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In this thesis we focus on the study of strongly interacting systems using the gauge/gravity duality.
We begin by providing an overview of the history of string theory and we briefly describe the basic
properties of QCD and the N = 4 super Yang-Mills. There are some warm up chapters, where we
build our understanding on the basic facets of the AdS/CFT, namely field dynamics in AdS and some
basic statements about conformal field theories. After that, we describe how it is possible to introduce
fundamental degrees of freedom in the context of the AdS/CFT duality and we motivate the bottom-up
holographic approach. We are using all probe-brane setups in the type IIA and type IIB theories that
preserve eight supercharges in order to study the dynamics and mass spectra of spin-1

2 fields. We
are allowing for higher dimensional interactions and we examine their effect on the spectrum. Using
this knowledge, which stems from the formal top-down constructions, we proceed to use Dynamic
AdS/Yang-Mills in order to obtain holographic predictions for models in which the Higgs is a composite
state. We end this thesis by providing our proposals for future work.
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Chapter 1

Prolegomena

Physics has seen tremendous advancements these past years. One of the most astounding achievements
of modern theoretical physics is the development of quantum field theory (QFT). QFT is a well-defined
mathematical framework that unifies successfully the fundamental principles of special relativity and
those of quantum mechanics. The original motivation was the study of interactions amongst elementary
particles, however, nowadays we have seen that its applications are ranging from cosmology to systems
of condensed matter physics.

One of the most important approaches within physics is the so-called model building, namely the efforts
that the community is making in order to construct models that successfully describe the different
phenomena in nature. Within the framework of QFT the model building approach has led to the
theoretical development of the standard model of particle physics. This is a non-Abelian gauge theory
described by the group SU(3)× SU(2)× U(1) providing us with a framework for three fundamental
interactions of nature: the strong nuclear force, the weak nuclear force, and electromagnetism. The
only fundamental interaction in nature that does not fall within the structure of the standard model is
gravity. There have been extensive experimental studies for many years which has led to very high
precision tests of the standard model and by now it is very well established both theoretically and
experimentally.

The SU(3) part of the standard model describes the strong nuclear force, namely the interactions of
quarks and gluons. This theory is known by the name quantum chromodynamics (QCD) and hitherto
is the most successful theory that we possess in order to describe the strong interactions in the nucleus.
When approaching the high-energy regime of the theory, the interactions become weaker and this is a
property of the theory that has been dubbed asymptotic freedom. On the other hand, when examining
the low-energy limit, we find that QCD gets strongly coupled. This is the regime of the theory that
involves the physics related to its bound-states, i.e hadrons.

For the high-energy/weak coupling limit of the theory we can use perturbation theory in order to
perform our studies. The low-energy/strong coupling regime of the theory remains a very difficult
and interesting problem until today. One approach that is being widely used to study QCD in the
strong-coupling limit is to consider putting the theory on a discretized spacetime. This is called lattice
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QCD [9] and is the most successful and accurate tool at our disposal for this purpose. While it has
provided us with a wealth of results - mainly for the hadronic spectrum of the theory - there are two
main disadvantages. To begin with, the results obtained are mainly numerical and analytic results are
scarce, if any at all. This yields the question of how much intuition we can obtain based on numerics
only. Additionally, lattice studies fail to provide results for dynamical quantities and finite chemical
potential phenomena.

It is worthwhile noting that we can think the above situation a bit more broadly and generalize the
above statement. In other words we can phrase this issue more widely in the sense that we do not have
a well-developed, systematic and analytic method to perform studies in the strong-coupling limit of a
general QFT.

The above provides us with a general and very interesting question that evades a well-understood,
analytic answer for many years. As is usual in physics, we have come up with some ways to bypass
the issue. One approach is to add symmetries to the QFT, such as conformal symmetry and/or
supersymmetry. Integrability is another invaluable tool in the study of strongly coupled gauge theories,
as theories that exhibit the homonymous property are solvable for any value of the gauge coupling.
Another approach is to try and identify a second and distinct theory that appears to be different, but
describes the same physics as the original one. This is what we call a duality.

For many years, one of the most typical approaches pertaining to the study of strongly coupled gauge
theories has been to focus on their supersymmetric cousins. Supersymmetry is a symmetry that
exchanges bosonic degrees of freedom and fermionic ones. Whether supersymmetry will be realized
in nature as a physical symmetry or will remain an invaluable mathematical tool is still an open
question. The hope is that future collider experiments will shed light on the matter and provide us
with a conclusive answer. From a purely field theoretical perspective, supersymmetry imposes strong
enough constraints that allows an analytic study of phenomena at strong coupling. Examples of the
aforementioned constraints are a plethora of non-renormalization theorems [10, Chapter 8] and the
supesymmetric localization approach [11]. Based on the two aforementioned properties we have been
able to study precisely the moduli space of a theory and obtain correlation functions of certain operators
respectively.

Furthermore, there exists another special class of QFTs that have additional symmetries and we call
these conformal field theories (CFTs). CFTs have no intrinsic scale or mass and are more constrained,
compared to theories without conformal symmetry, due to the fact of the extra symmetries that appear.
In any given CFT we know the results for the two-point and three-point functions, since they are
fixed by the presence of conformal symmetry. In recent years we have seen the revival of an old idea
which is based on the use of first-principle consistency conditions in order to solve a theory. This is the
conformal bootstrap program, which dates back to the original work of Polyakov [12] and independently
by Ferrara, Gatto and Grillo [13] and Mack [14] and was reignited by Rattazzi, Rychkov, Tonni, and
Vichi [15]. The most impressive result that the modern conformal bootstrap has offered is the very
high-precision determination of operator product expansion (OPE) coefficients and the conformal
dimensions of operators in the three-dimensional Ising model [16, 17].
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At this point the most natural, perhaps, question is how far we can get with our studies and how much
intuition we can obtain about phenomena at strong coupling if we consider the combination of the
supersymmetry generators and the conformal algebra. The resulting theory is called a superconformal
field theory (SCFT). At this point we would like to make a clarification. A SCFT does not contain just
the supersymmetry and conformal symmetry generators, but also an extra ingredient, which is called
conformal supercharge. This is necessary for the closure of the algebra. Now, it should be obvious that
a SCFT is more constrained than what one might expect by combining supersymmetry and conformal
symmetry, as it contains extra generators as we already mentioned. Owing to the nature of the SCFTs
we can attempt to get a bit greedier in our studies and not just focus on a given theory to examine, but
rather ask the question of whether or not we are able to uncover the phase space of consistent SCFTs
and solve them. This has been a very rich area of research over the past years and much progress has
been made when enough supersymmetry is present. We refer the interested reader to the excellent
lectures [18, 19] - and references therein - for the current status of the above discussion.

An important related development came from the integrability side and it is the discovery of the
Quantum Spectral Curve (QSC). The QSC describes the non-perturbative spectrum of anomalous
dimensions of the single-trace operators of the theory. The QSC has been derived for the case of the
four-dimensional N = 4 SYM as well as the ABJM theory. For details and more developments, we
suggest to the reader the recent review [20].

In addition to the above techniques, we can also use the idea of dualities, as we have already mentioned,
which is very useful when examining strongly coupled QFTs. Before discussing the AdS/CFT duality,
which is the main topic of this thesis, we want to mention one historic example. We are referring
to the equivalence of the massive Thirring model and the sine-Gordon model. Both of them are
two-dimensional QFTs. In the first case the fundamental degrees of freedom are fermi fields, while in
the latter there are bosons. These two theories might seem to be very different at first, but it was
proven that at a quantum level they are equivalent [21].

Another approach of studying gauge theories at their strong coupling limit came from string theory
developments. Since the late nineties we have understood that string theory contains non-perturbative
objects which have been named D-branes [22]. D-branes are higher-dimensional planes, in the ten-
dimensional spacetime where string theory is defined, on which open strings can have their endpoints.
If we take a number, Nc, of D3-branes, and examine the low-energy limit of the degrees of freedom of
the open strings , we get a superconformal field theory in a four dimensional spacetime; the N = 4
super Yang-Mills (SYM) theory. On the other hand, D3-branes are solitonic solutions of the type IIB
theory with a well-defined metric and fluxes. In the low-energy limit, which consists of examining the
near-horizon limit of the metric, we end-up having a supergravity theory in AdS5 × S5, with AdS5

denoting a five dimensional anti-de Sitter space and we have used S5 to denote a five dimensional
sphere.

Based on these two different descriptions of D3-branes, Maldacena suggested the identification of the
resulting theories at low-energies [23]. This is the AdS/CFT correspondence and in its original form it
relates the four dimensional N = 4 SYM theory with an SU(Nc) gauge group to type IIB supergravity
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in AdS5×S5. It is important to point out that the field theory part of the duality is at strong coupling,
while the gravitational description is a weakly coupled supergravity. Since the duality is strong/weak,
this provides a very exciting and promising way to understand and study strongly coupled gauge
theories by performing computations in a weakly coupled theory, which is under much better control.
There are, of course, generalizations of the AdS/CFT that describe different field theories and are based
on different D-branes and/or different compactification manifolds.

At this point let us remind the readers that QCD is weakly coupled in its high-energy limit. Thus,
in order to derive the dual supergravity description we need the full non-perturbative formulation of
string theory which is currently unknown. Be that as it may, progress can still be made in the study of
strongly coupled gauge theories. The underlying reason is that many of these theories share similar
features and common phenomena which are manifested universally in large classes of those theories.

After all these many years of studying the AdS/CFT, it is generally believed that the situation is
more general and does not restrict itself to string theory. This has led to the more general notion of
gauge/gravity duality. In other words, we believe that, with some caution, we can map the properties
of any gauge theory to an appropriately constructed gravitational bulk description. This is directly
related to the study of QCD and QCD-like theories and there have been many efforts to construct
simple gravity descriptions of non-supersymmetric and non-conformal field theories that are of interest
in the wider high-energy community.

It is worthwhile stressing that the results obtained using the notions above are qualitative. However, the
use of gauge/gravity duality has provided a novel method of studying phenomena that were previously
inaccessible.

In this thesis, we study various examples of strongly coupled gauge theories that have similar character-
istic properties compared to QCD such as quark fields in the fundamental representation of the gauge
group and chiral symmetry breaking. Our studies are both in the context of the formal supergravity
settings, as well as with an eye towards phenomenological applications by using an appropriately
constructed simple gravitational theory.

The structure of this thesis is the following: chapter 2 provides a historical retrospective of string theory.
We also briefly mention some basic facts about QCD and the maximally supersymmetric Yang-Mills
theory. In chapter 3 is a gentle introduction to the dynamics of fields in an AdS5 spacetime. We begin
by studying a scalar field and derive some central results such as the Breitenlohner-Freedman (BF)
bound, the relation of the mass in the bulk to the conformal dimension of the field and the associated
unitarity bound. We, furthermore, study extensively spin-1/2 fields which are the main focus of this
thesis. In chapter 4 we review some basic facts about the conformal and superconformal symmetry
that we feel are necessary in the context of the AdS/CFT. The content of Chapter 5 is an introduction
to the main ideas of the AdS/CFT that are necessary ingredients for this thesis. It is by no means
an exhaustive exposition to all the ideas behind AdS/CFT in general. Chapter 6 is the final addition
to the presentation of the background material and it discusses how we can introduce quarks in the
fundamental representation of the gauge group and chiral symmetry breaking in the AdS/CFT picture.
It also contains the description of the simple five-dimensional gravity model that we will use for our
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phenomenolly related studies.

In chapter 7 we present our original results for the study of fermionic dynamcis and their mass spectra
in all possible supersymmetric brane setups. We also discuss the effect that the addition of double-trace
interactions has on these systems, and comment on their possible interpretation as baryonic states.
Chapter 8 contains our findings and analysis on composite Higgs models using gauge/gavity duality
as a tool. Chapter 9 contains our final thoughts and some comments for future research. We have
included some appendices at the end to supplement the material covered in this thesis.

We, finally, want to mention that perhaps surprisingly and unconventionally we refrain from attempting
an introduction to string theory and/or theories of supergravity. The reason for doing so is that there
are many excellent and extended resources that cover these topics and providing a short description
of said matters here would be idle. We would like to mention our favourite books that cover these
subjects thoroughly. For supergravity and some AdS/CFT topics we strongly suggest the book by
Freedman and Van Proeyen [24]. For string theory we suggest the interested reader to go through the
book by Becker, Becker, and Schwarz [25]. These have been the two books that we used extensively
to get familiar with these topics.1 We would also like to mention the book by Kiritsis [26] which also
covers string theory subjects and a detailed exposition to the AdS/CFT.

1We strongly encourage any student reading this thesis to stop reading it and pick one of the aforementioned books for
serious study and problem solving.
We also suggest “getting your hands dirty” in the sense of problem solving.
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Part II

The saga begins
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Chapter 2

Strings, QCD, super Yang-Mills and all
that

Here we are loosely following [25, 26] to describe the history of string theory. The section on massive
type IIA theory is based on the seminal work [27]. The section on the N = 4 SYM is based on [28]
mainly. For the QCD we have used the classic field theory books [29, 30].

2.1 Why strings?

The most natural question that arises when one encounters string theory for the very first time is “why
was this theory developed?”. A surprising, perhaps, answer is that it started as the wrong framework to
a very interesting question. Let us try to explain this a little bit.

By the end of the sixties we had many great experimental data for a wealth of particles and their
higher excited states (resonances), a situation which continued throughout the seventies.1 Other than
this amazing discovery it was also understood that some of them were fundamental, while others
were composite states. It is only natural that many efforts were made by the community towards
understanding as many aspects as possible.

Before the sixties, the work of [32] which showed that quantum mechanical bound states can be
grouped together in what nowadays is known as Regge trajectories that each one has a distinct angular
momentum. After the many particle discoveries, the community realized that many of the particles were
following (almost) linear Regge trajectories, see for example [33]. This observation sparked the interest
of constructing a theory describing these composite states with scattering amplitudes of appropriate
form. This was achieved in [34] by using properties of the Eüler Γ-function, and this is known as the
Veneziano scattering amplitude. The surprising realization came a bit later when it was explained how
the said ampltiude has a physical interpretation in the context of describing one-dimensional objects;
the strings [35, 36]. While this is a great achievement, at the time physicists were facing some troubles
when dealing with strings. To begin with, there was a state of negative mass squared. Furthemore,

1A nice summary with the relevant dates can be found here [31].

11



the theory needed 26 dimensions for consistency. In addition to the above, the theory contained only
bosons.

It was around that time that string theory lost its appeal, as the scientific community realized that
QCD does a wonderful job describing the physics of strong nuclear interactions. This is what we meant
in the beginning when we said that it started as an effort to address a very interesting problem, but
ended up being the wrong answer.

Many people stopped examining string models, however, not all efforts stopped at that point. And that
is an auspicious situation.

2.2 QCD

Before we continue with the history of string theory, we would like to have an overview of QCD, since it
took over for the study of srong interactions. QCD [37–39] is the theory of the strong force. It describes
the interactions amongst quarks and gluons. There is a colour charge associated with it and it has three
values, namely red, green, and blue. Quarks do not appear free in nature, but rather in bound states
only which we call hadrons. This is the phenomenon of confinement. There are two types of hadrons,
the baryons and the mesons. Baryons are made by three quark states which have different colours and
thus a baryon is a colour singlet (neutral) state of the theory. On the other hand, mesons consist of a
quark and an anti-quark. They are also colour singlet states, which means that the quark carries a
colour and the anti-quark the anti-colour, in such a way that a cancellation is achieved. Quarks also
have six different flavours, which are: up, down, charm, strange, bottom, up. It is worthwhile noting
that most of the ordinary hadronic matter is made out of the up and down flavours, as the other ones
are much heavier. An example that comes to mind is the proton which is up-up-down and another one
the neutron which is up-down-down. This does not mean that there are not exotic states, an example
is the Λ-baryon which is up-down-strange.

The Lagrangian of the QCD theory is given by:

L = ψ̄q
(
i /D −mq

)
ψq −

1
4F

a
µνF

aµν ,

/D = Γµ∂µ − igΓµAaµta ,

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν ,

(2.1)

where in the above ψq is a Dirac spinor that represents the quark field and transforms in the fundamental
representation of the SU(3). The gluons are the Aaµ in the adjoint of the colour group, ta are the eight
generators of the group -the Gell-Mann matrices- and fabc are the structure constants. We have also
denoted by mq the masses of the quark fields and g is gauge coupling. Latin indices are colour indices
and the Greek letters are spacetime indices. Summation is implied for both types.

For small values of the coupling constant, g � 1, we can use a perturbative analysis to study the
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β-function of the theory. The β-function is defined via [29]

β(g) = ∂g

∂ logµ = µ
∂g

∂µ
. (2.2)

The behaviour of the β-function informs us about the properties of the gauge theory. We can distinguish
three cases:

• β > 0: the coupling constant is small when approaching the low-energy regime of theory and
it grows larger in high energies. Equivalently, particles are more attracted to each other as we
decrease their relative distance. This behaviour describes Quantum Electro Dynamics (QED).

• β < 0: the theory exhibits the opposite behaviour from the previous case. The coupling constant
is small in the high-energy regime of the theory and becomes much larger when approaching the
low-energy description.

• β = 0: the coupling constant does not run and the theory is conformal.

At one-loop, an SU(Nc) theory with Nf flavour degrees of freedom has a β-function given by:

β(g) = − g3

(4π)2

(11
3 Nc −

2
3Nf

)
. (2.3)

The β-function can be determined in terms of the gauge coupling and the expression becomes

g2(µ) = g2(M)
1 + g2(M)

(4π)2

(
11
3 Nc − 2

3Nf

)
log

(
µ2

M2

) , (2.4)

with µ the scale we are probing and M a reference scale and it can be re-written in a more convenient
way as

g2(µ) = (4π)2(
11
3 Nc − 2

3Nf

)
log

(
µ2

ΛQCD

) , (2.5)

such that there is only one parameter. As we approach the high-energy limit of the theory, µ → 0,
and quarks behave almost as free particles. This property is called asymptotic freedom [38, 39]. On
the other hand, as we probe the small values of µ the coupling becomes very large and quarks are
interacting very strongly leading to colour confinement. The QCD scale, ΛQCD, is the scale where the
coupling constant diverges and is estimated to be ΛQCD ∼ 200 MeV. Hadrons have a size of the order

1
ΛQCD [30, 40].

We will base our description on [41]. Another important aspect of field theories is global symmetries.
This is particularly true in the low-energy regime of the field theory, where the dynamics are characterized
by the the symmetries of the vacuum of the theory. For QCD a good starting point is to consider the
three lighest flavours amongst the set of six. These are the up, down, and strange. We can also assume
that these types of quarks are massless and this is the so-called chiral limit of the theory. This modifies
the Lagragian in the following way:

L = iψ̄q,L /Dψq,R + iψ̄q,R /Dψq,L −
1
4F

a
µνF

aµν , (2.6)
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and we have expressed it in terms of the chiral projections of the spinor fields. The Lagrangian
possesses a global SU(3)L × SU(3)R flavour symmetry. This means that we can rotate independently
the right-handed components of the left-handed ones and vice versa. It has, also, been argued that we
can rotate the chiral projections ψq,L and ψq,R by the same phase without causing any changes in the
Lagrangian. In other words, we can perform

ψq,L → ψ′q,L = e−iφψq,L , ψq,R → ψ′q,R = e−iφψq,R , (2.7)

and leave the Lagrangian invariant. This is the U(1)B symmetry. A final symmetry is achieved when
we perform a rotation on the chiral components that differs by a sign, that is we have

ψq,L → ψ′q,L = e−iaψq,L , ψq,R → ψ′q,R = eiaψq,R . (2.8)

This is the U(1)A symmetry of the theory. So, we have in total a global symmetry that is SU(3)L ×
SU(3)R × U(1)B × U(1)A. The U(1)A is anomalous; it is broken at the quantum level due to quark
loops. This is thoroughly discussed in [30].

Of course, quarks are not massless and one has to consider a mass term which is written as

mqψ̄q,Lψq,R +mqψ̄q,Rψq,L , (2.9)

when expressed in terms of the chiral projections. The mass terms mix the different chiral components
and hence break the SU(3)L × SU(3)R explicitly. Under the assumption that the masses of the quarks
are all equal we have an SU(3)V × U(1)B symmetry for the theory. The U(1)B is the part that rotates
the left- and right-handed projections by the same phase. Under the further assumption that the masses
are very small, the chiral symmetry is an approximate symmetry.

One of the most celebrated results in physics is the Higgs mechanism [42–44], which is a particular
example of spontaneous symmetry breaking. In QCD, there exists a similar, although distinct,
mechanism that spontaneously breaks chiral symmetry and gives dynamical masses to the quarks.
The implications of spontaneous symmetry breaking are described in terms of the Nambu-Goldstone
theorem. It states that when a global and continuous symmetry is broken spontaneously a number of
massless scalar particles (the Nambu-Goldstone bosons) occur. The number of said particles is equal to
the number of the broken generators. Note that the Nambu-Goldostone bosons have the same quantum
numbers as the broken generators. While QCD has a Lagrangian description, chiral symmetry breaking
is understood in terms of the formation of a chiral condensate in the vacuum of the theory. The chiral
condensate is a bilinear that is not invariant under the chiral trnasformations but is under the SU(3)V .
This chiral condensate acquires a non-trivial vacuum expectation value

〈ψ̄q,Lψq,R + ψ̄q,Rψq,L〉 6= 0 . (2.10)
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2.3 Back to the stringy picture

We have already mentioned that string theory lost its edge compared to QCD, however, nowadays
we know that string theory is a very rich subject and contains more than just strings as fundamental
degrees of freedom. Below, we mention some historic landmark papers that helped us develop our
understanding of the theory.

2.3.1 A new hope - More history

• Generalization of the Veneziano amplitude: the Veneziano amplitude was generalized to the
description of N-particle scattering [45]. A further generalization came due to the works of [46, 47].
This has been named the Virasoro-Shapiro amplitude -after the people who worked on it- and it
describes the scattering of closed strings.

• Another generalization of the Veneziano amplitude came in 1969, that included isospin factors
[48]. This led to the introduction of the Chan–Paton factors that played a crucial role in the
development of modern string theory.

• The RNS formalism: the works of [49, 50] showed how to consistenly remove the problematic
tachyon from the spectrum of string theory and include fermionic fields. The RNS acronym stands
for Ramond, Neveu, Schwarz.

• After that, Scherk and Schwarz [51] and in the independent work of Yoneya [52], studied the
patterns that arise from vibrations of strings. They discovered that they match those of the
graviton and thus, string theory describes more than originally thought. This led to the systematic
study of bosonic string theory.

• Bosonic string theory was formulated in terms of the Polyakov action. The Polyakov action
describes the worldsheet of a string, which can be studied in the context of a two-dimensional
CFT. It was introduced in [53, 54], however, it is named after Polyakov as he used it to perform
the quantization of the string [55].

• GSO projection [56]: this method was used in order to construct unitary, non-tachyonic, and
consistent superstring theories.

2.3.2 Strings strike back - First superstring revolution

• Anomaly cancellation: The Green-Schwarz mechanism [57] showed that anomalies are cancelled
consistently in the type I theory due to the contributions of a two-form field. This is the paper
that paved the way for what is today known as the first superstring revolution.

• A year later in 1985 the heterotic string theory was discovered [58].

• The authors of [59] realized that by compactifying the six extra dimensions of critical string
theory on a Calabi-Yau threefold we can obtain a theory with N = 1 supersymmetry in four
dimensions.

15



• Finally, we had the following picture by 1985

– Type I theory [60]

– Type IIA theory [60]

– Type IIB theory [60]

– SO(32) heterotic [58]

– E8 × E8 heterotic [58]

about superstring theories.

• In [61] the authors realized that the eleven-dimensional supergravity theory does not contrain
strings, but rather branes.

2.3.3 Revenge of the strings - Second superstring revolution

We have seen that superstring theories can be seen as theories that unify the fundamental forces of
nature. If that is the case, why do we have five of them? This was a main question that was puzzling
the community. Also, how does eleven-dimensional supergravity fit in this framework? These questions
and more were answered in the nineties, in the so-called second superstring revolution.

• In 1995, Witten [62] suggested that all the five superstring theories can be seen as different limits
- under some duality transformations in some cases - of an eleven-dimensional theory, which has
been dubbed M-theory. The low-energy limit of M-theory is eleven-dimensional supergravity.

• The picture now is better shaped and it resembles rougly a spider-web; a hexagon and on its
edges the five superstring theories and the eleven-dimensional supergravity. All the theories are
connected with different lines -very similar to the spider web- and each line is an equivalence or a
duality.

– S-duality: It was Sen who realized the manifestation of S-duality in the context of string
theory [63]. Two very brief examples of how string theories are related amongst themselves
under S-duality are

∗ Type IIB string theory with a coupling constant gs is equivalent to the same theory
with a coupling 1

gs
under S-duality.

∗ Type I string theory with a coupling constant gs is equivalent to the SO(32) heterotic
theory a coupling 1

gs
under S-duality.

– T-duality: this was first suggested in [64] in the context of bosonic string theory and refined
much more in [65]. The statement is that the theory describing strings that propagate in
a circular topology of radius R is dual to the theory in a circular topology of radius 1

R .
We note below two superstring examples of T-duality [66] that played a central role to the
development of the unified picture:

∗ Type IIA is T-dual to type IIB.
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∗ E8 × E8 heterotic is T-dual to SO(32) heterotic.

– U-duality: this duality is the combination of target space duality (T-duality) that we
mentioned earlier and the strong-weak coupling duality (S-duality) which we have, also,
briefly described. U-duality was first suggested in [67]. Let us demonstrate its action with a
simple example:

∗ Consider the d-dimensional, torus-compactification of the IIB theory. The T-duality
group is SO(d, d;Z). The S-duality is described as the group SL(2,Z). The U-duality
group was suggested to be the result of the non-commuting action of both groups.

– Mirror symmetry: this symmetry describes relations between two different Calabi-Yau
manifolds. It is worthwhile pointing out, that while mirror symmetry today is an active
branch of mathematical research it started within the context of string theory and more
specifically its compactifications and T-duality. Mirror symmetry has become a vast subject
and we cannot do justice to the literature, but we want to mention the historic references,
we have done so far.

∗ In [68, 69] the authors realized that given a four-dimensional, N = 2 SCFT, it is not
possible to uniquely determine the corresponding Calabi-Yau manifold that led to that
theory after compactification.

∗ The SYZ conjecture: in [70] the authors conjectured the relation of mirror symmery and
T-duality.

• D-branes: in 1995 Polchinski published his inspirational work on D-branes [22]. This opened up
many new areas of research and shaped differently our understanding of string theory.

• Since the pioneering work of Hanany and Witten [71] many examples of strongly coupled gauge
theories of different dimensionality and with various amounts of supersymmetry have been realized
in brane configurations involving magnetically charged five-branes, and D-branes in the context
of (massive) IIA as well as IIB theories. For a review see [72].

• In 1997, Maldacena conjectured the AdS/CFT duality [23].

It should be apparent from the above brief enumeration of the major string results, string theory is
not just a theory of strings. It has provided with much insight on the physics of field theories, the
holographic principle, and many other disciplines as well as pure mathematics.

2.3.4 Supergravities as low-energy limits

In this subsection where we describe very briefly the main supergravity theories by giving their bosonic
actions, and we are following the conventions and discussion of [25].

Eleven-dimensional supergravity

The existence of eleven-dimensional supergravity was predicted in [73] and its action was constructed
subsequently in [74]. Nowadays, we know that this theory plays a major role in the web of string
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dualities. It is the low-energy description of M-theory and after a dimensional reduction we can obtain
type IIA. The bosonic content of the theory is the metric, GMN , and a three-form potential, A(3),
which generates a field strength as F(4) = dC(3). The bosonic part of the action reads

S = 1
2κ2

11

∫
d11x

√
|G|

(
R− 1

2 |F(4)|2
)
− 1

12κ2
11

∫
C(3) ∧ C(3) ∧ F(4) . (2.11)

The theory has 32 supercharges, or in other words N = 1 supersymmetry. The relation amongst the
gravitational constant (κ11), Newton’s constant (G11), and the Planck length (lp) in eleven dimensions
is given by

κ2
11 = 8πG11 = 27π8l9p . (2.12)

Type IIA theory

The most direct connection of eleven-dimensional supergravity and the low-energy effective descriptions
of superstring theories is with the supegravity description of the type IIA theory. The proper way of
arguing for that is to ssay that M-theory compactified on a circle of radius R11, yields type IIA the
ten-dimensional type IIA superstring theory with the coupling constant being given by gs = R11√

α′
. At

the level of comparing directly the supergravity this means that type IIA supergravity is a dimensional
reduction of the eleven-dimensional supergravity theory. In order to perform this dimensional reduction,
we need to consider one dimension to be a circle, and then from the Fourier expansions of the various
fields involved we need to keep only the zero modes. This is how the action of type IIA was originally
constructed [75–77], and it is given by

S = 1
2κ2

∫
d10x

√
|G|

[
e−2Φ

(
R+ 4∂AΦ∂AΦ− 1

2 |H(3)|2
)]
− 1

2
(
|F(2)|2 + |F̃(4)|2

)
− 1

4κ2

∫
B(2) ∧ F(4) ∧ F(4) ,

(2.13)

in the string frame. The various constants appearing in the above are given by

κ2
10 = 8πG10 = 26π6l8sg

2
s ,

κ2 = κ2
10
g2
s

,

G11 = 2πR11G10 .

(2.14)

The theory possesses N = 2 supersymmetry which translates to 32 supercharges. Finally, the various
p-forms of the bosonic action are:

H(3) = dB(2) , F̃(4) = dC(3) + C(1) ∧H(3) , F(2) = dC(1) . (2.15)

Type IIB

While type IIA can be obtained by a direct dimensional reduction from eleven-dimensional supergravity,
the same does not hold true for the type IIB theory. The basic principles that guided the community in
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order to construct this theory came from supersymmetry considerations in addition to gauge invariance.
The most challenging, perhaps, feature of the type IIB theory is the presence of the self-dual five-form.
This hinders the formulation of a manifestly covariant action.

Here, before we proceed, we briefly demonstrate the problem with adding a self-dual, gauge invariant
term that contains the five-form in the action. Assume that A(5) = ?A(5). We have∫

A(5) ∧ ?A(5) =
∫
A(5) ∧A(5) = −

∫
A(5) ∧A(5) = 0 , (2.16)

where in the above we used first the self-duality condition, and then the standard differential geometry
formula A(p) ∧B(q) = (−1)pqB(q) ∧A(p) for general p- and q-forms.

One possible way to circumvent this malady is to focus on the field equations instead, since they can
be written covariantly, and the supersymmetry transformations, the variations of the dilatino and
the gravitino. An alternative is to write an action that leads to the correct equations of motion and
supplement the self-duality condition at the level of the equations of motion. The bosonic matter
content of the theory consists of the metric, the two-form field in the NS-NS sector of the theory, the
dilaton, the R-R fields C(0), C(2), and C(4). The action of type IIB supergravity is

S = 1
2κ2

∫
d10x

√
|G|

[
e−2Φ

(
R+ 4∂AΦ∂AΦ− 1

2 |H(3)|2
)]
− 1

2
(
|F(1)|2 + |F̃(3)|2 + |F̃(5)|2

)
− 1

4κ2

∫
C(4) ∧H(3) ∧ F(3) ,

(2.17)

with the various forms satisfying the following relations:

F(p+1) = dC(p) , H(3) = dB(2) , F̃(3) = F(3) − C(0)H(3) ,

F̃(5) = F(5) −
1
2C(2) ∧H(3) + 1

2B(2) ∧ F(3) ,
(2.18)

and the five-form obeys the self-duality condition

F̃(5) = ?F̃(5) . (2.19)

Type I

The type I is obtained as an orientifold projection of the type IIB [78]. One has to perform a truncation
of the type IIB spectrum to the states that are left-right symmetric and then add a twisted sector that
contains open strings. The degrees of freedom of the theory that are coming from the closed-string
states are described as an N = 1 supergravity sector in ten dimensions. The massless open string sector
-the low-energy open string sector- gives rise to an N = 1 SYM theory with a gauge group SO(32) in
ten dimensions. The bosonic matter content of the theory consists of the metric, the dilaton, the R-R
two-form C(2) and the SO(32) gauge field, AM which comes from the open-string twist. The action of
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the theory is

S = 1
2κ2

∫
d10x

√
|G|

[
e−2Φ

(
R+ 4∂AΦ∂AΦ

)]
− 1

2 |F̃(3)|2 −
κ2

g2 e
−Φ tr

(
|F(2)|2

)
, (2.20)

where the trace in the above is taken over the 32-dimensional fundamental representation of the gauge
group, A = AMdx

M is the Yang–Mills gauge field generating the field strength F(2) = dA+A ∧A, and
we also have

F̃(3) = dC(2) + l2s
4 tr

(
ω ∧ dω + 2

3ω ∧ ω ∧ ω −A ∧ dA+ 2
3A ∧A ∧A

)
, (2.21)

where in the above ω is the spin-connection. Finally, the coupling g that appears in the type I action is
related to the ten-dimensional Yang-Mills gauge coupling via

g2
YM

4π = g2gs
4π = (2πls)6gs . (2.22)

Heterotic theories

At the level of superstring theories the massless spectrum of the SO(32) heterotic theory is exactly the
same as the one of type I, and the difference when considering the E8 × E8 theory is just a change
of the gauge group. For higher energy excitations there are more significant differences, however, we
are not concerned with these here as the supergravity spectra contain only the low-energy degrees of
freedom. The action is

S = 1
2κ2

∫
d10x

√
|G|e−2Φ

[
R+ 4∂AΦ∂AΦ− 1

2 |H̃(3)|2 −
κ2

30g2 trG
(
|F(2)|2

)]
, (2.23)

where in the above trG denotes the trace in the adjoint and we also have

H̃(3) = dB(2) + l2s
4 tr

(
ω ∧ dω + 2

3ω ∧ ω ∧ ω −A ∧ dA+ 2
3A ∧A ∧A

)
, (2.24)

Massive IIA

Massive type IIA supergravity is a modification of type IIA by a R-R scalar (zero form) [27]. One
can regard the theory as first performing a T-duality to type IIA, hence landing on type IIB, and
then a specific orientifold projection thereof. This makes O8-orientifold planes appear and consistency
requirements yield the presence of D8-branes. The term that has to be added to the part of the action
describing the R-R p-form fields is precisely

1
2F

2
0 , (2.25)

which yields the following modifications

H(3) = dB(2) , F̃(4) = dC(3) + C(1) ∧H(3) + 1
2F0B(2) ∧B(2) , F(2) = dC(1) + F0B(2) . (2.26)
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2.4 The maximally supersymmetric Yang-Mills theory

The Lagrangian for the N = 4 SYM in four-dimensions is unique and given by [28]:

L = tr
(
− 1

2g2FMNF
MN + θ

8π2FMN F̂
MN −

∑
a

iλ̄aσ̄MDMλa −
∑
i

DMX
iDMXi

+
∑
a,b,i

g
(
Cabi λa[Xi, λb] + C̄i,a,bλ̄

a[Xi, λ̄b]
)

+ g2

2
∑
i,j

[Xi, Xj ]

 ,

(2.27)

where in the above a = 1, .., 4, i = 1, ..., 6, θ is the instanton angle, and we also have

FMN = ∂MAN − ∂NAM + i[AM , AN ] , F̂MN = 1
2εMNRSF

RS , DMλ = ∂Mλ+ i[AM , λ] . (2.28)

We have denoted by λ the left Weyl fermions (gauginos), by X the six real scalar fields and we have in
addition to these the gauge field A. The remaining quantities are related to the Clifford structures.
The gauge field is a singlet under the SU(4)R, which is the R-symmetry while the Weyl fermi fields are
in the 4. The six real scalars are in the 6 of the R-symmetry.

It is easy to see that the theory is scale invariant. From dimensional analysis we have

[X] = 1 , [AM ] = 1 , [λ] = 3
2 , (2.29)

where we are using mass/energy dimensions and the coupling and the instanton angle have dimension
zero. Now, it is also quite clear that all the terms in the Lagrangian are dimension 4. Another
remarkable property of the theory is that the β-functions vanishes to all orders in perturbation theory;
having assumed no instanton effects. However, even contributions that originate from instantons lead
to finite contributions. The N = 4 SYM is regarded to be a UV finite theory.

It is worthwhile noting here that the theory can be obtained as a dimensional reduction of the
ten-dimensional N = 1 SYM on a torus. The Lagrangian of N = 1 SYM is

L = − 1
2g2
YM

tr
(
FMNF

MN − 2iλ̄ /Dλ
)
, (2.30)

with M,N the ten-dimensional spacetime indices, λ the ten-dimensional Majorana-Weyl spinor which
has 16 real components.

The most straightforward way, in our knowledge, that one can see this dimensional reduction is the
following: the ten-dimensioanl SYM theory has 16 supercharges. In that theory there are no fields with
spin higher than 1. The resulting four-dimensioanl theory, after dimensional reduction, should also have
16 supercharges and no matter of spin higher than 1. The only theory fullfilling all the requirements is
the N = 4 SYM. This counting of supercharges across dimensions can be found in almost every modern
textbook on supergravity and/or supersymmetry. As always we suggest [24].

The above argument, however nice and quick, is not a proof. Now we attempt to justify even further.
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We are dimensionally reducing the bosonic part of the ten-dimensional geometry. We have

FMN = Fµν + Fµi + Fij . (2.31)

In the above we have decomposed in a natural way. The first piece is pure Minkowski, while the second
has a Minkowski and a torus contribution, and the final bit is purely on the torus. There are no other
possibilities for the two-form. A silent assumption is that the fields themselves are independent of xi;
the torus directions. The field strength pieces are equal to

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] , Fµi = ∂µAi − i[Aµ, Ai] , Fij = −i[Ai, Aj ] . (2.32)

Again we only wrote the definition of the field strength and imposed that the gauge field does not
depend on the torus directions. Collecting the above we have

FMNF
MN = FµνF

µν + (∂µAi − i[Aµ, Ai])
(
∂µAi − i[Aµ, Ai]

)
− [Ai, Aj ][Ai, Aj ] . (2.33)

From the four-dimensional point of view, the Ai components are just scalar fields and we re-write
them as Xi. Observe at this point as well, that the term appearing in the middle is just the covariant
derivative of a scalar in the adjoint of the group. Hence, we have

FMNF
MN = FµνF

µν + (DMXi)2 − [Xi, Xj ]2 , (2.34)

which is the bosonic matter content of the N = 4. Supersymmetry guarantees that the reduction of the
spinor should also work. The tentative reader will observe now that this is a handwavy argument and
the formal way to prove the reduction is to actually perform it and obtain the Yukawa couplings and
the fermionic bit of the N = 4. We fully agree, and we remind that this section only meant to serve as
a gentle introduction to the basic concepts of the thesis.
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Part III

Foundations
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Chapter 3

Fields in a five dimensional AdS space

The purpose of this section is to familiarize ourselves with the dynamics of fields in an AdS spacetime
and to establish the basic relations between the mass and the classical dimension of a bulk mode. We
will also derive two very central results with respect to the AdS/CFT duality. The first one is the BF
bound and the second one the unitarity bound for the conformal dimension of a scalar field.

We are using the Poincaré parameterization of the AdS5 spacetime here, which is given by

ds2 = GAB dxAdxB = L2

U2

(
ηµνdx

µdxν + dU2
)
, (3.1)

with the conformal boundary of AdS being given as we approach U → 0. The hypersurface defined by
U → 0 is isomorphic to the four-dimensional Minkowski metric.1 Henceforth, we set the overall scale of
the AdS manifold to one; L = 1.

Some relevant references are the following: the scalar case has been analyzed in many places in the
literature. We suggest the extraordinary book [24].2 For the fermions, the computation has been
performed originally in [81] and later in [82]. We explain in more detail several aspects here. The
vector field results can be found in the MIT lecture notes as well as the lecture notes by Zaffaroni. In
section 3.1.5 we are following the seminal work of [83].

3.1 Scalar fields

We want to consider a massive scalar field whose dynamics is described by the action

S[Φ] = 1
2

∫
[dx]

√
|G|

[
GMN∇MΦ∇NΦ−m2Φ2

]
, (3.2)

where in the above [dx] = d4xdU and
√
|G| is the square root of the absolute value of the determinant

of the metric and also Φ = Φ(xµ, U). From the above expression, it is a straightforward exercise to
1Had we considered a Euclidean signature AdS5 metric, the hypersurface U → 0 would be isomorphic to the flat R4

spacetime.
2There is also excellent online material demonstrating the computational procedure. The MIT lectures on string theory

[79] would be one place for that. Another online resource is the lecture notes by Alberto Zaffaroni at EPFL [80].
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obtain the equations of motion for the scalar field in the bulk, given by(
�−m2

)
Φ = 0 , =⇒(

1√
|G|

∂A

(√
|G| GAB ∂B

)
−m2

)
Φ = 0 .

(3.3)

We can expand explicitly the above equations of motion in the following way:

U5 ∂

∂U

(
U−3 ∂

∂U
Φ
)

+ U2 ∂2

∂xµ∂xµ
Φ−m2Φ = 0 . (3.4)

We proceed by assuming a decomposition along the Minkowski subspace of the five-dimensional manifold
as a plane-wave, eikµxµ , and absorb the dependence of the fifth dimension into a scalar function, ϕ(U).
In what follows k2 is the momentum.3 We now substitute the ansatz Φ = eik

µxµϕ(U) into the equations
of motion given by equation (3.4) above and obtain an ordinary second-order differential equation for
the function ϕ given by

ϕ̈− 3
U
ϕ̇−

(
k2 + m2

U2

)
ϕ = 0 , (3.5)

where in the above we have suppressed the dependence of the ϕ on the radial coordinate U to simplify
notation and we have used a dot to denote derivative with respect to the coordinate U .

The above equation admits simple analytic solutions in terms of Bessel functions in the following way:

ϕ = U2
(
J√m2+4(−i k U) + Y√m2+4(−i k U)

)
, (3.6)

with Jn(x) being the Bessel function of the first kind and Yn(x) is the Bessel function of the second
kind.

As a final exercise and in order to make the physics of the equation given by equation (3.5) more
transparent we can manipulate it in a simple manner and bring it in a Schrödinger form. To do
so, we need to eliminate the first derivative and in order to achieve that we begin by considering
ϕ(U) = A(U)ψ(U). Inserting that into equation (3.5) we obtain

T1ψ̈ + T2ψ̇ + T3ψ = 0 , (3.7)

where the prefactors are explicitly given by

T1 = A ,

T2 = 2Ȧ − 3
U
A ,

T3 = Ä − 3
U
Ȧ −

(
k2 + m2

U2

)
A .

(3.8)

3More specifically we have k2 = −ω2 + ~k2.
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What we want to solve is the simple equation T2 = 0, which is

2Ȧ − 3
U
A = 0→ A = U3/2 , (3.9)

where we have taken the constant of integration to be equal to one.

We use this solution for A into the equations of motion and we obtain

− ψ̈ +
[
~k2 + 1

U2

(
m2 + 15

4

)]
︸ ︷︷ ︸

V (U)

ψ = ω2ψ . (3.10)

The above equation, equation (3.10), is a Schrödinger equation with a potential V (U) and of energy
ω2. An instability is signalled via a state of negative energy. This, in turn, implies an imaginary
value for ω. It is worthwhile noting that the differential equation always has solutions irregardless of
the value of ω. Be that as it may, not all of them are normalizable and hence physically acceptable.
A normalizable solution, and thus physical, to the wave equation in AdS5 is one with finite energy;
this is closely related to the normalizability and finiteness of the wavefunction in ordinary quantum
mechanics (

∫
dU |ψ|2 = finite) and this justifies the previous exercise with re-writing the scalar equations

of motion in the more familiar Schrödinger form. Henceforth, we will set the momentum along the
spatial directions to zero; ~k = 0.

3.1.1 The mass-dimension formula

The dynamics of the field is described by equation (3.4) as we have already seen. We focus on the
U -dependence of the massive scalar and we consider a solution of the form, Φ = U∆. We substitute
this solution into the equations of motion and obtain -after a straightforward algebraic manipulation

U∆
(
−m2 + ∆(∆− 4)

)
= 0 , =⇒

m2 = ∆(∆− 4) .
(3.11)

This describes the relation between the classical dimension and the bulk mass of a massive scalar field
propagating in AdS5.

We realize at this point the above relation does not make much sense, however it will become much
more apparent to the reader after the introductory section to the AdS/CFT. There we will see that U
is a dual energy scale.

3.1.2 A quick and dirty derivation of the BF bound

Recall that we arrived at a problem of the form

− ψ̈ + V (U) = ω2ψ , (3.12)
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with the potential being given by he expression

V (U) = 1
U2

(
m2 + 15

4

)
. (3.13)

This type of problem has been studied extensively and it has been argued that it admits stable solutions
when the condition V > −1

4 is satisfied, see [84, Chapter 4]. From that inequality we can readily solve
for the mass and obtain a bound such that the solution remains stable, which is given by:

m2 > −4 . (3.14)

The above result is the BF bound [85, 86].

Note also that the BF bound can be obtained by equation (3.11) and the requirement that ∆ is real.

3.1.3 The stress tensor

We have already derived the BF bound, however, we would like to sketch the basic steps of a more
formal derivation of that result. We are following [79]. We begin by recalling that there exists a
fundamental property for a field configuration which determines whether or not that particular field is
physical. This property is the normalizability of the field configuration. When working in a Minkwoski
signature, a field is considered to be a normalizable solution, if it has finite energy.4

Here we want to examine what the precise relation is between the notion of a normalizable wave-function
in a quantum mechanical sense (the norm of the wave-function is a finite result) and a normalizable
solution to wave equation in an AdS spacetime (such that the solution is of finite energy).

Energy flux

We want to impose that there is no energy flux out of the boundary of AdS such that the energy is
conserved.

As a first step we note that if an isometry is generated by a Killing vector, ξM , there exists an associated
current, given by jN = TMNξM , that is conserved; ∇N jN = 0. Here, we have denoted by TMN the
stress-energy tensor. We have a timelike Killing vector ξ ≡ ξ0 = ∂t. We start by giving the definition of
the energy-momentum tensor which is

TAB = ∇AΦ∇BΦ− 1
2GAB

(
GMN∇MΦ∇NΦ−m2Φ2

)
. (3.15)

Requiring that there is no energy loss is equivalent to∫
∂AdS

√
hnMJ

M =
∫
∂AdS

√
hnMξ

NTMN , (3.16)

4On the other hand, when considering a quantum field theory in Euclidean space, normalizability is the statement that
the Euclidean action evaluated on that particular field configuration is finite.
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with the normal vector given by nM = UδMu . We insert the expression for the stress tensor and obtain

0 =
∫
d3xdtU−3TtU

∣∣∣∣
U=0

=
∫
dtU−3∂tΦ∂tΦ

∣∣∣∣
U=0

. (3.17)

Now we can split the above into two terms and perfom integration by parts

1
2

∫
dtU−3 (∂tΦ∂UΦ− Φ∂t∂UΦ)

∣∣∣∣
U=0

, (3.18)

and as a next step we can consider the Fourier transformation Φ =
∫
dwφeiwt and obtain

1
2

∫
dtdw1dw2U

−3iw1e
i(w1+w2)t (φ1∂Uφ2 − φ2∂Uφ1)

∣∣∣∣
U=0

. (3.19)

As a final step we wish to re-write the expression in terms of the ψ. A useful trick is to note that reality
implies φ2(w2) = φ∗2(−w2) and hence we arrive at

1
2

∫
dtdw1dw2iw1e

i(w1+w2)t (ψ∗1∂Uψ2 − ψ2∂Uψ
∗
1) = 0 , (3.20)

which yields the boundary condition

ψ∗1∂Uψ2 − ψ2∂Uψ
∗
1 = 0 (3.21)

Finite energy

By considering the Killing vector ξ ≡ ξ0 = ∂t and a surface of constant time with a normal vector the
energy is the integral

E =
∫
d3xdU

√
hnMξNTMN

=
∫
d3xdUU−3Ttt

=
∫
dtdUUU−3

(1
2 (∂tΦ)2 − 1

2 (∂UΦ)2 − U−2m2Φ
)
.

(3.22)

From this expression one can show that

E = w2
∫
dU |ψ|2 . (3.23)

The algebraic manipulations that are needed are just integration by parts, swapping the fields as we
did previously and using the equations of motion.

The important aspect here is that the finiteness of the energy is equivalent to the normalization of the
wave-function.
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3.1.4 Returning to the study of the BF bound

We are now at a position to derive one of the most central results in AdS supergravity theories and by
extension the AdS/CFT duality. This is the celebrated Breitenlohner-Freedman bound and it pertains
the stability of the AdS vacuum solution.

Our starting point is the Schrödinger equation, which we re-state here for convenience(
−∂2

U + 1
U2A

)
ψ = −B2ψ , (3.24)

with A being given by
A = m2 + 15

4 . (3.25)

The task at hand, now, is to seek solutions of negative-energy. For the problem described by equa-
tion (3.24), these negativeenergy solutions correspond to real values of the parameter B; B ∈ R. We
know that the above admits solutions in terms of Bessels given by

ψ =
√
U (c1JC(iBU) + c2YC(iBU)) , (3.26)

having defined C = 1
2
√

1 + 4A. It is easy to observe that there is a special value, A = −1
4 , which makes

C vanish. We can note that we can fix one of the integration constants in terms of the other just by
looking the limit U →∞ which gives

JC(iBU) ∼ 2
iBU

cosh (BU) , YC(iBU) ∼ 2
iBU

sinh (BU) , (3.27)

and by therefore the solution can be written as

ψ = c
√
U (JC(iBU) + YC(iBU)) . (3.28)

In the U → 0 limit we obtain

ψ = c
√
U

(
1

Γ(C + 1)

(
iBU

2

)C
− iΓ(C)

π

( 2
iB

)C)
. (3.29)

Let us now go back to the boundary condition we derived earlier given by equation (3.21) and evaluate
it for the solutions equation (3.29) assuming that we have two different energies. We obtain

(B2
B1

)C
+
(B1
B2

)C
= 0 (3.30)

And now we can see that

• For A > −1
4 which means that C ∈ R, equation (3.30) can never be satisfied no matter what the

values of B1 and B2 are; recall that these are real.
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• For A < −1
4 which means that C is imaginary one can show5 that the condition given by

equation (3.30) can be satisfied. This means that there are NEGATIVE energy states that
respect the boundary conditions. Let us remind the reader that negative energy in AdS means an
instability.

