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ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Channel Estimation, User Activity Identification and Signal Detection in Grant-Free
Multiple Access Systems

by Jiatian Zhang

The 5th and beyond wireless systems are expected to be device-centric. It has been

widely recognized that in the device-centric systems, the traditional grant-based multi-

ple access (GMA) methods are low efficiency due to the hand-shaking procedure resulted

resource consumption and latency. Hence, the grant-free multiple access (GFMA) tech-

niques have been proposed and studied, in order to solve the problems experienced by

the GMA. This thesis focuses on the GFMA for massive machine-type communications

(mMTC), with emphasis on the physical layer techniques, including channel estimation,

user equipment (UE) activity identification (UAI) and information detection. To these

objectives, we first provide a literature review in terms of the research background and

various methods for achieving GFMA.

Then, the performance of the dynamic direct sequence code-division multiple-access

(DyDS-CDMA) and multicarrier CDMA (DyMC-CDMA) with minimum mean-square

error (MMSE) and MMSE-assisted successive interference cancellation (MMSE-SIC) de-

tection schemes are studied. In our studies, we assume that each base station (BS) or

access point (AP) with limited degrees-of-freedom is capable to support a massive num-

ber of potential UEs, while each UE becomes active with a small probability. Hence,

the active UEs and the number of them are highly dynamic, making the number of ac-

tive UEs possibly higher than the degrees-of-freedom of the system. Assuming ideal UAI

and ideal channel estimation of active UEs, we study the potential performance achievable

by the DyDS-CDMA and DyMC-CDMA systems employing the MMSE-assisted succes-

sive interference cancellation detection (MMSE-SICD), to demonstrate the feasibility of

MMSE-SICD for operation in massive GFMA (mGFMA) systems, where the number of

active UEs may be much higher than the systems’ degree-of-freedom. Our studies reveal

that the DyDS-CDMA and DyMC-CDMA systems aided by the MMSE-SICD are highly

efficient for operation in mGFMA environments. Near single-user performance is achiev-

able, even when the average number of active UEs per time-slot reaches two times of the

system’s degrees-of-freedom, and hence, the number of active UEs of a time-slot may be



much higher than two times of the system’s degrees-of-freedom.

Following the above preparation work, then, we investigate the channel estimation

and propose UAI algorithms for mGFMA systems. Specifically, channel estimation is

studied from several aspects by assuming different levels of knowledge to the AP, and

based on which five UAI approaches are proposed. We study the performance of channel

estimation, the statistics of estimated channels, and the performance of UAI algorithms.

Our studies show that the proposed approaches are capable of circumventing some of

the shortcomings of the existing techniques designed based on compressive sensing (CS)

and message passing algorithms (MPAs). They are robust for operation in the mGFMA

systems where the active UEs and the number of them are highly dynamic.

Then, we investigate a multicarrier mGFMA system with an assumption that a big num-

ber of highly dynamic UEs are monitored by an AP with multiple receive antennas (MRA),

which is referred to as the MRA/MC-mGFMA system. The channel estimation, UAI and

information detection are separately or jointly addressed. To be more specific, firstly, the

channels of both active and inactive UEs are estimated in the principle of MMSE. Then,

based on the estimated channels, a low-complexity threshold-based UAI (TB-UAI) is pro-

posed to detect the activities of UEs. Finally, information of active UEs is detected in the

principle of MMSE-SIC. Furthermore, a joint algorithm, referred to as SIC-MMSE-JCUD,

is proposed for joint channel estimation, UAI and data detection in the principle of MMSE-

SIC. Additionally, considering that for a practically limited bandwidth, no set of the well-

designed signature sequences can support a big number of UEs in a mGFMA system, we

propose a class of sequences by combining the Gold-sequences with the Zadoff-Chu (ZC)

sequences. Our studies show that deploying multiple receive antennas at AP is beneficial to

channel estimation, UAI and information detection. Aided by the multiple receive anten-

nas of AP, a low-complexity TB-UAI algorithm is highly efficient for UAI. Furthermore,

our proposed class of signature sequences allows to attain much better performance than

the random sequences.

Then, we extend our studies to the massive distributed grant-free multiple-access (MDR-

GFMA) systems, to investigate the mGFMA with the cell-free scenario. In our studies, we

assume a MDR-GFMA system where remote radio heads (RRHs) or APs, or simply dis-

tributed antennas (DAs) are randomly distributed in a given area based on the point Poisson

(PP) distribution, while UEs are uniformly distributed. We assume that signals transmit-

ted by UEs experience both the large-scale fading of propagation path-loss and shadowing

as well as the small-scale Rayleigh fading. Signals received by different RRHs/APs are

forwarded to a so-called signal processing central unit (SPCU), where channel estimation,

UAI and data detection are carried out. In terms of signal processing at SPCU, channel

iii



estimation is achieved in the principle of MMSE. Following channel estimation, an orthog-

onal matching pursuit (OMP) relied algorithm is implemented to attain initial UAI, which

is enhanced with the aid of the pilot detection of each initially identified active UE. Finally,

the data sent by active UEs is detected using either MMSE detection or the MMSE-SIC

detection. Our studies show that the proposed algorithms are effective, and achieve ex-

pected performance in the MDR-GFMA systems with various dynamics, including active

UEs and the number of them, locations of DAs and the number of them serving different

UEs, geographically resulted large-scale fading of propagation path-loss and shadowing.
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Chapter 1
Introduction

The Internet of Things (IoT) has been hitting its stride embarking on the 5th Genera-

tion (5G) wireless networks, 5G beyond and the 6th Generation (6G) wireless networks

[1], which are expected to support numerous devices and operated in three main scenar-

ios [2]: Ultra-Reliable Low-Latency Communications (URLLC), enhanced Mobile Broad-

band (eMBB) and massive Machine-Type Communications (mMTC). Therefore, one of

the targets to the future wireless network has been frequently described as device-centric,

full end-to-end latency reduction, network energy efficiency, connection density and relia-

bility, etc. In this thesis, our focus is on the mMTC.

1.1 Research Background and Motivation

In the context of above mentioned three distinctive scenarios of the network implemen-

tations, more recent attention has focused on the provision of the latency-sensitive appli-

cations that demand wide coverage and high capacity. It is a widely recognised view that

most of the machines/devices will continuously work in the New Radio (NR) [3] scenarios,

where sensors are committed to carry on data collections and report the real-time wireless

channel states by sending short-burst messages. In the NR sensing scenarios, sensors are

defined [4] as the mechanical or electrical devices sensitive to light, temperature, radiation

levels, etc., that transmits signals to measuring or controlling instruments. Within the con-

text of the IoT applications in wireless systems: a sensor is usually defined as the devices

which is generally small and mechanical but is sensitive to a measurable physical parame-

ter and provides a signal level result directly related to the measured amount of the physical

parameter [5]. In the wide variety use of sensors, the parameter being measured represents

the physical phenomenon, which is converted to a measurable signal. Therefore, the main

characteristics of the sensor User Equipments (UEs) in IoT or mMTC networks are that
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of providing fully/partially communication in a sporadic transmission manner mainly over

uplink, with a very small transmit-data size per device but under the requirement of an

extremely high energy efficiency [6]. These UEs usually have very low tolerance of la-

tency. An example of these UEs is the one studied in [7], in which the latency of critically

augmented reality surgeries and robots was targeted to be less than 750µs and 2ms, re-

spectively. In parallel to the work on the mMTC, Ericsson predicted that the number of

IoT UEs may reach 31.4 billion by 2023, accounting for 60% in mMTC [8].

The conventional Long-Term Evolution (LTE) and Long-Term Evolution-Advanced (LTE-

A) systems, mainly support eMBB that predominately focus on the downlink (DL) human-

type communications (HTC) in a large data size manner. On the contrary, driven by the

unaccountable IoT applications, future wireless networks are expected to support numer-

ous devices and to provide massive connectivity [9]. As a result, many wireless systems

will be device-centric, constituted by densely distributed devices and machines, in con-

trast sharply to the human-centric 1G - 4G wireless systems. As most devices/machines

carry out tasks such as sensing, data collection, etc., they often need to report via wire-

less channels by sending short-burst messages. Explicitly, in the device-centric wireless

networks, the legacy human-centric systems, such as LTE/LTE-A in 4G systems, may not

be efficient for supporting the sporadic short-burst applications required by IoT devices

(and machines). Instead, novel communications protocols need to be designed to allow a

huge number of ultra-densely distributed devices to communicate with their base-stations

(BSs) or access points (APs) reliably and efficiently [10, 11]. To address this problem,

low latency uplink traffic is expected to dominate in the future sensors/device-centric sys-

tems [12]. Therefore, this thesis focuses on the delivery of the uplink machine-type UE

traffic.

To support a wide range of connectivity requirements in the NR networks, a lot of

uplink access approaches have been proposed in both industry and academia. Explic-

itly, the multiple access schemes for the UL of mMTC are summarized in Tables 1.1-1.2,

along with the key functions including the main contributions receiver types. More specif-

ically, the multiple access (MA) schemes for mMTC are mainly designed based on the

different MA signatures, which can be categorized into power domain, codebook, spread-

ing sequences, scrambling and interleaving, etc. From the list, we can see that some of

the references have considered the mMTC aided IoT scenarios where supporting massive

connectivity via loading multiple UEs in one RB is considered. However, most of these

perspectives are still based on the view of HTC, where APs and UEs need to hold a priori

knowledge about each other and strict system synchronization is also required in terms

of the centralized scheduling networks. Therefore, an extra consumption of the overhead

signalling may increase the challenge, as the results of the strict synchronizations and the
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requirements for that each device requests an assigned data transmission slot through a

contention-based random access (RA) procedure, which is as defined in the grant-based

scheme. Nevertheless, the concept of MA in mMTC is motivated by the expectation that

the applications are “always on” [3] or “arrive and go” so as to achieve a substantially re-

duced latency. However, in reality, the time performance loss imposed by the conventional

grant-based access schemes again indicates that even the presence of improved grant-based

access procedures may be struggling to cater the mMTC traffic. In order to improve the

access performance in the mMTC aided NR systems, 3GPP RAN working group 1 (WG1)

has already proposed to employ the multiple random access channel (RACH) preamble

formats to flexibly support the shorter or longer preamble lengths for possibly avoiding the

outage resulted from the congestion in the system, as detailed in [13, 14]

Although a series of significant improvements have already been available in the grant-

based schemes, there is only one RACH timeline supporting all the cases in the HTC

grant-based procedures. Keeping in mind that mMTC is required to flexibly serve variety

communications scenarios under different latency constraints, the one timeline scheme is

obvious not sufficient. Therefore, the design of novel RACH schemes is urgent and criti-

cal. To address this, a “2-step” RACH scheme based on grant-free concept was proposed

in 3GPP, as shown in Fig. 1.1 (a), With the “4-step” scheme, the UE transmits a contention-

based Physical Random Access Channel (PRACH) preamble, also known as Msg1. After

detecting preamble bits, the next generation NodeB (gNB) responds with a random-access

response (RAR), also known as Msg2. Here the RAR includes the detected preamble ID, a

time-advance command, a cell- Radio Network Temporary Identity (C-RNTI) and an up-

link grant for scheduling a Physical Uplink Shared Channel (PUSCH) transmission from

the UE known as Msg3. Then, UE sends Msg3 in respondence to the RAR, which in-

cludes an ID for contention resolution. Upon receiving Msg3, the gNB finally sends the

“contention resolution” message of Msg4, which contents the contention resolution ID.

Once UE receives Msg4 and finds its contention-resolution ID, it sends an acknowledge-

ment to a PUCCH to complete the “4-step” random access procedure. By contrast, in a

“2-step” scheme, as shown in Fig. 1.1 (b), MsgA consists of a PRACH preamble and a

PUSCH transmission, they are defined as MsgA PRACH and MsgA PUSCH respectively.

The MsgA PRACH preambles are different from the “4-step” RACH preambles. How-

ever, they can be transmitted by the same PRACH Occasions (ROs) as the preambles in

the ”4-step” RACH. Furthermore, they can be sent in separate ROs. The PUSCH trans-

missions are organized in the PUSCH Occasions (POs), which span multiple symbols and

Physical Resource Blocks (PRBs), with optional guard intervals and guard bands between

consecutive POs. Each PO consists of multiple demodulation of reference signal (DMRS)

sequences, and each pair of DMRS sequence is known as a PUSCH resource unit (PRU).
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Table 1.1: A Summary of Proposed Multiple Access Schemes [6] (Part I).

Access

Schemes

Categories Contributions Receiver

Types

SCMA

[15–19]

codebook

based

Codebooks work via multi-dimensional constella-

tion mapping, to provide more diversity on constel-

lation shaping gain; bit-to-constellation mapping

and spreading are combined to make sure that each

user has their unique codebook.

MPA

PDMA

[20–23]

codebook

based

Users can be multiplexed in a variety domains, i.e.,

code, power, space and their combinations via em-

ploying sparsity of spreading sequences

MPA/SIC

PD-

NOMA

[24–27]

power

based

UEs transmit their data at different power levels in

the same resource block (RB), and the APs receive

the different power via MUD SIC receivers.

SIC

LDS-

CDMA

[28–31]

spreading

sequences

based

UEs can share a RB across unique user specific

spreading sequences by exploiting LDS to constrain

the interference on each chip.

MPA

LDS-

OFDM

[32–35]

spreading

sequences

based

The scheme can be treated as a combination of the

traditional OFDM and the LDS-CDMA, mapping

the multiplied symbols with LDS sequences over

different OFDM subcarriers.

MPA

LDS-

SVE

[36]

spreading

sequences

based

Inspired by the traditional LDS, a larger signature

vector is built for exploiting diversity gain.

MPA

SAMA

[37]

spreading

sequence

based

The spreading sequences in SAMA appear high

sparsity to support the UEs data spreading in a vari-

ety number of resources.

MPA

MUSA

[38]

spreading

sequences

based

Data of each user is spread with a family of complex

spreading sequences on the real parts and imaginary

parts with short length codes. Moreover, each user

can choose its spreading code autonomously.

SIC

NCMA

[39–41]

spreading

sequences

based

Grassmannian line packaging problem aided

spreading codes obtaining.

PIC

NOCA

[42]

spreading

sequences

based

Spreading codes are defined by LTE SIC
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Table 1.2: A Summary of Proposed Multiple Access Schemes [6] (Part II).

Access

Schemes

Categories Contributions Receiver

Types

FDS

[43]

spreading

sequences

based

Modulation symbols spread directly with multiple

orthogonal or quasi-orthogonal codes.

SIC

LCRS

[44]

spreading

sequence

based

Modulated symbols directly spread with multiple or-

thogonal codes.

SIC

GOCA

[45]

spreading

sequences

based

Non-orthogonal sequences provide group separa-

tion, where GOCA has a two-stage spreading struc-

ture. Nevertheless, devices in a group are supported

by a set of orthogonal sequences.

SIC

IRSA

[46]

power

based

A packet generated at each AP is duplicated to the

number defined by the system and is transmitted in

different time slots selected by the AP.

SIC

LSSA

[47]

scrambling

based

Low rate FEC is used for symbol-level permutation

patterns.

SIC

RSMA

[48–50]

scrambling

based

Long spreading sequences in a good correlation

manner combining with very low FEC rate, to sup-

port different interleavers.

SIC

IDMA

[51]

interleaving

based

Symbol-level interleaving for specific users, low rate

FEC may also be involved.

ESE

IGMA

[52]

interleaving

based

symbol-level interleavers and bit-level grid mapping

are used for UEs separation.

ESE

RDMA

[45]

interleaving

based

Bit-level cyclic-shift repetition patterns are used for

designing device-specific signatures.

SIC

SDMA

[53–55]

others Due to a variety of channel impulse responses, mul-

tiplex UEs can be responded by user specific CIR.

Therefore, a large number of UEs can work under a

comparably accurate estimated channel situation.

PIC

LPMA

[56–58]

others LPMA supports flexibly multiplexing due to the

multiple degrees of freedom. Moreover, multi-level

lattice superposition codes can be allocated at differ-

ent levels to multiplex UEs.

SIC

BOMA

[59]

others Carry out multiplexing by attaching data informa-

tion from good channel UEs to those relatively bad

channel UEs. Furthermore, the bad channel UEs can

apply coarse constellation with large minimum dis-

tance.

LCR



1.1. Research Background and Motivation 6

UE gNB UE gNB

Random Access Preamble

Random Access Response

Scheduled Transmission

Contention Resolution

Random Access Preamble

PUSCH Payload

Contention Resolution

Msg1

CBRA with 4-Step RA Type CBRA with 2-Step RA Type 

(a) (b)

Msg2

Msg3

Msg4

MsgA

MsgB

Grant-based Grant-free

Figure 1.1: An example of 4-Step RA Type and 2-Step RA Type based on the

contention-based random access (CBRA) for grant-based and grant-free MA [60].

Therefore, the “2-step” RACH supports both “one-to-one” and “multiple-to-one” map-

pings between the preambles and PRUs.

According to Fig. 1.1, we can infer that the grant-based “4-step” random-access pro-

cedure requires two round-trip cycles between UE and gNB, which not only increases

the latency but also consumes additional overhead for control-signalling. By contrast the

grant-free “2-step” RACH is able to reduce the latency and control-signaling overhead by

improving a single round trip cycle between UE and gNB. This is achieved by combining

the preamble (Msg1) and the scheduled PUSCH transmission (Msg3) into a single mes-

sage (MsgA) at the UE side. Then, the random-access response (Msg2) and the contention

resolution message (Msg4) are combined into a single MsgB at the gNB side. Further-

more, for operation in the unlicensed spectrum in the future wireless systems, the number

of Listen Before Talk (LBT) attempts can be reduced by reducing the number of messages

transmitted between the UE and the gNB.

Currently intensive researches on grant-based access methods are still ongoing. How-

ever, in device-centric mMTC networks, all devices are expected to be operated with high

energy-efficiency, which for some applications is critical due to the practical constraint

on battery changing, battery re-charging, etc. In order to meet the above-mentioned chal-

lenges, grant-free multiple-access (GFMA) has been proposed to support sporadic short-

burst applications [61]. Specifically in [62], the authors compared the performance of the

transmissions of short-burst data blocks in both traditional LTE network and in new 5G

grant-free networks. The studies show that data transmission in grant-free systems should

be in the manner of arrive-and-go, and that using the traditional communication schemes
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to transmit sporadic short-burst traffic is inefficient. Hense, it has been widely recognized

that the GFMA [60, 63] is a more promising solution, which can support massive applica-

tions in small package data services in the sporadically uplink dominant scenarios.

1.2 Overview of Non-orthogonal Multiple-Access

Based on the above discussion, it is important to design new wireless scheme for GFMA

to resolve the limitations of the existing MA procedures. With regard to this context, non-

orthogonal multiple access (NOMA) has been proposed as a competitive MA scheme for

the future IoT networks. The definition of NOMA is in contrast to the concept of orthog-

onal multiple access (OMA). In OMA, gNBs allocate an appropriate resource to one UE.

Hence, it is clear that the OMA methods are hard to meet the massive connectivities in a

URLLC system, due to the limited number of OMA signatures. By contrast, NOMA can

support multiple UEs in one resource block (RB) synchronously [64–69]. As some ex-

amples, in [70], Tararefa et al, considered the frequency division multiple access (FDMA)

scheme, supported by the joint user association and resource allocation for IoT uplink.

Sutton et al [71] investigated the performance of a time division multiple access (TDMA)-

assisted IoT uplink. In [72], Hu et al introduced the cognitive radio principles to code

Division Multiple Access (CDMA), in order to address the problem of resource shortage

in IoT systems. Furthermore, in [73], the NOMA technique was introduced for supporting

IoT cloud services.

Although NOMA can offer efficient multiple access over one RB, the data initiated

by UEs in the conventional networks can not be transmitted to the BSs without firstly

sending a connection request. To minimize the latency in a multiple access environment,

various NOMA-based techniques have been proposed by researchers, so that a large num-

ber of UEs can efficiently share the same resources units. However, the signalling over-

head demanding a lot of resource consumption which is still disruptive, as the uplink ac-

cess scheduling is based on the response of the available channel resources allocated by

BS/access point (AP) in LTE/LTE-A. This is regarded as an obvious ceiling in the uplink

access of IoT networks. Hence, the compatible and simple access procedure should be

considered by reducing the signalling overhead as much as possible.

Furthermore, if GFMA and OMA are combined, collisions will occur due to the spe-

cial resource allocating mechanism. The authors in [74] analysed how the collisions are

generated in OMA, as shown in Fig. 1.2. When two UEs simultaneously initiate uplink

access in the OMA-GFMA systems, it is highly risky to meet each other in the same

grant-free time slot. In this case, they have to trigger a retransmission mechanism in the
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Figure 1.2: [74] Illustration of collision in a combined OMA-GFMA system.

next random back-off time window. Therefore, researchers have be motivated to propose

novel uplink access methods without relying on grant in NOMA, i.e. GFMA. In [75–77],

NOMA has been proved to be a robust MA strategy for the 5G and future wireless systems.

In literature, various NOMA designs have been proposed mainly based on power alloca-

tion [78–82], spreading schemes [16, 83–87], scrambling sequences [88] and interleaving

algorithms [89] [90], as summarized in Tables 1.1-1.2. The essence of NOMA is employ-

ing multiusers detection (MUD) for applying the specific signature codes to transmit data

over the same RBs. In [91–93], the performance of NOMA was compared with that of

OMA. The authors of [94] illustrated that NOMA techniques allow many devices to share

limited resources. Meanwhile, the authors in [95] proposed a coded tandem spreading

multiple access (CTSMA) scheme for enhancing the multiple-access capability of NOMA

systems. Furthermore, in [96], a so-called comprehensive NOMA scheme was proposed

for MTC which allows synchronization, channel estimation, user identification and data

detection to be performed in one single shot. In [97, 98], the authors investigated the mul-

tiple receive antenna assisted multi-cell system with cooperation, as a further extension

of a cloud-radio structure. In [99], a novel preamble design was proposed for attaining a

higher success rate in the MIMO relied NOMA systems. Additionally, in [100] [101], the

authors explored a novel interleave-division multiple-access (IDMA) transceiver design,

which makes use of the asynchronous characters of random signals in the detection and

channel estimation in the GFMA-NOMA systems.

However, what stands out in the GFMA-based UL NOMA systems is that even the

dynamic grant scheduling is not required for transmissions. This means that a UE can

transmit its data when it needs. In this manner, the end-to-end latency may be significantly

reduced along with the reduction of signalling overhead. Moreover, multiple access should

be allowed to share the same time-frequency resources through the principles of NOMA,

which makes NOMA well suite for the UL GFMA systems.
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1.3 Overview of Grant-Free Multiple-Access

Due to the drawbacks of grant-based MA and OMA schemes as discussed above, GFMA

has been considered for the uplink access in mMTC communications. In this section, we

provide an overview for GFMA in terms of its research issues.

Consider numerous UEs staying in a sleep status in a BS/AP serving area with some

of them occasionally waking up to transmit information without permission, i.e, in the

GFMA way, and only under the comparably simple protocol, such as, of time-slot based

transmission. Most signal processing will be done by the BS or AP. In order to achieve

GFMA, some a-priori information is needed. These include UE’s IDs or the signature

codes assigned to UEs. Additionally, in GFMA, pilot symbols are sent along with data.

The signature codes and pilot symbols are used by BS(AP) to achieve UAI, channel esti-

mation and finally, data detection of active UEs.

Therefore, to achieve the signal detection in GFMA systems, the signatures are sup-

posed to be pre-configured. In principle, all methods listed in Table 1.1 and Table 1.2 are

able to be satisfied to implement GFMA. However, as the power-based NOMA is heavily

depended on the various receiving power levels in different UEs, it may improve a huge

challenge in terms of maintaining sufficient power differences from multiple UEs at the BS

side. Therefore, in general, the power-based methods need an operational near-far solution

in reality. However, this potential near-far problem may bring hurdles to the design of

successive interference cancellation (SIC) receivers for the UL GFMA systems [102,103].

Consequently, the power based NOMA schemes are in general not suitable for operation

in mGFMA systems.

Below we provide a brief overview of the different GFMA schemes which are clarified

in the ways as shown in Table 1.3

1.3.1 Compressive Sensing Based GFMA

Compressive Sensing (CS) exploits the sparsity of a signal and then recovers it from far

fewer samples than the required by the Nyquist criteria. In most IoT networks, the number

of active users is usually much smaller than the number of potential users in the whole

system, which means the IoT network appears sparsity [104]. Therefore, active UE detec-

tion and data recovery of active UEs always take the priority, where the BS/AP needs to

identify the active UEs out of the potential UEs and then detects the transmitted data by

active UEs. To meet these requirements, the CS assisted approaches have gained massive

research interest for the receiver design in GFMA IoT networks. So that the inherent spar-
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Table 1.3: Categorization of GFMA schemes.

GFMA

Schemes

Main Characteristics

Comprehensive

sensing (CS)

based GFMA

1. Sparse code multiple access (SCMA). 2. CS allows to support

more UEs than systems degrees of freedom. 3. Blind MUD methods

to detect active UEs is possible. 4. User-specific signature patterns

provide distinctive features among different UEs.

Message

passing algo-

rithm (MPA)

based GFMA

1. Each user has its own codebook and adaptivity to enable dimen-

sional mapping. 2. MAP receivers can support more users to appear

more diversities.

Machine

learning (ML)

based GFMA

1. Training sequences is essential. 2. To exploit ML scheme enabling

an achievable optimum decision.

Compute-and-

forward (CoF)

based GFMA

1. UEs encode their data into inner codes and outer codes. 2. Inner

codes are in charge of error correlation while outer codes provide

support for MUD.

MA signature

design based

GFMA

1. UEs use flexible signature patterns as preambles, pilots, etc, in the

spreading/interleaving way. 2. MUD and SIC for detection. 3. One

MA signature is defined over one OFDM RB.

sity can be exploited by the CS based MUD to enhance the system performance. As an

example in [105], the authors investigated the CS-based MUD in GFMA systems.

In the CS-assisted GFMA, blind MUD can be implemented to jointly perform user

activity detection and data detection [106]. This is achieved by exploiting the sparsity ex-

isting in the GFMA systems. Hence, the CS based NOMA schemes allow UEs to transmit

their data at any time slot in the grant-free way.

Specifically, there are two types of vector measuring models considered in literature

for the CS-based GFMA. The first model is a single-measurement vector based CS (SMV-

CS) [107], which represents the received signals of the one burst of transmission data as

a vector that is the product of the UE’s data vector and the sensing matrix continuing

by, such as spreading, channels, etc. However, in the SMV-CS, the size of the sensing

matrix may become extreme when the number of UEs is high. In this case, the systems

performance degrades due to the increasing number of UEs and the long processing time.

To improve the performance, the multiple-measurement vector CS (MMV-CS) [108] has

been proposed to reduce the size of the sensing matrix aided and reduce the complexity
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Figure 1.3: A typical CS-based GFMA system with MPA-assisted detection in [6]

and [115]

of receiving processing. It is shown in literature that MMV-CS is an effective candidate

method for implementations in URRLC scenarios [109–111].

In the CS-assisted GFMA, there are also other methods and schemes, such as the

user activity detection algorithms proposed in [6], the three different algorithms proposed

in [61], which are the active pilots detection and channel estimation, focal underdeter-

mined system solver (FOCUSS) and expectation maximization (EM). Moreover, a joint

sparsity-inspired sphere decoding (SI-SD) combined blind detection algorithm was pro-

posed for CS GFMA in [112]. With this algorithm, each user’s status and transmission

data can be jointly detected by introducing one additional all-zero codeword. Addition-

ally, an enhanced detection based group orthogonal matching pursuit (DGOMP) MUD

algorithm was proposed in [113] for UE activity and data detection in the massive GFMA

systems with SCMA assisted transmissions. Furthermore, the authors in [114] studied

synchronization, channel estimation, user detection and data decoding in GFMA systems.

1.3.2 Message Passing Algorithm (MPA) Based GFMA

The CS based GFMA method is capable of achieving good performance in sparse IoT net-

works. In literature, various methods have been proposed to enhance the performance of

the CS-based GFMA systems. MPA-based algorithm can be regarded as the most promis-

ing one, for example, having the structure as shown in Fig. 1.3 from Fig.3. of [115].

To be more specific, in [116], the authors enhanced the CS-based approach by propos-
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ing a greedy algorithm relied on the MAP criterion, which performs UE identification and

data detection jointly by exploiting the a-posteriori probabilities of each other. In [115], the

authors described the MPA relied CS-based GFMA in detail, where the two optimization

steps MUD designed for the LDS-OFDM GFMA systems. Specifically, during the first

stage, the correlation-based activity is detected, which generates an approximated support

fed into the second stage, when the CoSaMP algorithm is carried out. In [117], the authors

considered the variations of the sparsity level in the received UE signals and proposed a

switching mechanism to adaptively choose between a CS-based MUD and a traditional

MUD. Similarly, considering that the sparsity of UEs appears variety in the time domain,

a dynamic low complexity CS-based MUD was proposed in [118, 119]. This method was

proposed based on the principle that although users can do random access (RA) at any

time they may generally transmit data in adjacent time slots, which leads to the temporal

correlation of the active user sets [120]. By exploiting this temporal correlation, the output

of the estimated active user set in one particular time-slot may be used as the initial set of

active UEs in the adjacent time-slot.

In the MPA-assisted GFMA, current near-optimal MUD based on the MPA algorithms

has been widely studied to achieve the near optimal MPA performance. However, in these

detectors, the receiver assumes that the BS/AP knows ideally the UE’s activities, which is

in general impractical. In reality, GFMA systems are highly dynamic, making the MUD

yet highly challenging. To mitigate this problem, CS and MPA were jointly used to design

a CS-MPA detector to achieve joint user activity and information detection in the LDS

based GFMA systems [117], where a so-called CoSaMP was proposed by using a CS-

based sparse signal recovery algorithms for the user activity detection by identifying the

positions of non-zero elements [117]. It is shown that this algorithm has low complexity

and good robustness against noise. Furthermore, the CoSaMP can make full use of the

sparsity of the LDS structures, allowing the receiver to employ a low complexity MPA-

based processing. Additionally, the authors of [117] proposed another low-complexity

MPA-based algorithm for the GFMA systems to perform MUD.

1.3.3 Multiple-Access Signature (MAS) Based GFMA

In GFMA systems, BS may not have the complete information about the UEs and vari-

ous other transmission parameters may also be unknown or only partially-known. In this

case, to enable GFMA, a contention-based multiple-access (MA) [121] resource is defined,

which comprises of a physical resource (a time-frequency block) and a MA signature.

The MA signatures may include at least one of the following, referring to Tables 1.1-1.2:

codebooks/codewords, sequences, interleavers, mapping patterns, demodulation reference



1.3.4. Compute-and-forward (CoF) Based GFMA 13

signals, power-dimensions, spatial-dimensions, preambles, etc. For the MA signature se-

lection, one option is that the UEs performs random selection and the other option is that

UEs’ signature is pre-configured/pre-determined [122–124]. It can be shown that based on

these MA signatures, various GFMA systems can be designed.

1.3.4 Compute-and-forward (CoF) Based GFMA

The GFMA schemes considered so far are mainly based on the MA signatures by employ-

ing user-specific sequences, such as, spreading, scrambling, interleaving sequences, or any

combination of these, to enable MUD at the receiver. Another approach towards GFMA

is proposed in [125], based on the principle of CoF [126]. This scheme relies on the codes

with a linear structure, such as the nested lattice codes. This is because the linearity of the

codebooks ensures that any combinations of codewords are themselves codewords. There-

fore, the destination is free to determine which linear equation to recover [125]. Based on

this principle, in the CoF-based GFMA systems, the UEs encode their messages into two

different channel codes, where one is used for error correction and the other one is used

for user detection. Correspondingly, at the receiver side, the BS/AP first decodes the sum

of the received codewords to identify the active UEs, and then decodes the data of active

UEs. If the BS/AP cannot recover the sum of codewords correctly, all the transmitted data

of active UEs are lost, which is similar to the signature-based GFMA schemes discussed

earlier.

1.4 Contributions and Thesis Outline

During the study for my PhD, I have authored and been a co-author for 5 journal papers as

well 1 conference paper. This thesis has been written based on the 3 journal papers that I

published and are under review as the primary author.

The main body of this thesis is focused on the investigation of channel estimation, UE

activity identification and information detection in GFMA systems. The organization of

this report is outlined in Fig.1.4.

The main contributions of this thesis can be summarized as follows:

Chapter 2: Signal Detection in Dynamic DS-CDMA and MC-CDMA Systems

In Chapter 2, we study the dynamic direct sequence code-division multiple-access

(DyDS-CDMA) and multicarrier CDMA (DyMC-CDMA) systems, where the dynamic

property is typical in the mGFMA systems to be considered in the following chapters. Spe-
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Chapter 5
Massive Distributed Antenna Grant-Free 
Multiple Access Systems

• MDA-GFMA systems are proposed and investigated;
• Large-scale fading, including propagation path-loss and

shadowing, experienced by the distributed UEs;
• OMP-MMSE-UAI;
• MMSE-SIC detection are introduced by assuming that each active

UE is served by a few of RRHs/Aps.

Chapter 1 Introduction

Chapter 2 
Signal Detection in Dynamic DS-CDMA and 
MC-CDMA Systems
• Dynamic GFMA systems;
• K users and single antenna centric BS/AP;
• Open-loop power control;
• Overload and sparse channels in DS-CDMA/MC-CDMA system;
• SICD detector.

Chapter 3 
Channel Estimation and User Activity 
Identification in Massive Grant-Free Multiple-
Access
• K users and single antenna centric BS/AP in the MC-CDMA

GFMA systems;
• 3 different MMSE-Estimator designs;
• 5 categories of UAI methods derived from statistics of Estimated

Channels.

Chapter 4 
Joint Channel Estimation, User Activity 
Identification and Information Detection

• Each AP employs multiple receive antennas, referred to as the
MRA/MC-mGFMA system;

• Jointing the ZC sequence and gold-sequence design;
• Threshold-based UAI (TB-UAI) for UE activity identification;
• SIC-MMSE relied joint channel estimation, UAI and data

detection (SIC-MMSE-JCUD) are designed.

• Chapter 6 Conclusions and Future Research Issues

Figure 1.4: Outline of this treatise.

cially, this chapter assumes that each BS/AP with limited degrees of freedom is expected

to control a massive number of UEs. We assume that UEs become active to transmit data

on the basis of time-slots and during a time-slot, each of UEs activates independently and

follows a common activation probability. While for the DyDS-CDMA systems we assume

flat Rayleigh fading, we assume that the DyMC-CDMA systems experience frequency-

selective Rayleigh fading. A low-complexity detector based on minimum mean-square er-

ror and successive interference cancellation, referred to as the MMSE-SICD, is proposed

for signal detection in DyDS-CDMA and DyMC-CDMA systems. Assuming ideal active

UE identification and ideal channel estimation of active UEs, in this chapter, we focus on

the potential performance achievable by the DyDS-CDMA and DyMC-CDMA systems

employing the MMSE-SICD, to demonstrate the feasibility of MMSE-SICD for operation

in mGFMA systems.

• DyDS-CDMA and Dy-MC-CDMA systems are investigated, where a big number

of potential UEs is supported and during each time-slot, each UE becomes active to

transmit with a small probability. Hence, the active UEs are also highly dynamic.

• A low-complexity MMSE-SICD is investigated for the signal detection in DyDS-

CDMA and DyMC-CDMA systems, in order to achieve the detection that is robust

to the dynamics of these system, while without making much trade-off of the system

performance.
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• The bit error rate (BER) performance of DyDS-CDMA and DyMC-CDMA systems

is investigated with assumption that DyDS-CDMA signals experience flat fading,

while DyMC-CDMA signals experience frequency-selective fading.

• Furthermore, the BER performance of DyMC-CDMA systems is investigated and

compared, when both dense spreading and sparse spreading are respectively applied.

Note that, the sparse spreading is specifically introduced to DyMC-CDMA systems,

because DyMC-CDMA systems may experience the peak-to-average power ratio

(PAPR) problem [127].

Our studies demonstrate that the MMSE-SICD is highly efficient for operation in the

considered dynamic systems. Furthermore, the DyMC-CDMA scheme with MMSE-SICD

has low-complexity and is robust to the system’s dynamics and is feasible for achieving

the frequency-selective diversity. Hence, the DyMC-CDMA scheme with MMSE-SICD

constitutes a promising scheme for operation in mGFMA systems.

Chapter 3: Channel Estimation and User Activity Identification in Massive Grant-
Free Multiple-Access

In Chapter 3, we study the channel estimation and UAI in the mGFMA scenario,

where the number of potential UEs may be much bigger than the number of resource units

and each UE has a small activation probability. Hence, the active UEs and the number of

them are highly dynamic over time, and the number of active UEs at a time may be higher

than the number of resource units. Specifically, we first consider the channel estimation

of both active and inactive UEs in the principle of minimum mean-square error (MMSE),

when AP is assumed to have the ideal knowledge, no knowledge or the partial knowledge

of active UEs. In our channel estimation, AP will make the best use of the information

provided by the transmission of pilot symbols and data (payload) symbols.

The main contributions of this chapter can be summarized as follows:

• Channel estimation in dynamic multicarrier mGFMA (MC-mGFMA) scenarios is

investigated, where the channels of both active and inactive UEs are estimated in

MMSE principle, when AP is assumed to employ ideal knowledge, no knowledge

or partial knowledge about the active UEs. It is shown that the proposed channel es-

timation approaches are robust to the dynamics in mGFMA systems. Furthermore,

it is shown that the added knowledge about active UEs results in the enhanced relia-

bility of channel estimation. These properties can be exploited for the design of UAI

algorithms.

• The statistical properties of the estimated channels of both active and inactive UEs
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are analyzed, showing that the estimated channels of active UEs and that of inactive

UEs have distinct features, which can be exploited for distinguishing active UEs

from inactive UEs.

• Hence, based on the studies of channel estimation and of the characteristics of esti-

mated channels, five UAI algorithms are proposed for MC-mGFMA and their per-

formance is studied. These UAI algorithms are listed as follows:

a. Threshold-based UAI (TB-UAI);

b. Eigen-analysis enhanced UAI (EAE-UAI);

c. Successive interference cancellation (SIC) assisted UAIa (SIC-UAIa);

d. SIC assisted UAIb (SIC-UAIb);

e. Auto-correlation matrix evolving UAI (AME-UAI).

• Furthermore, These UAI algorithms have their distinctive characteristics and present

different performance-complexity trade-off. They however have one common fea-

ture that all of them are suitable for operation in the mGFMA systems having highly

dynamic UEs in terms of the active UEs and the number of them.

