
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal non-
commercial research or study, without prior permission or charge. This thesis and the accompanying
data cannot be reproduced or quoted extensively from without first obtaining permission in writing from
the copyright holder/s. The content of the thesis and accompanying research data (where applicable)
must not be changed in any way or sold commercially in any format or medium without the formal
permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Christoph Thies (2022) "Causal models of multilevel selection", University of Southampton,
Faculty of Engineering and Physical Sciences, School of Electronics and Computer Science, PhD Thesis.





University of Southampton

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Causal models of multilevel selection

by
Christoph Thies

February 2022

A thesis for the degree of
Doctor of Philosophy

http://www.southampton.ac.uk




University of Southampton

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Abstract

Thesis for the degree of Doctor of Philosophy

Causal models of multilevel selection
Christoph Thies

In social evolution, fitness of an individual depends not only on the phenotype of the

individual itself but also on the phenotype of its social environment. When measuring the

strength of selection in empirical data, this leads to the question of how selection is assigned

to the individual and the population level. Two methods for carrying out this assignment

have been primarily discussed in the literature. The multilevel Price approach uses a

multilevel expansion of the Price equation to express the components of selection on the two

levels in terms of covariances. Contextual analysis, on the other hand, uses linear regression

to assign fitness components to the individual and the population level. However, the two

methods generally do not agree in their results, and discussions which one is preferable have

been inconclusive. In this thesis, I argue that the root of the problem lies in viewing the two

approaches as correlational. While both are equally valid as correlational models, underlying

an empirical scenario is a causal process that may or may not match the given approach. To

find the correct approach I therefore suggest to regard contextual analysis and the Price

approach as causal models, i.e., as processes that generate the given data. In order to

implement the approaches as process models I view the process of selection as a

transformation from metapopulations to populations. I show that transformations of this

kind as well as other aspects of biological systems can be expressed in terms of monoidal

categories. More precisely, probability monads can be used to capture essential features of

metatpopulations and allow a convenient graphical representation. Using this formalism, I

construct process models of multilevel selection that correspond to the multilevel Price

http://www.southampton.ac.uk


equation and contextual analysis, thus endowing the correlational models with a causal

structure. The parts that make up the models can be rearranged, composed, and refined in

a consistent manner, and the diagrammatic formalism of string diagrams allows intuitive

manipulation of the models. Finally, in the last chapter I discuss the two approaches for the

case where fitness on the two levels combines additively. Using an empirical example, I show

how the correct approach can be determined by intervening on the empirical system.
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Preface

The central claim of my thesis is that statistical equations of population genetics that
describe multilevel selection (Heisler and Damuth, 1987; Okasha, 2006; Gardner, 2015)
can be represented in terms of mathematical structures that allow causal modelling on
a high level of abstraction (Fong, 2013; Pearl, Glymour, and Jewell, 2016). The corre-
spondence yields a representation of the associated biological observables and processes
as the spaces and functions of symmetric monoidal categories (Jacobs and Zanasi, 2018;
Schmid, Selby, and Spekkens, 2020). The models constructed in this way are intuitive,
yet mathematically rigorous and can be subjected to structured logical or statistical in-
ference (Jacobs, 2019). They are useful for the design as well as for the computer-aided
analysis of experiments (Patterson, 2020).

From a mathematical point of view, the thesis is delivered when its arguments trace
a valid correspondence. However, the use of categories in multilevel selection theory is
unusual1 and therefore requires a perhaps unusual amount of patience on the side of the
reader. I see the value of this thesis not in the reported mathematical facts themselves2

but in the view on evolution they reveal. Therefore, it is my goal to make this view
accessible to the reader rather than to provide a complete and rigorous mathematical
account of the ideas expressed in this thesis.

In order to keep the picture simple, also on the biological side all but the most fun-
damental features have been left out. Biological examples and descriptions are therefore
gross simplifications presented in order to make the abstract concept realised in the
mathematics tangible. This is not to ignore biological complexity but to abstract from
it so that the structure can be described more easily. These simplifications may make
it seem like the thesis is not doing justice to population genetics – the field of mathe-

1But not rare in theoretical biology, see for instance Ehresmann and Vanbremeersch (2007), Tuyéras
(2017), and Leinster (2021) for applications of category theory to biological and evolutionary phe-
nomena.

2The mathematical structures employed as well as the operations they are subjected to in this thesis
have a long history in category theory and other fields, see, for instance, Giry (1982), Riehl (2017),
and Jacobs and Zanasi (2018). This manuscript contains no ‘new’ mathematics.

xi



Preface

matical biology that formalises genetical evolution and underlies conceptualisations such
as the Price equation and contextual analysis. Population genetics and related research
in mathematical biology have advanced far from the traditional and basic parts that
feature in this manuscript. However, I do not attempt to add any knowledge to the
field of population genetics. Instead, I intend to add a point of view on the fundamen-
tal evolutionary processes that are described by population genetics. Some perspectives
may inevitably depart from stances that are taken for granted by experts in the field of
population genetics. Fortunately, the unambiguous language of category theory allows
scrutinising the premises and consequences of arguments to any level of mathematical
detail, and hence the reflections of population genetic equations in monoidal categories
described in this thesis can be challenged and adapted in a rigorous manner.
More generally, it is my goal to be as explicit and precise as possible when using

concepts such as ‘selection’ or ‘replication’. Since this requires a clearly communicated
picture of these concepts, many statements take the form of definitions of concepts that
have been discussed and defined multiple times across the literature. Distilling a compli-
cated and possibly contentious concept into a brief and formal definition cannot do justice
to all its aspects. It is my goal to make some aspects accessible to formal assessment
through the mathematical tools described in this thesis.
Finally, multilevel selection itself is within a circle of ideas that provoked often hot

and extended debates involving the role of statistics and causality in explanations of
evolutionary processes (for instance Nowak, Tarnita, and Wilson (2010), Abbot et al.
(2011), Gardner, West, and Wild (2011), and Allen, Nowak, and Wilson (2013)). In
light of this tradition, having to defend the assumptions, simplifications, and omissions
in this thesis is daunting. However, I regard the reconciliation the results of this thesis
offer with respect to the measurement of multilevel selection as a point in favour of a
causal stance (Okasha, 2015; Pearl and Mackenzie, 2018; Otsuka, 2019). Making this
stance explicit by putting it centre stage – as in the functional representation of multilevel
selection developed in this thesis – may facilitate a mathematically meaningful debate
on the role of causality in multilevel selection theory.

Note: Some of the material in this thesis has been posted on a public forum for
discussing category theory. An archive of this forum is available under the following
link: https://mattecapu.github.io/ct-zulip-archive/. I discussed this work in
topic What is normalisation? and in topic Categorical Radon-Nikodym.

xii
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1 Selection and the ladder of causation

1.1 Introduction

Multilevel selection theory (MLS) is a conceptual approach for understanding the evo-
lution of biological systems that span two or more levels of organisation. It is based
on the idea that properties of populations of individuals may affect natural selection
so that multiple populations that vary phenotypically form a metapopulation on which
population selection acts (Damuth and Heisler, 1988).1 Instantiating Darwin’s principle
of natural selection two or more times in this manner has been shown to integrate with
traditional Darwinian selection on the level of the individual (Frank, 1998; Rice, 2004;
Okasha, 2006; Gardner, 2015). In social evolution (Débarre, Hauert, and Doebeli, 2014),
evolutionary transitions in individuality (Clarke, 2016), the evolution of holobionts and
mutualisms (Lloyd and Wade, 2019), and in coevolution generally (Bapteste and Papale,
2020), multilevel selection frequently plays a role in explaining the evolution of higher
level function.

However, there is some debate about the interpretation of MLS, more precisely about
the relation between causal explanations of multilevel selection processes and the statisti-
cal analysis of observations of such processes (Okasha, 2006; Gardner, 2015; Goodnight,
2015; Otsuka, 2016a, 2019; Huneman, 2021). In particular, there is no agreement on
which measurements are considered evidence for an instance of multilevel selection in an
evolutionary scenario. For this, a statistical structure is required that, given observations,
can be used to judge the claim that MLS is effective (i.e., that natural selection occurs
on more than one level) in a given instance. In the theoretical literature on MLS, two
such statistical structures have been primarily discussed: the multilevel Price equation
and contextual analysis. While both approaches are formally valid, they may disagree in
their verdict on whether MLS is in effect, in which case one of the two must clash with
intuition about the system (Okasha, 2006).

In the case of one level – that of the individual – the general Price equation defines

1Damuth and Heisler (1988) refer to individuals in groups where we refer to individuals in populations.
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1 Selection and the ladder of causation

the distinction between selection with respect to a phenotype Z and transmission, and
thereby selection itself (Gardner, 2020). In order to instantiate the Price equation for a
collection of observations of a system so that the strength of selection can be inferred, the
character under selection along with unit and ‘arena’ of selection are specified (Gardner,
2015). In single-level systems, the latter two are realised by the genetic individual and
the population it is part of, that is a collection of individuals within the same selective
environment. A system with two levels, however, by definition comprises two units of
selection, each with their arena of selection and phenotype under selection. As we will
see in the course of this thesis, the essential difference between the Price approach to
multilevel selection (PA) and contextual analysis (CA) is their respective choices of arena
of selection for the individual level. The Price approach is based on the assumption that
individual selection acts within populations, such that its total effect on the metapopu-
lation is analogous to that of transmission bias in the single-level Price equation. In this
view, the units under population selection themselves – characterised by the population
phenotype Z – change during reproduction (more appropriately imagined as persistence
for populations (Bapteste and Papale, 2020; Papale, 2020)). This change of composi-
tion within each population occurs by differential reproduction of the individuals in an
environment created by the population phenotype Z that entails selection with respect
to the individual phenotype Z. The arena of selection for the individual level in con-
textual analysis as discussed in Okasha (2006, 2015), on the other hand, is given by the
population that comprises all individuals in the metapopulation. A complete episode of
multilevel selection in this view is population selection within a metapopulation together
with individual selection that acts across the metapopulation and with no regard for the
population structure.

When the Price approach and contextual analysis are considered as statistical tools
for estimating parameters based on observations of multilevel selection, it is not clear
which of the two is preferable (Okasha, 2006). On the first rung of Pearl’s ladder of
causation (Table 1.1) (Pearl and Mackenzie, 2018; Bareinboim et al., 2020) this question
cannot be settled, as both are valid operations that may be applied to associational
data recorded during an experiment. However, the description in the previous paragraph
holds that properties of the population an individual is part of have causal effects on
within-population selection in the Price approach but not in contextual analysis.2

This commitment to a causal account of the process of multilevel selection has the

2We refer here to the ‘basic’ form of contextual analysis discussed in Okasha (2006), see Section “The
multilevel Price equation and contextual analysis”.

2



1.1 Introduction

Table 1.1: Pearl’s ladder of causation (Bareinboim et al., 2020).

Representability: Finally on the third level, rep-

resentable processes can be expressed in terms

of functions between the variables involved.

Varying the input to these functions as well

as the functions themselves allows counterfac-

tual reasoning. The functional representation

of processes is the focus of Section 1.6 in this

chapter and of Chapter 2.

Reasoning

wZ⊗Z

Z Z

W

Causality: On the second level, causality is assumed

in the sense that the value of one variable has an ef-

fect on the observed value of another variable (but

not neccessarily the other way around). This direc-

tionality lets us decorate the edges in diagrams on

the first level with tips so that arrows point in the

direction of causation (the diagram on the first rung

is the skeleton of the decorated diagram to the right

(Pearl, 2009, Section 1.2; Fong, 2013, Section 3.2)).

The resulting diagrams on the second level encode as-

sumptions about the effects of interventions.

Intervening

W

Z Z

Correlation: Given correlation between observables (these

appear as linkages between variables measured on the sys-

tem), the first level allows introducing corresponding associ-

ations between the formal representatives of these variables

as in the diagram on the right. This diagram represents the

assumption that Z and Z (individual and population pheno-

type) are both associated with W (total fitness of an indi-

vidual) but not directly associated with each other (over and

above the fact that the individual phenotypes Z in a pop-

ulation determine Z). Probabilistically, this means that Z

and Z are conditionally independent given W (see Section

1.3.4 in Pearl, Glymour, and Jewell (2016)). Observations

allow the construction of contingency tables. The Price ap-

proach to MLS and contextual analysis may be regarded as

operating on this level to yield estimates of covariances and

linear regression parameters, resp., as discussed in Section

1.4. The parameters may be used, e.g., to predict allele fre-

quency dynamics.

Observing

W

Z Z
3



1 Selection and the ladder of causation

benefit that directed acyclic graphs (DAG) and the formalism associated with the sec-
ond rung of the ladder of causation may be used to represent models corresponding to
the Price approach and contextual analysis. Differences between the two approaches are
then reflected in the associated directed acyclic graphs. These graphs are more expressive
than the associational models on the first rung because causality adds directedness to
associations. In particular, they admit the do operator for reasoning about interventions
on the system that fix variables to a certain value without affecting other (parent) vari-
ables (Pearl, Glymour, and Jewell, 2016). Considered as models on the second rung of
the ladder, the Price approach and contextual analysis rest on different assumptions that
are encoded in the associated causal graphs. In a given biological scenario, none, one,
or both of these graphs may be causally adequate (cf. Okasha (2015)). Where both are
correct, no inconsistencies occur as in this case no individual selection but only popula-
tion selection is acting on the metapopulation. In Section “A functional representation
of multilevel selection” we will see that interventions formalised by the do operator allow
a distinction between the two directed acyclic graphs (also referred to as causal graphs
or causal structures) that represent the Price approach and contextual analysis, and if
the assumptions underlying the causal graph hold, these interventions must be reflected
in empirical measurements. Thus, commitment to a causal interpretation of the two
conflicting views allows designing experiments that specifically test which of the models
is appropriate.

While causality in the sense of directed association is the central premise for the second
rung of the ladder of causation, it is not sufficient for the third. Counterfactual reasoning
requires a functional representation of the processes that create the causal relationships
between the variables. A functional representation of a causal graph is a set of func-
tions that determine the values of the dependent variables in terms of the independent
variables, like wZ⊗Z determines the value of individual fitness W in terms of individual
phenotype and population phenotype on the top level in Table 1.1. Contextual analysis
and, more generally, structural causal models provide such a representation (Heisler and
Damuth, 1987; Pearl, Glymour, and Jewell, 2016). This representation gives meaning to
varying the variables Z,Z, and W in the right column of Table 1.1 and allows answer-
ing questions like “What would have been the outcome of selection (i.e., the number of
offspring) for a given individual with phenotypic value z : Z within a population with
phenotypic value z : Z if that individual had expressed the phenotypic value z′ : Z in-
stead?”. Given the functional representation wZ⊗Z , an answer to this question is simply

4



1.2 Individual selection and the Price equation

the fitness wZ⊗Z(z′, z) : W .3

The functional representation that characterises the third rung of the ladder of cau-
sation allows counterfactual reasoning in yet another way, different from varying the
variables to assess the outcome under counterfactual conditions. When a process is as-
sumed to be faithfully represented by a function that computes the outcome of the process
for any input of conditions, then not only unobserved combinations of variables can be
counterfactually imagined. Like their input, the functions themselves become objects
within a space of multiple objects over which the assumptions may vary. This switch of
perspective from functions as fixed objects to functions as varying objects corresponds
to the distinction between regression coefficients that approximate a fixed statistical as-
sociation and structural coefficients that parameterise a meaningfully varying family of
functions (Pearl, Glymour, and Jewell, 2016; Section 3.8.1).
In multilevel selection specifically, varying functions that determine the outcome of

selection corresponds to varying the selection pressures the metapopulation is subject
to. For the study of evolutionary transitions in individuality, which are characterised by
changes in the reproductive organisation of organisms, a functional viewpoint seems in-
dispensable (Watson and Thies, 2019). Along with the arguments that aim to clarify the
relationship between the two approaches to multilevel selection we describe mathemati-
cal structures (in particular monoidal categories and probability monads) that facilitate
the construction of statistical models of selection. An essential feature of the models
constructed in this way is their focus on composition that allows – and demands – a
complete specification of all processes and interactions involved.

1.2 Individual selection and the Price equation

The evolutionary models discussed in this thesis concern the action of natural selection
on a population of individuals – possibly itself situated within a metapopulation of pop-
ulations. The mathematical structures we use to model processes associated with this
action are those that constitute the formal frame of the Price equation and the theory of
natural selection this equation describes (Price, 1970, 1995; Gardner, 2020). The Price
equation captures the action of selection in a covariance form

∆SEi : I(zi) = Covi : I(νi, zi) (1.1)
3We can give this answer because we assume the fitness function wZ⊗Z to be defined on the product
Z ⊗ Z (see Section “Monoidal categories” for the definition of the product Z ⊗ Z) so that any pair
(z, z) : Z × Z may be assigned a fitness value wZ⊗Z(z, z).

5



1 Selection and the ladder of causation

(equation (1) in Price (1970), see §2 in Grafen (2000) for a brief overview of the full Price
equation and the concept of relative fitness involved). In this equation, the finite set I
represents a population of individuals i : I with phenotypic values zi : Z. Ei : I(zi) denotes
the mean value of the phenotype Z among the individuals indexed by i : I. Moreover,
each individual has assigned a relative fitness νi : R≥0 that represents the rate of change in
representation (‘growth rate’, if this representation increases) from the parent individual
in the parent population to its offspring in the offspring population4. The numerical
covariance5 of relative fitness with the associated phenotypic values zi : Z, taken over the
population I, is written as Covi : I(νi, zi) in equation (1.1). Finally, ∆SEi : I(zi) denotes
the change in mean phenotypic value from that of the population I to that of a population
J comprising the offspring individuals so that J is the outcome of the action of selection
on I.

Equation (1.1) describes natural selection in the absence of mutation, recombination,
phenotypic plasticity, and other mechanisms that may entail phenotypic changes from
parent to offspring (property changes in Price (1995)). Effects of this kind are captured
by the second term on the right hand side of the full Price equation

∆Ei : I(zi) = Cov(νi, zi) + Ei : I(νi∆zi) (1.2)

(equation (4) in Price (1970) and equation (2.1) in Gardner (2020)), where ∆zi denotes
the difference between the character value of parent i and the average character value
of its offspring (Okasha, 2006; Gardner, 2020). The second summand in equation (1.2)
is often referred to as transmission term of the Price equation because it refers to the
effect of changes during reproduction of an individual in its offspring, that is during
transmission from parent to offspring generation. Following Gardner (2020), we consider
the Price equation without transmission term (1.1) as population genetic definition of
selection.

The Price equation expresses a relation between variables that refer to biological sys-

4To give an example of relative fitness, if an individual in a population of 3 individuals has assigned
2 offspring in an offspring population of 3, then its relative fitness is 2 because the representation,
or frequency, in the population doubled from parent to offspring. If in the previous example the
magnitude of the offspring population is 6 instead of 3, then the relative fitness of the individual is
1 because the representation remains unchanged from 1

3
to 2

6
= 1

3
.

5The covariance of a set of value pairs (xi, yi) : (R× R)|I| is given by

Covi:I(xi, yi) = Ei:I(xiyi)− Ei:I(xi)Ei:I(yi).

.

6



1.2 Individual selection and the Price equation

tems6. The variables zi represent outcomes of phenotype measurements that may be
taken in population I in advance of the process referred to by the equation. The variables
∆zi implicitly refer to additional phenotype measurements on the individuals’ offspring
in population J . Finally, the variables νi encode the change from the probability of ran-
domly drawing an individual in I to drawing one of that individual’s offspring in J . The
Price equation describes a linkage between these variables that follows from their defini-
tion and may therefore be regarded a tautology (Frank, 2012). Conceptually, however,
the Price equation formally separates evolutionary progression under natural selection
from one generation to the next into the two components selection and transmission.

If, in an asexually reproducing species, we are concerned with the action of selection
alone, we may assume that offspring is an exact copy of its single parent in a selection
process represented by equation (1.1). The transformation of population I to population
I ′ is generally assumed to follow a law7

interactZ : Z → N (1.3)

that determines the (expected) number of offspring of an individual according to its phe-
notypic value (Wade and Kalisz, 1990), more precisely the “average number of successful
gametes” (Grafen (2000), page 1223). The definition of the function (1.3) is motivated
by the idea that “selection acts through offspring number” (Levin and Grafen, 2019, page
1069). We assume this number to be a whole number so that each circle represents one
individual in the diagrams below.8 This means that each individual i : I in the parent

6Price (1995) suggested wider significance of ‘selection mathematics’ but we consider only natural and
experimental selection of biological systems.

7We attach no meaning to the term law other than that a law determines the outcome of a class of
processes, here episodes of selection of any population of phenotypes in Z. The name interactZ is
explained in Section “Interactors and replicators”.

8This assumption will be relaxed later on and interact is considered a function interact : Z → R.
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1 Selection and the ladder of causation

generation is replaced by interactZzi : N copies of itself in the offspring population I ′,

I I ′

, (1.4)

where interactZ# = 4 : N and interactZ = 2 : N (see below for the notation). Since
selection is realised in interaction of the phenotype with the environment, this law de-
pends on the environment. We do not indicate this dependence because the selective
environment is assumed to remain unchanged. Absolute fitness, that is the number of
offspring of an individual (interactZzi : N from definition (1.3) above), and relative fit-
ness (νi : [0, 1] ⊂ R in equation (1.1) above), are assumed deterministic (cf. Pearl (2018),
Section 2)9.
The Price equation describes the transformation of a parent population to its offspring

population in terms of the change in mean phenotypic value the transformation entails.
However, the mean phenotypic value may be one among other properties of the pop-
ulation I and its offspring population I ′. To give an example, let the empty circles
in diagram (1.4) be encoded with the phenotypic value 0 and the filled circles with 1.
Then the Price equation traces the change of mean phenotypic value from 1

2 to 1
3 . If

populations are represented as frequencies, or distributions, of values # and  , so that
population I in diagram (1.4) is assigned 2

4 |# 〉+
2
4 | 〉 = 1

2 |# 〉+
1
2 | 〉 and I

′ is assigned
8
12 |# 〉 + 4

12 | 〉 = 2
3 |# 〉 + 1

3 | 〉
10, then the process is fully described by the change in

mean phenotypic value, that is the Price equation with respect to the phenotype Z.
9In the end of the thesis, we will see how stochasticity with respect to phenotype and fitness may be
implemented in the models discussed.