The punchline of the above is that ANY finite-energy, normalizable state satisfies

m2 > −4 , (3.31)

which we have already seen as the BF bound [85, 86].

3.1.5 Saturating the unitarity bound

Before we start this section, we want to point out that the main result will make much more sense
after the reader finishes section 4.1.3. We are following [83] and working for convenience in a Euclidean
signature.

Recall that the action for a massive scalar in the bulk is

S =
∫

[dx]
√
G
(
GAB∂Aφ∂Bφ+m2φ2

)
, (3.32)

which we have already seen. We can expand the action in terms of partial derivatives and then consider
the ansatz for the bulk scalar mode φ = e−ikxU∆. We plug the ansatz into the action and the result
reads

S = 1
2

∫
[dx]

(
∆2 +m2 − k2U2

)
U2∆−5 . (3.33)

Now we can perform the U -integral and observe that the leading term as U → 0 is

S ∼ lim
U→0

∆2 +m2

2(2∆− 4)U
2∆−4 . (3.34)

The above result, and thus the action, is finite if and only if the inequality 2∆− 4 > 0 is satisfied. This
yields the bound on the weight of the operator to be

∆ > 2 . (3.35)

Recall, however, that the solutions obtained previously for the two possible values of the conformal
dimension are given by

∆± = 2±
√
m2 + 4 , (3.36)

and it should be clear now that evaluating the above action for an ansatz of the form φ = U∆− and
performing the U -integration will always lead to a divergent answer. It should also be clear that for
φ = U∆+ the result is finite. However, the bound obtained by equation (3.35) is over restricted. This is
just a statement now, but we will prove it to be true in section 4.1.3 directly from a CFT computation.

5this required extensive use of Mathematica and a lot of patience.
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Let us examine how we can remedy that and obtain the right answer. Consider the modified action [83]

S̃ = 1
2

∫
[dx]
√
Gφ

(
−∇2 +m2

)
φ . (3.37)

This new action leads to the same equations of motion as the previous one we examined. It differs only
by a boundary term, which is divergent. We can work out what the precise value is. The strategy is to
proceed as we did previously. We expand the action fully by considering φ = eikxφ and we obtain

S̃ = 1
2

∫
[dx] U−5φ

(
−U5∂U

(
U−3∂U

)
+ k2U2 +m2

)
φ , (3.38)

and now we can consider the power scaling φ = U∆ and obtain

S̃ = 1
2

∫
[dx] U2∆−5

(
∆(4−∆) +m2 + U2k2

)
. (3.39)

The first direct observation we can make is to assume that ∆ takes either of the values ∆±. This leads
∆(4−∆) = −m2 and hence the first part of the action vanishes. Now we can perform the U -integral,
as we did previously, and observe that the leading term as U → 0 is

S̃ ∼ lim
U→0

k2

2(2∆− 2)U
2∆−2 . (3.40)

The above result, and thus the action, is finite if and only if the inequality 2∆− 2 > 0 is satisifed. This
yields the bound on the conformal dimension of the operator to be

∆ > 1 . (3.41)

This is precisely what we find in section 4.1.3 by performing a pure CFT computation. It is worthwhile
pointing out that if the mass satisfies

− 4 < m2 < −3 , (3.42)

then both solutions for ∆± satisfy equation (3.41) and so both of them can correspond to a normalizable
solution and hence an operator in the boundary field theory. There is much more discussion behind
this result and we strongly encourage the readers to study [83].

3.2 Spin-1/2 fields

The action for a free, massive spinor is given by,

S =
∫

[dx]
√
|G|Ψ̄

(
/D −m

)
Ψ , (3.43)

from which we can obtain very straightforwardly the equations of motion for the spinor Ψ. They read

(
/D −m

)
Ψ = 0 . (3.44)

32



In order to proceed with our computations we find it very helpful to find an appropriate choice of
basis, thus, using the vielbein formalism - for which it holds that GMN = e(A)

M e(B)
N η(A)(B) - 6 in the

geometry of equation (3.1), it is straightforward to evaluate the following quantities:

e(A)
µ =

( 1
U

)
δAµ, e(A)

U =
( 1
U

)
δAU . (3.45)

The vielbein basis
{
e(A) ∣∣ e(A) = e(A)

M dxM
}
,7 satisfies the following relation

ds2 = GMN dx
M dxN = η(A)(B) e

(A) e(B) . (3.47)

We also compute and present below the non-trivial components of the spin-connection. We remind the
definition for torsion-free theories, which is definition is

ω
(A)(B)
M = e(A)

N ΓNML e
(B)L + e(A)

N ∂M e(B)N , (3.48)

where e(A)M = e(A)
N g

NM = η(A)(B)e(B)
M . Using equation (3.48) we obtain the following components

ω(U)(µ)
ν = −ω(µ)(U)

ν = 1
U
δµν . (3.49)

The Dirac operator8 on a curved manifold is given by

/D = eM(A)Γ(A)
(
∂M + ω

(B)(C)
M Σ(B)(C)

)
(3.50)

where the Γ-matrices satisfy the Clifford algebra {Γ(A),Γ(B)} = 2η(A)(B), and the Σ(B)(C) is the
relativistic spin-matrix.9

Firstly, let us compute the first term of the sum which is very straightforward. The result is

UΓu∂U + UΓµ∂µ . (3.51)

6Indices between brackets will be used solely to denote vielbein indices.
7the dual basis

{
e(A)

∣∣ e(A) = e(A)
M ∂M

}
is defined via

e(A) (e(B)
)

= e(A)
M dxM

(
e(B)

N ∂N
)

= e(A)
M e(B)

N δMN = δ(A)
(B) , (3.46)

8by definition the Dirac operator is just the covariant derivative of the curved spacetime with its index contracted with
the γ-matrix.

9we are using the standard definition Σ(A)(B) = 1
4 [Γ(A),Γ(B)].
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The second part of the operator is equal to

eM(A)Γ(A)ω
(B)(C)
M Σ(B)(C) = U δM(A)Γ(A)

(
ω(U)(µ)
ν Σ(U)(µ) + ω(µ)(U)

ν Σ(µ)(U)
)
,

= ΓM
(
Σ(U)(µ) + Σ(µ)(U)

)
,

= 1
2ΓM

(
Γ(U)Γ(µ) − η(U)(µ)

)
,

= −1
2ΓMΓMΓU ,

= −2ΓU = −2ΓU .

(3.52)

Finally, we have obtained the result

/D = U ΓU∂U + U Γµ∂µ − 2ΓU . (3.53)

We would like to derive a second-order differential equation of a scalar function of a single variable,
which is easy to solve, as we did for the case of a scalar field. To do so, we start by acting by acting on
the first order equations of motion with a differential operator; more specifically this operator is part of
the Dirac operator. The next step is to use the Clifford algebra, and the linear equations of motion to
simplify the resulting terms of the equations.

From the standard fermionic action for a spinor with a bulk fermion mass, we obtain the Dirac equation
below

( /DAdS −m)Ψ = 0 , =⇒(
U ΓU∂U + U Γµ∂µ − 2ΓU −m

)
Ψ = 0 ,

(3.54)

where we have used the shorthand: Ψ = Ψ(xµ, U). We act from the left on the above equation with
U ΓU∂U + U Γµ∂µ and after expanding all terms we obtain the following expression(

U2∂2
U − U∂U + U2∂µ∂µ + 3UΓUΓµ∂µ −mUΓU∂U −mUΓν∂ν

)
Ψ , (3.55)

where we have used the fact that ΓU anti-commutes with any Γ-matrix in order to cancel the term
U2ΓUΓµ∂U∂µΨ against U2ΓνΓU∂U∂νΨ.

Now we can use the first-order equation of motion, equation (3.54), to re-express the terms 3ΓUΓµ∂µ
and −mU(ΓU∂U + Γµ∂µ) as (6 + 3mΓU − 3U∂U )Ψ and −(m2 + 2mΓU )Ψ respectively. Now, we have
only terms of the form that we wanted and it is time to decompose the spinor according to the
symmetries of the problem we study. This decomposition is quite obvious and we write the ansätz
Ψ = Ψ(xµ, U) = eik

µxµψ(U), where the wave-vector is related to the mass of the flucutation via
k2 = −M2 and we obtain the following expression(

U2∂2
U − 4U∂U + U2M2 −m2 + 6 +mΓU

)
ψ = 0 , (3.56)

with the shorthand ψ(U) = ψ.
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The above equation, equation (3.56), can be solved analytically. The general solutions are given by

ψ+ ∼ U5/2
(
Jm−1/2(M U) + Ym−1/2(M U)

)
,

ψ− ∼ U5/2
(
Jm+1/2(M U) + Ym+1/2(M U)

)
,

(3.57)

where the ± denotes the eignevalue of the projector -the ΓU matrix- and, Jn(x), Yn(x) are the Bessel
functions of the first and the second kind respectively, and we have written the solutions up to the
integration constants which will play an important role and will be translated subsequently.

Now, we want to examine the asymptotics of the solutions as we approach the conformal boundary
U → 0

ψ+|U→0 ∼ U5/2
(
Um−1/2 + U−m+1/2

)
,

ψ−|U→0 ∼ U5/2
(
Um+1/2 + U−m−1/2

)
,

(3.58)

At this point some comments and clarifications are in order. In holography, we associate the diverging
part of a solution with the boundary field theory source, which is set to zero in order to study the
field theoretic spectrum, and the convergent solution has an interpretation as the field theory operator.
However, in the case of the spin-1/2 states we have seen that we have two quantities that we want to
determine, yet there are four solutions; namely the four constants of integration in equation (3.57).
The crucial point to understand is that the solutions are not independent. In other words, we have not
described two different sets of sources and operators, but rather we have introduced a double copy of
the source and the operator. This is because we acted on the first-order differential equation with a
differential operator, in order to promote it to a simpler problem. Therefore, the expectation is that
two of the constants will be identified as the boundary source and the boundary operator and the other
two will be related to them such that the dimensions match.

We describe, now, how to reduce the number of the integration constants from four to two. This is of
utmost importance as these constants have a physical interpration.

The startning point is the first-order Dirac equation in pure AdS. This is written as(
U ΓU∂U + U Γµ∂µ − 2ΓU −m

)
Ψ(xµ, U) = 0 . (3.59)

We decompose the spinor as Ψ(xµ, U) = eik·x(ψ+α+ + ψ−α−) where the α± are eigenstates of the
projector ΓU and have values ±1. They are related to one another via

α− = i/k

M
α+ . (3.60)

We can substitue the above decomposition in the Dirac equation and obtain a set of first-order coupled
differential equations. Taking into consideration that the Γu-eigenspinors are linearly independent the
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resulting equations read

ψ+ = 1
U M

(U∂Uψ− − (−2 +m)ψ−) ,

ψ− = 1
U M

(−U∂Uψ+ + (2 +m)ψ+) ,
(3.61)

We can plug the asymptotic expansions,

ψ+|U→0 = c1U
m+2 + c2U

−m+3 ,

ψ−|U→0 = c3U
m+3 + c4U

−m+2 ,
(3.62)

in the above expressions, see equation (3.61), and solve the resulting relations to relate two of the
constants to other two. The final form of the asymptotics reads -we specify m = 5/2 for simplicity

ψ+|U→0 = c1U
9/2 + c4

M

4 U1/2 ,

ψ−|U→0 = c1
M

6 U11/2 + c4U
−1/2 ,

(3.63)

and the identification is c1 = O and operator of UV conformal dimension 9/2 and c4 = J is the
dimension 1/2 source.

3.3 A quick comment on vectors and their scaling dimension

Below we quickly describe what happens with fields of other spins in an AdS spacetime. We will be very
concise with our presentation as the necessary ingredients for this thesis have already been presented.
We feel, however, that some comments are in order for the sake of completeness. Since we have worked
out the spin-1/2 field computation in gory detail, here we will proceed more quickly. Starting from the
Proca action the equations of motion for the one-form field are given by

1√
|G|

∂M

(√
|G|GMNGRSFNS

)
−m2AM = 0 . (3.64)

In order to keep our presentation simple, let us imagine that the AdS has a Euclidean signature and we
can put the momentum in the time direction only. We also want to examine polarizations of the vector
field that are neither in the time nor the radial direction. Expanding out the equations of motion yields

U2∂2
zAS − U∂UAS + U2∂2

tAS −m2AS = 0 . (3.65)

Here is where the things can go horribly wrong and this is quite an educational example. If we substitute
as an ansatz now U ∆̃ into the equation we derived above we will get a wrong answer. The reason is
that in contrast to the scalar field example, here we have a vector index. Consider working for example
with AM instead of AM . The expression would be shifted by different powers of U . We can however,
remember that there is physical meaning in the orthonormal basis. All we need to do is to consider
shifting the expression by considering the change 1

UA(M) = AM , where again we have denoted by (A)

indices in the one-form basis. Inserting this expression into the equations of motion will bring them in
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a more appropriate basis. Then we can consider a power-law of the form A(M) = U∆ and study the
resulting equation. The answer we obtain is

∆ = 2±
√

1 +m2 . (3.66)

The above is the correct answer [79, 80].
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Chapter 4

Symmetries in field theory

Here we wish to review some basic facts about symmetries in field theory that we feel are necessary for
a proper presentation of the material of the next sections. There are many great places in the literature
that analyze these issues thoroughly, however we are basing our presentation to our favourite resources
which we mention here. Since we do not cover supersymmetry here, we would like suggest either [10] or
[24] as excellent resources.1

4.1 Conformal symmetry

Our discussion here mainly follows [87, 88].

The transformations of the conformal group are such that the metric can at most pick up a position
dependent overall factor. Another way of phrasing this, perhaps a more intuitive way, is that conformal
transformations preserve angles. Let us consider as a starting point a metric in a general d-dimensional
space Ra,b such that the dimension is d = a+ b with a signature (a, b) that is given by

ds2 = GMNdx
MdxN . (4.1)

A conformal tranformation is defined as the mapping Φ : Ra,b → Ra,b and explicitly we have that
Φ : GMN (x) → G′MN (x′) = Ω(x)GMN (x), having denoted by Ω(x) the scale factor of the conformal
transformation. Note, however, under a general coordinate transformation x→ x′, the metric transforms
as

GMN → G′MN (x′) = ∂xR

∂x′M
∂xS

∂x′N
GRS(x) (4.2)

and hence the flat metric under a conformal transformation obeys the following

η′MN = ∂xR

∂x′M
∂xS

∂x′N
ηRS = Ω(x)ηMN . (4.3)

1There are two approaches in the study of supersymmetric field theories. One is the use of the superspace. In that
approach the distinct physical fields are collectively grouped into superfields. The second approach, which is utilized in
[24], is the use of field components that describe the physical states of the theory.
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The goal is to find the infinitesimal generators and to do so we examine the following coordinate
tranformation

xM → x′M = xM + εM (x) . (4.4)

Now, we are going to derive the conformal Killing vector equation and subsequently we will demonstrate
its solution. To begin with, we compute the following

∂xR

∂x′M
=
∂
(
x′R + εR

)
∂x′M

= δRM + ∂εR

∂x′M
. (4.5)

It is quite easy to see that to linear order in ε we have for the last term

∂εR

∂x′M
= ∂εR

∂xC
∂xC

∂x′M
= ∂εR

∂xC

(
∂x′C

∂x′M
− ∂εC

∂x′M

)
= ∂εR

∂xM
+O(ε2) . (4.6)

We can use equations (4.5) and (4.6) to manipulate equation (4.3) and we derive(
δRM + ∂M ε

R
) (
δSN + ∂N ε

S
)
ηRS = Λ(x)ηMN ,→

ηMN + ∂N εM + ∂M εN +O(ε2) = Λ(x)ηMN ,→

(Λ(x)− 1) ηMN = ∂M εN + ∂N εM ,→

Λ(x)− 1 = 2
d

(∂ · ε) ,

(4.7)

where in the last line we just traced with ηMN . Recall, however, that

(Λ(x)− 1) ηMN = ∂M εN + ∂N εM (4.8)

and we can use the last line of equation (4.7) to derive

∂M εN + ∂N εM = 2
d

(∂ · ε) ηMN , (4.9)

which is the conformal Killing vector equation.

4.1.1 Solving the conformal Killing vector equation

The starting point of this section is the conformal Killing vector equation, given by

∂M εN + ∂N εM = 2
d

(∂ · ε) ηMN . (4.10)

We act on the above equation with the operator ∂A∂B and we obtain

∂A∂B (∂M εN + ∂N εM ) = 2
d
ηMN∂A∂B (∂ · ε) . (4.11)

In the above epression, equation (4.11), we consider different cases separately:
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• We have A = M and B = N which yields

2� (∂ · ε) = 2
d
� (∂ · ε)→

� (∂ · ε) = 0 .
(4.12)

Note that the above is trivially satisfied if d = 1.

• We consider B = M and we obtain

�∂AεM + ∂A∂M (∂ · ε) = 2
d
∂A∂M (∂ · ε)(2

d
− 1

)
∂A∂M (∂ · ε) = �∂AεM

(4.13)

From the above equation we obtain(2
d
− 1

)
∂A∂M (∂ · ε) = 1

2� (∂AεM + ∂M εA) , (4.14)

and we can use equation (4.11) to furher write(2
d
− 1

)
∂A∂M (∂ · ε) = 1

d
ηAM� (∂ · ε) . (4.15)

It is easy to see that using equation (4.12) we obtain(2
d
− 1

)
∂A∂M (∂ · ε) = 1

d
ηAM� (∂ · ε) = 0 , (4.16)

and hence
∂A∂M (∂ · ε) = 0 . (4.17)

Note that the above holds for d 6= 2, while for the two-dimensional case it is satisfied trivially.
As a remark we mention that for d = 2 it is quite straightforward to show that after a careful
manipulation the conformal Killing vector equations become the Cauchy-Riemann equations.
After this brief remark, we return to the final result we obtained above. Just by examining the
general form of ∂A∂M (∂ · ε) = 0 we an conclude that ∂ · ε can contain a constant term and a
linear term in xM . Therefore, without loss of generality we can write the solution as

∂ · ε = d
(
λ− 2bAxA

)
. (4.18)

So now, having an expression for ∂ · ε we an insert it into the expression for � (∂M εN + ∂N εM )
and derive

∂M εN + ∂N εM = 2ηMN

(
λ− 2bAxA

)
. (4.19)

The next step is to act on the above with a derivative, ∂A. From that result we rename A↔ N
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and hence we obtain the following two formulae

∂A∂M εN + ∂A∂N εM = −4ηMNbA ,

∂N∂M εA + ∂N∂AεM = −4ηMAbN ,
(4.20)

we subtract the two expression and the result is

∂M (∂AεN − ∂N εA) = 4 (ηMAbN − ηMNbA) , (4.21)

and now we proceed as we did previously. Namely, we can observe that ∂AεN − ∂N εA can contain
a constant and a linear term in xM and thus we write

∂AεN − ∂N εA = 2ωAN + 4 (ηMAbN − ηMNbA)xM = 2ωAN + 4 (xAbN − xNbA) . (4.22)

From the above, we can see that the combination xAbN − xNbA is antisymmetric under A↔ N

and therefore ωAN has to be antisymmetric as well. Let us re-write for convenience what we have
derived so far

∂AεN − ∂N εA = 2ωAN + 4 (xAbN − xNbA) , ∂AεN + ∂N εA = 2 (λ− 2b · x) ηAN , (4.23)

and we can simply sum the above to obtain

∂AεN = (ωAN + ληAN ) + 2 (−bRηAN + bNηAR − bAηNR)xR , (4.24)

from which we see that εN can contain terms up to order O(x2). We write the solution

εN = aN + ENRxR + FNRSxRxS , (4.25)

and it is quite straightforward to see that FNRS = FNSR in order to respect the symmetries of
xRxS . We act on εN with a derivative and we obtain

∂AεN = ENA + 2FNRAxR . (4.26)

Finally, we can compare the above to equation (4.24) and deduce that

ENA = ωAN + ληAN ,

FNRA = −bRηAN + bNηAR − bAηNR ,
(4.27)

and therefore the final solution that we get is

εM = αM + λxM + ωNMx
N + bMx

2 − 2b · x xM . (4.28)
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4.1.2 Conformal symmetry in d ≥ 3

Given a general coordinate trnaformation of the form x→ x′ = x′(x) we can define the way it acts on
functions Φ(x) such that Φ′(x′) ≡ Φ(x). Any infinitesimal coordinate transformation assumes the form

x′M = xM + εA
δxM

δεA
, (4.29)

with εA being a small parameter. The generator, GA, of the above transformation is given by

δεΦ = Φ′(x)− Φ(x) = −εA GA Φ(x) , (4.30)

and keeping in mind that Φ′(x′) ≡ Φ(x) we obtain

εA GA Φ(x) = Φ(x)− Φ
(
x− εA

δxM

δεA

)
, (4.31)

and we linearize in the small parameter to obtain

GAΦ(x) = −δx
M

δεA
∂MΦ(x) . (4.32)

In the above general framework consider for example a translation of the form xM → xM +ωM . In this
case, the index A in the ωA of the above expression is just a a spacetime index and the result just yields
a δMN . Hence, the generator of translations, which we denote by PM as is common in the literature, just
takes the simple form PM = −∂M . Likewise, we can think of infinitesimal Lorentz transformations of
the form xM → xM + ωRNη

RNxN , with ωRN being antisymmetric. In this case, the A index in ωA of
our last equation is equal to A = RN . We obtain

δxM

δωRN
= 1

2
(
ηRMxN − ηNMxR

)
, (4.33)

and we obtain ΛMN = xM∂N − xN∂M . Moving on the dilatations it is easy to see that the generator is
given by D = −xM∂M . And similarly we obtain from the infinitesimal special conformal trnasformation
its corresponding generator. We state the results explicitly below2

PM = −∂M , ΛMN = xM∂N − xN∂M ,

D = −xM∂M , KM = −2xMxN∂N + x2∂M .
(4.34)

2we are working with anti-hermitian generators. This gets rid of the i-factors in many places and follows the same
convention of [24].
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It is quite straightforward to check that these satisfy the following commutation relations

[D,PM ] = PM ,

[D,KM ] = −KM ,

[KM , PN ] = 2 (ηMND − ΛMN ) ,

[KP ,ΛMN ] = ηPMKN − ηPNKM ,

[PP ,ΛMN ] = ηPMPN − ηPNPM ,

[ΛMN ,ΛPS ] = ηNPΛMS + ηMSΛNP − ηMPΛNS − ηNSΛMP ,

(4.35)

and any unspecified commutator vanishes.3

For any CFT in d ≥ 3 the above is the complete description of the conformal group. It contains Lorentz
transformations, translations, dilatations and special conformal transformations. The conformal group
has dimension equal to

d+ 1 + 1
2d(d− 1) + d = 1

2(d+ 1)(d+ 2) , (4.36)

where the contributions above are due to the presence of translations, dilatation, Lorentz tranformations
and special conformal transformations respectively. This is isomorphic to the group SO(a+1, b+1). We
have described how to obtain the generators of the Lie algebra so(a+ 1, b+ 1) and what commutation
relations they satisfy. It is quite interesting to make some brief comments on the structure described
above. The first two commutators dictate how translations and special conformal generators transform
under the generator of dilatations. That generator, denoted by D above, defines an abelian Lie algebra
that is isomorphic to so(1, 1) and every generator has a specified weight under its action. This weight
is the scaling dimension and it’s quite easy to see from the explicit form of the generators that that the
generator of translations has weight equal to 1, while the special conformal transformation generator has
weight equal to −1. The commutation relations in the fourth and fifth lines inform us that translations,
which are generated by PM , and special conformal transformations, generated by KM , transform under
the vector representation of the so(a, b) algebra. This works as it should, since we have described these
generators by a vector. The last line is the deinition of the Lorentz Lie algebra, so(a, b). The thrid line
is needed in order to close the algebra.

4.1.3 Unitarity bounds

Here we wish to discuss the unitarity bounds for the CFTs we have considered so far. We will be
working in Euclidean signature, which is equivalent to setting b = 0 in the above discussion, in order to
follow closely [88, 89]. This will also be very convenient. We refrain from demonstrating all the details
of radial quantization in order to keep the presentation brief. There are many excellent places in the
literature that discuss this in depth, see for example [87]. In this section, we will state below some basic
facts that we will need and then derive some very important results.

To begin with, we state that in this context the generator of the dilations, D, can be thought of as the
Hamiltonian of the system. As mentioned above, we will not go into much detail but we will sketch a

3We prove these relations in appendix A.1.
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nice way of thinking about this. Consider the space Rb parameterized by

ds2 = dr2 + r2dΩd−1 = r2
( 1
r2dr

2 + dΩd−1

)
, (4.37)

with dΩd−1 being a d− 1 dimensional sphere. We can consider the change of variables t = log r in order
to obtain

1
r2dr

2 + dΩd−1 = dt2 + dΩd−1 , (4.38)

which describes the space R× Sd−1. On the Rd space the theory should be invariant under a rescaling
and hence the study of a CFT defined on Rd is equivalent to the study of the theory on R × Sd−1.
Essentially, doing the above we have taken circles of constant radius in Rd and mapped them to slices
of constant t defined on R× Sd−1. So, the dilation operator corresponds to time translations on the
R× Sd−1 theory and thus we can identify it with the Hamiltonian.

Any CFT that contains operators that do not respect the bounds that we will derive is either non-unitary
(in Lorentzian signature) or non-positive (in Euclidean signature). This is to say, that physical CFTs
should have a bounded from below energy spectrum. We have already seen that translation generators
have weight equalt to 1 and conformal transformation generators have weight −1. Since our CFT has
to be bounded from below, there has to be a state of lowest energy (which is called highest weight
state) that satisfies

KM |[Y ]∆〉 = 0 . (4.39)

The highest weight state is also called a primary state. The label ∆ denotes its scaling dimension and it
forms a representation with respect to the so(d) Lorentz group. In order for it to be unique, we should
also require that it is a primary of the so(d) representation. The Y index refers to the representation
under the Lorentz group. Our main interest in this thesis is the four dimensional case for which we
have so(4) ∼= su(2)⊕ su(2) and thus the respective representations carry two labels, one for each of the
su(2) spins, namely [Y ] = [j1, j2].

We can create non-highest weight states, which we call descendants, just by acing on the primary with
the PM generator in the following way:

PM1PM2 · · ·PMn |[Y ]∆〉 . (4.40)

In order to work out the expressions for the unitarity bounds in our CFTs we need to introduce
hermitian conjugation. While there is a formal way of deriving the results see [87, 88] here we just state
them without proof for brevity. The relations that we need are stated below

Λ†MN = ΛMN , P †M = KM ,

K†M = PM , D† = D .
(4.41)
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Scalar fields

With the above information at hand we are in a position to compute the unitarity bound for a scalar,
[Y ] = 0. We normalize such that the primary has unit norm 〈[0]∆|[0]∆〉 = 1 and we can now compute
the norm of a descendant of level one∥∥∥αMPM |[0]∆〉

∥∥∥2
= ᾱMαN 〈[0]∆ |KMPN | [0]∆〉 ,

= ᾱMαN 〈[0]∆ |[KM , PN ] + PNKM | [0]∆〉 ,

= ᾱMαN 〈[0]∆ |[KM , PN ]| [0]∆〉 ,

= 2ᾱMαN 〈[0]∆ |δMND − ΛMN | [0]∆〉 ,

= 2|α|2∆ ,

(4.42)

where we have used the fact that is a highest weight state and has zero spin. Thus, we conclude that
∆ ≥ 0.

A natural question is whether we can constrain the scaling dimension more by considering higher-level
descendants. Let us do the level-2 computation.∥∥∥αMNPMPN |[0]∆〉

∥∥∥2
= αMN ᾱPS 〈[0]∆ |KSKPPMPN | [0]∆〉 ,

= 2αMN ᾱPS (〈[0]∆ |KS ([KP , PM ] + PMKP )PN | [0]∆〉) ,

= 2αMN ᾱPS (〈[0]∆ |KS [KP , PM ]PN +KSPM ([KP , PN ] + PNKP )| [0]∆〉) ,

= 2αMN ᾱPS (〈[0]∆ |KS [KP , PM ]PN +KSPM [KP , PN ]| [0]∆〉) ,

= 2αMN ᾱPS (〈[0]∆ |KS (δPMD + ΛMP )PN +KSPM (δPND + ΛPN )| [0]∆〉) ,

= 2αMN ᾱPS (〈[0]∆ |KS (δPMD + ΛMP )PN +KSPMδPND| [0]∆〉) ,
(4.43)

having used the fact that we are considering a scalar.

We can now proceed to examine the last term of the above expression. It is equal to

〈[0]∆ |δPNKSPMD| [0]∆〉 = 〈[0]∆ |δPNKS ([PM , D] +DPM )| [0]∆〉 ,

= 〈[0]∆ |δPNKS [PM , D]| [0]∆〉+ 〈[0]∆ |δPNKSDPM | [0]∆〉 ,

= −〈[0]∆ |δPNKSPM | [0]∆〉+ 〈[0]∆ |δPN ([KS , D] +DKS)PM | [0]∆〉 ,

= −〈[0]∆ |δPNKSPM | [0]∆〉+ 〈[0]∆ |δPNKSPM | [0]∆〉+ 〈[0]∆ |δPNDKSPM | [0]∆〉 ,

= 〈[0]∆ |δPNDKSPM | [0]∆〉 ,

= 2∆2δMSδPN .

(4.44)
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We can likewise manipulate the rest of the terms. We have

〈[0]∆ |KS (δPMD + ΛMP )PN | [0]∆〉 = 〈[0]∆ |KSδPMDPN | [0]∆〉+ 〈[0]∆ |KSΛMPPN | [0]∆〉 ,

= 〈[0]∆ |δPMKSDPN | [0]∆〉+ 〈[0]∆ |KS ([ΛMP , PN ] + PNΛMP )| [0]∆〉 ,

= 〈[0]∆ |δPMKSDPN | [0]∆〉+ 〈[0]∆ |KS [ΛMP , PN ]| [0]∆〉 ,

= 〈[0]∆ |δPMKSDPN | [0]∆〉+ 〈[0]∆ |KS (δPNPM − δMNPP )| [0]∆〉 ,

= 〈[0]∆ |δPMKSDPN | [0]∆〉+ 〈[0]∆ |δPNKSPM | [0]∆〉

− 〈[0]∆ |δMNKSPP | [0]∆〉
(4.45)

Now, everything is quite simple and we can proceed as we did in the level-1 case as all the expressions
are very similar. We have

〈[0]∆ |δPMKSDPN | [0]∆〉 = 〈[0]∆ |δPM ([KS , D] +DKS)PN | [0]∆〉 ,

= 〈[0]∆ |δPMKSPN | [0]∆〉+ 〈[0]∆ |δPMDKSPN | [0]∆〉 ,

= δMP δSN2∆ + δMP∆SN2∆2

(4.46)

The remaining terms are equal to

〈[0]∆ |δPNKSPM | [0]∆〉 = 2δPNδSM∆ (4.47)

and we also have
− 〈[0]∆ |δMNKSPP | [0]∆〉 = −2δMNδSP∆ (4.48)

So, now we can return to the original expression of interest, namely the norm of the level-2 descendant.
We just gather all the pieces we have computed so far and we factorize the expression, which yields∥∥∥αMNPMPN |[0]∆〉

∥∥∥2
= 4αMN ᾱPS (δMP δNS∆(∆ + 1) + δMSδNP∆(∆ + 1)− δMNδPS∆) ,

= 4∆
(
2 (∆ + 1) ᾱMNαMN − ᾱMMαNN

) (4.49)

Allow us now to set αMN = δMN to obtain

4∆
(
2 (∆ + 1) d− d2

)
(4.50)

and using the level-1 constrain, namely ∆ ≥ 0, we conclude that the level-2 norm computation bounds
the scaling expression to be

∆ ≥ d

2 − 1 (4.51)

which is the result we should obtain, see the review [90]. Observe that for d = 4 the result nicely agrees
with what we derived in AdS5 section 3.1.5.

One may wonder whether computing the norms of higher-level descendants will constrain the bound
even further, however such is not the case. The proofs for this statement are quite involved and
non-trivial and we refer the reader to the works of [91, 92]. Let us briefly mention that one can consider
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the general case of an operator with arbitrary spin, use representation theory and obtain the bounds
for the scaling dimensions. This goes beyond the scope of this thesis and we refer the interested reader
to the lectures of [88, 89], where they can see the derivation and work out the details on their own.

The identity

Le us start with this example albeit trivial. Any CFT contains an identity field, which we denote
by 1, which is a scalar state and has scaling dimension ∆ = 0. From the computations performed
previously we know that its descendants have to be null. This holds true for any level and it is quite
straightforward to verify the claim.

PM 1 = ∂M 1 = 0 , (4.52)

in other words the identity field is invariant under translations.

Free massless scalar

The action for the theory is ∫
ddx∂MΦ∂MΦ , (4.53)

and it is easy to compute that the dimension of the field is ∆ = d
2 − 1. Since there are no interactions

in the theory the scaling dimension does not obtain any quantum corrections. The free massless scalar
saturates the unitarity bound computed above adn therefore we expect a null-vector in its representation
which we have and is obvious from the equations of motion

PMP
MΦ = ∂M∂

MΦ = 0 . (4.54)

4.2 Superconformal symmetry

We being by mentioning some very useful references discussing aspects of the superconformal algerba.
These are [89, 93–97].

In order to simplify matters and to follow [89, 94, 98] we will complixify the algebra. In order to impose
the reality conditions whenever necessary we will specify the hermitian conjugate. In a four dimensional
theory we have so(4,C) ∼= sl(2,C)⊕ sl(2,C) and similarly so(6,C ∼= sl(4,C) for the conformal group.
Note that in this section we will use lower case letters to avoid stifling the notation.

We employ a bi-spinor notation for the conformal algebra, which is a common practice, and we have

(σµ)αα̇ = (i 1, ~σ) ,

(σ̄µ)α̇α = (−i 1, ~σ) ,
(4.55)

where ~σ is a vector of the usual Pauli matrices. For the lowering and raising of the indices we use

Xa = εabXb , Xa = εabX
b , (4.56)
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where ε12 = 1, ε12 = −1.

4.2.1 Four dimensional theories

The Lorentz generators Λµν fall in the two adjoint representations of sl(2,C), which are denoted by
Λ β
α and Λα̇

β̇
. The generators of the momenta and special conformal transformations are bispinors

under the Lorentz group. We write

Pαα̇ = (σµ)αα̇Pµ , Λ β
α = −1

4(σ̄µ)α̇β(σν)αα̇Λµν ,

Kα̇α = (σ̄µ)α̇αKµ , Λα̇
β̇

= −1
4(σ̄µ)α̇α(σν)αβ̇Λµν .

(4.57)

The conformal algebra in the notation we have chosen is, see [98, Appendix A]

[Λ β
α ,Λ δ

γ ] = δ β
γ Λ δ

α − δ δ
α Λ β

γ ,

[Λα̇
β̇
,Λγ̇

δ̇
] = −δα̇

δ̇
Λγ̇

β̇
+ δγ̇

β̇
Λα̇

δ̇
,

[Λ β
α , Pγγ̇ ] = δ β

γ Pαγ̇ −
1
2δ

β
α Pγγ̇ ,

[Λα̇β̇, Pγγ̇ ] = δα̇γ̇Pγβ̇ −
1
2δ

α̇
β̇
Pγγ̇ ,

[Λ β
α ,K γ̇γ ] = −δ γ

α K γ̇β + 1
2δ

β
α K γ̇γ ,

[Λ β
α ,K γ̇γ ] = −δγ̇

β̇
Kα̇γ + 1

2δ
α̇
β̇
K γ̇γ ,

[D,Pαα̇] = Pαα̇ ,

[D,Kα̇α] = −Kα̇α ,

[Kα̇α, Pββ̇] = 4δ α
β δα̇

β̇
D + 4δ α

β Λα̇
β̇

+ 4δα̇
β̇

Λ α
β .

(4.58)

At this point we wish to discuss the introduction of the supercharges Qiα and Q̄iα̇, with the index
i = 1, · · · ,N denotng the amount of supersymmetry that we consider in a given theory. The algebra
possesses an R-symmetry u(N ), as well, acting on the i, j indices. The generators of the R-symmetry
are knonw to satisfy the u(N ) algebra which is described in terms of the commutator

[Rij ,Rk`] = δkjRi` − δi`Rkj . (4.59)

Now we are at a position to combine the superalgebra with the conformal algebra. As in the purely
bosonic case, here we can also think of the composition of inversion with a supercharge and an inversion.
The result of this operation is a new fermionic generator which is known as conformal supercharge and
we denote these conformal supercharges by S α

i and S̄iα̇. Note that the genrators of the R-symmetry,
Rij , in this case are included in the algebra.4 We describe below the superconformal algebra in terms

4This is to be contrasted with the situation in supersymmetric gauge theories where the R-symmetry is an outer
automorphism.
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of commutators and anti-commutators

[Λ β
α ,Qiγ ] = δ β

γ Qiα −
1
2δ

β
α Qiγ ,

[Λα̇
β̇
, Q̄iγ̇ ] = δα̇γ̇ Q̄iβ̇ −

1
2δ

α̇
β̇
Q̄iγ̇ ,

[Λ β
α ,S γ

i ] = −δ γ
α S

β
i + 1

2δ
β

α S
γ
i ,

[Λα̇
β̇
, S̄iγ̇ ] = −δγ̇

β̇
S̄iα̇ + 1

2δ
α̇
β̇
S̄iγ̇ ,

[D,Qiα] = 1
2Q

i
α ,

[D, Q̄iα̇] = 1
2Q̄iα̇ ,

[D,S α
i ] = −1

2S
α
i ,

[D, S̄iα̇ ] = −1
2 S̄

i
α̇ ,

[Rij ,Qkα] = δ k
j Qiα −

1
4δ

i
jQkα ,

[Rij , Q̄kα̇] = −δ i
k Q̄jα̇ + 1

4δ
i
j Q̄kα̇ ,

[Rij ,S α
k ] = −δikS α

j + 1
4δ

i
jS α

k ,

[Rij , S̄kα̇] = δkj S̄iα̇ −
1
4δ

i
j S̄kα̇ ,

[Pαα̇ ,S
β
i ] = −2δ β

α Q̄iα̇ ,

[Pαα̇ , S̄iβ̇] = −2δ β̇
α̇ Q

i
α ,

[Kα̇α,Qiβ] = 2δ α
β S̄iα̇ ,

[Kα̇α, Q̄
iβ̇

] = 2δ α̇
β̇
S α
i ,

{Qiα, Q̄jα̇} = 1
2δ

i
jPαα̇ ,

{S̄iα̇,S α
j } = 1

2δ
i
jK

α̇α ,

{Qiα,S
β
j } = δijΛ β

α + 1
2δ

i
jδ

β
α D − δ β

α Rij ,

{S̄iα̇, Q̄
jβ̇
} = δij Λ̄α̇β̇ + 1

2δ
i
jδ
α̇
β̇
D + δα̇

β̇
Rij .

(4.60)

From the above commutators we can conclude that the supercharges have +1
2 scaling dimension, while

the conformal supercharges have weight −1
2 .5

While this looks horribly complicated, the structure of the algebra is actually quite simple. In order to
make this apparent we can just break it down to much simpler superalgebras. We can observe that the

5Recall that supercharges square to generators of momenta.
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algebra can be understood as supermatrices that assume the following form

conformal algebra
(Λµν , Pµ,Kµ, D) supercharges(

Qiα, S̄iα̇
)

supercharges R-symmetry(
Q̄iα̇,S α

i

) (
Rij

)


Let use quickly point out that for the case of the N = 4 the generator Rii commutes with all the
elements belonging in the algebra.6 This can be very easily seen from the previous commutations
relations and by noting that the (i, j) contraction in the Kronecker-δ, δij , yields N as a result. Therefore,
for N = 4 the commutators vanish. Hence, in this case the Rii can be removed from the algebra. We
state below the real form of the superconformal algebras for various ammounts of N taking into account
the fact that Rii can be moded out in the N = 4 theory. We have

N = {1, 2, 3}superconformal algebra ∼= su(2, 2|N ) ,

N = 4 superconformal algebra ∼= psu(2, 2|4) .

Before moving on to te next sections, let us state the representations of the bosonic subalgebra in which
the supercharges transform:

N = 1 : Q ∈ [1, 0](−1)
1
2

, Q̄ ∈ [0, 1](1)
1
2
,

N = 2 : Q ∈ [1, 0](1,−1)
1
2

, Q̄ ∈ [0, 1](1,1)
1
2

,

N = 3 : Q ∈ [1, 0](1,0,−1)
1
2

, Q̄ ∈ [0, 1](0,1,1)
1
2

,

N = 4 : Q ∈ [1, 0](1,0,0)
1
2

, Q̄ ∈ [0, 1](0,0,1)
1
2

.

(4.61)

Here, we labelled representations by [Y ](R)
∆ , with Y denoting the specific Lorentz representation - which

is specified by the doublet of Dynkin labels of the two su(2)’s of the theory - ∆ is the scaling dimension
and (R) stands for the representation of the R-symmetry. It is determined by the N − 1 Dynkin labels
of su(N ) and the overall u(1) charge, with the only exception being the N = 4 theory. The last entry
is the u(1)-charge.

Finally, we state how the hermicity property acts on the generators of the algebra:

(Λ β
α )† = Λ α

β ,
(
Qiα

)† = S α
i ,

(Λα̇
β̇
)† = Λβ̇α̇ ,

(
Q̄iα̇

)† = S̄iα̇ ,

(Pαα̇)† = Kα̇α , (Rij)†= R
j
i ,

D† = D .

(4.62)

6In other words it is central.
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The hermitian conjugation: an aside

It is worthwhile stressing that the way we have defined the action of the † is essentially by considering
it as an anti-automorphism of the algebra [89]. In other words, hermitian conjugation acts as

〈X†, Y †〉 =
(
〈Y †, X†〉

)†
, (4.63)

where in the above 〈., .〉 is either a commutator or an anticommutator. This is consistent with the
structure of the superconformal algebra as we explicitly show in appendix A.2.

4.2.2 Unitary representations

We have already seen that the generators of special conformal trnasformations have weight equal to
−1 and that the conformal supercharges have scaling dimension given by −1

2 . As we did in the purely
bosonic, here we also wish to consider theories that have a bounded from below energy spectrum.
Hence, we require that there exists a state that is annihilated by the action of the special conformal
trnasformations generator as well as the conformal supercharges, and we write

Kα̇α |[Y ](R)
∆ 〉 = 0 , S α

k |[Y ](R)
∆ 〉 = 0 , S̄kα̇ |[Y ](R)

∆ 〉 = 0 . (4.64)

In the above notation we have written (R) to denote colelctively all labels related to the R-symmetry of
the theory. Following the nomenclature of the CFTs, this state is called a superconformal primary state.
From that we cna build representations that contain its descendants which can be obtained by the
action of the supercharges and the translation generators. Any representation of the superconformal
algebra contains a finite number of conformal primaries. Recall that {Q, Q̄} ∼ Pµ and thus certain
combinations of the supercharges can be re-expressed in terms of the operator Pµ, which is just a
derivative. So, the number of combinations of supercharges that we can apply on a primary state,
without generating derivatives, is always a finite number. A very useful trick is to decompose the
superconformal multiplet into its bosonic part (the conformal multiplets).

Let us consider a simple example, a four-dimensional N = 1 superconformal field theory. Starting from
the conformal primary we can consider the level-1 descendants

Qα |[j1, j2](r)∆ 〉 and Q̄α̇ |[j1, j2](r)∆ 〉 , (4.65)

and we can of course continue acting with more supercharges on these states. Doing so allows us to
obtain all the 24 = 16 conformal primaries within the N = 1 superconformal multiplet. We depict this
procedure schematically in the following diamond, see figure 4.1 We are now ready to discuss some
unitarity bounds. In general, unitarity imposes on the theory

∆ ≥ ∆A = f(j1, j2, (R)) , (4.66)

where by (R) we collectively denote all the R-symmetry structure of the field theory. The situation
regarding unitarity bounds and allowed region in the supersymmetric case is much richer compared to
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[j1, j2](r)∆

[j1 ± 1, j2](r−1)
∆+ 1

2
[j1, j2 ± 1](r+1)

∆+ 1
2

[j1, j2](r−2)
∆+1 [j1 ± 1, j2 ± 1](r)∆+1 [j1, j2](r+2)

∆+1

[j1, j2 ± 1](r−1)
∆+ 3

2
[j1 ± 1, j2](r+1)

∆+ 3
2

[j1, j2](r)∆+2

Figure 4.1: In this long multiplet, the superconformal primary is state depicted at the top. The
arrows show schematically the action of the supercharges. An arrow down and to the left stands for the
Q action, while an arrow downand to the right denotes the action of Q̄.

the purely bosonic CFTs. States in representations that are above the unitarity bound live in the allowed
region of the theory and they form long multiplets. There exist states that saturate the unitarity bound,
namely their weight satisfies ∆ = ∆A, and these are unitary. They do have, however, extra null vectors.
Below the unitarity bound there exists the forbidden region of the theory. Be that as it may, there
is the possibility of additional short representations which exist for discrete values of their conformal
dimension. States that satisfy this criterio are described by ∆ = ∆B. The corresponding operators are
denoted by L that stands for long representations, and A if ∆ = ∆A or B if ∆ = ∆B. While this might
seem at first very counter-intuitive recall the case of non-supersymmetric CFTs. We have seen that in a
four-dimensional CFT the unitarity bound for a scalar is given by the restriction ∆ ≥ 1. We have also
seen that ∆ = 0 gives a unitary representation, the identity field. In a four-dimensional SCFT we have
two different sets of supercharges, namely Q and Q̄, and two spins, j1 and j2, and therefore we can act
on the superconformal multiplets either with Q or Q̄ or both leading to various short multiplets.

For the sake of completeness and clarity we will explicitly work out a unitarity bound for a type-B
operator in a four-dimensional N = 1. Similar manipulations can be performed in the other cases as
well and by considering the action of more supercharges. The interested reader can find a catalogue of
results in [94, Table 10, page 29]. Note that with the conventions used here the comparison should be
obvious.

We begin by considering the norm
∥∥∥Q1

α |[0, j2](r)∆ 〉
∥∥∥2
. Note that we do not imply summaton over the

repeated index. We wish to compute this norm similarly to what we did in the CFT case. We have∥∥∥Q1
α |[0, j2](r)∆ 〉

∥∥∥2
= 〈[0, j2](r)∆ | S

α
1 Q1

α |[0, j2](r)∆ 〉 (4.67)
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= 〈[0, j2](r)∆ |
1
2D −R

1
1 + Λ 1

1 |[0, j2](r)∆ 〉 (4.68)

= 〈[0, j2](r)∆ |
1
2D −R

1
1 |[0, j2](r)∆ 〉 , (4.69)

having used the fact that B1 is a scalar and a primary. Now we need to remember,

[R1
1,Qkα] = δ k

1 Q1
α − 1

4Q
k
α = 3

4Q
k
α , (4.70)

since in this case k can only have one value. Recall at this stage that Q ∈ [1, 0](−1)
1
2

and hence Q has
r = −1. Therefore we can write R1

1 = −3
4r. From the above it is quite straightforward to obtain

1
2∆ + 3

4r = 0 , (4.71)

which of course yields
∆ = −3

2r , (4.72)

which is the result we should obtain.

4.2.3 Theories with eight supercharges

Theories that possess N = 2 supersymmetry behave very similarly to the previous ones. In this case,
the R-symmetry representation of the SCFT is specified by an su(2) label, let us call it R, and also the
u(1) charge which we denote by r. The conditions on short multiplets are rather different but follow the
same logic as the one outlined above. In order to be precise we comment on the difference compared to
the previous case with a simple example. We will look again the unitarity bound for the B1 operator
of the N = 2 theory. This time we wish to compute the norm

∥∥∥Q1
α |[0, j2](R;r)

∆ 〉
∥∥∥2
. Observe that as

we had mentioned we include all possible R-symmetries in the labelling. This is not essential. The
important part that we need to account for in the commutator since in N = 2 theories, the index k can
have two different values. We have

[R1
1,Qkα] =


3
4Q

k
α , k = 1 ,

−1
4Q

k
α , k = 2 .

