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This particular choice for φl simplifies the expression in Eq. (7.19) so that

Bn,m(kz) = Z∗(kzzS)
L

κ
An,m, (7.21)

with An,m =
κ

L

L∑
l=1

Φm(φl) Φn(φl) . (7.22)

The orthogonality matrix, also referred to as the spatial aliasing matrix, is given through the

coefficients

An,m =

√√√√ ∞∑
u=0

δn−m−u2L + δn+m−(u+1)2L. (7.23)

Using the result of (7.21) in Eq. (7.18) and replacing the result for Vn(kz) in (7.2) yields the

expression

p(rB , φ, zB) =
L

κ

∞∑
n=0

N∑
m=0

Φn(φ)An,mQm

·
∫ ∞
−∞

Γn(kz, rB)V Dn (kz)Z
∗(kzzS)Z(kzzB) dkz. (7.24)

In order to further simplify this result and understand why it was convenient for all loudspeakers

to have the same diaphragm and the chosen positions, it is necessary to take a closer look at the

coefficients An,m.

7.3.4 Orthonormality and Aliasing

An example of the coefficients specified by (7.23) for L = 15, n = 0 . . . 33 and m = 0 . . . N = 6

is presented in Figure 7.3. It shows that the chosen positions of the L loudspeakers preserve a

Figure 7.3: Visualisation of the orthogonality matrix, L = 15.

perfect orthonormality relation of the modes Φn(φ) for n = 0 . . . N . It also shows, however, that

higher orders n are subject to aliasing from the orders m = 0 . . . N , which can be predicted from

(7.23). Note that both the pattern and thus also the expression on the right hand side of (7.23)
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would likely have been much more complicated if not for the assumption that all loudspeakers

are identical as specified in Section 7.2.3.

The analysis of the coefficients An,m shows that the finite number of loudspeakers can still excite

an infinite number of angular modes in the pressure field, even though they only seek to control

the lowest L modes Φn(φ). The excitation of modes of higher order then manifests itself in the

form of spatial aliasing artefacts in the reproduced field.

As discussed in Section 7.2.3, not all angular modes actually propagate to the far field. Those

that are evanescent decay rapidly away from the origin, making their contribution to the pressure

on Ψ potentially insignificant. This is further investigated in the subsequent section.

7.3.5 The Arc Radial Functions

The integral and the leading factor of Equation (7.24) can be unified to form a new quantity that

shall be denoted as Arc Radial Functions (ARFs)

ΓΨ
n (rB , zB) =

L

κ2π

∫ ∞
−∞

Γn(kz, rB)V Dn (kz)e
ikz(zB−zS)dkz. (7.25)

Together they describe how the modes excited by the specific set of driving functions ql propagate

to the arc Ψ. The expression for the pressure on the arc simplifies to the infinite expansion of the

weighted modes Φn(φ) and reads as

p(rB , φ, zB) =

∞∑
n=0

N∑
m=0

Φn(φ)QmAn,mΓΨ
n (rB , zB). (7.26)

The coefficients Qm do not directly determine the modal strength of Φn(φ) for n = m. Instead, the

ARF describe how the nth angular mode excited on the source arc couples to the corresponding

mode on the control arc Ψ. Which angular modes on the source arc get excited by the source

distribution is determined by the coefficients An,m.

Figure 7.4 shows the development of the ARFs for different combinations of rS and rB with

κ = π
2 for the velocity spectrum V Dn (kz) of a point source. It can be observed that as frequency

increases, eventually all depicted orders propagate equally well. Naturally the overall attenuation

depends on the propagation distance rB .

At low frequencies (f < 3 kHz) it can be seen that the higher its order the more a mode gets

attenuated due to evanescence. The frequencies fCn = nπc
2πκrS

indicate where a mode of order n

changes from propagating to evanescent behaviour. The expression for the edge frequency fCn

was derived from the n = kr rule that determines the transition from propagating to evanescent

components [Wil99, WA01]. For the wedge, the rule reads nπ
κ = kr. The dependency on rS

explains why the fCn shift to lower frequencies in Fig. 7.4c, in comparison to Fig. 7.4a.

As frequency decreases further from fCn , there occurs yet another transition frequency fC,NF
n

where the slope becomes less steep. Where these ‘edges’ occur appears to depend on rB , as the

comparison of Fig. 7.4a and Fig. 7.4b suggests. These edges indicate a mode’s transition from

the far field to the near field of the radiating surface V . Comparison of all plots in Fig. 7.4

suggests that the transition frequency fC,NF
n is inversely proportional to rB . It follows implicitly
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(a) rB = 2 m, rS = 0.2 m
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(b) rB = 0.5 m, rS = 0.2 m
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(c) rB = 2 m, rS = 1 m

Figure 7.4: Magnitude of ΓΨ
n , κ = π

2
, L = 15, zS = zB = 0 m.

for the given orders n = 0 . . . N that the smaller the value of rB the wider the frequency range

where the corresponding modes demonstrate near field effects.

From the comparison of Fig. 7.4a and Fig. 7.4c, it can be deduced that a larger array can

theoretically control the sound field it radiates with less effort at low frequency than a smaller

array.

Figure 7.5 shows the ARF for κ = π. The transition frequencies fCn shift towards lower frequencies

for the wider wedge angle, as can be expected. The discrepancy between the magnitudes of two

consecutive evanescent modes is only half of that which can be seen for the case of κ = π
2 . This

had to be expected since the order nπ
κ of the Hankel functions contributing to Γn effectively

increases twice as fast for κ = π
2 than for κ = π (see Eq. (7.3)).
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Figure 7.5: Magnitude ΓΨ
n with κ = π, L = 15, rB = 2 m, rS = 0.2 m, zS = zB = 0 m.

The integral in (7.25) was calculated numerically using the procedure described in Chapter 6,

Section 6.6. The bounds were chosen as −Kz and Kz, where

Kz =

⌈
− Qk

∆kz

⌉
∆kz

with a step size ∆kz = 0.01. The parameter Q adjusts the range kz and is chosen so that the

bounds include all components for n = 0 that satisfy 20 log10(|Γ0(kz, rB)|) > −150 dB. Note that

d·e represents the ceiling function.

While numerical integration may be one way to calculate the ARFs with very good approximation,

it is computationally expensive. The SPA of the expression in (7.25) (see Appendix 7.8) yields

the far field approximation for the ARF

ΓΨ
n,FF(R, θ) ≈ ρ0cL

κπ
ei
nπ2

2κ
eikR

R

V Dn (k cos θ)e−ikzS cos θ

sin θH ′nπ
κ

(k sin θrS)
. (7.27)

The SPA of ΓΨ
n (rB , zB) provides a result with good accuracy when rB corresponds to the far

field. Its expression has the advantage over Eq. (7.25) that it is given in analytic form and is

thus fast to compute. It can be used alternatively in (7.26).

The difference between the ARFs and their far field approximations when evaluated in the near

field becomes clear when comparing the results of Fig. 7.4a and Fig. 7.6. At high frequencies
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Figure 7.6: Magnitude of ΓΨ
n,FF, κ = π

2
, L = 15, R = rB = 2 m, θ = π

2
, zS = 0 m.

there is hardly any difference, except for the small error of the numerical integration process.

Below the edge frequencies fCn , the magnitudes of ΓΨ
n,FF decrease monotonically with frequency,
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unlike the values of ΓΨ
n that change decay once more at fC,NF

n . This difference has an impact on

the array performance at low frequencies, as will be shown in Section 7.3.7.

Since the edge frequencies fCn do not change between the ARF and their far-field approximations,

choosing one or the other for the calculation of the driving functions has no influence on the

array’s spatial aliasing performance.

7.3.6 Truncation of Higher Order Modes

For a given frequency, both types of arc radial functions, ΓΨ
n and ΓΨ

n,FF, suggest that there is

a mode of minimum order nE that is the first to be evanescent. This mode and all subsequent

thus significantly lose their contribution to the overall sound field, as they propagate. It can thus

be assumed that there is an upper edge frequency where a truncation of the modelling order

to n = N has a negligible effect on the pressure p(rB , φ, zB). Such a truncation applied to the

expression in (7.26) yields the approximation

p(rB , φ, zB) ≈
N∑
n=0

ΓΨ
n (rB , zB)Qn(ω)Φn(φ) =

N∑
n=0

PnΦn(φ) , (7.28)

which itself can be described comprehensively through a set of coefficients {Pn}Nn=0. Comparing

factors between the two expressions in (7.28) and reorganising for Qn yields

Qn =
1

ΓΨ
n (rB , zB)

Pn. (7.29)

Eq. (7.29) provides the driving function coefficients Qn as a function of the coefficients Pn that

define the desired pressure field on the arc Ψ. The values of ΓΨ
n (rB , zB) describe how the different

modes Qn of the loudspeaker driving function expansion in (7.17) radiate into the pressure field.

It was shown in Section 7.3.5 that the arc radial functions can take values of very small magnitude

at low frequencies. Their reciprocals in (7.29) then take very large values, effecting very high

power demands for the individual loudspeakers [HFF16]. In practice it is therefore necessary to

apply regularisation to the inverse solution in (7.29) to protect the mechanical integrity of the

loudspeakers [FSOF15] and, more generally, to ensure robustness and stability.

7.3.7 Regularised Driving Functions

Using a normalised Tikhonov regularisation, the inverse solution is reformulated to

Q̃n =
ΓΨ∗
n (rB , zB)

|ΓΨ
n (rB , zB)|2 + βσ2

Pn, (7.30)

where σ = max
n
|ΓΨ
n (rB , zB)|. The parameter β adjusts the tradeoff between low-frequency

directivity and maximum displacement of the loudspeakers’ diaphragms, where a limitation of

the latter improves the robustness of the system [FSOF15]. Using (7.30) in Eq. (7.17) provides

the regularised individual loudspeaker driving functions

ql =

N∑
n=0

ΓΨ∗
n (rB , zB)

|ΓΨ
n (rB , zB)|2 + βσ2

PnΦn(φl) (7.31)



134 Chapter 7 - Beamforming with Wedge-Shaped Acoustic Arrays

for a desired pressure profile specified through the set {Pn}Nn=0. The fact that rB remains a

parameter makes for the main difference to the driving functions presented in [HFF16], where

the (arc) radial functions were derived from a plane wave scattering model through reciprocity

and hence cannot be adjusted to a particular control radius. If rB is large enough to be in the far

field for all frequencies of interest, then there is no difference between using either ΓΨ
n or ΓΨ

n,FF

for the calculation of ql. The difference in performance of the driving functions when using the

two types of ARFs is investigated in Section 7.6.

7.4 Beamforming

As with other geometric array arrangements, beamforming with wedge arrays aims to control the

radiated pressure field in such a way that the pressure magnitude on the control arc Ψ resembles

a designated beam pattern.

In this work, modal beamforming with two different types of beam patterns are considered. The

first corresponds to a Dirac pulse in the φ-domain, and the second corresponds to a Rectangular

pulse of variable width D. Both are approximated through finite expansions of the form

f(φ) =

N∑
n=0

FnΦn(φ) , (7.32)

so that the two beam patterns differ with respect to their coefficients Fn. These can be calculated

through

Fn =W[f(φ)δ(z)]. (7.33)

To ensure a unit magnitude in the steering direction φB, it is necessary to normalise these

coefficients by the factor
∑
m=0 FmΦm(φB). The exact expressions for the coefficients used in

this work are presented below.

With the loudspeaker arrays under consideration, there is of course no limitation to modal

beamforming. Other far-field beamforming methods such as maximum directivity or maximum

White Noise Gain (WNG) [RPA+10, RK11, JHN17] are in principle applicable to the given array

and propagation space geometry.

7.4.1 Beam Pattern I

The coefficients F In of the beam pattern corresponding to a Dirac pulse are given by

F In =
Φn(φB)∑N

m=0 Φm(φB)
2
. (7.34)

Some examples of beam pattern I with N = 10 are shown in Figure 7.7 for values of φB .
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Figure 7.7: Examples for Beam Pattern I with different steering angles φB , κ = π.

7.4.2 Beam Pattern II

The coefficients F IIn of the beam pattern corresponding to a Rectangular pulse of width D are

given by

F IIn =
Dsinc

(
nπ
κ
D
2

)
Φn(φB)∑N

m=0Dsinc
(
mπ
κ

D
2

)
Φm(φB)

2
. (7.35)

Beam pattern II is shown in Figure 7.8 for different steering angles. Unlike pattern I, pattern II
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Figure 7.8: Examples for Beam Pattern II with different steering angles φB and D = 0.2π,
κ = π.

enables control over the width of the main lobe.

Comparing the results in Figure 7.7 and Figure 7.8 shows that by allowing for an increased beam

width, the side lobes’ magnitudes decrease significantly. This can be interpreted as a trade-off

between directivity and acoustic contrast. It can also be observed that the number of side lobes

reduces slightly for Type II beams.

With a fully developed theory for sound field control with wedge arrays at hand, their performance

shall be initially evaluated on the basis of simulations.

7.5 Simulations

This section shows simulation results for the beamforming performance of wedge arrays with two

wedge angles, a Quadrant Cylindrical Array (QCA), with κ1 = π
2 , and a Hemi-Cylindrical Array
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(HCA), with κ2 = π. The former corresponds to an array that is located in the corner of a room

with rigid walls while the latter can be an array located on any large rigid wall. Note that all

beam patterns presented in the remainder of this work include a black line that indicates the

points where the main lobe has dropped by 6 dB from its maximum magnitude.

The radiated beam patterns were calculated on the basis of the sound field synthesis model in

(7.2) for the plane z = zB = zS , where the infinite sum over n was truncated to n = 30 for the

QCA and to n = 60 for the HCA. The speed of sound was assumed to be c = 343 m
s and the

specific density of air ρ0 = 1.2041 kg

m3 . The velocity spectrum was calculated using Eq. (7.13),

where different types of source models were used for the QCA and the HCA. The loudspeaker

driving functions were obtained from Eq. (7.31), using the ARF in (7.25), unless stated otherwise.

The simulations cover the two beam pattern types given in (7.34) and (7.35), and different control

radii. All results are given within the frequency band from 100 Hz up to 10 kHz.

7.5.1 Case Study: Quadrant Cylindrical Array with L = 15

For the QCA with L = 15, all loudspeakers were modelled as point sources, i.e. V Dn (kz) = 1,

with the velocity spectrum Vn(kz) as defined in Eq. (7.13). Figure 7.9 shows the normalised

reproduced beam pattern of a QCA with rS = 0.2 m for the target patterns Type I and Type II.

The lobe structures resemble that of the corresponding targets in the array’s optimal frequency

(a) Beam Pattern Type I

(b) Beam Pattern Type II, D = 0.2π
2

Figure 7.9: Simulated beam patterns for a QCA with L = 15, N = 14, β = 10−4, φB = 36◦,
rB = 2 m and rS = 0.2 m.

range between 5 and 8 kHz. Below that, as frequency decreases, the beam broadens while the

number of side lobes drops. The side lobes remain distinct until directivity decreases so much

that only a main lobe is left. This is founded in the required regularisation of the inverse solution

in (7.31) with β = 10−4 (see Section 7.3.7) [FSOF15]. The described effect is inherent to all
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types of wedge arrays and will not be explicitly mentioned when discussing the simulation results

presented below.

Figure 7.10 shows the beam pattern when the far field arc radial functions ΓΨ
n,FF were used to

calculate the driving functions. The depicted beam patterns best approximate the target within

(a) Beam Pattern Type I

(b) Beam Pattern Type II, D = 0.2π
2

Figure 7.10: Simulated beam patterns for a QCA with L = 15, N = 14, β = 10−4, φB = 36◦,
rB = 2 m and rS = 0.2 m.

the aforementioned optimal frequency range, while, for most part of the displayed frequency

range, the individual lobes are smeared and not as distinct as the target. This effect appears to

increase towards low frequencies and can be traced back to the lack of control that the far-field

ARFs provide at rB = 2 m. This result suggests that the sound field still shows a near-field

dominated behaviour for rB = 2 m and therefore requires the use of the ARF in (7.25) to calculate

the driving functions for the best control of the beam pattern.

Spatial aliasing effects are visible in both Fig. 7.10 and Fig. 7.9 for frequencies higher than 8 kHz.

Figure 7.11 shows the beam pattern (Type I) radiated from a QCA with the same parameters as

before apart from rS = 1 m. Since the number of loudspeakers is the same, the effects of spatial

aliasing are already visible at much lower frequencies. However, the directivity at low frequencies

has improved significantly, as it was predicted for arrays with larger radius rS in Section 7.3.5.

All simulations with the QCA show a certain variability of the angle at the main lobes’ centre,

particularly at low frequencies, where it deviates from the desired steering angle φB .

In principle, the observations described in this subsection for the QCA are transferable to any

other wedge array. The next subsection shows the simulation of the performance of the HCA.
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Figure 7.11: Simulated beam pattern for a QCA with L = 15, N = 14, β = 10−4, φB = 36◦,
rB = 2 m and rS = 1 m.

7.5.2 Case Study: Hemi Cylindrical Array with L = 15

This case study provides reference results for the experimental data presented in Section 7.6. The

prototype, which was previously presented in [HFF16] and Chapter 6, is depicted in Figure 7.12.

It consists of L = 15 Tang Band W1-1070SG full-range drivers positioned at the angles

Figure 7.12: Prototype of a HCA with rS = 14.2 cm and L = 15 Tang Band W1-1070SG
full-range drivers.

φl =
π

L+ 1
l, l = 1 . . . L (7.36)

and at the corresponding z-axis values

zl = zB + [−zS ,+zS ,−zS , . . . ,−zS ], (7.37)

where zS = 0.0275 m.

Unlike with the QCA, each loudspeaker in the HCA is modelled as a rectangular piston, using the

coefficients V Dn (kz) as defined in (7.12) with B = 0.031 m and Θ ≈ 0.22. Even though this seems

an unusual choice to model a circular diaphragm, it must be said that the unavoidable order

limitation effectively ‘rounds the corners’ of the modelled pistons, thus reducing the discrepancy.
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The interleaved design aims to keep the array compact while increasing the number of drivers to

gain a higher degree of spatial control. With this choice of φl and zl, however, the evaluation of

the sum in Eq. (7.22) does not yield the result in Eq. (7.23) for the interleaved arrangement.

Instead, one obtains a more complicated relationship for An,m, which is shown in Figure 7.13a.

