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Abstract

New Non-Reflective Boundary Conditions (NRBC) are developed and validated for compu-

tational fluid dynamics (CFD) prediction of acoustic noise at discrete frequencies in ducts

containing non-uniform mean flow. The new boundary conditions are implemented in a

commercial time-unsteady CFD solver and validated in uniform and non-uniform mean

flow over a range of wavenumbers and frequencies in two and three dimensions. A litera-

ture review is provided, discussing the ideas and state-of-the-art in non-reflecting boundary

treatments. The test calculations are repeated with a subset of the treatments most com-

monly used in acoustic CFD calculations to allow comparison to be made with the current

method. The primary target of the work is the prediction of acoustic tones in turboma-

chinery, and a final demonstration is performed for an acoustically representative test case

modelling the generation and propagation of vortex/stator interaction tones. In addition

to accommodating fully non-uniform (circumferentially as well as radially) mean flow the

new boundary conditions are able to accommodate non-uniform duct geometries, including

non-planar bounding surfaces at inlet and exit, although these capabilities have not yet

been demonstrated. A discussion is provided of the results of the test calculations and

it is concluded that the new boundary conditions offer the best overall capability of the

methods tested for the target calculation type, with reflection coefficients of around -40dB

and -20dB at the inlet and outlet boundaries respectively. Recommendations are given for

future work.
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Chapter 1

Introduction

This thesis discusses the development of boundary conditions to be used in solving the

wave equation in ducted geometries with flow that is both uniform and non-uniform. The

system of equations are hyperbolic Partial Differential Equations (PDE). In order to obtain

a unique solution for a hyperbolic PDE, it is a requirement to specify what is known as

an initial condition, or initial solution, which is typically the state of the solution at time

t = 0 as well as impose conditions on the boundary of the domain. The resulting problem

is then called an Initial-Boundary Value Problem (IBVP). For an example of a boundary

and boundary condition one can picture a guitar string. The boundaries to this problem

would be the two points where the string is tied down. The boundary condition here would

be the displacement at those points is zero. It is important to impose the correct initial and

boundary conditions for the problem at hand as initial conditions and boundary conditions

can influence the solution. In numerical simulations, that is calculations done numerically,

it is not practical or indeed possible to calculate a solution where the boundary is at infinity.

As a result truncation of the domain is required in the numerical calculation of hyperbolic

PDE’s and by extension new boundary conditions have to be found at these new artificial

boundaries.

Numerical methods offer engineers and physicists a means to model complicated phys-

ical systems, in a precise and accurate manner assuming correct boundary treatments.

A system can be considered complicated due to the equations of motion being difficult to

solve analytically such as the full Navier-Stokes equations whose solution is yet to be found.

While analytical solutions for the full equation may not exist currently many problems can

take assumptions that simplify the equations and can be solved via a numerical method.
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Introduction 2

This thesis is concerned with development of Eigen Based Non-Reflecting Boundary Con-

ditions (EBNRBC) for use in Computational Fluid Dynamics (CFD). CFD is frequently

chosen as a tool for high fidelity prediction of tone noise in turbomachinery. CFD calcu-

lations are based on a mesh of nodes/cells representing a truncated finite domain around

the region of interest. This method works on a point by point basis in space and time

on a finite mesh of points. The three most common implementations of CFD are finite

difference [11], finite volume [12] and finite element [13]. Values, such as the pressure and

velocities, on one node on the mesh are calculated using the values on the surrounding

nodes. Steady calculations exist that are calculations to problems that do not depend on

time and so there is no progression in time. This results in the need to find appropriate

boundary conditions on the edge of these domains. The values at the boundary must be set

by the user as at the boundary there are no nodes on “the other side” of the boundary to

help calculate what the values at the boundary should be. Many general three dimensional

boundary conditions interact with the solution causing spurious non-physical reflections at

the boundary which contaminate the interior solution. The most common example is the

constant pressure boundary condition as seen in figure 1.1. The boundaries to the domain

are fundamentally reflective however the domain is large giving time to allow the acoustic

waves to decay as they approaches the far field. This boundary treatment can therefore

be acceptable if it is placed a considerable distance away from the interior solution. While

boundary treatments of this type can give accurate results a large domain may not always

be ideal as depending on the problem this may require more compute power and compute

resources. In ducted flows, constant pressure boundary conditions fail totally as cut on

acoustic modes travelling upstream and downstream propagate over large distances with-

out decay. Other more advanced boundary treatments will soon be highlighted.

The jet engine itself has multiple sources of noise:

� Noise sources come from the fan and stator blades and the interaction between them.

This noise source is both tonal and broadband.

� Broadband and tonal noise coming from the compressor.

� Broadband noise originating from the combustion within the engine.

� Tonal turbine noise and jet noise.

� Broadband noise coming from the exhaust due to the shear layer.



3 Introduction

Figure 1.1: This shows a large constant pressure boundary domain. The mesh also stretches
into the far field. The reason for this stretching is to help improve solution accuracy and will be
discussed in more detail later on. The image above was made in ANSYS Meshing

Figure 1.2: This image shows the primary noise sources of a jet engine. Image taken from [1]

The requirement for tonal boundary conditions comes from the desire to simulate tonal

noise coming from the jet engine rotor/stator blades and especially the fan stage which is

one of most significant noise sources. The rotation of these blades relative to each other,
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produces a frequency whose value is known and can be used as an input into NRBC’s.

There are many types of boundary conditions and boundary treatments to help improve

the accuracy of numerical simulation. In this writing there will be a distinction between a

boundary condition and a boundary treatment. A boundary condition is what is set at the

boundaries of the domain and what is required to solve the equations of motion analogous

to what is needed when solving a differential equation analytically. A boundary treatment

will be some technique used to help improve accuracy in the simulation that will then be

accompanied by a boundary condition so that the equations of motion can be solved. The

NRBC here would be a type of boundary condition. Types of boundary treatment include

stretching meshes which help to dissipate the physics that take place far from the region of

interest. This stretching mesh will then be accompanied by a boundary condition so that

the numerical calculation can be completed.

A simulation that uses only a boundary condition as opposed to a boundary treatment

will in theory calculate faster and more efficiently, however it is a requirement that these

boundary conditions produce accurate results. A failure to do so results in an inaccurate

solution; an example of this can be seen in figure 1.3.

EBNRBC’s offer the user a means to calculate the solution at the boundary accurately.

The method uses eigenanalysis to obtain the linear mode shapes and direction of infor-

mation travel which are applied in such a way as to let outgoing waves leave the domain

without any spurious reflection. An example of an effective EBNRBC can be seen in figure

1.4. These images show how much of a difference can be made by simply having the correct

boundary conditions.
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Figure 1.3: A duct with a constant pressure boundary condition at the near boundary. The
acoustic wave fails to leave the domain.

Figure 1.4: A duct with an appropriate boundary condition at the near boundary. The acoustic
wave passes through the boundary without distortion.

The problem is made more difficult when considering non-uniform mean flow and up-

stream boundary conditions. In the images above the signal meets the downstream bound-
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ary for which only the pressure has to be set. For waves going against the flow towards the

inlet, more flow parameters need to be set, in effect, to account for vortical and entropy

waves entering through the upstream boundary. For non-uniform flow acoustic waves are

no longer perfect harmonics described by sin waves. The non-uniformity of the flow causes

the acoustic waves to distort and deform as different parts of the flow have differing veloci-

ties, that is, the acoustic wave scatters. A signal of mode m = 10 in a non-uniform flow will

scatter into neighbouring harmonics. As the main goal in this thesis is to develop boundary

conditions in non-uniform flows, the eigenanalysis needs to account for this scattering of

harmonics in order to produce accurate boundary conditions.

1.1 A Brief overview of Non-Reflective Boundary Condi-

tions

There is a wide range of literature discussing NRBC’s for many different wave equations

with and without flow. A popular type of boundary condition is the local boundary con-

dition. A local boundary condition is where the flow values set on any boundary node

depend only on the flow parameters at adjacent nodes within the domain. Commonly

used aerodynamic boundary conditions such as fixed total pressure at the inlet or fixed

static pressure at the outlet are local boundary conditions however are known to be highly

reflective. The simplest non reflective local boundary conditions treat all acoustic waves as

if they were plane waves travelling normal to the boundary. Methods have been proposed

to account for non-plane waves at various angles at the expense of becoming increasingly

non-local depending on accuracy, that is, using information that is further and further from

the boundary node. Local boundary conditions will be looked at in more detail in section

2.4.

Another type of boundary condition is the Eigen Based NRBC (EBNRBC). This is a

two step process where firs of all the mean flow and duct geometry are used to determine a

complete set of acoustic modes (eigenvectors) travelling upstream and downstream. In the

second step the unsteady flow values from every node on the boundary are decomposed into

these modes and adjusted to preserve the outgoing acoustic modes while ensuring there

are no incoming acoustic modes.

In principle such boundary conditions could be exact as any set of acoustic waves can
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be decomposed into upstream and downstream travelling modes. In practice a range of

simplifications are usually made to make it easier to identify the eigenmmodes. The first

EBNRBC by Giles [18] was for a two dimensional duct and uniform mean flow. Later au-

thors extended this to quasi-three dimensional boundary conditions, fully three dimensional

calculations for steady state flow simulations, and a curvilinear form in two dimensions for

use in complex geometries. Extensions were also made for cases where the geometry was

more complex such as elliptical ducts and ducts that varied slowly with axial position.

Previous EBNRBC are described in section 2.3 . The work described in this thesis is the

first example of a boundary condition which accounts for both non-uniform flow and non-

uniform geometry.

1.2 Alternative Boundary Treatments

In addition to the local and eigen-based boundary conditions discussed in the previous

section there is a range of alternative boundary treatments that require an extension to

the calculation domain beyond the inlet and outlet boundaries.

Stretched grids can be used as buffer zones in simulations of wave propagation. Stretch-

ing the grid away from the area of interest lowers the resolution of the mesh making it

incapable of accurately calculating the solution at the far field effectively dissipating the

outgoing noise. The stretching is gradual as an immediate change in mesh resolution can

itself cause reflections. The boundary condition applied may then be the standard constant

pressure boundary condition, with the mesh itself stretching to help dissipate the solution

before it reaches the boundary which would be reflective. The reflections are then small

and negligible. The literature on stretched mesh is considered in section 2.6.2. The test

cases in chapters 4 and 5 included the stretched mesh as a comparison method.

A sponge layer is also a method used to dissipate outgoing waves in a solution before

they reaches the boundary. The concept here is to add to the linearised euler equations

“sponge” terms once the solution gets to the far field. These sponge terms will cause

acoustic effects to decay (as well as other wavelike phenomena), however reflections can

occur off the sponge layer interface itself. As this is a three dimensional layer it takes up

space in the domain and hence uses up computing power and time. Angle of incidence of

the waves hitting the sponge also has an effect on the reflection coefficient and thus the
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effectiveness of the sponge. The sponge layer is described in more detail in section 2.6.3.

Another alternative designed specifically for wave like problems is the Perfectly Matched

Layer (PML). Like the sponge layer a PML is effectively a region around the area of interest

that decays wave like disturbances. Unlike the sponge layer however it does this via eval-

uating the solution to the linearised Euler equation at complex values of x at the far field

where x is spacial distance normal to the inlet or outlet boundary. This causes the wave

like solutions to decay exponentially in the zone where the PML is active. PML is reflec-

tionless only for exact wave problems, after discretising, the surface of the PML between

the PML and regular medium is no longer non reflecting. In order to reduce the reflections

one must slowly introduce the PML. Again fine tuning the PML is required and a good

balance between resources in compute power, time and spurious reflections should be found.

The stretching mesh and sponge layer can theoretically deal with broadband noise how-

ever some of the parameters that can be tuned in these methods depend on the frequency

of the outgoing waves. Parameters should therefore be tuned to ensure that the frequency

region of interest is dissipated effectively. PML’s on the other hand can only deal with

multiple discrete frequencies. Again tuning parameters depend on frequency so parame-

ters should be set allowing frequencies of interest to leave the domain.

Confirming the earlier distinction; Stretched grids, Sponge layers and PML’s are bound-

ary treatments. They offer a means of damping the solution before the solution hits the

boundary and so a boundary condition is still required to solve the equations. Stretched

grids, sponge layers and PML’s are sometimes called absorbing boundary layers, whilst

NRBC’s are sometimes called Absorbing Boundary Conditions (ABC’s).

1.3 Thesis Structure

Further on in this introduction there will be a brief section on the aims and scope of the

project.

A literature review is provided in chapter 2. The review will discuss the state of the

art for artificial boundary conditions for the wave equation without flow, with flow, and

boundary conditions for acoustics travelling through ducts with and without flow. The
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review will also cover eigenanalysis and its use in developing accurate NRBC’s.

A Chapter on methodology and application will then discuss how the boundary condi-

tions are implemented and used numerically.

Chapters 4 and 5 will describe the validation of the method in two and three dimensions.

Chapter 6 will provide a demonstration of the newly developed boundary condition for

prediction of wake/stator interaction tone noise. Conclusions and future work will be

discussed in chapter 7.

1.4 Project Scope and Aims

The focus of this project is to develop non-reflecting boundary conditions suitable for use

in computational fluid dynamics (CFD) calculations, such as turbomachinery calculations,

which include the prediction of tonal noise sources. The boundary conditions should permit

outgoing acoustic waves to pass through with very little spurious reflection. They should

work on planar and non-planar boundary surfaces with radially and circumferentially non-

uniform mean flow.

The boundary conditions should maintain the benefits of previous eigen-based boundary

conditions developed by Giles [18] and Kousen [32] for ducted flows (see sections 2.2.2

through to 2.2.6). Specifically, they should:

� Be applicable at the inlet and/or the outlet surface.

� Be applied on the boundary itself, that is no extension to the domain as with the

sponge layer or PML which necessarily includes knowledge of the duct geometry that

might not be available.

� Allow for an acoustic or vortical signal to be input to the domain at the same plane

as the non-reflecting treatment.

As with these previous boundary conditions it can be assumed that a description of the

mean flow is available prior to the unsteady calculation. Previous experience with these

treatments suggests that treatments based on the linearised Euler equations are usually

sufficient for non-reflection in RANS calculations of turbomachinery ducts without large
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temperature variations, and the scope of this work is limited to these cases.

The new method should, in addition, extend the state-of-the-art for eigen-based bound-

ary conditions in that it should be applicable

� On general (including non-planar) upstream and downstream boundary surfaces.

� In the presence of circumferentially (as well as radially) varying mean flow.

� Within ducts of non-uniform but smoothly varying geometry.

The boundary conditions should be computationally efficient, in the sense that memory

and compute requirements should be small relative to the requirements for the underlying

CFD calculation.

The boundary conditions should be validated over a range of operating conditions and

compared with existing non-reflecting boundary treatments.

The primary focus of the work is for use in time-dependent CFD calculations, which

may have tone noise sources at more than one frequency. It is noted, however, that such

a boundary condition could easily be adapted for use in linear (fixed frequency) CFD or

Compuational Aeroacoustics (CAA) calculations.

The work in this thesis builds on the eigenanalysis of Wilson [27] as described in section

2.2.7. The development of this eigenanalysis into non-reflecting boundary conditions, in-

cluding the methodology, code development and validation, was performed entirely within

the current project.



Chapter 2

Literature Review

This literature review will be split into two parts. Initially a discussion on literature di-

rectly relevant to the theory used in this thesis will take place before giving a more general

look at the state of the art regarding numerical boundary conditions for the purposes of

acoustic and wave like disturbances. Here in the first part a short review of duct acous-

tics will be given before moving to the theory needed to develop the EBNRBC’s, namely

eigenanalysis and its use in developing the boundary conditions as well as papers that

formulate and implement EBNRBC’s. A wide range of papers will be covered discussing

eigenanalysis in uniform and non-uniform flows in one, two and three dimensions as well

as their uses in formulating EBNRBC’s. Eigenanalysis and development of EBNRBC’s

will also be discussed in the context of non-uniform geometries. Most of these examples

will be looked at in the context of turbomachinery in cylindrical or pseudocylindrical co-

ordinates. These papers will then be used in the development of the work here in this thesis.

In the second half of the literature review numerical boundary conditions in a more

general setting will be discussed. The general goals of numerical boundary conditions are

discussed. The boundary conditions here will be for numerous forms of the wave equa-

tion whose disturbances flow to infinity, with and without flow. A group of approximate

eigenanalysis methods originating from Reinstra [3] is introduced for flows in which the

geometry varies slowly with axial position. Alternative boundary treatments will then be

discussed such as the stretching grid and the perfectly matched layer.

11
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2.1 Fundamentals of Duct-Acoustics

Rienstra [25, 26] discusses the fundamentals of duct acoustics. The ground work is laid

out in a cylindrical duct aligned with the x axis with zero flow. The reports introduce

the concept of the acoustic mode as an exponential function f , representing propagation

in the axial direction, multiplied by some shape function ψ which is an eigenfunction of

a Laplace type operator with eigenvalues relating to axial wave number k valid on a duct

cross section:

p (x, t) = ψ (y, z) f (x− vt) = ψ (y, z) eiω(t−xv ) = ψ (y, z) eiωt−ikx (2.1)

where v is the phase velocity such that the function f(x−vt) represents propagation along

the duct axis. The acoustic field is then defined as:

p (x, t) := p (x) eiωt, u (x, t) := u (x) eiωt (2.2)

Here p is the static pressure, u is the velocity vector, ω is the angular frequency, t is the

time and x is the spatial vector in cylindrical polar coordinates, r, θ, z. Equation (2.2)

satisfies the Helmholtz equation:

∇2p+
ω2

c2
0

p = 0 (2.3)

The acoustic velocity u is then related to the acoustic pressure via the linearised momentum

equation:

iωρ0u +∇p = 0. (2.4)

Here c0 is the mean speed of sound while ρ0 is the mean density. It is seen that ω2/c2
0 is

an eigenvalue for the Laplace operator where p is the corresponding eigenfunction. In the

current example hard-wall boundary conditions are assumed:

u · n = 0 (2.5)

where n is an externally directed unit vector normal to the boundary of the duct. Self

similar solutions exist such that the spatial part of the pressure field can be separated into

p(x, y, z) = φ(x)ψ(y, z) for φ(x) = e−ikx with eigenvalues k and corresponding eigenfunc-

tions ψ. As a result the pressure part of (2.3) becomes:

∇2
yzψ +

(
ω2

c2
0

− k2

)
ψ = 0 (2.6)
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The Laplacian operator here is denoted with a subscript yz as ψ is a function only of y

and z. As a result the most general form of the spacial part of the pressure field is found:

p(x, y, z) =
∞∑
n=0

Cnψn(y, z)e−iknx (2.7)

where ψn are the eigenfunctions of the Laplace operator and α2
n =

(
ω2

c20
− k2

n

)
the corre-

sponding eigenvalues. In the case of a hard-walled boundary α2
n give a real positive set of

values with α2
1 = 0 and ψ1 = 1. The axial wave number kn is then given implicitly by:

k±n = ±

√
ω2

c2
0

− α2
n (2.8)

In the series expansion present in equation (2.7) each term represents what is called a duct

mode. The wave number determines the behaviour of the mode. If kn is real and not small

i.e. ω/c0 is more substantial than αn, then the behaviour of the axial mode is sinusoidal

with a non large axial wavelength. As ω/c0 approaches αn, kn becomes small and the axial

wavelength becomes large. If ω/c0 = αn, i.e. kn = 0, the mode is at resonance and the

wavelength is infinite. Finally if ω/c0 < αn then kn is imaginary and the mode exponen-

tially decays that is becomes cut-off.

It is also noted by Rienstra [25, 26] that assuming the boundary condition is uniform

along the circumference of the duct whose cross section is circular or rectangular the

symmetry of the geometry gives a symmetric modal shape function, and that the solutions

of the eigenvalue problem can be found using the separation of variables method. In a

circular duct described by polar coordinates r, θ the eigenfunction ψ can be written as:

ψ (y, z) = f(θ)g(r) (2.9)

where the eigensolutions consist of Fourier harmonics in θ and Bessel functions in r.

2.1.1 Uniform Mean Flow

Moving to a case with uniform flow the isentropic Euler equations are introduced:

d ρ

d t
+ ρ∇ · u = 0, ρ

du

d t
+∇p = 0,

d s

d t
= 0 (2.10)
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Where s is the entropy. The acoustic variables are split into mean and perturbation

components: u = u0 + u′, p = p0 + p′, ρ = ρ0 + ρ′, where the subscripted variables are the

mean components and the primed variables are the perturbation components. Linearising

the Euler equation about the perturbation variables (2.10) and after some algebra which

can be found in Rienstra [25] a general wave equation for the pressure is found. This

equation describes the pressure of acoustic, that is, isentropic, perturbations of a parallel

inviscid mean flow with a uniform mean pressure p0:

D3
0 p
′ −D0∇ ·

(
c2

0∇p′
)

+ 2c2
0

∂

∂x

(
∇p′ · ∇ux0

)
= 0 (2.11)

where D0 is the differential operator ∂
∂t + u0

∂
∂x where we have assumed the flow is a mean

parallel flow in the x direction. In order to simplify (2.11) to a form relevant for this

thesis, the acoustic perturbation is assumed to be harmonic in time and that the boundary

conditions are independent of x. The medium is taken to be circularly symmetric with

u0 = u0(r) and c0 = c0(r) in cylindrical polar coordinates (r, θ, x) such that the solutions

take the form

p′ (x, t) = Re
(
p̂ (r) eiωt−ikx−imθ

)
, v′ (x, t) = Re

(
v̂ (r) eiωt−ikx−imθ

)
(2.12)

If it is also assumed that the mean Mach number c0 and the mean flow u0 is constant then

it is possible to write (2.11) as the Bessel equation:

d2p

dr2
+

1

r

dp

dr
+

(
Ω2

c2
0

− k2 − m2

r2

)
p = 0 (2.13)

where Ω = ω − ku0 and the hat has been dropped for convenience. In the case of a

cylindrical annular duct with constant radius, the pressure distribution is that of a linear

combination of Bessel Functions of both the first and second kind in the radial direction:

p (r) = aJm (µr) + bYm (µr) , (2.14)

where Jm and Ym are Bessel functions of the first kind and second kind respectively. This

gives an acoustic mode in a uniform mean flow through an annular duct of uniform geometry

the general form:

(aJm (µr) + bYm (µr)) eiωt−ikx−imθ (2.15)
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2.2 Eigenanalysis

In developing Boundary conditions it is important to find the eigensolutions of the problem

as this tells us the direction in which the information travels as well as the scattering of

harmonics that occurs due to non-uniform flows and non-uniform geometries. The diffi-

culty of this task depends on the dimension of the problem, the uniformity of the duct, and

the type of mean flow. Therefore this section will give a review of eigenanalysis for use in

analysis of perturbation effects in ducted flows. The problem increases in difficulty when

mean flow is introduced. The simplest non-trivial flows that still allow for modal expan-

sion are uniform mean flows. The modal solutions, in this case, are qualitatively similar to

those without flow. Flows that vary spatially introduce non-constant coefficients into the

acoustic equations. The problem also becomes more difficult in ducts of varying geometry

as non-uniform geometries causes a scattering of harmonics into neighbouring harmonics

as they travel through the duct. The difficulty in this case is to obtain a method that

captures the effects of non-uniform geometries on harmonics throughout the entire duct.

Eigenanalysis requires, as an input, the unsteady linearised Euler equations, the frequency,

mode number, and the underlying mean flow upon which the perturbations will travel.

This method has been used to analyse acoustical vibrations in a finite domain [33,34] and

can also be used to study the P-stability of finite difference approximations to scalar equa-

tions [35, 36]. P-Stability being the stability of an initial boundary value problem solved

computationally on a finite mesh.

In the case of uniform flow, the problem involves finding values for the wave number

k. In this description physically stable modes will be assumed. The wave numbers belong

to four categories of modes: upstream and downstream propagating acoustic modes and

downstream propagating vorticity and entropy modes. In order to distinguish upstream

acoustical modes from the downstream acoustical modes we look first at the sign of the

imaginary part of the wave number k. The exponential part of the assumed solution can

be rewritten as,

eiωt+imθ+ikrxe−kix (2.16)

where ki is the imaginary part and kr is the real part. If the imaginary part satisfies ki > 0

then this corresponds to an evanescent mode propagating downstream, in the positive x

direction. This is confirmed by the previous assumption of physically stable modes which

allows one to simply analyse the “direction of decay”. Likewise if ki < 0 then what is

present is an evanescent mode propagating upstream.
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For real k that is, ki = 0, we introduce the group velocity [37]:

ug =

(
∂ω
∂k
∂ω
∂m

)
(2.17)

Incoming waves, that are waves moving downstream or the positive x axis, are then de-

fined as those that have ∂ω\∂k > 0. The acoustic modes are those for which the flow is

irrotational and isentropic. Vortical waves are characterised by a divergence free unsteady

velocity profile along with zero pressure and density perturbation while entropy modes are

usually characterised by the areas of lower or higher density transported with the flow.

Note that this is true only for uniform flows and flows close to uniform.

2.2.1 1 Dimensional Eigenanalysis

Giles [33] uses eigenanalysis as a means of studying the low frequency waves that travel up

and down the domain during quasi-one-dimensional or two dimensional finite difference cal-

culations that use time marching methods. These frequencies are the remaining residuals

before the solutions converges to a steady state. Starting with a simple one dimensional ex-

ample, Giles [33], derives the eigenvalues and eigenvectors for the linearised Euler equations

in one dimension. The problem here boasts constant coefficients. It is therefore possible

to derive the exact eigenmodes and eigenfrequencies of the problem. The one dimensional

non-dimensional linearised Euler equation takes the form:
ρ

u

p


t

+


M 1 0

0 M 1

0 1 M



ρ

u

p


x

= 0 (2.18)

The variables here have been normalised as follows:

ρ = ρ̃/ρ̄ (2.19)

u = ũ/c̄ (2.20)

p = p̃/ρ̄c̄2 (2.21)
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In the non-dimensional domain the subsonic inflow is at x = 0 and the outflow at x = 1.

As seen previously, wave like solutions of the form:
ρ

u

p

 = eikx−iωtU (2.22)

are assumed given that:

(kA− ωI)U = 0 (2.23)

where U are the eigenvectors and λ = ω/k the corresponding eigenvalues.

λ1 = M, U1 =


1

0

0

 (2.24)

λ2 = M + 1, U2 =


1

1

1

 (2.25)

λ3 = M − 1, U3 =


1

−1

1

 (2.26)

From this it can be seen there are two downstream travelling waves and one upstream

travelling wave. With λn = ω/kn it is possible to rearrange the above equations to find

equations for ω in terms of kn. Differentiating it is found that, for subsonic flows, ∂ω\∂k1 >

0 and ∂ω\∂k2 > 0. Writing the sum of the three eigenmodes gives a general eigenmode

solution:

U = eiωt
n=1∑
n=3

αne
iknxUn (2.27)

From here we can formulate boundary conditions. At the inflow boundary, x = 0, there

are two boundary conditions:

CinU = 0 (2.28)



Literature Review 18

where Cin is a 2× 3 matrix. Substituting (2.27) into the boundary condition gives:

(
b11 b12 b13

b21 b22 b23

)
α1

α2

α3

 = 0 (2.29)

where (
b11 b12 b13

b21 b22 b23

)
= Cin

(
U1 U2 U3

)
(2.30)

At the outflow, x = 1, there is a single boundary condition:

(
b31 b32 b33

)
α1

α2

α3

 = 0 (2.31)

where (
b31 b32 b33

)
= Cout

(
ei(ω/λ1)U1 ei(ω/λ2)U2 ei(ω/λ3)U3

)
(2.32)

A requirement of NRBC’s is to find the direction of information travel of the physical waves

allowing us to identify spurious modes and set them to zero. In this case downstream

travelling waves will be left to leave the domain whilst the reflected modes are what will be

set to zero whilst in the case of upstream travelling waves any waves travelling downstream

will be set to zero. At the inlet boundary condition it is required to set both the pressure

and the velocities whilst at the outlet boundary only the pressure is required as can be

seen by (2.29) and (2.31)

2.2.2 2 Dimensional Eigenanalysis

Once again using Giles [18], a description of the two dimensional problem is laid out. The

non-dimensional Euler equations in two dimensions are:

U t +AU x +BU y = 0, (2.33)
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where A and B and U are written as,

U =


ρ

u

v

p

 , A =


Mu 1 0 0

0 Mu 0 1

0 0 Mu 0

0 1 0 Mu

 B =


Mv 0 1 0

0 Mv 0 0

0 0 Mv 1

0 0 1 Mv

 .

(2.34)

Here ρ is the perturbed density, u and v the perturbed velocity components and p the

perturbed pressure, all normalised. It is also important to mention that A and B are

constant N × N matrices, where Mu and Mv are the Mach numbers in their respective

directions1.

The resulting work of the eigenalysis will give the eigenvalues of k which will give

information on the direction of travel of the input signal. Assuming the solution is periodic

in y a Fourier transform is performed in the y direction:

U (x, y, t) =
∞∑

n=−∞
une

i(knx+lny−ωnt) (2.35)

Choosing a single mode (without loss of generality) and substituting it into (2.33),

(−ωI + kA + lB)u = 0 (2.36)

is obtained, which naturally leads to the dispersion relation,

det (−ωI + kA + lB) = 0 (2.37)

Of course non-trivial solutions of un are of interest. The dispersion relation is an Nth

degree polynomial in ω, k, and l. ω and l are defined to be real while k may be complex.