10The intuitively meaningful representation of populations, or distributions, of a discrete phenotype
such as Z = { ,#} in terms of symbolic sums p | 〉+ p# |# 〉 with p , p# : [0, 1], p + p# = 1 is
detailed in Jacobs (2019), Section 1.5, and referred to as ket notation.
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1.2 Individual selection and the Price equation

If, however, for example, the populations I and I ′ in (1.4) are characterised by or-
ganisation into subpopulations (such that they are better denoted as metapopulations
A and A′)

A A′

I2

I1 J5J2

J3

J4

J6

J1

, (1.5)

where A and A′ denote metapopulations with subpopulations I1, I2 : A and J1, . . . , J6 :

A′, then equation (1.1) does not describe the process completely because the transforma-
tion 1

2 |# 〉+
1
2 | 〉 7→

2
3 |# 〉+

1
3 | 〉 may be realised by multiple offspring metapopulations

on the right hand side of (1.5). This issue is sometimes referred to as dynamic insuffi-
ciency of the Price equation (Frank, 2012; van Veelen et al., 2012). The term may suggest
that the Price equation is ‘insufficient’ to describe the evolutionary dynamics when such
organisation or other additional properties are involved, but that is not the case. The
Price equation may be applied to any character, including contextual characters11, that
can be observed on individuals (Damuth and Heisler, 1988), and changes in means of
higher moments of the phenotypic distribution yield the complete dynamics (Gardner,
West, and Barton, 2007). Nevertheless, the Price equation describes the transformation
in terms of changes in univariate means of phenotypic values in the population. As we
will see below, our approach, in contrast, is to give a functional description of the trans-
formation, or process, itself. The components of the transformation, such as the change
in mean phenotypic value as in equation (1.1), can then be derived from the functional
description.

To avoid confusion, it should be noted that the Price equation features in two roles
in this thesis. First, we take the Price equation as definition of selection in the sense of
Gardner (2020). The concept of selection that is formalised in this thesis aims to be the

11Contextual characters of an individual are properties that depend on the context the individual is
situated in. For example, properties of a population are contextual properties of the individuals it
comprises, see Table 1 in Damuth and Heisler (1988).
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1 Selection and the ladder of causation

concept of selection formalised in the Price equation. Second, we use the (multilevel)
Price equation asmodel of multilevel selection. To do so (below in Section 2), we apply the
structure of the Price equation without transmission bias (1.1) recursively to the higher
as well as to the lower level of the system subject to multilevel selection. How the effects
of the two levels on individual fitness interact is the essential difference between the Price
approach to multilevel selection (PA) and contextextual analysis (CA). The distinction
between CA and PA is the problem that motivated this thesis and is discussed in the
next section (see also Section “The multilevel Price equation and contextual analysis”).

1.3 Contextual analysis and the Price approach

When individual traits have effects on other individuals, individual fitness depends not
only on self but also on the social environment, i.e., interaction partners. Social evolution
theory deals with this problem by regarding the social environment as an external factor
that, together with direct fitness effects of a trait, determines evolutionary dynamics
with respect to selection (Frank, 1998). By assuming a certain correlation between trait
value of an individual and average trait value of its social environment, e.g., through
relatedness, Hamilton’s rule can be formulated and answers the question of whether
a trait with direct and indirect effects increases or decreases in frequency given the
organisation of the population, that is the corresponding parameter of relatedness r
(Frank, 1997).

Multilevel selection theory (MLS) posits the social environment as a unit, that is the
group or population an individual is situated in, that can be subject to selection acting
at a level above that of individuals (Wilson, 1975; Wade, 1976, 1978; Uyenoyama and
Feldman, 1980; Wilson and Sober, 1989). The theory thus promotes the concept of a
population from a mere collection of individuals targeted by similar selection pressures
to a unit that has a causal role in the selection process. More precisely, MLS theory
understands a population as a unit whose interaction with the selective environment
– through properties of the population as a whole – causally affects the fitness of its
individual subunits (Wade and Kalisz, 1990). This means that individual fitness is a
composite quantity determined by two factors: the individual effect of the trait and an
effect on the population that an individual is a part of, and via this population effect,
on the individual itself. The MLS view is not in opposition with kin selection theory
(Hamilton, 1964) but merely highlights that selection at the population level may be
part of a causal mechanism resulting in individual fitness differences and should be part

10



1.3 Contextual analysis and the Price approach

of a causal account of the system.

The distinction between individual effects and population effects of individual traits
presents MLS with a problem: how can the presence of a population effect be detected
empirically/statistically and how can the strength of the population effect be quantified in
comparison to the individual effect of the trait. After all, the claim that population effects
determine individual fitness can only be of use if such effects can be detected empirically.
To give an example, Eldakar, Wilson, et al. (2010) claim that the fitness of male water
striders, Aquarius remigis, organised into patches (that is populations of water striders)
depends on two components that are both affected by an aggressiveness trait individually
expressed by the males. The individual component is given by the positive effect of
aggressiveness on fitness mediated by mating success which is higher for more aggressive
males that secure more mating opportunities than less aggressive males (Watters and Sih,
2005). The population component of individual fitness, on the other hand, arises from
a different causal pathway and represents a negative effect of aggressiveness on fitness.
Since the harassment experienced by females on a patch reflects the cumulative male
aggression level on that patch and females tend to avoid harassment by escaping their
current patch, the trait has a negative effect on patch productivity by decreasing the
number of females on the patch and therefore the reproductive resources of all males on
that patch. If such a decomposition into causes of individual fitness is to be useful, this
decomposition must be empirically accessible in the sense that fitness is quantitatively
given as a function of an individual component and a population component. This is
possible only with a valid method of measuring the decomposition in empirical data.

Two methods for carrying out a quantitative decomposition of individual fitness into
an individual component and a population component have received particular attention
in the literature (Heisler and Damuth, 1987; Goodnight, Schwartz, and Stevens, 1992;
Frank, 1998; Okasha, 2006; Sober, 2011; Gardner, 2015; McLoone, 2015): contextual
analysis and the multilevel Price equation. However, the partitions of individual fitness
given by the two methods are different in general. In particular, there are cases in which
the Price approach claims the absence of population effects while contextual analysis
claims their presence and vice versa.

The inconsistency between the two approaches is problematic because proponents of
MLS argue that the distinction between individual effects and population effects is not
just a statistical exercise but reflects a separation of causal pathways in the biological
system under study as described above. While one causal pathway emanating from
the individual trait is proposed to affect only individual aspects of fitness (the fitness

11



1 Selection and the ladder of causation

of the bearer), a different pathway is claimed to relate the trait with properties of the
population as a whole and hence with a population component of individual fitness. Since
the desired decomposition must reflect the underlying biological reality, two methods of
decomposition that yield different answers cannot both be correct (Sober, 2011).

1.4 Correlation

Motivated by the inconsistencies of CA and PA, we look more closely at the concepts
of correlation and causation using Pearl, Glymour, and Jewell (2016) and the ladder of
causation (Table 1.1).

1.4.1 The multilevel Price equation and contextual analysis

The Price equation (1.2) (see Price equation examples on Wikipedia for instructive exam-
ples of its use) states an identity between properties of two distributions over a phenotype,
for instance between metapopulation A and metapopulation A′ over the phenotype Z in
diagram (1.5). More specifically, (1.2) expresses the change in mean phenotypic value
from the parent to the offspring population in terms of covariances and means involving
the two successive populations (see Section “Individual selection and the Price equation”).
The purpose of this expression is a formal definition of selection: “Price’s equation is
definining evolutionary change – or, more properly, its component parts. Importantly,
Price’s equation provides a completely general, formal definition of selection.. . . Price’s
equation highlights that there are two conceptual components to evolution, namely se-
lection and transmission.” (Gardner, 2020, page 2). In summary,

Price’s equation describes evolutionary change as that which owes to changes in

the frequencies of things (i.e. selection) and that which does not (i.e. everything

else, collected under the umbrella-term ‘transmission’).

Gardner (2020): “Price’s equation made clear”

Hence the correlation, or covariance, in the first component of the Price equation (1.2)

Cov(νi, zi) (1.6)

is regarded as formal counterpart of selection. In instantiations of the Price equation
with recorded data, the associated numeric term is taken to be indicative of selection.
This interpretation of the observed data, that is the measurement outcomes giving

rise to the observables Z,Z, and W above, amounts to accepting the corresponding
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1.4 Correlation

correlations, or associations, between the variables that represent that data on the formal
side. Specifically, the component (1.6) of equation (1.2) refers to an association between
Z and W (see the first rung of the ladder of causation in Section 1.4),

W

Z
, (1.7)

that is between individual phenotype and overall individual fitness, as required for Dar-
winian evolution according to Lewontin’s principle of differential fitness (Lewontin, 1970;
see Section “Units of selection”).
Given a metapopulation, such as A in diagram (1.5), the multilevel Price equation is

a decomposition of individual selection into a component of population selection and a
component of individual selection relative to the individual’s ambient population (Gard-
ner, 2015; equation (5))

∆EI(Z) = CovI(W,Z) + ELCovK(L)(W,Z), (1.8)

where the index I covers all n : N individuals in the metapopulation, the index L covers
all p : N populations, and the index K(L) covers for each population them : N individuals
within that population (assuming populations of homogeneous magnitude m for simplic-
ity; the total number of individuals in the metapopulation is n = mp). A derivation of
equation (1.8) is given in the Appendix.
In the multilevel Price equation (1.8), the selection component

CovI(W,Z) (1.9)

refers to selection of populations and belongs to the association between overall individual
fitness W and phenotype of the ambient population Z that formalises the analog of
individual selection (1.6) for populations and is mediated by W as population selection
(cf. Sections “Mediators and conditional independence” and “Population selection”). The
transmission component refers to transmission bias on the population level, formalised
as (averaged) individual selection within subpopulations

ELCovK(L)(W,Z). (1.10)
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1 Selection and the ladder of causation

The associations (1.9) and (1.10) furnish the basis of multilevel selection according to
the Price approach (Okasha, 2006).
Contextual analysis, on the other hand, represents associations between variables in

terms of regression coefficients of structural equations that involve these variables (Heisler
and Damuth, 1987; Damuth and Heisler, 1988). A standard approach to formalising the
association that features in Table 1.1 is the linear regression

W = c1Z + c2Z, (1.11)

where c1, c2 : R are regression coefficients. In a regression analysis of empirical data,
that is in an instantiation of the structural equation (1.11) with data, the associated
numerical term c1, for instance, is taken to be indicative of individual selection (Okasha,
2006).
The Price equation expresses the associations between variables in terms of covariances

and contextual analysis expresses these associations in terms of regression coefficients.
However, generally for linear models, covariances and regression coefficients are linked
by equations such as b = Cov(x,y)

V ar(x) for the structural equation y = a+ bx. We will see in
Section “Measuring multilevel Selection” that for additive fitness functions the relation-
ship between the coefficients of the Price equation and contextual analysis with respect
to multilevel selection is given by a transformation of variables so that the multilevel
Price equation (1.8) may be seen as equivalent to the linear regression

W = c′1(Z − Z) + c′2Z (1.12)

with regression coefficients (cf. equation (1.11))

c′1 = c1 =
CovI(W,Z − Z)

VarI(Z − Z)
(1.13)

c′2 = c1 + c2 =
CovI(W,Z)

VarIZ
. (1.14)

For a detailed discussion of contextual analysis with transformed variables see Section
“Discussion”, particularly Table 1, in Heisler and Damuth (1987).

1.4.2 Genotypes and phenotypes

We maintain a conceptual distinction between phenotypes and phenotypic values. By
phenotype we refer to an observable characteristic of the type of organism, i.e., species,
that makes up the studied population such as the phenotype ‘neck length’ in a population
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1.4 Correlation

of giraffes. ‘Phenotype’ is synonymous with ‘character’ and ‘trait’. An individual can be
assigned a phenotypic value that represents the value of the phenotype as it is realised in
this individual. For a given species, we define the phenotype Z as the space of possible
phenotypic values z : Z which an individual of that species may possess. For a given
individual, we define the phenotypic value z as an instance of the phenotype of the species
Z. For the phenotype giraffe neck length, Z may be a subset of the real numbers that
contains the values that might be measured on a sampled giraffe. An instance of this
type, or a phenotypic value, is a real number that corresponds to the neck length (e.g.,
in metres) of a sampled giraffe.

Analogously, we make a distinction between genotypes and genotypic values. While
genotype refers to a class of genomes such as a genetic species (Baker and Bradley (2006);
page 648), genotypic value refers to an instance of the genotype, that is the genome of
an individual of a genetic species.

The types12 – such as genotype and phenotype in the above sense – we consider in
this thesis may all be imagined as discrete sets. This may seem like a limitation of the
models constructed here, as phenotypes are often conceptualised as real numbers R (or
vectors of real numbers) that admit a metric, differential operators, and other operations
that rely on topological properties of the real numbers. In this thesis, we make no use of
topological or other properties of phenotype spaces other than that they are not empty.
Moreover, since our models ultimately serve to describe experiments with actual objects,
measurements, and values – all, for the time being, in finite multiplicity – the phenotype
and genotype spaces in this thesis may be imagined as finite. For the same reasons, all
distributions – and distributions of distributions – are finitely supported.

We assume that the individual phenotype, more precisely the phenotypic value dis-
played by an individual, can be measured deterministically (without disturbing the sys-
tem in any way) and is given as a point in a space Z, that is an element of the set that
makes up the space Z. For example, the space could be a finite set that describes a
phenotypic property

Z = {wrinkly, smooth} ∼= { ,#},

or a set of real numbers

Z ⊂ R,

that stand for midpoints of bins designed to partition the space of possible outcomes of
measurements of adult neck lengths of giraffes.

12See Bartosz Milewski’s notes on functional programming for a useful way of thinking about types.
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1 Selection and the ladder of causation

In order to reflect the distinction between individual phenotype and population phe-
notype, we choose a different name for the population phenotype Z. Z and Z are not
assumed to be related in any specific way. However, in view of the discussion about
emergent traits (see Okasha (2006) and Lenton et al. (2021)) we do assume that a popu-
lation phenotype is determined by the collection of individual phenotypes the population
comprises, more precisely, by the distribution of individual phenotypes that make up the
population. With the space PZ that contains as points the distributions on Z, that is
formal sums such as 1

2 |# 〉+
1
2 | 〉 : PZ and 2

3 |# 〉+
1
3 | 〉 : PZ that represent populations

I and I ′, resp., in diagram (1.4) (see also Section “Populations and probability monads”
below), a population phenotype is a phenotype Z together with a map PZ → Z that
yields a population phenotype for a distribution of individual phenotypes, namely the
distribution that describes the composition of the population in terms of its constituent
individuals.

In applications of the Price equation, the population phenotype of interest is often
given by the average individual phenotype within the population, for instance when
genetic value is considered as character under selection (Okasha, 2006; Gardner, 2015).
Also for the expression of the Price equation in terms of covariances (1.2), the population
phenotype is assumed to be given as average individual phenotype. For the general
models constructed in this thesis, the functional form of the population phenotype PZ →
Z does not need to be specified and hence this assumption is not required.

1.5 Causality

While the processes referred to in our models are causal, the formalisation in terms
of covariances and regression coefficients in Section “Correlation” is correlational. This
formal representation does without assumptions beyond conditional independence, and
associated models can be represented as graphs (Pearl, 2009, Chapter 1). For example,
the fact that individual fitness is correlated with the phenotypic values of both the
individual and the population it is part of may be represented as the graph on the first
rung of the ladder of causation described in Pearl and Mackenzie (2018)(see Table 1.1).

The second rung of the ladder of causation is characterised by the admission of causal-
ity. Accepting causality means allowing hypotheses about causal relations between vari-
ables, that is cause-effect relations. Cause-effect relations allow formalisation as channels,
that is functions between spaces of probability distributions on sets of possible process
outcomes (Jacobs and Zanasi, 2018, Section 2). For instance, in the ket notation of Sec-
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1.5 Causality

tion “Individual selection and the Price equation”, the channel that computes the causal
effect of the observable zI : Z (phenotypic composition of population I, see function
(2.60) in Section “Units of selection” below) on the observable zI′ : Z (phenotypic com-
position of population I ′) in diagram (1.4) is the channel that realises, or implements,
the transformation 1

2 |# 〉+ 1
2 | 〉 7→

2
3 |# 〉+ 1

3 | 〉.

The directedness of causal relations is reflected in a refined representation of associa-
tions as directed graphs, so that the skeleton on the lowest rung in Table 1.1 is refined
to the directed acyclic graph (DAG) (1.17) with channels, or cause-effect relations, as
edges.13 The causal assumptions underlying the DAG (1.17) yield expectations with re-
gard to the system that are not implied by the correlations considered on the first rung
of the ladder of causation. In particular, accepting the graphs constructed in this way
as models of reality allows predicting the effect of interventions. Interventions and their
consequences for the causal structure on which they operate are formalised by the do op-
erator that is put in perspective in Section “Inference, intervention, and the do operator”
below (Pearl, Glymour, and Jewell, 2016, Chapter 2; Pearl, 2019).

1.5.1 Mediators and conditional independence

Given a segment between two nodes A and B

B

A
, (1.15)

13For instance, the wetness of the ground and rainfall may be correlated. However, this correlation alone
does not give licence to causal statements. The latter require causal assumptions: rainfall causes the
ground to be wet, but a wet ground doesn’t cause rainfall.
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1 Selection and the ladder of causation

a mediator of this association, that is a nodeM along the segment between the two nodes

B

M

A
, (1.16)

specifies the dependence of B on A in the sense that the two variables become condi-
tionally independent given M (see Pearl (1988), Section 3.1.3, and Fong (2013), Section
3.1). In other words, A has no effect on B other than the effect mediated by M , or A
has no direct effect on B, or, given M , knowledge of A does not add to the knowledge of
B. Diagram (1.16) demonstrates the conditional independence of A and B given M : if
M is removed, the effect of A on B is void, and the two observables are on disjoint and
causally independent connected components of the graph.

In this thesis, the central example for a causal structure is the dependence of individual
fitness on individual and population phenotype Z and Z

W

Z Z
. (1.17)

In order to reflect the two modes of reproduction and, more appropriately for populations,
persistence on the individual and population level in the formal model (Doolittle and
Booth, 2017; Doolittle and Inkpen, 2018; Papale, 2020), we introduce mediators WI and
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1.5 Causality

WP that represent reproduction on the individual and population level, resp.

W

Z Z

WI WP

. (1.18)

In light of the discussion on mediators above, this means that if, for instance, differences
with respect to population reproduction WP between individuals are somehow nullified,
differences in Z between individuals do not entail differences in overall fitnessW between
individuals.

1.5.2 Inference, intervention, and the do operator

The directions of the edges in the diagrams above require commitment to a causal stance
because they are entailed by causal assumptions regarding the effects of intervening on
variables in the system. Consider again the empirical example of Section “Contextual
analysis and the Price approach”, where water striders sojourn in patches on the water
surface and thus form populations within a metapopulation that spans across the habitat
(Eldakar, Wilson, et al., 2010). With the sex ratio on a patch as population phenotype Z,
the causal structure in diagram (1.17) encodes the hypothesis that the sex ratio of a patch
has an effect on overall individual fitness of its inhabitants but that no other property
of the population as a whole has an effect on individual fitness (individual properties
proper are subsumed in Z and their effect travels along the channel represented by the
left upward pointing arrow in diagram (1.17)). This assumption allows to infer that when
sex ratio is fixed across a collection of populations then other properties of a specific
individual’s ambient population have no effect on its fitness.

The direction of the right arrow in diagram (1.17) corresponds to the assumption that
controlling the value of Z implies controlling the value of W – to the extent of the
influence of Z on determining W in concert with Z in the diagram. This is in contrast
with a hypothetical fourth variable Z0 that holds the population phenotype at some
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1 Selection and the ladder of causation

earlier point in time. Since Z0 determines Z and not the other way around

W

Z Z

Z0 (1.19)

intervening on Z has no effect on Z0.
The separation of the two legs in DAG (1.17) (or (1.19)) corresponds to the assump-

tion of separate causal pathways, so that intervening on one of them leaves the other
one unaffected (see Pearl (2009), Section 1.3.1, and the principle of autonomy described
therein). An intervention in this context means that a variable in the DAG is set to
a specific value, regardless of its parents’ values. Practically, this may correspond to
preparing an experiment with certain parameters according to the intended intervention.
The sex ratios of populations of water striders, for example, may be adjusted by control-
ling the flow of individuals between patches (Eldakar, Dlugos, et al., 2009). Formally,
interventions are represented by the do operator and may rely on mathematical func-
tions associated to the edges of the DAG (Pearl, 2019). When representability may be
assumed so that the DAG can be refined to a string diagram, intuitive operations on
string diagrams correspond to inferential operations such as interventions and counter-
factural reasoning (Jacobs, Kissinger, and Zanasi, 2019). The representation of causal
structures in terms of string diagrams is the focus of Chapter “A functional representation
of multilevel selection” below.

1.6 Representability

1.6.1 Structural Causal Models (SCM)

Above in Section “Correlation”, the parameters of the regression were seen to encode the
association between variables in a causal structure. In this thesis, we interpret the linear
regression associated with contextual analysis (1.11) and that associated with the Price
approach (1.12) as structural causal models (SCM) of the process select associated with
an episode of multilevel selection in a metapopulation.
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1.6 Representability

In addition to the variables that describe the system, an SCM includes a set of functions
“that determine or simulate how values are assigned to each variable” (Pearl, 2018, page
4), for CA and PA these are linear regression equations. The encoding of the proposed
causal relation in terms of numeric functions, such as linear equations with coefficients
in the real numbers R, has the benefit that the relations can be varied as the functions
are varied along their parametrisation, that is the regression coefficients. Conversely,
parameters of the SCM are estimated from data.

The focus of this thesis lies on abstract properties of the descriptions of biological
systems discussed in this thesis. Of special interest in this respect is the dependency
structure implied by the functional representation. In the following sections, this depen-
dency structure is discussed in terms of monoidal categories and string diagrams. The
abstract representation of CA and PA in Section “Models of multilevel selection” rests
on this representation.