That means when attempting to control the mth order, the system actually excites the mth order

(a) Full Prototype (b) Bottom Layer only

Figure 7.13: Visualisation of the orthogonality matrix An,m for the full prototype and the
bottom layer only.

but leaks energy into other orders as well. This is undesirable for a mode-matching approach,

which assumes that only the modes it aims to control receive energy from the system. The

prototype design is not orthogonal because it is missing ‘half’ a speaker at each end of the

aperture, i.e. φ = 0, π. If one uses only the bottom layer of the prototype (8 loudspeakers),

the coefficients An,m describe a perfect diagonal with all off-diagonal elements equal to zero, as

depicted in Figure 7.13b. Despite the orthogonality flaw in the interleaved design, it is assumed

that the loudspeaker driving functions can still be calculated from (7.31).

The performance of the full prototype for the target patterns Type I and II is shown in Figure

7.14. The maximum control order N = L−1 was reduced to 10 in order to push the lower aliasing

edge frequency higher [FSOF15]. The result for the target Type I shows the highest directivity,

while the array’s performance with target Type II yields a very high side lobe suppression above

3 kHz. As it was observed for the QCA, the regularisation causes a reduction of directivity as

frequency decreases. For both targets, the simulation shows a relatively stable beam width in

the frequency range from 3 to 8 kHz; Spatial aliasing begins breaking up the beam pattern at

frequencies beyond the latter.

Figure 7.15 shows the reproduced target beam patterns for the prototype’s bottom layer only.

When compared to Fig. 7.14a, as it can be expected, the frequency above which spatial aliasing

occurs is much higher for interleaved configuration than for the bottom layer array. Aliasing

effects start to show above 3 kHz for target Type I and only slightly further up for Type II. This

effect is a result of the reduced magnitude of the coefficients Fn for higher values of n in the case

of the Type II pattern.

It can also be seen that the full prototype does not reproduce a distinct target pattern like the

bottom layer alone. Instead the side lobes in Figure 7.14 are smeared, independently of the type

of target. This was observed before for the QCA, however, it was found to be caused by the
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(a) Beam Pattern Type I

(b) Beam Pattern Type II, D = 0.2π

Figure 7.14: Simulated beam patterns for an HCA with L = 15, N = 10, β = 0.1, φB = π
2

and rB = 2 m.

(a) Beam Pattern Type I

(b) Beam Pattern Type II, D = 0.2π

Figure 7.15: Simulated beam patterns for an HCA with L = 8, N = 7, β = 0.1, φB = π
2

and
rB = 2 m.

imperfection of the far field ARF. In this case it appears that the lack of orthogonality inherent

to the loudspeaker positions is responsible for this. However, even though the side lobes can no

longer be clearly distinguished, they are lower than those for the bottom layer alone, showing

that there is still a benefit from the interleaved layout. Furthermore, as it was already predicted



Chapter 7 - Beamforming with Wedge-Shaped Acoustic Arrays 141

in Section 7.4, target Type II is shown to reduce the magnitude of the side lobes significantly

over those achieved with target Type I.

It was found that decreasing the regularisation factor β does not improve the beam width at low

frequencies for the interleaved configuration, yet it does so for the bottom layer. Therefore, in

theory, the bottom layer by itself can yield a narrower beam at low frequencies than the interleaved

configuration. This suggests that effects due to lack of orthogonality can also be mitigated by

relatively strong regularisation, at the cost of reduced directivity at low frequencies. It is therefore

suggested for future work to operate the prototype in the bottom layer configuration at low

frequencies and make a transition to the interleaved configuration possibly around f = 1 kHz.

The next two simulations consider only target Type I. The performance for the interleaved array

with different steering angles φB in Figure 7.16 shows that the integrity of the main lobe remains

relatively well preserved at frequencies beyond 3 kHz. The side lobes for the relatively extreme

(a) φB = π
3

(b) φB = 5π
6

Figure 7.16: Theoretically achievable beam patterns for an array with L = 15 speakers, with
N = 10, β = 0.1 and rB = 2 m.

steering angle of φB = 5π
6 rise up to just under 6 dB below the magnitude of the main lobe. It

was found that this effect can be mitigated with a beam pattern Type II. At lower frequencies

however, it appears that the main lobe no longer stays centred around the steering angle. This

was already observed during the case study of the QCA and appears to occur only for steering

angles φB 6= κ
2 . It can be assumed that this is caused by the combination of asymmetry and the

break up of the lobe structure as a result of regularisation.
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7.6 Measurements

7.6.1 Setup

Measurements to confirm the model for sound field control with wedge arrays were conducted for

the case of the hemi-cylindrical loudspeaker arrays. For this purpose, the prototype was placed

on a large planar baffle inside an anechoic chamber. Absorbing material (glass wool wedges) was

placed at the edges of the planar baffle to reduce the reflections. The prototype was extended

with wooden hemi-cylinders to better match the assumption of an infinite hemi-cylinder.

Figure 7.17: The measurement setup with a measurement array consisting of 30 G.R.A.S.
40PL array microphones fitted on an arch over the HCA with 30 cm radius.

The measurement arc with 30 G.R.A.S. 40PL array microphones is shown in Figure 7.17. This

setup was used to acquire holograms from the radiated sound field at the radius rH = 0.3 m.

From this hologram data, it is possible to reconstruct the pressure field at a different points in the

propagation space through acoustical holography, which is fully described for the wedge geometry

in Chapter 6, Section 6.7, along with the measurement rig. The speed of sound and the specific

density of air were chosen to match the in situ conditions, c = 342.102 m
s and ρ0 = 1.2130 kg

m3 .

Unless mentioned otherwise, all measurements results have been reconstructed at the control

radius rC = 2 m, where the holographic reconstruction of the pressure is denoted as p̂(rC , φ, zS).

The driving functions were calculated from (7.31). Unless stated otherwise, the steering angle

was φB = 60◦ and the far field ARF ΓΨ
n,FF were used to calculate the driving functions.

7.6.2 Normalised Mean Squared Measurement Error

In order to assess the quality of the measurement data it was necessary to implement a measure

that quantifies the error of the measured data p̂(rC , φw, zS) with reference to the prediction

p(rC , φw, zS) from the model. This work defines the normalised mean squared measurement error

as

ē(ω) =

∑W
w=1 |p̂(rC , φw, zS)− p(rC , φw, zS)|2∑W

w=1 |p(rC , φw, zS)|2
, (7.38)

where φw denotes all discrete angles where the sound field was reconstructed from hologram data.

Note that this definition of ē(ω) also takes the phase error into account.
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All subplots shown in Figures 7.18 and 7.19 present the corresponding mean measurement error

along with the reconstruction data.

7.6.3 Results for Different HCA Beamforming Filters

The results of the HCA performance measurements are shown in Figures 7.18 and 7.19 for a

selection of different parameters, along with the measurement error. Unless explicitly stated

otherwise, all filters were calculated on the basis of the far field ARF, with N = 10 on the basis

of beam pattern Type I.

Figures 7.18a, 7.18b and 7.18c show the performance of the HCA for different steering angles.

Figures 7.18a and 7.18d show the performance of the HCA for Beam Pattern Type I and Type II

at φB = 60◦.

Figures 7.18a, 7.19a, 7.19b and 7.19c show the performance of the HCA for Beam Pattern Type I

at φB = 60◦ for four different filter settings, namely:

1. FF ARF & rC = 2 m (see Fig. 7.18a),

2. NF ARF with rB = 2 m & rC = 2 m (see Fig. 7.19a),

3. FF ARF & rC = 0.25 m (see Fig. 7.19b), and

4. NF ARF with rB = 0.25 m & rC = 0.25 m (see Fig. 7.19c).

The mean measurement error remains below 20 dB for the largest part of the frequency spectrum,

which supports the model and the measurement technique.

7.6.4 Discussion

The reconstruction from the measurement and the theoretical result show very good similarity,

with all prominent features (i.e. side lobes, change of beam width, etc.) in relatively good match.

The measurement mismatches are assumed to be due to on positioning errors of the microphones,

imperfections in the acoustic setup due to reflections and finite structure and measurement

aperture, and low SNR at low frequencies due to relatively small HCA output.

Of particular interest are probably those results shown in Figs. 7.19a, 7.19b and 7.19c since they

confirm a good performance of the far-field ARF for reproduction radii of at least RC = 2 m.

At this radius, no performance difference can be observed between the ARF and their far-field

approximations. However, it can also be seen from the results in Figures 7.19b and 7.19c that, at

small distances, filters based on the numerically calculated ARFs provide the desired performance

in the near-field of the HCA, while far-field ARF-based filters fail to achieve the performance

target.

The influence of the beam pattern type appears to be fairly small, yet, as it was predicted, the

Type II beam pattern yields lower side lobes compared to the Type I beam pattern.

The results confirm the findings from the theoretical model, and hence indicate that the developed

model for wedge loudspeaker arrays is valid and provides good results.
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(a) φB = 60◦ (b) φB = 90◦

(c) φB = 150◦ (d) φB = 60◦, BP II

Figure 7.18: HCA performance for different steering angles φB and beam patterns.

7.7 Summary & Outlook

An analytical model for the sound field of wedge loudspeaker arrays was developed.

The forward model maps the vibration profile of a loudspeaker array arranged in the shape of

an arc on a curved baffle to the pressure in the propagation space. The radiation mechanism is

described in the modal domain. Solving the inverse problem for a uniform loudspeaker distribution

yields an expression for the control filters used to drive the array and control the radiated beam

pattern. From the inverse solution, the aliasing behaviour of the system is predicted. To study

the system’s control performance at different radii and frequencies, the concept of Arc Radial



Chapter 7 - Beamforming with Wedge-Shaped Acoustic Arrays 145

(a) NFs at RC = 2 m (b) FF at RC = 0.25 m

(c) NF at RC = 0.25 m

Figure 7.19: HCA performance for different steering angles φB , beam patterns and arc radial
filters.

Functions (ARFs) is introduced. These were calculated numerically in their general form and

through a far-field approximation.

Based on the developed model, the sound field for a QCA and an initial prototype of an HCA

was simulated for different parameters and control filters to analyse the performance of wedge

arrays. In order to confirm the data obtained through simulation, a series of measurements was

conducted in a controlled environment. Using a special measurement rig, sound field holograms

were acquired that enable acoustic holography to reconstruct the sound field at any given distance

away from the prototype. The results obtained from this data confirm the simulation results and

validate the developed model.



146 Chapter 7 - Beamforming with Wedge-Shaped Acoustic Arrays

It was shown that for far-field control applications, the far-field filters yield results sufficiently

similar to those obtained from the general filters. For near-field applications, however, it was

shown that only the more accurate general filters provide adequate sound field control, as expected.

The far-field filters presented in this work are effectively the same as those derived in [HFF16],

and the corresponding findings therefore apply to either of them.

Future work will extend the model for the loudspeaker driving functions to allow for 3D sound

field control and to derive driving functions and beamforming methods for loudspeaker arrays in

finite wedges, for which the acoustic model was presented in Chapter 6.

7.8 Appendix I: Stationary Phase Approximation of the

Arc Radial Functions

In [Wil99], Williams presented a generic formula for the SPA of integrals with the form

I(R) =

∫ ∞
−∞

f(kz)e
iRg(kz)dkz (7.39)

that is given by

I(R) ≈ f(kz0)eiRg(kz0)e−i
π
4

√
2π

R|g′′(kz0)|
, g′′(kz0) < 0, (7.40)

where kz0 denotes the stationary phase point that satisfies

dg(kz)

dkz

∣∣∣∣
kz=kz0

= 0 (7.41)

and g′′(kz) is the second derivative of g with respect to kz. If r →∞, then the integral in (7.25)

can be made of the form in (7.39) by replacing the Hankel function in Γn(kz, r) by its large

argument asymptote [Wil99]

Hn(x) ∼
√

2

πx
ei(x−nπ/2−π/4) (7.42)

and changing to spherical coordinates rB = R sin θ and zB = R cos θ, yielding

ΓΨ
n,FF(R, θ) ≈

iρ0ckLe
−i(nπ2

2κ +π
4 )

κπ
3
2

√
2R sin θ

∫ ∞
−∞

V Dn (kz)e
−ikzzS

k
3
2
r H ′nπ

κ
(krrS)︸ ︷︷ ︸

f(kz)

eiRg(kz)dkz (7.43)

where

g(kz) =
√
k2 − k2

z sin θ + kz cos θ.

Evaluating the integral in (7.43) using (7.40) yields the result of the SPA as the analytic expression

for the far field approximation of the ARFs

ΓΨ
n,FF(R, rS) ≈ ρ0cL

κπ
ei
nπ2

2κ
eikR

R

V Dn (k cos θ)e−ikzS cos θ

sin θH ′nπ
κ

(k sin θ rS)
. (7.44)



Chapter 8

Conclusions

A set of studies was presented in this work with the aim to further the state-of-the-art of sound

field analysis and sound field control technology. The mutual ground for the different studies is the

description of the pressure and velocity field, respectively, through an expansion of orthonormal

basis functions in the cylindrical coordinate system. This facilitates solving the inverse problems

associated with the considerations made for both the analysis and control of sound fields in a

similar way.

The analysis of the components describing the forward and inverse operators (or forward and

inverse propagators) is predominantly an analysis of the radial functions and their dependency

on frequency. A strong attenuation for a mode in the forward operator/propagator potentially

requires regularisation when solving the inverse problem due to ill-conditioning issues. This

occurs for the sound field analysis as well as for the beamforming in the sound field control

application. In the analysis cases, regularisation leads to a reduced spatial resolution, while with

beamforming it leads to an increased beamwidth and thus a lower degree of local control.

This work has shown that the cylindrical coordinate system in combination with functional

analysis of the sound field and specific boundary conditions provide a number of different ways

to solve specific yet practically relevant problems. The presented findings contribute to the

understanding of the investigated designs and techniques, and they provide an overview of their

performance. Furthermore, they give a perspective on potential future ideas and investigations

that are worth undertaking.

This chapter is organised in five sections. The first four provide general conclusions of the findings

presented in the corresponding four main chapters of this thesis, while the last section gives an

outlook on future developments in the field.

8.1 Tangential Pressure Gradient Array

For the considerations on circular microphone arrays composed of Tangential Pressure Gradient

(TPG) sensors, the inverse problem was solved through an eigenvalue decomposition of the

forward operator. The latter maps a given Herglotz Density to the pressure in the field around
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the rigid-cylinder microphone array. The identified eigenvalues and corresponding eigenfunctions

were used to invert the forward operator, yielding the inverse operator as the solution of the

inverse problem.

The analysis of the eigenvalues revealed that, at low frequencies, the observation of the tangential

pressure gradient yields a better-conditioned inverse problem than an observation of the pressure.

As a consequence less regularisation is required, which then yields a higher spatial resolution than

the design with pressure sensors only. At high frequencies, the eigenvalue analysis indicates a

reduced robustness against spatial aliasing. Effectively, the optimum frequency band of the array

is lower than that of a pressure sensor array. It follows that the choice of sensors determines the

centre frequency of the optimum frequency band of the array, provided that the quality between

sensors is comparable.

Furthermore, it was found that the observation of the TPG has the inherent flaw that the 0th

order mode (the ‘breathing cylinder’) cannot be observed from the acquired signals. This is, in

mathematical terms, due to a zero eigenvalue of that specific mode in the forward operator. As a

consequence the inverse solution is non-unique, but it was shown that this issue can be resolved

by adding a single pressure sensor to the array. The accuracy of the recovered information on the

0th order contribution was however shown to depend on the recovery of the remaining orders.

This has a negative influence on the robustness of the 0th order information against spatial

aliasing, as an error induced into the higher mode order coefficients propagates down to the 0th

order.

Even though no distinct improvement of the array performance can be obtained by exclusively

using TPG sensors, the presented study suggests that a combined array built from both sensor

types can have a wider optimal frequency band. This assessment is based upon the assumption

that both types of sensors are of the same quality. The problem of the reduced robustness

against aliasing of the 0th order would be resolved. The application of a mixture of sensors was

also shown to be beneficial in other applications of microphone arrays. For nearfield acoustical

holography, different types of sensors were combined to increase the system’s robustness against

waves impinging on both sides of the measurement aperture (see Chapter 2, Section 2.2.4).

As an alternative to the pressure gradient sensor, it is worth conducting a similar study as the

one presented in this work for tangential particle velocity sensors, e.g. the probe developed by

Microflown Technologies or ribbon microphones. The relation between pressure gradient and

particle velocity is given through Euler’s equation. From the latter it may be predicted that the

use of particle velocity instead of pressure gradient sensors can further improve the robustness

against ill-conditioning at low-frequencies. As a consequence, the design would gain even more

resolution at low frequencies than a design with TPG sensors.

The findings on the effect of TPG sensors in circular microphone arrays suggest that a combination

of different types of microphone sensors (e.g. pressure, velocity, gradient) and different alignments

of the directional sensors (e.g. radial, tangential, etc.) can be a promising way to increase the

optimal frequency band of three-dimensional sound field measurement and recording systems.

The variety of sensors would reduce the severity of ill-conditioning at low frequencies and

thereby decrease the amount of regularisation needed for a stable solution of the inverse problem.

Investigation through a prototype is required to determine if such a hybrid design can yield a

wider optimal frequency range in practice than arrays with just one type of transducer.
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8.2 DOA Estimation with a Finite Rate of Innovation Sound

Field Model

It was shown that the Herglotz Density (HD) describing a field with a finite number of plane

waves travelling in the same plane is periodic and has a Finite Rate of Innovation (FRI) following

the definition by Vetterli et al. [VMB02]. The coefficients describing such an HD can be recovered

from a circular microphone array within the latter’s optimum frequency band. The total least-

squares annihilating filter approach proposed by Blu et al. for time-domain signals with FRI was

adopted for signals in the spatial domain to estimate the Directions-of-Arrival (DOAs) of plane

waves impinging on the circular microphone array. The functionality of the method was confirmed

through simulation studies and measured data acquired in controlled acoustical conditions.

The method requires 2L+ 1 microphones to extract the sound field coefficients that are needed

to estimate the DOA of up to L plane waves. Based on acoustic measurements conducted using

a circular microphone array with 15 sensors, the method produced DOA estimates with a mean

Direction Estimation Error (DEE) of less than 4 % for two plane waves, and a mean DEE of

less than 10 % for seven plane waves. The corresponding median DEE values were less than

2 % and 5 %, respectively. The discrepancy between the mean and median results suggests that

the algorithm may produce outliers with significantly larger DEE values. These results for the

accuracy that can be expected of the method are very similar to those obtained from a simulation

study, which was conducted to assess the method’s theoretical performance depending on the

Signal-to-Noise-Ratio (SNR) and the number of plane waves.