Incoming and outgoing modes need to be distinguished. In order for that to be possible

eigenvectors whose dependency is on k are of interest and so one must rewrite the matrix

in (2.36) as,

−ωA−1 + kI + lA−1B . (2.38)

1For information on how to arrive at the non dimensionalised linear Euler equations please refer to pages
21-22 of [18]
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This is the matrix that shall be used when finding the relevant eigenvectors. The dispersion

relation then becomes:

det
(
−ωA−1 + kI + lA−1B

)
= 0 (2.39)

Using (2.39) to find values of k, the most general form of a single mode, while holding l

and ω constant, is

U (x, y, t) =

 N∑
j=1

aju
R
j e

i(kjx)

 ei(ly−ωt) (2.40)

where the R denotes the right eigenvector of
(
−ωA−1 + lA−1B

)
. In 2 dimensions the

roots to the dispersion relation, kj , are

k1,2 =
ω − vl
u

, k3,4 =
(ω − vl) (−u± S)

1− u2
(2.41)

where

S =

√
1− (1− u2)l2

(w − vl)2
(2.42)

In subsonic conditions k1,2,3 are all downstream travelling waves while k4 is an upstream

travelling wave. With this information all that is required is to set all aj to 0 at the

boundary for all j corresponding to incoming waves. An equivalent boundary condition

would be,

vLi U = 0 (2.43)

where vLi is the left eigenvector of
(
−ωA−1 + lA−1B

)
. Recall that left and right eigenvec-

tors of the same matrix are orthogonal to each other except for eigenvectors representing

the same eigenvalue, hence the above boundary condition. vLi can be calculated via the

relationship,

vLi =
ki
ω

∣∣∣∣
l=0

uLi A (2.44)

where uLi is the left eigenvector of kA + lB . The relationship comes from considering

vLi A
−1 also as an eigenvector of kA + lB . Doing so and comparing, it can be seen that
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vLi is equal to uLi A up to some multiple. The right eigenvectors can be calculated as,

uR1 =


−1

0

0

0

 , uR2 =


0

−ul/ω
uk2/ω

0



uR3 = 1+u
2ω


ω − uk3 − vl

k3

l

ω − uk3 − vl

 , uR4 = 1−u
2ω


ω − uk4 − vl

k4

l

ω − uk4 − vl

 (2.45)

With the corresponding left eigenvectors being

vL1 =
(
−1, 0, 0, 1

)
,

vL2 =
(

0, −ul/ω, 1− vl/ω, −l/ω
)
,

vL3 =
1

ω

(
0, ω − vl, ul, u (ω − vl) +

(
1− u2

)
k3

)
, (2.46)

vL4 = − 1

ω

(
0, ω − vl, ul, u (ω − vl) +

(
1− u2

)
k4

)
.

2.2.3 3 dimensional Eigenanalysis

Following the previous methods in three dimensions. In three dimensions the Euler equa-

tion takes the form:

U t +AU x +BU y + CU z = 0 (2.47)

where the solution in this case is given to be,

U (x, y, z, t) =
∞∑

n=−∞
Û ne

i(−ωnt+knx+lny+mnz) (2.48)

where a Fourier transform has been taken. In 3 dimensions the S present in the 2 dimen-

sional case becomes,

S =

√
1− (1− u2) (l2 +m2)

−ω + lv +mw
(2.49)

Where m is the wave number associated to the z direction and w is the normalised flow

velocity in the z direction. Labelling the denominator above as Λ = −ω + lv + mw the
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roots ki are calculated as2,

k1,2,3 = −Λ

u
, k4 = −Λ (S − u)

1− u2
, k5 =

Λ (S + u)

1− u2
(2.50)

Disregarding the third dimension the above equations return to the form present in the

2 dimensional case. The boundary conditions has an equivalent form to that present in

(2.43),

vLi Û ` = 0 (2.51)

with U being a five vector rather than a four vector. The left eigenvectors in the 3

dimensional case needed to satisfy the above equation are calculated as,

vL1 =
(
−1, 0, 0, 0, 1

)
,

vL2 =
1

ω

(
0, −ul, −Λ, 0, −l

)
,

vL3 =
1

ω

(
0, −um, 0, −Λ, −m

)
, (2.52)

vL4 =
1

ω

(
0, −Λ, ul, um, ΛS

)
,

vL5 =
1

ω

(
0, −Λ, ul, um, −ΛS

)
.

2.2.4 Eigenanalysis in Cylindrical Polar Coordinates

Staying in three dimensions the eigenanalysis method is widely used for turbo-machinery

flows and is explained by Giles et al [20]. The flow example here is considered to be axially

and circumferentially uniform, as a result the numerical method approximates the 3 dimen-

sional eigenmodes as eigenvectors of a general eigenvalue problem. Whilst turbo-machinery

flows are not uniform in either the axial or circumferential direction, the assumption works

well in many cases, particularly at the inflow and outflow. As mentioned the direction of

propagation is obtained from the imaginary part of the axial wave number which are the

eigenvalues of the general eigenvalue problem. In the subsonic case, the modes propagating

consist of acoustic modes going up and downstream, vortical modes going downstream and

entropy modes going downstream. Relevant to the scope of work present here, eigenanal-

ysis in 3 dimensional cylindrical polar coordinates is considered before analysing a hard

2The normalisation has been kept consistent with Giles [18]
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walled annular duct example. The Euler equations in this setting take the form:

∂Qc

∂t
+

1

r

∂

∂r
(rFr) +

1

r

∂Fθ
∂θ

+
∂Fx
∂x

= G (2.53)

Here, Qc represents the conservative variables, whilst Fr, Fθ, Fx represent the fluxes in

their respective direction denoted by their subscript. G represents a source term. Linearis-

ing these equations gives,

M
∂Qp

∂t
+

1

r

∂

∂r

(
rArQp

)
+

1

r
Aθ
∂Qp

∂θ
+Ax

∂Qp

∂x
= SQp (2.54)

where M = ∂Qc
∂Qp

and Qp is the vector of pertubation variables akin to U in the previous

section. The matrices above, M , Ar, Aθ, Ax, S are all functions of radius only. This means

the eigenmodes are given in the form of a separable solution in t, θ and x, namely,

Qp (t, x, θ, r) = eiωt+imθ+ikxQp (r) (2.55)

Substituting (2.55) in to (2.54) gives,

iωMQp +
1

r

∂

∂r

(
rArQp

)
+

1

r
imAθQp + ikAxQp = SQp (2.56)

In dealing with numerical calculation descritisation is necessary. Rearranging the above

and then discretising, leads to the algebraic equation,(
iωM̂ + Âr + imÂθ + ikÂx − Ŝ

)
Q = 0 (2.57)

Here the hatted variables are square matrices, now of dimension 5N and Q is a vector of

length 5N where N is the number of radial points.

2.2.5 Hard Walled Annular Duct Example

Here a uniform inviscid example will be considered and the equations of motion are non-

dimensionalised using the speed of sound c and the outer annulus radius. In this example

(2.11) is simplified and the linear pressure perturbations satisfy the equation,(
∂

∂t
+M

∂

∂x

)2

p = ∇2p, λ < r < 1, (2.58)
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whereM is the Mach number. Before going further it is necessary to note that the boundary

conditions to be applied to the inner and outer walls of the annular duct are the hard wall

boundary conditions, i.e. radial velocity is zero at the walls. This induces a boundary

condition on the pressure at the walls,

∂p

∂r
= 0

∣∣∣∣
r=λ,1

(2.59)

In the case of uniform flow the eigenmodes take the form

p (t, x, θ, r) = eiωt+imθ+ikxp (r) (2.60)

Taking the usual steps and substituting this into (2.58) leads to the Bessel equation

1

r

d

dr

(
r

dp

dr

)
+

(
µ2 − m2

r2

)
p = 0, λ < r < 1, (2.61)

where

µ2 = (ω̃ +Mk)2 − k2 (2.62)

Where ω̃ = ω/¯̄c. The general solution to (2.61) is a combination of Bessel functions of the

first and second kind namely,

p (r) = aJm (µr) + bYm (µr) . (2.63)

Jm is the Bessel function of the first kind while Ym is the Bessel function of the second

kind. The earlier boundary conditions to be implemented gives,
J ′m (µλ) Y ′m (µλ)

J ′m (µ) Y ′m (µ)



a

b

 = 0 (2.64)

For the above to be true and non-trivial, the determinant of the above matrix has to be zero.

This allows for values of µ to be found therefore also allowing values of k to be found us-

ing (2.62), allowing for the determination of the direction of propagation of the eigenmodes.

It is important to note the value of µ in the case of a two dimensional duct with

constant radius R. This can be derived directly from the Bessel equation. As there is no
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radial contribution as radius is now constant, the Bessel equation reduces to:(
(ω̃ +Mk)2 − k2 − m2

R2

)
p(R) = 0 (2.65)

leading to:

(ω̃ +Mk)2 − k2 =
m2

R2
→ µ2 =

m2

R2
(2.66)

The need for this will be discussed further in section 3.2.1 where implementation of the

method in two dimensions is discussed.

2.2.6 Eigenanalysis For Non-Uniform Flow

This is important as a non-uniform flow as well as a non-uniform geometry can scatter the

modal content of acoustic phenomena. As a result the eigenanalysis techniques need to be

able to capture these effects in order to give accurate boundary conditions.

As an example, consider a cylindrical duct with a Gaussian mean flow deficit of the

form

ūx = 0.5− 0.3e−
θ2

2σ2 (2.67)

This is one of the test cases used in chapter 4 and the mean flow profile is shown in figure

4.1. The effect of the Gaussian flow deficit on the pressure profile at the outer wall for the

mode most similar to the first radial mode at m = 5 in uniform flow is shown in figures

2.1 and 2.2. The deformation of the harmonic is greater for upstream running waves as

these waves go against the flow. This gives the Gaussian more time to affect the harmonic,

spreading and deforming it further.

Figure 2.3 shows a plot of the amplitude of the modal coefficient for a range of acoustic

modes. Each mode here is normalised to unity maximum pressure level. From the figure,

it can be observed that in non-uniform flow, reflections are spread into multiple modes and

the highest amplitude reflected mode is not necessarily the mode with highest harmonic

content at m = 5 whereas in uniform flow the reflection is dominated by a single mode.

Looking now at the theory developed by Kousen [32]. His worked revolved around, like

Giles, writing the equations of motion in the form of an eigen problem. The flow is taken

to be isentropic and axisymmetric and he examined three special cases: Axially sheared
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Figure 2.1: Deformation of the first radial harmonic downstream wave at m = 5 due to a non-
uniform mean flow profile. The figure shows the circumferential pressure amplitude at the outer
wall.

Figure 2.2: Deformation of the first radial harmonic upstream wave at m = 5 due to a non-uniform
mean flow profile. The figure shows the circumferential pressure amplitude at the outer wall.
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Figure 2.3: An example of reflected modes for non-uniform mean flow (σ = 0.5).

flow, solid body swirl and flows with free vortex swirl. In cases with shear flow, mean

pressure, mean density and the speed of sound are constant across the duct which is no

longer the case in flows with a swirl component. The normalised speed of sound in the cases

of solid body swirl, free vortex swirl and the two combined is different for each case and

is given in [32]. Also in [32] are the equations of motion for axial shear flow in cylindrical

coordinates. Assuming that the perturbation quantities have exponential dependence,

f (t, x, θ, r) = eiωt+imθ+ikxf (r) (2.68)

where f = p, vr, vθ, vx, gives the equation of motion for pressure:

d2p

dr2
+

(
1

r
− 2Mxκ̄

(k − 2M ′xκ̄)

)
dp

dr
+

(
(k − 2M ′xκ̄)2 − m2

r2
− κ̄2

)
p = 0 (2.69)

where Mx and κ̄ are the axial Mach number and the dimensionless axial wave number

respectively. This second order differential equation found describing axial shear flows is not

adequate, when solved, at determining the radial behaviour of the unsteady quantities as it

misses entire families of perturbations. Using Goldstein [38] it is possible to derive a single

equation for pressure by combining the linearised momentum and continuity equations

by taking the divergence of the momentum equation and subtracting away from that the

material derivative of the continuity equation. The material derivative is then applied to
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the resulting equation giving:

D3
0 p− c2

0 D0∇2p+ 2c2
0

∂u0

∂r

∂2p

∂x∂r
= 0 (2.70)

This equation can also be derived directly from (2.11) by assuming c0 is a constant and

that u0 = ux(r) which is true for axial shear flow. Assuming solutions of the form (2.68)

it is possible to obtain

λ̄L [p] = 0 (2.71)

where λ̄ = k − γ̄Mx and L [p] represents the second order ODE for pressure. There are

therefore 3 sets of solutions. The first being L [p(r)] = 0 which gives rise to a discrete

set of eigenvalues. The second is λ̄(r) = 0 everywhere across the duct giving rise to a

continuum of disturbances and finally L [p(r)] = δ(λ̄ = 0) which gives rise to a continuum

of eigenvalues. The second set of solutions represent wavenumbers that are analogous to

discrete acoustic disturbances present in uniform flow.

For flows with axial shear and full body swirl it is not possible, using the same methods

as with axial shear flows, to achieve a single equation for pressure, independent of the

velocity perturbations. Instead the exponential assumption in (2.68) is plugged directly

into the linearised perturbation equations for swirling flows. The equations can be found

in [32]. Three expressions are found relating the pressure to each direction of velocity and

the ODE for pressure is found. It can then be written in matrix form as:

Ax = λBx (2.72)

where

A =



−i
(
k
c0
− m

rMθ

)
−2
rMθ 0

d

dr
+

(γ − 1)

r
M2
θ

1
rMθ +

dMθ

dr
+

(γ − 1)

2r
M3
θ −i

(
k
c0
− m

rMθ

)
0 imr

dMx

dr
+

(γ − 1)

2r
MxM

2
θ 0 −i

(
k
c0
− m

rMθ

)
0

d

dr
+

1

r
+

(γ − 1)

2r
M2
θ imr 0 −i

(
k
c0
− m

rMθ

)


(2.73)
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B =


Mx 0 0 0

0 Mx 0 0

0 0 Mx 1

0 1 1 Mx

, x =


ur

uθ

ux

p

 (2.74)

A and B are only dependent on the radial coordinate and B has an analytical inverse

assuming its determinant is non-zero. As a result B is singular when Mx = 0,±1. If B is

non-singular, then it is possible to write

B−1Ax = λx (2.75)

however non-singularity of B is not required to solve the eigenvalue problem.

2.2.7 Non-Uniform Ducts and Flows

Wilson [27] developed a method that allows for successful eigenanalysis in non-uniform

flows in ducts with non-uniform, varying, geometry meaning that the eigenanalysis cap-

tures the changing of the eigenmode due to the changing geometry and mean flow unlike

other methods whose eigenanalysis may only capture the shape of the eigenmode at a spe-

cific axial point in the duct.

The eigenanalysis method used will be dubbed EigenAnalysis in Generalised Curvilinear

Coordinates (EAGCC). As it can be applied in non-uniform geometry with non-uniform

mean flow and there is no requirement that the solution to the linearised Euler equations

be separable. The required inputs to the method are a duct that is described by a global

body fitted coordinate system, a time-averaged flow field and an input acoustic signal or

perturbation. This form of modal decomposition is based on the linearised homentropic

Euler equations [27]. Writing them in tensor form in a vector space based off contravariant

basis vectors:
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1
¯̄c

∂u′i
∂t

+
1

2

∂

∂xi

(
gjk
[
u′j ūk + u′kūj

])
− εljkεmnpgilgkm

[
u′j
∂ūp
∂xn

+ ūj
∂u′p
∂xn

]
(2.76)

+
1

ρ̄

∂p′

∂xi
− p′

γρ̄2c̄2

∂p̄

∂xi
= 0

1
¯̄c

1

c̄2

∂p′

∂t
+

p′
√
gc̄2

∂

∂xi
(√
ggij ūj

)
+ gij ūj

∂

∂xi

(
p′

c̄2

)
+

ρ̄
√
g

∂

∂xi
(√
ggiju′j

)
(2.77)

+ giju′j
∂ρ̄

∂xi
= 0

where c̄ is the local correction to the speed of sound ¯̄c. Here the variables are non-

dimensionalised, with the velocities u′ and ū being normalised by ¯̄c, the pressure p′ nor-

malised by γ ¯̄p and the density ρ̄ by ¯̄ρ. These are formulated using the appendix present

in [27]. gij is the metric tensor with inverse gij and determinant g and εijk is the permu-

tation tensor.

Wilson [27] reforms equations (2.76) and (2.77) into a generalised eigenvalue problem:

A
∂f̂

∂ζ
= Bf̂. (2.78)

This equation is written in tensor form using contravariant basis vectors (ξ̂, η̂, ζ̂) related

to the curvilinear coordinate system compatible with the body-fitted mesh such that the

ξ, η, ζ coordinates represent the pseudo-radial, pseudo-circumferential and pseudo-axial

directions respectively.

In the general case the flow vector f̂ is a long vector consisting of each velocity com-

ponent and the pressure at every node on the boundary surface. In the cases calculated in

this thesis a spectral method is used in the pseudo-circumferential direction which only in-

cluded circumferential harmonics relevant to the problem at hand. This spectral approach

greatly reduces the dimensionality of the problem and improves the efficiency of the method.

The process for determining the A and B matrices is conceptually simple. All of the

linear terms in equation (2.76) and (2.77) are calculated at each mesh point. Terms con-

taining the ζ derivative of a perturbation variable are placed in matrix A and all the other

terms are placed in matrix B. Wilson [27] provides an example of this for one of the terms.
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The A and B matrices are adjusted at the inner and outer walls to include a hardwall

boundary condition. Because the contravariant basis vector ξ̂̂ξ̂ξ is normal to the wall, the

hardwall boundary condition can be written simply as:

ξ̂̂ξ̂ξ · uuu or g1juj = 0 in tensor form (2.79)

The Jacobian for this coordinate system has to be calculated both to quantify the met-

ric tensor terms in (2.76) and (2.77) and to convert physical to and from tensor form. It

can be calculated before hand directly from the definition of the calculation mesh however

this requires the mesh to be of high enough resolution so as to not introduce errors. In

Wilson [27] the Jacobian and metric tensor were calculated using linear partial differential

operators in each direction. Differentiation in the ξ direction is represented by a matrix.

The ith row of the matrix then represents the coefficients needed to provide a fourth order

polynomial approximation of the derivative at the ith point using a five point stencil which

is one sided at the walls. As for the pseudo-circumferential direction a pseudo-spectral

solution was used. The matrices are expanded to be able to work on full nξ × nη long

vectors representing the unknowns at every point on the surface.

Recall that the mean flow here is required to be time-averaged and the flow perturba-

tion should be at fixed frequency. Eigensolutions are generated along surfaces of constant

ζ. In the present application, equation (2.78) is only required at the inlet and outlet flow

boundaries, but the full body-fitted mesh is still needed to generate the A and B matrices

as they encapsulate geometric information about the duct and mean flow, including the

local hade of the inner and outer walls.

The method offers freedom from the slowly varying limit required in the method of

multiple scales which will be discussed in the upcoming sections. This means with the

exception of extremely sharp, essentially discontinuous, changes in geometry, the duct ge-

ometry can vary strongly with position.

In his later papers Wilson extended his work for use in external flows in the near field

of the inlet [39] and for use in predicting non-linear acoustic perturbations such as rotor

alone noise or buzz saw noise. In this latter case Wilson added a second order correction
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to account for non-linear effects during propagation [40].

2.3 Non-Reflecting Boundary Conditions

Much of the literature takes inspiration from Giles [18]. In this paper Giles assumes uniform

axial flow, in which case, the solutions take on a wave-like nature of the form similar to:

u (x, t) =
∑
k,ω

U k,ωe
i(k·x−ωt) (2.80)

which are all assumed to be physically stable modes. The eigenanalysis described in sec-

tions 2.2.1 to 2.2.5 is used here to develop exact two and three dimensional EBNRBC’s

with uniform mean flows and geometries and approximate EBNRBC’s for two dimensional

non uniform mean flows and geometries with preliminary analytical work done in three

dimensions. Using this theory Giles discussed the development of many types of boundary

conditions:

� NRBC’s for a single Fourier mode.

� One dimensional unsteady NRBC’s.

� Exact 2 dimensional, fixed frequency NRBC’s.

� Exact, 2 dimensional, steady NRBC’s.

� Approximate, 2 dimensional, unsteady NRBC’s.

Once the direction of propagation had been determined any waves that did not contribute

to the correct direction were set to zero.

2.3.1 One Dimensional Unsteady Boundary Conditions

The first example presented is the one dimensional unsteady case. The computational

domain is defined as 0 < x < 1 with the boundary at 0 and 1 being the inflow and outflow

boundaries respectively. In this case λ = 0 and the right and left eigenvectors, denoted by

w i are

wR
1 =


−1

0

0

0

 , wR
2 =


0

0

1

0

 , wR
3 =


1
2
1
2

0
1
2

 , wR
4 =


1
2

−1
2

0
1
2

 (2.81)
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and

wL
1 =

(
−1, 0, 0, 1

)
wL

2 =
(

0, 0, 1, 0
)

wL
3 =

(
0, 1, 0, 1

)
(2.82)

wL
4 =

(
0, −1, 0, 1

)
Assuming correct normalisation between left and right eigenvectors, such that wL

mw
R
n =

δmn, one can define a transformation to and from the 1 dimensional characteristic variables,
c1

c2

c3

c4

 =


−1 0 0 1

0 0 1 0

0 1 0 1

0 −1 0 1



ρ̃

ũ

ṽ

p̃

 (2.83)


ρ̃

ũ

ṽ

p̃

 =


−1 0 1

2
1
2

0 0 1
2 −1

2

0 1 0 0

0 0 1
2

1
2



c1

c2

c3

c4

 (2.84)

In terms of characteristic variables the boundary conditions are then,
c1

c2

c3

 = 0 (2.85)

at x = 0 and

c4 = 0 (2.86)

at x = 1

2.3.2 2 Dimensional Boundary Conditions

Moving on to the 2 dimensional subsonic examples and examining the steady 2 dimensional

case, it is seen that exact boundary conditions can be formulated for simple geometries

and when U is periodic in y with a period of 2π at the boundary. In that case U at x = 0
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is written as,

U (0, y, t) =
∞∑
−∞

Û l (t) e
ily (2.87)

where Û l (t) is the Fourier transform of U in the y direction. In the steady case the left

eigenvectors need to be found for ω → 0 and they are found to be, denoting them as s i,

sL1 = lim
λ→∞

vL1 =
(
−1, 0, 0, 1

)
sL2 = lim

λ→∞

1

λ
vL2 =

(
0, −u, −v, −1

)
sL3 = lim

λ→∞

1

λ
vL3 =

(
0, −v, u, β

)
(2.88)

sL4 = lim
λ→∞

1

λ
vL4 =

(
0, v, −u, β

)
where

β =

isign (l)
√

1− u2 − v2, u2 + v2 < 1,

−sign (l)
√
u2 + v2 − 1, u2 + v2 > 1.

(2.89)

Fourier transforming U in y as before, the boundary conditions are formulated. At the

inflow the boundary conditions are,
−1 0 0 1

0 −u −v −1

0 −v u β

 Û l (t) = 0 (2.90)

and at the outflow they are, (
0, v, −u, β

)
Û l (t) = 0 (2.91)

In terms of characteristic variables this reads as,


−1 0 0 0

0 −v −1
2 (1 + u) −1

2 (1− u)

0 u 1
2 (β − v) 1

2 (β + v)



ĉ1

ĉ2

ĉ3

ĉ4

 = 0 (2.92)
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at the inflow and

(
0 −u 1

2 (β + v) 1
2 (β − v)

)

ĉ1

ĉ2

ĉ3

ĉ4

 = 0 (2.93)

at the outflow.

Finally there is the most general example, the approximate unsteady case in 2 dimen-

sions. In this case, in order to obtain a second order approximation, vLi is expanded about

λ = 0 in a Taylor series. In the limit where λ = 0, the left eigenvalues, denoted as v̄Li are

calculated as,

v̄L1 =
(
−1, 0, 0, 1

)
v̄L2 =

(
0, −uλ, 1− vλ, −λ

)
v̄L3 =

(
0, 1− vλ, uλ, 1− vλ

)
(2.94)

v̄L4 =
(

0, − (1− vλ) , −uλ, 1− vλ
)

Note that the first two eigenvectors are exact. Applying these boundary conditions one

gets the inflow boundary condition as,
−1 0 0 1

0 0 1 0

0 1 0 1

U t +


0 0 0 0

0 u v 1

0 v −u v

U y = 0 (2.95)

and (
0 −1 0 1

)
U t +

(
0 −v u v

)
U y = 0 (2.96)

at the outflow. In terms of characteristics the boundary conditions are


c1

c2

c3


t

+


0 0 0 0

0 v 1
2 (1 + u) 1

2 (1− u)

0 −u v 0



c1

c2

c3

c4


y

= 0 (2.97)
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at the inflow and

(c4)t +
(

0 u 0 v
)

c1

c2

c3

c4


y

= 0 (2.98)

at the outflow.

2.3.3 3 Dimensional unsteady Boundary Conditions

Using the three dimensional eigenvectors:

vL1 =
(
−1, 0, 0, 0, 1

)
,

vL2 =
1

ω

(
0, −ul, −Λ, 0, −l

)
,

vL3 =
1

ω

(
0, −um, 0, −Λ, −m

)
, (2.99)

vL4 =
1

ω

(
0, −Λ, ul, um, ΛS

)
,

vL5 =
1

ω

(
0, −Λ, ul, um, −ΛS

)
.

The three dimensional EBNRBC’s are:
−1 0 0 0 1

0, − 1
ωul, − 1

ωΛ, 0, − 1
ω l

0, − 1
ωum, 0, − 1

ωΛ, − 1
ωm

0, − 1
ωΛ, 1

ωul,
1
ωum,

1
ωΛS

 Û ` = 0 (2.100)

at the inlet and
1

ω

(
0, −Λ, ul, um, −ΛS

)
Û ` = 0 (2.101)

2.3.4 3 Dimensional Steady NRBC’s

Petrie-Repar [41] formulates a 3 dimensional form of these boundary conditions, inspired

by Giles and tests them for 2 dimensional problems and 3 dimensional problems which will

be discussed further below. The extension to three dimensions, as can be seen, involves

the addition of an extra dimension in space giving rise to the third direction of velocity.

The algebra is more or less the same as the third dimension and does not impinge on the

ability to separate the variables and find a dispersion relation assuming the flow is uniform.
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Anker et all [9] expanded on the theory developed by Giles by developing NRBC’s in 3

dimensions for steady-state flow simulations. The theory here mimics Giles with the addi-

tion of one extra dimension. Applying the same principles as that of Giles, 3 dimensional

steady NRBC’s were developed and tested against Saxer’s [42] quasi-three-dimensional

method, a hybrid method and a full 3 dimensional NRBC. The quasi-three-dimensional

method involves treating each radial point independently from one another. For this to

work the assumption is taken that the circumferential variation in the flow is much greater

than the radial variation. This may not be true for turbomachinery flows. The hybrid

method involves a quasi-three-dimensional approach however the spanwise distribution of

boundary values is prescribed. The results will be discussed in section 2.7.

2.3.5 NRBC’s In Generalised Curvilinear Coordinates

Medida [10] extended the Giles boundary conditions to generalised coordinates in 2 dimen-

sions. A review of Giles original method is present. Medida also aimed to solve the issue

of corner points in the domain. The corner is of concern as it is part of both the wall and

the inlet. Using the chain rule, the Euler equations are written in a curvilinear coordinate

system, linearised and written in the form required for Fourier analysis and eigenanalysis.

The Generalised eigenvalues are found and used to formulate:

� One dimensional, unsteady boundary conditions.

� Approximate, 2 dimensional, unsteady boundary conditions in curvilinear co-ordinates.

In the curvilinear setting, Medida also reformulated his wall corner compatibility condi-

tions. Medida tested his formulations using Ringleb flow which will be discussed in a

coming section.

Sescu [19] extended the work done by Medida [10] by attempting to generalise to 3

dimensions. The same approach present in Medida and Giles was taken here. The linearised

Euler equations for uniform flow is a constant coefficient differential equation. When

shifting to generalised coordinates however these coefficients can no longer be assumed

to be constant, as a result of this, in order to follow the method set out by Giles, the

coefficients are assumed to be locally constant and so the method can be repeated for each

grid point. Eigenvectors and eigenvalues were found in the usual fashion along with the
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NRBC’s. Sescu developed approximate, quasi-three-dimensional, unsteady NRBC’s. His

paper however was purely theoretical and testing of the NRBC’s is required to assess its

efficiency and effectiveness. Though not an NRBC for ducted flows it is worth mentioning

a paper by Ryaben’kii [43] in which boundary conditions for a domain of varying shape

is developed. It is also worth looking at [44] written by Caretto for familiarity on mesh

transformations for CFD calculations.

