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In group theory we are able to derive many properties about a group from how it acts
on a graph. Knowing this, we aimed to find similar results for inverse semigroups
acting on graphs. We were able to find a consistent method of defining an action for a
free product of inverse semigroups provided we already have actions for the
semigroups that make up this product. Furthermore, this action will deliver back to us
a fundamental inverse semigroup that is isomorphic to the free product. Following
this, we looked at how our method works with polycyclic, Bruck-Reilly and Brandt
semigroups. After finding that it does not work in the general case, we looked at what
additional properties we will need for our semigroup in order to make it work. In
particular, we found that a zero element in an inverse semigroup causes a lot of
problems for our current method.
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1 Introduction

In group theory, we are able to determine many properties of a group based
on how it acts on a graph. It is therefore a logical next step to investigate if
we can replicate such results with inverse semigroups. A method of defining
an action of an inverse semigroup on a non-trivial graph has been around
for some time but it is yet to be proven either way if this tells us anything
about the inverse semigroup. This project aimed to take inverse semigroups
with certain properties and see if said properties can be proven with the
inverse semigroup action.

We begin by covering the method currently in place for defining an action
of an inverse semigroup on a graph and how we get back what we call the
fundamental inverse semigroup from this method. As we demonstrate this,
we will be comparing it to how the same process is done in group theory so
that we may better understand the logic behind the process.

Following this, we look at how we can create a graph that a free product
of inverse semigroups can act on when we already have graphs that these
semigroups act on independently of each other. Furthermore, we demon-
strate how the fundamental inverse semigroup from this sytem is isomor-
phic to the free product of inverse semigroups. Next we investigate poly-
cyclic semigroups and demonstrate how this method does not always work
for such semigroups. The final sections show how our method can be used
for Bruck-Reilly semigroups and Brandt semigroups and more importantly,
when this method will give the desired results for such semigroups.

2 Preliminary Ideas

The motivation for this project comes from the Bass-Serre theory of groups.
As such it will be worthwhile giving a brief overview of this theory and how
we try to reflect this method with inverse semigroups. The notation and
terminlogy used in Bass-Serre theory will be the same used by Dicks and
Dunwoody [6]. Similarly the ideas behind how we can adapt these ideas to
work with inverse semigroups comes from James Renshaw’s paper [22].

We will also be defining graphs by the sets V and E where V is the set
of vertices of the graph and E is the set of edges that connect them.

2.1 Semigroup Actions

We will begin with the definiton of a group action outlined by Dicks and
Dunwoody [6].

Definition 2.1.1. Let G by a group and X a set of elements. We say G
acts on X if we can define a function f : G×X → X such that:

• ∀g1, g2 ∈ G, x ∈ X, f(g1g2, x) = f(g1, f(g2, x))
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• ∀x ∈ X, f(1, x) = x

If such a function exists we call X a G-set and say that a (left) G-act exists
on X.

Note that this is equivalent to saying there exists a group homomorphism
from G to Sym(X) (the set of permutations of X). Another important
property that we can derive from this definition is that ∀g ∈ G and x, y ∈ X,
f(g, x) = y ⇒ x = f(g−1, y).

Similarly we can expand this definition to apply to inverse semigroups.

Definition 2.1.2. Let S by an inverse semigroup and X a set of elements.
We say S acts on X if we can define a partial function f : S ×X → X such
that:

• ∀s1, s2 ∈ S, x ∈ X, f(s1s2, x) exists ⇔ f(s1, f(s2, x)) exists. Then
f(s1s2, x) = f(s1, f(s2, x)).

• ∀x, y ∈ X, s ∈ S, f(s, x) = f(s, y)⇒ x = y

If such a partial function exists it defines X as an S-act and we say that a
(left) S-act exists on X.

This definition when applied to groups is in fact the same definition as
a group action. In other words, all group actions can be considered to be
semigroup actions. In fact it is easy to prove that inverse semigroup actions
share some properties with group actions.

Lemma 2.1.1. [22, Lemma 3.1.] Let X be an S-act of an inverse semigroup
S:

• ∀s ∈ S, x, y ∈ X, f(s, x) = y ⇒ x = f(s−1, y)

• ∀e ∈ E(S), x ∈ X, f(e, x) exists implies that f(e, x) = x.

It is important to mention one difference in these two actions that will
complicate our objective. By definition, in a group action f(g, x) will exists
for all g ∈ G and x ∈ X, however the same cannot be said for inverse
semigroup actions. Going forward, we will say f(s, x) = sx when the context
is clear.

Right group and inverse semigroup actions are also defined dually, but
unless otherwise specified we will be considering all our actions to be left
actions. It will also be helpful to define some other terminology that we
will be using alongside their roots in group theory when applicable. For the
following definitions, we say G, S and X are a group, inverse semigroup and
set respectively. Furthermore, we are assuming that X is a G-act and S-act.

Definition 2.1.3. Let X and Y also be G-sets. If a function f : X → Y
exists such that ∀x ∈ X, g ∈ G, f(gx) = gf(x) then we define f to be a
G-map.
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Definition 2.1.4. Let X and Y be S-sets. If a function f : X → Y exists
such that ∀x ∈ X, s ∈ S, f(sx) = sf(x) then we define f to be a S-map.

Definition 2.1.5. Let X be a graph defined by a set of vertices, V that is
a G-set and a set of directed edges, E. Say the graph is such that E is also
a G-set where any g ∈ G acts on e ∈ E if it acts on both the edge’s initial
and terminal vertices in V which we shall label v1 and v2 respectively. The
action will then map the edge to another edge in E whose inital vertex is
gv1 and whose terminal vertex is gv2. We define two G-maps ι : E → V
and τ : E → V which map the graph’s edges to their initial and terminal
vertices respectively. Collectively, (X,V,E, ι, τ) is defined to be a G-graph
which will just be denoted by X when the context is clear.

Definition 2.1.6. Let X be a graph defined by a set of vertices, V that is
a S-set and a set of directed edges, E. Say the graph is such that E is also
a S-set where any s ∈ S acts on e ∈ E if it acts on both the edge’s initial
and terminal vertices in V which we shall label v1 and v2 respectively. The
action will then map the edge to another edge in E whose inital vertex is
sv1 and whose terminal vertex is sv2. We define two S-maps ι : E → V
and τ : E → V which map the graph’s edges to their initial and terminal
vertices respectively. Collectively, (X,V,E, ι, τ) is defined to be a S-graph
which will just be denoted by X when the context is clear.

Definition 2.1.7. For every s ∈ S we define the domain of s to be given
by the set;

DX
s = {x ∈ X|sx ∈ X} (1)

In other words, the domain of s is the set of elements in X that s can act
on. Likewise, the domain of any x ∈ X is the set;

Dx
S = {s ∈ S|sx ∈ X} (2)

Remark. In a group action, the domain of every element would be X.

Knowing this,we can prove certain properties of the domains of an S-act
based on the properties of S.

Lemma 2.1.2. Let s ∈ S such that Ds 6= ∅:

• If s is the zero element in S, then ∀t ∈ S, Ds ⊆ Dt.

• If s is the identity element in S, then ∀t ∈ S, Dt ⊆ Ds.

Proof. Let s ∈ S and x ∈ X be defined so x ∈ Ds. Say s is the zero element
in S. Then, ∀t ∈ S, st = s. So, x ∈ Ds ⇒ sx = s(tx) exists. Therefore,
x ∈ Dt which tells us that Ds ⊆ Dt. If instead, s is the identity element in
S, then ts = t. Let y ∈ Dt, then ty = t(sy) exists. Consequently, y ∈ Ds

and thus Dt ⊆ Ds.
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Corollary 2.1.3. If S is an inverse semigroup with zero and x ∈ X is such
that x ∈ D0, then ∀s ∈ S, sx = x.

Proof. From Lemma 2.1.2, we know that D0 ⊆ Ds and hence sx will exist.
Therefore, since 0 = 0s, we can say that 0x = 0sx which then implies that
x = sx.

Lemma 2.1.4. ∀s, t ∈ S, Dst ⊆ Dt.

Proof. Let s, t ∈ S. If Dst = ∅, then Dst ⊆ Dt by definition. Assume
Dst 6= ∅. Then, ∀x ∈ Dst, (st)x exists ⇒ tx exists. Hence, x ∈ Dt and
Dst ⊆ Dt.

A consequence of Lemma 2.1.4 is that if s, t ∈ S are such that ss−1 =
tt−1, then Ds−1 = Dt−1 .

Lemma 2.1.5. Let s ∈ S. If |Ds| 6= |Ds−1 | then |X| =∞.

Proof. Say X is a finite set. This then implies that |Ds| and |Ds−1 | are also
finite. So, say Ds = {xi|i ∈ {1, 2, . . . , n}} for some n ∈ N+. Then, for
each xi ∈ Ds, ∃yi ∈ X such that sxi = yi. Furthermore, this implies that
xi = s−1yi and hence yi ∈ Ds−1 . Given that the action of s is a bijection
Ds → Ds−1 we can say that |Ds| = |Ds−1 |.

Lemma 2.1.6. If ∃x ∈ X such that Dx is an inverse semigroup, then
S = Dx or S is a union of two disjoint inverse semigroups.

Proof. Say x is an element in an S-act such that Dx is an inverse semigroup.
Assume S 6= Dx, so ∃s, t ∈ S such that s, t /∈ Dx. If st ∈ Dx, then (st)x =
s(tx) exists. However, this then implies that tx exists and hence t ∈ Dx

which contradicts our definition of t. Hence, s, t /∈ Dx ⇒ st /∈ Dx. Finally,
since Dx is an inverse semigroup, we know that for any s /∈ Dx ⇒ s−1 /∈ Dx.
This then makes S\Dx an inverse semigroup. S can therefore be thought
of as a union of the inverse semigroups Dx and S\Dx which, by definition,
must be disjoint.

Lemma 2.1.7. If Dx is a proper inverse subsemigroup of S for some x ∈ X,
then S\Dx is an ideal of S.

Proof. Let s be an element in S such that s /∈ Dx. Say ∃t ∈ S such that
ts ∈ Dx. This would then imply that (ts)x = t(sx) exists and hence s ∈ Dx

which contradicts our definition of s. Therefore, S\Dx is a left ideal of S.
Now instead assume that t is such that st ∈ Dx. Since Dx is an inverse

semigroup, it must be the case that (st)−1 = t−1s−1 ∈ Dx. This further
implies that s−1x exists meaning that s−1 ∈ Dx. However, since Dx is an
inverse semigroup, s−1 ∈ Dx ⇒ (s−1)−1 = s ∈ Dx which again contradicts
our definition of s. This means that st ∈ S\Dx making S\Dx a right ideal
of S.
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Remark. To prove that S\Dx is a left ideal of S, we never needed to use
the fact that Dx is an inverse semigroup and so this must be true for the
domain of any element in an S-act.

Definition 2.1.8. ∀x ∈ X the S-orbit of x is given by;

Sx = {sx|s ∈ Dx
S} (3)

These orbits are used to define the quotient set of S-acts. For example,
S\X = {Sx|x ∈ X}.

Definition 2.1.9. The G-stabilizer of any x ∈ X is defined to be the set of
elements in G that fix x. This set is given by;

Gx = {g ∈ G|gx = x}. (4)

Similarly we define the S-stabilizer of x to be the set;

Sx = {s ∈ S|sx = x}. (5)

Remark. It is easy to prove that any G-stabilizer is itself a group. Likewise
any S-stabilizer is an inverse semigroup.

Any G-stabilizer or S-stabilizer can be considered to be a subgroup and
inverse subsemigroup of G and S respectively. Furthermore, we define the
set of G-orbits of X to be the quotient set of X given by G\X. Similarly, if
we define X to be an S-act then the quotient set, S\X, is defined to be the
set of S-orbits of X. It is easy to see that we can map a G-set (or S-set) to
its quotient set by mapping the elements to their orbits.

Definition 2.1.10. ConsiderX to be aG-graph. The graph (G\X,G\V,G\E, ῑ, τ̄)
is called the quotient graph of a G-graph where ῑ and τ̄ are functions from
G\E to G\V . They are defined by ῑ(Ge) = Gιe and τ̄(Ge) = Gτe. The
quotient graph of an S-graph is defined dually.

Definition 2.1.11. A G-transversal of X is a subset of X that meets each
of its G-orbits exactly once. We also define an S-transversal dually.

Now consider our action to be a G-graph (resp. S-graph) and let Y be
a G-transversal (resp. S-transversal) of X. If ∃Y0 ⊆ Y ⊆ X such that Y0

is a subtree of X, V ∩ Y ⊆ Y0 and ι(e) ∈ V ∩ Y (∀e ∈ E ∩ Y ) then we
call Y a fundamental (G-)transversal in X. The definition of a fundamental
(S-)transversal of an S-graph is given dually.

Remark. Note that for any G-transversal, Y the composite Y ⊆ X → G\X
given by mapping elements in Y to their orbits is a bijection.

It has been proven that if the quotient graph G\X is connected then
such subsets of X can be shown to exist [6, Proposition I.2.6.].

For the following definitions, we will be assuming our set X gives us a
fundamental transversal when we take it to be a G-graph or an S-graph.
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Definition 2.1.12. A graph of groups associated to X is a graph derived
from a fundamental G-transversal of X and its quotient graph whose vertices
and edges are all groups. If we take a fundamental G-transversal of the
quotient graph then there exists a bijection between it and a fundamental
G-transversal of X, say Y . For every vertex v in Y we assign the group Gv.
Similarly for every edge e in Y we wish to assign the group Ge, however
τ(e) may not exist in Y . If such an edge exists, the graph formed from these
stabilizers will not be a graph. To account for this, we also need to assign
to every edge stabilizer a group monomorphism from Ge to Gτ̄(Ge) (which
is the stabilizer of the unique vertex in Y whose orbit contains τ(e)).

Given our definition of Y , we know that it contains a unique vertex that
exists in the same orbit as τ(e). If we call this vertex v we can say that
Gτ(e) = Gv. Therefore, ∃te ∈ G such that tev = τ(e). Note that teGvt

−1
e =

Gτ(e). Hence we can say that there exists an embedding fe : Ge → Gv given
by g 7→ t−1

e gte since Ge is a subset of Gτ(e). So in our graph of groups the
terminal vertex of Ge will be given by Gv. Using this we are able to create a
connected graph whose vertices and edges are stabilizers of the vertices and
edges in Y .

Definition 2.1.13. We define a graph of inverse semigroups of an S-graph
from a fundamental S-transversal and its quotient graph in a similar way to
how we would define a graph of groups of a G-graph. The only difference
comes from how we find embeddings of edges in our graph. In the definition
of the graph of groups, the embedding that we presented is always guar-
enteed to exist. In the inverse semigroup case, however, this is not always
true. As such it may not be possible to find a suitable embedding and hence
the graph of inverse semigroups cannot be defined.

We do however have a method of proving the existence of certain embed-
dings. Say we have an edge e ∈ Y such that τ(e) /∈ Y , and therefore need to
find an embedding from Se to Sv where v is the unique vertex in Y ∩Sτ(e).
Since v ∈ Sτ(e) we know that ∃te ∈ S such that tev = τ(e). Unlike with the
group scenario, it is not always possible for us to say that teSvt

−1
e = Sτ(e).

We can however say that t−1
e Sτ(e)te ⊆ Sv. Knowing this, it can be shown

that an embedding exists from Sτ(e) to a subset of Sv if Sτ(e) is a monoid
whose identity is tet

−1
e [22, Theorem 3.8.]. Again we label this embedding

with fe and define it as mapping every s ∈ Sτ(e) to fe(s) = t−1
e ste ∈ Sv.

If these graphs exist we are able to use them to create fundamental
groups and inverse semigroups.

Definition 2.1.14. Let Y be a fundamental G-transversal of X such that
we can define a graph of groups from it and VY to be the vertices in Y . Also
let Eτ be the set of edges in Y whose terminal vertices do not exist in Y and
∀e ∈ Eτ let te be an element in S such that the map fe : Ge → Gv given by
g 7→ t−1

e gte is an embedding. Note that we know such a te must exist due
to the existence of the graph of groups.

6



From this we define a group interms of its generators and relations. The
generators of the group are given by the set {te|e ∈ Eτ} ∪

⋃
v∈VY Gv. In

other words, the set is a union of the vertices in the graph of groups and
any other elements in G that are required for the existence of the relavent
embeddings in said graph. The relations of our group are the relations of
the groups Gv (∀v ∈ VY ) and that fe(g) = t−1

e gte (∀e ∈ Eτ , g ∈ Ge). We
call this group the fundamental group of G and label it G′.

The fundamental (inverse) semigroup is defined dually from a graph of
inverse semigroups where the genrators and relations we obtain are instead
used to define an inverse semigroup instead of a group. That is to say, if
Y is instead a fundamental S-transversal of X for every edge e ∈ Eτ we
require an element te ∈ Ssuch that fe : Se → Sv given by s 7→ t−1

e ste is an
embedding. Then the generators of the fundamental inverse semigroup is
given by the set {te|e ∈ Eτ} ∪

⋃
v∈VY Sv and the relations are the relations

of the inverse semigroups Sv (∀v ∈ VY ) and that fe(s) = t−1
e ste (∀e ∈ Eτ ,

s ∈ Se). Similarly we label the fundamental inverse semigroup S′

It is known that if we have a group that acts on a tree then the fundamen-
tal group we obtain will be isomorphic to the original group. In particular,
for any group we can define a graph that it acts on.

Definition 2.1.15. For any group G take a subset T ⊆ G. Define a graph
whose vertices are the elements of G and whose edges are given by E = G×T
where ∀(g, t) ∈ E, ι((g, t)) = g and τ((g, t)) = gt. Such a graph is called the
Cayley graph of G with respect to T .

If we take the Cayley graph of G with respect to a generating set of
G, then the quotient graph is connected. As such, we are able to find
a fundamental group from this system that is isomorphic to the original
group.

There is not, however, an equivalent theory for inverse semigroups acting
on graphs. Like with group actions, we are able to make a graph from a
generating set of any inverse semigroup that it can subsequently act on.

Definition 2.1.16. [22] Let X be a partial S-biact of an inverse semigroup
S and T ⊆ S. We define an S-graph, (X,V,E, ι, τ) to be given by X = V ,
E = {(x, t) ∈ X × E : xt exists and xt 6= x}, ι(x, t) = x and τ(x, t) = xt for
any (x, t) ∈ E. Such a graph is called the Schützenberger graph of X with
respect to T and is denoted by Γ = Γ(X,T ).

The particular Schützenberger graph we are interested in is when V = S
(where S is an inverse semigroup) and T is a generating set of S. In such a
case, the Schützenberger graph will be a set of trees where the set of vertices
of any such tree is equivalent to an R-class of S.

Definition 2.1.17. Let S be an inverse semigroup. We define ∗S to be a
function from S to itself where, ∀s, t ∈ S, s ∗S t is defined if and only if

7



t = s−1st. If s∗S t does exist, then s∗S t = st. Such a function is then called
the Preston-Wagner representation with respect to S

Remark. The Preston-Wagner representation is usually defined in a slightly
different way. For any s ∈ S, we define ρs to be a partial bijective map given
by ρs(t) = ts where t ∈ dom(ps) if and only if t ∈ Ss−1. The map s 7→ ρs is
then called the Preston-Wagner representation of S. It is easy to see that
this definition is equivalent to the one that is used in this paper.

Using this, we can define an action of S on itself by setting f(s, t) = s∗S t
(∀s, t ∈ S). By doing this, we find that the orbits of elements to be the
L-classes of S. The problem with this method is that, unlike the Cayley
graph of groups, the quotient graph of this system may not be connected.
Therefore, we not be able to define a graph of inverse semigroups. Even if
we are able to do this, we would still need to show that the fundamental
inverse semigroup would be isomorphic to the original. As such,we do not
always use this method when finding an action of our inverse semigroup on
a graph.

Example 2.1.8. For clarity, it will be helpful to look at an example of when
we have an action of an inverse semigroup on a graph which returns to us
a fundamental inverse semigroup that is isomorphic to the original. Let S
be a monogenic inverse semigroup given by S = Inv〈α | 〉 and define the set
V = {a1, a0, a−1, . . .} to be the set of vertices of a graph.

We then define a partial map φ : S × V → V to be such that φ(s, v) =
ρs(v) where ρs is given by;

ρα =

(
a1 a0 a−1 · · ·
a0 a−1 a−2 · · ·

)
. (6)

Say our graph with vertices V is;

· · · a−2
α3x a−1

α2x a0
αx a1

x

Now we need to find our vertex and edge orbits to get our quotient graph.
From our definition of ρα we can see that all our vertices share the same
orbit and all the edges share the same orbit. Let ā represent the orbit of the
vertices in the graph and x̄ represent the orbit of the edges. Then we have
the following quotient graph;

ā x̄

8



By picking the vertex a0 to represent ā in an S-transversal, we must
then pick x to represent x̄ as this is the only edge in the graph that has a0

as its start point. This then means that our S-transversal is;

a0
x

Therefore, we wish to construct a graph of inverse semigroups from the
stabilizers of a0 and x which looks like;

Sa0 Sx

However, for such a graph to exist, we require a map from Sa1 → Sa0
such that it gives a monomorphism from Sx ⊆ Sa1 to Sa0 . We know that
such a monomorphism exists if ∃t ∈ S such that tt−1 is the identity in Sa1
and ta0 = a1. Said monomorphism is then defined by s 7→ t−1st ∀s ∈ Sa1 .

Before we can identify t, we need to find the values of Sa0 , Sa1 and Sx.
From examination of ρα we can see that a0 can be acted on by α−1 and all
positive powers of α. Hence, Sa0 = Inv〈α−nαn, αα−1|n ∈ N〉. Similarly we
can find that Sa1 = {α−nαn|n ∈ N} and Sx = {α−nαn|n ∈ N}. Therefore,
we can now say that we are looking for a t ∈ S such that tt−1 = α−1α. An
obvious choice is α−1 and since α−1a0 = a1 we can say that t = α−1.