Our studies show that any added information about the active UEs can be exploited

to enhance the reliability of channel estimation. This is reflected in practical mGFMA

systems that the activity patterns of UEs may be correlated or one active UE may have

several packets to transmit in continuous time-slots. Then, this kind of information can be

exploited to enhance the reliability of channel estimation in mGFMA systems.

Chapter 4: Joint Channel Estimation, User Activity Identification and Information
Detection

In Chapter 4, we investigate a multicarrier massive grant-free multiple-access (MC-

mGFMA) system by assuming that a big number of highly dynamic user equipments (UEs)

are monitored by an access point (AP) with multiple receive antennas (MRA), which is

referred to as the MRA/MC-mGFMA system. The channel estimation, UE activity identi-

fication (UAI) and information detection are addressed in the MRA/MC-mGFMA system.

First, the channels of both active and inactive UEs are detected in the principle of minimum

mean-square error (MMSE). Then, based on the estimated channels, a low-complexity

threshold-based UAI (TB-UAI) is proposed to detect the activities of UEs. Finally, infor-

mation of active UEs is detected in the principle of the successive interference cancellation

(SIC) assisted MMSE (SIC-MMSE). Furthermore, a joint algorithm, referred to as SIC-

MMSE-JCUD, is proposed to carry out channel estimation, UAI and information detection
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jointly in the principle of SIC-MMSE. Additionally, considering that no set of the well-

designed signature sequences can support the big number of potential UEs in mGFMA

systems, we propose a class of sequences designed by combining the Gold-sequences with

the Zadoff-Chu (ZC) sequences. The performance of different schemes is studied and

compared based on Monte-Carlo simulations. Our studies show that deploying multiple

receiver antennas at AP is beneficial to the channel estimation, UAI and information detec-

tion. Aided by the multiple receive antennas of AP, a low-complexity TB-UAI algorithm is

highly efficient for UE activity identification. Furthermore, our proposed class of signature

sequences allows to attain much better performance than the random sequences.

The main contributions of this chapter can be summarized as follows:

• We study a multicarrier mGFMA system where each AP employs multiple receive

antennas, which is referred to as the MRA/MC-mGFMA system for convenience of

description.

• We extend our studies in [128] to the MRA/MC-mGFMA system, and investigate the

impact of multi-antenna AP on the design and performance of channel estimation,

UAI and information detection.

• Jointing the ZC sequence and gold-sequence, we design a class of signature se-

quences so as to support the possibly huge number of UEs in a mGFMA systems.

We also investigate the effect of the proposed class of sequences on the performance

of channel estimation, UAI and information detection.

• We propose the channel estimation, UAI, signal detection and joint channel es-

timation, UAI and information detection algorithms for the proposed MRA/MC-

mGFMA system. Specifically, our channel estimation is in the principle of mini-

mum mean-square error (MMSE) under the assumption that AP has full knowledge,

partial knowledge or no knowledge about the active UEs. Then, assuming that AP

has no knowledge about active UEs, we study the threshold-based UAI (TB-UAI)

for UE activity identification. Finally, based on the channel estimation and/or TB-

UAI, the successive interference cancellation (SIC) assisted MMSE (SIC-MMSE)

and the SIC-MMSE relied joint channel estimation, UAI and data detection (SIC-

MMSE-JCUD) are designed.

• Based on numerical simulations, we study and compare the performance of the chan-

nel estimation, UAI and information detection algorithms, when various aspects are

considered.
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Our studies show that when multiple receive antennas at APs are available, the low-

complexity threshold-based UAI (TB-UAI) is capable of achieving promising performance,

which significantly improved with the increase of the number of receive antennas. Further-

more, as the number of receive antennas of AP increases, the threshold setting in TB-UAI

becomes relatively easier. This implies that the performance of TB-UAI becomes less

sensitive to the threshold applied, and the near-optimum threshold can be relatively easily

achieved, as the number of receive antennas of AP increases. In terms of the signature se-

quences, the studies show that the proposed class of signature sequences outperforms the

random sequences. Furthermore, for signal detection, both SIC-MMSE and SIC-MMSE-

JCUD are highly effective for operation in the MRA/MC-mGFMA systems, where both

active UEs and the number of them are highly dynamic.

Chapter 5: Channel Estimation, User Activity Identification and Data Detection in
Massive Distributed Antenna Grant-Free Multiple Access Systems

In Chapter 5, we consider the massive distributed grant-free multiple-access (MDR-

GFMA), where RRHs/APs are distributed in the communications area. Each RRH/AP only

serves the UEs around it, while each UE is only connected with a few of RRHs/APs around

it. Furthermore, the signals received by an RRH/AP from different UEs have different

power. All the above-mentioned settings/assumptions impose new challenges to the design

of the algorithms for the UAI and data detection in MDR-GFMA systems. Hence, in this

chapter, we are motivated to study the low-complexity while still efficient methods for

the channel estimation, UAI and data detection in the MDR-GFMA systems. The main

contributions and novelties can be summarized as follows:

• A MDA-GFMA system is proposed and investigated, where the RRHs/APs (or sim-

ply distributed antennas (DAs)) are distributed based on the Poisson point (PP) dis-

tribution and UEs are randomly and uniformly distributed in the coverage area. In

the considered MDA-GFMA system, RRHs/APs are assumed to be connected to a

SPCU, where signal processing is carried out. UEs become active randomly with a

small activation probability. Each of the active UEs is only connected to a few of the

DAs close to the UE. Hence, no power control is needed as there is no path-loss, the

operation is UE centric and the system is cell-free.

• In terms of signal processing, first, the MMSE-assisted channel estimation is im-

plemented to estimate the channels of UEs, regardless of them being active or in-

active, with assumption that the SPCU has different levels of knowledge about the

large-scale fading, including propagation path-loss and shadowing, experienced by

the UEs. Furthermore, the characteristics of the estimated channels for active and

inactive UEs are analyzed and demonstrated.
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• Second, based on the MMSE-relied channel estimation, an orthogonal matching pur-

suit assisted UAI, referred to as the OMP-MMSE-UAI, algorithm is proposed and

investigated, when each of UEs is assumed to be served by the RRHs/APs within a

given area centred at the UE. The OMP-MMSE-UAI provides the initial UAI, which

is further enhanced via the detection of the pilot symbols expected for different UEs.

• Third, after the channel estimation and UAI, the data transmitted by active UEs

are detected. Both MMSE detection and the successive interference cancellation

assisted MMSE (MMSE-SIC) detection are introduced, again, by assuming that each

active UE is served by a few of RRHs/APs around the UE.

• The performance of channel estimation, UAI and data detection in MDR-GFMA

systems is investigated with the aid of Monte-Carlo simulations. The results demon-

strate that the proposed algorithms are effective. The MMSE-based channel estima-

tion is low-complexity and is capable of achieving promising performance, which

significantly improves with the increase of the density of the distributed RRHs/APs.

The OMP-MMSE-UAI algorithm can effectively limit the miss of active UEs, while

avoiding the false-alarms of inactive UEs. Furthermore, the MMSE-SIC is not only

efficient for operation, but for performance in the MDR-GFMA systems.

Our studies show that the MMSE-assisted channel estimation is efficient for operation

in the MDR-GFMA systems. Explicitly, the estimated channels of active UEs and inactive

UEs have significant difference in terms of the MSE performance. This means that the es-

timated channels for a UE may be exploited to identify whether the UE is active. Secondly,

in our OMP-MMSE-UAI algorithm, the embedded OMP algorithm is capable of providing

an initial UAI with a small miss probability, while the followed UAI enhancement aided by

the pilot detection can efficiently identify the false-alarmed UEs. Furthermore, concerning

the two detection schemes considered, the MMSE-SIC detector is highly efficient for data

detection in MDR-GFMA systems, which experience a range of dynamics such as the ac-

tive UEs and the number of them, the geography resulted randomness, and the number of

DAs serving a UE.

Finally, in Chapter 6, the conclusions derived from the research are summarized. Fur-

thermore, some future works related to the research are discussed.



Chapter 2
Signal Detection in Dynamic DS-CDMA
and MC-CDMA Systems

In this chapter, we study the dynamic direct sequence code-division multiple-access (DyDS-

CDMA) and multicarrier CDMA (DyMC-CDMA) systems, where the dynamic property

is typical in the massive grant-free multiple-access (mGFMA) systems to be considered

in the following chapters. Specially, this chapter assumes that each base-station (BS) or

access point (AP) with limited degrees of freedom is expected to control a massive num-

ber of devices, called user equipments (UEs). We assume that UEs become active to

transmit data on the basis of time-slots and during a time-slot, each of UEs activates in-

dependently and following a common activation probability. While for the DyDS-CDMA

systems we assume flat Rayleigh fading, we assume that the DyMC-CDMA systems expe-

rience frequency-selective Rayleigh fading. A low-complexity detector based on minimum

mean-square error and successive interference cancellation, referred to as the MMSE-

SICD, is proposed for signal detection in DyDS-CDMA and DyMC-CDMA systems. As-

suming ideal active UE identification and ideal channel estimation of active UEs, in this

chapter, we focus on analysing/measuring performance achievable by the DyDS-CDMA

and DyMC-CDMA systems employing the MMSE-SICD, to demonstrate the feasibility of

MMSE-SICD for operation in mGFMA systems. Our studies reveal that the DyDS-CDMA

and DyMC-CDMA systems aided by the MMSE-SICD are high-efficiency for operation

in mGFMA environments. Near single-user performance is achievable, when the average

number of active UEs per time-slot reaches two times of the system’s degrees-of-freedom,

and hence, the number of active UEs of a time-slot may be much higher than two times of

the system’s degrees-of-freedom.
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2.1 Introduction

Driven by the unaccountable IoT applications, the 5th generation (5G) wireless networks

are expected to support numerous devices and provide massive connectivity [9]. As one

of the results, many 5G wireless systems will be device-centric, constituted by densely

distributed devices and machines, in contrast to the human-centric 1-4G wireless systems.

As most of devices/machines carry out the sensing, data collection, etc., tasks, and they

often need to report via wireless channels by sending short-burst messages, we may expect

that in the device-centric 5G wireless systems, uplink traffics will become dominate [12].

In the device-centric wireless networks, explicitly, the legacy human-centric systems,

such as LTE/LTE-A in 4G systems, will not be efficient for supporting the sporadic short-

burst applications required by IoT devices (and machines). Instead, novel communica-

tions protocols need to be designed to allow a huge number of ultra-densely distributed

devices to communicate with their base-stations (or access points (APs)) reliably and ef-

ficiently [10, 11]. Furthermore, in these device-centric wireless networks, all devices are

expected to be operated with high energy-efficiency, which for some applications is criti-

cal due to the practical constraint on battery changing, battery re-charging, etc. In order to

meet the above-mentioned challenges, grant-free multiple-access (GFMA) has been pro-

posed to support sporadic short-burst applications [61]. Specifically in [62], the authors

have compared the performance of transmission of short-burst data blocks in both tradi-

tional LTE network and in new 5G grant-free networks. The studies show that data trans-

mission in grant-free systems should be in the manner of arrive-and-go, and that using the

traditional communication schemes to transmit sporadic short-burst traffic is inefficient.

For uplink multiple-access in 5G IoT networks, in literature, there are a range of op-

tional techniques proposed. As some examples, in [70], Tararefa et al. have considered

the FDMA scheme supported by the joint user association and resource allocation for IoT

uplink. Sutton et al. [71] investigated the performance of a TDMA-assisted IoT uplink.

In [72], Hu et al. have introduced the cognitive radio principles to CDMA, in order to

address the problem of resource shortage in IoT systems. Furthermore, in [73], the non-

orthogonal multiple-access (NOMA) technique has been introduced for supporting IoT

cloud services. Specifically, in the domain of GFMA, the authors of [94] have proposed

the sparse code multiple-access (SCMA), which is one of NOMA techniques, for support-

ing many devices to share limited resources. In [129], the authors have investigated joint

active user identification and information detection in GFMA systems. By contrast, the au-

thors in [95] have proposed a coded tandem spreading multiple access (CTSMA) scheme

for enhancing the multiple-access capability of GFMA systems. Furthermore, in [96], a

so-called comprehensive grant-free random access scheme has been proposed for machine-
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type communications, which allows synchronization, channel estimation, user identifica-

tion and data detection are all performed in one single shot.

In the context of the signal detection in GFMA systems, various techniques have been

proposed based on the factor graph dependent sparse code multiple access (SCMA) [62]

and compressive sensing [118]. While both the techniques employ a range of advantages,

as argued in the above-mentioned references, there are also critical limitations for them

to apply in the GFMA systems, in particular, of supporting ultra-dense devices requiring

massive connectivity, i.e., the massive GFMA (mGFMA). While the achievable perfor-

mance of SCMA systems is depended closely on the well-structured factor graphs, the

recovery performance of compressive sensing relying systems is limited by the restricted

isometric property (RIP) condition [130–132], which constrains that the number of active

devices should be significantly lower than the degrees of freedom (or the number of re-

source units). However, in the mGFMA systems, a typical characteristic is that the number

of active devices is highly dynamic and time-varying, making the design of high-efficiency

radio receiver for APs highly challenging. For example, consider an AP supporting 1000

potential devices each having an independent and uniform activation probability of 0.05.

Assume that data is transmitted based on time-slots, and devices become active and start

transmission at the start of time-slots. Then, we can find that the average number of active

devices per time-slot is 1000× 0.05 = 50. The probabilities that the number of active de-

vices per time-slot is more than 50 and more than 100 are 0.4625 and 0.0207, respectively,

both of which may significantly affect system’s reliability, if they are not coped with care-

fully in design. Explicitly, a mGFMA system would not be efficient, which is designed

based on the average number of active devices of 50, which results in low-reliability in

case there is a big number of active devices. It is also inefficient if it is designed based on

100 or more active devices for attaining the required reliability, which however results in

low-efficiency resource utility, due to the fact that the number of active devices is often sig-

nificantly lower than 100. Instead, a mGFMA system should be designed to maximize the

resource utility, while enabling high-reliability and robust operation in the highly dynamic

IoT environments.

In the mobile communication system, when different users are ready to utilize the

same transmission resource, their signals must be generated following a specific multiple

access scheme, such that the signals of the different users can be separated at the receiver.

The above discussed detector design based on DS-CDMA as a multiple access technique.

Furthermore, multi-carrier systems offer a good bandwidth efficiency with immunity to

channel dispersion. In OFDM, the orthogonal property can be held as long as the sub-

carrier frequency separation maintains the integer multiplex over one inverse of OFDM

symbol duration. The combination of OFDM and DS-CDMA is MC-CDMA. In MC-



2.1. Introduction 23

CDMA technique, the original data stream are first multiplied with the spreading sequence

and then modulated on the different carriers. Moreover, in GFMA system, the transmit-

ting data symbol durations become obviously smaller than the delay due to the multi-path

channel. MS-CDMA is a robust solution to deal with the inter symbol interference (ISI)

and to deal with the the capacity receded by MAI. The research in has been proved [133],

the probability of bit error in MC-CDMA system with 16 users is the same as the single

user case in the DS-CDMA, where it is assumed that the time is perfectly synchronized

at the receiver in both systems. Thus, the transmitter of each user derives a clock signal

and a carrier oscillator signal from a network synchronization reference signal [134]. Due

to these properties, it makes MC-CDMA system enable to be a candidate to consider in

GFMA implementation. It motivate us to discuss channel estimation, UAI and information

detection relied on MC-CDMA system from the next chapter.

Based on the above consideration, in this chapter, we are motivated to study a multiple-

access protocol for mGFMA and to design a corresponding low-complexity detection al-

gorithm. We do not impose the limit on the number of active devices per time-slot, but

aim to provide robust detection for any active devices no matter how many of them there

are. Our detection algorithm is also not dependent on factor graphs, as well-structured

factor graphs in mGFMA are often unavailable. Alternatively, we return to the convention

principles of successive interference cancellation (SIC), and design a high-efficiency SIC

scheme for supporting dynamic DS-CDMA (DyDS-CDMA) to achieve mGFMA. In this

chapter, we assume ideal active device identification and also ideal channel estimation of

active devices, but focus our attention on signal detection in mGFMA environments, in

order to demonstrate the potentials of DyDS-CDMA. For this purpose, a detector based

minimum mean-square error and SIC, referred to as the MMSE-SICD, is developed. Fi-

nally, the performance of the DyDS-CDMA systems employing the MMSE-SICD is inves-

tigated and compared from different perspectives based on Monte-Carlo simulations. Our

studies and performance results show that the DyDS-CDMA aided by the proposed SIC

is high-efficiency for operating in mGFMA environments, which allows to achieve near

single-user performance, even when the average number of active devices per time-slot

reaches two times of the system’s degrees-of-freedom.

The remainder of this chapter is outlined as follows. In Section 2.2, we describe the

system model for both DyDS-CDMA and DyMC-CDMA systems. Section 2.3 addresses

the signal detection by proposing the MMSE-SICD algorithm. Section 2.4 demonstrates

the performance results of both the DyDS-CDMA and DyMC-CDMA systems with vari-

ous considerations. Finally, we derive the conclusions from research in Section 2.5.
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2.2 Description of Dynamic DS-CDMA and MC-CDMA

Systems

We consider a single cell with a base-station (BS), or access point (AP), locating at the

center and K potential mobile UEs randomly distributed in the cell. The communications

between these UEs and BS is based on DS-CDMA or MC-CDMA [72, 127, 135]. We

assume that the UEs transmit information to BS on the basis of time-slots. Given a time-

slot, we assume that each UE has a probability of Pa to become active to transmit a frame

of data. Furthermore, we assume that the events of activation are independent in terms of

time-slots and UEs. Based on the above assumptions, it can be shown that, for a given

time-slot, the number of active UEs, KA, obeys the binomial distribution, given by

P(KA) =

(
K

KA

)
PKA

a (1− Pa)
K−KA , KA = 0, 1, . . . , K (2.1)

Let us express the spreading factor of both DyDS-CDMA and DyMC-CDMA as N.

Since the activation probability Pa of a UE is usually very small, about 0.05 ∼ 0.1 [136],

N is usually designed to be significantly smaller than K. Therefore, from (2.1) we are

implied that, given a considered time-slot, the number of active UEs, i.e. KA, can be either

lower or higher than N, resulting in the system either under-load or over-load. In literature,

such as in [137], CS has typically been considered for active UEs identification and their

signal detection, when GFMA is considered. However, the successful recovery under CS

has to be constrained by the restricted isometry property (RIP) condition [130–132]. This

condition makes the CS approaches in general only valid, when the number of active UEs

is significantly lower than the number of resource units. In other words, CS approaches are

not suitable for the actually overload scenarios, where the number of active UEs is higher

than the number of resource units. Specifically for the DyDS-CDMA or DyMC-CDMA

systems considered in this chapter, CS approaches are only suitable for the cases, when

KA is significantly lower than N.

More specifically, when given a spreading factor N of the DyDS-CDMA or DyMC-

CDMA, we can readily find that the probability of that the systems are overload is

P(KA > N) =
K

∑
k=N+1

(
K
k

)
Pk

a (1− Pa)
K−k (2.2)

For example, let us assume Pa = 0.05 and N = 32. Then, it can be shown that

P(> N) = 0.9963 if K = 1000, and P(> N) ≈ 1 if K = 1500. Therefore, in the

DyDS-CDMA or DyMC-CDMA systems having ultra-dense UEs, making the number of

UEs per cell above a thousand, the systems will be surely always overloaded.
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In this chapter, for the sake of simplicity but focusing our attention on principles, we

assume that the signals sent from UEs to BS experience flat Rayleigh fading in DyDS-

CDMA systems1, while experience frequency-selective fading in DyMC-CDMA systems.

Let the spreading code assigned to the kth UE be expressed as ccck = [ck0, ck1, . . . , ck(N−1)]
T

(k = 1, 2, . . . , K), which may be used as the identity of UE k during the stage of active UEs

identification, as shown in the following chapters, and as the spreading sequence for the

kth UE’s data transmission. Let us consider a time-slot, and define a set of corresponding

active UEs as IA, which contains the indices of the active UEs. We assume low-rate

communication UEs, all of which use binary-phase shift-keying (BPSK) modulation in

order to save energy. Then, when the DyDS-CDMA systems are considered, the received

discrete signals at BS corresponding to the active UEs can be expressed as

yyy = ∑
k∈IA

√
Pkhkccckbk + nnn (2.3)

where yyy is the N-length observation vector, bk denotes a binary bit sent by the kth UE, hk

represents the kth channel’s fading gain, which obeys the complex Gaussian distribution

with zero mean and unit variance, Pk denotes the power received from UE k, while nnn is

a N-length Gaussian noise vector distributed with zero mean and a covariance matrix of

σ2IIIN with IIIN being a (N × N) identity matrix.

For convenience of following description, we represent (2.3) in a compact form of

yyy =CCCGGGPPPbbb + nnn

=HHHbbb + nnn (2.4)

where by definition, CCC = [ccc1, ccc2, · · · , ccc|IA|], where |IA| denotes the number of ele-

ments in IA, GGG = diag{h1, h2, · · · , h|IA|}, PPP = diag{
√

P1,
√

P2, · · · ,
√

P|IA|}, bbb =

[b1, b2, · · · , b|IA|]
T, and finally, HHH = CCCGGGPPP.

In the context of the DyMC-CDMA, we assume that it is operated in the OFDM

principle [127] with sufficient length of cyclic prefixing (CP). The frequency-selective

fading channel is assumed to have L number of resolvable paths in the time-domain,

whose time-domain impulse response can be expressed as hhhk,t = [hk1,t, hk2,t, . . . , hkL,t]
T,

k = 1, 2, . . . , K, where hkl,t is independent complex Gaussian distributed with zero mean

and variance of 1/L. Correspondingly, the frequency-domain channel gains experienced

by the N subcarriers can be obtained as [127]

hhhk = FFFNΨΨΨN×Lhhhk,t (2.5)

1Note that, in frequency-selective fading channels, when the block-based detection in DyDS-CDMA

systems is considered, the detection principle is the same as that considered in this chapter.
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where ΨΨΨN×L is a N × L mapping matrix obtained from the first L columns of the identity

matrix IIIN, and FFFN is a N-point fast Fourier transform (FFT) matrix. Based on the above

assumptions and assuming BPSK modulation, it can be shown that an observation equation

corresponding to (2.3) can be written as

yyy = ∑
k∈IA

√
PkHHHkccckbk + nnn (2.6)

where HHHk = diag(hhhk) is a N × N diagonal matrix.

Corresponding to (2.4), (2.6) can also be represented in the forms of

yyy = ∑
k∈IA

h̃hhkbk + nnn (2.7)

=HHHbbb + nnn (2.8)

where h̃hhk =
√

PkHHHkccck, HHH =
[
h̃hh1, h̃hh2, . . . , h̃hh|IA|

]
, and bbb is the same as that previously

defined for DyDS-CDMA.

For the spreading codes assigned to mobile UEs, for DyDS-CDMA systems, we simply

assume that they are binary random codes having the elements of ±1/
√

N. By contrast

for DyMC-CDMA systems, we investigate two classes of random codes. The first class

is the same as that assumed for DyDS-CDMA systems. By contrast, considering that the

multicarrier signaling in the DyMC-CDMA results in the PAPR problem [127], the sec-

ond class of spreading codes are the sparse spreading codes, which contain a big fraction

of zeros in addition to the binary elements of +1 and −1. Specifically, we still assume

the random spreading codes, but an element of which has a small probability to be +1 or

−1, while has the rest probability to be 0. For example, each element has a probability of

1/10 to be +1, of 1/10 to be −1, and of 8/10 to be zero, making the average sparsity

of the N-length sequence to be N × 2/10 = 0.2N. The average sparsity of spreading

sequences is expressed as d̄x. Additionally, the sparse spreading sequences are all nor-

malized to have unity energy of ‖ccck‖ = 1. Explicitly, with the employment of sparse

spreading codes, the PAPR problem of DyMC-CDMA systems may be effectively miti-

gated. However, the sparsity of spreading codes may make a trade-off with the achievable

performance of DyMC-CDMA systems. Hence, in this chapter, we investigate the effect of

the spreading codes’ sparsity on the achievable performance of DyMC-CDMA systems,

when communicating over frequency-selective fading channels. Our later performance

study will show that when given the frequency-selectivity (such as L resolvable paths of

frequency-selective fading channels), the near-full frequency-diversity gain can only be

achievable, when the sparsity of spreading sequences is sufficiently high, usually slightly

higher than L.



2.3. Signal Detection of Active UEs 27

Both the DyDS-CDMA and DyMC-CDMA considered in this chapter are studied in

GFMA environments [138]. In these systems, UEs send BSs information without hand-

shaking with the BSs. In this case, closed-loop power-control [139] is impossible. How-

ever, in such DyDS-CDMA or DyMC-CDMA systems, BSs may send pilot signals peri-

odically, such as, for mobile UEs to carry out required synchronization, and estimate their

distances from BSs through measuring the pilot signals’ strength. Therefore, mobile UEs

are able to execute open-loop power-control [139] based on the strength of received pilot

signals. With the above consideration, we assume that open-loop power-control is imple-

mented. Correspondingly, we assume that the power received by BS from a mobile UE

obeys a truncated Gaussian distribution represented as

fPk(p) =µ exp

(
− (p− P0)

2

2σ2
P

)
,

max{0, P0 − PE} ≤ p ≤ P0 + PE (2.9)

where PE denotes the maximum power-control error with respect to P0 of the received

power in ideal power-control, and µ is a constant to ensure that the integration of fPk(p)

over the range of max{0, P0 − PE} ≤ p ≤ P0 + PE is one.

Let us below consider the signal detection of the active UEs.

2.3 Signal Detection of Active UEs

In our considered dynamic CDMA systems with the motivation for GFMA, the number

of active UEs accessing a BS during a time-slot is highly dynamic. In the references ad-

dressing GFMA, CS algorithms have been typically introduced for signal detection [140].

However, the recovery capability of CS-relying detectors is constrained by the RIP condi-

tion [130–132]. This constraint implies that the system should be significantly under-load,

meaning that KA << N, in order to achieve the satisfactory performance of signal recov-

ery. However, in practice when there is a big number of potential UEs of K, such as over

1000 per BS, there is usually a very high probability that the number of active UEs exceeds

the recovery capability of the CS-relying detectors. Furthermore, in the ultra-dense cases,

as previous examples show, it is nearly the certain event that the system becomes overload,

i.e., KA > N. In these cases, the CS-relying detectors are incompetent. Therefore, in

practice, we should design the detection algorithms, which are efficient for operation in

the dynamic user environment where the constraint on the number of active UEs is hardly

satisfied. With the above motivation, in this chapter, we return to the conventional SIC-

assisted multiuser detection, to introduce a SIC based detector operated with the minimum

mean-square error principles [141], which is referred to as the MMSE-SICD. We extend it
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Figure 2.1: Demonstration of the MMSE-SICD for DyDS-CDMA and DyMC-

CDMA systems.

for operation in the dynamic communication environment, where the number active UEs is

a random variable obeying the binomial distribution of (2.1). Correspondingly, we investi-

gate its efficiency and demonstrate the effect of UEs’ dynamic behavior on the achievable

performance.

The MMSE-SICD considered is an iterative multiuser detector. During an iteration,

MMSE-based multiuser interference suppression (MMSE-MUIS), reliability measurement

to identify a most reliable UE, and interference cancellation are respectively operated, the

principles of which are detailed in the following subsections.

2.3.1 MMSE-Based Multiuser Interference Suppression

Below the MMSE-SICD is analyzed in the context of the DyDS-CDMA with the observa-

tion equation of (2.4). The analysis of the MMSE-SICD for the DYMC-CDMA with the

observation equation of (2.8) is the same.

Consider the observation equation of (2.4) and assume that BS employs the knowledge

of HHH, i.e., of CCC, GGG and PPP. Then, the decision variables for detecting the data of active UEs
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in the sense of MMSE can be expressed as [127]

zzz =HHHH
(

HHHHHHH + σ2III|IA|
)−1

yyy

=HHHHRRR−1
y yyy (2.10)

where we defined RRRy = HHHHHHH + σ2III|IA| for convenience of following description. If we

apply HHH = [hhh1, hhh2, · · · , hhh|IA|], where hhhk is for UE k, the decision variables for the active

UEs can be respectively written as

zk = hhhH
k RRR−1

y yyy, k = 1, 2, . . . , |IA| (2.11)

It can be understood that, if the |IA| UEs’ information is detected based on (2.11),

the information of different UEs will be detected with different reliabilities, contributed

by channel fading, Gaussian noise and the different power received from different UEs.

Therefore, it is desirable to enhance the detection performance with the aid of SIC by

exploiting the reliability information revealed from (2.11).

2.3.2 Reliability Measurement

In [142], a near-optimum reliability measurement scheme was proposed, which allows a

CDMA (or SDMA) system of N degrees of freedom to achieve near-optimum BER per-

formance over Rayleigh fading channels, even when the number of users simultaneously

detected is as high as 2N, which corresponds to a system loading factor of two. Based on

the reliability measurement scheme proposed in [142], the reliability of detection of the

kth active UE can be estimated as

Lk = (1 + γ̃k)|zk|

=

(
1

1− hhhH
k RRR−1

y hhhk

)
|zk|, k = 1, 2, . . . , K|IA| (2.12)

where γ̃k = hhhH
k RRR−1

y hhhk/(1− hhhH
k RRR−1

y hhhk) is the signal-to-interference-plus-noise ratio (SINR),

if bk is detected based on zk of (2.11).

Once the reliabilities of the active UEs to be detected are available, the MMSE-SICD

can be carried out, which is described as follows.

2.3.3 MMSE-SICD Algorithm

When there are |IA| UEs to detect, the MMSE-SICD needs to execute |IA| iterations,

with each iteration detecting one of the |IA| active UEs. As mentioned previously, during
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an iteration, the MMSE-MUIS, reliability measurement to identify the most reliable UE,

detection of the most reliable UE, and interference cancellation of the most reliable UE

from the other not detected UEs are respectively executed. In summary, the MMSE-SICD

algorithm can be stated as follows.

Algorithm 2.3.3 MMSE-SICD Algorithm.

Initialization: yyy(0) = yyy, RRR(0)
y = RRRy, HHH(0) = HHH,WWW(0) = RRR−1

y HHH.

Detection:
for s = 1, 2, . . . , |IA|,

1. Computing the decision variables for the UEs not detected:

zzz(s) = <{(WWW(s−1))HHHyyy(s−1)}, where WWW(s−1) = (RRR(s−1)
y )−1H̃̃H̃H(s−1), <{x} re-

turns the real-part of x.

2. Determining the most reliable UE among the UEs not detected: Among the

|IA| − s+ 1 UEs having not been detected, compute their reliabilities according

to (2.12), and then find the most reliable UE as

k(s) = argmaxk′i
{Lk′1

, Lk′2
, . . . , Lk′|IA |−s+1

}.

3. Detecting the most reliable UE: b̂k(s) = sgn(zk(s)), where zk(s) is the ksth entry

of zzz(s).

4. Interference cancellation:

yyy(s) = yyy(s−1) − hhhk(s) b̂k(s) ;

5. Update: WWW(s) ←WWW(s−1).

In the above algorithm, the weight matrix WWW(s−1) needs to be updated to WWW(s), which

has the formula of WWW(s) = (RRR(s)
y )−1H̃̃H̃H(s). After the interference cancellation at the sth

iteration, we have

H̃HH(s)
=H̃HH(s−1)PPP(s), (2.13)

RRR(s)
y =RRR(s−1)

y − hhhk(s)(hhhk(s))
H (2.14)

where PPP(s) is a permutation matrix obtained from III|IA| by removing from it the s columns

corresponding to the s active UEs having detected. Then, by using (2.13), we can express
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WWW(s) as

WWW(s) =
(

RRR(s)
y

)−1
H̃HH(s)

=
[
RRR(s−1)

y − hhhk(s)(hhhk(s))
H
]−1

H̃HH(s−1)PPP(s) (2.15)

Upon applying the matrix inverse lemma, and expressing www(s−1)
k(s)

=
(

RRR(s−1)
y

)−1
hhhk(s) , we

obtain

WWW(s) =

WWW(s−1) +
www(s−1)

k(s)
(hhhk(s))

HHHWWW(s−1)

QQQ(s)(k(s), k(s))

PPP(s) (2.16)

where QQQ(s)(k(s), k(s)) is the (k(s), k(s)) entry of QQQ(s) = III|IA|−s+1 −
(

H̃̃H̃H(s−1)
)H

WWW(s−1);

The complexity of the MMSE-SICD is mainly depended on the computation of RRR−1
y ,

which is however only required to be computed once for WWW(0) during the detection of the

|IA| active UEs, as shown in the above-stated algorithm. The detection delay is dependent

on the number of active UEs, which is however dynamic, when the number of active UEs

is dynamic.

2.4 Performance Results and Analysis

Below we provide the simulation results to show the error performance of the DyDS-

CDMA and DyMC-CDMA systems with the MMSE-SICD assisted detection. In our

simulations, we assume that the maximum power-control error is 0.1 times the transmit

power obtained in ideal power-control. Since we normalize the transmit power under ideal

power-control to unity, we hence have the normalized PE = 0.1. Correspondingly, in all

the figures, the average SNR represents the SNR averaged with respect to fading channels

as well as power-control error.

2.4.1 Performance of DyDS-CDMA Systems

In Fig. 2.2, we depict the BER performance of the DyDS-CDMA systems employing the

MMSE-SICD, when each cell supports K = 200, 1000 or 1500 potential UEs, and assum-

ing that each UE has an activation probability of Pa = 0.05. Hence, the average number

of active UEs is KA = 10, 50 and 75. Furthermore, given the spreading factor of N = 32

considered, we can find from (2.2) that the probability that the system is overload is 0.9963

for K = 1000, or nearly 1 for 1500. The results in Fig. 2.2 show that, for K = 200 or

1000, the achieved BER performance is nearly the same as that of the single-user system,

i.e., K = 1, communicating over Rayleigh fading channels. It is worth noting that, given
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Figure 2.2: BER versus average SNR per bit performance of DyDS-CDMA

(N = 32) systems using MMSE-SIC detection, when communicating over

Rayleigh fading channels.

K = 1000, we can calculate that the probability that there are 64(= 2N) or more active

UEs is 0.0207. Therefore, the DyDS-CDMA system is capable of achieving near single-

user BER performance, even when it is heavily overloaded, with a system loading factor

reaching two or higher. By contrast, when there are K = 1500 potential UEs supported,

the BER is still very close to the single-user BER performance, when the SNR is below

20 dB, or the (uncoded) BER is about 0.003, which is practically desirable in most appli-

cations. This is because, when error-control codes are employed, the decoded BER can

be readily improved to 10−6 or lower, provided that the uncoded BER is between 0.001 to

0.01. We should note that when K = 1500, the probabilities of that the number of active

UEs is 64(= 2N) or more, and 96(= 3N) or more are 0.8952 and 0.0069, respectively.

These probabilities imply that the DyDS-CDMA system employing the MMSE-SICD has

the capability to be efficiently operated in the communication environments of extremely

overload.

Fig. 2.3 demonstrates the BER performance of the DyDS-CDMA systems supporting

K = 200 potential UEs per cell, when UEs have different activation probabilities, as shown
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Figure 2.3: BER versus average SNR per bit performance of the DyDS-CDMA

systems, when UEs have different probability of activation.

in the figure. Correspondingly, we can calculate that the average numbers of active UEs

are 10, 15, 20 and 25. Explicitly, for all these cases, the BER performance that is close to

the single-user BER performance can be achieved.

Fig. 2.4 compares the BER versus average SNR per bit performance of the DyDS-

CDMA systems employing the MMSE multiuser detection (MMSE-MUD) and the MMSE-

SICD proposed in this chapter. While the MMSE-SICD is capable of achieving near

single-user BER performance, the conventional MMSE-MUD is unable to cope with the

dynamics of the UEs, resulting in very poor BER performance over all the SNR range

considered.

Finally, in Fig. 2.5, we illustrate the effect of UEs’ activities on the BER performance

of the DyDS-CDMA systems employing the MMSE-SICD or the conventional MMSE-

MUD, when the number of potential UEs per cell is K = 200 and the average SNR is 15 or

20 dB. From the results we observe that the BER of the DyDS-CDMA systems increases

steadily, as the activation probability of UEs increases from Pa = 0.01 to Pa = 0.2,

which correspond to an average number of active UEs of KA = 2 to KA = 40. From

literature [127] we know that, when the number of users is lower than N, the conventional
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Figure 2.4: Comparison of BER versus average SNR per bit performance of the

DyDS-CDMA systems employing the MMSE-MUD and MMSE-SICD.

MMSE-MUD operated in granted scenarios is usually not very sensitive to the increase

of the number of users supported. The above observation means that the conventional

MMSE-MUD is inefficient for operation in mGFMA systems, where the number of UEs is

highly dynamic. By contrast, when the MMSE-SICD is employed, the BER performance

of the DyDS-CDMA systems is very robust to the increase of the activation probability

of UEs. As shown in the figure, the BER performance maintains near unchanged, until

Pa = 0.16. After that point, the BER performance also slight degrades, as the UEs’

activation probability increases. Over all the ranges of Pa, the MMSE-SICD significantly

outperforms the MMSE-MUD.

2.4.2 Performance of DyMC-CDMA Systems

Below let us demonstrate the performance of DyMC-CDMA systems communicating

over frequency-selective fading channels. Note that, for convenience of comparison with

the DyDS-CDMA systems over flat-fading channels, the system parameters in Fig. 2.6 -

Fig. 2.8 are set the same.
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Figure 2.5: Effect of UEs’ activities on the BER versus average SNR per bit per-

formance of the DyDS-CDMA systems employing MMSE-SICD or the conven-

tional MMSE-MUD.

First, corresponding to Fig. 2.2, in Fig. 2.6, we show the BER performance of the

DyDS-CDMA systems employing the MMSE-SICD, when communicating over the frequency-

selective fading channels with a time-domain resolvable paths of L = 8. The other param-

eters were the same as that for Fig. 2.2. In comparison with Fig. 2.2, first, owing to the

diversity gain provided by the frequency-selective fading channels, the DyMC-CDMA sys-

tems with K = 1 and K = 200 are capable of achieving the near-Gaussian channel BER

performance. Furthermore, the BER performance of the system with K = 200 is near the

same as the single-user BER performance. Second, when K = 1000, the BER perfor-

mance is promising and much better than the corresponding BER performance in Fig. 2.2,

when SNR is lower than about 15 dB. However, when SNR is higher than 15 dB, the

BER performance presents error-floor, due to the un-compressible multiuser interference.