1.6.2 Category theory

In the previous section we discussed the representation of functional relations in terms
of SCM such as linear regressions. Category theory gives an abstract view on the spaces
and functions that implement a given process. Since this view does not rely on numeri-
cal specification, string diagrams can be used to represent the corresponding functional
dependencies abstractly. String diagrams allow intuitive, yet rigorous manipulation in a
similar spirit to the do operator and related graphical operations on Bayesian networks,
or directed acyclic graphs (DAG) (see Section “Inference, intervention, and the do oper-
ator”), that correspond to valid mathematical operations on the underlying spaces and
functions.

A fundamental idea realised in the mathematical structure ‘category’ is that of a col-
lection of spaces with functions, or morphisms, between them. The following definition is
copied from Riehl (2017) word-for-word for convenience. It not only defines the structure
‘category’ but also introduces some fundamental concepts.

A category consists of

• a collection of objects X,Y, Z, . . .

• a collection of morphisms f, g, h, . . .

so that

• Each morphism has specified domain and codomain objects; the notation
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f : X → Y signifies that f is a morphism with domain X and codomain

Y .

• Each object has a designated identity morphism 1X : X → X.

• For any pair of morphisms f, g with the codomain of f equal to the domain

of g, there exists a specified composite morphism gf whose domain is

equal to the domain of f and whose codomain is equal to the codomain of

g, i.e.,:

f : X → Y, g : Y → Z  gf : X → Z.

This data is subject to the following two axioms:

• For any f : X → Y , the composites 1Y f and f1X are both equal to f .

• For any composable triple of morphisms f, g, h, the composites h(gf) and

(hg)f are equal and henceforth denoted by hgf .

f : X → Y, g : Y → Z, h : Z →W  hgf : X →W.

That is, the composition law is associative and unital with the identity morphisms

serving as two-sided identities.

Riehl (2017): Category Theory in Context

While this definition is very abstract and fundamental, it captures intuitions about
functions and their domains (and codomains) that seem to be too simple to require
formal definition when thinking of a typical example such as the category of finite sets
FinSet.14 Nevertheless, category theory has proven to be a useful tool for reasoning about
mathematical structures and models (Riehl, 2017). Applications of category theory to
areas outside of mathematics have received increased interest in recent years (Fong and
Spivak, 2019). In particular, monoidal categories (see next section) have been successfully
applied to problems in computer science, engineering, machine learning, and the wider
real world (Baez and Stay, 2009).

14The category of finite sets FinSet has finite sets as objects and usual functions between finite sets as
morphisms. The axioms to be satisfied by FinSet to qualify as category in the sense of the definition
above are quickly verified: each finite set has an identity function that may be safely ignored, and
three functions with appropriate domains and codomains can be composed associatively.
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1.6 Representability

1.6.3 Monoidal categories

Bayesian networks (Fong, 2013, Chapter 3) encode cause-and-effect relations between
variables as edges in directed acyclic graphs (DAG) so that parent nodes have causal
effects on their offspring nodes. While this representation highlights dependencies (more
precisely, conditional independencies) between variables, it ignores subtler aspects of
functional dependencies that are consequences of how the independent variables are
composed to yield the dependent variables (cf. Section “Mediators and conditional inde-
pendence”). Symmetric monoidal categories with copy and discard functions (see below
in this section), called Markov categories due to the similarity of their morphisms with
Markov kernels on measurable spaces (Fritz, 2019) or CD categories (Jacobs, Kissinger,
and Zanasi, 2019), allow drawing a more refined picture of the processes to be modelled.
In particular, processes with several input variables may be composed of several processes
that occur concurrently. String diagrams, a graphical formalism for functional relations
in monoidal categories, extend Bayesian networks by representing this refined view com-
pletely and rigorously (see Jacobs, Kissinger, and Zanasi (2019), Section 3 “Bayesian
Networks as String Diagrams”).
In string diagrams, causal relations, or channels, are represented explicitly as functions

(Jacobs and Zanasi, 2018, Chapter 3: “Directed graphical models”) such as wZ⊗Z :

Z ⊗ Z →W in Table 1.1. The function wZ⊗Z refines the Bayesian network

W

Z Z

to the string diagram

wZ⊗Z

Z Z

W

.

In this thesis we use basic properties of monoidal categories, i.e., categories in which
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1 Selection and the ladder of causation

spaces can be paired to give product spaces (see Baez and Stay (2009) for an introduction
to monoidal categories that is both rigorous and intuitive). More precisely, the spaces, or
objects, of a monoidal category C with monoidal product ⊗ : C×C→ C and unit object
I : C behave like a monoid. This means that spaces can be multiplied (“composed”)
associatively

(A⊗B)⊗ C ∼= A⊗ (B ⊗ C) for all A,B,C : C

and that multiplication with the unit (a space that is, in a sense, trivial; see equation
(1.25) below) leaves objects unchanged

I ⊗A ∼= A⊗ I ∼= A for all A : C.

Here, the symbol ∼= means that the spaces on its left and right are (naturally) isomorphic
(see Fong (2013) and Fong and Spivak (2019) for rigorous definitions). Moreover, a
monoidal category is symmetric if the product of spaces is commutative

A⊗B ∼= B ⊗A for all A,B : C.

Monoidal categories moreover satisfy certain axioms with respect to the interplay of
morphisms and products. These follow from the rigorous definition in terms of categorical
notions (see Baez and Stay (2009)) and are “automatic” in the graphical representation in
terms of string diagrams. In a simplifying picture, categories may be thought of as vertices
(objects) with arrows between them (morphisms) so that arrows can be composed in
sequence when the codomain of one coincides with the domain of the other. In monoidal
categories, arrows can moreover be composed parallely: f : A→ C and g : B → D may
be composed to f ⊗ g : A⊗B → C ⊗D so that

C D

f g =

A B

C ⊗D

A⊗B.

f ⊗ g

(1.20)

The symmetric monoidal categories of interest for this thesis are moreover equipped
with copy and discard morphisms (Jacobs and Zanasi, 2018)

copyA : A→ A⊗A (1.21)

discardA : A→ I (1.22)
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1.6 Representability

for A : C and may be represented as (diagrams below copied from Jacobs, Kissinger, and
Zanasi (2019)15)

In this representation, algebraic properties of the functions find intuitive expression

Moreover, the functions satisfy various properties with respect to the symmetric monoidal
structure of C described above.

The categories of interest for this thesis are based on the category of measurable
spaces and stochastic maps Stoch (see Fong (2013), Chapter 2). The objects, or spaces,
we consider contain the states of the system as points (Jacobs and Zanasi, 2018; Section
2). Since our systems are (meta)populations of individuals, states are (distributions of)
distributions of individuals. For instance, given a population of full and empty circles
such as I in diagram (1.4) we can define a random variable with coordinate space Z =

{ ,#} that consists of the outcomes of sampling one individual from population I. The
population I itself may be seen as a distribution on Z, namely the distribution according
to which the random variable given by sampling an individual from I is distributed. We
may represent this distribution as formal sum 1

2 | 〉+ 1
2 |# 〉 : PZ where PZ denotes the

space of distributions, or states, on the set Z (see Jacobs and Zanasi (2018) where PZ is
denoted by D(Z) and Section “Populations and probability monads” where the notation
is explained).

The monoidal product of these spaces of distributions on sets are spaces of distributions
on the corresponding cartesian product, so that, for example, for A = {a1, a2} and
B = {b1, b2}, the space P (A⊗B) contains distributions on the set

A×B = {(a1, b1), (a1, b2), (a2, b1), (a2, b2)}. (1.23)

In other words, when the outcomes of two random variables are considered together,
that is as a product A ⊗ B, this composition of observations yields outcomes that are

15© Bart Jacobs and Fabio Zanasi; licensed under Creative Commons License CC-BY.
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1 Selection and the ladder of causation

combinations of outcomes in A and B, that is pairs of outcomes as in (1.23). In ket
notation, corresponding product states may be written as∑

i,j

cij |ai, bj〉 : P (A⊗B). (1.24)

The unit object of these categories of spaces of outcomes of probabilistic processes is
the set with one element I = {∗}, the outcome that is always entailed and that does not
alter the outcome when observed in combination with other observables16

A× I = {(a1, ∗), (a2, ∗)} ∼= A ∼= I ×A = {(∗, a1), (∗, a2)} : Set. (1.25)

Symmetric monoidal categories allow representing not only processes, such as experi-
ments where input is transformed to output, but also the inferential formalism to reason
about such processes in terms of Bayesian or frequentist inference, see Jacobs (2019) and
Schmid, Selby, and Spekkens (2020).

16Set denotes the category of sets with sets as objects and maps between sets as morphisms.
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2 A functional representation of
multilevel selection

2.1 Multilevel selection

The concept of selection in Price (1995) delineates a process in which properties (character
under selection, or phenotype) of an entity (unit under selection) in a population of similar
entities (arena of selection) determine the multiplicity of reproduction of that entity
in an offspring population (target of selection, or the entity’s fitness). For individual
selection, this entity is an individual in a population such that the individual’s trait
value determines its number of offspring. This dependence is formalised in the selection
component (1.1) of the Price equation (1.2). The transmission component of (1.2) is
assumed to be void on the individual level in this thesis.

2.1.1 Population selection

As argued by Hull (1980), if we accept both the viewpoint that genes are units of selection
(Dawkins) and the viewpoint that organisms (populations of genes) are units of selection,
then the question whether populations of individuals can be selected is settled: they can
because organisms are selected and organisms are populations of individual genes. A
question that remains is whether a specific population of individuals of some type may
be regarded as individual unit of selection itself (Clarke, 2016). This question is discussed
in more detail in Section “Interactors and replicators” below.

Our mathematical implementation of population selection as analogue of individual
selection finds its biological justification in the viewpoint that “the theory of natural
selection embodies a set of principles that apply more generally than to selection solely
among organisms” (Damuth and Heisler, 1988; page 408). Accordingly, for population
selection we define the unit of selection as the population (of individuals) within an arena
of selection given by a metapopulation of populations (Gardner, 2020). A metapopulation
of populations is a collection of multiple populations that – like individuals within a pop-
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2 A functional representation of multilevel selection

ulation in non-social evolution – do not interact causally (see Uyenoyama and Feldman
(1980), page 395; Wade (2016)). The character under selection is given by a popula-
tion phenotype Z that is a function of the individuals within the population, usually a
function of the phenotypic composition of the population (this and related functions are
discussed in Section “A functional representation of multilevel selection” below). As for
individual selection with law (1.3), we assume that population selection is stable in its
functional form (Wade and Kalisz, 1990) so that we may assume a law

interactZ : Z → N (2.1)

that determines the number of offspring to be expected for a population according to its
phenotypic character in Z. Representing reproduction of populations in terms of whole
numbers of offspring populations may seem strange – unless reproduction is realised, for
instance, by division or budding of populations as in planaria (Fields and Levin, 2018). In
particular, adopting a view of fitness as determining persistence rather than reproduction
(Borrelli et al., 2015; Bapteste and Papale, 2020; Lenton et al., 2021) requires the ability
to represent non-integral fitness. Nevertheless, at present we regard population fitness as
a map from the population phenotype to the whole numbers because it allows us to draw
diagrams such as diagram (1.5). We will later consider fitness with values in nonnegative
real numbers so that interactZ : Z → R≥0.
When we discussed individual selection in Section “Individual selection and the Price

equation”, the assumption of perfect heredity on the individual level allowed us to realise
offspring as perfect copy of its parent so that

(2.2)

and

(2.3)

represent the selection process from the individuals’ perspective as the population trans-
forms from the parent population to the offspring population in diagram (1.4).
However, the offspring of individual i : I in the Price equation (1.2) includes all individ-

uals in the offspring population J that have i as (single) parent. Selection as in equation
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2.1 Multilevel selection

(1.1) determines the number of offspring of i in J but not the phenotypic (or genotypic)
values of the offspring individuals. The change in phenotypic value that occurs between
a parent and each of its offspring is conceptually different from selection and is captured
(as average) by the transmission term of equation (1.2).1

Unlike for individuals, we do not assume perfect heredity for populations. Selection
diagrams similar to diagrams (2.2) and (2.3) but in which the circles stand for populations
rather than for individuals should represent offspring without specifying their phenotypic
value as this value is not determined by selection. Accordingly, an example of a diagram
of population selection analogous to diagram (1.4) for individual selection is

A A′

(2.4)

where absolute population fitness of a population composed of two empty circles is 1 and
that of a population composed of two full circles is 3.

2.1.2 String diagrams

In Section “Monoidal categories” we introduced string diagrams as graphical represen-
tation of morphisms of monoidal categories. For the CD categories2 featuring in this
thesis, string diagrams describe transformations of variables. These transformations can

1The Price equation decomposes total change in phenotypic composition from a parent population to
its offspring population into a component that represents a change in quantity of the entities involved
(selection) and a component that represents a change in quality of the entities involved (transmission).
The equation thereby defines selection (see Section “Individual selection and the Price equation”).
The transmission component may represent various mechanisms such as mutation, recombination,
and phenotypic plasticity, all of which we assume to be absent on the individual level. In population
genetic models with more sophisticated modes of replication, this second component of the Price
equation can often be ignored when transmission bias is not absent but undirected.

2CD categories are symmetric monoidal categories with copy and discard Jacobs, Kissinger, and Zanasi
(2019).
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2 A functional representation of multilevel selection

be thought of as processes that connect their input with their output by transforming
the former into the latter. The representation in terms of string diagrams is useful be-
cause dependencies can be sorted out graphically in these diagrams. In causal models, a
dependency represents causal influence of a variable on another variable.

In this section, we explain a graphical formalism that expresses the categorical struc-
tures introduced above in terms of string diagrams. String diagrams allow rigorous dia-
grammatic reasoning about models that are formulated in terms of symmetric monoidal
categories as described in Section “Monoidal categories”. The rules and assumptions as-
sociated with the structure of the category ensure that the behaviour of mathematical
models formulated in terms of objects and morphisms of that category corresponds to
the behaviour one would intuitively associate with strings on a two-dimensional plane.
The description of string diagrams in this section does not cover mathematical details.
A rigorous introduction to almost all of the mathematical concepts used in this thesis
and to many more is Jacobs (2019).

The formalism described here is associated with computational structures that allow
providing process descriptions such as

develop

Y E

Z

, (2.5)

where genes Y and environment E of a developing organism jointly determine the pheno-
typic outcome, with a rigorous mathematical context that allows constructing concrete
statistical models (Patterson, 2020; Schmid, Selby, and Spekkens, 2020). The string
diagrams used in this thesis represent experimental procedures or other well-defined
processes. Strings, more precisely, string segments, represent observables that may be
measured deterministically and without changing the outcome of other measurements.3

3We will see below in Section “Populations and probability monads” how non-deterministic observables,
that is random variables, may be represented in string diagrams as tubes that comprise the samples.
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2.1 Multilevel selection

The diagram

Z (2.6)

shows an observable with state space Z. As an example, in the following we may imagine
Z to be space of measurements of a phenotype such as giraffe neck length in metres, or
a phenotype with two values such as Z = { ,#} : Set.

During the experiment, an observable may undergo transformations, for example when
the system it refers to is subject to a causal process that changes its configuration. We
represent a transformation as function on the state space Z of the variable that takes an
instance, i.e., a state value, and returns a transformed instance, i.e., the new state of the
observable. Diagrammatically,

Z

t

Z (2.7)

where t : Z → Z is a function associated with the transformation or process (that we
picture as deterministic in this section). In diagram (2.7), t could represent development
from infant to adult giraffe such that the observable represented by the string below t is
infant neck length while the observable represented by the string above t is adult neck
length of the same individual. Both observables have outcomes in the same space Z so
that processes such as development may be conceptualised as transformations Z → Z in
this formalism.

Functions in string diagrams may also refer to transformations between types (or ob-
servables) that rather than describing how a variable changes during a process (‘over
time’ as in diagram (2.7)) describe how variables connected through a process are re-
lated. A function develop : Y → Z gives a description of instances of type Y in terms of
type Z. It does so by providing the means, or algorithm4, to convert any instance of Y
into the corresponding instance in Z. In a model of genetic evolution with development
in a constant environment, develop may deterministically assign a phenotype in Z to any

4This algorithm is the formal mirror image of the actual biological process the function refers to.
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2 A functional representation of multilevel selection

genotype in Y (a genotype-phenotype map between a genotype space and a phenotype
space as in diagram (2.69), see Stadler et al. (2001)).

The string diagrams in this thesis do not capture time but only the sequence of pro-
cesses along strands of the diagram. This sequence proceeds along each strand of the
diagram from bottom to top. The process represented in

Z

Y

X

g

f

(2.8)

has an instance of X as input, an instance of Y as intermediate, and an instance of Z as
output, each depending on its predecessor with X assumed as given. We consider only
connected string diagrams in which all strands are connected to at least one other strand
through a process.

Two strands of a diagram may be connected through functions that depend on both.
In

X Y

d

Z

, (2.9)

the output in Z depends on both strands X and Y . Similarly, strands may be joined
because they originate from the same process

X Y

c

Z

(2.10)

so that both depend on the same input.
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2.1 Multilevel selection

A process as in diagram (2.9) synchronises strands in the sense that while

X Y

f1 f2

U V

(2.11)

does not specify the order in which f1 : U → X and f2 : V → Y occur, it is implied in

X Y

f1 f2

U V

d

Z

(2.12)

that both conclude before the process d begins. Likewise, a process as in diagram (2.10)
anchors strands in the sense that in

X Y

g1 g2

U V

c

Z

(2.13)

both processes g1 : X → U and g2 : Y → V begin after c has concluded.
A string segment between boxes represents an observable that is available for mea-

surement after the process that produced it has concluded and before the process that
transforms it has started. Output states of processes are available along string segments
to serve as input states for other processes. Using variables in multiple processes requires
copying, implemented for all X : C by a copy function copyX : X → X ⊗X (see discus-
sion following its definition in (1.21)). Variables must be available in multiple instances
in a string diagram when the corresponding physical quantities are involved in multiple
causal processes, and copying keeps track of dependencies in the diagram: copies depend
on all variables and functions their ‘parents’ depend on, and ‘siblings’, that is instances
originating from the same copy process, become independent after ‘birth’ in the sense
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2 A functional representation of multilevel selection

that transformations of one sibling leave others unchanged. This property reflects the
principle of autonomy in Pearl (2009) that rests on causal assumptions about the system
(cf. Section “Inference, intervention, and the do operator”):

The ability of causal networks to predict the effects of actions of course requires

a stronger set of assumptions in the construction of those networks, assump-

tions that rest on causal (not merely associational) knowledge and that ensure

the system would respond to interventions in accordance with the principle of

autonomy. These assumptions are encapsulated in the [. . . ] definition of causal

Bayesian networks.

Pearl (2009): Causality: Models, Reasoning, and Inference

Diagram (2.8) specifies the dependencies of three observables over X,Y, and Z, each
represented as string segment annotated with the name of the space in which the observ-
able takes values.5 While the value of Z is determined by Y , the value of Y is determined
by X. A diagram like (2.8) describes the general process of gf (gf : X → Z denotes
the composite function as in Section “Category theory”) transforming any input from X

to output in Z. An instance of X to which gf is applied is not specified. In a concrete
experiment this process is instantiated with a value, or instance, of X (cf. diagram (2.16)
below).

Since the observables considered in this thesis are classical, we can measure any string
segment in the diagram to determine the value of the corresponding observable. In order
to specify such measurements of an observable obtained during an experiment, we make
use of an operation described in Schmid, Selby, and Spekkens (2020). This operation
“allows us to directly gain knowledge from a classical causal system” (Schmid, Selby, and
Spekkens (2020), page 15) and corresponds to deterministic measurement of a classical
observable. In a diagram, this operation on a string segment is depicted like this:

Z

Z

Z . (2.14)

5We may refer to these simply as ‘observables X,Y and Z’ when the diagram allows this. Diagram
(2.7), for example, does not, as it shows two observables over Z, one that may be observed before t
and one that may be observed after t.
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2.1 Multilevel selection

The outcome of the measurement operation depends on the segment in the diagram
at which it is performed. In the diagram

Z

t

Z

Z

Z

(2.15)

the instance obtained with a measurement before the transformation t occurs is generally
different from the value measured after the transformation. However, if t is deterministic,
the input to t determines the upper measurement in diagram (2.15).
‘Open’ strings like those entering the diagrams above from the bottom can be ‘grounded’

by attaching an instance like this

z (2.16)

such that measurement of a variable that has been instantiated in this manner as in

z

z

(2.17)

yields the instance itself. For a deterministic map h : Z → X we then also have

z

h(z) : X

h

. (2.18)
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2 A functional representation of multilevel selection

Measuring an observable over a product X ⊗ Y models an experiment where two
variables/factors are observed in combination (‘simultaneously’, cf. Section “Monoidal
categories”). This is defined by

=

X Y

X

Y

X Y

X ⊗ Y (2.19)

(equation (91) in Schmid, Selby, and Spekkens (2020)) and thus amounts to picking
string segments (that is observables) that are measured together.