We now construct a semigroup presentation, say S′, from the information
we have from our graph of inverse semigroups. First we will say that γ =
αα−1 and βn = α−nαn ∀n ∈ N. These along with t then give the generators
of S′.

The first relations we set for S′ are those of Sa0 . These are (∀n,m ∈ N)
β2
n = βn, γ2 = γ and βnβm = βmax{n,m}. We also need the following

relations, tt−1 = β1 and t−1βnt = γβn−1 if n > 1 and γ otherwise.
We now show that S′ is equivalent to S. We prove this by simplifying

the presentation of S′. First, tt−1 = β1 and t−1β1t = γ imply that γ = t−1t.
So we can now remove γ from our generators providing we account for the
relations in S′ that contain γ. Both γ2 = γ and t−1β1t = γ are given
by γ = t−1t and can therefore also be removed. However, we can not do
the same for t−1βnt = γβn−1 if n > 1. We therefore replace this relation
witht−1βnt = t−1tβn−1 if n > 1, but this is equivalent to another equation.

t−1βnt = t−1tβn−1 if n > 1⇔ t−1βn+1t = t−1tβn

⇔ tt−1βn+1tt
−1 = tβnt

−1

⇔ β1βn+1β1 = tβnt
−1

⇔ βn+1 = tβnt
−1

(7)
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So we can replace our relation with βn+1 = tβnt
−1 ∀n ∈ N.

Furthermore, we can prove by induction that βn+1 = tβnt
−1 ∀n ∈ N⇒

βn = tnt−n. We know this holds when n = 1 as β1 = tt−1 is given in the
relations. Say βk = tkt−k for some k ∈ N. Then we can say;

βk+1 = tβkt
−1 = ttkt−kt−1 = tk+1t−(k+1). (8)

Also note that βn = tnt−n ⇒ βn+1 = tβnt
−1, so again we can replace our

relation with a new equivalent equation.
βn = tnt−n then allows us to remove the generators βn from our presen-

tation of S′. It is immediately obvious that βn+1 = tβnt
−1, β2

n = βn and
β1 = tt−1 are all given by βn = tnt−n. So we now need only check if it
also implies that βnβm = βmax{n,m} ∀n,m ∈ N. Assume that n < m, then
βnβm = tnt−ntmt−m = (tnt−ntn)tm−nt−m = tntm−nt−m = tmt−m = βm.
Similarly, if n > m then βnβm = βn. Note that we don’t need to check for
when n = m as this is covered by β2

n = βn.
So, S′ = Inv〈t | 〉 which is equivalent to S.

We could equally have gotten a working example if we had defined φ by
φ(s, v) = ρ−1

s (v) and our graph given by;

· · · a−2
α−3x a−1

α−2x a0
α−1x a1

x

Though this example does work, we cannot say that we can always follow
a similar method whenever we have such a semigroup acting on a graph.

Example 2.1.9. Consider φ to be the same partial mapping as in Example
2.1.8 but this time we have an S-act on the graph;

a1 a0
x a−1

αx a−2
α2x · · ·α3x

Again as in Example 2.1.8 we see that the vertices all share the same
orbit which we shall denote ā. Similarly, the edges of our graph also share
the same orbit which we denote by x̄. Therefore, we have the same quotient
graph as in the last example.

ā x̄

However, this example differentiates from Example 2.1.8 when we find
the S-transversal of this system is. First say we take a1 to represent ā. Since
a1 is the initial vertex of only one edge in our graph, we must take the edge
representing x̄ to be said edge, which is x. This then gives us the following
S-transversal;

10



a1
x

So, we wish to find a monomorphism from Sx to Sa1 given by some
element t ∈ S such that ta1 = a0 and tt−1 is the identity element in Sx. As
Sx = {α−nαn|n ∈ N}, we can see that it is a monoid with identity α−1α.
We also note that a1 is mapped to a0 by α, elements of the form α−nαn+1

and those of the form αα−nαn (where n ∈ N) and hence are all the possible
values of t. However, none of these elements will satisfy tt−1 = α−1α.
Therefore we can go no further with this S-transversal and must choose a
different representative of ā when constructing an S-transversal.

Note though, that Sx is the only stabilizer of an edge in this system that
contains an identity element. However, we have already examined the only
S-transversal that contains x. So, there is no S-tranversal in this system
that will allow us to create a graph of inverse semigroups from our method.

3 Free Products of Inverse Semigroups

The topic of the free product of inverse semigroups was first investigated by
Preston [20] when he examined the free products of semigroups in general.
Though he did not go in depth with his analysis, Preston did suggest the
idea of a theorem that tells us the strucre of this product similar to what
Scheiblich [23] had recently done with free inverse semigroups. Later work
was done on the inverse free product of groups [12] [16] and E-unitary semi-
groups [10], but it was work by Jones [11] that gave us a general structure of
the free product of inverse semigroups that we will be using in this section.

3.1 Previous Results of the Free Product

We will begin by covering work presented in Free Products of Inverse Semi-
groups [11] that gives us some of the terminology and foundational knowl-
edge that I will use in this section. Note that in this paper, Jones presents
results for both the free product of inverse semigroups in the categories of
semigroups and of inverse semigroups. It should be mentioned that we will
be taking the free product to be in the category of inverse semigroups. We
do this in the following way.

Definition 3.1.1. Let S and T be inverse semigroups. The inverse free
product is defined to be the set of words a = a1a2 · · · am over S ∪ T such
that no two adjacent letters belong to the same factor of S or T along with
the relation that a−1 = a−1

m a−1
m−1 · · · a

−1
1 and that letters in E(S) ∪ E(T )

may commute with each other in a word. We then label such a product by
S ∗ T .

It can then be proven that this product is an inverse semigroup [7]. We
then need some terminology used by Jones. In particular, we will be using

11



the notation that any word a ∈ S ∗ T can be given by a1a2 · · · am (as in the
previous definition) and the integer m is defined to be the length of a.

Definition 3.1.2. Let a ∈ S ∗ T .

• a is called reduced if ai /∈ E(S) ∪ E(T ) for any letter ai in a.

• If am is idempotent then a is called right idempotent.

• a is defined to be left reduced if am is the only idempotent letter in a.

• The set of prefixes of a is the set, pre(a) = {a1a
−1
1 , a1a2a

−1
2 , . . . , a1 · · · ama−1

m }.

• If a is right idempotent, then we define âr for any positive integer r in
the following way;

âr =


a1 · · · (ar−1ar+1) · · · am r < m− 1

a1 · · · am−3(am−2ama
−1
m−2) r = m− 1

a r > m

(9)

We define âr differently when r = m − 1 so that âr is always right-
idempotent.

If A ⊆ S ∗ T is such that ∀a ∈ A, pre(a) ⊆ A then A is called prefix closed.
Furthermore, A is called precanonical if it is a finite, nonempty, prefix closed
set of right idempotent words. Note that pre(a) is a precanonical set.

Definition 3.1.3. Let A ⊆ S ∗ T . A is said to have unique last letters if
a1a2 · · · am−1am, a1a2 · · · am−1bm ∈ A⇒ am = bm.

Definition 3.1.4. Let A be a precanonical subset of S ∗ T . ∀a ∈ A, ε(a) =
aa−1. Furthermore, ε(A) =

∏
a∈A ε(a).

Using this notation, Jones showed that ε(pre(a)) = ε(a) = aa−1 and
hence we can write any word a ∈ S ∗ T by ε(pre(a))a. Using certain oper-
taions, we are then able to change this into a form that is unique.

Definition 3.1.5. Let A be a precanonical subset of S ∗ T . We can then
define the following functions:

• L(A) = A when A is left reduced. Otherwise, let i be the least positive
integer such that ∃a ∈ A whose ith letter is an internal idempotent
(that being an idempotent that is not the last letter in a). Then,
L(A) = 〈âr|a ∈ A〉.

• R(A) = A if A has unique last letters. Otherwise, ∃k ∈ N+ such that
for some x, y ∈ A, xj = yj ,∀j < k and xk 6= yk. R(A) is then obtained
by replacing each word a ∈ A of length m > k by a1 · · · (ek(a)ak) · · · am
where ek(a) =

∏
{f |a1 · · · ak−1f ∈ A}. Notice that since A contains

right idempotent words, ek(a) is a product of idempotents. Therefore,
if a is a word of length k, ek(a)ak = ek(a).

12



Note that the L and R operations give a left reduced set and a set
with unique last letters respectively. Jones shows us that if we start with a
precanonical set A, the sequence L(A), R(L(A)), L(R(L(A))), . . . eventually
terminates [11, Corollary 3.2.] with a set we label cl(A). Furthermore, cl(A)
is called a canonical set which is defined in the following way;

Definition 3.1.6. Let A be a precanonical set. If A is both left reduced
and has unique last letters then A is called canonical.

As previously stated, any element a ∈ S∗T can be written as ε(pre(a))a.
Further work by Jones also shows that we can also use this to further say
that a = ε(cl(pre(a)))x for some element x ∈ S ∗ T is an associate of
cl(pre(A)) [11, Theorem 3.3.]. An associative element of a set is defined
in the succeeding definition.

Definition 3.1.7. Let A be a precanonical set and a ∈ S ∗ T . If a = 1 or
am /∈ E(S) ∪ E(T ) and aa−1

m ∈ A then we define a to be an associate of A.

So all that remains is to explain how x is found. To do so, we need to
define how the L and R functions act on words in S ∗ T .

Definition 3.1.8. Let a be an associate of a precanonical set A and E =
E(S) ∪ E(T ).

• If a = 1 or L(A) = A, then LA(a) = a. Otherwise, let i be as defined
for L(A). If ai is nonidempotent or m 6 i, then LA(a) = a. If ai does
not satisfy either condition then:

LA(a) =


âi 1 6 i < m− 1

âi i = m− 1 and am−2am /∈ E
a1a2 · · · am−3 i = m− 1, m 6= 3 and am−2am ∈ E
1 i = m− 1, m = 3 and am−2am ∈ E

(10)

• If a = 1 or R(A) = A, then RA(a) = a. Otherwise, let k and ek be as
defined for R(A).

RA(a) =

{
a m < k

a1 · · · (ekak) · · · am m > k
(11)

Finally, given that cl(A) is defined to be the terminating set of the
sequence L(A), R(L(A)), . . . , we define clA(a) to be the corresponding word
in the sequence LA(a), RL(A)(LA(a)), . . . .

Jones uses this to say that any word in S ∗T can be given by a canonical
set and an associate of that set [11, Theorem 3.3.]. This is shown by the
following equation;

a = aa−1a = ε(pre(a))a = ε(cl(pre(a)))clpre(a)(a) (12)
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In fact, this form is unique to the word [11, Theorem 5.4.] and we define
it to be the canonical form of a. Note that a is idempotent if and only if
clpre(a)(a) = 1.

3.2 Stabilizer of S-action

Using this information, we wish to investigate if there is a relation between
the graphs that inverse semigroups act on and those that their free inverse
product will act on (under inverse semigroup actions). Depending on which
action I started with, I defined the corresponding actions in the following
way;

Definition 3.2.1. Let S and T be inverse semigroups.

• If we have a known action of S ∗T on a set X, we also have actions of
S and T on X since S, T ⊆ S ∗ T .

• If S and T both have known actions on a set X, we can define an
inverse semigroup action of S ∗ T on X by having words in S ∗ T act
on elements from our set with respect to how the letters that compose
them act on elements. For example, let a ∈ S ∗ T , x ∈ X, am ∈ T
and ·S and ·T be the S-actions of S and T on X respectively. Then
we define a acting on x by;

a ·S∗T x = (a1 · · · am−1) ·S∗T (am ·T x)

= (a1 · · · am−2) ·S∗T (am−1 ·S (am ·T x))

= . . .

(13)

Note that since idempotents preserve elements they act on, this still
holds as an (S ∗T )-act given that idempotents commute under the free
inverse product.

It is easy to show that the second case would give us an inverse semigroup
action. First let a, b ∈ S ∗T . So, a = a1a2 · · · ap and b = b1b2 · · · bq (for some
p, q ∈ N) where a1, . . . ap, b1, . . . bq ∈ S ∪ T such that no two adjacent letters
belong to the same factor of S or T . Assume that (ab) ·S∗T x is defined for
some x ∈ X. By definition of ·S∗T , it is the case that:

(ab) ·S∗T x = (a1 · · · apb1 · · · bq) ·S∗T x
= a1 ·S∗T (a2 ·S∗T . . . (ap ·S∗T (b1 ·S∗T . . . (bq ·S∗T x) . . . ).

(14)

Since b1, . . . , bq ∈ S ∪ T , we know that when any of these values act on
an element in X under the function defined by ·S∗T then ·S∗T is equivalent
to an inverse semigroup action (either ·S or ·T ). Knowing this, we can say
that b1 ·S∗T (b2 ·S∗T . . . (bq ·S∗T x) . . . ) = b ·S∗T x. Therefore, (ab) ·S∗T x =
a1 ·S∗T (a2 ·S∗T . . . (ap ·S (b ·S∗T x) . . . ).
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Let y := b ·S∗T x. So, (ab) ·S∗T x = a1 ·S∗T (a2 ·S∗T . . . (ap ·S y) . . . ). Using
the same method that let us say b1 ·S∗T (b2 ·S∗T . . . (bq ·S∗T x) . . . ) = b ·S∗T x
we can say that a1 ·S∗T (a2 ·S∗T . . . (ap ·S∗T y) . . . ) = a ·S∗T x.

(ab) ·S∗T x = a1 ·S∗T (a2 ·S∗T . . . (ap ·S (b ·S∗T x) . . . )

= a ·S∗T (b ·S∗T x).
(15)

Now assume a ·S∗T x1 = a ·S∗T x2 for some x1, x2 ∈ X.
When working on this topic it became helpful to have a method of defin-

ing the stabilizer of a point with respect to S ∗ T using the stabilizers with
respect to S and T . One idea as to how the stabilizer might be defined was
(SSx ∗ STx )ω = SS∗Tx (where x is any element in a set that S ∗ T acts on and
for any inverse semigroup A, Aω is the closure of A) since it is easy to see
that one is a subset of the other;

Lemma 3.2.1. Let S and T be inverse semigroups and X a set they both
act on. For all x ∈ X;

(SSx ∗ STx )ω ⊆ SS∗Tx (16)

Proof. Say w ∈ (SSx ∗STx )ω. By definition, ∃a ∈ SSx ∗STx and e ∈ E(SSx ∗STx )
such that a = we. Furthermore, we can say that a ·S∗T x = e ·S∗T x = x.
Then;

w ·S∗T x = w ·S∗T (e ·S∗T x) = (we) ·S∗T x = a ·S∗T x = x. (17)

Therefore, w ∈ SS∗Tx

The obvious next step was to take an s ∈ SS∗Tx and see if it exists in
(SSx ∗ STx )ω. It is not known if the converse is true, however, given that s
has the canonical form ε(cl(pre(s)))clpre(s)(s) we can determine some more
properties of the stabilizer.

Let c = clpre(s)(s). Clearly c ∈ SS∗Tx (since s ∈ SS∗Tx ⇒ ε(cl(pre(s))) ∈
SS∗Tx ) and s ≤ c. It is also a simple matter to find the canonical form of c.

Lemma 3.2.2. c = ε(pre(c))c is the unique canonical form of c.

Proof. Given Jones’ method of finding the canonical form of a word, we
begin with c = ε(pre(c))c. The next step will be to find cl(pre(c)). Given
that c is defined to be an associate of a canonical set, we can say that it
is left reduced. Therefore, pre(c) is left reduced and L(pre(c)) = pre(c).
Furthermore, by the definition of pre(c), R(pre(c)) = pre(c). So, we can say
cl(pre(c)) = pre(c) and hence clpre(c)(c) = c.

Using this we can then show the following;

Corollary 3.2.3. c is a maximal element in SS∗Tx
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Proof. Say ∃d ∈ SS∗Tx such that c ≤ d. By definition, ∃e, f ∈ E(SS∗Tx ) such
that c = ed = df .

c = ed = edd−1d = e2dd−1d = edd−1ed

= (ed)(d−1e)d = (df)(df)−1d = ε(pre(df))d.
(18)

Note that d is an associate of pre(df). Therefore, ε(cl(pre(df)))clpre(df)(d) is
a canonical form of c. Given the uniqueness of this form and Lemma 3.2.2,
we can say that pre(c) = cl(pre(df)) and c = clpre(df)(d).

However, c = df ⇒ c = clpre(df)(d) = clpre(c)(d). Also from the proof of
Lemma 3.2.2 we know that L(pre(c)) = pre(c) and R(pre(c)) = pre(c) and
so we can say that clpre(c)(d) = d. Therefore c = d.

3.3 Action of a Free Product of Bicyclic Semigroups

Say we have two copies of the Bicyclic semigroup;

A = Inv〈a|aa−1 = 1A〉
B = Inv〈b|bb−1 = 1B〉

(19)

where 1A and 1B are the identities in A and B respectively.
The set of elements X = {x, α0, αwa , β0, βwb

|wa ∈ a+, wb ∈ b+} can be
considered to be an A-act under the semigroup action;

a−1y =


αa for y = x

x for y = α0

αaw for y = αw

(20)

Similarly X is also a B-act with the action;

b−1y =


βb for y = x

x for y = β0

βbw for y = βw

(21)

We include x in X so that there exists an element that both A and B can act
on. Note that though a−1 does not act on β0 and b−1 does not act on α0, this
action still satisfies to the properties of the Bicyclic semigroup in A and B.
Even though the domain of any element in a monoid must be a subset of the
domain of the identity, aa−1 is defined to be an identity element only on A.
Therefore, our action need only satisfy DX

wa
⊆ DX

a−1 (∀wa ∈ A) for our action
to hold and this is clearly true given that DX

a−1 = {x, α0, αwa |wa ∈ a+} and
elements in A cannot act on β0 or βwb

(∀wb ∈ b+). The justification for why
b−1 not acting on α0 does not contradict bb−1 = 1B is given dually. Hence,
we can say that we have n inverse semigroup action of A ∗B on the set X.
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Lemma 3.3.1. Let w ∈ a+ ∪ b+. Then;

w−1x =

{
αw for w ∈ a+

βw for w ∈ b+
(22)

Proof. Say w ∈ a+. This would mean that w = an for some n ∈ N.

w−1x = a−nx

= a−(n−1)(a−1x) = a−(n−1)αa

· · ·
= a−1αan−1 = αan = αw.

(23)

The same method also shows us that w ∈ b+ ⇒ w−1x = βw.

Corollary 3.3.2. Under our action, there is only one vertex orbit.

Proof. By Lemma 3.3.1, all elements in {αw, βw|w ∈ a+∪b+} can be mapped
to x. Furthermore, the definition of our action tells us that a−1α0 = x and
b−1β0 = x. So, ∀y ∈ X, ∃s ∈ (A ∗B)1 such that sy = x.

At this point it would be helpful to demostrate how we can get back
the Bicyclic semigroup as the fundamental semigroup using this action on a
graph.

Example 3.3.3. Let XA = {x, α0, αan |n ∈ N} and define a directed edge
e given by ι(e) = x and τ(e) = α0. We take this edge to be the single base
edge of a graph where the other edges are given by the semigroup action of
A on e. Call this graph GA. As shown below, this graph is a chain.

xα0 αa αa2 · · ·
e a−1e a−2e a−3e

Lemma 3.3.4. V (GA) = XA.

Proof. We can immediately say that x, α0 ∈ V (GA) since they are the ver-
tices that define e. From Lemma 3.3.1 we can also say that (∀n ∈ N)
ι(α−ne) = αan and so αan ∈ V (GA).

Given that our graph can be defined from a single base edge, there is
only one edge orbit, say ē. We also know from Corollary 3.3.2 that there is
a single vertex orbit. Hence, the quotient graph of this system will be given
by:

XA ē
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One (A ∗B)-transversal we can get from this is;

x (α0)
e

Lemma 3.3.5. Under our action of A on XA;

Dx
A ={1A, a−n, a−na|n ∈ N0},

Dα0
A ={1A, a−n|n ∈ N}.

(24)

Proof. Let w ∈ Dx
A. We can write w in the form of a normal element in

the bicyclic semigroup, in other words, w = a−paq for some p, q ∈ N0 where
p = 0 and q = 0 ⇒ w = 1A. Then, w ∈ Dx

A ⇒ a−paqx exists ⇒ aqx exists.
By definition of our action, aqx exists ⇒ q = 0 or 1. If q = 0, then w = a−p

which acts on x ∀p ∈ N0. If q = 1, then w = a−pa. According to our action,
a−pax = a−pα0 and hence;

wx =


α0 when p = 0

x when p = 1

αap−1 when p > 1.

(25)

Therefore, Dx
A = {1A, a−n, a−na|n ∈ N0}.

Similarly, if w ∈ Dα0
A we again say w = a−paq for some p, q ∈ N0 where

p = 0 and q = 0 ⇒ w = 1A. Then wα0 exists ⇒ a−paqα0 exists ⇒ aqα0

exists. However, aqα0 is undefined when q 6= 0 so it must be the case
that q = 0 and w = a−p. By our action, a−pα0 exists ∀p ∈ N0 and so
Dα0
A = {1A, a−n|n ∈ N}.

Corollary 3.3.6.

Sx = {1A, a−1a} ⊆ A,
Sα0 = {1A|12

A = 1A}.
(26)

Proof. Lemma 3.3.5 tells us that Sx ⊆ {1A, a−(n+1), a−na|n ∈ N0}. So we
need only check which of the elements in this set will fix x. By definition,
1Ax = x since 1A is idempotent. Also, given Lemma 3.3.1 it is not possible
for a−nx = x for any n ∈ N. Therefore, it only remains to check a−na fixes x
for any n ∈ N. Say a−nax = x. This implies that ax = anx, but anx is only
defined when n = 1. So, a−1a is the only possible stabilizer of x of the form
a−na. Furthermore, since a−1a is idempotent, we can say that a−1ax = x.
Hence, Sx = {1A, a−1a|12

A = 1A, 1A(a−1a) = (a−1a)1A = a−1a}. Similarly,
Sα0 = {1A|12

A = 1A}.