Additionally, when the number of potential UEs is K = 1500, the performance becomes

worse than that in Fig. 2.2. This is because in DyMC-CDMA systems, the subcarriers

experience frequency-selective fading, which modifies the binary spreading sequences in

frequency-domain, making it difficult to suppress the multiuser interference by the MMSE

operation.
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Figure 2.6: BER versus average SNR per bit performance of DyMC-CDMA (N =

32) systems with MMSE-SICD, when dense spreading sequences are employed.

In correspondence to Fig. 2.4, in Fig. 2.7, the BER performance of the DyMC-CDMA

systems over the frequency-selective fading with L = 8 is compared, when MMSE-MUD

and MMSE-SICD are employed, respectively. Again, significant performance gain can

be attained by the MMSE-SICD over the MMSE-MUD. Therefore, MMSE-SICD is also

robust for operation in the DyMC-CDMA systems, where the number of potential UEs

and the number of active UEs are time-variant. Furthermore, when communicating over

frequency-selective fading channels, the MMSE-SICD is efficienct to achieve the fre-

quency diversity gain.

Fig. 2.8 is in correspondence to Fig. 2.5 to investigate the effect of the activation prob-

ability on the achievable BER performance of the DyMC-CDMA systems, when commu-

nicating over the frequency-selective fading channels with L = 8. First, when comparing

the BER performance in Fig. 2.5 with the corresponding one in Fig. 2.8, we can observe

that for a given activation probability, the BER performance of the DyMC-CDMA is better

(much better at relatively low activation probability) that that of DyDS-CDMA, owing to

the fact that DyMC-CDMA can exploit the frequency diversity. However, when the acti-

vation probability is too high, making the multiuser interference dominate the achievable
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Figure 2.7: Comparison of BER versus average SNR per bit performance of the

DyMC-CDMA systems employing the MMSE-MUD and MMSE-SICD, when

dense spreading sequences are employed.

BER performance, both schemes attain a similar BER performance at a given activation

probability. Second, while the BER performance of the DyDS-CDMA with MMSE-SID

is robust to the varying activation probability, the BER performance of the DyMC-CDMA

continuously increases, as the activation probability increases. Again, as shown in Fig. 2.8,

the MMSE-SICD significantly outperforms the MMSE-MUD.

Fig. 2.9 shows the effect of the frequency-selectivity of fading channels on the BER

performance of DyMC-CDMA systems, when the MMSE-SICD is employed. As shown

in Fig. 2.9, we set the number of time-domain resolvable paths to be L = 1, 2, 4, 8, 16, re-

flecting that the channel is from flat fading (L = 1) to very frequency selective (L = 16).

Again, the results demonstrate that the MMSE-SICD is effective for attaining the fre-

quency diversity gain. When the channel becomes more frequency selective, the BER

performance continuously improves, when L increases from L = 1 to L = 16. Specif-

ically, when L = 1, the BER performance is the same as that of the single-user BPSK

scheme communicating over flat Rayleigh fading channels, as shown in Fig. 2.2. In con-

trast, when L = 16, the BER performance is near the BER of the BPSK over Gaussian
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Figure 2.8: Effect of UEs’ activities on the BER versus average SNR per bit per-

formance of the DyMC-CDMA systems employing MMSE-SICD or the conven-

tional MMSE-MUD, when dense spreading sequences are employed.

channels [143].

All the above results are obtained by assuming that the spreading sequences in DyDS-

CDMA and DyMC-CDMA systems are binary random sequences with elements +1 and

−1, which are hence dense sequences. In the following two figures, we specifically inves-

tigate the effect of the sparsity of spreading sequences on the achievable BER performance

of the DyMC-CDMA systems over frequency-selective fading channels. For this purpose,

we assume that the spreading sequences are also random sequences but with elements of

+1, −1 and 0. When an element is 0, it means that the UE does not send information

on the corresponding subcarrier. For the sparsity, it is reflected by the average weight,

expressed as d̄x, of the spreading sequences. Note that, to avoid that a spreading sequence

in simulation has all 0 elements, the minimum weight of a spreading sequence is set to 1.

As shown in Fig. 2.10, when the average sparsity d̄x varies from d̄x = 3 to d̄x =

18, the achieved BER performance improves at a given SNR. In more detail, when the

average sparsity is as low as d̄x = 3, we can observe that significant diversity gain is

lost in comparison with the available diversity gain of L = 8, as seen in Fig. 2.9. The
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Figure 2.9: BER versus average SNR per bit performance of DyMC-CDMA sys-

tems with MMSE-SICD, when dense spreading sequences are employed.

reason behind is that when d̄x = 3, the average number of subcarriers activated by a

UE is also 3 in average. Hence, the diversity order achievable is only about 3, instead

of L = 8. Furthermore, at d̄x = 3, the probability that two or more UEs share the

same subcarriers increases, which results in that the multiuser interference is unable to be

effectively mitigated by the MMSE-SICD. Consequently, as seen in Fig. 2.10, the curve

of d̄x = 3 appears error-floor in relatively high SNR region. In contrast, when the average

sparsity is relatively high, such as, d̄x > 9, each UE sends its information on more than

L = 8 subcarriers. Correspondingly, nearly all available diversity gain can be achieved,

which can be seen by comparing the results in Fig. 2.10 with the curve of L = 8 in Fig. 2.9.

From the comparison, we observe that the BER performance of the DyMC-CDMA systems

with dense spreading can be achieved by applying the sparse spreading sequences with

the average sparsity about half of the spreading sequences’ length. Specifically for the

example considered, d̄x ≥ 15 allows to achieve nearly the same BER performance of the

DyMC-CDMA systems with dense spreading.

Finally, by setting d̄x = 15 and 18, respectively, in Fig. 2.11, we investigate the BER

performance of the DyMC-CDMA systems, when the number of potential UEs are K =
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Figure 2.10: BER versus average SNR per bit performance of DyMC-CDMA

systems with MMSE-SICD, when sparse spreading sequences are employed.

200, 1000 and 2000, respectively, in order to demonstrate whether the MMSE-SICD is

efficient for operation in the DyMC-CDMA systems with sparse spreading. By comparing

the results in Fig. 2.11 and that in Fig. 2.6, we can readily realize that the MMSE-SICD

is similarly effective for operation in the DyMC-CDMA systems with sparse spreading.

As seen in the two figures, the BER performance achieved in both the dense and sparse

spreading cases is similar for K = 200 or K = 1000.

2.5 Chapter Conclusions

In this chapter, we have presented a DyDS-CDMA and a DyMC-CDMA schemes for sup-

porting ultra-densely deployed wireless IoT devices, which result in that each BS may need

to support a big number of potential UEs, while each of the devices activates to transmit

during a time-slot with a small probability. Hence, for a given time-slot, the active UEs and

the number of active UEs simultaneously transmit information is dynamic. In this chapter,

we assume the ideal identification of active UEs and also assume the ideal channel esti-

mation of the active UEs, with the to demonstrate the potentially achievable performance
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Figure 2.11: BER versus average SNR per bit performance of DyMC-CDMA

systems with MMSE-SICD, when sparse spreading sequences are employed.

of the low-complexity MMSE-SICD operated in the DyDS-CDMA and DyMC-CDMA

systems. Therefore, based on the Monte-Carlo simulations, we investigated the BER per-

formance of the DyDS-CDMA and DyMC-CDMA systems employing the MMSE-SICD,

when different settings are considered. Furthermore, the MMSE-SICD is compared with

the MMSE-MUD from different perspectives. Our studies demonstrate that the MMSE-

SICD is a high-efficiency and robust detection scheme for operation in the DyDS-CDMA

and DyMC-CDMA systems operated in mGFMA environments. It is capable of achiev-

ing near single-user BER performance, even when the average number of active UEs per

time-slot reaches two times of N of the systems’ degrees-of-freedom. With the aid of

the MMSE-SICD, the DyMC-CDMA system employing dense spreading is feasible for

achieving the frequency diversity, when communicating over frequency-selective fading

channels. In order to reduce the PAPR problem, we have also studied the BER perfor-

mance of the DyMC-CDMA systems employing the MMSE-SICD. It is shown that the

near-full gain of frequency diversity may only be achievable, when the sparsity of spread-

ing sequences is sufficiently high. Specifically, a typical sparsity for achieving the near-full

gain of frequency diversity is the one that is slightly larger than the number of time-domain

resolvable paths of the frequency-selective fading channels.
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Owing to the above-mentioned merits of DyMC-CDMA and MMSE-SICD, in the fol-

lowing chapters, the DyMC-CDMA will be suggested for the implementation of mGFMA,

and the MMSE-SICD will be employed for the signal detection in mGFMA systems.



Chapter 3
Channel Estimation and User Activity
Identification in Massive Grant-Free
Multiple-Access

GFMA allows to significantly reduce the overhead in comparison with granted multiple-

access. However, information detection in GFMA is challenging, as it has to be executed

along with the activity detection of UEs and channel estimation. In this chapter, we study

the channel estimation and propose the active UE identification (AUI) algorithms for the

mGFMA systems. For the above mentioned purposes, the channel estimation is studied

from several aspects by assuming different levels of knowledge to the access point, and

based on which five AUI approaches are proposed. We study the performance of channel

estimation, the statistics of estimated channels, and the performance of AUI algorithms.

Our studies show that the proposed approaches are capable of circumventing some of

the shortcomings of the existing techniques designed based on compressive sensing and

message passing algorithms. They are robust for use in the mGFMA systems where the

active UEs and the number of them are highly dynamic.

3.1 Introduction

So far, in wireless communications systems, a wireless terminal connecting its AP or base-

station (BS) is typically achieved via GMA, where a handshaking process between wireless

terminal and AP is operated to fulfill the functions of multiple-access. GMA has shown

its advantages in the conventional wireless communication systems, from the 1G to 4G,

where traffic is mainly activated by human being. However, starting from the 5G, wireless

systems are rendered to be device (machine) centric, with the traffic initialized by numer-
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ous devices (machines). As the result, the characteristics of the traffic in 5G and beyond

wireless systems will be very different from that in the 1G to 4G wireless systems. In these

future wireless systems, there may be various types of sporadic short-burst traffic gener-

ated, for example, by sensing nodes and IoT devices of many kinds, nodes for sending

control commands, etc. [12]. Explicitly, transmission of these kinds of sporadic short-

burst traffic using the traditional communications schemes, such as that in 4G LTE/LTE-A

systems, is often inefficient, due to their reliance on a huge amount of overhead for signal-

ing and control, yielding an extremely high overhead-to-data ratio as well as introducing

extra communication latency.

In order to improve the efficiency of the transmission of sporadic traffic, save the over-

head for corresponding network maintenance and to support massive connectivity, in re-

cent years, various GFMA schemes have been proposed and investigated [6, 62, 144]. In

GFMA, a UE, which may be a device, machine, etc., becomes active randomly to trans-

mit data to its AP simply under the control of an assigned random access protocol, such

as slotted ALOHA, without requesting for a grant from its AP [74, 144]. GFMA has the

advantage of greatly saving the resources that are otherwise consumed for the extra over-

head. However, it also imposes new challenges for AP to recover the data sent by active

UEs. This becomes even more significant when GFMA is employed to support massive

connectivity, forming the mGFMA. In mGFMA, each UE usually only has a small proba-

bility to become active at a time(-slot). Hence, active UEs as well as the number of them

are highly dynamic, both of which are usually not a-priori knowledge to AP. Therefore, in

order to recover the data sent by active UEs, an AP has to accomplish first the functions of

active UE identification and the channel estimation for active UEs, or implement them in

joint ways [6, 61, 118, 129, 137, 145–147].

The investigation of UAI in random-access scenarios was already started along with

the conventional CDMA systems [148–151]. Recently, it has drawn a lot of research at-

tention with the mGFMA in IoT networks and in particular, in mMTC, where UAI is often

jointly implemented with channel estimation and even data detection [61, 129, 145, 146].

As above-mentioned, in mGFMA systems, the number of potential UEs supported by

an AP is usually very big, up to thousands, tens of thousands or even more, while each

UE only has a very small probability that is normally less than 10% to become active.

Consequently, when without the knowledge of active UEs, signal detection in mGFMA

is naturally a CS relied signal recovery problem. Owing to this, in recent years, vari-

ous CS-based joint UAI, channel estimation and/or MUD algorithms have been developed

and investigated in the context of mGFMA, when various sparsity structures are consid-

ered [61,116,118,137,140,146,152–161]. While CS-based methods have some outstand-

ing merits as claimed in references, they are not appearing for operation in the mGFMA
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systems where the number of active UEs is large [162]. This is because the recovery

performance of CS-based methods is limited by the restricted isometric property (RIP)

condition [163]. This condition implies that the number of active UEs (sparsity) should

be significantly lower than the number of resource units (subcarriers, antennas, spreading

factor, time-slots, etc.) of an AP, as seen, e.g., in [145, 146, 153, 155, 156, 158], and hence

resulting in a low efficiency of resource usage. Furthermore, in mGFMA systems, the

number of active UEs is highly dynamic, making the systems often real-time overload1

and substantially violating the RIP condition. For example, for an AP using N = 32

resource units to support K = 1000 potential UEs of each having an independent activa-

tion probability of 5%, the overloading probability is P(KA > N) = 0.9963. Explicitly,

the CS-based methods are not suitable for operation in this mGFMA system, and other

efficient approaches are required for the UAI, channel estimation and data detection.

In mGFMA, the number of potential UEs is usually significantly higher than the num-

ber of orthogonal resource units. Hence, mGFMA is generally implemented in the prin-

ciples of non-orthogonal multiple-access (NOMA). In the NOMA family, sparse-code

multiple-access (SCMA) is an attractive scheme, which allows to support the multiple-

access of significant overloading but still achieve near optimum performance by exploiting

the message-passing algorithm (MPA)-assisted detection [164]. Hence, SCMA has been

introduced to GFMA, e.g., in [18,62,147,165,166]. Specifically in [94], the joint UE activ-

ity detection and data detection were considered, when assuming that all UEs (both active

and inactive) transmit the headers for activity detection, while the channels of all UEs are

known to BS. Considering an uplink GFMA, [147] investigated the MPA-assisted receiver

design for joint channel estimation and signal detection. In [165], a faster-than-Nyquist

(FTN) singling SCMA was proposed to support uplink GFMA, where only very small sys-

tems (6 UEs supported by 4 resource units) were investigated. In [166], the authors consid-

ered the MPA-assisted information detection in a rate-less SCMA-based GFMA systems,

when assuming a constant number of active UEs, and that receiver has ideal knowledge

about the active users and their channels. While one UE employs only one codebook in

the above-mentioned references, the authors in [18] proposed to map a UE’s consecutive

data symbols to the codewords chosen from different codebooks, which achieves code

diversity. In general, SCMA achieves the near optimum performance depending on the

MPA-assisted detection operated on good factor graphs. However, when we consider the

mGFMA system in which an AP supports a huge number of potential UEs, while it has no

1Here, real-time overload means that the number of active UEs is more than the number of resource units.

By contrast, the overload claimed in some references considering CS-assisted GFMA means that the number

of potential UEs is higher than the number of resource units. In the rest of this chapter, we mean overload

the real-time overload, unless otherwise notified.
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knowledge of active UEs, the number of them and of their channels, maintaining good fac-

tor graphs in such highly dynamic communication scenarios is extremely challenging. In

addition to the SCMA-based GFMA, a semi-grant-free power-domain NOMA based trans-

mission scheme was proposed in [167], where one UE is operated as a primary UE under a

conventional grant-based protocol, while the other secondary UEs opportunistically access

the same channel in grant-free manner.

In addition to the above-mentioned, GFMA and mGFMA have also been investigated

by invoking other techniques. In [116], the authors enhanced the CS-based approach by

proposing a greedy algorithm relied on the maximum a-posteriori probability (MAP) cri-

terion, which performs UE identification and data detection jointly by exploiting the a-

posteriori probabilities of each other. An expectation propagation based joint UE activity

detection and channel estimation scheme was introduced in [168] for achieving GFMA in

mMTC networks. In [169], the authors investigated the preamble design for UE detection

and channel estimation, so as to attain a high success rate in grant-free random access in

massive multiple-input multiple-output (MIMO) systems. The authors of [170] compared

two types of preamble structures on the performance of grant-free random access massive

MIMO. Similarly, GFMA in massive MIMO systems was considered in [171], where a

fixed number of UEs access one of the available channels and orthogonal preambles are

transmitted for UE activity identification and channel estimation. Furthermore, the GFMA

massive MIMO scenario was considered in [172], where the number of active UEs are first

estimated, followed by the joint detection of active UE and their messages with the aid of a

so-called ensemble independent component analysis decoding algorithm, without relying

on explicit channel estimation. Reed-muller sequences were introduced in [173] to aid UE

identification and channel estimation in the GFMA systems supporting massive connec-

tivity. In [174], UE activity and signal detection were studied with mGFMA by designing

preambles and exploiting the interleave-division multiple access (IDMA), when user sig-

nals are randomly and asynchronously transmitted. More recently, machine-learning (ML)

approaches have been introduced to mGFMA [155, 161, 175–177]. To be more specific,

the authors of [155] investigated the joint UE activity detection and channel estimation by

formulating them as a block sparse signal recovery problem, which is solved by a block

sparse Bayesian learning (BSBL) algorithm. In [175], the asynchronous sparse Bayesian

learning algorithm was adopted for channel estimation while the support vector machine

method was applied for UE activity detection, when the number of active users is assumed

to be known to BS. To alleviate the convergence problem of the BSBL algorithm [155],

a deep neural network-aided message passing-based block sparse Bayesian learning algo-

rithm was proposed in [176] to achieve the joint UE activity detection and channel estima-

tion in mGFMA scenarios. The joint optimization of finite-alphabet spreading sequences
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and multi-user detection were addressed in [177], where deep learning principle was in-

troduced for the design of both encoder and decoder. Furthermore, in [161], deep learning

was used to predict the activities of UEs, followed by a CS algorithm for data detection

and further enhancing the UE activity identification. While nearly all the above-mentioned

works considered the grant-free access techniques at physical layer, the authors of [178]

investigated the GFMA from the MAC layer perspective in the IoT systems with sporadic

traffic.

In this chapter, we investigate the channel estimation and UAI in the mGFMA scenario,

where the number of potential UEs may be much bigger than the number of resource units

and each UE has a small activation probability. Hence, the active UEs and the number of

them are highly dynamic over time, and the number of active UEs at a time may be higher

than the number of resource units. Specifically, we first consider the channel estimation

of both active and inactive UEs in the principle of minimum mean-square error (MMSE),

when AP is assumed to have the ideal knowledge, no knowledge or the partial knowledge

of active UEs. In our channel estimation, AP will make the best use of the information

provided by the transmission of pilot symbols and data (payload) symbols. Our studies

show that any added knowledge about the active UEs can be exploited to enhance the

reliability of channel estimation. This is reflected in practical mGFMA systems that the

activity patterns of UEs may be correlated or one active UE may have several packets

to transmit in continuous time-slots. Then, this kind of information can be exploited to

enhance the reliability of channel estimation in mGFMA systems.

Following the channel estimation, we then study the statistical properties of the esti-

mated channels of both active and inactive UEs. We explicitly show that the estimated

channels of active UEs usually have relatively good mean-square error (MSE) perfor-

mance, which improves for example, with the increase of signal-to-noise ratio (SNR), of

the number of pilot symbols, etc. By contrast, as there are no transmissions from inactive

UEs, the estimated channels for them always have a high MSE resulted from noise and the

interference from active UEs, which is also insensitive to the investment of resources, such

as, transmit power, pilot symbols, etc. We also study the distribution of estimated chan-

nel’s power, showing that the estimated channel’s power of active UEs is usually much

higher than that of inactive UEs, when SNR is in the range of practical applications.

Finally, by exploiting the channel estimation and the characteristics of estimated chan-

nels, we propose a range of UAI algorithms, in which some of them make use of the esti-

mated channel’s knowledge, while the others carry out joint channel estimation and UAI.

In detail, the first one is the simplest threshold-based UAI (TB-UAI) algorithm, which

however makes a sharp trade-off between false-alarm and miss identification, and is also
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Table 3.1: Comparison of this work with the related works in literature.

Contributions System Channel Random Dynamic Priori Real CE UAI Joint

model model No. of UEs UEs knowledge overloading method UAI&CE

This work SP-NOMA Correlated FS X X X X CE X

[179] SP-NOMA Uncorrelated FS X UEs’ channels CS

[180] SP-NOMA Uncorrelated FS X X∗ UEs’ channels CS

[137] mMIMO Flat X X X CS X

[181] SP-NOMA Correlated FS X UEs’ channels CS

[182] SP-NOMA Flat X∗ X CS UAI&CE&DD

[183] SP-NOMA Correlated FS X X UEs’ channels X MAP

[184] mMIMO flat X X X CS X

[185] mMIMO flat X X No. of UEs CS/learning UAI&CE&DD

[186] SP-NOMA Uncorrelated FS X UEs’ channels CS

[187] SP-NOMA Uncorrelated FS X X X CS/learning X

[94] SCMA Gaussian∗∗ X∗∗∗ X∗∗∗ UEs’ channels X MP

[188] SCMA Correlated FS X X No. of UEs X X ML/MP

Notes: X: yes; Empty: no; SP: spreading; FS: frequency-selective fading; CE: channel estimation; mMIMO: massive or multiuser MIMO; DD: data detection; MAP: maximum a

posteriori probability; MP: message-passing; AMP: approximate MP; ∗ : temporally correlated user activity; ML: maximum likelihood; ∗∗ : Gaussian channel for performance; ∗∗∗ :
All UEs transmit headers for UAI;

hard to set an appropriate threshold. The second one is referred to as the eigen-analysis

enhanced UAI (EAE-UAI) algorithm, which exploits the eigen-analysis to improve the

performance of UAI. In order to further enhance the performance of UAI, we then propose

two successive interference cancellation (SIC) assisted UAI algorithms, namely, the SIC-

UAIa and SIC-UAIb, which improve the performance of channel estimation and UAI with

the aid of the SIC strategies as proposed. Finally, as above-mentioned, any added knowl-

edge about active UEs can be exploited to enhance the performance of channel estimation.

Correspondingly, we propose an auto-correlation matrix evolving UAI (AME-UAI) algo-

rithm, which makes use of the earlier identified UEs to improve the channel estimation and

UAI of the UEs processed later. In the above proposed five algorithms, the last three carry

out joint channel estimation and UAI. Furthermore, in comparison with the TB-UAI, the

other four algorithms make no or little trade-off between false-alarm and miss, in addition

to the performance enhancement.

The novelty of our work is compared with the related works in Table 3.1 and the main

contributions can be summarized as follows:

• Channel estimation in dynamic multicarrier mGFMA (MC-mGFMA) scenarios is

investigated, where the channels of both active and inactive UEs are estimated in

MMSE principle, when AP is assumed to employ ideal knowledge, no knowledge

or partial knowledge about the active UEs. It is shown that the proposed chan-

nel estimation approaches are robust to the dynamics existing in mGFMA systems.

Furthermore, we show that the added knowledge about active UEs results in the

enhanced reliability of channel estimation.

• The statistical properties of the estimated channels of both active and inactive UEs

are analyzed, showing that the estimated channels of active UEs and that of inactive
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UEs have distinct features, which can be exploited for distinguishing active UEs

from inactive UEs.

• Hence, based on the studies of channel estimation and of the characteristics of esti-

mated channels, five UAI algorithms are proposed for MC-mGFMA and their per-

formance is studied. These UAI algorithms are listed as follows:

1. Threshold-based UAI (TB-UAI);

2. Eigen-analysis enhanced UAI (EAE-UAI);

3. Successive interference cancellation (SIC) assisted UAIa (SIC-UAIa);

4. Successive interference cancellation (SIC) assisted UAIb (SIC-UAIb);

5. Auto-correlation matrix evolving UAI (AME-UAI).

These UAI algorithms have their distinctive characteristics and present different

performance-complexity trade-off. They however have one common feature that all

of them are suitable for operation in the mGFMA systems having highly dynamic

UEs in terms of the active UEs and the number of them.

The remainder of this chapter is organized as follows. In Section 3.2, we describe

the mGFMA system model. Section 3.3 focuses on channel estimation, while Section 3.4

demonstrates the performance of channel estimation. Furthermore, in Section 3.5, we

study the statistical properties of the channels estimated by the approaches in Section 3.3.

The UAI algorithms and their complexity are addressed in Section 3.6, and the perfor-

mance of UAI is demonstrated in Section 3.7. Finally, the conclusions from our research

are presented in Section 3.8.

3.2 Description of mGFMA System

We consider a single-cell multicarrier mGFMA (MC-mGFMA) system in the principles of

the frequency-domain spread orthogonal frequency-division multiple-access (OFDMA) [127].

The MC-mGFMA system has N subcarriers and one access point (AP) (or base-station

(BS)) located at the center of the cell. Since most mGFMA systems are motivated for

low-rate IoT services, we assume only the binary phase shift keying (BPSK) modulation,

although it can be readily extended to other quadrature amplitude modulations (QAM)

modulation. In this MC-mGFMA system, the signature code assigned to the kth UE

equipment (UE) is expressed as ccck = [ck(0), ck(1), . . . , ck(N − 1)]T, where ck(n) ∈
{+1/

√
N,−1/

√
N}, making ‖ccck‖2 = 1. The signature ccck of UE k serves for both
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Figure 3.1: Transmitter schematic diagram for GFMA systems.

the spreading of transmitted signal, and the identity (ID) of UE k for AP to identify its

activity during the UE identification stage. If UE k is identified to be active, ccck is also used

by AP to demodulate the signals received from UE k during the data detection stage. In

our considered MC-mGFMA system, IFFT/FFT techniques are introduced for subcarrier

modulation/demodulation, and a sufficiently long cyclic prefix (CP) is added to avoid the

interference between adjacent OFDM blocks. We assume that the MC-mGFMA system

supports K potential UEs, which are mobile IoT devices randomly distributed in the cell.

In massive connectivity application scenarios, we have K >> N. We assume that the

system implements a synchronization sub-system, which enables all UEs to synchronize

with the AP’s clock. A UE has a small probability of Pa to become active, and an active

UE starts transmission at the beginning of the next time-slot. One frame is transmitted per

time-slot by each active UE. We express KA the number of active UEs during a time-slot,

which is a random variable having its average satisfying K̄A << K, as the result of a small

Pa.

3.2.1 Transmitter Modeling

The transmitter schematic diagram for the considered MC-mGFMA system is shown in

Fig. 3.1, which follows the typical framework of OFDM transmitter [127]. To transmit a

binary bit bk ∈ {+1,−1}, it is first spread by ccck, the products of which are transformed to

the time-domain using IFFT. Then, after the parallel-to-serial (P/S) conversion, adding CP,

transmitter (TX) filtering, and carrier modulation, the resultant signal is transmitted from

the transmit antenna of UE k.

In our study, we assume block-based fading, i.e., the fading of a UE maintains con-

stant over a frame duration, but is independent frame-by-frame. Let the frame length be

expressed as NF = NI + NP + NL, where NI denotes the number of information bits per

frame, and NP is the number of pilot bits per frame, inserted for channel estimation and

UE identification. Furthermore, at the beginning of each frame, NL bits are transmitted
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Figure 3.2: Frame structure for operation of proposed MC-mGFMA.
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Figure 3.3: Receiver schematic diagram of MC-mGFMA system.

to represent the data block length indicator (DBLI), which tells AP the number of frames

left to transmit. In our studies, we typically set NL = 2. Hence, once a UE becomes

active, the maximum number of frames to transmit in one session is 4, which is informed

to AP by setting the DBLI bits in the first frame to ‘11’. This value reduces following the

sequence ‘10’, ‘01’, until ‘00’ in the 4th frame. Then, no matter whether this UE finishes

transmission, it stops transmission. If it has more data to transmit, it activates again and

starts a new transmission session. The benefit of employing the DBLI is that the AP does

not need to identify every active UE, but those newly activating ones, which enhances the

performance of active UE identification, channel estimation and hence of signal detection.

For illustration, the frame arrangement in our MC-mGFMA is depicted in Fig. 3.2. As

seen in Fig. 3.2, there is also a ‘STC’ domain, which is used to make the transmissions by

different UEs be approximately synchronized at AP, as done in LTE/LTE-A systems [189].

To implement this, each UE measures the transmission delay between it and its AP based

on the pilot signals sent from the AP. Then, the UE can adjust its starting transmission

point in the ‘STC’ region, so that the transmissions from different UEs are approximately

synchronized when they arrive at the AP.

3.2.2 Representation of Received Signal

The receiver block diagram for the MC-mGFMA system is shown in Fig. 3.3, which fol-

lows the receiving principles of OFDM until after the FFT operation. Hence, after the FFT
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operation, the received signals from N subcarriers can be represented as

yyym =
K

∑
k=1

CCCkFFFΨΨΨkhhhkb(m)
k Ik + nnnm, (3.1)

=
KA

∑
k′=1

CCCk′FFFΨΨΨk′hhhk′b
(m)
k′ + nnnm, m = 1, 2, . . . , NF (3.2)

where b(m)
k is the mth bit in a frame sent from UE k, yyym and nnnm are N-length observation

and noise vectors, respectively, and nnnm follows the complex Gaussian distribution with

zero mean and covariance matrix σ2IIIN, expressed as CN (0, σ2IIIN), where σ2 = 1/SNR

with SNR being the signal-to-noise ratio (SNR). In (3.1), CCCk = diag{ck(0), ck(1), · · · , ck(N − 1)},
hhhk = [hk,0, · · · , hk,L−1]

T is the time-domain channel impulse response (CIR) of UE k,

where hk,l obeys the distribution CN (0, 1/L). Correspondingly, the frequency-domain

CIRs, i.e., the fading gains of N subcarriers are given by FFFΨΨΨkhhhk [127], where FFF is the

(N × N) FFT matrix, and ΨΨΨk is the mapping matrix constituted by the first L columns of

the identity matrix IIIN. Furthermore, in (3.1), Ik is the activity indicator, Ik = 1 or Ik = 0

indicates that UE k is active or inactive. For simplicity, let in (3.1) AAAk = CCCkFFFΨΨΨk, which

is a (N × L) matrix. Then, we have

yyym =
K

∑
k=1

IkAAAkhhhkb(m)
k + nnnm, (3.3)

=
KA

∑
k′=1

AAAk′hhhk′b
(m)
k′ + nnnm, m = 1, 2, . . . , NF (3.4)

Specifically for the pilots p = 1, 2, · · · , NP, the received signals can be expressed as

yyyp =
K

∑
k=1

b(p)
k IkAAAkhhhk + nnnp

=
KA

∑
k′=1

b(p)
k′ AAAk′hhhk′ + nnnp, p = 1, 2, · · · , NP (3.5)

Let us collect the observations from the NP pilot symbols to a vector yyy = [yyyT
1 , yyyT

2 , · · · , yyyT
NP
]T.

Then, it can be expressed as

yyy =
K

∑
k=1

Ik(pppk ⊗ AAAk)hhhk + nnn (3.6)

=
KA

∑
k′=1

(pppk′ ⊗ AAAk′)hhhk′ + nnn (3.7)

where pppk = [b(1)k , b(2)k , · · · , b(NP)
k ]T contains the NP pilot bits of UE k,⊗ is the Kronecker

product, while nnn is a NNP-length vector following the distribution of CN (0, σ2IIINNP).
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3.3 Channel Estimation

In this section, we consider the channel estimation in the considered MC-mGFMA system,

all based on the minimum mean-square error (MMSE) [190]. First, we derive the channel

estimator by assuming that AP knows ideally the active UEs. Then, the channel estimator

is obtained by assuming that AP has no knowledge at all about the active UEs. Explicitly,

both the above cases are extreme cases. In practice, the situation may be that AP knows

some active UEs, e.g., from the DBLI bits sent by UEs, as we considered in Section 3.2.1,

but does not know the newly activated UEs. Therefore, we also consider the channel

estimation in this more practical scenario. Note that we choose MMSE instead of zero-

forcing (ZF) (or least square) estimator, as ZF estimator requires to invert a large sized

matrix that is dependent on the number of potential UEs, and it is well-known that MMSE

estimator achieves better estimation performance than ZF estimator.

3.3.1 Channel Estimation with Active UEs Known to AP - Estimator-

K

When AP knows all the active UEs, the channels of these UEs can be estimated based on

(3.7). Hence, when MMSE-relied estimation is employed, the estimated channel of the ith

active UE can be expressed as

ĥhhi = WWWH
i yyy, i = 1, 2, · · · , KA (3.8)

where according to the principles of MMSE, the weight matrix WWW i can be expressed

as [190]

WWW i = RRR−1
y RRRy,i (3.9)

In (3.9), RRRy is the autocorrelation matrix of yyy, which can be derived from (3.7) as

RRRy = E
[
yyyyyyH

]
= E

( KA

∑
k′=1

(pppk′ ⊗ AAAk′)hhhk′ + nnn

)(
KA

∑
l′=1

(pppl′ ⊗ AAAl′)hhhl′ + nnn

)H


=
KA

∑
k′=1

(pppk′ ⊗ AAAk′)E
[
hhhk′hhhH

k′

]
(pppk′ ⊗ AAAk′)

H + σ2IIINP N (3.10)

With the aid of the relationships of (AAA ⊗ BBB)H = AAAH ⊗ BBBH and (AAA ⊗ BBB)(CCC ⊗ DDD) =

ACACAC⊗ BDBDBD [191], we can derive that if long-term average cross many frames is imagined,
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we have E
[
hhhk′hhhH

k′
]
= IIIL/L, and (3.10) can be simplified to

RRRy =
KA

∑
k′=1

(
pppk′pppH

k′ ⊗
AAAk′AAAH

k′

L

)
+ σ2IIINP N (3.11)

By contrast, if only one frame is considered, hhhk′ is a constant vector. In this case, RRRy has

the form of

RRRy =
KA

∑
k′=1

(
pppk′pppH

k′ ⊗ AAAk′hhhk′hhhH
k′AAA

H
k′

)
+ σ2IIINP N (3.12)

However, in MC-mGFMA systems, this RRRy is inaccessible to the AP, as it is unable to

construct it by exploiting the available knowledge about the UEs, while it is also incapable

of estimating it using the received signals of one frame. By contrast, the AP is able to

construct the RRRy in (3.11), as it knows the pilot symbols and the spreading codes of the

active UEs.

In (3.9), RRRy,i is the cross-correlation matrix between yyy and hhhi, which can be shown to

be

RRRy,i =
1
L
(pppi ⊗ AAAi) (3.13)

Consequently, upon substituting (3.11) and (3.13) into (3.9), the weight matrix for estimat-

ing the ith UE’s channel is given by

WWW i =

[
KA

∑
k′=1

(
pppk′pppH

k′ ⊗ AAAk′AAAH
k′

)
+ σ2IIINP N

]−1

(pppi ⊗ AAAi)/L

=

[
KA

∑
k′=1

(
pppk′pppH

k′ ⊗ AAAk′AAAH
k′

)
+ Lσ2IIINP N

]−1

(pppi ⊗ AAAi) (3.14)

Similarly, if (3.12) is considered, we have

WWW i =

[
KA

∑
k′=1

(
pppk′pppH

k′ ⊗ AAAk′hhhk′hhhH
k′AAA

H
k′

)
+ σ2IIINP N

]−1

× (pppi ⊗ AAAi)/L (3.15)

Note that although (3.15) is not implementable, it is insightful for deriving the other esti-

mators, as shown in our forthcoming discourses. Furthermore, from (3.11) we can deduce

that the (N × N) diagonal sub-matrices of RRRy are given by

RRRy(n, n) =RRRa

=
KA

∑
k′=1

AAAk′AAAH
k′

L
+ σ2IIIN, n = 1, 2, . . . , NP (3.16)
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By contrast, from (3.12) we can know that these diagonal sub-matrices are

RRRa =
KA

∑
k′=1

AAAk′hhhk′hhhH
k′AAA

H
k′ + σ2IIIN,

n = 1, 2, . . . , NP (3.17)

These results will be useful later.

The MSE of the channel estimation for an active UE can be derived as

MSE(A) =E
[
‖hhhi −WWWH

i yyy‖2
]

=Tr
(

IIIL/L−RRRH
yhi

WWW i

)
=1− Tr

(
RRRH

y,iWWW i

)
(3.18)

If the AP mistakenly estimates the channel of a UE that is actually not active, the

AP can still form WWW i in the form of (3.14). Correspondingly, the MSE of the channel

estimation for an inactive UE is

MSE(Ā) =E
[
‖ −WWWH

i yyy‖2
]

=Tr
(

WWWH
i RRRyWWW i

)
(3.19)

Later in Section 3.6, we will investigate the statistics of estimated channels conditioned

on that a UE is active or inactive. This statistical information will then be exploited for

active UE identification.

Finally, we note that the MMSE estimator is a biased estimator [190]. In order to obtain

an unbiased estimation of hhhi, after the MMSE estimation, we can let

ĥhhi = QQQiWWWH
i yyy, i = 1, 2, · · · , KA (3.20)

where QQQi is applied to achieve the unbiased estimation, making the estimated channel sat-

isfy E[ĥhhi] = hhhi. Therefore, when substituting (3.7) into the above equation and completing

the expectation, we can obtain

QQQi =
(

WWWH
i (pppi ⊗ AAAi)

)−1
(3.21)

3.3.2 Channel Estimation with Active UEs Unknown to AP - Estimator-

uK

In contrast to the extreme case that AP knows ideally the active UEs, another extreme case

in MC-mGFMA is that AP only knows there are K potential UEs, but does not know the
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active UEs and even the number of active UEs KA. In this case, first, AP has to treat the

data sent from different UEs as independent identically distributed (iid) random variables,

and use E[pppk′pppH
k′ ] to replace pppk′pppH

k′ in (3.12), where

E[pppk′pppH
k′ ] = IIINP (3.22)

When applying this result to (3.12), we obtain

RRRy =
KA

∑
k′=1

(
IIINP ⊗ AAAk′hhhk′hhhH

k′AAA
H
k′

)
+ σ2IIINP N

=

(
IIINP ⊗

[
KA

∑
k′=1

AAAk′hhhk′hhhH
k′AAA

H
k′ + σ2IIIN

])
= (IIINP ⊗RRRa) (3.23)

where RRRa from (3.17) is substituted. Note that in (3.23), KA is still unknown to AP, which

will be addressed later in this subsection.