2.1.3 Populations and probability monads

The Price equation (1.2) decomposes the change in mean phenotype from a parent gen-
eration to an offspring generation. In this thesis, we understand this succession of gen-
erations as transformations of populations that follows laws such as (1.3) and (2.1) that
transform an input population – the parent generation – to an output population – the
offspring population. In order to refer to this transformation as function, we need to de-
fine spaces of which populations are points, so that the transformation that corresponds
to the selective regime encoded in the fitness laws may be computed for any population.
The transformation traced by the Price equation (1.2) then becomes an instance of this
function with the given parent population as input.
In Section “Monoidal categories” we introduced the state space PZ of distributions

on the set Z : Set (see Jacobs and Zanasi (2018) where PZ is denoted by D(Z)). The
spaces Z and PZ are related in a canonical way that holds for any set of outcomes
Z : Set. The relation constitutes a functor of categories P : C → C called probability
monad that associates to any space Z the space of distributions on that space PZ
and to any mapping of spaces g : Y → Z in the domain of the monad P a mapping
Pg : PY → PZ in its codomain (see Definition 1.3.1. in Riehl (2017) for a rigorous
definition of functors). The notion summarises the properties required for a mapping
between categories to be consistent with the morphisms in the domain and codomain of
the functor. Given a function of sets g : Y → Z, for example, the probability monad
induces a map of distributions on Y to distributions on Z that substitutes elements of
Y by their image elements in Z to yield a formal expression in PZ. With Y = { ,#}
and Z = {wrinkly, smooth}, the map

g : Y → Z with g = smooth and g# = wrinkly, (2.20)
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2.1 Multilevel selection

for instance, gives the transformation

2

3
| 〉+

1

3
|# 〉 7→ 2

3
|smooth〉+

1

3
|wrinkly〉. (2.21)

Following an idea of Virgo (2020), we represent the monad explicitly in string diagrams.
To this end, we draw monad variables in PZ, that is variables on the set of distributions
over Z, as tubes that encompass a string

PZ. (2.22)

Associated with the functor P are maps ηZ : Z → PZ and µZ : PPZ → PZ that make
P a monad in the sense of Fritz and Perrone (2020), Section 16 (see Fritz and Perrone
(2020), Section 6.1 “The idea of probability monads”, for more details on probability
monads). The functions ηZ and µZ formalise general operations on formal expressions.
η is sometimes called the unit of the monad and includes Z : Set itself in the space of
formal expressions on Z by sending elements of Z to formal sums with one term, so that
in ket notation

ηZ : Z → PZ, z 7→ |z〉. (2.23)

In string diagrams, the monad unit may be drawn as

Z

PZ

(2.24)

The second monad function,

µZ : PPZ → PZ, (2.25)

6The monad T : C → C considered in Fritz and Perrone (2020) is more general than the probability
monad considered here. Using the ket notation for formal sums, PZ is the space of formal expressions
of elements of Z with coefficients in [0, 1] ⊂ R that sum to 1. All formal expressions considered in
this thesis are finite.
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2 A functional representation of multilevel selection

realises reducing sums-of-sums to sums, for instance7,

µZ

(
1

2

(
2

3
| 〉+

1

3
|# 〉

)
+

1

2

(
1

3
| 〉+

2

3
|# 〉

))
=

1

2
| 〉+

1

2
|# 〉 : PZ. (2.26)

This operation may also be drawn as string diagram:

PPZ

PZ

(2.27)

The operation µZ : PPZ → PZ adds and multiplies coefficients with values in [0, 1] ⊂ R
and does not involve algebraic operations on elements of Z itself. For metapopulations,
µ amounts to joining the populations in the metapopulation in PPZ to one population
in PZ.
Taken together, the two monad functions are consistent in the sense that

PZ
ηPZ−−→ PPZ

µZ−−→ PZ = PZ
1PZ−−→ PZ, (2.28)

where 1PZ : PZ → PZ denotes the identity on PZ, or, as string diagram,

PPZ

PZ

PZ

=

PZ (2.29)

and
PZ

PηZ−−−→ PPZ
µZ−−→ PZ = PZ

1PZ−−→ PZ (2.30)
7Unlike the example equation (1) in Fritz and Perrone (2020), our example refers to the probability
monad that contains distributions, that is normalised formal sums (the coefficients sum to 1). The
reduction µ : PPZ → PZ preserves normalisation.
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2.1 Multilevel selection

with associated string diagram

PPZ

PZ

=

PZPZ (2.31)

(see equations (2) in Fritz and Perrone (2020)). For the first equality (2.28) note that
PZ itself is a space in C and the functor P can be applied to it. The associated map
ηPZ : PZ → PPZ sends a distribution ω = p | 〉 + p# |# 〉 : PZ to the distribution of
distributions |ω〉 = |p | 〉+ p# |# 〉〉 : PPZ.

Elements of PZ are distributions and as such express uncertainty via a sampling map

sample : PZ → Z (2.32)

that formalises a sampling operation, such as drawing a random sample from a population
of individuals, or algorithmically sampling from a distribution that is given in terms of
mathematical formulae. Nevertheless, variables with values in PZ – like those with
values in Z obtained by measuring the phenotype of an individual – are considered
deterministic. In particular, given a population of individual phenotypes I as in diagram
(1.4), we may consider the variable with values in PZ that represents the population I.
It is given by sorting the finitely many individuals according to their phenotypic value
and constructing a corresponding normalised formal sum on those phenotypic values in
Z that are represented in I. The population I in diagram (1.4), for instance, is assigned
the distribution 2

4 |# 〉 + 2
4 | 〉 = 1

2 |# 〉 + 1
2 | 〉 : PZ. Moreover, given a population I,

there is the random variable that represents sampling one individual from I. If we denote
by ωI : PZ the distribution that corresponds to the population of phenotypes I, this
random variable is distributed according to ωI .

The aspect of determinism is manifest also in the graphical formalism. We can rep-
resent the variable given by determining the phenotypic distribution of a population in
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2 A functional representation of multilevel selection

terms of diagrams and the measurement operation introduced in Section “String dia-
grams” as follows

PZ

PZ

(2.33)

However, the diagram also comprises the random inner variable given by sampling one
individual from the population and determining its phenotype. It is given by the string
within the tube in (2.33) and can be obtained in two equivalent ways:

1. by sampling one individual from the population, or

2. by sampling from the distribution given by the variable that holds the phenotypic
distribution of the population.

In the diagrammatic representation, the tube that holds the deterministic variable indi-
cates that the string within represents a random variable. The two operationalisations
of sample : PZ → P take the equivalent forms

Z

PZ

Z

PZ

= sampPZ (2.34)

When discussing diagram (1.5) we noted that the Price equation is sometimes referred
to as ‘dynamically insufficient’ even though the Price equation can in principle describe
the dynamics with means of higher moments of the distribution (Gardner, West, and
Barton, 2007). This is because the instantiation (1.2) for the phenotypic distribution
does indeed not map the metapopulation structure. In particular, while the organisation
of the metapopulation A : PPZ in (1.5) is required for computing (1.2), the popula-
tions in the offspring metapopulation (J1, . . . , J6 : PZ in (1.5)) are not explicit in (1.2).
This mirrors the fact that (1.2) refers to a multilevel selection [1] model in which pop-
ulations replicate only due to the replication of the individuals within (or genes within
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2.1 Multilevel selection

organisms). The populations themselves do not replicate, and there is no notion of di-
rect populational heredity. Replication on the population level is included in models of
multilevel selection [2]. For this reason, we understand the multilevel selection process
selectMLS described by the multilevel Price equation and contextual analysis as trans-
formation from metapopulations to populations

PPZ

PZ

selectMLS

(2.35)

2.1.4 Selection and absolute fitness

In order to implement the selection process using the absolute fitness function interact :

Z → R≥0, we express the result of individual interactions with the environment giving
rise to absolute fitness in terms of the multiset monad (Jacobs, 2019, Section 1.4). The
multiset monad over the set of phenotypic values Z is the unnormalised version of the
probability monad considered in the previous section and denoted by UZ. Elements of
UZ are finite sums of elements of Z with nonnegative real coefficients but without the
requirement that the coefficients sum to 1. The elements of UZ represent populations of
Z values, given in absolute terms. The monad functions

ηZ : Z → UZ and µZ : UUZ → UZ (2.36)

are defined analogous to those of the probability monad ((2.23) and (2.25)) with ηZ

sending an element of Z to a sum with one term and µZ sending a sum of sums to a
simple sum.

The multiset monad is linked to the probability monad by inclusion and normalisation.
A distribution in PZ is automatically a sum of elements of Z with nonnegative real
coefficients, that is an element of UZ. In string diagrams, we denote inclusion UZ → PZ
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by a dashed horizontal line as follows

PZ

UZ

(2.37)

Conversely, given a (nonempty) element of UZ, normalisation yields an element of PZ:

norm : UZ → PZ,
∑
j

dj |Zj〉 7→
1∑
k dk

∑
j

dj |Zj〉. (2.38)

With these definitions, the selection process select : PZ → PZ is given by unnormalised
selection

selectUZ : PZ → UZ,
∑
j

dj |Zj〉 7→
∑
j

dj interact(Zj)|Zj〉

followed by normalisation norm : UZ → PZ so that

selectPZ : PZ
selectUZ−−−−−→ UZ

norm−−−→ PZ. (2.39)

2.1.5 Soft selection and hard selection

The crucial difference between the Price approach to multilevel selection and contex-
tual analysis (see Section “The multilevel Price equation and contextual analysis”) lies
in the distinction between hard and soft selection (Wade, 1985; Goodnight, Schwartz,
and Stevens, 1992). In Figure 2.1, individual fitness within a metapopulation of three
populations of individuals with given phenotype is considered in three different selection
regimes “Group selection”8, “Soft selection”, and “Hard selection”. The dotted lines in the
graphs show population fitness (that is average individual fitness within the population
(multilevel selection [1], see Section “Interactors and replicators” below)) as it varies with
average population phenotype. The three short lines in each graph show relative fitness
within the respective population dependent on individual phenotype. While “Group Se-
lection” refers to population selection, “Soft Selection” and “Hard Selection” are models
of individual selection that differ in the choice of arena of selection.

Population selection When only population selection acts but no individual selection
(panel “Group selection”), fitness within the populations is homogeneous, in other

8‘Group selection’ is a different name for ‘population selection’ (see Section “Population selection”).
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2.1 Multilevel selection

Figure 2.1: Fig. 2 from Goodnight, Schwartz, and Stevens (1992).

words fitness does not depend on individual phenotype directly (but only indirectly
through its contribution to the population phenotype).

Soft selection When only soft selection acts on the metapopulation, individual fitness
is independent of population phenotype. Within the populations, however, indi-
vidual selection acts with respect to the individual phenotype, that is the arena of
selection of each individual is its population. In particular, individual fitness of an
individual depends on the distribution of phenotypes that makes up the population
it is part of because population regulation occurs locally within the population so
that populations sizes remain constant under soft selection (Wade, 1985).

Hard selection Hard selection refers to individual selection across the metapopulation
that acts without regard to populations. The arena of selection for hard selection is
the metapopulation. Despite the absence of population selection the dotted line for
population fitness goes up due to cross-level by-products, see Section “Cross-level
by-products”.

We can formalise these selective scenarios using the ket notation and probability mon-
ads as described in Section “Populations and probability monads”. To this end, we
represent populations such as I in diagram (1.4) as elements of PZ by assigning to a
population the normalised distribution that characterises its phenotypic composition.
Individual selection then becomes a function

selectPZ : PZ → PZ (2.40)
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that sends a parent population to its offspring population. In the generational progression
in diagram (1.4), for example,

selectPZωI = ωI′ : PZ, (2.41)

where ωI , ωI′ : PZ are the distributions that represent the populations I and I ′, resp.
Using the function interact : Z → R≥0 that assigns to a phenotypic value the expected
absolute fitness of its carrier, that is the number of offspring, select decomposes into a
function

selectPZ = PZ
·interact−−−−−→ UZ

norm−−−→ PZ, (2.42)∑
j

dj |Zj〉 7→
∑
j

dj interact(Zj)|Zj〉 7→
1∑

k dkinteract(Zk)

∑
j

dj interact(Zj)|Zj〉.

(2.43)

Analogously, we may represent metapopulations as elements of PPZ, that is distribu-
tions of distributions on Z, or populations of populations of individual phenotypes. The
function

selectPPZ : PPZ → PPZ (2.44)

then formalises a complete episode of multilevel selection. In the remainder of this section,
we describe how the assumptions of the three models of selection above are reflected in
the structure of these selection maps.

1. Population selection Population selection is characterised by the property that it
leaves the within-population distributions unchanged. In terms of the ket notation,
if a metapopulation α : PPZ is composed of several populations ω1, . . . , ωn : PZ

in varying proportions so that

α =
n∑
i=1

ci|ωi〉 : PPZ, with ci : [0, 1] ⊂ R,
n∑
i=1

ci = 1, (2.45)

then, since population selection has no individual fitness effects within populations,

selectpopPPZα =
n∑
i=1

c′i|ωi〉, with c′i : [0, 1] ⊂ R,
n∑
i=1

c′i = 1 : PPZ. (2.46)

In other words, the metapopulation changes under the action of population selection
selectpopPPZ : PPZ → PPZ because the proportions in which populations are rep-
resented in the metapopulation change. The phenotypic values of the populations,
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that is the composition of the populations ωi that make up the metapopulation α,
however, do not change. In particular, population selection in a metapopulation
with one population phenotype – like individual selection in a population compris-
ing only one phenotype (possibly in several instances, that is individuals) – has no
effect:

selectpopPPZ |ω〉 = |ω〉 : PPZ, for all ω : PZ. (2.47)

In terms of string diagrams, this property may be expressed as

PZ

PPZ

PZ

PPZ

=selectpopPPZ

. (2.48)

It is analogous to

Z

PZ

=
selectPZ

Z

PZ

(2.49)

for individual selection in populations and reflects the assumption that there is no
transmission bias on the population level (2.48) (or on the individual level (2.49);
see Section “Individual selection and the Price equation”, equation (1.1)). Finally,
in terms of metapopulations drawn as in diagram (1.5) population selection is
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instantiated, for example, as follows:

A A′

, (2.50)

where interactZz # = 2 : N and interactZz  = 3 : N.

2. Soft selection The arena of soft selection is the population within a metapopula-
tion. The effects of soft selection on an individual therefore depend only on the
phenotypic composition of the population it is situated in but not on that of other
populations in the metapopulation. Changes to the composition of a metapop-
ulation under soft selection are due to within-population changes so that in ket
notation with α =

∑n
i=1 ci|ωi〉 : PPZ as above

selectsoftPPZα =
n∑
i=1

ci|ω′i〉, with ω′i : PZ, i = 1, . . . , n, (2.51)

where for each i = 1, . . . , n the new population distribution ω′i arises as result of a
transformation of individual selection internal to the populations selectPZ : PZ →
PZ with selectPZωi = ω′i. Since soft selection preserves the size of the population
absolute individual fitness within a population under soft selection sums to 1 so
that the interaction function for soft selection interactZ : Z ⊗ PZ → R≥0 depends
on the composition of the population and has the property∑

j

dj interactZ(Zj , ω) = 1 (2.52)

for a population ω =
∑

j dj |Zj〉. Condition (2.51) may be drawn in terms of string
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diagrams as follows

PPZ

selectsoftPPZ selectPZ

PPZ

=

PPZ PPZ

(2.53)

In terms of populations, the action of soft selection may be represented as

A A′

. (2.54)

3. Hard selection Hard selection differs from the other two modes of selection PPZ →
PPZ in that it pays no regard to the metapopulation structure and therefore re-
alises non-social individual selection in multilevel selection (that is selection that
does not depend on the social environment; see ‘non-social trait’ (Okasha, 2006)).
Hard selection cannot be implemented as function selecthardPPZ : PPZ → PPZ off-
hand because it is not clear how individuals should be assigned back to populations
after they replicated in the arena given by the metapopulation.9

The function µZ : PPZ → PZ (2.25) from Section “Populations and probability
monads” maps distributions of distributions to distributions – or metapopulations
to populations – by considering the normal-weighted sum of the distributions as

9It is for this reason that we (and the Price equation more generally) consider an episode of multilevel
selection as a map PPZ → PZ that maps metapopulations to single populations without further
structure rather than as a map PPZ → PPZ that maps metapopulations to metapopulations.
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distribution – or by regarding all individuals in the metapopulation as members of
one population (see example (2.26)). Using µZ we can represent hard selection as

selecthardPPZ = selectPZµZ : PPZ → PZ (2.55)

with a selection function selectPZ : PZ → PZ that realises individual selection in
a population. This composition of functions is given as string diagram

selectPZ

PPZ

PZ

PZ

(2.56)

that, in terms of populations, takes the form

A J

(2.57)

2.1.6 Interactors and replicators

Population selection is involved in a range of natural selective scenarios that differ by
significance and role of both population reproduction and individual reproduction. In
biofilms, loosely interacting bacteria form populations with well-defined properties that
affect reproduction of the individual bacteria within (Ereshefsky and Pedroso, 2013). In-
dividual cells may act as social niche constructors and grow colonies that not only create
a favourable environment for the initial cells and their offspring but that also reproduce
by fission or budding (Ryan, Powers, and Watson, 2016). In planaria, populations of
niche constructing cells are moreover able to reproduce sexually (Fields and Levin, 2018)
(see Section “Epistatic effects” below). Finally, in animals with strict germline/soma
separation – such as giraffes – reproduction on the level of individual cells is tightly coor-
dinated across the population (that is the giraffe’s organism) and ensures near-identical
reproduction on the population level. Disruption of this population-wide coordination of
individual level reproduction may manifest, for example, as cancer (Aktipis et al., 2015).
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2.1 Multilevel selection

In addition to capturing these and similar examples, the concept of multilevel selection
(of which individual selection and population selection are components) should allow
a diachronic view on transitions in individuality (Okasha, 2006). During evolutionary
transitions in individuality, reproductive properties of populations change in parallel with
reproductive conditions, i.e., selection pressures, experienced by the individuals within
(Watson and Thies, 2019).
Hull (1980) makes a useful distinction between the aspects of interaction and repli-

cation of a biological system that together warrant reproduction, or persistence, of the
system. The distinction allows a stringent description of the selection process that mo-
tivates our approach to population selection and multilevel selection more generally:

replicator an entity that passes on its structure directly in replication

interactor an entity that directly interacts as a cohesive whole with its environ-

ment in such a way that replication is differential

With the aid of these two technical terms, the selection process itself can be

defined:

selection a process in which the differential extinction and proliferation of inter-

actors cause the differential perpetuation of the replicators that produced

them

Hull (1980): “Individuality and Selection”

With this definition, reproduction – that is the individual process that entails selection
on the population level and, more generally, the succession of generations referred to by
the full Price equation (1.2) – may be understood as composed of the two correspond-
ing aspects replication and interaction. We will see later in this Chapter 2 that this
additional structure of the process is mirrored in its formal represention: while the in-
teraction of the individual with its environment determines the output of its replication
(interactor) the replication of the individual takes place, thus determining the outcome
of future interaction (replicator). Replicator and interactor are interleaved across parent
and offspring as indicated in Figure 2.2 so that each of the two aspects is dependent on
the premises provided by the other.
If a system comprises replicators and interactors, the difference between the two is

functional and not necessarily physical, that is replicator and interactor do not have to
be realised in disjoint subsystems or interact through distinct causal/functional path-
ways. The replicator assumes functions that serve to replicate an operational genotypic
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. . . . . .

Replicator Interactor

Figure 2.2: In a sequence of parent and offspring individuals, the interactor ensures that the replicator
it developed from is re-instantiated as viable replicator. The replicator entails a copy of
the interactor whence it originated.

instance, that is to produce a copy of the parent. The interactor, on the other hand,
assumes functions that serve to maintain the entity in a way that ensures successful repli-
cation. An interactor interacts with the environment to ensure survival and successful
operation of the replicator(s) it forms a unit with.

Replicator A genome10, that is a carrier of a genotype, is a paradigmatic biological repli-
cator because it passes on its structure directly and largely intact during meiosis.
An organism, that is a carrier of a phenotype, is a paradigmatic interactor be-
cause – from the viewpoint of genetic selection – it serves no other purpose but to
facilitate the replication of the genome from which it developed (Dawkins, 2006).

While genes are clearly replicators, to regard populations that are recurring tempo-
ral assemblies of replicators as replicators in their own right may stretch the concept
too far (Lloyd and Wade, 2019). Even if lineages of populations can be identified,
along which structure is transmitted from parent to offspring, this structure is often
passed on neither directly nor intact. In the space between these examples, things
are less clear. While genetical organisms such as asexually reproducing bacteria
form lineages of near identical replicators from one perspective, bacteria also are
“extremely temporary manifestations” of the genes that are passed on during bac-
terial reproduction and that form lineages of replicators in a much stricter sense
(Hull, 1980, Section “Levels of Replication”). For sexually reproducing organisms,
the difference between these two viewpoints becomes greater still.

Interactor An interactor entails its own reproduction, or persistence (Papale, 2020), –
more precisely, the replication of the parts that entail the interactor – through
interaction with the environment. A paradigmatic example of an interactor is the
organism of a genetic individual. An organism may be viewed as temporary and

10All organisms in this thesis replicate asexually by cloning, so that offspring is genetically identical to
its parent. In particular, mutation and recombination are not considered.
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non-reproducing vehicle for the reproduction of those genes that developed into the
organism and that the organism functions to pass on to its offspring.

While organisms are clearly interactors, the question in which sense genes are inter-
actors is difficult. Entities ancestral to genes in early evolution that were selected
for, e.g., stability rather than reproduction (Borrelli et al., 2015), may deserve the
term ‘interactor’, but genes within the organism of an animal hardly interact with
an external environment directly. Genetic replication in the context of an organ-
ism is regulated on the cell or organism level. The (conceptual) change of the
environment of a gene from the selective environment experienced by an interactor
to the developmental environment experienced by a replicator is characteristic of
evolutionary transitions in individuality (Watson and Thies, 2019).

The difference between interactors and replicators parallels the distinction between
multilevel selection [1] and multilevel selection [2] within multilevel selection (Table 2.1)
(see Damuth and Heisler (1988), Section “Two meanings of multilevel selection”, and
Okasha (2006)). In multilevel selection [1], the population an individual is part of to-
gether with individual phenotypic properties determine the individual’s fitness among
the individuals in a metapopulation of populations. Population fitness in multilevel se-
lection [1] refers to a functional component of individual fitness, or causal factor in the
process that determines individual fitness. This factor is associated with a mechanism
that justifies viewing populations as interactors and is therefore shared by all individuals
within a population as contextual character – the population phenotype Z. Like the
individual phenotype through the function (1.3), Z affects individual fitness through the
function (2.1). However, reproduction of a population as in Section “Population selec-
tion” should be viewed abstractly as increasing the representation of all individuals in a
population homogeneously within the metapopulation and not as physical replication of
populations.
In correspondence with the distinction between multilevel selection [1] and multilevel

selection [2] there are two ways in which reproduction occurs on the population level.

Multilevel selection [1] Individual reproduction within a population in a metapopula-
tion entails reproduction of the population in the sense that the metapopulation
is transformed in a manner compatible with the Price equation (1.2) with popu-
lations as individuals. The latter means that selection and transmission can be
distinguished for populations given replication of the (lower level) individuals that
constitute them. This form of population reproduction may be usefully referred to

51



2 A functional representation of multilevel selection

Table 2.1: Forms of multilevel selection and role of populations in the selection process. Individuals
are always assumed to be interactors and replicators in the models considered in this
thesis.