The robustness of the proposed method against source types that are not compliant with the

FRI data model (i.e. point sources and plane waves travelling out-of-plane) was investigated in

the form of simulation studies. A basis function expansion in cylindrical coordinates was used for

the analytical expressions for the pressure field of the different source types. The mechanisms

compromising the annihilating filter estimation mechanism were investigated and discussed on

the basis of the analytical expressions for the HD coefficients of non-compliant source types. It

was shown that the DOA estimation accuracy of the proposed algorithm is still within respectable

limits for a single non-compliant source. When isolated, the simulated results for point sources

and plane waves travelling out of plane are comparable to sources compliant with the model.

The experimental results confirmed that a single point source in the near field of the microphone

array among a number of compliant sources in the overall sound field only mildly increases the

mean DEE while the median DEE even improves, presumably due to a relatively high SNR.

It was found that the HD coefficients of a single (compliant) plane wave can be interpreted

as a sequence of samples from taken a monochromatic analytic signal, where the frequency of

the oscillation, the carrier, is determined by the DOA. The annihilating filter identified in the

method attempts to suppress the carrier in the sequence of HD coefficients. This mechanism

is compromised with non-compliant sources since the corresponding HD coefficients are an

amplitude-modulated version of their compliant counterpart. It can be assumed that these

additional spectral components influence the response of the identified annihilating filter, and in

the final consequence also influence the DOA estimates.

It was also found that the proposed method does not require the signals associated with the

impinging plane waves to be uncorrelated. This is a significant advantage over established
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methods like MUSIC that explicitly require for the signals to be uncorrelated. In a reverberant

environment, this may make the performance of the proposed method more robust to first order

reflections that add to the direct sound impinging from a source.

It would be very interesting for future research to perform a thorough investigation on the influence

of the amplitude-modulating components in the HD coefficients of non-compliant sources on the

success of the annihilating filter method. Particularly the postulated masking of lower magnitude

carriers from compliant sources by these additional spectral components needs to be first verified

and then better understood.

It may be assumed that the problem of non-compliant plane waves can be solved by extending

the estimation concept to three dimensions. That would require a cylindrical array with several

layers of circular microphone arrays along the z-axis. From the multi-level data, a matrix instead

of a vector of HD coefficients can be identified. It can be shown that, because of the form of

the coefficients’ dependency on kz, the annihilating filter method can then be applied along the

rows and columns separately. From these results, the azimuth and elevation component of the

DOA can be identified. This was already attempted initially in the course of this project with

promising results. For a proper verification further research is needed.

Two alternative approaches to enable three-dimensional DOA estimation with the annihilating

filter method are to use a planar array or a spherical array. Where the planar case is very similar to

the aforementioned multi-level cylindrical array, the spherical array appears to be a much greater

challenge. One would need to first find a generic model for an annihilating filter in the spherical

harmonics domain and then develop a method to identify the corresponding ‘roots’. Another way

to attempt this is by mapping the data measured on the sphere onto a different manifold where

the annihilating filter method is more intuitive. This is a mathematically interesting problem

that may require a more generic formulation of the the finite rate of innovation data model in

spherical geometries.

The DOA estimation method proposed in this work would in principle serve to provide the

required high accuracy estimates. However, a comparative study to determine its performance

compared to other methods needs to be conducted. For such an investigation, aspects like

estimation accuracy, robustness against corrupting factors and computational complexity need to

be compared.

8.3 A General Radiation Model and Nearfield Acoustical

Holography in Wedge Propagation Spaces

The model for sound radiation from a velocity distribution on the surface of a cylindrical segment

inside the wedge was developed in the form of a basis function expansion. It was shown that

the latter can be derived from the expansion for an external problem in cylindrical coordinates

(see Chapter 2, Section 2.1.1) by introducing suitable boundary conditions to account for the

reflections from the walls of the wedge. This yields a model for the infinite wedge. To model a

finite wedge, a second pair of boundary conditions at specific values along the z-axis needs to be

introduced.
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Using the initial radiation model, Neumann-Green functions were formulated for the wedge

propagation space. They were then taken as part of a Rayleigh-like integral equation that

provides an alternative formulation of the radiation model.

Just like the general solution of the homogeneous Helmholtz equation in cylindrical coordinates,

the solution for the radiation model of wedge propagation spaces relies on the separation of

variables in the specific coordinate system. It describes a forward propagator that maps all modal

combinations from the source’s surface velocity to the pressure in the propagation space. It

was shown that the inverse of the forward operator can be used to perform Nearfield Acoustical

Holography (NAH) in the wave number domain. It was found that the resolution of the surface

velocity reconstruction depends on the standoff distance, which is a common observation in

the field of NAH. The transition from evanescent to propagating modal combinations of the

forward propagator was investigated and a relation to the resolution of the NAH result along the

circumferential and axial direction was drawn.

The application of NAH in wedge spaces may predominantly be of academic interest, since the

velocity reconstruction would only work for a radiating surface with a constant radius around

the origin. Nevertheless, the radiation model can be used to measure the far field response

of sources that are located inside wedge-shaped propagation spaces (e.g. a loudspeaker in the

corner of a room or on a flat wall). Klippel had already used the measurement of the modal

components of the sound field observed in the near field of loudspeakers to reconstruct the far

field radiation pattern of the unit [KB16, Kli17]. With the wedge model, the radiation pattern of

loudspeakers can be predicted more accurately inside spaces with rigid boundary conditions (e.g.

rooms, cinemas, etc.).

It would be interesting to investigate if the wedge model can be modified to describe the radiation

inside a box-shaped room. One conceivable way to attempt this is to add further boundary

conditions and find matching basis functions (i.e. a combination of the interior and the exterior

domain, as done by Weinreich and Arnold for measurements of the radiation from violins [WA80]).

Another approach could be to combine the wedge radiation model with a mirror source model.

The developed model could also measure the acoustic intensity radiated from sources that are

typically standing on flat, rigid ground, e.g. large industrial machinery. The three dimensional

analysis of the radiated sound field allows for the reconstruction of an object’s radiation pattern

and thus may help to identify components that are main sources of the operating noise. Under

certain acoustic circumstances, the finite wedge model might further improve the accuracy of the

measurement results and reduce the measurement effort by limiting the vertical expansion of the

hologram through the introduction of a ‘ceiling’ and ‘floor’.

8.4 Loudspeaker Arrays for Beamforming in Infinite Wedge

Spaces

A beamforming method for compact arrays in infinite wedge spaces was presented. The model

for the radiation from a source with constant radius around the origin of an infinite wedge

propagation space was used to formulate the forward operator that maps the driving signals of the

loudspeakers to the radiated beam pattern. It was shown that the sound field can be controlled
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on an arc with specific radius and vertical position by solving the inverse problem in the modal

domain to identify the required loudspeaker driving functions. The inverse problem is solved in

the modal domain, where the coefficients defining the driving functions of the loudspeakers are

put in relation with the desired beam pattern on the control arc through the introduced Arc

Radial Functions.

The developed theory was confirmed through both numerical simulation and experimental data.

Different beam patterns and arc radial functions were tested and it was shown that the theoretical

model achieves a good agreement with the measured data. It was also shown that by using near

field conformal arc radial functions, the sound field can even be controlled at very small distances

from the array. At large distances, the numerically calculated arc radial functions can be replaced

by their stationary phase approximation without affecting the array’s performance.

The beamforming system requires the identification of an inverse solution that suffers from

ill-conditioning at low frequencies and spatial aliasing at high frequencies. To preserve the

integrity of the array, regularisation must be applied during the inversion to avoid driving signals

with excessive amplitudes that might damage the loudspeaker units. The regularisation causes a

drop in radiated pressure level, an increased beamwidth and the side lobes to move to different

angles at low frequencies. To preserve a flat on-axis frequency response, the driving functions

must be equalised accordingly.

It was observed that the side lobes occurring due to spatial aliasing can be reduced in level when

one accepts a wider beamwidth. The wider beam corresponds to reduced strength of higher

orders and it was found that the smaller the contributions of higher order modes the smaller the

side lobes resulting from spatial aliasing. This is not surprising, as same is observed from the

difference between the Fourier transform of a Dirac pulse and that of a rectangular function. It

is also in accordance with the work by Fazi et al. [FSOF15], where the same was observed for

circular arrays.

The loudspeaker array was modelled as a set of vibrating square patches, where each patch

represents a single loudspeaker. A more suitable model for a circular diaphragm may be obtained

through numerical calculation of coefficients corresponding to the individual drivers’ diaphragm

shapes.

For future work it would be worth to investigate the sound field control and beamforming

performance of a multilevel loudspeaker array inside a finite wedge. To immediately address

the question of practical relevance of such a system, it shall be suggested to design a system

for the corner (with a right angle) of a room with rigid floor and ceiling. It can be assumed

from the findings in this work that a multilevel loudspeaker arrays gains control of the beam

pattern for both azimuth angle and elevation. Such a system would automatically include the

reflections from the flanking walls as well as both floor and ceiling. This suggests that if turned

into a loudspeaker system, this type of array has a significantly larger degree of control over the

acoustics inside the listening room.



Chapter 8 - Conclusions 153

8.5 General Outlook

To this day it would seem that the problems of both spatial aliasing and ill-conditioning as they

occur with microphone and loudspeaker arrays cannot easily be solved through design aspects

while preserving practicality.

Microelectromechanical System (MEMS) microphones may one day help to push the edge frequency

for spatial aliasing high enough so that it no longer falls within the audible frequency band. Their

small size and improving audio quality would then allow to build arrays of very high order. Of

course, the amount of data that would be acquired from such an array would increase rapidly

along with the order, which poses a challenge for the required processing electronics and storage

capacity.

While the MEMS technology would solve the problem through the number of sensors, the work

by Alon and Rafaely [AR12, AR14, AR16] provides a signal processing approach to de-alias

the beam patterns obtained with circular and spherical microphone arrays. Their beamforming

method is based on a priori knowledge of the location of a source towards which to steer the

beam. For a single source, this is already an improvement, but in more general sound fields the

spatial aliasing problem has just transformed into another. Nevertheless, in many acoustical

applications, the sources in the sound field may be assumed to radiate across a wide frequency

spectrum. This assumption was previously proposed by Bernschütz in his work on bandwidth

expansion for microphone arrays [Ber12]. A high resolution DOA estimation method can be used

to first identify the directions of distinct sources in the sound field. With this a priori information

about the direction of the sources, the de-aliasing beamformer proposed by Alon and Rafaely can

be used to extract the isolated source signals. These can then be used to reconstruct an even

higher resolution Ambisonics or circular harmonics signal describing the sound field at frequencies

that would otherwise suffer from spatial aliasing artefacts.

Solving the spatial aliasing issue through signal processing can provide some improvement, but the

success of the method is limited by the resolution of the DOA estimation method. Moreover, the

approach still assumes that all sources at least radiate in the range from the optimum frequency

band to higher frequencies, which may not always be the case. It may thus be a step forward,

but does not provide a solution in general. The ideal case remains a continuous scanning of the

sound field. An ultra-dense scanning of the sound field with MEMS microphones may provide

the required quasi-continuous (within the audible band) spatial sampling. However it needs to be

investigated if such a dense distribution of MEMS devices still satisfies the assumed boundary

condition (rigid or acoustically transparent) on the array aperture. If the result is significantly

different, the common models for the functional decomposition of the sound field around the

array would no longer be valid. Of course, if transducers without any moving or obstructing

parts can be invented, this problem would be solved immediately.

The ill-conditioning issue with both microphone arrays and compact loudspeaker arrays is

determined through the radial functions and the noise in the measurement data. The only

options to avoid ill-conditioning with microphone arrays are keeping a large array radius, use

extremely linear and low noise transducers, and ensure high accuracy in the arrangement, as well

as permanently monitoring the atmospheric conditions (i.e. the speed of sound and the specific

density of air). However, it must be questioned if a high-order information at low frequencies
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is practically relevant. With compact loudspeaker arrays, a large array radius can solve the

problem as well, or alternatively, the use of loudspeakers with an extremely large dynamic range.

The latter can, however, not be expected from conventional analogue transducers with moving

diaphragms, as the mechanical suspension is a limiting factor. If a transducer can be invented

where the sound is not radiated through the displacement of a diaphragm but in a different

way, while it retains suitability for array applications, it would overcome the limitations on the

system’s directivity at low frequencies. This is however based on the assumption that such a

transducer would have a significantly larger dynamic range.

With compact loudspeaker arrays, spatial aliasing can be tackled in a similar fashion as with

microphone arrays. Increasing the number of transducers is certainly an option. However, with

conventional moving diaphragm transducers, it cannot be expected that a design with a very

small diaphragm yields a sufficiently high sound pressure level. However, a novel transducer

design with the specifications discussed in the previous paragraph would be a potential solution

to this approach. Alternatively, a diaphragm design with very high directivity at high frequencies

would solve the problem as well. In that case, the sound fields from the individual drivers ideally

no longer interfere with each other and can thus no longer create aliasing effects in the array’s

beam pattern.

The development of the theory and the practical validation of compact arrays in wedges already

aims to move away from making free field assumptions for the surrounding propagation space

and account for its room-like features instead. The next challenge is to not just model the wall

or the corner that holds the array but also take further boundary conditions into account. The

goal is to fully model the propagation space with all its (crude) boundaries (i.e. walls, floor and

ceiling). Together with the compact loudspeaker arrays, this comprehensive spatial sound field

model can yield a new degree of sound field control. Whether this is used to optimise the sound

quality or the spaciousness of the sound field can be a decision that is taken when the system is

designed to suit a purpose.

Moreover, such a comprehensive spatial sound field model is not just limited to sound field control

applications but also poses a great opportunity for research on sound field capture, e.g. for

virtual and augmented reality applications, but also for the normal loudspeaker development

process. The holographic measurement in more realistic environments can be used to determine

the radiation behaviour from a loudspeaker into a room. From the obtained information, the

loudspeaker’s design may be more easily optimised to yield the best sounding result for that

specific environment.



Appendix A

Three Dimensional Sound Field

Acquisition Based On The

Tangential Component Of The

Pressure Gradient

In this chapter, a theoretical analysis of a spherical microphone array is presented. The array is

composed of sensors measuring the tangential component of the pressure gradient. The definition

of the different boundaries and volumes involved in the formulation of the model for the sound

field is the same as in Figure 4.1.

Like the circular array considerations in the previous chapter, the effects in the acoustic boundary

layer of the spherical array will be neglected.

A.1 Model of the Sound Field

The three dimensional model for the pressure in the sound field around a spherical scatterer of

radius rs is given by

p(r, θ, φ) = 4π

∞∑
n=0

rn(kr)

n∑
m=−n

Y mn (θ, φ)

∫ 2π

0

∫ π

0

Y mn (θ′, φ′)∗q(θ′, φ′) sin θ′θ′dφ′, (A.1)

where the radial functions rn(kr) are defined as

rn(krV ) = in

jn(krV ) , FF

jn(krV )− j′n(krs)

h
(1)′
n (krs)

h
(1)
n (krV ) , CS

. (A.2)

for the open and rigid sphere, respectively.
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Appendix A - Three Dimensional Sound Field Acquisition Based On The Tangential Component

Of The Pressure Gradient

The pressure gradient is a vector g defined as follows

g(r, θ, φ) = ∇ · p(r, θ, φ) =
∂p

∂r
er +

1

r

∂p

∂θ︸︷︷︸
gθ

eθ +
1

r sin θ

∂p

∂φ︸ ︷︷ ︸
gφ

eφ, (A.3)

where er, eθ and eφ denote the three unit vectors in spherical coordinates. As will be seen later,

for a full recovery of q(θy, φy), it is necessary to make the actual output quantity a mixture of

the two angular components gθ and gφ. One way to combine them is to generate a unit-norm

linear combination

b(α) = cosα · eθ + sinα · eφ (A.4)

of the two angular unit vectors and project the gradient vector onto it. Please note that α is the

angle between eθ and an arbitrary vector b(α) that lies in the plane spanned by eθ and eφ. The

squared norm of the projected vector gT = gT · b(α) will then be given by

gT (α, r, θ, φ) = cos(α)gθ + sin(α)gφ. (A.5)

A.1.1 Angular Derivative in θ

The derivative of the pressure with respect to the polar angle θ is given by

1

r

∂p

∂θ
= 4π

∞∑
n=0

rn(kr)

r

n∑
m=−n

∂

∂θ
[Y mn (θ, φ)] 〈Y mn |q〉Ωs . (A.6)

The derivative of Spherical Harmonics can be expressed through a combination of Spherical

Harmonics of different orders:

m ≥ 0
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m < 0
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A.1.2 Angular Derivative in φ

The derivative of the pressure with respect to the azimuth angle φ is given by

1

r sin θ

∂p

∂φ
= 4π
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∂
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The derivative of Spherical Harmonics is considerably simpler than the one for the polar angle:

m ≥ 0
∂

∂φ
Y mn (θ, φ) = imY mn (θ, φ) (A.10)

m < 0
∂

∂φ
Y −|m|n (θ, φ) = (−1)|m|(−i)mY |m|n (θ, φ)∗. (A.11)

A.1.3 The Tangential Pressure Gradient

Using the formulae for the derivatives found in the previous two sections, the quantity describing

the tangential pressure gradient in a scalar form as given in equation (A.5) can be written as

follows.

gT (α, r, θ, φ) = 4π

∞∑
n=0

rn(kr)

r sin θ

n∑
m=−n

[
Dm
n (α) · Y mn+1(θ, φ)− Emn (θ, α) · Y mn (θ, φ)

]
〈Y mn |q〉Ωs

(A.12)

with

Dm
n (α) = cosα

√
2n+ 1

2n+ 3

√
(n−m+ 1)(n+m+ 1) (A.13)

Emn (θ, α) = (n+ 1) cos θ cosα− im sinα. (A.14)

For negative m, it is actually sufficient to use the following relation.