When AP attempts to estimate the channel of UE i, it can use the related information

(spreading code and its pilot symbols) to construct the cross-correlation matrix RRRy,i of

(3.13). Consequently, AP can form the weight matrix WWW i as

WWW i = RRR−1
y RRRyhi

= (IIINP ⊗RRRa)
−1 (pppi ⊗ AAAi)/L

=
(

IIINP ⊗RRR−1
a

)
(pppi ⊗ AAAi)/L

=
(

pppi ⊗RRR−1
a AAAi/L

)
(3.24)

Let us express WWW i as

WWW i =
[
WWWT

i,1,WWWT
i,2, · · · ,WWWT

i,Np

]T
(3.25)

Then, it can be readily shown that

WWW i,p = b(p)
i RRR−1

a AAAi/L, p = 1, 2, . . . , NP (3.26)

Furthermore, when substituting (3.25) into (3.8), we obtain

ĥhh
′
i = WWWH

i yyy =
NP

∑
p=1

WWWH
i,pyyyp =

NP

∑
p=1

hhh(p)
i (3.27)

where

ĥhh
(p)
i = WWWH

i,pyyyp, p = 1, 2, . . . , NP (3.28)
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which can be shown is the MMSE-based estimation of hhhi using only the signals related to

the pth pilot symbol.

Therefore, due to the application of (3.22), the estimation of (3.27) does not directly

provide an estimate for hhhi in MMSE sense. Instead, each component of ĥhh
(p)
i , as seen in

(3.28), is the MMSE estimation of hhhi based on the observation yyyp corresponding to the

pth pilot symbol. In other words, (3.27) is the sum of the NP estimates to hhhi based on the

NP pilot symbols. Hence, in order to obtain an unbiased estimate to hhhi, we can form the

estimation as

ĥhhi =
1

NP

NP

∑
p=1

QQQ(p)
i WWWH

i,pyyyp =
1

NP

NP

∑
p=1

QQQ(p)
i ĥhh

(p)
i (3.29)

where, explicitly, the factor 1/NP takes account of the average over NP pilots, while QQQ(p)
i

is for obtaining the unbiased estimation of hhhi based on the pth pilot symbol, which can be

found to be

QQQ(p)
i =

(
WWWH

i,pb(p)
i AAAi

)−1

=
(

AAAH
i RRR−1

a AAAi/L
)−1

, i = 1, 2, . . . , NP (3.30)

From (3.27) and (3.29) we can conceive that when the AP does not know the active

UEs, it has to first carry out the symbol-based channel estimation, and then average the

estimates obtained from the NP pilot symbols to give the final estimation. Furthermore,

while AP knows b(p)
i from the pilot sequences of UEs and it can also construct AAAi from

the UEs’ spreading sequences, AP has to know RRRa, in order to compute WWW i,p of (3.26) to

fulfill the channel estimation based on (3.29). However, AP does not have the knowledge

about the active UEs and even the number of them, RRRa is unable to be constructed using

the knowledge available to AP, but has to be obtained from alternative approaches. In this

chapter, we propose to estimate RRRa from the received signals as

R̂RRa ≈
1

NF

NF

∑
n=1

yyynyyyH
n (3.31)

The above equation implies that RRRa can be estimated by making use of all the signals

received within a frame-duration, which is beneficial to lessening the effect of transmitted

data. When applying (3.4) into the above equation, we obtain an approximation of

R̂RRa ≈
KA

∑
k′=1

AAAk′hhhk′hhhH
k′AAA

H
k′ + σ2IIIN (3.32)

the righthand side of which is exactly the RRRa of (3.17).

Hence and in summary, for AP to estimate the ith UE’s channel when it has no knowl-

edge about the active UEs, the AP first uses all the received signals over one frame to
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RRRy =



RRRa ∑
k∈K̄A

b(1)k b(2)k
AAAkAAAH

k
L

· · · ∑
k∈K̄A

b(1)k b(NP)
k

AAAkAAAH
k

L

∑
k∈K̄A

b(2)k b(1)k
AAAkAAAH

k
L

RRRa · · · ∑
k∈K̄A

b(2)k b(NP)
k

AAAkAAAH
k

L
...

... . . . ...

∑
k∈K̄A

b(NP)
k b(1)k

AAAkAAAH
k

L ∑
k∈K̄A

b(NP)
k b(2)k

AAAkAAAH
k

L
· · · RRRa


(3.33)

estimate RRRa based on (3.31). Then, it constructs AAAi using the spreading sequence assigned

to UE i. Furthermore, with the above and the pilots of UE i, AP forms the weight matrices

based on (3.26) and QQQ(p)
i ’s based on (3.30). Finally, the channel of UE i is estimated based

on (3.29).

3.3.3 Channel Estimation with Active UEs Partially Known to AP -

Estimator-pK

In the previous two subsections, we have considered two extreme cases. Specially in

Subsection 3.3.1, it is assumed that AP has ideal knowledge about active UEs, which

should yield the upper-bound estimation performance. By contract, in 3.3.2, AP is assumed

to have no knowledge about active UEs, which results in the worst estimation performance.

In practical mGFMA systems, the operational condition may be more like that AP knows

in part the active UEs, as the result that some UEs have more than one frame to send, as

indicated to AP by the DBLI bits. However, AP does not know the newly activated UEs,

whose activities need to be identified.

Therefore, if AP knows some UEs as a-priori, this information can be exploited to

improve the performance of channel estimation in MC-mGFMA systems. Specifically, we

can construct RRRy in the form of (3.11) or (3.12) as follows.

First, AP estimates for RRRa using (3.31). Then, AP constructs AAAk for all the active UEs

known to AP. With the aid of this information and the pilot symbols, AP is capable of

constructing a RRRy as shown on the top of the next page.

In (3.33), K̄A is the set of active UEs known to AP.

The cross-correlation matrices for all UEs are available to AP, which are the same as

(3.13). Consequently, the AP can construct the weight matrices WWW i as (3.9), and finally,
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estimate the channels of UEs in the same form as (3.20).

3.3.4 Discussion

The above-considered three channel estimation schemes are all in the principle of MMSE.

Hence, all of them have relatively low-complexity for practical implementation. However,

the Estimator-K and Estimator-pK need to invert a relatively large size matrix (autocorre-

lation matrix), they have higher complexity than the Estimator-uK. Nevertheless, during

one time-slot, the autocorrelation matrix is only required to be inverted once, and then can

be used for the channel estimation of all UEs2. Therefore, its contribution to the overall

complexity should be insignificant.

In terms of the delay introduced by channel estimation, if K UEs’ channels are esti-

mated successively, the delay is proportional to K. However, from the principles of these

estimators, we can readily know that all the three estimators can be implemented in par-

allel, i.e., all the K UEs’ channels can be simultaneously estimated, once the inverse of

the autocorrelation matrix is computed. In this way, the delay of channel estimation is

independent of the number of UEs involved.

3.4 Performance of Channel Estimation

In this section, we provide some results to demonstrate the performance of the respective

channel estimation schemes considered in the above section. The observations from them

will be exploited for UAI in Section 3.6.

In Figs.3.4a and 3.4b, we show the snapshots of the MMSE-based channel estimation

considered in Section 3.3. In our demonstrations, we assume a MC-mGFMA system with

N = 16 subcarriers and supporting KA = K = 1 or 8 active UEs known to AP. The frame

length is set to NF = 128, in which Np = 8 pilots are used for channel estimation. We

assume the frequency-selective fading channels with L = 2 or 4. Furthermore for Fig.3.4a,

we assume that the channel is estimated using the symbol-based estimator of (3.29), while

for Fig.3.4b, the channel is estimated by the block-based estimator of (3.20). From the

results we can have the following observations. First, when the channel becomes more

frequency selective resulted from L being changed from L = 2 to L = 4, the subcarrier

channels become less correlated, or the channel is more variant in the frequency domain.

Second, when the number of UEs is increased from KA = 1 to KA = 8, the symbol-based

estimator shows slight performance degradation as the result of multiuser interference. By

2Also, this autocorrelation matrix and its inverse can be used for the data detection of active UEs
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(a) Symbol-based channel estimation of (3.29).
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(b) Block-based channel estimation of (3.20).

Figure 3.4: Snapshots of estimated channels.
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contrast, the block-based estimator demonstrates that in both cases, the estimated channels

are close to the actual ones. The reason behind is that when N = 16 and Np = 8,

the symbol-based estimator has only N = 16 degrees of freedom, while the block-based

estimator has NNp = 128 degrees of freedom available for channel estimation. Third,

by comparing Fig.3.4a with Fig.3.4b, we can explicitly see that the block-based estimator

achieves more accurate estimation than the symbol-based estimator. Hence, once AP has

some knowledge about active UEs, it can be exploited for improving the performance of

channel estimation. This implies that among the three channel estimators, Estimator-K

should outperform both Estimator-pK and Estimator-uK, while Estimator-pK outperforms

Estimator-uK, as shown below.

In Section 3.3.1, we discussed that when the auto-correlation matrix RRRa is estimated

using (3.32), and RRRy is constructed based on the estimated RRRa, the channels would be

invoked in these autocorrelation matrices. However and ideally, it is desirable that these

auto-correlation matrices are free from the channels to be estimated, as seen in (3.11). In

Fig 3.5a and Fig. 3.5b, the impact of the invoked channels on the estimation performance

is demonstrated. From both figures we can find that the auto-correlation matrix including

the channels to be estimated only yields slight performance loss, in comparison to the

auto-correlation matrix free from channels. Since the performance loss is insignificant,

the estimated RRRa is valid for application. Figs. 3.5a and 3.5b show that the MSE of the

estimated channels for inactive UEs is usually very high and furthermore, does not change

much with the increase of SNR. There will be more discussion about it in association with

following figures.

In Fig.3.6, we investigate the MSE performance of the channel estimation for both ac-

tive and inactive UEs, when AP either has ideal knowledge about active UEs (Fig.3.6a) or

has no knowledge about active UEs (Fig. 3.6b) and hence, the channel estimation follows

the principles in Section 3.3.2. The parameters used in our studies are detailed with the

figures. From the results of Fig.3.6 we can observe that for inactive UEs, their channels

are always estimated with very high MSE. This is because in this case, the receiver at AP

can only estimate interference and noise, due to the fact that there are no signals transmit-

ted by inactive UEs. By contrast, if the channel estimation is for an active UE, the MSE

presents to reduce as SNR increases. Specifically, when the Estimator-K is considered, as

shown in Fig.3.6a, the MSE performance is very promising due to the simultaneous use

of all the NP = 32 pilots for channel estimation. As SNR increases, even for the case

of KA = 48, the MSE performance converges to that of a single active UE. The reason

behind is that there are in total NP × N = 32 × 32 = 1024 degrees of freedom used

for channel estimation, which is significantly larger than KA · L = 48× 4 = 192 of the

number of variables estimated. Furthermore, as shown in Fig.3.6a, in the low SNR region,
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(a) Estimator-K.

(b) Estimator-uK.

Figure 3.5: MSE performance of channel Estimator-K and Estimator-uK, when

channel is invoked or not invoked in auto-correlation matrix.
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Figure 3.6: MSE performance of channel Estimator-K and Estimator-uK for both

active and inactive UEs.
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Figure 3.7: MSE performance of channel Estimator-pK for both active and inac-

tive UEs.

the MSE performance slightly degrades, as the number of active UEs increases.

By contrast, as shown in Fig.3.6b for Estimator-uK, as only the symbol-based channel

estimator can be implemented, multiuser interference imposes a big effect on the MSE

performance and the MSE performance significantly degrades, when the number of active

UEs increases. The reason behind this observation is that the channel from each UE has

L = 4 variables to be estimated. However, corresponding to one symbol, there are only

N = 32 observations (degrees-of-freedom). Hence, when there is one more active UE,

there are 4 extra variables to be estimated, which is a relatively big number with respect to

N = 32 and hence, significant performance degradation is observed, as shown in Fig.3.6b.

Furthermore, this can explain why the MSE performance corresponding to KA = 8 is very

poor. In this case, there are in total KA · L = 32 variables to be estimated based on N = 32

observations per symbol.

When comparing Fig.3.6b with Fig.3.6a, a very important observation can be derived,

i.e., the MSE performance shown in Fig.3.6a is much better than that in Fig.3.6b in the case

of KA > 1. Furthermore, as shown in Fig. 3.6a, the MSE performance of the considered

cases converges, if SNR is sufficiently high. These observations imply that whenever there

is some information about the activity of UEs available, this information may be exploited

for improving the performance of channel estimation. This is the fundamental for the
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Estimator-pK.

Therefore, Fig. 3.7 shows the MSE performance of channel estimation, when AP has

partial knowledge of the active UEs. In the figure, KA(known) = 1 or 3 means that the

AP knows 1 or 3 active UEs, while the other UEs become active independently with the

activation probability shown in the figure. As seen in the figure, the MSE performance

degrades, as the activation probability per UE increases, resulting in an increase of active

UEs in average. For a given activation probability, when the number of active UEs is

changed from KA + 1 to KA + 3, the MSE performance only slightly degrades, as AP can

make use of the Estimator-pK. Again, for the inactive UEs, the MSE of channel estimation

is very high.

3.5 Statistics of Estimated Channels

In the above section, we have considered the channel estimation in MC-mGFMA systems.

In order to achieve reliable signal detection of UEs, it is essential for the AP receiver to

know which UEs are active. Before we detail the UE activity identification (UAI) schemes,

let us first have a look of the statistical properties of the estimated channels corresponding

to the active and inactive UEs.

Following the above section, the time-domain CIR of the ith UE is hhhi, which is assumed

to have L taps. After the MMSE-assisted channel estimation in Section 3.3, the estimate

to hhhi can be written as

ĥhhi =

{
hhhi + nnni, if UE i is active

nnn′i, if UE i is inactive
(3.34)

where nnni is the channel estimation error of an active UE, which can be Gaussian approxi-

mated with a PDF of CN
(
000, σ2

1 IIIL
)
, where σ2

1 is the variance of channel estimation error.

By contrast, nnn′i is the estimate to an inactive UE, which can also be approximated to have

the Gaussian distribution with a PDF of CN
(
000, σ2

0 IIIL
)
, where σ2

0 may be different from

σ2
1 .

Let us now consider the statistics of |ĥhhi|2 on the condition that UE i is either active

or inactive. First, when UE i is active, the elements of ĥhhi are iid complex Gaussian ran-

dom variables, each of which has zero mean and a variance of 1/L + σ2
1 , when Rayleigh

fading channels are assumed, and when all component paths have the same power of 1/L.

Therefore, |ĥhhi|2 obeys the centre χ2-distributions with 2L degrees of freedom, and the PDF
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Figure 3.8: PDFs of |ĥhhi|2 on condition that UE i is active (Ii = 1) or inactive

(Ii = 0), when channels are estimated based on the assumption that AP has no

knowledge about the active UEs.

is [192]

f|ĥhhi|2(yyy|Ii = 1, KA) =
1

(L− 1)!(1/L + σ2
1 (KA))L yyyL−1

× exp

(
− yyy

1/L + σ2
1 (KA)

)
, y ≥ 0 (3.35)

where we explicitly show that σ2
1 (KA) is related to the number of active UEs. By contrast,

when the ith UE is inactive, it can be shown that |ĥhhi|2 follows the centre χ2-distribution of

f|ĥhhi|2(yyy|Ii = 0, KA) =
1

(L− 1)!σ2L
0 (KA)

yyyL−1

× exp

(
− yyy

σ2
0 (KA)

)
, y ≥ 0 (3.36)

Both (3.35) and (3.36) are central χ2-distributions. For given KA, we in general have

1/L + σ2
1 (KA) > σ2

0 (KA). Hence, from the properties of χ2-distribution we can know

that the |ĥhhi|2 in (3.35) corresponding to active UE is usually larger than that in (3.36)

corresponding to inactive UE, as shown below.

Below are some exemplified PDFs obtained from simulations, which are shown in

Figs. 3.8 - 3.12, when different settings and assumptions are considered. Note that, the
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Figure 3.9: PDFs of |ĥhhi|2 on condition that UE i is active (Ii = 1) or inactive

(Ii = 0), when channels are estimated based on the assumption that AP has no

knowledge about the active UEs.

PDFs of |ĥhhi|2 on condition that UE i is active or inactive can be directly computed from

(3.35) or (3.36), if we know σ2
1 or σ2

0 . However, these variances need to be obtained from

simulations. Therefore, we directly generate the PDFs from simulations. Specifically, in

Figs. 3.8 - 3.10, the PDFs are obtained under the assumption that AP has no knowledge

about the active UEs, corresponding to the channel estimation in Section 3.3.2. By con-

trast, in Figs. 3.11 and 3.12, the AP is assumed to know all the active UEs, which can

hence jointly exploit the NP pilot symbols used for channel estimation, as shown in Sec-

tion 3.3.1. From these PDFs, we can explicitly conceive that if a UE is active, its estimated

channel’s magnitude, i.e., |ĥhhi|2, usually has a relatively high value. By contrast, if a UE

is inactive, the value of |ĥhhi|2 is usually low and distributed mainly in the region close to

zero. This distribution information of |ĥhhi|2 on condition of UE i being active or inactive

can be exploited for the design of the UAI schemes with low-complexity, as shown in the

next section.

3.6 Active UE Identification

In this section, we propose a range of UAI schemes designed based on the signal and
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Figure 3.10: PDFs of |ĥhhi|2 on condition that UE i is active (Ii = 1) or inactive

(Ii = 0), when channels are estimated based on the assumption that AP has no

knowledge about the active UEs.

channel characteristics, and with the aid of the channel estimation approaches considered

in Section 3.3. Furthermore, the UAI schemes are analyzed by considering some practical

issues, and their performance is investigated and compared in Section 3.7. Let us first

consider the threshold-based UAI (TB-UAI).

3.6.1 Threshold-Based UAI (TB-UAI)

From the statistical analysis in Section 3.5 we can explicitly see that |ĥhhi|2 usually has a

small value, if UE i is inactive. By contrast, if UE i is active, |ĥhhi|2 usually takes a relatively

big value. These observations straightforwardly imply the threshold-based UAI approach.

Let Th be a threshold set for the TB-UAI. Then, when given the estimated CIR of |ĥhhi|2
for UE i, the TB-UAI identifies the ith UE’s state according to

Îi =

{
1, if |ĥhhi|2 ≥ Th,

0, else
(3.37)

where Îi = 1 or 0 represents UE i is active or inactive.

Note that in the case that AP has no knowledge about the active UEs, the channels used

in (3.37) are estimated using the Estimator-uK. If AP can obtain partial information about
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Figure 3.11: PDFs of |ĥhhi|2 on condition that UE i is active (Ii = 1) or inactive

(Ii = 0), when channels are estimated based on the assumption that AP knows

the active UEs.

the active UEs, the channels in (3.37) can be estimated by the Estimator-pK.

With the aid of the statistics of |ĥhhi|2 given in Section 3.5, we can derive the miss and

false-alarm probabilities of the TB-UAI as follows. Firstly, the miss probability condi-

tioned on KA active UEs is

PM(KA) =
∫ Th

0
(yyy|Ii = 1, KA)dy (3.38)

Upon substituting (3.35) into (3.38) and completing the integration, we obtain

PM(KA) =1− exp

(
− LTh

1 + Lσ2
1 (KA)

)

×
L−1

∑
k=0

1
k!

(
LTh

1 + Lσ2
1 (KA)

)k

(3.39)

Secondly, the false-alarm probability conditioned on KA active UEs is

PF(KA) =
∫ ∞

Th

f|ĥhhi|2(yyy|Ii = 0, KA)dy (3.40)

When substituting (3.36) into (3.40), we obtain

PF(KA) = exp

(
− Th

σ2
0 (KA)

)
L−1

∑
k=0

1
k!

(
Th

σ2
0 (KA)

)k

(3.41)
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Figure 3.12: PDFs of |ĥhhi|2 on condition that UE i is active (Ii = 1) or inactive

(Ii = 0), when channels are estimated based on the assumption that AP knows

the active UEs.

Furthermore, the probability of erroneous identification conditioned on KA active UEs

is

PE(KA) = PaPM(KA) + (1− Pa)PF(KA) (3.42)

where Pa is the activation probability of a UE.

Assume that UEs become active independently and all have the same activation prob-

ability Pa. Then, the number of active UEs KA at a given time-slot obeys the binomial

distribution with the probability mass function (PMF) of

P(KA) =

(
K

KA

)
PKA

a (1− Pa)
K−KA ,

KA = 0, 1, · · · , K (3.43)

With the aid of this distribution, the average miss probability is then given by

PM =
K

∑
KA=1

P(KA)PM(KA) (3.44)

and the average false-alarm probability is

PF =
K−1

∑
KA=0

P(KA)PF(KA) (3.45)
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Finally, the average probability of erroneous identification is

PE = PaPM + (1− Pa)PF (3.46)

From (3.39) and (3.41) we can know that when Th increases, the false-alarm probability

of (3.41) reduces, while the miss probability of (3.39) increases. Therefore, the miss and

false-alarm probabilities make trade-off against each other. In the TB-UAI algorithm, the

threshold Th may be chosen according to different requirements. First, it may be selected to

minimize the erroneous probability PE. Second, according to the practical requirement, it

is sometimes desirable to have a small false-alarm probability guaranteed. In this case, the

threshold can be chosen as Th = arg
T′h

{max{PF(T′h)} ≤ P̄F}, where P̄F is the maximum

false-alarm probability allowed. Furthermore, in some applications, the miss of an active

UE may be critical, but some false-alarms can be tolerated. In this case, the threshold can

be selected to protect a small miss probability. Hence, when given a small miss probability

of P̄M, the threshold is chosen as Th = arg
T′h

{max{PM(T′h)} ≤ P̄M}.

However, in any of the above cases, determining an appropriate threshold for attaining

near-optimum performance is highly challenging, as the distribution of |ĥhhi|2 is dependent

on KA of the number of active UEs, or on their activation probability Pa, if the average miss

and false-alarm probabilities are considered, as shown in Figs. 3.8 - 3.12, and the formulas

above in Section 3.6.1. In order to circumvent these challenges, below we propose the

alternative UAI schemes, which are not dependent on threshold setting.

3.6.2 Eigen-Analysis Enhanced UAI (EAE-UAI)

It is well-known that with the aid of eigen-analysis, an AP may acquire the information

about the number of active transmissions [148]. This approach can be introduced to en-

hance the UAI in our MC-mGFMA system, if the activation probability per UE is small

or/and the number of potential UEs is small, resulting in that the number of active UEs has

a small probability to exceed N. In detail, the EAE-UAI is operated as follows.

First, the AP estimates the autocorrelation matrix based on (3.31), which is a (N× N)

symmetric matrix. Since this autocorrelation matrix is estimated by exploiting both pilot

symbols and data symbols, i.e., exploiting all the NF symbols in one frame, it should

be sufficiently accurate for deriving the observations via the eigen-analysis on it. Then,

according to the matrix theory [193], R̂RRa can be decomposed into a signal subspace having

the dimensions of KA if KA ≤ N, or of N if KA ≥ N. Let us execute the eigenvalue
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decomposition (EVD) on R̂RRa, we obtain

R̂RRa = UUUsΛΛΛsUUUH
s +UUUnΛΛΛnUUUH

n (3.47)

where UUUs gives the signal subspace and has KA columns, if KA ≤ N, while UUUn is the

noise (or null) subspace having (N − KA) columns, also if KA < N. Hence, if KA < N,

both ΛΛΛs and ΛΛΛn in (3.47) are diagonal matrices with real eigenvalues being the diagonal

elements. Let us assume that the N eigenvalues of R̂RRa are expressed as λ1, λ2, · · · , λN.

Then, according to the principles of EVD, ideally, we have

λ1 ≥ λ2 ≥ · · · ≥ λKA > λKA+1 = λKA+2 = · · · = λN (3.48)

where λ1, λ2, · · · , λKA are the eigenvalues corresponding to the signal subspace or the

diagonal elements in ΛΛΛs. By contrast, λKA+1, · · · , λN are the eigenvalues corresponding

to the noise subspace, which form the diagonal elements of ΛΛΛn. Furthermore, according

to the principles of EVD, these eigenvalues can be expressed as

λi =

{
PSi + σ2, if i ≤ KA

σ2, if i > KA
(3.49)

where PSi is the signal power of the ith component, and σ2 is the noise power.

Hence, with the aid of the eigenvalues obtained from the EVD of R̂RRa, the number of

active UEs KA can be identified as the number of eigenvalues whose values are larger than

the noise power.

In practice, the border between the signal and noise subspaces might not be very clear.

In this case, AP may set a threshold based on the noise variance. Any eigenvalues larger

than the threshold are identified as corresponding to the active UEs.

Once AP has the knowledge of KA of the number of active UEs, the EAE-UAI can

identify the KA active UEs as the KA UEs, whose channel magnitudes |ĥhhi|2 are the largest

among the K UEs in the system. In summary, the EAE-UAI algorithm is stated Algo-

rithm 3.6.2.

Algorithm 3.6.2 Eigen-analysis enhanced active UE identification (EAE-UAI)
algorithm.

Input: yyy1, yyy2, · · · , yyyNF , {ccck}, pilot symbols.

1. Estimate the autocorrelation matrix using (3.31).

2. Derive KA using the EVD in Section 3.6.2.
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3. Estimate the channels of K UEs following Section 3.3 (using either Estimator-uK

or Estimator-pK, depending on the UE activity knowledge available to AP).

4. Order the channels according to their power as

|ĥhh1′ |2 ≥ |ĥhh2′ |2 ≥ · · · ≥ |ĥhhK′ |2, and identify the number of active UEs KA.

5. UE Identification:

if KA < N, the UEs corresponding to the KA largest terms of |ĥhhK′ |2 are identi-

fied as the active UEs;

if KA ≥ N, then the threshold-based UAI is used to determine the active UEs.

Note that at the last step concerning KA ≥ N, the AP may simply select a few of UEs

more than N as the active UEs, under the constraint that the outage probability of

Pout =
K

∑
k=KA+1

(
K
k

)
Pk

a (1− Pa)
K−k (3.50)

is below a pre-set value, such as, 10−5. In this way, the probability that active UEs are

missed is small. However, there are possibly some false-alarm UEs, which should be

readily removed after their data detection and with the aid of the pilots and/or error de-

tection/correction. This is because signal detection of a false-alarm UE should have a bit

error rate (BER) of about 0.5, which can be easily identified by the embedded error control

coding [194]. Alternatively, the AP receiver can compare the detected pilot symbols of a

UE with its actual pilots, and rendering the UE a false-alarm, if the number of erroneously

detected pilot symbols is higher than a given value.

Nevertheless, whenever there is a false-alarm UE, the AP receiver has to contribute

time and complexity for its signal detection. In order to further improve the UAI in our

MC-mGFMA, below we propose the successive interference cancellation assisted UAI

(SIC-UAI).

3.6.3 Successive Interference Cancellation Assisted UAI (SIC-UAI)

One of the motivations for introducing SIC to the UAI process is to solve the problem

that in the EVE-UAI, AP is unable to know the number of active UEs, when KA ≥ N,

and hence not sure when the identification process should end. Below we propose two

SIC-UAI approaches for achieving the UAI objective. With the first approach, EVD is

employed to determine whether the UAI process is completed. The second approach does
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not make use of EVD, instead, it implements pilot detection to check when the UAI process

can be finished.

The fundamental principle behind the two approaches is the involvement of the SIC

operation. In detail, whenever a UE is identified to be active and its channel is estimated

with relatively high reliability, its contribution to the received signals corresponding to

pilots can then be removed with the aid of the information available to the AP. In this way,

the following UEs’ identification would become more reliable.

Specifically, let the ith UE be the identified active UE, and its estimated channel be

expressed as ĥhhi. Since AP knows the pilot symbols sent by UE i and also the spreading

codes of UE i, based on (3.5), AP can carry out the SIC as

yyy′p = yyyp − b(p)
i AAAiĥhhi, p = 1, 2, · · · , NP (3.51)

After the SIC of UE i, the autocorrelation matrix can be updated for the identification of

other active UEs.

Initially, let AP use the pilot signals to estimate the autocorrelation matrix as

R̂RRa =
1

NP

NP

∑
p=1

yyypyyyH
p (3.52)

Note that, in contrast to (3.31) that can use all the received signals of a frame to estimate

RRRa, here only pilot symbols are used, due to the employment of SIC. Therefore, we can be

conceived that this kind of algorithms require that there are sufficient number of pilots, so

that RRRa can be estimated with sufficient accuracy. As our simulation results show, having

16 pilots is already capable of providing reasonable estimation.

Note furthermore that if there are active UEs known to AP, their contributions to ob-

servations can be cancelled by, first, estimating their channels based on the principles of

Estimator-pK, and then, carrying out the interference cancellation based on (3.51). In the

following two SIC-UAI schemes, we assume that all active UEs are unknown to AP, and

therefore, only the Estimator-uK can be implemented.

With the above preparations, the SIC-UAI algorithms corresponding to the two ap-

proaches can now be stated as Algorithm 3.6.3.a and Algorithm 3.6.3.b, respectively, as

follows. In these algorithms, I is the maximum number of iterations allowed, which can

be set by assuming a small outage probability, such as 10−6, base on (3.50).

Algorithm 3.6.3.a Successive Interference Cancellation Assisted UE
Identification - Approach-a (SIC-UAIa).
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Initialization: yyy(0)1 = yyy1, yyy(0)2 = yyy2, · · ·yyy(0)NP
= yyyNP ;

{AAAk}, {bk,n}, I.

Compute autocorrelation matrix R̂RR
(0)
a using (3.52).

For i = 1, 2, . . . , I:

1. EVD on R̂(i−1)
a to obtain N eigenvalues, which are ordered in descending order

as λ1 ≥ λ2 ≥ · · · ≥ λN.

2. If it is identified that KA < N, active UEs are identified by following the EAE-

UAI algorithm. Then, UE identification finishes.

3. If KA > N active UEs are implied from the EVD, executing the following oper-

ations:

• Estimate the channels of the (K− i + 1) unidentified UEs;

• Find the UE with the maximum of |ĥhhi|2, expressed as

k′ = arg max
k
{|ĥhh1′ |2, |ĥhh2′ |2, · · · , |ĥhh(K−i+1)′ |2};

• Interference cancellation of UE k′ by following (3.51);

• Update: R̂RR
(i)
a = R̂RR

(i−1)
a − AAAk′ĥhhk′ĥhh

H
k′AAAH

k′ .

Outputs: Active UEs and their estimated channels.

Note that the SIC-UAIa algorithm may be extended by allowing to cancel several UE

signals simultaneously at Step 3). This will accelerate the identification process, but at the

cost of some performance loss.

The SIC-UAIa algorithm makes use of the properties of EVD to terminate the identifi-

cation process. However, if the number of pilots is insufficient, making the estimation of

RRRa noisy, EVD might not be able to provide a clear boundary between signals and noise.

This would degrade the UAI performance. Hence, we propose the SIC-UAI approach-b

(SIC-UAIb) as Algorithm 3.6.3.b, which does not invoke EVD. Instead, whenever a UE

is identified to be active, after its channel estimation, AP tries to detect the pilot symbols

sent by the UE. If the number of erroneously detected pilot symbols is below a threshold

value, such as 1/10 of the pilot symbols, the activity of the UE is confirmed. Otherwise,

if the error ratio is high, such as near 0.5, the UE is then rendered inactive.
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Algorithm 3.6.3.b Successive Interference Cancellation Assisted UE
Identification - Approach-b (SIC-UAIb).

Initialization: yyy(0)1 = yyy1, yyy(0)2 = yyy2, · · ·yyy(0)NP
= yyyNP ;

{AAAk}, {bk,n}, I.

Compute autocorrelation matrix R̂RR
(0)
a using (3.52), and

(
R̂RR
(0)
a
)−1.

For i = 1, 2, . . . , I:

1. Estimate the channels of the (K − i + 1) unidentified UEs, and find the most

reliable active UE as

k′ = arg max
k
{|ĥhh1′ |2, |ĥhh2′ |2, · · · , |ĥhh(K−i+1)′ |2}.

2. Use the estimated channel ĥhhk′ and R̂RR
(i−1)
a to form www(i−1)

k′ for detecting the NP

pilot symbols of UE k′:

• if the number of erroneous pilot symbols is higher than a preset threshold

NC, the UAI process finishes;

• if the number of erroneous pilot symbols is lower than or equal to NC, UE

k′ is identified as active, and execute the following operations:

a) Interference cancellation:

yyy(i)n = yyy(i−1)
n − bk′,nAAAk′ĥhhk′ , for n = 1, 2, · · · , NP;

b) Update: R̂RR
(i)
a = R̂RR

(i−1)
a − AAAk′ĥhhk′ĥhh

H
k′AAAH

k′ , and(
R̂RR
(i)
a
)−1

=
(
R̂RR
(i−1)
a

)−1
+

www(i−1)
k′

(
www(i−1)

k′
)H

1− ĥhh
H
k′AAAH

k′www
(i−1)
k′

c) Return 1).

Outputs: Active UEs and their estimated channels.

Note that, as shown in Algorithm 3.6.3.b, in Step 2), the SIC-UAIb algorithm detects

the most reliably identified UE. In MMSE detection principle, during the ith iteration, the

decision variables corresponding to the NP pilots can be formed as

zk′(n) =
(
www(i−1)

k′
)Hyyy(i−1)

n , n = 1, 2, . . . , NP (3.53)

where www(i−1)
k′ =

(
RRR(i−1)

a

)−1
AAAk′ĥhhk′ . Then, the decision is made as b̂k′,n = 1, if<{zk′(n)} >

0, and b̂k′,n = −1, otherwise.
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Note furthermore that at Step 2) when the most reliable UE k′ is cancelled from the

received signals, both the autocorrelation matrix and its inverse are updated. Here, the

inverse is obtained by applying the matrix inverse lemma on
(
R̂RR
(i−1)
a − AAAk′ĥhhk′ĥhh

H
k′AAAH

k′
)−1,

yielding (
R̂RR
(i)
a
)−1

=
(
R̂RR
(i−1)
a

)−1

+

(
RRR(i−1)

a

)−1
AAAk′ĥhhk′

[(
RRR(i−1)

a

)−1
AAAk′ĥhhk′

]H

1− ĥhh
H
k′AAAH

k′

(
RRR(i−1)

a

)−1
AAAk′ĥhhk′

(3.54)

Substituting www(i−1)
k′ =

(
RRR(i−1)

a

)−1
AAAk′ĥhhk′ into the above equation, we obtain the updating

formula in the algorithm. In this way, the algorithm only needs to compute the inverse of

autocorrelation matrix once, which allows to significantly reduce complexity.

Algorithm 3.6.3.b assumes that each iteration identifies only one UE, which results in

an UAI delay proportional to the actual number of active UEs. In order to shorten the UAI

process, several most reliable UEs can be simultaneously identified and processed during

one iteration. In this way, the UAI delay can be reduced, but at the cost of some perfor-

mance loss. Furthermore, in order to mitigate the performance loss as above-mentioned,

the number of UEs identified in one iteration can be set in an adaptive way. At first, it may

be set to a relatively large value, when the most reliable UEs can be easily identified. Then,

the number is gradually reduced to improve the reliability of identification of the relatively

weak UEs.

3.6.4 Auto-correlation Matrix Evolving UAI (AME-UAI)

As the channel estimation performance results in Section 3.4 suggest, whenever AP em-

ploys some knowledge about active UEs, this knowledge can be exploited by the Estimator-

pK to improve channel estimation. This property can also be exploited to enhance the

performance of UAI, yielding the AME-UAI algorithm, which is described as Algorithm

3.6.4.

Algorithm 3.6.4 Auto-correlation matrix evolving UAI (AME-UAI).
Initialization: yyy(0)1 = yyy1, yyy(0)2 = yyy2, · · ·yyy(0)NP

= yyyNP ;

{AAAk}, {bk,n}, I.

1) Compute autocorrelation matrix R̂RRa using (3.31); 2) Construct R̂RR
(0)
y of (3.33)

with R̂RRa being the diagonal elements and zero for all other elements; 3) Compute(
R̂RR
(0)
y
)−1.
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For i = 1, 2, . . . , I:

1. Estimate the channels of the (K − i + 1) unidentified UEs based on Estimator-

pK in Section 3.3.3, and find the most reliable active UE as

k′ = arg max
k
{|ĥhh1′ |2, |ĥhh2′ |2, · · · , |ĥhh(K−i+1)′ |2}.

2. Use the estimated channel ĥhhk′ and R̂RRa to form www(i−1)
k′ for detecting the NP pilot

symbols of UE k′:

• if the number of erroneous pilot symbols is higher than a preset threshold

NC, the UAI process finishes;

• if the number of erroneous pilot symbols is lower than or equal to NC, UE

k′ is identified as active. Then, execute the following operations:

a) Updating R̂RR
(i−1)
y to R̂RR

(i)
y following (3.33) by adding the non-diagonal

component contributed by UE k′;

b) Updating
(
R̂RR
(i−1)
y

)−1 to
(
R̂RR
(i)
y
)−1;

c) Return 1).

Outputs: Active UEs and their estimated channels.

As shown in Algorithm 3.6.4, it first estimates the auto-correlation matrix R̂RRa. Since

there is no interference cancellation operation, this estimation can exploit all the received

signals in one frame, including both the pilot signals and data carrying signals, i.e., R̂RRa can

be estimated based on (3.31). Based on R̂RRa, the initial auto-correlation matrix R̂RR
(0)
y con-

sidering all the NP pilots can be constructed, with R̂RRa being the diagonal block matrices,

while all the other elements being zero. Then, the Algorithm forwards to the UAI stage,

which iteratively identifies the active UEs and updates the auto-correlation matrix R̂RRy. In

detail, given R̂RR
(i−1)
y obtained at the (i− 1)-th iteration, the (K− i + 1) unidentified UEs’

channels are estimated by following the principles of Estimator-pK. The corresponding

weight matrix for the k-th unidentified UE is expressed as

WWWk =
(
R̂RR
(i−1)
y

)−1
(pppk ⊗ AAAk)/L (3.55)

Then, the UE has the highest reliability being an active UE is identified. Furthermore,

following the identification and with the aid of the estimated channels, the pilot symbols

of the identified UE are detected and compared with the pilots symbols of the UE. If the

number of errors is high, such as, close to 0.5, the UAI process can be rendered completed.
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Otherwise, if the number of errors is relatively low, and in favor of a positive identification,

the algorithm updates R̂RR
(i−1)
y to R̂RR

(i)
y , and prepares to forward to the next iteration.

3.6.5 Complexity Analysis and Discussion

Above five UAI algorithms have been proposed to carry out UAI (TB-UAI and EAE-UAI)

or jointly execute UAI and channel estimation (SIC-UAIa, SIC-UAIb and AME-UAI). In

this subsection, we analyze their complexity. In our analysis, we assume that estimating

the channel of one UE needs the computations expressed as Ce, so as to focus our attention

on the complexity of UAI schemes. Note that in practice, the channel estimation of all UEs

can be conducted in parallel, if latency is a critical consideration.