Populations are

interactors replicators

Individual selection No No

Multilevel selection [1] Yes No

Multilevel selection [2] Yes Yes

as persistence (rather than reproduction (Papale, 2020)) and allows the definition
of models of multilevel selection [1].

Multilevel selection [2] Populations themselves replicate as units, that is populations
are to be considered individuals in their own right. Moreover, the individuals
that make up the populations may undergo parallel Darwinian dynamics on the
individual level (Godfrey-Smith, 2009).

This thesis is focused on multilevel selection [1] as this is the context in which the
inconsistency of the Price approach to multilevel selection and contextual analysis is
manifest (Okasha, 2006).

2.1.7 Population phenotype

The population phenotype Z reflects properties of populations like the individual phe-
notype Z reflects properties of individuals. While Z is a function of the genotype an in-
dividual develops from (and the environment, see Section “Genotypes and phenotypes”),
Z is assumed to be a function of the individual phenotype, manyfold expressed by the
individuals the population comprises. We will discuss the structure of this function from
a mathematical point of view in the course of this Chapter 2. Note that we do not assume
the population phenotype to be the average of the individual phenotypes expressed in
the population but allow the former to be an arbitrary function of the latter (see Section
“Population phenotype and individual phenotypes”).
In the following two sections, we discuss two different ways in which population pheno-

type may be a function of individual phenotype. These two ways correspond broadly to
the two viewpoints in the ‘Wright-Fisher controversy’ described in Wade and Goodnight
(1998). The distinctive issues are summarised in the table reproduced in Figure 2.3. We
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Figure 2.3: Table 1 from Wade and Goodnight (1998) is reproduced here to provide context for the
notions of additivity and epistasis but is not discussed in detail.

focus on the penultimate row that refers to the question how phenotypic properties of
parts may give rise to phenotypic properties of a corresponding whole.

1. Additive effects The evolution of cooperation, or altruism, is the focus of much
research in social evolution (Hamilton, 1964; Wilson, 1975, 1980; Axelrod and
Hamilton, 1981). Associated models refer to the evolution of an altruistic trait,
that is an individual trait that decreases individual fitness of cooperators (that is
bearers of the altruistic trait) while increasing fitness of a cooperator’s ambient
population (see Section “Population selection”) (for a definition, see Uyenoyama
and Feldman (1980), page 381; West, Griffin, and Gardner (2007)). This fitness
effect is assumed to be proportional to an additive phenotypic effect of the altruistic
trait on the population phenotype such that both change in the same way as the
frequency of cooperators varies in the population. The graph

0 1

2

1

Frequency of trait

Z

(2.58)
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is a simple example of such an additive effect. In this example, population fitness
is proportional to Z such that (1) a cooperator has a fitness-increasing effect on
population fitness compared to a defector, and (2) individual fitness of a cooperator
is lower than that of a defector in the same population.

Many examples of such traits can be found among bacteria, such as Pseudomonas
aeruginosa where cooperators secrete and share compounds within spatially sepa-
rated populations of individuals (Weigert and Kümmerli, 2017). These compounds
change the population phenotype by improving the nutritional environment of each
individual within. However, the costly production of these compounds puts coop-
erators at a disadvantage relative to non-cooperators in their population.

From the viewpoint of traditional individualistic evolution, given the conflict be-
tween the levels of selection inherent in altruistic traits, natural systems whose
function relies on cooperation of their parts require explanation. Often short term
fitness benefits of not cooperating are in conflict with long term fitness benefits of
cooperating.

To give a biological example reported in Eldakar, Wilson, et al. (2010), male water
striders Aquarius remigis organised into patches – that is populations such that the
complete experimental setup comprises a metapopulation – are subject to individ-
ual selection and population selection that both are affected by an aggressiveness
trait individually expressed in males. Aggressiveness has a positive effect on in-
dividual fitness that is higher for more aggressive males that secure more mating
opportunities than less aggressive males. However, aggressiveness has the follow-
ing negative effect on male population fitness: since the aggression experienced by
females reflects the cumulative aggressiveness of males on their patch and females
tend to avoid aggression by leaving their current patch, the trait has a negative
effect on male fitness by decreasing the number of females, thus diminishing the
reproductive resources of all males on a patch.

The assumptions associated with the two columns in Figure 2.3, each taken to the
extreme, lead to opposite predictions for the outcome of this experiment. Indi-
vidual aggressiveness in the metapopulation increases with selection if individual
selection is stronger than population selection. For instance, females may respond
to the population phenotype ‘patch aggressiveness’ only weakly, such that the slope
of the population selection differential is gentle, while aggressive males are much
more successful at reproduction than their non-aggressive patch mates, such that
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the slope of the individual selection differential is steep. However, individual ag-
gressiveness in the metapopulation decreases with selection if population selection
dominates individual selection. For instance, if patches are inhabited by genetically
closely related individuals such that individual selection within patches is ineffec-
tive and if sufficient variation of the population phenotype in the metapopulation
allows population selection then, in total, selection may favour cooperators over
defectors. Cooperative behaviour within family groups of many animal species has
been explained with this effect (Abbot et al., 2011).

The configuration of selection described in the end of the preceding paragraph is a
basic model of kin selection (Gardner, West, and Wild, 2011). The assumption of
additivity of phenotypic effects (Levin and Grafen, 2019) defines a class of systems
for which the causal interpretation/functional representation admits an expression
of the total effect on the population phenotype in terms of the separate effects
of the phenotypic properties of each of the individuals in the population. This
viewpoint has been very successful in explaining many issues in social evolution
(Gardner, West, and Wild, 2011). Moreover, additivity allows “to adopt inclusive
fitness as an organizing framework for understanding social behavior” (Levin and
Grafen, 2019, page 1066). This organising framework, described by Grafen (2006),
admits viewing inclusive fitness as quantity that is maximised by natural selection,
a principle that is an “indispensable” approximation for understanding social evo-
lution.11 Nonadditive phenotypic effects, referred to as epistatic effects, lie outside
the scope of inclusive fitness theory and are discussed in the next section.

2. Epistatic effects

When the effect of the phenotype of an individual on the phenotype of its popu-
lation depends on the phenotypic composition of the population, the assumption
of additivity described in the previous section is not justified. Epistatic, or non-
additive, effects arise from functional complementarity between instances of the
phenotype (i.e., individuals) (Wade and Goodnight, 1998; Manrubia, 2021). Simi-
lar to the altruistic trait that defines cooperators and defectors in Section “Additive
effects” we may consider a synergistic trait whose effect on the population pheno-

11Inclusive fitness is indispensable for understanding social evolution in a similar way that general
relativity is indispensable for understanding physics. Both theories have been applied successfully
over many years and are crucial to our understanding. More widely within social evolution and
physics, however, the scope of each theory is limited, and other theories are better suited to describe
phenomena that lie outside this scope.
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type arises in interaction with its counterpart expressed by bearers of variants of
the trait. By the assumption of nonadditivity, the effect of the trait cannot be
determined independent of the population it is expressed in. The phenotypic prop-
erties of bearer and non-bearer of the trait correspond to complementary parts of
a shared function – expression of the population phenotype.

In the following paragraphs, two population phenotypes – population fitness and
population size – are discussed briefly as examples. The upshot of the examples
is that the functional description of epistatic effects requires individual phenotypic
effects to be dependent on the composition of the population as reflected in function
graph (2.59). Additive models of epistatic effects, such as those suitable for additive
effects of cooperation discussed in Section “Additive effects”, miss this dependency
(Smith and Inglis, 2021).

a) Population fitness To give an abstract example, Michod (2006) describes a
model where the fitness of an evolutionary unit is a function of the two com-
ponents fecundity (reproduction) and viability (survival). Simplifying the
original model, we assume that the individual phenotype can take the values
‘survival’ or ‘reproduction’ depending on whether the individual contributes
to survival or reproduction of the population it is part of12. Then a popula-
tion phenotype Z that is the product of the total individual contributions to
fecundity and viability of the population may depend on the composition of
the population as follows

0 1

2

1

Frequency of trait

Z

(2.59)

If the phenotype of the population depends on the degree to which the individ-
uals within the population collectively execute the complementary functions

12In Michod (2006) the two functions are considered in several trade-off relations, as in Fig. 3 in Michod
(2006).
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that give rise to this phenotype, the population must contain individual con-
tributions to both survival and reproduction, like somatic cells and germ cells
in a multicellular organism (Grochau-Wright et al., 2017). In graph (2.59), Z
is maximised if survival and reproduction are represented in equal parts in the
population (the value 1

2 was chosen for illustration but is not assumed gen-
erally). Often germ cells are rare among all cells of a multicellular organism
since somatic cells constitute most of the physical structure of the organism
while germ cells only constitute a part of the reproductive system. It is cru-
cial, however, that both cell types are present and that a graph corresponding
to graph (2.59) reaches non-expression of the trait at the ends of the inter-
val (Watson and Thies, 2019). For, without germ cells there is no faithful
reproduction of the population (that is the multicellular organism) but only
individual reproduction that manifests, for instance, as growth of the organ-
ism. Conversely, if all cells of a developing organism enter an embryonic state
and forego reproduction until they get the opportunity to germinate, there
is no organismal structure to facilitate reproduction through these germs. In
the terms discussed in Section “Interactors and replicators”, in the former case
the multicellular organism may be an interactor (if the fact that the cells are
organised in a multicellular organism affects their fitness) but it isn’t a repli-
cator (because there are no germ cells to effect reproduction of the organism
as a whole). In the latter case the population may be a replicator (if the germ
cells germinate without soma) but it isn’t an interactor (as there is no physical
structure to interact with the selective environment).

b) Population size Wade (1976) experimentally selected populations of flour bee-
tles, Tribolium castaneum, for the population phenotype given by population
size, or magnitude, at a certain ‘age’ of the population after germinating from
a propagule of 16 individuals.13 Because of the strong response observed,
these experiments furnish a paradigmatic empirical example of a response to
population selection.

In a metapopulation of 48 populations of initially 16 individuals each, pop-
ulations were assigned to one of four experimental treatment groups, each
of which was subjected to a different regime of artificial selection on the in-
dividual and the population level. Figure 2.4 gives an overview of the four

13Wade (1976) uses the terms ‘population’ and ‘individual’ in our sense. However, our ‘population
selection’ is referred to as ‘group selection’.
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conditions of the experiment. In all conditions, 48 propagules were assem-

Figure 2.4: The selection pattern in condition A realises population selection for large population size
and (individual) soft selection for high reproductive rate within the population. Condition
B selects for small size on the population level but like condition A for high reproductive
rate on the individual level. Conditions C and D realise soft selection for high reproductive
rate without and with random population selection. resp. (see Section “Soft selection
and hard selection”). Figure reproduced from Wade (1976).

bled from a parent metapopulation of 48 populations to found an offspring
metapopulation of 48 populations. Each propagule consisted of 16 individuals
randomly chosen from one of the populations in the parent generation, hence
individuals in all conditions underwent soft selection (for individual reproduc-
tive rate) (see Section “Soft selection and hard selection”). The conditions
differ in the choice of parent populations that contribute propagules to the
offspring generation. The pattern of this choice determines strength and di-
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rection of population selection as described in Section “Population selection”.

In conditions A and B, each propagule was assembled from individuals ran-
domly chosen from the population with the largest magnitude (condition
A) or the smallest magnitude (condition B) – and the population with the
next largest (smallest) magnitude after the previous has been portioned into
propagules. Conditions A and B represent population selection for large and
small population magnitude at day 37 after germination, resp.

In a control treatment (condition C), population selection is avoided. To
this end, one propagule is assembled from each of the parent populations so
that population fitness is independent of population phenotype. Soft selec-
tion continues to act in condition C, because the chance for an individual
to be selected into the propagule of its population depends on its (relative)
fitness within that population. Finally in condition D, population selection
is randomised by randomly picking populations for selection. Since unlike in
condition C selected populations contribute more propagules when they reach
a larger population size, population selection (for large magnitude) is in effect,
as well as soft selection as before. The response to experimental selection over
several generations of metapopulations is shown in Figure 2.5.

Figure 2.5: “For generations three through six, A > C = D > B with P << 0.005; for generations
seven through nine, A > D > C > B with P << 0.005.” Figure reproduced from Wade
(1976).

The strong response to population selection (compare A to the horizontal axis
that represents the control treatment) is explained with the selection of sev-
eral traits – such as fecundity, developmental time, and cannibalism rate –
in combination. Under condition C (individual selection, no population se-
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lection), mean adult population size declined due to increased cannibalism of
adult Tribolium on eggs and pupae, a trait selected for by individual selection
within the populations. Population selection for large and small population
magnitude (conditions A and B) lead to strong responses in both directions
that are possible due to the selection of combinations of individual traits in
propagules (Wade, 1976; Wade and Griesemer, 1998). These trait combina-
tions with epistatic effects give rise to favourable population phenotypes that
are inherited on the population level because the propagules of 16 individuals
transmit a sufficient part of the within-population variation responsible for
the epistatic effect to the offspring populations.

3. Population phenotype and individual phenotypes As mentioned in the beginning of
this Section, we assume the population phenotype Z to be a function of the distri-
bution of individual phenotypes in the population. In additive scenarios it is often
appropriate to use the average of the individual phenotypes in the population as
population phenotype, for instance if the level of cooperation is a good indicator
of the effect of cooperation within a population on its fitness. In the models de-
scribed in this thesis, in order to cater for epistatic effects and other effects that
arise from the interaction between individual phenotypes in a population, we do not
assume the population phenotype to be the average of the individual phenotypes
occuring in the population. When population fitness depends on combinations of
individual phenotypes the population phenotype may be represented more ade-
quately by functions that reflect the mechanism by which it arises from individual
phenotypes. In the experiments with flour beetles described above, for instance, a
suite of individual traits is thought to contribute to population fitness by creating
a social environment, i.e., a population phenotype, that allows population size to
increase. The quality of this environment depends on the combination of several
individual phenotypes such as developmental time and cannibalism rate. Farine,
Montiglio, and Spiegel (2015) discuss role and relevance of group phenotypic com-
position (GPC) as factor that is equivalent to our notion of population composition
and that, through expression of a population phenotype, affects population-level
outcomes. For instance, niche partitioning within populations allows larger popu-
lation sizes due to reduced competition for resources. A GPC yielding an optimal
population phenotype in this respect would consist of different individuals spe-
cialising in specific resources so that the overlap between the niches is minimal.
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2.2 Units of selection

Therefore the variance of the distribution of individual phenotypes rather than its
average best reflects the dependence of population phenotype on individual pheno-
types. In fire ants, the acceptance of multiple queens into the colony, a potentially
import factor for the reproductive output of the colony, depends on a “threshold
frequency” of tolerant workers (Farine, Montiglio, and Spiegel, 2015). The pres-
ence of “keystone individuals” in a population as factor for population outcomes,
for instance through collective decision making, is another example of a population
phenotype that is not given as average over individual phenotypes.

2.2 Units of selection

So far we have treated the entities that undergo the process described by the Price
equation (1.2) in an abstract manner as circles in diagrams or as fractions of populations
(that is point values of distributions over discrete types). In this section we describe in
more detail how the mathematical structures (‘actors’ and their interactions) relate to
the biological entities and processes they describe. This section sets the biological stage
for the following formalisation. The crucial maps are introduced out of the definition of
evolution given by Lewontin (1970).

2.2.1 Variation, selection, and heredity

The unit of selection, “the entity upon which selection acts” (Gardner, 2015; page 306), is
each of the individuals that make up a population, each holder of the index i in equation
(1.2), and each circle in diagrams (1.4) and (1.5). Following the account of Godfrey-Smith
(2009) (and its extension in Papale (2020)), we consider a unit of selection an object of
a type, such as an individual of a biological species, that is involved in a natural process
realising the three Darwinian principles of evolution:

1. Different individuals in a population have different morphologies, physiolo-

gies, and behaviors (phenotypic variation).

2. Different phenotypes have different rates of survival and reproduction in

different environments (differential fitness).

3. There is a correlation between parents and offspring in the contribution of

each to future generations (fitness is heritable).14

14It seems not settled whether this definition of Darwin’s principle of heredity or the definition in
Uyenoyama and Feldman (1981) on page 393 is preferable. The latter definition holds that the
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2 A functional representation of multilevel selection

Lewontin (1970): “The Units of Selection”

In the following sections, we discuss how these three principles correspond to elements
of our description.

1. Phenotypic variation Selection occurs with respect to a “character under selection”
(Gardner, 2015). For any individual, this character, through expression in the
individual, determines the outcome of that individual’s interaction with the selec-
tive environment, that is its absolute fitness, or number of offspring. We refer to
the character under selection as phenotype Z. An instance of the phenotype is a
phenotypic value expressed in an individual such as the values zi : Z in equation
(1.2).

The expression of character values in the individuals within any population K

corresponds to a map

zK : K → Z (2.60)

that assigns to each individual in population K its phenotypic value in Z. We may
think of this map as determining the trait value of an individual such as measuring
a giraffe’s neck length in metres. For an individual i : I in a given population I, we
may write i’s phenotypic value as zi = zI(i) : Z.

The expression of a phenotype in a biological individual considered in this thesis
is a function of genotype and environment. This distinction is important because
while selection depends on the genotype only indirectly through the phenotype15, it
determines the genotypic composition of the offspring population directly because
inheritance is genetic. This issue is discussed in more detail in Section “Genotypes
and phenotypes” below.

For a population to “undergo evolutionary change” (Lewontin, 1970) in the sense of
changing allele frequencies, phenotypic variation within the population is required,
for otherwise no difference between individuals in the population can be made by
selection and no directed change in genotypic composition can ensue.

phenotypes of parent and offspring are correlated rather than their fitnesses. Under constant selective
conditions, heredity of phenotype implies heredity of fitness but not the other way around. In this
thesis, we use the stronger notion and assume that the phenotype/genotype itself is heritable.

15Selection ‘sees’, or processes, the phenotypic properties of an individual through the individual’s inter-
action with the selective environment. Genetic differences between individuals without phenotypic
differences are without consequence for selection (see Section “Interactors and replicators”).
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2.2 Units of selection

For any given population K and using function 2.60, the first of Lewontin’s princi-
ples may be put simply as

zK 6= const. (2.61)

2. Differential fitness Absolute fitness of a phenotype is an assignment of offspring
number to phenotypic values, that is a function w : Z → N as in equation (1.3).
This function is an abstraction of the process of reproduction occurring over an
individual’s lifetime that expresses the total number of offspring an individual en-
tails in terms of the individual’s phenotypic properties. In this thesis, we assume
the selective environment16 that facilitates this entailment to be constant across
populations, including populations in parent-offspring relation. Consequently, we
do not indicate the environment in the notation.

A population of individuals under selection is transformed to its offspring popula-
tion according to a fitness law (1.3). Directed evolutionary change, or an evolu-
tionary response to selection, is a change in allele frequencies so that those alleles
increase in representation that are associated with successful phenotypic properties
of the individuals they constitute. A population of individuals undergoes directed
evolutionary change over the succession of its offspring populations if fitness dif-
fers between individual instances of the phenotype in a manner that brings forth
appropriate transformations.

We assume so far that absolute individual fitness (1.3), that is the number of off-
spring of an individual, is independent of the population the individual is situated
in. Relaxing this assumption marks the transition from ‘standard’ Darwinian evolu-
tion of individuals to social evolution (Frank, 1998; Okasha, 2006; West, Griffin, and
Gardner, 2007; Wade, 2016). In the former, individuals, or rather clones, compete
independently for representation in the population by individually interacting with
the selective environment. This interaction, mediated by the phenotype, entails
the reproduction of the individual, including the multiplicity of this reproduction
(that is absolute fitness of the individual). The outcome of this interaction does not
depend on properties of the population by assumption. In social evolution, on the
other hand, absolute fitness of individuals is at least to some degree determined by
phenotypic interactions with other individuals so that absolute individual fitness

16The term selective environment refers to aspects of the individual’s environment that determine its
fitness. This is in contrast to the developmental environment that interacts with the genotype to
yield the phenotype.
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2 A functional representation of multilevel selection

becomes a function of contextual characters such as the phenotypic composition
of the population as a whole. These interactions may be competitive in nature,
for example when individuals of the same species share a limited resource or in
predator-prey interactions. However, as we saw in Section “Epistatic effects”, in-
teractions in social evolution may also be cooperative or synergistic (Watson and
Thies, 2019). It is these latter cases in which the outcomes of social evolution
often differ from what might be expected from the Darwinian catchphrase of the
’struggle for existence’ among competing variants of individuals.

It should be noted that also in the case that absolute individual fitness is inde-
pendent of the population the outcome of evolution depends on the composition
of the population since relative fitness determines adaptation of the population.
It is often taken for granted that a beneficial mutation can fixate in a population
of asexually reproducing individuals due to the fitness benefit it confers on the
lineage of the individual it arises in. This assumes that the mutation maintains
its fitness advantage over other individuals in the population until it fixates. Sub-
sequently, other beneficial mutations which again confer a fitness advantage over
the new background can spread. In this way, beneficial mutations can accumulate,
thus adapting the population over time. However, if after one beneficial mutation
in one individual another beneficial mutation occurs in another individual, clonal
interference may slow down or even hinder adaptation. This is due to the fact
that the second mutation decreases the fitness advantage of the first relative to the
population. The models constructed in this thesis can describe clonal interference
since selection is implemented based on relative fitness in the population.

3. Fitness is heritable The third principle of Lewontin’s description of the Darwinian
process of evolution refers to the continuity with respect to fitness (and phenotype)
between parent and offspring. This continuity, that for asexual genetic inheritance
in a constant environment is realised as near identity17, allows a response to se-
lection in the sense that fitter alleles – with respect to the conditions given by
the constant selective environment and the constant developmental environment –
increase in representation over several generations of individuals.

17How near depends on the organism since in addition to mutation, other mechanisms may lead to
discrete changes in genotype from parent to offspring. With lateral gene transfer as discussed in
Doolittle and Bapteste (2007), for example, the outcome of asexual individual reproduction becomes
a function of the population.
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2.2 Units of selection

The notion of heritability of fitness (or phenotype) relies on two structures. First,
through the notion of heritability itself, it postulates a parent-offspring relation.
When reproduction is asexual, as assumed in this thesis, this relation may be
represented succinctly as a map

lin : I ′ → I (2.62)

that assigns each individual of a population its parent in the parent population
(Hull, 1980). We refer to this map as lineage map. When it is applied repeatedly it
traces out the lineage of its initial argument – any individual – to the first ancestor.