Now that we know Sx and Sα0 we can find a t ∈ A such that tx = α0 and
tt−1 = Id(Sα0). Such a t is given by t = a. Therefore this (A∗B)-transversal
will give us the following graph of inverse semigroups.
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Sx Se

Lemma 3.3.7. The fundamental inverse semigroup of this system is equal
to A.

Proof. Let S be the fundamental inverse semigroup of this system. By
definition the generating set of S will be given by {s1, s2, t} where s1 = 1A,
s2 = a−1a and t = a. The relations of S are then given by s2

1 = s1, s2
2 = s2,

s1s2 = s2s1 = s2, tt−1 = s1 and t−1s1t = s2.
Note that tt−1 = s1 and t−1s1t = s2 imply that s2 = t−1tt−1t = t−1t.

Since s2 can be expressed this way, we can remove it from our generators
and replace it in our relations with t−1t. Similarly, since tt−1 = s1 we can
also remove s1 from the generators and replace it in the relations. This will
then give us S = Inv〈t|tt−2t = t−1t2t−1 = t−1t〉. Note that we have already
removed the relations (tt−1)2 = tt−1 and (t−1t)2 = t−1t since these are given
by definition of an inverse semigroup.

Given the relation we have in S we can say that;

t(tt−1) = (tt−1t)(tt−1) = t(tt−1)(t−1t) = t(tt−2t) = tt−1t = t. (27)

Since we also know that (tt−1)t = t, we can say that tt−1 acts as an identity
on t in S. This would further imply that it also fixes t−1 and since t is the
only generator of S we can say that tt−1 is the identity in S. Knowing this
we can rewrite our original relation as (tt−1)(t−1t) = (t−1t)(tt−1) = t−1t and
see it is given by tt−1 = 1S . Therefore, we can say that S = Inv〈t|tt−1 = 1S〉
which is the bicyclic semigroup.

Example 3.3.8. Now consider an action of A ∗ B on X as defined by
Definition 3.2.1. Create a graph with edges eA and eB as our base edges
where x = ι(eA) = ι(eB), α0 = τ(eA) and β0 = τ(eB). This then gives us
the following graph that we shall label G.

x

α0

β0

αa

βb

αa2

βb2

· · ·

· · ·

eA

eB
a−1eA

b−1eB

a−2eA

b−2eB

a−3eA

b−3eB

Lemma 3.3.9. V (G) = X

Proof. Given our definition, we know that x, α0, β0 ∈ V (G). Also, using
Lemma 3.3.1 we can say that ∀w ∈ 〈a〉, τ(w−1eA) = αw and ∀w ∈ 〈b〉,
τ(w−1eB) = βw. Therefore, αwA , βwB ∈ V (G) (∀wA ∈ 〈a〉, wB ∈ 〈b〉).
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Lemma 3.3.10. ∀w ∈ A ∗B;

weA exists ⇒ w ∈ A
weB exists ⇒ w ∈ B

(28)

Proof. Say weA exists. This implies that wι(eA) = wx and wτ(eA) = wα0

are both defined. Let n be the word length of w in A ∗B and assume n > 1.
Then, w = w1w2 · · ·wn for some w1, w2, . . . , wn ∈ A ∪ B where (∀i ∈ [1, n])
wi ∈ A (resp. B) implies that wi−1, wi+1 ∈ B (resp. A) if they exist. From
our action, we know that wα0 can only exist if wn ∈ A. Therefore, weA
exists ⇒ wn ∈ A. We also know that if w acts on eA, then wn acts on
x. Since wn ∈ A either wnx = x or αz for some z ∈ 〈a|〉. If wnx = x,
then Corollary 3.3.6 tells us that wn = 1A, since wn must also act on α0.
In which case ι(wneA) = x and τ(wneA) = α0. However, this would mean
that wn−1 can not exist, since it must exist in B and act on α0 which is
not possible. Alternitively, if wnx = αz for some z ∈ 〈a|〉 then agaain wn−1

cannot be defined since it must act on αz and exist in B. So in both cases
w can only be a word of length 1 and hence it exists in A. The existence of
weB implying w ∈ B is defined dually.

Corollary 3.3.11.
DeA
A∗B = {1A, a−n|n ∈ N} (29)

DeB
A∗B = {1B, b−n|n ∈ N} (30)

Proof. By definition, DeA
A∗B = Dα0

A∗B ∩Dx
A∗B. However, Lemma 3.3.10 tells

us that DeA
A∗B ⊆ A. Therefore, DeA

A∗B = Dα0
A ∩ Dx

A. Using Lemma 3.3.5
we get that DeA

A∗B = {1A, a−n|n ∈ N}. Similarly, we can use a dual proof

of Lemma 3.3.5 in B to define Dx
B and Dβ0

B and Lemma 3.3.10 to say that
DeB
A∗B = {1B, b−n|n ∈ N}.

From the construction of G, it is safe to assume it is a tree. However, it
will be worth while to prove this properly to be certain of this fact.

Corollary 3.3.12. G is a tree

Proof. We know that edges eA and eB are connected since they both share
an initial vertex. From Lemma 3.3.10 we have that every other edge in G
can be written as weA for some w ∈ A or weB for some w ∈ B. Say we have
an edge given by weA. Corollary 3.3.11 tells us that w ∈ {1A, a−n|n ∈ N}. If
w = 1A, then weA = eA and so is connected to our base edges by definition.
Instead assume w = a−n. If n = 1, then τ(weA) = ι(eA) = x and so weA is
connected to a base edge. Now assume n ≥ 2. We can then say that weA
is connected to the edge a−(n−1)eA, since τ(weA) = ι(a−(n−1)eA) = αan−1 .
Then either a−(n−1)eA is connected to eA or a−(n−2)eA depending on the
value of n. If we continue this method, we find that we can show that there
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is a chain of edges creating a path of edges that connect weA to eA for any
n ∈ N. Similarly, we can show that any edge of the form weB is conencted
to eB and hence our graph must be connected.

Now assume ∃n ∈ N such that n > 1 and αan exists on an edge where
the other endpoint is not αan−1 or αan+1 . Then ∃s ∈ A∗B such that ι(seA),
ι(seB), τ(seA) or τ(seB) equals αan and the correponding endpoint does
not equal αan−1 or αan+1 . Using Corollary 3.3.11 we can immediately say
that ι(seB) and τ(seB) can’t possibly equal αan due to the fact that there
is no element in DeB

A∗B that satisfies this property. Similarly, given the value
of DeA

A∗B we know that ι(seA) = αan ⇒ s = a−n and τ(seA) = αan ⇒
s = a−(n+1). However, in these circumstances the other endpoints are αan−1

and αan+1 respectively. Hence the only other vertices that αan is directly
connected to are αan−1 and αan+1 . It can also be proven dually that the
only vertices βbn is directly connected to are βbn−1 and βbn+1 . Knowing this
we can say that no loops can exist in G since it would require the existence
of a unique set of edges that create a path from a vertex to itself.

From Corollary 3.3.2 and Lemma 3.3.10 we know there is one vertex
orbit and two edge orbits in this system. Hence the quotient graph of this
system is given by;

X ēBēA

From this we then have the following as an (A ∗B)-transversal.

x(α0) (β0)
eA eB

The next step is then to find the stabilizers.

Lemma 3.3.13.

SA∗Bx = SAx ∗ SBx = 〈1A, 1B, a−1a, b−1b〉 (31)

Proof. It is clear to see from our action that SAx ∗SBx ⊆ SA∗Bx , so let w ∈ A∗B
be such that wx = x. Take w to be a word of length n in A ∗ B we can
say that, w = w1w2 · · ·wn. Assume n = 1. If wn ∈ A, then we can say
that wn ∈ Dx

A. Then w = wn and so wnx = x ⇒ wn ∈ SAx . Similarly,
wn ∈ B ⇒ wn ∈ SBx . So in this case, w ∈ SAx ∗ SBx .

Now assume our lemma holds when n = m for some m ∈ N. Now let
n = m + 1. If wm+1 ∈ A then we require wm+1x to exist Furthermore,
wmwm+1x must also exist and so wm+1x is a value that an element in B can
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act on. This is only possible if wm+1x = x since this is the only value in Ax
that an element in B can act on. Therefore, x = wx = w1 · · ·wm(wm+1x) =
w1 · · ·wmx. From our assumption, w1 · · ·wmx = x⇒ w1 · · ·wm ∈ SAx ∗ SBx .
Since wm+1 ∈ SAx we can say that w ∈ SAx ∗SBx . It can be shown dually that
wm+1 ⇒ wm+1 ∈ SBx ⇒ w ∈ SAx ∗ SBx . Hence, SA∗Bx ⊆ SAx ∗ SBx ⇒ SA∗Bx =
SAx ∗ SBx .

Finally, from Corollary 3.3.6 we know that SAx = {1A, a−1a}. The proof
of this corollary can be used dually with B instead of A to show that SBx =
{1B, b−1b}. Therefore, SAx ∗ SBx = 〈1A, 1B, a−1a, b−1b〉.

Lemma 3.3.14.

SA∗Bα0
={1A, awa−1|w ∈ SA∗Bx },

SA∗Bβ0 ={1B, bwb−1|w ∈ SA∗Bx }.
(32)

Proof. Let w ∈ Sα0 . From the definition of our action, we know that if wα0

exists then w = w′a−1 for some w′ ∈ (A∗B)1 since a−1 is the only generator
of A ∗ B that will act on α0. By the same logic, since wα0 = α0 ⇒ α0 =
w−1α0 we can say that w−1 = w′′a−1 for some w′′ ∈ (A ∗ B)1. Therefore,
we can say that w = aωa−1 for some ω ∈ (A ∗B)1.

If ω = 1, then w = aa−1 = 1A. Alternatively, assume ω ∈ A ∗ B.
Then, wα0 = α0 ⇒ aωa−1α0 = α0 ⇒ ω(a−1α0) = a−1α0 ⇒ ωx = x.
Therefore, ω ∈ SA∗Bx and so w ∈ aSA∗Bx a−1. From this we can say that
SA∗Bα0

⊆ {1A, awa−1|w ∈ SA∗Bx }.
Conversely, the definition of our action tells us that 1Aα0 = α0. Fur-

thermore, if w ∈ SA∗Bx , then awa−1α0 = awx = ax = α0. From this we
can say that, {1A, awa−1|w ∈ SA∗Bx } ⊆ Sα0 Hence it must be the case
that SA∗Bα0

= {1A, awa−1|w ∈ SA∗Bx }. It can also be proven dually that
SA∗Bβ0

= {1B, bwb−1|w ∈ SA∗Bx }.

Corollary 3.3.15. SA∗Bα0
and SA∗Bβ0

are monoids with identities 1A and 1B
respectively.

Proof. Let s ∈ SA∗Bα0
. Lemma 3.3.14 tells us that s = 1A or is of the

form awa−1 for some w ∈ SA∗Bx . If s = 1A, then by definition 1A acts as
an identity on s. Alternatively, if s = awa−1 for some w ∈ SA∗Bx , then
1As = 1A(awa−1) = (1Aa)wa−1 = awa−1 = s and s1A = (awa−1)1A =
aw(a−11A) = awa−1 = s. Hence, 1A = Id(SA∗Bα0

). Similarly, we can show
that 1B = Id(SA∗Bβ0

).

From Lemmas 3.3.13 and 3.3.14 we can begin to construct the graph of
inverse semigroups from the aforementioned (A ∗ B)-transversal. As pre-
viously established, we would need to find an embedding from SA∗Bα0

into
SA∗BeA

. To do this, we need to find a tA, tB ∈ A ∗ B such that tAx = α0,

tAt
−1
A = Id(SA∗Bα0

), tBx = β0 and tBt
−1
B = Id(SA∗Bβ0

). Using the identities
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found in Cororllary 3.3.15, we know that tA = a and tB = b satisfy these
conditions. Note that tA is equal to the t we defined in Example 3.3.3.

Theorem 3.3.16. If S is the fundamental inverse semigroup of this system,
then S = A ∗B.

Proof. The generators of S are the generators of SA∗Bx as well as tA and
tB. From Lemma 3.3.13, SA∗Bx is generated by 1A, 1B, a−1a and b−1b. We
label these values g1, g2, g3 and g4 respectively. So the generating set of S
is {g1, g2, g3, g4, tA, tB}. Let R be the set of relations in S that come from
the relations in SA∗Bx . Then;

R = {g2
1 = g1, g1g3 = g3g1 = g3 = g2

3, g
2
2 = g2, g2g4 = g4g2 = g4 = g2

4}. (33)

We also have relations of S given by the embeddings. These are tAt
−1
A = g1,

t−1
A g1tA = g3, tBt

−1
B = g2 and t−1

B g2tB = g4.
Given that we have tAt

−1
A = g1 and tBt

−1
B = g2 we can remove g1 and

g2 from the set of generators of S. Since tAt
−1
A and tBt

−1
B are idempotent,

we can remove the relations g2
1 = g1 and g2

2 = g2 as well. Furthermore, if
we substiture this new value for g1 into the relation t−1

A g1tA = g3 we find
that g3 = t−1

A (tAt
−1
A )tA = t−1

A tA. Simlarly it can be shown that g4 = t−1
B tB.

Therefore, as with g1 and g2, we can remove g3 and g4 from our generators.
Also since we are values for g3 and g4 are idempotent by definition we can
remove he relations g3 = g2

3 and g4 = g2
4. This then leaves us with S in the

following form;

S = Inv〈tA, tB|(tAt−1
A )(t−1

A tA) = (t−1
A tA)(tAt

−1
A ) = t−1

A tA,

(tBt
−1
B )(t−1

B tB) = (t−1
B tB)(tBt

−1
B ) = t−1

B tB〉.
(34)

Using what we did in the proof of Lemma 3.3.7 we can simplify this to
get S = 〈tA, tB|tAt−1

A = 1TA , tBt
−1
B = 1TB 〉. It is clear from this that S is

isomomorphic to A ∗B.

3.4 Action of the Free Product

Say we have two inverse semigroups A and B that act on the graphs GA and
GB respectively. Furthermore, say that the actions of A on GA and B on
GB in such a way that we can get fundamental inverse semigroups SA ∼= A
and SB ∼= B respectively. Knowing this it is possible to construct a graph
G that A ∗ B can act on such that the fundamental inverse semigroup is
isomorphic to A ∗B.

In order to define SA it must be possible to define an A-transversal from
our action of A acting on GA that we in turn can obtain the fundamental
inverse semigroup, SA from. Similarly, we know that SB was defined from a
B-transversal. Let vA and vB be any fixed vertices from the A-transversal
and B-transversal respectively. We then have an action of A ∗ B on the
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set V = (V (GA) ∪ V (GB))/(vA = vB) given by Definition 3.2.1. Let v =
vA = vB. G is then defined to be the graph where V (G) = V and E(V ) =
E(GA)∪E(GB). Note that by the definiton of our action, v is the only value
in V that can be acted on by elements in both A and B.

Lemma 3.4.1. For all x ∈ V (G) if x /∈ (A ∗B)1v:

Dx
A∗B =

{
Dx
A when x ∈ V (GA)

Dx
B when x ∈ V (GB)

(35)

Proof. Let w ∈ Dx
A∗B and assume x ∈ V (GA). We can take w to be a word

of length n with respect to A ∗ B and so can write it as w = w1w2 · · ·wn
where each letter alternates between being an element of A or an element
of B. So, wx exists ⇒ wnx exists. Since wn ∈ A ∪ B and x 6= v it must be
the case that wn ∈ A. If n = 1, w ∈ A. Otherwise, wn−1(wnx) exists. Since
x /∈ (A ∗ B)1v implies that wnx 6= v we require wn−1 ∈ A. However, this
contradicts the definition of wn−1. We therefore conclude that w can only
be a word of length 1 and it exists in A. Hence, Dx

A∗B = Dx
A. Dually it can

be shown that Dx
A∗B = Dx

B if x ∈ V (GB).

Lemma 3.4.2. For all x ∈ (A ∗ B)1v such that x 6= v define XA = {w ∈
A|wx = v} and XB = {w ∈ B|wx = v}. If x ∈ V (GA) then;

Dx
A∗B = Dx

A ∪ {ω1ω2ω3, ω1ω3|ω1 ∈ Dv
A∪B, ω2 ∈ SAv ∗ SBv , ω3 ∈ XA}. (36)

Similarly, if x ∈ V (GA);

Dx
A∗B = Dx

B ∪ {ω1ω2ω3, ω1ω3|ω1 ∈ Dv
A∪B, ω2 ∈ SAv ∗ SBv , ω3 ∈ XB}. (37)

Proof. Without loss of generality, assume x ∈ V (GA). Let w ∈ Dx
A∗B be

a word of length n. Assume n = 1. Given that x 6= v, the only words of
length 1 that can act on x exist in A. Thereofore, w ∈ Dx

A.
Now say n = 2. So w = w2w1 for some w1, w2 ∈ A ∪B. Given that w1x

must exist we can say that w1 ∈ A since x 6= v ⇒ w1 /∈ B. Additionally,
w2 must be an element in B that can act on w1x. This is only possible if
w1x = v and so w1 ∈ XA. It must then also be the case that w2 ∈ Dv

B.
We have now shown that w ∈ Dx

A ∪ {ω1ω2ω3, ω1ω3|ω1 ∈ Dv
A∪B, ω2 ∈

SAv ∗ SBv , ω3 ∈ XA} when n = 1 or 2. Now assume this statement is true
∀n ≤ m (where m ≥ 2) and say n = m+ 1. In this case w = wm+1wm · · ·w1

where every letter wi alternates between existing in A or B. In particular,
this means wm · · ·w1 is a word of length m that exists in Dx

A∗B. It therefore
also exists in Dx

A ∪ {ω1ω2ω3, ω1ω3|ω1 ∈ Dv
A∪B, ω2 ∈ SAv ∗ SBv , ω3 ∈ XA}.

Since m ≥ 2, wm · · ·w1 /∈ Dx
A. So, w = wm+1ω1ω2ω3 or wm+1ω1ω3 for some

ω1 ∈ Dv
A∪B, ω2 ∈ SAv ∗ SBv , and ω3 ∈ XA.

Assume wm ∈ A. This implies that wm+1 ∈ B. Given the definition of
ω1, ω2 and ω3, w = wm+1ω1ω2ω3 or wm+1ω1ω3 ⇒ ω1 = wm and ω3 = w1.
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If we assume w = wm+1ω1ω3 then we can say that ω1 ∈ B ⇒ ω1 ∈ Dv
B.

Therefore, wm+1 ∈ A and we require ω1ω3x = v so that wx is defined
Hence, wm+1 ∈ Dv

A. Furthermore, ω3x = v and ω1ω3x = v ⇒ ω1v = v and
so ω1 ∈ SBv .

Now instead take w = wm+1ω1ω2ω3 and assume m is a value such that
ω1 ∈ A. By definition, ω2ω3x = v and wm+1 ∈ B. Therefore, ω1 ∈ SAv .
since the only possible value that ω1 can map v to so that an element of
B can act on it is v itself. So, wm+1 ∈ Dv

B. A dual proof tells us that
ω1 ∈ B ⇒ wm+1 ∈ Dv

A and ω1 ∈ SBv . So by induction we can say that
Dx
A∗B ⊆ Dx

A ∪ {ω1ω2ω3, ω1ω3|ω1 ∈ Dv
A∪B, ω2 ∈ SAv ∗ SBv , ω3 ∈ XA}.

Conversely, say w ∈ {ω1ω2ω3, ω1ω3|ω1 ∈ Dv
A∪B, ω2 ∈ SAv ∗SBv , ω3 ∈ XA}.

If w = ω1ω2ω3, then wx = ω1ω2v = ω1v and ω1v exists by definition of ω1.
Simlarly if w = ω1ω3 we again have wx = ω1v. So in both cases, w ∈ Dx

A∗B.
Since Dx

A ⊆ Dx
A∗B we can conclude that Dx

A∗B = Dx
A ∪ {ω1ω2ω3, ω1ω3|ω1 ∈

Dv
A∪B, ω2 ∈ SAv ∗ SBv , ω3 ∈ XA}. A dual proof for when x ∈ V (GB) gives us

the value for Dx
A stated in the lemma.

Lemma 3.4.3.

Dv
A∗B = Dv

A∪B ∪ {ω1ω2|ω1 ∈ Dv
A∪B, ω2 ∈ SAv ∗ SBv } (38)

Proof. Let w ∈ Dv
A∗B be a word of length n in A ∗ B. It can therefore be

written as w = wn · · ·w2w1 where wi are the letters that compose w. Then
w ∈ Dv

A∗B ⇒ w1 ∈ Dv
A∗B. Given the definition of w1, w1 ∈ A∪B. Therefore

if n = 1, w = w1 ∈ Dv
A∪B.

Assume our lemma holds for n = m. If n = m+1, then w = wm+1wm · · ·w1.
Given that wv exists know that wm · · ·w1 is a word of length m that acts
on v. Therefore it exists in Dv

A∪B ∪ {ω1ω2|ω1 ∈ Dv
A∪B, ω2 ∈ SAv ∗ SBv }. Let

w′ = wm · · ·w1. If w′ ∈ Dv
A∪B then w′ has to have a length of 1 since

Dv
A∪B ⊆ A ∪ B. If w′ ∈ A then wm+1 ∈ B. Furthermore, for wm+1w

′v
to be defined we require w′ ∈ SAv since this is the only value in Av that
wm+1 can possibly act on. We could then say that wm+1 ∈ Dv

B. Similarly,
w′ ∈ B ⇒ w′ ∈ SBv and wm+1 ∈ Dv

A.
If w′ /∈ Dv

A∪B then w′ = ω1ω2 for some ω1 ∈ Dv
A∪B and ω2 ∈ SAv ∗

SBv . By definition of ω1, wm = ω1. This further implies that m > 1 and
wm−1 · · ·w1 = ω2. So, wv = wm+1ω1ω2v = wm+1ω1v by definition of ω2.
It is then the case that ω1v must be a value that wm+1 can act on. Since
ω1 ∈ A (resp. B) ⇒ wm+1 ∈ B (resp. A) we can again say that this would
further imply that ω1 ∈ SAv (resp. SBv ) and wm+1 ∈ Dv

B (resp. Dv
A).