Y −mn (θ, φ) = (−1)m (Y mn (θ, φ))
∗

(A.15)

For the sake of convenience, the function

Ψm
n (θ, φ, α) =

1

sin θ

[
Dm
n (α) · Y mn+1(θ, φ)− Emn (θ, α) · Y mn (θ, φ)

]
(A.16)

is defined. This allows for the simplification of (A.12).

gT (α, r, θ, φ) = 4π

∞∑
n=0

rn(kr)

r

n∑
m=−n

Ψm
n (θ, φ, α) 〈Y mn |q〉Ωs (A.17)

Assuming that the tangential gradient is observed on the boundary of a spherical microphone

array of radius RV , this leads to a new operator Gs.

gT (α,RV , θ, φ) = (Gsq)(α,RV , θ, φ) := 4π

∞∑
n=0

rn(kRV )

RV

n∑
m=−n

Ψm
n (θ, φ, α) 〈Y mn |q〉Ωs (A.18)

If q(θy, φy) is square-integrable on the unit sphere, then it can be expressed through an infinite

series

q(θy, φy) =

∞∑
n=0

n∑
m=−n

qn,m · Y mn (θy, φy), |qn,m| <∞,∀m,n (A.19)
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Since spherical harmonics are orthonormal, it follows that

〈Y mn |q〉Ωs =

∫ 2π

0

∫ π

0

Y mn (θy, φy)∗q(θy, φy) sin θydθydφy

=

∞∑
n′=0

n′∑
m′=−n′

∫ 2π

0

∫ π

0

Y mn (θy, φy)∗Y m
′

n′ (θy, φy) sin θydθydφy︸ ︷︷ ︸
δn−n′δm−m′

·qn′,m′

= qn,m. (A.20)

and hence that

gT (α,RV , θ, φ) = (Gsq)(α,RV , θ, φ) := 4π

∞∑
n=0

rn(kRV )

RV

n∑
m=−n

Ψm
n (θ, φ, α)qn,m (A.21)

A.2 Solution to the Inverse Problem

In Chapter 4 it has been shown that the solution to the inverse problem for a circular array can

be obtained by using the components of the singular system in combination with equation (4.27).

The solution found through the latter would be valid regardless of the underlying geometric

model, provided that both conditions of Picard’s theorem are satisfied.

A.2.1 Singular Value Decomposition of Gs

In order to find the solution to the inverse problem, it would now be desirable to perform a

Singular Value Decomposition of the operator defined in equation (A.12). Considering this

problem in the context of functional analysis, similar to the two dimensional case in Chapter 4,

there is an operator Gs that transforms a sought after function q(θy, φy), which is an element

of an open Hilbert space A, into a function gT (α,RV , θ, φ), which is an element of an open

Hilbert space B. The Hilbert space A is spanned by spherical harmonics Y mn as orthonormal

basis functions. In conclusion, B is spanned by the basis functions Ψm
n (θ, φ, α), however, it is not

guaranteed that they form an orthonormal basis. On the contrary, since they are composed of a

weighted sum of two spherical harmonics of different order, it is extremely likely that they are

generally not even orthogonal. The implications of this lead to the assumption that the inverse

problem cannot be solved in a closed form, like it was possible in the two dimensional case.

For the special case of α = π
2 , however, the basis functions Ψm

n (θ, φ, α) are orthogonal and can

also be reformulated to be orthonormal as well. This would then allow for a closed form solution

for the orders n = N\0 and the degrees m ∈ [−n, . . . ,−1, 1, . . . , n]. Unfortunately, the array

would then be incapable of recovering the various coefficients of degree m = 0, which makes this

design option rather impractical.
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A.2.2 Solution Using Linear Algebra

If the Herglotz density is limited to an order N, it will be represented by the finite series

q(θy, φy) =

N∑
n=0

n∑
m=−n

qn,m · Y mn (θy, φy). (A.22)

Therefore, it can be represented in A by (N + 1)2 coefficients qn,m. The tangential gradient gT

at the observation point (θ1, φ1) is then given by

gT (α,RV , θ1, φ1) =
4π

RV



i0r0Ψ0
0(θ1, φ1, α)

i1r1Ψ−1
1 (θ1, φ1, α)

i1r1Ψ0
1(θ1, φ1, α)

i1r1Ψ1
1(θ1, φ1, α)

...

iNrNΨN
N (θ1, φ1, α)



T 

q0,0

q1,−1

q1,0

q1,1

...

qN,N


(A.23)

For a number of L observation points (sensors), using matrix formulation, this can be extended to


gT (α,RV , θ1, φ1)

...

gT (α,RV , θL, φL)

 =
4π

RV



i0r0Ψ0
0(θ1, φ1, α) . . . i0r0Ψ0

0(θL, φL, α)

i1r1Ψ−1
1 (θ1, φ1, α) . . . i1r1Ψ−1

1 (θL, φL, α)

i1r1Ψ0
1(θ1, φ1, α) . . . i1r1Ψ0

1(θL, φL, α)

i1r1Ψ1
1(θ1, φ1, α) . . . i1r1Ψ1

1(θL, φL, α)
...

. . .
...

iNrNΨN
N (θ1, φ1, α) . . . iNrNΨN

N (θL, φL, α)



T

︸ ︷︷ ︸
W



q0,0

q1,−1

q1,0

q1,1

...

qN,N


.

(A.24)

If L exceeds the number of coefficients qn,m to be recovered, then (A.24) is overdetermined and

can be solved in a least squares sense by applying the Moore-Penrose Pseudoinverse W† (compare

Chapter 4, Section 4.3.2). Of course, (A.24) can be extended in a similar way as it has been done

in chapter 4 by the information from one single pressure sensor to recover the 0th order q0,0.


p(RV , θp, φp)

gT (α,RV , θ1, φ1)
...

gT (α,RV , θL, φL)

 = W′



q0,0

q1,−1

q1,0

q1,1

...

qN,N


, (A.25)
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where

W′ =
4π

RV



i0r0Y
0
0 (θp, φp) i0r0Ψ0

0(θ1, φ1, α) . . . i0r0Ψ0
0(θL, φL, α)

i1r1Y
−1
1 (θp, φp) i1r1Ψ−1

1 (θ1, φ1, α) . . . i1r1Ψ−1
1 (θL, φL, α)

i1r1Y
0
1 (θp, φp) i1r1Ψ0

1(θ1, φ1, α) . . . i1r1Ψ0
1(θL, φL, α)

i1r1Y
1
1 (θp, φp)i

1 r1Ψ1
1(θ1, φ1, α) . . . i1r1Ψ1

1(θL, φL, α)
...

...
. . .

...

iNrNY
N
N (θp, φp) iNrNΨN

N (θ1, φ1, α) . . . iNrNΨN
N (θL, φL, α)



T

.

The recovered coefficients are then given by

q0,0

q1,−1

q1,0

q1,1

...

qN,N


= (W′)†


p(RV , θp, φp)

gT (α,RV , θ1, φ1)
...

gT (α,RV , θL, φL)

 . (A.26)



Appendix B

A De-Aliasing Strategy Based On

Signal Processing

In the previous chapters it has been shown that the performance of circular microphone arrays

not only depends on the type of applied transducers and their quality but also on their aliasing

behaviour. Aliasing is an effect that occurs as a result of an inadequate sampling of a signal or

any other form of continuously changing entity. For time domain signals, adequate sampling

conditions are typically ensured with anti-aliasing filters, which restrict the frequency content

of the signal to be sampled to a limited band. While in theory this can be achieved perfectly,

in practice aliasing effects cannot be totally suppressed but are usually significantly reduced to

an acceptable level. A spatially complex entity such as a sound field however cannot easily be

‘smoothed’. As a consequence, only few options to implement actual anti-aliasing filters exist

for spatial sampling and they usually come with either restrictions or certain drawbacks. One

option is to use large diaphragm sensors, which bears the risk of potential distortion because of

the sensor size; another option is to assume a stationary sound field to perform an integration

over contiguous measurement points. Both methods offer only an intermediate solution as they

do not actually solve the problem of aliasing and lead to a trade-off decision. It therefore appears

to be necessary to approach the aliasing problem in another domain.

The requirements for the array design to overcome the problems of aliasing implied by the

Nyquist-Shannon theorem evidently stand in the way of an important step forward in the field of

sensor arrays. Even the latest transducer technology does not allow for a spatially continuous

observation of the sound field, making it therefore necessary to seek for a way around the

obligatory compliance of the sampling condition. Previously presented de-aliasing methods

exploit the knowledge of the aliasing patterns for a specific sound field model [EJvS09, AR14].

This usually leads to a performance that depends on either a priori knowledge of the sound field

or the potential of the applied dictionary. Both approaches have one aspect in common: they

treat every frequency band of the signal independently.

This chapter presents an initial study of a novel de-aliasing strategy for circular sensor arrays. Its

basic principle is to learn important and substantial information about the sound field from the

optimal frequency band (see Chapter 4, Section 4.4) of an applied circular microphone array and

161
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then apply that knowledge to recover original sound field information in frequency bands that

are expected to be corrupted by aliasing. In other words, it is assumed that the sources in the

field radiate over a wide frequency spectrum and their spatial distribution does not change with

frequency. The de-aliasing strategy is divided into an analysis stage and a de-aliasing stage. The

former analyses the sound field in the optimal frequency band to then generate a new sound field

specific basis (also sometimes referred to as dictionary), while the latter applies the new basis

in corrupted frequency bands to perform de-aliasing. Hence, the de-aliasing stage is completely

independent from the analysis stage and both stages can be investigated and analysed separately.

As it has been mentioned above, the de-aliasing strategy is divided into two parts. The analysis

stage is meant to identify a set of parameters that define precisely the basis of the current sound

field. Three different design options are introduced: the CLEAN method, the Finite Rate of

Innovation (FIR) method and the Compressive Sensing method. Only the first two have been

further investigated in this work. In the subsequent de-aliasing stage, the acquired parameters

can then be used to create a modified version of the basis. These modified basis functions predict

the aliasing behaviour of the system and allow for the successful de-aliasing of corrupted data.

B.1 Sound Field Model

For the considerations in this chapter, the problem of sound field analysis, which is generally of

a three-dimensional nature, is simplified to a two-dimensional problem. This means that, from

the perspective of a listener, the sound field varies in the horizontal plane but not in the sagittal

plane. Equivalently, the direction of a plane wave is only defined by the azimuth angle φ but not

on the elevation angle θ (compare Section 3.9.3). That leads to the general assumption that the

pressure field is invariant w.r.t. the x3-axis.

p(x1, x2, x3) = p(x1, x2) (B.1)

Since the pressure is now no longer a function of x3, it is more convenient for the interpretation of

the integral in (4.1) to express the equation in cylindrical coordinates. With the parametrisation

(compare Section 3.9.2)

x1 = r cosφ, and (B.2)

x2 = r sinφ, (B.3)

the integration domain is given by the set

Ωc :=

{
ŷ =

[
r′ cosφ′

r′ sinφ′

]
: φ′ ∈ [−π, π], r′ = 1

}
. (B.4)

The HWF can then be written as a function of r, φ, ŷ and ω.

p(r, φ, ω) =

∫
ΩcC

H(r, φ, ŷ, ω)q(ŷ, ω)dΩ(ŷ) (B.5)
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Given the chosen parametrisation in the set definition of Ωc in (B.4), the differential is given as

dΩc = dφ. (B.6)

The Herglotz Kernel H(r, φ, ŷ) = eikx·ŷ can also be written as a function of r and φ through the

Jacobi-Anger Expansion [CK98]

eikx·ŷ = 2π

∞∑
n=−∞

inJn(kr)
einφ√

2π

e−inφ
′

√
2π

, (B.7)

where Jn(x) is the Bessel function of order n. Replacing the Herglotz Kernel by the series

expansion in (B.7) yields

p(r, φ) = 2π

∞∑
n=−∞

inJn(kr)
einφ√

2π

∫ 2π

0

e−inφ
′

√
2π

q(φ′)dφ′. (B.8)

This last equation is the basic pressure field model for the two-dimensional investigations in this

chapter.

B.2 A New Set of Basis Functions For Sound Field Decom-

position

From an information theory point of view, a sound field model like the one introduced in Equation

(B.8), could contain an infinite amount of information. This can be easily proven by arguing

that the model allows for an infinite number of plane waves, each of which is defined by two

parameters: complex amplitude and direction of travel. In the model, both parameters are

contained in the Herglotz Density q(φ). Another approach is that a perfect white noise signal

(ranging from t→ −∞ to t→∞), which has an infinite amount of information, can be mapped

onto a one-dimensional circular manifold around the origin of the polar coordinate plane and

would still not have changed its information content, despite having become periodic. Therefore,

a HD of the form given in (4.10) can still carry an infinite amount of information. It is already

known from the sampling theory of time-domain signals that such a signal cannot be sampled

and successfully reconstructed since the bandwidth is infinite. The same applies for a Herglotz

Density of infinite order.

As it has already been discussed in the introduction to this chapter, it is difficult to implement

a type of spatial lowpass filter that limits the order of the Herglotz Density and thereby its

information content to a finite amount. Nevertheless, it appears that the key to successful

sampling of a continuous entity lies in the limitation of its information content. It is therefore not

surprising that many successful approaches either require a-priori knowledge or impose a limit on

the relevant amount of information in a particular use case [VMB02, Don06, CW08, BDV+08,

EJvS09, BB10c, BB10b, WEMJ11]. Both approaches seek to bypass the sampling theorem and

overcome its limitations.

Within the optimum frequency band of a given circular microphone array, it is safe to assume

that the HD coefficients qn, n ∈ [−N, . . . , N ] can be recovered with good accuracy. The spatial
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lowpass effect of the operators in (4.16) or (4.18) suppresses contributions of orders qn, |n| > N

on the measurement boundary ∂V and therefore serves as a system-inherent anti-aliasing filter.

The recovered HD

q̃(φ) =

N∑
n=−N

q̃n
einφ√

2π
(B.9)

then provides a good representation of the original sound field.

The current form of the HD uses the TOS {an(φ), n ∈ N}. These basis functions have the valuable

property of orthonormality, but they do not allow for a very concise way of representing the sound

field by just a few parameters. Whether the number of plane waves in a sound field is very high

or comes down to just one, the HD reconstruction in (B.9) always requires the knowledge of all

qn, n ∈ [−N, . . . , N ]. For de-aliasing applications, this accurate but very general decomposition

of the HD is not beneficial. It has already been shown by Alon and Rafaely [AR14] that the

recording of a single plane wave can be de-aliased successfully. In sight of their results, it seems

beneficial to analyse the recovered Herglotz Density w.r.t. the number of plane waves in the

sound field and their individual direction of travel and thereby recovering a set of more specific

sound field information. In order to do this, the first step is to take a closer look of the signature

of a single plane wave in the HD.

B.2.1 Band Limited HD of a Single Plane Wave

From Chapter 4, Section 4.3.5, it is already known that the HD of a single plane wave with a

complex amplitude b travelling in direction θ is given by

q(φ) = bδ(φ− θ). (B.10)

Being a distribution and not a function, the Dirac pulse requires an infinite Fourier series

for the best approximation. Moreover, the Dirac pulse is not square-integrable and therefore

δ(φ) /∈ L2(Ωc). In theory, this is not within a function space that is suitable for the operator H.

However, Equation (B.10) can be rewritten as

q(φ) = b

∞∑
n=−∞

e−inθ√
2π

einφ√
2π
, (B.11)

using the completeness relation in Equation (3.24) for the TOS {an(φ), n ∈ N} with an(φ) = einφ√
2π

,

where the expansion coefficients qn are given by

qn = b · e
−inθ
√

2π
. (B.12)

If the series (B.11) is limited to |n| ≤ N , the resulting q(φ) is an element of L2(Ωc) and can be

mapped by the operator H. As it has already been shown in Subsections 4.3.6 and 4.4.5, the

corresponding sound field provides an accurate approximation of a plane wave within a radius

rR ≈ N
k . As a matter of fact, after the measurement of a perfect plane wave with an array

built of L sensors, the Nyquist-Shannon sampling theorem suggests that only the coefficients

qn, n ∈ [−N, . . . , N ] with N = L−1
2 can be recovered perfectly, provided that an ideal anti-aliasing

filter has been applied beforehand. Fortunately, a spatial anti-aliasing filter is not necessary
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within the optimum frequency band due to the low pass behaviour of the propagation operator

H.

A function similar to the one specified in (B.11) was defined in Chapter 3 as the circular sinc

function. Equation (B.11) can then be rewritten as

q̃(φ) = b

N∑
n=−N

e−inθ√
2π

einφ√
2π

= b · 1

2π
csinc(2N+1)(φ− θ) (B.13)

with

csinc(2N+1)(φ) =

N∑
n=−N

einφ. (B.14)

This function can be seen as a basis function that corresponds to the approximation of the sound

field of a plane wave travelling in the direction specified by θ within a circular area around the

origin of radius rR ≈ N
k . Figure B.1 shows the circular sinc function for L = 15 and θ = π. It

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-2

0

2

4

6

8

10

12

14

16

Figure B.1: Plot of the circular sinc function defined in (B.14) of order L = 15 with θ = π.

very much resembles the sinc function sinc(x) = sin(x)
x , except for that the circular sinc function

is periodic in 2π. In the continuous time domain the sinc function corresponds to a rectangular

function in the frequency domain, which implies that the circular sinc function is strictly limited

in spectral bandwidth. With a period of 2π, the circular sinc function’s Fourier transform consists

of a finite number of weighted Dirac pulses, which allows for its representation as a finite Fourier

Series. Hence, analogous to the continuous time domain, the circular sinc function is strictly

limited in its spectral bandwidth on the unit circle; this is obvious from its definition given in

(3.34) when N <∞.

This direct relation between the circular sinc function and a plane wave approximation offers the

possibility to decompose a sound field into a finite number of M principal plane wave approxima-

tions, rather than into circular harmonics as given in (4.21). Each plane wave approximation

would be specified by only two parameters, i.e. its amplitude and its incoming angle. A similar

approach has already been successfully applied in [BB10c, BB10b], however with a different sound

field analysis model and method, respectively, and a limitation to two principal plane waves. The

following subsection introduces a new basis of the sound field that will be used in the de-aliasing

stage.
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B.2.2 Band Limited HD of M Plane Waves

Equation (B.13) states that the recovered HD of the sound field of a single plane wave approxima-

tion is equal to a weighted circular sinc function of order L = 2N + 1. In order for this to be true,

it is required that the measurement was not corrupted by aliasing. As soon as this requirement

is met, the HD of such a sound field no longer needs to be composed from a superposition of

2N + 1 basis functions an(φ) but is simply equal to a weighted single circular sinc function that

is shifted on the abscissa. This yields a comprehensive representation of the entire sound field

through only two parameters.

Due to the linearity of the integral operator given in (4.16), the HD of a sound field with M

plane waves is simply the sum of M corresponding circular sinc functions. Each of the M

circular sinc functions is then specified by a direction of travel θm and an amplitude bm. This

then implies that a sound field consisting of M plane waves can be represented by an HD

composed of M source-specific basis functions instead of L general basis functions from the TOS

{an(φ) : n ∈ [−N . . .N ]}, yielding

q(φ) =
1

2π

M∑
m=1

bmcsincL(φ− θm)

= c(φ)b (B.15)

where

c(φ) =
1

2π

[
csincL(φ− θ1) . . . csincL(φ− θM )

]
.

and

b =


b1
...

bM


The vector c(φ) comprises the new basis of source-specific functions. An advantage of this

decomposition into a source-specific basis is the reduction of an entire sound field representation

to just 2M independent parameters.