. (4.73)

Remember that for the theories under examination here, Q ∈ [1; 0](1;−1)
1
2

and thus Q has r − 1 and
R = 1. Therefore, we can write R1

1 = 1
2R−

3
4r. While this normalization appears to be a bit peculiar

we chose it such that we use the same conventions of [94]. It is quite easy to see now that the unitarity
bound is

∆ = R− 1
2r , (4.74)

as expected. Likewise one is able to continue with the other operators of the SCFT and from the
shortening conditions derive the unitarity bounds. The interested reader can find these result in [94,
Table 13, page 33].
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Free multiplets

The matter multiplets of an N = 2 theory are called hypermultiplets. Hypermultiplets are not chiral
due to the presence of the SU(2)R, which is the R-symmetry. The N = 2 hypermultiplet consists of two
complex scalar fields, φ and φ̃∗, which can be conveniently groupped into a single ΦI that transforms
as a doublet under the R-symmetry. It also contains two Weyl fermions, ψα and ψ̃α, that are singlets
under the SU(2)R. The fields of the hypermultiplet can be combined into two N = 1 chiral multiplets
and it can be depicted as in figure 4.2 [99]. In N = 2 theories we can also have vector multiplets. An

ψα

φ φ̃∗

(ψ̃α)†

Figure 4.2: The N = 2 hypermultiplet in terms of free fields.

N = 2 vector multiplet contains two Weyl fermions, λ1 and λ2, that can be collectively written as λI .
In this case, λI transforms as a doublet under the R-symmetry. The vector multiplet also contains
a complex scalar field, φ, and a one-form potential, Aµ, both of which are R-symmetry singlets. We
depict the N = 2 vector multiplet in figure 4.3. The fields of the N = 2 vector multiplet combine
themselves into an N = 1 vector and an N = 1 chiral multiplets [99].

Aµ

λ1
α λ̃2

α̇

φ

Figure 4.3: The N = 2 vector multiplet in terms of free fields.
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Chapter 5

The AdS/CFT duality

In this section we will introduce the basic ideas for the AdS/CFT correspondence. It was originally
suggested by Maldacena and it relates the physics of D3-branes in the type IIB theory with a supercon-
formal field theory that lives in a four-dimensional spacetime, namely the N = 4 SYM. It is worthwhile
pointing out that a formal proof of the duality is still lacking, however, there are numerous tests by
now and all of them suggest its validity. Most of the results we have obtained are in the low-energy
regime where string theory can be very well approximated by classical supergravity.

Nowadays, after many careful studies and applications, we believe that the story is much more general
and that the duality is really between a gravitational theory that is living on D+1 dimensions and
non-gravitational QFTs in D dimensional spacetimes. In the classical approximation on the gravity
side the calculations become tractable and they yield information and a wealth of data for the field
theories in their strong coupling limit. If we look at it from a different perspective, it is fascinating how
much we can understand for gravitational theories just by performing a field theory computation.

Any two theories related to one another by the duality must have the same symmetries. This does not
mean that the duality is just that, namely a match of symmetries. It includes, as well, a great deal of
dynamics.

There are by now many great review articles on the nuts and bolts of the AdS/CFT. We follow closely
the discussions of [41, 100] in our presentation here.

5.1 Three-branes and IIB supergravity

Let us imagine that we introduce a large number of D3-branes into a ten-dimensional spacetime. From
the string theory point of view there excitations and interactons of the strings that are of different
type. The first type is the interactions of the closed string states in the type IIB background. We can
also have interactions of open strings that live on the world-volume of the D3. We also expect that
there will be some interactions amongst open and closed strings (i.e two open strings can join to form a
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closed string). Effectively the theory can be described by the action

S = Sopen + Sclosed + Sinteractions . (5.1)

This will be the low-energy description of the theory. In this context by low we mean that all states
have energies that are much smaller than the string scale. It is most convenient to send the string scale
to infinity or equivalently to consider sending the string length to zero, α′ → 0, while at the same time
we keep all other parameters fixed. In this limit, the low-energy approximation, only massless string
excitations. The theory describing the closed string sector will become free. This can be seen easily
since the closed string coupling is proportional to the Newton constant in ten-dimensions, which in
turn is proportional to (α′)2. In the low-energy approximation the interaction term we have written
above vanishes. Hence, we are left with only two theories that are completely decoupled. The open
string sector of the theory and the closed string sector which is described by free supergravity.

D-branes are hypersurfaces, higher-dimensional surfaces, on which open strings can start and end.
There can be additional degrees of freedom associated with the open-strings ends which are called
Chan-Paton charges. We can stack a number of D-branes one on top of the other and we can label
strings by doing so. We call the number of D-branes N . Each string will have two labels, one for each
brane that is attached. These labels run from one to the number of branes. It has been shown that this
gives rise to a U(N) gauge theory with coupling given by gYM = √gs, with gs being the string coupling.
In low energies the massless string modes are the N2 degrees of freedom in the adjoint of the gauge
group. Note that it is possible to break this gauge symmetry by removing one brane away from the
stack. Imagine having 2 D-branes described by a U(2) group. Then we move away one brane from the
stack and we have the breaking U(2)→ U(1)× U(1). This is not the end of the story for the D-branes,
as Polchinski demonstrated that they also carry charges and therefore they can source potentials.

Back to the low-energy description of the open string sector. The theory describing the open string is a
U(N) gauge theory which can factorize into SU(N)× U(1), with the U(1) being related to the centre
of mass of the stack of the D3s. In order to find the field content one can reduce the ten-dimensional
N = 1 gauge multiplet to four dimensions. The result of this computation is the the N = 4 SYM in
four dimensions [56, 101]. The field content consists of a massless gauge field, four massless Weyl fermi
fields, and six massless scalars. All of the fields transform in the adjoint representation of the gauge
group.

From a different perspective, we can consider the embedding of a stack of D3 branes into a ten-
dimensional theory. Since branes carry tension they can act as a stress-energy tensor term in the
gravitational theory and they can source some supergravity fields. A consequence of this embedding
is that the spacetime is warped. This has been thoroughly considered and it has been shown that
D3-branes are solitonic solutions of the type IIB supergravity [102] with a metric given by

ds2 = H−1/2ηµνdx
µdxν +H1/2

(
dy2 + y2dΩ2

5

)
, (5.2)
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where in the above dΩ2
5 denotes a five-dimensional sphere and the warp factor is

H = 1 + R2

y2 , (5.3)

with R2 = 2α′
√
πgsN . It is easy to see that in the limit y � R the metric returns to that of a flat

Minkowski spacetime in ten dimensions while in the y � R limit, which is called the near-horizon limit,
we get

ds2 = R2
( 1
U2

(
ηµνdx

µdxν + dU2
)

+ dΩ2
5

)
, (5.4)

having performed the change of variables

U ≡ R2

y
. (5.5)

The metric in the near-horizon limit is that of AdS5×S5. There exists another ingredient in the D3-brane
description. We have already mentioned that D3-branes carry charge and they can source supergravity
fields. More specifically the D3 branes source an antisymmetric four-form field C(4) in the IIB theory
and the D3-brane solution has a self-dual five-form given by F(5) = dC(4) that satisfies∫

S5
dC(4) = N . (5.6)

So far we have encountered two different pictures describing the same physics system. In both descriptions
we have two theories that are decoupled. The statement of the AdS/CFT is the identification of the
two different pictures. Specifically, the N = 4 SYM theory with an SU(N) gauge group1 in a
four-dimensional spacetime is dual to the D3-brane solution of the type IIB theory.

5.2 Symmetry matching

Let us briefly check that the symmetries of the duality match and thus the statement makes sense. The
isometry group of the AdS5 submanifold of the ten-dimensional geometry is SO(2, 4) and the group of
isometries of the five-sphere is SO(6). Note that SO(6) is isomorphic to SU(4). From the field theory
perspective, the N = 4 SYM has an R-symmetry group, global internal symmetry, that is also SU(4).
The theory is also conformal and lives in four dimensions. The conformal group in four dimensions is
SO(2, 4).

5.3 The holographic coordinate

We started from a ten-dimensional string theory and after compactifying five of its dimensions on a
sphere we are left, in the gravity side of the duality, with an additional coordinate of the non-compact
space as compared to the gauge theory description. Therefore, the duality has beend described as
being a holographic duality [104]. This means that all the information of the higher dimensional theory,
the gravity theory in five dimensions, is encoded in the degrees of freedom of the four dimensional

1the duality has been extended to describe other gauge groups such as SO(N) and USp(N) in [103].
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field theory. We would like to have a better understanding of the effect of the holographic coordinate
in the field theory side of the duality. In order to address this matter, we focus on the actions of
dilatations which is a subgroup of the SO(2, 4). Under dilatations, the action describing a massless
scalar is invariant. This can be easily seen by looking at the scalar action

S =
∫
d4x (∂φ)2 , (5.7)

and realizing that dilatations
x→ eAx , φ→ e−Aφ , (5.8)

for some arbitrary parameter A, leave it invariant. Based on power counting we can deduce that the
field has weight one and x has dimension minus one. We are using energy dimensions in the counting.
On the other hand, the gravitational part of the duality should also possess such a symmetry and for
the metric to be invariant we have to require in addition to the above that

y → e−Ay . (5.9)

Hence, it is evident that the holographic non-compact coordinate carries energy dimensions unlike the
rest of the non-compact ones. In other words, it behaves as a field theory scalar in some sense. This
leads to interpreting the holographic direction as the representation of the renormalization scale of the
field theory.

5.4 Fields and operators

The AdS/CFT duality has been developed more and refined and the authors of [105, 106] established a
map among fileds and operators. This allows the extraction of physical quantities from the correspon-
dence. The way that the map works is by matching certain gauge invariant operators of the N = 4
SYM that are in irreducible representations of the SU(4) to modes in the dual gravity picture that live
in the same representations and have been obtained after the Kaluza-Klein reduction on the S5.

The mathematical formulation is the following statement

〈e
∫
ddxφ0(~x)O(~x)〉CFT = Zstring|φ(∞,~x)=φ0(~x) , (5.10)

which is stating that the generating functional of correlation functions of particular gauge invariant
operators in the CFT with sources φ0(~x) coincides with the string partition function where the fields
are valued at the boundary of the AdS5 × S5. Simply put, the boundary values of the fields that live in
the gravity part of the duality are interpreted as sources of operators in the field theory picture.

Let us exemplify the above by considering a supergravity massive scalar field in AdS5. The action
describing this is

S =
∫
d4xdU

√
−G

(
GMN∂Mφ∂Nφ−m2φ2

)
. (5.11)
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We have seen how to solve the equations of motion and that they can be brought to the form

φ(U) ∼ U∆A+ U4−∆B , (5.12)

with the conformal dimension being given by ∆ = 2 +
√

4 +R2m2. The supergravity field does not
transform under field theory dilatations and hence does not carry a mass dimension. On the other
hand, the holographic coordinate U has an inverse mass dimension. This implies that both A and B
have to carry appropriate dimensions. It is easy to see that B has dimension 4−∆, while A carries
dimension equal to ∆. Now let us briefly look at the behaviour of φ(ε) when sending ε→∞. It is clear
from equation (5.12) that the second part, the one proportional B is dominant. Following [105] we can
identify B with the source of an operator O and A with its VEV; A = 〈O〉.

5.5 Tests of the duality

We can now mention some of the tests that have been made in the context of the AdS/CFT. Equa-
tion (5.10) is a suggestion that the duality might be tested by comparing correlation functions of
the N = 4 SYM with classical correlators in the supergravity. Note that this is not possible for any
correlation function, since weakly coupled supergravity is mapped to the strongly coupled N = 4 theory.
For very specific correlators that obey non-renormalization theorems and hence are independent of the
coupling constant a direct comparison is possible. This has been done for the case of two-point correla-
tors and three-point correlation functions [107, 108]. More recently the case of four-point correlators
was also studied [109, 110]. The operators in the correlation functions discussed above have a special
property, they are 1

2 -BPS, which means that they are annihilated by half of the supercharges. Another
very important test that has been performed was the calculation of the conformal trace anomaly
[111]. Finally, there are numerous very rigorous tests of the AdS/CFT correspondence that stem from
integrability [112]. Perhaps the most impressive one is the match of the spectrum of scaling dimensions
with the energies of string states using the dilatation operator [113].

5.6 RG flows and the holographic duality

While the AdS/CFT duality is remarkable on its own, it would be very desirable to bring it a bit closer
to the field theories that are of interest in the wider high-energy community such as QCD or more
generally QCD-like theories. This requires to finding ways to generalize the gravitational description
to non-conformal field theories with less supersymmetry. The ideal situation would be to have no
superchages at all. In order to obtain field theories with a running for the gauge coupling, and hence a
renormalization group flow, it is mandatory to deform appropriately the AdS space. Recall that the
AdS5 space possesses an SO(2, 4) symmetry which is reflected as a conformal symmetry in the field
theory dual picture and therefore corresponds to a fixed point of the renormalization group.

One way of achieving the desired result is to turn on supergravity modes in the bulk that will backreact
on the metric. The scalar field analysis performed above is only in the limit in which it is safe to ignore
the backreaction to the ambient geometry. Switching on a supergravity field appropriately still leads to
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the same UV description and hence we are able to determine the operator that is necessary for the
deformation. In the IR the theory will be deformed indicating the loss of conformality.

Such deformations have already been considered in the past and the simplest one is the multi-centered
D3-brane solution of supergravity. These geometries are described as a stack of parallel D3-branes, but
the branes are separated in transverse subspace to their world-volume. The result is

ds2 = H−1/2ηµνdx
µdxν +H1/2

(
dy2 + y2dΩ2

5

)
, (5.13)

but in this case the warp factor is given by

H = 1 +
∑( 1

|y − y0|

)
, (5.14)

where in the above y0 is the position of the D3-branes. We can expand the warp factor in terms of
sherical harmonics of the five dimensional sphere that are labelled by their SO(6) represenations in the
following way [114]

H ∼ R4

y4

(
1 +Ay4 +B

1
y2Y20 + C

1
y4Y50 + · · ·

)
, (5.15)

and the deformation parameters of the geometry, A,B,C, · · · all have a field theory interpretation as
deforming the original gauge theory. Specifically, they are VEVs of operators that have been determined
by a careful examination and analysis of the symmetries in each case [115, 116].

The field theory interpretation of A has been worked out in [117, 118]. It corresponds to stepping
away from the near-horizon limit of the spacetime. It is a singlet under the R-symmetry and carries
dimension −4. It is an irrelevant operator that affects the UV of the theory. Its field theory form is that
it is an interaction term ∼ trF 4. B has dimension 2 such that it cancels that of y in the expression and
lives in the 20′ of the SO(6). In the field theory there exists such an operator which is given by trφ2.
Using similar arguments one can see that C corresponds to trφ4 in the field theory. These operators
are relevant and hence become important in the IR of the theory.

As a final comment, we mention that these multi-centered solutions have been obtained as supergravity
renormalization group flows in [119].
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Chapter 6

Flavour degrees of freedom and
holography

The basic statement and properties of the AdS/CFT duality are very-well understood and studied. Be
that as it may, the boundary field theory is very different from the non-supersymmetric, asymptotically
free gauge theories that are of interest in the wide high-energy community, such as QCD for example.
One major difference between the N = 4 SYM theory and those theories is that in the latter ones, the
matter fields transform in the fundamental representation of the gauge group.

Introducing fundamental matter into the AdS/CFT framework was one of the major issues that the
community addressed in the very early days of the duality. After many years of research and much
effort towards a better holographic description of QCD-like theories, we have established two main
approaches:

• Top-down: models that fall into this category have their starting point directly in string theory.
For example, starting with the original proposal by Maldacena and the duality between a stack of
D3 branes and the N = 4 SYM, when working in a top-down way, we try to introduce additional
branes or other sources such that we modify the bulk appripriately in order to accommodate
the desired features in the boundary field theory. Different setups have been investigated these
many years, starting with the embedding of probe-branes [120] to introduce the necessary
fundamental fields -quarks- and then considering the meson-like states and their mass-spectra
[121]. Chiral symmetry breaking has also been discussed in this context[122], as well as more
involved constructions for confinement and Seiberg dualities. The major drawback in working
with top-down models is the inherent mathematical complexity in the computations.

• Bottom-up: when utilizing this approach -which has been also dubbed as AdS/QCD- we draw
inspiration from the top-down studies, but the bulk geometry and fields are such that they
encapsulate the required phenomenological properties of the gauge theory without caring about
embedding these models into string theory [123]. It should be clear that when using this approach
we lose the mathematical rigour of the previous constructions. The main advantage is that we
have a more useful model for phenomenological purposes.
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Our discussion here follows [41] as well as the original papers on the flavour degress of freedom.

6.1 D7-branes in the AdS5× S5 background

We have stated previously that all the fields in the N = 4 SYM theory tranform in the adjoint
representation of the group. Geometrically this is explained as all the open string states start and end
on one of the Nc branes from the stack of coincident D3-branes that form the AdS5 × S5 geometry.
Let us briefly remind the reader that the stack of Nc D3-branes has a U(Nc) gauge group description.
Thus, the wave-function of a string is a superposition of N2

c different states; a string from brane-1 to
brane-2, from 1 to 3, and so on. Therefore we have the representation of the U(Nc) group that contains
N2
c , which is the adjoint.

The addition of fundamental degrees of freedom requires us to consider that the string has one end in
the stack of the D3-branes and another end is on another brane. For simplicity we consider the case of
a D7-brane.1 Doing this, we generate just the Nc possible string configurations per brane, while the
other string ends on the D7.

If we denote an open string mode with one end on the Dp brane and the other end on the Dq-brane as
p− q-string, we have the following string sectors:

• 3− 3 sector: this generates the N = 4 adjoint multiplet.

• 3 − 7 sector: this sector is responsible for the fields that transform in the N = 2 fundamental
hypermultiplet.

• 7 − 7 sector: these strings generate the bound states that are comprised of the fundamental
degrees of freedom and transform in the adjoint of the N = 2 theory. These are the “mesons” of
the theory.

It is worthwhile mentioning that one possible way to simplify the analysis, is to consider the limit
where the number of flavour degrees of freedom is much smaller compared to the number of colours;
Nf � Nc. This is the probe-limit (or in the field theory language the quenched approximation), and
in this limit there is no backreaction to the background geometry due to the presence of the flavour
degrees of freedom.

6.1.1 The geometry of the D7 brane

Let us imagine that we want to embed in the {x0, x1, x2, x3, x4, x5, x6, x7} directions a probe D7 brane
in the background that is generated by the stack of D3 branes. We want to ask the question of what
is the geometry that the probe, flavour brane realizes. To begin with, let us recall the AdS5 × S5

geometry, which can be written as

ds2 = r2

R2 ηµνdx
µdxν + R2

r2

(
dρ2 + ρ2dΩ2

3 + dw2
5 + dw2

6

)
, (6.1)

1The other options are the D3,D5, and D9. The D9 is spacetime filling and we cannot separate it from the D3-branes,
hence we cannot describe massive fields in the fundamental representation. The other two options lead to very interesting
defect field theories.
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where in the above r2 = ρ2 + w2
5 + w2

6.

Since we are interested in describing massive quarks, we want to separate the D7 from the colour branes
in the {x8, x9} plane by some finite distance. We can consider that w6 = 0 and w5 = L(ρ). In order to
obtain the induced geometry on the probe brane, and now we need to compute the pullback which can
be done by using

GÂB̂ = GMN
∂XM

∂ξÂ
∂XN

∂ξB̂
. (6.2)

We can work in the static gauge, and the result is simply given by

ds2 = r2

R2 ηµνdx
µdxν + R2

r2

(
1 + (∂ρL)2

)
dρ2 + R2

r2 ρ
2dΩ2

3 . (6.3)

The action for the D7 is given by [124]

SD7 ∼
∫
d4dρρ3

√
1 + (∂ρL)2 , (6.4)

having neglected some uninteresting factors arising from the integration over the S3 coordinates and
the tension of the brane. We can obtain the equations of motion for the L(ρ) function, given by

∂ρ

ρ3 ∂ρL√
1 + (∂ρL)2

 = 0 . (6.5)

Equation (6.5) is known as the embedding equation. Its solution describes the profile of the D7 brane
in the ten-dimensional spacetime. It is quite obvious that the above can be solved by an arbitrary
constant. In turn, this implies that the D7 lies flat in spacetime. The fact that the solution is an
arbitrary constant with no dependence on ρ -which corresponds to the renormalization group scale- is
the gravity manifestation of the non-renormalization of the mass, which is a characteristic feature of
supersymmetric gauge theories.

Let us consider the limit ρ→∞ and ∂ρL→ 0 in the above equation. In this limit, it becomes

∂ρ
(
ρ3∂ρL

)
= 0 , (6.6)

which is solved by
L = m+ c

ρ2 . (6.7)

As we have already mentioned m is related to the quark mass, and more specifically the relation is
m = 2πα′ mq. In order to agree with the statement of the AdS/CFT duality, the extra ingredient of
the solution, c, should be related to the VEV of an operator that possesses the same symmetries as
the mass and is of dimension 3; recall that ρ carries energy dimension. Thus, c is a measure of the
quark condensate q̄LqR. Furthermore, any solution with c 6= 0 is not regular in AdS space and must be
excluded, as it would correspond to a VEV for the operator which is not allowed by supersymmetry
considerations. An elaborate discussion on the relation between and equation (6.7) is given in [125] in
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the context of holographic renormalization [126].

6.1.2 Meson spectroscopy: a brief, scalar example

We would like to demonstrate how to obtain the mass spectrum of scalar mesons resulting from the
string fluctuations around the supersymmetric embedding of the D7-brane, as an illustrative example.
In this example we follow the seminal work of [121].

We have already mentioned that the ninth and tenth dimensions are transverse to both the background
branes and the D7-probe. We separate the different branes by a finite, constant distance -L- in those
directions and consider the fluctuations:

X8 = 0 + 2πα′φ1 , X9 = L+ 2πα′φ2 , (6.8)

where in the above, φ1,2 are the fluctuations that we wish to study.

The Lagrangian describing the dynamics of the these scalar fields is given by

L '
√
−P [G]ÂB̂

(
1 + 2(Rπα′)G

ĈD̂

r2
(
∂Ĉφ1∂D̂φ1 + ∂Ĉφ2∂D̂φ2

))
, (6.9)

the indices are all defined on the probe D7-brane and we have implicitly used the static.

In order to determine the supergravity mode solutions and the mass spectrum for the above equations
we need to study the equations of motion resulting from the above. It is clear that the two independent
fluctuations have the same equations of motion given by:

∂Â

(
ρ3
√
G̃

ρ2 + L2G
ÂB̂∂B̂X

)
= 0 , (6.10)

where in the above G̃ is the determinant of the metric on S3 and by X we denote either of the
fluctuations. This can be fully expanded to give

1
ρ3∂ρ

(
ρ3∂ρX

)
+ R4

(ρ2 + L2)2∂
µ∂µX + 1

ρ2∇
i∇iX = 0 , (6.11)

with ∇i the covariant derivative on the S3.

We can use separation of variables to make an ansatz for the modes of the following form:

X = eik
µxµf(ρ)Y` , (6.12)

with k2 = −M2 being the mass of the fluctuation and Y` being the spherical harmonics on the S3 for
which we know the eigenvalues

∇i∇iY` = −`(`+ 2)Y` . (6.13)

Taking the above into consideration and inserting the ansatz equation (6.12) into the equations of
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motion equation (6.11), we obtain

∂2
ρf + 3

ρ
∂ρf +

(
R4M2

(ρ2 + L2)2 −
1
ρ2

)
f = 0 . (6.14)

The above equation can be solved in terms of hypergeometric functions. Before presenting the solution,
we feel that it is necessary to briefly present the the criteria of validity for the solution. We require that
the resulting function is real-valued, regular, small in amplitude and normalizable. Taking all these
into consideration leads to the mode solution

f(ρ) = ρ`

(ρ2 + L2)n+`+1 2F1

(
− (n+ `+ 1) ,−n, `+ 2,− ρ

2

L2

)
, (6.15)

with the masses of the states being described by

M = 2L
R2

√
(n+ `+ 1) (n+ `+ 2) . (6.16)

In the above, n is a quantum number associated with the nodes of the mode solution equation (6.15)
and ` is the quantum number associated with the angular momentum on the internal manifold. We see
that the spectrum is gapped, discrete and the mass scale is set by L; the relavant distance of the probe
D7 with respect to the background stack of D3s.

It is, also, quite interesting to investigate the behaviour of the solution at infinity. This particular
limit is associated to the high-energy properties of the field theory. In this regime we can ignore te
mass of the quarks, and the theory becomes a CFT. In other words, as we approach the ultraviolet
(UV) the theory under examination flows to the one described by L = 0. As we approach ρ→∞, the
behaviour of the mode solutions equation (6.15) is related to the UV operator with the lowest conformal
dimension, ∆. This has the quantum number of a meson state [105, 106, 121].

If the kinetic term of the fields were canonically normalized, the behaviour would be given by 1/ρ∆ for
the normalizable part and 1/ρ−4+∆ for the non-normalizable one. However, in this case the kinetic
terms are not canonically normalized and the UV behaviour is given by ρ−∆+k and ρ∆−4+k, for a given
value of k. In this case, all we need to do it to subtract the exponents and we can obtain the conformal
dimension. To that end, let us briefly state a very useful relation in the ρ→∞ of the hypergeometric
function

2F1

(
A,B,C,− ρ

2

L2

)
∼ Z1
ρ2A + Z2

ρ2B , (6.17)

where we have neglected to write explicitly some unimportant factors of Γ-functions.2 Under the
assumption that B > C, the first term of the expansion corresponds to the non-normalizable part and
the second one is the normalizable piece.

With this at hand we can obtain a formula for the conformal dimension of the operator, which is

∆ = 2 +B −A , (6.18)
2They can be obtained very straightforwardly by expanding in any computer software.
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which is the particular case of interest yields

∆ = `+ 3 . (6.19)

Of course, it is possibe to continue this line of investigation for the other operators that appear in the
setup. We refrain from doing so, as this was meant to be just an illustrative example and there exists a
wonderful analysis in [121] of all bosonic states.

6.1.3 Chiral symmetry breaking and dilaton flows

We can take another step towards the more faithful holographic description of asymptotically free gauge
theories, by finding a gravitational way to mimic the running of the coupling in the gauge theory. This
can be achieved by considering a dilaton flow. A dilaton flow allows the dilaton field of the theory to
obtain a non-trivial profile that depends on the radial coordinate. As an effect, the AdS space gets
distorted.

The breaking of chiral symmetry in the field theory picture

In order to describe chiral symmetry and its breaking, let us consider the case of massless QCD with
three flavours of quarks, which is described by the Lagrangian

L = −1
4F

a
MNF

a,MN + ψ̄L /DψL + ψ̄R /DψR , (6.20)

where we have written the left and right chiral projections of the Dirac spinor, ψ.

In this massless limit that we have considered, it is easy to see that the transformations3

ψL → e−iθL·λψL , ψR → e−iθR·λψR , (6.21)

leave the theory invariant. In the above λa, with a = 1, · · · , 8 are the SU(3) generators and the θL,R are
parameters related to the SU(3) left and right-subgroups. Hence, the statement is that the Lagrangian
of the theory is invariant under the SU(3)L × SU(3)R. We want to stress that the U(1)A that would
make the theory invariant under the U(3)L × U(3)R is anomalous [127, 128]. The exception to that
picture is only in the limit of small number of flavours, Nf � Nc, in which case the traingle diagram
that is the underlying reason for the anomaly is suppressed when performing the 1/Nc expansion of the
theory. Thus, in the large-Nc limit there is also a U(1)A symmetry.

There are two ways to break this chiral symmetry. The first one is an explicit breaking of the symmetry,
which amounts to considering a mass term, mψ̄ψ. The other way is its spontaneous breaking. In this
case the strong dynamics of the theory triggers a VEV for the operator

〈ψ̄ψ〉 6= 0 . (6.22)

3We can also express these tranformation rules as vector and axial ones by considering θV = 1
2 (θL + θR) and

θA = 1
2 (θL − θR). In other words the theory is invariant under the SU(3)V × SU(3)A.
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In both cases described above, the flavour symmetry is broken down to a single SU(3)V .

The gravitational picture

The above symmetry breaking picture can be realized holographically. We keep in mind the large-Nc

limit and we will discuss the breaking of a simple U(1)A symmetry.4 The fields transform

ψL → eiαψL , ψR → eiαψR . (6.23)

There are, by now, some very famous examples of non-supersymmetric and confining supergraviy
backgrounds [118, 131, 132]. In this section we are focusing on the Constable-Myers solution [118].
This background is a particular example of a dilaton flow. From the point of view of the supergravity
theory, in order to obtain solutions like that, we simply search for a solution of the type IIB equations
with the dilaton being a non-trivial function depending on the holographic radial coordinate.

We will be working in the Einstein frame. The geometry describing the Constable-Myers solution is
given by [118]

ds2 = h−
1
2

(
w4 + b4

w4 − b4

) δ
4

ηµνdx
µdxν + h

1
2

(
w4 + b4

w4 − b4

) 2−δ
4 w4 − b4

w4

6∑
i=1

dw2
i , (6.24)

where in the above, the parameter b determines the geometric deformation via

δ = R4

2b4 , (6.25)

with R begin the AdS radius and we also have

h =
(
w4 + b4

w4 − b4

)δ
− 1 , w2 =

6∑
i=1

w2
i . (6.26)

In this coordinate system, the dilaton and the four-from have the expressions,

e2φ = e2φ0

(
w4 + b4

24 − b4

)∆

, C(4) = − 1
4hdx

0 ∧ dx1 ∧ dx2 ∧ dx3 , (6.27)

with
∆2 + δ2 = 10 . (6.28)

It is quite clear, just by performing an expansion for large-w, that the geometry above returns to the
familiar AdS5 × S5. Hence, the field theory in the UV of the theory is still the N = 4 SYM. In the IR,
however, owing to the deformation due to the dilaton flow, conformal invariance is broken. The scale is
set by the parameter b, which is equivalent to the ΛQCD in the gauge theory [41],

Λb = b

2πα′ . (6.29)

4There is also an approach that realizes the non-abelian chiral symmetry breaking [129, 130].

69



The R-symmetry, SO(6), of the geometry is not broken and hence the equivalent gauge theory
deformation must not break the R-symmetry of theory. By looking at the b and the way it enters with
the radial direction in the AdS description we can easily conclude that it is an operator of dimension 4.
The natural candidate is the uncharged under the R-symmetry, dimension 4, trF 2 operator in the field
theory. The interpretation of this geometry is that it describes the N = 4 theory, but with a source
that is forcing it go away from the supersymmetric vacuum.

6.2 Early bottom-up models

We now turn our focus to the bottom-up approach of modelling QCD and QCD-like theories using
a simple holographic framework. These models have been dubbed AdS/QCD in the literature, and
the starting point is a much simpler gravity description in terms of an AdS5 geometry [123]. On its
boundary, we wish to have a QCD(- like) gauge theory. For unit radius the metric describing this class
of models is given by

ds2 = r2ηµνdx
µdxν + 1

r2dr
2 . (6.30)

In order to reflect all the phenomenology properties of the QCD(-like) gauge theories, the bulk must
contain fields appropriately, such that they correspond to the necessary operator-source combination in
the field theory language.

We want to introduce a scalar field of dimension ∆ = 3 - or equivalently M2 = −3 - in order to
account for the quark mass and the condensate. We also need two massless gauge fields, of dimension
∆ = 1, that correspond to current operators of the SU(Nf )L,R.5 Collecting all these different pieces of
information, we are able to write an action in the bulk that encodes the basic properties of a QCD-like
gauge theory, given by [41]:

S =
∫
d4xdr

√
−detGMNTr

(
(DMX)†(DMX) + 3X†X − 1

4g2
5

(
FL,MNF

MN
L + FR,MNF

MN
R

))
,

(6.31)
with the covariant derivative being given by

DMX = ∂MX − iLMX + iXRM , (6.32)

and the field strength
FI,MN = ∂MIN − ∂NIM − i[IM , IN ] , (6.33)

where I = {L,R} and IM = Ia,M ta. The choice for the scalar field is

X(~x, r) = L(r)e2iπa(~x)ta , (6.34)

which is inspired from the effective chiral Lagrangian approach [133]. Fluctuations in the ~x coordinates
of the scalar describe the pion fields of the theory. The radial coordinate in the energy scale and is
mapped to the renormalization scale of the field theory.

5The relation of a general massive p-form M2 = (∆− p)(∆ + p− 4) [80].
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There is still one issue that we have not yet addressed. Since we have an AdS5 spacetime in the bulk, it
is implied that there is a conformal symmetry in the field theory. However, QCD(-like) theories are not
invariant under the conformal group, and thus this is an undesired property that we need to take care
of. There are two ways to achieve that [41]:

• Hard wall models [123, 134]: by hard wall what we mean is that we impose a boundary at some
fixed point r = rfixed into the spacetime. This has as an effect the breaking of the SO(2, 4)
isometry and hence the conformal symmetry of the field theory. The model is valid in the region
rfixed < r <∞, or in other words by introducing the hard wall we cut out a chunk of the bulk
geometry. The boundary that we have imposed, rfixed, acts as the QCD scale, ΛQCD, in the sense
that it is the only scale in the system that we are able to use to set dimensionful parameters. It
is worthwhile noting that a drawback of these models is that the Regge trajectories of the excited
meson states are not of the right form, rather they are described by M2

n ∼ n2.

• Soft wall models [135]: An alternative method to the above that fixes the issue of conformal
invariance of the field theory is the introduction of a soft wall in the model. The soft wall means
that we are introducing a non-trivial dilaton, φ(r), in the bulk description. The introduction of
the dilaton modifies the action in the following way:

S =
∫
d4dr

√
−detGMNe

φ(r)Tr

(
(DMX)†(DMX) + 3X†X − 1

4g2
5

(
FL,MNF

MN
L + FR,MNF

MN
R

))
,

Chossing a dilaton profile of the form φ(r) ∼ 1/r2 not only breaks the conformal symmetry of the
boundary field theory, but also a r → 0 yields the correct Regge trajectories; M2

n ∼ n.

6.3 Dynamic AdS/Yang-Mills

Finally, we are at a position to explain the Dynamic AdS/Yang-Mills model -originally it was called
Dynamic AdS/QCD- that was originally developed in [136], which we used to make predictions for
Beyond the Standard Model setups in chapter 8. The Dynamic AdS/Yang-Mills model can be seen as a
hybrid between the two approaches described so far, as it is based on the bottom-up AdS/QCD models
but is heavily infuenced by the top-down D3/D7 models.

We work in a five-dimensional spacetime as we did previously. The bulk geometry in this case is given
by

ds2 =
(
ρ2 + L2

)
ηµνdx

µdxν + 1
ρ2 + L2dρ

2 , (6.35)

where in the above L = L(ρ). This metric is heavily inspired by the D3/probe-D7 and we see that as
in that case here as well the scalar field L(ρ) enters the metric. We can define a new “variable”, as
r =

√
ρ2 + L2, which is identified as the renormalization scale of the field theory - once more in accord

with the D3/probe-D7 setup.
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The action describing the dynamics of the bulk fields is given by:

S =
∫
d4dρρ3Tr

(
(DMX)†(DMX) + ∆m2

ρ2 |X|
2 + 1

2g2
5

(
FL,MNF

MN
L + FR,MNF

MN
R

))
, (6.36)

with
X = L(ρ)e2iπata . (6.37)

Since we have already discussed the basic properties and the action of AdS/QCD models, the action
of the Dynamic AdS/Yang-Mills model might seem as being the same as the previous ones. However,
such is not the case. Other than the difference in the metric which is used in all contractions, a closer
look at the metric reveals the choice √−g = ρ3 rather than the expected result √−g = (ρ2 + L2)3/2

by using the metric equation (6.35). This is because the ρ3 factor has been imported directly from
the top-down D3/probe-D7 description. This is an important feature as it guarantees the soft-wall
behaviour in the infrared of the theory. For L 6= 0 the radial “coordinate” cannot have access to the
very deep infrared. In other words, r > L for arbitrarily low values of the holographic coordinate ρ.
In the L→ 0 limit the metric returns to pure AdS5 and the theory becomes conformal. A third very
interesting feature is the appearance of a term proportional to |X|2 = L2 which is inherited directly
from the action of the D3/probe-D7 with a dilaton flow. This allows the scalar field to have a radially
dependent bulk mass. In the field theory, the dimension of the operator q̄q depends on the energy. In
the limit ∆m2 = 0, the bulk scalar mass is once again M2 = −3.

In chapter 8 we use this holographic model to obtain predictions -meson masses and decay constants-
for a number of phenomenologically interesting models in the context of Beyond the Standard Model
physics. A detailed discussion on meson dynamics can be found in [136] where this model was originally
suggested as well as in [137, 138] and the most extended description can be found in [139]. Below, we
briefly want to comment on some basic aspects that we believe deserve a detailed explanation and
provide a more thorough understanding of the general framework. Our main focus is the fermionic
sector which was left unexplored in the past.

We wish to understand what value the g5 coupling has, and hence we need to know how to evaluate the
vector two-point function in the framework of Dynamic AdS/Yang-Mills. Then, we match the result
to the vector-vector correlator computed in perturbative QCD. Below we briefly describe this general
procedure. We are following [123, 140] in our brief description. A detailed computation can be found,
[139, see for example the discussion around page 73 and Appendix E]. The first step of the approach is
to find the solutions to the equations of motion for the vector gauge field. Then we need to evaluate the
action on that particular solution. This computation yields the vector-vector correlator of the theory,
and the result is given by [140]

ΠV V

(
q2
)

= 1
g2

5
log(q2) . (6.38)

The above has to be compared to the result obtained from perturbative QCD considerations, which is
[141]

ΠV V

(
q2
)

= NfNc

24π2 log(q2) . (6.39)
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By matching the two expressions above, we can immediately see that

g2
5 = 24π2

NcNf
. (6.40)

6.3.1 Solving the embedding and deriving the vacuum

We want to find the vacuum configuration of the model. In order to do that, we are setting all fields to
zero except for the scalar L(ρ). We want to study its solution. The action for the scalar field, L(ρ), is
given by

S =
∫
d4xdρρ3

(
(∂ρL)2 + ∆m2L

2

ρ2

)
. (6.41)

For the limiting value ∆m2 = 0, the ultraviolet solution to the equations of motion is given by
L = m + c/ρ2, with m being the quark mass and c = 〈q̄q〉 the chiral condensate. If we move away
from the limiting case and we assume ∆m2 6= 0, then we are allowing the scalar to have a mass that is
a function of ρ, ∆m2 = ∆m2(ρ). In turn, this implies that the clasical dimension of the 〈q̄q〉 gets a
correction; the anomalous dimension.

If we correct the conformal dimension of a field theory operator from ∆ to ∆− γ, then the mass of the
bulk scalar field gets a shift from M2 to M2 + ∆m2, and thus obtaining

(∆− γ)(∆− γ − 4) = M2 + ∆m2 , (6.42)

and keeping in mind that M2 = ∆(∆− 4), we obtain the following

∆m2 = γ2 − 2γ(∆− 2) . (6.43)

For the 〈q̄q〉, we have ∆ = 3 and the final relation, equation (6.43), becomes ∆m2 = γ(γ − 2). The
profile of the non-trivial function we have introduced, ∆m2(ρ), can be imposed simply by using the
result of the perturbative anomalous dimension for the gauge theory at one-loop level, which is

γ = 3C2(R)
2π αs . (6.44)

In the above we have denoted by αs the two loop-perturbative running of the gauge coupling. Also, R
stands for the specific representation under examination of the quarks. Under the assumption that
γ � 1 we can expand the result and to leading order we get:

∆m2 = −2γ , (6.45)

and furthermore we obtain
∆m2(r) = −3C2(R)

2π αs , (6.46)

where in the above r =
√
ρ2 + L2 and we remind the reader that is mapped to the RG scale, µ. We

should stress at this point that beyond the weak-coupling regime, the perturbative result for the
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anomalous dimension is not rigorous. However, as we shall see, extending the validity of the result to
the non-perturbative regime gives reasonable results.

The equation of motion for the bulk AdS scalar reads

∂ρ(ρ3∂ρL)− ρ∆m2L = 0 , (6.47)

where we have implicitly assumed that ∆m2 is an arbitrary constant. For the case of a constant and
non-zero ∆m2 the solution to the equation of motion is

L = m

ργ
+ c

ρ2−γ . (6.48)

Finally, we want to comment on a more general situation. Now, we are allowing ∆m2 to be a non-trivial
function of ρ, but only at the level of the equations of motion. However, in this case the general solution
of equation (6.47) cannot be found analytically and we are forced to resort to numerics. In order to do
so, we need to impose initial conditions for the problem under examination. We choose said conditions
to be given by

L(ρ = ρIR) = ρIR , ∂ρL|ρ=ρIR = 0 . (6.49)

It is quite obvious that these boundary conditions are inspired -or perhaps a bit more accurately almost
directly imported- from the D3/probe-D7 system. Recall that in the latter case they are given by
L(ρ = 0) =constant and ∂ρL = 0. The difference is that in this bottom-up model that we are utilizing
here, they are imposed at the RG scale as is related to the ρ-coordinate. In other words, the initial
conditions we set in our description enforce the masses to be less than the energy scale.

In chapter 8, we will see many examples of solutions to the embedding equation we described above,
with different groups and different matter fields. However, we feel it necessary for illustrational purposes
to present here an example as well. We choose to study the vacuum configuration of an SU(3) theory
with 3 flavours of quarks in the fundamental representation of the gauge group and the result is shown
in figure 6.1. Chiral symmetry breaking should be obvious, as the quark mass mass starts from zero
and gets a non-zero value as we move deep into the infrared of the theory.

0 2 4 6 8 10
ρ0.00

0.05

0.10

0.15

L(ρ)

Figure 6.1: The SU(3) theory with Nf = 3 flavours in the fundamental representation. The boundary
condition that we imposed on the β-function is α(0) = 0.4.
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6.3.2 Chiral symmetry breaking and the Breitenlohner-Freedman bound

One central aspect of the QCD(-like) theories that we wish to examine is whether chiral symmetry
breaking can be triggered as the running of the gauge coupling passes through its critical value. An
immediate question we address to answer here is how this feature is manifested in the gravitational
bulk model we are considering. We have seen that chiral symmetry breaking occurs when the coupling
constant passes though a critical value. This forces the chirally symmetric ground state of the system
to become unstable. Let us consider the situation in the bulk theory. In flat spacetime, a field that
has a negative mass-squared is not a stable state. We have already seen that this is also true in AdS
spacetimes, with the extra feature that some negative values are allowed and below a specific threshold
the theory becomes unstable.

Scalar fields in AdS5, as we have seen, must satisfy the BF-bound given by

M2 < −4 . (6.50)

What happens if the mass of the q̄q scalar operator is driven below this bound? The theory will become
unstable around the initial global minimum. In our bottom-up model, the instability occurs when the
mass of the L(ρ) scalar is driven below that point. This relates to a specific value of ∆m2 which is
∆m2 = −1. We can recall that the scaling dimension of the field is ∆ = 3 and we arrive at the value
γ = 1 when the instability occurs.

Here we encounter an important aspect of the model. If we were to violate the BF-bound and the
scalar L(ρ) to become unstable, while at the same time mapping the renormalization group scale, µ,
with the AdS radial coordinate, ρ, without any modifications we would have obtained a theory with a
scalar field that has an unbounded from below potential and hence the model would not make sense.
This is why the identification, µ =

√
ρ2 + L(ρ)2, saves the model from undesired features. For finite

values of the field L the deep IR of the theory is never accessed and we can retain stable AdS solutions
but for different vacuum configurations, which are related to the fact that 〈q̄q〉 6= 0.

In terms of the L− ρ plane we can consider the circular region given by

L2 + ρ2 ≤ µ2
0 , (6.51)

where µ0 is the scale of chiral symmetry breaking. This can never be reached by the field. The vacuum
solution of the embedding function has a profile that increases from the IR to meet the BF bound close
to the condiiton L = ρ, which is the mass-shell condition. Below that point, the fields are decoupled
from the theory. Of course we keep in mind that in our bottom-up model we have kept only the lowest
order terms of the DBI expansion. If all terms were considered, the situation would have been corrected
and the matching ρ = L woud be exactly at µ0.
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Chapter 7

Worldvolume fermions in probe-brane
systems1

7.1 Why bother with fermions at all?

It has long been a matter of interest whether strongly coupled gauge theories can generate light or even
massless fermionic bound states (baryons), since these might form the basis for a composite model of
standard model fermions [142]. A related problem is to generate the experimentally observed top quark
mass in composite Higgs models, in which the Higgs particle is a pseudo-Nambu Goldstone boson. This
requires baryonic top partners [143, 144] that are light relative to the typical hadronic scale in the
strongly coupled sector. The AdS/CFT correspondence [23, 105, 106] has provided a new window on
strongly interacting gauge dynamics that may potentially be useful as a new approach to Beyond the
Standard Model (BSM) physics. It motivates us here to look afresh at a mechanism for generating
light or massless baryons in top-down holographic models, in which the use of a top-down string theory
D-brane construction provides control over the field content of the dual gauge theory. As a starting
point for new BSM analyses, we begin by carefully fixing the details of top-down gauge/gravity duality
models required for investigating fermionic modes. Somewhat removed from the phenomenological BSM
models mentioned, we study a rigorously understood top-down construction of an N = 2 gauge theory
with massive quarks. In this theory, the meson states and their supersymmetric partners, the mesinos,
can be analytically computed -in some brane setups- and lie at a scale determined by the quark mass.
We will, also, determine how higher dimension operators may be used to generate abnormally light
mesino states. There are two sets of mesino states corresponding to different representations of the
supersymmetry algebra. One of them is very similar to a QCD baryon multiplet since the lowest mass
entry in this multiplet consists of a product of three elementary fermion fields (of course a true baryon
at large Nc is made of Nc quarks and must be represented by a baryon vertex in the dual [103]).

1Research presented in this chapter is based on two papers. The first [1] was in collaboration with Raimond Abt, as
well as my supervisor Nick Evans and Johanna Erdmenger. My main contribution was to derive the second-order equations
of motion and perform the numerical analysis of the mass spectrum and the effect of the double-trace deformations. In [3]
my main contributions were the derivations of the results in the D2/D6 setup and probe branes in the D3 background, the
study of the large-Nc limit and the derivation of the avoided level-crossing.
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Let us consider the vanilla D3/probe D7-brane system [41, 120, 121] as simple illustrative example.
It provides a clean holographic description of a strongly coupled gauge theory with quark matter for
which an easily calculable dual description exists. The gauge theory is an N = 2 supersymmetric
theory with hypermultiplets added to the base N = 4 super Yang Mills theory. The gravity dual in
the quenched approximation consists of probe D7-branes embedded in AdS5 × S5 space that wrap a
subspace which asymptotically near the boundary is AdS5 × S3 [120]. The quark mass and condensate
are explicitly present in the model as holographic modes and determine the near-boundary behaviour
of the embedding functions. The meson spectrum, corresponding to fluctuations of the brane about
their vacuum configuration, was computed in [121]. The fermionic spectrum in the massless theory
was fully derived in [82]. In the same paper, a phenomenological bottom-up rule was used to guess
the equations of motion for the fluctuations in the massive case, reproducing the expected spectrum,
with further results in [41]. A full derivation of the equations of motion for the massive case has been
completed in the unpublished notes [145]. Therefore, one of the first tasks we set ourselves here is to
provide an explicit derivation of these equations and to check the supersymmetric degeneracy of the
spectrum. The results in [146] are also a useful related reference.

So far, the model considered does not give rise to light baryons since the masses of the baryon-like
mesinos are tied to the meson spectrum by supersymmetry. To proceed, one possible addition to the
theories are higher dimension operators. Witten’s double trace prescription [147] allows such operators
to be introduced easily as modifications of the UV boundary conditions on the holographic solutions.
Previously this has been done in the D3/D7 system for Nambu-Jona-Lasinio type four-fermion operators
in [148]. Here, instead, we consider adding operators of “mesino squared” form which naively will
generate a shift in the mesino mass in the effective description of the low-energy hadrons. We show that
as the coupling of these operators is raised, the mesino masses can be driven to light values relative
to the rest of the spectrum. For small values of the coupling of this operator, the shift in the mesino
mass is small and linear, but above a critical value of the coupling the shift in the mesino mass is
suddenly sharp and much larger. Inspite of this, the mesino mass can only be pushed to zero for
asymptotically large values of the coupling, presumably reflecting that fermionic states cannot become
tachyonic and condense. Our approach provides at least one (tuned) mechanism for generating light
composite fermions in strongly coupled gauge theories. We also study the radially excited states of the
mesinos and show that their masses are bounded from below and do not become light along with the
lowest state whose mass approaches zero.

7.2 A more formal elaboration

The AdS/CFT correspondence [23, 105, 106] asserts that certain field theories are dual (equivalent)
to string theory in an AdS space. The original proposal was generalized shortly after its discovery
to a more general notion of gauge/gravity dual pairs in various dimensions, by considering different
Dp-branes [149]. The prescription is, tersely, to consider a stack of Nc Dp-branes that coincide and take
the limit in which the brane modes decouple from the bulk. We are left with a super Yang-Mills (SYM)
theory with a U(Nc) gauge group on the (p+ 1)-dimensional worldvolume of the Dp branes. This SYM
theory is dual to string theory in the near-horizon limit of the background induced by the stack of
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Dp-branes. For any Dp-brane with p 6= 3, the holographic gauge description is a non-conformal theory,
since the Yang-Mills coupling carries dimensions. The energy scale of the gauge theory is mapped to
the radial coordinate in the gravity side which is orthogonal to the branes. The absence of conformal
invariance manifests itself in the bulk by the non-trivial radial profile of the dilaton as well as the
spacetime curvature. The supergravity approximation holds when the string coupling is weak and the
curvature small. It gives a theory which is trustworthy for an intermediate regime of energies, where
the dual gauge theory is always strongly coupled. For the case p = 3, the supergravity description is
valid for all energy regimes as the dilaton is just a constant. A classic review of the AdS/CFT with a
detailed exposition to the above as well as other basic ideas is [100].