We have therefore shown that Dv
A∗B ⊆ Dv

A∪B ∪ {ω1ω2|ω1 ∈ Dv
A∪B, ω2 ∈

SAv ∗ SBv }. It is also clear that Dv
A∪B ∪ {ω1ω2|ω1 ∈ Dv

A∪B, ω2 ∈ SAv ∗
SBv } ⊆ Dv

A∗B. We can therefore conclude that Dv
A∗B = Dv

A∪B ∪ {ω1ω2|ω1 ∈
Dv
A∪B, ω2 ∈ SAv ∗ SBv }.
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Lemma 3.4.4. Let Q be the quotient graph we get when A∗B acts on G. Q
is the graph obtained by equating the vertices AvA and BvB in the quotient
graphs derived from A acting on GA and B acting on GB respectively.

Proof. Let QA and QB be the quotient graphs of A acting on GA and B
acting on GB respectively. Furthermore, let α1 and α2 be vertices in GA such
that A1α1 and A1α2 are seperate vetices in QA. Assume α1 and α2 exist in
the same orbit under the action of A ∗ B on V (G). Since A1α1 6= A1α2 it
must be the case that ∃b ∈ B, a1, a2 ∈ A such that (a2ba1)α1 = α2.

Under our action, the only vertex in V (GA) that can be acted on by an el-
ement in B is v. Therefore, it must be the case that a1α1 = v. Consequently,
A1α1 = A1v. So, two elements that exist in seprate orbits under the action of
A on V (GA) can only possibly exist in the same orbit when acted on by A∗B
if one of those vertices is v. Also, (a2ba1)α1 = α2 ⇒ α1 = (a−1

1 b−1a−1
2 )α2

and so we can also say that A1α2 = A1v. Therefore, if two vertices have
unique orbits under an action of A on GA then they are also give unique
orbits under the action of A∗B on G. A dual proof tells us the same is true
for vertex orbits obtained from an action of B on GB.

If instead we start with the assumption that α1 and α2 exist in the same
vertex orbit when GA is acted on by A then they must also exist in the same
vertex orbit when A ∗B acts on G. This is because A1α ⊆ (A ∗B)1α (∀α ∈
V (GA)). A dual statement can be made for the vertex orbits obtained from
our B-act. We can therefore conclude that ∀α ∈ V (GA) (resp. β ∈ V (GB)),
α /∈ A1v (resp. β /∈ B1v) ⇒ (A ∗B)1α = A1α (resp. (A ∗B)1β = B1β).

Under our action of A ∗B on V (G), v can be mapped to any element in
A1v or B1v. Therefore, A1v∪B1v ⊆ (A∗B)1v. Conversely, say x ∈ (A∗B)1v
and x 6= v. By definition, x exists in V (GA) or V (GB) but not both since
V (GA) ∩ V (GB) = {v}. Without loss of generality, let x ∈ V (GA). Since
x ∈ (A∗B)1v, we know that ∃w ∈ A∗B such that wx = v. If we assume w is
a word of length n in A∗B then it can be written in the form w = w1w2 · · ·wn
where each wi is a letter with respect to A ∗ B. Given our action, Bx = ∅.
Hence wn ∈ A. So if n = 1, w = wn ⇒ w ∈ A ⇒ x ∈ Av. If instead
n > 1 then it must be the case that wn−1 ∈ B. For wx to be defined we
require wn−1wnx to exist. Since wn ∈ A ⇒ wnx ∈ V (GA) we conclude
that wnx = v since v is the only vertex in V (GA) such that B1v 6= ∅.
Then, wnx = v ⇒ x ∈ A1v. Simlarly, x ∈ V (GB) ⇒ x ∈ B1v. Therefore,
(A ∗B)1v ⊆ A1v ∪B1v ⇒ (A ∗B)1v ⊆ A1v ∪B1v.

It must therefore be the case that the vertices in Q are the same as in
QA and QB except for the vertices represented A1v and B1v which have
been replaced by a single vertex, (A ∗ B)1x = A1v ∪ B1v. Given how an
inverse semigroup acts on an edge is determined by the edge’s endpoints,
we can say that the edge orbits remain the same under the action of A ∗B.
Therefore, Q is as described in the lemma.

26



Corollary 3.4.5. ∀x ∈ V (G):

(A ∗B)1x =


A1v ∪B1v when x ∈ A1v ∪B1v

A1x when x ∈ V (GA), x /∈ A1v

B1x when x ∈ V (GB), x /∈ B1v

(39)

Proof. Given in the proof of Lemma 3.4.4.

Now consider the A-transversal and B-transversal used in our original
actions. By definition, they include the vertices vA and vB respectively.
Given what we know the quotient graph of A ∗ B acting on G will look
like, we can say that an (A ∗ B)-transversal is given by the A-transversal
and B-transversal when we equate the vertices vA and vB. We label this
transversal T . Now that we have a transversal, we need to establish some
properties of the stabilizers if we wish to say that it can create a graph of
inverse semigroups.

Lemma 3.4.6. Let x ∈ V (G) such that x /∈ (A ∗B)1v.

SA∗Bx =

{
SAx when x ∈ V (GA)

SBx when x ∈ V (GB)
(40)

Proof. By definition, SA∗Bx ⊆ Dx
A∗B. Say x ∈ V (GA). From Lemma 3.4.1 we

know this implies that Dx
A∗B = Dx

A. Therefore, SA∗Bx ⊆ Dx
A. In other words,

wx = x ⇒ w ∈ A and so SA∗Bx ⊆ SAx . Conversely, w ∈ SAx ⇒ w ∈ SA∗Bx by
definition of our action. It must then be te case that SA∗Bx = SAx . It can be
shown dually that x ∈ V (GB)⇒ SA∗Bx = SBx .

Lemma 3.4.7. ∀x ∈ (A ∗B)1v such that x 6= v define XA = {w ∈ A|wx =
v} and XB = {w ∈ B|wx = v}. If x ∈ V (GA) then;

SA∗Bx = SAx ∪ {ω−1
1 ω2ω3|ω1, ω3 ∈ XA, ω2 ∈ SAv ∗ SBv }. (41)

Similarly, if x ∈ V (GA) then;

SA∗Bx = SBx ∪ {ω−1
1 ω2ω3|ω1, ω3 ∈ XB, ω2 ∈ SAv ∗ SBv }. (42)

Proof. Assume x ∈ V (GA). Let w ∈ SA∗Bx . From Lemma 3.4.2 we know
that either w ∈ Dx

A or ∃ω1 ∈ Dv
A∪B, ω2 ∈ SAv ∗ SBv , ω3 ∈ XA such that

w = ω1ω2ω3 or ω1ω3. If w ∈ Dx
A ,then w ∈ A. Furthermore, w ∈ SA∗Bx and

w ∈ A⇒ w ∈ SAx .
If instead we assume that w = ω1ω2ω3 or ω1ω3, then wx = ω1v (by

definition of ω2 and ω3). Then wx = x ⇒ ω1v = x ⇒ v = ω−1
1 x. So,

ω−1
1 ∈ XA. Therefore, w ∈ {ω−1

1 ω2ω3, ω
−1
1 ω3|ω1, ω3 ∈ XA, ω2 ∈ SAv ∗ SBv }.

It is then the case that SA∗Bx ⊆ SAx ∪{ω−1
1 ω2ω3, ω

−1
1 ω3|ω1, ω3 ∈ XA, ω2 ∈

SAv ∗ SBv }. We can also easily see that ω−1
1 ω2ω3, ω

−1
1 ω3 ∈ SA∗Bx (∀ω1, ω3 ∈
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XA, ω2 ∈ SAx ∗ SBx ). However given that ω1, ω3 ∈ A, ω1ω3 ∈ SAx . Therefore,
we can say that SA∗Bx is as defined in the lemma. A dual proof can be used
to define SA∗Bx when x ∈ V (GB).

Lemma 3.4.8.
SA∗Bv = SAv ∗ SBv (43)

Proof. Let w ∈ SA∗Bv . Lemma 3.4.3 tells us w ∈ Dv
A∪B or ∃ω1 ∈ Dv

A∗B, ω2 ∈
SAv ∗SBv such that w = ω1ω2. If w ∈ DA∪B, then w ∈ A∪B ⇒ w ∈ SAv ∪SBv .
Alternitively, if w = ω1ω2 then wv = ω1ω2v = ω1v (by definition of ω2). We
have defined w to be a stabilizer of v and so v = wv = ω1v ⇒ ω1 ∈ SA∗Bv .
Furthermore, ω1 ∈ Dv

A∪B ⇒ ω1 ∈ SAv ∪SBv . Hence, w = ω1ω2 ∈ SAv ∗SBv .

Corollary 3.4.9. ∀e ∈ E(T ) such that τ(e) /∈ V (T ), ∃te ∈ A ∗B such that
teι(e) = τ(e) and tet

−1
e = Id(SA∗Bτ(e) ).

Proof. Let e ∈ E(T ) and τ(e) /∈ V (T ). By definition of the edges in G,
e ∈ E(GA) or e ∈ E(GB). Assume e ∈ E(GA). Our defintion of T means
that e must have also been an edge in the A-transversal taken when A acted
on GA. Since this system was defined to give us a fundamental inverse
semigroup we know that we could create a graph of inverse semigroups
from this transversal. In other words, ∃te ∈ A such that teι(e) = τ(e) and
tet
−1
e = Id(SAτ(e)).

If τ(e) /∈ (A ∗B)1v, then Lemma 3.4.6 states that SA∗Bτ(e) = SAτ(e). There-

fore, tet
−1
e = Id(SA∗Bτ(e) ) and te satisfies the required properties. If instead

τ(e) ∈ (A ∗ B)1v then we know that τ(e) 6= v since T is defined so that
v ∈ V (T ). Lemma 3.4.7 tells us that ∀w ∈ SA∗Bτ(e) , w ∈ SAτ(e) or w = ω−1

1 ω2ω3

for some ω2 ∈ SAτ(e) ∗ S
B
τ(e) and ω1, ω3 ∈ XA = {a ∈ A|aτ(e) = v}.

If w ∈ SAτ(e), then tet
−1
e w = wtet

−1
e = w by definition of te. Alternitively,

say w = ω−1
1 ω2ω3. Note that ω−1

1 ω1, ω
−1
3 ω3 ∈ SAτ(e) and so tet

−1
e ω−1

1 ω1 =

ω−1
1 ω1 and ω−1

3 ω3tet
−1
e = ω−1

3 ω3. Knowing this we can say that;

w = ω−1
1 ω2ω3 = (ω−1

1 ω1)ω−1
1 ω2ω3 = (tet

−1
e ω−1

1 ω1)ω−1
1 ω2ω3

= (tet
−1
e )(ω−1

1 ω1ω
−1
1 )ω2ω3 = (tet

−1
e )ω−1

1 ω2ω3 = tet
−1
e w.

(44)

Similarly it can be shown that ω−1
3 ω3tet

−1
e = ω−1

3 ω3 ⇒ w = wtet
−1
e . So in

both cases tet
−1
e acts as an identity on w and hence tet

−1
e = Id(SA∗Bτ(e) ).

This Corollary means that we can create a graph of inverse semigroups
from T which we can then use to create a fundamental inverse semigroup
which we shall call S.

Lemma 3.4.10. Let G(S), G(SA) and G(SB) be the generating sets of S,
SA and SB respectively that we intially get from their transversals. Then
G(SA) ∪G(SB) = G(S).
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Proof. Let g ∈ G(SA) ∪ G(SB). Assume g ∈ G(SA) then by the defintion
of G(SA) we know the either g is a generator of the stabilizer of a vertex in
the A-transversal or g is an element that defines an embedding of an edge
in the transversal to it’s initial point. If g is the latter then Corollary 3.4.9
tells us that g ∈ G(S) since it again defines an embedding this time in the
(A ∗B)-transversal.

Alternatively, g is a generator of SAv or SAx for some x /∈ A1v where x
is a vertex in the A-transversal. By Lemmas 3.4.6 and 3.4.8, SA∗Bx = SAx
and SA∗Bv = SAv ∗ SBv . Therefore, since all vertices in the A-transversal are
also vertices in the (A ∗ B)-transversal we can say that g is a generator of
SAv or SAx implies that g is a generator of the stabilizers of a vertex in the
(A ∗B)-transversal. By definition, this makes g a generator of S. The same
can be shown if g ∈ G(SB).

Conversely, say g ∈ G(S). By definition, this meanst that either g comes
from an embedding of an edge in the (A∗B)-transversal into it’s intial vertex
or it is a generator of the stabilizer of a vertex in the (A ∗ B)-transversal.
If it’s the former, then we know from the proof of Corollary 3.4.9 that
g ∈ G(SA) ∪G(SB).

Otherwise g is a generator of SA∗Bx for some vertex x in the (A ∗ B)-
transversal. Given the defintion of the (A ∗ B)-transversal, either x = v
or x /∈ (A ∗ B)1v. If x /∈ (A ∗ B)1v then g is a generator of SAx or SBx
depending on if x ∈ V (GA) or V (GB) (Lemma 3.4.6). In either case this
means g ∈ G(SA) ∪ G(SB). If instead x = v then g is a generator of
SA∗Bv = SAv ∗ SBv (Lemma 3.4.8). This makes g a generator of either SAv or
SBv which in turn means g ∈ G(SA) ∪ G(SB) (since v exists in both the A
and B-transversals).

Lemma 3.4.11. Let R(S), R(SA) and R(SB) be the sets of relations of S,
SA and SB respectively that we initially get from their transversals. Then
R(SA) ∪R(SB) ⊆ R(S).

Proof. Let r ∈ R(SA). By definiton, r can originate from two places. The
first is when r is a relation in SAx for some vertex x in the A-transversal.
The second is if r is of the form t−1w1t = w2 for some w1 ∈ A that is a
generator of a stabilizer of an edge in the A-transversal, w2 ∈ SAx for some
vertex x in the A-transversal and t ∈ A such that t is the required element
to define an embedding of a stabilizer of an edge in the A-transversal (whose
terminal vertex does not exist in the A-transversal) into the stabilizer of the
intial vertex of the edge.

If it’s the former and x /∈ A1v then Lemma 3.4.6 tells us r must be a
relation in SA∗Bx . Therefore, r ∈ R(S). If instead x ∈ A1v then x = v (since
the A-transversal can only contain one element from each vertex orbit).
Therefore, r is a relation in SAv . Given the value of SA∗Bv (from Lemma
3.4.8) we can the also say that r is a relation in SA∗Bv .
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Alternatively, say r is of the form t−1w1t = w2. From Corollary 3.4.9 we
know that the embedding t defines in the graph of inverse semigroups for
the A-act is also used in the graph of inverse semigroups for the (A∗B)-act.
Given this, we know that r ∈ R(S). The same logic can be used to say that
r ∈ R(SB)⇒ r ∈ R(S).

Lemma 3.4.12. Let R(S), R(SA) and R(SB) be the sets of relations of S,
SA and SB respectively that we initially get from their transversals. Then
R(S) ⊆ R(SA) ∪R(SB).

Proof. By definition the elements in R(S) either came from relations in the
stabilizers of vertices of the (A ∗ B)-transversal or they come from embed-
dings of stabilizers of edges in the transversal without terminal vertices into
the stabilizer of their inital vertices. If it’s the former, then Lemmas 3.4.6
and 3.4.8 tells us that such relations would also exist in R(SA) ∪R(SB). If
it’s the latter then there exists an edge e in the (A∗B)-transversal such that
τ(e) does not exist in the transversal. This then gives us relations of the
form t−1

e w1te = w2 where te ∈ A∗B is the element with respect to e defined
by Corollary 3.4.9, w1 ∈ A ∗B is a generator of SA∗Be and w2 ∈ SA∗Bι(e) .

Say e is an edge in GA ⇒ τ(e) ∈ GA. Then since SA∗Be = SA∗Bι(e) ∩S
A∗B
τ(e) it

must be the case that ι(e) or τ(e) /∈ (A∗B)1v ⇒ SA∗Be = SAe (by definiton of
the stabilizers of ι(e) and τ(e) from Lemmas 3.4.6, 3.4.7 and 3.4.8). In which
case, any relation we obtain from the embedding of e would be equivalent to
a relation obtained from embedding e in the A-transversal. In other words, if
r is a relation in R(S) that we obtained from such an edge, then r ∈ R(SA).

Now instead say ι(e), τ(e) ∈ (A ∗ B)1v. By definition of our (A ∗ B)-
transversal this means that ι(e) = v. So using Lemmas 3.4.7 and 3.4.8
we say SA∗Bι(e) = SAv ∗ SBv and SA∗Bτ(e) = SAτ(e) ∪ {ω

−1
1 ω2ω3|ω1, ω3 ∈ XA, ω2 ∈

SAv ∗ SBv } where we define XA = {a ∈ A|aτ(e) = v}. So, to define SA∗Be we
need only define the union of these sets. Since SAτ(e) ⊆ A, we can say that

SAτ(e) ∩ (SAv ∗SBv ) = SAτ(e) ∩S
A
v = SAe . It now only remains to find out which

elements (if any) exist in both {ω−1
1 ω2ω3|ω1, ω3 ∈ XA, ω2 ∈ SAv ∗ SBv } and

SAv ∗ SBv . Let w be such an element, so w = ω−1
1 ω2ω3 for some ω1, ω3 ∈ XA,

ω2 ∈ SAv ∗ SBv . If w ∈ SAv ∗ SBv , then ω3 must preserve v. However, this
means ω3v = v = ω3τ(e) which contradicts our action. Therefore, the union
of these sets is empty, meaning that SA∗Be = SAe . Again this means any
relation we have from the embedding of e in the (A ∗ B)-transversal we
would also get from the A-transversal. The same can also be said for when
e is an edge in GB.

Corollary 3.4.13.
R(SA) ∪R(SB) = R(S) (45)

Proof. Follows from Lemmas 3.4.11 and 3.4.12.
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Theorem 3.4.14.
S ' A ∗B (46)

Proof. From Lemma 3.4.10 and Corollary 3.4.13 we have the intial set of
generators and relations that define S and can therefore say;

S = Inv〈G(SA), G(SB)|R(SA), R(SB)〉. (47)

Given that there are no relations in R(SA) (resp. R(SB)) that involve any
of the generators in G(SB) (resp. G(SA)) our value of S implies that;

S = Inv〈G(SA)|R(SA)〉 ∗ Inv〈G(SB)|R(SB)〉. (48)

By defintion, SA = Inv〈G(SA)|R(SA)〉 and SB = Inv〈G(SB)|R(SB)〉. Hence,
S = SA ∗ SB. Since SA and SB are defined to be isomorphic to A and B
respectively we can say that S ' A ∗B.

Given that if C is also an inverse semigroup A ∗ (B ∗ C) = (A ∗ B) ∗ C
we can use the same logic used in this section to define actions for the free
product of any number of inverse semigroups provided we have an action
of them on a graph for each semigroup seperately. One area where this is
useful is for inverse semigroups that can be expressed as a free product of
groups. Given that we have a method of defining a group action on a graph
that will give us back a fundamental group isomorphic to the original group,
we now in turn have a method of defining an action of their free product.
Note though that the definition of the free product used here is different
to the defintion used in group theory which equates the idenity of the two
groups so that the identity is itself a group. Under our defintion the free
product of two groups would be an inverse semigroup, but not a group.

4 Actions of Polycyclic Monoids

In this section, we will examine a way of defining an action of a polycyclic
monoid on a set of infinitely many elements. Polycyclic monoids were first
defined by Nivat and Perrot [19]. We will begin by establishing some of the
properties of a polycyclic monoid that we will then use to define a semigroup
action.

4.1 Polycyclic Monoid Action

Definition 4.1.1. A polycyclic monoid with n generators is an inverse semi-
group with zero given by the following presentation;

Pn = Inv〈p1, p2, . . . , pn|pip−1
i = 1, pip

−1
j = 0 when i 6= j〉. (49)
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We can define a set and an action on this set by Pn. To do this we require
an action so that p−1

i acts on every element in the set (so that the identoty
element acts on every element), but also pi cannot act on every element
(since otherwise the zero element will act on every element in the set). To
define our Pn-act, first let V be a set of elements given by V = {v1, v2, . . . }
and define a partial map φn : Pn × V → V to be the partial map such that
φn(s, v) = ρ(n,s)(v) where ρ(n,s) is given by ρ(n,p−1

i )vj = vn(j−1)+i (note that

the inverses of generators of an inverse semigroup will also generate the same
semigroup and hence our definition of ρ(n,p−1

i ) will define ρ(n,s), ∀s ∈ Pn).

One immediate property that can be observed is that ∀i ∈ {1, 2, . . . , n}, if
p−1
i vj = vk, then j ≤ k.

Lemma 4.1.1. If Pn is a polycyclic monoid with generators p1, p2, . . . , pn,
then ρ(n,pi)vj exists if and only if j = n(j′−1)+i for some j′ ∈ {1, 2, . . . , n}.

Proof. ρ(n,pi) is defined to be the inverse map of ρ(n,p−1
i ). Therefore, the

domain of ρ(n,pi) is equivalent to the image of ρ(n,p−1
i ). Given the definition

of ρ(n,p−1
i ) and the fact that it acts on every element in V , we know that

the image of ρ(n,p−1
i ) consists of all elements of V of the form vj where

j = n(j′ − 1) + i for some j′ ∈ {1, 2, . . . , n}.