2.4 Boundary Conditions For The Wave Equation Without

Flow

In this part of the literature review a more general look is taken at the current methods

and state of the art for general numerical boundary conditions for acoustic and wavelike

disturbances.

A paper by Givoli [15] discusses the use of local boundary conditions in both space and

time based on the Sommerfeld radiation condition [45]. In his paper he mentions goals

common to this thesis, that is:

� The problem and its domain D and its boundary condition is well posed, a description
of which can be found in [46].

� The domain and boundary give a good approximation of the original problem when
solved in an infinite domain.

� The boundary condition B is highly compatible with the numerical scheme used in
the domain D.

� That the numerical method and boundary condition together must be numerically
stable.

� The spurious reflections caused by the boundary are small.

� The computational effort to solve the problem in domain D with boundary condition
B is not large.

In his paper Givoli focuses on problems described by the scalar wave equation:

utt = c2∇2u (2.102)
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where t is time and c is the wave speed. A subscript in t here means a differential in time.

Wave type solutions of the form:

u(x, t) = ũ(x)eiωt (2.103)

were assumed where ω is the wave frequency. For the one dimensional problem, in which

only one spatial dimension is considered, the boundary condition is exact. The domain here

is an infinitely long vibrating rod that can be truncated at any point while still remaining

exact assuming the boundary condition:

ut + cux = 0 (2.104)

derived directly from the sommerfeld radiation condition. Using the same method in a two

or three dimensional problems causes large spurious reflections and thus requires the use of

what is known as pseudodifferential operators. When moving to two or three dimensions

the dispersion relation relating the axial wave number to the circumferential, found by

either substituting the assumed solution into the differential equation or via adopting the

use of a Fourier transform, becomes irrational:

kx = ±k
√

1− s2 on B, s =
ky
k

(2.105)

where kx is the axial wave number and k = k2
x + k2

y. The plus and minus represent the

outgoing and incoming plane waves respectively. As a result the operators present in the

scalar wave equation become pseudodifferential operators, more information of which can

be found in [47]. A pseudodifferential operator is non-local in both space and time and

so is not practical for computational uses such as CFD. An introduction to pseudodiffer-

ential operators can be found in Ruzhansky [48]. Enquist and Majda [14] used a method

in which they approximated the non-local pseudodifferential operator by a local differ-

ential operator. This was done via rational approximation of increasing accuracy of the

aforementioned dispersion relation using Padé. The first order approximation is perfectly

non-reflecting for plane waves at normal incidence and performance increasingly drops as

wave angle increases. Many other approximation methods were used [46,49] but the Padé

approximation performs best for normal incident waves. Halpern [49] looked at alternative

approximations to the pseudodifferential operators. It is also found that the application of

local boundary conditions works well for high frequency acoustics, where there is a small

number of grid points per wavelength. A paper by Giles [18], while focused on two dimen-
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sional non-local NRBC’s, briefly discusses a local version of his boundary conditions via

taking a local approximation of the left eigenvectors of the dispersion relation of a general

unsteady, two dimensional, hyperbolic partial differential equation.

A paper by Grote [50] focused on time dependant scattering problems, that is a domain

with an acoustic source and an obstacle diverting the waves. The problem in one dimension

once again gives exact results with the equation of motion now being:

utt − uxx = f x > 0, t > 0 (2.106)

with boundary and initial values being:

u(0, t) = 0, t > 0, u(x, 0) = U0(x),
∂

∂t
u(x, 0) = V0(x), x > 0 (2.107)

and being bounded in a domain D = [0, L]. The same boundary condition is found in

one dimension as that in Givoli, however using characteristic theory instead of the Som-

merfeld radiation condition. Going to higher dimensions results in needing, once again,

local boundary conditions. Grote resorted to the same method here in approximating the

pseudodifferential operators. It is also seen, in this paper, that going into three dimen-

sional polar coordinates allows one to derive exact NRBC’s where now the waves were

mn-th spherical harmonics, Ynm(θ, φ), multiplied by some function unm(r, t). Grote de-

rived boundary conditions for n = 0 and n ≥ 0, using the work laid out by Sofronov [51,52].

Sofronov has a series of papers detailing boundary conditions in spherical coordinates for

the wave equation [51–55].

Tsynkov [16] used the same methods above to write boundary conditions for a half line

problem:

∇2u = µ2u = f, x ≥ 0 (2.108)

u(0) = 0 (2.109)

u(x)→ 0, as x→∞ (2.110)

The boundary condition in one dimension is exact while the boundary condition in higher

dimensions needs approximate expansions of pseudodifferential operators. It should be

noted that in developing boundary conditions with problems involving a source term f

the assumption is made that its value is 0 outside the domain. Gustafsson [56] developed
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boundary conditions where this assumption was lifted leading to an inhomogeneous bound-

ary condition. The development required the separation of variables via Laplace transforms

in time and Fourier transforms in space.

Work by Ting and Miksis [17] considered the problem of a scatterer in a bounded do-

main. The wave is split into two components: ψ = ψi + ψs. The incident and scattered

contributions respectively. H(ψ) = 0 was the condition inside the scatterer for x ∈ D,

where H is a nonlinear operator. The scattered part of the wave was represented using the

Kirchhoff formula, derivation for which can be found in [57]. This treats the scattered wave

field as infinitely many spherical waves that are generated by a continuous distribution of

sources on the boundary of the domain. This means the values on the boundary are de-

pendent on past values of the solution on some surface S inside the domain. This can help

one achieve an exact solution to the problem however this requires large computational

power and memory requirements. If N is the number of grid points in one dimension then

the number of iterations required per timestep would be N3 making it computationally

expensive to progress the solution, along with this is the requirement of the solution repre-

sented as a Kirchhoff integral to store past values of the solution on S for the length of time

it takes one wave to cross the domain, which requires large amounts of memory. These

therefore make it difficult to implement the method in a numerical scheme. Colonius [58]

gives a detailed overview on the developments of many types of ABC’s including absorbing

layers such as the PML and NRBC’s.

2.5 Boundary Conditions for The Euler Equations

Tsynkov [59,60] derived boundary conditions for the linearised Euler equations with source

terms. The boundary conditions developed here rely on what is known as lacunae. If one

pictures the area in space-time that the waves have travelled through, the lacuna is the

part of the space-time domain where the solution has become zero again, that is, the wave

has passed. The requirement to these boundary conditions is that the flow be less than

the speed of sound and the equation be linear. It is also required to know the analyti-

cal solution in the physical domain in order to apply the method computationally. The

boundary conditions are based on the premise that no acoustic wave can reach a distance

x = ct where c is the wave speed and t is the time passed, as such the pressure disturbance

at a distance just after this point is always zero. Though not entirely relevant to this
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thesis Tsynkov [61] also formulates external boundary conditions for viscous flows for the

compressible and incompressible fluids for the linearised Euler equations with additional

viscous terms. In this paper the boundary conditions also have corrections for non-linear

effects present at higher Mach numbers. Tsynkov also has a review on the computational

problems on unbounded domains [16].

Poinsot and Lele [2] developed characteristic boundary conditions for the Navier-Stokes

equations in three dimensions. These boundary conditions at the outflow boundary have

been implemented in the commercially available ANSYS FLUENT solver. The EBNRBC’s

developed in this thesis will be compared with Poinsot and Leles method in chapters 4,5,

and 6. The boundary condition is based off of characteristic analyses using Linear Relax-

ation Method to find the characteristic variables at the boundary. The method involves

characteristic analysis of the Navier-Stokes equation in order to modify terms correspond-

ing to waves travelling along one spatial direction. Using this analysis, wave amplitudes

can be determined and the eigenvalues of the system can be used to determine the outgoing

and incoming waves and once again cancelling any waves that should not be entering the

domain.

Assuming a compressible viscous flow, the Navier-Stokes equations are:

∂ρ

∂t
+

∂

∂xi
(mi) = 0 (2.111)

∂ρE

∂t
+

∂

∂xi
[(ρE + p)ui] =

∂

∂xi
(ujτij)−

∂qi
∂xi

(2.112)

∂mi

∂t
+

∂

∂xj
(miuj) +

∂p

∂xi
=

∂τij
∂xj

(2.113)

where:

ρE =
1

2
ρukuk +

p

γ − 1
(2.114)

mi = ρui (2.115)

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
(2.116)

In these sets of equations p is the thermodynamic pressure, mi is the momentum density

in the xi direction, ρE is the total energy density and qi is the heat flux in the xi direction
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which is given by:

qi = −λ ∂T
∂xi

(2.117)

Here λ is the thermal conductivity and is obtained from the viscosity coefficient µ:

λµCp/Pr (2.118)

where finally Pr is the Prandtl number.

Characteristic analysis is used to modify the hyperbolic terms in equations 2.111 - 2.113

that correspond to waves travelling in the x1 direction towards the x1 = L boundary shown

in figure 2.4. The system of equations are now written as:

Figure 2.4: Taken from [2] this shows waves leaving and entering a computational domain through
an inlet plan at x1 = 0 and an outlet plane at x1 = L.

∂ρ

∂t
+ d1 +

∂

∂x2
(m2) +

∂

∂x3
(m3) = 0 (2.119)
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∂ρE

∂t
+

1

2
u2
kd1 +

d2

γ − 1
+m1d3 +m2d4

+m3d5 +
∂

∂x2
[(ρE + p)u2] +

∂

∂x3
[(ρE + p)u3] (2.120)

=
∂

∂xi
(ujτij)−

∂qi
∂xi

∂m1

∂t
+ u1d1 + ρd3 +

∂

∂x2
(m1u2) +

∂

∂x3
(m1u3) =

∂τ1j

∂xj
(2.121)

∂m2

∂t
+ u2d1 + ρd4 +

∂

∂x2
(m2u2) +

∂

∂x3
(m2u3) +

∂p

∂x2
=

∂τ2j

∂xj
(2.122)

∂m3

∂t
+ u3d1 + ρd5 +

∂

∂x2
(m3u2) +

∂

∂x3
(m3u3) +

∂p

∂x3
=

∂τ3j

∂xj
(2.123)

A vector d is defined as:

d =



d1

d2

d3

d4

d5


=



∂m1
∂x1

∂c2m1
∂x1

+ (1− γ)µ ∂p
∂x1

u1
∂u1
∂x1

+ 1
ρ
∂p
∂x1

u1
∂u2
∂x1

u1
∂u3
∂x1


=



1
c2

[
L2 + 1

2(L5 + L1)
]

1
2(L5 + L1)
1

2ρc(L5 + L1)

L3

L4


(2.124)

where

L1 = V1

(
∂p

∂x1
− ρc∂u1

∂x1

)
(2.125)

L2 = V2

(
c2 ∂ρ

∂x1
− ∂p

∂x1

)
(2.126)

L3 = V3
∂u2

∂x1
(2.127)

L4 = V4
∂u3

∂x1
(2.128)

L5 = V5

(
∂p

∂x1
+ pc

∂u1

∂x1

)
(2.129)

where Vi are the characteristic velocities:

V1 = u1 − c (2.130)

V2 = V3 = V4 = u1 (2.131)

V5 = u1 + c (2.132)



45 Literature Review

and c is the speed of sound given by:

c2 =
γp

ρ
(2.133)

The vector d contains derivatives normal to the boundary at x1 and is given by charac-

teristic analysis found in [62]. Parallel values are ones of the type : (∂/∂x2)(ρu2). The

values Li are the amplitudes of the characteristic waves associated with each characteristic

velocity Vi. Looking at the linearised Navier-Stokes equation for one-dimensional inviscid

acoustic waves it is possible to give a physical interpretation of Li. Consider an upstream

-propagating wave associated to the characteristic velocity V1 = u1− c. Allow p′ and u′ to

be the pressure and velocity perturbations respectively. The wave amplitude A1 = p′−ρcu′

is conserved along the characteristic line x+ V1t giving:

∂A1

∂t
+ V1

∂A1

∂x1
= 0 or

∂A1

∂t
+ L1 = 0 (2.134)

This shows that −L1 represents the time variation of the wave amplitude A1. This is true

for all Vi. Note that the viscous terms are not included in the expressions for Vi. Poinsot

and Lele approximate the wave amplitudes in the viscous case by their inviscid expression.

An approximation for the incoming wave amplitude variations is needed. To obtain

the approximation Local One-Dimensional Inviscid (LODI) relations are used. A LODI

system is considered by neglecting both viscous and transverse terms. The equations then

allow one to infer values for the wave amplitude variations by considering the flow locally

as inviscid and one-dimensional. Writing in terms of primitive variables the LODI system

in this case is :

∂ρ

∂t
+

1

c2

[
L2 +

1

2
(L5 + L1)

]
= 0 (2.135)

∂ρ

∂t
+

1

2
(L5 + L1) = 0 (2.136)

∂u1

∂t
+

1

2ρc
(L5 + L1) = 0 (2.137)

∂u2

∂t
+ L3 = 0 (2.138)

∂u3

∂t
+ L4 = 0 (2.139)

Poinsot and Lele mention that these relations can be combined in order to find the time
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derivatives of other quantities of interest such as the temperature or the flow rate. It should

be noted that most physical boundary conditions will have a LODI relation.

It should be noted that the boundary variables will be time advanced using the system

eq (2.119) - (2.123) where viscous terms and parallel terms are considered and so the ap-

proximation is negligible.

Poinsot and Lele outlined three steps to produce boundary conditions for the Euler

equations.

1. Eliminate the corresponding conservation equations from the system of equations

(2.119) - (2.123) for each inviscid physical boundary condition imposed on the bound-

ary.

2. Express the Li corresponding to incoming waves as functions of the Li corresponding

to outgoing waves which should be known. This should be done for each inviscid

boundary condition using the LODI relations.

3. Using the values of Li obtained from step two and the remaining conservation equa-

tions in system (2.119) - (2.123), compute all variables which were not given by the

inviscid boundary conditions. In the case of a constant pressure outlet, the density

and velocities are obtained through the corresponding conservation equations (2.119),

(2.121) - (2.123) where L1 = −L5

To elaborate on the steps above, Poinsot and Lele mention that step 2 is the key part

of the method. The use of LODI relations to find reasonable information on the amplitude

of the incoming waves as well as using conservation equations formulated on the boundary

removes the need to have some arbitrary numerical condition. The time advancement of

step 3 includes parallel terms to obtain the solution at the next timestep. Step 1 is also

necessary to discard equations in the system (2.119) - (2.123) which are then replaced by

inviscid boundary conditions. This is needed as the system of equations and the LODI

relations would not satisfy the physical boundary conditions imposed.

Poinsot and Lele also generalise to the Navier-Stokes equations. Complete Navier-

Stokes boundary conditions are obtained by using inviscid boundary conditions while

adding viscous conditions. The viscous conditions should have negligible effect when vis-

cosity goes to zero. These conditions are added during step 3 and should only be used to
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modify the conservation equations used in step 3. Steps 1 and 2 remain the same. Poinsot

and Lele discuss in more detail how these viscous conditions are chosen.

A paper by Hixon [63] uses the Thompson Characteristic method [62, 64] to develop

improved mean flow boundary conditions for ducted flows described by the Euler equations

with source terms for Computational Aero Acoustics (CAA) calculations. This method also

required incoming and outgoing waves to be specified. A unit normal n̄ is defined and points

outward from the computational domain and can be used to find the propagation velocity

with respect to the computational boundary. Waves with a negative propagation velocity

are entering the domain whilst waves with a positive propagation velocity are exiting the

domain. Using this method, four types of boundary conditions are found: subsonic inflow

and outflow, supersonic inflow and outflow. The mean flow boundary conditions then uses

this information to set a correct mean pressure at the boundaries while still allowing the

acoustic disturbances to leave the domain.

2.5.1 Eigenanalysis in Slowly Varying Duct Geometries

Rienstra [3,21] discusses the transmission of sound through ducts of slowly varying radius

using the method of multiple scales. The requirement of having a slowly varying radius

means one can utilise a small parameter related to the slow radial variation in the duct

using the method of multiple scales. The mean flow is assumed to be a compressible

inviscid isentropic irrotational flow. As a result potential flow is used; ũ = ∇φ̃ where the

tilde represents the combined mean part and perturbation part of the variable. Rienstra

splits the problem up into equations of motion describing the mean flow and the equations

of motion describing acoustic field. For the mean flow a modified hard walled boundary

condition is used to take into account the slowly varying duct. Working in cylindrical

coordinates and considering an annular duct, the radii are given by:

r = R1(X), r = R2(X), X = εx, (2.140)

where ε is the small parameter and R1 and R2 are the inner and outer radius respectively.

R1,2 is dependant only upon ε. The modified hard walled boundary condition is then

u0 · ni = 0 at r = Ri(X) i = 1, 2 (2.141)
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where

n1,2 = ∓
er − εR′1,2ex

(1 + ε2R′21,2)1/2
(2.142)

The acoustic field has an impedance boundary condition given by Myers [65]

iω(u · ni) = [iω + u0 · ∇ − ni · (ni · ∇u0)]

(
p

Zi

)
at r = Ri(X) i = 1, 2 (2.143)

In order to find a unique solution, near uniform flow is assumed with axial variations only

in X:

u0 = ux(X, r, ε)ex + ur(X, r, ε)er (2.144)

whilst the acoustic field consists of a constant duct mode perturbed by variations in X.

The velocities ux and ur are expanded about ε. Rienstra [3] notes that small axial mass

variations are balanced by small radial variations therefore giving:

ux(X, r; ε) = ux0(X) +O(ε2), ur(X, r; ε) = εur1(X, r) +O(ε3) (2.145)

where

ux0(X) =
F

ρ̄0(X)(R2
2(X)−R2

1(X))
(2.146)

and

ur1(X, r) =
F

2rρ̄0(X)

∂

∂X

r2 −R2
1(X)

(R2
2(X)−R2

1(X))
(2.147)

ur1 is found using the continuity equation and the boundary condition:

−dRi
dX

ux0 + ur1 = 0 at r = Ri(X) (i = 1, 2) (2.148)

The rest of the flow variables are given by:

f̄(X, r; ε) = f̄0(X) +O(ε2) (2.149)

where f̄ = p̄, ρ̄, c̄, where the bar represent the mean values of the pressure, density and

speed of sound respectively.

The modes in the current case are modes whose axial and radial wave numbers depend
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on X, that is, are slowly varying:

φ(x, r, θ; ε) = φ(X, r; ε) exp

(
−imθ − iε−1

∫ X

µ(ζ)dζ

)
(2.150)

where φ is the perturbation part of φ̃. The differential operator with respect to x is

transformed as a result:
∂

∂x
= −iµ(X) + ε

∂

∂X
(2.151)

A more detailed derivation can be found in [3] however assuming:

φ(X, r; ε) = φ0(X, r) + εφ1(X, r) + ... (2.152)

the acoustic solution here takes the form of a linear combination of Bessel functions of both

the first and second kind that changes with X

φ0(X, r) = N(X)Jm(α(X)r) +M(X)Ym(α(X)r) (2.153)

whilst the boundary condition produces:

αR2J
′(αR2)− δ2Jm(αR2)

αR2Y ′(αR2)− δ2Ym(αR2)
=
αR1J

′(αR1) + δ1Jm(αR1)

αR1Y ′(αR2) + δ1Ym(αR2)
= −M(X)

N(X)
(2.154)

where

δi =
Ω2ρ̄0Ri
iωZi

, Ω = ω − ksvux0 (2.155)

from which the eigenvalue α can be found. ksv is the axial wave number in a slowly

varying duct. Here the radial wave number and coefficient of the Bessel functions are de-

pendent on X unlike that seen in (2.14). It is important to note that it is not required to

find an expression for φ1, only that there is a solvibility condition which indeed there is [66].

The next stage is to find an expression for N(X) which for the hard walled case is(
1/2πQ0

N

)2

=
ρ̄ωσ

2c̄

(
R2

2 −m2/α2

(αR2Y ′m(αR2))2 −
R2

1 −m2/α2

(αR1Y ′m(αR1))2

)
(2.156)

The derivation of which can be found again in [3]. Here σ is the reduced axial wave number:

σ =

(
1− (c̄2

0 − ū2
0)
α2

ω2

)1/2

(2.157)
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Figure 2.5: Sketch of the hollow to annular duct geometry taken from Rienstra [3].

Using the presented techniques, Rienstra was one of the first to develop a method for mode

analysis for the hollow to annular duct problem so long as the annular part was introduced

“slowly” as seen in figure 2.5. An example of this is given in his examples section [3] and

the results displayed give good results. Rienstra [22] generalised the solutions for irrota-

tional isentropic mean flow to flows with slowly varying modes in ducts of arbitrary cross

section.

Peake and cooper [23], also applied the method of multiple scales to ducts with slowly

varying elliptic cross section. In this case the eccentricity of the duct varies slowly along

the axial direction of the duct where the eccentricity is a function of the axial coordinate

and a small parameter similar to what was seen in the axisymmetric case: e = e(εx). The

standard transformation from elliptical to Cartesian then becomes:

y = e(εx) cosh τ cosα, z = e(εx) sinh τ sinα (2.158)

where τ and α are analogous to the radius and angle in cylindrical polar coordinates. The

assumptions and the equations of motion are equivalent to those in Rienstra [3]. Peake

and cooper make it a point to mention the coordinate system is not orthogonal. Using

standard results in differential geometry the definition of the gradient and divergence in
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this space was found giving:

∇φ =
1
√
g11

∂φ

∂τ
eτ +

1
√
g11

∂φ

∂α
eα +

1
√
g11

∂φ

∂x
ex (2.159)

The metric tensor gij for this space is

gij =


h2
τ 0 εg13

0 h2
τ εg23

εg13 εg23 ε2g̃33

, hτ = e
√

sinh2 τ + sin2 α (2.160)

The metric terms, g13, g23 and g̃33 are all O(1) variables and are subsequently not needed

to form a solution.

The steady state equations of motion for this problem are equivalent to those present

in [3]. The boundary conditions are conceptually same for that in [3] with mathematical

differences appearing due to the difference in space i.e. a slowly varying elliptical space

effecting the unit normals:

n1,2 = ∓
h−1
τ eτ − ετ ′1,2ex

(h−2
τ + ε2τ ′21,2)1/2

(2.161)

The solution follows a similar pattern with a result analogous to that of a linear combination

of Bessel functions known as modified Mathieu functions multiplied by Mathieu functions.

Two distinct set of solutions are possible, even about the major axis and odd written as:

(Mm(X)Cem(τ, q) +Nm(X)Fem(τ, q)) cem(θ, q) (2.162)

(Mm(X)Sem(τ, q) +Nm(X)Gem(τ, q)) sem(θ, q) (2.163)

respectively, where q is analogous to the radial mode number. cem(θ, q) and sem(θ, q) are

the Mathieu functions which in this case are analogous to cos θ and sin θ respectively.

Cem(τ, q), Sem(τ, q), Fem(τ, q) and Gem(τ, q) are the modified Mathieu functions analo-

gous to the Bessel functions. The first order form of the boundary condition is ∂φ0/∂τ = 0

at τ = τ1,2 which when applied gives the dispersion relation for non-trivial solution:

Ce′m(τ1, q)Fe
′
m(τ2, q) = Ce′m(τ2, q)Fe

′
m(τ1, q) (2.164)

and

Se′m(τ1, q)Ge
′
m(τ2, q) = Se′m(τ2, q)Ge

′
m(τ1, q) (2.165)
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for the even and odd solutions respectively. Similar to the slowly varying example above

the next step is to obtain an equation for M(X) which, for the even modes, is:

M2
m(X) =

Q2
0C

2
0 (X)Fe′m

2(τ2, q)

(C2
0ke + Ωux0)ρ0I

Ω = ω − keux0 (2.166)

where

I =

∫ 2π

0

∫ τ2

τ1

ce2
m(θ, q)

(
Cem(τ, q)Fe′m(τ2, q)− Ce′m(τ2, q)Fem(τ1, q)

)2
h2
τdτdθ. (2.167)

Here ke is the axial wave number for a duct with slowly varying elliptical cross section.

Nm(X) is then

Nm(X) = −Mm(X)
Ce′m(τ2, q)

Fe′m(τ2, q)
(2.168)

A more detailed derivation is available in [23]. It is possible to split the integral into several

terms which involve an integral in τ multiplied by an integral in θ. Some integrals can be

solved in closed form while the rest need to be evaluated numerically. In order to derive

the results for the odd modes simply replace Cem and cem by Sem and sem respectively.

Peake and cooper [24] extended the method to solve the problem of a slowly varying

duct with swirling mean flow. Swirl causes all mean flow terms to vary in X and r where

X here is unchanged in meaning and r is the radius. Again it is a requirement that the

variation of the duct is slow. The flow field now has the form:

u0 = ux(X, r, ε)ex + ur(X, r, ε)er + uθ(X, rε)eθ, (2.169)

The velocity field is given by:

ux(X, r; ε) = ux0(X, r) +O(ε2), (2.170)

ur(X, r; ε) = εur1(X, r) +O(ε3) (2.171)

uθ(X, r; ε) = uθ0(X, r) +O(ε2) (2.172)

giving a vorticity of the form:

ν =
1

r

∂(ruθ0)1

∂r
ex − ε

∂(uθ0)

∂X
er −

∂ux0

∂r
eθ +O(ε2) (2.173)

Writing the O(ε) continuity equation in terms of streamlines functions and using Bernoulli’s



53 Literature Review

theorem along with the use of Croccos relation it is possible to obtain the equations of

motion of the mean flow:

∂

∂r

(
1

rρ0

∂ψ

∂r

)
= rρ0H

′(ψ)− ρ0C
′(ψ)

C

r
(2.174)

1

2

1

r2ρ2
0

(
∂ψ

∂r

)2

+
C2

2r2
+
ργ−1

0

γ − 1
= H(ψ) (2.175)

where here ψ is the streamline function ψ(X, r), H is the enthalpy and C is the circulation.

The accompanying boundary conditions are:

ψ(X, r = R1) = 0 (2.176)

ψ(X, r = R2) = constant (2.177)

For a more detailed derivation visit [67]. These equations can be solved numerically for

any prescribed inlet flow.

Due to the presence of vorticity the perturbation velocity is split into potential and

rotational parts:

u′ = ∇φ+ uR (2.178)

while the pressure is described in terms of the unsteady potential φ:

p′ = −D0
Dφ

Dt
(2.179)

where the operator above is the convected derivative. Then from the linearised Euler

equations become two coupled equations:

DuR

Dt
+
(
uR · ∇

)
ur = −ν ×∇φ (2.180)[

D

Dt

1

C2
0

D

Dt
− 1

D0
∇ · (D0∇)

]
φ =

1

D0
∇ · (D0u

R) (2.181)

The derivation for the main result can be found in [67], here a quick overview will be given.

Solutions of the form:

(φ, uRx , u
R
r , u

R
θ )(x, r, θ, t; ε) = (A,X ,R, T )(X, r; ε) exp

(
iωt− imθ − i

ε

∫ X

k(η)dη

)
(2.182)
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are assumed. The boundary conditions in this case are:

iω

(
∂A

∂r
+R

)
± D0Λ2A

Zj
= εω

dRj
dX

(kA+ iX ) (2.183)

± iε
A

[
ux0

∂

∂X
+ ur1

∂

∂r
− ∂ur1

∂r
+

dRj
dX

∂ux0

∂r

](
D0ΛA2

Zj

)
which can be directly derived from Equation (2.143). Here Λ = ω − kux0 − muθ0/r.

Expanding the assumed solution in powers of ε and after some algebra sets of coupled

equations at O(1) and O(ε) are found:

(L − kK)ψ0 ≡ Pψ0 = 0 (2.184)

(L − kK)ψ01 ≡ Pψ1 = f (2.185)

where ψn = (An, ηn,Rn, iTn) and ηn = kβ2
0An n = 0, 1. This variable is introduced in order

to allow the system to be written as a linear eigenvalue problem [68]. The expressions for

L, K and f are given in appendix A of [67]. The corresponding boundary conditions are

then:

iω

(
∂A0

∂r
+R0

)
± D0Λ2A0

Zj
= 0 (2.186)

iω

(
∂A1

∂r
+R1

)
± D0Λ2A1

Zj
= ω

dRj
dX

(kA0 + iX0) (2.187)

± iε

A0

[
ux0

∂

∂X
+ ur1

∂

∂r
− ∂ur1

∂r
+

dRj
dX

∂ux0

∂r

](
D0ΛA2

0

Zj

)
Equation (2.184) together with boundary condition (2.186) are solved numerically, the

details of which can be found in [67]. The results of the calculation gives the leading order

solution up to an arbitrary slowly varying function:

ψ0(X, r) = N(X)ψ̂0(X, r) = N(X)(Â0, η̂0, R̂0, iT̂0) (2.188)

where after some calculation N(X) is given by:

N2(X) = N2
0 exp

(∫ X G(η)

F (η)
dη

)
(2.189)

Where N0 is a normalisation constant and the expressions for F and G are found in

appendix B of [67].



55 Literature Review

2.6 Zonal Boundary Treatments

2.6.1 Large Domain

The most basic of the zonal boundary treatments is to simply create a large enough domain

such that effects caused within the area of interest become small and negligible. At the

edge of the large domain is simply a Dirichlet boundary condition. Of course this leads to

reflections but with the solution effects being small this does nothing to spoil the solution.