Since we consider individual selection without transmission bias (that is no mu-
tation, no phenotypic plasticity/constant developmental environment), phenotypic
heredity is perfect and we have

I Z

I ′,

zI

lin zI′
(2.63)

that is zI lin = zI′ : I
′ → Z, or offspring and parent are phenotypically identical

(the maps zI and zI′ are defined as in function (2.60); see Section “Genotypes and
phenotypes” below).

The second part of Lewontin’s third principle, that is the postulated correlation
between parent and offspring fitness, may be represented as an association

I Z N

I ′ Z N

zI w

lin

zI′ w

(2.64)

that shows two ways of assigning each individual in the offspring population a
fitness value: given an individual in I ′, we may consider its own fitness and that of
its parent.

If these two quantities are uncorrelated, that is statistically independent, high and
low fitness of a parent may equally likely be followed by high or low fitness of its
offspring. Any corresponding increase or decrease in representation of a phenotypic
value is hence nullified over time, and directed evolutionary change is not to be
expected.
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Our assumption on ideal phenotypic inheritance from parent to offspring (2.63) lets
us change diagram (2.64) to

I Z N

I ′ Z N

zI w

lin

zI′ w

1Z (2.65)

because 1ZzI′ = zI′ = zI lin. In this thesis, we assume the selective environment
to be constant across populations and over ‘time’, that is over the succession of
populations in parent-offspring relation. This means that for any population K,
absolute fitness of its constituent individuals is determined through K zK−−→ Z

w−→ N
by the same law w : Z → N. This means in particular that the two instances in
diagrams (2.64) and (2.65) are the same, so that (2.65) may be collapsed to

I Z N

I ′.

zI w

lin zI′
(2.66)

In this case of ideal inheritance (2.63) and constant selective environment, both of
which we assume throughout the thesis on the individual level, Lewontin’s third
principle of heritable fitness realises the postulated correlation as identity, that is
fitness is inherited unchanged.

2.2.2 Individual heredity

In equation (2.60) we defined the map zK : K → Z that for a population K determines
the phenotypic values of the individuals within. The phenotype Z describes phenotypic
properties (such as giraffe neck length) that determine the outcome of an individual’s
interaction with the selective environment, that is the individual’s absolute fitness in
that environment. The phenotype itself, however, is not inherited. Instead, individuals
comprise a genome, and heredity is the result of genetic reproduction (that is assumed
asexual in this thesis). Phenotypic properties of an individual are the outcome of a
genotype-environment-phenotype map that determines the phenotypic value in Z given
the genotypic value in Y , that is the genome, and properties of the developmental en-
vironment. Since we assume the developmental environment constant, we refer to this
map more simply as the genotype-phenotype map

develop : Y → Z. (2.67)
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With the map
yK : K → Y (2.68)

that assigns to an individual in any population K its genotype (as in function (2.60)
for the phenotype), the identity of the bearer of genotype and phenotype implies the
diagram

I

Y Z.

yI zI

develop

(2.69)

Similar to diagram (2.63), we may represent perfect genetic inheritance diagrammati-
cally as

I Y

I ′.

yI

lin yI′
(2.70)

If we consider genotypic inheritance more generally, the parent offspring relation implies
no more than an association

I Y

I ′ Y.

yI

lin

yI′

(2.71)

From this viewpoint, mutation then appears as genotypic transformation m : Y → Y in
the diagram

I Y

I ′ Y.

yI

mlin

yI′

(2.72)

Other changes in genotypic value from parent to offspring, such as recombination or
lateral gene transfer (Doolittle and Bapteste, 2007; Bapteste and Papale, 2020), may
be represented similarly as functions that depend on the genetic composition of the
population in addition to the genetic composition of the parent individual.
The Price equation (1.2) describes the transformation of a parent population to an

offspring population in terms of change in the phenotypic composition of the popula-
tion18. It partitions this change into reproduction and phenotypic change: the former
represents the change in representation of parent compared to (multiple) offspring in
18If the population has no further structure, the phenotypic composition of a population may be rep-

resented by mean and higher moments of the distribution given by the phenotypic values of the
individuals that make up the population.
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their respective populations due to fitness differences between individuals and the latter
the change in phenotype from parent to offspring due to recombination, mutation and
other mechanisms that entail phenotypic differences between parent and offspring.
In the case of genetic reproduction of individuals, underlying this transformation of

phenotypic composition is a transformation of genotypic composition of the population,
and it is the latter that is required for a response to selection as described in the preceding
sections of this chapter. This is because the genotype, not the phenotype, is passed
from parent to offspring19. For this reason, in applications of the Price equation to
genetic evolution the phenotype is often represented as genetical character, or breeding
value, that is as function develop : Y → Z that yields the phenotype in question in
terms of the genotype (Gardner, West, and Barton, 2007; Gardner, 2015). Since this
function is generally not invertible the relation between the genotypic and phenotypic
transformations between parent and offspring population may be complicated. In this
thesis, however, we assume that develop is invertible, such that phenotypic composition
and genotypic composition may be regarded as identical. This assumption is justified, for
instance, in models of monoploid organisms with one locus and two or more alleles at this
locus that each correspond to a different phenotypic value. If develop is invertible we may
identify Y and Z in diagram (2.69) and regard genotypic and phenotypic composition of
a population as the same.
In non-social evolution, reproduction of populations is a process that derives an off-

spring population from a parent population. It is effected by the reproduction of the
individuals that make up the population and occurs according to a law (1.3) that deter-
mines the offspring population of each individual, given as element of the unnormalised
monad over the genotype UY (see Section “Selection and absolute fitness”), according to
its genotype

Y

reproduce

UY

, (2.73)

Reproduction of the population is a superposition of individual reproduction: the off-
19Parental effects and other mechanisms of phenotypic inheritance do not feature in this thesis.
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spring populations of the individuals are combined to yield the offspring generation

reproduce

UY

UUY

UY . (2.74)

In this thesis, reproduction is by cloning with multiplicity determined by offspring
number via a law interact : Z → R≥0 that depends on the individual phenotype. With
this law we can define a complete episode of reproduction as described in Section “Inter-
actors and replicators” as follows:

develop

replicate

interact

Y

Z

R≥0

UY

. (2.75)
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In this final chapter we put together the elements described above to construct models
of multilevel selection. Our approach rests on the premise that selection in biological
populations may be understood as differential replication of the units under selection.
For the basic units termed individuals in this thesis, the generational progression from
parent to offspring described by the Price equation (1.2) is given by selection (1.6) be-
cause replication on the individual level is identical, that is transmission bias is absent.
For populations, we understand selection as differential replication, or persistence, as
well. However, unlike for individuals, transmission effects are not void for populations.
Instead, transmission effects in transformations from parent to offspring metapopulation
are assumed to arise from individual selection across the metapopulation (contextual
analysis) or within the populations (Price approach). Using the functions discussed in
Section “Soft selection and hard selection” we describe the processes selectCA : PPZ→ PZ

and selectPA : PPZ→ PZ in terms of probability monads and associated string diagrams.

3.1 Contextual analysis

Episodes of multilevel selection described by contextual analysis correspond to a function
selectCA : PPZ → PZ that is composed of hard selection on the individual level and
population selection on the population level that represent separate causal pathways.
Since the metapopulation that forms the input of the process is involved in both, the
variables are first copied and then concurrently subjected to hard selection and population
selection that take place across the metapopulation as a whole so that the outcome of
each is considered in absolute terms. Finally, the two metapopulations are combined, or
superimposed, with the function

mix : UZ ⊗ UZ → UZ,α1 ⊗ α2 7→ α1 + α2 (3.1)

that mixes two distributions linearly by combining them into one.
The representation of the functional structure underlying the model of contextual

analysis is given in Figure 3.1.
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.

Figure 3.1: The process corresponding to contextual analysis. The string diagram is read from
bottom to top. The normalised metapopulation is considered unnormalised before being
copied at the dot. The two copies each undergo separate causal processes: selection on
the individual level on the left and selection at the population level on the right. On
the left, since individual selection is realised as hard selection in contextual analysis, the
metapopulation is first collapsed to one population that is then subjected to individual
selection. On the right, population selection may change the relative frequencies of
the populations in the metapopulation while leaving the composition of the populations
unchanged. The metapopulation is then collapsed before it is combined with the result
of the left side in the function mix. Finally in norm, the population is normalised to a
distribution in PZ.
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3.2 Price approach

Algebraically, for a metapopulation ω =
∑

i ci|ωi〉 : PPZ with ωi =
∑

j dij |Zj〉 : PZ

such that the population phenotype of population ωi is given by Zi : Z the process is
given by

ω =
∑
i

ci|ωi〉 7→
∑
i

ci|ωi〉 ⊗
∑
i

ci|ωi〉 7→
∑
ij

cidij interactZ(Zj)|Zj〉 ⊗
∑
i

ciinteractZ(Zi)|ωi〉

=
∑
ij

cidij interactZ(Zj)|Zj〉 ⊗
∑
ij

cidij interactZ(Zi)|Zj〉

7→ norm
∑
ij

cidij(interactZ(Zj) + interactZ(Zi))|Zj〉,

absolute fitness of an individual with phenotype Zj within a population with phenotype
Zi is therefore

Wij = interactZ(Zj) + interactZ(Zi).

For phenotypic values in the real numbers and a linear choice of the interact functions such
that interactZ(Zj) = α + β1Zj and interactZ(Zi) = β2Zi with parameters α, β1, β2 : R
this gives the multiple regression of contextual analysis

Wij = α+ β1Zj + β2Zi. (3.2)

3.2 Price approach

The multilevel Price equation describes episodes of multilevel selection that are composed
of soft selection selectsoftPPZ : PPZ → PPZ on the individual level and population selection
selectpopPPZ : PPZ → PPZ on the population level. Again the causal pathways of the
individual and population level are assumed separate. We describe a multiplicative and
an additive model that both respect the separation into individual effects (action of
interactZ) and population effects (action of interactZ) in the sense that the between-
population covariance and the average within-population covariance of the multilevel
Price equation are zero if interactZ or interactZ , resp., are constant, that is if population
selection or individual selection is absent.

3.2.1 Multiplicative model

Since selectsoftPPZ acts on the inner distributions only (see (2.53)) and selectpopPPZ leaves the
inner distributions unchanged (see (2.48)), the functional structure underlying the Price
approach may be represented as shown in Figure 3.2.
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.

Figure 3.2: The multiplicative process corresponding to the Price approach. Population selection acts
in the metapopulation, leaving the composition of the populations unchanged. Then soft
individual selection acts within each population leaving the relative size of the populations
unchanged.

To see that the process above separates individual selection and population selec-
tion according to the multilevel Price equation, we write down the process explicitly.
Let the finitely many individual phenotypic values be denoted by Z1, . . . , Zn : Z and
a metapopulation be given by

∑
i ci|ωi〉 : PPZ with ci : R,

∑
i ci = 1 and populations

ωi =
∑

j dij |Zj〉 : PZ with population phenotypes Zi : Z, where the index i covers the
populations in the metapopulation and the index j the individual phenotypic values.
With interactZ : Z → R≥0, the population selection process transforms the metapopula-
tion as follows ∑

i

ci|ωi〉 7→
1

W

∑
i

ciinteractZ(Zi)|ωi〉 : PPZ

with average population fitness W =
∑

i ciinteractZ(Zi).
The inner process of individual selection within populations (soft selection) is imple-

mented by interactZ : Z ⊗ PZ → R≥0 (see Section “Soft selection and hard selection”)
and transforms the populations such that

ωi 7→ selectωi = select(
∑
j

dij |Zj〉) =
∑
j

dij interactZ(Zj , ωi)|Zj〉 : PZ

with
∑

j dij interactZ(Zj , ωi) = 1 for all i (Equation (2.52)). The complete process in
Figure 3.2 where individual and population selection occur in a nested manner is then
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given by

ω =
∑
i

ci|ωi〉 7→
1

W

∑
i

ciinteractZ(Zi)|
∑
j

dij interactZ(Zj , ωi)|Zj〉〉

7→ 1

W

∑
i,j

cidij interactZ(Zi)interactZ(Zj , ωi)|Zj〉 : PZ

so that in a population with phenotype Zi absolute fitness of an individual with pheno-
type Zj is

Wij = interactZ(Zi)interactZ(Zj , ωi) (3.3)

and average individual fitness in population ωi is

Wi =
∑
j

dij interactZ(Zi)interactZ(Zj , ωi) = interactZ(Zi).

Denoting the average individual phenotype in population i by Ẑi the population co-
variance term of the multilevel Price equation is given by

Cov(Wi, Ẑi) =
∑
i

ci(Wi −W )Ẑi

and is independent of individual selection. The average individual covariance term
amounts to

EI(Cov(Wij , Zj)) =
∑
i

ci

∑
j

dij interactZ(Zi)interactZ(Zj , ωi)Zj −WiẐi


=
∑
i

ciinteractZ(Zi)

∑
j

dij(interactZ(Zj , ωi)− 1)Zj


and therefore measures the strength of individual selection in the populations, weighted
by population size after population selection.

3.2.2 Additive model

The additive model differs from contextual analysis only in the arena of individual selec-
tion. For a metapopulation ω =

∑
i ci|ωi〉 : PPZ with populations ωi =

∑
j dij |Zj〉 : PZ

it is given by

ω 7→
∑
ij

cidij interactZ(Zj , ωi)|Zj〉 ⊗
∑
i

ciinteractZ(Zi)|ωi〉

7→
∑
ij

cidij(interactZ(Zj , ωi) + interactZ(Zi))|Zj〉
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hence total individual fitness for an individual with phenotypic value Zj in population
ωi is

Wij = interactZ(Zj , ωi) + interactZ(Zi)

The model is shown diagrammatically in Figure 3.3. We calculate the components of
the multilevel Price equation. With the average individual fitness in population ωi

Wi =
∑
j

dij(interactZ(Zj , ωi) + interactZ(Zi)) = 1 + interactZ(Zi)

and average population fitnessW =
∑

i ciinteractZ(Zi) the population covariance is given
by

Cov(Wi, Ẑi) =
∑
i

ciWiẐi − (1 +W )
∑
i

ciẐi =
∑
i

ci(1 + interactZ − 1−W )Ẑi

=
∑
i

ci(interactZ(Zi)−W )Ẑi

and is independent of individual selection effected by interactZ : Z ⊗ PZ → R≥0. The
average within-population covariance for the additive model, on the other hand, is inde-
pendent of population selection since

EICov(Wij , Zj) =
∑
i

ci

∑
j

dijWijZj −WiẐi


=
∑
i

ci

∑
j

dij interactZ(Zj , ωi)Zj + interactZ(Zi)Ẑi − (1 + interactZ(Zi))Ẑi


=
∑
i

ci

∑
j

dij interactZ(Zj , ωi)Zj − Ẑi

 =
∑
ij

cidij(interactZ(Zj , ωi)− 1)Zj .

3.3 Parameter estimation

The generative models of multilevel selection described in the previous section specify the
suggested processes completely given the functions interactZ : Z → R≥0 (or interactZ :

Z ⊗ PZ → R≥0) and interactZ : Z → R≥0. This means that for any metapopulation of
phenotypes in Z a population of phenotypes can be computed that is the outcome of an
episode of selection on the metapopulation using the model. If, conversely, observed data
is given the models may be fitted to the data by estimating the interact functions. The
data required for estimation are individual and population phenotype as well as absolute
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3.3 Parameter estimation

Figure 3.3: The additive process corresponding to the Price approach. The metapopulation is copied
to undergo to separate causal processes. On the left, the relative sizes of the population
remain unchanged while soft individual selection acts in each of the populations. On
the right, population composition remains unchanged while population selection acts on
the populations. Both metapopulations are then collapsed to population and combined
additively with the function mix. Finally, the population is normalised.
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fitness of the individuals organised in populations. The models of the multilevel Price
equation above moreover require the distribution of phenotypes of each population.

In order to estimate the functions interactZ and interactZ the functions may be rep-
resented as parameterised families of functions that reflect the proposed dependency of
offspring number on individual and population phenotype. For example, if in the model
of contextual analysis above fitness is proposed to depend linearly on the numerical phe-
notypes Z and Z corresponding parameterised families are given by interactZ(Z;α, β) =

α+ βZ, interactZ(Z; γ) = γZ with parameters α, β, γ : R.

These specifications yield a model of the observed data phenotypes and fitness, and
Bayesian inference can be used to estimate the parameters. Bayesian inference requires
the definition of prior distributions for the parameters. These encode knowledge about
the parameters as well as assumptions that are made prior to analysing the recorded
data. For instance, regression parameters as in the example above are often assumed
to be normally distributed around zero. After a model for the observed data such as
(3.2) or (3.3) is specified and prior distributions for the parameters are defined, Bayesian
updating is used to obtain posterior estimates for the parameters based on the observed
data. Krapu and Borsuk (2019) discuss software frameworks that implement several
algorithms for computing and analysing posterior distributions obtained from models
such as (3.2) or (1.12). Point estimates of the parameters can be computed as maximum
a posteriori (MAP) points for instance in Python using PyMC3 (Salvatier, Wiecki, and
Fonnesbeck, 2016).

3.4 Outlook

3.4.1 Environmental effects and niche construction

Throughout the thesis we assumed the absence of environmental effects on selection (or
a constant selective environment). The environment can be included in the models if
we assume that the environmental properties relevant for selection can be encoded in an
environment type E (similar to the phenotype Z) so that it can be treated like other
variables in the models. An episode of selection that depends on the environment then
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may be represented as

PZ

PZ
selectPZ

E

(3.4)

where the selection function is extended to a function selectPZ : PZ ⊗ E → PZ that
depends on the environment. For an environment that undergoes changes according to
a function change, a series of selection episodes is then given by

PZ

PZ
selectPZ

E

PZ
selectPZ

change

change

E

E

. (3.5)

Niche construction is a process during which a population of organisms modifies the
environment so that the environmental modifications influence selection pressures on the
population or other recipient organisms (Laland, Matthews, and Feldman, 2016). Since
properties of the organisms determine how the environment is modified the environmen-
tal change is then dependent on the population. Figure 3.4 shows how a population of
organisms that modify their selective environment may be represented in terms of string
diagrams. The diagram shows the feedback that is characteristic for niche construction:
the population modifies the environment that in turn determines the selection pressures
on the population. The population after selection again modifies the environment thus
creating a feedback loop that allows the population to adapt both to the niche construc-
tion activity and the constructed niche.
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3 Models of multilevel selection

Figure 3.4: The diagram shows a population of organisms PZ and their environment E. The
environment undergoes changes that are caused by the organisms. The function
modifyE : E ⊗ PZ → E takes the environment and the population as input and out-
puts the modified environment. The selection function that implements selection in the
population depends on the modified environment.
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3.4.2 Holobionts

The term holobiont describes “an individual host and its microbial community, including
viruses and cellular microorganisms” (Theis et al. (2016), page 1). Often the microbiome
contributes to the host’s fitness by providing metabolic processes that cannot be carried
out by the host (Roughgarden et al., 2018). Conversely, phenotypic properties of the
host determine the composition of its microbial community. Central to the question of
coadaptation of host and microbiome is the mode with which microbes are transmitted.
When transmission is vertical the microbiome is passed on directly from parent to off-
spring host. A simple model of a population of holobionts with vertical transmission is
given by

proliferateZ

selectH

P (H ⊗ PZ)

P (H ⊗ PZ)

. (3.6)

The diagram shows a population of hosts H and their microbial communities PZ.
The microbial communities proliferate dependent on the host phenotype in proliferate :

H⊗PZ → PZ. Fitness of the holobiont in selectH is then determined by host and micro-
biome phenotype and the offspring generation is produced, keeping the host-microbiome
associations.
Transmission is horizontal when the offspring host acquires its microbiome not from its

parent but from a pool of microbes that is shared between hosts. A model of holobiont
selection with horizontal transmission similar to the model in Roughgarden et al. (2018)
is given in Figure 3.5.
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3 Models of multilevel selection

Figure 3.5: Selection cycle with horizontal transmission of a population of holobionts (hosts with
phenotype H with their microbial communities PZ). During the process proliferate :

H ⊗ PZ → PZ the microbes proliferate and undergo selection, and this process may
depend on properties of the host phenotype. (a) points to the microbial community
after proliferation. After this step, samples of the microbe populations of all hosts in the
host population are released into a common pool at (b). Selection in the host population
depends on the microbe populations as their composition affects their host’s fitness. The
hosts in the host population at (c) do not have associated microbe populations because
transmission is strictly horizontal in this model. The hosts are inoculated with microbes
from the common pool in the process inoculate.
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In the previous chapters we constructed generative models of multilevel selection that
implement the causal structures associated with the multilevel Price equation and con-
textual analysis. In this chapter we discuss the use of these two approaches to multilevel
selection for measuring the strength of selection at the two levels given empirical data
collected in a metapopulation that is subject to selection. More precisely, the aim of this
chapter is to show that the essential difference between the Price approach and contex-
tual analysis lies in the causal structure each method posits as underlying the observed
measurements of individual fitness. Briefly, while contextual analysis assumes that the
individual component is determined by direct fitness effects of the trait only, the Price
approach sees the individual component as a result of within-population competition and
duly assumes it to be affected by the trait values of other members of the population. Put
differently, contextual analysis assumes that the individual effect of the trait is absolute
in the sense that it is independent of the social environment. The Price approach, on
the other hand, assumes that the trait affects the competitiveness of its bearer so that
its fitness effect is relative in the sense that it depends on the social environment. This
difference leads to different remainders to be explained by population effects and thereby
to different measurements of the strength of population selection. Recognising that the
difference between the two approaches arises from a difference in the underlying model
of reality enables us to see how to determine which of the two approaches is correct in a
given case, i.e., the one whose underlying model reflects the causal structure of the sys-
tem that is being studied. In particular, the applicability of the two approaches depends
on the biological scenario at hand and cannot be made on theoretical grounds.