Remark. Note that we can further prove that ρ(n,pi)vj = vj′ . It can also
be inferred that ρ(n,pi)vj exists if and only if j − i is divisible by n.

In fact, the images of v1 under p−1
1 , p−1

2 , . . . , p−1
n are v1, v2, . . . vn respec-

tively. Furthermore, our action will map any vi to a complete set of represen-
tatives mod(n). We will now prove that our action is in fact a well-defined
Pn-act.

Lemma 4.1.2. For any polycyclic monoid Pn, V is a Pn-act with respect
to the semigroup action on V given by ρ(n,s).

Proof. As ρ(n,s) is defined from the generators of s, we know ∀s, t ∈ Pn and
any vi ∈ V , (st)vi = s(tvi). Now say, ∃s ∈ Pn and vj , vk ∈ V such that
svj = svk. As s ∈ PN we know it can be written as a product of the gen-
erators of Pn and their inverses. Therefore, s = si1si2 · · · sim where sil = vil
or v−1

il
, ∀l ∈ {1, 2, . . . ,m}. Hence, svj = svk implies that si1si2 · · · simvj =

si1si2 · · · simvk. So, given that we have already proven the associativity prop-
erty of our potential S-act, we can say that si1(si2 · · · simvj) = si1(si2 · · · simvk).
Define vj′ = si2 · · · simvj and vk′ = si2 · · · simvk and suppose si1 = p−1

i1
. Then

we can say the following;

p−1
i1
vj′ = p−1

i1
vk′ ⇒ vn(j′−1)+i = vn(k′−1)+i

⇒ n(j′ − 1) + i = n(k′ − 1) + i⇒ j′ = k′.
(50)
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Therefore, vj′ = vk′ . Alternatively, if si1 = pi1 , then for pi1vj′ = pi1vk′

to exist, we require j′ = n(j′′ − 1) + i1 and k′ = n(k′′ − 1) + i1 for some
j′′, k′′ ∈ {1, 2, . . . , n} (by Lemma 4.1.1). This further tells us that;

pi1vj′ = pi1vk′ ⇒ vj′′ = vk′′ ⇒ j′′ = k′′

⇒ j′ − i1
n

+ 1 =
k′ − 1

n
+ 1

⇒ j′ = k′ ⇒ vj′ = vk′ .

(51)

Hence, si1(si2 · · · simvj) = si1(si2 · · · simvk)⇒ si2 · · · simvj = si2 · · · simvk.
Using the method we just used to prove this, we can further imply that
si3 · · · simvj = si3 · · · simvk and hence we can keep repeating this process
until we find that vj = vk.

Now that we have shown that this is a semigroup action, we can say the
following.

Lemma 4.1.3. In Pn, ∀m, i ∈ N+:

• p−m1 vi = vnmi−nm+1

• p−mn vi = vinm

Proof. Say m = 1, then p−1
1 vi = vn(i−1)+1 = vni−n+1 and so our first state-

ment holds when m = 1. If we assume it holds when m = k, then we can

say that p
−(k+1)
1 vi = p−1

1 vnki−nk+1 = vn(nki−nk+1−1)+1 = vnk+1i−nk+1+1 and
so our first statement holds by induction.

Similarly, when m = 1 we can say that p−1
n vi = vn(i−1)+n = vin and if we

assume the second statement holds when m = k, then pk+1
n vi = p−1

n vink =
vn(ink−1)+n = vink+1 .

At this point it is worth mentioning that elements in Pn have a normal
form. That being any non-zero element has the form a−1b where aand b are
positive words generated by the generators of Pn or the identity element in
Pn. We can also notice the following property of v1 under this action.

Lemma 4.1.4. For any polycyclic monoid Pn;

Sv1 = Inv〈p1〉 = {1, pm1 , p−m1 , p−r1 pm1 |r,m ∈ N+}. (52)

Proof. Let w ∈ Sv1 , so w = a−1b for some positive words a and b generated
by the generators of Pn or the identity elemnet in Pn. From our action, we
know that a−1bv1 exists ⇒ bv1 exists ⇒ b ∈ 〈p1〉 or b = 1Pn . So, b = 1Pn

or pm1 for some m ∈ N+. In either case, a−1bv1 = a−1v1. Therefore, w ∈
Sv1 ⇒ a−1v1 = v1. By the rules of inverse semigroup actions,a−1v1 = v1 ⇒
v1 = av1. Again, we can use this to say that a ∈ 〈p1〉 or a = 1Pn . Therefore,
w ∈ Inv〈p1〉 = {1, pm1 , p

−m
1 , p−r1 pm1 |r,m ∈ N+} and hence Sv1 must be a

subset of this set. Finally, it is clear that every word in this set will fix v1 and
so we conclude that Sv1 = Inv〈p1〉 = {1, pm1 , p

−m
1 , p−r1 pm1 |r,m ∈ N+}.
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It will also be important for us to establish how elements of Pn will act
on v1 in particular.

Lemma 4.1.5. Think of V as a Pn-act for some fixed n and take any
vi ∈ V such that i = j0 + j1n + j2n

2 + · · · + jmn
m for some m ∈ N0,

j0, j1, . . . , jm ∈ {0, 1, . . . , n − 1} and j0 6= 0. Then, ∃s ∈ Pn such that
sv1 = vi. Such an s is given by p−1

j0
p−1
j1+1p

−1
j2+1 · · · p

−1
jm+1 when m > 0 and

p−1
j0

when m = 0.

Proof. First say m = 0, then;

p−1
j0
v1 = vn(1−1)+j0 = vj0 = vi (53)

and so our lemma holds in this case.
If m = 1, then i = j0 + j1n and;

p−1
j0
p−1
j1+1v1 = p−1

j0
vn(1−1)+j1+1 = p−1

j0
vj1+1

= vn(j1+1−1)+j0 = vj0+j1n = vi.
(54)

Now assume our lemma holds for m = k and say i is equivalent to j0 +
j1n+ j2n

2 + · · ·+ jk+1n
k+1. As our Lemma holds for m = k, we know that

p−1
j1+1p

−1
j2+1 · · · p

−1
jk+1+1v1 = v(j1+1)+j2n+···+jk+1nk . From this, we can then say

that;

p−1
j0
p−1
j1+1p

−1
j2+1 · · · p

−1
jk+1+1v1 = p−1

j0
v(j1+1)+j2n+···+jk+1nk

= vn((j1+1)+j2n+···+jk+1nk−1)+j0

= vj0+j1n+···+jk+1nk+1 = vi

(55)

Remark. The proof of this Lemma does not apply to all vi ∈ V as if j0 = 0,
then p−1

j0
is not defined. It is also worth noting that we know that pjl+1 exists

for any l ∈ {1, 2, . . . ,m} as jl ∈ {0, 1, . . . , n− 1}.

Corollary 4.1.6. Consider V to be a Pn-act for some n. If vi ∈ V is such
that i = jkn

k + jk+1n
k+1 + · · ·+ jmn

m for some m ∈ N0, jk, jk+1, . . . , jm ∈
{0, 1, . . . , n− 1} and jk 6= 0, then p−kn p−1

jk
p−1
jk+1+1 · · · p

−1
jm+1v1 = vi.

Proof. From Lemma 4.1.5, we know that;

p−1
jk
p−1
jk+1+1 · · · p

−1
jm+1v1 = vjk+jk+1n+···+jmnm−k . (56)
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Note that since jk 6= 0, we know that p−1
jk

exists. This then implies that;

p−kn p−1
jk
p−1
jk+1+1 · · · p

−1
jm+1v1 = p−(k−1)

n p−1
n vjk+jk+1n+···+jmnm−k

= p−(k−1)
n vn(jk+jk+1n+···+jmnm−k−1)+n

= p−(k−1)
n vjkn+jk+1n2+···+jmnm−k+1−n+n

= p−(k−1)
n vjkn+jk+1n2+···+jmnm−k+1

= . . .

= p−1
n vn(jknk−1+jk+1nk+···+jmnm−1

= vjknk+jk+1nk+1+···+jmnm = vi

(57)

These lemmas then give us a relation for the elements in V .

Proposition 4.1.7. All elements of V exist in the same Pn-orbit for a fixed
n with respect to the action given by φn : Pn × V → V . In particular,
∀vi ∈ V , ∃s ∈ Pn such that sv1 = vi where s = p−kn p−1

jk
p−1
jk+1+1 · · · p

−1
jm+1 for

some jk, jk+1, . . . , jm ∈ {0, 1, . . . , n−1} such that jk, jm 6= 0 and k,m ∈ N0,
such that k ≤ m.

Proof. By Lemma 4.1.5 and Corollary 4.1.6, ∀v ∈ V , ∃s ∈ Pn such that
sv1 = v. Therefore, all elements in V are in the same orbit as V1 and
hence they must all exist in the same orbit. Furtheremore, if jm = 0, then
p−1
jm+1v1 = v1 and so then s′ = p−kn p−1

jk
p−1
jk+1+1 · · · p

−1
jm−1+1 satisfies s′v1 = vi.

Therefore, we can always assume that jm 6= 0.

Remark. Note that ∀i ∈ N+, i is uniquely defined as a polynomial of n.
Hence, the value of s defined in Proposition 4.1.7 is unique for every i.
Therefore it will be helpful to define si ∈ Pn to be given by siv1 = vi where
si = p−kn p−1

jk
p−1
jk+1+1 · · · p

−1
jm+1 when i = jkn

k + jk+1n
k+1 + · · ·+ jmn

m (so si
is uniquely defined for each vi ∈ V ).

4.2 Polycyclic Monoids Acting on a Graph

If we take V to be the set of vertices of a graph, we wish to find a set of edges
of such a graph such that it is connected and if an element of Pn acting on
an edge exists, it is equivalent to an edge that exists in the graph. One such
example of a set of edges is defined by the following;

Definition 4.2.1. Let En be a set of edges connecting elements in V given
by base edges ei = (v1, vi) which are defined ∀i ∈ {2, 3, . . . , n}. In other
words, En = {sei = (v1, vi)|i ∈ {2, 3, . . . , n}, s ∈ Pn}. Furthermore, we
define Gn to be the graph whose vertices are given by V and edges are given
by En. Part of this graph is shown in the diagram below (where m ∈ N).
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v1 v2 vn+2

v3

vnm+1

v2n+2

vnm+1+2

e2

p−m1 e2

e3

p−1
2 e2

p−1
2 p−m1 e2

p−1
2 e3

From the injectivity of our action, it is clear that Gn will contain no
loops.

Lemma 4.2.1. If i 6= 1, then vi is the terminal vertex of an edge in Gn.

Proof. Say i ∈ {2, 3, . . . , n}. Then we know that vi is the terminal vertex of
the edge ei. Now say i > n. Let i = jkn

k + jk+1n
k+1 + · · ·+ jmn

m for some
jk, jk+1, . . . , jm ∈ {0, 1, . . . , n− 1} such that jk, jm 6= 0 and k,m ∈ N0, such
that k ≤ m. By Proposition 4.1.7, si = p−kn p−1

jk
p−1
jk+1+1 · · · p

−1
jm+1 is such that

siv1 = vi. Now assume k < m and define s′i = p−kn p−1
jk
p−1
jk+1+1 · · · p

−1
jm−1+1.

So, si = s′ip
−1
jm+1. The endpoint of the edge s′iejm+1 is then given by

s′ivjm+1 = s′ip
−1
jm+1v1 = siv1 = vi (we know that the edge ejm+1 exists

as jm ∈ {1, 2, . . . n − 1}). Similarly, if k = m and i = jmn
m for some

jm ∈ {2, 3, . . . n − 1}, then we define s′i = p−kn so si = s′ip
−1
jm+1 and find

vi is the endpoint of the edge s′iejm+1. Finally, if i = nm then we define

s′i = p
−(m−1)
n and can show that vi is the endpoint of the edge s′ien.

Remark. Our definition of s′i with respect to some vi ∈ V will be used
throughout the rest of this section. Furthermore, we also define i′ ∈ N+

to be the element such that s′iv1 = vi′ is satisfied. In other words s′i = si′ .
From our proof of this Lemma, we can then see that since vi is the terminal
vertex of the edge given by s′iej for some j ∈ {2, 3, . . . , n} the other endpoint
will be given by vi′ .

Theorem 4.2.2. Let vi ∈ V be such that i 6= 1. Then vi is the terminal
vertex of exactly one edge in Gn.

Proof. From Lemma 4.2.1, we know that every such vi is an endpoint of
an edge, so it only remains to show that it is unique. By definition, we
know that ∀vi ∈ V , ∃jk, jk+1, . . . , jm ∈ {0, 1, . . . , n−1}, k,m ∈ N0 such that
i = jkn

k + jk+1n
k+1 + · · ·+ jmn

m where jk, jm 6= 0 and k ≤ m. Proposition
4.1.7 tells us that si = p−kn p−1

jk
p−1
jk+1+1 · · · p

−1
jm+1 is such that siv1 = vi. Now

assume k < m and so i′ = i − jmnm and si′ = p−kn p−1
jk
p−1
jk+1+1 · · · p

−1
jm−1+1.

Then, from our proof of Lemma 4.2.1, we can say that ι(si′ejm+1) = vi′ and
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τ(si′ejm+1) = vi′ . Finally assume ∃t ∈ Pn and l ∈ {2, 3, . . . , n} such that
τ(tel) = vi and ι(tel) 6= vi′ , so tel is an edge with vi as an endpoint that is
not equal to si′ejm+1.

As t ∈ Pn, we can think of it as a product of generators of Pn and
their inverses. In other words, let t = q1q2 · · · qx for some x ∈ N+ where
∀y ∈ {1, 2, . . . x}, qy = piy or p−1

iy
for some iy ∈ {1, 2, . . . n} such that t

can not be reduced to a word of a shorter length. Let’s first assume that
q1 = pi1 , then for t to be in its reduced form, we require q2 = pi2 (as
otherwise q1q2 = 1 or 0). By repeating this logic, we eventually find that
t = pi1pi2 · · · pix . Therefore, tel exists if and only if pixv1 and pixvl both
exist. In other words, ix ∈ {1, 2, . . . n} must be such that 1 − ix and l − ix
must be divisible by n (by Lemma 4.1.1). The only ix that will satisfy 1− ix
being divisible by n is 1, but then there is no l ∈ {2, 3, . . . , n} such that
l − 1 is divisible by n. So no such t exists and hence our assumption that
q1 = pi1 is not true, meaning that q1 = p−1

i1
. Furthermore, this then implies

that every qy is of the form p−1
iy

as otherwise our relations of Pn tell us that
t would be reducible.

By definition, tvl = q1q2 · · · qxvl = vi so it must be the case that q−1
1 vi

exists and hence pi1vi to exists. Then, by Lemma 4.1.1, i − i1 must be
divisible by n. Given that i = jkn

k + jk+1n
k+1 + · · · + jmn

m and our
definition of i1, we know this is only possible if i1 = n if k 6= 0 or jk if k = 0.
Therefore, pi1vi = vi′1 where i′1 = jkn

k−1 + jk+1n
k + · · · + jmn

m−1 if k > 0

and 1 + j1 + j2n+ · · ·+ jmn
m−1.

So, we have found that p−1
i2
p−1
i3
· · · p−1

ix
= vi′1 and hence we require that

pi2vi′1 to exist. Using the same method used to find the possible values of
i1, we can show that i2 = n if k > 1, jk if k = 1 or j1 +1 if k = 0. If we keep
repeating this method, we find that qy = p−1

jy−1
, ∀y ∈ {1, 2, . . .min{x,m+1}}

where when k 6= 0, we will define p−1
jw

= p−1
n , ∀w ∈ {1, 2, . . . k − 1}.

So, we now have 3 possible values of t depending on if x < m + 1,
x > m+ 1 or x = m+ 1. If x < m+ 1, then t = p−kn p−1

jk
p−1
jk+1+1 · · · p

−1
jx−1+1 if

k < x or p−xn otherwise. Assume t = p−kn p−1
jk
p−1
jk+1+1 · · · p

−1
jx−1+1, then we can

say that;

tvl = vi ⇒ p−kn p−1
jk
p−1
jk+1+1 · · · p

−1
jx−1+1p

−1
l v1 = siv1

⇒ p−1
l v1 = p−1

jx+1 · · · p
−1
jm+1v1 = v(jx+1)+jx+1n+···+jmnm−x

⇒ v1 = plp
−1
jx+1 · · · p

−1
jm+1v1 = plv(jx+1)+jx+1n+···+jmnm−x

(58)

For plp
−1
jx+1 · · · p

−1
jm+1v1 to be defined, we require plp

−1
jx+1 · · · p

−1
jm+1 6= 0 and so

the relations of Pn tell us that pl = pjx+1. In which case, plp
−1
jx+1 · · · p

−1
jm+1v1 =

p−1
jx+1+1 · · · p

−1
jm+1v1 = v1. Hence, p−1

jx+1+1 · · · p
−1
jm+1 ∈ Sv1 . However, as p−1

j

will map any vi ∈ V to some vi′ ∈ V such that i ≤ i′ it must be the case that
element in this product is equal to p−1

1 for it to exist in Sv1 . In particular,
this means that p−1

jm+1 = p−1
1 , but this would further imply that jm = 0
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which contradicts our definition of jm. If instead we assumed that k < x we
use the same method to show that l = n and again finding this implies that
jm = 0. So, it is not possible that x < m+ 1.

Now assume x > m+1. We can therefore define qy, ∀y ∈ {1, 2, . . . ,m+1}.
So we can say that;

t = p−kn p−1
jk
p−1
jk+1+1 · · · p

−1
jm+1qm+2qm+3 · · · qx

= p−kn p−1
jk
p−1
jk+1+1 · · · p

−1
jm+1p

−1
im+2

p−1
im+3
· · · p−1

ix

(59)

We can now take tvl = vi to imply the following.

tvl = vi ⇒ p−kn p−1
jk
p−1
jk+1+1 · · · p

−1
jm+1p

−1
im+2

p−1
im+3
· · · p−1

ix
plv1 = v1

⇒ p−1
im+2

p−1
im+3
· · · p−1

ix
plv1 = v1

(60)

We therefore require plv1 to exist for p−1
im+2

p−1
im+3
· · · p−1

ix
pl to exist. However,

plv1 exists if and only if 1− l is divisible by n. Given that l is defined such
that the edge el exists, we know that 1 − l can never be divisible by n (as
l ∈ {2, 3, . . . , n}. Therefore, such a plv1 can not exist and our assumption
that x > m+ 1 is incorrect.

This leaves us with only one option, x = m + 1. However, since qy =
p−1
jy−1

, this then implies that t = si′ . As ι(ei) = v1, ∀i ∈ {2, 3, . . . , n}, this

tells us that ι(tel) = vi′ which contradicts our initial definition of t. This
same method could have also been applied if we had instead assumed that
k = m.

Remark. In the proof of this Theorem, we also showed that the value of
the other endpoint on the edge with a terminal vertex of vi will be given by
vi′ . We could then find the edge that vi′ is the terminal vertex of and the
other endpoint of this edge. It is possible for us to repeat this method until
we reach a base edge of Gn. As these base edges are all connected, we can
say that Gn will be connected.

Corollary 4.2.3. Gn contains no cycles.

Proof. Assume that vi1 , vi2 , . . . , vix ∈ V and their adjacent edges make a cy-
cle in Gn. In other words, ∃t1, t2, . . . tx ∈ Pn and l1, l2, . . . , lx ∈ {2, 3, . . . , n}
such that;

vi1 vi2 . . . vix vi1
t1el1 t2el2 tx−1elx−1 txelx

We know that for any viy ∈ V , ∃jky , jky+1, . . . , jmy ∈ {0, 1, . . . n − 1} and
ky,my ∈ N0 such that iy = jkyn

ky + jky+1n
ky+1 + · · · + jmyn

my where
jky , jmy 6= 0 and ky ≤ my. Furthermore, from the proof of Theorem 4.2.2,
we know that viy can only be the terminal vertex of the edge si′yejmy+1 where

i′y = iy − jmyn
my if my 6= ky, n

my if ky = my and jmy 6= 1 and nmy−1 if

38



ky = my and jmy = 1. The other endpoint of the edge will then be given
by vi′y . Furthermore, Theorem 4.2.2 tells us that for our cycle to exist, we
require that i′y = iy−1, ∀y ∈ {2, 3, . . . , x} and i′1 = ix.

Note that if there is some viy in our cycle such that iy = jkyn
ky +

jky+1n
ky+1 + · · ·+ jmyn

my where jky , jmy 6= 0 and ky < my then the highest
order of n in iy will be greater than the highest order of n in i′y. The same
can also be said if iy = nmy for some my ∈ N+. Finally, if iy = jmyn

my for
some jmy ∈ {2, 3, . . . n − 1}, my ∈ N+ then the highest order of n in iy is
equal to the highest order of n in i′y. So, if we define h(iy) to be the highest
order of n in iy, then we can say that h(i1) ≤ h(i2) ≤ · · · ≤ h(ix) ≤ h(i1).
Therefore, for this property to hold, it must be the case that every iy in our
cycle is of the form jmyn

my for some jmy ∈ {2, 3, . . . n − 1} and my ∈ N+.
However, if iy is in such a form, then iy−1 = i′y = nmy which contradicts the
required form for iy−1. Therefore, no such cycle can exist.

Theorem 4.2.4. Let V = {v1, v2, . . . } be a Pn-act with respect to φn(s, v) =
ρ(n,s)(v) where ρ(n,s) is given by ρ(n,p−1

i )vj = vn(j−1)+i. Let E be a set of

edges connecting elements in V given by base edges ei = (v1, vi) which are
defined ∀i ∈ {2, 3, . . . , n}. By base edges, we mean the set of edges such that
E =

⋃
i∈{2,3,...,n} Sei. Then the graph with vertices V and edges E will give

us a connected tree.