The issue with this kind of boundary condition comes with the fact that the solutions of

acoustic problems are typically oscillating and decay with distance r as 1/r(d−1)/2, where

d is the number of dimensions. This slow decay means the domain has to be rather

large compared to our area of interest. As one can expect this increases simulation time

and requires higher processing power. An ideal boundary condition should allow one to

simulate closer to the area of interest in hopes of reducing time taken to obtain a solution

and potentially processing power. This is without mentioning that in ducted flows a larger

domain fails entirely as propagating waves travel to infinity.

2.6.2 Stretched Grid

The theory of stretched grids will be discussed using Kreiss [4] as a base. Looking at a 2

dimensional hyperbolic equation:

∂u

∂t
+A

∂u

∂x
+B

∂u

∂y
= 0 x ≥ 0 (2.190)

Fourier transforming in y and t:

iωû+A
∂û

∂x
+ ilBû = 0 x ≥ 0 (2.191)

where l is the wave number in the y direction and ω is the temporal frequency. This is a

system of ordinary differential equations for each l and ω:

∂û

∂x
= −iωA−1

(
1− l

ω
B

)
û, x ≥ 0 (2.192)

The solution can be expressed in terms of eigen solutions:

uk(x, y, t) = ei(ωt−kx−ly)uk (2.193)
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where k is the wave number and ω is the temporal frequency which are related via ω = ck.

Discretising this in space, using central differences yields:

iωv̂j +AD0v̂j + ilBv̂j = 0 (2.194)

where D0 =
vj+1−vj−1

2h and h is the distance between points. Rewriting (2.194) as shown

in (2.192):

D0v̂j = −iωA−1

(
1 +

l

ω
B

)
v̂j . (2.195)

The system is then diagonalized using the eigenvectors uk,

D0ẑ
(k)
j = −ikẑ(k)

j (2.196)

Solving this system of differential equation an ansatz is formed, v̂j = ηj , where η solves

the characteristic equation:

η2 + i2khη − 1 = 0 (2.197)

whose roots are:

η± = −ikh±
√

1− (kh)2 (2.198)

For different mesh resolutions in space the roots satisfy three conditions:

� For 0 < kh < 1 the roots have an absolute value unity, corresponding to a propagating
wave.

� For kh = 1 both roots equal −i. This causes a solution with a linearly growing
component.

� For kh > 1, the roots |η+| < 1 and |η−| > 1 correspond to evanescent waves, decaying
and growing respectively.

The grid stretching will take place here in one dimension by using the equation xj+1 = sxj ,

where s is the stretching factor. To achieve efficient damping the grid is stretched such

that out going waves are under-resolved. The approximate solutions for the decaying and

growing modes are:

vk+
n (y, t) =

(
Πn
j=0η

k
j+

)
ei(ωt+ly)φk (2.199)

η
(k)
j+ = −ikhj +

√
1− (khj)2 (2.200)
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for decaying modes and

vk−n (y, t) =
(

Πn
j=0η

k
j−

)
ei(ωt+ly)φk (2.201)

η
(k)
j− = −ikhj −

√
1− (khj)2 (2.202)

for growing modes, where φk is the eigenvector in the discretised setting. As distance

between points, h, increases waves will enter the evanescent regime and decay exponentially.

This was then implemented for use with the 2 dimensional linearised Euler equations.

Artificial dissipation is also added to aid in the damping of the waves. This can aid in

making the domain even smaller thus being more efficient with computing power and run

time. With this implementation, it was shown that a one dimensional wave, in a fluid with

base flow M = 0.5 can be made to decay in roughly 50 or so grid points depending on the

grid stretching ratio s as can be seen from figure 2.6, that is, it becomes evanescent.

Figure 2.6: The decay rate for a one dimensional wave in domains of different grid stretching
ratios. In each case the grid stretching starts at x = 50. The wave is travelling through a fluid of
flow M = 0.5 where M is the Mach number. Graphs taken from [4]

This was also tested with constant s and changing artificial viscosity εx. In the 2 di-

mensional example flow is present in the x direction of base flow M = 0.5 and periodicity

is enforced in the y direction with numerical viscosity turned off. Oblique waves are gen-

erated at the inflow boundary. Waves become cut-off, i.e. evanescent, when the distance

between grid points becomes h ≥ 1/ |ωk|, where ω is the temporal frequency and k is the
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wave number in the x direction. In the 2 dimensional setting the input wave was tested at

three different wave angles. β = 0◦, 20◦, 40◦ for the wave front relative to the x axis. This

shows that waves hitting the buffer zone at angles up to 40◦ are well damped and become

cut off at h = 1/ |ωk|. The paper concludes that the evanescent decay is very efficient in

dampening the amplitude of physical waves, but the viscous damping is significant for high

frequency spurious waves.

This boundary treatment produces good results in damping outgoing waves, however it

requires additional domain space to be implemented and with additional numerical viscos-

ity terms calculation times and compute resources are not as efficiently used as they could

be with alternative methods such as the Perfectly Matched Layer (PML, see below).
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Figure 2.7: The decay rate for a two dimensional wave in a domain of stretching ratio s = 1.05
and different incidence angles β. In each case the grid stretching starts at x = 50. The wave is
travelling through a fluid of flow M = 0.5 where M is the Mach number. Graphs taken from [4].

Vichnevetsky and Tuner [69] looked at wave propagation in irregular grids and also

looked at the spurious scattering due to “sponges layers” in one dimension [70]. This type

of boundary treatment is discussed in the following section.
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2.6.3 Sponge Layer

Colonius et al [71], first proposed the concept of adding non-physical entrance and exit

zones. This zone applied numerical filtering to damp disturbances in the exit zone thereby

reducing spurius reflections. An advancement of this was done by Ta’asan and Nark [72]

whereby they added convective terms to the linearised Euler equations causing them to be

supersonic at the boundary of the numerical domain. Hu [73] extended a zonal boundary

treatment developed by Berenger [74] for the Maxwell equations, to the Euler equations.

This is what is now known as the sponge layer as in this method a damping term is added

to the equations of motion in the entry and exit zones, the goal of which is to dampen the

solution to a quiescent state. In summary a sponge layer is a numerical zone surrounding

or trapping the area of interest that is designed to absorb outgoing waves, that is, it is

an absorbing boundary layer, not a boundary condition. A boundary condition is still

required when using sponge layers. These damping terms are “activated” at a reasonable

distance away from the area of interest. In the general case the sponge layer is placed far

enough away from the area of interest such that the effects produced by the simulation are

linear. In acoustics however this is not necessary in most cases as acoustic effects typically

tend to be linear, with the exception of certain phenomena such as shocks [5].

Using Mani [5], sponge layers will be discussed. The concept of the sponge layer can

be summarised as follows, the Euler equations with additional “sponge” terms:

∂u

∂t
+M

∂u

∂x
+
∂p

∂x
= −σ(x)u

∂v

∂t
+M

∂v

∂x
+
∂p

∂y
= −σ(x)v (2.203)

∂p

∂t
+M

∂p

∂x
+
∂u

∂x
+
∂v

∂y
= −σ(x)p

Here the equations of motions are non-dimensionalised. The concept here is that after a

certain distance, i.e. in the far field these sponge terms are added to help decay any waves

that interact with them. Analysing this concept in one dimension the equations of motion
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reduce to:

∂R

∂t
+ (M + 1)

∂R

∂x
= −σ(x)R

∂v

∂t
+M

∂v

∂x
= −σ(x)v (2.204)

∂L

∂t
+ (M − 1)

∂L

∂x
= −σ(x)L

where R = u + p and L = u − p. Here all characteristics are uncoupled however with

the sponge their amplitude decays exponentially. Using this sponge layer with a boundary

condition that remains decoupled after the sponge, it is possible to obtain perfectly non-

reflective boundary conditions. In the case of reflection three things may happen; an

incident sound wave can reflect as a sound wave. A sound wave can reflect as a vorticity

wave (for M < 0) and a vorticity wave can reflect as a sound wave (for M > 0). As a

sponge Layer can be reflective, it is wise to set a damping target. The ratio of reflected

sound to incident sound amplitude is given by:

η ≡ |Lr|
|Ri|

= ηBC exp

(
− 2

1−M2

∫ lsp

0
σ(x)dx

)
, (2.205)

where lsp is the sponge length. Defining the damping target:

ηt ≡ 20 log

[
exp

(
− 2

1−M2

∫ lsp

0
σ(x)dx

)]
= −20

2 log e

1−M2

∫ lsp

0
σ(x)dx (2.206)

The derivation of which can be found in [5]. In the one dimensional example, the sponge

performs ideally as it achieves its target damping whilst also not causing its own reflection.

Oblique waves will now be looked at. Setting M = 0 for simplification and Fourier

transforming in the homogeneous directions (2.203) becomes:

d

dx

(
û

p̂

)
= (iω − σ)

(
0 1 + l2

(iω−σ)2

1 0

)(
û

p̂

)
, (2.207)

where ω is the angular frequency and l is the wave number in the y direction, l = 2π sin θ/λ

where θ is the angle of the wave front normal relative to the x direction. Assuming constant
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σ (2.207) can be diagonalized:

d

dx

(
R
L

)
= (iω − σ)

(
c 0

0 −c

)(
R
L

)
(2.208)

where c =
√

1 + l2

(iω−σ)2
and R and L are right and left going waves respectively. Eigen-

vectors can be obtained from: (
û

p̂

)
=

(
c −c
1 1

)(
R
L

)
(2.209)

For l 6= 0 the eigenvectors depend on σ. As a result they respond to changes in σ. This

causes reflection due to the discontinuous jump in σ as the sponge is encountered i.e. a

right running wave will no longer remain a purely right running wave after interaction with

the sponge layer.

The reflection ratio η in this case is given by:

η =

[
θ2

4

(
1− ω2

(ω + iσ)2

)
+
θ2

4

ω2

(ω + iσ)2 e
−2lspσ+2ilspω

]
(2.210)

The first term measures the reflection due to the sponge interface at x = 0 whilst the

second terms represents the reflection off the boundary x = lsp. As the reflection due to

the interface scales as θ2 one can obtain a great improvement if they align the sponge

with the outgoing wave fronts. In the case of large wavelengths the reflection coefficient

becomes:

lim ηω→0 =
θ2

4
(2.211)

which is identical to a reflection coefficient without a sponge. In the short wavelength limit

the coefficient becomes:

lim ηω→∞ =
θ2

4
e−2lspσ (2.212)

which is equal to (2.205) when m = 0 and ηBC = θ2/4. In order to achieve this it is

required that ω � σ which therefore leads to:

lsp
λ
� ηtarget (2.213)

This requirement can be relaxed greatly if one optimises the sponge layer. In fact the best
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sponges are optimised. Looking at figure 2.8 it can be seen that an ideal performance can

be achieved for a sponge larger than 10 wavelengths. The oscillations present in the right

graph is due to interference in the waves between x = 0 and x = lsp. Looking at the graph

Figure 2.8: These graphs taken from [5] show the reflectivity as a function of sponge length
(dimensionless) with constant σ and ηtarget = −20dB (right) and the upper envelop of this profile
is shown and compared with sponges of various strengths (left).

on the left it is seen that in the worst interference scenario, achieving an ideal performance

for a sponge strength with ηtarget = −60dB requires a sponge length of 104 wavelengths.

This ineffective behaviour can be resolved by introducing non-uniform sponges.

A non-uniform sponge is developed as such; discretise the sponge profile and assume

a constant σ in each interval ∆x. The same steps previously taken can then be taken for

each ∆x. Considering power law profiles (σ(x) ∼ xn with n = 0, 1, 2, 3) one can see from

figure 2.9 that the rate to convergence to ideal performance is much quicker for sponges of

higher order when compared to that of a constant sponge. This is because as σ is gradually

increased the interfacial reflection is distributed over the length of the sponge.

Moving over to the general analysis with non-constant σ, nonzero M and general θ,

(2.203) the equations of motion are:

d

dx


û

v̂

p̂

 =


M 0 1

0 M 0

1 0 M


−1

iω − σ(x) 0 1

0 iω − σ(x) −il
0 −il iω − σ(x)



û

v̂

p̂

 . (2.214)

Discretising and applying a non-uniform sponge layer, (2.214) can be diagonalized and
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Figure 2.9: These graphs taken from [5] show the effectiveness of non-uniform sponge profiles of
the form σ(x) ∼ xn with n = 0 (dotted line), n = 1 (dashed line) n = 2 (dashed-dotted line) and
n = 3 (solid line).

solved to obtain: 
û (x+ ∆x)

v̂ (x+ ∆x)

p̂ (x+ ∆x)

 = Sxe
Λ∆xS−1

x


û(x)

v̂(x)

p̂(x)

 (2.215)

where Λ is the matrix of local eigenvalues and S is the matrix of local eigenvectors. A

common choice used for the boundary at x = lsp is:

û(lsp)− p̂(lsp) = 0. (2.216)

In the general case, non dimensional sponge length (normalised by frequencey, f and sound

speed c) is no longer equal to the ratio of sponge length to the wavelength. The relationship

between the frequency and wave number k is:

ω = k (1 +M cos θ) (2.217)

ω = kM cosφ (2.218)

for sound waves and vorticity waves respectively. The angles θ and φ are angles at which

the wave hits the sponge relative to the x direction. When lsp is small, the sponge is

essentially useless but when lspf/a is of order 0.5 to 2 for the case where acoustic waves

reflect as acoustic waves results improve. This was tested in [5] at an angle of incidence

ranging from 0 to cos−1(−M). In his testing a wide range of frequencies are damped by

ratios that exceed the set target.

In some cases where M < 0 acoustic waves can reflect back into the physical domain
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as vortical waves, however as frequency increases so does the effectiveness of the sponge so

this is not much of a concern and this is also the case for when vortical waves reflect as

sound.

Sponges offer a good solution but as mentioned take up more computing power than

the NRBC’s mentioned above. Sponge layers are also required to be put out into the far

field and the sponge itself will take up space in the domain contributing to the requirement

of more compute power and calculation time. Bodony [75] also found that applying a

sponge to the linearised Euler equations can cause the solution to lose stability when being

damped. This was avoided by using the same sponge strength for each equation. He found

that the rate of convergence to the target was the inverse of the sponge strength.

2.6.4 Perfectly Matched Layer

A perfectly Matched Layer (PML), first introduced by Berenger [74], may be considered an

alternative form of a sponge layer. Developed for computational electrodynamics [76, 77]

the method has been adopted to situations with flow making it usable in acoustic problems

with a mean flow. The concept of the Perfectly Matched Layer (PML), turns the boundary

condition from a 2 dimensional “shell” enveloping the area of interest into a shell with 3

dimensions, that is, a layer. Again this is an absorbing boundary layer, with an additional

boundary condition. A basic review on PML’s can be found in [6,78]. The issue with this

layer type boundary treatments is that when transitioning from one medium to another

reflections still occur. It is possible to construct an absorbing medium, however, that is

not reflective at the interface. This is what makes a PML. Most modern PML’s use a for-

mulation called uniaxial PML which is a formulation that involves expressing the PML as

the wave equation with a combination of artificial, anisotropic absorbing materials. PML’s

also work for inhomogeneous media, as long as the medium is homogeneous in the direction

perpendicular to the boundary.

It is worth mentioning that PML’s can help to accelerate the decay of evanescent waves.

Doing this however will in turn cause propagating waves to oscillate even faster meaning

tuning is required on the part of the engineer.

One can think of a PML as a complex coordinate stretching. The first step is to think
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of some solution to some wave like equation:

u (x, t) =
∑
k,ω

U k,ωe
i(k·x−ωt) (2.219)

As usual k and ω are the wave number and angular frequency respectively. The key here

is to evaluate (2.219) on complex x where the contour on which the evaluation takes place

enters the complex space some place outside the area of interest. Splitting the exponential

part eikr Rexe−ki Imx it is seen in figure 2.10 that the solution decays as Imx increases as

if it is in some sort of absorbing material. As the solution itself has remained unchanged

the PML acts like a reflectionless absorbing material.

Figure 2.10: Taken from [6] the above graphs show a solution oscillating through real x while the
bottom graphs show the solution decay as imaginary x is slowly introduced.

To spare one from the difficulty of solving differential equations along a complex contour

it is best to coordinate transform back to real x. This is done via writing the differential

equation in terms of the real part of x. Writing x as x(xr) = xr + if(xr), where f(xr) is
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the function that deforms the contour, it is seen that:

∂x =

(
1 + i

df

dxr

)
∂xr

→ ∂

∂x
=

1(
1 + i df

dxr

) ∂

∂xr
(2.220)

That is, PML can be seen simply as a transformation of the differential equation. Taking
df
dxr

= σxr (xr)
ω for some function σxr(xr), where the factor 1/ω is given to ensure all wave-

lengths decay at equal rates. In the above example a PML in the positive x direction has

been established. In the negative x direction the exact same steps are taken and this is

the case for the y and z directions also. A more detailed formulation of the PML can be

found in [79–83].

This formulation of the PML is such that the attenuation rate in the PML is indepen-

dent to frequency ω i.e. all wavelengths decay at the same rate. This makes PML suitable

for broadband noise as well as tonal noise.

Once the PML has been established truncation needs to occur with the boundary condi-

tions usually being a constant pressure boundary condition. Reflections from the boundary

condition in this case should not be an issue as any reflected waves decay on the way back.

The next question is how thick or thin must a PML be? Analytically it is possible to

make it as thin as one desires simply by choosing a large σxr however numerically large σxr

will cause reflections. In fact once discretising occurs reflections cannot be helped. The

reflections however should be small if there is a good approximation to the wave equation.

In order to better control the reflections one can slowly turn on the PML quadratically or

cubically making said reflections negligible. This will cause the PML to be of a thickness

roughly half of that of a single wavelength.

PML also requires a large enough domain such that angle of incidence of the wave onto

the PML becomes less of a factor. In developing the PML in 1 dimension, direction was

not a factor however in 2 and 3 dimensions angle of incidence does indeed impact the effec-

tiveness of the PML. The wave number k was discussed however it would be more correct

to say that the decay rate is proportional to |k| cos θ. As the angle of incident increases

the decay rate decreases. A large enough domain however can help to ensure the angles of

incidence stay such that an acceptable decay rate is obtained.
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Whilst PML’s offer a good solution for absorbing boundary conditions for acoustic

problems, they still require a dedicated area in the mesh surrounding the area of interest,

in order to be effective. This once again takes up computing power and time. One must

also carefully apply PML’s to ensure reflections are negligible and this can cause the area

dedicated for PML’s to grow cubically in 3 dimensions, causing, again the same problem.

2.7 NRBC Implementation and Tests Cases

Frey et al [7] tested a range of NRBC’s for steady and unsteady flow simulations, in

the context of turbomachinery, in duct, showing promising results in a Reynolds-averaged

Navier-Stokes equations (RANS) Computational Fluid Dynamics (CFD) code. He uses the

same formulation as that of Giles deriving the NRBC’s using the same principles. Uniform

entropy and enthalpy was enforced in the steady case while setting ω to 0. In the unsteady

case local boundary conditions were formulated by adopting the approach developed by

Engquist and Majda [14]. Multiple types of NRBC’s were applied to a 2 dimensional, linear

turbine cascade and compared:

� Exact NRBC (Steady)

� Steady NRBC (Steady)

� Exact NRBC (Unsteady)

� Exact NRBC long domain (Steady)

� Steady NRBC long domain (Steady)

� 1D Riemann (Steady)

� 2nd order approximate boundary conditions (Unsteady)

The calculations were carried out at a supercritical operating point with stagnation tem-

perature being 415k and stagnation pressure at the inlet at 147500 Pa and 78000 Pa static

pressure at the outlet with a base frequency set to 6.1 kHz which is of the order of mag-

nitude of typical of turbomachinery flows. 64 times steps are taken to resolve one period,

with 25 sub iterations between each timestep. Figures 2.3 a, b, d, agree with the reference

results figures 2.3, f and g. It is shown the steady NRBC’s and the exact NRBC’s in both

steady and unsteady computations agree qualitatively with the long domain results taken

to be reference results. Looking at the graph in figure 2.12 it is seen that the 2nd order
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approximate boundary condition and the Riemann Boundary condition both smear out

the shock leading to a differing pressure distribution on the suction side. The pressure

distributions of all other methods match, however it should be noted that all short domain

computations deviate slightly from the reference results produced by the long domain cal-

culations.

Figure 2.11: Taken from [7]. This shows plotting density magnitude.
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Figure 2.12: Taken from [7]. This shows blade pressure distribution.
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Bertsch [8], evaluated and tested the NRBC’s present in ANSYS FLUENT. The NRBC’s

tested here in FLUENT are implemented using characteristic waves which are calculated

from the primitive variables; pressure, temperature, and the velocity components in all 3

dimensions. They were tested with laminar pipe flow with an NRBC set up on the outflow

boundary condition with standard slip walls. It was tested via an input broadband signal

ranging from 0kHz to 5 kHz. The effectiveness of the NRBC was studied via analysing

the reflection coefficient. For frequencies between 0.5 - 5 kHz the reflection coefficient,
∣∣∣R̂∣∣∣

Figure 2.13: Taken from [8]. This graph shows the reflection coefficient determined at the centre
of the outflow boundary for laminar pipe flow. Here the x axis shows frequency

drops to values below 0.05. The NRBC for lower frequencies however fails as the reflection

coefficient approaches 1 as the frequency tends to 0. NRBC’s were also tested for turbulent

pipe flow with the boundary condition once again at the outlet this time with no slip walls.

This introduces an element of non-uniform flow, which is important for the scope of this

project. The results here are once again promising for higher frequencies. For frequencies

going above 0.6 kHz the reflection coefficient reaches values below 0.05 but as the frequency

tends to 0 the coefficient goes to 1 showing once again more promise at higher frequencies.

The authors therefore state that the method is effective over the 0 - 5000Hz range that

they were considering, but note that this was for a lab scale duct with a diameter of 30mm.

The majority of this range of frequencies can therefore accurately studied.

Anker [9] tested his NRBC’s in a few examples the first of which was subsonic flow through

a linear turbine cascade. The performance was assessed by comparing solutions calculated

on domains of different boundary treatments, mainly NRBC and large domain as shown in

2.15. The reference solution was the solution calculated using the 3D-NRBC on the largest

domain. The flow is viscous and isentropic and tested at three different outflow Mach

numbers: M = 0.62, 0.81, 1.21. The results obtained show that all three variants of the
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Figure 2.14: Taken from [8]. This graph shows the reflection coefficient determined at the centre
of the outflow boundary for turbulent pipe flow. Again the x axis shows frequency

Figure 2.15: Taken from Anker [9]. This image demonstrates the different boundary treatments.
REF shows the reference large domain treatment. IN uses an inlet boundary treatment and OUT
uses an outlet boundary treatment while core uses a treatment at both inlet and outlet.

3D-NRBC match. The solutions obtain from the “IN” mesh are in agreement for all three

Mach numbers, whilst the solutions obtained from the “OUT” mesh are slightly deviated

from the reference solution for the subsonic Mach numbers however the supersonic Mach

number deviates more considerably. This is due to a shock crossing the outlet boundary,

and hence can be attributed to linearisation errors as a shock is no longer a linear effect.
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Figure 2.16: Taken from Anker [9]. This figure shows the solution resulting aforementioned
boundary treatments.
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Medida [10] tested his 2 dimensional generalised curvilinear boundary conditions against

a Ringleb flow example. He tested his NRBC’s with different base flows of Mach numbers

ranging from M = 0.1 − 0.35 at the inflow and M = 0.52 − 1.20 at the centre of the

inner wall, on meshes of different resolutions. The Cartesian NRBC’s were tested without

the wall condition that Medida had also developed. This leads to flow through the wall.

Applying the wall corner condition the flow through the wall vanished however the correct

flow solution at the corners could still not be achieved causing the solution to diverge.

Figure 2.17: Taken from Medida [10]. Here the solution presented is based off of boundary
conditions that do not include the aforementioned additional terms and also do not implement the
wall condition.

Applying now the Curvilinear NRBC’s without the wall condition, Medida found it best

to derive the curvilinear boundary conditions from the curvilinear form of the Euler equa-

tions as opposed to deriving the Cartesian boundary conditions and transforming them. In

doing so additional terms were found to be part of the equation, which play a crucial role.

Applying the curvilinear NRBC’s without the additional terms leads to solutions similar to

that demonstrated in figures 2.17 and 2.18. When applying the boundary conditions with

the additional terms and the wall condition turned on the correct flow solution is observed.

The solution displayed long term instability which was cured through grid stretching

towards the inflow and outflow boundaries. Medida found that in this case grid stretching

breaks any diverging feedback loops and damps unresolved frequencies.
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Figure 2.18: Taken from Medida [10]. Here the additional terms are still lacking however the wall
condition has been implemented.
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Figure 2.19: Taken from Medida [10]. This solution has both the additional terms along with the
wall condition.



Chapter 3

Methodology and Application

This chapter will be divided into two parts. The first will describe the methodology and

application of the EBNRBC and its implementation into the ANSYS FLUENT solver. The

second part will discuss the implementation of the test cases described in chapters 4, 5 and

6.

3.1 EBNRBC Methodology and Implementation

3.1.1 EBNRBC Methodology

The eigenvectors and eigenvalues of the equation below will be found and used to formulate

the EBNRBC’s:

A
∂f̂

∂ζ
= Bf̂. (3.1)

The first step is finding the eigensolutions of (3.1) along surfaces of constant ζ. The

use of curvilinear coordinates during the analysis ensures the effects of the curvature, gra-

dients in the mean flow amplitude and direction are captured. In weakly to moderately

non-uniform mean flow, the eigenvalues and eigenvectors derived from this equation relate

to mainly vortical and mainly acoustic modes in a similar manner to the uniform flow case.

The eigenmodes, however, are no longer simple circumferential harmonics. To illustrate

this, figures 2.1 and 2.2 show the effect of non-uniform flow on the shape of the pressure

profile in the case of a Gaussian mean flow profile around the circumference described in

section 2.2.6 for the acoustic mode most similar to the fifth circumferential first radial

Bessel-Fourier mode in uniform flow. The effect of the non-uniform mean flow is to spread

the peaks non-uniformly around the circumference, which in Fourier space is represented

77
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by the the content spreading into neighbouring harmonics.

The eigenmodes are classified in terms of direction of information travel. Wilsons duct

propagation method [27] requires a more-or-less complete classification of modes, but in

the present method it is only necessary to identify the subset of outgoing modes to which

the NRBC is to be applied. In weakly to moderately non-uniform duct geometry and mean

flow, including all realistic duct geometries considered to date, this can be done relatively

easily by comparing the eigenvalues and eigenvectors with those of standard acoustic and

vortical uniform duct modes in uniform flow.

Formulating the required boundary conditions requires the left and right eigenvectors at

the boundary. Each mean flow profile and frequency requires a different set of eigenvectors.

The left eigenvectors can be written together to form a matrix which can be multiplied

by the flow variables to produce a vector of complex coefficients for each eigenmode. In

non-uniform mean flow, as in uniform flow, the complex coefficients of an individual mode

multiplied by the right eigenvector gives the full velocity and pressure profile for that spe-

cific component of the unsteady flow.

Before starting some geometric identities are required. First is the Jacobian matrix J

which relates the rate of change of each coordinate of the (ξ, η, ζ) body fitted mesh to the

rate of change of coordinates in the Cartesian coordinate system (x, y, z),

J =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 (3.2)

The metric tensor gij required to cast the flow equations into tensor form as described in

section 2.2.7 is defined as:

gij = JTJ (3.3)

Implementation of the EBNRBC requires first a preprocessing stage illustrated by the

left hand path in the flow chart in figure 3.1 before applying them to the unsteady calcu-

lation illustrated by the right hand path.
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Figure 3.1: Flow chart showing the implementation of the method for a single mode at a single
frequency.

Looking first at the preprocessing stage:

� A steady flow field is required for the calculation of the right and left eigenvectors.
In turbomachinery CFD simulations this is often calculated as a preliminary solution
prior to starting the unsteady calculation.

� In the general case the mean flow data has to be mapped from the calculation mesh
to the body fitted mesh. In the test cases presented here the CFD mesh was chosen
to be coincident with the body fitted mesh and this step was not required.

� The physical velocities are transformed to tensor form by premultiplying with the
transpose of the Jacobian matrix. It’s also transformed into a spectral representation
into the pseudo-circumferential direction using a truncated FFT.
The test cases presented in chapters 4, 5 and 6 use only circular duct geometries,
where the Jacobian is very simple and effects only the θ component of the velocity.
In these cases the transformation into tensor form was done directly.

� Left and right eigenvectors are calculated as described by Wilson [27] and discussed
in detail in sections 2.2.6 and 2.2.7.
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Only the modes of interest are extracted and the left and right eigenvectors saved

for use in the unsteady boundary condition calculation. In uniform mean flow the main

modes are Tyler-Sofrin modes [85]. In the general case, all cut-on modes with significant

content should be considered. In the specific case of the aeroengine fan stage all of the cut-

on Tyler-Sofrin modes should be included at all harmonics of rotor blade passing frequency.