4.1 Model

4.1.1 Fitness and selection

The evolutionary model in which we frame our arguments is as simple as possible whilst
being able to support the features we set out to discuss. Individuals are defined by their
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allele at a biallelic locus, with the two alleles representing the presence and absence of a
trait, which also defines their phenotype (denoted by Z) and replicate asexually without
mutation. A population of individuals is partitioned into non-overlapping populations of
equal size such that an individual interacts equally with all members of its population
(the assumptions on population size and disjointness are made for convenience only).
The absolute fitness of an individual determines per capita growth rate and is a function
of its own trait as well as the population trait, but not a function of other properties
of the metapopulation (absence of, e.g., global frequency dependence; moreover we do
not assume a mechanism of global population regulation). The population phenotype is
defined as the average phenotype of the individuals within the population. The following
considerations concern on bout of selection so that individuals reproduce within their
given social environment. We therefore take the populations for granted and do not
consider the mechanism of their formation. Taking a causalist stance, we assume that the
fitness function is deterministic rather than a statistical abstraction from data (Otsuka,
2016a) and stable in its functional form (i.e., the selective environment that determines
fitness in interaction with the phenotype is not changing (Wade and Kalisz, 1990)).
Moreover, we assume that the fitness function is additive such that

w = c1Z + c2Z, (4.1)

where w denotes the fitness of an individual with phenotype Z and population pheno-
type Z, and c1, c2 ∈ R denote the coefficients of the functional representation of fitness
in this simple hypothetical example (fitness and individual phenotype are centered at
the population mean). This notation corresponds to the method of direct fitness or
neighbour-modulated fitness in KS (Taylor, Wild, and Gardner, 2007). c1Z represents
the direct fitness effect of the trait on its bearer, c2Z the indirect fitness effect on trait
bearers’ interaction partners. However, in contrast to approaches using inclusive fitness,
we emphasise a causal viewpoint in this thesis by regarding equations such as Equation
(4.1) as structural equations that mirror causal assumptions about the system rather
than as regression equations. The assumption of additivity in Equation (4.1) is a gross
simplification that has been criticised because it ignores synergistic effects and therefore
only applies to rare cases (Allen, Nowak, and Wilson, 2013; Van Cleve and Akçay, 2014).
The aim of this chapter, however, is not biological generality but to demonstrate causal
distinctions made by contextual analysis and the Price approach. The additive fitness
function (4.1) suffices to show that the two approaches to multilevel selection discussed
in this chapter yield causally nonequivalent structural equations in this case.

84



4.1 Model

Figure 4.1: The crucial difference between nonsocial and social evolution lies in the factors that
determine fitness. The diagrams in the upper row are causal graphs that show the
dependence of individual fitness on phenotypic factors. The lower row are string diagrams
(Jacobs, Kissinger, and Zanasi, 2019) that explicitly represent the process that yields a
variable given another variable. In nonsocial evolution (a) individual fitness depends on
the individual phenotype only while in social evolution (b) individual fitness depends on
the social partners’ phenotype in addition to the focal individual’s phenotype (Taylor,
Wild, and Gardner, 2007). In both cases individual fitness arises from the interaction of
the phenotype(s) with the selective environment.
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The upper row of diagrams in Figure 4.1 shows the crucial difference between nonso-
cial and social evolution in terms of causal graphs. While individual fitness w depends
only on the individual phenotype Z in nonsocial evolution, social evolution introduces a
dependency on social partners’ phenotype Z (Wolf, Brodie, and Moore, 1999). In Pearl’s
causal modelling framework, causal graphs as in the upper row of Figure 4.1 represent
the graphical counterpart of structural equations (Pearl, 2012). These structural equa-
tions model the causal process that yields the output variables, here w, given the input
variables, here Z and Z. In contrast to multiple regression these structural equation
reflect assumptions about the causal structure of the system. To make the causal pro-
cess explicit we make use of string diagrams (Jacobs, Kissinger, and Zanasi, 2019) as
described in Section String diagrams to represent the causal graphs (i.e., Bayesian net-
works) in the lower row of diagrams in Figure 4.1. These diagrams are read from bottom
to top and depict the variables as strings and the structural equations that transform
the variables (i.e., the modelled processes) as boxes. The process of interaction of the
phenotype with the selective environment is represented as box interaction that deter-
mines individual fitness based on individual and population phenotype. The diagrams in
Figure 4.1 are graphical and nonparametric versions of the structural equation 4.1. Both
the diagrams and the structural equation describe general features of the causal process
proposed to determine the fitness of individuals with phenotype Z within a population
with phenotype Z.
The process of selection in a population is given by the change in trait frequency

according to the Price equation without mutation

ŵ∆Ẑ = Cov(w,Z), (4.2)

where ŵ and Ẑ denote average fitness and average individual phenotype across the pop-
ulation. Note that we do not assume that populations themselves replicate or can be
assigned population fitness over and above the fitness of the individuals that constitute
a population. Our model is therefore of MLS1 type in the sense of Heisler and Damuth
(1987), i.e., the focus of the analysis is on individuals, population trait and population
fitness are averages of the corresponding quantities of the individuals within the popula-
tion.
The starting point for the analysis of selection in a population in terms of MLS is

the observation that an aspect of selection acts on populations as a whole. This means
that individual selection is in part determined by the population trait Z because selec-
tion favours populations with high (or low) population trait. In particular, this aspect
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of selection is the same for all members of a population and is captured by the pro-
cess by which some populations contribute more offspring to the next generation than
others due to differential proliferation and extinction (Uyenoyama and Feldman, 1980;
Wade and Griesemer, 1998). Note that it makes no difference to the change in trait
frequency whether (an aspect of) selection acts on the population as a whole or on all
population members individually but in the same way. However, the aim of MLS is not
only the prediction of outcomes but also the attainment of a causal understanding of
the selection process (Sober and Wilson, 1994). This understanding comprises selective
processes at the individual and the population level: individual fitness not only depends
on a population trait in addition to the individual trait but fitness also arises as conse-
quence of a process that affects the population as a whole in addition to a process that
affects each individual specifically. Acknowledging the latter of these dual viewpoints
is characteristic of multilevel selection theory as opposed to kin selection theory. The
neighbour-modulated approach to kin selection, for instance, formalises the fitness effects
of the social environment as factor that alters individual fitness but doesn’t view the pop-
ulation as interacting with its own selective environment (Taylor, Wild, and Gardner,
2007).

Explanations for the evolution of cooperative traits, i.e., individual traits that are
costly for their bearers in comparison with nonbearers, often rely on the interplay between
two processes of this kind. In microcolonies of the bacterium Pseudomonas aeruginosa,
for instance, the production of siderophores puts individuals at a fitness disadvantage
because the process of producing the metabolite binds resources that could otherwise be
used for reproduction (Weigert and Kümmerli, 2017). However, the secreted siderophores
are shared within the microcolony and thus increase colony fitness due to their iron-
scavenging function. Total fitness of individuals results as the combination of the two
processes acting on the individual directly and on its population.

In Figure 4.2, the causal graph for social evolution in Figure 4.1 (b) is refined to a causal
graph and a corresponding string diagram that explicitly represent the distinct processes
of interaction with the selective environments on the individual level and the popula-
tion level. The box “combine” in the lower diagram (b) corresponds to a function that
combines the outcomes of the two processes into total individual fitness. For a complete
specification of the model in terms of structural equations this function must be specified
in addition to structural equations for the processes on the individual and the population
levels. As we will argue in the following section, the causal models corresponding to con-
textual analysis and the Price approach combine their respective structural equations for
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Figure 4.2: When multilevel selection (MLS1) operates, individual fitness may not only depend on
the individual trait and the population trait as in Figure 4.1 (b). A model of MLS1
usually involves two distinct processes whose combined outcomes yield individual fitness.
The individual component of fitness wind is the outcome of the individual’s interaction
with its selective environment as in nonsocial evolution. But also the population as a
whole and through its population phenotype Z interacts with a selective environment in
a causally distinct process that yields the population component of fitness wpop. Total
fitness arises as combination of the two processes.

88



4.1 Model

the individual and population level interaction with the selective environment additively,
so that

w = wind + wpop. (4.3)

The purpose of the decomposition in Equation (4.3) is to explicitly and formally acknowl-
edge the basic tenet of MLS that fitness (here at the individual level) is determined not
only by how the individual interacts with its selective environment but also by how the
individual’s population interacts with the selective environment on a level above that of
the individual. We introduce wpop to formally capture fitness effects that result from the
interaction of the population as a whole with the selective environment. The quantities
wind and wpop are proxies for the effects of causal processes, the former for processes
that affect individual fitness specifically for each individual, the latter for processes that
affect the population. The decomposition in Equation (4.3) is additive because of the
simple fitness function chosen in Equation (4.1). While an MLS analysis always rests on
a decomposition of fitness into contributions from various levels, this decomposition is,
generally, not additive. The difference between the two approaches with respect to the
arena of individual selection, which is the global population for contextual analysis and
the local population for the Price approach, holds more generally, regardless of whether
individual and population selection are combined additively.

Since the Price equation is linear in the fitness argument, the decomposition expressed
in Equation (4.3) corresponds to a decomposition of the strength of selection itself

ŵ∆Ẑ = ŵ(∆Ẑ)ind + ŵ(∆Ẑ)pop = Cov(wind, Z) + Cov(wpop, Z)

In order to make quantitative statements about the strengths of population selection
vs. individual selection, an MLS analysis must determine the components in this decom-
position. However, while individual trait and fitness as well as aggregates thereof can
be measured directly, individual effect and population effect, or their covariance with
the individual trait, are generally not amenable to direct measurement. The multilevel
Price equation and contextual analysis are two methods of obtaining wind and wpop by
statistical means given individual traits and fitnesses (Okasha, 2006).

4.1.2 Contextual analysis and the Price approach

Equation (4.1) partitions individual fitness into the effects of the individual trait and the
population trait. It describes how two phenotypic traits combine to yield another trait of
the individual, namely absolute fitness. Contextual analysis (Heisler and Damuth, 1987;
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Okasha, 2006; note that here and the following we refer by ‘contextual analysis’ to the
standard structural equation with the untransformed variables Z and Z, as is custom-
ary in discussions on the issues reported here) takes effects of the population trait in
Equation (4.1) as indicating population selection. Strictly speaking, c2 6= 0 in Equation
(4.1) implies the potential of the trait to undergo population selection conditional on the
existence of population-trait variation between populations (Wolf, Brodie, and Moore
(1999); see McLoone (2015) for a discussion of this difference). We regard population
effects on fitness as more fundamental than a concept of population selection itself as
the former do not depend on properties of a metapopulation but reflect causal processes
that increase or decrease reproductive success of an individual situated in a population
context vis-\‘{a}-vis a specific selection regime that in turn determines individual fit-
ness. Population effects can lead to population selection if, in a specific metapopulation,
they generate fitness differences between individuals. This requires Var(Z) 6= 0, for if
Var(Z) = 0 all individuals have the same population trait and are therefore subject to
the same population effects. Given a population of individuals and a fitness function that
yields individual fitness as superposition of fitness effects of the variables that causally
determine fitness, the Price equation yields the effect of selection on this population, that
is the change in mean phenotype over one generation (Figure 4.3).

The Price approach to multilevel selection (Price, 1972, Okasha, 2006, Gardner, 2015)
rests on the partition of selection itself given by the multilevel expansion of the Price
equation (4.2)

ŵ∆Ẑ = Cov(W,Z) + E[Covwg(w,Z)] (4.4)

and posits that a population is undergoing group selection if the first term in Equation
(4.4) is non-zero. In light of our remarks regarding group effects and group selection
above, the Price approach and contextual analysis therefore decompose different quan-
tities and are not directly comparable. However, this difference is superficial as the
partition of fitness effects given by contextual analysis corresponds to a partition of se-
lection and the partition of selection given by the multilevel Price equation corresponds
to a partition of fitness effects. Contextual analysis, i.e., the functional representation of
fitness in Equation (4.1), determines selection according to Equation (4.2) for a popula-
tion that is partitioned into groups: given a population of individuals i ∈ 1, . . . , n with
fitnesses

wi = c1Zi + c2Zi,

where Zi is the trait of the group the ith individual is part of, the change in mean trait
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Figure 4.3: In the left panel, contextual analysis decomposes the fitness function into an individual
and a population component that depend on the individual trait and the population trait,
resp. In the right panel, the multilevel Price equation decomposes selection, that is a
change in mean phenotype in the population, into a change due to individual selection and
a change due to population selection. The standard Price equation without transmission
bias maps a functional description of fitness to a process of selection in a population of
individuals whose fitness is defined by this functional description. Since the Price equation
is given by a covariance and therefore linear in the fitness function, a decomposition
of fitness into the summands individual and population effects yields a corresponding
and unique decomposition of selection in a population into the summands individual and
population selection, each contributing a change in mean phenotype. In Section 4.1.2, we
show that, conversely, the coefficients of a decomposition of selection into individual and
population selection using the Price approach correspond to coefficients of a structural
equation for fitness, given the assumption that fitness is linear as in Equation (4.1).
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value in the population follows from Equation (4.2) as (Okasha, 2004)

ŵ∆Ẑ = c1Var(Z) + c2Var(Z). (4.5)

Thus the decomposition of fitness into individual and group effects given by contextual
analysis corresponds to a decomposition of selection whose components, according to con-
textual analysis, represent the component of individual selection c1Var(Z) and the com-
ponent of group selection c2Var(Z). Conversely, the components of individual selection
and group selection according to the Price approach for a population with non-vanishing
variance within and between groups correspond to a decomposition of individual fitness
into a component of individual effects and group effects. To see how, note that with
w = c1Z + c2Z (Equation (4.1)),

Cov(W,Z) = (c1 + c2)Var(Z) (4.6)

(Okasha (2006); page 89). Using Equation (4.5) and Equation (4.6), the decomposition
according to Equation (4.4) is

ŵ∆Ẑ = Cov(W,Z) + E[Covwg(w,Z)] = (c1 + c2)Var(Z) + E[Covwg(w,Z)]

= c1Var(Z) + c2Var(Z)

and therefore

E[Covwg(w,Z)] = c1(Var(Z)−Var(Z)).

Hence the decomposition of fitness

w = c′1(Z − Z) + c′2Z (4.7)

corresponds to the decomposition of selection

Cov(w,Z) = Cov(c′1(Z − Z) + c′2Z,Z) = c′1(Var(Z)−Var(Z)) + c′2Var(Z),

where c′1 = c1 and c′2 = c1 + c2.
Through this correspondence both contextual analysis and the Price approach yield

decompositions of fitness effects as well as of selection (see Table 4.1). Note that the
possibility of conducting contextual analysis with respect to the variables Z − Z and
Z rather than Z and Z – the former choice of variables being equivalent to the Price
approach, the latter to contextual analysis – is discussed in Heisler and Damuth (1987)
along with examples of circumstances under which this might be causally adequate.

92



4.1 Model

Table 4.1: The decompositions of contextual analysis and the Price approach as individual and group
fitness effects w = wind + wgr and as components of selection. The parameters of
contextual analysis and the Price approach are linked by the equations c′1 = c1 and
c′2 = c1 + c2.

Fitness Selection

Individual component + group component Individual selection + group selection

w = wind + wgr ∆Ẑ = (∆Ẑ)ind + (∆Ẑ)gr

Contextual analysis c1Z + c2Z c1Var(Z) + c2Var(Z)

Price approach c′1(Z − Z) + c′2Z c′1(Var(Z)−Var(Z)) + c′2Var(Z)

It should be noted that while the interpretation of contextual analysis as structural
equation based on causal assumptions is natural, the Price equation and its multilevel
expansion are usually viewed as mere statistical identities. However, a causal interpreta-
tion of the coefficients of the multilevel Price equation as indicators of selection on the
individual and group level as in Okasha (2006) requires the assumption of a causal pro-
cess that gives rise to the measured coefficients. As demonstrated in this section above
for the additive fitness function given by Equation (4.1) the structural equation for a
process corresponding to the multilevel Price equation is given by Equation (4.7).

4.1.3 Causal intuitions underlying an MLS analysis

A core idea of social evolution is that an individual trait of social organisms has fitness
effects not only on its bearer but also on the social environment of the bearer. Common
to paradigmatic examples of group selection is an individual trait with effects that change
individual fitness homogeneously across the group such that these effects are best viewed
as group effects (Sober, 1980). For the water striders described in Eldakar, Wilson,
et al. (2010) the exodus of females from patches with high levels of aggressiveness is a
group effect of the trait ‘aggressiveness’ in males. This group effect is negative because
group productivity is assumed to decrease with the number of females on a patch as
females provide reproductive resources. On the other hand, aggressiveness has a positive
individual effect because aggressive males secure more mating opportunities. Whether
contextual analysis or the Price approach is appropriate depends on details of this latter
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mechanism. If, for instance, less aggressive males generally have lower reproduction rates
due to female behaviour and independent of other males on the local patch the contextual
analysis model may be more appropriate. If, on the other hand, male reproduction
is subject to competition within patches where, for example, successful reproduction
depends on the ability of males to guard their mates the model suggested by the Price
approach may correspond more closely to the actual process. In either case, the causal
interpretation of the trait refers to proximate fitness effects of the trait and involves the
individual as well as the group it is in but not other groups or the population as a whole.
Therefore the causal interpretation takes place on the fitness side rather than on the
selection side in Figure 4.3.

Since we assume that fitness is an effect of the individual/population trait an indi-
vidual exhibits, we can read the equations in the left column of Table 4.1 as structural
equations that determine fitness given the traits. By the assumption on the additiv-
ity of interactions these equations are linear. The interpretation of structural equations
is aided by the use of causal graphs, more precisely, directed acyclic graphs with causal
rather than correlational interpretation (Pearl, 2009). Figure 4.4 shows the causal graphs
corresponding to the structural equations in Table 4.1. Since the components wind and
wgr reflect quantities that refer to processes occurring in the biological system studied,
the causal graphs constitute models of the underlying reality. For example, the popu-
lation effect of the aggressiveness trait in water striders is given by the propensity of
females to remain on the focal patch and this propensity is a function of mean male
aggressiveness in the patch (this function is linear by assumption), i.e., the population
trait Z. The non-equivalence of the causal graphs (a) and (b) in Figure 4.4 reflects a
difference in how the individual/population components of individual fitness depend on
individual/population trait. It should be noted that the factors Z and Z are not strictly
independent as suggested by omitted arrows between Z and Z in Figure 4.4. Since the
population phenotype is generated collectively by all individuals within a group, Z does
affect Z. The arrows are omitted in Figure 4.4 because our arguments focus on that
part of the causal structure that determines fitness. Details of how the interaction of
individual phenotypes gives rise to the population phenotype are not relevant for the
present discussion.

The model of fitness underlying contextual analysis (panel (a) in Figure 4.4) is based
on the assumption that the individual component and the population component of fit-
ness are determined only by the individual trait and the population trait, resp. This
means that fitness differences within populations, i.e., differences in the individual com-
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Figure 4.4: Upper row: Causal graphs showing the interdependence of the variables Z (individual
trait), Z (population trait, i.e., mean of individual trait in subpopulation), w (individual
fitness), wind (individual component of individual fitness), and wpop (population compo-
nent of individual fitness). Population fitness W is given as average over the individual
fitnesses in a population. (a) Contextual analysis assumes an absolute individual effect
of the trait. (b) In the Price approach, the trait is assumed to have a relative effect in the
sense that the trait affects fitness depending on the trait expression of other members of
the population. (c) In contrast, kin selection theory acknowledges the possibility of indi-
rect effects in addition to direct effects but makes no further assumptions on the causal
structure. In KS, it is customary to denote the direct effect of the trait on its bearer by
−c and the indirect effect by b. The parameter of relatedness r represents the correlation
between Z and Z and is not pictured in the graph because we focus on selection rather
than on properties of population composition. Also the effect of individual phenotype on
population phenotype has been omitted, see text. Lower row: String diagrams making
the processes that yield the output variables given the input variables explicit. Inside the
boxes are the structural equations that mirror the respective processes numerically. In
diagrams (a) and (b), the fitness effect of the population process interactionpop is propor-
tional to the population phentype. In diagram (b) for the Price approach, the population
phenotype Z is “copied” at the black dot because it is involved in both processes. In
interactionind instantiated with the structural equation c1(Z − Z), the population phe-
notype renders the effect of the individual phenotype relative to the population so that
individuals, via their individual phenotype, compete within populations.
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ponent, are due to the individual trait and independent of the population trait. In that
sense contextual analysis assumes the individual effects of the trait to be absolute, i.e.,
independent of population context. In contrast, the Price approach assumes that the
population trait also affects the individual component of fitness in a specific way (see
the path coefficients in Figure 4.4). This effect of the population trait on the individual
component is equivalent to the assumption that fitness differences within populations
are due to competition between population members in which the individual trait deter-
mines competitiveness of an individual. Indeed, the functional representation of fitness
according to the Price approach from Table 4.1

w = c′1(Z − Z) + c′2Z

shows that the individual component sums to zero over each population and that indi-
viduals with higher-than-average trait have a positive individual component (negative if
c′1 < 0). In other words, the trait affects individual fitness not by generally increasing
or decreasing its bearer’s fitness but by increasing or decreasing its bearer’s competi-
tive ability within the population. We discuss examples of these differences in the next
section.

4.2 Results

4.2.1 Cases of disagreement

When comparing the Price approach and contextual analysis it should be kept in mind
that both aim to quantify group selection and therefore start with the intuitive identi-
fication of an effect of the trait on a population-level property that affects fitness of all
individuals within a population homogeneously. In the water strider example, an MLS
analysis is based on the assertion, intuitively acquired by inspection of the empirical
system, that the population mean of the trait ‘aggressiveness’ affects the number of fe-
males in a population and therefore the productivity of the population as a whole. This
assertion is independent of the subsequent choice of statistical approach to quantifying
the strength of population selection. Contextual analysis and the Price approach there-
fore agree on the nature of the population effect on fitness wgr and on the mechanism
bringing forth this effect, though not on its magnitude. The difference between the two
approaches lies in the question of which factors affect the individual component of fitness,
i.e., which factors are responsible for within-population differences in fitness.
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The problem cases for contextual analysis and the Price approach discussed by Okasha
(2006) and others (Heisler and Damuth, 1987; Sober, 2011; Goodnight, 2015) reveal
issues with the two approaches because the intuition about the level on which fitness
effects occur is inconsistent with the verdict of one of the approaches with respect to the
strengths of individual and population selection. This intuition is best understood in
terms of fitness effects and not in terms of selection because it is based on a mechanism
that mediates an effect of the trait on the population component of absolute fitness
and is therefore independent of composition and organisation of the population as a
whole. Changing a patch of water striders to exhibit a lower level of the population
trait ‘aggressiveness’ increases population fitness because less females will flee the patch.
This causal explanation of the biological scenario is the core of an MLS analysis and it
is independent of other patches and selection dynamics in the overall population. We
conclude that the intuition with regard to the levels on which selection acts is about
the mechanisms and not about frequency changes in the population. Accordingly, the
following discussion is couched in terms of the left-hand side of Figure 4.3.