B.2.3 Reconstructing the HD With The New Basis

Assuming that the directions of travel of the M plane waves are known, Equation (B.15) can

be evaluated for a number angles φw = w 2π
W , w = [1 . . .W ] and W �M . The results for all W

different angles can be merged into the following overdetermined equation system

q =


q(φ1)

...

q(φW )

=


c(φ1)
...

c(φW )

 ·

b1
...

bM

 = Cb. (B.16)

This compact formulation will be useful later on, when the amplitude of the identified plane

waves needs to be recovered. Before that can be done, however, it is necessary to identify their

directions of travel first.
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One of the powerful properties of the original basis in form of the TOS {an(φ), n ∈ [−N . . .N ]}
was that any two elements satisfy the orthonormality relation in (3.22). The following subsection

investigates the orthogonality of the (potential) elements of a basis such as the one specified by

the vector c(φ).

B.2.4 Autocorrelation Function and Orthogonality Property of the

Circular Sinc Function

All the elements in the new basis are shifted versions of the circular sinc functions; the overall

shape remains the same. The autocorrelation function R(θ) therefore provides a good measure to

find out, whether or not two elements are orthogonal. The autocorrelation function of a function

f(φ) in the domain Ωc is defined by the integral

Rf (θ) =

∫ 2π

0

f(φ)f(φ− θ)dφ. (B.17)

From Equation (3.20) it’s been known that two elements of a function space L2(V ) are orthogonal

if their scalar product is equal to zero. The definition of the scalar product in (3.14) is relatively

similar to that of the autocorrelation function in (B.17) except for the complex conjugation and

the shifting of the function argument by θ. While the complex conjugation has no effect on a

real-valued function, the function argument serves only as a parameter to shift one function w.r.t.

the other. In other words, all zeros of the autocorrelation function Rf (θ) of a real-valued function

f indicate those shifting parameters θ for which f(φ) is orthogonal to f(φ− θ).

For f(φ) = csinc2n+1(φ) one obtains

Rcsinc(θ) =

∫ 2π

0

1

2π
csinc2N+1(φ)

1

2π
csinc2N+1(φ− θ)dφ.

Using the relation in (B.14) in the Equation above yields

Rcsinc(θ) =

∫ 2π

0

1

2π

N∑
n=−N

einφ
1

2π

N∑
n′=−N

ein
′(φ−θ)dφ

=

∫ 2π

0

1

4π2

N∑
n=−N

N∑
n′=−N

ei(n+n′)φe−in
′θdφ

=
1

2π

N∑
n=−N

N∑
n′=−N

e−in
′θ

∫ 2π

0

ei(n+n′)φ

2π
dφ.

Exploiting the orthonormality relation (3.22) then results in

Rcsinc(θ) =
1

2π

N∑
n=−N

einθ =
1

2π
csinc2N+1(θ).

It turns out that the autocorrelation function of the circular sinc function weighted by 1
2π is the

function itself, as shown in Figure B.2. This result shows clearly that a function csinc2N+1(φ) is
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Figure B.2: Plot of the autocorrelation function of csinc2N+1(φ).

only orthogonal to a shifted version of itself csinc2N+1(φ− θ) for 2N specific values of θ, namely

θn =
2π

2N + 1
n, n ∈ [1 . . . 2N ].

In conclusion, the basis specified by c(φ) is an orthogonal basis only if the elements are taken

from the set {
1

2π
csinc2N+1(φ− θm) : θm =

2π

2N + 1
m+ ξ , m ∈ [1 . . .M ]

}
, (B.18)

where ξ is an arbitrary real-valued constant mutual to all θm. This result shall be of importance

when it comes to the application of such a basis for the decomposition of a given HD or a sound

field, respectively.

B.3 Methods to Identify the Parameters of the New Basis

There is more than one method to identify a new basis for the given data. The original basis

specified by the set {an(φ) : n ∈ [−N . . .N ]} is complete and orthonormal. A different basis

can be found from an overcomplete dictionary by applying a Basis Pursuit approach [CDS98]

that finds a new basis through convex optimisation of an l1-norm constraint. This approach is

frequently used in the field of compressed sensing and has been applied with microphone arrays

before by Jin et al. [EJvS09, WEMJ11, WEJ12] to perform super-resolution. An alternative was

proposed by Mallat and Zhang [MZ93]. Their Matching Pursuit method describes an iterative

algorithm to obtain a new representation of given data from an overcomplete dictionary. If based

on a TOS, the Matching Pursuit method leads to a perfect representation.

Going back to the original assumption that the sound field is actually composed of M plane

waves instead of plane wave approximations, each of the plane waves can be assigned a direction

of travel θm and a complex amplitude bm. Hence, these 2M parameters define the sound field

entirely. Since, however, a microphone array can in practice only recover enough HD coefficients
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for a plane wave approximation, these parameters need to be extracted from the observed HD

q̃(φ) or its finite number of coefficients q̃n instead, respectively. As explained later, the principal

plane waves’ amplitudes bm can be easily recovered once the directions of travel θm have been

identified.

In this work, the use of an overcomplete dictionary has been avoided, hence, in this report,

compressed sensing approaches are only briefly discussed for the sake of completeness.

The knowledge that the individual components of the new basis are shifted versions of csinc2N+1(φ)

allows to identify the individual basis components through either an iterative algorithm (Method

I), a finite rate of innovation approach (Method II) or a compressed sensing approach (Method

III).

B.3.1 Method I: Modified CLEAN Algorithm

The presented algorithm is basically a modified version of the iterative CLEAN algorithm by

Högbom [H7̈4]. It iteratively subtracts a finite number of principal plane wave components from

the recovered HD q̃(φ) and thereby extracts their estimated directions of travel θ̃m. It is described

as follows.

Algorithm

q0(φ) = q̃(φ)

for m = 1 to M do

θ̃m = argmaxφ|qm−1(φ)|
qm(φ) = qm−1(φ)− qm−1(θm) · 1

2N+1csinc2N+1(φ− θ̃m)

end for

The algorithm starts with a copy q0(φ) of the recovered HD q̃(φ) and then finds the first angle

φ = θ̃1 for which q0(φ) reaches a global maximum. It can be shown that this angle also

corresponds to the maximum of the cross-correlation between qm(φ) and 1
2π csinc2N+1(φ) (see

Appendix C). In that regard, the proposed algorithm is equivalent to the Matching Pursuit

algorithm [MZ93, MCD14], only that this algorithm does not choose from a dictionary but

identifies the matching basis function by itself. The angle θ̃1 shall be the first extracted parameter

defining the direction of travel of the strongest principal plane wave. The next step is then to

subtract the function 1
2N+1csinc2N+1(φ− θ̃1), which is normalised w.r.t. its maximum amplitude,

weighted by the value of q0(θ̃1) from the still unchanged copy of the recovered HD. The residual is

then carried on to the next iteration of the algorithm. The algorithm terminates when M angles

θ̃m have been identified. The exact value for M can be either chosen empirically for a specific

microphone array, to suit a particular application or even by using other a priori information on

the environment (e.g. from visual sensors). Another option would be to leave the overall number

of plane waves unspecified and let the algorithm terminate when the maximum value of qm(φ)

falls below a given threshold.

An example of the above algorithm applied to a HD composed of M = 4 randomly positioned

and weighted plane waves is given in Figure B.3, indicating the state of the algorithm for each
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iteration of the loop. For this figure, the weighting coefficients bm had been chosen as real-valued

for the sake of simplicity. It can be observed that a circular sinc function (CSF) is aligned
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Figure B.3: Set of graphs describing the iterative basis acquisition of Method I: a) original HD,
b) visualisation of iteration step m = 1, c) visualisation of iteration step m = 2, d) visualisation
of iteration step m = 3, e) visualisation of iteration step m = 4, f) residual after the algorithm

terminated.

alongside the current function qm(φ) to match the maximum of the latter. To obtain the new

residual, the exact same CSF is subtracted from qm(φ). It is also obvious that the algorithm

does not produce an ideal result, since the residual in the bottom right plot is not equal to zero.

This can by easily explained by the fact that the basis functions of the form csinc2N+1(φ− θm)

are not orthogonal.

Even though this method appears to be rather unsophisticated, the results are surprisingly robust.

The error induced by its imperfection (i.e. the lack of orthogonal basis functions) is investigated

in a later section.

B.3.2 Method II: Finite Rate of Innovation (FRI) Approach

While Method I delivers only approximate results for the directions of travel of the principal

plane waves that form the basis c(φ), a method exists that allows to recover the exact values

of θm from the coefficients qn if the number of principal plane waves is smaller than or equal

to N . This method requires a more elaborate approach that assumes the HD to have a finite

rate of innovation. A comprehensive introduction to the theory behind signals with finite rate
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of innovation is beyond the scope of this work and the interested reader is referred to pertinent

literature [VMB02, DH09, BDV+08]. This section briefly introduces the theory behind this

particular application of this relatively new signal model.

The phrase ‘finite rate of innovation’ can also be paraphrased as ‘finite number of degrees of

freedom’. A Herglotz Density of the form

q(φ) =

M∑
m=1

bm

∞∑
n=−∞

ein(φ−θm)

2π

has exactly 2M degrees of freedom, i.e. M directions of travel and M amplitudes. The Equation

above can however be rearranged into a Fourier series

q(φ) =

∞∑
n=−∞

M∑
m=1

bm
e−inθm√

2π

einφ√
2π

with the Fourier coefficients

qn =

M∑
m=1

bm
e−inθm√

2π
.

The progression of the coefficients qn can be seen as an infinite sequence, where n denotes the

time index. Alternatively, it can be seen as the superposition of M infinite sequences defined by

q(m)
n = bm

e−inθm√
2π

for m ∈ [1 . . .M ]. For each signal q
(m)
n , the corresponding filter

a(m)
n = δn − e−iθmδn−1

satisfies the equation

a(m)
n ∗ q(m)

n = 0,

where the asterisk represents the discrete signal convolution. They are therefore also sometimes

referred to as annihilating filters. The z-Transform of the filters a
(m)
n is given by

A(m)(z) = 1− e−iθmz−1,

which is zero for z = eiθm . Each annihilating filter basically suppresses the component einθm in

the sequence of the Fourier coefficients qn.

If the individual progressions q
(m)
n could actually be observed directly from the recovered coeffi-

cients qn, it would be simple to identify the corresponding annihilating filters. Unfortunately this

is not the case.

Going back to the originally observed coefficients qn, it is now easy to see that

qn =

M∑
m=1

q(m)
n ,∀n ∈ [−N . . .N ].
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From the findings above, it can be assumed that one non-trivial solution for an to the equation

qn ∗ an = 0 (B.19)

is the combination of all annihilating filters a
(m)
n to one comprehensive annihilating filter an of

the form

an = a(1)
n ∗ a(2)

n ∗ . . . ∗ a(M)
n = δn +

M∑
m=1

αmδm−n (B.20)

with its z-Transform given by

A(z) =

M∏
m=1

A(m)(z) =

M∏
m=1

(1− umz−1), um = e−iθm .

The z-Transform can also be written using the coefficients αm defined in Equation (B.20):

A(z) = 1 + α1z
−1 + α2z

−2 + . . .+ αMz
−M = (1− u1z

−1)(1− u2z
−1) . . . (1− uMz−1).

From the above equation, it can be seen that the coefficients um are in fact the roots of the

characteristic polynomial

p(z) = zM + α1z
M−1 + α2z

M−2 + . . .+ αM .

In conclusion, once the annihilating filter an has been identified and the roots of its characteristic

polynomial have been calculated, then the directions of travel of the M plane waves are recovered.

The next step is therefore to find the annihilating filter an.

The convolution of discrete-time signals can be realised in a convolution matrix. With a limited

length of the filter an, the equation system equivalent to (B.19) is given by


q1 q0 q−1 · · · q−(M−1)

q2 q1 q0 · · · q−(M−2)

...
...

...
. . .

...

qM qM−1 qM−2 · · · q0

 ·

a0

a1

...

aM

 =


0

0
...

0

 .

It follows from Equation (B.20) that a0 = 1. This can be exploited to avoid the trivial solution

for the filter an. Rearranging the above equation system yields
q0 q−1 · · · q−(M−1)

q1 q0 · · · q−(M−2)

...
...

. . .
...

qM−1 qM−2 · · · q0

 ·

a1

a2

...

aM

 = −


q1

q2

...

qM

 , (B.21)

which is widely known in the field of auto-regressive filtering as a Yule-Walker equation system.

This can ideally be solved by plain matrix inversion, since it can be expected that the matrix

is full rank. However, this may not be the case in practice if the M plane waves are not

distinct. Furthermore, Equation (B.21) implicitly gives a condition for the set of mode coefficients

{qn : n ∈ [−Nmin . . . Nmin]} that is needed to perform this type of analysis. From the system
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matrix and the right hand side of Equation (B.21) it follows that

2Nmin + 1 = 2M ⇐⇒ Nmin = M − 1

2
.

The last step is then to find the M distinct roots um of the characteristic polynomial p(z), from

which the estimated directions of travel θ̃m can be calculated by the formula

θ̃m = i ln(um),∀c ∈ [1 . . .M ]

where ln(x) denotes the principal value of the natural logarithm.

Figure B.4 gives an indication of the accuracy of the detection of the directions of travel when

using the finite rate of innovation (FRI) method with an uncorrupted set of HD coefficients

{qn : n ∈ [−7 . . . 7]} of a randomly generated HD composed of M = 4 plane wave approximations.

The top graph shows the original HD q(φ). The bottom graph presents the four identified
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Figure B.4: Example of an original HD (top) and the basis functions obtained through
Method II (bottom) for M = 4 and N = 7.

basis functions in different colours, while the black stems indicate the originally underlying

directions of travel. It can be seen that the FRI method approximated the set of parameters

{θm : m ∈ [1 . . .M ]} with very high accuracy. The nearly negligible residual is credited to the

limited numerical accuracy during the matrix inversion.

B.3.3 Method III: Compressive Sensing

Another method to find the directions of travel of the principal plane waves is based on compressed

sensing. In this case, the matrix CCS serves as a huge dictionary of shifted circular sinc functions
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of unity amplitude and the LS solution for b is obtained with an additional L0-constraint, such

that

min(‖q−CCSbLS‖2) with ‖bLS‖0 = M.

This will lead to only those M circular sinc functions contributing to q(φ) which yield a minimised

L2-norm of the residual q−CbLS.

Even though they will not be considered further in this work, it should be mentioned that

compressed sensing approaches have shown to be more robust compared to plain LS methods in

scenarios when the direction of travel lies between two atoms of the dictionary, i.e. none of the

atoms perfectly matches the underlying data [CDS98, EJvS09]. In this case, the LS solution is

likely to have a large number atoms in the dictionary contribute to the approximation, i.e. all

those atoms that have a non-zero scalar product with the data. A compressed sensing solution

should however ideally lead to an approximation involving only the two atoms closest to the ideal

atom. Epain et al. investigated this in further detail for the problem of sound field reproduction

[EJvS09].

B.3.4 Performance of the CLEAN and the FRI Method for M > N

The CLEAN method has no apparent limit to the number of identified plane waves due to its

definition through an iterative algorithm. However, it must be doubted that the parameter

estimation is going to be sufficiently accurate beyond a certain value for M .

The FRI method has a fixed limit M = N up to which it works remarkably well (compare

Sections B.3.2 and B.4.2), given that the coefficients qn are not corrupted by either measurement

noise or spatial aliasing. It is inherently limited to identify more than N plane waves, which

can be seen from Equation (B.21), and it is yet to be investigated what the exact nature of the

parameter estimates is in the case that the coefficients qn define more than M = N plane waves.

So far it has been observed that the parameter estimates θ̃m are complex valued in such a case.

In order to allow for the method to function anyway, the parameters that are forwarded to the

de-aliasing stage have been restricted to their real value.

B.4 Sound Field Decomposition with the New Basis

In the previous section, potential methods to obtain a new basis for the decomposition of a

recovered Herglotz Density were introduced. This section first presents the technique to solve

the equation system presented in (B.16) based on the new basis matrix C. The two solutions,

obtained through the inversion of the basis matrices found by Method I and Method II, are then

compared. The quality of the acquired solutions is analysed for how accurately the original data

can be reconstructed. To get a better idea of what factors affect the quality of the reconstruction,

the accuracy of the parameter estimates delivered by Method I and Method II is investigated by

looking at their average parameter identification error.
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B.4.1 Solving the Inverse Problem with the New Basis

Comparing the problem of finding the complex amplitudes of the individual new basis components

to the problem of the recovery of the HD from the observation of a microphone array, it can

be seen that recovering the complex amplitudes bm is also an inverse problem. The respective

problem with the microphone array was ultimately solved through a matrix inversion (compare

Chapter 4, Equation (4.52)). It will be shown that the current inverse problem can be solved in a

similar manner. As it has already been mentioned in the beginning of subsection B.3, it is rather

simple to find the amplitudes bm of the M principal plane waves, once their directions of travel

θm are known.

By simply inverting the equation system defined in (B.16), it can be solved for the vector b,

using the Moore-Penrose Pseudoinverse

C† = (CHC)−1CH . (B.22)

This leads to the least squares (LS) solution for the vector containing the weights of the M plane

waves

bLS = C†q. (B.23)

Note that this solution can also be found in the domain of the HD coefficients {qn : n ∈ [−N . . .N ]},
which has yet not been pursued further in this work for the sake of vividness of the process.

A comparison based on an example of the reconstruction performance of the bases acquired

through Method I and II is given in Figure B.5. Both methods appear to find adequate matches

of the underlying basis functions, however it can already be seen from Fig. B.5c that Method I is

slightly inaccurate, while Method II (Figure B.5d) practically finds the exact basis functions. This

is confirmed when looking at the reconstruction error for both methods in the two bottom graphs.

While the reconstruction error is smaller than the original HD by a factor of approximately 10

for Method I, it falls down to a magnitude of around 10−15. The reason why it does not drop to

zero for Method II lies most probably in the finite numerical precision of MATLAB.

The impact of the limited accuracy of Method I on the sound field reconstruction based on

the reconstructed HD can be seen from the graphs in Figure B.6. The original sound field

for a frequency of f = 1 kHz is depicted in Figure B.6a. The sound field based on the HD

representations with Methods I and II can be seen in Figures B.6b and B.6c, respectively. The

apparent local error does not appear to be overwhelming, yet, when looking at the two bottom

plots, it is evident that Method II achieves substantially better results than Method I.