In principle with non-uniform mean flow it is necessary to include all modes at har-

monics of rotor blade passing frequency for a general calculation however in practice it

is more efficient to identify a subset of those modes where it is likely that there will be

significant modal content. It is often possible to do this in analogy with the uniform flow

case by identifying modes similar to Tyler-Sofrin modes recognising that there will be some

scattering into neighbouring circumferential harmonics by the non-uniform mean flow and

geometry.

Looking now at the unsteady calculation (right path) we have:

� The instantaneous flow field which refers to the current state of the unsteady CFD
calculation.

� This to has to be mapped to the EAGCC body fitted mesh and converted to tensor
form in the same manner as the steady flow described previously.

� Because the method of Wilson uses a spectral method in the pseudo-circumferential
direction a Fourier transform is applied in this direction before applying the left
eigenvector to give the instantaneous mode amplitude.

� The actual mode amplitudes at the required frequency are obtained via the use a
numerical bandpass filter. A phase correction is applied to account for the response
time of the numerical filter and also the fact that the boundary condition uses flow
variables from the previous timestep. In the current work a fourth order Butterworth
filter was used further discussed in section 3.1.2.

� The outgoing flow profile is calculated by multiplying the complex mode amplitude
by the right eigenvector and converting back to physical quantities. This is done
using the inverse of the Jacobian matrix and an inverse Fourier transform in the
pseudo-circumferential direction. The flow profile is then mapped back to the CFD
mesh.

� In many solvers (including ANSYS FLUENT as used here) boundary conditions can
only be implemented in certain ways. In the test cases presented here, the unsteady
flow profile related to the outgoing wave was mapped to a static pressure boundary
condition at the downstream end and a total pressure inflow boundary condition at
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the upstream end.
In the case of a downstream travelling wave only the static pressure profile is required
and in the case of an upstream travelling wave the instantaneous total pressure and
flow angles are retained and input into the standard boundary conditions. The in-
stantaneous total pressure was calculated from the static pressure and flow Mach
number (including both the steady state and unsteady contributions). The calcula-
tion was then carried out as if the flow was steady state as seen in section 3.2. This
is because ANSYS FLUENT treats the input total pressure as if the flow were in
steady state.

� In either case an input signal can be added to the out going wave information as
was done for the test cases presented later. This input signal typically includes the
steady boundary data along with an unsteady acoustic or vortical input wave.

This approach allows low circumferential orders to be treated without affecting higher

circumferential modes for which the CFD mesh is insufficiently fine. These high circumfer-

ential order modes are typically cut off at the frequencies of interest and so do not play a

significant role in the prediction. Acoustic waves at other frequencies are filtered out and

left untreated.

3.1.2 Filtering

The time filtering was done using a fourth order Butterworth bandpass filter. The But-

terworth filter was chosen due to its flat amplitude response and smooth phase response

through the passband. In cases with closely spaced frequencies an alternative filter may

be preferred such as the Chebyshev filter as this has a steeper roll off from the passband.

The filter script used requires as input the angular frequency ω and the timestep used.

In practice the timestep has to be chosen to minimise discretisation errors in the solver, for

example in the two dimensional test cases described in chapter 4 the number of timesteps

was chosen to be 200 per period and in the 3 dimensional case discussed in chapter 5 this

was increased to 400 per period. From this the required inputs to the filter were obtained.

The Nyquist frequency is defined as half the sampling rate of the signal:

fN =
1

2
sf (3.4)

where s is the number of timesteps. The Butterworth filter was generated in MATLAB.
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The Butterworth function used in the script requires as input a normalised frequency band

and a defined order of accuracy, the higher the order the higher the accuracy. The order

of the filter is 2n where n is the chosen input value in this case is n = 2. The butterworth

filter function in MATLAB outputs what is known as the transfer function coefficients a

and b. The number of elements in a and b is 2n + 1. The filtered time signal at each

timestep is given by:

u =


b1

...

b5

(uts, ... ,uts−4

)
−


a2

...

b5

(uts−1, ... ,uts−4

)
(3.5)

Here uts is the FLUENT Fourier transformed variables at the outlet at a certain timestep

to be filtered while ts represents the signal at a certain timestep while ts−1 represents the

timestep prior and so on. It is with these filtered variables that the boundary conditions

are developed. It should be mentioned that the use of a filter introduces errors in the phase

which need to be corrected for.

The width of the bandpass had a normalised frequency range of 0.2. The narrower the

bandpass the longer the response time of the filter and so wider bandpasses were tested and

this is discussed below in chapter 5. The calculation also seemed to have convergence times

that depended on how close the input signal was to being cut off however this behaviour

was only present in the two dimensional calculations and is again discussed below.

3.1.3 Implementation into a Commercial CFD Code

Implementation of the new boundary condition requires run time read/write access to flow

variables at the domain boundaries. In the commercial code chosen (FLUENT Ver. 19.4)

this was achieved through the use of inbuilt macros within the framework of a User Defined

Function (UDF). The UDF is coded in the programming language C.

The code makes use of 3 different types of FLUENT macro. FLUENT’s DEFINE ON

DEMAND was used to set up the boundary conditions in advance of the unsteady calcula-

tion. The DEFINE AT END macro was used to determine the amplitude and phase of the

outgoing modes as described in section 3.1.1. The DEFINE PROFILE macro was used to

set the values of the flow parameters at the boundary.
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The first task of the UDF was to read in the left and right eigenvectors obtained from

the EAGCC method and use them to formulate the correct NRBC’s at the inlet and out-

let. The eigenvectors were read in using standard C read functions that were placed under

FLUENT’s DEFINE ON DEMAND macro. This allows the user to run the code on de-

mand, in this case at the start, before the calculation has started.

FLUENT allows direct read and write access to the flow variables in the pressure based

solver, however in the density based solver, the chosen solver, pressure is inaccessible at

the boundary. Instead the pressure set by the NRBC in the previous iteration was stored

is User Defined Memory and used alongside the velocity in the current timestep. The pres-

sure and velocity perturbation from the mean flow was Fourier transformed and converted

to tensor form as described in section 3.1.1.

The Fourier transformed variables were then run through a numeric bandpass butter-

worth filter as described in section 3.1.2 to ensure only the correct frequency was input

into the domain. The filter also took the form of a void function.

Once the perturbed flow variables had been filtered for the correct frequency they were

multiplied by the left eigenvector via a dot product to produce the complex coefficient for

each outgoing mode. A phase correction was included to account for the phase lag intro-

duced by the filter. The corrected coefficient was then multiplied by the right eigenvector

creating a new outgoing vector ready to be applied at the relevant boundary.

All of the above functions were carried out within a DEFINE AT END macro such that

they were carried out once at the end of each timestep.

It should be noted that generally the left and right eigenvectors are complex values. As

a result a C header file was created. This header file defined a new data type “complex”

and defined the functions necessary for basic complex mathematics such as multiplication,

addition, subtraction and division.

The pressure and velocity parts of the outgoing modes were transformed back into

physical rather than tensor form and returned to normal circumferential coordinates from

spectral form as described in section 3.1.1, before being applied at the outlet/inlet forming

the correct boundary condition. The pressure and velocity profiles were coded and placed
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under FLUENT’s DEFINE PROFILE macro. The inlet boundary conditions require the

total pressure and flow angles to be set while the outlet boundary condition requires only

the static pressure to be set.

3.2 Methodology Related to the Test Cases in Chapters 4,

5 and 6

3.2.1 Implementation of the Two Dimensional Test Cases

This section covers the background theory for the test cases present in chapter 4. This

includes the calculation of the cut-on ratio for a two dimensional wave, from the frequency

and the circumferential mode number and also includes the calculation of the steady state

boundary values for temperature and pressure.

In two dimensions the cut off ratios were found using equation (2.62) which for recol-

lection is:

µ2 = (ω̃ +Mk)2 − k2 (3.6)

Rearranging this to find the axial wave number k:

k =
ω̃M ±

√
ω̃2 + (µ2 (M2 − 1))

(M2 − 1)
(3.7)

k should be real for propagating waves and imaginary for cut-off waves. As a result

attention is focused on the argument of the square root. In two dimensions µ2 is simply

m2/R2 where R2 is the radius of the thin annulus duct on which the calculation was

performed, a basic derivation of which can be found in section 2.2.5. The cut off frequency

is then defined as the frequency where the term under the square root passes through zero

as shown by:

ω̃2
c = µ2

(
M2 − 1

)
(3.8)

A number of ratios were then chosen and the corresponding frequencies calculated:

ω̃ = ω̃cυ (3.9)

where υ is the required ratio. Acoustic modes of these frequencies were then used as in-

put modes to validate the use of the EBNRBC in two dimensions. Choosing a constant
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number of timesteps per period meant the filter coefficients did not have to be recalculated.

Looking now at the steady state boundary conditions. The correct pressure for uniform

mean flow at the inlet for the chosen Mach number was found using standard isentropic

flow equations:

ps
pt

=

(
1 +

γ − 1

2
M2

) −γ
γ−1

(3.10)

where ps and pt are the static and total pressures respectively.

For non-uniform mean flow the mean flow profile was defined by a Gaussian deficit

that shifted the Mach number from 0.5 to 0.2 and back again circumferentially. This was

done via finding the required pressure at Mach number 0.5 and 0.3 using equation 3.10,

multiplying the pressure at M = 0.3 by a Gaussian distribution and subtracting it from

the pressure at M = 0.5:

pnt = pmt − pdte−θ
2/2σ2

(3.11)

where pnt is the non-uniform total pressure, pmt is the max total pressure and pdt is the total

pressure difference between the maximum total pressure and the minimum total pressure,

θ is the circumferential angle and σ is the variance of the Gaussian. As the total pressure

now varied significantly it was a requirement to also correct for the temperature. The

static temperature was found using standard isentropic flow equations:

Ts
Tt

=

(
1 +

γ − 1

2
M2

)−1

(3.12)

at Tt = 300k. The total temperature shift around the circumference was then found using

the relation:

Ts
Tt

=

(
ps
pnt

) γ−1
γ

(3.13)

The test cases can be considered as an unsteady perturbation atop a precalculated steady

state. The boundary conditions in ANSYS FLUENT however use total pressure and tem-

perature as if the flow were steady state as mentioned in section 3.1.1. The same equations

were used to calculate these total quantities but using static pressure and Mach number

values which include the unsteady contribution. The flow swirl angle was also required for

the boundary condition at the upstream boundary. They were input with both the steady

and unsteady (outgoing wave) contributions.
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3.2.2 Three Dimensional Implementation

In three dimensions the implementation is relatively similar with the pressure at the inlet

once again being found using equation (3.10) for the uniform mean flow cases. In this case

radial as well as swirl flow angles are required for the unsteady calculation. The correct

frequencies for the given cut-on ratios were found using the same method as demonstrated

in section 3.2.1 where now µ is the scaling factor for the Bessel-Fourier mode.

The non-uniform mean flow cases once again had a Gaussian total pressure deficit

profile in the circumferential direction which approximates to a Gaussian Mach number

deficit. The peak and trough pressures were chosen to ensure that the mean Mach num-

ber remained at 0.5 and the maximum Mach number deficit was 10%, 15%, 20% of the

freestream (peak) Mach number. The temperature was also calculated using the same

method presented above.

As before similar calculations were used to set the boundary conditions in the EBNRBC

by including the unsteady outgoing wave contributions to the static pressure at exit and

the static pressure and velocities at inlet. The calculation was now done on a fully three

dimensional annular duct where the acoustic disturbances now had a radial distribution.

Accordingly a radial as well as a swirl flow angle was set at the upstream boundary condi-

tion.

The test signal in the non-uniform test cases was a non-uniform flow acoustic mode

rather than a pure circumferential harmonic. For these modes there is no formal definition

for a cut-on ratio so instead an approximate cut-on ratio was defined relative to the cut-on

frequency to the nearest pure Bessel-Fourier harmonic in uniform flow with the same axial

Mach number (0.5).

It is worth noting that the boundary conditions described in the literature review in

section 2.3 focus on setting any spurious reflection to zero, for example if an acoustic wave

is downstream travelling, any upstream acoustic waves are set to zero at the boundary.

The implementation performed in this thesis however is subtly different. The left and

right eigenvectors are found enabling one to know the direction of travel, shape and modal
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content of the harmonic, as well as any scattering due to non-uniform flows and geome-

tries. This allows for the boundary to set the correct pressure and velocity flow angles

(if upstream boundary) at the boundary, including contribution from outgoing waves, as

opposed to setting any spurious reflections to zero. In the absence of discretisation errors

either in the EAGCC method or the CFD calculation the net effect is identical.

3.2.3 Input Acoustic Signal Implementation

An acoustic signal was input for the two and three dimensional demonstrations. Using the

right eigenvector directly and multiplying it by the desired amplitude divided by γp̄ an in-

put signal was created. The division is required as FLUENTs variables are not normalised.

The eigenvectors are in spectral form so an inverse Fourier transform was required to cal-

culate the full circumferential profile. The unsteady contribution from the input signal

was included in the total pressure and total temperature calculations as described in the

previous sections.

One of the difficulties faced in defining boundary conditions for CFD codes running in

parallel is that the boundary faces can be split across multiple partitions. The FLUENT

UDF structure facilitates calculations in this situation and the code has been programmed

to work with parallel processing and so can work across multiple cores and nodes. It is

noted however that in larger calculations communication between partitions might cause

high computational expense and further work may be required to make the procedure

computationally efficient.

3.2.4 Implementation of Reference Non-Reflecting Boundary Treatments

In two dimensions the new NRBC was compared with two reference boundary treatments:

� Standard constant pressure boundary condition

� FLUENT reference NRBC

The meshes used for these alternative methods were the same as that used in the testing

of the EBNRBC.

In three dimensions the reference boundary treatments were:
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� Stretched mesh

� Giles EBNRBC

� FLUENT reference NRBC

The mesh used for the stretched mesh was equivalent to the mesh used in the EBNRBC

case with a stretching mesh directly attached to the outlet or inlet. The stretching took

place axially at a ratio of 1.1, that is, each proceeding axial point was 1.1 times further

away than the last. Axial stretching is easy to implement and is all that is needed to turn

cut-on waves into decaying cut-off waves. This stretching ratio was chosen as previous

work [4] has shown it to work well over a wide range of acoustic modes.

Figure 3.2: The three dimensional mesh used for the non-uniform flow test calculations that
applied the stretched mesh. Here the stretching is attached to the outlet. The uniform case used
a one tenth circumferential sector of this mesh. The mesh used for signals input at the outlet had
the same stretching placed at the inlet. Mesh created in ANSYS Meshing.

The mesh used for the other comparisons was identical to the mesh used in the EBN-

RBC cases.

In the case of non-uniform flow the mode shape is deformed due to the flow. The Giles

method was tested by finding the eigenvectors for uniform flow and the mode chosen to be

let out of the domain was the mode closest to the mode deformed due to the flow.
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3.2.5 Results Analysis

The results were analysed using the following wave splitting procedure to calculate the

complex amplitude of each of the upstream and downstream travelling modes.

Noting that in each of the test cases, the mean flow was axially uniform, the wave

splitting can be performed at any axial position using the left eigenvectors calculated at

the boundary when setting up the non-reflecting boundary conditions.

This was done in MATLAB and involved reading in ten data files exported from the

commercial CFD code containing information at each axial plane. The output variables

were all three coordinates in cylindrical polar and the pressure and velocities. The ten data

files made up one period of the wave equispaced in time, for example with 400 timesteps a

data file was output from the calculation every 40 timesteps with the final data file (when

the solution is converged) being a repeat of the first. The data was Fourier transformed in

time and only the complex amplitude of the first harmonic was retained.

Before applying the left eigenvectors it was necessary to convert the flow information

into tensor form. This was done by multiplying the velocity vector by the Jacobian matrix

(section 2.2.7) and taking a Fourier transform in the circumferential direction. The velocity

components and the pressure at each radial position were then collected into a single long

flow vector f̂ (section 2.2.7) and premultiplied by the left eigenvector matrix.

This process provided the complex amplitude in each of the upstream and downstream

travelling modes at each axial position. By plotting the absolute values of the complex

amplitudes against axial position it is possible to trace the amplitude of the input mode as

it traverses down the duct and compare it to the amplitude of any spurious reflected waves.

All acoustic eigenvectors are normalised such that the maximum pressure is unity,

allowing direct comparison of modal amplitudes. In each case the modal coefficients are

further normalised such that the outgoing mode is of uniform amplitude. In this way

minor propagation errors related to discretisation in the CFD calculation do not effect the

calculated reflection coefficient.
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Chapter 4

Validation in 2 Dimensions

This section covers the validation of the method for use in two dimensional calculations.

The results will be analysed using wave splitting. This way it is possible to see each har-

monic as they traverse down the duct and the amount by which they are reflected.

The boundary conditions developed in this thesis are very general, allowing for non-

uniform mean flows at a wide range of frequencies, both cut-on and cut-off, and therefore

can be difficult to find the whole range of applicable conditions.

The test matrix described below uses low to moderate wave numbers and cut-on ratios

as these represent an important range of frequencies for tonal analysis in the fan stage of

the aeroengine, however further work is required to establish the capability at higher cut

on ratios.

A fine CFD mesh was used in the test cases to ensure that discretisation errors did not

contaminate the solutions to the test cases. As a result further work is required to look at

cases where the outgoing mode is closer to the limit of what can be captured in the CFD

mesh.

The two dimensional test cases used a thin annulus duct of length 0.1m inner radius

0.4315m and outer radius of 0.4325m. The radial distribution can thus be neglected. The

mesh had 720 points equispaced circumferentially and 30 points equispaced axially. The

same mesh was used in the EAGCC and the CFD calculation. A short duct was chosen to

allow the calculation to converge quickly allowing a larger test matrix to be calculated. The

91
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two dimensional EBNRBC was tested at a freestream Mach number of 0.5, and 6 different

frequencies, while the flow was taken to be inviscid and isentropic. A time unsteady RANS

CFD calculation was performed using the inviscid model with 200 timesteps per period for

each frequency. There was also 144 points per wavelength in the circumferential direction

and around 100 points per wavelength in the axial direction depending on frequency. This

is sufficient to capture circumferential modes ranging from m = −10 to 10 to be predicted

to high accuracy at cut off ratios of ω/ωc = 0.9, 1.05, 1.1, 1.2, 1.5 and 2.0 for the uniform

case and 1.1 and 2.0 for the non-uniform case, where ω is the angular frequency and ωc

is the angular cut off frequency. The mode chosen in the input signal was m = 5 for the

uniform flow case and the non-uniform mean flow mode with a pressure profile closest to

the pure m = 5 mode for the non-uniform case. This captures the effectiveness of the

boundary conditions for cut off acoustic signals and signals close to the cut off point.

In the case of downstream propagation a fixed total pressure profile was applied at

inlet to achieve the desired mean flow profile. The uniform case has an axial flow of Mach

number 0.5 while the non-uniform case has present a Gaussian flow deficit around the

circumference that varies the axial Mach number locally from 0.5 to 0.2. Three different

widths of Gaussian (variance σ = 0.5, 0.25 and 0.125 radians) were used as shown in figure

4.1.

Figure 4.1: The Gaussian mean flow profiles used as test cases with variances σ = 0.5, 0.25, 0.125

The two dimensional boundary conditions were tested for upstream and downstream

travelling acoustic waves.
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Figure 4.2: The two dimensional mesh used for both the uniform and non-uniform calculations.

These results are then compared to the standard constant pressure boundary conditions

and ANSYS FLUENTs in built NRBC’s dubbed here, the reference non-reflecting boundary

conditions which are based on characteristic wave relations derived from the Euler equations

as described in section 2.5, and can only be applied on the outlet flow boundary. An acoustic

signal was introduced by applying an unsteady rotating pressure disturbance in addition

to the fixed profile. In each mean flow case the temperature was corrected for ensuring a

correct temperature profile for each Gaussian.

4.1 Results: Uniform Flow

4.1.1 Cut-Off Example (ω/ωc = 0.9)

Recalling that ωc is the cut-on frequency, with ω/ωc = 0.9 this harmonic is a cut off mode.

Figure 4.3 shows the wave amplitude normalised as described in section 3.2.5. It can be

seen that the NRBC here reduces reflections by 25dB as shown by figure 4.3 predictably

performing considerably better than the constant pressure boundary condition which here

has negligible effect on reducing reflection and performing better than the reference inbuilt

NRBC, which also does very little to reduce reflections at this cut-on ratio.
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Figure 4.3: Results showing the effectiveness of the different boundary conditions at ω/ωc = 0.9.
The downstream wave is the input wave the amplitude of which decreases with axial distance as it
is a cut-off evanescent wave.

4.1.2 Cut-On Example (ω/ωc = 1.5)

In this case the reference NRBC performs much better reducing reflection by 23dB. The

constant pressure boundary condition fails here whilst the eigen-based NRBC reduce re-

flections by 35-40dB.

Figure 4.4: Results showing the effectiveness of the different boundary conditions at ω/ωc = 1.5

As expected the input wave being cut-on propagates at nearly constant amplitude.
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There is a slight decay due to residual discretisation errors in the CFD calculation. The

reflected wave for the constant pressure boundary condition (red dashed line) shows similar

behaviour. The reflection for the other two boundary conditions however show some varia-

tion in amplitude with axial distance. These signals are very small compared to the input

signal. The small variation represent a noise floor at around -30dB in the wave splitting

procedure in the presence of a large signal.

4.1.3 Reflection Coefficient Graph

Looking at the performance at each cut-on ratio ω/ωc in figure 4.5, it is seen that the

performance for both of the non-reflecting boundary conditions improves the further the

frequency is from the cut off frequency. With that said the eigen-based NRBC’s perform

considerably better and are accurate enough to use at lower ratios than the reference

boundary condition. Comparing the above results with ω/ωc = 1.05 it can be seen that

for the reference NRBC the reflection is reduced by 19dB whilst the eigen-based NRBC’s

reduce reflection by 33dB. Overall the NRBC’s developed here improve over the reference

NRBC by roughly 15dB regardless of how close the cut-on ratio is to 1 with the exception

of the cut off mode itself where there is an improvement of 23dB. The reference bound-

ary conditions do not perform well close to the cut off boundary whilst the eigen-based

boundary conditions perform well for each cut-on ratio. As expected the constant pressure

boundary condition is highly reflective and fails to produce adequate results in any of the

test cases. These results show promise in the method considering the difficulty in produc-

ing boundary conditions for frequencies close to cut off.

Figure 4.5 shows the reflection coefficient based on the instant and reflected amplitudes

at m = 5. In this uniform flow case there is no mechanism to scatter energy from m = 5

to other modes and the content in other circumferential harmonics is extremely small as

shown in figure 4.6.
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Figure 4.5: A graph showing the reflection coefficients of the different cut off ratios 0.9, 1.05, 1.1,
1.2, 1.5, 2.0

Figure 4.6: Amplitude of each circumferential mode against axial position.

Overall the new eigen-based NRBC performs best out of the boundary conditions tested.

There is however a caveat. Due to the filtering process as the signal comes in, the eigen-

based boundary conditions takes a considerable number of timesteps to get to the desired

level of accuracy. The filter has a response time and this causes the EBNRBC to take

roughly 4 times as long as the reference NRBC (This is discussed in greater detail for the

three dimensional test cases in section 5.5). Hence depending on the level of accuracy
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required and the type of simulation the reference NRBC might be a better choice. How-

ever if a boundary condition is required upstream the EBNRBC is the better choice as the

reference NRBC can only be applied downstream.

4.2 Results: Non-Uniform Flow

In the non-uniform mean flow case the test signal represents a non-uniform mean flow mode

(as show previously in figures 2.1 and 2.2) not a pure circumferential harmonic. The noise

present in the uniform flow cases is still present at higher amplitude however not enough

to significantly effect the results. A potential reason as to why these modes increase in

amplitude could be due to the EAGCC method and the CFD calculation not agreeing

exactly on how much the mode spreads to neighbouring modes. This can come about due

to the different discretisation methods between the eigenanlaysis and the CFD code: the

eigenanalysis uses a fourth order finite difference method radially and a spectral method

circumferentially, whereas the CFD code uses a less accurate third order MUSCL Finite

Volume scheme. The two methods agree well for modes at low to middle wave numbers

which are well-discretised in both schemes, as demonstrated by the wavesplit results for

the input and reflected modes, which show the correct linear behaviour.

The method was developed to allow any number of modes to be treated, but in these

test cases only a single mode was selected for treatment (see chapter 6 for a test case with

multiple modes present). This results in modes not being dealt with and thus they reflect

at both the inlet and outlet. Figures 4.7 and 4.8 shows forward and reflected mode am-

plitudes with different Gaussian flow deficit widths. Comparing the two figures it can be

seen that the larger the value of the variance σ the more prominent these spurious modes

become, but the amplitude remains small.

The results for the constant pressure boundary conditions will not be displayed here as

they are highly reflective just as in the uniform mean flow case.
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Figure 4.7: The effect of the Gaussian on the remaining mode shapes. Here σ = 0.125. It can be
seen here that the highest reflected mode is the one whose highest harmonic content is 5 meaning
in this case the effects of the spurious modes is negligible

Figure 4.8: The effect of the Gaussian on the remaining mode shapes. Here σ = 0.5. Here the
highest reflected mode is not necessarily the mode with highest harmonic content m = 5. The
overall results are not spoiled.

4.2.1 Reflection Coefficient Graph at ω/ωc = 2.0

Figure 4.9 shows the reflection coefficient of the reference NRBC and the EBNRBC. The

graph shows 2 reflection coefficients. One for the strongest reflected mode and one for

reflected mode with highest m = 5 content. Here it is shown that the eigen-based NRBC
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performs roughly 15dB better than the reference NRBC. When the variance is σ = 0.125

the mode with highest m = 5 content is also the strongest reflected mode. When σ = 0.25

this is no longer the case however the two modes are very close in amplitude. Finally when

σ = 0.5 the reflected mode with highest m = 5 content is 10dB lower than the highest

reflected mode. In any case none of these reflected modes play any considerable role in

spoiling the results.

Figure 4.9: Comparison of the reference NRBC to the eigen-based NRBC. Included here are the
strongest reflected modes and the reflected mode with the highest mode 5 content. This is at a
cut-on ratio of ω/ωc = 2.0

4.2.2 Reflection Coefficient Graph at ω/ωc = 1.1

The results here are close to those shown above. It can be seen that the eigen-based NRBC

performs roughly 15dB better than the reference NRBC and when σ = 0.125 the mode

with highest m = 5 content is the strongest reflected mode and when σ = 0.25 this is

no longer the case. The two modes, however, are very close in amplitude. Finally when

σ = 0.5 the mode with highest m = 5 content is much lower than the highest reflected

mode by 10dB. None of these reflected modes play any considerable role in spoiling the

results.
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Figure 4.10: A graph to compare the reference NRBC to the eigen-based NRBC. Included here
are the strongest reflected modes and the reflected mode with the highest mode 5 content. This is
at a cut-on ratio of ω/ωc = 1.1

The newly developed EBNRBC’s perform well in the non-uniform flow setting reducing

reflections downstream by 40dB. The reference NRBC does surprisingly well reducing the

reflection by roughly 26 - 30dB. However, as mentioned, the eigen-based NRBC’s outper-

forms the reference NRBC by roughly 15dB for each run. The constant pressure boundary

is entirely reflective.

The timestep problem here returns trading in a quick calculation time for increased

accuracy. It is possible however to increase the band gap in the bandpass filter allowing

for quicker response times of the filter. This will be discussed further in section 5.4.2.

The issue present with the reference NRBC’s is that they can only be applied to the

outlet while the eigen-based NRBC’s developed here have been demonstrated to work

effectively at inlet and outlet.



Chapter 5

Validation in 3 Dimensions

The three dimensional cases were calculated in a uniform cylindrical annular duct. The

mesh had 720 points equispaced circumferentially, 30 points equispaced axially and 60

points equispaced radially. The length of the duct was 0.1m while the inner and outer

diameters were 0.2m and 0.432m respectively. Again a short duct was chosen to allow

the calculation to converge quicker giving results faster. The EBNRBC’s were tested at 3

different Mach numbers, M = 0.3, 0.5, 0.7 and three different frequencies normalised by

the cut-on frequency, while the flow was taken to be inviscid and isentropic. It should be

noted that the uniform case was a sector of the full cylindrical mesh. The circumferential

input mode chosen was constant at m = 10 for both the uniform and non uniform cases

and so the mesh was chosen to be a one tenth sector as the acoustic wave in the uniform

case is periodic.

The non-uniform mean flow runs took place on the full 360 degree annulus mesh as

circumferential periodicity can no longer be assumed when acoustics travel through non-

uniform mean flow. The flow was made non-uniform by having a circumferentially varying

Mach number with a mean Mach number of 0.5 as described in section 3.2.2.

The three dimensional boundary conditions were tested for upstream and downstream

travelling acoustic waves. The mean flow was kept constant in each case, in order to assess

the effect of circumferential variation in flow separately to overall mean flow effects.

101
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Figure 5.1: The Gaussian mean flow profiles used as test cases at σ = 0.5.

Figure 5.2: The Gaussian mean flow profiles used as test cases at σ = 1.
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Figure 5.3: The three dimensional mesh used for the uniform flow calculations.