Proof. By definition, ∀i ∈ {2, 3, . . . , n}, there exists an edge from v1 to vi.
So the elements v1, v2, . . . vn are connected in this graph. Theorem 4.2.2
then tells us that every other vi is the terminal vertex of a multiple of one
of these edges. Therefore, our graph is connected. Finally, Corollary 4.2.3
tells us our graph will have no cycles and therefore, it must be a connected
tree.

4.3 The Graph of Inverse Semigroups from the Polycyclic
Monoid

To begin with, we need to find the vertex and edge orbits of our Pn-action.
We know from Proposition 4.1.7 that we will have a single vertext orbit
which we will define by v̄. It only remains to find the edge orbits of our
graph.

Lemma 4.3.1. ∀i, j ∈ {2, 3, . . . n}, Pnei ∩ Pnej = ∅.

Proof. Take edges ei and ej such that i 6= j and assume they exist in the
same edge orbit. In other words, ∃s ∈ Pn such that sej = ei. Given our
definition of ei and ej , it must be the case that sv1 = v1 and svj = vi. From
Lemma 4.1.4, we know that Sv1 = {1, pm1 , p

−m
1 , p−r1 pm1 |r,m ∈ N+} and hence

s must be equivalent to one of the values in this set. By definition of the
action of idempotents, we know that s 6= 1 or p−m1 pm1 as svj = vi would then
imply that i = j.
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Now say s = p−m1 for some m ∈ {1, 2, . . . , n}. Then, svj = vi implies
that vj = pm1 vi and hence p1vi must be defined. This is only possible if
i = n(i′ − 1) + 1 for some i′ ∈ {1, 2, . . . }. It is simple to show this then
means that i′ = i−1

n + 1. For this to hold, we require i−1
n ∈ N

0. However,
given that i ∈ {2, 3, . . . , n} this is not possible.

Similarly, if s = pm1 , then p1vj must exist, but there is no j ∈ {2, 3, . . . n}
that satisfy this. Finally if s = p−r1 pm1 then p1vi and p1vj must both exist
which again contradicts our definition of i and j. Therefore, no such s can
exist.

It must therefore be the case that Pn will give n − 1 edge orbits when
acting on the graph Gn since each orbit is defined by one of our base edges,
el for some l ∈ {2, 3, . . . n}. Hence, we shall define ēl to be the edge orbit
containing the base edge el. This then gives us the following quotient graph:

v̄

ē2

ē3

ēn

When picking a vertex to represent v̄ for our S-transversal, we will need
a vertex that is the initial point of an edge in each of our edge orbits. The
only such vertex in V is v1. Therefore we find our S-transversal will be given
by;

v1

e2 e3

e4

en

So we wish to construct a graph of inverse semigroups given by;
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Sv1

Se2 Se3

Se4
Sen

To make use of this graph, for each edge Sel in our graph we need to
find tl ∈ Pn such that tlv1 = vl and tlt

−1
l = Id(Svl) = 1. However, no such

tl exists given the following lemma.

Lemma 4.3.2. ∀s ∈ Pn, ss−1 = 1Pn ⇒ s ∈ 〈pi|i ∈ [1, n]〉.

Proof. Say s ∈ Pn is such that ss−1 = 1. Given the aforementioned normal
form of elements in Pn we can say that s = a−1b for some positive words
a and b generated by the generators of Pn or are the identity element in
Pn. So, 1Pn = ss−1 ⇒ 1Pn = a−1bb−1a = a−1a. Therefore, a = 1Pn and
s = b.

Knowing this, we can say that tt−1 = 1 ⇒ tv1 6= vl since pivj = vk ⇒
k < j. Therefore, we cannot continue our process any further with this
graph.

If our base edges where the other way round, then we are able to find
such a tl, however this would require a vertex in V to be the initial point
of an edge in each orbit. Proposition 4.1.7 will then tell us that each vertex
is the inital point of a single edge in our graph (except v1 which is not
a initial point of any edge) and so we will be unable to find a vertex to
represent v̄ unless n = 2. It is worth mentioning that when n = 2, we can
say some additional properties for Pn. Birget found a connection between
such a monoid and certain Thompson groups [1], though relations between
Pn and Thompson groups where later found ∀n ∈ N [15]. However, we will
still be unable to complete our method as shown in the following example.

Example 4.3.3. We define P2 to act on the graph G whose vertices are
given by V and whose edges are generated from the base edge e = (v2, v1).
We know that all the elements in V exists in the same orbit which we shall
call v̄. By definition, there is only a single edge orbit which we label ē. This
then gives us the following quotient graph;

v̄ ē
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If we then pick v2 to represent v̄, we find our S-transversal will be given by;

v2
e

So, the graph of inverse semigroups that we will construct is;

Sv2 Se

Therefore, we wish to find a t ∈ P2 such that tv2 = v1 and tt−1 = Id(Sv1).
These conditions will be satisfied by t = p2, however before we continue, we
need to find the value of Sv2 .

Lemma 4.3.4. In P2, the words of length 2 in Dv2 are given by the set
{p−m1

2 p−m0
1 , p−m1

1 p−m0
2 , p−m1

1 p2, p
−m1
2 p2, p

m1
1 p2|m0,m1 ∈ N+}.

Proof. We know that the words of length 1 that act on v2 are given equal
to 1 or p2 our are of the form p−m0

1 or p−m0
2 for some m0 ∈ N+. Therefore

to find the words of length 2 that act on v2 we need only multiply these
values on the left by pm1

1 , p−m1
1 , pm1

2 , p−m1
2 where m1 is any element in N+.

By definition of the identity, we know that we need not check if multiplying
1 on the left by any of these terms gives a word of length 2 as we know this
will never happen. The solutions to our remaining equations are then given
in the following table;

p−m0
1 p−m0

2 p2

pm1
1 pm1

1 p−m0
1 pm1

1 p−m0
2 pm1

1 p2

p−m1
1 p

−(m1+m0)
1 p−m1

1 p−m0
2 p−m0

1 p2

pm1
2 pm1

2 p−m0
1 pm1

2 p−m0
2 pm1+1

2

p−m1
2 p−m1

2 p−m0
1 p

−(m1+m0)
2 p−m1

2 p2

So we can immediately see that p−m1
1 p−m0

1 , p−m1
2 p−m0

2 and pm1
2 p2 are words

of length one. Furthermore, our relations of P2 tell us that pm1
i p−m0

j will
equal a word of length 1 if i = j and will equal 0 if i 6= j (in which case
it won’t act on v2). The remaining values then form the set defined in the
lemma.

Lemma 4.3.5. The words of length 3 in Dv2 are of the form p−m2
1 p−m1

2 p−m0
1 ,

p−m2
2 p−m1

1 p−m0
2 , p−m2

2 p−m1
1 p2, p−m2

1 p−m2
2 p2, p−m2

1 pm1
1 p2 or p−m2

2 pm1
1 p2 for

some m0,m1,m2 ∈ N+.

Proof. Similiar to how we proved Lemma 4.3.4, we obtain words of length 3
by multiplying words of length 2 on the left by pm2

1 , p−m2
1 , pm2

2 , p−m2
2 where

m2 is any element in N+ and checking that our new word is of length 3 and
still exists in Dv2 . Our equations are given in the following table;
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p−m1
2 p−m0

1 p−m1
1 p−m0

2 p−m1
1 p2 p−m1

2 p2 pm1
1 p2

pm2
1 pm2

1 p−m1
2 p−m0

1 pm2
1 p−m1

1 p−m0
2 pm2

1 p−m1
1 p2 pm2

1 p−m1
2 p2 pm2+m1

1 p2

p−m2
1 p−m2

1 p−m1
2 p−m0

1 p
−(m2+m1)
1 p−m0

2 p
−(m2+m1)
1 p2 p−m2

1 p−m1
2 p2 p−m1

1 pm1
1 p2

pm2
2 pm2

2 p−m1
2 p−m0

1 pm2
2 p−m1

1 p−m0
2 pm2

2 p−m1
1 p2 pm2

2 p−m1
2 p2 pm2

2 pm1
1 p2

p−m2
2 p

−(m2+m1)
2 p−m0

1 p−m2
2 p−m1

1 p−m0
2 p−m2

2 p−m1
1 p2 p

−(m2+m1)
2 p2 p−m2

2 pm1
1 p2

In the same way we ruled out scenarios in Lemma 4.3.4 using the relations of
P2, we can also rule out the values in our table when our word equals 0 or is
not of length 3. This then leaves us with the required forms and pm2

2 pm1
1 p2.

However, for pm2
2 pm1

1 p2 to act on v2 we need p2v1 to exist as pm1
1 p2v2 = v1.

Lemma 4.1.1 rells us this value doesn’t exist and so pm2
2 pm1

1 p2 ∈ Dv2 . We
can also use Lemmas 4.1.1 and 4.1.3 to say that all the other words of length
3 we have defined will act on v2.

It will now be helpful to define the following form of words in P2.

Definition 4.3.1. Let s be a word of length n in P2. If s is of the form
w(n,1) then ∃m1,m2, . . . ,mn ∈ N0 it is equal to p−mn

1 p
−mn−1

2 · · · p−m2
2 p−m1

1

if n is odd or p−mn
2 p

−mn−1

1 · · · p−m2
2 p−m1

1 if n is even.
Similarly, we say s is of the form w(n,2) if ∃m1,m2, . . . ,mn ∈ N0 such that

s is equal to p−mn
1 p

−mn−1

2 · · · p−m2
1 p−m1

2 if n is even or p−mn
2 p

−mn−1

1 · · · p−m2
1 p−m1

2

if n is odd.

Corollary 4.3.6. Words of length n ≥ 3 in Dv2 are given by words of the
form w(n,i), w(n−1,i)p2 or w(n−2,i)p

m0
1 p2 (∀m0 ∈ N+, i ∈ {1, 2}).

Proof. Lemma 4.3.5 tells us our Corollary holds when n = 3, so we now
assume it holds when n = k. Then, the words of length k in Dv2 are of the
form w(n,i), w(n−1,i)p2 or w(n−2,i)p

m0
1 p2 (∀m0 ∈ N+, i ∈ {1, 2}). The words

of length k+ 1 will be given by multiplying words of length k on the left by
p
mk+1

1 , p
−mk+1

1 , p
mk+1

2 or p
−mk+1

2 for any mk+1 ∈ N+.
If we multiply a word of the form w(n,1) on the left by p

mk+1

1 or p
mk+1

2

then our relations tell us we will either get the zero element or a word whose
length is less then or equal to n (depending on if the first term of our word
is p−1

1 or p−1
2 ). The same can also be said for words of the form w(n,2).

If instead we multiplied a word of the form w(n,1) on the left by p
−mk+1

1 ,
then we get a word of length n if n is odd (in which case the first term in
our word is p−1

1 ) or a word of length n+1 if n is even which would then give
us a word of the form w(n+1,1). Similarly, if we multiplied our word on the

left by p
−mk+1

2 instead we will get a word of length n if n is even or a word
of the form w(n+1),1) if n is odd.

The same logic will also tell us that if we multiply a word of the form
w(n,2) on the left by p

−mk+1

1 , then we get a word of length n if n is even and
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a word of the form w(n+1,2) if n is odd. If we instead multiply our word on

the left by p
−mk+1

2 we will get a word of length n if n is odd and a word of
the form w(n,2) if n is even.

Therefore, if we multiply our words of length k on the left by p
mk+1

1 , p
−mk+1

1 ,

p
mk+1

2 or p
−mk+1

2 we will see that the words we get will be in the forms re-
quired to say our Corollary holds for n = k + 1.

Now that we know the form elements in Dv2 take, we can identify which
of them will also exist in Sv2 .

Lemma 4.3.7. The stabilizer of v2 with respect to P2 is given by;

Sv2 = {1, p−1
2 p2, p

−1
2 p−m1

1 p2, p
−1
2 pm0

1 p2, p
−1
2 p−m1

1 pm0
1 p2|m0,m1 ∈ N+} (61)

Proof. We begin by finding the words with a length greater than 3 that
are stabilizers of v2. From Corollary 4.3.6, we know the forms that these
elements in Dv2 will take. First we shall check if any elements of the form
w(n,i) (for some i ∈ {1, 2}) will exist in Sv2 . By definition, p−1

2 will map any

vj ∈ V to some vj′ ∈ V such that j < j′. Simliarly, we can say that p−1
1

will map vj to some vj′′ ∈ V such that j ≤ j′′, but j = j′′ only when j = 1.
Therefore, we can say that no word of the form w(n,i) will fix v2.

Now assume s ∈ Sv2 is a word of length n ≥ 3 that’s of the form
w(n−1,i)p2. We can say that p2v2 = v1 and so we wish to see which words of

the form w(n−1,i) will map v1 to v2. Given that p−1
1 v1 = v1 and p−1

2 v1 = v2,
we can say that the only words of the form w(2,i) and w(1,i) that’ll satisfy

this are p−1
2 p−m1

1 and p−1
2 respectively (for any m1 ∈ N+). Given that p−1

2

will always map vj to a vertex with a greater index and p−1
1 will do the same

unless j = 1 (in which case p−1
1 vj = v1) we can say that these will be the

only possible words of the form w(n−1,i) that map v1 to v2. Therefore, the

only possible value of s is p−1
2 p−m1

1 p2 for some m1 ∈ N+ (as if s is given by
p−1

2 p2, then it is a word of lenght 2).
Finally let’s say s ∈ Sv2 is a word of length n ≥ 3 that’s of the form

w(n−2,i)p
m0
1 p2 for some m0 ∈ N+. We can use Lemmas 4.1.1 and 4.1.3 to

say that pm0
1 p2v2 = v1. So, we are looking for elements of the form w(n−2,i)

that map v1 to v2. We have previously found that the only such elements
are p−1

2 and p−1
2 p−m1

1 for any m1 ∈ N+. Therefore, we can say that s equals
p−1

2 pm0
1 p2 or p−1

2 p−m1
1 pm0

1 p2 for some m0,m1 ∈ N+.
Finally, from observation of our result of Lemma 4.3.4 we can see that

the words of length 1 or 2 that are stabilizers of v2 are p−1
2 p2 and 1.

Corollary 4.3.8. The stabilizer of v2 with respect to P2 is given by;

Sv2 = Inv〈1, p−1
2 p2, p

−1
2 p1p2〉 (62)
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Proof. From Lemma 4.3.7 we know that the stabilizer of v2 is given by
Sv2 = {1, p−1

2 p2, p
−1
2 p−m1

1 p2, p
−1
2 pm0

1 p2, p
−1
2 p−m1

1 pm0
1 p2|m0,m1 ∈ N+}. How-

ever, note that;

p−1
2 p−m1

1 pm0
1 p2 = (p−1

2 p−m1
1 p2)(p−1

2 pm0
1 p2) (63)

since p2p
−1
2 = 1. So all elements of the form p−1

2 p−m1
1 pm0

1 p2 can be written
as a product of elements of the forms p−1

2 p−m1
1 p2 and p−1

2 pm0
1 p2.

Also note that we are also able to use the relation that p2p
−1
2 = 1 to say

that;
p−1

2 pm0
1 p2 = (p−1

2 p1p2)(p−1
2 pm0−1

1 p2) = · · · = (p−1
2 p1p2)m0 (64)

Similarly we can say that p−1
2 p−m1

1 p2 = (p−1
2 p−1

1 p2)m1 . Finally, note that
(p−1

2 p1p2)−1 = p−1
2 p−1

1 p2.

We may now continue with our example. From Lemma 4.1.4 we know
that Sv1 = Inv〈p1〉 = {1, pm1 , p

−m
1 , p−r1 pm1 |r,m ∈ N+} and hence we can say

that Se = Sv1 ∩ Sv2 = {1}.
Therefore, the generators of our fundamental inverse semigroup will be

given by, β1 = p−1
2 p2, β2 = p−1

2 p1p2, 1 and t. Furthermore, the relations will
be given by:

• The relations in the stabilizers which are β2
1 = β1, β2β

−1
2 = β1, β1β2 =

β2β1 = β2 and β1β
−1
2 = β−1

2 β1 = β−1
2

• tt−1 = 1

First we note that since β2β
−1
2 = β1 we can remove β1 from our genera-

tors. So our fundamental inverse semigroup will be given by;

S′ = Inv〈β2, t|β−1
2 = β2β

−2
2 tt−1 = 1〉 (65)

which is obviously not equivalent to P2 since it does not include a zero
element.

The main problem here seems to be that we lose our information about
the zero element in our semigroup when it acts on the graph since there is
no vertex or edge that the zero element acts on. If we had a vertex that
0 acted on, then every other element in our semigroup would not only also
have to act on it, but will also exist in the stabilizer of that vertex (as seen in
Corollary 2.1.3). Therefore, this vertex would exist in its own orbit and will
have to be a vertex in our S-transversal. Since the stabilizer of this vertex
is the whole semigroup, if we are able to create a fundamental semigroup
from this system it will have to be equivalent to the initial semigroup, but
not in a way that’ll interest us.

It is obvious now that if we want an action on a graph to return Pn as
the fundamental inverse semigroup, we require that 0 is not a stabilizer of
any element in a Pn-transversal that we derive from this system. However,
there is more to this property then we might originally expect.
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Lemma 4.3.9. Let T be any inverse semigroup and G a graph such that
there exists a T -act on G. Let A be a T -transversal obtained from this
system.

∀v ∈ V (A), 0 /∈ STv ⇔ ∀v ∈ V (G), 0 /∈ STv . (66)

Proof. The fact that ∀v ∈ V (G), 0 /∈ STv ⇒ ∀v ∈ V (A), 0 /∈ STv is obvious.
Therefore, assume our action and T -transversal are such that ∀v ∈ V (A), 0 /∈
STv and assume 0 ∈ STu for some u ∈ V (G). By definition, this means that
u /∈ V (A), however, given the definition of A, ∃t ∈ T , v ∈ V (A) such that
tu = v. However, since u = 0u, we can say that tu = t(0u) ⇒ v = t(0u) =
(t0)u = 0u = u which means 0 ∈ STv which is a contradiction. So our intial
assumption that 0 acts on some vertex in G is incorrect.

Therefore any action must be such that 0 does not act on any element
in the S-act since otherwise we would get 0 as an element in the stabilizer
of a vertex in any S-transversal we may obtain.

So if we have an action of Pn on a graph in such a way that the funda-
mental inverse semigroup is isomorphic to Pn and 0 ∈ Pn does not act on
any element in the graph, we would need to be able to derive the 0-element
property from the relations we obtain from the embeddings of edges into
their intial points that are sometimes required to create the graph of inverse
semigroups. In other words, we need to be able to define a zero element
existing from equations of the form w−1w1w = w2 for some w1, w2 ∈ Pn
and w ∈ 〈pi|pi ∈ Pn〉 (since ww−1 = 1 implies w must exist in this subset
of Pn (by Lemma 4.3.2)). Furthermore, we would also require w1, w2 6= 0
since this would then make 0 an element in a stabilizer of a vertex. Lawson
tells us that the only possible values for a non-zero element in Pn are given
by the set {s−1

1 s2|s1, s2 ∈ P 1} where P = 〈p1, . . . , pn|〉 [14]. Knowing this,
I have been unable to find any embeddings from relations that (along with
relations that can exist in a set of stabilizers) will define a zero element in
the fundamental inverse semigroup.

It is also worth mentioning that polycyclic monoids can be thought of as
an amalgamated free product of inverse moniods. In the previous section we
discussed how we can create actions for free products, however the difference
here is that the identity (resp. zero) element in each monoid that makes the
polycyclic monoid must also act as an identity (resp. zero) element in every
other monoid in the product. As such, we cannot apply many of the ideas
discussed there to the polycyclic monoid.

5 Bruck-Reilly Semigroup Actions

For this section, we will define S = N0 × T × N0 to be a Bruck-Reilly
semigroup where T is an inverse monoid with identity 1. By doing so, we
are also defining S to be an inverse semigroup [8, Proposition 5.6.6.(4)]. We
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will also define θ to be a morphism from T to U(T ) where U(T ) is the H-
class of 1 in T , otherwise known as the group of units of T . In such a case,
we write S = BR(T, θ). The semigroup operation of S is defined to be given
by (∀(m, a, n), (p, b, q) ∈ S);

(m, a, n)(p, b, q) = (m− n+ t, θt−n(a)θt−p(b), q − p+ t) (67)

where t = max{n, p} and θ0 is defined to be the identity map on T . Note
that S is also a monoid with an identity given by (0, 1, 0) [8, Proposition
5.6.6.(1)].

Such semigroups were first described by Bruck in his book a Survey of
Binary Systems [3]. However, he only examined the properties when θ is the
morphism that maps any element in T to the identity 1T ∈ T . Reilly [21]
also proposed something similar, but he only considered the case when T
was a group. It was Munn [18] who put these two ideas together to give us
what we are working with today.

5.1 Decomposition of Elements

We begin by looking at what different elements in S can be written as with
the goal of finding a presnetation of S. The presentation that we find is
similar to the one proposed by Yamamura [25], however, we will derive the
result in a different way. Similar work was also done by Lavers [13], but the
results are presented differently there. A presentation for the Bruck-Reilly
semigroups is also given by Howie and Ruškuc [9].

A lot of the material presented in this section is already well known
for Bruck-Reilly semigroups, however, it is helpful to prove them within
the context of the presentation we will be using throughout our work on
Bruck-Reilly semigroups.

Lemma 5.1.1. Let (m, t, n) ∈ S where t = t1t2 . . . tk for generators t1, t2, . . . , tk
of T and n > m. If n = m+ k, then;

(m, t, n) = (m, t1,m+ 1)(m+ 1, t2,m+ 2) . . . (m+ k − 1, tk,m+ k). (68)

If n > m+ k, then;

(m, t, n) =(m, t1,m+ 1)(m+ 1, t2,m+ 2) . . .