In its original form, the AdS/CFT relates Type IIB string theory in AdS5 × S5 to the four-dimensional
N = 4 SYM. All matter fields transform in the adjoint representation of the gauge group. For the
supergravity descriptions of confining gauge theories [150], it is possible to calculate the spectra of
glueball states by considering the corresponding spectra of supergravity modes such that the classical
solutions to equations of motion are normalisable. There is extensive work on glueball spectra and we
cannot do justice to the literature so we mention indicatively some of the main papers [151–154].

One of the main questions that the community tried to understand since the early days of the duality
was how to add fields that transform in the fundamental representation of the gauge group, such
that the duality contains matter in appropriate group representations, and thus taking the duality a
step closer to the more interesting quantum field theories and thus making the correspondence more
physical and appealing. An early variant of the AdS/CFT describing a field theory with matter in
the fundamental representation related the conformal Sp(2Nc) with N = 2 theory to D3-branes near
singularities in F-theory; string theory in AdS5 × S5/Z2 [155–157].

In a landmark paper [120], Karch and Katz showed that adding D7 branes in the probe limit - such
that the D-branes do not backreact to the background geometry - is the appropriate way to add matter
fields transforming the fundamental representation of the gauge group in the original setup with the
D3-branes that generate the AdS5 × S5 background. The addition of Nf D7 branes in the AdS5 × S5

background is equivalent to coupling Nf hypermultiplets in the fundamental representation of the
original SYM theory. The probe (or in the field theory language the quench) limit corresponds to having
Nf/Nc → 0. The stretched strings between the two different branes are the fields that we consider as
dynamical quarks, specifically the lightest string states that stretch between the two different types of
branes. Adding the D7 branes reduces the supercharges by half compared to the original setup and
the resulting four-dimensional N = 2 theory has quark-antiquark bound states (mesons) and in the
decoupling limit the exercise of studying the dynamics and the masses of these states is equivalent to
computing the classical equations of motion of open strings. The seminal paper exploring these ideas is
[121] where the analysis was performed for the D3-probe D7 system.

A number of directions have been undertaken in order to construct gravity dual descriptions of QCD-like
theories. Chiral symmetry breaking has been described in [122, 129, 158, 159] and the meson spectra
of brane intersections with eight supercharges have been computed in [160, 161]. For more details
on flavour physics and mesons in the context of the gauge/gravity duality see the review [41]. The
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aforementioned works are all in the probe (in gravity terms) or the quench limit (in the field theory
language) of the correspondence such that the branes do not backreact to the geometry. Considerable
efforts have been made beyond this approximation. For an excellent review on unquenched flavours in
the AdS/CFT see [162].

While much effort has been put and progress has been made towards the understanding of the bosonic
sectors of adjoint matter fields comprised out of the fundamental quarks (meson fields), much less
attention has been given to their supersymmetric partners. There are some reasons for this.

To begin with, in cases with any amount of supersymmetry the spectra of fermionic states can be
derived using representation theory. This counting had been performed in [121] for the fermionic
superpartners of the bosonic meson states in the D3/probe-D7 setup. It is worthwhile mentioning that
while it is possible to obtain the mass spectra precisely due to the preserved amount of supersymmetry,
if one follows this approach then there is no access to the dynamics of world-volume fermions as the
equations of motion are missing.

In addition to that, these fermionic superpartners should be formally interpreted as fermionic meson
states in the sense they are fermionic fields in the adjoint representation of the N = 2. Such a state
has no counterpart neither in the real-world QCD theory nor in any non-supersymmetric version of
QCD-like theories. In other words, it can be characterized as a purely supersymmetric effect.

A final hindrance was the form of the fermionic completion to the DBI action. Before the work of
[163–165] that particular part of the action was written in superspace [166, 167]. In spite of the compact
form of the action and the elegance of the superspace techniques, using the superspace as the target
space of the theory obscures how the background fields enter the fermionic terms of the action. Hence,
with that particular formulation of the action at our disposal any explicit computations or considerations
involving the world-volume fermions cannot be performed. The work of [163–165] resolved precisely
that issue and presented an action for world-volume fermions written in terms of the spacetime.

Since the technology developed enough and made explicit computations involving world-volume fermions
possible the first explicit results in probe-brane holography started appearing. This was initiated in
[82] where the author considered the D3/probe-D7 intersection in the limit where the flavour branes
have collapsed on the background ones. In field theory terms, this corresponds to massless quarks.
From that effective bottom-up approach a replacement rule was invoked at the level of the equations of
motion that yields the correct mass spectra even for the case of the massive embedding of the flavour
brane. A follow-up to that work was presented in [168] where the authors followed the same line of
reasoning but for all possible probe-brane setups in the D3 background. Another very interesting result
was derived in [146], where the authors obtained the spectrum of bosonic and fermionic excitations of
1/2-BPS Wilson loops for a D3-brane in the AdS5 × S5 background.

With a formal understanding of the massive embedding in the D3/probe-D7 intersection being a
motivation as well as some phenomenological applications of holography and the use of fermions in
bottom-up models, the authors in [1] studied the top-down massive picture in all probe brane systems
in the presence of the D3 background and obtained the expressions for the supergravity states dual to
these fermions and the corresponding mass spectra. The work of [169] is also a top-down approach that
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investigates the D4-D8 setup in Type IIA supergravity and it pertains to the Sakai-Sugimoto model
[129]. It is worthwile pointing out that the authors in [1, 169] are using different approaches to finding
the mass eigenvalues. In [1] the authors also considered the effect of adding multi-trace operators to
these fermionic states following Witten’s prescription [147]. After a careful numerical analysis they
observed an avoided level-crossing as one approaches from a higher excited state the lower one in the
KK tower.

Another point made by the authors in that paper was that, after analysing the holographic dictionary,
they observed that some of the aforementioned fermionic states are made of three elementary Fermi
fields; two fields transforming in the fundamental representation (quarks) and one in the adjoint of
the gauge group (a gaugino). Hence, the observation that the lowest lying state of that particular
supermultiplet resembles qualitatively—by means of the same structure—the baryon operators in
real-life QCD.

In this work we continue in a natural line of the aforementioned research and we study all possible
probe-branes intersections in Type IIA/B supergravity theories that have been shown to preserve
eight supercharges; N = 2 SUSY in a four-dimensional language. Since the bosonic mass spectra are
explicitly known in these cases [160, 161] the interest lies in the deeper understanding of the dynamics of
fermionic open-string states and unveiling potential computational subtleties in the derivation that did
not appear in the study of probe-branes in the presence of the D3-background. We obtain the equations
of motion explicitly for each case starting from the fermionic action as was derived in [163–165] .

We show the expected supersymmetric degeneracy for the mass eigenvalues. For the case of the
D3-background there are analytic solutions that have been previously obtained [1] and we report these
here for completeness. All the other backgrounds do not admit analytic solutions for the eigenstates of
the equations of motion and the mass eigenvalues. For these cases we work in two different ways. To
begin with, we perform a careful numerical analysis and obtain the mass eigenvalues directly from the
fermionic equations of motion. We see that in each case they are the same as the corresponding results
anticipated from the analysis of the bosonic meson states and their equations of motion.

Furthermore, we were able to derive a map such that we bring the equations of motion describing
world-volume fermions in our brane intersections to the relevant equations of motion describing bosonic
degrees of freedom in these setups. Here some comments are in order. Due to the two eigenvalues of
the spinor spherical harmonics we have two sets of supergravity fields. We denote those associated
with the positive eigenvalues by G. These are the superpartners of the gauge fields on the probe-brane
which have a non-trivial profile only on the internal manifold. More explicitly, these gauge fields are
decomposed as Aµ = 0, Aρ = 0, Ai = a(ρ)eikµxµY`±i . From the negative eigenvalue of the spinor
spherical harmonic we obtain modes which we generically denote by F and they are the superpartners
of the scalar fields obtained as fluctuations of the transverse coordinates.

For both types of the fermionic modes described above we were able to map the equations of motion
associated with the positive eigenvalue of the projection Γ-matrix defined along the holographic radial
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coordinate (ΓρΨ± = ±Ψ±) to the associated bosonic equations of motion. The map is given by

ψ⊕G`(%) = 1
(1 + %2) 3

16 (7−p)
f`+1(%), ψ⊕F`(%) = 1

(1 + %2) 3
16 (7−p)

f`(%), (7.1)

where in the above we denote by ⊕ superscript the supergravity modes obtained by considering the
projection ΓρΨ⊕ = Ψ⊕ and we reserve the 	 for the negative eigenvalue of the projection.

While at this point the reader might be concerned that we were able to map only the equations of
motion related to one of the Γρ eigenvalues, there is nothing out of place in doing so. We are able to
deduce the eigenstates and mass eigenvalues from either of the equations of motion. The reasoning
behind this is simple: we start with two coupled first-order equations of motion that describe a source
and the relevant operator. Then, we derive the second-order equations of motion starting from the
first-order ones. In doing so we act with an appropriately chosen differential operator and we create a
double-copy of the operator and the source [1, 170]. Hence, the equations of each eigenvalue of the Γρ

matrix contains a copy of the source and a copy of the operator. By requiring normalizable open-string
modes in the UV in either of the equations we are setting the source to zero and hence each second-order
differential equation yields the correct answer individually. This procedure is made more precise and
explained thoroughly in section 7.4.1. We also, further support and refine the argument that these
states describe effectively baryons as we show that in large-Nc limit their mass scales as

M2 ∼ N2
c , (7.2)

when we fix the quantum number n which counts the nodes of the state and the angular quantum
number `. This scaling in large-Nc limit of the theory is a purely field theory expectation [171]. The
results described by equations (7.1) and (7.2) constitute the two main points of this work. The third
main result is the explanation of the avoided level crossing, which is explained in section 7.8.

Furthermore, the authors of [1] observed an avoided level crossing when examining the inclusion of multi-
trace interactions without giving an analytic explanation for the effect. We revisit that computation
and give an analytic justification to the observed avoided level crossing by bringing the equations of
motion in a Schrödinger form and examining the solutions of the supergravity modes. Interestingly,
such a crossing has been shown to occur when considering instanton configurations in the probe-brane
setup [172].

At this point, we would like to clarify that we do not claim that we have solved the true string
baryonic vertex. In the large-Nc limit a baryon is made of Nc fundamental fields (quarks) and has to
be appropriately described in the gravity side. The description is well known [103]. Witten has shown
that in the base N = 4 SYM theory a baryonic vertex is obtained by a wrapped D5-brane over the
S5. Since we have not considered the addition of the five-branes in our basic D3/probe-D7 model, we
do not approach baryons directly in this work. However, we believe that the spectrum we obtain in
section 7.6 should be obtained from the full string construction in the limit where the boundary gauge
theory is in the conformal window. This result was obtained in an effective, bottom-up way in [82],
however a 10-dimensional derivation was lacking, which we provide here.
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7.3 Background spacetime and probe-brane geometries

In this section we wish to establish notation and conventions, as well as set the stage for the analysis
of the forthcoming sections. The analysis presented below in section 7.3.1 and section 7.3.2 has been
performed a number of times in the past [124, 160, 161], however we do find it convenient and useful to
quote once more the basic results here.

7.3.1 The background geometry

We will be considering the brane junctions of a Dp-brane and a Dk-brane (under the assumption that
p ≤ k) along a number d of common spatial dimensions such that the system is 1/2-BPS. We will
denote this intersection by {d, p, k}. The lower dimensional brane is treated as the background one,
while we treat the other one as the probe. Taking into consideration the above physical constraints, one
can verify that there are three possibilities for consistent intersections: {p, p, p+ 4}, {p− 1, p, p+ 2},
and {p− 2, p, p}.

The supergravity background geometry that describes a stack of Nc coincident Dp-branes is given by

ds2 = 1√
Hp

dxµdxµ +
√
Hp d~Z · d~Z , (7.3)

written in the string frame. The µ is taking values over a (p+ 1)-dimensional Minkowski spacetime
parallel to the branes, while the Z-coordinates parametrize the (9− p)-dimensional transverse space.
In the above, p ≤ 4, while the expression of the harmonic function Hp is of the following form

Hp = 1 +
(
R

r

)7−p
, (7.4)

with R being given by

R7−p = 25−pπ(5−p)/2 gs Nc Γ
(7− p

2

)
(α′)(7−p)/2, (7.5)

where in the above Nc is the number of the background Dp-branes, gs is the string coupling constant,
and α′ is the inverse string tension. We will be working in the decoupling limit where the open string
modes decouple from the closed string modes, thus, α′ → 0 and

lim
α′→0

g2
YM = lim

α′→0
(2π)p−2 gs α

′(p−3)/2 = fixed . (7.6)

Taking the near-horizon limit, the geometry of equation (7.3) takes the form

ds2 =
(
r

R

) 7−p
2
dxµdxµ +

(
R

r

) 7−p
2

d~Z · d~Z, (7.7)

while the dilaton and the Ramond-Ramond (R-R) potential can be expressed in terms of the r-coordinate
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as follows

eφ =
(
R

r

) (7−p)(3−p)
4

, C(p+1) =
(
r

R

)7−p
dx0 ∧ . . . ∧ dxp . (7.8)

For probe embeddings a particular useful re-parametrization of the near-horizon geometry is to choose
spherical coordinates and re-express the spacetime. This can be achieved as follows: consider the
introduction of the probe Dk-brane in this background which extends along the directions

XÂ = {t, x1, x2, · · · , xd, Y 1, Y 2, · · · , Y k−d}. (7.9)

The hatted capital Latin indices denote the coordinates of the probe Dk-brane. It is worthwhile stressing
that the set of Y -coordinates describes directions that are transverse to the background Dp-brane,
which means that they coincide with some of the Z-coordinates. The rest of the Z-coordinates which
are transverse to both background and probe branes will be denoted with ~w, namely

~w = {w1, w2, · · · , w9−p−k+d}, (7.10)

with wm = Zk−d+m, and m = 1, 2, · · · , 9− p− k + d. In order to introduce spherical coordinates on
the world-volume of the Dk-brane that is transverse to the Dp-brane, we define

Y 1 = ρ cos θ1 ,

Y 2 = ρ sin θ1 cos θ2 ,

... (7.11)

Y k−d−1 = ρ sin θ1 sin θ2 · · · sin θk−d−2 cos θk−d−1 ,

Y k−d = ρ sin θ1 sin θ2 · · · sin θk−d−2 sin θk−d−1 ,

which results to (
Y 1
)2

+
(
Y 2
)2

+ · · ·+
(
Y k−d

)2
= ρ2 , (7.12)

and (
dY 1

)2
+
(
dY 2

)2
+ · · ·+

(
dY k−d

)2
= dρ2 + ρ2dΩ2

k−d−1 . (7.13)

In the above relation

dΩ2
k−d−1 = dθ2

1 +
k−d−1∑
i=2

i−1∏
j=1

sin2 θj

 dθ2
i , (7.14)

is the line element of the unit (k − d− 1)-dimensional sphere.

Consequently, decomposing the Z-coordinates in the Y and w-coordinates, which are parallel and
transverse to the Dk-brane, respectively, we are led to

ds2 =
(
r

R

) 7−p
2

p∑
µ,ν=0

ηµν dx
µ dxν +

(
R

r

) 7−p
2

dρ2 + ρ2 dΩ2
k−d−1 +

9−p−k+d∑
m,n=1

δmn dw
m dwn

 , (7.15)
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where r2 = ρ2 +∑9−p−k+d
m=1 (wm)2.

7.3.2 The geometries on the probe branes

Let us start by considering the embedding of D(p+ 4) branes, with 0 ≤ p ≤ 4. We embed the flavour
probe-brane in the xp+5xp+6 · · ·x9-plane at a constant position |~w| = L 6= 0. The induced geometry on
the probe can be written as

ds2 =
(
r

R

) 7−p
2
ds2

(
M(1,p)

)
+
(
R

r

) 7−p
2
dρ2 +

(
R

r

) 7−p
2
ρ2 dΩ2

3 , (7.16)

where M(1,p) denotes the (1 + p)−dimensional Minkowski spacetime. The boundary gauge theory is a
(p+ 1)-dimensional SYM theory coupled to a matter hypermultiplet in the fundamental representation
of the gauge group and the quark mass is proportional to the distance L that separates the two different
branes. In case of p = 3 the induced geometry in the UV limit (r = ρ → ∞) spans an AdS5 × S3

spacetime.

Now, we want to consider the supersymmetric embedding of D(p+ 2) branes, with 1 ≤ p ≤ 4. In this
case the dual gauge theory is (p+ 1)-dimensional with the fundamental hypermultiplet confined on a
p-dimensional surface. The induced geometry is equal to

ds2 =
(
r

R

) 7−p
2
ds2

(
M(1,p−1)

)
+
(
R

r

) 7−p
2
dρ2 +

(
R

r

) 7−p
2
ρ2 dΩ2

2 . (7.17)

In case of p = 3 the induced geometry in the UV limit spans an AdS4 × S2 geometry.

Finally, we want to consider embedding probe Dp-branes in the background of geometry of Dp-branes
with 2 ≤ p ≤ 4. The matter field of fundamental hypermultiplet propagate in a co-dimension two defect;
the hypermultiplet is confined on a (p− 1)-dimensional surface. The geometry on the probe brane can
be written as

ds2 =
(
r

R

) 7−p
2
ds2

(
M(1,p−2)

)
+
(
R

r

) 7−p
2
dρ2 +

(
R

r

) 7−p
2
ρ2 dΩ2

1. (7.18)

In case of p = 3 the induced geometry in the UV limit spans an AdS3 × S1 spacetime.

7.3.3 Vielbeins & spin-connection components

An appropriate choice of basis will be proven very helpful for the forthcoming calculations, thus, using
the vielbein formalism - for which it holds that gMN = e(A)

M e(B)
N η(A)(B) - 2 in the geometry of

equation (7.15), it is straightforward to evaluate the following quantities:

e(A)
µ =

(
r

R

) 7−p
4
δAµ, e(A)

ρ =
(
R

r

) 7−p
4
δAρ, (7.19)

e(A)
ī = ρ

(
R

r

) 7−p
4
ē(A)

ī , i = 1, . . . , k − d− 1 , (7.20)

2Indices between brackets will be used solely to denote vielbein indices.
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e(A)
m̃ =

(
R

r

) 7−p
4
δAm̃ , m = 1, . . . , 9− p− k + d , (7.21)

where the indices with bar correspond to the spherical coordinates {θ1, . . . , θk−d−1}, while the in-
dices with tilde correspond to the coordinates {w1, . . . , w9−p−k+d}. In addition, the quantity ē(A)

ī

represents the vielbein of Sk−d−1; its explicit expression is given in appendix C.2. The vielbein basis{
e(A) ∣∣ e(A) = e(A)

M dxM
}
satisfies the following relation3

ds2 = gMN dx
M dxN = η(A)(B) e

(A) e(B) . (7.23)

We also present below the non-zero components of the spin-connection. We remind the readers that for
torsion-free theories the definition is

ω
(A)(B)
M = e(A)

N ΓNML e
(B)L + e(A)

N ∂M e(B)N , (7.24)

where e(A)M = e(A)
N g

NM = η(A)(B)e(B)
M . Using equation (7.24) we obtain the following spin-

connection components:

ω(A)(B)
µ = 7− p

4
r

3−p
2

R
7−p

2

[
ρ
(
δAµ δ

B
ρ − δBµ δAρ

)
+ wm̃

(
δAµ δ

B
m̃
− δBµ δAm̃

)]
, (7.25)

ω(A)(B)
ρ = (7− p)

4
wm̃

r2
(
δA
m̃
δBρ − δBm̃ δ

A
ρ

)
, (7.26)

ω
(A)(B)
k̄

= ω̄
(A)(B)
k̄

+
[

(7− p)ρ2

4r2 − 1
] (
δAρ ē

(B)
k̄ − δ

B
ρ ē

(A)
k̄

)
+ (7− p)ρwm̃

4r2
(
δA
m̃
ē(B)

k̄ − δ
B
m̃
ē(A)

k̄

)
, (7.27)

ω
(A)(B)
m̃

= (7− p)
4r2

[
ρ
(
δAρ δ

B
m̃
− δBρ δAm̃

)
+ wñ

(
δA
ñ
δB
m̃
− δB

ñ
δA
m̃

)]
, (7.28)

where the quantity ω̄(A)(B)
k̄

constitutes the spin-connection of Sk−d−1; its explicit expression is given in
appendix C.2 as well.

7.3.4 The Dirac operator

The Dirac operator for fermionic fields on a generic curved manifold is defined by

/D = ΓN e(N)
M
(
∂M + 1

8 ω
(K)(L)
M [ΓK ,ΓL]

)
= ΓN e(N)

M
(
∂M + 1

4 ω
(K)(L)
M ΓKL

)
. (7.29)

In what follows, we compute the Dirac operator for the general case that we consider here; the embedding
of a probe Dk-brane in the background generated by Dp-branes. Note that for a probe Dk the index

3The dual basis
{
e(A)

∣∣ e(A) = e(A)
M ∂M

}
is defined through the relation

e(A) (e(B)
)

= e(A)
M dxM

(
e(B)

N ∂N
)

= e(A)
M e(B)

N δMN = δ(A)
(B) . (7.22)
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M in equation (7.29) should be replaced by M̂ , which runs over the probe brane coordinates. After a
straightforward computation we are led to

/DDk =R
7−p

4

r
7−p

4
Γµ∂µ + r

7−p
4

R
7−p

4
Γρ∂ρ + 1

ρ

r
7−p

4

R
7−p

4

/DSk−d−1

+ 1
R

7−p
4

[
7− p

8
ρ

r
p+1

4
(2d+ 2− k) + 1

2
r

7−p
4

ρ
(k − d− 1)

]
Γρ

+ 7− p
8

1
R

7−p
4

1
r
p+1

4
(2d+ 1− k)

9−p−k+d∑
m=1

wm Γm̃ , (7.30)

with
/DSk−d−1 = ΓN ē(N)

k̄
(
∂k̄ + 1

4 ω̄
(K)(L)
k̄

ΓKL
)
. (7.31)

We have already mentioned that the consistent intersections - characterized by the set of numbers
{d, p, k} - between the background Dp- and probe Dk-branes, are: {p, p, p+ 4}, {p− 1, p, p+ 2}, and
{p− 2, p, p}. One can easily verify that in all cases 2d+ 1− k = p− 3, thus, equation (7.30) can be
written as

/DDk =R
7−p

4

r
7−p

4
Γµ∂µ + r

7−p
4

R
7−p

4
Γρ∂ρ + 1

ρ

r
7−p

4

R
7−p

4

/DSk−d−1

+ 1
R

7−p
4

[
(7− p)(p− 2)

8
ρ

r
p+1

4
+ 1

2
r

7−p
4

ρ
(k − d− 1)

]
Γρ

− (7− p)(3− p)
8

1
R

7−p
4

1
r
p+1

4

9−p−k+d∑
m=1

wm Γm̃ . (7.32)

7.4 Dynamics and spectra from string fluctuations

7.4.1 D0 branes: supersymmetric matrix quantum mechanics

In the background generated by a stack of D0-branes there is a unique way to arrange the flavour
branes which we demonstrate in table 7.1. The fermionic action [163–165] is given by

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Background D0-brane — • • • • • • • • •
Probe D4-brane — — — — — • • • • •

Table 7.1: The brane intersection. In the above notation — denotes that a brane extends along that
particular direction, while • means that the coordinate is transverse to the brane.

SD4 = TD4
2

∫
d5ξ

√
−ĝ Ψ̄P−

[
/DD4 −

eφ

8 · 2!FAB
(
ΓM̂ΓABΓ(10)ΓM̂ + 3 ΓABΓ(10)

)
− 1

2ΓM∂Mφ
]

Ψ

(7.33)
In the above, (TDk)−1 = (2π)k(a′) k+1

2 gs is the brane tension, P− is a κ-symmetry projector ensuring
κ-symmetry invariance of the action, and FAB represents the components of the 2-form R-R field
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strength. With the use of equation (7.8) and setting p = 0 it is straightforward to determine both the
dilaton field

eφ =
(
R

r

) 21
4
, (7.34)

and the 2-form R-R field strength

F(2) = dC(1) = −7r5

R7 e
(0) ∧

(
ρ e(ρ) +

5∑
i=1

wi e(wi)
)
. (7.35)

In addition, Γ(10) ≡ Γ01···p ρ θ1···θk−d−1 w
1···w9−p−k+d is the ten-dimensional chiral operator, ĝM̂N̂ = P [g]M̂N̂

is the pullback of the background metric gMN on the worldvolume, while ĝ constitutes the determinant
of the aforementioned metric.

Varying equation (7.33) with respect to the conjugate spinor Ψ̄, we readily obtain the equation of
motion of the spinor Ψ (Ψ is a ten-dimensional spinor of positive chirality Γ(10)Ψ = Ψ), namely

/DD4Ψ− eφ

8 · 2!FAB
(
ΓM̂ΓABΓ(10)ΓM̂ + 3ΓABΓ(10)

)
Ψ− 1

2(ΓM∂Mφ)Ψ = 0 . (7.36)

Using equation (7.34) and equation (7.35) together with the properties of ΓM matrices, we can evaluate

eφ

8 · 2!FAB
(
ΓM̂ΓABΓ(10)ΓM̂ + 3ΓABΓ(10)

)
Ψ = − 7

4R7/4
ρ

r1/4 Γ0ρΨ = 7
4R7/4

ρ

r1/4 Γ0ρΨ , (7.37)

while by setting p = d = 0 and k = 4 in equation (7.30) we are led to

/DD4Ψ =
{(

R

r

) 7
4

Γµ∂µ +
(
r

R

) 7
4

Γρ∂ρ + 1
ρ

(
r

R

) 7
4
/DS3 + 1

R
7
4

(
−7

4
ρ

r
1
4

+ 3r 7
4

2ρ

)
Γρ

−21
8

1
R

7
4

1
r

1
4

5∑
i=1

wi Γwi
}

Ψ . (7.38)

For the spherical piece we can utilize the spinor spherical harmonics [173]

/DS3Ψ`± = ±
(
`+ 3

2

)
Ψ`± . (7.39)

It is also important to notice that the above calculations have been performed in the vielbein basis
{e(M)} (see for example the expression of the R-R field strength) instead of the usual {dxM}. Thus, we
should recognise that ΓM∂Mφ is in fact ΓNe(N)

M∂Mφ. From equation (7.8) and after a straightforward
calculation, we get

ΓM∂Mφ→ ΓNe(N)
M∂Mφ = −21

4
1
R

7
4

1
r

1
4

(
ρΓρ +

5∑
i=1

wi Γwi
)
. (7.40)

Consequently, substituting equations (7.37) and (7.40) in equation (7.36) and imposing the projection
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Γ0ρΨ = −Ψ, we are led to the following first-order equation of motion
{(

R

r

) 7
4

Γµ∂µ +
(
r

R

) 7
4

Γρ∂ρ + 1
R

7
4

[
7
4
ρ

r
1
4
±
(
`+ 3

2

)
r

7
4

ρ

]
+ 1
R

7
4

(
7
8
ρ

r
1
4

+ 3
2
r

7
4

ρ

)
Γρ
}

Ψ`± = 0 . (7.41)

In what follows we consider that ∑5
i=1(wi)2 = L2, which by its turn leads to r2 = ρ2 +L2. L constitutes

the distance between the D0- and the D4-branes in the x5x6x7x8x9-hyperplane of the 10-dimensional
spacetime. Acting with the operator

(
R
r

)7/4
Γµ∂µ +

(
r
R

)7/4 Γρ∂ρ on the l.h.s. of equation (7.41), and
then using the Clifford algebra and the first-order equation of motion equation (7.41), it is possible to
re-express some of the terms appropriately such that we derive an ordinary, second-order differential
equation of the following form(

A±1 ∂
2
% +A±2 ∂% +A±3 M̄2 +A±4 Γ% +A±5

)
ψ`
±(%) = 0 , (7.42)

where we have used the decomposition Ψ`±(xλ, ρ) = ei kλx
λ
ψ`
±(ρ) and the relation M2 = −ηµνkµkν .4

In addition, we have also used the dimensionless quantities % = ρ/L, M̄2 = M2R7/L5. The A factors
which appropriately describe the second-order equation are shown below:

A±1 = 1, A±2 = 3
%

+ 21
4

%

%2 + 1 , A±3 = 1
(%2 + 1)7/2 ,

A±4 = 7
4

1± 2`± 3
%2 + 1 ∓ 1

%2

(
`+ 3

2

)
+ 21

8
%2

(%2 + 1)2 ,

A±5 = 7
4

1
%2 + 1 (5∓ 3∓ 2`)− 63

64
%2

(%2 + 1)2 −
1
%2

(
`2 + 3`+ 3

2

)
.

(7.43)

In the above equations, the plus sign in the A factors denotes the positive eigenvalue of the spinorial
harmonics (G operators) and the negative sign superscript is related to the negative eigenvalue (F
operators). Moreover, the projection ΓρΨ = ±Ψ (or Γ%ψ = ±ψ) generates two additional second-order
differential equations when it is applied to equation (7.42). The spinor which under the aforementioned
projection remains invariant will be denoted by Ψ⊕ (or ψ⊕), while Ψ	 (or ψ	) will represent the spinor
which under the same projection goes to minus itself. Therefore, we can distinguish the following cases:

1 Positive spinorial harmonics eigenvalues:

• Positive Γ%-projection:(
A+

1 ∂
2
% +A+

2 ∂% +A+
3 M̄

2 +A+
4 +A+

5

)
ψ⊕G`(%) = 0⇒

4This particular decomposition results to

ΓµΓν∂µ∂νΨ`±
= −kµkνΓµΓνΨ`±

= −kµkν (2ηµνI32 − ΓνΓµ) Ψ`±
= 2M2 Ψ`±

+ kµkνΓνΓµΨ`± µ↔ν===⇒

−kµkνΓµΓνΨ`±
= 2M2 Ψ`±

+ kνkµΓµΓνΨ`±
⇒ −kµkνΓµΓνΨ`±

= M2 Ψ`±
⇒

ΓµΓν∂µ∂νΨ`±
= M2 Ψ`±

.
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[
∂2
% +

(3
%

+ 21
4

%

%2 + 1

)
∂% + M̄2

(%2 + 1)7/2 −
1
%2 (`2 + 4`+ 3)

+21
2

1
%2 + 1 + 105

64
%2

(%2 + 1)2

]
ψ⊕G`(%) = 0 . (7.44)

• Negative Γ%-projection:(
A+

1 ∂
2
% +A+

2 ∂% +A+
3 M̄

2 −A+
4 +A+

5

)
ψ	G`(%) = 0⇒

[
∂2
% +

(3
%

+ 21
4

%

%2 + 1

)
∂% + M̄2

(%2 + 1)7/2 −
1
%2 (`2 + 2`)

−7
2

1 + 2`
%2 + 1 −

231
64

%2

(%2 + 1)2

]
ψ	G`(%) = 0 . (7.45)

2 Negative spinorial harmonics eigenvalues:

• Positive Γ%-projection:(
A−1 ∂

2
% +A−2 ∂% +A−3 M̄2 +A−4 +A−5

)
ψ⊕F`(%) = 0⇒

[
∂2
% +

(3
%

+ 21
4

%

%2 + 1

)
∂% + M̄2

(%2 + 1)7/2 −
1
%2 (`2 + 2`)

+21
2

1
%2 + 1 + 105

64
%2

(%2 + 1)2

]
ψ⊕F`(%) = 0 . (7.46)

• Negative Γ%-projection:(
A−1 ∂

2
% +A−2 ∂% +A−3 M̄2 −A−4 +A−5

)
ψ	F`(%) = 0⇒

[
∂2
% +

(3
%

+ 21
4

%

%2 + 1

)
∂% + M̄2

(%2 + 1)7/2 −
1
%2 (`2 + 4`+ 3)

+7
2

5 + 2`
%2 + 1 −

231
64

%2

(%2 + 1)2

]
ψ	F`(%) = 0 . (7.47)

It is straightforward to see that applying p = 0 in equation (C.9) yields the corresponding bosonic
equation of motion for the D0/D4-brane system, namely, it is

∂2
% f`(%) + 3

%
∂%f`(%) +

[
M̄2

(1 + %2)7/2 −
`(`+ 2)
%2

]
f`(%) = 0 . (7.48)
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One can easily verify that the transformation

ψ⊕G`(%) = 1
(1 + %2)21/16 f`+1(%) , (7.49)

maps equation (7.44) to equation (7.48) for `→ `+ 1, while the transformation

ψ⊕F`(%) = 1
(1 + %2)21/16 f`(%) , (7.50)

maps equation (7.46) to equation (7.48). Notice that the above transformations can be obtained from
equation (7.1) by setting p = 0. In contrast, equation (7.45) and equation (7.47) cannot be mapped to
equation (7.48). This particular behaviour is anticipated due to the structural difference of the two
separate equations of motion obtained by the application of the two different projection eigenvalues
of the Γρ matrix. In order to demonstrate their difference, we simply plot the mode-solutions from
which we obtain the correct mass squared eigenvalues, see figure 7.1 and figure 7.2. At this point, it is
important to mention that the quantum number n counts the nodes of the functions ψ⊕,	G` and ψ⊕,	F` ; it
is clear that in both figure 7.1 and figure 7.2 the quantum number n is zero. From these plots it is also
very clear how we must shift appropriately the quantum number ` such that all the states are part of
the same massive supermultiplet as dictated in [121]. We have employed this shift in the ` quantum
number in all the tables with our numerical results such that we keep our presentation short. While
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Figure 7.1: (a) The solution obtained from the positive eigenvalue of the Γ% projector, while (b) refers
to the negative eigenvalue of the Γ% projector. Both of them are dual to the field theory F modes for
quantum numbers n = 0, ` = 3.

we have provided appropriate transformations such that we analytically map the fermionic degrees of
freedom to the bosonic ones, equations (7.49) and (7.50), here we demonstrate the numerical approach
that we used to determine the mass eigenvalues directly from the second order equations of motion for
the D0/D4 brane junction. The same numerical approach was of course used to compute the solutions
in figure 7.1 and figure 7.2.

• We are shooting from the ΛIR to the ΛUV by fine-tuning M̄2 such that the mode solutions are
normalizable in the UV and small in amplitude [121].

• We use ΛIR = 10−7 and ΛUV = 10. We have checked the stability of our numerical solutions
under variations of ΛIR and ΛUV.
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Figure 7.2: (a) The solution obtained from the positive eigenvalue of the Γ% projector, while (b) refers
to the negative eigenvalue of the Γ% projector. Both of them are dual to the field theory G modes for
quantum numbers n = 0, ` = 2.

• For the initial conditions we use

ψG,+(%)|%→0 = %`+1, ∂%ψG,+(%)|%→0 = (`+ 1)%` ,

ψG,−(%)|%→0 = %`, ∂%ψG,−(%)|%→0 = `%`−1 ,
(7.51)

ψF ,+(%)|%→0 = %`, ∂%ψF ,+(%)|%→0 = `%`−1 ,

ψF ,−(%)|%→0 = %`+1, ∂%ψF ,−(%)|%→0 = (`+ 1)%` .
(7.52)

We show explicitly the first few numerical values of the masses in table 7.2. The numerical values for n
and ` describe the F operators and one needs to shift appropriately the ` to read off the value of the G
states. We have also explicitly checked that we obtain the same spectrum from equation (7.48). In

n
0 1 2 3

`

0 18.164 62.390 132.57 228.71
1 52.188 115.60 204.53 319.13
2 102.53 185.35 293.52 422.96
3 168.85 271.32 398.78 551.65

Table 7.2: Numerical results of the parameter M̄2 for the D0/D4 brane junction.

order to perform the numerical analysis for the bosonic degrees of freedom we used as initial conditions
f(%)|%→0 = %` and ∂%f(%)|%→0 = `%`−1 [160, 161] and the other parameters are the same as previously.

As a final project within the D0/D4 brane setup, we are demonstrating explicitly that the M̄2 value can
be obtained from either the positive or the negative eigenvalues of the Γ% matrix. This statement holds
true of course for both the string modes dual to the F and G modes. In order to do so, we predict the
mass of the n = 0, ` = 2 for the supergravity modes dual to the G operators (the ones associated with
the positive eigenvalue of the spinor spherical harmonics) and the n = 0, ` = 3 state of the fluctuation
dual to the F operators (related to the negative eigenvalue of the spinor harmonics). Note that these
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particular F and G states should have the same mass, since we are shifting ` by one. We present our
results for the F modes in figure 7.3 and we proceed to the results related to the G modes, which are
shown in figure 7.4.
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Figure 7.3: For both (a) and (b), the masses are M̄2 = 169 (blue), 169.0736 (red), 169.1 (green) (from
top to bottom). The parameters n and ` are the same as in figure 7.1, namely n = 0, ` = 3. We have
zoomed in to the plots in order to show the behaviour near the UV cut-off. Clearly the red line, which
is the correct solution, can be uniquely determined from either positive or negative Γ%-projections.
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Figure 7.4: For both (a) and (b), the masses are M̄2 = 169 (blue), 169.0736 (red), 169.1 (green) (from
top to bottom). The parameters n and ` are the same as in figure 7.2, namely n = 0, ` = 2. We have
zoomed in to the plots in order to show the behaviour near the UV cut-off. Clearly the red line, which
is the correct solution, can be uniquely determined from either positive or negative Γ%-projections.

7.4.2 The general procedure

In this section, we present the necessary mathematical machinery for computing the equation of motion
and solve for the mass eigenvalues of the world-volume fermions in all possible probe-brane setups. The
main task at hand, in order to determine the equations of motion and solve for the mass eigenvalues, is
to derive a second-order ordinary differential equation of a scalar function depending on the holographic
radial coordinate. To do so, we:

• Compute the vielbein and the spin-connection components of the background geometry from
equations (7.19) to (7.21) and equations (7.25) to (7.28).

• Compute the dilaton field and the R-R field strength from equation (7.8). In addition, we
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re-express the R-R field strength components in the vielbein basis.

• Write the curved Γ-matrices in terms of flat ones. It is also worthwhile commenting that we do not
need an explicit representation of these matrices as we will be dealing only with projectors. These
can be computed by means of the Clifford algebra and general properties that the generators of
the algebra satisfy.

• Obtain the equation of motion for the ten-dimensional spinor Ψ by varying the fermionic DBI
action with respect to the conjugate spinor Ψ̄.

• Determine the first-order differential equation of the spinor using the explicit expression of the
Dirac operator given by equation (7.30) or equation (7.32). For the spherical piece we can utilize
the spinor spherical harmonics [173]

/DSk−d−1Ψ`± = ±
(
`+ k − d− 1

2

)
Ψ`± , (7.53)

while, for the bulk piece, we use separation of variables for the Minkowski coordinates and the
radial coordinate by making a plane-wave ansatz, with the wave-vector satisfying kµkµ = −M2

and M being the mass of the fluctuation.

It is also important to stress here that performing the calculations in the vielbein basis {e(M)},
instead of the usual {dxM}, will affect all spacetime derivatives in the spinor equation of motion.
Thus, in the Dp/Dk-brane systems in which the dilaton field φ does not vanish, we should keep
in mind that ΓM∂Mφ in the {dxM} basis will become ΓNe(N)

M∂Mφ in the {e(M)} basis. From
equation (7.8) and after a straightforward calculation, we find that

ΓNe(N)
M∂Mφ = −(7− p)(3− p)

4
1

R
7−p

4

1
r
p+1

4

ρΓρ +
9−p−k+d∑
m=1

wm Γm̃

 . (7.54)

Subtracting now equation (7.54) from equation (7.32) we get

/DDkΨ`± −
ΓNe(N)

M∂Mφ

2 Ψ`± =
{
R

7−p
4

r
7−p

4
Γµ∂µ + r

7−p
4

R
7−p

4
Γρ∂ρ ±

1
ρ

r
7−p

4

R
7−p

4

(
`+ m

2

)

+ 1
R

7−p
4

[
7− p

8
ρ

r
p+1

4
+ m

2
r

7−p
4

ρ

]
Γρ
}

Ψ`± , (7.55)

where we have defined m ≡ k − d− 1.

• Once we obtain the first-order equation of motion that the spinor satisfies we act with the
differential operator

R
7−p

4

r
7−p

4
Γµ∂µ + r

7−p
4

R
7−p

4
Γρ∂ρ , (7.56)

on this first-order equation of motion. Then, by using some basic identities of the Clifford algebra
and after some tedious algebra we derive a second-order ordinary differential equation of the
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following schematic form(
A1 ∂

2
% +A2 ∂% +A3 M̄

2 +A4 Γ% +A5
)
ψ(%) = 0 , (7.57)

where we have also used the dimensionless quantities

% = ρ

L
, M̄2 = M2R7−p

L5−p . (7.58)

In the above, L2 = ∑9−p−k+d
m=1 (wm)2 constitutes the distance between the Dp- and the Dk-branes.

A’s are the coefficients of interest that we compute explicitly for each case we consider.

7.4.3 Fermions in the D1-background

The branes in the D1-background are arranged in the following way, see table 7.3. The fermionic action

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Background D1-brane — — • • • • • • • •
Probe D3-brane — • — — — • • • • •
Probe D5-brane — — — — — — • • • •

Table 7.3: The supersymmetric brane intersections. In the above notation — denotes that a brane
extends along that particular direction, while • means that the coordinate is transverse to the brane.

is given by 5

SDk = TDk
2

∫
dk+1ξ

√
−ĝ Ψ̄P−

[
/DDk + eφ

8 · 3!FABC
(
ΓM̂ΓABCΓM̂ + 2 ΓABC

)
− 1

2ΓM∂Mφ
]

Ψ . (7.59)

Varying equation (7.59) with respect to the conjugate spinor Ψ̄, we readily obtain the equation of
motion of the spinor Ψ, namely it is

/DDkΨ + eφ

8 · 3!FABC
(
ΓM̂ΓABCΓM̂ + 2 ΓABC

)
Ψ− 1

2(ΓM∂Mφ)Ψ = 0 , (7.60)

where the dilaton field is determined from equation (7.8) with p = 1, thus

eφ =
(
R

r

)3
. (7.61)

As it is depicted in table 7.3, there are two possibilities for the probe Dk-branes. We can either have
k = 3 or k = 5, with d = 0 and d = 1, respectively. The R-R field strength field strength in the
D1/Dk-brane setup is a 3-form and it is given by

F(3) = dC(2) = 6r5/2

R9/2 e
(0) ∧ e(1) ∧

(
ρ e(ρ) +

8−k+d∑
i=1

wi e(wi)
)
. (7.62)

5We have written the action using single spinor notation rather than the two-component one. In order to do so we
have manipulated appropriately some Pauli matrices as explained in Appendix of paper [165].
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Having in our disposal the components of the R-R field strength as well as the expression of the dilaton
field it is straightforward to calculate that

eφ

8 · 3!FABC
(
ΓM̂ΓABCΓM̂ + 2 ΓABC

)
Ψ = 3

2R3/2
ρ√
r

Γ01ρΨ = − 3
2R3/2

ρ√
r

Γ01ρΨ , (7.63)

while by setting p = 1 in equation (7.55) we get

/DDkΨ`± − ΓM∂Mφ
2 Ψ`± =

(
R

r

) 3
2

Γµ∂µΨ`± +
(
r

R

) 3
2

Γρ∂ρΨ`± ± 1
ρ

(
r

R

) 3
2
(
`+ m

2

)
Ψ`±

+ 1
R

3
2

(
3
4
ρ√
r

+ m

2
r

3
2

ρ

)
ΓρΨ`± , (7.64)

where m = k − d− 1. Substituting equations (7.63) and (7.64) in equation (7.60) and imposing the
projection Γ01ρΨ = −Ψ, we are led to the following first-order equation of motion
{(

R

r

) 3
2

Γµ∂µ +
(
r

R

) 3
2

Γρ∂ρ + 1
R

3
2

[
3
2
ρ√
r
±
(
`+ m

2

)
r

3
2

ρ
+
(

3
4
ρ√
r

+ m

2
r

3
2

ρ

)
Γρ
]}

Ψ`± = 0 . (7.65)

In what follows we consider that ∑i(wi)2 = L2, which by its turn leads to r2 = ρ2 + L2. In both
cases, L constitutes the distance between the D1- and the Dk-branes. Applying the procedure which
was described in section 7.4.2 to equation (7.65), we construct the following second-order differential
equation (

A±1 ∂
2
% +A±2 ∂% +A±3 M̄2 +A±4 Γ% +A±5

)
ψ`
±(%) = 0 , (7.66)

where

A±1 = 1, A±2 = m

%
+ 9

2
%

%2 + 1 , A±3 = 1
(%2 + 1)3 ,

A±4 = 3
2

1± 2`±m
%2 + 1 ∓ 1

%2

(
`+ m

2

)
+ 3

2
%2

(%2 + 1)2 ,

A±5 = 3
4

1
%2 + 1 (3m∓ 2m+ 1∓ 4`)− 15

16
%2

(%2 + 1)2 −
1
%2

(
`2 +m`+ m

2

)
.

(7.67)

Employing the projection Γ%ψ`± = ψ`
± and adopting the same notation as in section 7.4.1 we are led to[

∂2
% +

(
m

%
+ 9

2
%

%2 + 1

)
∂% + M̄2

(%2 + 1)3 −
1
%2

(
`2 + (m+ 1)`+m

)
+9

4
1 +m

%2 + 1 + 9
16

%2

(%2 + 1)2

]
ψ⊕G`(%) = 0 , (7.68)

[
∂2
% +

(
m

%
+ 9

2
%

%2 + 1

)
∂% + M̄2

(%2 + 1)3 −
1
%2

(
`2 + (m− 1)`

)
+9

4
1 +m

%2 + 1 + 9
16

%2

(%2 + 1)2

]
ψ⊕F`(%) = 0 , (7.69)
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for positive and negative spinorial harmonics, respectively. As we already mentioned, m = k − d− 1,
which by its turn implies that for k = 5 we have m = 3, while for k = 3 we have m = 2. The
corresponding bosonic equations of motion for the D1/D5 and D1/D3-brane systems can be determined
from equation (C.9) and equation (C.10), respectively. Hence, setting p = 1 in the aforementioned
relations, we get

∂2
%f`(%) + 3

%
∂%f`(%) +

(
M̄2

(1 + %2)3 −
`(`+ 2)
%2

)
f`(%) = 0 , (7.70)

∂2
%f`(%) + 2

%
∂%f`(%) +

(
M̄2

(1 + %2)(7−p)/2 −
`(`+ 1)
%2

)
f`(%) = 0 , (7.71)

respectively. One can easily verify that the transformation

ψ⊕G`(%) = 1
(1 + %2)9/8 f`+1(%) , (7.72)

maps equation (7.68) either to equation (7.70), when we have the D1/D5 setup, or to equation (7.71),
when we have the D1/D3 setup. In exactly the same sense, the transformation

ψ⊕F`(%) = 1
(1 + %2)9/8 f`(%) , (7.73)

maps equation (7.69) either to equation (7.70) (D1/D5 setup), or to equation (7.71) (D1/D3 setup).
The differential equations which result from equation (7.66) with the projection Γ%ψ`± = −ψ`± , namely
the differential equations for the ψ	 spinor, cannot be mapped to the corresponding bosonic equations
of motion, although they provide us with the same mass eigenvalues M̄ . The reason behind this is the
degeneracy which results from the projection matrix Γρ. Notice as well that the above transformations
can be obtained from equation (7.1) by setting p = 1.

The above equations of motion cannot be solved analytically (as in the case of bosonic mesons) and we
have to resort to numerical analysis. We show explicitly the first few numerical values of the masses in
table 7.4. The numerical values for n and ` describe the F operators and one needs to shift appropriately
the ` to read off the value of the G states.

n
0 1 2 3

`

0 14.830 49.711 104.53 179.30
1 42.793 92.952 162.67 252.03
2 84.366 150.11 235.27 339.96
3 139.43 220.76 319.85 441.55

n
0 1 2 3

`

0 6.2638 34.138 82.315 150.64
1 27.082 69.506 131.62 213.50
2 61.893 119.84 197.26 294.26
3 110.21 183.75 276 .58 387.88

Table 7.4: Numerical results of the parameter M̄2 for the D1/Dk brane intersections. The left table
pertains to the D1/D5 and the right one depicts results for the D1/D3 brane intersection.

7.4.4 Open-string fluctuations in the D2-background

The D2-background has been extensively studied in the past in the probe-limit [160] as well as beyond
the quenched approximation [174]. The relevant orientation of the branes in order for the boundary
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theory to preserve eight supercharges is shown in table 7.5. The fermionic action is given by [163–165]

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Background D2-brane — — — • • • • • • •
Probe D2-brane — • • — — • • • • •
Probe D4-brane — — • — — — • • • •
Probe D6-brane — — — — — — — • • •

Table 7.5: The BPS brane intersections. In the above notation — denotes that a brane extends along
that particular direction, while • means that the coordinate is transverse to the brane.

SDk = TDk
2

∫
dk+1ξ

√
−ĝ Ψ̄P−

[
/DDk + eφ

8 · 4!FABCD
(
ΓABCD − ΓM̂ΓABCDΓM̂

)
− 1

2ΓM∂Mφ
]

Ψ .