In the following examples, we determine the coefficients c1, c2 of the kin selection model
(Figure 4.4 (c)) and discuss their interpretation in terms of the refined models provided
by contextual analysis and the Price approach (models (a) and (b) in Figure 4.4).

1. Non-social trait A trait is non-social if the fitness of an individual does not depend
on the trait values of its interaction partners (population mates) (Okasha, 2006) so
that c2 = 0 and w = c1Z (c1 6= 0 unless the trait is altogether neutral) in Figure
4.4. Intuitively, a trait of this type cannot be subject to population selection,
because it has no fitness effects on its bearer’s interaction partners and therefore
cannot affect the population component of fitness. However, the causal graph that
represents the assumptions of the Price approach (Figure 4.4 (b)) shows an effect
of population trait on population component of fitness with weight c1+c2 = c1 and
therefore detects population selection where intuitively there is none. Population
effects of this type have been called cross-level by-products (Okasha, 2006) and will
be discussed in a later section. Note that the causal graph underlying contextual
analysis correctly shows the absence of population effects.

2. Soft selection The tension between the Price approach and contextual analysis
is reversed in the case of soft selection (Wade, 1985; Goodnight, Schwartz, and
Stevens, 1992; Débarre and Gandon, 2011). Briefly, soft selection occurs in a
metapopulation if mean individual fitness is homogeneous across populations, i.e.,
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if all populations have the same reproductive output. Soft selection models situa-
tions in which individuals of each population share a fixed resource and the trait
under soft selection determines how an individual fares in the within-population
competition for this resource. The population trait determines competitiveness of
the population, i.e., mean competitiveness of its members, in the sense that an
individual has lower fitness in a competitive population than in a population with
low population trait. Soft selection is intuitively considered to be free of popula-
tion selection (Wade, 1985; Okasha, 2006; Sober, 2011). The trait has no effect on
the population level because changing the trait value of an individual in a popu-
lation has no homogeneous fitness effect within the population as the change has
no consequences for mean population fitness but merely changes the outcome of
the within-population competition. It is easy to see that a kin selection model of
soft selection takes the form w = c1Z − c1Z, i.e., c2 = −c1, with c1 > 0 (resp.
c1 < 0) if a higher trait value implies higher (resp. lower) competitiveness. The
interpretation of these parameters according to the Price approach yields that the
edge from Z to wpop has weight c1 + c2 = 0 in the causal graph (b) in Figure
4.4. The Price approach correctly detects the absence of population selection in
this example. However, contextual analysis mistakes the effect of the population
trait on fitness as an effect on the population component of fitness according to
the causal graph (a) in Figure 4.4. Though most researchers that engaged with the
problem of inconsistency between contextual analysis and the Price approach seem
to agree that no population selection occurs in soft selection, some have argued to
the contrary. Goodnight, Schwartz, and Stevens (1992) regard soft selection as an
example of population selection since an individual’s fitness depends on the trait of
the population of which it is a member. We agree that individual fitness depends
on the population trait but this effect of the population trait on fitness is an in-
dividual effect (the diagonal arrow in Figure 4.4 (b) targets wind) that represents
within-population competition. In soft selection, there is no population effect since
the trait does not influence population fitness.

3. Genotypic selection with meiotic drive Okasha (2004) introduces ‘frameshifting’ as a
desirable property of a general theory of multilevel selection. The theory is capable
of frameshifting if it formalises features of population selection in such a way that
they hold by analogy whenever the hierarchy given by the population/individual
relation is instantiated at other levels of organisation. The treatment of genotypic
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selection with meiotic drive in MLS terms is relevant in that context because it tests
the ability of MLS to frameshift to levels below the level of organisms. Following
Wilson (1990), Okasha (2004) discusses diploid population genetics as an example of
multilevel selection where alleles correspond to individuals and diploid genotypes
to populations. In this analogy, population effects on allelic fitness are due to
genotypic fitness, i.e., organismic fitness of the organism with a specific genotype,
and individual effects are due to meiotic drive that creates within-population fitness
differences between alleles.

Given the intuition that individual selection as well as population selection is at
work in genotypic selection with meiotic drive, the expectation with respect to
a decomposition of fitness into individual and population effects is clearly that
population selection is present when genotypic fitnesses differ whereas individual
selection is brought about by unfair meiosis. However, it is easy to see using
specific fitness functions that contextual analysis doesn’t agree with intuition in
this case. When only meiotic drive is acting while there is no difference in fitness
between genotypes, for example, the situation is analogous to soft selection that
was shown above to be captured by the Price approach rather than contextual
analysis. Furthermore, Okasha (2006) gives the example of two alleles A and B

such that genotypic fitnesses are given by wAA = 4, wAB = 3, and wBB = 2 while
meiotic drive causes 2 of the 3 gametes produced by an AB organism to be A.
Then fitness of an A allele is 2 and that of a B allele is 1, independent of the
genetic background. Thus, despite unfair meiosis and dependence of fitness on the
population trait, contextual analysis concludes the absence of population selection,
c1 6= 0, c2 = 0. The Price approach, in contrast, reaches the correct conclusion that
individual fitness is given by w = c1(Z − Z)︸ ︷︷ ︸

ind. component

+ c1Z︸︷︷︸
population component

and therefore

that both components of selection are non-zero.

Okasha’s conclusion that the “covariance approach [i.e., the Price approach] ap-
pears to frameshift down quite well, the contextual approach very badly” (Okasha
(2004), page 498) is thus readily explained by the viewpoint developed so far: un-
fair meiosis corresponds to the zero-sum game of within-population competition.
This is precisely the causal structure assumed by the Price approach.

99



4 Measuring multilevel selection

4.2.2 Cross-level by-products

A core assumption of MLS theory is that a trait an individual expresses may affect prop-
erties of its population as a whole and therefore population fitness (i.e., mean individual
fitness in a population). This effect is captured by the population component wpop of
individual fitness. However, population fitness, in MLS1, is the average individual fitness
in a population and therefore comprises not only the population component but also the
average individual component wind. This is problematic because the part of population
fitness that entails selection on the population property caused by the trait is wpop only.
The contribution of wind to population fitness is called a cross-level by-product (Okasha,
2006) because it represents fitness of the individuals that constitute the population, i.e.,
the lower level, rather than fitness that is a property of the population as a whole, i.e.,
the higher level. Intuitively, a population with many individually fit members seems
more fit than a population with few individually fit members even when the population
component wpop and therefore the fitness with respect to population selection that is to
be quantified is the same for both populations. The non-social trait case discussed above
is a good example of this effect. Since there is no population property for population
selection to act on in this case, population fitness comprises solely of individual fitness
from the level below and therefore consists entirely of cross-level by-products.
To see how contextual analysis and the Price approach handle cross-level by-products

assume that individual fitness is given by the expression w = c1Z + c2Z. The decompo-
sition of population fitness W = (c1 + c2)Z into a component due to population effects
and a component due to individual effects depends on the causal structure and therefore
differs between the two approaches. While contextual analysis partitions population fit-
ness into individual and population component as W = c1Z︸︷︷︸

ind. component

+ c2Z︸︷︷︸
population component

the decomposition according to the Price approach yields only a population component,
W = (c1 + c2)Z. For a non-social trait (c1 6= 0, c2 = 0) the Price approach mistakenly
traces population fitness entirely back to a non-existing population effect, whereas con-
textual analysis correctly assigns population fitness to the individual effect. The fact that
contextual analysis handles cross-level by-products correctly in the non-social trait case
has led Okasha to conclude that contextual analysis is “on balance preferable” (Okasha
(2006), page 99) to the Price approach. However, it should be noted that in the soft
selection case (c1 = −c2) contextual analysis decomposes population fitness as

W = c1Z︸︷︷︸
Wind

− c1Z︸︷︷︸
Wpop
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and hence detects cross-level by-products of magnitude c1Z even though cross-level by-
products are absent since the individual components of fitness sum to zero in each pop-
ulation.
In their study on multilevel selection in water striders, Eldakar, Wilson, et al. (2010)

choose contextual analysis for quantifying population selection because contextual anal-
ysis controls for “potential cross-level byproducts” (Eldakar, Wilson, et al. (2010), page
3186). However, as we have seen, contextual analysis does not correctly account for cross-
level by-products automatically. Which of the two approaches is correct depends on the
kind of individual selection that acts on the system, i.e., the causal structure underlying
fitness. In this case, the causal graphs (a) and (b) in Figure 4.4 both seem possible.
Recall that aggressiveness in male water striders is hypothesised to have an effect on the
individual component of fitness (aggressive males secure more mating opportunities than
non-aggressive males) and on the population component of fitness (patches with higher
aggression levels have fewer females). Contextual analysis assumes that the individual
component is independent of the population trait: in addition to the population compo-
nent shared by all males in a population each male has an individual component that is
determined by its trait and independent of the population trait. Another, perhaps more
plausible, assumption underlies the Price approach: the population trait determines the
number of females on a patch and this reproductive resource is distributed to the males
according to their competitiveness. We will discuss an experimental intervention that
would reveal the correct underlying causal structure in the next section.

4.2.3 Determining the preferable approach

Several authors have discussed the question which of the two approaches is preferable in
general (Okasha, 2006; Sober, 2011; McLoone, 2015). However, even the most extensive
discussion of this question (Okasha, 2006) has been inconclusive in the sense that in light
of the problematic cases discussed above neither can be endorsed unreservedly. We argued
that a general preference cannot be justified as the essential difference between the two
approaches lies in non-equivalent assumptions about the causal structure of the biological
system which, as the problematic cases demonstrate, may be either of the two. However,
our reduction of the difference between the Price approach and contextual analysis to
a difference between their respective causal graphs has the benefit that experimental
interventions that reveal the correct causal structure and with it the correct approach
can easily be derived from the causal graphs (Pearl, 2009). Note that while we argue
that the suggested interventions in principle reveal the correct structure we do not claim
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that such interventions are feasible for a given biological system. Moreover, while the
two approaches discussed here are the main approaches to measuring the strength of
population selection, it may well be possible that neither is suitable in a given scenario.
We will discuss this and other limitations of this work below.

Imagine that we have a biological system such as a population of water striders in
Eldakar et al. in which intuitive inspection suggests that individual fitness depends
on an individual component and a population component as in Figure 4.4 (a) and (b).
Analysis reveals proposed causal pathways for individual trait and population trait to
affect individual fitness via the two components. In particular, such an analysis comprises
a hypothesis on the mechanism that mediates the effect of the population trait on the
population component of individual fitness. For the water strider example the population
trait is mean aggressiveness on a patch, the population component is proportional to the
number of females on a patch, and the mechanism that mediates the effect of the former
on the latter is female exodus determined by the females’ preference for low aggressiveness
patches. Choosing contextual analysis or the Price approach for quantification goes
hand in hand with the commitment to regard Figure 4.4 (a) or (b), resp., as the causal
structure underlying the observed phenomena. The causal structures posited by the two
approaches differ in that the Price approach assumes an effect of the population trait
on the individual component of fitness. This assumption is reflected in the diagonal
arrow in Figure 4.4 (b) that is missing in panel (a). The two arrows emanating from
Z in (b) represent two distinct cause-effect relations between the population trait and
individual fitness. But given the hypothesis on the mechanism that mediates the effect
of the population trait on the population component of fitness these two distinct cause-
effect relations correspond to two distinct mechanisms through which the population
trait affects fitness. Consequently, it is in principle possible to separate the effects by
intervening on one of the mechanisms but not the other. This intervention translates to
removing the vertical arrows from Z to wpop in Figure 4.4 (a) and (b) so that the system
is described by the modified graphs in Figure 4.5. But in the system with suppressed
population effects the two causal structures in Figure 4.5 (a) and (b) can be distinguished
on the basis of the observable quantities Z, Z, and w. In particular, contextual analysis
predicts individual fitness to be independent of population membership when the system
is being intervened on in this way. The Price approach, however, predicts continued
dependence of fitness on population trait due to within-population competition. As
these predictions cannot both be true, the intervention allows the identification of one of
the two approaches as being in accord with experimental observations.
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Figure 4.5: Modified causal graphs when suppressing the effect of the population trait on the popula-
tion component. Contextual analysis predicts fitness to be independent of the population
trait when the population effect is suppressed while the Price approach does not.

Corresponding to the causal models expressed in the graphs are mechanisms corre-
sponding to each of the arrows in the model. In the water strider example, given the
mechanisms corresponding to the arrows in Figure 4.4, it is now easy to see how a deci-
sion for one of the two approaches may be reached. Since the effect of population trait on
fitness is mediated by female exodus, the effect can be suppressed by preventing females
from leaving patches, i.e., by removing female dispersal between patches (Eldakar, Dlu-
gos, et al., 2009). It is crucial that this intervention leaves the diagonal arrow in Figure
4.5 (b) intact. This is because the diagonal arrow represents a different causal pathway,
namely the within-patch competition for females which is not affected by preventing fe-
males from leaving the patch. An informed decision for contextual analysis can then be
reached if fitness is independent of mean aggressiveness on a patch when female dispersal
is removed, i.e., if the diagonal arrow in Figure 4.5 (b) was not part of the underlying
causal structure in the unperturbed system. The Price approach is more appropriate if
fitness still depends on patch composition under this experimental condition.

Both the Price approach and contextual analysis serve the purpose to determine the
quantities wind and wgr in Equation (4.3), or equivalent quantities (see Table 4.1), from
the more easily measurable variables individual trait and individual fitness. In order to
achieve this, both approaches require assumptions that can be conveniently represented
in terms of causal graphs as in Figure 4.4. We have shown above how, in principle, it
is possible to determine which of the two approaches is more appropriate. However, we
have seen that the causal structures posited are highly contrived. It seems therefore very
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well possible that neither of the two approaches is suitable for determining the level-
specific strength of selection. This is the case when neither of the causal graphs (a) and
(b) in Figure 4.4 represents the causal structure underlying the biological phenomenon
in question.

4.3 Conclusion

Population selection refines kin selection by splitting individual fitness into two com-
ponents, i.e., by assuming that fitness is determined by two additional factors that are
themselves determined by the variables individual trait and population trait. The causal
graphs in Figure 4.4 show that this means that population selection adds a layer to the
causal structure of selection assumed by kin selection. This addition constitutes a proper
refinement of kin selection and corresponds to avoiding averaging over the causes of indi-
vidual fitness (the ‘averaging fallacy’ described by Sober and Wilson (1999)). From this
viewpoint, the tension between contextual analysis and the Price approach can be seen as
an instance of the purely formal problem of connecting an additional layer of nodes to an
existing graph. The connection schemes proposed by contextual analysis and the Price
approach, i.e., the coefficients of the paths targeting wind and wgr in Figure 4.4, are two
solutions to this problem. Since omitted paths in a causal graph represent hypotheses
about the absence of effects the correct approach is the approach whose hypotheses are
satisfied in the biological system at hand. Phrasing the problem in terms of causal graphs
demonstrates that, even in the additive case, other refinements are in principle possible
and could apply to scenarios in which the individual component is given neither by soft
selection (Price approach) nor by hard selection (contextual analysis) but by intermedi-
ate selection regimes (Débarre and Gandon, 2011). Casting an MLS analysis in terms
of refinements of causal graphs gives a formal argument for the non-equivalence of MLS
and kin selection. We have argued that the refinement introduced by MLS is non-trivial
(see difficulties with Price approach and contextual analysis) and provides a view on the
system that is tailored to the levels of organisation in the system. This view is crucial
when cause-effect relations that pertain to a specific level are manipulated or undergo
change, such as during an evolutionary transition in individuality, and the system-level
consequences of such alterations are to be predicted. Strengthening the formal core of
MLS not only facilitates the application of MLS in evolutionary science but also aids in
assessing benefits, limitations, and formal requirements of this approach to empirical and
theoretical biological scenarios.
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In this thesis I have discussed multilevel selection, its representation in terms of mathe-
matical models, and how these models correspond to instances of multilevel selection in
biological systems. Motivated by the inconsistency between contextual analysis and the
Price approach to multilevel selection, I argued that causal models are required to avoid
inconsistency and constructed causal models of multilevel selection that correspond to
contextual analysis and the multilevel Price equation.

Using the ladder of causation, I illustrate in the first chapter how causality and rep-
resentability extend the notion of correlation and argued that a complete understanding
of a system that allows reasoning about counterfactual configurations requires a func-
tional model of the system. Equations of evolutionary change, such as the multilevel
Price equation and contextual analysis, are often correlational but their application to
empirical systems is based on a causal interpretation.

In the second chapter, I show how models of selection and other biological processes
may be implemented functionally thus yielding causal models. Probability and multiset
monads are used to represent populations and metapopulations so that multilevel selec-
tion can be implemented as function that takes a metapopulation as input and outputs
a population after selection. This realises a functional representation of the evolution-
ary process of multilevel selection and allows the construction of more involved models
by composing basic functions sequentially, parallely, and recursively. Moreover, I show
how string diagrams can be used to conveniently represent the functions involved. This
diagrammatic formalism allows an intuitive representation of the constructed models.

I introduce complete models of multilevel selection that correspond to contextual anal-
ysis and the multilevel Price equation in the third chapter. These models are formulated
in terms of probability monads and represented graphically as well as algebraically. The
models highlight the conceptual differences between contextual analysis and the multi-
level Price equation.

Finally in the fourth chapter, I use a functional viewpoint to clarify the relation of
contextual analysis and the Price approach when measuring multilevel selection in em-
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pirical data. The two approaches yield conflicting results for the strength of selection
on the two levels, and I argue that this is because they correspond to non-equivalent
causal models. In order to get results that agree with the understanding of the system,
the causal structure of the actual biological system must be matched with the causal
structure of the model. I outline how the correct causal structure may be determined
through intervention on the system.
There are several limitations of the thesis that concern the models considered and

the factors included in them. The models in this thesis assume perfect heredity so that
offspring are clones of their single parent, ignoring mutation. Also, the models do not
include notions of phenotypic plasticity or development and, consequently, do not allow a
distinction between genotype and phenotype. Moreover, reproduction is assumed asexual
throughout. Another limitation of the thesis concerns the structure of the metapopu-
lations considered. Applications of multilevel selection, for instance in theories on the
evolution of cooperation, often require specific properties of the metapopulation such
as assortment of genotypic values according to Hamilton’s parameter of relatedness r.
While any structuring of the metapopulation into populations is possible with the models
described above, I have not included a mechanism by which populations are formed. Such
a mechanism would allow to iterate selection so as to assess the response to selection.
An obvious avenue for further research is extending the models constructed in this

thesis to include other factors and mechanisms that are relevant to evolution such as
mutation and sexual reproduction. Since selection acts on the phenotype it is natural
to include the environment so as to model development or phenotypic plasticity. In ap-
plications of multilevel selection populations often feature additional structure such as
class structure in insect societies (Gardner, 2015). The formalism of monads used in this
thesis lends itself to represent further structure of the metapopulation. In this way, class
structure or other population structure could be included in the models. Otsuka (2016b,
2019) advocates a causal formulation of evolutionary equations in order to make assump-
tions regarding the causal structure of the system explicit. The functional approach used
in this thesis could be used for modelling evolutionary phenomena other than selection.
The graphical representation in terms of string diagrams allows the sequential, parallel,
and recursive composition of simple components to obtain complex models.
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1 The multilevel Price equation

The multilevel Price equation is a recursive application of the Price equation (1.2) with
populations as units of selection (i.e., as evolutionary individuals). We assume ideal
transmission on the individual level – that is no mutation, recombination, or phenotypic
plasticity – and the organisation of individuals into disjoint populations. The popula-
tions constitute a metapopulation and are assumed to be of homogeneous magnitude for
simplicity. With the selection component (1.6) of the Price equation for populations,
we have (i : I with |I| = n indexes the individuals, l : L with |L| = p indexes the
populations, and k : K with |K| = m indexes the individuals within the populations of
magnitude m : N; there are n individuals in p populations of m individuals each)

∆EI(Z) = CovI(W,Z) = CovI(W,Z) + ELCovK(L)(W,Z). (1)

The first equality follows because we assume transmission effects on the individual level
to be void. For the second equality,

1. assume without loss of generality that EIZ = 0 (which implies ELZ = 0),

2. remember that EIW = 1 because W here denotes relative fitness (which implies
ELW = 1), and

3. note that

CovL(W,Z) = CovI(W,Z).

To see 3., denote the n data points recorded for each of the variables W,W,Z, and Z

107



Appendix

by wi, zi, and zi for i : I. With CovI(X,Y ) = 1
n

∑n
i=1(xi − EIX)(yi − EIY ), we have

CovL(W,Z) =
1

p

p∑
l=1

(wl − ELW︸ ︷︷ ︸
=1

)(zl − ELZ︸︷︷︸
=0

) =
1

p

p∑
l=1

(wl − 1)zl
(1.)
=

1

p

p∑
l=1

wlzl =

=
1

p

p∑
l=1

zl
1

m

m∑
k=1

wlk =
1

n

p∑
l=1

m∑
k=1

wlkzl

= CovI(W,Z).

This gives

ELCovK(L)(W,Z) =
1

p

p∑
l=1

Covl(W,Z) =
1

p

p∑
l=1

1

m

m∑
k=1

(wlk − wl)(zlk − zl)

=
1

n

p∑
l=1

m∑
k=1

[wlkzlk − wlzlk − wlkzl + wl zl]

= CovI(W,Z) + CovL(W,Z)− 2

p

p∑
l=1

wlzl︸ ︷︷ ︸
=2CovL(W,Z)

= CovI(W,Z)− CovL(W,Z)

to prove the second equality and thus motivate the multilevel Price equation (1) as
expansion of the Price equation for individuals in metapopulations.
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