B.4.2 Average Plane Wave Identification Error

The two methods designed to identify the individual directions of travel θm in a sound field

composed of M plane waves were evaluated w.r.t. the average Parameter Identification Error

(PIE). For each estimated parameter θm, the PIE in percent is given by

PIE =
|θm − θ̃m|

π
100%.
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Figure B.5: a) Plot of the original HD, b) reconstructions of the HD based on the two bases
gained through Method I and II, c) basis functions identified with Method I, d) basis functions
identified with Method II, e) reconstruction error of Method I, f) reconstruction error of Method

II.

This measure has been statistically investigated in a simulation study for both methods for

different numbers of principal plane waves M . Every sample of a sound field was based on ideal

Herglotz densities q(φ) specified by the form given in (B.15) with L = 15. Table B.1 shows the

results for M = 4, 5, 6, 7, where M = 7 is the largest number of principal plane waves that can

be identified with Method II (compare Sections B.3.2 and B.3.4). The presented results were

Method M = 4 M = 5 M = 6 M = 7

I (CLEAN) 6.4504 % 8.3012 % 9.7109 % 10.5092 %
II (FRI) 1.8098 · 10−9 % 5.0724 · 10−8 % 4.9562 · 10−4 % 2.1622 · 10−4 %

Table B.1: PIE in percent for Methods I and II for M = 4, 5, 6, 7, calculated from 5000
different Herglotz Densities q(φ), each specified by a set of randomly chosen directions of travel

θm and complex amplitudes bm.

averaged over 5000 ·M individual parameter estimates, where M parameters have been recovered

from every HD.
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Figure B.6: a) Sound field corresponding to the original HD in Fig. B.5, b) sound field
corresponding to the HD reconstructed with Method I, c) sound field corresponding to the HD
reconstructed with Method II, d) sound field error with Method I, e) sound field error with

Method II, f = 1 kHz.

B.5 De-Aliasing Stage

The methods developed for the sound field analysis stage to find a set of parameters defining

the new basis provide information of different accuracy. It has already been shown by Alon and

Rafaely [AR14] that the coefficients defining the beampattern of a beamformer can be optimised

to cancel out aliasing effects (grating lobes etc.) that would normally occur in the baseline beam

pattern. Like every beamformer, this approach is however set up for a specific look direction.

The de-aliasing strategy proposed in this work seeks to de-alias a sound field whose principal

components are already known, i.e. they have been acquired in a frequency band that is not

corrupted by spatial aliasing.

The success of this strategy is based on the assumption that the sources in a sound field radiate

over a wide frequency range. In other words, it is assumed that waves travelling in a direction

θm in one frequency band are also travelling in the same direction in a different frequency band.

In the previous section, these plane waves were denoted principal plane waves. If this assumption

is correct and the principal plane waves in corrupted frequency bands have merely a different

phase and amplitude from those identified in uncorrupted frequency bands, then aliasing effects

can be reduced or even entirely removed. In order to do this, the occurring aliasing needs to be

analytically predicted. A method to achieve this objective is discussed in the following subsection.

B.5.1 Predicting Aliasing of a Single Plane Wave

The aliasing behaviour of a circular microphone with TPG sensors has been investigated in Chapter

4, Section 4.3. The recovered coefficients of the HD q̃n are corrupted by orders |n| > L−1
2 = N as

given by Equation (4.36). It has also been argued that for an array of pressure sensors, the result
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is the same, only with different eigenvalues. The adequate equation in this case is

q̃n = qn +

∞∑
u=−∞
u 6=0

νn+uL

νn
qn+uL, (B.24)

with νn = 2πRn(krV ).

The HD coefficients for a single plane wave can be calculated for any order n ∈ N by using Equation

(B.12). Together with Equation (B.24), the corrupted coefficients q̃n that would be recovered

from a simulated measurement of a circular array on a rigid structure with L = 2N + 1 sensors

and a radius rV = 0.1 m can be calculated. Figure B.7 shows the results for q̃n, n ∈ [−N . . .N ]

along with a red line indicating the ideal coefficient’s magnitude (compare Chapter 4, Section

4.3.5). It can be observed that the coefficients for f = 2 kHz are only mildly affected, while the
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(d) f = 16 kHz

Figure B.7: Plots of the recovered Herglotz coefficients q̃n of a single plane wave with θ = π
2

that were recovered in different frequency bands (f = 2, 6, 10, 16 kHz) from a simulated circular
array with L = 15, N = 7, rV = 10 cm and a maximum sound field order of |n| = Ns = 40.

plots for the other frequencies (Fig. B.7b, B.7c and B.7d) show severe degradation. The Herglotz

densities that can be recovered from the corrupted coefficients q̃n are presented in Figure B.8. As

it can be expected from the only mildly affected coefficients q̃n at f = 2 kHz, the corresponding

HD in Fig. B.8a has a good resemblance to the ideal HD of a single plane wave (compare Fig.

B.1). Equally to be expected is the severe degradation of the HD at even higher frequencies as it

can be observed from Figures B.8b, B.8c and B.8d.

Another noticeable aspect of the increasing severity of the aliasing effects towards higher frequen-

cies is the effect it has on the location on the main lobe that was originally centred at the angle
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Figure B.8: Plots of the recovered Herglotz Densities q̃(φ) of a plane wave travelling in
the direction θm = π

2
from coefficients q̃n that were recovered in different frequency bands

(f = 2, 6, 10, 16 kHz) from a simulated circular array with L = 15, N = 7, rV = 0.1 m and a
maximum sound field order of |n| = Ns = 40.

corresponding to the direction of travel (DOT) of the plane wave. While at f = 6 kHz there

is still a distinct main lobe at φ = θ = π
2 , at f = 10 kHz a side lobe of nearly similar height

has emerged next to it. At 10 kHz the effects of aliasing are so dominant that the main lobe is

alienated and shifted slightly off the original centre at φ = π
2 .

The findings above provide the option to predict the aliased shape of the HD of a single plane

wave approximation up to the order |n| = Ns travelling in the direction θ. The predicted aliased

HD q
(a)
Ns

(φ) is given by

q
(a)
Ns

(φ) =
1

2π
csinc

(a)
2N+1,Ns

(φ− θ) =

N∑
n=−N

q
(a)
n,Ns

(θ)
einφ√

2π
(B.25)

with

q
(a)
n,Ns

(θm) =

bNs−nL c∑
u=d−(Ns+n)

L e

νn+uL

νn

e−i(n+uL)θ

√
2π

, ∀n ∈ [−N . . .N ]. (B.26)

Once the aliasing can be anticipated, it is straightforward to show that the complex amplitude b

of the original plane wave can be obtained from the corrupted HD q̃(φ) by solving the equation

q̃(φ) = b · 1

2π
csinc

(a)
L,Ns

(φ− θ). (B.27)
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With the plane wave’s complex amplitude b gained from the equation above, the de-aliased HD

qd(φ) can be reconstructed using Equation (B.11) up to an arbitrary order |n| = NR:

qd(φ) = b

NR∑
n=−NR

e−inθ√
2π

einφ√
2π

= b
1

2π
csinc2NR+1(φ− θ). (B.28)

In conclusion, it is possible to de-alias the recovered HD of a single plane wave perfectly and

even increase the spatial resolution beyond the maximum order N recovered by the array.

The importance of including all aliased orders when creating the circular sinc function in Equation

(B.27) can be observed from the graphs in Figure B.9. The graphs in Figure B.9g, B.9h and
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Figure B.9: a) HD of a single plane wave approximation up the 40th order with θ = 4π
7

at the
frequency f = 16 kHz, b) HD as recovered from a simulated circular array with L = 15, N = 7
and rv = 0.1 m, c) recovery error q(φ)− q̃(φ), d) predicted aliased HD for Ns = 7, e) predicted
aliased HD for Ns = 20, f) predicted aliased HD for Ns = 40, g) recovery performance for

Ns = 7, h) recovery performance for Ns = 20, i) recovery performance for Ns = 40.

B.9i show the accuracy of qd(φ) when the complex amplitude b has been recovered by solving

Equation (B.28) for different values of Ns. It can be observed that even the basis function with

Ns = 7 = N does not perform too poorly, while the basis function with Ns = 40 allows to recover

the original HD perfectly. It is shown below, that the choice of the parameter Ns can be used to
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adjust the trade-off between robustness and potentially achievable de-aliasing performance when

one attempts to de-alias the HD based on several plane wave approximations with imperfect

DOT estimates θ.

The following subsection introduces the core method of the de-aliasing stage.

B.5.2 De-Aliasing of Sound Fields with M Plane Waves

In Section B.2 it has been described how the HD of a sound field with M principal plane wave

approximations can be represented by a set of M circular sinc functions. The preceding section

introduced how the aliasing for a single plane wave approximation can be anticipated and a

definition for an ‘aliased’ circular sinc function has been derived. Due to the linearity of both

the sound field model and the inverse operator that recovers the HD coefficients from the sensor

signals, the findings above can be combined to anticipate the aliased HD of a sound field with M

principal plane wave approximations up to the order |n| = Ns. Using Equation (B.25) to replace

the circular sinc function in (B.15) yields

q̃(φ) =
1

2π

M∑
m=1

bmcsinc
(a)
L,Ns

(φ− θm)

= c
(a)
Ns

(φ)b, (B.29)

where

c
(a)
Ns

(φ) =
1

2π

[
csinc

(a)
L,Ns

(φ− θ1) . . . csinc
(a)
L,Ns

(φ− θM )
]
.

and

b =


b1
...

bM

 .
To recover the amplitudes bm from the corrupted HD q̃(φ), Equation (B.29) needs to be expanded

into an overdetermined linear equation system. Similarly to the system in (B.16), this can be

obtained by evaluating (B.29) at W �M different angles φw = w 2π
W , w ∈ [1 . . .W ].

q =


q̃(φ1)

...

q̃(φW )

=


c
(a)
Ns

(φ1)
...

c
(a)
Ns

(φW )

 ·

b1
...

bM

 = Cb. (B.30)

By applying the Moore-Penrose Pseudoinverse C† to both sides of the above equation, the vector

b containing the M complex amplitudes bm can be estimated.

What has been done for the HD of a single plane wave can be equally accomplished for an HD of

M plane waves. With the directions of travel θm and the corresponding complex amplitudes bm

known, the original HD can be reconstructed up to an arbitrary order |n| = NR by summing the

results of Equation (B.28) for all M plane waves, yielding a solution for the de-aliased HD:

qd(φ) =

M∑
m=1

bm
1

2π
csinc2NR+1(φ− θm) =

M∑
m=1

bm

NR∑
n=−NR

e−inθm√
2π

einφ√
2π
. (B.31)
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Figure B.10 demonstrates that already a baseline de-aliasing performance with plain circular

sinc functions shifted to the right DOTs θm reduces the difference between the original HD

q(φ) and the de-aliased HD qd(φ) (compare bottom left graph). With increasing value of the
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Figure B.10: a) HD of a sound field with M = 4 plane wave approximations up the 40th
order with θ = 4π

7
at the frequency f = 16 kHz, b) HD as recovered from a simulated circular

array with L = 15, N = 7 and rv = 0.1 m, c) recovery error q(φ)− q̃(φ), d) predicted aliased
circular sinc functions for Ns = 7, e) predicted aliased circular sinc functions for Ns = 20, f)
predicted aliased circular sinc functions for Ns = 40, g) recovery performance for Ns = 7, h)

recovery performance for Ns = 20, i) recovery performance for Ns = 40.

parameter Ns, which determines the accuracy of the anticipated aliasing, the de-aliased HD qd(φ)

becomes increasingly similar to the original HD q(φ) until the de-aliasing performance is perfect

for Ns = 40.

The designed de-aliasing stage on its own allows for the perfect reconstruction of any original HD

by solving the equation system given by (B.30) to find the complex amplitudes of the M < W

underlying plane wave approximations as long as the exact DOTs are known.

The next section investigates the combination of the sound field analysis (SFA) stage described

in Section B.2 and the de-aliasing stage.
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B.5.3 Position of the Side Lobes in the Aliased HD of a Single Plane

Wave

One aspect that makes the de-aliasing performance very vulnerable to inaccurate estimates of

the DOT parameters is the fact that the shape of an aliased circular sinc function depends on

the DOT parameter itself. This can be demonstrated by looking at the aliased HD of a single

plane wave, which is also a weighted aliased circular sinc function.

Splitting the right hand side of Equation (B.25) into the basic circular sinc function and the

additional component εL,Ns(φ, θ) that occurs due to aliasing yields

q
(a)
Ns

(φ) =

N∑
n=−N

e−inθ√
2π

einφ√
2π︸ ︷︷ ︸

1
2π csinc2N+1(φ−θ)

+εL,N,Ns(φ, θ),

with

εL,N,Ns(φ, θ) =

N∑
n=−N

bNs−nL c∑
u=d−(Ns+n)

L e
u6=0

νn+uL

νn

e−iuLθ√
2π

ein(φ−θ)
√

2π
. (B.32)

The definition above clearly indicates that the shape of εL,N,Ns(φ, θ) depends on θ (i.e. is not

translation invariant).

This result is confirmed by the graphs in Figure B.11 that display the shape of the aliased HD of

a single plane wave travelling in direction θ = 4π
7 for different maximum sound field orders Ns.

For the case of Ns = 7 = N there is no effect of aliasing as can be seen from Figure B.11a. As the

value of Ns increases, the overall shape changes progressively up to Ns = 35. When comparing

Figure B.11g and B.11h, it can be seen that there is only little difference despite the higher sound

field order. This effect can be explained when looking at the fraction νn+uL

νn
in Equation (B.32),

which is the weighting factor that defines how the energy contained in the n + uLth mode is

transferred into the nth mode. From Figure 4.3 it can be anticipated that, for a given frequency

f , the absolute value of this weighting factor is going to quickly fall towards zero for modes of

orders |n+ uL| � |n|. This effect is directly related to implications of the N = krV rule [WA01],

which says that for a plane wave the energy of modes |n| > krV drops to a negligible level on

the measurement boundary ∂V and therefore they do not contribute to aliasing effects. This

behaviour is fully modelled by the factor νn+uL

νn
in Equation (B.32).

It has been shown that the position of the side lobes that occur as an effect of spatial aliasing is a

function of the DOT. Since the de-aliasing stage attempts to recover the individual plane waves’

complex amplitudes through reconstruction of the observed HD by using the aliased circular

sinc functions of the respective DOT (compare Equation (B.30)), inaccurate parameters for the

DOT must degrade the performance of the de-aliasing stage. This is confirmed by the findings

presented in Section B.6.
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Figure B.11: Plots of the aliased Herglotz Densities q
(a)
Ns

(φ) of a plane wave travelling in the

direction θ = 4π
7

for f = 16 kHz, L = 15, N = 7, rV = 0.1 m and different maximum sound
field orders Ns ∈ [7, 10, 15, 20, 25, 30, 35, 40].

B.6 Performance Study of the Combination of the SFA

Stage and the De-Aliasing Stage

It has been shown in the previous sections that the performance of the de-aliasing stage depends

predominantly on the accuracy of the DOT estimates θ̃m. The nature of a method based

on estimated parameters is that its performance cannot easily be anticipated by analytical

calculations. Hence, the proposed de-aliasing strategy has been tested against unprocessed data

in a simulation study over 10000 randomly generated sound fields (i.e. randomly chosen directions

of travel and complex amplitudes, respectively,) consisting of different numbers of plane waves

that were reproduced up to the 40th order. The evaluation of the performance was based on

the error-to-signal-ratio (ESR) of the individual recovered HD. The SFA stage was generally set

to identify all M plane waves in the sound field. However, for the FRI parameter estimation

method, no more than M = N = 7 plane waves can be identified (see Section B.3.4), therefore

for more than N = 7 plane waves and when based on the FRI parameter estimation, de-aliasing

strategy is restricted to a basis with only N = 7 plane waves, even though the sound field actually

contains more.
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It is assumed that the sources in the sound field radiate across a wide frequency spectrum, so

that a DOT identified at a frequency unaffected by spatial aliasing does also corresponds to the

same source at higher frequencies where spatial aliasing is a problem. In this performance study,

the parameters for the DOT were estimated from the HD coefficients obtained at f = 1 kHz.

These estimates were then used to perform de-aliasing at f = 16 kHz. The complex amplitudes of

the individual plane waves were randomly chosen such that their magnitudes fall into the interval

[0.1, 2].

B.6.1 Definition of the Error-To-Signal Ratio

The error-to-signal-ratio (ESR) of a recovered HD qR(φ) is equivalent to the ESR defined in

Equation (4.64) with the only difference that it is defined for the HD instead and is given as

ESR = 10 · log10

(∑W
w=1 |q(w

2π
W )− qR(w 2π

W )|2∑W
w=1 |q(w

2π
W )|2

)
. (B.33)

For the case of the calculated ESR, the original HD q(φ) was calculated up to the order N = 7,

which is exactly the order a circular array with L = 15 sensors is supposed to recover. The

de-aliased Herglotz Density qR(φ) is either equal to the output of the de-aliasing stage qd(φ) or

the unprocessed HD q̃(φ) recovered from the array observation, respectively. The latter will be

referred to as the baseline performance. The reproduction order of the de-aliasing stage was set

to NR = N = 7, i.e. no super-resolution was attempted.

B.6.2 Statistical Performance Analysis

The average results for the achieved ESR are given in Table B.2 for the de-aliasing strategy (DS)

and the baseline performance.

B.6.2.1 Results for the De-Aliasing Strategy With CLEAN Parameter Estimation

Figure B.12 shows the normalised histograms for the DS with the CLEAN based DOT parameter

estimation. For the case of M = 4 plane waves, the ESR results for the baseline performance

are concentrated between 0 and 10 dB, with an average ESR of 7.27 dB. The performance of the

de-aliasing strategy (DS) with its various settings for Ns shows already an improvement over the

baseline performance, with an average ESR decrease of 6.06− 10.51 dB compared to the baseline

performance. However, the covered ESR ranges shown in the histograms are considerably wider

than that of the baseline performance. The results for Ns = 35 and Ns = 40 show only little

difference.

For M = 6 plane waves, the main body of the histogram for the baseline performance has changed

only slightly. Again, the results for the DS clearly show an improvement over the baseline

performance, yet is the span of ESR decrease smaller than that for M = 4. Once more the results

for Ns = 35 and Ns = 40 show only little difference. However, the average gain over the baseline

performance has reduced to just 4.05− 8.18 dB improvement.
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Figure B.12: Histograms (or estimated Probability Density Functions (PDF)) of the Error-to-
Signal-Ratio (ESR) for the De-Aliasing Strategy based on the CLEAN parameter estimation for
various M and different aliasing model parameters Ns, for f = 16 kHz and the array parameters

L = 15, N = 7, rV = 0.1 m.