(7.74)
Varying equation (7.74) with respect to the conjugate spinor Ψ̄, we readily obtain the equation of
motion of the spinor Ψ, namely it is

/DDkΨ + eφ

8 · 4!FABCD
(
ΓABCD − ΓM̂ΓABCDΓM̂

)
Ψ− 1

2(ΓM∂Mφ)Ψ = 0 , (7.75)

where the dilaton field and the R-R field strength, which in this case constitutes a 4-form, can be
determined from equation (7.8) with p = 2, thus we have

eφ =
(
R

r

) 5
4
, (7.76)

F(4) = dC(3) = − 5
√
r

R5/2 e
(0) ∧ e(1) ∧ e(2) ∧

(
ρ e(ρ) +

7−k+d∑
i=1

wi e(wi)
)
, (7.77)

respectively. As it is depicted in table 7.5, there are three possibilities for the probe Dk-branes,
k = {2, 4, 6} with d = {0, 1, 2} respectively. Having in our disposal the components of the R-R field
strength as well as the expression of the dilaton field it is straightforward to calculate that

eφ

8 · 4!FABCD
(
ΓABCD − ΓM̂ΓABCDΓM̂

)
Ψ = 5

4
ρ

R5/4 r3/4 Γ012ρΨ , (7.78)

while by setting p = 2 in equation (7.55) we get

/DDkΨ`± − ΓM∂Mφ
2 Ψ`± =

(
R

r

) 5
4

Γµ∂µΨ`± +
(
r

R

) 5
4

Γρ∂ρΨ`± ± 1
ρ

(
r

R

) 5
4
(
`+ m

2

)
Ψ`±

+ 1
R

5
4

(
5
8
ρ

r
3
4

+ m

2
r

5
4

ρ

)
ΓρΨ`± . (7.79)
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Substituting equations (7.78) and (7.79) in equation (7.75) and imposing the projection Γ012ρΨ = Ψ,
we are led to the following first-order equation of motion{(

R

r

) 5
4

Γµ∂µ +
(
r

R

) 5
4

Γρ∂ρ + 1
R

5
4

[
5
4
ρ

r
3
4
±
(
`+ m

2

)
r

5
4

ρ

]
+ 1
R

5
4

(
5
8
ρ

r
3
4

+ m

2
r

5
4

ρ

)
Γρ
}

Ψ`± = 0 .

(7.80)
Applying the procedure which was described in section 7.4.2 to equation (7.80), we construct the
following second-order differential equation(

A±1 ∂
2
% +A±2 ∂% +A±3 M̄2 +A±4 Γ% +A±5

)
ψ`
±(%) = 0 , (7.81)

where

A±1 = 1, A±2 = m

%
+ 15

4
%

%2 + 1 , A±3 = 1
(%2 + 1)5/2 ,

A±4 = 5
4

1± 2`±m
%2 + 1 ∓ 1

%2

(
`+ m

2

)
+ 5

8
%2

(%2 + 1)2 ,

A±5 = 5
8

1
%2 + 1 (3m∓ 2m+ 1∓ 4`)− 55

64
%2

(%2 + 1)2 −
1
%2

(
`2 +m`+ m

2

)
.

(7.82)

Employing the projection Γρ ψ`± = ψ`
± and using equations (7.81) and (7.82) one can readily obtain

the fermionic second-order ordinary differential equation for ψ`±(%). In case of positive spinorial
harmonics (`+), we get the differential equation of ψ⊕G`(%), while for negative spinorial harmonics (`−),
the differential equation of ψ⊕F`(%) is obtained. The corresponding bosonic equations of motion for the
D2/Dk-brane setups (k = {2, 4, 6}), can be determined from equations (C.9) and (C.11) by setting
p = 2. For all possible D2/Dk-brane systems the transformation

ψ⊕G`(%) = 1
(1 + %2)15/16 f`+1(%) , (7.83)

maps the fermionic function ψ⊕G`(%) to the bosonic function f`+1(%), while the transformation

ψ⊕F`(%) = 1
(1 + %2)15/16 f`(%) , (7.84)

maps the fermionic function ψ⊕F`(%) to the bosonic function f`(%). Notice as well that the above
transformations can be obtained from equation (7.1) by setting p = 2.

The above equations of motion cannot be solved analytically (as in the case of bosonic mesons). We
show explicitly the first few numerical values of the masses in table 7.6. The numerical values for n and
` describe the F operators and one needs to shift appropriately the ` to read off the value of the G
states. It is important to stress at this point that, in cases where the dimensionality of the background
and the probe brane is the same, the quantum number `—contrary to the rest of the cases—should
be greater than zero as dictated by the normalizability of the mode solution in the UV; observe for
example the bottom table in table 7.6.
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n
0 1 2 3

`

0 11.509 37.185 76.982 130.93
1 33.403 70.419 121.15 185.66
2 66.197 114.96 177.34 253.38
3 109.75 170.30 244.10 332.17

n
0 1 2 3

`

0 4.9024 25.519 60.595 110.03
1 21.065 52.295 97.385 156.40
2 48.453 91.334 147.86 218.09
3 86.630 141.29 209.54 291.40

n
0 1 2 3

`

1 11.509 37.185 76.982 130.93
2 33.403 70.149 121.15 185.66
3 66.197 114.96 177.34 253.38

Table 7.6: Numerical results of the parameter M̄2 for the D2/Dk brane intersections. The top left
table pertains to the D2/D6 and the top right one depicts results for the D2/D4 brane intersection.
The bottom table is related to the D2/D2 setup.

7.4.5 Probing the D3-background

Before we start the analysis of the fermionic modes for the background generated by a stack of Nc

branes we would like to illustrate the brane intersections that we examine in this work. This is shown
in table 7.7. The fermionic action in the D3-brane background is [163–165]

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Background D3-brane — — — — • • • • • •
Probe D3-brane — — • • — — • • • •
Probe D5-brane — — — • — — — • • •
Probe D7-brane — — — — — — — — • •

Table 7.7: The brane intersections that preserve eight supercharges. In the above notation — denotes
that a brane extends along that particular direction, while • means that the coordinate is transverse to
the brane.

SDk = TDk
2

∫
dk+1ξ

√
−ĝ Ψ̄P−

(
/DDk + i

2 · 8 · 5!Γ
M̂FABCDE ΓABCDE ΓM̂

)
Ψ. (7.85)

Varying equation (7.85) with respect to the conjugate spinor Ψ̄, we readily obtain the equation of
motion of the spinor Ψ, namely it is

/DDkΨ + i

2 · 8 · 5!Γ
M̂FABCDE ΓABCDE ΓM̂Ψ = 0 . (7.86)

In this particular scenario the dilaton field vanishes, while the R-R field strength is a self-dual 5-form,
which is determined with the use of equation (7.8) for p = 3, namely we have 6

F(5) = dC(4) + ?(dC(4)) . (7.87)
6For more details about the Hodge star operator ? see appendix C.
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As it is depicted in table 7.7, there are three possibilities for the probe Dk-branes, k = {3, 5, 7} with
d = {1, 2, 3} respectively. In case of the D3/D3-brane setup, the above relation leads to

F(5) = 4
rR

[
e(0) ∧ e(1) ∧ e(2) ∧ e(3) ∧

(
ρ e(ρ) +

4∑
m=1

wm e(wm)
)
− ρ e(θ) ∧ e(w1) ∧ e(w2) ∧ e(w3) ∧ e(w4)

− e(ρ) ∧ e(θ) ∧
(
w1 e(w2) ∧ e(w3) ∧ e(w4) − w2 e(w1) ∧ e(w3) ∧ e(w4) + w3 e(w1) ∧ e(w2) ∧ e(w4)

−w4 e(w1) ∧ e(w2) ∧ e(w3)
)]

. (7.88)

In case of the D3/D5-brane setup, it is

F(5) = 4
rR

[
e(0) ∧ e(1) ∧ e(2) ∧ e(3) ∧

(
ρ e(ρ) +

3∑
m=1

wm e(wm)
)
− ρ e(S2) ∧ e(w1) ∧ e(w2) ∧ e(w3)

+e(ρ) ∧ e(S2) ∧
(
w1 e(w2) ∧ e(w3) − w2 e(w1) ∧ e(w3) + w3 e(w1) ∧ e(w2)

)]
, (7.89)

where e(S2) = e(θ1) ∧ e(θ2). Finally, in case of the D3/D7-brane setup, we have

F(5) = 4
rR

[
e(0) ∧ e(1) ∧ e(2) ∧ e(3) ∧

(
ρ e(ρ) +

2∑
m=1

wm e(wm)
)
− ρ e(S3) ∧ e(w1) ∧ e(w2)

−e(ρ) ∧ e(S3) ∧
(
w1 e(w2) − w2 e(w1)

)]
, (7.90)

where e(S3) = e(θ1)∧e(θ2)∧e(θ3). Having in our disposal the components of the R-R field strength as well
as the expression of the dilaton field it is straightforward to calculate that regardless the D3/Dk-brane
system it is

i

2 · 8 · 5!Γ
M̂FABCDE ΓABCDE ΓM̂Ψ = i

ρ

rR
Γ0123ρΨ , (7.91)

while by setting p = 3 in equation (7.55) we get

/DDkΨ`± − ΓM∂Mφ
2 Ψ`± =

{
R

r
Γµ∂µ + r

R
Γρ∂ρ ±

1
ρ

r

R

(
`+ m

2

)
+ 1
R

(1
2
ρ

r
+ m

2
r

ρ

)
Γρ
}

Ψ`± . (7.92)

Substituting equations (7.91) and (7.92) in equation (7.86) and imposing the projection Γ0123ρΨ = −iΨ,
we are led to the following first-order equation of motion{

R

r
Γµ∂µ + r

R
Γρ∂ρ + 1

R

[
ρ

r
±
(
`+ m

2

)
r

ρ

]
+ 1

2R

(
ρ

r
+m

r

ρ

)
Γρ
}

Ψ`± = 0 . (7.93)

Applying the procedure which was described in section 7.4.2 to equation (7.93), we construct the
following second-order differential equation(

A±1 ∂
2
% +A±2 ∂% +A±3 M̄2 +A±4 Γ% +A±5

)
ψ`
±(%) = 0 , (7.94)
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where

A±1 = 1, A±2 = m

%
+ 3%
%2 + 1 , A±3 = 1

(%2 + 1)2 ,

A±4 = 1± 2`±m
%2 + 1 ∓ 1

%2

(
`+ m

2

)
,

A±5 = 1
%2 + 1

(3m+ 1∓ 2m
2 ∓ 2`

)
− 3

4
%2

(%2 + 1)2 −
1
%2

(
`2 +m`+ m

2

)
.

(7.95)

Employing the projection Γρ ψ`± = ψ`
± and using equations (7.94) and (7.95) one can readily obtain

the fermionic second-order ordinary differential equation for ψ`±(%). In case of positive spinorial
harmonics (`+), we get the differential equation of ψ⊕G`(%), while for negative spinorial harmonics (`−),
the differential equation of ψ⊕F`(%) is obtained. The corresponding bosonic equations of motion for the
D3/Dk-brane setups (k = {3, 5, 7}), can be determined from equations (C.9) and (C.11) by setting
p = 3. For all possible D3/Dk-brane systems the transformation

ψ⊕G`(%) = 1
(1 + %2)3/4 f`+1(%) , (7.96)

maps the fermionic function ψ⊕G`(%) to the bosonic function f`+1(%), while the transformation

ψ⊕F`(%) = 1
(1 + %2)3/4 f`(%) , (7.97)

maps the fermionic function ψ⊕F`(%) to the bosonic function f`(%). Notice as well that the above
transformations can be obtained from equation (7.1) by setting p = 3.

Analytic solutions

The equation of motion which result from equation (7.95) admit analytic solutions. Although they
have been previously derived in [1, 82] for massless and massive flavours respectively, we present them
here as well for completeness. The solution of the differential equation related to the positive spinor
spherical harmonics is of the following form

ψG = %`+1

(1 + %2)(n+`+m
2 + 5

4) 2F1

(
−n,−n− `− 1

2(m+ 1); `+ m+ 3
2 ;−%2

)
χ+

+ %`

(1 + %2)(n+`+m
2 + 5

4) 2F1

(
−n,−n− `− 1

2(m+ 3); `+ m+ 1
2 ;−%2

)
χ− .

(7.98)

In the above, the number n is directly related to the mass spectrum via the relation

M̄2
G = 4

(
n+ `+ m+ 1

2

)(
n+ `+ m+ 3

2

)
, (7.99)

where n, ` ≥ 0. The spinors χ± are eigenstates of the Γ%-matrix and they obey the relation Γ%χ± = ±χ±.
They are related to one another via

χ− = i/k

M
χ+ , (7.100)
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where k is the wave-vector from the plane-wave ansatz in the decomposition of the ten-dimensional
spinor. The asymptotic behaviour of the above solution in the UV (%→∞) and the IR (%→ 0) are
given below

ψG |%→∞ ∼ %−`−m−3/2χ+ + %−`−m−5/2χ− ,

ψG |%→0 ∼ %`+1 χ+ + %` χ− .
(7.101)

We can perform the same analysis and derive the solutions describing the F , the ones obtained by
considering the negative eigenvalues on the internal manifold. They are

ψF = %`

(1 + %2)(n+`+m
2 + 1

4) 2F1

(
−n,−n− `− 1

2(m− 1); `+ m+ 1
2 ;−%2

)
χ+

+ %`+1

(1 + %2)(n+`+m
2 + 1

4) 2F1

(
−n,−n− `− 1

2(m+ 1); `+ m+ 3
2 ;−%2

)
χ− ,

(7.102)

leading to the discrete mass spectrum

M̄2
F = 4

(
n+ `+ m− 1

2

)(
n+ `+ m+ 1

2

)
, (7.103)

n, ` ≥ 0. The asymptotic behaviour of the above solution in the UV (%→∞) and the IR (%→ 0) are
given below

ψF |%→∞ ∼ %−`−m−1/2 χ+ + %−`−m+1/2 χ− ,

ψF |%→0 ∼ %` χ+ + %`+1 χ− .
(7.104)

7.4.6 The D4 background and five dimensional SYM theories

For illustrative purposes we show explicitly the relevant brane intersections in the case of the D4
background, see table 7.8. The fermionic action is given by [163–165]

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

Background D4-brane — — — — — • • • • •
Probe D4-brane — — — • • — — • • •
Probe D6-brane — — — — • — — — • •
Probe D8-brane — — — — — — — — — •

Table 7.8: The brane intersections that preserve N = 2 SUSY in a four-dimensional language. In the
above notation — denotes that a brane extends along that particular direction, while • means that the
coordinate is transverse to the brane.

SDk = TDk
2

∫
dk+1ξ

√
−ĝ Ψ̄P−

[
/DDk + eφ

8 · 4!FABCD
(
ΓABCD − ΓM̂ΓABCDΓM̂

)
− 1

2ΓM∂Mφ
]

Ψ .

(7.105)
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Varying equation (7.105) with respect to the conjugate spinor Ψ̄, we readily obtain the equation of
motion of the spinor Ψ, namely it is

/DDkΨ + eφ

8 · 4!FABCD
(
ΓABCD − ΓM̂ΓABCDΓM̂

)
Ψ− 1

2(ΓM∂Mφ)Ψ = 0 , (7.106)

where the dilaton field and the R-R field strength, which in this case constitutes a 4-form, can be
determined from equation (7.8) with p = 4, thus we have

eφ =
(
r

R

) 3
4
, F(4) = ?(dC(5)) , (7.107)

respectively. As it is depicted in table 7.8, there are three possibilities for the probe Dk-branes,
k = {4, 6, 8} with d = {2, 4, 6} respectively. In case of the D4/D4-brane setup, the above relation leads
to

F(4) = 3
r2

[
ρ e(θ) ∧ e(w1) ∧ e(w2) ∧ e(w3) + e(ρ) ∧ e(θ) ∧

(
w1 e(w2) ∧ e(w3)

−w2 e(w1) ∧ e(w3) + w3 e(w1) ∧ e(w2)
)]

. (7.108)

In case of the D4/D6-brane setup, it is

F(4) = 3
r2

[
ρ e(S2) ∧ e(w1) ∧ e(w2) − e(ρ) ∧ e(S2) ∧

(
w1 e(w2) − w2 e(w1)

)]
, (7.109)

where e(S2) = e(θ1) ∧ e(θ2). Finally, in case of the D4/D8-brane setup, we have

F(4) = 3
r2

(
ρ e(S3) ∧ e(w1) + w1 e(ρ) ∧ e(S3)

)
, (7.110)

where e(S3) = e(θ1) ∧ e(θ2) ∧ e(θ3). Having in our disposal the components of the R-R field strength as
well as the expression of the dilaton field it is straightforward to calculate that for the D4/Dk-brane
system it is

eφ

8 · 4!FABCD
(
ΓABCD − ΓM̂ΓABCDΓM̂

)
Ψ = −3

4
ρ

R3/4 r5/4 ΓSk−d−1w1···w5−k+dΨ , (7.111)

while by setting p = 4 in equation (7.55) we get

/DDkΨ`± − ΓM∂Mφ
2 Ψ`± =

(
R

r

) 3
4

Γµ∂µΨ`± +
(
r

R

) 3
4

Γρ∂ρΨ`± ± 1
ρ

(
r

R

) 3
4
(
`+ m

2

)
Ψ`±

+ 1
R

3
4

(
3
8
ρ

r
5
4

+ m

2
r

3
4

ρ

)
ΓρΨ`± . (7.112)
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Substituting equations (7.111) and (7.112) in equation (7.106) and imposing the projection ΓSk−d−1w1···w5−k+dΨ =
−Ψ, we are led to the following first-order equation of motion{(

R

r

) 3
4

Γµ∂µ +
(
r

R

) 3
4

Γρ∂ρ + 1
R

3
4

[
3
4
ρ

r
5
4
±
(
`+ m

2

)
r

3
4

ρ

]
+ 1
R

3
4

(
3
8
ρ

r
5
4

+ m

2
r

3
4

ρ

)
Γρ
}

Ψ`± = 0 .

(7.113)
Applying the procedure which was described in section 7.4.2 to equation (7.113), we construct the
following second-order differential equation(

A±1 ∂
2
% +A±2 ∂% +A±3 M̄2 +A±4 Γ% +A±5

)
ψ`
±(%) = 0 , (7.114)

where

A±1 = 1, A±2 = m

%
+ 9

4
%

%2 + 1 , A±3 = 1
(%2 + 1)3/2 ,

A±4 = 3
4

1± 2`±m
%2 + 1 ∓ 1

%2

(
`+ m

2

)
− 3

8
%2

(%2 + 1)2 ,

A±5 = 3
8

1
%2 + 1 (3m∓ 2m+ 1∓ 4`)− 39

64
%2

(%2 + 1)2 −
1
%2

(
`2 +m`+ m

2

)
.

(7.115)

Employing the projection Γρ ψ`± = ψ`
± and using equations (7.114) and (7.115) one can readily obtain

the fermionic second-order ordinary differential equation for ψ`±(%). In case of positive spinorial
harmonics (`+), we get the differential equation of ψ⊕G`(%), while for negative spinorial harmonics (`−),
the differential equation of ψ⊕F`(%) is obtained. The corresponding bosonic equations of motion for the
D4/Dk-brane setups (k = {4, 6, 8}), can be determined from equations (C.9) and (C.11) by setting
p = 4. For all possible D4/Dk-brane systems the transformation

ψ⊕G`(%) = 1
(1 + %2)9/16 f`+1(%) , (7.116)

maps the fermionic function ψ⊕G`(%) to the bosonic function f`+1(%), while the transformation

ψ⊕F`(%) = 1
(1 + %2)9/16 f`(%) , (7.117)

maps the fermionic function ψ⊕F`(%) to the bosonic function f`(%). Notice as well that the above
transformations can be obtained from equation (7.1) by setting p = 4.

The above equations of motion cannot be solved analytically (as in the case of bosonic mesons) and we
have to resort to numerical analysis. We show explicitly the first few numerical values of the masses in
table 7.9. The numerical values for n and ` describe the F operators and one needs to shift appropriately
the ` to read off the value of the G states.
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n
0 1 2 3

`

0 5.0604 14.068 27.856 46.573
1 14.685 26.910 43.421 64.677
2 29.701 45.647 65.237 89.117
3 49.985 69.994 93.198 120.08

n
0 1 2 3

`

0 2.2741 9.8420 22.321 39.768
1 9.1908 19.745 34.871 54.857
2 21.527 35.556 53.543 76.084
3 39.189 57.140 78.472 103.79

n
0 1 2 3

`

1 5.0604 14.068 27.856 46.573
2 14.685 26.910 43.422 64.677
3 29.701 45.647 65.237 89.116

Table 7.9: Numerical results of the parameter M̄2 for the D4/Dk brane intersections. The top left
table pertains to the D4/D8 and the top right one depicts results for the D4/D6 brane intersection.
The bottom table is related to the D4/D4 setup.

7.5 Super(conformal) multiplet counting

We have computed the mass spectra of the spin-1/2 modes arising in the massive canonical D3/D7
system. As was first shown in [121], open string excitations of the probe D7-brane fit into massive
N = 2 supermultiplets. While the counting of the states in the super(conformal)multiplets has been
performed in the past, in [156] and [121], it is useful test of our results to check the counting.

For L→ 0, the fundamental hypermultiplet are massless and the theory is conformal. The modes are in
representations of the SU(2)R × SU(2)L × U(1)R labelled by (j1, j2)s, where j1,2 is an index denoting
the spin under the SU(2)R,L respectively, and s is the eigenvalue associated with the group U(1)R. The
dimension of chiral primaries is given by the formula ∆ = 2j1 + s/2. Two scalar fields are associated
with the transverse fluctuations of the D7-brane each of which, after a Kaluza-Klein reduction on the
three-sphere, will lead to tower of real scalars, φ`, transforming in the

(
`
2 ,

`
2

)
2
, with ` ∈ N0. The vector

field admits a similar expansion, and from the bulk components on the D7-brane we obtain a tower of
AdS vectors, A`, transforming in the

(
`
2 ,

`
2

)
0
, with ` ∈ N0. Finally, from the components of the vector

field on the internal manifold we obtain two different Kaluza-Klein towers of real scalar fields, that
we call A`±, transforming in the

(
`∓1

2 , `±1
2

)
0
, with ` ∈ N. There are also two types of fermions, which

upon reduction on the three sphere will give two towers of states transforming in the
(
`
2 ,

`+1
2

)
1
- the F

fermions - and
(
`+1

2 , `2

)
1
- the G fermions.

Introducing a mass gap in the probe-brane setup (L 6= 0) breaks the U(1)R acting on the two-dimensional
plane that is transverse to both the background and the probe branes and the R-symmetry group is
just SU(2)R.

The spectra of the modes are degenerate, namely states with the same n+ ` have the same mass. It
was observed that such is the case for the D3-brane background in the analysis performed in [160, 161].
We proceed to counting the number of states in a given multiplet. Since the theory has a global
N = 2 supersymmetry the modes should fill massive supermultiplets, and they have to be in the same
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representation of the copy of SU(2) that is inert under the supercharges. To arrange this we have to
appropriately shift the angular quantum number of the sphere, such that all states fall in the same
representation of the SU(2)L. This is shown in table 7.10.

Modes Fluctuation Representations Shifted `
2 real scalars transverse oscillations

(
`
2 ,

`
2

) (
`
2 ,

`
2

)
1 real scalar Type I+ fluctuations

(
`−1

2 , `+1
2

) (
`−2

2 , `2

)
1 real scalar Type I− fluctuations

(
`+1

2 , `−1
2

) (
`+2

2 , `2

)
1 vector Type II fluctuations

(
`
2 ,

`
2

) (
`
2 ,

`
2

)
1 real scalar Type III fluctuations

(
`
2 ,

`
2

) (
`
2 ,

`
2

)
1 Dirac fermion Type F fluctuations

(
`+1

2 , `2

) (
`+1

2 , `2

)
1 Dirac fermion Type G fluctuations

(
`
2 ,

`+1
2

) (
`−1

2 , `2

)
Table 7.10: The origin, degrees of freedom and quantum numbers of the fermionic and bosonic states
of the N = 2 multiplets of mesinos.

Moreover, we have to account for the degeneracy under the SU(2)R: we count the degrees of freedom
of a given state and then multiply by (2j1 + 1). Then, the number of bosonic components in a given
multiplet for a fixed value of ` is equal to

1
(

2
(
`

2 + 1
)

+ 1
)

+ 6
(

2 · `2 + 1
)

+ 1
(

2
(
`

2 − 1
)

+ 1
)

(7.118)

and the number of states for the spin-1/2 components in the same multiplet is given by

4
(

2`+ 1
2 + 1

)
+ 4

(
2`− 1

2 + 1
)

(7.119)

For the ` = 0 multiplet, we obtain eight bosonic degrees of freedom and an equal number of fermionic
states.

7.6 The limit of large number of colours

In this section we would like to specify our discussion to the case of a four-dimensional strongly coupled
gauge theory without defects and hence we will be focused on the D3/probe-D7 intersection. The
extension of the analysis to lower dimensional gauge theories based on the D3-background geometry
is straightforward and similar arguments can be given for theories with quarks confined on one and
two-dimensional defects.

We have studied, thus far, the dynamics and solved for the spectra of the fermionic superpartners of
mesons - dubbed mesinos - which have no counterpart in ordinary non-supersymmetric field theories.
For phenomenological applications of holography, however, it is interesting to study fermionic degrees
of freedom in the bulk. As it was pointed out in [1] a certain class of these mesino states, namely the
G string modes, resemble structurally the baryons of ordinary QCD. This observation was made at
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the level of the analysis of the fluctuation to operator matching. It was observed that these states are
comprised out of three elementary fermionic fields, two quarks and a gaugino.

On the formal side of the analysis, the true dynamical baryonic vertex in the string theory setup has
been described in [103] and it consists of our base system with the D7-probe in addition to which we
add D5-branes wrapping a spherical subspace inside the initial AdS5 × S5 background geometry and
having Nc strings ending on it. One can immediately see the complications. Since in the dynamical
baryonic vertex Nc strings are ending on the baryonic (D5-)brane it is unclear whether or not the
probe-approximation can be made and what its regime of validity is if any. Also, since the brane
intersection consists of several different branes, the topology of the system of interest is inherently
complicated. Finally, baryons are half-integer fields and their dynamics are governed by the Dirac or
the Rarita-Schwinger actions which have to be studied on highly curved manifolds.

Now, we would like to give additional evidence and support the notion that the G-states (which we
remind the reader are G ∼ ψ̄λψ, where ψ̄, ψ are fundamental Fermi fields - quark like states - and λ is
an adjoint fermion - a gaugino field) can be thought of as effectively describing baryonic operators. In
order to amplify and re-express the argument of [1] regarding the possible baryonic interpretation of
these supergravity states, we will show that their mass eigenvalues obey the correct large-Nc scaling,
dictated by field theory considerations [171]. This has already been done in an effective, bottom-up
approach in [82]. More precisely the case of massless quarks/overlapping branes was considered in that
work.

We start the analysis of this section by recalling that the scaling dimension and the AdS5 mass for a
spin-1/2 field is given by [81]

∆` = |m`|+ 2 , (7.120)

and for the states considered so far we have mG` = 5
2 + ` and mF` = −

(
1
2 + `

)
for the G and F states

respectively.

Now, let us turn our attention to baryonic operators in a supersymmetric Yang-Mills theory with an
SU(Nc) gauge group and a certain number of flavours. We will be assuming that the theory is such
that it is conformal, or perhaps more generally it possesses a regime in its phase space with walking
dynamics (conformal window). There are many examples of such four-dimensional field theories that
are asymptotically free, for a discussion on the phase diagram of supersymmetric SU(Nc) Yang-Mills
theories see [175], but here we just mention the four-dimensional SU(3) super-QCD with 9/2 ≤ Nf ≤ 9
flavours as an example of the theories we mentioned. The existence of the conformal phase of the theory
makes sure that the holographic gravity description has an AdS5 structure. In the aforementioned class
of theories a baryon is the colour singlet composite bound state comprised out of Nc quarks, and a
baryonic operator is the totally anti-symmetrized object given by

B ∼ ε

Nc−indices︷ ︸︸ ︷
ijk · · · yz qiqjqk · · · qyqz︸ ︷︷ ︸

Nc−fields

, (7.121)

where we have written the lowest entry of the super(conformal) multiplet up to an irrelevant numerical
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coefficient which is a function of Nc. We can construct higher baryonic excitations in the multiplet
by applying an ` number of times the derivative operator to the above. The associated conformal
dimension is given by

∆ = 3
2Nc + ` . (7.122)

It is straightforward to use equation (7.120) and obtain

mB` = 3
2Nc + `− 2 . (7.123)

We have already seen that the positive spinor spherical harmonics give rise to states that resemble
baryons of non-supersymmetric QCD. We re-write the eigenvalues of the spinor spherical harmonic in a
different but equivalent form for the G-modes

/DS3Ψ`+ =
(
mG` − 1

)
Ψ`+ . (7.124)

At this point we replace in the above relation equation (7.124) the bulk-AdS mass for a baryonic
operator given by equation (7.123) and hence we obtain

/DS3Ψ =
(
mB` − 1

)
Ψ . (7.125)

It is a matter of simple algebra to derive the differential equation by using equation (7.125) and the
mathematical procedure explained in the previous section. Thus, we get{

∂2
% +

[
3%

1 + %2 + 2(mB` − `− 1)
%

]
∂% + M̄2

B
(1 + %2)2 −

3
4

%2

(1 + %2)2 −
1
%2

[
mB` (2`+ 1)− (`+ 1)2 − `

+ (mB` − 1)Γ%
]

+ 1
1 + %2

[
mB` − 3`− 1

2 + (2mB` − 1)Γ%
]}

Ψ = 0 . (7.126)

In order to obtain the solution to the above equation of motion representing the supergravity states we
require the solution to be normalizable in the UV and regular in the IR, hence, we have

ψB = %`+1

(1 + %2)n+`+ 3Nc
2 −

7
4

2F1

(
−n,−n− `− 3Nc − 5

2 ; `+ 3(Nc − 1)
2 ;−%2

)
χ+

+ %−
9
2 +`+ 3Nc

2

(1 + %2)− 7
4 +n+`+ 3Nc

2
2F1

(
−n,−n− `− 3(Nc − 1)

2 ; `+ 3Nc − 5
2 ;−%2

)
χ− ,

(7.127)

while the discrete mass spectrum is shown below

M̄B = 2
√(

n+ `+ 3
2Nc −

5
2

)(
n+ `+ 3

2(Nc − 1)
)
. (7.128)

It is obvious that in the Nc →∞ limit the mass scales with Nc as desired [171]. It is quite obvious as
well, that for Nc = 3 equations (7.127) and (7.128) reduce to the ones derived in section 7.4.5 above for
the D3/probe-D7 setup.
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Let us conclude the discussion of this section by stating the basic points. The large-Nc limit scaling of
the mass was derived in [82] for the case of overlapping branes in a bottom-up way effectively. Here,
we provide a derivation from the top-down construction in a set-up that describes massive dynamical
quarks by construction. We should stress - though obvious - that our result is derived by assuming
that the identification of the G modes as describing baryonic operators at least in some regime of the
parameter space of the gauge theory is correct. The precise statement we wish to make here is the
same as the one made in [82]. If one realizes and manages to solve the brane configuration that yields
a dynamical baryon in the string theory side with an AdS geometric part, then the result derived in
equation (7.128) should be re-obtained from the full brane intersection; it should at least hold in a
certain regime of the parameter space of the full setup.

7.7 Double-trace interactions

In this section we are shifting back to the original parameterization and no longer using the dimensionless
% variable. This we do in order to precisely acount for some extra factors in the solutions of the
supergravity eigenstates that can only be obtained using dimensional analysis. It is worthwhile stressing
that qualitively we would obtain the same results even without the shift, however we have chosen to be
precise.

In the ρ variable, the equations of motion for the G-modes are given by[
r2

R2∂
2
ρ + 1

R2

(
3ρ+ 3r

2

ρ

)
∂ρ + M2R2

r2 + 1
R2

(
4 + 2`− r2

ρ2

(
`+ 3

2

))
γρ

+ 1
R2

(
−3ρ2

4r2 + 2− 2`
)
− r2

R2ρ2

(
`2 + 3

(
`+ 1

2

))]
ψ`G(ρ) = 0 ,

(7.129)

where k2 = −M2. While the relevant expression for the F modes is[
r2

R2∂
2
ρ + 1

R2

(
3ρ+ 3r

2

ρ

)
∂ρ + M2R2

r2 + 1
R2

(
−2− 2`+ r2

ρ2

(
`+ 3

2

))
γρ

+ 1
R2

(
−3ρ2

4r2 + 8 + 2`
)
− r2

R2ρ2

(
`2 + 3

(
`+ 1

2

))]
ψ`F (ρ) = 0 .

(7.130)

In order to proceed we need to perform the large-ρ limit at the level of the equations of motion. Solving
the resulting differential equations yields a solution in terms of four constants. Why though are there
extra terms relative to what we were expecting with respect to the coupled first-order equations? We
have seen, already, why this happens and how we can remedy that in the case of pure AdS5. The
answer is that the two second order equations duplicate the data of the first order equations - the
solutions of one are tied to a particular solution of the other at leading order in M and beyond. To see
this we must return to the first order equations to link the solutions. In particular we can substitute
the solutions we obtained from solving the large-ρ equations into the first-order equations and then
return to the decoupled second-order differential equation. In this way we can fix the solutions of the
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second order equations to take the asymptotic form

ψG,+(ρ) ∼ − c2R
2M

2(2 + `) ρ
−1/2+` + c1 ρ

−9/2−`,

ψG,−(ρ) ∼ c2 ρ
1/2+` − R2Mc1

(6 + 2`) ρ
−11/2−`,

(7.131)

which have the same number of degrees of freedom as the solutions of the linearized equation. Note
in practice now we can solve just one of the second order equations and extract c1 and c2 from the
asymptotics. The analysis for the F modes follows that for the G modes. The result is

ψF ,+(ρ) ∼ c2 ρ
−3/2+` + c1MR2

2(`+ 1) ρ
−7/2−`,

ψF ,−(ρ) ∼ c2MR2

2` ρ−5/2+` + c1 ρ
−5/2−`.

(7.132)

Having fixed these constants we can straightforwardly compute the supergravity mode solutions. They
are given by

ψ`G(ρ) =
(
−L2

)n [ ρ`+1

(ρ2 + L2)n+`+ 11
4

2F1
(
− n,−(n+ `+ 2), `+ 3,− ρ

2

L2

)
α+

− R2M(`+ 2)
2(`+ n+ 2)(`+ n+ 3)

ρ`

(ρ2 + L2)n+`+ 11
4

2F1
(
− n,−(n+ `+ 3), `+ 2,− ρ

2

L2

)
α−

] (7.133)

and

ψ`F (ρ) =(−L2)n
[
R2M

2
ρ`

(ρ2 + L2)n+`+ 7
4

2F1
(
− n,−(n+ `+ 1), `+ 2,− ρ

2

L2

)
α+

+(n+ `+ 1)
(`+ 1)

ρ`+1

(ρ2 + L2)n+`+ 7
4

2F1
(
− n,−(n+ `), `+ 3,− ρ

2

L2

)
α−

]
.

(7.134)

and of course the mass spectra are the same as the ones we have already discovered.

We proceed to a presentation of a numerical approach to solving these equations of motion which we
will use since we need to find the spectrum in cases where the source for the fermionic operator does
not vanish. To demonstrate the method, we consider the G modes and we will just concentrate on the
n = 0, ` = 0 and n = 1, ` = 0 cases. We need to solve for the negative eigenvalue of the Γρ-matrix (or
equally we could solve for the positive one as we have already argued and obtain completely equivalent
results). We have seen the solution of the differential equations near the boundary, however shooting
from the IR to the UV looking for normalizability of the solutions is a much less numerically intensive
procedure. We expand the analytic solutions to obtain their IR scaling behaviour and find that

ψG,+(ρ) ∼ ρ`+1, ∂ρψG,+(ρ) ∼ (`+ 1)ρ`,

ψG,−(ρ) ∼ ρ`, ∂ρψG,−(ρ) ∼ `ρ`−1.
(7.135)

Thus for ψG,− we may use the shooting technique for the ` = 0 state with the boundary conditions
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ψG,−(0) = 1, ψ′G,−(0) = 0 to seek solutions that asymptote to the source J = 0 in the UV. We recall
that the solution takes the asymptotic form

ψG,+(ρ) ∼ − JR2M

2(2 + `) ρ
−1/2+` +O ρ−9/2−`,

ψG,−(ρ) ∼ J ρ1/2+` − OR
2M

(6 + 2`) ρ
−11/2−`,

(7.136)

where O is the operator value (we have absorbed factors of R into M for the numerical analysis). We
find it most helpful to plot ρ−1/2 ψG,−(ρ) since this asymptotes to J . The procedure is simply to shoot
out tuning M2 so that J = 0 in the UV. In this way, it is straightforward to numerically reproduce
the analytic solutions in section 7.4.5 - we have been able to straightforwardly reproduce the value of
M2 of the analytic spectrum numerically to three decimal places. In figure 7.5 we show this process in
action, plotting the solutions for different M2. We repeat the analysis for the F-modes, however, this
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Figure 7.5: Shooting from the IR to the UV for different values of M2 for the G,− type mesinos,
using the boundary conditions in equation (7.135). The left plot shows the results for ρ−1/2ψG,− for the
ground state (n = ` = 0) starting from M2 = 0 and proceeding with steps of one to M2 = 24 and the
right plot corresponds to the first excited state (n = 1, ` = 0) starting from M2 = 25 and proceeding
with steps of one to M2 = 48. The solutions relevant to the supersymmetric theory asymptote to zero
where the source J vanishes.

time we choose to study the differential equation associated with the positive eigenvalue of the chiral
Γ-matrix. The IR scaling behaviour here is

ψF ,+(ρ) ∼ ρ`, ∂ρψF ,−(ρ) ∼ `ρ`−1,

ψF ,−(ρ) ∼ ρ`+1, ∂ρψF ,+(ρ) ∼ (`+ 1)ρ`,
(7.137)

and the UV asymptotics are

ψF ,+(ρ) ∼ J ρ−3/2+` + OMR2

2(`+ 1) ρ
−7/2−`,

ψF ,−(ρ) ∼ JMR2

2` ρ−5/2+` +O ρ−5/2−`.

(7.138)

We solve for ψF ,+(ρ) shooting out from ψF ,+(0) = 1, ψ′F ,+(0) = 0 and seek solutions where J = 0.
It is helpful to plot ρ3/2 ψF ,+(ρ) which asymptotes to J . Again the supersymmetric states are easily
recovered - we show the process in figure 7.6. So far we have explored the fermionic bound states of
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Figure 7.6: Shooting from the IR to the UV for different values of M2 for the F ,+ type mesinos,
using the boundary conditions in equation (7.137). The left plot shows the results for ρ3/2ψF ,+ for the
ground state (n = ` = 0) starting from M2 = 0 and proceeding with steps of one to M2 = 8 and the
right plot corresponds to the first excited state (n = 1, ` = 0) starting from M2 = 9 and proceeding
with steps of one to M2 = 24. The solutions relevant to the supersymmetric theory asymptote to zero
where the source J vanishes.

the supersymmetric N = 2 gauge theory dual to the D3/ probe D7 system. Our motivation is to find
holographic models that give rise to anomalously light fermionic bound states, as required in composite
Higgs models. What we have seen though is that the spectrum of the supersymmetric brane models is
characterized by the scale mq/

√
λYM . As the ’t Hooft coupling of the gauge theory grows large, this

scale is small relative to the bare quark mass, but it nevertheless sets an intrinsic scale for the strong
dynamics. All states lie near that scale, up to order one numerical numbers. This of course has been
known for many years, since supersymmetry ties the fermionic bound states to the mesonic bound state
masses computed in [121].

How can we then obtain a baryonic bound state (denoted generically by ΨB associated with an operator
OB), to be light relative to that scale? We wish to explore an answer to that question which consists of
including a higher dimension operator in the field theory. These higher dimension operators should be
associated with new physics at a UV scale ΛUV . The precise form of the operator will be chosen so
that it corresponds to a shift in the bound state mass at low energies. Generically the approach is this:
we add a term to the field-theory Lagrangian of the form

∆LUV = g2

ΛpUV
ŌBOB, (7.139)

where the power, p of the cut off ΛUV determined dependent on the UV dimension of the operator. As
a very simple model, we assume that this operator leads to an RG flow such that in the IR, the baryon
ΨB receives a mass shift of the form

∆LIR ∝
g2mp+1

q

ΛpUV
Ψ̄BΨB . (7.140)

Here we have assumed that the dynamics that binds the fermions occurs around the quark mass scale
where the conformal symmetry is broken - hence the mq term which is present to make the operator of
dimension four in the IR. Naively if this term plays a passive role only, this could be used for a negative
shift in the baryon mass that could be tuned to reduce the baryonic mass scale. In fact we will see that
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such operators show a sort of critical behaviour at large g which is more than just this shift.

To include such an operator, we use Witten’s multi-trace prescription [147]. This essentially says that,
if the operator equation (7.139) acquires a VEV, then a source is generated with the value

J = g2

ΛpUV
〈OB〉 . (7.141)

This relation is imposed on the holographic field corresponding to the operator at the UV cut-off
ρ = ΛUV - there is thus a large ρ boundary of the dual space. In practice one just finds solutions with
different source-operator combinations and computes g2 at the scale ΛUV . We have done most of the
work for this process in previous sections.

An explicit example - the ` = 0 G mode

Let us now study an explicit example. We are interested in driving the mass of one of the mesinos of
the N = 2 gauge theory described by the D3/probe D7 system much lighter than the characteristic
scale mq/

√
λYM . Let us pick on the lightest ` = 0, n = 0 G-type mesino discussed above. In particular

the masses of this state are found by solving equation (7.129),[
r2

R2∂
2
ρ + 1

R2

(
3ρ+ 3r

2

ρ

)
∂ρ + M2R2

r2 + 1
R2

(
4 + 2`− r2

ρ2

(
`+ 3

2

))
γρ

+ 1
R2

(
−3ρ2

4r2 + 2− 2`
)
− r2

R2ρ2

(
`2 + 3

(
`+ 1

2

))]
ψ0
G(ρ) = 0 ,

(7.142)

for the supergravity modes corresponding to the G-type mesinos. We will solve for the negative
eigenvalue of γρ. The UV and IR behaviour of the solutions have been determined in equations (7.135)
and (7.136),

ψG,−(ρ)IR ∼ 1, ∂ρψG,−(ρ)IR ∼ 0,

ψG,−(ρ)UV ∼ J ρ1/2 + OR
2M

6 ρ−11/2.
(7.143)

In the previous sections we gave a full numerical prescription to find these solutions. In figure 7.5 we
display the full set of regular solutions for ψG - each line corresponds to a particular mesino mass M and
predicts an associated value of the source J extracted from the UV asymptotics. In the supersymmetric
model we rejected any solutions for which J 6= 0 but now we will consider the full set.

Remember that in the dual field theory we are looking at states that are associated with the UV
operator

G` ∼ ψ†λψ , (7.144)

which includes a three fermion bound state; two quarks and a gaugino and the precise holographic
mapping can be found in [82]. In the above, ψ is the fundamental spinor, and λ is the adjoint
hypermultiplet.
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Here consider adding, at the scale ΛUV , the field-theory Lagrangian term

∆LUV = g2

Λ5
UV

Ḡ0G0 . (7.145)

The IR mesino ΨM receives a mass shift of the form

∆LIR ∝
g2m6

q

Λ5
UV

Ψ̄MΨM . (7.146)

Witten’s multi-trace prescription [147] tells us to require of our regular solutions in figure 7.5

J = g2

Λ5
UV

〈G0〉 . (7.147)

We have already numerically computed the solutions to the fluctuation equations for different values of
the mass by solving equation (7.129) for the mode ψ0

G−, using the shooting method. We obtain the
supersymmetric spectrum from these numerical flows by considering the solutions that asymptote to
zero for a vanishing source, J = 0, and disregarding all other numerical flows. Now, we allow for all
the different numerical values of M2 and consider the corresponding numerical solutions we obtained
by performing the method described above. For each of those cases we then extract O from the UV
asymptotics in equation (7.143). Here we determine J and O at a value of ρ that corresponds to the
UV cut-off ΛUV (numerically here we pick ΛUV /L = 10 as an example).

Now we have a series of solutions withM,J and O and we may compute the higher dimension operator’s
coupling g from equation (7.147). The result is shown in figure 7.7 - it tracks the mass of the mesino
against the strength of the coupling g. The red dots show the lightest state at each value of g2. As g2
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Figure 7.7: The effect of double-trace interaction on the mass spectra of the D3/D7 states
D3/D7-brane system: The mesino mass squared M2 as function of the coupling strength g2 in units of
L/R2(dots are data points whilst the line is to guide the eye) in the presence of the double-trace

deformation for the ` = 0 and n = 0, 1 radially excited modes. The G fermionic modes are shown on
the left and the F modes on the right. The green points show the first, radially excited state getting

lighter as the coupling is increased, and the red ones show the ground state of the modes.

increases from zero, initially the fermionic bound state mass is expected to fall linearly - the higher
dimension operator is a weak perturbation and the naive analysis applies simply adding a small negative
shift to the mesino mass. In fact it is numerically difficult to extract solutions in this regime because
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the mesino masses must be very finely tuned close to the supersymmetric value and g2 extracted from
the noisy UV asymptotics. The lowest g2 points we extract are consistent with this expectation though.
Above g2 = 10 there is a new behaviour though - the mesino mass falls sharply over a relatively small
range of g2. This is suggestive of the critical behaviour in a Nambu-Jona Lasinio type model where
above a critical value the higher dimension operator is having a major role in the dynamics. Rather
than then driving the mesino mass squared to zero and negative values though, above g2 ' 15 the drop
in the mesino mass plateaus before reaching M2 = 0 only at infinite coupling. Note that taking the
dimensionless g2 large should be an acceptable theory provided the mesino masses do not rise above
the scale ΛUV which here they won’t because the masses are suppressed by the large ’tHooft coupling.
We believe this region of behaviour is governed by the fact that fermionic modes cannot condense
and so the mass cannot be driven to become tachyonic. Mathematically, this behaviour follows from
the occurrence of M in the UV solutions for the sub-leading term of the solution - at M = 0 if the
sub-leading term is non-zero, then the operator vev is pushed to infinity and hence also g2 goes to
infinity.

Interestingly, adding the term with a negative value of g2 does not greatly increase the mass of the
mesino bound state as one would naively expect - possibly the N = 4 dynamics is already so strong
that adding additional strong interactions do not greatly change the dynamics. Such theories have
unbounded potentials at the UV cut off in any case. Such a negative g2 can be viewed as a repulsion
amongst the fermions; this can also be seen by considering the operator as representing the Feynman
diagram of two fermions scattering by the exchange of a massive gauge boson where repulsion is just a
change in the signs.

The behaviour of the green dots that display the first radially excited state of the G0 modes is also
interesting. These states too fall in mass as g2 approaches the critical region, but they saturate at the
value of the ground state at g2 = 0, falling no lower. The reason is that for each choice of M2, fixing
the IR boundary conditions fixes the flow - if it flows to a UV boundary condition corresponding to
g2 = 0, then that choice of M2 can never occur for any other value of g2. The expectation therefore is
that in this method, only a single baryonic bound state will be driven to become light, not the full
tower of states.

A similar story can be told for the F modes made of a gaugino and a squark

F ` ∼ qψ , (7.148)

where in the above q denotes a scalar and the precise operator to bulk mode dictionary can also be
found in [82]. The mass spectrum is shown in figure 7.7 as a function of the coupling of the higher
dimension operator g2/ΛŌO. The same behaviours are observed, namely the lightest state can be
driven to have a light mass at intermediate g2 and to zero as g2 →∞. The n = 1, ` = 0 state falls in
mass as the coupling is approaching its critical value, but they saturate at the value of the ground state
and never fall lower than that.
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7.8 The avoided level crossing

The models that we have considered thus far cannot give rise to abnormally light fermionic states
compared to the scale set by the vector meson mass of the brane intersection. The reason behind this,
lies to the residual amount of supersymmetry - after the introduction of flavour branes - which ties these
masses to the spectra of the bosonic meson states. It is, however, useful for applications of holographic
models to understand if and how one is able to make certain states lighter. A neat example is the study
of holographic composite Higgs models [2] where the double-trace interactions are necessary to ensure
the correct mass for the top. Double-trace deformations are also used in other bottom-up applications
in holography. They have been used, for example, to describe the colour superconductivity [176] where
the double-trace interactions are used to generate the Cooper pair condensate.

With holographic applications in mind, the authors in [1] considered double-trace deformations of
the boundary Lagrangian of “mesino” squared type. The way that this was achieved was to use the
prescription for higher dimensional operators described by Witten [147]. The addition of such operators
is naively a reduction to the fermionic mass in the low-energy hadronic description. It is worthwhile
mentioning that the method with the double-trace interactions has been used in the past in the context
of the D3/probe-D7 brane intersection to describe the Nambu-Jona-Lasinio model [148]. This model
utilizes four-fermi interactions.

The precept of the exercise with double-trace operators of “mesino” squared type is that any state can
be driven much lighter compared to the undeformed N = 2 theory, however it can never be made lighter
than the previous one in the supermultiplet. Hence, the authors in [1] found an avoided level-crossing.
This was observed only numerically and an analytic explanation is still lacking. Here we provide an
analytic explanation.

The effects of adding these higher dimension operators should manifest themselves as new phenomena
at some scale in the UV which we call ΛUV . These operators deform the original Lagrangian in the
following schematic way:

L+ g2

ΛqUV
Ō O , (7.149)

where the power q is chosen with relevance to the conformal dimension of the operator. Witten argued
that if the operator obtains a non-trivial vacuum expectation value, it generates a source at the UV
boundary, which is given by

J = g2

ΛqUV
〈O〉 . (7.150)

All the spectra presented so far are solutions with a vanishing source; J = 0. In order to include
the double-trace deformation of the Lagrangian, we allow for solutions to have J 6= 0, and from the
asymptotic expansions of these modes in the UV we can read off the precise values of O and J . The
asymptotic expansions have been obtained in the past and the precise explanation of the sources and
operators in terms of these expansions are given in [1, 170] and we do not repeat the analysis here.
Then, by using equation (7.150) we are able to obtain the coupling g2. These new solutions that have
J 6= 0 are interpreted as being part of the sourceless theory in the presence of the higher dimensional
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operators.