First, for the TB-UAI scheme, estimating K UEs channels requires KCe computations.

Then, computing |ĥhhi|2 for K UEs requires 2KL real multiplications and K(L− 1) real ad-

ditions. Finally, there are K comparisons required to compare with the threshold. Hence

in total, the number of operations required by the TB-UAI scheme is KCe + 3KL. Further-

more, we can be implied from Section 3.3 that Ce >> 3L. Hence, the complexity of the

TB-UAI scheme is determined by KCe.

Second, for the EAE-UAI algorithm, the autocorrelation matrix has been obtained dur-

ing the channel estimation stage. Based on the QR algorithm, the EVD algorithm has

a complexity of O(N3) [195]. Sorting the N eigenvalues using the quick-sort algo-

rithm [196] needs in average 2N ln N comparisons. Again, estimating K UEs channels

requires KCe computations, and computing |ĥhhi|2 of K UEs requires 2KL real multiplica-

tions and K(L− 1) real additions. Sorting the K number of |ĥhhi|2 needs in average 2K ln K

comparison. Hence in total, the complexity of the EAE-UAI algorithm is proportional to

KCe + N3 + 2N ln N + 3KL + 2K ln K.

Third, for the SIC-UAIa algorithm, let us assume that in average Ī SIC iterations are

implemented, and K >> I, due to the fact that the number of potential UEs is usually

significantly larger than the number of active UEs. Then, after ignoring those insignificant

operations, it can be shown that during these iterations, the complexity is proportional to

Ī
(
KCe + N3 + 2N2 + NL

)
. At the final iteration without SIC, the EAE-UAI algorithm

is operated, which has the complexity proportional to KCe + N3 + 2N ln N + 3KL +

2K ln K. Hence, the total number of operations is proportional to ( Ī + 1)KCe + ( Ī +

1)N3 + 2N ln N + 3KL + 2K ln K + 2 ĪN2 + ĪNL.

For the SIC-UAIb algorithm, again, we assume that the average number of iterations

is Ī, and K >> I. First, estimating the channels and finding the most reliable one need

KCe and K operations, respectively. Second, computing the weight vector www(i−1)
k′ needs
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Table 3.2: Complexity of UAI schemes in Chapter 3.
UAI

scheme

Complexity Characteristic Advantages Disadvantages

TB-UAI KCe Designed based on the distinct

properties of the estimated channels

for active and inactive UEs.

Identify directly.

EAE-UAI KCe + N3 + 2N ln N + 3KL +

2K ln K
Eigen-analysis is introduced to find

the number of active UEs during the

UAI process.

The eigenvalues obtained from the

EVD of R̂RRa , the number of active UEs

KA can be identified as the number

of eigenvalues whose values are larger

than the noise power.

AP is unable to know

the number of active

UEs, when KA ≥ N.

SIC-UAIa ( Ī + 1)KCe + ( Ī + 1)N3 + 2N ln N Whenever a UE is identified to be

active and its channel is estimated

with relatively high reliability, its

contribution to the received signals

corresponding to pilots can then be

removed with the aid of the infor-

mation available to the AP.

It makes use of the properties of EVD. If the number of pi-

lots is insufficient,

making the estima-

tion of RRRa noisy.

SIC-UAIb Ī (KCe + 2N(2N + L + NP)) Whenever a UE is identified to be

active and its channel is estimated

with relatively high reliability, its

contribution to the received signals

corresponding to pilots can then be

removed with the aid of the infor-

mation available to the AP.

The most reliable UEs can be easily

identified.

Each iteration identi-

fies only one UE.

AME-UAI Ī
(

KCe + N3 N3
P

)
When AP employs some knowl-

edge about active UEs, this knowl-

edge can be exploited by the

Estimator-pK to improve channel

estimation.

Since there is no interference cancella-

tion operation, this estimation can ex-

ploit all the received signals in one

frame, including both the pilot signals

and data carrying signals.

2N(N + L) multiplications and additions. Detecting NP pilots needs about 2NNP mul-

tiplications. Decision making, finding the number of errors and interference cancellation

are all insignificant, and their contribution to complexity can be ignored. Finally, since

AAAk′ĥhhk′ has been computed when computing www(i−1)
k′ , it can be shown that updating the au-

tocorrelation matrix needs about 2N2 operations. Hence, the complexity of the SIC-UAIb

algorithm is proportional to Ī (KCe + 2N(2N + L + NP)).

Finally for the AME-UAI algorithm, the complexity is without any doubt dominated

by the channel estimation and the inverse of R̂RR
(i)
y , which has the dimensions of (NNP ×

NNP). Hence, when assuming that the average number of iterations is Ī, the computation

amount of KCe for channel estimation per iteration, and the computation requirement of

µN3N3
P for the inverse of R̂RR

(i)
y , the total computations of AME-UAI is proportional to

Ī
(
KCe + N3N3

P
)
.

In summary, the complexity of the UAI schemes are listed in Table 3.2. Obviously, TB-

UAI algorithm has the lowest complexity. The complexity of SIC-UAIa algorithm is higher

than that of the EAE-UAI algorithm, as SIC-UAIa algorithm carries out SIC and several

EVD operations may be executed during one identification process. When comparing SIC-

UAIa with SIC-UAIb algorithms, SIC-UAIa algorithm needs to execute EVD, the number

of iterations required by SIC-UAIa algorithm is usually significantly less than that required

by SIC-UAIb algorithm. Finally, the AME-UAI has the highest complexity, as it needs a

similar number of iterations as the SIC-UAIb algorithm. Furthermore, SIC-UAIb only
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needs to update the matrix R̂(i−1)
a to R̂(i)

a , which is size (N× N) and can also be achieved

using the existing low-complexity algorithm. By contrast, in the AME-UAI algorithm,

we did not find an existing algorithm to efficiently update R̂(i−1)
a to R̂(i)

a , which has the

dimensions of (NNP × NNP).

3.7 Performance of Active UE Identification

In this section, the performance of the different UAI algorithms considered in the last

section is investigated. We emphasize both the miss and false-alarm probabilities.

In Figs. 3.13a and 3.13b, we demonstrate the probabilities of false-alarm and miss of

the TB-UAI algorithm, when a MC-mGFMA system with N = 16 subcarriers and sup-

ports K = 100 potential UEs of each having the activation probability of Pa = 0.05.

Furthermore, as shown in the figures, the frame length is NF = 256 bits, among which

NP = 16 pilots are used, and the frequency-selective fading channel has L = 2 paths. Ad-

ditionally, the thresholds are set to Th = σ2, 2σ2 or 3σ2, where σ2 = 1/SNR. The results

show that the miss probability increases and simultaneously, the false-alarm probability

reduces, as the threshold increases. This implies that there is a trade-off between the miss

and false-alarm probabilities, as shown in Fig. 3.14. Hence, when given a false-alarm (or

miss) probability, a suitable threshold may be found to minimize the miss (or false-alarm)

probability. However, near optimum threshold is hard to derive, as it is sensitive to the

SNR and in particular, to the number of active UEs, which is dynamic in mGFMA sys-

tems. The results in Figs. 3.13a and 3.13b also show that for a given Th = σ2, 2σ2 or 3σ2,

the false-alarm probability increases and the miss probability decreases, as SNR increases.

This can be explained with the aid of the statistics of estimated channels, for example, as

shown in Fig. 3.9. As shown in this figure, when SNR is changed from 10 dB to 30 dB,

the distributions do not appear significant differences. However, when SNR increases, the

threshold Th = σ2 = 1/SNR significantly reduces. Specifically, the threshold is reduced

from 0.1 to 0.001, when SNR is changed from 10 dB to 30 dB. Due to these effects, the

false-alarm probability increases and the miss probability decreases, when SNR increases.

In Fig. 3.15, we show the probabilities of false-alarm and miss generated by the EAE-

UAI algorithm, with the parameters as detailed with the figure. From the results we observe

that both the false-alarm and miss probabilities decrease, when SNR increases. This is the

result that the EVD in EAE-UAI algorithm allows more confident distinction between

signals and noise, when SNR becomes higher. Furthermore, as seen in Fig. 3.15, both the

false-alarm and miss probabilities reduce, when NP increases. This is because when NP

increases, a more accurate estimation to the autocorrelation matrix can be attained, which
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Figure 3.13: Probability of false-alarm and miss, when active UEs are identified

using the TB-UAI algorithm.
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Figure 3.14: Trade-off between the probabilities of false-alarm and miss resulted

by the TB-UAI algorithm.

in turn enhances the distinction between signals and noise.

In Fig.3.16, we depict the probabilities of false-alarm and miss yielded by the SIC-

UAIa algorithm, when it is operated with the MC-mGFMA systems with their parameters

as shown in the figures. For the SIC-UAIa algorithm, three operational cases are consid-

ered, which are: (a) the number of active UEs is known to AP; (b) the number of active

UEs is unknown to AP, or (c) the active UEs are partially known to AP. Hence in the case

of (a), the AP only needs to identify which are the active UEs. By contrast, in the case

of (b), the AP requires to identify both the number of active UEs and who they are. Fi-

nally, in the context of the case of (c), we assume that any newly activated UE at a time

has the probabilities of P1, P2, P3 and P4 to transmit 1, 2, 3, or 4 frames. We assume

that these probabilities obey the exponential distribution with Pi = Ce−αi, i = 1, 2, 3, 4,

where C = 0.641 and α = 0.4196. Hence, except the first frame, the AP knows a part

of active UEs during all the following frames, which can be exploited to enhance the UAI

performance, as analyzed previously in Section 3.6.

The results of Fig.3.16 validate the prediction for the performance of the SIC-UAIa

algorithm operated in the case of (c). The partial information about the active UEs can

be exploited to significantly enhance the performance of UAI. In general, the performance

of case (a) is better than that of case (c), and the performance of case (b) is the worst.
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Figure 3.15: Probability of false-alarm and miss, when active UEs are identified

using the EAE-UAI algorithm.
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Figure 3.16: Probabilities of false alarm and miss, when active UEs are identified

using the SIC-UAIa algorithm in the case: (a) the number of active UEs is known

to AP, (b) the number of active UEs is not known to AP, or (c) active UEs are

partially known to AP.
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However, as seen in Fig. 3.16a for the false-alarm probability, the performance in the cases

of (a) and (c) for K = 100 appears crossing. This is the result that the average number of

active UEs in the case of (c) is low, and it also has the partial information for the active

UEs (known who they are). By contrast, in the case of (a), AP only knows the number of

UEs, but not know who they are. Finally, as seen in Fig.3.16, all the performance curves

present error floor. This is because of channel estimation errors as well as the interference

cancellation resulted from incorrect UAI.

In Figs.3.17a and 3.17b, we demonstrate the probabilities of false alarm and miss,

respectively, generated by the SIC-UAIb algorithm, when AP has no knowledge about

both the active UEs and the number of active UEs. It is shown that when given the ratio of

NC/NP, transmitting more pilot symbols improve the performance of UAI. By contrast,

given the number of pilot symbols to NP = 32, if NC is reduced from 8 to 6, the miss

probability only slightly increases, while the false-alarm probability reduces significantly.

Hence, the performance trade-off (between false-alarm and miss) problem of the SIC-

UAIb algorithm is much less severer than that of the TB-UAI algorithm.

Finally, Figs.3.18a and 3.18b depict the false-alarm and miss probabilities of the MC-

mGFMA systems employing the AME-UAI algorithm, when the parameters are as shown

with the figure. Here we demonstrate the impact of the value of Nc on the false-alarm and

miss probabilities. Explicitly, as Nc increases, the false-alarm probability increases, while

the miss probability decreases. From the results we can be implied that Nc = NP/4 is a

reasonable value for practical operation. As shown in the figure, when Nc = 4 = NP/4,

the false-alarm probability is about 10−3 at the SNR of 20 dB. Simultaneously, at this SNR,

the miss probability is below 10−3. Again, the false-alarm probability is more sensitive to

the value of NC than the miss probability. However, the performance trade-off problem

is severer than that of the SIC-UAIb algorithm. In contrast to the TB-UAI algorithm, the

desired value of NC in the AME-UAI algorithm can be relatively easy to find, which can

be obtained such as based on numerical simulations.

3.8 Chapter Conclusions

We have investigated the joint channel estimation and UAI in MC-mGFMA systems. First,

the channel estimation is addressed by assuming that AP has the full knowledge, no knowl-

edge or the partial knowledge about active UEs. The studies allow us to reveal the fact that

any added knowledge about active UEs can be exploited for enhancing the channel esti-

mation and furthermore, for the design of novel UAI algorithms. Then, the statistics of the

estimated channels of a UE is studied on the condition that the UE is active or inactive.
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Figure 3.17: Probabilities of false alarm and miss, when UEs are identified using

the SIC-UAIb algorithm.
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Figure 3.18: Probabilities of false alarm and miss, when UEs are identified using

the AME-UAI algorithm.
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It is shown that the estimated channels of active UEs and inactive UEs present distinctive

features, explaining that the estimated channels of UEs can be utilized for UAI. Finally,

based on the studies of channel estimation and their statistics, five UAI algorithms have

been proposed and their performance has been studied. Our studies show that while TB-

UAI has the lowest complexity, it yields a sharp trade-off between false-alarm and miss

probabilities, making it hard to be implemented in the practical high-dynamic mGFMA

environments. By contrast, the other four UAI algorithms are capable of providing signif-

icant performance enhancement in comparison with TB-UAI. Furthermore, the EAE-UAI

and SIC-UAIa algorithms impose no trade-off between false-alarm and miss probabilities

and the SIC-UAIb algorithm only makes little trade-off between false-alarm and miss prob-

abilities. Although the AME-UAI algorithm brings in some trade-off between false-alarm

and miss probabilities, the related parameter Nc can be relatively easily set in mGFMA

systems.

In comparison with existing approaches, the UAI algorithms proposed in this chapter

do not experience the RIP constraint of CS and do not depend on the factor graphs required

by the MPA-based approaches. Instead, the signatures considered are random sequences

and the number of active UEs can be highly dynamic, making the actual number of active

UEs sometimes be significantly higher than the number of resource units of the system.

Therefore, it can be expected that our proposed approaches are robust for operation in

mGFMA systems.

We will address the joint channel estimation, UAI and the information detection of

active UEs, in order to further enhance the performance of mGFMA systems.



Chapter 4
Joint Channel Estimation, User Activity
Identification and Information Detection
in Multi-Antenna mGFMA Systems

In this chapter, we investigate a multicarrier massive grant-free multiple-access (MC-

mGFMA) system by assuming that a big number of highly dynamic user equipments (UEs)

are monitored by an access point (AP) with multiple receive antennas (MRA), which is re-

ferred to as the MRA/MC-mGFMA system. The channel estimation, UE activity identifi-

cation (UAI) and information detection are addressed. First, the channels of both active and

inactive UEs are detected in the principle of minimum mean-square error (MMSE). Then,

based on the estimated channels, a low-complexity threshold-based UAI (TB-UAI) is pro-

posed to detect the activities of UEs. Finally, information of active UEs is detected in the

principle of the successive interference cancellation (SIC) assisted MMSE (SIC-MMSE).

Furthermore, a joint algorithm, referred to as SIC-MMSE-JCUD, is proposed to carry out

channel estimation, UAI and information detection jointly in the principle of SIC-MMSE.

Additionally, considering that no set of the well-designed signature sequences is enough

to support the big number of potential UEs in mGFMA system, we propose a class of se-

quences designed by combining the Gold-sequences with the Zadoff-Chu (ZC) sequences.

The performance of different schemes is studied and compared based on Monte-Carlo

simulations. Our studies show that deploying multiple receive antennas at AP is beneficial

to the channel estimation, UAI and information detection. Aided by the multiple receive

antennas of AP, a low-complexity TB-UAI algorithm is highly efficient for UE activity

identification. Furthermore, our proposed class of signature sequences allows to attain

much better performance than the random sequences.
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4.1 Introduction

One of the important applications of mGFMA is for uplink access in URLLC. Numerous

researches have been carried out on this topic, especially, when considering the nowa-

days practical wireless systems, where an AP (or a BS is usually deployed with multi-

ple antennas for signal receiving [144, 169]. Conventionally, when an uplink access re-

quest is initialized without AP’s grant, the ALOHA style access scheme is usually imple-

mented [197] [198] [199]. This kind of access is suitable for short-burst transmission and

has the advantages of shortening the access latency, reducing overhead and resource con-

sumption, etc. This principle can also applied in the mGFMA IoT systems, where massive

UEs are monitored by the APs having multiple antennas. However, in a mGFMA sys-

tem [200], there are potentially a huge number of UEs that are ultra-densely deployed and

transmit their data to APs in the principles of non-orthogonal multiple-access (NOMA)

supported by unique spreading sequences [63]. In mGFMA systems, each of the potential

UEs has only a small probability to become active for data transmission during a time-slot.

Hence, mGFMA systems are highly dynamic in terms of the active UEs as well as the

number of them during a time. On the AP side, no a-priori knowledge about the number

of active UEs and who are the active UEs is available. Hence, an AP has to firstly identify

the active UEs and then detect their data, or do these in a joint way.

Recently, there have been a lot of research on mGFMA. Most of the researches based

on MC-CDMA considered the user activity identification (UAI) and data detection. Specif-

ically, in terms of the URLLC-demanded IoT networks [201–203], UAI and data detection

were carried out jointly with channel estimation. As above-mentioned, in mGFMA sys-

tems, each UE has only a very small probability to become active for data transmission

within a time-slot. Hence, UAI and data detection in mGFMA systems is a typical com-

pressive sensing (CS) problem, for which a lot of researches have been carried out, see for

example [140, 179, 204]. However, information recovery in the CS-represented problems

experience the limitation of restricted isometry property (RIP) [205]. As the result of the

RIP, the number of active UEs should be significantly lower than the number of resources

units (determined by the number of antennas, time-slots, spreading factor, etc.), in order to

achieve the recovery performance of practically meaningful. Unfortunately, in mGFMA

systems, the number of active UEs at a time is highly dynamic, making it hard to meet the

constraint of RIP. Otherwise, the number of potential UEs supportable should be small,

which results in the low-efficiency of resource usage, and is not suitable for the mGFMA

scenarios where UEs are supposed to be a big number and ultra-high density.

In the context of the signal detection in mGFMA systems, the massage passing al-

gorithm (MPA) and approximate massage passing (AMP) have received intensive atten-
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tion owing to their near-optimum performance. For example, in [147, 206], the authors

introduced the AMP for signal detection in the sparse-code multiple access (SCMA) as-

sisted GFMA systems, showing that improved bit-error-rate (BER) performance is achiev-

able. It is well-known that mGFMA systems are in general operated in the principle of

NOMA. Therefore, SCMA [207] constitutes one of the promising candidates that have

received widely attention. Specifically, in [208], a SCMA system was suggested, where

the MPA was operated with the dynamic factor graph for signal detection so as to reduce

the computational complexity. In [209], a GFMA system was designed based on the rate-

less SCMA, where data of active UEs are detected using MPA under the assumption that

the receiver has the knowledge of active UEs as well as their channel information. Fur-

thermore, in [165], a faster-than-Nyquist (FTN) singling SCMA was proposed to support

uplink GFMA, for which a new algorithm was developed for joint channel estimation,

user activity detection and data detection. It can be shown that all the MPA-assisted de-

tection methods considered in the above-mentioned references are capable of achieving

near optimum performance, provided that good factor graphs are formed for signal detec-

tion [210, 211]. However, in a real mGFMA environment where exist a huge number of

potential UEs and the active UEs as well as their number are highly dynamic, maintaining

good factor graphs for signal detection is very challenging.

There were also many other methods proposed for supporting mGFMA systems. As

some examples, In [97, 98], the authors investigated the multi-antenna MIMO assisted

multi-cell systems, which work cooperatively to form an extended cloud-radio structure

so as to help the edge nodes (EN) to access the network in GFMA principle. In [99], a

novel preamble was designed so as to attain the higher success rate of 5G-based NGEO

satellite communications in the MIMO-relied mGFMA systems. In [100, 101], a novel

interleave-division multiple-access (IDMA) transceiver was proposed to support mGFMA

communication, where the asynchronous characteristics of random signals were exploited

for signal detection and channel estimation. Recently, with the advance of machine learn-

ing (ML) and intensive research related, a range of ML-based approaches have also been

proposed for signal detection and user identification in mGFMA systems. Specifically,

in [187], the authors introduced a novel block sparse Bayesian learning (BSBL) method

for supporting massive machine type communications, where a vector learning algorithm

was proposed for user identification and signal detection. Meanwhile, in [212,213], the au-

thors considered the recovery of an active signal in a block by employing BSBL, which is

operated in an adaptive way for UAI and signal detection. In [214,215], the deep-learning

combined with MPA was studied to detect signals in mGFMA networks. Additionally,

in [216], the authors proposed the successive interference cancellation (SIC) method in as-

sisting the signal detection in the mGFMA systems implemented by the so-called tandem
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spreading multiple access (TSMA) technique.

Against the background, in [128], we have investigated the channel estimation and

UAI in the multicarrier (MC) mGFMA systems, where a range of UAI or joint channel

estimation and UAI algorithms are proposed. Our studies demonstrated that the proposed

approaches are capable of circumventing some of the shortcomings of the techniques de-

veloped based on CS and MPA. They are suitable for operation in the mGFMA systems

where both active UEs and the number of them are highly dynamic. However, in [128],

first, we assumed that an AP (or BS) employs only single antenna, which is impractical

as in future wireless systems APs are typically multi-antenna terminals. Second, in [128],

we assumed the random spreading codes, due to the problem that in mGFMA systems the

number of potential UEs is usually much large than the spreading factors, meaning that

no set of well-designed codes, such as, m-sequences, Gold-sequences, Zadoff-Chu (ZC)

sequence, etc., are enough for supporting the potential UEs. Furthermore, in [128], we

only considered the channel estimation and UAI, but without considering the information

detection. Therefore, in this chapter, we extend our studies in [128] to the more general

scenario by addressing the above mentioned issues. To be more specific, the novelties and

contributions can be summarized as follows:

• We introduce a multicarrier mGFMA system where each AP employs multiple re-

ceive antennas, which is referred to as the MRA/MC-mGFMA system for conve-

nience of description.

• We extend our studies in [128] to the MRA/MC-mGFMA system, and investigate the

impact of multi-antenna AP on the design and performance of channel estimation,

UAI and information detection.

• Jointing the ZC sequence and gold-sequence, we design a class of signature se-

quences so as to support the possibly huge number of UEs in a mGFMA systems.

We also investigate the effect of the proposed class of sequences on the performance

of channel estimation, UAI and information detection.

• We propose the channel estimation, UAI, signal detection and joint channel es-

timation, UAI and information detection algorithms for the proposed MRA/MC-

mGFMA system. Specifically, our channel estimation is in the principle of minimum

mean-square error (MMSE) under the assumption that AP has full knowledge, par-

tial knowledge or no knowledge about the active UEs. Then, assuming that AP has

no knowledge about active UEs, we introduce the threshold-based UAI (TB-UAI)

for UE activity identification. Finally, based on the channel estimation and/or TB-

UAI, the successive interference cancellation (SIC) assisted MMSE (SIC-MMSE)
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and the SIC-MMSE relied joint channel estimation, UAI and data detection (SIC-

MMSE-JCUD) are designed.

• Based on numerical simulations, we study and compare the performance of the chan-

nel estimation, UAI and information detection algorithms, when various aspects are

considered.

Our studies show that when multiple receive antennas at APs are available, the low-

complexity TB-UAI is capable of achieving promising performance, which significantly

improves with the increase of the number of receive antennas. Furthermore, as the number

of receive antennas of AP increases, the threshold setting in TB-UAI becomes relatively

easier. This implies that the performance of TB-UAI becomes less sensitive to the thresh-

old applied, and the near-optimum threshold can be relatively easily attached, as the num-

ber of receive antennas of AP increases. In terms of the signature sequences, the studies

show that the proposed class of signature sequences outperforms the random sequences.

Furthermore, for signal detection, both SIC-MMSE and SIC-MMSE-JCUD are highly ef-

fective for operation with the MRA/MC-mGFMA systems, where both active UEs and the

number of them are highly dynamic.

The remainder of this chapter is outlined as follows. In Section 4.2, we describe the

MRA/MC-mGFMA system model, define the main system parameters and provide the

representation of signaling. Section 4.3 deals with the MMSE-assisted channel estimation

and performance of channel estimation. UAI and performance of UAI are addressed in

Section 4.4. Section 4.5 considers the SIC-MMSE detection after the principle of MMSE

detection, while Section 4.6 states the joint channel, UAI and data detection algorithm.

Section 4.7 dedicates to the performance results and discussion. Finally, the conclusions

from research are summarized in Section 4.8.

4.2 Description of Massive Grant-Free Multiple-Access Sys-

tems with Multiple Receive Antennas

We consider a single-cell multicarrier (MC) mGFMA system equipped with multiple re-

ceive antennas (MRA), referred to as the MRA/MC-mGFMA for convenience of descrip-

tion. For each user equipment (UE), the signaling is in the principles of the frequency-

domain spread orthogonal frequency-division multiple-access (OFDMA) [127]. The MRA/MC-

mGFMA system has one cell with one access point (AP) (or base-station (BS)) located

at the center of the cell, and there are N subcarriers for frequency-domain spreading.

Since most mGFMA systems are motivated for supporting low-rate IoT services, we as-
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sume for simplicity the binary phase shift keying (BPSK) modulation, although it can

be readily extended to other quadrature amplitude modulations (QAM) schemes. In the

MRA/MC-mGFMA system, the signature code assigned to the kth UE is expressed as

ccck = [ck(0), ck(1), . . . , ck(N − 1)]T, where ck(n) ∈ {+1/
√

N,−1/
√

N}, hence we

have ‖ccck‖2 = 1. The signature ccck of UE k serves for both the spreading of transmitted

signal, and the identity (ID) of UE k for AP to identify its activity during the UE identi-

fication stage. If UE k is identified to be active, ccck is further used by AP to demodulate

the signals received from UE k during the data detection stage. In our MRA/MC-mGFMA

system, IFFT/FFT techniques are introduced for subcarrier modulation/demodulation. A

sufficiently long cyclic prefix (CP) is introduced to avoid the inter-block interference be-

tween adjacent OFDM blocks. We assume that the MRA/MC-mGFMA system supports

K potential UEs, which are mobile IoT devices randomly distributed in the cell. As the

massive connectivity applications are considered, we have K � N. We assume that the

system embeds a synchronization sub-system, which enables all UEs to synchronize with

the AP’s clock. Furthermore, we assume that a UE has a small probability Pa to become

active during a time-slot for transmitting a frame. An active UE starts transmission at the

beginning of a time-slot and one frame is transmitted per time-slot by each active UE. We

express KA the number of active UEs during a time-slot, which is a random variable having

the average satisfying K̄A � K, as the result of a small activation probability of Pa � 1.

4.2.1 Transmitter Modeling

The transmitter in the MRA/MC-mGFMA system follows the typical framework of the

frequency domain spread OFDMA. To transmit a binary bit bk ∈ {+1,−1} of UE k, it is

first spread by ccck, the products of which are transformed to the time-domain using IFFT.

Then, after the parallel-to-serial (P/S) conversion, adding CP, transmitter (TX) filtering,

and carrier modulation, the resultant signal is transmitted from the transmit antenna of UE

k.

In our study, we assume block fading, i.e., the fading of a UE maintains constant over a

frame duration, but is independent frame-by-frame. The frame has the structure as shown

in Fig. 4.1. The frame length can be expressed as NF = NI + NP + NL, where NI denotes

the number of information bits per frame, NP is the number of pilot bits per frame, inserted

for channel estimation and UE identification. Furthermore, as shown in Fig. 4.1, at the

beginning of each frame, NL bits, referred to as the data block length indicator (DBLI),

are transmitted to indicate the length in frames of a data block transmitted by a UE. The

DBLI domain is used so that AP does not need to repeatedly identify the activities of the

UEs having several frames to send. Note that in our studies, we typically set NL = 2.
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…STC: Synchronous Transmission Control
DBLI: Data Block Length Indicator
P: Pilot

Figure 4.1: Illustration of frame structure and the system structure of MRA/MC-

mGFMA systems.

This explains that once a UE becomes active, it can transmit upto 4 frames, but AP only

needs to identify its activity once. This is implemented by setting the DBLI bits in the first

frame to ‘11’, which are reduced following the sequence of ‘10’, ‘01’, until ‘00’ in the 4th

frame to tell AP the end of current session. However, if the UE has more than 4 frames to

transmit, it keeps transmitting in the next time-slot but it is treated as a new transmission

session, and AP will re-identify the activity of this UE. As above mentioned, the benefit

of employing a DBLI domain is that AP does not have to identify every active UE, but

only those newly activated ones. Hence, the performance of UE’s activity identification

(UAI), channel estimation and data detection can be enhanced. Additionally, as shown in

Fig. 4.1, there is a ‘STC’ domain in a time-slot. This is used to make the transmissions

from different UEs be synchronized at AP.

4.2.2 Representation of Received Signal by Multiple Antennas

The receiver follows the receiving principles of OFDM. After removing CP, serial-to-

parallel conversion and FFT operation, the received signals by the uth receive antenna

can be expressed as

yyy(u)m =
K

∑
k=1

CCCkFFFΨΨΨkhhh(u)k bk,m Ik + nnn(u)
m ,

=
KA

∑
k′=1

CCCk′FFFΨΨΨk′hhhk′(u)bk′,m + nnn(u)
m ,

m = 1, 2, . . . , NF;

u = 1, 2, . . . , U (4.1)

where U is the number of receive antennas, Ik = 1 or Ik = 0 indicates whether UE k

is active or inactive, bk,m ∈ {+1,−1} is the mth bit in a frame sent from UE k, yyy(u)m
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and nnn(u)
m are N-length observation and noise vectors, respectively, and nnn(u)

m follows the

complex Gaussian distribution with zero mean and covariance matrix σ2IIIN, expressed as

CN (0, σ2IIIN). In (4.1), CCCk = diag{c(0)k , c(1)k , · · · , c(N−1)
k }, hhh(u)k = [h(u)k,0 , · · · , h(u)k,L−1]

T

is the time-domain channel impulse response (CIR) from UE k to the uth receive antenna

at AP, where h(u)k,l obeys the distribution of CN (0, 1/L). Correspondingly, the frequency-

domain CIRs, i.e., the fading gains of N subcarriers are given by FFFΨΨΨkhhh(u)k [127], where

FFF is the (N × N) FFT matrix, and ΨΨΨk is the mapping matrix constituted by the first L

columns of the identity matrix IIIN. Note that in (4.1), the second equality only considers

the active UEs. Additionally, in (4.1), NF is the number of bits sent in a frame. For

simplicity, let in (4.1) AAAk = CCCkFFFΨΨΨk, which is a (N × L) matrix. Then, we have

yyy(u)m =
K

∑
k=1

IkAAAkhhh(u)k bk,m + nnn(u)
m ,

=
KA

∑
k′=1

AAAk′hhh
(u)
k′ bk′,m + nnn(u)

m ,

m = 1, 2, . . . , NF;

u = 1, 2, . . . , U (4.2)

Let yyym = [(yyy(1)m )T, (yyy(2)m )T, · · · , (yyy(U)
m )T]T. Then, it can be shown that

yyym =
K

∑
k=1

Ik(IIIU ⊗ AAAk)hhhkbk,m + nnnm

=
K

∑
k=1

IkBBBkhhhkbk,m + nnnm

=
KA

∑
k′=1

BBBk′hhhk′bk′,m + nnnm, m = 1, 2, . . . , NF (4.3)

In the above equation, we defined BBBk = IIIU ⊗ AAAk, which is a (NU × UL) matrix,

hhhk = [(hhh(1)k )T, (hhh(2)k )T, · · · , (hhh(U)
k )T]T is a UL-length vector, containing the channels

from UE k to the U receive antennas of AP, which is complex Gaussian distributed with

zero mean and a covariance matrix IIIUL/L. nnnm = [(nnn(1)
m )T, (nnn(2)

m )T, · · · , (nnn(U)
m )T]T is

a UN-length Gaussian noise vector, following the distribution of CN (0, σ2IIIUN) with

σ2 = 1/SNR.

If we only consider the pilot symbols for the purpose of channel estimation, we can write

(4.3) as

yyyp =
K

∑
k=1

IkBBBkhhhkbk,p + nnnp

=
KA

∑
k′=1

BBBk′hhhk′bk′,p + nnnp, p = 1, 2, . . . , NP (4.4)
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Let yyy = [(yyy1)
T, (yyy2)

T, · · · , (yyyNp)
T]T, Then we obtain

yyy =
K

∑
k=1

Ik(pppk ⊗ BBBk)hhhk + nnn

=
KA

∑
k′=1

(pppk′ ⊗ BBBk′)hhhk′ + nnn (4.5)

where pppk = [bk,1, bk,2, · · · , bk,NP ]
T, nnn = [(nnn1)

T, (nnn2)
T, · · · , (nnnNp)

T]T obeys the distribu-

tion of CN (0, σ2IIINPUN) and yyy is a (NPUN × 1) matrix.

Alternatively, we can represent the observations in the form as below. Given yyy(u)m as

shown in (4.2), let yyy(u) = [(yyy(u)1 )T, (yyy(u)2 )T, · · · , (yyy(u)NP
)T]T, u = 1, 2, . . . , U, which is a

NPN-length vector. Then, it can be shown that

yyy(u) =
K

∑
k=1

Ik(pppk ⊗ AAAk)hhh
(u)
k + nnn(u)

=
KA

∑
k′=1

(pppk′ ⊗ AAAk′)hhh
(u)
k′ + nnn(u), u = 1, 2, . . . , U (4.6)

where nnnu is a NPN-length Gaussian noise vector, following the distribution of CN (0, σ2IIINP N).

Furthermore, let yyy = [(yyy(1))T, (yyy(2))T, · · · , (yyy(U))T]T, nnn = [(nnn(1))T, (nnn(2))T, · · · , (nnn(U))T]T,

which follows the Gaussian distribution of CN (0, σ2IIIUNP N), hhhk = [(hhh(1)k )T, (hhh(2)k )T, · · · , (hhh(U)
k )T]T,

which is a UL-length vector obeying the distribution of CN (0, IIIUL/L). Then, we have

the representation of

yyy =
K

∑
k=1

Ik(IIIU ⊗ (pppk ⊗ AAAk))hhhk + nnn

=
KA

∑
k′=1

(IIIU ⊗ (pppk′ ⊗ AAAk′))hhhk′ + nnn (4.7)

Above we have represented the received signals at AP in different forms, which will

be used later for different purposes.

4.2.3 Open-loop Power Control

Since random access is usually implemented in mGFMA systems, closed-loop power-

control [139] is impossible to implement. However, in mGFMA systems, the pilot sig-

nals sent by APs periodically for time synchronization may be used by UEs to estimate

their distances from APs via measuring the pilot signal’s strength. In this case, UEs are

able to implement open-loop power-control [139] based on the strength of received pilot
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1 1 -1 -1 ……   …… 1 1 -1 1

-1 -1 1 -1 ……   …… -1 1 1 1

-1 1 -1 -1 ……   …… 1 -1 -1 1

1 -1 1 1 ……   …… -1 1 -1 1

…
…

31bits

32bits

Type-I Sequence

Type-II Sequence

Type-III Sequence

Type-II  Sequence
Type-I   Sequence

32

32

1bits

Figure 4.2: Signature sequences generated from Gold sequences and Zadoff-Chu

sequences.

signals. With the above consideration, we assume that open-loop power-control can be

implemented in MRA/MC-mGFMA systems. Correspondingly, we assume that the power

received from UE k by one receive antenna of BS obeys a truncated Gaussian distribution

represented as

fGk(g) =µ exp

(
− (g− G0)

2

2σ2
G

)
,

max{0, G0 − GE} ≤ g ≤ G0 + GE (4.8)

where Gk denotes the power received from UE k, GE denotes the maximum power-control

error, and G0 is the received power in ideal power-control, while µ is a constant to ensure

that the integration of fGk(g) over the range of max{0, G0 − GE} ≤ g ≤ G0 + GE is 1.

Upon involving power control, (4.7) can now be modified to a formula of

yyy =
K

∑
k=1

Ik
√

Gk(IIIU ⊗ (pppk ⊗ AAAk))hhhk + nnn

=
KA

∑
k′=1

√
Gk′(IIIU ⊗ (pppk′ ⊗ AAAk′))hhhk′ + nnn (4.9)

Furthermore, since (4.7) is a normalized form, we have G0 = 1.

4.2.4 Signature Sequences

In mGFMA, the signature sequences required can be significantly more than N of the

number of subcarriers. In our previous study [128], random spreading sequences are as-
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sumed. However, in practical systems, pure random sequences are rarely used. There-

fore, in the MRA/MC-mGFMA system considered in this chapter, we propose to generate

enough signature sequences from the products of Gold sequences [217] and Zadoff-Chu

sequences [218]. Fig. 4.2 shows an example to constructed the new class of sequences.

As shown in Fig. 4.2, we construct three types of sequences, namely, the Type-I, Type-

II and Type-III sequences with each type consisting of the sequences of length 32. Specif-

ically, Type-I sequences are constructed from the 31-length Gold sequences by randomly

appending a binary symbol, forming the 32-length sequences. By contrast, Type-II se-

quences are obtained by removing some heading and trailing symbols from 37-length

Zadoff-Chu sequences. After the above processing, both Type-I and Type-II sequences are

32-length, which are convenient for product operations. Based on the Type-I and Type-II

sequences, the Type-III class of sequences are constructed by the bitwise multiplication

of Type-I sequences and Type-II sequences. In total, we can form 32× 32 + 64 = 1086

sequences, where 64 sequences are contributed by the 32 Type-I and 32 Type-II sequences.

4.3 Channel Estimation

In this section, we investigate the channel estimation in MRA/MC-mGFMA systems, all

based on the minimum mean-square error (MMSE) principles. Let us first consider the

channel estimation when AP is assumed to know the active UEs, from which we gain the

insight for designing the other channel estimators.