. . . (m+ k − 1, tk,m+ k)(m+ k, 1,m+ k + 1) . . .

. . . (n− 1, 1, n).

(69)

Finally, if n < m+ k then;

(m, t, n) =(m, t1,m+ 1)(m+ 1, t2,m+ 2) . . .

. . . (n− 1, tn−m, n)(n, tn−m+1, n) . . . (n, tk, n).
(70)

47



Proof. By the definition of the semigroup action of a Bruck-Reilly semi-
group, we know that for any p, q, r ∈ N0 and u, v ∈ T we can say;

(p, u, q)(q, v, r) = (p, uv, r). (71)

Therefore, if we set (m, t, n) to be the same as in our Lemma, we can im-
mediately say that our statement holds when n = m+ k. For the other two
cases, note the following for any (p, u, q) ∈ S and any generator ti of T ;

(p, u, q)(q, 1, q + 1) = (p, u, q + 1) (72)

(p, u, q)(q, ti, q) = (p, uti, q). (73)

It then follows that our Lemma must also hold when n > m + k or n <
m+ k.

A similar proof is used to give the following Lemma for when n < m.

Lemma 5.1.2. Let (m, t, n) ∈ S where t = t1t2 . . . tk for generators t1, t2, . . . , tk
of T and n < m. If m = n+ k, then;

(m, t, n) = (m, t1,m− 1)(m− 1, t2,m− 2) . . . (m− k + 1, tk,m− k). (74)

If m > n+ k, then;

(m, t, n) =(m, t1,m− 1)(m− 1, t2,m− 2) . . .

. . . (m− k + 1, tk,m− k)(m− k, 1,m− k − 1) . . .

. . . (n+ 1, 1, n).

(75)

Finally, if m < n+ k, then;

(m, t, n) =(m, t1,m− 1)(m− 1, t2,m− 2) . . .

. . . (n+ 1, tm−n, n)(n, tm−n+1, n) . . . (n, tk, n).
(76)

Lemmas 5.1.1 and 5.1.2 can be used to identify what elements are needed
to generate any element in S, as shown in the following Corollary.

Corollary 5.1.3. Let A be a set of elements in S. If any element of the
form (m, ti,m+ 1), (m, ti,m−1), (m, 1,m+ 1), (m, 1,m−1) or (m, ti,m) in
S (where ti is any generator of T and m ∈ N0) can be generated by A, then
A is a set of generators of S.

Proof. By Lemmas 5.1.1 and 5.1.2, any element in S can be written as a
combination of words of the from (m, ti,m + 1), (m, ti,m − 1), (m, 1,m +
1), (m, 1,m− 1) or (m, ti,m). Hence, the Corollary holds.

This then leads us to make a test for determining if a set generates a
Bruck-Reilly semigroup.
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Proposition 5.1.4. Let A be a set of elements in S. Say all elements of
the form (m, 1,m+ 1) or (m, 1,m− 1) in S (where m ∈ N0) are generated
by the set A. If A also generates all elements of one of the following forms,
then A generates all of S:

• (m, ti,m+ 1)

• (m, ti,m− 1)

• (m, ti,m)

where ti is any generator of T .

Proof. From Corollary 5.1.3 we know that to prove a set generates the whole
of a Bruck-Reilly extension, we need only show that it generates all elements
in S of the form (m, ti,m+ 1), (m, ti,m− 1), (m, 1,m+ 1), (m, 1,m− 1) or
(m, ti,m) (where ti is any generator of T and m ∈ N0). However, note the
following:

(m, ti,m+ 1) = (m, 1,m+ 1)(m+ 1, ti,m)(m, 1,m+ 1)

= (m, ti,m)(m, 1,m+ 1).
(77)

Therefore, elements of the form (m, ti,m+1) can be written as a product of
elements of the form (m, 1,m+ 1), (m, ti,m− 1) and an element of the form
(m, ti,m − 1) or (m, ti,m). We can also give corresponding statements for
elements of the form (m, ti,m−1) or (m, ti,m) using the following equations:

(m, ti,m− 1) = (m, ti,m+ 1)(m+ 1, 1,m)(m, 1,m− 1)

= (m, ti,m)(m, 1,m− 1)
(78)

(m, ti,m) = (m, ti,m+ 1)(m+ 1, 1,m)

= (m, 1,m+ 1)(m+ 1, ti,m).
(79)

Hence, our Proposition holds.

Remark. Note that the process we used to create this Proposition can be
done for any Bruck-Reilly extension, not just those that are inverse semi-
groups.

In fact, this Proposition can then be used to find a subset of a Bruck-
Reilly extension that will always generate the semigroup.

Theorem 5.1.5. Let S = BR(T, θ) be the Bruck-Reilly extension of T
determined by θ. If {ti|i ∈ I} is the generating set of T for some index set
I, then {(1, 1, 0), (0, 1, 1)} ∪ {(0, ti, 0)|i ∈ I} is a generating set of S.
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Proof. First, note that by the definition of θ, any such morphism must map
the identity element in T to itself. Knowing this, we can say that;

(1, 1, 0)(1, 1, 0) = (2, 1, 0) (80)

(1, 1, 0)(n, 1, 0) = (n+ 1, 1, 0) (∀n ∈ N). (81)

Hence, ∀n ∈ N, (n, 1, 0) can be generated by {(1, 1, 0), (0, 1, 1)} in S. Simi-
larly, we can show that (0, 1, n) can also be generated by {(1, 1, 0), (0, 1, 1)}
in S for any n ∈ N.

We can then say that (m, 1, n) ∈ S is generated by {(1, 1, 0), (0, 1, 1)}
∀m,n ∈ N by the equation;

(m, 1, 0)(0, 1, n) = (m, 1, n). (82)

In particular, this means that (m, 1,m+ 1), (m+ 1, 1,m) ∈ S are generated
by {(1, 1, 0), (0, 1, 1)} ∀m ∈ N0.

Now we note the following where ti is any generator of T and m ∈ N ;

(m, 1, 0)(0, ti, 0)(0, 1,m) = (m, ti,m). (83)

So, (m, ti,m) must be generated by the set {(1, 1, 0), (0, 1, 1), (0, ti, 0)} when
ti is a generator of T and m ∈ N0 since (m, 1, 0) and (0, 1,m) can be gen-
erated from the set {(1, 1, 0), (0, 1, 1)}. Hence, for any generator ti of T
and m ∈ N0, (m, ti,m) is generated by {(1, 1, 0), (0, 1, 1)} ∪ {(0, ti, 0)|i ∈ I}.
Then by Proposition 5.1.4, our Theorem holds.

We now wish to find the relations of our Bruck-Reilly semigroup. These
are given to us by the relations in the semigroup that generates the Bruck-
Reilly semigroup. To see how, we first note the following;

Lemma 5.1.6. Let T be an inverse monoid such that there exists a mor-
phism θ : T → U(T ). Then, {0} × T × {0} ⊂ BR(T, θ) is isomorphic to
T .

Proof. Define a map φ : T → {0} × T × {0} to be given by φ(t) = (0, t, 0),
∀t ∈ T . It is immediately obvious that φ is a bijection, so we need only
check that it is a homomorphism. Take any t1, t2 ∈ T , then;

φ(t1)φ(t2) = (0, t1, 0)(0, t2, 0)

= (0, (t1θ
0)(t2θ

0), 0)

= (0, t1t2, 0) = φ(t1t2).

(84)

The existence of such an isomorphism then gives us the relations in
BR(T, θ).
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Corollary 5.1.7. Let R(t1, t2, . . . , tn)T describe a relation between elements
t1, t2, . . . , tn ∈ T with respect to the semigroup operation of T . Then the
relations of BR(T, θ) contain R((0, t1, 0), (0, t2, 0), . . . , (0, tn, 0))BR(T,θ).

Remark. What this Corollary is saying is that any relation in T gives rise
to a relation in {0} × T × {0} and consequently a relation in BR(T, θ). For
example, if t1, t2, t3 ∈ T are such that t21t

−1
2 = t33, then (0, t1, 0)2(0, t2, 0)−1 =

(0, t3, 0)3 in BR(T, θ).

5.2 Bruck-Reilly Action

If we know that there exists an action of the monoid T on a set V , then we
can define an action for BR(T, θ).

Lemma 5.2.1. Say the set V is a T -act with an action given by tv = f(t, v)
(∀t ∈ T , v ∈ V ). The set N0 × V can be considered to be an S-act with an
action such that ∀(m, a, n) ∈ S, (α, v) ∈ N0× V , (m, a, n)(α, v) is defined if
and only if n ≤ α and θα−n(a)v is defined in the T -act. This action is given
by;

(m, a, n)(α, v) = (m− n+ α, θα−n(a)v) (85)

Proof. In this proof, we will be defining t = max{n, p}. Say ∃(m, a, n),
(p, b, q) ∈ S such that (m, a, n)(p, b, q) = (m−n+ t, θt−n(a)θt−p(b), q−p+ t)
acts on (α, v) ∈ N0 × V . By definition, this means that q − p + t ≤ α and
θα−q+p−t(θt−n(a)θt−p(b))v = (θα−q+p−n(a)θα−q(b))v exists. Since p ≤ t we
can say that 0 ≤ −p+ t⇒ q ≤ q − p+ t ≤ α. Also, by the definition of an
inverse semigroup action, (θα−q+p−n(a)θα−q(b))v exists ⇒ θα−q(b)v exists.
Therefore, (p, b, q)(α, v) is defined and equals (p− q+α, θα−q(b)v). Further-
more, q − p+ t ≤ α⇒ n ≤ t ≤ p− q + α and (θα−q+p−n(a)θα−q(b))v exists
⇒ θα−q+p−n(a)(θα−q(b)v) exists. So, (m, a, n)((p, b, q)(α, v)) is defined and
equals (m− n+ p− q + α, θα−q+p−n(a)(θα−q(b)v)).

Conversely, say (m, a, n) and (p, b, q) are such that (m, a, n)((p, b, q)(α, v))
is defined. So, since (p, b, q)(α, v) = (p − q + α, θα−q(b)v), we can say that
q ≤ α, n ≤ p − q + α, θα−q(b)v exists and θp−q+α−n(a)(θα−q(b)v) exists. If
t = p, then q−p+t = q ≤ α. Alternitively, if t = n, then q−p+t = q−p+n.
Since n ≤ p−q+α, q−p+ t ≤ q−p+p−q+α = α. Therefore, q−p+ t ≤ α
is true regardless of the value of t.

By defintion of an inverse semigroup action (θp−q+α−n(a)θα−q(b))v ex-
ists and is equal to θp−q+α−n(a)(θα−q(b)v). The properties of a morphism
also tell us that θp−q+α−n(a)θα−q(b) = θα−q+p−t(θt−n(a)θt−p(b)) and so
θα−q+p−t(θt−n(a)θt−p(b))v = θp−q+α−n(a)(θα−q(b)v). Note that q ≤ α and
n ≤ p − q + α tell us that these morphisms are always defined (which is
to say their index is always a value in N0). From this, we can say that
((m, a, n)(p, b, q))(α, v) exists.
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Finally, note that;

(m, a, n)((p, b, q)(α, v)) = (m− n+ p− q + α, θα−q+p−n(a)(θα−q(b)v))

= (m− n+ p− q + α, θα−q+p−t(θt−n(a)θt−p(b))v)

= (m− n+ t, θt−n(a)θt−p(b), q − p+ t)(α, v)

= ((m, a, n)(p, b, q))(α, v).

(86)

Now that we have defined our action, we can find some properties of it.
As stated when we defiend the action, (m, a, n) ∈ S acts on (α, v) ∈ N0× V
if and only if n ≤ α and θα−n(a)v exists. Therefore, ∀(α, v) ∈ N0 × V ;

D
(α,v)
S = {(m, a, n) ∈ S|n ≤ α, θα−n(a) ∈ Dv

T }. (87)

Lemma 5.2.2. ∀(α, v) ∈ N0 × V ;

SS(α,v) = {(n, a, n) ∈ S|n ≤ α, θα−n(a) ∈ STv }. (88)

Proof. Let (m, a, n) ∈ SS(α,v). Since SS(α,v) ⊆ D
(α,v)
S we can say that n ≤ α

and θα−n(a) ∈ Dv
T . By definition, (α, v) = (m, a, n)(α, v) = (m − n +

α, θα−n(a)v). Then, α = m − n + α ⇒ m = n and v = θα−n(a)v ⇒
θα−n(a) ∈ STv . Therefore, SS(α,v) ⊆ {(n, a, n) ∈ S|n ≤ α, θα−n(a) ∈ STv }.

If (n, a, n) ∈ S is such that n ≤ α and θα−n(a) ∈ STv ⊆ Dv
T then

(n, a, n)(α, v) is defined. Furthermore, (n, a, n)(α, v) = (n−n+α, θα−n(a)v) =
(α, v). Hence, SS(α,v) = {(n, a, n) ∈ S|n ≤ α, θα−n(a) ∈ STv }.

Lemma 5.2.3. ∀(α, v) ∈ N0 × V ;

S1(α, v) = {(β, u) ∈ N0 × V |u ∈ T 1v} (89)

where T 1v is the stabilizer of v under the T -act.

Proof. Let (β, u) ∈ S1(α, v). So, ∃(m, a, n) ∈ S such that (α, v) = (m, a, n)(β, u)
(note that since S is a monoid, S1 = S). Therefore, (α, v) = (m − n +
β, θβ−n(a)u) Since v = θβ−n(a)u ⇒ (θβ−n(a))−1v = u we can say that
u ∈ T 1v and hence S1(α, v) ⊆ {(β, u) ∈ N0 × V |u ∈ T 1v}.

Conversely, say (β, u) ∈ N0 × V is such that u ∈ T 1v. Then, ∃x ∈ T
such that xv = u (again since T is a monoid, T 1 = T ). Then;

(β, x, α)(α, v) = (β − α+ α, θα−α(x)v)

= (β, xv) = (β, u)
(90)

and so, by definition, (β, u) ∈ S1(α, v) since (β, x, α) ∈ S.

Corollary 5.2.4. ∀α, β ∈ N0, v1, v2 ∈ V ;

S1(α, v1) = S1(β, v2)⇔ T 1v1 = T 1v2. (91)

Proof. Follows from Lemma 5.2.3.
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5.3 Action on a Graph

Say that we had an action of T on a tree GT such that we not only get back
a fundamental inverse semigroup but said semigroup is isomorphic to T . In
other words, in this system we get a quotient graph, QT , which then gives us
a T -transversal, AT , which then gave us a fundamental inverse semigroup T ′

such that T ′ ' T . Furthermore, let ET be the set of base edges that generate
E(GT ) under the T -act. Knowing this, it is possible to create a graph that
S = BR(T, θ) will act on such that the fundamental inverse semigroup is
isomorphic to S provided T and θ have additional properties. What these
properties are and why we require them will be discussed later.

First we define a graph GS in the following way. Let V (GS) = N0 ×
V (GT ). For all u ∈ V (AT ), define an edge fu ∈ E(GS) by ι(fu) = (1, u) and
τ(fu) = (0, u). We define the set of base edges of GS (with respect to the
S-act) to be given by {(0, e)|e ∈ ET } ∪ {fu} where the edge (0, e) is defined
by ι((0, e)) = (0, ι(e)) and τ((0, e)) = (0, τ(e)). It is then the case that every
edge in GS that is not in the orbit of an edge of the form fu is given by
(α, e) ∈ N0 × E(GT ) where ι((α, e)) = (α, ι(e)) and τ((α, e)) = (α, τ(e)).
This structure means that GS can be thought of as an infinite number of
graphs that are isomorphic to GT with neighboring layers connected edges
that exist in the same orbit as edges of the form fu.

Lemma 5.3.1. GS is a connected graph.

Proof. Let (α, v) ∈ N0×V and u ∈ V (AT ). By definition of GT , there exists
a set, P ⊆ E(GT ), that defines a path connecting v and u. Therefore, in GS ,
there exists a path connecting (0, u) to (0, v) given by the set P0 = {(0, e) ∈
E(GS)|e ∈ P}. Similarly, there is a path between (α, u) and (α, v) given by
Pα = (α, 1, 0)P0.

Note that ι((1, 1, 0)nfu) = (1, 1, 0)nι(fu) = (n+1, u) and τ((1, 1, 0)nfu) =
(1, 1, 0)nτ(fu) = (n, u) and so ι((1, 1, 0)nfu) = τ((1, 1, 0)n+1fu) (∀n ∈ N0).
Therefore, there is a path in GS connecting (0, u) and (α, u) meaning that
(α, v) is connected to (0, u). Since this is true for any element in N0× V we
can say that GS is connected.

It is possible that GS will contain a loop. However, this does not stop us
from using our method since the quotient graph of this system will be a tree
no matter the properties of S as we will show later. We can still identify
the circumstances under which GS contains no loops.

Lemma 5.3.2. GS contains no loops ⇔ T 1u = {u} and V (AT ) = {u} (for
some u ∈ V ).

Proof. Say T 1u 6= {u} and hence ∃v ∈ T 1u such that v 6= u. So, ∃t ∈ T such
that v = tu (where t 6= 1 since this will contradict v 6= u). Given that GT
is a tree there must exist a set of edges P ⊆ E(GT ) that define the unique
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path going from u to v. Therefore, the sets P0 = {(0, e) ∈ E(GS)|e ∈ P}
and the set P1 = {(1, e) ∈ E(GS)|e ∈ P} define paths from (0, u) and (1, u)
to (0, v) and (1, v) respectively. Also, we know that the edge (0, t, 0)fu is
in E(GS) (by definition of a base edge) where ι((0, t, 0)fu) = (1, v) and
τ((0, t, 0)fu) = (0, v). This gives us two paths in GS from (0, u) to (1, v):
going against the direction of fu and following the path given by P1 or
following the path P0 and going against the direction of (0, t, 0)fu. These
paths share no edges and hence there is a loop in GS .

Conversely, say T 1u = {u} and V (AT ) = {u}. Then, S1(0, u) =
S1(1, u) = {(α, u)|α ∈ N0} (by Lemma 5.2.3) and so S1fu = {f ∈ E(GS)|ι(f) =
(n + 1, u), τ(f) = (n, u)(∀n ∈ N0)}. Since GT contains no loops, any loop
in GS must contain an edge in the orbit of fu. Given the elements in S1fu,
there is only one path between the different subgraphs of GS that are iso-
morphic to GT . Therefore, we are unable to create a loop in GS .

Note that this condition on GT does not mean that it has a single vertex,
only that the GT -transversal we obtain from the T -act will have a single
vertex. We have seen previously in this paper examples of graphs with
multiple vertices whose transversal has just a siungle vertex like in Example
2.1.8.

Now we can examine the quotient graph we will obtain when S acts on
N0 × V . Let QS the quotient graph obtained when S acts on GS .

Lemma 5.3.3. V (QS) = {S1(0, v)|v ∈ V (QT )} and E(QS) = {S1(0, e)|e ∈
E′} ∪ {S1fu|u ∈ V (AT )} where ι(S1(0, e)) = S1ι((0, e)) and τ(S1(0, e)) =
S1τ((0, e)).

Proof. By Lemma 5.2.3 we know that ∀v ∈ V (GT ), α ∈ N0, (α, v) ∈ S1(0, v).
Therefore, the orbits of elements in the S-act is determined by the orbits of
elements in the T -act. In other words, ∀α, β ∈ N0, v1, v2 ∈ V , S1(α, v1) =
S1(β, v2) ⇔ T 1v1 = T 1v2. So, V (QS) = {S1(0, v)|v ∈ V (QT )}. Note that
a consequence of this is that the number of vertices in QS is equal to the
number of vertices in QT . Furthermore, by definition of the base edges of
GS we know that E(QS) is as described in the Lemma.

Remark. Notice that if we did not include the edges S1fu in QS then
Corollary 5.2.4 tells us QS ' QT .

From QS we can define an S-transversal. We define a graph AS by saying
V (AS) = {(1, v)|v ∈ V (AT )} and E(AS) = {(1, e)|e ∈ E(AT )} ∪ {fu|u ∈
V (AT )}.

Lemma 5.3.4. AS is an S-transversal.

Proof. Since every vertex and edge that isn’t of the form fu corresponds to
a vertex or edge in AT it must be the case that AS is connected since AT
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is connected. Similarly, since AT contains no loops, a loop in AS is only
possible if said loop includes an edge fu for some u ∈ V (AT ). However,
(∀u ∈ V (AT )) τ(fu) /∈ V (AS) and so no such loop can exist.

Now assume ∃(1, v1), (1, v2) ∈ V (AS) such that these vertices exist in
the same orbit. In other words, S1(1, v1) = S1(1, v2). This implies that
T 1v1 = T 1v2 (Corollary 5.2.4). However, v1, v2 ∈ V (AT ) and therefore can
not exist in the same orbit with respect to the T -act. Therefore, all vertices
in AS exist in seperate orbits. Consequently every edge in AS exist in their
own orbit as well. Also note that ∀(α, v) ∈ N0 × V , ∃vA ∈ V (AT ) such that
vA ∈ T 1v. Therefore, (1, vA) ∈ S1(α, v) is an element in V (AS). Similarly,
we can show that every edge orbit in our S-act has an element in E(AS).
S0, AS contains exactly one element in every vertex and edge orbit.

Finally, let (1, e) ∈ E(AS). By definition, e ∈ E(AT ) and hence ι(e) ∈
V (AT ) since AT is a T -transversal. So, (1, ι(e)) = ι((1, e)) ∈ V (AS). Simi-
larly, ι(fu) = (1, u) ∈ V (AS) (∀u ∈ V (AT )). Therefore, the intial vertex of
every edge in E(AS) exists in V (AS).

Now that we have an S-transversal, we need to examine it to see if it
will give us a graph of inverse semigroups. This is where the restriction on
T and θ that was mentioned at the start of this section becomes important.
We add the restriction that θ preserves the T -act. In other words, tv = u
for some t ∈ T , v, u ∈ V ⇒ θ(t)v = u.