Having explained the way that these higher dimensional operators can be included in our base system,
let us focus, without loss of generality, on the D3/D7 brane junction and the modes associated to the G
operators. For a certain value of the angular momentum ` = 0 we ask the question whether or not the
first radially excited state of the KK tower, n = 1, can be driven lighter than the ground state, n = 0.
There is numerical evidence that this does not happen.

Since we have already argued that the same arguments can be obtained from either of the Γ% projections
we will be using the ⊕ states for convenience. Under the change of variables:

% = e−y, ψ(%) = e−2y

(1 + e2y)3/4ϕ(y), (7.151)

the equations of motion can be brought in a Schrödinger form, namely

(∂2
y − V (y))ϕ(y) = 0, (7.152)

with the potential being given by:

V (y) = (`+ 2)2 − 1
4 sech2 y M̄2 . (7.153)

We drop the explicit y-dependence for notational convenience and we denote the ground state (n = 0,
` = 0) by ϕ0 and the corresponding mass eigenvalue by M2

0 . Likewise we use the subscript 1 for the
n = 1, ` = 0 state or any state that lies above the ground state (n > 0, ` = 0) of the system and has a
higher mass with a non-vanishing source in the UV. Hence, we obtain

∂2
yϕ0 − V0ϕ0 = 0 ,

∂2
yϕ1 − V1ϕ1 = 0 .

(7.154)

If a level-crossing is to occur it would mean that M̄2
0 = M̄2

1 (and V0 = V1) for some value of a specified
source term. We multiply the first equation by ϕ1 and the second by ϕ0 and we subtract one from the
other to obtain

ϕ1 ∂
2
yϕ0 − ϕ0 ∂

2
yϕ1 = 0⇒

∂y (ϕ1 ∂yϕ0 − ϕ0 ∂yϕ1) = 0⇒

ϕ1 ∂yϕ0 − ϕ0 ∂yϕ1 = c , (7.155)

where c is just a finite constant. Note that if we are dealing with the normalizable modes only, then we
can use the boundary conditions at infinity to set c = 0 and we solve the differential equation above
to obtain ϕ0 = c̃ ϕ1, where now c̃ is a new constant. However, this would only mean that there is no
deformation of the boundary Lagrangian and we have only the states of the undeformed N = 2 theory.
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If we wish to allow for a non-negligible double-trace deformation we should formally write

ϕ1 ∂yϕ0 − ϕ0 ∂yϕ1 = c , (7.156)

for some finite value of the constant c. Note that while we know that ϕ0 is the ground state and hence
it falls off to 0 in the UV we cannot set the constant to c = 0 as the term with the non-vanishing source
might be going to some finite value faster.

Equation (7.156) is a necessary condition for a level-crossing to occur, thus we can re-express it in
terms of the % coordinate and the spinorial wave-functions ψ(0,1) in the following way:

%(1 + %2)3/2 ∂%

[
ln
(
ψ0
ψ1

)]
= c

ψ0 ψ1
. (7.157)

We can readily obtain the form of ψ0 by using equation (7.98) for the special values n = ` = 0, m = 3
and taking into account the positive Γ%-projection, thus we get

ψ0 = %

(1 + %2)11/4 . (7.158)

However, in order to obtain the form of ψ1 we need to reconsider the solutions of the second-order
equations of motion. The difference now is that we will allow as solutions the more general form and
not just the piece that falls off asymptotically to zero as %→∞. For our convenience we re-state the
second-order differential equation of the G-modes for the positive Γ%-projection:[

∂2
% +

(3
%

+ 3%
1 + %2

)
∂% + M̄2

(1 + %2)2 −
(

3
4

%2

(1 + %2)2 + 1
%2 (`+ 1)(`+ 3)− 6

1 + %2

)]
ψ⊕G`(%) = 0.

(7.159)
The above admits analytic solutions -without any requirements as we did previously- which are given
by:

ψ⊕G`(%) =(−)2` (1 + %2)− 1
4 +
√

1+M̄2
2

%`+3 2F1

(
1
2 +

√
1 + M̄2

2 ,−3
2 − `+

√
1 + M̄2

2 ;−(`+ 1);−%2
)

+ %`+1(1 + %2)−
1
4 +
√

1+M̄2
2 2F1

(
1
2 +

√
1 + M̄2

2 ,
5
2 + `+

√
1 + M̄2

2 ; `+ 3;−%2
)
.

(7.160)

Substituting ψ0 from equation (7.158) and ψ1 from equation (7.160) in the condition equation (7.157),
and solving for c we obtain an answer in terms of hypergeometric functions. When we fix ` = 0 the
solution for c simplifies to complex infinity.

Similarly, one can ask the question of whether or not the ground state (n = ` = 0) of the setup can be
driven to be massless or even tachyonic. Again, numerical analysis in [1] has shown that this does not
happen as it requires a double-trace deformation with infinitely strong coupling. The same conclusion
that we reached previously can also be drawn for this example. The only change in the computation is
that now the n = ` = 0 state plays the role of ψ1 in equation (7.157) and the non-normalizable solution
given by equation (7.160) plays the role of the state with a zero mass.
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Consequently, we argue that we found an analytic way to see why a level crossing does not occur in
these systems and furthermore why the discontinuity in the double-trace plots appeared to be going to
infinite values of the coupling.
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Part VI

The bottom-up method
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Chapter 8

The strongly coupled sector of
composite Higgs models and the top
mass1

8.1 Introduction

As we have seen already, the AdS/CFT correspondence was first proposed for conformal field theories,
such as the N = 4 Super Yang Mills (SYM) theory [23, 106]. However, it has created a new paradigm for
an effective description of gauge theory, through a five-dimensional gravitational dual, even beyond the
conformal case. Non-conformal gauge/gravity dual models have been used extensively to describe theories
similar to QCD. For example, chiral symmetry breaking [122, 129, 158], meson masses [41, 123, 134, 177]
and baryon masses [178] have all been addressed. This modelling has been more successful than one
would expect with sensible predictions of the spectrum and couplings possible at least at the 15% level,
or even better. Moreover, the comparison to lattice studies turns out to be convincing. An example of
this is the quark mass dependence of QCD, as realized for instance in the dependence of the ρ meson
mass on the π meson mass [41, 138, 179]. The holographic techniques for QCD described above can be
extended to other non-abelian gauge theories [136, 180, 181]. It is natural to apply them to strongly
coupled models of physics Beyond the Standard Model (BSM) that have been proposed. For example,
holographic work on technicolour includes [136, 182–188].

Another class of BSM models that have generated considerable study are composite Higgs models
[189] (the idea that the Standard Model (SM) fields might be composite has a long history, see for
example [190]) in these models we study the Higgs emerges as a bound state of a strongly coupled
gauge theory at the 1-5 TeV scale. The composite nature of the Higgs removes the huge levels of
fine tuning in the SM hierarchy problem. In this paper, we will apply holographic methods to survey
the full set of gauge theories that may underpin composite Higgs models including [191, 192] and the

1The research presented here is based on [2, 4], which is work in collaboration with my supervisor Nick Evans as well
as Johanna Erdmenger and Werner Porod. My primary contributions were to perform the analytics for the fermionic
fields and performing the numerical analysis.
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exhaustive listing of [144]. We predict the models’ meson spectrum and investigate the properties of
top partner baryons. We build on the work in our earlier, short paper [2], expanding the analysis to a
much wider set of quantities in the gauge theories previously studied and hugely enlarging the set of
gauge theories considered. The holographic model we use moves beyond simple holographic models
such as the Randall-Sundrum [193] approach of [194, 195] by directly including the running dynamics
of a particular UV completion of the model.

Holographic models of QCD-like theories split into two types: so-called top down models use the precise
tools of the AdS/CFT dictionnary to study deformed versions of N = 4 SYM that display confinement
and chiral symmetry breaking. Quark fields have been rigorously included in N = 4 SYM by adding
probe D7-branes [41, 120, 121]. These models are usually highly predictive, yet an actual rigorous
string dual of QCD does not exist, in particular due to the large N limit involved in holography. Thus
the gravity dual theories only exemplify aspects of the dynamics. There are also bottom up models that
have been constructed (often called AdS/QCD [123, 134]) which apply the basic tools of holography
but are less rigorous. These models typically contain more free parameters - for example the early
models imposed chiral symmetry breaking by hand and the quark condensate was a fitted parameter.
More elaborate constructions such as [196] address many of these issues and fit QCD well.

The model we will use here, Dynamic AdS/YangMills [136], lies between the two extremes of top down
and bottom up. The action is based on the Dirac Born Infeld (DBI) action of a D7 brane in AdS5

which describes a quenched quark in the top down models. In examples with chiral symmetry breaking
based on this action, deformations of the supersymmetric set up induce a running anomalous dimension
for the quark condensate, which shows as a radially dependent mass for the scalar that describes the
embedding [138, 197]. In the IR the Breitenlohner-Freedman bound [86] is violated and this scalar
develops a vaccum expectation value dual to the quark condensate, which is therefore dynamically
determined. The DBI action then naturally predicts the spectrum and couplings of a variety of bosonic
and fermionic exitations/states. It is very natural to use this DBI action to describe the quark/meson
physics for more complex models by simply feeding it the running anomalous dimension appropriate for
those models - although one loses the prediction of the form of this running the spectrum remains a
prediction. We will use the two loop running of the couplings in theses theories extended (beyond their
formal regime of validity) into the non-perturbative regime to provide sensible ansatz for the runnings
in all possible gauge groups and with quarks in all representations. The Dynamic AdS/YM theory
can therefore make predictions for the spectrum of the full set of asymptotically free gauge theories
proposed as composite Higgs models. A small number of previous holographic analyses of composite
Higgs models exist [194, 195, 198, 199] but they do not attempt to include the particular Nc and Nf

dependent runnings of the theories in the dynamics.

Recent work has also shown that it is straightforward to include higher dimension operators (HDOs),
such as Nambu-Jona-Lasinio operators [200], into the Dynamic AdS/YM model [148, 201]. This is
achieved by using Witten’s double trace prescription [147]. We will review this mechanism and explore
the role of higher dimension operators in our theories. In particular we will present a section where we
study Nf = 2 QCD to allow the reader to understand the ball-park success of the holographic model in
a familiar setting. Here, to introduce the HDO work, we introduce, in the spirit of [202, 203], many
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HDOs to “perfect” the predictions. This should be compared to perfecting a lattice action as introduced
by Lüscher and Hasenfratz long ago [204, 205]. We introduce a UV cut-off corresponding to the scale
where QCD transitions to the strong-coupling regime from the perturbative UV. Note that the gravity
dual should be strongly coupled in the region where QCD becomes perturbative above this cut off. We
show that HDOs, reflecting the matching at that scale, can improve the spectrum predictions, although
with a growing loss of predictivity.

We will then turn to using our holographic model for composite Higgs models. The key component
of composite Higgs models is that a strongly coupled gauge theory causes chiral symmetry breaking
in the quark sector, generating four or more Nambu-Goldstone bosons [189]. By weakly gauging the
global chiral symmetries the four then pseudo-Nambu Goldstone bosons (pNGBs) can be placed in the
two-dimensional representation of SU(2)L to become the complex Higgs field. This strong dynamics is
expected to happen at a scale of roughly 1-5 TeV. The Higgs Yukawa couplings must be formed by
higher dimension operators from a flavour scale above the strong dynamics scale. It has been argued,
for example in [206], that the electroweak gauge fields and top Yukawa interactions in the low energy
effective theory of the pNGBs generates the standard model (SM) Higgs potential. We will not address
the generation of the Higgs potential here, concentrating instead on the dynamics and spectrum of the
strong coupled theory one level higher. The need for higher dimensional operators to give mass to the
SM fermions motivates the study of related operators with a particular focus of their impact on the
spectrum of the composite states.

Three theories have had particular focus in the literature. Note we will generically refer to fermions
transforming under the strongly coupled gauge theory, in any representation, as quarks, in analogy
to QCD (elsewhere they are referred to as hyper-quarks etc). Firstly, an SU(2) model with two
fundamental Dirac fermions breaks an SU(4)/SO(6) global symmetry to Sp(4)/SO(5) generating
five Goldstones [207, 208]. Secondly, an Sp(4) gauge theory with fundamental quarks has the same
symmetry breaking pattern [191]. Thirdly, an SU(4) theory with five quarks in the sextet representation
breaks SU(5) to SO(5) generating fourteen Goldstone modes [192]. We will study these cases in
detail and compare to lattice simulations of these theories, quenched versions or versions with slightly
different fermionic content. The comparison is very favourable and leads us to place some trust in our
model’s predictions as flavours are unquenched or flavours added to make the precise content needed by
composite Higgs models. Here we see the huge benefit of holographic models where the field content
can be changed rapidly, albeit without the rigour of the lattice.

The generation of the top quark Yukawa coupling in composite Higgs models is difficult since it is
so large. A possible mechanism to enhance it is for the strong dynamics to have baryons with the
same symmetries as the chiral top quarks which they mix with via flavour higher dimension operators
[143]. In the Sp(4) model this can be achieved by adding quarks in the sextet representation [191];
and in the SU(4) model by adding quarks in the fundamental representation [192] as we will explore
in detail. These baryons naturally have order one couplings to the Higgs (pNGBs) generated by the
strong dynamics. Even here a Yukawa coupling of order one is hard to achieve requiring anomalously
light baryons (phenomenologically they must lie above 800-900 GeV or so [209, 210], dependent on
the precise decay channels) and or large structure functions. Here we will investigate this dynamics
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using holography. The D7-brane action, extended to its fermionic sector, naturally describes baryons
(super-partners of the mesons) consisting of three fermions (a quark an anti-quark and an adjoint fermion
in the root N = 2 theory) as fermionic fields in the DBI action [1, 3, 82, 121]. We phenomenologically
extend this description to describe the top partners which are also usually constructed from three
constituents. We do indeed find it hard to generate a large top Yukawa coupling in the base theories.
Here, as in [2], we propose a novel mechanism of adding an additional new higher dimension operator
that can reduce the top partner masses. We explore the impact of this operators showing that a physical
Yukawa coupling can be achieved by reducing the top partner mass relative to the vector meson mass
along with simultaneous enlargements of the relevant structure functions. If the strong coupling scale is
> 1 TeV then the top partner masses are still likely compatible with LHC constraints yet with a top
Yukawa coupling of order one.

In particular our new results in these full theories include: meson decay constants beyond lattice
analysis to date for the SU(2) model; the meson spectrum and decay constants for the Sp(4) model in
the unquenched theory which has not been studied on the lattice; first computations of the axial meson
and scalar (σ or S) meson sectors in an SU(4) theory where other observables have been studied on the
lattice (the theory has four Weyl sextet quarks and two flavours of Dirac fundamental quarks); and the
full unquenched spectrum of the true proposed SU(4) composite Higgs model (with five Weyl sextet
quarks and three flavours of Dirac fundamental quarks), a theory that is beyond lattice study currently.

We will further exploit the power of holography by computing the predicted spectrum for the full class
of twenty six models in the classification of [144]. Note, that we find that some of these models lie, at
least based on the ansatz of the two loop running of the coupling, in the conformal window [211, 212]
with an infra-red (IR) fixed point that is too small to break chiral symmetries. The scalar meson mass
is particularly sensitive to the rate of running of the coupling in any given theory and some of these
proposed models are walking theories with very low scalar masses (as expected from [181]; but also
see [213–215] for an important discussion of the possible role of mixing with the glueball sector). The
ability to see these effects is straightforward holographically but on the lattice needs both unquenched
simulations and a wide separation of scales.

8.2 Dynamic AdS/YM

In this section we introduce the holographic model that we will use. The model was first suggested in
[136]. Here, we refer to this model as Dynamic AdS/YM (Anti-de Sitter/Yang-Mills) to emphasise that
it can be used to holographically describe the chiral symmetry breaking dynamics of any gauge theory
(not just QCD), including with quarks in several, potentially inequivalent, representations.

The action for the model is inspired by the DBI (Dirac-Born-Infeld) action of a holographic top-down
model involving a D7-brane embedded in AdS5 or in a perturbed AdS5 geometry. The DBI action is
expanded to quadratic order in the embedding function X. A detailed description of this expansion
in particular cases is described in [138, 197]. We also add an axial gauge field in the natural fashion
familiar from AdS/QCD models [123]. We may think of this model as describing a single quark in
the background of the gauge fields, which may include the contribution to the dynamics from any
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other quarks even in the probe limit. Note here that the origin of the model at large Nc means the
U(1)A flavour symmetry is not anomalous so the pNGB and so forth form part of the same U(Nf )
multiplet along with other flavours. In any case by placing fields in the adjoint representation of a
flavour symmetry, and by tracing over the action, multiple mass degenerate quarks can be included
directly.

In particular, the model has a field of dimension one, in terms of the gauge theory conformal scalings,
for each of the relevant gauge invariant operators. For instance, X is dual to the complex quark bilinear
- in QCD this is the operator q̄q but it can be any such dimension three, gauge invariant operator of
the theory, as we will shortly expand on. The fluctuations of this field are dual to the σ (or S for
scalar) and π mesons of the theory. We will write it as X = Leiπ. AµL and AµR are dual in QCD to the
operators q̄γµq which generates the vector (the V or ρ) mesons and q̄γµγ5q which generates the axial
vector (A) mesons, respectively.

Note in theories with quarks in real representations one forms a Majorana spinor from each flavour
ΨM = (ψ,−iσ2ψ∗). The gauge invariant and Lorentz invariant condensates are then as in QCD written
X = Ψ̄MΨM and one still inserts the appropriate gamma matrix structure into the operator X to
describe vector and axial vector states - the former carry no charge under the broken symmetry, whilst
the latter are charged. Apart from this change in meaning for X the spirit of the gravity description is
then the same as in QCD.

The gravity action of Dynamic AdS/YM is

Sboson =
∫
d5x ρ3

(
1
r2 (DMX)†(DMX) + ∆m2

ρ2 |X|
2 + 1

2g2
5

(
FL,MNF

MN
L + (L↔ R)

))
. (8.1)

The five-dimensional coupling may be obtained by matching to the UV vector-vector correlator [123],
and is given by

g2
5 = 24π2

d(R) Nf (R) , (8.2)

where d(R) is the dimension of the quark’s representation and Nf (R) is the number of flavours in that
representation.

The model lives in a five-dimensional asymptotically AdS (AAdS) spacetime, which is given by

ds2 = r2dx2
(1,3) + dρ2

r2 , (8.3)

with r2 = ρ2 + L2 the holographic radial direction corresponding to the energy scale, and with the AdS
radius set to one. Note in D7 brane models [41, 120, 121] r is the RG scale of the gauge fields and ρ that
for quark physics. The factors of ρ and L in the action and metric are implemented directly from the
top-down analysis of the D3/probe-D7 brane system - there L corresponds to the direction perpendicular
to the D7 in the 10 dimensional space. The factors ensure appropriate UV behaviour, such that the
metric returns to pure AdS at the boundary, but also an IR behaviour where the fluctuations know
about any chiral symmetry breaking through a non-zero value of L. From a bottom up perspective it is
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natural for L to enter with ρ since ρ and L are both dimension one from the field theory perspective
- in a sense equation (8.3) includes the backreaction of the geometry to the formation of the quark
condensate. dx2

(1,3) is a four-dimensional Minkowski spacetime.

8.2.1 The running anomalous dimension & the vacuum

The dynamics of a particular gauge theory, including quark contributions to any running coupling, are
included through the choice of ∆m2 in the action equation (8.1). In order to find the vacuum of the
theory, with a non-zero chiral condensate, we set all fields to zero except for |X| = L(ρ). For ∆m2 a
constant, the equation of motion obtained from equation (8.1) is

∂ρ(ρ3∂ρL)− ρ ∆m2L = 0 . (8.4)

When ∆m2 = 0, near the boundary of the AAdS space which corresponds to the UV, the solution
is given asymptotically by L(ρ) = m + c/ρ2, with c = 〈q̄q〉 of dimension three and m, the mass, of
dimension one (note again L and ρ have dimension one). For non-zero ∆m2, the solution takes the
form L(ρ) = mρ−γ + cργ−2, with

∆m2 = γ(γ − 2). (8.5)

Here γ is precisely the anomalous dimension of the quark mass. The BF bound below which an
instability occurs is given by ∆m2 = −1.

In the gauge theory, we expect γ to run. Therefore we impose this running at the level of equation (8.4)
by allowing ∆m2 to depend on ρ. Our starting point is the perturbative results for the running of γ.
Expanding equation (8.5) at small γ gives

∆m2 = −2γ. (8.6)

We proceed by determining γ from the gauge theory. Note that this relation means that the holographic
model determines a theory to break chiral symmetry if the input form of γ passes through 1/2, when
the BF bound is violated - we will use this criteria below (matching the assumptions in [211]).

Since the true running of γ is not known non-perturbatively, we allow ourselves to extend the perturbative
results as a function of renormalization group (RG) scale µ to the non-perturbative regime. We will
directly set the field theory RG scale µ equal to the holographic RG scale r =

√
ρ2 + L2. Note it is

important that we let ∆m2 depend on L for the following reason. Chirally symmetry breaking occurs
in the IR because the L = 0 state has a BF bound violation at small ρ. L then becomes non-zero, the
condensate switches on, until the BF bound is not violated any more and the state becomes stable.
However, if we did not have L in ∆m2 then the BF bound would remain violated even as L switches on
and L would grow indefinitely. This mechanism happens naturally in the top down probe D7 systems.
We consider the two-loop results for the running because this ansatz includes the possibility of conformal
windows [211, 212] for ranges of Nf .

The two-loop result for the running coupling in a gauge theory with multi-representational matter is
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given by

µ
dα

dµ
= −b0α2 − b1α3 , (8.7)

with

b0 = 1
6π

(
11C2(G)− 2

∑
R

T (R)Nf (R)
)
,

b1 = 1
24π2

(
34C2

2 (G)−
∑
R

(10C2(G) + 6C2(R))T (R)Nf (R)
)
.

(8.8)

Here we have written the results for the number of Weyl fermion flavours in a given representation. To
find the running of γ we then use the one-loop anomalous dimension

γ = 3 C2(R)
2π α. (8.9)

Note we do not go beyond one loop here, since the running at large α is already a guess and moving
beyond one loop in γ does not provide further features (again we are following the conventions of [211]
here).

Now for a given theory we numerically solve equation (8.4) with our ansatz for ∆m2 for the function
L(ρ) that defines the vacuum. To do so, we need IR boundary conditions that we again import from
the D3/probe D7 brane system. The initial conditions that we use are

L(ρ)|ρ=ρIR = ρIR , ∂ρL(ρ)|ρ=ρIR = 0 . (8.10)

The first of these corresponds to an on-shell mass condition: once the IR mass, determined by
L(ρ)|ρ=ρIR = LIR, equals the energy scale ρ = ρIR, we stop the evolution of L(ρ) to lower scales, since
the quarks should now be integrated out. Geometrically, ρIR corresponds to the value of ρ at which the
function L(ρ) crosses a line at 45◦ in the L - ρ plane. The value of ρIR is fixed in each particular theory
and for each choice of UV quark mass: we numerically vary ρIR until the value of L at the boundary is
the desired quark mass. We refer to the corresponding configuration that describes the vacuum (for a
given Nc, Nf , and quark mass) as L0(ρ) with IR value LIR (this is effectively the constituent quark
mass) at the IR cut off ρIR.

Note at this point we observe a crucial difference between our approach and previous papers on
holgraphic composite Higgs models [194, 195], which use the boundary conditions to impose chiral
symmetry breaking. Here though it is not the IR boundary conditions that cause the dynamics that we
report. In our case the dynamics results from the BF bound violation (or not) for L in the bulk and
the IR boundary conditions simply provide IR regularity independent of the model’s dynamics.

If there are quarks in multiple representations, then we will simply replicate equation (8.1) for each
representation. This ignores mixing between the mesons made of quarks in different representations,
though different representations are still aware of each other through the choices of ∆m2. We will
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discuss such cases and their subtleties in more specific models below.

8.2.2 The meson sectors

The mesons of the theory can be found by solving the equations of motion for fluctuations in the various
fields of the model in equation (8.1). In each case a fluctuation is written as F (ρ)e−ik.x, M2 = −k2

and IR boundary conditions F (LIR) = 1, F ′(LIR) = 0 used. One seeks the values of M2 where the UV
solution falls to zero, so there is only a fluctuation in the vev of operator and not the source in the UV.

The fluctuations of L(ρ) give rise to scalar mesons. They are obtained by writing L = L0 + S, and
where to linear order r2 = ρ2 + L2

0. The equation of motion for the fluctuation reads

∂ρ(ρ3∂ρS(ρ))− ρ(∆m2)S(ρ)− ρL0(ρ)S(ρ)∂∆m2

∂L
|L0 +M2 ρ

3

r4S(ρ) = 0. (8.11)

The vector-mesons are obtained from fluctuations of the gauge fields V = AL +AR around the vacuum
value of zero and satisfy the equation of motion

∂ρ(ρ3∂ρV (ρ)) +M2
V

ρ3

r4V (ρ) = 0. (8.12)

To obtain a canonically normalized kinetic term for the vector meson we must impose
∫
dρ

ρ3

g2
5r

4V
2 = 1. (8.13)

The dynamics of the axial-mesons (A = AL −AR) is described by the ~x, t components of AN by the
equations

∂ρ(ρ3∂ρA(ρ))− g2
5
ρ3L2

0
r2 A(ρ) + ρ3M2

A

r4 A(ρ) = 0 . (8.14)

The difference between the V and A equations reflect that L carries axial charge so couples to A.

To compute decay constants, we must couple the meson to an external source. Those sources are
described as fluctuations with a non-normalizable UV asymptotic form. Again we need to fix the
coefficient of these solutions by matching to the gauge theory in the UV. External currents are associated
with the non-normalizable modes of the fields in AdS. In the UV we expect L0(ρ) ∼ 0 and we can
solve the equations of motion for the scalar, L = KS(ρ)e−iq.x, vector V µ = εµKV (ρ)e−iq.x, and axial
Aµ = εµKA(ρ)e−iq.x fields. Each satisfies the same UV asymptotic equation

∂ρ[ρ3∂ρK]− q2

ρ
K = 0 . (8.15)

The solution is
Ki = Ni

(
1 + q2

4ρ2 ln(q2/ρ2)
)
, (i = S, V,A), (8.16)

whereNi are normalization constants that are not fixed by the linearized equation of motion. Substituting
these solutions back into the action gives the scalar correlator ΠSS , the vector correlator ΠV V and
axial vector correlator ΠAA. Performing the usual matching to the UV gauge theory requires us to set
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[123, 136]

N2
S = d(R) Nf (R)

48π2 , N2
V = N2

A = g2
5 d(R) Nf (R)

48π2 . (8.17)

where d(R) is the dimension of the representation (note here again we write for Weyl fermions so for 2
Dirac flavours Nf = 4) .

The vector meson decay constant is then given by the overlap term between the meson and the external
source

F 2
V =

∫
dρ

1
g2

5
∂ρ
[
−ρ3∂ρV

]
KV (q2 = 0) . (8.18)

Note here that we are using the notation common in the AdS/QCD literature that the dimension
two coupling between the meson and its source is called F 2

V . It is common in the phenomenology
and lattice literature to call this quantity F̃VMV (see for example [216]). Below where we compare to
lattice results we must fix this choice. We have converted the lattice results to our definition of FV
in equation (8.18) which seems a purer statement of the strength of that coupling independent of the
prediction of the mass. The axial meson normalization and decay constant are given by equation (8.13)
and equation (8.18) with replacement V → A.

The pion decay constant can be extracted from the expectation that ΠAA = f2
π , with

f2
π =

∫
dρ

1
g2

5
∂ρ
[
ρ3∂ρKA(q2 = 0)

]
KA(q2 = 0) . (8.19)

We remind the reader that we have denoted the axial vector correlator by ΠAA.

To compute the pion mass in the presence of a quark mass we should formally work in the Aρ = 0 gauge
and write Aµ = Aµ⊥ + ∂µφ. The φ and π fields (the phase of X) mix to describe the pion - we have

∂ρ(ρ3∂ρφ(ρ))− g2
5
ρ3L2

0
r4 (π(ρ)− φ(ρ)) = 0 ,

q2∂ρφ(ρ)− g2
5L

2
0∂ρπ(ρ) = 0 .

(8.20)

Here we shoot out from the IR with φ(LIR) = 1, φ′(LIR) = 0, and then vary π(LIR) and q2 = −M2
π

to find solutions where both φ, π vanish in the UV. This is numerically very intensive. Below for
the non-zero quark mass cases, we will neglect the axial meson field to simplify the analysis. When
substituting the lower equation of equation (8.20) into the upper one, we find

∂ρ
(
ρ3 L2

0 ∂ρπ
)

+M2
π

ρ3 L2
0

r4 (π − φ) = 0 . (8.21)

We then assume φ � π and neglect the mixing, such that there is only the single equation for π to
solve as for the other fluctuations. This is the natural description of the pion mass in the D3/probe D7
system before we added the axial field by hand. As we will see, the results below suggest that this is a
sensible approximation.

In a particular SU(4) model we will study below, lattice studies have identified an additional spin zero
hadron (a tetraquark). Generically spinless states with UV dimension ∆ can be described by adding to
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the action an additional scalar field S,

S = Sboson + SJ , with SJ = 1
2

∫
d5x ρ3

(
∇M∇MS +m2S2

)
. (8.22)

Fluctuations of this scalar S = f(ρ) eik·x in the background lead to the equation of motion

∂2
ρf(ρ) + 5 ρ+ L0 ∂ρL0

r2 ∂ρf(ρ) + M2

r4 f(ρ)− ∆(∆− 4)
r2 f(ρ) = 0, (8.23)

where ∆ is the conformal dimension of the operator that we consider.

8.2.3 The fermionic sector

One of the first new additions of this work is that we wish to allow for the inclusion of baryonic states
in the Dynamic AdS/QCD theory. Here we are motivated by the mass of top partners in composite
Higgs models which we will explore more below. Of course, in true large Nc holography baryons made
of Nc quarks are very heavy stringy modes (for example described by a wrapped D5 with Nc strings
attached in the basic AdS/CFT Correspondence [103]). However, there are fermionic bound states
(baryons) described by the supergravity limit of the duality. In the D3/probe D7 system some fermionic
superpartners of the mesons are made of a quark, an anti-quark and a gaugino and are described
by fermionic excitations of the D7 world volume theory [82, 121]. Indeed in a preparatory paper we
carefully worked through the D3/probe D7 system example [1] (see also [3]) and that work will lead
us here. That a three fermion bound state can have such a description in a top down model suggests
phenomenologically a proton made of 3 quarks in QCD or the top partners in the models we will discuss
below could reasonable be modelled by simply placing a fermion in the bulk. The work of [178] has
already trialled this in AdS/QCD with some phenomenological success.

In appendix D we provide a full derivation for placing a fermion in first AdS and then the Dynamic
AdS/YM background. Here we simply summarize the results. We add to the action

S = Sboson + S1/2 , with S1/2 =
∫
d5x ρ3 Ψ̄

(
/DAAdS −m

)
Ψ . (8.24)

The four component fermion satisfies the second order equation(
∂2
ρ + P1∂ρ + M2

B

r4 + P2
1
r4 −

m2

r2 − P3
m

r3 γρ
)
ψ = 0 , (8.25)

where MB is the baryon mass and the pre-factors are given by

P1 = 6
r2 (ρ+ L0 ∂ρL0) ,

P2 = 2
(
(ρ2 + L2

0)L∂2
ρL0 + (ρ2 + 3L2

0)(∂ρL0)2 + 4ρL0∂ρL0 + 3ρ2 + L2
0

)
,

P3 = (ρ+ L0 ∂ρL0) .

(8.26)

In five dimensions for the states of UV dimension 9/2, as appropriate for a three quark state, the bulk
fermion mass is m = 5/2.
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The four component spinor can then be written in terms of eigenstates of γρ such that ψ = ψ+α++ψ−α−
where γρα± = ±α±. The equation then becomes two equations, one for ψ+ and one for ψ−, obtained
by replacing γρ in equation (8.25) by ±1 respectively. The two equations are though copies of the same
dynamics with explicit relations between the solutions as we describe in Appendix A. Thus one need
solve one only and from the UV boundary behaviour extract the source J and operator O values. The
UV asymptotic form of the solutions are given by

ψ+ ∼ J
√
ρ+OMB

6 ρ−11/2 ,

ψ− ∼ J
MB

4
1
√
ρ

+Oρ−9/2 .
(8.27)

The full solution must be found numerically - here we use the D3/probe D7 system as a guide to impose
the IR boundary conditions

ψ+(ρ = LIR) = 1, ∂ρψ+(ρ = LIR) = 0 ,

ψ−(ρ = LIR) = 0, ∂ρψ−(ρ = LIR) = 1
LIR

.
(8.28)

Note that we impose these boundary conditions at ρ = LIR rather than at ρ = 0 as in the supersymmetric
case in [1, 3].

8.2.4 Higher dimensional operators

Another key ingredient we wish to explore here is the inclusion of higher dimension quark operators
using Witten’s double trace prescription [147, 148]. This prescription amounts to introducing a cut-off
at some scale ΛUV in the gauge theory or an upper boundary in AdS at ρ = ΛUV . In the field theory
for some operator O we include a “double trace” higher dimensional operator (HDO) by

LUV = GO†O, , (8.29)

where G is a dimensionful coupling. Now were O to acquire a vacuum expectation value then via
equation (8.29) there would be an effective source at the boundary

J = G〈O†〉 . (8.30)

Note that the analysis of [147, 148] shows that adding the HDO as a boundary term in AdS and then
minimizing the bulk and boundary action naturally reproduces equation (8.30).

Until now we have considered a sourceless theory and in any computation of the background (L0(ρ)) or
any fluctuation we have only allowed solutions where the appropriate source vanish. For example, it is
precisely this prescription that picks out discrete values of the bound state masses. Now though we
will allow all of the solutions with non-zero J and re-interpret them as part of the source free theory
but with the HDO present: asymptotically we read off J ,O and then use equation (8.30) to compute
G. Now we can sort through these solutions and find the masses of bound states which match the
boundary condition for a particular G.
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The operators we will consider in Dynamic AdS/YM, which we will explore below, are

g2
S

Λ2
UV

|q̄q|2 , g2
V

Λ2
UV

|q̄γµq|2 , g2
A

Λ2
UV

|q̄γµγ5q|2 ,
g2

B
Λ5
UV

|qqq|2 , (8.31)

where the gi are dimensionless couplings.

8.3 Two-flavour QCD

To demonstrate the Dynamic AdS/YM model and the role of HDOs, we begin with a study of
Nc = 3, Nf = 2 QCD. We first determine the vacuum of the theory for the massless theory by finding
the function L(ρ) using equation (8.4). Then we compute the spectrum of the model by looking at
fluctuations, study the quark mass dependence and the n dependence of excited states. Finally we
consider introducing a cut off where the theory runs to a perturbative regime and include HDOs at
that scale to improve the IR description.

The key input for any theory we study is the form of γ we input in equation (8.6). The formulae for
the one and two-loop coefficients of the β-function and the one-loop anomalous dimension for QCD are,
with Nf the number of Weyl flavours in the fundamental and N̄f the number in the anti-fundamental
representations

b0 = 1
6π
(
11Nc − (Nf + N̄f )

)
,

b1 = 1
24π2

(
34Nc

2 − 5Nc(Nf + N̄f )− 3
2
Nc

2 − 1
Nc

(Nf + N̄f )
)
,

γ = 3(Nc
2 − 1)

4Ncπ
α .

(8.32)

We choose an initial value for α(µ = 1) = 0.65 for the numerical analysis but will set the scale with
the ρ-meson mass below. The resulting running of ∆m2 in the Dynamic AdS/QCD model is shown in
figure 8.1 on the left - the BF bound is violated close to the scale r = µ = 1.

We can now compute the vacuum for the theory by solving equation (8.4) subject to the boundary
conditions in equation (8.10). We solve the equation numerically and show the results on the right in
figure 8.1 for different asymptotics of L(ρ) corresponding to different UV masses.

8.3.1 The meson and baryon spectrum of QCD

To compute the meson masses, we must set g5 in equation (8.1) by matching to the UV vector-vector
correlator in perturbative QCD

g2
5 = 48π2

Nc(Nf + N̄f )
. (8.33)

Having found the massless vacuum, we can now study the spectrum as described in Section 2. We
set all sources to zero in the UV. The results for the ground states in each channel are shown at the
top of Table 8.1 using the ρ-meson mass to set the scale. Note we begin to use notation we will use
later - labelling the holographic model as AdS/SU(3) to indicate the gauge group and 2F 2 F̄ to show
there are 2 Weyl fermions in the fundamental and two in the anti-fundamental representation (ie 2
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Figure 8.1: The Nc = 3, Nf = 2 QCD model: on the left we display the running of the AdS scalar
mass ∆m2 against log RG scale (we use µ =

√
ρ2 + L2 in the holographic model). On the right we show

the the vacuum solution for |X| = L(ρ) against ρ. The 45◦ line is where we apply the on mass shell IR
boundary condition in equation (8.10). The L(ρ) with a massless UV quark has LIR = 0.43. The quark
masses from top to bottom are 1, 0.75, 0.5, 0.25, 0.05, 0. Here units are set by α(ρ = 1) = 0.65.

Dirac fermions in the fundamental). Comparing to the physically measured QCD values for the ground
states, we see the ρ- and A-meson sectors are reasonably described but the pion decay constant is low
(although we have not yet included a UV quark mass). The σ (S) mass is high, but possibly should
be compared to the f0(980) if the f0(500) is a pion bound state [217] (in which case it fits well). The
proton mass is clearly too high though.

We can compute the quark mass dependence of the meson masses also. We display the results in
figure 8.2 including fits and comparisons to lattice data. The top two plots show that at low quark
mass the pion mass squared is linear in mq as required by the Gell-Mann-Oakes-Renner relation whilst
at larger mq the behaviour reverts to depending on m2

q as for the other mesons. In the lower plot
we show the other meson masses as a function of M2

π . The lattice data is extracted by eye from the
plots in for example [218–220] so we don’t give errors - they provide a guide to the expected order of
magnitude. Note the coefficients are dimensionful so depend on the choice for the setting of the scale.
The comparison is reasonable at the level of a factor of two except for the σ where our estimate of the
mass is high and the gradient low, perhaps reflecting the difficulty with identifying the state we have
already encountered.

Finally it is also interesting to look at the masses of higher excited states of the mesons. We are wary
of this comparison - at infinite Nc the AdS/CFT description of excited states remains a point-like
supergravity description whilst in QCD, at lower Nc, we expect, as the quarks separate, the confining
strings between them to become apparent [221]. One might therefore only expect the lowest excited
state(s) to be well described by the methods we are using. It has been argued that the excited state
masses should scale with the excitation number n as

√
n [221] whilst in standard AdS/QCD models

they scale as n. In [135, 222] it was argued that rather dramatic changes to the deep IR would be
needed to make highly excited states scale as

√
n - this approach is not obviously reintroducing string

like behaviour though. So it is interesting to look at the low lying n masses in our description. In
figure 8.3 we show the wave functions for the first few excited ρ-meson states and plot the masses
against n. In fact they are rather linear in n and the model, unsurprisingly, does not capture the string
like behaviour. We display the values of the first excited states in Table 8.1 where they come out high.
Below we will take a different approach to adding string like structure back into the model by including
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Observables QCD AdS/SU(3) Deviation
(MeV) here’s the hidden text 2 F 2 F̄
Mρ 775 775∗ fitted
MA 1230 1183 - 4%
MS 500/990 973 +64%/-2%
MB 938 1451 +43%
fπ 93 55.6 -50%
fρ 345 321 - 7%
fA 433 368 -16%

Mρ,n=1 1465 1678 +14%
MA,n=1 1655 1922 +19%
MS,n=1 990 /1200-1500 2009 +64%/+35%
MB,n=1 1440 2406 +50%

Table 8.1: The predictions for masses and decay constants (in MeV) for Nf = 2 massless QCD. The
ρ-meson mass has been used to set the scale (indicated by the *).

HDOs which does seem to improve the predictions for at least the n = 1 states as we will see.

8.3.2 The nucleon-σ Yukawa coupling

A further important quantity is the nucleon σ Yukawa coupling strength, which we estimate here. We
must normalize the kinetic term of the scalar and the baryon using

NS
∫
dρ

ρ3

(ρ2 + L2
0)2 S2(ρ) = 1, NB

∫
dρ

1√
ρ2 + L2

0

ψ2(ρ) = 1 . (8.34)

The precise expression for the dynamically determined Yukawa coupling would depend on the action
mixing the L and ψ fields beyond quadratic order and there are a number of terms one could write on
dimensional grounds with free couplings. An example term that will contribute is

yNNσ =
∣∣∣∣∣
∫
dρ ρ3∂ρS ∂ρL0 ψ

2

(ρ2 + L2
0)2

∣∣∣∣∣ . (8.35)

For this case, we find yNNσ = 1.47, which is of order one as one might expect. We stress again though
that while this is indicative of the expectation that the coupling will be of order one, it is not a
prediction because we can multiply by an arbitrary coupling in our holographic model.

8.3.3 Higher dimensional operators

We now turn to demonstrating the effects of the addition of higher dimensional operators to the
Dynamic AdS/YM description of two-flavour QCD. The philosophy is to include a UV cut off at a
scale corresponding to the transition region from strong to weak coupling - at higher scales the gravity
description is expected to break down (become strongly coupled). There is an expectation that QCD
will have generated HDOs at this matching scale. In addition one can consider the HDOs as potentially
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Mρ = 775 + 0.00023 M2
π ,

Mρ lat = 770 + 0.00064 M2
π ,

MA = 1183.5 + 0.00095 M2
π ,

MA lat = 1230 + 0.0015 M2
π ,

MB = 1450.6 + 0.0007 M2
π ,

MB lat = 938 + 0.0015 M2
π ,

MS = 973.4 + 0.00023 M2
π ,

MS lat = 570 + 0.0011 M2
π .

Figure 8.2: The top figures show the pion mass squared aginst the UV quark mass. The dashed
black lines show the fit we obtained which is given by M2

π = 3871mq + 13.45m2
q . In this formula the

pion mass is given in MeV. The bottom plot shows the other meson and baryon masses against Mπ

and the best fits obtained in our model. In these formulae the pion mass is also given in MeV. For
the reader’s convenience, we remind here that the lattice data is extracted by eye from the plots in
for example [218–220]. This is why we do not provide errors. They are, however, important as they
provide a guide to the expected order of magnitude.

including stringy effects into the gravity description as well. We enact this in the holographic model
by putting a boundary at ρ = 10 roughly 10 times the scale of chiral symmetry breaking. Using the
ρ-meson mass to set the scale this corresponds to a scale of about 6 GeV.

Let us start, as an example, with the analysis of the vector mesons. Previously we solved equation (8.12)
which has UV asymptotics of the form J + 〈O〉/ρ2. We only accepted solutions for values of M2

V where
J = 0 (see figure 8.3). Now though we will enlarge the set of available solutions to those with all values
of J as shown on the left in figure 8.4. We now interpret these solutions as having J = 0 but the
higher dimension operator g2

V /Λ2
UV |q̄γµq|2 present. We extract J and 〈O〉 from the asymptotics and

compute the four fermion operator coupling g2
V using equation (8.30). We can then plot the vector

meson mass as a function of gV . This is displayed on the right in figure 8.4. We see here that the mass
of the bound state and the first excited state fill out the available mass values between the ground state
mass and the first excited state masses at g2

V = 0 with a discontinuity between g2
V = ±∞. In addition

positive g2
V drives the ground state mass below its value at g2

V = 0 and to zero as g2
V →∞. There is

never a tachyonic state here. Note that the first excited state’s mass does not fall below the mass of
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Figure 8.3: On the left, we show the normalizable solutions to the equations of motion for the
vector meson (the black rectangle covers the region below the IR cut off). They are obtained for
MV = 1.337(775 MeV), 2.895(1677.9 MeV), 4.45(2578.9 MeV). On the right we show the numerical
masses - blue dots - and the spectral curve that we obtained by fitting to the first six states and verified
against the next three. Here, n is the number of nodes of the wave-functions.

the ground state at g2
V = 0. We repeat this computation for the axial vector meson and show the
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Figure 8.4: On the left the holographic wave functions of the vector meson ground state for various
g2
V - the ground state at g2

V = 0 is the lowest curve; as M2 decreases, g2
V increases and these are the

higher curves. The black region represents the region below the IR cut off ρIR below which the quarks
have become very massive and need to be integrated out. On the right we plot the associated masses
against coupling g2

V extracted from those solutions - blue points are the ground state (corresponding to
the left hand points), the orange points are the first excited states.

results in figure 8.5. The behaviour of the mass with gA is very similar to that of the vector mass with
gV except that it appears to asymptote to a fixed non-zero value as g2

A →∞.

Next we consider the scalar meson of the theory where there is a new phenomenon. We begin by solving
equation (8.11) for the scalar meson fluctuations in the background embedding with zero UV quark
mass, allowing all M2

S values and extracting the g2
s coupling of the higher dimension operator

g2
S/Λ2

UV |q̄q|2. (8.36)

We refer to this operator as a Nambu-Jona-Lasinio (NJL) operator. In figure 8.6 we show that the
scalar becomes tachyonic at a finite value of g2

S . This indicates that the vacuum has become unstable at
larger g2

S . Here though we understand this instability. Consider again the solutions of the background
embedding shown in figure 8.1, including now the solutions with non-zero mass in the UV. We include
all these solutions with non-zero sources as solutions of the theory with the HDO present and at the
level of the background determine g2

s . In the right hand plot in figure 8.6 we show the IR quark mass
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Figure 8.5: The masses of the pseudovector meson ground state and first excited state as a function
of g2

A.

LIR against g2
S . Here we interpret the ρ = 0 behaviour of the function L0(ρ) as the constituent quark

mass. It shows that around the same critical value of g2
S , where the scalar became tachyonic, the more

massive vacua of the theory with a non-zero UV source emerge. This is the well known dynamics of
the Nambu-Jona-Lasinio model [200] - this has been investigated before in a holographic context in
[223]. Note it is not a pure second order transition with the IR mass rising from zero because the base
QCD theory already contains chiral symmetry breaking - the NJL interaction just enhances this mass
generation. If the σ mass is computed in the true vacuum, where L0(ρ) includes the effect of g2

s , then
at any g2

S there is no tachyonic behaviour. It is important to note that the vacuum embeddings in
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Figure 8.6: The instability of the massless embedding in the presence of an NJL interaction: on the
left we show the mass of the σ scalar in the massless background of figure 8.1 (shown in red there)
- it becomes tachyonic beyond a critical value of g2

s . On the right we show the IR quark mass LIR
against the NJL coupling as interpreted from the embeddings with a source in figure 8.1. We see that
the tachyon instability is related to the NJL interaction changing the vacuum by enhancing chiral
symmetry breaking.

figure 8.1 have two interpretations - either there is an explicit UV mass for the quarks or a UV HDO is
present. At the level of the solutions in figure 8.1 there is no distinction but there is at the level of the
fluctuations. If there is a UV quark mass only present, then in the fluctuation calculation we must
require that asymptotically in the UV there is only a vev for the operator and no J . On the other
hand, if we interpret all of the UV source in the embedding as being due to the NJL operator then
we must determine the value of gS from the background. Then we have to enforce that same value at
the level of the fluctuations. Of course, most generally there can also be a mixture of quark mass and
NJL operator in which case one needs to be careful to apply the appropriate g2

S for the fluctuation
calculation.
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Finally we can introduce a baryon squared HDO, g2
B

Λ5
UV
|qqq|2, to change the baryon mass. The results

are shown in figure 8.7. In fact this plot was our initial motivation for this work since we were interested
in bringing the proton mass down relative to the ρ-meson mass in AdS/QCD. As we will see later, they
may be similarly used to generate light baryonic top partners in BSM models. Figure 8.7 shows similar
features to the ones for the masses of the vector meson and axial-vector meson. enhances this mass
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Figure 8.7: The effect of adding higher-dimensional operators on the mass spectrum of the baryon.
The red dots are the results when we drive the ground state lighter and the green ones depict the first
excitation.

generation. If the σ mass is computed in the true vacuum, where L0(ρ) includes the effect of g2
s , then

at any g2
S there is no tachyonic behaviour.

8.3.4 Perfecting two flavour QCD

Finally for two flavour QCD we will consider perfecting the holographic description [202, 203]: that
is using HDOs to correct for the presence of a finite cut off. We will consider the description to only
exist below ρ = 10 (approximately 6 GeV) and include HDOs to improve the description. These HDOs
are intended to represent the physics of the perturbative regime and of the regime where the theory
transitions from weak to strong coupling, which have been integrated out above the cut off. In principle
one would like to explicitly match but presumably the intermediate, somewhat strongly coupled regime
between perturbative QCD and where the holographic description is sensibly weakly coupled will make
this matching hard. Thus we simply tune the HDOs couplings at our somewhat adhoc choice of UV
cut off to match the observed mass spectrum.