For M = 7 = N and M = 8, the results show only little difference in the shape of the histograms

compared to those for M = 6. From Table B.2 it can be observed that the average ESR of the

DS shifts upwards with increasing number of plane waves.

For M = 15 = L, it can be seen that the baseline performance and that of the DS for Ns = 7

show almost exactly the same results. At the same time, the performance of the DS for Ns = 25,

Ns = 35 and Ns = 40 has severely degraded, with the average ESR for all of them lying beyond

19.35 dB.

Both the histograms and the average ESR results of the DS with Ns = 35 and Ns = 40 show

hardly any difference. This was to be anticipated, since it has already been shown in Section

B.5.3 that the corruption of orders higher than 35 is negligible.

B.6.2.2 Results for the De-Aliasing Strategy With FRI Parameter Estimation

Figure B.13 shows the normalised histograms for the DS with the FRI based DOT parameter

estimation. The histograms of the DS for the case of Ns = 40 have not been displayed for M = 4,

as the average ESR lies below −35 dB (see Table B.2). The results of the baseline performance

are inherently the same as before and only displayed for the sake of comparison. For the case of

M = 4 and M = 6 plane waves, the performance of the de-aliasing strategy (DS) with its various

settings for Ns shows significant improvement over the baseline performance. Unlike with the

CLEAN parameter estimation, the results of the DS for different parameters Ns are much more

distinct. This can be accredited to the precision of the parameter estimation of the FRI method.

Its accurate parameter estimates allow for the potential of the aliasing model to clearly show

in the histograms, as the (estimated) Probability Density Functions (PDF) for the ESR shift

towards lower values on the abscissa with increasing value for Ns. The increase in number of

plane waves from M = 4 to M = 6 causes the average ESR for the DS to increase differently for
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Figure B.13: Histograms (or estimated Probability Density Functions (PDF)) of the Error-
to-Signal-Ratio (ESR) for the De-Aliasing Strategy based on the FRI parameter estimation,
where the simulations encompassed 10000 randomly generated Herglotz Densities, which have
been taken out for various M and different aliasing model parameters Ns, for f = 16 kHz and

the array parameters L = 15, N = 7, rV = 0.1 m.

the various values for Ns. In case of Ns = 7, the average ESR increases by about 2 dB, while for

Ns = 40 the difference comes to almost 30 dB.

For M = 7 = N , the results of the DS for Ns = 35 and Ns = 40 show very similar results, with a

vast spread from around -40 dB to just over 0 dB with an average ESR of approximately -3.37 dB.

It appears that the accuracy of the FRI parameter estimation has mildly degraded and hence

vanishes the difference between the performance for Ns = 35 and Ns = 40. Once more, the

average ESR for Ns = 7 increased by little more than 0.8 dB due to the higher number of plane

waves.

For M = 8, the results of the DS for Ns = 35 and Ns = 40 again show very similar results but

would no longer spread down to values as low as before. It may be predicted that with further

increase of M , eventually the performance of the DS would be the same for all four parameter

values Ns = 7, Ns = 25, Ns = 35 and Ns = 40. This is confirmed by the histograms for M = 15

and by the results shown in Table B.2. However, it should be noted that the average ESR

performance of the DS with the FRI parameter estimation for M = 15 outperforms that of the

DS combined with the CLEAN parameter estimation, regardless of the chosen parameter Ns.

B.7 Conclusions

The developed de-aliasing strategy is divided into two stages. The first stage analyses a successfully

recovered Herglotz Density as to its principal plane wave components. Each principal plane

wave is defined by two parameters: an angle defining the direction of travel and a complex

amplitude indicating amplitude and phase. It has been shown that the information gained from a

microphone array measurement in the sound field with M plane waves can be perfectly de-aliased
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Method ESRdB ESRdB , Ns = 7 ESRdB , Ns = 25 ESRdB , Ns = 35 ESRdB , Ns = 40

M = 4
CLEAN - 1.21 -2.63 -3.51 -3.51

FRI - 0.85 -8.67 -35.99 -36.56
Baseline 7.27 - - - -

M = 6
CLEAN - 3.24 0.98 -0.89 -0.89

FRI - 2.92 -3.80 -8.41 -8.41
Baseline 7.29 - - - -

M = 7
CLEAN - 3.94 1.47 0.11 0.11

FRI - 3.73 -1.05 -3.37 -3.37
Baseline 7.31 - - - -

M = 8
CLEAN - 4.80 2.51 0.99 0.98

FRI - 3.84 0.09 -1.53 -1.53
Baseline 7.29 - - - -

M = 15
CLEAN - 7.32 22.33 19.35 20.90

FRI - 4.32 2.22 1.61 1.61
Baseline 7.29 - - - -

Table B.2: Average ESR at the output of the de-aliasing strategy and the baseline performance,
where the simulations encompassed 10000 randomly generated Herglotz Densities, which have
been taken out for various M and different aliasing model parameters Ns, for f = 16 kHz and

the array parameters L = 15, N = 7, rV = 0.1 m.

when their directions of travel are known. This is possible because the knowledge of the aliasing

pattern of a given array allows to anticipate the corruption inflicted by spatial aliasing on the

observation of a plane wave travelling into a given direction. And since the corruption can be

anticipated, the original information can also be restored by subtracting the erroneous information

caused by the corruption.

It has also been shown that the success of perfectly de-aliasing an array observation depends highly

on the exact knowledge of the directions of travel of the principal plane waves. Consequently,

the quality of the de-aliasing strategy is mainly determined by the quality of the sound field

analysis stage. However, the de-aliasing stage can be made more robust to inaccuracies of the

input parameters, i.e. the estimated directions of travel of the principal plane wave components,

by sacrificing the option of a perfect de-aliasing performance. It has been shown that, in the case

of an inaccurate set of DOT estimates, it may lead to better de-aliasing results if the de-aliasing

stage does not include the effects of the full aliasing pattern. In fact, this can be adjusted by

just one parameter that limits the number of higher orders contributing to the aliasing pattern.

That will of course lead to an inaccurate prediction of the aliasing effects. However the results

suggest that the overall performance of the de-aliasing strategy with inaccurate DOT estimates

may be better with an incomplete prediction of the aliasing, than with an entire prediction of the

aliasing with the wrong DOT estimate. This can most probably be attributed to the shape of

the aliased basis functions. The side lobes occurring in the representation of the principal plane

waves due to spatial aliasing may become higher than the main lobe. This point is supported by

the observation that the position of the side lobes also depends on the DOT. It can therefore

be expected that a least-squares decomposition based on such a set of basis function would

potentially lead to an even worse performance than the baseline offered by the array on its own.
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Furthermore, it has been suggested that the number of higher orders that contribute to aliasing

is limited by the well-known spatial lowpass behaviour of the operator defining the mapping of

the HD to the pressure on the measurement boundary. That limits the higher contributions in

the observed pressure domain.

Given the importance of the quality of the DOT estimates, two methods to recover the set of

parameters from the array observation have been proposed and investigated. Method I is similar

to the family of the CLEAN algorithms and theoretically allows for an infinite number of principal

plane wave components. However, due to a lack of orthogonality of the different basis functions

of which each corresponds to a principal plane wave component, it must be assumed that the

de-aliasing performance will eventually degrade down to the baseline performance achieved by

the array. Method II is based on a finite rate of innovation signal model and allows for the exact

recovery of the principal plane waves’ directions of travel. This is however limited by the fact

that it can only detect a finite number of principal plane waves, where this number stands in a

fixed relation to the number of sensors of the array. It must also be assumed that this method

is vulnerable to the sound field being composed - even partially - of anything but perfect plane

waves, which is typically the case. This method is thus so far only deemed of theoretical relevance.





Appendix C

Cross-Correlation of the HD and

the Weighted Circular Sinc

Function

Let the HD for a sound field composed of M plane waves be of the form

q(φ) =

M∑
m=1

am
1

2π
csinc2N+1(φ− θm). (C.1)

The cross-correlation function between the HD and the weighted circular sinc function 1
2π csinc2N+1(φ)

is then given by

RHD,csinc(θ) =

∫ 2π

0

M∑
m=1

am
1

2π
csinc2N+1(φ− θm)

1

2π
csinc2N+1(φ− θ)dφ

=

M∑
m=1

am

∫ 2π

0

1

2π
csinc2N+1(φ− θm)

1

2π
csinc2N+1(φ− θ)dφ

=

M∑
m=1

am
1

4π2

N∑
n=−N

e−inθm
N∑

n′=−N
e−in

′θ

∫ 2π

0

ei(n+n′)φdφ︸ ︷︷ ︸
2πδn+n′

=

M∑
m=1

am
1

2π

N∑
n=−N

einθe−inθm

=

M∑
m=1

am
1

2π
csinc2N+1(θ − θm).

When substituting the variable θ by φ in the result for the cross-correlation function, then it can

be seen that it is equal to the HD itself.
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Appendix D

A Multichannel Low-Noise Signal

Conditioning Amplifier

for Microphone Arrays

In the context of the work on microphone arrays, a multichannel signal conditioning amplifier for

the use with microphone arrays was developed. The design is a joint development of the fellow

Ph.D. student, Fábio Casagrande Hirono, and the author. An overall number of 64 channels were

built and arranged into multichannel units (16 channels each) by the electronic workshop of the

ISVR.

The circuitry is based on the THAT 1570 Low-Noise Differential Audio Preamplifier IC. It was the

design objective to create a flexible unit that can be combined with various types of microphones,

while maintaining an low self noise and high linearity.

D.1 Circuit Design & Specifications

D.1.1 Full Electronic Circuit

The main circuit of the conditioning amplifier is shown in Figure D.1. The additional circuitry

on the input side is needed to shield the conditioning amplifiers’ input terminals from radio

frequency interference and protect the instrumentation amplifier from phantom power supply

failure. Figures D.2 and D.3 show the gain setting stage and the implementation of the switching

mechanism through a dedicated integrated circuit, respectively.

D.1.2 Microphone Conditioning Amplifier: Specifications

• 16 channel microphone pre-amplifier

• Phantom Power: 48 Volt for studio/pro audio equipment or 5 Volt for electret capsules (see

D.1.3), supplied directly from PSU
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Figure D.1: Schematic of the conditioning amplifier.

Figure D.2: Schematic of the gain control stage.

• switchable gain with either 3 dB, 20 dB, 40 dB or 60 dB gain for ALL 16 channels

• 1 x Sub-D-78 Connector multi-core balanced input

• 2 x Sub-D-25 Connectors multi-core balanced output (TASCAM’s DB25 analogue standard)

with 8 channels each

• 16 x balanced TRS (6.3 mm Jack) outputs

D.1.3 Power Supply Unit (PSU): Specfications

• General PSU for up to four 16-Channel microphone pre-amplifier units, ± 18 Volt

• 48 Volt phantom power for up to four 16-channel microphone pre-amplifier units

• 5 Volt phantom power for up to four 16-channel microphone pre-amplifier units
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Figure D.3: Schematic of the gain switching circuit.

D.1.4 Sub-D-78 Connector: Pin-Layout

The chosen sub-d connector was used to enable for the connection of up to 16 microphones per

amplifier unit. Using different internal wirings, the conditioning amplifier can be connected to

either standard electret capsules, professional audio microphones (with or without P48 phantom

power) and also Brüel & Kjær (B&K) Type 4189-L-001 microphones.

The exact pin layout for the male and female connector is shown in Figure D.4.

D.2 Performance Specifications

The performance specifications of the developed conditioning amplifier were determined through

measurements with an Audio Precision APx Series Audio Analyzer, which was kindly provided

by Tom Bell, Bowers & Wilkins.

D.2.1 Conditioning Amplifier

• input impedance: 2.2 kΩ

• Lower edge frequency: -3 dB @ 7.13 Hz

• maximum input signal level: +23.5 dBu

• maximum output signal level: +26.5 dBu

• Gain settings tolerance < 0.5 dB.

• Self Noise at the Output with the Input fixed on GND:

– approx. −140 dBu @ 3 dB Gain
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(a) Female Connector

(b) Male Connector

Figure D.4: Pin layout for the Sub-D-78 connector.

– approx. −120 dBu @ 20 dB Gain

– approx. −100 dBu @ 40 dB Gain

– approx. −80 dBu @ 60 dB Gain

• Output Signal to THD+Noise Ratio (at 1 kHz for 1.25 mV RMS (≡ −55.85 dBu) at the

input):

– -111 dB @ 3 dB Gain

– -117.8 dB @ 20 dB Gain

– -125.7 dB @ 40 dB Gain

– -127.8 dB @ 60 dB Gain

• Crosstalk into the output of Channel 2 for a signal level of −6 dBu at the output of Channel

1: less than −100 dBu within the audio band.

D.2.2 Frequency Response & THD+Noise Measurements

The frequency response was measured for Channels 1 and 16 of one of the four units. The results

are shown in Figure D.5. As can be seen, the conditioning amplifier has a flat response within
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(b) Frequency Response of Channel 16

Figure D.5: Frequency responses of channels 1 and 16 of all four gain settings for an input
signal with 1.25 mV RMS (≡ −55.85 dBu) within the frequency band from 20 Hz up to 40 kHz.

the frequency range from 30 to 40 kHz.

The results for the Total Harmonic Distortion (THD) + Noise measurements are shown in Figure

D.6.

D.2.3 Power Supply Unit (PSU)

• maximum current from ±18 Volt supply: 1 A

• maximum current from 48 Volt phantom power: 1.4 A
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(b) THD+Noise of Channel 16

Figure D.6: THD+Noise of channels 1 and 16 of all four gain settings for an input signal
with 1.25 mV RMS (≡ −55.85 dBu) within the frequency band from 20 Hz up to 40 kHz.



Appendix E

Design & Realisation of a

High-Quality Hemi-Cylindrical

Array

A variable circular loudspeaker array with 32 loudspeakers in an interleaved arrangement has

been designed. For drivers Tang Band W1-1070-SG units were chosen and the cabinets have been

carefully designed to allow for the widest possible bandwidth. The interleaved design yields an

effective increase in spatial resolution (reproduction of higher spatial orders) while the aperture

radius remains the same. This newly designed array was constructed in the ISVR workshops.

E.1 Design Sketches

The design is specified in Figures E.1, E.2 and E.3. It allows for the array’s use as either

• a full array with 32 interleaved speakers, or

• two half arrays with 15 interleaved speakers each.

The full structure has a size of just under 30 cm in diameter. As can be seen from Fig E.1,

each individual cabinet is separated from the neighbouring cabinets by a wall involving 2 layers

of 3 mm plywood that are connected by a layer of rubber adhesive applied near the edges to

obtain a 1.5 mm air gap between them for improved acoustic decoupling. The front panels of

each individual cabinet in the array are going to be made from aluminium to allow for a neater

integration of the new drivers into the cabinet, preserving its intended acoustical and mechanical

properties.
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Ø 40 mm

10 holes, 3 mm Ø,

Typical

Figure E.3: Design of the front plate for the speaker compartments in the upper and lower
layer.
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E.2 Construction of the Array

E.2.1 Enclosure

As it has been discussed in the previous report, the enclosure of the HQ array was manufactured

from plywood. It consists of two elements that, when combined, form an array of 15 independent

drivers.

The top and bottom element consist of seven and eight cavities, respectively. The enclosure of

the bottom element is depicted in Fig. E.4. Each cavity is separated from the adjacent cavities

Figure E.4: Enclosure of the HQ hemi-cylindrical array with damping material (upholstery
cotton felt) in place.

by a wall made of two plywood boards that have been glued together, leaving a thin air gap

between both boards. This design should reduce the mechanical/acoustical coupling between two

adjacent cavities.

Each cavity is filled with a suitably cut piece of upholstery cotton felt to provide adequate

acoustical damping inside the speaker cabinets. This particular material is a waste product of the

textile industry and can be purchased for a relatively low price. A horizontal piece of plywood

has been added halfway up the cavity front to ensure a solid structural integrity of the overall

construction.

The cable carrying the loudspeaker signal accesses the cavity through a silicone sealed hole at

the rear of the cavity.

E.2.2 Driver Units

All 15 drivers are Tang Band W1-1070SG full-range drivers (see Fig. E.5), where ’full-range’

refers to the fact that the entire audio signal range is presented through these drivers. This does

not mean, however, that the chosen drivers are capable of delivering a flat frequency response

within the entire audible spectrum. Nevertheless, it can be assumed that the drivers present a
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substantial improvement over the previous prototypes, especially with respect to its low-frequency

radiation performance.

Figure E.5: Visible part of the Tang Band W1-1070SG driver.

E.2.3 Front Panels

The drivers are individually mounted onto an aluminium panel. To avoid acoustic leakage between

these front panels and the front edges of the wooden cabinets, each panel was fitted with an

additional silicone sealing along all four edges (see Fig. E.6). This ensures that, when the panel

Figure E.6: Aluminium panel with driver in place and silicone sealing along the edges.

is mounted to the cabinets, the resulting cabinet is acoustically sealed, following the intended

non-ported design.

E.2.4 The Assembled HQ Hemi-Cylindrical Array

The assembly of the array was concluded after fitting the front panels with their mounted drivers

to the wooden structure of the array. The two segments were then connected to each other

through designated dowels in the top and bottom structure of the upper and the lower segment,

respectively. This yields an interleaved array design with 15 speakers as depicted in Figure E.7.

The depicted array reaches a height of 327 mm and weighs approximately 2 kg.
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Figure E.7: Fully assembled HQ hemi-cylindrical array





Appendix F

Plane Wave Identification With

Circular Arrays By Means Of A

Finite Rate Of Innovation

Approach

Falk-Martin Hoffmann, Filippo M. Fazi, Philip A. Nelson

Abstract

Many problems in the field of acoustic measurements depend on the direction of incoming wave

fronts w.r.t. a measurement device or aperture. This knowledge can be useful for signal processing

purposes such as noise reduction, source separation, de-aliasing and super-resolution strategies

among others.

This paper presents a signal processing technique for the identification of the directions of travel

for the principal plane wave components in a sound field measured with a circular microphone

array. The technique is derived from a finite rate of innovation data model and the performance

is evaluated by means of a simulation study for different numbers of plane waves in the sound

field.

F.1 Introduction

There are many methods of decomposing a microphone array measurement of a sound field

into an assessable number of parameters. Ignoring the differences between two-dimensional and

three-dimensional technologies, a convenient approach to perform this analysis/decomposition is

to decompose a sound field into a set of plane waves, e.g. as proposed in [Raf04, TK06, ZDG10,

BB10c]. Plane waves have the advantage that they are elementary entities defined by only two
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parameters: the direction of travel (DOT) and the complex amplitude. If the number of plane

waves in a sound field is limited then it is also perfectly described by a small number of parameters.