Figure 5.4: The three dimensional mesh used for the non-uniform flow calculations.

5.1 Results: Uniform Flow

Tables 5.1 and 5.2 show the results for all cases for uniform flow showing the reflection

coefficients for the downstream and upstream travelling acoustic waves respectively.
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Table 5.1: Reflection coefficients calculated for uniform mean flow for the downstream cases.
EBNRBC is the current eigen-based NRBC, RNRBC is the Reference NRBC.

Table 5.2: Reflection coefficients calculated for uniform mean flow for the upstream cases.
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5.1.1 Uniform Flow Boundary condition Performance: EBNRBC

The eigen-based NRBC performs well at the downstream boundary giving a reflection co-

efficient of between 40 and 50dB below the input signal for all cases at all Mach numbers,

although it is noted this is below the -25dB noise floor. The upstream EBNRBC also per-

forms well giving a reflection coefficient of between 14 and 25dB below the input signal for

each case at all Mach numbers. Note that there is a small but sharp change in amplitude

between the inlet plane and the rest of the calculation. The cause for this change is not

yet known. It is more significant when the input signal is in the second radial mode (not

shown) however in both cases the signal itself is close to the wave splitting noise floor

relative to the input signal.

The following results at a cut-on ratio of ω/ωc = 1.1 are representative of the behaviour

across the range tested.

Figure 5.5: Results showing the effectiveness of the EBNRBC of a downstream wave at first radial
mode for Mn = 0.5.
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Figure 5.6: Results showing the effectiveness of the EBNRBC of an upstream wave at first radial
mode for Mn = 0.5.

Figure 5.7: Results showing the effectiveness of the EBNRBC of a downstream cut-off wave at
first radial mode for Mn = 0.5.
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Figure 5.8: Results showing the effectiveness of the EBNRBC of an upstream cut-off wave at first
radial mode for Mn = 0.5.

Figures 5.7 and 5.8 show an example of a cut-off calculation. Accordingly the input

wave decreases in amplitude as it goes down the duct. In figure 5.7 this is the downstream

wave (black line) and in figure 5.8 this is the upstream wave (red line). As can be seen the

reflected modes seem to increase in amplitude as they travel along the duct, this implies

that the apparent reflected waves are not genuine reflections, they are a spurious result

from the wave splitting. It’s notable that the amplitude of these apparent reflections are

everywhere at least 20dB below the amplitude of the input signal. This is higher than the

noise floor observed in the cut-on test cases but this is to be expected for signals close to

the cut-on cut-off boundary: at the boundary itself the upstream and downstream waves

are identical and therefore cannot be distinguished by wave splitting.

5.1.2 Uniform Boundary condition Performance: Stretched Grid

The stretched grid performs equally well downstream and upstream reducing reflections

from anywhere between 28dB and 37dB for all cases at all Mach Numbers. This represents

an improvement over the EBNRBC at the upstream boundary but lower effectiveness at

the downstream boundary. The following results are at a cut-on ratio of ω/ωc = 1.1 and

are representative results of what was present in most cases.
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Figure 5.9: Results showing the effectiveness of the stretched mesh of a downstream wave at first
radial mode for Mn = 0.5.

Figure 5.10: Results showing the effectiveness of the stretched mesh of an upstream wave at first
radial mode for Mn = 0.5.

5.1.3 Uniform Boundary condition Performance: Reference NRBC

It should first be noted that the reference NRBC cannot be applied upstream. The Refer-

ence NRBC here performs less well than the EBNRBC downstream, producing a reflection
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coefficient of between 22 and 25dB below the input signal for all cut-on cases at all Mach

Numbers. The boundary condition was found to be entirely reflective for cut-off modes

as shown in figure 5.1. It should be noted that the second radial mode, while reflection

coefficients are roughly similar to that of the first radial modes seem to suffer from sharp

increases again at the inlet boundary. The following result displayed is at a cut-on ratio of

ω/ωc = 1.1. This again is representative of the results present in most cases.

Figure 5.11: Results showing the effectiveness of the Reference NRBC of a downstream wave at
first radial mode for Mn = 0.5.

5.2 Results: Non-Uniform Mean Flow

The results displayed here are for a Gaussian width of σ = 0.5 with a 15% Mach number

deficit for each boundary method as this case is representative of all test cases performed.

The tables in figures 5.3 and 5.4 display the results for all non-uniform cases with down-

stream and upstream travelling waves respectively:
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Table 5.3: Reflection coefficients calculated for non-uniform mean flow for the downstream acoustic
waves.

Table 5.4: Reflection coefficients calculated for non-uniform mean flow for the upstream acoustic
waves.

As can be seen from the tables, the downstream results always perform better than the

upstream results for the EBNRBC. The stretched mesh on the other hand performs better

for upstream flowing acoustic waves whilst the reference NRBC performs as well as it has

been even for non-uniform flows. The RNRBC can not be applied upstream.

5.2.1 Non-Uniform Boundary Condition Performance: EBNRBC

The eigen-Based NRBC performs well downstream giving a reflection coefficient of between

35 and 45dB below the input signal and producing reflection coefficients of 20dB below

the input signal for all upstream cases. As previously the downstream travelling waves are

represented by the black line while the upstream waves are represented by the red line.
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Figure 5.12: Results showing the effectiveness of the EBNRBC of a downstream wave at first
radial mode for a Gaussian Mach number deficit of 15%.

Figure 5.13: Results showing the effectiveness of the EBNRBC of an upstream wave at first radial
mode for a Gaussian Mach number deficit of 15%.
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5.2.2 Non-Uniform Boundary Condition Performance: Stretched Mesh

The stretched grid performs well producing reflection coefficients between 23dB and 35dB

below the input signal for the downstream cases and between 30dB and 42dB for the

upstream cases at all Mach Numbers. This represents an improvement over the EBNRBC

at the upstream boundary but lower effectiveness at the downstream boundary.

Figure 5.14: Results showing the effectiveness of the stretched mesh of a downstream wave at first
radial mode for a Gaussian Mach number deficit of 15%.

Figure 5.15: Results showing the effectiveness of the stretched mesh of an upstream wave at first
radial mode for a Gaussian Mach number deficit of 15%.
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5.2.3 Non-Uniform Boundary condition Performance: Reference NRBC

The Reference NRBC here performs less well downstream producing reflection coefficients

between 24 and 29dB below the input signal for all cases.

Figure 5.16: Results showing the effectiveness of the reference NRBC of a downstream wave at
first radial mode for a Gaussian Mach number deficit of 15%.

5.2.4 Non-Uniform Boundary condition Performance: Giles EBNRBC

The Giles EBNRBC gives results that, at first, look inadequate. Recalling that non-uniform

mean flow causes scattering of the mode into neighbouring harmonics, the boundary con-

dition reduces reflection for the m = 10 harmonic however fails to be non-reflecting for the

remaining modal content.
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Figure 5.17: Results showing the effectiveness of the Giles EBNRBC of an upstream wave at first
radial mode for a Gaussian Mach number deficit of 15% and variance σ = 0.5.

The image here shows a reduction in reflection of 10dB. Looking at the wide Gaussian

of variance σ = 1 shows an even worse result.

Figure 5.18: Results showing the effectiveness of the Giles EBNRBC of an upstream wave at first
radial mode for a Gaussian Mach number deficit of 15% and variance σ = 1.

The reason for the high reflectivity in figures 5.17 and especially 5.18 is due to the fact

that much of the harmonic content is left untreated. In figure 5.18 the harmonic being

reflected is left untreated by the Giles EBNRBC meaning the reflected harmonic is not at
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m = 10. In this case harmonic m = 11 has the highest amplitude. This harmonic is close

to the cut-off point and when it meets the untreated downstream boundary the reflection

causes a resonance causing the harmonic to have high amplitude. However upon looking at

the reflected modes it is seen that the downstream and upstream waves have very similar

profiles, and so interfere with each other destructively as shown in figures 5.19 and 5.20.

That is the pressure amplitude is much smaller than the individual wave amplitudes.

Figure 5.19: Giles EBNRBC results for a Gaussian Mach number deficit of 15% and variance
σ = 0.5 this time with accounting for the interaction between reflected modes.

Figure 5.20: Giles EBNRBC results for a Gaussian Mach number deficit of 15% and variance
σ = 1 this time with accounting for the interaction between reflected modes.
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These graphs show the Giles EBNRBC are more effective than appeared initially. The

amplitude of the reflection can now be seen to be -13dB amd -10dB for σ = 0.5 and

1 respectively. The downstream results are not shown as the Giles EBNRBC performs

well for them. They give reflections in the given cases at the downstream boundary of

about -30dB. This is because the harmonic scattering is not as severe for a mode travelling

downstream as it is for a mode travelling upstream.

5.3 Results Summary

5.3.1 Uniform Mean Flow

In the case of uniform mean flow the EBNRBC yields reflection coefficients for downstream

acoustic waves 40 to 50 dB below the input signal, although it should be noted that this is

below the nominal noise floor of -25dB. This exceeds the performance of the stretched mesh

(23 - 35dB) and the reference NRBC (20 - 25dB). For the upstream cases, the stretched

mesh (30 - 42dB) performs better than the EBNRBC (15 - 20dB) while the reference NRBC

is limited to being applied at the outlet only.

5.3.2 Non-Uniform Mean Flow

The results for non-uniform mean flow were qualitatively similar to the uniform mean flow

cases. The EBNRBC works best producing reflection coefficients of about 40dB below the

input signal for downstream acoustic waves while the stretched mesh follows with reduc-

tions of about 30dB. The reference NRBC is least effective giving reflection coefficients

of between 26 and 30dB below the input signal. For the upstream cases, the stretched

mesh (28 - 40dB) again outperforms the EBNRBC ( 20dB). The Giles EBNRBC, while

not shown here performed well for downstream travelling acoustic waves. For upstream

travelling acoustic waves the harmonic scattering caused by non-uniform flows is much

more severe causing the boundary condition at the upstream boundary to perform inade-

quately. Modes can be scattered into neighbouring harmonics which may be close to the

cut off boundary. This gives rise to modes with high amplitude but low acoustic energy.

As the downstream boundary in these cases were untreated it allows the harmonic close to

cut-off to resonate resulting in the high harmonic content seen in figure 5.18. The profile

however to the up and downstream travelling waves are similar and destructively interfere

with one another. This means that the true reflection isn’t as high as one may initially

think and so the Giles EBNRBC are still effective for non-uniform mean flow for upstream



117 Validation in 3 Dimensions

travelling waves however not as effective as the new EBNRBC developed here. Kousen [32]

and Moiner et al [84] can help produce boundary conditions for flows with swirl allowing

an element of non-uniformity of the flow. The reference boundary conditions work well for

well cut-on modes and fail for cut-off. These boundary conditions work quickly however

can only be applied downstream.

Overall, the EBNRBC outperformed both of the comparison treatments for waves in

the downstream direction. In the upstream direction it was less effective than the stretched

mesh treatment, however it is not subject to the limitations of zonal methods explained

previously, that is, the requirement for a larger calculation domain to be able to imple-

ment it and signals cannot be input at the same boundary to which the treatment is applied.

The results for each boundary condition tested across all of the Mach numbers, cut off

ratios, radial mode numbers, mean flow Gaussian depths and mean flow Gaussian widths

are remarkably consistent as shown by the narrow ranges in the reflection coefficients

shown in the previous sections. The only exception to this is the reference NRBC which is

ineffective for cut-off modes.

5.4 Bandpass Filter Effects

5.4.1 Filter Phase Lag

The use of a filter creates a lag in the phase. This causes the EBNRBC to perform in-

adequately if ignored. This was tested during the full annulus trial calculations at m = 5

with uniform mean flow as illustrated in figure 5.21 for the case where the cut off ratio is

ω/ωc = 1.5. Without the phase correction the amplitude of the reflected wave is only 19dB

below the input signal. With the phase correction the amplitude of the reflected wave is

39dB below the input signal. The phase correction is made up of two components, firstly

the phase lag of the filter itself which was determined by passing an artificially generated

signal through the filter and comparing the phase of the input and output signals and

the 1 timestep lag due to the boundary condition being based on the flow variables of

the previous timestep. In general the phase correction will be a function of the number of

timesteps per wave period. Hence a constant 400 timesteps per period was used in the three

dimensional case for each case in both uniform and non-uniform flows while 200 timesteps

per period was used in the two dimensional calculations. The phase correction was 0.11
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radians in two dimensions and 0.077 in three dimensions. In three dimsnions 0.073 radians

was due to the filter while 0.004 radians was due to the timestep showing a much larger

contribution by the filter.

An effect present in only the two dimensional runs was that the closer the frequency

was to cut off the longer it took for the solution to converge with roughly 6000 timesteps

for ω/ωc = 1.05 and only 800 timesteps for ω/ωc = 2 which is a significant difference. This

effect is not seen in the three dimensional runs.

5.4.2 Band Pass Width

The filter, by nature, has a response time. This results in an increase in calculation time.

The response time is dependant on how tight the bandpass filter is. The filter used had a

normalised frequency band of 0.9 - 1.1 multiplied by the target frequency. The response

time can be decreased by widening the band gap whilst still preserving the accuracy. The

phase correction is also dependent on the band gap and therefore new phase corrections

had to be calculated for each different band gap value. Table 7.1 shows the number of

timesteps required for each bandpass gap tested to get the same level of accuracy as that

present with a band gap of 0.2. Not shown in the table is the band gap of 0.3 as this

began to show an increase in timesteps and a reduction in accuracy. This plays a role in

how competitive the EBNRBC is in terms of compute time and power when compared to

alternative methods which is discussed further in the next section.

Band Gap Number of Timesteps

0.2 9000
0.22 7500
0.24 6000
0.26 5500
0.28 5000

Table 5.5: This table shows the number of timesteps required to get the same level of
accuracy when the band pass gap is 0.2
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Figure 5.21: This figure shows the effectiveness of the eigen-based solver with and without the
phase correction for a uniform mean flow case where ω/ωc = 1.5.

5.5 Calculation Time

Although calculation time was not the focus of this work some useful observations were

made as to the relative calculation efficiency of the boundary treatments.

The eigen-based boundary conditions take an increased number of timesteps to get to

the level of accuracy shown in the results. The EBNRBC takes roughly 9,000 timesteps

to achieve these levels in both the uniform mean flow and non-uniform mean flow cases,

whilst the reference NRBC requires only 2000 and the stretched mesh roughly 4000. The

preliminary steady state calculation, however, for the stretched mesh takes much longer

to converge than both the EBNRBC and the reference NRBC which both use the same

mesh. The number of iterations required to get a well converged steady state is in the

range of 70,000 for the stretched mesh while for the EBNRBC and the reference NRBC

it is in the range of 3500. As a result the total time required by both the stretched mesh

and the EBNRBC, including the calculation for the steady state, is roughly equal whilst

the Reference NRBC is the quickest over all.

The length of time for the EBNRBC to reach convergence is due to the response time

of the filter. Investigations were performed on the current Butterworth bandpass filter

to improve response times. The investigation, looked at in the previous section, focused
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primarily on widening the bandpass gap of the filter and results showed the wider the

bandpass the faster the response times.

When widening the filter band gap it is seen that the EBNRBC run time is more com-

petitive with the stretched mesh and when considering the run time of the steady case the

total run time to obtain an accurate solution is less than that of the stretched mesh. A way

in which one can further decrease the run time of the EBNRBC is to cut the calculation

shorter as the filter responds to the incoming wave. It is not always necessary to reduce

reflections by 40dB. So one can cut the calculation time by simply stopping the calculation

at the desired level of accuracy. However it should be noted that the calculation should

be left alone long enough such that reflections resulting from the filter response time can

leave the domain. For example a reduction in reflection of 26dB can be achieved in 2000

timesteps however the initial reflections present due to the incorrect boundary condition

as the filter responds are still present in the domain. This results in having to run the

calculation long enough to ensure the reflected waves have left the domain. Taking all this

into account the lowest number of timesteps achieved was approximately 4000. This was

with a band pass gap of 0.2 and a reflection reduction of around 30dB. Further work is

required to find the optimal filter for this type of calculation. It should be noted that while

widening the band gap allows the user to reach a solution quicker it is not a suitable so-

lution if one requires boundary conditions for multiple tones at closely spaced frequencies.

In this case a tighter filter for each frequency will be required.



Chapter 6

Demonstration for Prediction of

Wake/Stator Interaction Tone

Noise

6.1 Three dimensional bladed turbo-machinery test case

This test case was chosen to test the performance of the EBNRBC under more realistic

conditions. The test case consists of a uniform annular duct containing 24 axially aligned

flat plate stator blades. The wake interacting with the stators is modelled as a vortical

mode introduced at the upstream boundary. The vortical wake interacts with the stators

to produce upstream and downstream acoustic waves in Tyler-Sofrin modes [85]; That is

Bessel-Fourier harmonics at the same frequency as the input vortical mode and circumfer-

ential mode number,

m = mv ± kV (6.1)

where mv is the mode number of the input vortical wave, k is an integer and V is the

number of stators.

This is a simplified test case in that the mean flow is axial, there is no camber or thick-

ness in the stator vanes and the mean flow is treated as inviscid however, the physics of the

interaction between the vortical mode and the stator blades is preserved. The interaction

also causes the vortical mode to scatter into upstream and downstream travelling acoustic

waves with multiple modes in each direction as in a real case. These waves impinge on

121
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the upstream and downstream boundary and hence a non-reflecting boundary treatment

is essential for correct noise acoustic prediction.

The geometry used was is taken from the category 4 benchmark problem from the third

computational aeroacoustics workshop on bench mark problems (Cleveland, Ohio, Nov 8-

10 1999) as described by Dahl [86]. The geometry of the test cases shown in table 6.1.

Table 6.1: The geometry of the wake-stator interaction test case. Mtip refers to the tip Mach
number of a conceptual rotor generating the input vortical mode.

This test case has been used previously by Namba and Schulten [87] to test calcu-

lation methods and by Wilson to test boundary conditions. The original test case was

designed with a high amplitude input vortical wave leading to acoustic waves of ampli-

tudes approaching 160dB SPL [88]. At these high amplitudes non-linear effects can occur.

Previous authors used linear methods which precluded these linear effects. In the current

works a non-linear method is used and in order to avoid the complexities of non-linear

effects the amplitude of the input signal was reduced such that the variation in circumfer-

ential velocity was 1% of mean flow axial velocity.

The input signal was a vortical wave at circumferential mode 16 and frequency ω =

4152.97. At this frequency only 2 of the acoustic Tyler-Sofrin modes are cut-on which are

the first and second radial harmonics at m = −8 [88]. Both of these modes are treated in

the EBNRBC’s.

The mesh was defined by 64 equispaced radial points and 768 equispaced circumferen-

tial points and 112 equispaced axial points. This gives almost 50 points per wavelength for

the input vortical mode in both the circumferential and axial directions. The input wave

was radially in phase meaning the radial discretisation is not relevant. The two cut-on
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acoustic modes were captured with nearly 100 points per wavelength circumferentially for

both radial mode numbers and almost 40 points per wavelength axially for the first radial

mode and almost 60 for the second radial mode. This discretisation is sufficient to ensure

that discretisation errors in the CFD calculation are small.

Figure 6.1: The three dimensional mesh used for the uniform flow test calculation. The outlet and
interior mesh have been removed to allow proper visual of the blades.

The analysis of the results is split, where the domain before the fans is dubbed the

upstream part of the duct and the domain after the domain is dubbed the downstream

part of the duct. Here the acoustic signal, depending on the boundary condition can reflect

off the domain boundaries and reflect partially again off the blades. This means in order

to get accurate results, the boundary conditions need to be activated simultaneously and

need to perform adequately at both the inlet and the outlet. As acoustic disturbances are

travelling both upstream and downstream, any waves not properly treated at the boundary

can reflect and constructively or destructively interact with the acoustic waves created due

to the vortical input spoiling the solution.

In discussing the validation of the EBNRBC in its prediction of wake/stator interaction

tone noise, wave splitting was performed at the upstream end of the duct before the blades

and the downstream end of the duct after the blades, an example of what is meant being

seen in figure 6.2.
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A number of calculations were performed with a number of different boundary condi-

tions:

� No NRBC (fixed total pressure at inlet and fixed static pressure at outlet).

� Fixed total pressure at inlet and Reference NRBC (RNRBC) at outlet.

� Fixed total pressure at inlet and EBNRBC at outlet.

� EBNRBC at both inlet and outlet.

In theory in applying the correct boundary condition downstream, the acoustic waves

travel down the duct and leave the domain. The upstream travelling waves however reflect

off the inlet boundary and a portion of the acoustic energy then reflects off the blades.

The portion that travels through the blades then leaves the domain through the outlet

contaminating the prediction of the generated sound power in the downstream direction.

The same effect is seen when applying the RNRBC. It is expected therefore that the results

in these cases will be less accurate than when applying the EBNRBC at both the inlet and

outlet.

Figure 6.2: The wave splitting performed for analysis of the downstream boundary conditions
were done in the downstream part of the duct, while the wave splitting for the upstream boundary
conditions were done in the upstream part of the duct.
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6.2 Results: Constant Pressure Boundary Condition

This boundary condition involves setting the total pressure at the inlet as well as the flow

angles (as described in section 3.2.2) and static pressure at outlet. This boundary con-

dition is reflective and thus gives spurious reflections that spoil the solution. Figure 6.3

Figure 6.3: Analysis of the constant pressure boundary condition in the downstream portion of
the duct. The lines at around 52dB represent the second radial harmonic, travelling in both the
upstream and the downstream directions (upstream and downstream lines overlay exactly) while
the lines at around 46dB represent the first radial harmonics travelling in both the upstream and
downstream directions (again upstream and downstream lines overlay exactly).

shows the wave split modal amplitudes in the downstream portion of the duct. The two

cut-on modes are represented by the lines at the top of the figure and the reflected mode

amplitudes exactly match those of the incident modes therefore it can be seen that the con-

stant pressure boundary condition is entirely reflective giving the wrong solution. The red

lines sloping downward represent cut-off modes all of which decay strongly such that the

influence on the result at the boundary is negligible. The green diagonal line represents the

reflection of the strongest cut-off mode however the amplitude is too small to be significant.

Figure 6.4 shows the wave split modal amplitudes in the upstream portion of the duct.

It can be seen that reflected wave is reduced in amplitude by about 5dB when compared to
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the incident wave in the second radial harmonic and the amplitude of the reflected wave is

about 7dB lower than the incident wave in the first radial harmonic. Hence the fixed total

pressure boundary condition is more non-reflective than the outlet boundary condition but

still too reflective to give accurate results.

Figure 6.4: Analysis of the constant pressure boundary condition in the upstream portion of the
duct.

6.3 Results: RNRBC

This boundary condition is limited to being applied only at the outlet and cannot be

applied at the inlet, thus there is no active NRBC at the inlet of the duct, only the input

vortical wave.
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Figure 6.5: Analysis of the RNRBC in the downstream portion of the duct.

The reference NRBC here reduces reflections however its performance fails to match

that of the performance seen in the validation in two dimensions and three dimensions.

In the downstream portion of the duct the first radial mode is reduced in amplitude by

roughly 6dB whilst the second radial mode is reduced by roughly 8dB. The reason for this

is unclear but it is noted that in this test case unlike the test cases in chapter 4 and 5

there are residual vortical modes leaving the domain as well as acoustic waves. This may

be the reason for the reduction in performance of the RNRBC but further work is required

to confirm this.

At the upstream end of the duct a similar story is told to that of figure 6.4. There is

no non reflective boundary and so the upstream acoustics are reflected back downstream

with a small reduction in amplitude due to the same reason mentioned before.
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Figure 6.6: Analysis of the RNRBC in the upstream portion of the duct.

6.4 Results: EBNRBC at Downstream Boundary Only

In this case the NRBC was set only at the downstream boundary. As can be seen in figure

6.7, the first radial mode is reduced in reflections by about 39dB whilst the second radial

mode is reduced in reflections by roughly 27.5dB. Again the upstream portion of the duct

tells the same story as the previous cases.
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Figure 6.7: Analysis of the EBNRBC when applied only at the outlet in the downstream portion
of the duct.

Figure 6.8: Analysis of the EBNRBC when applied only at the outlet in the upstream portion of
the duct.
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6.5 Results: EBNRBC at Downstream And Upstream Bound-

aries

In this case the EBNRBC was applied at both the inlet and the outlet, theoretically allowing

for both upstream and downstream waves to exit the domain. In the downstream duct in

figure 6.9 it can be seen that the first radial mode is reduced in amplitude by roughly 22dB

while the second radial mode is reduced in reflection by roughly 18dB.

Figure 6.9: Analysis of the EBNRBC in the downstream portion of the duct when applied at both
boundaries.

The upstream portion of the duct (figure 6.10) shows similar success in achieving an

NRBC as the first radial mode is reduced in amplitude by 18dB whilst the second radial

mode is reduced in amplitude by roughly 20dB.
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Figure 6.10: Analysis of the EBNRBC in the upstream portion of the duct when applied at both
boundaries.

6.6 Results Summary: Blade Noise

The performance of the constant pressure boundary condition is inadequate. The reflec-

tions at the downstream end have the same amplitude as the incident waves and this effects

the perceived amplitude of the outgoing waves at the upstream end (54dB in figure 6.4

compared with 51dB in figure 6.10). The fixed total pressure boundary condition at inlet

is slightly better but still gives strong reflections. In this case these reflected waves travel

through to the downstream part of the duct leading to an error in the outgoing wave (52dB

in figure 6.3 compared with 50dB in figure 6.9).

The RNRBC, which has previously performed well, failed to give adequate results, and

as mentioned is limited to being applied at the downstream boundary only, meaning the

upstream signal is fully reflected.

The EBNRBC performs best here. When only the downstream boundary condition

is active it reduces the signal by approximately 39dB and 27.5dB in both the first and

second radial harmonics respectively at the downstream end of the duct. Of course the
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upstream end is still reflective and thus fails to let out the acoustic disturbance. When

activated at both upstream and downstream boundaries the reduction in reflection is now

22dB and 18dB for the first and second radial modes at the downstream end of the duct

while the upstream end of the duct reduces reflections by 18dB and 20dB in the first and

second radial modes respectively showing good performance in allowing waves to leave the

domain. The reason for the increase in reflection coefficient is not clear, but in both cases

it is effective as an NRBC.

The results presented here show the importance of applying non-reflective boundary

conditions at both the upstream and downstream boundaries. Although zonal boundary

treatments were shown to work well in the three dimensional test cases in chapter 5 they

were not tested here because of the necessity of applying an input vortical signal at the

upstream boundary.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

A new two and three dimensional Non-Reflecting Boundary Condition (NRBC) has been

developed for acoustic modes of discrete frequencies propagating through non-uniform

ducted flows for the upstream and downstream boundary. The boundary conditions dubbed

Eigen-Based Non-Reflecting Boundary Condition (EBNRBC) were developed and tested

using a commercial CFD solver (ANSYS FLUENT) for many uniform and non-uniform

flow cases in both two and three dimensions. The cases varied in Mach number and

mode number and in the case of non-uniform flow, the mean flow profile. The EBNRBC

when applied at the downstream boundary performed best when compared to alternative

methods, reducing reflections to around 40dB below the incident wave amplitude while at

the upstream boundary reflections are reduced to 20dB below the incident wave amplitude.

At the downstream boundary the EBNRBC generally performs better then the Refer-

ence NRBC (RNRBC) based on the method of Poinsot and Lele [2]. The RNRBC reduces

reflections of cut-on waves to around 25dB below the incident wave amplitude which will

be sufficient in many applications, however the RNRBC fails at cut-off frequencies and

frequencies close to cut-off. In the wake/stator interaction test case the RNRBC fails to

perform adequately only reducing reflections to around 6-8dB below the incident wave am-

plitude. The EBNRBC can also be applied at both the inlet boundary whilst the RNRBC

can only be applied at the downstream boundary.

In uniform axial mean flow the EBNRBC reduces to the Giles NRBC [18]. In non-

133



Conclusions and Future Work 134

uniform mean flow the acoustic modes are no longer pure Bessel-Fourier modes. Treating

the boundary using Giles NRBC with only the Bessel-Fourier mode closest in shape to the

non-uniform flow mode was found to be insufficiently non-reflective for upstream travel-

ling waves but performed adequately for downstream travelling waves where there is less

harmonic scattering. The Giles NRBC cannot be applied in cases where the geometry is

non-uniform.

The stretching mesh in the downstream cases performed nearly as well as the EBN-

RBC. The upstream stretching mesh is more effective in reducing reflections for upstream

travelling waves however the calculation time of the EBNRBC is shorter in total, including

calculation of the steady state, than the stretched mesh. It’s also not possible to input

an acoustic signal on the same boundary as the stretched mesh boundary treatment. Ap-

plication of the stretched mesh also requires knowledge of the geometry just outside the

domain which may not always be available.

In developing these boundary condition a bandpass filter was used. The filter however

has a response time which slows the calculation time. Widening the band in the band pass

filter can help improve response times and hence calculation times making this method

more competitive with alternate treatments in terms of time taken to solve.