To bring the decay constant fπ to its measured value we allow ourselves to move away from the L0

corresponding vanishing quark mass. This can be interpreted either as including a small bare quark
mass or a four fermion operator for q̄q - we find mq|UV = 0.06576 or equivalently g2

S = 4.59. Since we
use the ρ mass to fix the scale, we can use the g2

V coupling to tune the ratio of FV /M2
V to the observed

value. We then use g2
A, g

2
B to arrange the masses of the axial vector, and baryon to their observed

masses. The resulting spectrum is shown in table 8.2. Clearly this is a much better description of the
ground state QCD spectrum than in table 8.1 if only because we have tuned most of the parameters!
fA is a prediction and lies closer to the data than before. The scalar mass is also a prediction and here,
where we have interpreted the UV quark mass as the presence of g2

S , the result has dropped closer to
the mass of the f0(500) resonance. The predictions for the first excited states’ masses, the final four
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Observables QCD Dynamic AdS/QCD HDO coupling
(MeV) here’s the hidden text here’s the hidden text
MV 775 775 sets scale
MA 1230 1230 fitted by g2

A = 5.76149
MS 500/990 597 prediction +20%/− 40%
MB 938 938 fitted by g2

B = 25.1558
fπ 93 93 fitted by g2

S = 4.58981
fV 345 345 fitted by g2

V = 4.64807
fA 433 444 prediction +2.5%

MV,n=1 1465 1532 prediction +4.5%
MA,n=1 1655 1789 prediction +8%
MS,n=1 990/1200-1500 1449 prediction +46%/0%
MB,n=1 1440 1529 prediction +6%

Table 8.2: The spectum and the decay constants for two-flavour QCD with HDOs from figure 8.7
used to improve the spectrum.

entries in the table, have all moved closer to the experimental values too - possibly this means that the
HDOs are including some of the stringy effects the supergravity approximation excludes. The mass of
the first excited state of the scalar is quite far off again, as in section 8.3.1, suggesting that interpreting
these states is difficult. Overall though we conclude that the improvement method used is sensible. In
principle one could go further and allow corrections to the UV matchings of the coupling g2

5 and the
normalization of the correlators in equation (8.17) but then we would lose essentially all predictivity.

8.4 Composite Higgs Models

The holographic model we have used above to describe QCD with higher dimension operators can
naturally be extended to other non-abelian gauge theories in which a dimension three, gauge invariant
quark bilinear condenses. The key idea is to simply change the running of the anomalous dimension
for the quark bilinear. The bound states are then those associated with that operator with inserted
gamma matrix structure. It is natural to apply this modelling to proposed strongly coupled models
of physics beyond the Standard Model (BSM). In [188, 224], one of the authors has already studied
predictions of such models for technicolour theories, including examples where the dynamics is enhanced
by Nambu-Jona-Lasinio operators [223] and where extended technicolour interactions are included as
HDOs for the generation of the top mass [225]. In this section we will apply these techniques to a
further class of BSM models, the Composite Higgs Models.

8.4.1 Setting the scene

Review of composite Higgs models

The crucial ingredient in composite Higgs models is a strongly coupled sector that breaks a global
symmetry generating Nambu-Goldstone bosons. By weakly gauging part of the global symmetries the
Standard Model (SM) gauge groups are introduced and 4 of the then pseudo Nambu-Goldstone bosons
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(pNGB) are identified with the SM Higgs. Realistic models have to contain the Higgs fields as a (2, 2)
representation of the custodial symmetry group. Gauging the SM SU(2)L × U(1) leads to an explicit
breaking of the global group which in turn implies that a potential for the pNGBs is generated at
loop-level. Moreover, in the low-energy theory one assumes that HDOs have also generated the top
Yukawa coupling. The effective cut off on these loops is given by the strong coupling scale ΛS ' 4πfπ
where here fπ is the pion decay constant of the SU(4) gauge theory. Typically, ΛS is assumed to be at
a scale of order 1-5 TeV. The potential is of the form [206]

Vh = −CLR(3g2
1 + g2

Y ) cos2
(
h

f

)
+ y2

t

2 Ct sin2
(2h
f

)
. (8.37)

Here CLR and Ct are low-energy couplings of the effective theory below the strongly coupled group’s
scale, which can be expressed in terms of correlation functions within the theory (see e.g. [206] for
details in the case of an explicit SU(4) model). We will not revisit these low energy computations
further here, but instead concentrate on the strong dynamics sector at the higher scale that generates
the pNGB fields.

Explicit models of the top quark Yukawa coupling require more elaborate models. In the spirit of
extended technicolour [226], one can simply include HDOs of the form where F are generically the
composite fields that make up the Higgs. ΛUV must probably be at least 5 TeV, making it hard to
generate the large top mass. Such couplings also potentially suffer from Flavour Changing Neutral
Currents.

1
Λ2
UV

t̄LF̄FtR , (8.38)
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Figure 8.8: The diagram responsible for the generation of the top Yukawa coupling. tL, tR are the
standard model top quarks, TL, TR the top partners - they mix via the HDOs with couplings g and g̃ -
there are Z form factors associated with the formation of the top partner baryons. H is the pNGB
that becomes the Higgs which has an order one Yukawa coupling to the top partners Z3.

Another possibility for generating the top mass, often referred to as partial compositeness, is that the
left and right-handed top particles tL and tR mix with baryon-like spin 1/2 states in the gauge theory
TL, TR with the same quantum numbers [143]. These baryons are frequently called top partners. They
will be involved in the strong dynamics and so have an order one Yukawa coupling to the Higgs. The
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diagram in figure 8.8 then generates a contribution to the top Yukawa coupling as shown.

Here the Z factors are three structure functions that depend on the strong dynamics. The top-top
partner mixing factors result from the couplings of HDOs such as

g2

Λ2
UV

t̄LFFF , (8.39)

where the F are again generically representing the fermions that TR is made from. We expect Z3 to
be of order one since it is generated by the strong dynamics - it is analogous to the nucleon-σ or π
coupling in QCD. The Z and Z̃ factors (setting g = g̃ = 1) will take the form Λ3

S/Λ2
UV where ΛS is the

strong coupling scale. If the top partner’s masses are of order ΛS , then the Yukawa is given by

yt ' Λ4
S/Λ4

UV (8.40)

which, assuming a separation of at least a factor of 3 between the flavour scale and the strong coupling
scale, makes the top mass a factor of 100 too light. We will compute the Z factors andMT holographically
below where we indeed find that a large top Yukawa cannot be achieved in this way.

To combat the small Yukawa coupling size one could try to lower MT or reduce the power of ΛUV in the
denominator. One proposed solution is walking dynamics [227]. In a walking theory the dimension of
the fermions in equation (8.39) are lower at ΛUV and then the powers of ΛUV reduce (see for example
[191, 228] for discussion). Here, though, we will provide a new mechanism that allows an order one top
Yukawa coupling as needed for the top mass. To generate the large top mass one could hope the top
partners are anomalously light relative to the strong scale ΛS by a factor of 3 or more, but generically
there is no reason to expect this. However, here we will realize such a mechanism: in particular we
will include a new HDO that reduces to a shift in the top partners’ mass at low energies, using the
holographic HDO implementation introduced in sections 8.2.4 and 8.3.3. We show that the top Yukawa
coupling can be made of order one by lowering the top partners’ mass to roughly half the vector meson
mass in the strongly coupled sector. This appears to be consistent with experimental constraints and
provides a mechanism for generating an order one top Yukawa coupling.

A comprehensive analysis of the group theoretic possibilities for the strong sector underlying composite
Higgs models with top partners was performed in [144]. We will analyze all 26 models using our
holographic techniques. However, we also show that some of these models lie, at least based on the
ansatz of the two loop running of the coupling, in the conformal window [211, 212] with a infra-red
(IR) fixed point that is too small to break chiral symmetries. In the theories that do break symmetries
dynamically we derive the values of the masses of the vector, scalar, axial mesons, and spin-1/2 baryon
as well as the decay constants.

There are three scenarios that we will consider in considerable detail here, since they were already
studied within lattice gauge theory [229–233]. We will start with a simple SU(2) gauge theory with
quarks in the fundamental representation (which in the classification of [144] is among the Sp(2N)
models). We will then discuss two models, one based on the gauge group Sp(4), originally proposed in
[191], and one based on the gauge group SU(4) proposed in [192]. These models contain additional
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pNGBs beyond the Higgs. We will not address their mass generation in the low-energy theory, though.
Instead, we will concentrate on the bound states at the higher, strongly coupled scale.

Model classification

Since we will be discussing many different models, it is important to be able to clearly but succinctly
identify them. We will label models by their gauge group and the matter content of the model. We
give the number of Weyl fermions in the representations F for the fundamental, An for the n index
antisymmetric representation, Sn for the n index symmetric representation, G for the adjoint and s for
the spinor representation. We use a bar for the anti-representation. Thus, for example, we can fully
specify a model as Sp(2Nc) aG, bF , which means an Sp(2Nc) gauge group with a Weyl flavours in the
adjoint and b in the fundamental of the group. We will refer to the holographic description of such a
model as AdS/Sp(2N) aG, bF . We also note that we will refer to all fields in representations of the
flavour group as ‘quarks’ in analogy to QCD.

Lattice data in a normalization adapted to holography

In the sections below, we will present data from a variety of lattice collaborations [229–233]. In order
to present them in a uniform manner we have manipulated the data from some of the original papers.
In particular, we choose to present all quantities as dimension one quantities (mass or decay constant)
using one of the representation’s vector meson mass to set the scale. Wherever possible, we give errors
on the quantities we have extracted from lattice papers.2 We propagate them using the formula:3

C =
√
A

B
, then dC =

√
dA2

4AB + AdB2

4B3 . (8.41)

We note again that we are using the notation common in the AdS/QCD literature that the dimension
two coupling between the meson and its source is called F 2

V . It is common in the phenomenology and
lattice literature to call this quantity F̃VMV (see for example [216]). We have moved any lattice results
we quote below to our definition of FV as discussed in section 8.2.2.

8.4.2 SU(2) gauge theory with 2 Dirac fundamental quarks - SU(2) 4F

One of the simplest gauge theories that can underlie composite Higgs models is an SU(2) gauge theory
with two Dirac quarks in the fundamental representation [207] (or two Weyl fermions in each of the F
and F̄ ). The pseudo-real nature of the fundamental of SU(2) means that the naive SU(2)L × SU(2)R
symmetry of the quarks is enhanced to an SU(4) flavour symmetry [208] (the 2 and 2̄ are identical).
The condensation pattern is of similar structure as in QCD (〈ūLuR + d̄LdR + h.c.〉), which then breaks
the SU(4) flavour symmetry to Sp(4). Five generators are broken so there are 5 pNGBs.

It is straightfoward to describe the model using our AdS/YM description - we simply dial Nc = 2, Nf = 2
2Many thanks to Jonathan Flynn and Nick Evans for comments and discussions at this point.
3Note that the approach taken here for the computation of the errors is different compared to the published works [2, 4].

In these papers the standard formula for differentials was used, albeit modded. For example, the standard result yields
d
(
A
B

)
= 1

B
dA− A

B2 dB, however in those two works it was taken as d
(
A
B

)
= 1

B
dA+ A

B2 dB.
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in the running of α in equation (8.8) and γ equation (8.9). These then feed into ∆m2 in equation (8.6).
With these values, we repeat our computations as in holographic QCD. We have again

b0 = 1
6π
(
11Nc − (Nf + N̄f )

)
,

b1 = 1
24π2

(
34Nc

2 − 5Nc(Nf + N̄f )− 3
2
Nc

2 − 1
Nc

(Nf + N̄f )
)
,

γ = 3(Nc
2 − 1)

4Ncπ
α .

(8.42)

Note that the Sp(4) multiplets of mesons include the usual SU(2)V multiplets, so we compute as in
QCD to find masses and decay constants. Our results for the massless theory are shown in table 8.3
normalized to the ρ/V mass. There is lattice work on this model in [229, 230], where unquenched
Wilson fermions are used, i.e. the determinant of the Dirac operator is calculated instead of setting it
to one, as in quenched theories. In the holographic approach this corresponds to including quark loop
contributions to the gauge propagator.

We show these results in the massless limit for the V,A and σ masses also in table 8.3. Comparing
to our holographic results, we see sensible agreement, as we found in the QCD analysis above. The
holographic A mass is perhaps a little high. The lattice errors on the scalar mass are sufficiently large
to incorporate our result. Since the lattice studies also provide fits to the quark mass dependence

Observables Lattice AdS/SU(2) here’s the hidden text
here’s the hidden text here’s the hidden text 2F , 2F̄

MV 1.00(4) 1* sets scale
MA 1.1(3) 1.66
MS 1.5(7) 1.27
fπ 0.076(45) 0.0609
fV 0.376
fA 0.474

Table 8.3: Comparison of the lattice studies [229, 230] of the massless SU(2) gauge theory to our
holographic model’s predictions for meson masses and decay constants in units of the vector meson
mass.

in the model, we make that comparison as well. In figure 8.9 we show the small (linear) and larger
(quadratic) mq dependence of the pNGB mass squared. At larger pNGB masses, higher order terms in
the expansion in mq would be needed. We then plot the meson masses as a function of M2

π in figure 8.10
and present our fits and those from the lattice. The holographic model agrees rather well with the
lattice fit and certainly lends strength to the view that the holographic model provides a credible and
useful description of the dynamics.

8.4.3 Sp(4) gauge theory with top partners - Sp(4) 4F, 6A2

The SU(2) model of the previous subsection can realize a composite pseudo-Goldstone Higgs but
can not contain top partners since there are no baryons in an SU(2) gauge theory. The same global
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Figure 8.9: We plot the pNGB mass against the UV quark mass in the small and intermediate quark
mass regions for the SU(2) gauge theory (in units of the vector meson mass at mq|UV = 0). The
red points are the numerical results. The dashed black lines are obtained as a simple analytic fit:
M2
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Figure 8.10: The growth of the spectra in the SU(2) theory as we increase the quark mass in the
UV. The masses are rescaled with respect to the vector meson mass at mq|UV = 0. In our analytic
formulae quantities are again normalized to the vector meson mass at mq|UV = 0. The related lattice
data can be found in [229, 230].

symmetry breaking pattern (SU(4) → Sp(4)) can be achieved with any Sp(2N) gauge theory with
again two Dirac fermions in the fundamental representation (4 Weyl fermions in the F ). It is natural
to concentrate on the next most minimal Sp(4) case, as Sp(2) ' SU(2).

Top partners can be introduced [191] into the Sp(4) model by the inclusion of three additional Dirac
fermion in the sextet, two index anti-symmetric representation of the gauge group (we will refer to
them as A2s) (in the nomenclature of [234] this is model M8). The three copies are the three QCD
colours although we drop the colour interactions since they are only weakly coupled at the energy scales
we consider. The top partners are FA2F bound states. From the point of view of the Sp(4) dynamics
there is an SU(6) symmetry on the six Weyl fermion A2s which are in a real representation. When
the A2 condensate forms this symmetry is broken to SO(6). The full symmetry breaking pattern is
characterized by

SU(4)× SU(6)× U(1)→ Sp(4)︸ ︷︷ ︸
SU(2)L×U(1)

× SO(6)︸ ︷︷ ︸
SU(3)×U(1)

×U(1) (8.43)
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where the U(1) factors give eventually the hypercharge.

For the holographic model we need the running of the coupling equation (8.8) and γ equation (8.9).
These then feed into ∆m2 in equation (8.6) to define the model. The beta function coefficients for the
running of α and γ in the UV are

b0 = 1
6π

(
11(N + 1)−Nf1 − 2(N − 1)Nf2

)
b1 = 1

24π2

(
34(N + 1)2 − 5(N + 1)Nf1 −

3
4(2N + 1)Nf1

−10(N + 1)(N − 1)Nf2 − 6N(N − 1)Nf2

) (8.44)

and the one-loop anomalous dimensions for the different representations are

γA2 = 3
2πNα ,

γF = 3
2π

2N + 1
4 α ,

(8.45)

In the aboveNf1 = 4 denotes the flavours in the fundamental andNf2 = 6 in the two-index antisymmetric.
N = 2 for Sp(4).

Generically one would expect the A2 fermions to condense ahead of the fundamental fields since the
critical value for α where γ = 1/2 (the criteria discussed below equation (8.6)) is smaller. If we extend
the perturbative results into the non-perturbative regime we find

αA2
c = π

6 = 0.53 , αFc = 4π
15 = 0.84 . (8.46)

When the A2s condense their condensate breaks their flavour SU(6) to SO(6). At this point the A2s
become massive but it is unclear how quickly they decouple from the running of α - we will investigate
this point below. The usual assumption is that both species of fermion condense close to the same scale.

The holographic vacuum of the theory

Let us begin by investigating the question of the scale of the condensates in the vacuum of the theory
using our holographic model. As a first run we use the AdS/YM theory with the running of α including
both fermion species - that is we use equation (8.44) at all energy scales. We then track the running of
the anomalous dimension γ for the two representations using equation (8.45). Note the scale where the
BF bound is violated is similar for the two representations because the coupling is running quickly near
the BF bound violation point. These give us two ∆m2 in equation (8.6), one for each representation,
which are shown in blue (F) and orange (A2) on the left in figure 8.11. Each of the condensates is a
distinct operator which we represent by a distinct field L - in other words we run two copies of the
AdS/YM equations for the vacuum expectation values of the two condensates. The results for the two
resulting L functions are shown in figure 8.11 on the right - again blue (F) and orange (A2). The A2

fields condense at a higher scale than the F because its ∆m2 passes through the BF bound first.
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There is though a tricky and interesting decoupling problem here. When the A2 fields condense and
become massive should we integrate them out of the running of α? At weak coupling massive quarks do
decouple from the running but it is less clear what is appropriate at strong coupling. We have computed
an example of such a possible decoupling. Here as soon as the scale LIR for the A2 fermions is reached
we remove them from the running of α at lower ρ - the running of the F fields ∆m2 then deviates from
the blue to the red curve on the left in figure 8.11. It runs faster than before and the condensation
scale for the fundamental fields moves closer to that of the A2s. The resulting L(ρ) function for the F
is shown by the red line in the right hand plot of figure 8.11.
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Figure 8.11: AdS/Sp(4) 4F, 6A2. Left panel: The running of ∆m2 against RG scale for the
fundamental (blue line), A2 (orange) and in red the running of the fundamental representation after
A2 have been integrated out. Right panel: The vacuum solution L(ρ): the orange line for the A2
representation and blue the fundamental without decoupling. The red solution is when we consider the
decoupling of the A2 which condenses before the fundamental. The dashed green line is the fundamental
when we consider additional NJL-terms such that it matches in the IR the A2 representation. Finally,
the yellow and purple vacuum solution correspond to the quenched models for the A2 and fundamental
representations respectively. Here units are set by α(ρ = 1) = 0.65.

The lattice should be able to shed light on the rate of decoupling of massive flavours but to date
only quenched calculations have been performed for this model as we will review below. We therefore
also show results for the embeddings that result from the fully quenched (ie setting all Nf = 0 in
equation (8.44)) running in figure 8.11 on the right - the yellow (F ) and purple (A2) curves. The
coupling now runs faster at all scales and the condensation scale for both fermion species rises, with
again the A2s condensing first. The gap between the F and A2 condensation scales is yet smaller due
to the very fast running of the pure glue theory.

If the IR separation in the condensation scales for the two fermion species is undesirable then they
can be brought together by including an NJL term for the F fields (g2

s/Λ2
UV |F̄F |2) that enhances the

fundamental condensation scale. We have also looked at this case, adding a NJL four fermion term to
make the values of LIR equal for the two representations. The A2 embedding function is our original
orange curve but the embedding for the F representation becomes the green dotted curve in figure 8.11.

It is worth commenting on the size of the IR mass, LIR in physical units. We will compute the spectrum
in the next section but borrowing ahead we can write LIR in units of the vector meson’s mass in the
A2 representation for the case discussed. For the model where we do not integrate out the A2 fields
we have LA2

IR = 0.304mV and LFIR = 0.187mV . When we integrate out the A2s on mass shell we have
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LA2
IR = 0.304mV and LFIR = 0.26mV . For the model with the NJL interaction for the fundamental we

have LA2
IR = LFIR = 0.304mV . For the quenched model we have LA2

IR = 0.317mV and LFIR = 0.314mV .

Holographic spectrum

We now compute the spectrum of the theory holographically. We will do this for each of the scenarios
we have outlined - the quenched theory; the theory where the A2s are integrated out at their IR mass
scale; the theory where A2s are not integrated out; and the theory with a NJL term to enforce an equal
scale of condensation.

We assume that there is only a small mixing between bound states made of the two fermion species so
that we do not have to mix the states associated with fluctuations of each L0 embedding (indeed to
include that mixing would be hard requiring the fluctuations to know of both embeddings in some sort
of non-abelian DBI action). Now we simply fluctuate around each vacuum solution separately from
equation (8.1) with

g2
5|F = 48π2

2Nf1Nc
, g2

5|A2 = 48π2

Nf2(Nc(Nc − 1)− 1) . (8.47)

Similarly we split the normalizations for the external currents in equation (8.17). We show the resulting
spectrum for each of the cases we consider in table 8.4 for the case where all fermion representations
are massless.

In each case, without a NJL term, the bound states of the A2 fields are heavier and have higher
decay constants than those made of the fundamental fields F , reflecting the A2s’ higher condensation
scale. The separation in scale between the two sectors does depend quite strongly on the decoupling
assumptions. If the A2s are not decoupled at all, the separation, as measured by the vector meson
masses, is almost a factor of two whilst in the quenched limit it barely exists. The slowing of the
running of the gauge coupling with the inclusion of flavours is important. The case where the A2s are
integrated out at their IR mass scale lies between these two extremes.

The greatest impact in the spectrum shows up in the scalar meson (S) masses. The rate of running
measures the departure from conformality which shows up in the flatness of the effective potential for
the quark condensates. The slower the running the lighter the resultant scalar - here there is as much
as a factor of four in the prediction.When the NJL term is used to enforce equal IR mass scales for the
two fermion species the bound states of the fundamental fields become just slightly heavier than those
with A2 constituents, reflecting the higher UV mass.

Finally in table 8.4 we also show results for the baryon top partner. This state is a bound state of two
F and an A2 so should know about both vacuum solutions L0F and L0A2 . The present holographic
framework does not allow us to include two L0 at the same time so instead we compute the mass of
the baryon using each of the two embedding functions - this is as if each constituent had the same
constituent mass, either that of the F or that of the A2. We expect that the mixed state’s mass will be
between these two values.
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AdS/Sp(4) AdS/Sp(4) AdS/Sp(4) lattice [231] lattice [232] AdS/Sp(4)
no decouple A2 decouple quench quench unquench + NJL

fπA2 0.120 0.120 0.103 0.1453(73) 0.120
fπF 0.0569 0.0701 0.0756 0.1079(85) 0.1018(253) 0.160
MV A2 1* 1* 1* 1.000(23) 1*
fV A2 0.517 0.517 0.518 0.508(43) 0.517
MV F 0.61 0.814 0.962 0.83(16) 0.83(13) 1.03
fV F 0.271 0.364 0.428 0.411(30) 0.43(44) 0.449
MAA2 1.35 1.35 1.28 1.75 (28) 1.35
fAA2 0.520 0.520 0.524 0.794(15) 0.520
MAF 0.938 1.19 1.36 1.32(22) 1.34(11) 1.70
fAF 0.303 0.399 0.462 0.54(28) 0.56(17) 0.449
MSA2 0.375 0.375 1.14 1.65(27) † 0.375
MSF 0.325 0.902 1.25 1.52(25)† 1.40(13) † 0.375
MBA2 1.85 1.85 1.86 1.85
MBF 1.13 1.53 1.79 1.88

Table 8.4: AdS/Sp(4) 4F, 6A2. Ground state spectra and decay constants for our various holographic
models and comparison to lattice results - we use the subscript A2 and F for the quantity in each of the
two different representation sectors. Note the lattice scalar is the a0 not the isospin singlet σ which we
compute holographically - we present the results as a guide to lattice expectations of quark anti-quark
meson masses though. Note here for the unquenched lattice results, which do not include the A2 fields,
we have normalized the F vector meson mass to that of the quenched computation.

Comparison to lattice results

Lattice studies of this model, in the quenched approximation, have been made in [231]. In [232] the
group followed up that work by unquenching the fundamental quark sector using Wilson fermions. We
show the results of these studies in Table 8.4 for direct comparison to the holographic results. We have
normalized the quenched results to the vector meson mass from the A2 sector. For the unquenched
calculation, which does not include the A2 fields, we align the vector meson mass in the F sector to the
quenched theory to allow the changes to be seen in the F sector. One notes that the variation from
quenched to unquenched lattice simulations are not large. Note the lattice results for scalar masses are
for the a0 like states rather than the σ state we compute with holography - they provide a guide to the
lattice expectation for scalar states though.

An initial view of the quenched results from both the lattice and the holographic model is that they
show considerable correlation. As in QCD, the holographic approach appears to be a decent stab at the
spectrum! This lends confidence that trends as the fields are unquenched may be trustworthy. Thus
as discussed above we would expect that if the A2 fields were included as unquenched fields the F
sector would decrease in mass by 20-40%. We also expect the scalar meson masses to be considerably
lower than predicted by the quenched lattice computation. Here the lattice computations to date don’t
provide guidance on a prescription for decoupling the A2 fields since they have always been quenched.
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Quark mass dependence

The quenched lattice study of [231] provides fits to the mass dependence of the spectrum so for
comparison we reproduce the same fits in figure 8.12 . We also display the same plots and fits for the
fully undecoupled model (the furthest extreme from the quenched version of our models). The fits
for the quenched theory are reasonably close with gradients matching better than a factor of two in
most cases. We note that our holographic model predicts that the slower the running of the coupling
(the less quenched the quarks are) the sharper the slopes with Mπ - this effect was previously seen for
walking theories in [138]. It would be interesting to see if this result was reproduced in unquenched
lattice computations.

Holography of the top partners

The top partners are FA2F spin 1/2 baryons of the strongly coupled dynamics that play a key role in
the generation of the top quark mass as described in the section 8.4.1. We have computed their masses
in the Sp(4) model which are shown in Table 8.4 - we remind that we have computed the masses as if all
constituents have a dynamical mass given by first the fundamental and secondly the A2 representations.
The true mass is likely to lie between these values.

For the top mass there are two key contributions as we can see in figure 8.8. The top Yukawa coupling,

yt = g2Z g̃2Z̃ Z3
M2
T Λ4

UV

, (8.48)

is inversely proportional to the top partner mass squared. It is proportional to the Z3 and Z/Z̃ factors
which we will set equal. The Z factors, like the baryon-σ vertex in QCD, are not direct predictions
of the holographic framework since they must be generated by couplings beyond the basic quadratic
terms of the holographic action equation (8.1) and so in principle one can add new couplings. We can
though write down holographic terms that are likely to be the dominant contributions and look at their
order of magnitude behaviour.
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Figure 8.12: AdS/Sp(4) 4F, 6A2 - results for the spectrum as a function of the pNGB mass in the
quenched theory and the case with no decoupling of the A2 - lattice results from [231] are included for
comparison. In our analytic formulae we use units of the vector meson mass at mq|UV = 0.
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In particular we have

Z3 '
∫
dρ ρ3 ∂ρπ(ρ) ψB(ρ)2

(ρ2 + L2)2 , (8.49)

Z = Z̃ '
∫
dρ ρ3∂ρψB(ρ) . (8.50)

Here π(ρ) and ψB(ρ) are the holographic wavefunctions for the pNGB and the baryon repectively. They
are normalized to give canonical kinetic terms for these states as in equation (8.34).

If we naively compute the top Yukawa coupling, from the full set of factors in equation (8.48) (with
g = g̃ = 1), in the Sp(4) model, with a cut off on the HDOs of roughly 6 times the vector meson mass,
we find the top Yukawa coupling is only of order 0.01 which is far below the value of one needed.

The top Yukawa would be enhanced if the top partners were anomalously light relative to the strong
coupling scale (roughly the scale 1 in our Table 8.4). As we have described in QCD, it is possible to
drive the baryons light by including a HDO - see figure 8.7 for example. In the Sp(4) theory we can
also look to include a HDO of the form

LHDO = g2
T

Λ5
UV

|FA2F |2 . (8.51)

As the operator FA2F becomes the top partner field, this is directly a shift in the top partner mass.4

In figure 8.13 we show the dependence of the top partner mass on g2
T - we show the effect using both

the F and A2 embeddings as L0(ρ) in equation (8.25). The HDO can indeed be used to reduce the top
partner mass - for small g2

T the effect is linear and small but after a critical value the effect is much
larger, as shown. One must be careful though because as the top partners’ mass changes so also do the

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●

●
●
●
●

●
●

●
●

●

-100 100 200 300 400 500 600
gT2

0.2

0.4

0.6

0.8

1.0

1.2

MT/MV

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●

●
●

● ●

-100 100 200 300 400 500 600
gT2

0.5

1.0

1.5

2.0
MT/MV

Figure 8.13: AdS/Sp(4) 4F, 6A2 - We show the effect of adding the double-trace operator equa-
tion (8.51) to the spin-1/2 baryon’s mass. On the left we use the L0(ρ) from the F representation
and on the right L0(ρ) from the the A2 representation. Note the initial linear behaviour when g2

T is
perturbative but then as it passes a critical value the effect on the mass is much larger.

Z factors in equation (8.49) and equation (8.50). In particular as the HDO in equation (8.51) plays a
large role it induces a sizeable non-normalizable piece in the UV holographic wave function of the top
partner. This means that the integrals in the equivalent of the normalization factors in equation (8.34)
and directly in the expressions for the Z factors are more dominated by the UV part of the integral.
The overlap between different states can change substantially. We therefore plot the full expression
for the Yukawa coupling from equation (8.48) against the top partner mass (which changes as we dial

4A similar effective operator was mentioned in [143], but there it is not included in the dynamical calculations.
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g2
T ) in figure 8.14. We see that the top Yukawa does indeed grow as the top partner’s mass falls and
can become of order one as the top partners mass falls to about half of the vector meson mass. This
suggests, that after fixing the strong coupling scale to a sensible large value in the 1-5 TeV range, we
should be able to realize a top partner mass of about 1 TeV and the required top mass.
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Figure 8.14: AdS/Sp(4) 4F, 6A2 - the top Yukawa coupling, as given by equation (8.48), is plotted
against the top partner mass in units of the vector meson mass. MT is controlled by adding a HDO as
in figure 8.13. We compute on the left with L0(ρ) for the fundamental quark and on the right we use
the A2 L0(ρ).

8.4.4 SU(4) gauge theory with top partners - SU(4) 3F, 3F̄ , 5A2

The next model we choose to study is one taken from [192, 235] for which there has been related lattice
work [233, 236]. The gauge group is SU(4). There are five Weyl fields in the sextet A2 representation.
When these A2 condense they break their SU(5) symmetry to SO(5) - the pNGBs inlcude the Higgs.

To include top partner baryons, fermions in the fundamental representation F are added allowing FA2F

states. To make these states QCD coloured we need three Dirac spinors in the fundamental. When
these fields condense the chiral SU(3)L × SU(3)R symmetry is broken to the vector SU(3) subgroup -
the SU(3) sub-group is identified with weakly coupled QCD (which we will neglect since it is weak at
the scales in question).

The full symmetry breaking pattern and embedding of the SM groups is

SU(5)× SU(3)L × SU(3)R × U(1)→ SO(5)︸ ︷︷ ︸
SU(2)L×U(1)

×SU(3)︸ ︷︷ ︸
SU(3)

×U(1) (8.52)

For the holographic model we need the running of the coupling equation (8.8) and γ equation (8.9).
These then feed into ∆m2 in equation (8.6) to define the model. The coefficients of the one and two-loop
β-function read

b0 = 1
6π
(
11Nc −Nf1 − (Nc − 2)Nf2

)
,

b1 = 1
24π2

(
34N2

c − 5NcNf1 −
3
2
N2
c − 1
Nc

Nf1 − 5Nc(Nc − 2)Nf2 − 3(Nc + 1)(Nc − 2)2

Nc
Nf2

)
.

(8.53)
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and the one-loop anomalous dimensions for the different representations are

γA2 =
( 6

4π
(Nc + 1)(Nc − 2)

Nc

)
α ,

γF =
(

3
4π

N2
c − 1
Nc

)
α .

(8.54)

Naively one would expect the A2 fermions to condense ahead of the fundamental fields since the critical
value for α where γ = 1/2 (the criteria discussed below equation (8.6)) is smaller. If we extend the
perturbative results into the non-perturbative regime we find

αFc = 8π
45 = 0.56 , αA2

c = 2π
15 = 0.42 . (8.55)

As in the Sp(4) model we will ask how quickly the A2 fields decouple from the running of γ below their
IR mass scale.

This model is hard to simulate on the lattice because of the fermion doubling problem and the sign
problem associated to chiral theories so instead lattice work [233, 236] has focused on the theory with
just two Dirac A2s and 2 Dirac fundamental quarks. In the next subsection we will switch to the
holographic description of that model and the comparison to the lattice data before returning to the
full model thereafter. Of course, the ability to simply switch fields in and out is one of the huge benefits
of the holographic approach.

The lattice variant of the model - SU(4) 2F, 2F̄ , 4A2

Here we consider a model with an SU(4) gauge theory with two Dirac sextet and two Dirac fundamental
quarks. We again run two separate holographic models for the F and A2 (though linked through the
different representations contributions to the running of α) which neglects mixing between the two
sectors.

We set our model parameters, as defined in section 8.2, using

mq|UV = 0, α(0) = 0.65, g5|4 = 24π2

Nf1Nc
, g5|6 = 48π2

Nf2Nc(Nc − 1) . (8.56)

We run two schemes - one where the A2s contribute to the running of α at all scales and one where we
decouple them at their IR mass scale. The vacuum profiles for L(ρ) are shown in figure 8.15 - here the
coupling runs sufficiently quickly with or without the A2 fields that the differences in the L(ρ) function
for the F quarks lies within the line width, whether the A2 decouple or not. It would be nice if the
lattice could teach us how to enact this decoupling. Here though the errors on the lattice data are still
too large to distinguish these two scenarios, so again we lack data on precisely how to decouple quarks
in the strong coupling regime. Finally we also compute, and display in figure 8.15, for the theory with
an NJL operator (g2

s/Λ2
UV |F̄F |2) which allows us to bring the F IR mass equal to the A2 IR mass.
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Figure 8.15: SU(4) 2F, 2F̄ , 4A2 - We display the vacuum solutions L(ρ): the gold line corresponds
to the A2 representation and the red is the F . The blue line is the fundamental when we consider an
additional NJL-term such that it matches in the IR the A2 representation.

Next we compute the spectrum and display the predictions in Table 8.5. We also display lattice data
from [233] (also [236] and there is a relevant chiral perturbation theory analysis for the model in [237]).
The holographic model and the lattice data agree well in describing the split in mass between the vector
mesons of the F and A2 sectors (the differences in decoupling choices lie within the error bars).

The top partner baryon is a mixed FA2F state. Again we estimate the possible spread of its mass by
using in turn the L0(ρ) from the F and A2 sectors, essentially assuming the F and A2 have the same
constituent masses at either the lower F or higher A2 scale. The holographic model over estimates the
top partner mass by 30%.

Lattice [233] AdS/SU(4) AdS/SU(4) AdS/SU(4) AdS/SU(4) AdS/SU(4) AdS/SU(4)
4A2, 2F, 2F̄ 4A2, 2F, 2F̄ 4A2, 2F, 2F̄ 5A2, 3F, 3F̄ 5A2, 3F, 3F̄ 5A2, 3F, 3F̄ 5A2, 3F, 3F̄
unquench no decouple decouple no decouple decouple quench + NJL

fπA2 0.15(5) 0.0997 0.0997 0.111 0.111 0.102 0.11
fπF 0.11(3) 0.0949 0.0953 0.0844 0.109 0.892 0.139
MV A2 1.00(5) 1* 1* 1* 1* 1* 1*
fV A2 0.68(3) 0.489 0.489 0.516 0.516 0.517 0.516
MV F 0.93(5) 0.933 0.939 0.890 0.904 0.976 1.02
fV F 0.49(4) 0.458 0.461 0.437 0.491 0.479 0.495
MAA2 1.37 1.37 1.32 1.32 1.28 1.32
fAA2 0.505 0.505 0.521 0.521 0.522 0.521
MAF 1.37 1.37 1.21 1.23 1.28 1.46
fAF 0.501 0.504 0.453 0.509 0.492 0.489
MSA2 0.873 0.873 0.684 0.684 1.18 0.684
MSF 1.03 1.02 0.811 0.798 1.25 0.815
MJA2 3.9(18) 2.21 2.21 2.21 2.21 2.22 2.21
MJF 2.0(11) 2.07 2.08 1.97 2.00 2.17 2.24
MBA2 1.4(7) 1.85 1.85 1.85 1.85 1.86 1.85
MBF 1.4(7) 1.74 1.75 1.65 1.68 1.81 1.88

Table 8.5: SU(4) theories - the spectrum in a variety of scenarios and lattice data for comparison.
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There is lattice data for an additional spin zero state made of four quarks (either all F s or all A2s),
that we refer to as a tetraquark, and denote as the J in table 8.5. We have computed the mass of
such a state using equation (8.23) - here the holographic prediction is that the F and A2 tetraquarks’
masses lie within 10%. In contrast the lattice prediction suggests a factor of two between the masses
of the states. It is hard to understand how such a large separation could occur when the constituent
quark masses are very similar for the F s and A2 as measured by the vector meson masses. It would be
interesting to look into the origin of the splitting in the lattice simulations further.

Finally in figure 8.16 we display the Mπ dependence of the spectrum in the non-decoupling scenario
although here we do not have lattice data for comparison.
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Figure 8.16: SU(4) 2F, 2F̄ , 4A2 - The growth of the A2 and F sectors spectra as we increase the
quark mass in the UV. The masses are rescaled with respect to the vector meson mass in the A2
representation at mq|UV = 0 in accord with the presentation in Table 8.5. Here Mπ is the pNGB mass
in units of the vector meson mass at mq|UV = 0.

SU(4) 3F, 3F̄ , 5A2 model - vacuum configuration

After this small digression to the lattice variant, we return to the study of the model actually proposed
for composite Higgs models - SU(4) 3F, 3F̄ , 5A2. The coefficients of the one and two-loop β-function
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are still given by equation (8.53) and the γs in equation (8.54) with appropriate choices of numbers of
flavours. We choose as previously, see section 8.2,

mq|UV = 0, α(0) = 0.65, g5|4 = 24π2

Nf1Nc
, g5|6 = 48π2

Nf2Nc(Nc − 1) . (8.57)

To address the decoupling of the A2 we will present results for the vacuum solution, L(ρ), in a number
of different cases in figure 8.17. Firstly we do not decouple the A2 from the running of α at any scale -
the gold line corresponds to the A2 representation and the green the fundamental. There is a small
gap with the fundamentals a little lighter. If we decouple the A2 fields at scales below their IR mass
LIR then the fundamental L(ρ) becomes the red embedding. Section 8.4.4 is a zoom in showing the
difference between the non-decoupled and the decoupling cases - in this model the separation barely
changes when the decoupling is implemented.

It is possible to make the IR mass scales the same for both representations by including an NJL
interaction for the fundamental fields (g2

s/Λ2
UV |F̄F |2). The blue line in figure 8.17 is for the fundamental

representation when we consider an additional NJL-term such that it matches in the IR the A2

representation LIR. Finally, the orange and purple vacua correspond to the quenched models for the
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Figure 8.17: SU(4) 3F, 3F̄ , 5A2 - In the left plot we display the vacuum soluions L(ρ): the gold
line corresponds to AdS/SU(4) for the A2 representation and the green is the fundamental. The red
vacuum solution is when we consider the decoupling of the A2 which condenses before the fundamental.
The blue line is the fundamental when we consider additional NJL-terms such that it matches in the IR
the A2 representation. Finally, the orange and purple vacua correspond to the quenched models for the
A2 and fundamental representations respectively. The right hand plot is a zoom in when considering
the AdS/SU(4) model without decoupling and when we consider the decoupling of the A2 quark fields.

A2 and fundamental representations respectively - here we don’t include the fermions in the running at
all. We include this example because it would be relatively cheap to perform a lattice simulation of the
theory in the quenched limit so our results may be of future interest.

It is worth commenting on the size of the IR mass, LIR in physical units. We will compute the spectrum
in the next section but borrowing ahead we can write LIR in units of the vector meson’s mass in the
A2 representation for the case discussed. For the model where we do not integrate out the A2 fields
we have LA2

IR = 0.308mV and LFIR = 0.278mV . When we integrate out the A2s on mass shell we have
LA2
IR = 0.308mV and LFIR = 0.283mV .For the model with the NJL interaction for the fundamental we
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have LA2
IR = LFIR = 0.308mV . For the quenched model we have LA2

IR = 0.318mV and LFIR = 0.316mV .
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Figure 8.18: SU(4) 3F, 3F̄ , 5A2 - The growth of the spectra as we increase the quark mass in the UV.
The masses are rescaled with respect to the vector meson mass in the A2 representation at mq|UV = 0
in accord with the presentation in Table 8.5. In our analytic formulae the scale is again set by the A2
vector meson mass at mq|UV = 0.

SU(4) 3F, 3F̄ , 5A2 model - spectrum

We can now compute the spectrum of the theory in each of these cases. We display the results in
table 8.5 so it is easy to compare to the lattice variant model. The spectra are fairly similar in all cases
but the key changes occur as more fermions are included in the running. Thus increasing the number
of fields slows the running which firstly increases the gap between the A2 and F sectors and secondly
reduces the σ scalar mass. For completeness in figure 8.18 we show the dependence of the meson and
baryon masses on the pNGB mass for of the F and A2 sectors, although there is no lattice data to
compare to here.
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Top partners

The top partners are FA2F spin 1/2 baryons of the strongly coupled dynamics that play a key role
in the generation of the top quark mass as described in the Section 8.4.1. We have computed their
masses in the SU(4) model which are shown in Table 8.5 - we remind that we have computed the
masses as if all constituents have a dynamical mass given by first the fundamental and secondly the A2

representations. The true mass is likely to lie between these values.

For the top mass there are two key contributions as we can see in figure 8.8. The top Yukawa coupling,

yt = g2Z g̃2Z̃ Z3
M2
T Λ4

UV

, (8.58)

is inversely proportional to the top partner mass squared. It is proportional to the Z3 and Z/Z̃ factors.
The Z factors, like the baryon-σ vertex in QCD, are not direct predictions of the holographic framework
since they must be generated by couplings beyond the basic quadratic terms of the holographic action
equation (8.1) and so in principle one can add new couplings. We can though write down holographic
terms that are likely to be the dominant contributions and look at their order of magnitude behaviour.
As in the previous model we may express the Z factors by

Z3 '
∫
dρ ρ3 ∂ρπ(ρ) ψB(ρ)2

(ρ2 + L2)2 , (8.59)

Z = Z̃ '
∫
dρ ρ3∂ρψB(ρ) , (8.60)

Here π(ρ) and ψB(ρ) are the holographic wavefunctions for the pNGB and baryon repectively.They are
normalized to give canonical kinetic terms for these states as in equation (8.34).

We compute the top Yukawa coupling (setting g = g̃ = 1), from the full set of factors in equation (8.58).
It is proportional to the Z3 and Z/Z̃ factors which we will set equal. In this SU(4) model, with a cut
off on the HDOs, as an example, of roughly 6 times the vector meson mass, we find the top Yukawa
coupling is only of order 0.01 which is far below the value of one needed. The top Yukawa would be
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Figure 8.19: SU(4) 3F, 3F̄ , 5A2 - We show the effect of adding the double-trace operator equa-
tion (8.61) to the spin-1/2 baryon’s mass. On the left we use the L0(ρ) from the F representation
and on the right L0(ρ) from the the A2 representation. Note the initial linear behaviour when g2

T is
perturbative but then as it passes a critical value the effect on the mass is much larger.

enhanced if the top partners were anomalously light relative to the strong coupling scale (roughly the
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scale 1 in our Table 8.5). As we have described in QCD, it is possible to drive the baryons light by
including a HDO - see figure 8.7 for example. In the SU(4) theory we can also look to include a HDO
of the form

LHDO = g2
T

Λ5
UV

|FA2F |2 , (8.61)

As the operator FA2F becomes the top partner field this is directly a shift in the top partner mass. In
figure 8.19 we show the dependence of the top partner mass on g2

T - we show the effect using both the
F and A2 embeddings as L0(ρ) in equation (8.25). The HDO can indeed be used to reduce the top
partner mass - for small g2

T the effect is linear and small but after a critical value the effect is much
larger, as shown.

One must be careful though because as the top partners mass changes so also do the Z factors in
equation (8.59) and equation (8.60). In particular as the HDO in equation (8.51) plays a large role it
induces a sizable non-normalizable piece in the UV holographic wave function of the top partner. This
means that the integrals in the equivalent of the normalization factors in equation (8.34) and directly
in the expressions for the Z factors are more dominated by the UV part of the integral. The overlap
between different states can change substantially. We therefore plot the full expression for the Yukawa
coupling from equation (8.58) against the top partner mass (which changes as we dial g2

T ) in figure 8.20.
We see that the top Yukawa does indeed grow as the top partner’s mass falls and can become of order
one as the top partners mass falls to about half of the vector meson mass. This suggests, that after
fixing the strong coupling scale to a sensible large value in the 1-5 TeV range, in this model we should
be able to realize a top partner mass of about 1 TeV and the required top mass.
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Figure 8.20: SU(4) 3F, 3F̄ , 5A2 - The top Yukawa coupling, as given by equation (8.58), is plotted
against the top partner mass units of the vector meson mass. MT is controlled by adding a HDO as in
figure 8.13. We compute on the left with L0(ρ) for the fundamental quark and on the right we use the
A2 L0(ρ).

8.4.5 A catalogue of other composite Higgs models

Finally, in part to demonstrate the flexibility of the holographic method and in part as a service to
model builders, we will survey many of the other gauge theories that have been proposed as composite
Higgs models with top partners. In particular we will calculate their spectrum and decay constants.
We are led by the proposals in [144] and will identify them by the notation of section 8.4.1. Here we do
not know of any lattice data, so our results for the meson spectrum and couplings plus the top partner
mass stand in isolation. We hope though they will be of potential use for future work.
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All of the models proposed in [144] that we consider are asymptotically free (they have positive b0 in
equation (8.8)). However, we find that some of the models live in the conformal window [211, 212] at
the level of the approximation of the two loop running results we use. To lie in the conformal window
b1 in equation (8.8) must be negative. We then compute the value of αc, which is the value of α for
γ = 1/2, the criterion discussed below equation (8.6),

αc = π

3C2(r) , (8.62)

and the (positive) value of the coupling at the IR fixed point α∗ where the β-function vanishes

α∗ = −b0
b1
. (8.63)

We classify a gauge theory as lying in the conformal window if α∗ < αc. Such models do not break
chiral symmetries and can not make good composite Higgs models. We will note these models below
but not compute for them.

We will only compute for models that break chiral symmetries. Of course by adding NJL operators, one
can force any gauge theory to break chiral symmetry. Such models, dominated by the NJL term, have
spectra that will depend on the initial condition of the gauge coupling at the UV cut off (a continuous
parameter) so are not easily presented. We will therefore only address models where the gauge dynamics
drives the symmetry breaking.

Theories that lie close to the lower (in Nf ) edge of the conformal window, yet still break chiral symmetry,
have a slowly running gauge coupling and are referred to as walking theories - in these theories γ runs
from zero to one over a substantial regime of RG scale µ, unlike in QCD where this running happens
very quickly. The main evidence for walking in the spectrum of the theories we study is that the scalar
mass (S) falls towards zero because the near conformality tends to flatten the effective potential for
the quark condensate - this is the most significant result we find case by case in this section. Where
theories break chiral symmetry for a range of Nc, Nf , we will display results at the extreme non-walking
and walking values of the parameters. Due to their potential interest for model building, we stress
walking theories below, but they are therefore over represented in the sample of theories we present.

In this sub-section we will not decouple the heavier representations from the running coupling - in most
cases the two or more representations of matter condense at similar scales (within a factor of 2) and
our work on the previous two models suggest the precise form of the decoupling is an interesting but
small effect. We will not present as much detail as in section 8.4.3 and section 8.4.4, instead we will
just display the results for the masses and couplings from the holographic description by theory. In
each case we will normalize to one of the vector meson state’s mass. For the numerical analysis below
we fix α(0) = 0.65 and require a massless quark in the UV, mq|UV = 0.

Models with exceptional gauge groups

The first models for which we compute the spectrum and decay constants are those with exceptional
gauge groups that have been proposed in [144]. The gauge group can be either G2 or F4 with matter in
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the fundamental representation. There are singlet baryons made of three quarks in these cases (see [192]
for a detailed discussion). The symmetry breaking pattern with Nf Weyl fermions is SU(Nf )→ SO(Nf ).
If Nf ≥ 11 then the SM gauge group can be embedded in the global symmetry and a Higgs doublet and
coloured top partners generated. In fact it has been argued that these models are not very promising
phenomenologically [144] since there is a high number of pNGBs and some of them mediate proton
decay.

The G2 group is asymptotically free until Nf = 22. The theory lies in the conformal window according
to the criteria discussed below equation (8.63) down to Nf = 16. The Nf = 16 theory actually has the
fixed point value equal to the chiral symmetry breaking coupling so is maximally walking and would
presumably have a massless scalar meson. We present results for the extreme cases we can compute,
i.e. for Nf = 11 and Nf = 15, in Table 8.6.

F4 theory is asymptotically free until Nf = 16. The edge of the conformal window lies between Nf = 12
and Nf = 13 flavours. We present spectra for the Nf = 11 and 12 cases also in Table 8.6 - both of
these theories have a slowly running coupling, resulting in a very light scalar. The A and V mesons in
these present models are more degenerate than in QCD.