4.3.1 Channel Estimation with Active UEs Known to AP - Estimator-

K

When AP knows which are active UEs, the channels of these active UEs can be estimated

as follows. With the observations as shown in (4.7) prepared, the channels from UE i to

the U receive antennas of AP can be expressed as

ĥhhi = [(ĥhh
(1)
i )T, (ĥhh

(2)
i )T, · · · , (ĥhh

(U)
i )T]T = WWWH

i yyy (4.10)

where the weight matrix WWW i obtained via MMSE optimization can be expressed as

WWW i = RRR−1
y RRRy,hi (4.11)
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In (4.11), RRRy is the autocorrelation matrix of yyy in (4.7), given by

RRRy = E
[
yyyyyyH

]
=

KA

∑
k′=1

1
L

(
IIIU ⊗ (pppk′pppH

k′ ⊗ AAAk′AAAH
k′ )
)
+ σ2IIIUNP N, (4.12)

RRRy,hi is the cross-correlation matrix between yyy of (4.7) and hhhi, which can be derived as

RRRy,hi = E
[
yyyhhhH

i

]
=

(IIIU ⊗ (pppi ⊗ AAAi))

L
(4.13)

Explicitly, RRRy of (4.12) can be expressed as

RRRy =

(
IIIU ⊗

KA

∑
k′=1

1
L
(pppk′pppH

k′ ⊗ AAAk′AAAH
k′ )

)
+ σ2IIIUNP N

=

(
IIIU ⊗

(
KA

∑
k′=1

1
L
(pppk′pppH

k′ ⊗ AAAk′AAAH
k′ ) + σ2IIINP N

))
(4.14)

Substituting (4.14) and (4.13) into (4.11), we obtain

WWW i =

(
IIIU ⊗

(
KA

∑
k′=1

1
L
(pppk′pppH

k′ ⊗ AAAk′AAAH
k′ ) + σ2IIINP N

))−1

×
(
(IIIU ⊗ (pppi ⊗ AAAi))

L

)
=

(
IIIU ⊗RRR−1

y(u)
RRR

y(u),h(u)i

)
=
(

IIIU ⊗WWW(u)
i

)
(4.15)

where WWW(u)
i = RRR−1

y(u)
RRR

y(u)h(u)i
is the weight matrix to process the received signals from the

uth receive antenna, which can be expressed as

WWW(u)
i =RRR−1

y(u)
RRRy(u)hi

=

(
KA

∑
k′=1

(pppk′pppH
k′ ⊗ AAAk′AAAH

k′ ) + Lσ2IIINP N

)−1

× (pppi ⊗ AAAi),

i = 1, 2, · · · , K, u = 1, 2, · · · , U (4.16)

From (4.16) we can observe that WWW(u)
i is in fact independent of u, i.e, of the index of

receive antennas. In other words, the same weight matrix can be used for processing the

received signals of all receive antennas. This has double-fold benefit. First, it is straight-

forward that this can reduce the complexity for computing the weight matrices in terms of
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different receive antennas. Second, this allows to estimate a more accurate weight matrix

by applying the received (pilot) signals by all receive antennas, instead of that by one.

Upon substituting (4.15) and (4.6) into (4.10), we can obtain

ĥhhi = WWWH
i yyy

=
(

IIIU ⊗WWW(u)
i

)H
[(yyy(1))T, (yyy(2))T, · · · , (yyy(U))T]T (4.17)

from which we can decompose to obtain

ĥhh
(u)
i =

(
WWW(u)

i

)H
yyy(u), u = 1, 2, · · · , U (4.18)

The above analysis show that the channels of individual receive antennas can be esti-

mated separately in parallel without performance loss. However, as previously discussed,

WWW(u)
i is common to all receive antennas, which can be more accurately estimated by ex-

ploiting the received signals by all the antennas of AP. Hence, the performance of channel

estimation can be enhanced, when AP has more receive antennas.

Since in this subsection we assume that AP has the knowledge about the active UEs,

AP is capable of constructing WWW(u)
i of (4.16), provided that it knows the noise variance.

Alternatively, if the number of received antennas at AP is big, WWW(u)
i can also be obtained

by first estimating RRRy(u) as

RRRy(u) =
1
U

U

∑
u=1

yyy(u)(yyy(u))H (4.19)

Explicitly, when U becomes larger, a more accurate RRRy(u) can be obtained. The other term

pppi ⊗ AAAi for WWW(u)
i as seen in (4.16) can be directly constructed by AP.

Following the principles of MMSE, it can be shown that the total MSE of the MMSE

estimator for an active UE is given by

MSE(A) =
1
U

E
[
‖hhhi −WWWH

i yyy‖2
]

=
1
U

Tr
(

IIIUL/L−RRRH
yhi

WWW i

)
= 1− 1

U
Tr
(

RRRH
y,iWWW i

)
(4.20)

per receive antenna. By contrast, the MSE of the channel estimation for an inactive UE

normalized by the number of receive antennas is

MSE(Ā) =
1
U

E
[
‖ −WWWH

i yyy‖2
]

=
1
U

Tr
(

WWWH
i RRRyWWW i

)
(4.21)
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Above the channel estimation is carried out by assuming that AP has the knowledge

of active UEs. However, in mGFMA communications, this is hard to achieve as UE’s

access using random access. Therefore, in the next subsection, we consider the channel

estimation when assuming that AP has no knowledge of the active UEs.

4.3.2 Channel Estimation with Active UEs Unknown to AP - Estimator-

uK

When AP has no knowledge about the active UEs, it has to estimate the weight matrices

so as to estimate the channels of active/inactive UEs. It can be shown that the channels

of a UE can be either estimated based on (4.2) in terms of individual receive antennas or

based on (4.3) to jointly estimate all the channels of U receive antennas in one formula.

However, we should note that when the signals received by different receive antennas are

uncorrelated, both estimation methods are equivalent. By contrast, if receive antennas have

correlation, the joint estimation should outperform the individual estimation. However, in

our studies, antennas are assumed to be uncorrelated.

Let us first consider the channel estimation at the individual antenna level. To proceed,

the MMSE-based channel estimator for UE i can be derived from (4.2), which gives

ĥhh
(u)
i =

1
Np

Np

∑
p=1

CCC(u)
i,p

(
WWW(u)

i,p

)H
yyy(u)p , u = 1, 2, . . . , U

i = 1, 2, . . . , K (4.22)

where the index p emphasizes ‘pilot’, CCC(u)
i,p is for achieving unbiased estimation, and WWW(u)

i,p

can be expressed as

WWW(u)
i,p = RRR−1

yyy(u)p
RRR

yyy(u)p hhh(u)i
(4.23)

In (4.23), RRR
yyy(u)p

is the autocorrelation matrix of yyy(u)p . Since AP does not know which are

active UEs, it has to estimate RRR
yyy(u)p

. To achieve this, let us first derive the theoretical

expression of RRR
yyy(u)p

, which can be expressed as

RRR
yyy(u)p

=E
[

yyy(u)p

(
yyy(u)p

)H
]

=
1
L

KA

∑
k′=1

AAAk′ (AAAk′)
H + σ2IIIN (4.24)

Equation (4.24) shows that RRR
yyy(u)p

is independent of the symbol index and also the antenna

index. This means that we can use all the signals received by different antennas of AP for
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estimation of RRR
yyy(u)p

, i.e., we can estimate it as

R̂RR
yyy(u)p

= RRRa =
1

Np

Np

∑
p=1

yyy(u)p

(
yyy(u)p

)H

=
1

NF

NF

∑
m=1

yyy(u)m

(
yyy(u)m

)H

=
1

UNF

U

∑
u=1

NF

∑
m=1

yyy(u)m

(
yyy(u)m

)H
(4.25)

where the first, second and third equalities mean that RRR
yyy(u)p

is estimated using only the pilot

symbols received by a specific antenna, all the symbols received by a specific antenna

and all the symbols received by all the receive antennas of AP, respectively. Certainly,

exploiting more received signals gives more accurate estimation.

In (4.23), RRR
yyy(u)p hhh(u)i

in theory is

RRR
yyy(u)p hhh(u)i

=E
[

yyy(u)p

(
hhh(u)i

)H
]

=AAAibi,p/L (4.26)

implying that AP can construct it, as AP knows the pilots and signatures of a UE to be

estimated.

Finally, it can be shown that CCC(u)
i,p in (4.22) is given by CCC(u)

i,p = L
(

AAAH
i R̂RR
−1
a AAAi

)−1
.

Upon substituting the above derived terms into (4.23) and then into (4.22), we can

obtain the estimate of

ĥhh
(u)
i =

(
AAAH

i R̂RR
−1
a AAAi

)−1
AAAH

i R̂RR
−1
a ×

1
Np

Np

∑
p=1

bi,pyyy(u)p ,

u = 1, 2, . . . , U; i = 1, 2, . . . , K (4.27)

From Eq. 4.27 we can know that for ĥhh
(u)
i , we first average the observations corresponding

to the pilots by invoking the associated pilot bits. Then, the averaged outputs are processed

in MMSE principle to give the estimates.

Additionally, it can be shown that the MSE of the estimation for an active UE is

MSE(A) = 1− 1
L2 Tr

(
AAAH

i

[
R̂RR

yyy(u)p

]−1

AAAi

)
(4.28)

per receive antenna. The MSE of the estimation for an inactive UE is

MSE(Ā) =
1
L2 Tr

(
AAAH

i

[
R̂RR

yyy(u)p

]−1

AAAi

)
(4.29)
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per receive antenna.

Similarly, when the channels of all U receive antennas are jointly estimated, based on

(4.3), we have the expression for estimation as

ĥhhi =
1

Np

Np

∑
p=1

CCCi,pWWWH
i,pyyyp, i = 1, 2, . . . , K (4.30)

where yyyp is given by (4.3) for pilots, and WWW i,p is

WWW i,p = RRR−1
yyyp RRRyyyphhhi

(4.31)

In (4.31), RRRyyyp can be estimated as

R̂RRyyyp = R̂RRb =
1

Np

Np

∑
p=1

yyypyyyH
p

=
1

NF

NF

∑
m=1

yyymyyyH
m (4.32)

which is independent of the p index. RRRyyyphhhi
is given by

RRRyyyphhhi
=BBBibi,p/L (4.33)

Furthermore, it can be shown that CCCi,p = L
(

BBBH
i R̂RR
−1
b BBBi

)−1
. Therefore, we have

WWW i,p = R̂RR
−1
b BBBibi,p/L (4.34)

Substituting it into (4.30), we obtain

ĥhhi =
(

BBBH
i R̂RR
−1
b BBBi

)−1
BBBH

i R̂RR
−1
b ×

1
Np

Np

∑
p=1

bi,pyyyp,

i = 1, 2, . . . , K (4.35)

4.3.3 Channel Estimation with Active UEs Partially Known to AP -

Estimator-pK

In the realistic MRA/MC-mGFMA systems, AP may know a part of the active UEs in the

system, as some active UEs may have several frames to transmit, as indicated by the DBLI

in Fig.4.1. In this case, channels may be estimated in the joint way as in section 4.3.1,

but with a partially estimated auto-correlative matrix. Specifically, when only one receive

antenna is considered, we can construct RRRy(u) as (4.36) with R̂RR
yyy(u)p

obtained by (4.25), as

shown on the top of the next page, where K̄A is the set of active UEs known to AP.
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RRR(u)
y =



R̂RR
yyy(u)p

∑
k∈K̄A

b(1)k b(2)k
AAAkAAAH

k
L

· · · ∑
k∈K̄A

b(1)k b(NP)
k

AAAkAAAH
k

L

∑
k∈K̄A

b(2)k b(1)k
AAAkAAAH

k
L

R̂RR
yyy(u)p

· · · ∑
k∈K̄A

b(2)k b(NP)
k

AAAkAAAH
k

L
...

... . . . ...

∑
k∈K̄A

b(NP)
k b(1)k

AAAkAAAH
k

L ∑
k∈K̄A

b(NP)
k b(2)k

AAAkAAAH
k

L
· · · R̂RR

yyy(u)p


(4.36)

The cross-correlation matrix is given (pppi ⊗ AAAi)/L, which the AP can construct. Con-

sequently, the AP can construct the weight matrices WWW(u)
i based on the first equation in

(4.16), and finally, estimate the channels of UEs based on (4.18).

It should be noted that with the aid of the multiple receive antennas employed by AP,

RRRy(u) can be directly estimated in the form of (4.19), provided that the number of receive

antennas is sufficient. When comparing (4.19) and (4.25), we can know that R̂RR
yyy(u)p

can be

estimated with higher accuracy than RRRy(u) . Therefore, to improve the accuracy of RRRy(u) ,

we can first estimate it using (4.19) and then, replace the diagonal matrices corresponding

to RRR
yyy(u)p

by the estimated R̂RR
yyy(u)p

.

4.3.4 Performance of Channel Estimation

Figs. 4.3 - 4.5 demonstrate the MSE performance of the channel estimation for both active

and inactive UEs, when AP has respectively ideal knowledge, no knowledge and partial

knowledge about the active UEs. For convenience, the parameter values used in the studies

are associated with the figures. Note specifically that in the case of considering the partial

knowledge about active UEs, as shown in Fig.4.1, we assume that each UE may have 1, 2,

3 or 4 frames of the same probability to transmit, once become active. If a UE has more

than one frame to transmit, AP only needs to identify it once when it transmits the first

frame. For the remaining frames, the activity of the UE is known to the AP.

From the results of Figs. 4.3 - 4.5, we can clearly observe that in general, if AP tries

to estimate the channels of an inactive UE, regardless of the number of receive antennas

and the knowledge about UEs to AP, the MSE is always relatively high. By contrast, if

the channel estimation is for an active UE, the MSE of all the three cases is relatively

small, which decreases with the increase of SNR. At a given SNR, when the number of

receive antennas increases, the MSE difference between that of the estimation for inactive
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Figure 4.3: MSE performance of the channel estimation for both active UEs and

inactive UEs, when AP has ideal knowledge about the active and inactive UEs.

UE and that of the estimation for active UE increases, which is more declared, when SNR

increases. This observation implies that employing more receive antennas is beneficial to

UAI. However, at a given SNR, the MSE slightly increases with the increase of U. This is

because the MSE is linearly proportional to U. If the MSE is normalized by dividing U,

the normalized MSE should decreases with the increase of U.

4.4 User Identification Based on the Estimated Multiple

Antenna Channels

In the above section, we have investigated the channel estimation in MRA/MC-mGFMA

systems. To achieve the reliable signal detection of UEs, it is essential for AP to know

which UEs are active. Before we detail the UE activity identification (UAI) scheme, let

us first investigate the statistical properties of the estimated channels corresponding to the

active and inactive UEs.
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Figure 4.4: MSE performance of the channel estimation for both active UEs and

inactive UEs, when AP has no knowledge about the active and inactive UEs.

4.4.1 Statistical Characteristics of Estimated Channels

Following the above analysis we know that the time-domain CIR of the ith UE is hhhi, which

has in total UL taps. After the MMSE-assisted channel estimation in Section 4.3, the

estimate to hhh(u)i can be written as

ĥhhi =

{
hhhi + nnni, if UE i is active

nnn′i, if UE i is inactive
(4.37)

where nnni is the channel estimation error of an active UE, which can be Gaussian approx-

imated with a PDF of CN
(
000, σ2

1 IIIUL
)
, with σ2

1 being the variance of channel estimation

error of active UEs. By contrast, nnn′i is the estimate to an inactive UE, which can also be

approximated by the Gaussian distribution with the PDF of CN
(
000, σ2

0 IIIUL
)
, where σ2

0 is

in general different from σ2
1 .

For comparison, let us consider the statistics of |ĥhhi|2/U on the condition that UE i is ac-

tive or inactive. First, when UE i is active, the elements of ĥhhi are iid complex Gaussian ran-

dom variables, each of which has zero mean and a variance of (1/L+ σ2
1 ), when Rayleigh

fading channels are assumed, and when all component paths have the same power of 1/L.

Therefore, |ĥhhi|2 obeys the centre χ2-distributions with 2UL degrees of freedom [192], and
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Figure 4.5: MSE performance of the channel estimation for both active UEs and

inactive UEs, when AP has partial knowledge about the active and inactive UEs.

the PDF of |ĥhhi|2/U can be found to be

f|ĥhhi(U)|2/U(y|Ii = 1, KA) =
UUL

(UL− 1)!(1/L + σ2
1 (KA))UL

× yUL−1 exp

(
− Uy

1/L + σ2
1 (KA)

)
, y ≥ 0 (4.38)

where we explicitly show that σ2
1 (KA) is related to the number of active UEs. By contrast,

when the ith UE is inactive, it can be shown that |ĥhhi|2/U follows the centre χ2-distribution

of

f|ĥhhi|2/U(y|Ii = 0, KA) =
UUL

(UL− 1)!(σ2
0 (KA))UL yUL−1

× exp

(
− Uy

σ2
0 (KA)

)
, y ≥ 0 (4.39)

However, directly evaluating the PDFs of (4.38) and (4.39) is highly challenging as

σ2
1 (KA) and σ2

0 (KA) are related to the MMSE estimation and also to the number of access

UEs. Therefore, we below demonstrate the PDFs, as shown for example in Figs. 4.6 - 4.8,

when different parameters in terms of L and U are set.
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Figure 4.6: PDFs of |ĥhhi|2/U on condition that UE i is active (Ii = 1) or inactive

(Ii = 0), when the channels of receive antennas experience iid Rayleigh fading.

From the results of Figs. 4.6 - 4.8 and also implied by the properties of χ2-distributions

given by (4.38) and (4.39), we can know that first, when a UE is active, the value of

|ĥhh(u)i |2/U is usually distributed in the range having relatively high value. By contrast, for

an inactive UE, the value of |ĥhh(u)i |2/U is usually small. Second, when U becomes larger,

this difference between the PDFs of active and inactive UEs becomes more significant.

This can be explicitly conceived by Fig. 4.6. This property implies that UEs’ activities

can be identified based on the values of |ĥhh(u)i |2/U, in particular, when the number of

receive antennas is high. This is beneficial to practice implementation, as the threshold-

based UAI (TB-UAI) usually has low-complexity for implementation, if the threshold can

be relatively easily set to a near-optimal value. Additionally, from Figs. 4.6 - 4.8, we can

observe that when the value of L increases, the difference between the PDFs of |ĥhh(u)i |2/U

for active and inactive UEs is also slightly enhanced, although the enhancement is not

as significant as the case when increasing U. Therefore, for a MRA/MC-mGFMA system

experiencing highly frequency-selective fading and also employing a relatively big number

of receive antennas at APs, the low-complexity threshold-based UAI (TB-UAI) scheme can

be highly efficient, which is investigated below in the next subsection.
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Figure 4.7: PDFs of |ĥhhi|2/U on condition that UE i is active (Ii = 1) or inactive

(Ii = 0), when the channels of receive antennas experience iid Rayleigh fading.

4.4.2 Threshold-Based UE Activity Identification (TB-UAI)

Let Th be the corresponding threshold set in the TB-AUI scheme. Then, when given the

estimated CIR of |ĥhh(u)i |2 for UE i, the TB-AUI identifies the ith UE’s state according to

Îi =

{
1, if |ĥhhi|2/U ≥ Th,

0, else
(4.40)

where Î(u)i = 1 or 0 represents UE i is identified to be active or inactive.

With the aid of the statistics of |ĥhhi|2/U given above, we can derive the miss and false-

alarm probabilities of the TB-AUI scheme as follows. Firstly, the miss probability condi-

tioned on KA active UEs is

PM(KA) =
∫ Th

0
f|ĥhhi|2/U(yyy|Ii = 1, KA)dy (4.41)
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Figure 4.8: PDFs of |ĥhhi|2/U on condition that UE i is active (Ii = 1) or inactive

(Ii = 0), when the channels of receive antennas experience iid Rayleigh fading.

Upon substituting (4.38) into (4.41) and completing the integration, we can obtain

PM(KA) =1− exp

(
− ULTh

1 + Lσ2
1 (KA)

)

×
UL−1

∑
k=0

1
k!

(
ULTh

1 + Lσ2
1 (KA)

)k

(4.42)

Secondly, the false-alarm probability when there are KA active UEs is given by

PF(KA) =
∫ ∞

Th

f|ĥhh(u)i |2
(yyy|Ii = 0, KA)dy (4.43)

After substituting (4.39) into (3.40), we obtain

PF(KA) = exp

(
− UTh

σ2
0 (KA)

)
UL−1

∑
k=0

1
k!

(
UTh

σ2
0 (KA)

)k

(4.44)

It can be shown that the miss probability of (4.42) and the false-alarm probability of

(4.44) can be approximated with the aid of the Taylor Theorem for the remainders of
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exponential functions, when the number of receive antennas is sufficiently large [219]. Let

us express

P(x) = exp (−x)
UL−1

∑
k=0

xk

k!
(4.45)

Then, we can modify it to

P(x) = exp(−x)

(
exp(x)−

∞

∑
k=UL

xk

k!

)

=1− exp(−x)
∞

∑
k=UL

xk

k!
(4.46)

Now, applying the Neyman-Pearson approximation [219], we obtain

P(x) ≈ 1− γ

(
exp(−x) · exp(x)

(UL)!
xUL

)
= 1− γxUL

(UL)!
(4.47)

where γ = exp(a−1)x is a function of x.

Applying Lagrange Theorem of the remainders of exponential functions

P(x) = 1− exp(−x)
expθ

(UL)!
xUL, where θ ∈ (0, x) (4.48)

let θ = ax, with 0 < a < 1, we have

P(x) =1− exp(−x) exp(ax) xUL

(UL)!

=1− exp(a−1)x xUL

(UL)!
(4.49)

then, define γ = exp(a−1)x.

With the approximated result of (4.47), the miss and false-alarm probabilities can now

be expressed as

PM(KA) =
γM

(UL)!

(
ULTh

1 + Lσ2
1 (KA)

)UL

(4.50)

and

PF(KA) = 1− γF

(UL)!

(
UTh

σ2
0 (KA)

)UL

(4.51)

respectively.
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Having the miss and false-alarm probabilities prepared, the probability of erroneous

UAI conditioned on KA active UEs can be obtained as

PE(KA) = PaPM(KA) + (1− Pa)PF(KA) (4.52)

where Pa is the small activation probability of a UE. Furthermore, if we assume that UEs

activate independently and have the same activation probability Pa, the number of active

UEs KA within a given time-slot obeys the binomial distribution with the probability mass

function (PMF) of

P(KA) =

(
K

KA

)
PKA

a (1− Pa)
K−KA , KA = 0, 1, · · · , K (4.53)

Therefore, the average miss probability is

PM =
K

∑
KA=1

P(KA)PM(KA) (4.54)

The average false-alarm probability is

PF =
K−1

∑
KA=0

P(KA)PF(KA) (4.55)

Finally, the average probability of erroneous UAI is

PE = PaPM + (1− Pa)PF (4.56)

Note that, in the TB-AUI algorithm, the threshold Th may be chosen according to

different requirements. First, it may be selected to minimize the erroneous probability

PE. Second, it can be selected to protect a small false-alarm probability. In this case, the

threshold can be chosen as Th = arg
T′h

{max{PF(T′h)} ≤ P̄F}, where P̄F is the maximum

false-alarm probability allowed. Furthermore, to guarantee a small miss probability, the

threshold can be selected as Th = arg
T′h

{max{PM(T′h)} ≤ P̄M}.

Note furthermore that in comparison with the single-antenna AP, the multiple anten-

nas of AP will benefit the threshold selection in TB-AUI. This is because with the aid

of the multiple channels corresponding to multiple receive antennas estimated by AP, the

estimated channels for an active UE should appear significant difference from that for an

inactive UE.

4.4.3 Performance of TB-UAI

Below we provide a range of results to demonstrate the performance of the TB-UAI scheme

analyzed in Section 4.4.2.
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Figure 4.9: Probabilities of false alarm and miss, when UEs are identified using

the TB-UAI scheme.

First in Fig. 4.9, we demonstrate the effect of SNR on the performance of TB-UAI,

when the parameters as shown on the top of the figure are employed. When the threshold is

set to Th = σ2 = 1/SNR, we observe that the miss probability decreases significantly, as

the SNR increases. This is because the channels can be more reliably estimated, when SNR

is higher. Furthermore, as SNR increases, the threshold Th = σ2 = 1/SNR decreases.

Both of the above-mentioned effects result in the decrease of the miss probability. By

contrast, the false-alarm probability slightly increases with the increase SNR, which is

mainly because of the reduction of Th resulted from the increase of SNR. As shown in

Fig. 4.9, when the number of receive antennas is increased from U = 1 to U = 2, the miss

probability yields a significant decrease at a given SNR and at the same time, the false-

alarm also reduces. Hence, we can be implied that using multiple receive antennas at AP is

capable of significantly improve the performance of UAI, even when the low-complexity

TB-UAI scheme is employed.

In Fig. 4.10, we demonstrate the false-alarm and miss probabilities with respect to

threshold for the MRA/MC-mGFMA systems, when channels are estimated based on

NP = 16 pilots in the frames of length NF = 256. The other parameters are detailed on
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Figure 4.10: Probabilities of false-alarm and miss, when UEs are identified using

the channel-estimation based TB-UAI.
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the tops of the figures. Note that, the threshold shown in the figures is normalized by the

noise variance of σ2. From the results we observe that when Th increases, the false-alarm

probability decreases while the miss probability increases. Hence, there exists trade-off

between false-alarm probability and miss probability, which was shown in Fig. 4.9 and

will also be demonstrated in the figures below. As shown in Fig. 4.10, both the false-

alarm and miss probabilities reduced, when the SNR is increased from SNR = 15 dB

to SNR = 25 dB. Furthermore, when the number of receive antennas at AP is increased

from U = 1 to U = 2, while the false-alarm probability has a mild improvement, the miss

probability presents significant improvement.

Fig. 4.11 shows the trade-off between the false-alarm probability and miss probability,

which are drawn in terms of the threshold that was normalized by the noise power σ2.

Explicitly, the false-alarm probability decreases while the miss probability increases, when

the threshold increases. Therefore, if we motivate small miss probability, the false-alarm

probability would be relatively high. On the other side, if a small false-alarm probability is

the design objective, the system should be able to tolerate a relatively big miss probability.

However, if AP is deployed with a relatively big number of antennas, both the false-alarm

probability and miss probability can be small values. From this observation we are implied

that when the AP has very low number of receive antennas, such as U = 1 in the last

chapter, the TB-UAI scheme cannot work well, as in this case, the UAI performance is very

sensitive to the threshold. By contrast, when AP has multiple receive antennas, as implied

by the results in Fig. 4.11, we may easily achieve the required small false-alarm and miss

probabilities by setting the threshold near the point where the false-alarm probability curve

and miss probability curve cross.

Finally, in Fig. 4.12, we compare the performance achieved by our proposed signature

code and that attained by the random signature codes. Explicitly, for any given thresh-

old, both the miss probability and the false-alarm probability achieved by our proposed

signature coders are smaller than the corresponding ones by the random signature codes.

Hence, we can expect that the MRA/MC-mGFMA systems employing the proposed signa-

ture codes are capable of achieving better UAI performance than the MRA/MC-mGFMA

systems employing random signature codes. Furthermore, when data detection is con-

sidered, the MRA/MC-mGFMA systems employing the proposed signature codes should

also achieve higher detection reliability than the MRA/MC-mGFMA systems employing

random signature codes, as to be studied in Section 4.7.
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Figure 4.11: Trade-off between the probabilities of false-alarm and miss, when

UEs are identified using the channel estimation based TB-UAI.
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Figure 4.12: Trade-off between the probabilities of false-alarm and miss, when

UEs are identified using the channel estimation based TB-UAI.

4.5 Successive Interference Cancellation Assisted Data De-

tection

After channel estimation and UAI, data detection can be carried out. To provide low-

complexity detection while still achieve near optimum detection performance, we propose

the successive interference cancellation (SIC)-assisted detection, which requires MMSE

processing, reliability measurement and successive interference cancellation, as detailed

below.

4.5.1 Minimum Meam-Square Error Based Detection

To detect UE i in the principle of MMSE, the decision variable is formed as

zi,m = wwwH
i yyym, m = 1, 2, . . . , NF;

i = 1, 2, . . . , KA (4.57)
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where the data symbols in one frame are all detected, regardless of the pilot symbols or

data symbols. Assuming this has two folds of consideration. First, it is for convenience

of notification. Second, the detection of pilots may have further application, such as, for

further identifying a falsely identified UE by the TB-UAI scheme. This issue will be further

studied in Section 4.6.

In (4.57), yyym is given by (4.3) for the mth symbol, the weight vector wwwi is expressed as

wwwi = RRR−1
ym rrrym,i, i = 1, 2, . . . , K (4.58)

where the autocorrelation matrix is

RRRym = E
[
yyymyyyH

m

]
(4.59)

which has the expression of

RRRym =
KA

∑
k′=1

BBBk′ĥhhk′ĥhh
H
k′BBB

H
k′ + σ2IIIUN (4.60)

where ĥhhk′ are estimated channels. Alternatively and especially when active UEs cannot be

accurately identified, RRRym can be estimated as

R̂RRym =
1

NF

NF

∑
m=1

yyymyyyH
m (4.61)

In (4.58), rrrym,i is the cross-correlation vector between yyym and bi,m, which is given by

rrrym,i = E [yyymbi,m] = BBBihhhi (4.62)

Since the channels of UE i have been estimated and BBBi is known to AP, AP can construct

rrrym,i as

rrrym,i = BBBiĥhhi, i = 1, 2, . . . , K (4.63)

Finally, if decisions are needed, based on zi,m, the binary data symbols are detected as

b̂i,m =

{
+1, if zi,m > 0,

−1, else

m = 1, 2, . . . , NF;

i = 1, 2, . . . , KA (4.64)
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4.5.2 Reliability Measurement

Owing to its relatively low complexity for implementation and capable of achieving near-

optimum bit error rate (BER) performance, the SIC-assisted detection has drawn a lot

of research attention in multiuser communications scenarios [127]. In [127], the author

investigated a near-optimum reliability measurement method, which is high efficiency for

operation in both space-division multiple-access (SDMA) and CDMA systems. In [127,

142], the simulation results showed that near-optimum performance is achievable, when

communicating over Rayleigh fading channels. Furthermore, the research results in [142,

220] showed that even when the loading factor, which is the number of supported users

normalized by the number of resource units, such as, spreading factor, is as high as 2,

the system can still work efficiently and achieve near-optimum performance. Due to its

successive implementation structure, the SIC-assisted detection scheme proposed in [142]

is well suitable for operation in the dynamic mGFMA systems, including our MRA/MC-

mGFMA system.

To implement the SIC-assisted detection, the detection reliabilities of bits are required

to be measured, so that UEs are detected from the most reliable one to the least reliable

one. In this chapter, we introduce the method proposed in [142], which for our MRA/MC-

mGFMA system measures the reliability according to

Li,m =(1 + γ̃i)zi,m

=

 1

1− ĥhh
H
i R̂RR
−1
ym ĥhhi

 zi,m,

m = 1, 2, . . . , NF; i = 1, 2, . . . , KA (4.65)

where γ̃i = ĥhh
H
i R̂RR
−1
ym ĥhhi/(1− ĥhh

H
i R̂RR
−1
ym ĥhhi) is the measured signal-to-interference-plus-noise

ratio (SINR) of UE i, ĥhhi is the estimated channel of UE i, given in Section 4.3.2 or Sec-

tion 4.3.3, R̂RRym and zi,m are given by (4.61) and (4.57), respectively. Additionally, it is

assumed that there are KA active UEs identified. According to [142], when the value of

Li,m is larger, the detection of the corresponding bit of a UE is more reliable.

4.5.3 SIC-Assisted MMSE Detection in Dynamic MRA/MC-mGFMA

Systems

Assume that there are KA = |KA| UEs identified active. Then, during each symbol du-

ration, the SIC-assisted MMSE (SIC-MMSE) detector operates KA iterations to detect the

KA active UEs, each iteration detects one bit of a UE. Note that, in order to reduce the
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detection latency, the bits of one frame can be detected in parallel without affecting the

detection performance. This is because once the channels are estimated and the active UEs

are identified, the detections of the different bits in one frame are independent. Hence, our

description below ignores the index m for brevity. Additionally, we note that to further

reduce the detection latency, in one iteration, all the bits of KA UEs with their reliabilities

higher than a pre-set threshold may be detected.

Algorithm 4.5.3 SIC-Assisted MMSE (SIC-MMSE) Detection Algorithm.

Initialization:

yyy(0) = yyym, {BBBk}, KA, RRR(0)
y = R̂RRym , {ĥhhk}, k ∈ KA.

Preparation:

H̃HH(0)
=
[
ĥhh1, ĥhh2, . . . , ĥhhKA

]
, WWW(0) =

(
RRR(0)

y

)−1
H̃HH(0), QQQ(0) = IIIKA − (H̃HH(0)

)HWWW(0);

Detection:

for s = 1, 2, . . . , KA:

1. Forming decision variables:

zzz(s) = <
{(

WWW(s−1)
)H

yyy(s−1)
}

;

2. Determine the most reliable UE: For the UEs k′1, k′2, . . . , k′KA−s+1 not detected,

compute their reliabilities according to (5.43), and find the most reliable UE as

k(s) = arg maxk′i
{Lk′1

, Lk′2
, . . . , Lk′KA−s+1

};

3. Detect the most reliable UE: b̂k(s) = sgn
(

zzz(s)
k(s)

)
, where zzz(s)

k(s)
is the k(s)th entry

of zzz(s);

4. Interference cancellation:

yyy(s) = yyy(s−1) − BBBk(s)hhhk(s) b̂
(s);

5. Update:

WWW(s) =

WWW(s−1) +
www(s−1)

k(s)
(
hhhk(s)

)H WWW(s−1)

QQQ(s−1)(k(s), k(s))

PPP(s),

H̃HH(s)
= H̃HH(s−1)PPP(s), (4.66)

QQQ(s) = III − (H̃HH(s)
)HWWW(s).

end for

Outputs: Detected data bits of KA active UEs.
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The detection is summarized in Algorithm 4.5.3. In the algorithm, QQQ(s−1)(k(s), k(s))

is the (k(s), k(s))th entry of QQQ(s−1), while www(s−1)
k(s)

is the k(s)th column of WWW(s−1). Further-

more, H̃HH(s) is obtained from H̃HH(s−1) by deleting the column of hhh(s) corresponding to the

UE just detected at the sth detection iteration, and PPP(s) is a permutation matrix obtained

from IIIKA after deleting the s columns corresponding to the UEs already detected.

From the description of Algorithm 4.5.3, we can know that the SIC-MMSE detector

operates KA iterations with each iteration detecting one most reliable UE. Then the inter-

ference of the detected UE on the not yet detected UEs is removed, so as to enhance the

detection performance of the following UEs. Furthermore, at the end of a detection itera-

tion, the weight matrix as well as the channel matrix for the remaining UEs are updated.

As discussed in [142], The SIC-MMSE detector can be efficiently implemented using

the existing algorithms proposed in the context of the V-BLAST detection [221], yielding

the detection complexity of the SIC-MMSE being on the order ofO
(
c1KAN + c2N2) per

UE, where c1 and c2 are certain constants. The detection delay is also linearly depended

on KA and the maximum detection delay is KA symbol (bit) durations, when NF symbols

per frame are detected in parallel.

4.6 Joint Channel Estimation, UE Activity Identification

and Data Detection

Algorithm 4.6 SIC-MMSE assisted joint channel estimation, UAI and data
detection.

Initialization:

yyym
(0) = yyym, m = 1, 2, . . . , NF,

{AAAk} or {BBBk}, KM, pilot bits.

Preparation:

Estimate R̂RRb based on (4.32), and set R̂RR
(0)
b = R̂RRb.

For i = 1, 2, . . . , KM:

1. Estimate the channels of the (K− i + 1) unidentified UEs based on RRR(i−1)
b and

(4.35). Let the estimated channels be expressed as ĥhh1′ , ĥhh2′ , · · · , ĥhh(K−i+1)′ .
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2. Identify the most reliable active UE as

k′ = arg max
k
{|ĥhh1′ |2, |ĥhh2′ |2, · · · , |ĥhh(K−i+1)′ |2}.

3. Compute wwwk′ = RRR(i−1)
b ĥhhk′ , and update RRR(i)

b = RRR(i−1)
b − BBBk′ĥhhk′ĥhh

H
k′BBBH

k′

4. Detect the pilots and data bits of the most reliable UE as

b̂k′,m = sgn
(

zk′,m = <{wwwH
k′yyy

(i−1)
m }

)
, m = 1, . . . , NF.

• if the number of erroneous pilot symbols is higher than a preset threshold

NC, the UAI process finishes;

• if the number of erroneous pilot symbols is lower than or equal to NC, UE

k′ is identified as active, and execute the following operations:

a) Interference cancellation:

yyy(i)m = yyy(i−1)
m − BBBk′ĥhhk′ b̂k′,m, for m = 1, 2, · · · , NF;

b) Return 1).

Outputs: Active UEs and their information bits.

In the above Section 4.5.3, data detection is carried out after both channel estimation and

UAI are completed. However, the channel estimation addressed in Section 4.3 experi-

ences interference among the active UEs. If the interference from stronger UEs can be

cancelled before the channel estimation of relatively weaker UEs, the overall performance

of MRA/MC-mGFMA systems should be improved. In this section, we propose a joint

channel estimation, UAI and data detection algorithm that is designed based on the prin-

ciples of MMSE and SIC, which is referred to as the SIC-MMSE-JCUD for convenience

of description, to improve the reliability of MRA/MC-mGFMA systems. The algorithm is

stated as Algorithm 4.6, which is explained as follows.

First, according to the number K of potential UEs and the activation probability Pa, a

number KM is determined so that the probability of more than KM active UEs does not

exceed a small probability, such as, 10−5. The algorithm terminates either before or when

the number of iterations reach this number.

As shown in Algorithm 4.6, during the ith iteration, meaning that there are (i − 1)

UEs identified and detected, the algorithm first estimates the channels of the (K − i + 1)

UEs, as shown at Step 1). Then, at Step 2), the most reliable UE is identified as the UE

whose channel has the largest magnitude, by following the principle in Section 4.4.1. For

this most reliable UE, as shown at Step 3), its weight vector for the detections of pilots
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Table 4.1: Complexity of UAI schemes in Chapter 4.
UAI

scheme

Complexity Characteristic Advantages Disadvantages

TB-UAI KCe Designed based on the distinct

properties of the estimated channels

for active and inactive UEs.

Identify directly.

JCUD O
(

c1KA N + c2 N2
)

According to the number K of po-

tential UEs and the activation prob-

ability Pa , a number KM is de-

termined so that the probability of

more than KM active UEs does not

exceed a small probability, such as,

10−5 . The algorithm terminates ei-

ther before or when the number of

iterations reach this number.