In that case, these parameters can be identified from the measurement made with a suitable

microphone array.

One typically distinguishes between non-parametric (i.e. no underlying signal model) and

parametric (e.g. based on a signal model) source detection or DOT estimation techniques.

Examples of non-parametric techniques are adaptive beamforming based on maximum likelihood

estimators or the MVDR beamformer [Cap69, VT02, ZFBZ08]. Prominent examples of parametric

techniques are the MUSIC algorithm [Sch86, VT02], the EB-ESPRIT and the EB-DETECT

algorithm [TK06], and Matching Pursuit variants such as CLEAN [H7̈4]. Compressed sensing

techniques could also be utilised to estimate parameters, yet are they typically used improve the

performance of sensor arrays directly [EJvS09, WEMJ11]. Some of these techniques require a

priori knowledge (e.g. the number of sources) or deploy statistical models to obtain estimates.

This may potentially lead to usable, yet slightly inaccurate results. Many applications and

techniques, however, require the exact knowledge of the DOT to ensure the best possible

performance. Examples are source separation, de-noising and de-aliasing techniques based

on beamforming for acoustical and sonar applications, as well as super-resolution techniques

[HBC08, HL09, BIB13, AR14].

This work presents a novel application of a signal processing approach that theoretically allows to

analytically recover the set of DOT of a finite number of principal plane waves from the measured

data of a circular microphone array. Once recovered, this information can be used to further

process the measured data, e.g. with simple beamforming techniques to suppress sources outside

the main listening direction or even de-aliasing strategies [AR14]. This work is to be understood

as an initial study based on idealised simulations and aims to introduce the proposed method.

Therefore the impact of measurement noise, model mismatch and transducer imperfections is not

within the scope of this work and will be addressed in future publications.

The next section introduces the sound field model, which is suitable to be combined with circular

microphone arrays. The third section briefly describes how the data defining the sound field can

be gained from the array observation. In the fourth section, the proposed method to identify the

plane waves in the sound field based on a finite rate of innovation data model is presented. In the

penultimate section, the proposed method is analysed with respect to its accuracy for different

idealised sound field scenarios and the last section concludes the findings and gives an outlook on

future work.

F.2 Sound Field Model

The general sound field model for this work is based on the Herglotz Wave Function (HWF) in

the frequency domain [FNW12, HF14] given by

p(x, ω) =

∫
Ω

H(x, ŷ, ω)q(ŷ)dΩ(ŷ), x ∈ Λ, (F.1)

where Λ denotes a sphere of a given radius around the coordinate origin within which the

homogeneous wave equation is satisfied at all points x. The integration domain Ω = {ŷ :
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√
y2

1 + y2
2 + y2

3 = 1} encompasses all the points on the surface of the unit sphere. Equation (F.1)

basically describes the sound field as the superposition of plane waves travelling in the directions

ŷ. The magnitude of each individual plane wave is determined by the Herglotz Density (HD) q(ŷ)

and its propagation characteristics are given through the Herglotz Kernel H(x, ŷ, ω) = eikx·ŷ.

While equation (F.1) is valid within Λ ∈ R3, this work considers only two-dimensional scenarios

to reconcile the sound field model with the intended signal processing approach. Hence, the

sound field is assumed as height-invariant, i.e. the pressure is constant along the x3-axis, so that

p(x1, x2, x3) = p(x1, x2).

It has been shown in [HF14] that, using the Jacobi-Anger expansion [CK98], the model of the

pressure in equation (F.1) can be rewritten in polar coordinates as a function of the radius r and

the polar angle φ

p(r, φ) = 2π

∞∑
n=−∞

inRn(kr)
einφ√

2π

∫ 2π

0

e−inφ
′

√
2π

q(φ′)dφ′. (F.2)

Note that the angular frequency ω has been dropped from the notation for the sake of brevity.

The radial function

Rn(kr) =

Jn(kr) ,FF

Jn(kr)− J′n(krs)

H
(1)′
n (krs)

H
(1)
n (kr) ,CS

(F.3)

allows for the modelling of free field conditions (FF) or the presence of a cylindrical scatterer at

the origin (CS) with radius rs [Wil99, TK06]. Jn(·) and H
(1)
n (·) denotes the Bessel-function and

the Hankel-function of the first kind, respectively, where J ′n(·) and H
(1)′
n (·) denote their respective

derivatives. The integration variable φ′ in eq. (F.2) replaces the DOT ŷ, so that it represents the

angle between the positive x1-axis and the vector ŷ. The integration domain has become the

unit circle Ωc = {ŷ :
√
x2

1 + x2
2 = 1}.

It is assumed here that the Herglotz density holds the basic information that defines the plane

waves in the sound field, and that this needs to be recovered from a finite number of pressure

observations made by a circular microphone array before the planned signal processing approach

can be applied. This is typically referred to as the inverse problem, which is solved in the next

section.

F.3 Recovering the Herglotz Density from Circular Array

Measurements

The procedure for solving the inverse problem such as the one posed by equation (F.2) has

been discussed in a number of works [Wil99, Raf05, TK06, Mey01]. For the sake of brevity, this

derivation has been omitted. The analytical solution to the inverse problem to equation (F.2) is

given by

q(φ) =

∞∑
n=−∞

qn
einφ√

2π
, (F.4)

with

qn =
1

2πinRn(krV )

∫ 2π

0

e−inφ
′

√
2π

p(φ′)dφ′. (F.5)
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For a circular microphone array with L = 2N + 1 uniformly distributed pressure sensors, the

solution for the coefficients qn in (F.5) can be approximated by

q̃n =
1

inRn(krV )L

L∑
n=l

e−in∆φl

√
2π

p(∆φl), (F.6)

with ∆φ = 2π
L . As a consequence of the discretisation, the HD can only be reconstructed up to

the Nth order [Pol05b, HF14], so that

q̃(φ) =

N∑
n=−N

q̃n
einφ√

2π
. (F.7)

Furthermore, discretisation is also bound to lead to aliasing effects since the spatial complexity

of sound fields can typically not be expressed through an order-limited HD, especially at high

frequencies. However, the problem of aliasing is not within the scope of this work and considered

a separate problem, but it has been described for circular arrays with pressure sensors in previous

work by Poletti [Pol05b] and Alon and Rafaely [AR14]. In the following, it shall be assumed

that the recovered coefficients q̃n are not corrupted by either aliasing, measurement noise or

misalignment of the sensors.

The next section introduces a method of estimating the DOTs of up to N plane waves from the

set of recovered coefficients {q̃n : n ∈ [−N . . .N ]} on the basis of a finite rate of innovation signal

model.

F.4 Finite Rate of Innovation Approach

This section presents how the parameters defining the plane waves in a sound field can be

recovered based on a Finite Rate of Innovation (FRI) signal model. A comprehensive introduction

to the theory behind signals with finite rate of innovation is beyond the scope of this work and

the interested reader is referred to the pertinent literature [VMB02, DH09, BDV+08].

First, the new signal model for the Herglotz density is introduced. This model is based on a form

for the HD specified by equation (F.7) but makes another assumption regarding the nature of

the sound field. Then, a set of annihilating filters is calculated that is applied to the new signal

model. These filters are specified by the DOT of the incoming plane waves. Finally, it is shown

how these parameters can be extracted from the identified annihilating filters.

F.4.1 HD of a Single Plane Wave

From the definition of the HWF in equations (F.1) and (F.2), it can be seen that the HD of a

single plane wave is theoretically a weighted Dirac delta shifted to the direction of travel θ and is

given by

q(φ) = bδ(φ− θ), (F.8)
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where b is the complex amplitude of the plane wave. For a function with a period of 2π, the

Dirac delta can be approximated by the Fourier Series

q(φ) =

∞∑
n=−∞

b
e−inθ√

2π

einφ√
2π
. (F.9)

The above form of the HD can now be utilised in the FRI signal model, which is introduced in

the following subsection.

F.4.2 New Model for the Herglotz Density

In the following, only Herglotz densities that define sound fields with up to M = N plane waves

are considered. Accordingly, these can be represented by the sum of the Herglotz densities of the

M individual plane waves

q(φ) =

M∑
m=1

bm

∞∑
n=−∞

ein(φ−θm)

2π
. (F.10)

A Herglotz Density of the above form has exactly 2M degrees of freedom, i.e. M directions of

travel and M complex amplitudes. Alternatively, since the HD is periodic, one can say that it

has a ‘finite rate of innovation’, which is an alternative way of expressing a ‘finite number of

degrees of freedom’.

Rearranging equation (F.10) yields

q(φ) =

∞∑
n=−∞

M∑
m=1

bm
e−inθm√

2π

einφ√
2π

=

∞∑
n=−∞

qn
einφ√

2π
(F.11)

with the Fourier coefficients

qn =

M∑
m=1

bm
e−inθm√

2π
. (F.12)

The coefficients qn can be seen as an infinite sequence. Alternatively, the coefficients qn in (F.12)

can be seen as the superposition of M infinite sequences defined by

q(m)
n = bm

e−inθm√
2π

(F.13)

for m ∈ [1 . . .M ]. Note that each of these sequences is uniquely related to one of the plane

waves only. The following subsection describes how the individual parameters bm and θm can be

extracted from the qn.

F.4.3 Definition of the Annihilating Filter

For each sequence q
(m)
n , there is a corresponding filter

a(m)
n = δn − e−iθmδn−1
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that satisfies the equation

a(m)
n ∗ q(m)

n = 0,

where the asterisk represents the discrete signal convolution and δn denotes the Kronecker delta

[Wil99, BSMM06], which is defined by

δn =

1, n = 0,

0, n 6= 0.

These filters are therefore also sometimes referred to as annihilating filters [VMB02]. The

z-transform of the filters a
(m)
n is given by

A(m)(z) = 1− e−iθmz−1,

which is zero for z = eiθm . Hence each annihilating filter suppresses the component einθm in the

sequence of the Fourier coefficients qn.

If the individual progressions q
(m)
n could be observed directly from the recovered coefficients qn,

it would be simple to identify the corresponding annihilating filters. Unfortunately this is not the

case. From equations (F.12) and (F.13) it follows however that

qn =

M∑
m=1

q(m)
n ,∀n ∈ Z.

It can thus be assumed that one non-trivial solution for an that satisfies

qn ∗ an = 0 (F.14)

is the combination of all annihilating filters a
(m)
n to one comprehensive annihilating filter an of

the form

an = a(1)
n ∗ a(2)

n ∗ . . . ∗ a(M)
n = δn +

M∑
m=1

αmδm−n (F.15)

with its z-transform given by

A(z) =

M∏
m=1

A(m)(z) =

M∏
m=1

(1− umz−1), um = e−iθm . (F.16)

The z-transform A(z) can also be written using the coefficients αm defined in equation (F.15):

A(z) = 1 + α1z
−1 + α2z

−2 + . . .+ αMz
−M . (F.17)

From equations (F.16) and (F.17), it can be seen that the coefficients um are in fact the roots of

the characteristic polynomial

η(z) = zM + α1z
M−1 + α2z

M−2 + . . .+ αM . (F.18)

In conclusion, once the annihilating filter an has been identified and the roots of its characteristic

polynomial have been calculated, then the directions of travel {θm : m ∈ [1 . . .M ]} of the M
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plane waves are successfully recovered. The next step is therefore to find the annihilating filter

an.

F.4.4 Calculation of the Annihilating Filter

The convolution of discrete-time signals can be realised in a convolution matrix. With a limited

length of the filter an, the linear equation system (LEQS) equivalent to (F.14) is given by


q1 q0 q−1 · · · q−(M−1)

q2 q1 q0 · · · q−(M−2)

...
...

...
. . .

...

qM qM−1 qM−2 · · · q0

 ·

a0

a1

...

aM

=


0

0
...

0

 .

It follows from equation (F.15) that a0 = 1. This can be exploited to avoid the trivial solution

for the filter an. Rearranging the above LEQS yields
q0 · · · q−(M−1)

...
. . .

...

qM−1 · · · q0

 ·

a1

...

aM

 = −


q1

...

qM

 , (F.19)

which is widely known in the field of auto-regressive filtering as a Yule-Walker equation system.

This can ideally be solved by plain matrix inversion, since it can be expected that the matrix

is full rank. However, this may not be the case in practice if the M plane waves are not

distinct [VMB02]. Furthermore, equation (F.19) implicitly gives a condition for the set of modal

coefficients {qn : n ∈ [−Nmin . . . Nmin]} that is needed to perform this type of analysis. From

the system matrix and the right hand side of equation (F.19) it follows that

2Nmin + 1 = 2M ⇐⇒ Nmin = M − 1

2
. (F.20)

The last step is then to find the M distinct roots um of the characteristic polynomial η(z) in

(F.18). These can be obtained through different algorithms. For this work, the built-in function

roots of MATLAB has been utilised.

Once the roots have been found, the estimated directions of travel θ̃m can be calculated by the

formula

θ̃m = i ln(um),∀m ∈ [1 . . .M ]

where ln(x) denotes the principal value of the natural logarithm.

F.4.5 Recovering the Complex Amplitudes of the Individual Plane

Waves

With the DOT identified, equation (F.12) can be used to generate a linear equation system

with the complex amplitudes {bm : m ∈ [1 . . .M ]} as the unknown parameters and the Fourier
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coefficients qn form the vector of constants [VMB02].


q0

...

qM−1

 =
1

2π


1 . . . 1

e−iθ1 · · · e−iθM

...
. . .

...

e−i(M−1)θ1 · · · e−i(M−1)θM



b1
...

bM

 (F.21)

This so called Vandermonde equation system [VMB02] can be solved by matrix inversion to

identify the complex amplitudes bm.

F.5 Performance Evaluation

This section reports the results of numerical simulations to evaluate the performance of the

proposed technique by means of one specific example and the results of a small simulation study.

F.5.1 An Example

Figure F.1 gives an indication of the accuracy of the estimated parameters {θm : m ∈ [1 . . .M ]}
when using the FRI based method with an artificially generated set of HD coefficients {qn : |n| ≤ 7},
which are given by equation (F.11) for a set of M = 4 randomly generated DOT θm and complex

amplitudes bm. The top graph shows the real- and imaginary part of the original HD q(φ). The
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Figure F.1: Example of the results achieved with the proposed method for M = 4 and N = 7,
(Top) real- and imaginary part of the original HD, (Middle) real- and imaginary part of the
reconstructed HD, (Bottom) absolute reconstruction error as an indicator for the parameter

estimation performance.
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graph in the middle shows the real- and imaginary part of the HD qR(φ) that was reconstructed

on the basis of the identified parameters θ̃m and b̃m. The bottom graph shows the absolute error

between the original HD and the reconstructed HD |q − qR|. It can be seen that the FRI method

approximates the set of parameters {θm : m ∈ [1 . . .M ]} with very high accuracy. The nearly

negligible error is accredited to the limited numerical accuracy during the matrix inversion.

F.5.2 Simulation Study

To assess both the average performance and the competitiveness of the proposed method, it was

tested in a simulation study against the matching pursuit variant CLEAN [H7̈4]. The latter is an

iterative algorithm that can be described as follows:

1. Fit the signature of a single plane wave (see eq. (F.9)) in the Herglotz Density domain to

the recovered data q̃(φ) so that their global maxima are aligned and even. The parameter

that best aligns the two maxima is the DOT estimate θ̃m for the current iteration’s strongest

plane wave. 1

2. Subtract the identified signature from q̃(φ).

3. Repeated the first two steps until the designated number of M plane waves have been

identified.

In this simulation study, 5001 uniformly spaced samples were used for the required reconstruction

in the HD domain.

For the study, both methods were evaluated w.r.t. their average Parameter Identification Error

(PIE) for the estimation of the DOTs. For an estimated parameter θ̃m, the PIE in percent is

given by

PIE =
(
|θm − θ̃m|mod π

)
100 %.

The above measure was calculated for all identified DOTs in 5000 different Herglotz Densities and

the results were averaged afterwards. This was repeated for different numbers of plane waves M

in the sound field. Every HD was of the form given in (F.11) with randomly chosen θm and bm,

respectively. That corresponds to data perfectly acquired through a circular array with L = 15

microphones (i.e. no spatial aliasing), allowing to reconstruct the sound field up to the order

N = 7.

Table F.1 shows the study’s results for M = 4, 5, 6, 7, where M = 7 is the largest number of

plane waves that can be identified with the proposed method from the simulated sound field data

(compare eq. (F.20)). It can be seen that, even for M = 7, the proposed method outperforms the

CLEAN method significantly, providing sufficient accuracy for most applications.

Note that this simulation study has been conducted based on simulated, measurement noise-free

and thus ideal conditions, where the number of plane waves identified always matched the number

of plane waves in the field.

1It can be shown that θ̃m also maximises the cross-correlation between the single plane wave signature and the
current HD data q̃(φ).
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Number of Average PIE Average PIE
Plane Waves with FRI with CLEAN

M = 4 4.0574 · 10−9 % 6.3412 %
M = 5 9.8317 · 10−8 % 8.4108 %
M = 6 5.1642 · 10−6 % 9.7623%
M = 7 6.3900 · 10−3 % 10.4769%

Table F.1: PIE in percent for M = 4, 5, 6, 7, calculated for each value M from 5000 different
Herglotz Densities q(φ), each specified by a set of randomly chosen directions of travel θm and

complex amplitudes bm.

F.6 Conclusion

A novel method to estimate the direction of travel of a given number of plane waves from the

measurement of a circular microphone array has been presented. The method is based on FRI

signal theory and has been evaluated by means of an initial simulation study w.r.t. the achieved

average parameter identification error. It has been shown that the latter does not exceed 0.01 %

for up to M = 7 plane waves with the proposed method. This assumes ideal measurement

data acquired with 15 microphones in the absence of noise. The remaining inaccuracy can

most presumably be blamed on the limited numerical precision of the computer system. The

performance comparison of the proposed method and the CLEAN algorithm indicates that, for

the conditions simulated, the FRI method clearly surpasses the CLEAN algorithm in terms of

accuracy.

Future work is going to investigate the performance of the proposed method when applied to non-

ideal data, covering the evaluation of its robustness against measurement noise, non-ideal plane

waves (e.g. point sources in the near field of the measurement aperture) and transducer/aperture

imperfections. Especially potential ill-conditioning of the matrices involved in the FRI method

may have a crucial impact on its performance. Furthermore, the problem of when the number of

plane waves to be identified does not match the number of plane waves in the sound field, i.e.

it is greater or smaller, will be considered, as well as a comparison of the proposed method to

further alternatives (e.g. MUSIC, EB-ESPRIT, etc.).
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