Observables AdS/G2 AdS/G2 AdS/F4 AdS/F4
11F 15F 11F 12F

fπ 0.0749 0.0797 0.0486 0.0489
MV 1* 1* 1* 1*
fV 0.456 0.488 0.49 0.501
MA 1.15 1.11 1.03 1.03
fA 0.438 0.470 0.483 0.494
MS 0.288 0.114 0.000431 0.00039
MB 1.78 1.76 1.55 1.55

Table 8.6: Holographic predictions for the spectra and decay constants of AdS/G2, 11F , AdS/F4,
11F , and AdS/F4, 16F .

Models with matter in two representations

Composite Higgs models with fermionic matter in two representations can only have either a Sp(2N)
or SO(Nc) gauge group and generate the Higgs and top partners.

There are three possible scenarios with a symplectic gauge group:

Sp(2N) 5S2, 6F N ≥ 6 These theories are all in the conformal window.
Sp(2N) 5A2, 6F N ≥ 2 Theories with N < 8 are below the conformal window,

and break chiral symmetry.
Sp(2N) 4F, 6A2 N ≤ 18 Theories with N < 5 are below the conformal window,

and break chiral symmetry.

We present the spectra for examples of the second and third models that break chiral symmetry. In
particular we present for the minimum and maximum number of colours, in Table 8.7 (note the final
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model with Sp(4) is the one we studied in more detail in section 8.4.3). The Sp(14) case, which is the
slowest walking of these theories, has a very low scalar mass. In the case of SO(Nc) gauge theories,

Observables AdS/Sp(4) AdS/Sp(14) AdS/Sp(4) AdS/Sp(8)
5A2, 6F 5A2, 6F 4F, 6A2 4F, 6A2

fπF 0.066 0.0521 0.057 0.115
fπA2 0.113 0.114 0.12 0.149
MV F 0.618 0.364 0.61 0.913
fV F 0.304 0.229 0.27 0.518
MV A2 1* 1* 1* 1*
fV A2 0.494 0.851 0.52 0.683
MAF 0.862 0.414 0.938 1.13
fAF 0.316 0.219 0.303 0.507
MAA2 1.4 1.02 1.35 1.12
fAA2 0.507 0.843 0.52 0.665
MSF 0.348 0.000476 0.33 0.508
MSA2 0.376 0.000296 0.38 0.511
MBF 1.15 0.639 1.13 1.68
MBA2 1.85 1.48 1.85 1.84

Table 8.7: Holographic results for masses and decay constants in the Sp(2Nc) theories with two
different matter representations that can trigger chiral symmetry breaking.

there is a discrete set of cases with two quark representations that generate both the SM Higgs and the
top partners in [144]. The models have matter in the fundamental and spinor representations, and Nc

and Nf are fixed. Those theories within this set that break chiral symmetry are

SO(7) 5F, 6s SO(7) 5s, 6F SO(9) 5F, 6s SO(9) 5s, 6F

SO(10) 5F, 6s SO(11) 5F, 6s SO(11) 4s, 6F SO(13) 4s, 6F .

We display holographic results for the masses and decay constants for these theories in Table 8.8 as
well as in Table 8.9. Note that the SO(13) 4s, 6F theory has a very light scalar meson, resulting from
the slow running of the coupling. The SO(9) theories are of note since the F fields condense at a higher
scale than the spinor fields s so the F bound states are heavier than the s counter parts - here the
critical coupling equation (8.62) for the F lies lower than that for the s representation. In the other
theories shown, the critical couplings for F is higher than that for s and the F sector is then lighter.
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Observables AdS/SO(7) AdS/SO(7) AdS/SO(9) AdS/SO(9)
5F, 6s 5s, 6F 5F, 6s 5s, 6F

fπF 0.125 0.132 0.115 0.121
fπs 0.126 0.119 0.149 0.143
MV F 1.08 1.07 0.913 0.926
fV F 0.58 0.601 0.518 0.55
MV s 1* 1* 1* 1*
fV i 0.581 0.555 0.683 0.653
MAF 1.39 1.33 1.13 1.11
fAF 0.578 0.593 0.507 0.537
MAs 1.21 1.25 1.12 1.14
fAi 0.571 0.55 0.665 0.636
MSF 0.744 0.687 0.508 0.579
MSs 0.728 0.725 0.511 0.568
MBF 1.98 1.98 1.68 1.71
MBs 1.85 1.85 1.84 1.84

Table 8.8: Holographic results for the masses and decay constants in the two SO(7) and the two
SO(9) theories with two matter representations that can trigger chiral symmetry breaking.

Observables AdS/SO(10) AdS/SO(11) AdS/SO(11) AdS/SO(13)
5F, 6s 5F, 6s 4s, 6F 4s, 6F

fπF 0.11 0.0811 0.103 0.0615
fπs 0.147 0.104 0.156 0.0878
MV F 0.876 0.918 0.753 0.57
fV F 0.51 0.456 0.468 0.322
MV s 1* 1* 1* 1*
fV i 0.682 0.681 0.727 0.694
MAF 1.06 1.05 0.878 0.636
fAF 0.5 0.432 0.455 0.308
MAs 1.12 1.04 1.09 1.03
fAs 0.664 0.666 0.708 0.684
MSF 0.614 0.142 0.404 0.0453
MSs 0.578 0.154 0.44 0.0615
MBF 1.61 1.33 1.38 0.884
MBs 1.83 1.46 1.82 1.34

Table 8.9: Holographic results for the masses and decay constants for the two SO(10), the SO(11)
and the SO(13) theories with two matter representations that can trigger chiral symmetry breaking.

In addition, we find the following four models to lie in the conformal window and thus do not display
chiral symmetry breaking,

SO(13) 5F, 6s SO(14) 5F, 6s SO(15) 5G, 6F SO(55) 5S2, 6F .
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Models with matter in three representations

The SU(4) model of section 8.4.4 falls into this class. In addition, there are four SO(Nc) gauge theories
in [144] with specific matter in the F , spinor s and the opposite chirality s̄ representations (note the
dimensions of the fundamental and the spin are equal for eight colour). Three of these break chiral
symmetry,

SO(8) 5F, 3s, 3s̃ SO(10) 5F, 3s, 3s̃ SO(12) 5F, 3s, 3s̃

and one lies in the conformal window,

SO(14) 5F, 3s, 3s̃.

We analyze the first three in Table 8.10.

Observables AdS/SO(8) AdS/SO(10) AdS/SO(12)
5F, 3s, 3s̃ 5F, 3s, 3s̃ 5F, 3s, 3s̃

fπF 0.117 0.11 0.0796
fπs 0.123 0.147 0.140
MV F 1 0.876 0.608
fV F 0.553 0.51 0.356
MV s 1* 1* 1*
fV s 0.579 0.682 0.732
MAF 1.24 1.06 0.718
fAF 0.547 0.5 0.341
MAs 1.21 1.12 1.06
fAs 0.569 0.664 0.732
MSF 0.817 0.614 0.177
MSs 0.817 0.578 0.324
MBF 1.85 1.61 1.08
MBs 1.85 1.83 1.68

Table 8.10: Results for the gauge theories with matter in three representations.

Models with QCD-like breaking patterns

This variety of composite Higgs models has classes with three and four representations. While we
could have presented the three representation models in the previous section we chose to separate
them in order to follow the classification of [192]. They each have a symmetry breaking sector for one
representation where SU(Nf )L × SU(Nf )R → SU(Nf )V .

In addition to the model of section 8.4.4, there are two models with three representations,

SO(10) 4s, 4s̃, 6F SU(4) 4F, 4F̄ , 6A2 ,

Both of these models allow chiral symmetry breaking to occur. We display our results for the masses
and decay constants in these cases in Table 8.11.
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Moreover, there are the following models with four representations: the isolated model

SU(7) 4F, 4F̄ , 3A3, 3Ā3,

two classes which break chiral symmetry through the full range of Nc,

SU(Nc) 4F, 4F̄ , 3A2, 3Ā2 Nc ≥ 5 SU(Nc) 3F, 3F̄ , 4A2, 4Ā2) Nc ≥ 5

Observables AdS/SO(10) AdS/SU(4)
4s, 4s̃, 6F 4F, 4F̄ , 6A2

fπF 0.107 0.0922
fπi 0.156 0.122
MV F 0.777 0.805
fV F 0.470 0.424
MV s 1* 1*
fV i 0.723 0.540
MAF 0.922 1.05
fAF 0.455 0.427
MAi 1.09 1.29
fAi 0.704 0.536
MSF 0.311 0.494
MSi 0.376 0.488
MBF 1.42 1.49
MBi 1.81 1.85

Table 8.11: Holographic results for masses and decay constants in the the SO(10) 4s, 4s̃, 6F and
SU(4) 4F, 4F̄ , 6A2 models. i = s for the former and i = A2 for the latter.

and two classes that are only outside the conformal window at large Nc,

SU(Nc) 4F, 4F̄ , 3S2, 3S̄2 Nc ≥ 5 below the conformal window for Nc > 10
and break chiral symmetry.

SU(Nc) 3F, 3F̄ , 4S2, 4S̄2 Nc ≥ 8 below the conformal window for Nc > 70
and break chiral symmetry.

The first theory with Nc > 10 and the second with Nc > 70 are clearly very hard to reconcile with any
phenomenology. For example, the S parameter would be expected to be huge. However, for lower Nc

values these models are very finely tuned to the conformal window. This leads to a very small scalar
meson mass. For these classes we just present models for the smallest value of Nc, for which they break
chiral symmetries in Table 8.12.

8.5 Phenomenological implications and constraints

The above analysis of the spectra of possible composite Higgs models has been a purely field theoretic
exercise, without taking into account experimental constraints. Now we briefly consider their experi-
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AdS/SU(5) AdS/SU(5) AdS/SU(7) AdS/SU(10) AdS/SU(71)
4F, 4F̄ , 3A2, 3Ā2 4A2, 4Ā2, 3F, 3F̄ 4F, 4F̄ , 3A3, 3Ā3 4F, 4F̄ , 3S2, 3S̄2 3F, 3F̄ , 4S2, 4S̄2

fπF 0.0834 0.0598 0.0803 0.0469 0.0210
fπi 0.14 0.153 0.164 0.0746 0.0192
MV F 0.67 0.486 0.628 0.386 0.627
fV F 0.372 0.251 0.378 0.228 0.395
MV i 1* 1* 1* 1* 1*
fV i 0.608 0.65 0.82 0.726 1.49
MAF 0.845 0.661 0.741 0.434 0.63
fAF 0.368 0.25 0.37 0.217 0.394
MAi 1.19 1.15 1.06 1.02 1
fAi 0.59 0.628 0.805 0.683 1.48
MSF 0.338 0.13 0.534 0.000155 0.000849
MSi 0.399 0.273 0.439 0.000479 0.00140
MBF 1.24 0.897 1.16 0.634 0.643
MBi 1.84 1.83 1.82 1.3 0.952

Table 8.12: Results for gauge theories with matter in four representations. i = A2 for the first two
models. i = A3 for the next one. For the final two we have i = S2.

mental impact. We immediately note than many of the theories have very large field content and this
is liable to be in conflict with the precision S parameter [238] constraints.

We will briefly summarize some generic phenomenological implications for searches at the LHC based
on the mass hierarchies in the models presented in the previous sections. The following discussion
neglects contributions to the masses arising from the gauging of the SM forces, analogous to the electric
mass splitting between the charged and neutral pions in the SM. These small differences are only likely
to play a role in accidentally very fine tuned cases. We will concentrate on the models in sections 8.4.3
and 8.4.4 where there are counterparts of explicit models presented in [234]. In these models the global
group related to the A2 representations contains the electroweak SM group whereas the one related to
F (and in the case of SU(4) also F̄ ) contains SU(3)c. Thus, given the measured Higgs mass is about
125 GeV and the bounds on heavy spin one resonance are well above one TeV [239], the ratio of the pion
mass to the vector meson masses for the A2 condensate shown in figures 8.12 and 8.18 is confined to
small values to be consistent with the data. On the other, the other pions related to the F condensate
can be substantially heavier.

Inspecting Table 8.4 we find, in the case of the Sp(4) model(s), for mq = 0 and negligible contributions
from HDOs, that: (i) A2 bound states are somewhat heavier than the F counterparts; (ii) The scalars
are significantly lighter than the vector and axial vector states. The fermionic bound states are still
heavier than the corresponding vector bound states. The EW loop corrections mentioned above will
tentatively reduce the mass splitting between the corresponding A2 and F bound states. We also recall
from figure 8.12 that a finite but small hyperquark mass hardly changes the relative mass ratios yielding
the same overall picture.

One expects that the scalar mesons will dominantly decay into the corresponding pNGB. There could
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also be decays into a pair of top quarks arising from the mixing of the top partners with the top quark.
The next heavier states are the vector mesons as can be seen from Table 8.4. In the searches for these
states it is usually assumed that the decay dominantly into SM-particles. However, due to the quite
large mass difference between scalars and these vector states we also expect sizeable branching ratios
for the decay VA2 → SA2 SA2 leading to a final state with four pNGB which will decay further. Thus
we expect actually an enhancement of the multiplicity of the SM particles compared to the standard
LHC searches. The top partners, which are the FA2F states, should have about the same mass or
might be even be lighter than the vector state due to the requirement of a large top Yukawa coupling
as discussed in section 8.4.3. Thus we expect that in addition to the standard decays such as

T → tΠ (8.64)

(where Π is one of the pNGB which belong either to the electroweak or to the strong sector) there may
also be sizeable branching ratios into final states like

T → t S . (8.65)

The subsequent decay of the S into two pNGB results, also in this case, to a more complicated final
state compared to the one used in the standard searches by the LHC collaboration. This affects for
example the phenomenology of the models M5 and M8 presented in [234].

Turning now to the SU(4) models we focus on the main differences compared to the Sp(4) ones.
Comparing Tables 8.4 and 8.5 we notice that in the case of SU(4) the masses of the mesons and baryons
depend less on the underlying hyperquarks’ mass compared to the Sp(4) models. Secondly, the scalars
are significantly heavier than in the case of Sp(4) implying that they will be less frequently produced
at the LHC in both, direct production and from cascade decays from heavier states, which affects for
example the LHC phenomenology of model M6 in ref. [234]. More generically one finds from these
tables and the ones in section 8.4.5, that the ratio MS/MV is an important quantity to identify possible
underlying gauge groups. However, we note for completeness that this ratio depends to some extent
also on the matter content of the underlying theory.

Finally we note that many of the theories presented in section 8.4.5 have very slow running resulting
in very light scalar resonances. We expect that the loop induced effective potential due to explicit
symmetry breaking effects like the gauging of the SM-group will give sizeable contributions to their
masses. This is beyond the realm of this paper and requires a model-by-model investigation of the
spectrum of the light states. In these cases one needs also to check to which extent direct searches
already constrain them. This will also depend on the precise quantum numbers of these light scalars.

8.6 Regarding the validity of the approximation

As it is obvious from the the formulae of the anomalous dimension that is utilized in this holographic
bottom-up model, we have used the one-loop result. A natural question that arises has to do with the
validity of the approximation and another one with regards to the error estimate.
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In order to shed some light, we will repeat the computations for some of the quantities, however this
time we will use a two-loop result for the anomalous dimension, which is given by

γ2l = α

2π2

(3
2C2(R)2 + 97

6 C2(R)C2(G)− 10Nf

3 C2(R)T (R)
)
, (8.66)

and in this brief subsection we use γ1l to denote the one-loop anomalous dimension. The presentation
of the results here is chosen in accord with [2].

In order to give a solid estimate for the differences between the two approaches, we average the results
obtained by each method and use half the range as the error. We present these new numerical estimates
for our observables in Table 8.13.5

AdS/Sp(4) AdS/Sp(4) lattice [231] lattice [232]
unquench quench quench unquench

fπA2 0.118 (02) 0.104 (02) 0.1453(12)
fπF 0.068 (02) 0.0736 (02) 0.1079(52) 0.1018(83)
MV A2 1* 1* 1.000(32)
MV F 0.783 (31) 0.920 (04) 0.83(19) 0.83(27)
MAA2 1.35 (01) 1.29 (02) 1.75 (13)
MAF 1.16 (03) 1.32 (04) 1.32(18) 1.34(14)
MSA2 0.37 (01) 0.982 (16) 1.65(15)†
MSF 0.77 (13) 1.1 (15) 1.52 (11)† 1.40(19)†
MTA2 1.85 (01) 1.85 (05)
MTF 1.46 (07) 1.71 (0)

Table 8.13: AdS/Sp(4) 4F, 6A2. Ground state masses for the vector, axial-vector, and scalar mesons
for the two representations, F and A2, from holography (errors show the range in using γ1l and γ2l)
and the lattice. Also the pion decay constant and two estimates of the top partner baryon mass. We
have rescaled the lattice data to the MV A2 mass in the quenched case - we have already discussed how
we translate errors, see section 8.4.1 - and for the unquenched case, where no A2 states are included,
rescaled so MV F matches the quenched case for comparison. Note the lattice scalar results are for the
α0, namely the isospin singlet, not for the σ we compute in the holographic model. We chose to include
them as they provide a guide to the lattice expectation for scalar states.

5The error digits are related to the last two digits of the relevant result; i.e 1.46 (07)=1.46 ± 0.07.
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Part VII

Some final thoughts and remarks
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Chapter 9

Epilogue

In chapter 7 we considered BPS brane intersections in Type IIA/B theories in static equilibrium
that include fields in the fundamental representation of the gauge group. We studied and derived
systematically the equations of motion from the fermionic completion of the DBI action. We showed
the degeneration between the bosonic and fermionic states by providing the necessary transformations
to map the equations of motion from the latter to the former ones. We state the transformation rules
once more. The map is given by:

ψ⊕G`(%) = 1
(1 + %2) 3

16 (7−p)
f`+1(%), ψ⊕F`(%) = 1

(1 + %2) 3
16 (7−p)

f`(%),

where in the above we denote by ⊕ superscript the supergravity modes obtained by considering the
projection ΓρΨ⊕ = Ψ⊕ and we reserve the 	 for the negative eigenvalue of the projection.

In addition to that, we checked the supersymmetric degeneracy of the bosonic and fermionic masses
numerically in each probe-brane system. We explicitly computed the value of M̄2 by solving the bosonic
as well as the fermionic equations of motion and derived the same masses as expected. We remind
at this stage and for the final time, that we have already performed the appropriate shifts in the `
quantum number as described in [121] in order to keep the presentation of our tables brief. We have
included our numerical estimations for the masses in the various sections of the main body of the
paper, see tables 7.2 to 7.9. Hence, we have derived the necessary equations to study the dynamics of
world-volume fermions in holographic top-down systems and performed crucial checks regarding their
validity.

As a by-product of our studies we managed to show that these states obey the field theory mass scaling
relation that baryons have in the large-Nc limit when we fix the other quantum numbers (n which
counts the nodes of the wavefunction and ` which is the angular momentum of the fields)

M2 ∼ N2
c .

We also discussed what we consider to be the precise interpretation of this result. Namely we concluded
that this result should be valid if one manages to solve the true dynamic string baryon vertex in the
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limit where the field theory is at the conformal window (exhibits walking dynamics).

We would like to comment on further new possible directions below: The most straightforward
generalisation of our considerations can be performed in the context of eleven-dimensional supergravity.
The supersymmetric M-brane junctions are M2/probe-M5, M5/probe-M5 and M2/probe-M2. The
bosonic cases have been performed already in [161] where it was found that the equations of motion
coincide with the D1/probe-D5, D4/probe-D4 and the F1/probe-D2 systems respectively. In this
notation by F1 we denote the fundamental string. We believe that the approach we developed here is
directly applicable in these systems.

One of the approaches that has been followed in order to construct gravity duals of more realistic
gauge theories with a reduced amount of symmetry is to replace the five-dimensional sphere of the
AdS5 × S5 background with a five-dimensional Sasaki-Einstein space. We denote the latter generically
by M5. Doing so we obtain a duality between string theory in AdS5 ×M5 and a super-conformal
quiver theory. By now we know many such models explicitly. The first example that was studied in the
literature is the so-called Klebanov-Witten model where we haveM5 = T 1,1 [240]. We also have at our
disposal infinite five (and also higher) dimensional spaces of cohomogeneity 1 and 2. These manifolds
are called Y p,q [241] and Lp,q,r [242, 243] respectively, with already existing work on supersymmetric
brane embeddings in these backgrounds [244, 245]. It would be an interesting project to derive the
corresponding mass spectra of mesonic states in these cases.

It would also be interesting to derive the fermionic spectra of gravity duals that describe chiral symmetry
breaking (χSB). The most straightforward example of χSB in the context of holography is provided by
the D3/probe-D7 with a non-trivial NS flux (Kalb-Ramond field) on the probe-brane [246]. The main
conceptual difference between this system of χSB and the systems that we have considered here, is the
non-trivial dependence of the embedding function on the holographic radial coordinate. In the magnetic
field example instead of having the separation of the background and the probe branes to be a constant,
it is a non-trivial function L(ρ) that depends on the holographic radial coordinate. Geometrically
this means that the probe-brane is curved. The practical issue in cases with such embeddings is the
manipulation of the Γ-matrix projections in order to construct an ordinary second-order differential
equation to apply the general steps we developed here.

Finally, it would be interesting to understand the dynamics of world-volume fermions in anisotropic
RG flows in type IIB supergravity. These RG flows are solutions from the isotropic fixed points to
the anisotropic ones. There are solutions in the literature [247] that describe the D3/D7 brane setup
which extend from the familiar AdS5 solution in the UV to the anisotropic solution in the IR. This
generalisation of the AdS/CFT duality to include the description of Lifshitz-like fixed points was
initiated in [248] and is interesting in the context of condensed matter theory and applications thereof.
We believe that the general approach we developed here is applicable in these systems as well, and
might also make computations more feasible.

In chapter 8 we adapted the holographic model of [136] to describe composite Higgs models, including
fermionic bound states as in [1], as well as multiple representations of matter. Our holographic approach
is inspired by string theory realizations of gauge/gravity duality; the holographic gravity action is based
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on the top-down DBI action for a probe D7-brane. As a novel feature compared to previous holographic
composite Higgs models, the spontaneous symmetry breaking is induced by the dynamics of the gravity
theory, just as in the stringy top-down models. Within these models, in a phenomenological approach
we directly impose the running of the quark anomalous dimension. We have used the two-loop running
of the gauge coupling, extending it naively to the non-perturbative regime, to predict the running of
γ. The model then predicts the light meson and nucleon spectrum for given numbers of colours and
flavours for chosen groups and representations.

We also included higher dimension operators into the holographic model to describe Nambu-Jona-
Lasinio-like interaction terms. We have demonstrated this in two-flavour QCD, where we ‘perfected’
the model in the spirit of lattice QCD by including HDOs at the UV scale where the theory transitions
to weak coupling. We have shown that the spectrum can be brought closer to the observed spectrum in
this way (see table 8.2).

After grounding the holographic model with the QCD predictions, we then moved to studying the
underlying gauge theory dynamics in composite Higgs models. We studied three theories in particular
detail that have associated lattice results - SU(2) 4F ; Sp(4) 4F, 6A2; and SU(4) 3F, 3F̄ , 5A2. The
results and comparisons to lattice data are in tables 8.3, 8.4 and 8.5. The holographic techniques
describe the lattice data sensibly. This encouraged us to extended the results beyond known lattice
results. In particular, we straightforwardly computed a wider range of observables and crucially had
the ability to quench, unquench and change the number of flavours of quarks without the troubles of
lattice doubling or sign problems. Indeed in section 8.4.5, we have surveyed the full set of possible
gauge theories for composite Higgs models proposed in [144]. We expect that this will provide a useful
resource for model builders.

In a holographic realization of models with “partial compositeness”, we have also computed the top
Yukawa coupling, using HDOs to impose the required mixing between the top quark and top partner
baryons in the strong coupling sector. Extending this approach by including an additional HDO of the
form |FA2F |2 both reduces the top partners’ masses and raises the structure functions sufficiently to
allow for a top Yukawa coupling of order yt ' 1, consistent with the Standard Model. This value is
obtained for a top partner mass of half the value of the vector meson mass in the strongly coupled
sector. For a choice of the strong coupling scale between 1-5 TeV, this is likely to be compatible with
current experimental bounds on these states.

The holographic modelling does depend on assumptions about the IR dynamics. We expect to be able
to improve the tuning of the model to the dynamics as more lattice results become available, similarly
to the results for QCD of [196]. An example of an IR assumption that we have made is the input
for the running of the quark anomalous dimension γ. We have considered models of [144] where the
two-loop ansatz for the running of γ places the theory in the conformal window. If the IR fixed point
value in these theories turns out to be higher, the ansatz for the running could be easily modified. The
holographic techniques also seem likely to remain useful for chiral models that cannot be studied on
the lattice easily - we anticipate a constructive dialogue with future lattice work.

There is also substantial room for future exchanges with model builders. For example, the addition of
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NJL interactions could turn models in the conformal window into symmetry breaking theories. This is
easily studied with the holographic approach presented. Moreover, models with further matter content
that are closer to being conformal in the UV may be of interest [228]. In this case, the HDOs dimensions
would reduce, such that enhancements of the top Yukawa coupling might be possible. Generically, all
of these ideas are quick to apply using holographic techniques in any such model. We hope holography
will become a common-place tool for model builders.
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Appendix A

(Super)conformal algebra

A.1 The conformal algebra

Here we demonstrate the validity of the commutation relations that specify the conformal algebra as
spelled out in section 4.1.2.

• [D,PM ] = PM .

We have:

[D,PM ] = [xN∂N ,−∂M ] = −xN∂N∂M +
(
∂Mx

N
)
∂N + xN∂M∂N = δNM∂N = ∂M = PM (A.1)

The next commutator is

• [D,KM ] = −KM .

We have:

[D,KM ] = [xN∂N ,−2xMxP∂P + x2∂M ] ,

= −xN∂N
(
2xMxP∂P

)
+ ηABx

N∂N
(
xAxB∂M

)
+ 2xMxP∂P

(
xN∂N

)
− ηABxAxB∂M

(
xN∂N

)
.

(A.2)

We will calculate the first term explicitly

−2xN (∂NxM )xP∂P − 2xN
(
∂Nx

P
)
xM∂P − 2xNxMxP∂N∂P =

−2xN
(
∂xM
∂xN

)
xP∂P − 2xNxM

(
∂xP

∂xN

)
∂P − 2xNxMxP∂N∂P =

−2xNηNK
∂xM
∂xK

xP∂P − 2xNxMδPN∂P − 2xNxMxP∂N∂P =

−2xNηNKδMK xP∂P − 2xPxM∂P − 2xNxMxP∂N∂P =

−2xNηNMδMK xP∂P − 2xPxM∂P − 2xNxMxP∂N∂P

(A.3)
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Likewise, we can compute the rest of the terms and we obtain

ηABx
N∂N

(
xAxB∂M

)
= ηNBx

NxB∂M + ηANx
NxA∂M + ηABx

AxBxN∂M∂N (A.4a)

2xMxP∂P
(
xN∂N

)
= 2xMxN∂N + 2xMxNxP∂N∂P (A.4b)

−ηABxAxB∂M
(
xN∂N

)
= −ηABxAxB∂M − ηABxAxBxN∂M∂N . (A.4c)

It is straightforward now to gather the results from equation (A.3) and equations (A.4a) to (A.4c) and
insert them into equation (A.2) to obtain

[D,KM ] = −2xMxN∂N + x2∂M = −KM . (A.5)

We proceed to examine

• [KM , PN ] = 2 (ηMND − ΛMN ) .

Firstly, we expand the commutator fully

[KM , PN ] = −2xMxA∂A (−∂N ) + ηBCx
BxC∂M (−∂N )

−
(
(−∂N )

(
−2xMxA∂A

)
+ (−∂N )

(
ηBCx

BxC∂M
))

.
(A.6)

All of the terms above can be computed in the same way as we have seen previously. Below we giv the
results

−2xMxA∂A (−∂N ) = 2xMxA∂A∂N (A.7a)

ηBCx
BxC∂M (−∂N ) = −ηBCxBxC∂M∂N (A.7b)

(−∂N )
(
−2xMxA∂A

)
= 2

(
ηMNx

A∂A + xM∂N + xMx
A∂N∂A

)
(A.7c)

(−∂N )
(
ηBCx

BxC∂M
)

= −xN∂M − xN∂M − ηBCxBxC∂N∂M (A.7d)

Finally, it is easy to see that by inserting the resuts given in equations (A.7a) to (A.7d) into equation (A.6)
we obtain

[KM , PN ] = −2ηMNx
A∂A − 2xM∂N + 2xN∂M

= 2 (ηMND − ΛMN )
(A.8)

The next commutation relation we wish to examine is

• [PP ,ΛMN ] = ηPMPN − ηPNPM .

We have
[PP ,ΛMN ] = [−∂P , xM∂N − xN∂M ]

= −∂P (xM∂N )− (−∂P ) (xN∂M )

= −ηPM∂N + ηPN∂M

= ηPMPN − ηPNPM

(A.9)

We move on to examine the following
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• [KP ,ΛMN ] = ηPMKN − ηPNKM .

We begin by expanding it and we get:

[KP ,ΛMN ] = −2xPxA∂A (xM∂N − xN∂M ) + ηBCx
BxC∂P (xM∂N − xN∂M )

− xM∂N
(
−2xPxA∂A + ηBCx

BxC∂P
)

+ xN∂M
(
−2xPxA∂A + ηBCx

BxC∂P
) (A.10)

We compute the individual pieces of the above which give

−2xPxA∂A (xM∂N − xN∂M ) = −2xPxM∂N − 2xPxAxM∂A∂N + 2xPxN∂M
+2xPxAxN∂A∂M (A.11a)

ηBCx
BxC∂P (xM∂N − xN∂M ) = ηMPx

2∂N − ηNPx2∂M + x2xM∂P∂N − x2xN∂P∂M (A.11b)

−xM∂N
(
−2xPxA∂A + ηBCx

BxC∂P
)

= 2ηNPxMxA∂A + 2xPxM∂N

+ 2xMxPxA∂N∂A − 2xMxN∂P − xMx2∂N∂P (A.11c)

xN∂M
(
−2xPxA∂A + ηBCx

BxC∂P
)

= −2ηMPxNx
A∂A − 2xPxN∂M

− 2xNxPxA∂M∂A − 2xMxN∂P + xMx
2∂M∂P (A.11d)

We plug into equation (A.10) the results obtained in equations (A.11a) to (A.11d) and we obtain the
desired result and more specifically

[KP ,ΛMN ] = −2ηMPxNx
A∂A + ηMPx

2∂N + 2ηNPxMxA∂A − ηNPx2∂M

= ηPMKN − ηPNKM

(A.12)

The final task, in order to conclude this section, is to examine the commutator

• [ΛMN ,ΛPS ] = ηNPΛMS + ηMSΛNP − ηMPΛNS − ηNSΛMP .

The commutator, when expanded out completely, yields

[ΛMN ,ΛPS ] = xM∂N (xP∂S − xS∂P )− xN∂M (xP∂S − xS∂P )

− xP∂S (xM∂N − xN∂M ) + xS∂P (xM∂N − ∂NxM )
(A.13)

We can compute in a straightforward manner each term of the above expression. We quote the results
below

xM∂N (xP∂S − xS∂P ) = ηNPxM∂S + xMxP∂N∂S − ηNSxM∂P − xMxS∂N∂P (A.14a)

−xN∂M (xP∂S − xS∂P ) = −ηMPxN∂S − xNxP∂M∂S + ηMSxN∂P + xNxS∂M∂P (A.14b)

−xP∂S (xM∂N − xN∂M ) = −ηMSxP∂N − xPxM∂S∂N + ηSNxP∂M + xPxN∂M∂S (A.14c)

xS∂P (xM∂N − ∂NxM ) = ηMPxS∂N − ηNPxS∂M + xSxM∂P∂N − xSxN∂P∂M (A.14d)

We are now able to use our results equations (A.14a) to (A.14d) and plug them into equation (A.13) to
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obtain

[ΛMN ,ΛPS ] = ηNP (xM∂S − xS∂M ) + ηMS (xN∂P − xP∂N )− ηMP (xN∂S − xS∂N )

− ηNS (xM∂P − xP∂M )

= ηNPΛMS + ηMSΛNP − ηMPΛNS − ηNSΛMP .

(A.15)

A.2 Hermitian conjugation & the superconformal algebra

The purpose of this section is to show that the definition of the † given by equation (4.63) is consistent
with the superconformal algebra as is spelled out in equation (4.60). The only property needed in this
section is equation (4.62).

A.2.1 Commutators

For the commutators we have seen from equation (4.60) that there are very similar expressions for
barred and unbarred quantities. Here we demonstrate how the hermitian conjugation works for the case
of the unbarred quantities and it should be quite straightforward how it also works for the commutators
of the barred quantities.

We begin our studies by examining the following:

[(Λ β
α )†, (Qiγ)†] = [Λ α

β ,S γ
i ] = −δ γ

β S
α
i + 1

2δ
α

β S
γ
i , (A.16)

which we have to compare with the expression

(
[Qiγ ,Λ β

α ]
)†

= −
(
δ β
γ Qiα −

1
2δ

β
α Qiγ

)†
= −δ γ

β S
α
i + 1

2δ
α

β S
γ
i . (A.17)

Equations (A.16) and (A.17) suggest that this commutator respects hermitian conjugation. The
calculation for corresponding commutator with barred quanitties, [Λα̇

β̇
, Q̄iγ̇ ], follows similarly. While

it should be obvious how one can obtain the remaining commutation relation, we will demonstrate
explicitly for completeness. We have

[(Λ β
α )†, (S γ

i )†] = [Λ α
β ,Qiγ ] = δ α

γ Qiβ −
1
2δ

α
β Qiγ ,(

[S γ
i ,Λ β

α ]
)†

= −
(
−δ γ

α S
β
i + 1

2δ
β

α S
γ
i

)†
= δ α

γ Qiβ −
1
2δ

α
β Qiγ .

(A.18)

Furthemore,
[D†, (Qiα)†] = [D,S α

i ] = −1
2S

α
i ,(

[Qiα, D]
)†

= −
(1

2Q
i
α

)†
= −1

2S
α
i .

(A.19)
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Additionally,
[D†, (S α

i )†] = [D,Qiα] = 1
2Q

i
α ,

([S α
i , D])† = −

(
−1

2S
α
i

)†
= 1

2Q
i
α .

(A.20)

Moreover,
[(Rij)†, (Qkα)†] = [Rji,S α

k ] = −δjkS
α
i + 1

4δ
j
iS

α
k ,(

[Qkα,Rij ]
)†

= −
(
δ k
j Qiα −

1
4δ

i
jQkα

)†
= −δjkS

α
i + 1

4δ
j
iS

α
k .

(A.21)

Also,
[(Rij)†, (S α

k )†] = [Rji,Qkα] = δ ki Qjα −
1
4δ

j
iQ

k
α ,(

[S α
k ,Rij ]

)†
= −

(
−δikS α

j + 1
4δ

i
jS α

k

)†
= δ ki Qjα −

1
4δ

j
iQ

k
α .

(A.22)

Withal,
[(Pαα̇ )†, (S β

i )†] = [Kα̇α,Qiβ] = 2δ α
β S̄iα̇ ,(

[S β
i , Pαα̇ ]

)†
= −

(
−2δ β

α Q̄iα̇ ,
)†

= 2δ α
β S̄iα̇ .

(A.23)

Finally,
[(Kα̇α)†, (Qiβ)†] = [Pαα̇ ,S

β
i ] = −2δ β

α Q̄iα̇ ,(
[Qiβ,Kα̇α]

)†
= −

(
2δ α
β S̄iα̇

)†
= −2δ β

α Q̄iα̇ .
(A.24)

Equations (A.16) to (A.24) along with their barred counterparts which we have not explicitly demon-
strated prove that the definition of hermitian conjugation equation (4.63) is consistent with the
commutators of the superconformal algebra.

A.2.2 Anticommutators

We need to examine the anticommutation relations that appear in the superconformal algebra. The
steps are the same as above. Firstly, we have

{(Qiα)†, (Q̄jα̇)†} = {S α
i , S̄jα̇} = 1

2δ
j
iK

α̇α ,(
{Qiα, Q̄jα̇}

)†
=
(1

2δ
i
jPαα̇

)†
= 1

2δ
j
iK

α̇α .

(A.25)

Likewise,
{(S̄iα̇)†, (S α

j )†} = {Q̄iα̇,Qjα} = 1
2δ

j
iPαα̇ ,(

{S̄iα̇,S α
j }

)†
=
(1

2δ
i
jK

α̇α
)†

= 1
2δ

j
iPαα̇ .

(A.26)

In addition to the above,

{(Qiα)†, (S β
j )†} = {S α

i Q
j
β} = δjiΛ α

β + 1
2δ

j
iδ

α
β D − δ α

β R
j
i ,(

{Qiα,S
β
j }

)†
=
(
δijΛ β

α + 1
2δ

i
jδ

β
α D − δ β

α Rij
)†

= δjiΛ α
β + 1

2δ
j
iδ

α
β D − δ α

β R
j
i .

(A.27)
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The final anticommutator that we need to examine is shown below

{(S̄iα̇)†, (Q̄
jβ̇

)†} = {Q̄iα̇, S̄jβ̇} = δjiΛ̄
β̇
α̇ + 1

2δ
j
iδ
β̇
α̇D + δβ̇α̇R

j
i ,(

{S̄iα̇, Q̄
jβ̇
}
)†

=
(
δij Λ̄α̇β̇ + 1

2δ
i
jδ
α̇
β̇
D + δα̇

β̇
Rij

)†
= δjiΛ̄

β̇
α̇ + 1

2δ
j
iδ
β̇
α̇D + δβ̇α̇R

j
i .

(A.28)
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Appendix B

Dimensional analysis & gravity

Here we demonstrate how to perform dimensional analysis in the gravity side. We are following the
book [24] and more specifically we wil solve a simpler version of a homework problem from that book;
see exercise 8.1.

We start by writing the Einstein-Hilbert action in four dimensions

S =
∫
d4x
√
−G

( 1
2κ2G

MNRMN + · · ·
)
, (B.1)

and the task at hand is to determine the dimensions of the constant κ which is the gravitational coupling
constant. In the above by · · · we have denoted various possible matter couplings that may appear in
the action.

The invariant line element ds2 = GMNdx
MdxN has [ds2] = L2 where L denotes dimensions of length.

The metric itself is dimensionless, [GMN ] = 0, while we have that [dxM ] = L. This is very convenient
as the dimensions of any curvature related tensor can be found simply by counting how many spacetime
derivatives are needed in order to construct it. We count a factor of L−1 for each one. Hence, we have
that since d4x = L4 and [RMN ] = L−2 then [κ2] = L2.

189



190



Appendix C

Notations and conventions for
top-down systems

C.1 Notations and conventions

We find it necessary to collect and clarify our conventions and notation for the various manipulations
of the main body of our work in this appendix. We begin by discussing the different letters that have
appeared throughout the various sections.

Capital letters A,B,C,... denote type IIA/B coordinates and they take values in the range (0, . . . , 9).
The space described by the Z-coordinates corresponds to spatial coordinates which are transverse
to the background Dp-branes. Its dimensionality is equal to (9− p). Lower-case Greek letters µ, ν,...
are the Minkowski indices which correspond to the spacetime coordinates of the Dp-brane . The
letters ρ and % denote the radial and the rescaled dimensionless radial coordinate, respectively. Hatted
indices Â, B̂,... parametrize the spacetime spanned by the probe Dk-brane. Y -coordinates denote the
(k − d)-dimensional internal space to the probe brane. Finally, we use the set {w1, w2, . . . , w9−p−k+d}
of coordinates to specify the subspace of the original ten-dimensional geometry that is transverse to
both the background and the probe branes. Indices enclosed within brackets, i.e (A), (µ), take values
according the aforementioned rules and denote the passing to the vielbein basis.

For the components of a p-form we use the convention

X(p) ≡
1
p! Xµ1µ2...µp dx

µ1 ∧ dxµ2 ∧ . . . ∧ dxµp = X|µ1µ2...µp| dx
µ1 ∧ dxµ2 ∧ . . . ∧ dxµp . (C.1)

In the above relation, the vertical bars denote that only components with increasing indices are included
in the summation.

Definition of the Hodge star operator: Let us consider an n-dimensional spacetime and the usual
{dxM} basis which satisfies the relation ds2 = gµνdx

µdxν , then the dual of the q-form (with q < n)
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dxµ1 ∧ . . . ∧ dxµq is defined as

? (dxµ1 ∧ dxµ2 ∧ . . . ∧ dxµq) ≡

√
−g(n)

(n− q)! g
µ1ν1 gµ2ν2 · · · gµqνq εν1ν2...νq νq+1...νn dx

νq+1 ∧ . . . ∧ dxνn

=
√
−g(n) gµ1ν1 gµ2ν2 · · · gµqνq εν1ν2...νq |νq+1...νn| dx

νq+1 ∧ . . . ∧ dxνn , (C.2)

where g(n) = det(gµν), ε012...n = 1. The star ? is called Hodge star operator. Using the above equation,
we can determine the dual of a p-form X(p), namely it is

? X(p) =
√
−g(n)X|µ1µ2...µp|g

µ1ν1 gµ2ν2 · · · gµpνp εν1ν2...νp |νp+1...νn| dx
νp+1 ∧ . . . ∧ dxνn , (C.3)

with p < n.

Let us now consider the vielbein basis {e(µ)}, which satisfies the relation ds2 = η(µ)(ν)e
(µ)e(ν). In this

case, we would have

?
(
e(µ1) ∧ . . . ∧ e(µq)

)
≡ η(µ1)(ν1) · · · η(µq)(νq) ε(ν1)...(νq) |(νq+1)...(νn)| e

(νq+1) ∧ . . . ∧ e(νn) . (C.4)

C.2 Vielbeins and spin-connection components of a unit N-sphere

The line-element which defines the geometry of a unit N -sphere is of the following form

ds2 = dΩ2
N = dθ2

1 +
N∑
i=2

i−1∏
j=1

sin2 θj

 dθ2
i . (C.5)

It is straightforward to deduce that the vielbeins for the geometry above are given by

e(m̄)
1̄ = δm̄1̄, e(m̄)

n̄ =
n−1∏
j=1

sin θj δm̄n̄, 1 < n ≤ N, (C.6)

while the spin-connection components can be expressed in a compact form as

ω
(m̄)(n̄)
ī

=
N∑
k=2

δk̄ ī

k−1∑
j=1

δm̄k̄ δ
n̄
j̄ cot θj

k−1∏
`=j

sin θ` −
N∑
k=2

δk̄ ī δ
m̄
k−1 δ

n̄
k̄ cos θk−1

−
N∑
k=3

δk̄ ī

k−2∑
j=1

δm̄j̄ δ
n̄
k̄ cos θj

k−1∏
`=j+1

sin θ` . (C.7)

In the above expressions we kept the same bar notation to be consistent with section 7.3.3.

C.3 Scalar mesons, probe branes and numerical spectra

There has been extensive work in the literature studying the bosonic spectra and states of probe-brane
setups. Here we will limit ourselves to a minimal discussion and quoting the basic relations. This we
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do for convenience with our numerical approach. Original and detailed work on this can be found in
[160, 161].

Firstly, it is more useful to re-organize the probe brane junction in the following way: we have Dp/Dp+4,
Dp/Dp + 2, and Dp/Dp systems. In the first class of probe-brane embeddings, p is allowed to have
values 0 ≤ p ≤ 4. For co-dimension one defect p can be 1 ≤ p ≤ 4. Finally, for Dp/Dp systems we have
2 ≤ p ≤ 4.

In all of the above systems, when considering an appropriate shift in the ` quantum number, the
dynamics of the bosonic degrees of freedom can be mapped to those of scalar orthogonal fluctuations
from the DBI action of the form

Y A = δA9 L+ 2πα′ϕA (C.8)

with A ranging from 5, · · · , 9 − p, 4, · · · , 9 − p and 3, · · · , 9 − p for the Dp/Dp + 4, Dp/Dp + 2, and
Dp/Dp systems respectively. Therefore, the most basic equations of motion that needs to be solve in
the one pertaining to the above modes and we have:

∂2
%f`(%) + 3

%
∂%f`(%) +

(
M̄2

(1 + %2)(7−p)/2 −
`(`+ 2)
%2

)
f`(%) = 0, for the Dp/Dp+ 4 , (C.9)

∂2
%f`(%) + 2

%
∂%f`(%) +

(
M̄2

(1 + %2)(7−p)/2 −
`(`+ 1)
%2

)
f`(%) = 0, for the Dp/Dp+ 2 , (C.10)

∂2
%f`(%) + 1

%
∂%f`(%) +

(
M̄2

(1 + %2)(7−p)/2 −
`2

%2

)
f`(%) = 0, for the Dp/Dp , (C.11)

where in the above we have considered an appropriate decomposition of the ϕA and thus f is a scalar
function of the radial coordinate. The final equation does not have normalizable solutions for zero
angular momentum excitation and therefore the states with ` = 0 are considered non-physical.

In [160, 161] the authors have given explicitly tables for some cases. For direct comparison, conve-
nience and completeness, here we generate the numerical results and present them in tables that are
complementary to those ones.

Our numerical approach for the bosonic spectra is the following:

• We are shooting from the ΛIR to the ΛUV by fine-tuning M̄2 such that the mode solutions are
normalizable in the UV and small in amplitude [121].

• We choose as initial conditions f(%)|%→0 = %` and ∂%f(%)|%→0 = `%`−1 [160, 161].

• We use ΛIR = 10−7 and ΛUV = 10.
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Appendix D

A spinor in the Dynamic AdS/YM
background

We can now repeat the process described in section 3.2 for the case of the AdS/YM spacetime. The
invariant line element is given by

ds2 = r2dx2
(1,3) + dρ2

r2 , (D.1)

from which we can readily obtain the fünfbein, eAM . The fünfbein and the non-vanishing components of
the spin-connection are given by

eIµ =
√
ρ2 + L(ρ)2δIµ ,

eIρ = 1√
ρ2 + L(ρ)2 δ

I
ρ ,

ωrνµ = −ωνrµ = −(ρ+ L(ρ) ∂ρL(ρ))δνµ .

(D.2)

The Dirac operator in this spacetime which is asymptotically AdS5 (AAdS )using these conventions is
given by

/DAAdS =
√
ρ2 + L(ρ)2γρ∂ρ + 1√

ρ2 + L(ρ)2γ
µ∂µ + 2ρ+ L(ρ) ∂ρL(ρ)√

ρ2 + L(ρ)2 γρ . (D.3)

The action for a free spinor in the above geometry is given by

S1/2 =
∫
d5x ρ3 Ψ̄

(
/DAAdS −m

)
Ψ , (D.4)

where again we have used the square root of the metirc determinant from the top-down analyses rather
than the one obtianed from our spacetime -as was done in the case of the bosonic sector of the theory.
It is a straightforward task to vary the above action and obtain the equations of motion. Then, we
promote the first-order equations of motion to second-order by acting on them with the differential
operator 1

r γ
µ ∂µ + r γρ ∂ρ, and in such a way we construct a Klein-Gordon problem in terms of an
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ordinary scalar function of the holographic radial coordinate ρ that reads(
∂2
ρ + 6

r2 (ρ+ L ∂ρL) ∂ρ + M2

r4 −
m2

r2 −
m

r3 (ρ+ L ∂ρL) γρ

+ 2
r4

(
(ρ2 + L2)L∂2

ρL+ (ρ2 + 3L2)(∂ρL)2 + 4ρL∂ρL+ 3ρ2 + L2
))

ψ = 0 .
(D.5)

As a check of the above relation let us consider the limit L → 0, in which the Dynamic AdS/QCD
metric becomes AdS5 and in that limit the equations of motion equation (D.5) reduces to(

∂2
ρ + 6

ρ
∂ρ + M2

ρ4 + 1
ρ2

(
6−m2 −mγρ

))
ψ = 0 , (D.6)

which is precisely what we should get in pure AdS5 [82].
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Appendix E

Group theory factors

In what follows, by G we denote the adjoint representation. Other representations are displayed by
their Young Tableaux. This is a matrix of the group theory factors of the SU(N) gauge group.

R T(R) C2(R) d(R)
G N N N2 − 1

1/2 (N2 − 1)/2N N

(N + 2)/2 (N − 1)(N + 2)/N N(N + 1)/2
(N − 2)/2 (N + 1)(N − 2)/N N(N − 1)/2

(N − 3)(N − 2)/4 3(N − 3)(N + 1)/2N N(N − 1)(N − 2)/6

This is a matrix of the group theory factors of the Sp(2N) gauge group.

R T(R) C2(R) d(R)
1/2 (2N + 1)/4 2N

G= N + 1 N + 1 N(2N + 1)
N − 1 N N(2N − 1)− 1

We present here the matrix of the group theory factors of the SO(N) gauge group.

R T(R) C2(R) d(R)
1 (N − 1)/2 N

N + 2 N (N − 1)(N + 2)/2
G = N − 2 N − 2 N(N − 1)/2

spin(N: even) 2N−8
2 N(N − 1)/16 2N−2

2

spin(N: odd) 2N−7
2 N(N − 1)/16 2N−1

2

Finally, we include the group theory factors for the exceptional gauge theories G2 and F4 which are
relevant to composite Higgs models with matter in a single representation of the gauge group.
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Groups d(G) T (G) C2(G) d(F ) T (F ) C2(F )
here’s the hidden text

F4 52 9 9 26 3 6
G2 14 4 4 7 1 2

In the above tables, T is half the Dynkin index, C2 is the quadratic Casimir, and d is the dimension of
the representation. The usual relation holds

C2(R)d(R) = T (R)d(G) , (E.1)

where by R we mean a sepcific representation. We also have that

T (R) = −T (R̄) . (E.2)
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