High reliability. Only one UE can be

identify in each of

the iteration.

and data is computed, and furthermore, the auto-correlation matrix is updated to RRR(i)
b for

use in the next iteration. Then, at Step 4), the pilots and data bits of the most reliable UE

are first detected. Furthermore, the number of erroneous pilot symbols is compared with a

pre-set number NC. If the number of erroneous pilot symbols exceeds NC, meaning that

the identified UE is most probably an inactive UE or its channel is too poor to be detected,

the algorithm terminates and outputs the active UEs as well as their data bits. Otherwise, if

the number of erroneous pilot symbols is smaller than NC, meaning that the identified UE

is active, yyy(i−1)
m is then updated to yyy(i)m for m = 1, 2, . . . , NF by removing the contribution

of the detected UE. Then, the algorithm returns to Step 1) to start the next iteration unless

KM iterations are operated.

Note that, Algorithm 4.6 assumes that each iteration handles only one UE, which re-

sults in that the processing delay is proportional to the product of the number of active UEs

and the frame length of NF. In order to shorten the processing delay, several most reliable

UEs may be simultaneously processed during one iteration. Without any doubt, the opera-

tion in this way results in the trade-off between the processing delay and the performance.

An improved approach is to use the adaptive approach, with which the UEs having their

channel magnitudes higher than a pre-set threshold are simultaneously processed. Oth-

erwise, when all the channel magnitudes are lower than a pre-set threshold, only the UE

having the highest channel magnitude is processed.

4.7 Performance of MRA/MC-mGFMA Systems

In this section, we show the performance of the dynamic MRA/MC-mGFMA systems

employing the SIC-MMSE detection provided in Section 4.5 or the SIC-MMSE-JCUD

considered in Section 4.6. Let us first consider the dynamic MRA/MC-mGFMA systems

employing the SIC-MMSE detection.

First in Fig. 4.13, we study the BER performance of the MRA/MC-mGFMA systems
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Figure 4.13: BER performance of MRA/MC-mGFMA systems employing SIC-

MMSE detection.

employing the SIC-MMSE detection, when assuming that AP employs either ideal chan-

nel knowledge or the channels are estimated based on the pilots sent by UEs. As shown

on the top of the figure, we assume that the number of potential UEs is K = 100 and each

UE has an activation probability of Pa = 0.05. For channel estimation, 16 pilots are trans-

mitted over a frame of length 128. Additionally, the spreading factor is set to N = 16 and

the number of multipaths is L = 2. From the results of Fig. 4.13 we can clearly observe

that the BER performance of MRA/MC-mGFMA systems improves with the increase of

the number of receive antennas deployed at AP. Furthermore, for the considered systems

and settings, the BER performance achieved by the estimated channels is near that ob-

tained by the ideal channels, explaining that the channel estimation is efficient. This is

more declared, when the SNR is sufficiently high, as the result that more reliable channel

estimation can be attained at higher SNR.

In Fig. 4.14, we investigate the effect of pilot density on the BER performance. For

this purpose, given the total number of pilots of NP = 16, we assume two frame lengths of

NF = 128 and NF = 1024. Hence, the pilot ratios are 16/128 = 12.5% and 16/1024 =

1.6%, respectively. The results show that the BER performance in both cases is very

similar. This is mainly because our channels are estimated in the time-domain, which is

mainly depended on the number of pilot symbols and the number of subcarriers. The same

is the observation from the results shown in Fig. 4.13, increasing the number of receive
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Figure 4.14: BER performance of MRA/MC-mGFMA systems employing SIC-

MMSE detection.

antennas of AP can significantly improve the BER performance of the MRA/MC-mGFMA

systems.

In Fig. 4.15, we demonstrate the BER performance of the MRA/MC-mGFMA systems

employing the SIC-MMSE detection, when channels are estimated using the approaches

in Section 3.3. As shown in the figure, we assume that the activation probability of each

potential UE is Pa = 0.05 or Pa = 0.15. From the results we can have the following

observations. First, when more receive antennas are employed, the MRA/MC-mGFMA is

capable of attaining better BER performance. Second, when Pa = 0.15, it can be observed

that the BER performance curves present error floors, which can be explained as follows.

As the number of multipaths is L = 2 and the number of potential UEs is K = 100.

The average variables to be estimated is 100× 0.15× 2 = 30, which is nearly twice of

the spreading factor N = 16. Furthermore, since each UE activates independently, there

is a big probability that the number of active UEs is larger than 15. In these cases, the

channel estimation becomes not very reliable, which results in low reliability of detection.

By contrast, when Pa = 0.05, we can see that the BER decreases as expected.

Fig. 4.16 shows the achievable BER performance of the MRA/MC-mGFMA systems

employing the proposed signature codes by comparing it with the systems employing ran-
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Figure 4.15: BER performance of MRA/MC-mGFMA systems employing SIC-

MMSE detection.

dom signature codes. Again, the SIC-MMSE detection is employed and the channels are

assumed to be ideal. The results show that the proposed set of signature codes outperform

the random signature codes, and much better BER performance can be achieved in both

the cases of L = 2 and L = 8. Furthermore, the BER performance in the case of L = 8 is

better than that in the case of L = 2. This is because under the assumption of ideal channel

knowledge, the case of L = 8 can provide the detection with more frequency diversity than

the case of L = 2.

Fig. 4.17 also compares the BER performance achieved by the proposed signature

codes and the random codes. We assume the MRA/MC-mGFMA systems employing the

SIC-MMSE detection, and when the channels are estimated using NP = 32 pilot symbols

in the frames of length NF = 128. Explicitly, the proposed signature codes allow the

MRA/MC-mGFMA systems to achieve better BER performance than the random signature

codes. Furthermore, deploying more receive antennas at AP is capable of attaining better

BER performance.

Fig. 4.18 compares the BER versus UE activity performance of the MRA/MC-mGFMA

systems employing the conventional MMSE detection and the SIC-MMSE detection for
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Figure 4.16: BER performance of MRA/MC-mGFMA systems employ SIC-

MMSE detection when using random codes and proposed codes respectively.

two different SNR values, namely SNR = 15 dB and 20 dB. Note that, the channel

knowledge required for the conventional MMSE and SIC-MMSE detection is acquired us-

ing the channel estimation provided in Section 4.3.2. From the results shown in Fig. 4.18

we can know that while the SIC-MMSE detector is capable of achieving very promising

BER performance even when only 8 pilots are used for channel estimation, the conven-

tional MMSE detector’s performance is quite poor. The BER performance achieved by

the conventional MMSE detector increases quickly with the increase of the UE’s activa-

tion probability. These observations explain that the conventional MMSE detector is not

efficient for operation in the dynamic GFMA systems. By contrast, with the aid of the em-

bedded SIC, the SIC-MMSE detector is robust to the dynamics of GFMA systems, making

them achieve promising BER performance.

Finally, the set of results shown in Figs. 4.19 and 4.20 are for the SIC-MMSE-JCUD

described by Algorithm-4.6. Specifically, in Figs. 4.19a and 4.19b, the probabilities of

false-alarm and miss are respectively depicted, while the BER of the identified active UEs

is shown in Fig. 4.20. From the results shown in Figs. 4.19a and 4.19b, we may have

the following observations. First, for a given U of the number of receive antennas at AP
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Figure 4.17: SIC Detection for operation of proposed MRA/MC-mGFMA.

and at a given SNR, when Nc is changed from Nc = 2 to Nc = 4, as shown in the

figures, the false-alarm probability increases while the miss probability decreases. This

is understandable because Nc is the number of erroneously detected pilots allowed, the

false-alarm probability should increase and the miss probability should decrease, when Nc

is a bigger value. Second, for a given value of Nc and at a given SNR, both the false-alarm

probability and the miss probability decreases, as more receive antennas are employed by

AP. This observation follows what we attained in the previous of results in the section.

Again, the reason behind is that employing more receive antennas at AP is beneficial to

the distinction between active and inactive UEs.

In Fig. 4.20 showing the BER of the active UEs in the MRA/MC-mGFMA systems

employing SIC-MMSE-JCUD algorithm, we consider only the case of Nc = 4. Explicitly,

the BER performance improves, as the number of receive antennas at AP increases. From

the parameters shown on the top of the figure, we can know that the average number

of active UEs per time-slot is 10, and there is still a certain probability that the number

of active UEs per time-slot is larger than N = 16. However, from the BER performance

results, we can be implied that the SIC-MMSE-JCUD works efficiently, as there is no error-

floor observed, even when U = 1, i.e., when AP has only one receive antenna. Therefore,
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Figure 4.18: BER versus UE activation probability of the MRA/MC-mGFMA sys-

tems employing respectively the SIC-MMSE and conventional MMSE detection.

from the results of Figs. 4.19 and 4.20 we can know that the SIC-MMSE-JCUD is a highly

efficient algorithm, where channel estimation, UAI and data detection can enhance each

other.

4.8 Chapter Conclusions

We have investigated a MRA/MC-mGFMA system, where each AP has multiple receive

antennas, for a massive number of UEs to access wireless network without requiring grant

scheduling. First, the channel estimation in the principle of MMSE has been considered,

when AP is assumed to have ideal knowledge, no knowledge or partial knowledge about

the active UEs. Then, based on channel estimation, a low-complexity TB-UAI scheme has

been proposed for UAI. Finally, AP carries out information detection of active UEs in the

principles of SIC-MMSE, after the channel estimation and UAI. Furthermore, a joint chan-

nel estimation, UAI and information detection that is relied on the SIC-MMSE, referred to

as the SIC-MMSE-JCUD, has been proposed and studied. We have demonstrated the im-
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Figure 4.19: Probabilities of false alarm and miss, when UEs are identified using

the SICD-UAI algorithm.
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Figure 4.20: BER of active UEs in the MRA/MC-mGFMA systems employing

SIC-MMSE-JCUD.

pact of multiple receive antennas on the system design and achievable performance, show-

ing that significant performance improvement is available for channel estimation, UAI

and information detection, when AP is deployed with multiple receive antennas. Further-

more, when AP is equipped with multiple receive antennas, a low-complexity TB-UAI

is highly effective for achieving promising performance, and the associated threshold is

robust for practical setting. Specifically for information detection, in this chapter, two de-

tection schemes have been considered, which are the SIC-MMSE and SIC-MMSE-JCUD,

both of them rely on the SIC-MMSE principle. Our studies and performance results show

that these SIC-MMSE-relied detection schemes are highly efficient for signal detection in

mGFMA systems. It is shown that their performance is much better than the benchmark

MMSE detector. More importantly, they are flexible for operation in the mGFMA systems

where active UEs and the number of them are highly dynamic. Specifically in the SIC-

MMSE-JCUD, channel estimation, UAI and data detection can iteratively enhance each

other to attain the promising performance. Additionally, by combining the ZC-sequences

and Gold-sequences, we have proposed a class of signature sequences for supporting the

massive number of UEs. Our studies demonstrate that the performance achieved by this

class of sequences is better than that attainable by binary random sequences.



Chapter 5
Channel Estimation, User Activity
Identification and Data Detection in
Distributed Antenna mGFMA Systems

Distributed MIMO can significantly improve system performance, as it can bring BS an-

tennas close communication terminals, such as, UEs, making wireless communication user

centric. Following our studies in the previous chapters, in this chapter, we study the mas-

sive distributed grant-free multiple-access (MDR-GFMA) with respect to the channel es-

timation, UAI and data detection. We assume a MDR-GFMA system where remote radio

heads (RRHs) or APs, or simply distributed antennas (DAs) are randomly distributed in

a given area based on the point Poisson (PP) distribution, while UEs are uniformly dis-

tributed. We assume that signals transmitted by UEs experience both the large-scale fad-

ing of propagation path-loss and shadowing and the small-scale Rayleigh fading. Signals

received by different RRHs/APs are forwarded to a so-called signal processing central unit

(SPCU), where channel estimation, UAI and data detection are carried out. In terms of

signal processing at SPCU, channel estimation is achieved in the principle of minimum

mean-square error (MMSE). Following channel estimation, an orthogonal matching pur-

suit (OMP) relied algorithm is implemented to attain initial UAI, which is enhanced with

the aid of the pilot detection of each initially identified active UE. Finally, the data sent by

active UEs are detected using either MMSE detection or the successive interference cancel-

lation assisted MMSE (MMSE-SIC) detection. The performance of the above-mentioned

schemes is studied with the aid of Monte-Carlo simulations. Our studies conceive that the

proposed algorithms are effective, and are capable of achieve promising performance in

the MDR-GFMA systems with various dynamics, including active UEs and the number

of them, locations of DAs and the number of them serving different UEs, geographically



5.1. Introduction 135

resulted large-scale fading of propagation path-loss and shadowing.

5.1 Introduction

The rapid growth of applications imposes the challenges on the 5G beyond (5G+) and

the 6G wireless systems to have higher throughput, wider coverage, lower latency, further

enhanced reliability, etc., than what the 5G systems can provide [1]. To meet these ex-

pectations, numerous novel techniques have been proposed and investigated, which allow

to flexibly and collaboratively to work for various application scenarios, such as, hot-

spots [222], in order to attain high-efficiency. Furthermore, the concept of integration

architectures for future wireless networks has been proposed in 3GPP [223], which moti-

vates to reduce the propagation delay, so as to establish the new radio (NR) massive sens-

ing networks friendly. Additionally, in terms of the resource allocation in future wireless

networks, reduced cell size and adaptive coordination have been studied in a collabora-

tive manner among different types of remote radio heads (RRHs) or access points (APs).

Correspondingly, the user-centric heterogeneous network [224] has been expected to be

implemented for providing services in the internet of things (IoT) applications.

In this chapter, we consider the GFMA in the distributed RRUs/APs systems, where

the RRHs/APs are randomly distributed, such as following a homogeneous Poisson Point

Process (PPP), in the system’s coverage and are connected via feeder cables/links to a

signal processing centre unit (SPCU). Hence, the RRHs/APs can work cooperatively for

different purposes, such as for signal transmission/receiving on downlink/uplink. Further-

more, in the considered system, we assume that there are potentially a massive number of

user equipments (UEs), but each of which only has a small probability to become active to

transmit at a time. Therefore, we refer to the considered system as the massive distributed

antenna GFMA (MRD-GFMA) system for convenience of description. In this chapter, our

research focus is on the uplink transmission, with the emphasis on the channel estimation,

UE activity identification (UAI) and the data detection of active UEs.

Fundamentally, MDA systems belong to the family of the distributed antenna (DAS)

systems [225]. Along with the research and development of MIMO systems [226–228],

cell-free (CF) systems [229–232], ets., MDA systems have attracted wide attention, owing

to its potential to provide the technical support for the user-centric systems where every

UE can be served by a few of RRHs/APs around it. Hence, in a user-centric system, each

service is centralized by a UE associated with a predominately formed cell including the

RRHs/APs supporting the communications of the UE. In literature, this approach has been

studied in the context of the open radio access network (O-RAN) [233], cloud radio access
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network (C-RAN) [234], large-scale DAS [235] and cell-free distributed MIMO (CF-D-

MIMO) [236], etc., with the motivation to meet the challenges of 5G+ and 6G systems.

In brief, MDA systems can have the following advantages. First, owing to the massive

number of antennas distributed in the network, MDA systems can usually have extremely

high spectral-efficiency. Second, as each UE only communicates with the RRHs/APs close

to it, MDA systems can be highly energy efficient. Third, owing to the fact that each

UE has some RRHs/APs close to it and at these RRHs/UEs, this UE is a strong UE, no

power-control is needed in terms of the near-far problem. Furthermore, handover in MDA

systems is relatively easy to implement, as SPCU manages the communication between a

UE and the RRHs/APs close to it. The SPCU can readily associate/de-associate a RRH/AP

with/from a UE.

On the other hand, various GFMA schemes suitable for short and sporadic traffic have

been proposed [237]. However, as there is no handshaking between UE and BS/AP, sig-

nal detection in GFMA systems is more challenging. The BS/AP has to first carry out

the user activity identification (UAI) to know which UEs are active before it execute the

data detection, or carry out joint UAI and data detection [238]. In [116], the authors en-

hanced the CS-based approach by proposing a greedy algorithm relying on the maximum

a posteriori (MAP) criterion, which performs UAI and data detection jointly by exploiting

the a-posteriori probabilities of each other. In [115], the authors introduced a two-stage

cooperative MUD designed for the uplink (UL) GFMA systems. In this method, the m-

sequence in time-domain and the training sequence in frequency-domain are utilized re-

spectively to achieve synchronization and gain the priori information about UEs’ activities.

The authors in [117] considered the detection scenario where the sparsity is time-varying

and correspondingly, a switching algorithm relying on the sparsity level was proposed so

as to enjoy the merits of both the CS-based and conventional detection schemes. Simi-

larly, by considering the time-varying characteristics of sparsity in GFMA systems, the

dynamic low-complexity CS-based MUD was studied in [118, 119]. With this method,

the active UE set in the current time-slot is used to estimate the active UEs in the fol-

lowing time-slot. It was shown that the method can improve the successful data recovery

rate. Moreover, in [239], a block-sparsity model was proposed and based on which the

cross-validation aided block sparsity adaptive subspace pursuit (CVA-BSASP) algorithm

and the threshold-aided block sparsity adaptive subspace pursuit (TA-BSASP) algorithm

were introduced to detect the information in GFMA systems. Very recently, the machine

learning methods have been conceived more frequently for UAI and information detec-

tion in GFMA systems [162, 240, 241]. Specifically, in [162], the authors considered the

deep neural network (DNN) algorithms for detecting the active UEs in GFMA systems.

In [241], the authors proposed a method to jointly carry out the sparse signal recovery



5.1. Introduction 137

and sparse support recovery under the multiple measurement vector (MMV) models for

GFMA-MIMO systems. Furthermore, in [242], the authors considered an uplink grant-

free sparse coded multiple access (GF-SCMA) system and correspondingly, a generalized

likelihood ratio based convolutional neural network (CNN) algorithm was proposed for

UAI.

From the above studies we learned that most CS-based approaches are efficient, when

the sparsity level is low, i.e., satisfying the RIP [243]. However, in practical massive

GFMA systems, the number of UEs may be huge, UEs may be distributed with ultra-high

density, while the active UEs and the number of them are highly dynamic. Therefore, the

RIP for sparsity may not be satisfied, making the CS-based approached inefficient. Fur-

thermore, in this chapter, we consider the MDR-GFMA, where RRHs/APs are distributed

in the communications area. Each RRH/AP only serves the UEs around it, while each

UE is only connected with a few of RRHs/APs around it. Furthermore, the signals re-

ceived by an RRH/AP from different UEs have different power. All the above-mentioned

settings/assumptions impose new challenges to the design of the algorithms for the UAI

and data detection in MDR-GFMA systems. Hence, in this chapter, we motivate to study

the low-complexity while still efficient methods for the channel estimation, UAI and data

detection in the MDR-GFMA systems. The main contributions and novelties can be sum-

marized as follows:

• A MDA-GFMA system is proposed and investigated, where the RRHs/APs (or sim-

ply distributed antennas (DAs)) are distributed based on the Poisson point (PP) dis-

tribution and UEs are randomly and uniformly distributed in the coverage area. In

the considered MDA-GFMA system, RRHs/APs are assumed to be connected to a

SPCU, where signal processing is carried out. UEs become active randomly with a

small activation probability. Each of the active UEs is only connected to a few of

the DAs close to the UE. Hence, no path-loss resulted power-control is needed, the

operation is UE centric and the system is cell-free.

• In terms of signal processing, first, the MMSE-assisted channel estimation is im-

plemented to estimate the channels of UEs, regardless of them being active or inac-

tive, when assuming that the SPCU has the different levels of knowledge about the

large-scale fading, including propagation path-loss and shadowing, experienced by

the UEs. Furthermore, the characteristics of the estimated channels for active and

inactive UEs are analyzed and demonstrated.

• Second, based on the MMSE-relied channel estimation, an orthogonal matching pur-

suit assisted UAI, referred to as the OMP-MMSE-UAI, algorithm is proposed and

investigated, when each of UEs is assumed to be served by the RRHs/APs within a
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given area centred at the UE. The OMP-MMSE-UAI provides the initial UAI, which

is further enhanced via the detection of the pilot symbols expected for different UEs.

• Third, after the channel estimation and UAI, the data transmitted by active UEs

are detected. Both MMSE detection and the successive interference cancellation

assisted MMSE (MMSE-SIC) detection are introduced, again, by assuming that each

active UE is served by a few of RRHs/APs around the UE.

• The performance of channel estimation, UAI and data detection in MDR-GFMA

systems is investigated with the aid of Monte-Carlo simulations. The results demon-

strate that the proposed algorithms are effective. The MMSE-based channel estima-

tion is low-complexity and is capable of achieving promising performance, which

significantly improves with the increase of the density of the distributed RRHs/APs.

The OMP-MMSE-UAI algorithm can effectively limit the miss of active UEs, while

avoiding the false-alarms of inactive UEs. Furthermore, the MMSE-SIC is highly

efficient for operation in the MDR-GFMA systems, where different dynamics exist,

including active UEs and the number of them, the number of RRHs/APs that a UE

connects, and the geographically resulted large-scale fading.

The remainder of this chapter is outlined as follows. In Section 5.2, we describe the

MDA-GFMA system model and define the main system parameters. Section 5.3 addresses

the MMSE-assisted channel estimation. UAI is considered in Section 5.4, while data de-

tection is addressed in Section 5.5. Performance results and discussion are in Section 5.6.

Finally, the main conclusions derived from the research are summarized in Section 5.7.

5.2 Description of Massive Distributed Antenna GFMA

System

We consider a massive distributed antenna GFMA (MDA-GFMA) system, as shown in

Fig. 5.1 in which many remote radio heads (RRHs) and APs are distributed. Note here

that RRHs are just the extensions of APs for collecting/sending signals from different

locations. These RRHs/APs are assumed to be connected using optical fiber with a signal

processing centra unit (SPCU), which is also referred to as a baseband unit (BBU). Each

RRH/AP is assumed to have one antenna for signal receiving. Hence, in the forthcoming

discourses, we may exchangeably use the terms of distributed antenna (DA) and RRH/AP

without notation. We assume that the RRHs/APs are assumed to be well synchronized.

Furthermore, to improve connectivity, we assume a user-centric scenario where the density

of distributed antennas is high. In this MDA-GFMA system, each antenna may support all
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Figure 5.1: Illustration of system structure for MDA-GFMA system.

the UEs in the system or the part of UEs around it. UEs are assumed to be randomly

(uniformly) distributed in the system.

Below we describe the MDA-GFMA system in terms of its transmitter, channel model

and receiver.

5.2.1 Transmission Modelling

As in the previous chapter, we assume that in the MDA-GFMA system, there are K po-

tential UEs randomly accessing the network. Each of them has a small probability Pa to

become active to transmit its information at a time-slot. Hence, during a time-slot, the

number of active UEs, expressed as KA, is a random variable with its average satisfying

K̄A � K. Once a UE becomes active, it starts transmitting information at the start of the

next time-slot, one frame per time-slot. Since the IoT devices having low-rate requirement

are concerned, we assume that the low-complexity binary phase-shifting keying (BPSK)

based modulation is employed for UEs to send their data. Hence, the transmitted signal by

a UE can be written as

sk(t) =
√

2Ptbk(t) cos(2π fct + φk) (5.1)

where Pt is the transmit power, fc is carrier frequency and φk is the initial phase introduced

by carrier modulation. Additionally, bk(t) = ∑ f b( f )
k ψTb(t− f Tb) is the data waveform,

with Tb being the bit (symbol) duration, ψTb(t) the transmitted waveform, and b( f )
k ∈

{+1,−1}.
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Figure 5.2: Illustration of an example for UEs’ actions based on MDA-GFMA

principles.

Note that BPSK can be readily extended to the other quadrature amplitude modulation

(QAM), when higher data rate is demanded.

As above-mentioned, data of each UE is sent in frame and one frame per time-slot.

We assume that each time-slot has relatively short duration, so that the channel of a UE

over one time-slot is nearly constant. Specifically, the frame is structured as shown in

Fig. 5.2, which has the length expressed as NF = NI + NP + NL, where NI denotes the

number of data bits per frame, NP is the number of pilot bits per frame, inserted for channel

estimation and UE activity identification (UAI), while the NL bits are used to inform SPCU

the number of frames that a UE transmits continuously. Hence, these bits are marked as

the data block length indicator (DBLI), as shown in Fig. 5.2. Note that, in our performance

study, we typically set NL = 2, meaning that at most 4 frames can be transmitted once a

UE activates.

In Fig. 5.2, we also illustrate a specific example with active UEs being associated with

different RRHs/APs. Due to the propagation path-loss and a UE having different distances

from different RRHs/APs, as shown in Fig. 5.2, at a certain time, UE1’s transmitted signals

may only be received by RRH1 and RRH4, UE2’s transmitted signals are only received by

RRH2 and AP3, UE3’s transmitted signals are only received by AP3 and RRH4, while

UEk’s transmitted signals are simultaneously received by RRH1, RRH2, RRH4 and AP3.

Certainly, before UAI, a RRH/AP is unable to know from which UE it receives signals.

Instead, after the RRHs/APs receive the signals of a frame, they forward their received

signals to the SPCU (see Fig. 5.1), where channel estimation, UAI and data detection
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are operated. Furthermore, from Fig. 5.2 we can be implied that when all the observa-

tions sampled from the RRHs/APs are considered, the channel matrix (or access matrix)

is sparse, as each UE is only associated with a small number of RRHs/APs. Let us now

describe the channel model in the next subsection.

5.2.2 Channel Modelling

Since we assume that in the considered MDA-GFMA system, antennas are distributed

with relatively high density, it can be convinced that at any location of a UE, there are

always one to several antennas around the UE, which receive the relatively high power

from this UE. Hence, in the chapter, we do not assume power control. Instead, we assume

that all UEs transmit at the same power expressed as Pt. Furthermore, for measurement

and performance illustration, we define the signal-to-noise ratio at transmit, expressed as

SNRt, which is in fact the transmit power normalized by the noise’s power of σ2, i.e.,

SNRt = Pt/σ2.

In this chapter, we assume a composite shadowing fading propagation model [244],

which includes the large-scale propagation path-loss and shadowing as well as the small-

scale fast fading. Specifically, when we assume a distance d between a UE and an antenna

at RRH/AP, the path-loss expressed in dB can be expressed as

Γ(d) = 10α log10(d/d0) (dB), d ≥ d0 (5.2)

where α is the path-loss exponent usually taking a value in the range between 2 and 6,

while d0 is a reference distance, below which the path-loss is constant.

Assume that the transmit power is Pt. Then, the average received power Pr from a

transmission distance d is given by

Pr =
Pt

10Γ(d)/10
. (5.3)

Overall, let the channel gain between the kth UE and the mth DA be expressed as gk,m.

It can be written as

gk,m =
√

αk,mhk,m (5.4)

where hk,m represents the small-scale fast fading, which is assumed to follow the complex

Gaussian, i.e., Rayleigh fading, distribution with unit power [245], [246], expressed as

CN (0, 1), while αk,m denotes the large-scale fading, following the lognormal distribution

with the probability density function (PDF) of

pαk,m(x) =
ξ√

2πσαx
exp

[
− (10 log10 x− Γk,m)

2

2σ2
α

]
(5.5)
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where ξ = 10/ ln 10 = 4.3429 [245], and Γk,m (dB) and σα (dB) represent the mean and

the standard deviation of 10 log10 αk,m. Here, the mean of Γk,m is given by the propagation

path-loss of (5.2). However, we assume a two-slope path-loss model [247], which can be

formulated as

Γk,m(d) =


0, dk,m < d0

−10 log10

[
dγ1

k,m

(
d0 +

dk,m

δ

)γ2
]
+ C, dk,m > d0

(5.6)

where dk,m is the distance between the kth UE and the mth DA, γ1 usually taking a value of

2 is the basic path-loss exponent, γ2 is the additional path-loss exponent, and δ is defined

as the break point of the path-loss curve. Additionally, C is added to make sure that

Γk,m(dk,m = d0) = 0 dB.

5.2.3 Representation of Received Signals from Distributed Antennas

When the transmitted signal in the form of (5.7) is transmitted over the channel described

in Section 5.2.2, the received signal corresponding to one bit (symbol) by the mth DA can

be expressed in baseband discrete form as

r( f )
m =

K

∑
k=1

Ikgk,mbk, f + n( f )
m , f = 1, 2, . . . , N f ; m = 1, 2, . . . , M (5.7)

where Ik = 1 or 0 indicates whether UE k is active or inactive, N f is the frame length in

bits, and M is the total number of DAs in the system. In (5.7), n( f )
m is the Gaussian noise,

which has zero means and the variance of 1/SNRt after normalized by the transmit power

Pt.

Let us define yyy f = [y( f )
1 , y( f )

2 , · · · , y( f )
M ]T and nnn f = [n( f )

1 , n( f )
2 , · · · , n( f )

M ]T for f =

1, 2, · · · , NF. Let the channel gains of a UE to the M DAs be collected into a vector as

gggk = [gk,1, gk,2, · · · , gk,M]T, k = 1, 2, · · · , K (5.8)

When explicitly show the large- and small-scale fading components, we can express gggk as

gggk =


√

αk,1hk,1√
αk,2hk,2

...
√

αk,Mhk,M

 =



√
αk,1

√
αk,2 0

. . .

0 √
αk,M




hk,1

hk,2
...

hk,M


=αααkhhhk (5.9)
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With the above definitions, it can be shown that we have the observation vector corre-

sponding to the f th transmitted bits (symbols) expressed as

yyy f =
K

∑
k=1

Ikgggkbk, f + nnn f , f = 1, 2, · · · , NF (5.10)

Let bbb f = [I1b1, f , I2b2, f , · · · , IkbK, f ]
T. Then, we can write (5.10) in impact form as

yyy f = GGGbbb f + nnn f , f = 1, 2, · · · , NF (5.11)

where GGG = [ggg1, ggg2, · · · , gggK]. From (5.11) we can gain the following insights. First, as

each UE has only a small probability to become active during a time-slot, recovering bbb f is a

sparse recovery problem. Hence, the well developed compressive-sensing (CS) algorithms

can be employed to achieve UAI and data detection. Second, as each UE is only connected

with a small fraction of the total number of DAs in the MDA-GFMA system, GGG itself is a

sparse matrix, which is beneficial to designing the algorithms for channel estimation, UAI

and data detection. Below we will exploit some of these merits to design the UAI and data

detection algorithms.

5.3 Channel Estimation in MDA-GFMA Systems

In this section we address the channel estimation in the MDA-GFMA system. Following

the studies in the previous chapters, we assume that the SPCU either has no knowledge

about the active UEs or has partial knowledge about the active UEs. Here the partial

knowledge is obtained when an active UE has several frames to transmit after an activation.

Again, the channel estimation is in MMSE principle under two assumption scenarios. The

first one assumes that SPCU employs the knowledge of the large-scale fading with respect

to all UEs. By contrast, the second scenario assumes that SPCU only knows the positions

of UEs and, hence, only the propagation path-loss from different UEs. Let us first consider

the case when SPCU has no knowledge about active UEs.

5.3.1 SPCU Has No Knowledge about Active UEs

When SPCU has no knowledge about the active UEs, it has to carry out the channel es-

timation in a symbol-by-symbol way, as analyzed in Chapter 3.3. Hence, following our

analysis in Section 3.3.2 of Chapter 3.3, the channel of UE i can be estimated as

ĝggi =
1

NP

NP

∑
p=1

WWWH
i,pyyyp, i = 1, 2, · · · , K (5.12)
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when without considering the unbiased estimation issue. In (5.12), Np is the number of

pilot symbols, and yyyp is given by (5.10) or (5.11) corresponding to the pth pilot symbol.

In (5.12), the weight matrix derived in MMSE principle is given by

WWW i,p = RRR−1
yyyp RRRyyyp,i (5.13)

where RRRyyyp is the auto-correlation matrix of yyyp, which however can be estimated using all

the observations of a frame and can be expressed as

RRRyyyp = RRRa =
1

NF

NF

∑
f=1

yyy f yyyH
f (5.14)

where yyy f is given by (5.10) or (5.11). In (5.13), RRRyyyp,i is the cross-correlation matrix be-

tween yyyp and gggi, i.e., we have

RRRyyyp,i =E[yyypgggH
i ]

=E

[(
K

∑
k=1

Ikbk,pgggk + nnnp

)
gggH

i

]
(5.15)

Since the objective is to estimate the channel of UE i, SPCU has to assume that UE i is

active, we can simplify (5.15) to

RRRyyyp,i =bi,pE[gggi · gggH
i ] (5.16)

Below we consider two scenarios to further simplify (5.16).

First, when SPCU has the knowledge about the large-scale fading of all UEs, meaning

that SPCU knows αααk, k = 1, 2, . . . , K, in (5.9), we can readily derive that

RRRyyyp,i =bi,pAAAi (5.17)

where AAAi = ααα2
i .

Second, if SPCU only knows the positions of all the UEs as well as the statistics of

the shadowing fading, meaning that SPCU only knows the second moments of gggi, we can

obtain

RRRyyyp,i =bi,pE[AAAi]

=bi,pBBBi (5.18)

where BBBi = E[AAAi] and is given by

BBBi = diag{10(Γi,1+σ2
i,1/2)/10, 10(Γi,2+σ2

i,2/2)/10, · · · , 10(Γi,M+σ2
i,M/2)/10} (5.19)

Hence, when SPCU has the knowledge of αααk for all UEs, it can construct the corre-

sponding RRRyyyp,i based on (5.17), and consequently obtain WWW i,p, i = 1, 2, · · · , K, based on
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(5.13), (5.14) and (5.17). By contrast, if SPCU only knows the positions of UEs and the

statistics of shadowing fading, i.e., only knows BBBk for all UEs, it can construct the corre-

sponding RRRyyyp,i based on (5.18). Then, WWW i,p, i = 1, 2, · · · , K, are formed based on (5.13),

(5.14) and (5.18).

In terms of the MSE performance, in the case of that SPCU knows αααk for all UEs, the

MSE of the estimation can be derived as

MSEi = ||Iigggi − ĝggi||2. (5.20)

Hence, when UE i is active, it can be shown that the MSE is

MSEi =Tr(E[gggigggH
i ]−RRRH

yyyp,i
WWW i,p)

=Tr(AAAi −RRRH
yyyp,i

WWW i,p) (5.21)

=
M

∑
m=1

α2
i,m − Tr(RRRH

yyyp,i
WWW i,p) (5.22)

where RRRH
yyyp,i

WWW i,p can also be written as RRRH
yyyp,i

RRR−1
yyyp RRRyyyp,i . By contrast, if UE i is inactive, the

MSE of estimation is

MSEi =Tr(E[WWWH
i,pyyypyyyH

p WWW i,p])

=Tr(WWWH
i,pRRRyyypWWW i,p)

=Tr(RRRH
yyyp,i

RRR−1
yyyp RRRyyyp,i). (5.23)

In the second case when SPCU only knows the positions of UEs and the statistics of

shadowing fading, it can be shown that the MSE of estimation for an active UE is

MSEi =Tr(BBBi −RRRH
yyyp,i

WWW i,p)

=
M

∑
m=1

10(Γi,m+σ2
i,m/2)/10 − Tr(RRRH

yyyp,i
WWW i,p) (5.24)

Otherwise, when UE i is inactive, the MSE of estimation has the same expression of (5.23),

provided that AAAi is replaced by BBBi in RRRyyyp,i .

5.3.2 SPCU Has Partial Knowledge about Active UEs

If we collect the observations corresponding to all the Np pilot symbols to a vector yyy =[
yyyT

1 , yyyT
2 , . . . , yyyT

Np

]T
, which is a MNp-length vector, then, we have

yyy =
K

∑
k=1

Ik(pppk ⊗ IIIM)gggk + nnn (5.25)
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where pppk = [bk,1, bk,2, · · · , bk,NP ]
T and nnn is a MNP-length Gaussian noise vector. Based

on (5.25), we can develop a channel estimator in the MMSE principle as shown below.

Assume for the moment that SPCU knows the active UEs. Then, the MMSE-based

channel estimator can be expressed as

ĝggi = WWWH
i yyy, i = 1, 2, . . . , K (5.26)

where

WWW i = RRR−1
yyy RRRyyy,i (5.27)

Here the autocorrelation matrix is

RRRyyy =E[yyyyyyH]

=
K

∑
k=1

Ik(pppk ⊗ IIIM)E[ggggggH](pppk ⊗ IIIM)H +
1

SNRt
IIINp M

=
K

∑
k=1

Ik(pppk ⊗ IIIM)AAAk(pppk ⊗ IIIM)H +
1

SNRt
IIINp M

=
K

∑
k=1

Ik(pppk ⊗ AAAk)(pppk ⊗ IIIM)H +
1

SNRt
IIINp M

=
K

∑
k=1

Ik(pppkpppH
k ⊗ AAAk) +

1
SNRt

IIINp M (5.28)

when SPCU employs the knowledge about the large-scale fading of all the K UEs. By

contrast, when SPCU only knows the path-loss and the statistics of shadowing fading, RRRyyy

is also given by (5.28) but with AAAk replaced by BBBk, where AAAk and BBBk are previously given

in Section 5.3.1. The same is in the following derivation, which will not be repeatedly

stated.

On the other side, from the symbol-based observation of (5.10), we can readily know

that

RRRyyy f =E[yyy f yyyH
f ]

=
K

∑
k=1

AAAk +
1

SNRt
IM

=RRRa (5.29)

which can be estimated using the observations of SPCU based on (5.14). Therefore, (5.28)
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is represented in detail as

RRRy =



RRRa

K

∑
k=1

Ikbk,1bk,2AAAk · · ·
K

∑
k=1

Ikbk,1bk,Np AAAk

K

∑
k=1

Ikbk,2bk,1AAAk RRRa · · ·
K

∑
k=1

Ikbk,2bk,Np AAAk

...
... . . . ...

K

∑
k=1

Ikbk,Np bk,1AAAk

K

∑
k=1

Ikbk,Np bk,2AAAk · · · RRRa


(5.30)

Above RRRy is obtained by assuming that SPCU knows all the active UEs. If SPCU has

no knowledge about the active UEs, the matrix of RRRy will only have the diagonal elements

of RRRa and correspondingly, the estimator reduces to the one derived in Section 5.3.1. How-

ever, if SPCU knows a part of the active UEs, it can construct a RRRy in the form of (5.30),

where all the diagonal elements are given by RRRa estimated from (5.14), while the non-

diagonal elements include only those active UEs known to the SPCU.