The choice of boundary condition is dependent on the particular application. The EBN-

RBC developed in this thesis would not be appropriate for the prediction of broadband

noise or complex noise fields with large numbers of acoustic frequencies and wave numbers.

In these cases the reference boundary condition works adequately at the downstream end.

The reference boundary condition also does not require a preprocessing stage making it the

most time efficient method. Domain extension boundary treatments such as a stretching

mesh can be used at either end but cannot be used with an input acoustic or vortical signal.

The EBNRBC has been demonstrated to meet all the requirements laid out at the

beginning of the thesis for a non-reflecting boundary treatment for the prediction of acoustic

tones in ducted geometry:

� To be applicable at the inlet and outlet surface.

� To be applicable on the boundary surface itself.
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� To allow for an acoustic or vortical input signal at the same plane as the non-reflecting

boundary treatment.

� To provide accurate results in the presence of circumferentially (as well as radially)

varying mean flow for both cut-on and cut-off incident waves.

� To be applicable to non-uniform duct geometry including non-planar boundary sur-

faces (this last capability has not been demonstrated in this thesis - see next section).

7.2 Future Work

The reference NRBC for the realistic test case in chapter 6 was less effective than for the

simplified test cases in chapter 5. It was surmised that this was due to the residual vortical

wave at the downstream boundary but further work is required to confirm this conclusion.

The Giles boundary condition was demonstrated in chapter 5 using a single Bessel-

Fourier harmonic closest to that of the non-uniform mean flow mode. There is also the

possibility of applying the Giles boundary condition with multiple harmonics to better

cover the scattered acoustic field. Note that while a wide range of modes can be chosen

relevant to the scattered mode being input, the relationship between the pressure and ve-

locities in uniform flow is different to that in non-uniform flow thereby making the outgoing

modal coefficients different to what one would have using the EAGCC method where the

non-uniform flow is accounted for.

The response time of the filter used in the current method strongly effects the calcula-

tion time required to achieve convergence as discussed in chapter 5. Therefore alternative

types of filters, such as the Chebyshev band pass filter, should be explored with the aim of

finding shorter response times reducing overall compute cost.

The EBNRBC method, as developed in this thesis, is immediately applicable to acous-

tically lined ducts however this capability has not been demonstrated or validated in this

thesis.

The EBNRBC method has been validated for non-uniform mean flow but not non-

uniform duct geometry. In order to use the method with non-uniform geometry a small
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extension to the method is required to interpolate the flow data between the CFD and the

EBNRBC meshes.

The eigenanalysis method underlying the EBNRBC is also applicable to external flows

in the vicinity of upstream end of the duct as shown by Wilson [39]. The EBNRBC method

as coded should work directly with this case. Further development work would be required,

however, to extend the method to the region downstream of a turbomachinery duct, in view

of the very localised shear layer associated with the exhaust jet.

The test cases in this thesis were all set up with a slip wall (inviscid) boundary con-

dition. This will have negligible effect when the wall boundary layer is small compared

to the acoustic wavelengths being predicted. The EBNRBC method, as developed in this

thesis, can be applied also to calculations with no slip boundary condition however further

demonstration/validation will be required to apply the method in these cases.
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Appendix A

EBNRBC Source Code

#include ” udf . h”

#include ”math . h”

#include ”mem. h”

#include ”/home/ kz2e16 / Boundary Conditions / meshv1 trans f e r /compop . h”

#include <s t d i o . h>

#define MTC 2

#define NUMMOD 1

#define FOURCO 2

#define FILTOR 5

#define FILT 2

#define NOVAR 4

#define PI 3.14159265359

#define DTH 0.008181230869

#define BOUNDARY 2

#define NOR 64

#define MODE =8

#define SEGNUM 4

#define rsh 1.39902416 /* Gamma ( from FLUENT d e f a u l t s ) */

#define rgas 287 .05 /* Rgas ( SI un i t s ) */

#define qfac 0 .0 /* Number o f Phase changes from bottom to top (+ve

=> top l ead ing ) */

#define mna 0 .5 /* Mean f low a x i a l Mn */

#define mntip 0 .783 /* Rotor t i p t a n g e n t i a l Mn */

#define nblades 16 .0 /* Number o f r o t o r s */

#define uthdashouabar 0 .01 /* Unsteady utheta normal i sed by mean ua */
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#define t t 288 .0 /* I n l e t t o t a l temperature (K) */

#define ps 101325.0 /* I n l e t s t a t i c p r e s su r e (Pa) */

#define row 1 .0 /* outer wa l l r ad iu s (m) */

#define r iw 0 .5 /* i nne r wa l l r ad iu s (m) */

#define pi 3.141592653589793

#define nr 64 /* Number o f c e l l s (NOT nodes ! ) in r a d i a l d i r e c t i o n

on the boundary */

#define nth 192 /* Number o f c e l l s (NOT nodes ! ) in c i r c d i r e c t i o n on

the boundary */

#define bdryid 20 /* Zone ID o f boundary */

#define f name ind i c e s ”/home/ kz2e16 / Boundary Conditions /

meshv1 trans f e r / DS caa4mesh v1musc l bdry indices . txt ” /* Filename

f o r po int number in fo rmat ion */

#define fname ps ”/home/ kz2e16 / Boundary Conditions /

meshv1 trans f e r / DS caa4mesh v1muscl bdry ps . txt ” /* Filename

f o r steady pre s su r e p r o f i l e */

#define fname jacob ”/home/ kz2e16 / Boundary Conditions /

meshv1 trans f e r / DS caa4mesh v1muscl bdry jacob . txt ” /* Filename

f o r jacob ian */

#define fname invjacob ”/home/ kz2e16 / Boundary Conditions /

meshv1 trans f e r / DS caa4mesh v1muscl bdry invjacob . txt ” /* Filename

f o r i n v e r s e jacob ian */

#define p o i n t t o l 1e=6 /* t o l e r a n c e on c a l c u l a t e d vs read in f a c e

c e n t r o i d s */

/* ( 4 . 9/400 ) *(2* pi ) */

stat ic int modes [NUMMOD] = {0} ;

stat ic Complex rev [NOR] [NUMMOD] [NOVAR] [MTC] [BOUNDARY] = {{{{{{ 0

}}}}}} ; /* 0 = Downstream , 1 = Upstream */

stat ic Complex l ev [NOR] [NUMMOD] [NOVAR] [MTC] [BOUNDARY] = {{{{{{ 0

}}}}}} ; /* 0 = Downstream , 1 = Upstream */

/* s t a t i c double f n y q u i s t = 0.5/1 .570796326794896 e=06; 400 s t ep s / c y c l e

*/ /* // f n y q u i s t = 0 .5/ t imestep */

r e a l omegas = 8.790547282462599 e +03;

/*Angular

f requency 9.252720619513942 e=6 */
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r e a l c = 331.4952496191566 ;

/*

// Speed o f sound in a i r */

r e a l M = 0 . 5 ;

int m = =8;

/*Mode Number o f the S i gna l */

f loat Rout = 1 ;

f loat Rin = 0 . 5 ;

stat ic r e a l f f i l t [NOR] [NUMMOD] [FOURCO] [NOVAR] [ FILTOR ] [ FILT ] [BOUNDARY] =

{{{{{{{{{ 0 }}}}}}}}} ;

stat ic r e a l f i p [NOR] [NUMMOD] [FOURCO] [NOVAR] [BOUNDARY] = {{{{{{{ 0

}}}}}}} ;

r e a l aout [ 5 ] = {1 , =3.995069131096948 , 5 .985706376640888 ,

=3.986204158075490 , 0 .995566972065976} ;

r e a l bout [ 5 ] = {0.246193054746015 e=05, 0 , =0.492386109492030 e=05, 0 ,

0 .246193054746015 e=05};
stat ic Complex cco [NOR] [NUMMOD] [NOVAR] [BOUNDARY] = {{{{{ 0 }}}}} ;

stat ic Complex crev [NOR] [NUMMOD] [NOVAR] [MTC] [BOUNDARY] = {{{{{ 0 }}}}} ;

/* DIMENSION 0 = pressure , 1 = Uz , 2 = Uth . BOUNDARY 0 = INLET, 1

= OUTLET */

Complex phase = {0} ;

stat ic Complex ocrev [NOR] [NUMMOD] [NOVAR] [MTC] [BOUNDARY] = {{{{{ 0

}}}}} ;

Complex l e v c [BOUNDARY] [MTC] = {{{0}}} ;

double t o t p r e s s u r e = 18854 . 89 ;

r e a l bdry f c [ nr ] [ nth ] [ 3 ] ;

r e a l bdry ps [ nr ] [ nth ] ;

r e a l bdry jacob [ nr ] [ nth ] [ 3 ] [ 3 ] ;

r e a l bdry inv jacob [ nr ] [ nth ] [ 3 ] [ 3 ] ;

/*

*/

/* CREATE ALL RELEVENT FUNCTIONS

*/

/*
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*/

/*

*/

/* CREATE FILTER VARIABLES

*/

/*

*/

void t e s t f t ( int boundary )

{
r e a l RUTH = 0 ;

r e a l UR = 0 ;

double x [ND ND ] ;

double x 1 ;

double y ;

double z ;

double theta ;

int i ;

int j ;

int k ;

int l ;

int i r a d l p ;

int id = 0 ;

int bound = 0 ;

double power = rsh /( rsh=1) ;

double p r o f i l e = 0 ;

r e a l machsquareds = 0 ;

#i f !RP HOST

i f ( boundary == 0)

{ id = 17 ; bound = 2 ;}
else i f ( boundary == 1)

{ id = 20 ; bound = 3 ;}
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Domain *d ;

f a c e t f ;

Thread * thread ;

d = Get Domain (1 ) ;

thread = Lookup Thread (d , id ) ;

for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p ++)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
for ( j = 0 ; j <= 1 ; j = j +1)

{
for ( k = 0 ; k <= NOVAR=1; k = k +1)

{
f i p [ i r a d l p ] [ i ] [ j ] [ k ] [ boundary ] = 0 ;

}
}
}
}

/* Step 1 . Access cur rent boundary va lue s and decompose in to f o u r i e r

s e r i e s f i p */

b e g i n f l o o p ( f , thread )

{
i f (PRINCIPAL FACE P( f , thread ) )

{
F CENTROID(x , f , thread ) ;

x 1 = x [ 0 ] ;

y = x [ 1 ] ;

z = x [ 2 ] ;

theta = atan2 (y , x 1 ) ;

int i r ad = 0 ;

r e a l rsquared = pow( x 1 , 2 ) + pow(y , 2 ) ;

f loat r = s q r t ( rsquared ) ;

RUTH = =r*(=F U( f , thread ) * s i n ( theta ) + F V( f , thread ) * cos ( theta ) ) ;

UR = F U( f , thread ) * cos ( theta ) + F V( f , thread ) * s i n ( theta ) ;
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i r ad = f l o o r ( ( ( r = Rin ) /( Rout = Rin ) *NOR) ) ;

p r o f i l e = 0*5847.854485832853* exp((= theta * theta ) / ( 2*0 . 5*0 . 5 ) ) ;

machsquareds = (pow ( ( to tp r e s su r e=p r o f i l e+ps ) /ps , ( 1 / power ) ) = 1)

* (2/( rsh = 1) ) ;

for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
i f ( modes [ i ]==0)

{
f i p [ i r ad ] [ i ] [ 0 ] [ 0 ] [ boundary ] = f i p [ i r ad ] [ i ] [ 0 ] [ 0 ] [ boundary ] +

SEGNUM*(1/ PI *(UR/c ) *DTH) ;

f i p [ i r ad ] [ i ] [ 0 ] [ 1 ] [ boundary ] = f i p [ i r ad ] [ i ] [ 0 ] [ 1 ] [ boundary ] +

SEGNUM*(1/ PI *(RUTH/c ) *DTH) ;

f i p [ i r ad ] [ i ] [ 0 ] [ 2 ] [ boundary ] = f i p [ i r ad ] [ i ] [ 0 ] [ 2 ] [ boundary ] +

SEGNUM*(1/ PI * ( (F W( f , thread ) = ( c*machsquareds ) ) /c ) *DTH) ;

f i p [ i r ad ] [ i ] [ 0 ] [ 3 ] [ boundary ] = f i p [ i r ad ] [ i ] [ 0 ] [ 3 ] [ boundary ] +

SEGNUM*(1/ PI *(F UDMI( f , thread , bound ) /( rsh *ps ) ) *DTH) ;

f i p [ i r ad ] [ i ] [ 1 ] [ 0 ] [ boundary ] = 0 ;

f i p [ i r ad ] [ i ] [ 1 ] [ 1 ] [ boundary ] = 0 ;

f i p [ i r ad ] [ i ] [ 1 ] [ 2 ] [ boundary ] = 0 ;

f i p [ i r ad ] [ i ] [ 1 ] [ 3 ] [ boundary ] = 0 ;

}
else

{
f i p [ i r ad ] [ i ] [ 0 ] [ 0 ] [ boundary ] = f i p [ i r ad ] [ i ] [ 0 ] [ 0 ] [ boundary ] +

SEGNUM*(1/ PI *(UR/c ) * cos ( modes [ i ]* theta ) *DTH) ;

f i p [ i r ad ] [ i ] [ 1 ] [ 0 ] [ boundary ] = f i p [ i r ad ] [ i ] [ 1 ] [ 0 ] [ boundary ] +

SEGNUM*(1/ PI *(UR/c ) * s i n ( modes [ i ]* theta ) *DTH) ;

f i p [ i r ad ] [ i ] [ 0 ] [ 1 ] [ boundary ] = f i p [ i r ad ] [ i ] [ 0 ] [ 1 ] [ boundary ] +

SEGNUM*(1/ PI *(RUTH/c ) * cos ( modes [ i ]* theta ) *DTH) ;

f i p [ i r ad ] [ i ] [ 1 ] [ 1 ] [ boundary ] = f i p [ i r ad ] [ i ] [ 1 ] [ 1 ] [ boundary ] +

SEGNUM*(1/ PI *(RUTH/c ) * s i n ( modes [ i ]* theta ) *DTH) ;

f i p [ i r ad ] [ i ] [ 0 ] [ 2 ] [ boundary ] = f i p [ i r ad ] [ i ] [ 0 ] [ 2 ] [ boundary ] +

SEGNUM*(1/ PI * ( (F W( f , thread ) = ( c*machsquareds ) ) /c ) * cos (

modes [ i ]* theta ) *DTH) ;

f i p [ i r ad ] [ i ] [ 1 ] [ 2 ] [ boundary ] = f i p [ i r ad ] [ i ] [ 1 ] [ 2 ] [ boundary ] +

SEGNUM*(1/ PI * ( (F W( f , thread ) = ( c*machsquareds ) ) /c ) * s i n (

modes [ i ]* theta ) *DTH) ;

f i p [ i r ad ] [ i ] [ 0 ] [ 3 ] [ boundary ] = f i p [ i r ad ] [ i ] [ 0 ] [ 3 ] [ boundary ] +

SEGNUM*(1/ PI *(F UDMI( f , thread , bound ) /( rsh *ps ) ) * cos ( modes [ i
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]* theta ) *DTH) ;

f i p [ i r ad ] [ i ] [ 1 ] [ 3 ] [ boundary ] = f i p [ i r ad ] [ i ] [ 1 ] [ 3 ] [ boundary ]

+ SEGNUM*(1/ PI *(F UDMI( f , thread , bound ) /( rsh *ps ) ) * s i n (

modes [ i ]* theta ) *DTH) ;

}
}

}
}

e n d f l o o p ( f , thread )

#i f RP NODE

for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p ++)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
for ( j = 0 ; j <= 1 ; j = j +1)

{
for ( k = 0 ; k <= NOVAR=1; k = k +1)

{
f i p [ i r a d l p ] [ i ] [ j ] [ k ] [ boundary ] = PRF GRSUM1( f i p [ i r a d l p ] [ i ] [ j ] [ k ] [

boundary ] ) ;

}
}
}
}

#e n d i f

#endif

}

void t e s t f i l t e r ( int boundary ) {
int j ;

int k ;

int i r a d l p ;

int l l p ;

int mlp ;

int i ;
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t e s t f t ( boundary ) ;

/*

**************************************************************************

*/

/* Step 2 . Apply bandpass f i l t e r in time

*/

/*

**************************************************************************

*/

#i f !RP HOST

aout [ 0 ] = 0 ;

/* S h i f t time h i s t o r y one step to the r i g h t and add cur rent va lue s from

f i p */

for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p = i r a d l p +1)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
for ( j = 0 ; j <= 1 ; j = j +1)

{
for ( k = 0 ; k <= NOVAR=1; k = k +1)

{
for ( l l p = FILTOR=1; l l p >= 1 ; l l p = l l p =1)

{
for ( mlp = 0 ; mlp <= 1 ; mlp = mlp +1)

{
f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ mlp ] [ boundary ]= f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p

=1] [ mlp ] [ boundary ] ;

}
}
f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ 0 ] [ 0 ] [ boundary ] = f i p [ i r a d l p ] [ i ] [ j ] [ k ] [ boundary

] ;

f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ 0 ] [ 1 ] [ boundary ] = bout [ 0 ] * f f i l t [ i r a d l p ] [ i ] [ j ] [ k

] [ 0 ] [ 0 ] [ boundary ] ;

for ( l l p = FILTOR=1; l l p >= 1 ; l l p = l l p =1)

{
f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ 0 ] [ 1 ] [ boundary ] = f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ 0 ] [ 1 ] [

boundary ] = aout [ l l p ]* f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ 1 ] [ boundary ] +
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bout [ l l p ]* f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ 0 ] [ boundary ] ;

}
}
}
}
}
aout [ 0 ] = 1 ;

/*

*************************************************************************

*/

/* Step 3 . Convert f o u r i e r harmonics i n to s i n g l e vec to r

*/

/*

*************************************************************************

*/

for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p ++)

{
for ( i = 0 ; i <= NUMMOD=1; i = i + 1)

{
for ( k = 0 ; k <= NOVAR=1; k = k +1)

{
cco [ i r a d l p ] [ i ] [ k ] [ boundary ] . r e a l = f f i l t [ i r a d l p ] [ i ] [ 0 ] [ k ] [ 0 ] [ 1 ] [

boundary ] ;

cco [ i r a d l p ] [ i ] [ k ] [ boundary ] . imag = f f i l t [ i r a d l p ] [ i ] [ 1 ] [ k ] [ 0 ] [ 1 ] [

boundary ] ;

}
}
}
#endif

}

/*

*****************************************************************************

*/

/*
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*/

/* INPUT SIGNAL

*/

/*

*/

/*

*****************************************************************************

*/

void s i g n a l d a t a ( int boundary ) {/* novar = 0 i s Ur , 1 i s Uth , 2 i s Uz , 3

i s Pres sure */

int i r a d l p ;

int i ;

int j ;

for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p++)

{
for ( i = 0 ; i <= NUMMOD=1; i++)

{
for ( j = 0 ; j <= NOVAR=1; j++)

{
for ( l = 0 ; l <= MTC=1; l++)

{
crev [ i r a d l p ] [ i ] [ j ] [ l ] [ boundary ] = cmultcr ( rev [ i r a d l p ] [ i ] [ j ] [ l ] [ boundary

] , 100/( rsh *ps ) ) ;

}
}
}
}
}

/*

*************************************************************************

*/

/* Step 4 . Apply l e f t e i g e n v e c t o r s to determine ingo ing mode

ampl itudes */

/*
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*************************************************************************

*/

void ogv ( int boundary ) { /*ogv = Out Going Vector */

Complex f u n k c o e f f [BOUNDARY] [MTC] = {{{0}}} ;

Complex f c [BOUNDARY] [MTC] = {{{0}}} ;

Complex c f c [BOUNDARY] [MTC] = {{{0}}} ;

int i r a d l p ;

int i ;

int k ;

int novar ;

int l ;

int j = 0 ;

i f ( boundary == 0)

{ j = 1 ;}
else i f ( boundary == 1)

{ j = 0 ;}

for ( l = 0 ; l <= MTC=1; l++)

{
for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p ++)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
for ( k = 0 ; k <= NOVAR=1; k = k +1)

{
l e v c [ boundary ] [ l ] = cmult ( l ev [ i r a d l p ] [ i ] [ k ] [ l ] [ j ] , cco [ i r a d l p ] [ i ] [ k ] [

boundary ] ) ;

f u n k c o e f f [ boundary ] [ l ] . r e a l = f u n k c o e f f [ boundary ] [ l ] . r e a l + l e v c [

boundary ] [ l ] . r e a l ;

f u n k c o e f f [ boundary ] [ l ] . imag = f u n k c o e f f [ boundary ] [ l ] . imag + l e v c [

boundary ] [ l ] . imag ;

}
}
}
}
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f c [ boundary ] [ 0 ] = f u n k c o e f f [ boundary ] [ 0 ] ;

f c [ boundary ] [ 1 ] = f u n k c o e f f [ boundary ] [ 1 ] ;

phase . r e a l = cos (0 .073126493278062) ;

phase . imag = s i n (0 .073126493278062) ;

c f c [ boundary ] [ 0 ] = cmult ( f c [ boundary ] [ 0 ] , phase ) ;

c f c [ boundary ] [ 1 ] = cmult ( f c [ boundary ] [ 1 ] , phase ) ;

for ( l = 0 ; l <= MTC=1; l++)

{
for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p ++)

{
for ( i = 0 ; i <= NUMMOD=1; i++)

{
for ( novar = 0 ; novar <= NOVAR=1; novar++)

{
ocrev [ i r a d l p ] [ i ] [ novar ] [ l ] [ boundary ] = cmult ( c f c [ boundary ] [ l ] , rev [

i r a d l p ] [ i ] [ novar ] [ l ] [ j ] ) ;

}
}
}
}
}

/*

*/

/* SET UP CALCULATION

*/

/*

*/

DEFINE ON DEMAND( zerop )

{
int i ;

int j ;
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int k ;

int i r a d l p ;

int l l p ;

int fm = =8;

for ( i = 0 ; i <= NUMMOD=1; i++ )

{
modes [ i ] = fm ;

fm++;

}

#i f !RP HOST

Domain *d1 ;

f a c e t f 1 ;

Thread * t1 ;

d1 = Get Domain (1 ) ;

int id1 = 20 ;

t1 = Lookup Thread ( d1 , id1 ) ;

b e g i n f l o o p ( f1 , t1 )

{
i f (PRINCIPAL FACE P( f1 , t1 ) )

{
F UDMI( f1 , t1 , 3) = 0 ;

}
}
e n d f l o o p ( f1 , t1 )

#endif

t e s t f t (1 ) ;

#i f !RP HOST

/* S h i f t time h i s t o r y one step to the r i g h t and add cur rent va lue s from

f i p */

for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p ++)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
for ( j = 0 ; j <= 1 ; j = j +1)

{
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for ( k = 0 ; k <= NOVAR=1; k = k +1)

{
for ( l l p = FILTOR=1; l l p >= 0 ; l l p = l l p =1) /*Note r e v e r s e

d i r e c t i o n as s h i f t i n g to the r i g h t */

{
f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ 0 ] [ 1 ] = f i p [ i r a d l p ] [ i ] [ j ] [ k ] [ 1 ] ;

f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ 1 ] [ 1 ] = 0 ;

}
}
}
}
}
#endif

#i f !RP NODE

Message ( ” Success but PLEASE REMEMBER TO CHECK THE BOUNDARY FACE ID ’S\n”

) ;

#endif

}

/* READ IN FILES

*/

DEFINE ON DEMAND( f i l e r e a d )

{
int l ;

int i ;

int j ;

int k ;

FILE * fp , * f i , * fo , * fu , * f l , * fh , * f j , * fk ;

fp = fopen ( ”DSLEVr . txt ” , ” r ” ) ; f i = fopen ( ”DSLEVi . txt ” , ” r ” ) ; f o = fopen (

”DSREVr. txt ” , ” r ” ) ; fu = fopen ( ”DSREVi . txt ” , ” r ” ) ; f l = fopen ( ”USLEVr .

txt ” , ” r ” ) ; fh = fopen ( ”USLEVi . txt ” , ” r ” ) ; f j = fopen ( ”USREVr. txt ” , ” r ”

) ; fk = fopen ( ”USREVi . txt ” , ” r ” ) ;

i f ( fp == NULL) {Message ( ”Unable to open ’LEVr . txt ’ f i l e ” ) ;}
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else i f ( f i == NULL) {Message ( ”Unable to open ’LEVi . txt ’ f i l e ” ) ;}
else i f ( f o == NULL) {Message ( ”Unable to open ’REVr . txt ’ f i l e ” ) ;}
else i f ( fu == NULL) {Message ( ”Unable to open ’REVi . txt ’ f i l e ” ) ;}
else {
for ( l = 0 ; l <= MTC=1; l++)

{
for ( i = 0 ; i <= NOVAR=1; i++)

{
for ( k = 0 ; k <= NUMMOD=1; k++)

{
for ( j = 0 ; j <= NOR=1; j++)

{
f s c a n f ( fp , ”%l e ” , &l ev [ j ] [ k ] [ i ] [ l ] [ 0 ] . r e a l ) ;

f s c a n f ( f i , ”%l e ” , &l ev [ j ] [ k ] [ i ] [ l ] [ 0 ] . imag ) ;

f s c a n f ( fo , ”%l e ” , &rev [ j ] [ k ] [ i ] [ l ] [ 0 ] . r e a l ) ;

f s c a n f ( fu , ”%l e ” , &rev [ j ] [ k ] [ i ] [ l ] [ 0 ] . imag ) ;

f s c a n f ( f l , ”%l e ” , &l ev [ j ] [ k ] [ i ] [ l ] [ 1 ] . r e a l ) ;

f s c a n f ( fh , ”%l e ” , &l ev [ j ] [ k ] [ i ] [ l ] [ 1 ] . imag ) ;

f s c a n f ( f j , ”%l e ” , &rev [ j ] [ k ] [ i ] [ l ] [ 1 ] . r e a l ) ;

f s c a n f ( fk , ”%l e ” , &rev [ j ] [ k ] [ i ] [ l ] [ 1 ] . imag ) ;

}
}
}
}
f c l o s e ( fp ) ; f c l o s e ( f i ) ; f c l o s e ( f o ) ; f c l o s e ( fu ) ; f c l o s e ( f l ) ; f c l o s e ( fh ) ;

f c l o s e ( f j ) ; f c l o s e ( fk ) ;

}

s i g n a l d a t a (0 ) ;

s i g n a l d a t a (1 ) ;

#i f !RP NODE

Message ( ”Read in complete .\n” ) ;

#endif

}

/* WRITE FFILT DATA

*/
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DEFINE ON DEMAND( WRITE fi lter data )

{
int i ;

int j ;

int k ;

int i r a d l p ;

int l l p ;

int mlp ;

int boundary ;

FILE * fp ;

fp = fopen ( ” ove rwr i t e . txt ” , ” r ” ) ;

i f ( fp == NULL) {
#i f !RP NODE

Message ( ”\n Cannot wr i t e f i l t e r data . P lease c r e a t e an empty txt f i l e

t i t l e d ’ ove rwr i t e ’\n” ) ;

#endif

}
else

{ f c l o s e ( fp ) ;

for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p = i r a d l p +1)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
for ( j = 0 ; j <= 1 ; j = j +1)

{
for ( k = 0 ; k <= NOVAR=1; k = k +1)

{
for ( l l p = 0 ; l l p <= FILTOR=1; l l p = l l p +1)

{
for ( mlp = 0 ; mlp <= 1 ; mlp = mlp +1)

{
for ( boundary = 0 ; boundary <= BOUNDARY=1; boundary = boundary +1)

{
n o d e t o h o s t r e a l 1 ( f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ mlp ] [ boundary ] ) ;

}
}
}
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}
}
}
}
#i f !RP NODE

FILE * f i l t e r ;

f i l t e r = fopen ( ” f i l t e r d a t a . txt ” , ”w” ) ;

i f ( f i l t e r == NULL) {Message ( ”Unable to c r e a t e ’ f i l t e r d a t a ’ f i l e ” ) ;}
else {
for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p = i r a d l p +1)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
for ( j = 0 ; j <= 1 ; j = j +1)

{
for ( k = 0 ; k <= NOVAR=1; k = k +1)

{
for ( l l p = 0 ; l l p <= FILTOR=1; l l p = l l p +1)

{
for ( mlp = 0 ; mlp <= 1 ; mlp = mlp +1)

{
for ( boundary = 0 ; boundary <= BOUNDARY=1; boundary = boundary +1)

{
p r i n t f ( ” f f i l t [%d][%d][%d][%d][%d][%d][%d ] WRITE %e\n” , i r ad lp , i , j , k ,

l l p , mlp , boundary , f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ mlp ] [ boundary ] ) ;

s can f ( ”%l e ” , & f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ mlp ] [ boundary ] ) ;

f p r i n t f ( f i l t e r , ”%l e \n” , f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ mlp ] [ boundary ] ) ;

}
}
}
}
}
}
}
Message ( ”Write complete .\n” ) ;

}
f c l o s e ( f i l t e r ) ;

Message ( ”Done\n PLEASE DELETE OVERWRITE FILE” ) ;
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#endif

}
}

/*

*/

/* READ FFILT DATA

*/

/*

*/

DEFINE ON DEMAND( READ fi l ter data )