In (5.27), the cross-correlation matrix is

RRRyyy,i =E[yyygggH
i ] = (pppi ⊗ IIIM)AAAi (5.31)

which the SPCU can construct, as it knows the pilots sent by different UEs. Consequently,

the weight matrix in MMSE sense for estimating the channels of UE i is given by

WWW i = RRR−1
y (pppi ⊗ IIIM)AAAi (5.32)

Furthermore, the MSE of estimation for active UEs is

MSEi =Tr(AAAi −RRRH
yyy,iWWW i)

=
M

∑
m=1

σ2
i,m − Tr(RRRH

yyy,iWWW i)

=
M

∑
m=1

σ2
i,m − Tr(RRRH

yyy,iRRR
−1
yyy RRRy,i) (5.33)

while for inactive UEs is

MSEi =Tr(WWWH
i RRRyyyWWW i)

=Tr(RRRH
yyy,iRRR

−1
yyy RRRy,i) (5.34)

After the channel estimation, let us now consider UAI.
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Figure 5.3: Illustration of “first-layer” RRHs/APs and groups in MDA-GFMA

systems.

5.4 User Activity Identification in MDA-GFMA Systems

In this section, we propose a UAI algorithm relying on the MMSE-based channel estima-

tion and the orthogonal matching pursuit (OMP) signal recovery, which is referred to as

the OMP-MMSE-UAI for convenience of description. For this algorithm, we define the

“first-layer” DAs (RRHs/APs) of a UE, as shown in Fig. 5.3, as the DAs located within the

area of R ≤ R0 from the UE. The reason for this is that due to the propagation path-loss

in distributed antenna systems, the signal received by a DA from a far away UE may be

too weak to be useful, which may only result in performance degradation. Hence, we set

a range R0 relative to a UE, so that all the DAs within the range can provide meaningful

contribution to the considered UE. By contrast, for a given UE, all the other DAs not in the

first-layer are classified as the ”second-layer” DAs. As shown in Fig. 5.3, different UEs

may share some first-layer DAs, as the result that they are close to each other. Addition-

ally, as shown in Fig. 5.3, we may group some UEs and their DAs as indicated by the big

dashed-line circle, which will be addressed during the data detection in Section 5.5.

In Section 5.2, we have represented the observations obtained by the M DAs for the f -

th bits of a frame as (5.11). Specifically for the pilot bits, the observations can be expressed

as

yyyp = GGGbbbp + nnnp, p = 1, 2, · · · , NP (5.35)

where p indicates the pth pilot, the total number of pilots per frame is Np, and GGG =

[ggg1, ggg2, · · · , gggK]. However, because of the above definition for the first-layer DAs, we
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can know that GGG can be approximated by a sparse matrix expressed as ḠGG, where only the

channel elements related to the DAs in the first-layers of UEs are retained, while all the

other channel elements are set to zeros. Note that, ḠGG = [ḡgg1, ḡgg2, . . . , ḡggK] can be constructed

using the UEs’ channels estimated in Section 5.3 by considering the locations of UEs and

DAs. In (5.35), bbbp = [I1b1,p, I2b2,p, · · · , IkbK,p]
T, whose elements are either the pilots

sent by active UEs, which are known to SPCU, or zeros, if the corresponding UEs are

inactive. Therefore, bbbp is a sparse vector as the fact that the activation probability Pa of

UEs is small. Hence, the UAI in MDA-GFMA system is a sparse recovery problem that

can be solved using various compressive sensing algorithms [248]. In this chapter, we

specifically consider the low-complexity OMP-assisted algorithm for UAI, referred to as

the OMP-MMSE-UAI, which is described as follows.

Algorithm 5.4 UE activity identification based on MMSE channel estimation and
orthogonal matching pursuit (OMP-MMSE-UAI).

Inputs: yyyp and bbbp for p = 1, 2, . . . , NP, yyy f corresponding to data, ‘Stop-condition’,

Nc.

Channel Estimation: based on an approach in Section 5.3 to obtain GGG and con-

struct ḠGG.

Initial UE activity identification by OMP:

for p = 1, 2, . . . , NP, do

1. Initialization: rrr0 = yyyp, K(0)
A = ∅, b̂bbp = 000, iteration number t = 1

2. Find a possible active UE: ui = arg max
j/∈K(t−1)

A

∣∣∣ḠGGHrrrt−1

∣∣∣;
3. Update active UE set: K(t)

A = K(t−1)
A ∪ ui;

4. Estimate bbb(t)p : bbb(t)p =
[
(ḠGG(K(t)

A ))HḠGG(K(t)
A )
]−1

(ḠGG(K(t)
A ))Hyyyp;

5. Update residual: rrrt = yyyp − ḠGG(K(t)
A )bbb(t)p ;

6. t← t + 1. Then, return 2) if ‘Stop-condition’ not met.

Decision making: b̂bbp

(
K(tend)

A

)
= sgn

(
<{bbb(tend)

p }
)

, where tend is the t index in

the last iteration, b̂bbp

(
K(tend)

A

)
considers only those bits defined by the support K(tend)

A .

end for
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Further UE activity identification:

Initializations: KA = ∅.

for k = 1, 2, . . . , K, do

1. Count the number of correctly estimated pilot bits: N̄c(k) =
NP

∑
p=1

1(b̂bbp(k) =

bbbp(k)), where 1(b̂bbp(k) = bbbp(k)) equals 1, if b̂bbp(k) = bbbp(k) and 0, otherwise;

2. If N̄c ≥ Nc, UE k is identified to be active and set KA = KA ∪ k.

end for

Output: KA.

To describe the OMP-MMSE-UAI algorithm of Algorithm 5.4, we define K(t)
A as a

support set containing the indices of the possible active UEs identified upto the tth itera-

tion. KA is the set to store the finally identified active UEs. ḠGG(K(t)
A ) is a submatrix of ḠGG

with the columns defined by K(t)
A . The minimum number of correctly detected pilot bits

of a UE should be at least Nc and otherwise, the UE is assumed inactive or meaningless

due to the low-reliability of data detection. This is reasonable, as the detected data of an

unreliable UE is no use, if there are too many detection errors. b̂bbp is used to store the

detected bits, having the value +1 or −1 if a UE is active, or 0 if the UE is inactive.

As shown in the description of Algorithm 5.4, the OMP-MMSE-UAI algorithm is di-

vided into two stages. During the first stage, the OMP algorithm [249] is operated with

respect to each of the Np pilot symbols to provide the initial UAI. Furthermore, the pilot

bits of all the identified active UEs are estimated. However, at this point, first, the identified

active UEs may be different for different pilot bits. Second, the ’Stop-condition’ needs to

be set so that the miss probability is sufficiently small, which however may result in some

false-alarm. Therefore, during the second stage, an enforcement identification stage is ex-

ecuted. During this stage, the detected pilot bits from the first stage are compared with the

pilot bits of the identified active UEs. If the number of detected pilot bits is at least Nc, the

corresponding UE is confirmed to be active. Otherwise, if the number of detected pilot bits

is less than Nc, the corresponding UE is changed to the state of inactive, no matter whether

it is actually active or inactive. In this case, even the UE is active, the data detection may be

low-reliability, and the detected errors may be too many to be corrected by the embedded

error-correction decoding.

In terms of the ‘Stop-condition’ for the OMP-MMSE-UAI algorithm, various criteria
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as shown in [249] may be used. Considering the speciality of our MDA-GFMA systems,

it can be set as the relative residual energy, formulated as ‖rrrt‖2/‖yyyp‖2 < ξ, where ξ is

a SNR-depended small constant. Additionally, when given the number of potential UEs

K, the activation probability of Pa, an integer KT can be found so that the probability

P(KA > KT) is a small, such as 10−5, value. In this case, the miss probability after

the first stage of UAI should be small, but the false-alarm probability can be significant.

Fortunately, the false-alarm resulted active UEs will be most likely removed during the

second enforcement UAI stage, as the data detection of the false-alarm UEs should be

low-reliability, resulting in significant detection errors of the pilot bits.

5.5 Data Detection of Active UEs in MDA-GFMA Sys-

tems

So far we have considered the channel estimation and UAI in MDA-GFMA systems. Let

us now address the data detection of the active UEs by specifically considering the data

detection of the ith (which is assumed to be active) UE in MMSE principle. Furthermore,

we consider the detection of a group of UEs in the principle of MMSE-SIC.

In order to reduce the detection complexity, for detecting UE i, let us define a reference

cell with the group of active UEs forming a set S0, which includes UE i and some other

active UEs closer to UE i, as shown in Fig. 5.3. All the other active UEs are collected to

a set SI . Correspondingly, all the DAs having their distances from any of the UEs in S0

less than R0 are collected to form a setM0. Hence, the number of antennas considered

for detecting UE i is given by M0 = |M0|. Then, from (5.10) and upon considering only

those observations from the reference cell, we can obtain an observation equation of

ȳyy f = ∑
k∈S0

ḡggkbk, f + ∑
k′∈SI

ḡggk′bk′, f + n̄nn f , f = 1, 2, · · · , N f (5.36)

where ȳyy f is M0-length, containing the M0 observations from the M0 DAs in the reference

cell. Note furthermore that ḡggk is M0-length, only including the channels related to the DAs

in the reference cell.

Having obtained the reduced representation for detecting UE i, i ∈ S0, the MMSE

detector is straight forward, which can be expressed as

zi, f = wwwH
i ȳyy f , i ∈ S0, f = 1, 2, . . . , NF (5.37)

where

wwwi = RRR−1
ȳyy f

rrrȳyy f ,i
(5.38)
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with

RRRȳyy f
=E[ȳyy f ȳyy

H
f ] (5.39)

= ∑
k∈S0

ḡggkḡggH
k + ∑

k′∈SI

ḡggk′ ḡgg
H
k′ +

1
SNRt

IIIM0 (5.40)

rrryyy f ,i =ḡggi (5.41)

Note that RRRȳyy f
can be directly estimated based on (5.39) using all the observations

obtained by the DAs in the reference cell over one frame duration, i.e.,

RRRȳyy f
=

1
NF

NF

∑
f=1

ȳyy f ȳyy
H
f (5.42)

By contrast, ḡggi = ˆ̄gggi can be obtained from the estimated ĝggi in Section 5.3. Hence, an

estimate to wwwi of (5.38) can be obtained.

Algorithm 5.5 Successive interference cancellation assisted MMSE detection
(MMSE-SIC).

Initialization: yyy f , f = 1, 2, . . . , NF, large-scale fading or propagation path-loss plus

statistics of shadowing.

Channel estimation: based on an approach in Section 5.3 to give the estimated

channel set {ĥhhi}.

UE activity identification: based on the approach in Section 5.4 to obtain the

active UE set KA.

Grouping of active UEs: active UEs are grouped in the principle as shown in

Fig. 5.3, to form G groups. Assume that Group b, b = 1, 2, . . . , G has KAb active UEs.

For Group b = 1, 2, . . . , G1, and for f = 1, 2, . . . , NF (except the pilot bits),

execute:

• Initialization:

1) Get ȳyy f from yyy f and set ȳyy(0)f = ȳyy f ;

2) Estimate the autocorrelation matrix using (5.42) and set RRR(0)
ȳyy f

= RRRȳyy f
;

3) Prepare the channel vectors for all the active UEs in Group b with the support

set S0, forming a set {ḡggk, k ∈ S0}.

• For s = 0, 1, . . . , KAb − 1, execute:
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Step 1 Form the decision variables for the (KAb − s) active UEs in S0 that have

not been detected as:

z f ,k = wwwH
k ȳyy(s)f , where wwwk =

(
RRR(s)

ȳyy f

)−1
ˆ̄gggk.

Step 2 Measure the reliabilities of the KAb − s UEs according to (5.43) and find

the most reliable one as: k(s) = arg max
k′
{Lk′1, Lk′2, . . . , Lk′|KAb

|−s
}.

Step 3 Detect the most reliable UE in S0 as b̂k(s) = sgn(z f ,k(s)).

Step 4 Interference cancellation and update:

yyy(s)f = yyy(s−1)
f − ˆ̄gggk(s) b̂k(s) , RRR(s)

ȳyy f
= RRR(s−1)

ȳyy f
− ˆ̄gggk(s)

(
ˆ̄gggk(s)

)H.

Outputs: Detected data of all active UEs.

Above the MMSE-based detection has been considered. It is well-known that the

MMSE detection is capable of achieving good performance, when the number of variables

(i.e., KA, the number of active UEs) to be detected is less than the number of observations

(i.e., M0, the number of antennas in a reference cell) by at least 2 [127]. However, in

the MDA-GFMA system, the number of active UEs in a reference cell is dynamic, which

has certain probability to be close or even larger than the number of observations. In this

case, good detection performance of MDA-GFMA systems cannot be guaranteed. In order

for the detection in MDA-GFMA systems to attain the required performance, below we

propose the MMSE-SIC detection, which is summarized as Algorithm 5.5.

As described in Algorithm 5.5, the algorithm uses the channels estimated in Sec-

tion 5.3, while the active UEs are determined in Section 5.4. Then, the identified active

UEs are divided into G groups in the principle as shown in Fig. 5.3. Then, for each of the

G groups, the MMSE-SIC is operated to detect the data of the active UEs in the group from

the most reliable UE to the least reliable UE in the principle of MMSE-SIC, as described

previously in Chapter 2. During this process, the reliabilities of UEs are measured as

Li, f =(1 + γ̃i)zi, f

=

 1

1− ˆ̄gggH
i R̂RR
−1
ȳyy f

ˆ̄gggi

 zi, f , f = 1, 2, . . . , NF; i = 1, 2, . . . , KA (5.43)

where γ̃i = ˆ̄gggH
i R̂RR
−1
ȳyy f

ˆ̄gggi/(1− ˆ̄gggH
i R̂RR
−1
ȳyy f

ˆ̄gggi) is the estimate to the signal-to-interference-plus-

noise ratio (SINR) for detecting UE i.

First, we note that during a detection stage, the number of groups is dependent on

the number of active UEs as well as their locations. When these change, the number of
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groups may be different. The detection of different groups can be implemented in parallel,

which shortens the detection latency. However, to minimize the inter-group interference,

it is desirable that different groups have the least possible connections. In other words,

it is desirable that different groups of active UEs are geographically isolated, so that the

propagation path-loss between groups can sufficiently reduce the inter-group interference.

Second, we note that the detection of the data bits of a frame can also be implemented

in parallel for reducing the detection latency. Furthermore, although we use the indices

f = 1, 2, . . . , NF for convenience, the pilot bits do not need to be detected.

Based on the above discussion, we can know that detection latency is only proportional

to the numbers of active UEs in the groups, and the overall detection delay is determined

by the maximum number of active UEs in the groups. Therefore, in order to reduce the

detection delay, it can be expected that groups are divided in such a way that all groups

have a similar number of active UEs.

We note furthermore that in the algorithm, interference cancellation is only imple-

mented within each of the groups. However, as shown in Fig. 5.3, different groups may

have some overlapping, making some DAs belong to different groups. Furthermore, some

UEs near the border may impose strong interference on the UEs in another group. Based on

these observations, if the detection of different group can cooperate, further performance

improvement is available. For example, when SPCU detects an active UE of a group and

finds it imposes relatively strong interference on another group, it can also cancel the ef-

fect of this detected UE from the other group, so as to improve its detection performance.

Correspondingly, the interference cancellation operation as seen in Algorithm 5.5 at the

sth iteration can be modified to

yyy(s)f = yyy(s−1)
f − ˆ̄gggk(s) b̂k(s) −∑

b

ˆ̄ggg
k(s)b

b̂
k(s)b

(5.44)

where k(s) is the detected UE in the reference group, ∑b means all the groups other than

the reference group, and k(s)b indicates the detected UE in the bth group.

5.6 Simulation Results and Analysis

Below we provide a range of simulation results to demonstrate the performance of channel

estimation, UAI and data detection in the MDR-GFMA system. In our simulations, some

common parameters used are as follows, unless they are specifically notified. We typically

assume a normalized area (with respect to the reference distance d0) of size 50× 50. The

radius defining the first-layer of a UE is R0 = 15. The propagation parameters for the

large-scale fading in (5.6) are set to γ1 = 2, γ2 = 3 and δ = 5. In the MDR-GFMA
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Figure 5.4: MSE versus SNRt performance of the MMSE-assisted channel esti-

mation in the MDA-GFMA systems where SPCU employs the knowledge of all

UEs’ large-scale fading.

system, the RRUs/APs are distributed following the Point Poisson (PP) distribution with a

density of λM [250]. We assume that one UE is served by no more than 4 DAs at one time.

UEs are assumed to be randomly (uniformaly) distributed in the simulation area. During

a time-slot, each UE has the same probability of Pa to become active. Additionally, we

assume that the frame length is NF = 128 bits, among which there are NP = 8 pilot bits.

In Fig.5.4 and Fig. 5.5, we demonstrate the mean-square error (MSE) performance of

channel estimation, where for Fig.5.4 we assume that the SPCU has the knowledge of

large-scale fading including both the propagation path-loss and shadowing slow fading,

while for Fig. 5.5 we assume that the SPCU knows the propagation path-loss but only the

statistics of shadowing slow fading. Furthermore, for both figures, we assume that there

are 100 UEs randomly distributed in the simulation area of 50× 50, and each UE has the

activation probability of Pa = 0.015. From the results we can learn that for the active

UEs, in general, the performance of the case that SPCU has ideal knowledge of active UEs

is better than that of the case that SPCU has partial knowledge of active UEs, and both

of them have better performance than the case that SPCU has no knowledge about active
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Figure 5.5: MSE versus SNRt performance of the MMSE-assisted channel esti-

mation in the MDA-GFMA systems, where SPCU knows the positions of UEs and

the statistics of shadowing.

UEs. Note that, when the transmit power is low, resulting in low SNRt, we see that the

MSE performance of the partial knowledge case can be slightly better than that of the ideal

knowledge. The reason for this observation is that the activation probability is Pa = 0.015,

yielding an average number of active UEs of 4.5 for the partial knowledge case. The results

of Fig. 5.4 show that the estimation MSE for an inactive UE is always much higher in the

considered SNRt range. Furthermore, when SNRt is high, the MSE performance appears

floor, which is due to the fact that a UE’s signal usually only reaches the several DAs that

are close to the UE, all the other DAs’ received signals from the UE are too weak to be

estimated. Consequently, when SNRt is high, the MSE performance will be dominated by

the estimation errors of these weak signals.

The performance shown in Fig.5.5 has similar tendency as that shown in Fig.5.4 for

the different cases considered. However, as the result that SPCU only exploits the knowl-

edge of propagation path-loss and the statistics of shadowing slow fading, the MSE per-

formance of both the partial knowledge case and the no knowledge case is much worse

than the corresponding MSE performance shown in Fig.5.4. By contrast, when SPCU has

ideal knowledge of active UEs, the MSE performance in both figures is similar, due to the
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Figure 5.6: Miss probability of UAI, when the ‘Stop-condition’ for OMP is set to

T = 20 iterations.

number of active UEs considered being small.

In Figs. 5.6 and 5.7, the probability of miss and that of false-alarm of the OMP-MMSE-

UAI algorithm in Section 5.4 are demonstrated when different values of R0 and different

values of NC are applied. First, for given R0 and when NC increases, the miss-probability

increases, while the false-alarm probability decreases. This can be readily understood, as

increasing NC makes the conditions of a UE being identified active more strict. Second,

for a given NC and when R0 increases, the probabilities of both miss and false-alarm

increases, as the result that more UEs, which may include some weak UEs, are associated

with an AP.

Figs. 5.8 and 5.9 show the effect of the number of allowed iterations T in the OMP-

MMSE-UAI algorithm on the performance of UAI. Explicitly, as the number of allowed

iterations is increased, the performance in terms of false-alarm and miss is improved. How-

ever, we should note that when the number of allowed iterations T increases, the compu-

tational complexity of the OMP-MMSE-UAI algorithm increases.

From Fig. 5.10 to Fig. 5.13, we show the performance of the signal detection in MDR-

GFMA systems where UEs become active for data transmission based on an activation

probability Pa, when various issues are considered. Specifically, in Fig. 5.10, we demon-

strate the impact of the DA density (λM) on the BER performance of the RMD/GFMA
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Figure 5.7: False-alarm probability of UAI, when the ‘Stop-condition’ for OMP

is set to T = 20 iterations.
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Figure 5.8: Miss probability of UAI, when the ‘Stop-condition’ for OMP are set

to T = 15, 25 and 50 iterations, respectively.
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Figure 5.9: False-alarm probability of UAI, when the ‘Stop-condition’ for OMP

are set to T = 15, 25 and 50 iterations, respectively.
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Figure 5.10: BER versus SNRt performance of the MDA-GFMA systems, when

MMSE-SIC detection is employed.
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Figure 5.11: BER versus SNRt performance of the MDR-GFMA systems, when

MMSE and MMSE-SIC are respectively employed.

systems employing the MMSE-SIC detection, where the systems support K = 100 po-

tential UEs of each having the activation probability of Pa = 0.05. As we can see from

Fig.5.10, the BER performance is significantly improved, when λM is increased. This is

because, first, when setting R0 = 50, the number of DAs serving a UE increases, as λM is

increased. Furthermore, when λM is increased, in probability, a UE will have more close

DAs. Hence, the propagation path-loss becomes smaller, resulting in the higher received

SNR for a given transmit power.

In Fig.5.11, we investigate the effect of R0 on the BER performance of MDR-GFMA

systems, when either MMSE or MMSE-SIC detection is employed. Main parameters are

detailed on the top of the figure, in addition to some common parameters mentioned at the

beginning of this section. From the results we have the following observations. First, the

MMSE-SIC detector significantly outperforms the MMSE detector. This again verified

that the MMSE-SIC is efficient for operation in the dynamic systems, resulted not only

from the UEs’ activity but also from the randomness of DAs. Second, for the MMSE-SIC

detection, when the SNRt is sufficiently high, the BER performance improves, as SNRt

increases. However, SNRt is low, this may not be the case and using a bigger value of R0

may result in worse BER performance. By contrast, for the MMSE detection, the BER

performance typically degrades, as the value of R0 increases. The reason behind the above
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Figure 5.12: BER versus SNRt performance of the MDA-GFMA systems em-

ploying MMSE-SIC detection.

observation is that if SNRt is small and R0 is big, there is possibility that the detection is

based on the weak signals collected by the DAs far away from the UE, which results in

degraded BER performance. From above observations we can gain the insight that when

SNRt or transmit power is given, there is a given range for R0 so that the MDR-GFMA

system can achieve the best possible BER performance.

In Fig.5.12, the impact of both DA density and UE activation probability on the BER

performance of MDR-GFMA systems is investigated. Again, common parameters are used

with some are shown on the top of the figure. The observations are as follows. First, as

that in Fig. 5.10, BER performance improves significantly, when DA density is increased

from 0.02 to 0.04. Second, BER performance degrades, as Pa increases, as the result of

the increased number of UEs in average. However, we should note that even when Pa

is as high as Pa = 0.25, meaning that there are in average 25 active UEs per time-slot,

the MMSE-SIC detector still works efficiently. This is declared, especially, when the DA

density is λM = 0.04.

Finally, in Fig.5.13 we investigate the effect of service area and the size of reference

cell on the BER performance of MDR-GFMA systems. Here we emphasize that the DA

density is λM = 0.04 and the number of potential UEs is K = 100. Therefore, when the

service area becomes larger, the UE density becomes lower. In this case, the probability
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Figure 5.13: BER versus SNRt performance of the MDR-GFMA systems employ-

ing the MMSE-SIC detection.

that a UE has relatively big distance from DAs is relatively bigger. Therefore, as seen in

Fig. 5.13, when the service becomes larger, from 25× 25 to 50× 50 and then to 100× 100,

the BER performance drops significantly. In terms of the effect of R0, which determines

the size of reference cell, when the service area is 25× 25, the BER performance attained

at R0 = 20 is slightly better than that achieved at R0 = 25, meaning that the whole service

area is the reference cell. By contrast, for both the cases of 50× 50 and 100× 100, we can

see that when the SNRt is beyond a given value, the case with the reference cell covering

the whole service area obtains better BER performance than the case of R0 = 20. Before

this SNRt value, the case of R0 = 20 achieve better BER performance. Again, this is

because when R0 is big, some DAs far away from a UE only receive the weak signals,

which are unable to provide reliable channel estimation, making the received weak signals

yield the negative effect on the BER performance of MDR-GFMA systems.

In Fig. 5.14 we compare the BER versus SNRt performance of the MDA-GFMA in

Chapter 5 and the MRA/MC-GFMA systems in Chapter 4 when the MMSE-SIC detection

is that there are 2 or 6 receiving antennas in the MRA/MC-GFMA systems. For the MDA-

GFMA system, we assume that the density of antennas is λM = 0.02 or λM = 0.06 in

a R0 = 10 area. Furthermore, we assume that the number of potential UEs is K = 100,

the number of subcarriers in MRA/MC-CDMA systems is 32. 8 pilots are used to estimate
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Figure 5.14: BER versus SNRt performance employing MMSE-SIC detection in

MDA-GFMA and MRA/MC-GFMA systems respectively.

channels. When R0 = 10, there are direct channels existing between the UEs and APs.

When the density of antenna equals λM = 0.02, in average there are 5 active UEs in the

system, some of them may not be served by the antennas. By contrast, when the antenna

density is λM = 0.06, the BER performance is improved significantly. However, the UEs

in the MDA-GFMA systems are supposed to be randomly distributed, as the number of the

antennas severing an active UE is dynamic. By contrast, the number of antennas severing

a UE in the MRA/MC-GFMA systems is fixed.

5.7 Chapter Conclusions

In this chapter, we have studied the massive GFMA with distributed antenna MIMO, i.e.,

the MDR-GFMA system, when DAs follow a PP distribution and UEs follow uniform

distribution in a studied area. Without imposing power control but considering the large-

scale fading of propagation path-loss and shadowing, the signal sent by a UE can only

be received by a small number of DAs close to the UE. Hence, when all the DAs in the

system are considered, the channel matrix is sparse. Furthermore, as each of the UEs in

the system has only a small probability to become active, the UAI and data detection in

the MDR-GFMA system can be represented as the sparse recovery problems. In this chap-
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ter, the channel estimation, UAI and data detection for MDR-GFMA systems have been

studied. Specifically, the channels of all UEs are first estimated in the principle of MMSE.

Then, considering that UAI is a sparse recovery problem but CS-based signal recovery ex-

periences the constraint of RIP, we have proposed an OMP-MMSE-UAI algorithm, which

makes use of the pilot symbols to enhance the UAI performance. Finally, the data of active

UEs are detected in the principle of MMSE detection and MMSE-SIC detection.

From our studies and performance results we can have the following observations.

First, the MMSE-assisted channel estimation is efficient for operation in the MDR-GFMA

systems. Explicitly, the estimated channels of active UEs and inactive UEs have significant

difference in terms of the MSE performance. This means that the estimated channels

for a UE may be exploited to identify whether the UE is active. Second, in our OMP-

MMSE-UAI algorithm, the embedded OMP algorithm is capable of providing an initial

UAI with a small miss probability, while the followed UAI enhancement aided by the

pilot detection can efficiently remove the false-alarmed UEs. Furthermore, concerning the

two detection schemes considered, the studies show that the MMSE-SIC detector is highly

efficient for data detection in MDR-GFMA systems, which experience a range of dynamics

explained, for example, by the active UEs and the number of them, the geography resulted

randomness, and the number of DAs serving a UE.

Explicitly, there are various future research issues possible in terms of the system/channel

modeling, signal transmission and detection, network optimization, etc. A straightforward

research issue on the current MDR-GFMA system is the joint channel estimation, UAI and

data detection by designing the low-complexity and high-efficiency algorithms, which may

take the advantages of both the CS-based approaches and the conventional approaches.



Chapter 6
Conclusions and Future Works

6.1 Conclusions

This thesis focuses on mGFMA systems, which is assumed to support a massive number

of UEs of each with a small probability to become active to transmit its information to BS

or AP. After receiving the signals from UEs, the tasks of BS or AP include UAI, channel

estimation and the information detection of active UEs. In this thesis, UEs are always

assumed to employ a single antenna. By contrast, at the BS or AP side, three scenarios

have been considered, including the single-antenna BS (AP) in Chapters 2 and 3, multiple

receive antenna BS (AP) in Chapter 4 and the BS (AP) with distributed antennas in Chapter

5.

To be more specific, first, in Chapter 1, we provided a motivation discussions about the

research as well as the research background. Furthermore, we provided some comparative

discussion about the GMA and GFMA, explaining that GFMA is a more efficient multiple-

access scheme for providing the uplink transmissions in the mMTC networks.

Then, Chapter 2 presented a DyDS-CDMA and a DyMC-CDMA schemes for sup-

porting ultra-densely deployed wireless UEs, which result in that each BS may need to

support a big number of potential UEs, while each of the UEs activates to transmit dur-

ing a time-slot with a small probability. Hence, for a given time-slot, the active UEs and

the number of active UEs simultaneously transmit information are dynamic. In this chap-

ter, we assumed the ideal identification of active UEs and also assumed the ideal channel

estimation of the active UEs, with the motivation to demonstrate the potentially achiev-

able performance of the low-complexity MMSE-SICD operated in the DyDS-CDMA and

DyMC-CDMA systems. Therefore, based on the Monte-Carlo simulations, we investi-

gated the BER performance of the DyDS-CDMA and DyMC-CDMA systems employing
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the MMSE-SICD, when different settings were considered. Furthermore, the MMSE-

SICD was compared with the MMSE-MUD from different perspectives. Our studies

demonstrate that the MMSE-SICD is a highly-efficient and robust detection scheme for

operation in the DyDS-CDMA and DyMC-CDMA systems operated in mGFMA environ-

ments. It is capable of achieving near single-user BER performance, even when the aver-

age number of active UEs per time-slot reaches two times of N of the systems’ degrees-

of-freedom. With the aid of MMSE-SICD, the DyMC-CDMA system employing dense

spreading codes is feasible for achieving the frequency diversity, when communicating

over frequency-selective fading channels. In order to reduce the PAPR problem, we also

studied the BER performance of the sparse DyMC-CDMA systems employing the MMSE-

SICD. It is shown that the near-full gain of frequency diversity may only be achievable,

when the sparsity of spreading sequences is sufficiently high. Specifically, a typical spar-

sity for achieving the near-full gain of frequency diversity is the one that is slightly larger

than the number of time-domain resolvable paths of the frequency-selective fading chan-

nels.

Then, Chapter 3 investigated the joint channel estimation and UAI in MC-mGFMA

systems. Firstly, the channel estimation was addressed with assumptions that AP has the

full knowledge, no knowledge or the partial knowledge about active UEs. The studies al-

lowed us to reveal the fact that any added knowledge about active UEs can be exploited for

enhancing the channel estimation and furthermore, for the design of novel UAI algorithms.

Then, the statistics of the estimated channels of a UE was studied on the condition that the

UE is active or inactive. It is shown that the estimated channels of active UEs and inactive

UEs present distinctive features, explaining that the estimated channels of UEs can be uti-

lized for UAI. Finally, based on the studies of channel estimation and their statistics, five

UAI algorithms were proposed and their performance was studied. Our studies show that

while TB-UAI has the lowest complexity, it yields a sharp trade-off between false-alarm

and miss probabilities, making it hard to be implemented in the practical high-dynamic

mGFMA environments. By contrast, the other four UAI algorithms are capable of pro-

viding significant performance enhancements in comparison with TB-UAI. Furthermore,

the EAE-UAI and SIC-UAIa algorithms impose no trade-off between false-alarm and miss

probabilities and the SIC-UAIb algorithm only makes little trade-off between false-alarm

and miss probabilities. Although the AME-UAI algorithm brings in some trade-off be-

tween false-alarm and miss probabilities, the related parameter Nc can be relatively easily

set in mGFMA systems.

In comparison with the existing approaches, the UAI algorithms proposed in this chap-

ter do not experience the RIP constraint of CS and do not depend on the factor graphs

required by the MPA-based approaches. Instead, the signatures considered are random
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sequences and the number of active UEs can be highly dynamic, making the actual num-

ber of active UEs sometimes be significantly higher than the number of resource units of

the system. Therefore, it can be expected that our proposed approaches are robust for

operation in mGFMA systems.

In the above two chapters, BS or AP was assumed to employ single receive antenna.

By contrast, in Chapter 4, we investigated a MRA/MC-mGFMA system, where each

AP has multiple receive antennas, for a massive number of UEs to access wireless net-

work without requiring grant scheduling. Firstly, the channel estimation in the principle

of MMSE was considered, when AP was assumed to have ideal knowledge, no knowl-

edge or partial knowledge about the active UEs. Then, based on channel estimation, a

low-complexity TB-UAI scheme was proposed for UAI. Finally, AP carries out informa-

tion detection of active UEs in the principles of SIC-MMSE, after the channel estimation

and UAI. Furthermore, a joint channel estimation, UAI and information detection that is

relied on the SIC-MMSE, referred to as the SIC-MMSE-JCUD, was proposed and stud-

ied. We demonstrated the impact of multiple receive antennas on the system design and

achievable performance, showing that significant performance improvement is available

for channel estimation, UAI and information detection, when AP is deployed with multi-

ple receive antennas. Furthermore, when AP is equipped with multiple receive antennas,

a low-complexity TB-UAI is highly effective for achieving promising performance, and

the associated threshold is robust for practical settings. Specifically for information detec-

tion, in this chapter, two detection schemes were considered, which are the SIC-MMSE

and SIC-MMSE-JCUD, both of them rely on the SIC-MMSE principle. Our studies and

performance results show that these SIC-MMSE-relied detection schemes are highly ef-

ficient for signal detection in mGFMA systems. It is shown that their performance is

much better than the benchmark MMSE detector. More importantly, they are flexible for

operation in the mGFMA systems where active UEs and the number of them are highly

dynamic. Specifically in the SIC-MMSE-JCUD, channel estimation, UAI and data detec-

tion can iteratively enhance each other to attain the promising performance. Additionally,

by combining the ZC-sequences and Gold-sequences, we proposed a class of signature

sequences for supporting the massive number of UEs. Our studies demonstrate that the

performance achieved by this class of sequences is better than that attainable by binary

random sequences.

Finally in Chapter 5, we studied the mGFMA with distributed antenna MIMO, i.e.,

the MDR-GFMA system, when DAs follow a PP distribution and UEs follow uniform

distribution in a studied area. Without imposing power control but considering the large-

scale fading of propagation path-loss and shadowing, the signal sent by a UE can only

be received by a small number of DAs close to the UE. Hence, when all the DAs in the
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system are considered, the channel matrix is sparse. Furthermore, as each of the UEs in

the system has only a small probability to become active, the UAI and data detection in the

MDR-GFMA system can be represented as the sparse recovery problems. In this chapter,

the channel estimation, UAI and data detection for MDR-GFMA systems were studied.

Specifically, the channels of all UEs were first estimated in the principle of MMSE. Then,

considering that UAI is a sparse recovery problem but CS-based signal recovery experi-

ences the constraint of RIP, we proposed an OMP-MMSE-UAI algorithm, which makes

use of the pilot symbols to enhance the UAI performance. Finally, the data of active UEs

were detected in the principle of MMSE detection and MMSE-SIC detection.

From our studies and performance results we can have the following observations.

Firstly, the MMSE-assisted channel estimation is efficient for operation in the MDR-

GFMA systems. Explicitly, the estimated channels of active UEs and inactive UEs have

significant difference in terms of the MSE performance. This means that the estimated

channels for a UE may be exploited to identify whether the UE is active. Secondly, in our

OMP-MMSE-UAI algorithm, the embedded OMP algorithm is capable of providing an

initial UAI with a small miss probability, while the followed UAI enhancement aided by

the pilot detection can efficiently remove the false-alarmed UEs. Furthermore, concerning

the two detection schemes considered, the studies show that the MMSE-SIC detector is

highly efficient for data detection in MDR-GFMA systems, which experience a range of

dynamics explained, for example, by the active UEs and the number of them, the geogra-

phy resulted randomness, and the number of DAs serving a UE.

6.2 Suggested Future Work

There are many potential research issues in mGFMA systems. Below are a few of them

closely related to the research of this thesis.

1. Low-Complexity High-Efficiency Detection Algorithms:

In this thesis, for the sake of low-complexity, we only considered the low-complexity

MMSE and MMSE-SIC detection schemes. Although our studies show that the MMSE-

SIC detection is highly effective for operation in the dynamic mGFMA systems and achiev-

ing promising performance, it however has the detection delay that is proportional to the

number of active UEs. This property may make it not suitable for implementation with

the systems requiring ultra-low latency information delivery. Therefore, it is important

to study the low-complexity and low-latency signal detection schemes. One possible op-

tion might be the hybrid parallel-serial SICs operated simultaneously so as to reduce the

processing time. However, this may result in a trade-off of the reliability performance.
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Therefore, further research is needed to find the required answers.

2. GFMA in the Ultradensy Distributed Antenna (UDA) Systems

Explicitly, there are various research issues possible in terms of the system/channel

modelling, signal transmission and detection, network optimization, etc. A straightforward

research issue on the current MDR-GFMA system is the joint channel estimation, UAI and

data detection by designing the low-complexity and high-efficiency algorithms, which may

take the advantages of both the CS-based approaches and the conventional approaches.

Additionally, considering the UDA under the concept of the traditional MIMO, we can

extend the studies to UDA systems in the millimetre wave (mmWave) domain, as mmWave

has been proposed for various future wireless systems.

Pilot design for operation in UDA GFMA systems is another research issue. It is

important to design the pilots that are feasible for separating the UEs at the stage of UAI

and enhancing the performance of channel estimation and data detection.

Furthermore, UAI in random access UDA systems is also a research issue. For exam-

ple, we may consider the MMSE channel estimation and the MMSE-SIC assisted signal

detection, while studying the performance of UAI, when different system configurations

are considered.

3. mGFMA with Intelligence

The machine learning (ML) methods have been introduced for channel estimation, UAI

and information detection. However, the studies so far rely mainly on the traditional chan-

nel models [251–253]. In practice, wireless channels are usually time-variant and most

environments may not be possibly explained by the existing channel models. Hence, the

data based ML-optimization is highly desirable. Therefore, the mGFMA systems with

unknown channel models need to be better investigated by taking the advantage that ML

algorithms are capable of turning the optimization parameters on the fly. To this objec-

tive, ML algorithms may be introduced to associate UEs with BSs/APs, to optimize UE

signature distribution, to synchronize the network and distributed UEs, to optimize signal

transmission, to model the fading and interference channel, to carry out UAI, to detect UE’s

information, etc. Furthermore, some of the above mentioned, such as, channel modelling,

UAI and information, may be jointly achieved by a ML algorithm.

Related to the research of this thesis, ML may be implemented with the mGFMA

systems to achieve different tasks, including transceiver design and optimization, UE sig-

nature design and distribution, network cooperation and optimization, channel modelling,

data relied optimizations, etc.
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