{
int i ;

int j ;

int k ;

int i r a d l p ;

int l l p ;

int mlp ;

int boundary ;

FILE * f i l t e r ;

f i l t e r = fopen ( ” f i l t e r d a t a . txt ” , ” r ” ) ;

i f ( f i l t e r == NULL) {Message ( ”Unable to c r e a t e ’ f i l t e r d a t a ’ f i l e ” ) ;}
else {
for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p = i r a d l p +1)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
for ( j = 0 ; j <= 1 ; j = j +1)

{
for ( k = 0 ; k <= NOVAR=1; k = k +1)

{
for ( l l p = 0 ; l l p <= FILTOR=1; l l p = l l p +1)

{
for ( mlp = 0 ; mlp <= 1 ; mlp = mlp +1)

{
for ( boundary = 0 ; boundary <= BOUNDARY=1; boundary = boundary +1)
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{
f s c a n f ( f i l t e r , ”%l e ” , & f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ mlp ] [ boundary ] ) ;

p r i n t f ( ” f f i l t [%d][%d][%d][%d][%d][%d][%d ] READ %e\n” , i r ad lp , i , j , k ,

l l p , mlp , boundary , f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ mlp ] [ boundary ] ) ;

}
}
}
}
}
}
}
#i f !RP NODE

Message ( ”Read complete .\n” ) ;

#endif

}
f c l o s e ( f i l t e r ) ;

}

DEFINE ON DEMAND( pr i n t )

{
int i ;

int j ;

int k ;

int i r a d l p ;

int l l p ;

int mlp ;

int boundary ;

for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p = i r a d l p +1)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
for ( j = 0 ; j <= 1 ; j = j +1)

{
for ( k = 0 ; k <= NOVAR=1; k = k +1)

{
for ( l l p = 0 ; l l p <= FILTOR=1; l l p = l l p +1)

{
for ( mlp = 0 ; mlp <= 1 ; mlp = mlp +1)
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{
for ( boundary = 0 ; boundary <= BOUNDARY=1; boundary = boundary +1)

{
n o d e t o h o s t r e a l 1 ( f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ mlp ] [ boundary ] ) ;

}
}
}
}
}
}
}
#i f !RP NODE

for ( i r a d l p = 0 ; i r a d l p <= NOR=1; i r a d l p = i r a d l p +1)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
for ( j = 0 ; j <= 1 ; j = j +1)

{
for ( k = 0 ; k <= NOVAR=1; k = k +1)

{
for ( l l p = 0 ; l l p <= FILTOR=1; l l p = l l p +1)

{
for ( mlp = 0 ; mlp <= 1 ; mlp = mlp +1)

{
for ( boundary = 0 ; boundary <= BOUNDARY=1; boundary = boundary +1)

{
p r i n t f ( ” f f i l t [%d][%d][%d][%d][%d][%d][%d ] . r e a l %e\n” , i r ad lp , i , j , k ,

l l p , mlp , boundary , f f i l t [ i r a d l p ] [ i ] [ j ] [ k ] [ l l p ] [ mlp ] [ boundary ] ) ;

}
}
}
}
}
}
}
#endif

}



167 EBNRBC Source Code

/*

*/

/* RUN CALCULATION

*/

/*

*/

DEFINE EXECUTE AT END( F i l t e r V a r i a b l e s )

{
t e s t f i l t e r (0 ) ;

t e s t f i l t e r (1 ) ;

}

/*

*****************************************************************************

*/

/*

*/

/* APPLICATION OF NRBC

*/

/*

*/

/*

*****************************************************************************

*/

DEFINE PROFILE(OUTLET 3dnrbc , thread , p o s i t i o n )

{
f a c e t f ;

/*Atmospheric Pres sure (1 atm) */
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r e a l t = CURRENT TIME;

/*Angular f requeny normal i sed by speed o f sound c

Duct Radius */

double p = 0 ;

double s i g n a l = 0 ;

/*Mode Number o f the S i gna l */

double p r o f i l e ;

double power = rsh /( rsh=1) ;

double pin = 0 ;

double uz = 0 ;

double uth = 0 ;

double ur = 0 ;

double x [ND ND ] ;

double x 1 ;

double y ;

double z ;

double theta ;

r e a l s c a l a r ;

r e a l machsquareds ;

r e a l machsquaredi ;

double pres ;

int i ;

int l ;

#i f !RP HOST

ogv (1 ) ;

/*

**************************************************************************

*/

/* Step 5 . Apply r i g h t e i g e n v e c t o r s to s e t boundary va lues from

outgoing modes*/

/* Current ly hardwired f o r e x i t boundary cond i t i on

*/

/*

**************************************************************************
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*/

b e g i n f l o o p ( f , thread )

{
i f (PRINCIPAL FACE P( f , thread ) )

{
F CENTROID(x , f , thread ) ;

x 1 = x [ 0 ] ;

y = x [ 1 ] ;

z = x [ 2 ] ;

theta = atan2 (y , x 1 ) ;

r e a l r squared = pow( x 1 , 2 ) + pow(y , 2 ) ;

r e a l r = s q r t ( rsquared ) ;

int i r ad = 0 ;

p r o f i l e = 0*5847.854485832853* exp((= theta * theta ) / ( 2*0 . 5*0 . 5 ) ) ;

machsquareds = (pow ( ( to tp r e s su r e=p r o f i l e+ps ) /ps , ( 1 / power ) ) = 1) * (2/( rsh

= 1) ) ;

pin = 0 ;

uz = 0 ;

uth = 0 ;

ur = 0 ;

p = 0 ;

i r ad = f l o o r ( ( ( r = Rin ) /( Rout = Rin ) *NOR) ) ;

for ( l = 0 ; l <= MTC=1; l++)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
pin = pin + crev [ i r ad ] [ i ] [ 3 ] [ l ] [ 1 ] . r e a l * cos ( modes [ i ]* theta=omegas* t ) +

crev [ i r ad ] [ i ] [ 3 ] [ l ] [ 1 ] . imag* s i n ( modes [ i ]* theta=omegas* t ) ;

uz = uz + crev [ i r ad ] [ i ] [ 2 ] [ l ] [ 1 ] . r e a l * cos ( modes [ i ]* theta=omegas* t ) +

crev [ i r ad ] [ i ] [ 2 ] [ l ] [ 1 ] . imag* s i n ( modes [ i ]* theta=omegas* t ) ;

uth = uth + crev [ i r ad ] [ i ] [ 1 ] [ l ] [ 1 ] . r e a l * cos ( modes [ i ]* theta=omegas* t ) +

crev [ i r ad ] [ i ] [ 1 ] [ l ] [ 1 ] . imag* s i n ( modes [ i ]* theta=omegas* t ) ;

ur = ur + crev [ i r ad ] [ i ] [ 0 ] [ l ] [ 1 ] . r e a l * cos ( modes [ i ]* theta=omegas* t ) +

crev [ i r ad ] [ i ] [ 0 ] [ l ] [ 1 ] . imag* s i n ( modes [ i ]* theta=omegas* t ) ;

p = p + ocrev [ i r ad ] [ i ] [ 3 ] [ l ] [ 1 ] . r e a l * cos ( modes [ i ]* theta ) + ocrev [

i r ad ] [ i ] [ 3 ] [ l ] [ 1 ] . imag* s i n ( modes [ i ]* theta ) ;

}
}
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machsquaredi = machsquareds + pow( uz , 2 ) + pow( uth/r , 2 ) + 2* s q r t (

machsquareds ) *uz + pow( ur , 2 ) ;

s c a l a r = pow((1 + ( ( rsh = 1) /2) *machsquaredi ) , power ) ;

s i g n a l = pin * rsh *ps ;

pres = p* rsh *ps + 0* s i g n a l ;

F PROFILE( f , thread , p o s i t i o n ) = pres ;

F UDMI( f , thread , 3) = pres ;

f f l u s h ( stdout ) ;

}
}
e n d f l o o p ( f , thread )

#endif

}

DEFINE PROFILE( INLET 3dnrbc , thread , p o s i t i o n )

{
f a c e t f ;

r e a l t = CURRENT TIME;

double p = 0 ;

double s i g n a l = 0 ;

double p r o f i l e ;

double power = rsh /( rsh=1) ;

double pin = 0 ;

double uz = 0 ;

double uth = 0 ;

double ur = 0 ;

double x [ND ND ] ;

double x 1 ;

double y ;

double z ;

double theta ;

r e a l s c a l a r ;

r e a l machsquareds ;

r e a l machsquaredi ;

r e a l p s t a t ;

r e a l p to tg ;

r e a l p to t ;

r e a l tsmean ;
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r e a l c ;

r e a l omega ;

r e a l r f a c ;

r e a l duth ;

r e a l dua ;

r e a l uusqogrtt ;

r e a l umn;

r e a l upt ;

double pres = 0 ;

int i ;

int l ;

#i f !RP HOST /* MOVE THIS */

ogv (0 ) ;

/*

**************************************************************************

*/

/* Step 5 . Apply r i g h t e i g e n v e c t o r s to s e t boundary va lues from ingo ing

modes */

/* Current ly hardwired f o r e x i t boundary cond i t i on

*/

/*

**************************************************************************

*/

b e g i n f l o o p ( f , thread )

{
i f (PRINCIPAL FACE P( f , thread ) )

{
F CENTROID(x , f , thread ) ;

int i r ad = 0 ;

x 1 = x [ 0 ] ;

y = x [ 1 ] ;

z = x [ 2 ] ;

theta = atan2 (y , x 1 ) ;

r e a l r squared = pow( x 1 , 2 ) + pow(y , 2 ) ;

r e a l r = s q r t ( rsquared ) ;

p r o f i l e = 0*5847.854485832853* exp((= theta * theta ) / ( 2*0 . 5*0 . 5 ) ) ;
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machsquareds = (pow ( ( to tp r e s su r e=p r o f i l e+ps ) /ps , ( 1 / power ) ) = 1) * (2/( rsh

= 1) ) ;

pin = 0 ;

uz = 0 ;

uth = 0 ;

ur = 0 ;

p = 0 ;

i r ad = f l o o r ( ( ( r = Rin ) /( Rout = Rin ) *NOR) ) ;

for ( l = 0 ; l <= MTC=1; l++)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
pin = pin + crev [ i r ad ] [ i ] [ 3 ] [ l ] [ 0 ] . r e a l * cos ( modes [ i ]* theta=omegas* t ) +

crev [ i r ad ] [ i ] [ 3 ] [ l ] [ 0 ] . imag* s i n ( modes [ i ]* theta=omegas* t ) ;

uz = uz + crev [ i r ad ] [ i ] [ 2 ] [ l ] [ 0 ] . r e a l * cos ( modes [ i ]* theta=omegas* t ) +

crev [ i r ad ] [ i ] [ 2 ] [ l ] [ 0 ] . imag* s i n ( modes [ i ]* theta=omegas* t ) ;

uth = uth + crev [ i r ad ] [ i ] [ 1 ] [ l ] [ 0 ] . r e a l * cos ( modes [ i ]* theta=omegas* t ) +

crev [ i r ad ] [ i ] [ 1 ] [ l ] [ 0 ] . imag* s i n ( modes [ i ]* theta=omegas* t ) ;

ur = ur + crev [ i r ad ] [ i ] [ 0 ] [ l ] [ 0 ] . r e a l * cos ( modes [ i ]* theta=omegas* t ) +

crev [ i r ad ] [ i ] [ 0 ] [ l ] [ 0 ] . imag* s i n ( modes [ i ]* theta=omegas* t ) ;

p = p + ocrev [ i r ad ] [ i ] [ 3 ] [ l ] [ 0 ] . r e a l * cos ( modes [ i ]* theta ) + ocrev [

i r ad ] [ i ] [ 3 ] [ l ] [ 0 ] . imag* s i n ( modes [ i ]* theta ) ;

}
}
tsmean=t t *(1=( rsh=1)/2*mna*mna) ;

c=s q r t ( rsh * rgas * tsmean ) ;

omega=nblades *mntip*c/row ;

r f a c =(r=r iw ) /( row=r iw )=1; /* So from =1 to 0 */

duth=uthdashouabar*mna*c* cos ( omega* t=nblades * theta+qfac *2* pi * r f a c ) ;

dua = duth*mna/( mntip* r /row ) ; /* Pure gust at each he ight in 2D */

uusqogrtt =((mna*c=dua ) *(mna*c=dua )+duth*duth ) / rsh / rgas / t t ;

umn=s q r t ( uusqogrtt /(1=( rsh=1)/2* uusqogrtt ) ) ;

upt=ps*pow((1+( rsh=1)/2*umn*umn) , ( rsh /( rsh=1) ) ) ;

machsquaredi = machsquareds + pow( uz , 2 ) + pow( uth/r , 2 ) + 2* s q r t (

machsquareds ) *uz + pow( ur , 2 ) ;

s c a l a r = pow((1 + ( ( rsh = 1) /2) *machsquaredi ) , power ) ;

p s t a t = ps + pin * rsh *ps ;

p to tg = p s t a t * s c a l a r ;

p to t = p totg = ps ;
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s i g n a l = p to t ;

pres = p* rsh *ps + 0* t o t p r e s s u r e = 0* p r o f i l e + 0* s i g n a l + upt=ps ;

F PROFILE( f , thread , p o s i t i o n ) = pres ;

F UDMI( f , thread , 2) = pres ;

f f l u s h ( stdout ) ;

}
}
e n d f l o o p ( f , thread )

#endif

}

DEFINE PROFILE( INLET steady pressure , thread , p o s i t i o n )

{
f a c e t f ;

/* //Mode Number o f the S i gna l */

double p r o f i l e ;

double x [ND ND ] ;

double x 1 ;

double y ;

double z ;

double theta ;

#i f !RP HOST

b e g i n f l o o p ( f , thread )

{
F CENTROID(x , f , thread ) ;

x 1 = x [ 0 ] ;

y = x [ 1 ] ;

z = x [ 2 ] ;

theta = atan2 (y , x 1 ) ;

p r o f i l e = 5847.854485832853* exp((= theta * theta ) / ( 2*0 . 5*0 . 5 ) ) ;

/* // Def in ing the non=uniform

pre s su r e d i s t r i b u t i o n around the c i r cumfe rence . */

F PROFILE( f , thread , p o s i t i o n ) = 20127.46324385585 = p r o f i l e ;

}
e n d f l o o p ( f , thread )

#e n d i f

}
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DEFINE PROFILE( INLET temperature , thread , p o s i t i o n )

{
f a c e t f ;

r e a l p t o t i n ;

double p r o f i l e ;

double x [ND ND ] ;

double x 1 ;

double y ;

double z ;

double theta ;

r e a l t s = 300/(1+(( rsh=1)/2) *pow ( 0 . 5 , 2 ) ) ;

r e a l t t o t ;

#i f !RP HOST

b e g i n f l o o p ( f , thread )

{
i f (PRINCIPAL FACE P( f , thread ) )

{
F CENTROID(x , f , thread ) ;

x 1 = x [ 0 ] ;

y = x [ 1 ] ;

z = x [ 2 ] ;

theta = atan2 (y , x 1 ) ;

p r o f i l e = 5847.854485832853* exp((= theta * theta ) / ( 2*0 . 5*0 . 5 ) ) ;

p t o t i n = 20127.46324385585= p r o f i l e ;

t t o t = t s *pow ( ( p t o t i n+ps ) /ps , ( rsh=1)/ rsh ) ;

F PROFILE( f , thread , p o s i t i o n ) = t t o t ;

}
}
e n d f l o o p ( f , thread )

#endif

}

DEFINE PROFILE(INLET UZ , thread , p o s i t i o n )

{
f a c e t f ;
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r e a l t = CURRENT TIME;

double uzd = 0 ;

double uzu = 0 ;

double p r o f i l e ;

double power = rsh /( rsh=1) ;

double x [ND ND ] ;

double x 1 ;

double y ;

double z ;

double theta ;

r e a l machsquared ;

r e a l mach ;

int i ;

int l ;

r e a l tsmean ;

r e a l c s ;

r e a l omega ;

r e a l r f a c ;

r e a l duth ;

r e a l dua ;

#i f !RP HOST

ogv (0 ) ;

b e g i n f l o o p ( f , thread )

{
i f (PRINCIPAL FACE P( f , thread ) )

{
F CENTROID(x , f , thread ) ;

int i r ad = 0 ;

x 1 = x [ 0 ] ;

y = x [ 1 ] ;

z = x [ 2 ] ;

theta = atan2 (y , x 1 ) ;

p r o f i l e = 0*5847.854485832853* exp((= theta * theta ) / ( 2*0 . 5*0 . 5 ) ) ;

machsquared = (pow ( ( to tp r e s su r e=p r o f i l e+ps ) /ps , ( 1 / power ) ) = 1) * (2/( rsh

= 1) ) ;

mach = s q r t ( machsquared ) ;

uzd = 0 ;

uzu = 0 ;

r e a l rsquared = pow( x 1 , 2 ) + pow(y , 2 ) ;
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r e a l r = s q r t ( rsquared ) ;

i r ad = f l o o r ( ( ( r = Rin ) /( Rout = Rin ) *NOR) ) ;

for ( l = 0 ; l <= MTC=1; l++)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
uzd = uzd + crev [ i r ad ] [ i ] [ 2 ] [ l ] [ 0 ] . r e a l * cos ( modes [ i ]* theta=omegas* t ) +

crev [ i r ad ] [ i ] [ 2 ] [ l ] [ 0 ] . imag* s i n ( modes [ i ]* theta=omegas* t ) ;

uzu = uzu + ocrev [ i r ad ] [ i ] [ 2 ] [ l ] [ 0 ] . r e a l * cos ( modes [ i ]* theta ) + ocrev [

i r ad ] [ i ] [ 2 ] [ l ] [ 0 ] . imag* s i n ( modes [ i ]* theta ) ;

}
}
tsmean=t t *(1=( rsh=1)/2*mna*mna) ;

cs=s q r t ( rsh * rgas * tsmean ) ;

omega=nblades *mntip* cs /row ;

r f a c =(r=r iw ) /( row=r iw )=1; /* So from =1 to 0 */

duth=uthdashouabar*mna* cs * cos ( omega* t=nblades * theta+qfac *2* pi * r f a c ) ;

dua=duth*mna/( mntip* r /row ) ; /* Pure gust at each he ight in 2D */

F PROFILE( f , thread , p o s i t i o n ) = mach*c = dua + 0*uzd*c + uzu*c ;

}
}
e n d f l o o p ( f , thread )

#endif

}

DEFINE PROFILE(INLET UTH, thread , p o s i t i o n )

{
f a c e t f ;

r e a l t = CURRENT TIME;

double uthd = 0 ;

double uthu = 0 ;

double x [ND ND ] ;

double x 1 ;

double y ;

double z ;

double theta ;

int i ;

int l ;

r e a l tsmean ;
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r e a l c s ;

r e a l omega ;

r e a l r f a c ;

r e a l duth ;

#i f !RP HOST

ogv (0 ) ;

b e g i n f l o o p ( f , thread )

{
i f (PRINCIPAL FACE P( f , thread ) )

{
F CENTROID(x , f , thread ) ;

int i r ad = 0 ;

x 1 = x [ 0 ] ;

y = x [ 1 ] ;

z = x [ 2 ] ;

theta = atan2 (y , x 1 ) ;

r e a l r squared = pow( x 1 , 2 ) + pow(y , 2 ) ;

r e a l r = s q r t ( rsquared ) ;

uthd = 0 ;

uthu = 0 ;

i r ad = f l o o r ( ( ( r = Rin ) /( Rout = Rin ) *NOR) ) ;

for ( l = 0 ; l <= MTC=1; l++)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
uthd = uthd + crev [ i r ad ] [ i ] [ 1 ] [ l ] [ 0 ] . r e a l * cos ( modes [ i ]* theta=omegas* t )

+ crev [ i r ad ] [ i ] [ 1 ] [ l ] [ 0 ] . imag* s i n ( modes [ i ]* theta=omegas* t ) ;

uthu = uthu + ocrev [ i r ad ] [ i ] [ 1 ] [ l ] [ 0 ] . r e a l * cos ( modes [ i ]* theta ) + ocrev [

i r ad ] [ i ] [ 1 ] [ l ] [ 0 ] . imag* s i n ( modes [ i ]* theta ) ;

}
}
tsmean=t t *(1=( rsh=1)/2*mna*mna) ;

cs=s q r t ( rsh * rgas * tsmean ) ;

omega=nblades *mntip* cs /row ;

r f a c =(r=r iw ) /( row=r iw )=1; /* So from =1 to 0 */

duth=uthdashouabar*mna* cs * cos ( omega* t=nblades * theta+qfac *2* pi * r f a c ) ;

F PROFILE( f , thread , p o s i t i o n ) = =0*(uthd*c/ r ) = ( uthu*c/ r ) + duth ;

}
}
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e n d f l o o p ( f , thread )

#endif

}

DEFINE PROFILE(INLET UR, thread , p o s i t i o n )

{
f a c e t f ;

r e a l t = CURRENT TIME;

double urd = 0 ;

double uru = 0 ;

double x [ND ND ] ;

double x 1 ;

double y ;

double z ;

double theta ;

int i ;

int l ;

#i f !RP HOST

ogv (0 ) ;

b e g i n f l o o p ( f , thread )

{
i f (PRINCIPAL FACE P( f , thread ) )

{
F CENTROID(x , f , thread ) ;

int i r ad = 0 ;

x 1 = x [ 0 ] ;

y = x [ 1 ] ;

z = x [ 2 ] ;

theta = atan2 (y , x 1 ) ;

r e a l rsquared = pow( x 1 , 2 ) + pow(y , 2 ) ;

r e a l r = s q r t ( rsquared ) ;

urd = 0 ;

uru = 0 ;

i r ad = f l o o r ( ( ( r = Rin ) /( Rout = Rin ) *NOR) ) ;

for ( l = 0 ; l <= MTC=1; l++)

{
for ( i = 0 ; i <= NUMMOD=1; i = i +1)

{
urd = urd + crev [ i r ad ] [ i ] [ 0 ] [ 0 ] . r e a l * cos ( modes [ i ]* theta=omegas* t ) +
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crev [ i r ad ] [ i ] [ 0 ] [ 0 ] . imag* s i n ( modes [ i ]* theta=omegas* t ) ;

uru = uru + ocrev [ i r ad ] [ i ] [ 0 ] [ l ] [ 0 ] . r e a l * cos ( modes [ i ]* theta ) + ocrev [

i r ad ] [ i ] [ 0 ] [ l ] [ 0 ] . imag* s i n ( modes [ i ]* theta ) ;

}
}
F PROFILE( f , thread , p o s i t i o n ) = 0*( urd*c ) + ( uru*c ) ;

}
}
e n d f l o o p ( f , thread )

#endif

}

DEFINE EXECUTE AFTER DATA( bdry setup , l ibname )

{
Domain *mydomain ;

Thread * t f ;

FILE * fp ;

FILE * fp2 ;

f a c e t f ;

r e a l x , y , z ;

r e a l xc [ 3 ] ;

r e a l dxsq , dysq , dzsq , mindistsq , temp ;

int i , j , i x i , i x j , id1 , id2 ;

fp = fopen ( fname ind ices , ” r ” ) ;

for ( i = 0 ; i < nr ; i++)

{
for ( j = 0 ; j < nth ; j++)

{
f s c a n f ( fp , ”%l g %l g %l g ” , &x , &y , &z ) ;

bdry f c [ i ] [ j ] [ 0 ] = x ;

bdry f c [ i ] [ j ] [ 1 ] = y ;
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bdry f c [ i ] [ j ] [ 2 ] = z ;

/* Message(”%03d %03d %f %f %f \n” , i , j , bd ry f c [ i ] [ j ] [ 0 ] , bdry f c [ i ] [

j ] [ 1 ] , bdry f c [ i ] [ j ] [ 2 ] ) ; */

}
}
f c l o s e ( fp ) ;

Message ( ” I n d i c e s Read \n” ) ;

/* Now i d e n t i f y c l o s e s t po int and save i and j i n d i c e s in F UDMI */

/*NB t h i s r ou t ine i s n t opt imised at a l l , as only need to run i t at the

s t a r t o f each run*/

mydomain = Get Domain (1 ) ;

t f = Lookup Thread (mydomain , bdryid ) ;

b e g i n f l o o p ( f , t f )

{
F CENTROID( xc , f , t f ) ;

mindis t sq = 1e8 ; /* Star t with imposs ib ly high d i s t anc e

*/

i x i = =1;

i x j = =1;

for ( i = 0 ; i < nr ; i++)

{
for ( j = 0 ; j < nth ; j++)

{
dxsq = ( bdry f c [ i ] [ j ] [ 0 ] = xc [ 0 ] ) *( bdry f c [ i ] [ j ] [ 0 ] = xc [ 0 ] ) ;

dysq = ( bdry f c [ i ] [ j ] [ 1 ] = xc [ 1 ] ) *( bdry f c [ i ] [ j ] [ 1 ] = xc [ 1 ] ) ;

dzsq = ( bdry f c [ i ] [ j ] [ 2 ] = xc [ 2 ] ) *( bdry f c [ i ] [ j ] [ 2 ] = xc [ 2 ] ) ;

i f ( dxsq + dysq + dzsq < mindis t sq )

{
mindis t sq = dxsq + dysq + dzsq ;

i x i = i ;

i x j = j ;

}
}
}
F UDMI( f , t f , 0) = (double ) i x i ;

F UDMI( f , t f , 1) = (double ) i x j ;

/* Message(”% f %f %f %f %f %f %f %f \n” , F UDMI( f , t f , 0) , F UDMI( f , t f
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, 1) , xc [ 0 ] , xc [ 1 ] , xc [ 2 ] , mindistsq , xc [ 0 ] , xc [ 1 ] ) ; */

}
e n d f l o o p ( f , t f )

Message ( ” Index Matching Complete \n” ) ;

/* Read boundary p r e s s u r e s */

fp = fopen ( fname ps , ” r ” ) ;

for ( i = 0 ; i < nr ; i++)

{
for ( j = 0 ; j < nth ; j++)

{
f s c a n f ( fp , ”%l g ” , &temp ) ;

bdry ps [ i ] [ j ] = temp ;

/* Message(”%03d %03d %f \n” , i , j , bdry ps [ i ] [ j ] ) ; */

}
}
f c l o s e ( fp ) ;

Message ( ” Pre s sure s Read \n” ) ;

/* Read jacob ian and inv jacob ian ar rays */

fp = fopen ( fname jacob , ” r ” ) ;

fp2 = fopen ( fname invjacob , ” r ” ) ;

for ( id1 = 0 ; i < 3 ; id1++)

{
for ( id2 = 0 ; i < 3 ; id2++)

{
for ( i = 0 ; i < nr ; i++)

{
for ( j = 0 ; j < nth ; j++)

{
f s c a n f ( fp , ”%l g ” , &temp ) ;

bdry jacob [ i ] [ j ] [ id1 ] [ id2 ] = temp ;

f s c a n f ( fp2 , ”%l g ” , &temp ) ;

bdry inv jacob [ i ] [ j ] [ id1 ] [ id2 ] = temp ;

/* Message(”%03d %03d %f \n” , i , j , bdry ps [ i ] [ j ] ) ; */

}
}
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}
}
f c l o s e ( fp ) ;

f c l o s e ( fp2 ) ;

Message ( ” Jacobian Arrays Read \n” ) ;

}

DEFINE PROFILE( p s e x i t s t e a d y p r o f i l e , t f , i v a r )

{

/* Thread * t f ; */

f a c e t f ;

int i ;

int j ;

b e g i n f l o o p ( f , t f )

{
i = ( int )F UDMI( f , t f , 0) ;

j = ( int )F UDMI( f , t f , 1) ;

F PROFILE( f , t f , i v a r ) = bdry ps [ i ] [ j ] ;

}
e n d f l o o p ( f , t f )

}

A.1 Custom Made Header File For Operations With Com-

plex Numbers

#include ” udf . h”

#include ”math . h”

#include ”mem. h”

#include ”complex . h”

typedef struct COMPLEX {
double r e a l ;

double imag ;

}Complex ;



183 EBNRBC Source Code

Complex cadd ( Complex x , Complex y ) {

Complex z ;

z . r e a l = x . r e a l + y . r e a l ;

z . imag = x . imag + y . imag ;

return z ;

}
Complex caddcr ( Complex x , double y ) {

Complex z ;

z . r e a l = x . r e a l + y ;

z . imag = x . imag ;

return z ;

}

Complex cmin ( Complex x , Complex y ) {

Complex z ;

z . r e a l = x . r e a l = y . r e a l ;

z . imag = x . imag = y . imag ;

return z ;

}
Complex cmincr ( Complex x , double y ) {

Complex z ;

z . r e a l = x . r e a l = y ;

z . imag = x . imag ;

return z ;

}
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Complex cmult ( Complex x , Complex y ) {

Complex z ;

z . r e a l = x . r e a l * y . r e a l = x . imag * y . imag ;

z . imag = x . r e a l * y . imag + x . imag * y . r e a l ;

return z ;

}
Complex cmultcr ( Complex x , double y ) {

Complex z ;

z . r e a l = x . r e a l * y ;

z . imag = x . imag * y ;

return z ;

}