Lemma 5.3.5. ∀ε ∈ E(AS) such that τ(ε) /∈ V (AS), ∃sε ∈ S such that
sεs
−1
ε = Id(Sε) and sει(ε) = τ(ε).

Proof. Recall that since (0, 1, 0) = Id(S), (0, 1, 0) exists in every domain
and hence is the identity in every stabilizer. Let ε ∈ E(AS) be such that
τ(ε) /∈ V (AS). If ε = fu for some u ∈ V (AT ), then ι(fu) = (1, u) and
τ(fu) = (0, u). Then, (0, 1, 1)(1, u) = (0, u) and (0, 1, 1)(1, 1, 0) = (0, 1, 0) =
Id(Sfu). Hence sε = (0, 1, 1) satisfies our conditions ∀u ∈ V (AT ).

If ε is not of this form, then ε = (1, e) for some e ∈ E(AT ). Furthermore,
τ(ε) /∈ V (AS) ⇒ τ(e) /∈ V (AT ). Since we know that we can create a graph
of inverse semigroups from the T -transversal AT it must be the case that
∃te ∈ T such that tet

−1
e = Id(Se) and teι(e) = τ(e). Since Id(Se) = 1,

we can say that (0, te, 0)(0, te, 0)−1 = (0, te, 0)(0, t−1
e , 0) = (0, 1, 0). Also,

(0, te, 0)ι(ε) = (0, te, 0)(1, ι(e)) = (1, θ(te)ι(e)). Due to the aforementioned
restritions on T and θ, θ(te)ι(e) = teι(e) = τ(e). So, sε = (0, te, 0) satisfies
our required conditions for sε.

Remark. Without the additional properties of T and θ we would have been
unable to say that (0, te, 0)(1, ι(e)) = (1, τ(e)). If, however, it can be shown
that ∃t ∈ T such that tt−1 = 1 and θ(t)ι(e) = τ(e) then such a restriction is
not required to create a graph of groups.
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A consequence of this restriction on the T -act comes from the fact that θ
maps elements in T to HT

1 . Therefore, because θ now preserves our actions,
θ(tt−1) = θ(t−1t) = 1 ⇒ tt−1 and t−1t act on and preserve any element in
V (∀t ∈ T ).

Other restrictions are possible that would make (0, te, 0) satisfy our con-
ditions. For example, saying ∀t ∈ HT

1 , θ(t) = t and RT1 ⊆ HT
1 was con-

sidered, but this would not give us the desired set of generators for the
fundamental inverse semigroup.

5.4 Fundamental Inverse Semigroup of the Bruck-Reilly Ac-
tion

Now that we have a graph of inverse semigroups, we can find the fundamental
inverse semigroups of this system, S′. As with the previous section, we will
find the need to add another property to T in order to get back the desired
result. Again, we will introduce this property when it is needed. First, we
begin by looking at the generators we obtain from the verticies of the graph
of inverse semigroups.

Lemma 5.4.1. Let Tθ,v = {t ∈ T |θ(t) ∈ STv }. For all (1, v) ∈ V (AS), the
set of elements in the generating set of S′ that come from SS(1,v) is given by

Γ(1,v) = {γ0,t0 , γ1,t1 |t0 ∈ Tθ,v, t1 ∈ STv } with the relations γ0,tγ0,t′ = γ0,tt′,
γ1,tγ0,t′ = γ0,tγ1,t′ = γ1,tt′ and γ1,tγ1,t′ = γ1,tt′.

Proof. From Lemma 5.2.2 we know that;

SS(1,v) = {(1, t, 1)|t ∈ STv } ∪ {(0, t, 0)|θ(t) ∈ STv }. (92)

If we set γ1,t := (1, t, 1) and γ0,t := (0, t, 0) then this satisfies Γ(1,v) being

the set of elements in the generating set of S′ that come from SS(1,v). The
relations defined in the Lemma then follow.

Remark. Given these relations, we are able to say that γ−1
0,t = γ0,t−1 and

γ−1
1,t = γ1,t−1 .

Corollary 5.4.2. The set of elements in the intial generating set of S′ is
given by the set Γ :=

⋃
v∈V (AT ) Γ(1,v) with the relations γ0,tγ0,t′ = γ0,tt′,

γ1,tγ0,t′ = γ0,tγ1,t′ = γ1,tt′ and γ1,tγ1,t′ = γ1,tt′ (∀γ0,t, γ0,t′ , γ1,t, γ1,t′ ∈ Γ).

Proof. Follows from Lemma 5.4.1.

Remark. As stated previously, since 1 is the identity in T then (0, 1, 0) is
the identity in S and consequently exists in the set of stabilizers of every
vertex and edge in GS . Hence, Γ contains an identity element given by γ0,1.

Lemma 5.4.3. γ1,t exists ⇒ γ0,t exists.
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Proof. γ1,t exists ⇒ t ∈ STv for some v ∈ V (AT ). Hence, θ(t) ∈ STv ⇒ γ0,t

exists.

All other generators are the elements sε ∈ S that are defined in Lemma
5.3.5. Let E′X be the set of edges ε ∈ E(AX) such that τ(ε) /∈ V (AX) where
X = S or T . Then the remaining elements in the initial generating set of S′

are given by E := {sε ∈ S|ε ∈ E′S , sεs−1
ε = (0, 1, 0), sει(ε) = τ(ε)}. However,

it will be beneficial to break down this set into two disjoint sets. In the
following Lemma we will be using the term te as it was defined in the proof
of Lemma 5.3.5.

Lemma 5.4.4. E = E0 ∪ {f} where E0 := {δte |e ∈ E′T }. Furthermore, these
give us the following relations in S′:

• ∀δte ∈ E, δteδ
−1
te = ff−1 = γ0,1,

• ∀γ1,t ∈ Γ, f−1γ0,tf = γ1,t,

• ∀δte ∈ E, γ0,t ∈ Γ(1,ι(e)), δ
−1
te γ0,tδte = γ0,t−1

e tte
,

• ∀δte ∈ E, γ0,t ∈ Γ(1,ι(e)), δ
−1
te γ1,tδte = γ1,θ(t−1

e )tθ(te).

Proof. From the proof of Lemma 5.3.5 we know what the remaining elements
in the initial generating set of S′ are since they all are the elements we use
to define the required embeddings. First, ∀(1, e) ∈ E′S we have an element
(0, te, 0) ∈ S to give us an embedding from S(1,e) into Sι((1,e)). We label such
elements δte . If we take any δte then the first relation that we would add to
S′ is that δteδ

−1
te is the identiy of S. In other words, δteδ

−1
te = γ0,1.

The other relations that we get from δte are found from finding what
δ−1
te γ0,tδte and δ−1

te γ1,tδte equal in S (∀γ0,t, γ1,t ∈ SS(1,e)).

δ−1
te γ1,tδte = (0, te, 0)(1, t, 1)(0, te, 0) = (1, θ(t−1

e )tθ(te), 1) (93)

Furthermore, our definition of te means that t−1
e tte ∈ STι(e) ⇒ θ(t−1

e )tθ(te) ∈
STι(e) and hence γ1,θ(t−1

e )tθ(te) is defined. Therefore, we can say that δ−1
te γ1,tδte =

γ1,θ(t−1
e )tθ(te). Similarly, it can be show that δ−1

te γ0,tδte = γ0,t−1
e tte

using this
method.

By Lemma 5.3.5, the only other element required for our embeddings
is (0, 1, 1). If we label this element f , then we will immdiately have the
relation ff−1 = γ0,1 and so it only remains to define what values f−1γf
equal ∀γ ∈ SSfu , u ∈ V (AT ). Given that SSfu = SSι(fu) ∪ S

S
τ(fu) and Lemma

5.2.2 we can say that we need only add the relation for what f−1γ0,tf equals
(∀γ0,t ∈ Γ).

f−1γ0,tf = (1, 1, 0)(0, t, 0)(0, 1, 1) = (1, t, 1) = γ1,t, (94)

provided γ1,t is defined. By Lemma 5.4.3, γ1,t being defined implies γ0,t is
also defined and so we can say this relation exists ∀γ1,t ∈ Γ.
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Corollary 5.4.5. ∀γ0,t ∈ S′, γ0,tf
−1 = f−1γ0,θ(t) and fγ0,t = γ0,θ(t)f .

Proof. Let γ0,t ∈ Γ0. Knowing this and the fact that γ1,1 is also in the
intial generating set of S′ we can say that γ0,tγ1,1 = γ1,θ(t). Since γ1,θ(t) =
f−1γ0,θ(t)f , γ0,tγ1,1 = γ1,θ(t) ⇒ γ0,tf

−1γ0,1f = f−1γ0,θ(t)f . Given that
γ0,1 is the identity in S′ this equation can be simplified to get γ0,tf

−1f =
f−1γ0,θ(t)f ⇒ γ0,tf

−1 = f−1γ0,θ(t) (since ff−1 = γ0,1). Similarly, it can be
shown that γ1,1γ0,t = γ1,θ(t) ⇒ fγ0,t = γ0,θ(t)f .

Now that we have an intial set of generators and relation of S′, we can
begin to simplify it. First, ∀v ∈ V (AT ), we can define a set Γ(0,v) := {γ0,t|t ∈
STv }. From this definition, it is clear that Γ(0,v) ⊆ Γ(1,v). Therefore, if we
define another set Γ0 :=

⋃
v∈V (AT ) Γ(0,v) it is clear that Γ0 ⊆ Γ.

Lemma 5.4.6. T ' Inv〈Γ0, E0〉.

Proof. Consider the intial set of generators and relations that we obtain
from AT to define T ′. Label this generating set GT and let RT be the set
of relations. By definition, every γ0,t ∈ Γ0 corresponds to some (0, t, 0) ∈ S
such that t ∈ STv for some v ∈ V (AT ). Therefore, when finding the initial
set of genrators of T ′ we would have equated t to some element gt ∈ GT .
Similarly, ∀δt ∈ E0, δt corresponds to some (0, t, 0) ∈ S that defines an
embedding of an edge ε ∈ E(AS) such that τ(ε) /∈ V (AS) and ε 6= fu (for
some u ∈ V (AT )). By Lemma 5.3.5, we know that ε is defined by an edge
e ∈ E(AT ) such that τ(e) /∈ V (AT ) and t ∈ T satisfies the properties we
have set to define the necessary embedding. Therefore, t would be equated
to some ḡt ∈ GT .

Knowing this, we can create a morphism ρ : Inv〈Γ0, E0〉 → T ′ given by
ρ(γ0,t) = gt and ρ(δt) = ḡt (∀γ0,t ∈ Γ0, δt ∈ E0). Given Corollary 5.1.7 we
know that any relation between elements in Inv〈Γ0, E0〉 will be preserved by
ρ. Also, the definition of how we define the set of relations of the fundmental
inverse semigroup tells us that any relation that exists in T ′ must also exist
between the same elements when mapped to Inv〈Γ0, E0〉 by ρ−1. Therefore,
we can say that ρ is an isomorphism and hence Inv〈Γ0, E0〉 ' T ′. By
definition, T ′ ' T and hence T ' Inv〈Γ0, E0〉.

Corollary 5.4.7. ∀γ0,t ∈ S′ such that γ0,t /∈ Γ0, γ0,t can be expressed as a
product of elements in Inv〈Γ0, E0〉.

Proof. Let γ0,t ∈ S′ be such that γ0,t /∈ Γ0. By definition, t ∈ T and is
therefore isomorphic to an element in T ′, say t′. However, γ0,t /∈ Γ0 implies
that t′ is not one of the initial generators of T ′. Therefore, the relations
in T ′ allow us to write t′ as a product of elements in the generating set
of T ′. Since T ′ ' Inv〈Γ0, E0〉 (by Lemma 5.4.6) these same relations exist
in Inv〈Γ0, E0〉. Hence, γ0,t can be expressed as a product of elements in
Inv〈Γ0, E0〉.
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Using this Corollary we can simplify the generating set of S′ by removing
elements of the form γ0,t that do not exist in Γ0. Furthermore, given Lemma
5.4.6 and the original values of our elements in S′, we wish to show that
∀w ∈ T we can define a γ0,w ∈ S′ such that all our relations relating to
elements of this form still hold. Say γ0,w := ρ−1(w′) where ρ is the same
as in the proof of Lemma 5.4.6 and w′ is the unique element in T ′ that is
equated to w under the isomorphism between T and T ′. Before we continue,
γ0,w is already defined for some w ∈ T . Therefore, we neeed to check this
definition does not contradict how we have defined these elements previously.

Lemma 5.4.8. ∀γ0,w ∈ S′, γ0,w := ρ−1(w′).

Proof. Say γ0,w ∈ S′. Then w ∈ T can be written as w = tn1
1 tn2

2 · · · tnm
m

where t1, t2, . . . , tm are generators of T and n1, n2, . . . , nm ∈ Z. Given
T ' T ′, T ′ has a generating set isomorphic to the generating set of T .
In other words, the generating set includes elements t′1, t

′
2 . . . , t

′
m such that

t1 ' t′1, t2 ' t′2, . . . , tm ' t′m. Therefore, w is isomorphic to the element
w′ = (t′1)n1(t′2)n2 · · · (t′m)nm in T ′. Hence, ρ−1(w′) = γn1

0,t1
γn2

0,t2
· · · γnm

0,tm
.

Given that γ0,tγ0,t̄ = γ0,tt̄ (∀γ0,t, γ0,t̄ ∈ S′) we can say that ρ−1(w′) =
γ0,t

n1
1 t

n2
2 ···t

nm
m

= γ0,w.

It now remains to show that our relations hold when we set γ0,w :=
ρ−1(w′) (∀w ∈ T ). To do this we need only show that those elements given
by δte := γ0,te (∀δte ∈ E0) satisfy the relations since (together with Γ0) these
will generate all other new values of γ0,t.

Lemma 5.4.9. ∀γ0,t ∈ Γ0, δte ∈ E0, γ0,tδte = γ0,tte and δteγ0,t = γ0,tet.

Proof. ∀γ0,t ∈ Γ0, δte ∈ E0, γ0,tδte = ρ−1(t′)ρ−1(t′e) for some t′ and t′e that
exist in the initial generating set of T ′. So, γ0,tδte = ρ−1(t′t′e) = γ0,tte (given
that T ' T ′ we know that t′t′e = (tte)

′). Similarly, it can be shown that
δteγ0,t = γ0,tet.

Before we continue proving these relations we wish to also say that
∀w ∈ T , γ1,t := f−1γ0,tf . Given Lemma 5.4.4 we know that this defintion
corresponds with what we know about elements of the form γ1,t that we have
defined previously. Again, to prove that the relations relating to elements
of this form still hold, we need only check that they hold for γ1,te = f−1δtef
(∀δte ∈ E0).

Lemma 5.4.10. ∀γ1,t ∈ S′, δte , δte′ ∈ E0, γ1,tγ1,te = γ1,tte, γ1,teγ1,t = γ1,tet

and γ1,teγ1,te′ = γ1,tete′ .

Proof. ∀γ1,t ∈ Γ0, δte ∈ E0;

γ1,tγ1,te = (f−1γ0,tf)(f−1γ0,tef) = (f−1γ0,t)(ff
−1)(γ0,tef)

= (f−1γ0,t)γ0,1(γ0,tef) = f−1γ0,ttef = γ1,tte .
(95)
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Similarly, it can be shown that γ1,teγ1,t = γ1,tet and (∀δte′ ∈ E0) γ1,teγ1,te′ =
γ1,tete′ .

Lemma 5.4.11. ∀γ0,t ∈ Γ0, δte ∈ E0, γ0,tγ1,te = γ1,θ(t)te and γ1,teγ0,t =
γ1,teθ(t).

Proof. Let γ0,t ∈ Γ0 and δte ∈ E0. By definition, γ0,tγ1,te = γ0,tf
−1γ0,tf .

Given that γ0,t ∈ Γ0 we can use Corollary 5.4.5 to say that γ0,tf
−1 =

f−1γ0,θ(t). Hence, γ0,tγ1,te = f−1γ0,θ(t)γ0,tf = γ1,θ(t)te . A similar method
shows that γ1,teγ0,t = γ1,teθ(t).

At this point, we would wish to show that ∀γ1,t ∈ S′, δte ∈ E0, γ1,tγ0,te =
γ1,tθ(te) and γ0,teγ1,t = γ1,θ(te)t. Though we have been unable to prove this,
there are some properties of S′ that suggest this may be possible. For ex-
ample, ∀δte ∈ E , t−1

e te, θ(te)t
−1
e , t−1

e θ(te) ∈ STι(e) (since θ preserves the

action). Therefore, γ1,t−1
e te

, γ1,θ(te)t−1
e

and γ1,t−1
e θ(te) are all elements in the

initial generating set of S′ and hence satisfy the initial set of relations.
Furthermore, the embedding that δte is required for would give us the re-
lations δ−1

te γ1,t−1
e te

δte = γ1,θ(t−1
e )t−1

e teθ(te), δ
−1
te γ1,θ(te)t−1

e
δte = γ1,t−1

e θ(te) and

δ−1
te γ1,t−1

e θ(te)δte = γ1,θ(t−1
e )t−1

e θ(t2e).
Given that we have been unable to prove that the remaining relations

hold, we need to add another property to T that will allow us to continue.
In this case, we will add the property that any initial generator of T ′ that
comes from an embedding of an edge in AT can be generated by the initial
generators of T ′ that come from generators of stabilizers. Consequently,
it can then be shown that E0 ⊆ Γ0 and our defintions of γ0,te and γ1,te

(∀δe ∈ E0) satisfy our relations.
Therefore, we can now say that S′ = Inv〈γ0,t, γ1,t, f |t ∈ T,R′〉, where R′

is the set of relations R′ = {f−1γ0,t1f = γ1,t1 , γ0,t1γ0,t2 = γ0,t1t2 , γ1,t1γ1,t2 =
γ1,t1t2 , γ0,t1γ1,t2 = γ1,θ(t1)t2 , γ1,t1γ0,t2 = γ1,t1θ(t2), ff

−1 = γ0,1|t1, t2 ∈ T}.
Note that we are not missing the relation that γ0,1 is the identity of S′ since
this can be implied by the relations in R′ which we will demostrate in the
next corollary. It is clear to see that this form can be simplified to remove
the set {γ1,t|t ∈ T} from our generating set by using the relation f−1γ0,t1f =
γ1,t1 . This would also allow us to remove the relation γ1,t1γ1,t2 = γ1,t1t2 since
this would already be given by γ0,t1γ0,t2 = γ0,t1t2 .

Lemma 5.4.12. (∀t ∈ T ) γ0,tf
−1 = f−1γ0,θ(t) ⇔ (∀t1, t2 ∈ T ) γ0,t1γ1,t2 =

γ1,θ(t1)t2. Similarly, (∀t ∈ T ) fγ0,t = γ0,θ(t)f ⇔ (∀t1, t2 ∈ T ) γ1,t1γ0,t2 =
γ1,t1θ(t2).

Proof. Say (∀t ∈ T ) γ0,tf
−1 = f−1γ0,θ(t). Then, (∀t1, t2 ∈ T ) ;

γ0,t1γ1,t2 = γ0,t1f
−1γ0,t2f = f−1γ0,θ(t1)γ0,t2f

= f−1γ0,θ(t1)t2f = γ1,θ(t1)t2 .
(96)

60



Conversely, if (∀t1, t2 ∈ T ) γ0,t1γ1,t2 = γ1,θ(t1)t2 then we can set t2 = 1 ∈ T
to get (∀t1 ∈ T ) γ0,t1γ1,1 = γ1,θ(t1) ⇒ γ0,t1f

−1γ0,1f = f−1γ0,θ(t1)f . Further-
more, this implies that γ0,t1f

−1γ0,1ff
−1 = f−1γ0,θ(t1)ff

−1 ⇒ γ0,t1f
−1γ0,1 =

f−1γ0,θ(t1) ⇒ γ0,t1f
−1ff−1 = f−1γ0,θ(t1) (since ff−1 = γ0,1). Hence,

(∀t ∈ T ) γ0,t1f
−1 = f−1γ0,θ(t1). It can similarly be shown that (∀t ∈ T )

fγ0,t = γ0,θ(t)f ⇔ (∀t1, t2 ∈ T ) γ1,t1γ0,t2 = γ1,t1θ(t2).

Note that (∀t ∈ T ) γ0,tf
−1 = f−1γ0,θ(t) is equivalent to saying (∀t ∈ T )

fγ0,t = γ0,θ(t) since one equation is the inverse of the other. Therefore,
we can simplify our set of relations by removing (∀t1, t2 ∈ T ), γ0,t1γ1,t2 =
γ1,θ(t1)t2 and γ1,t1γ0,t2 = γ1,t1θ(t2) and replacing them with (∀t ∈ T ) fγ0,t =
γ0,θ(t).

Corollary 5.4.13. γ0,1 is the identity in S′.

Proof. Since ∀t1, t2 ∈ T , γ0,t1γ0,t2 = γ0,t1t2 we can say that ∀t ∈ T , γ0,1γ0,t =
γ0,t = γ0,tγ0,1 and so γ0,1 acts as an identity on elements of the form γ0,t ∈ S′.
Therefore, we need only show it acts as an identity on f to say it is the
identity in S′. Since ff−1 = γ0,1, we know that γ0,1f = ff−1f = f .
Similarly, fγ0,1 = γ0,θ(1)f = γ0,1f = f (since θ being a morphism implies
that θ(1) = 1).

We have now simplified our presentation of S′ to get the following;

S′ = Inv〈γ0,t, f |γ0,t1γ0,t2 = γ0,t1t2 , fγ0,t = γ0,θ(t)f, ff
−1 = γ0,1, t, t1, t2 ∈ T 〉.

(97)
Now that we have simplified S′ we can begin to look at the how we can

describe the elements in it.

Lemma 5.4.14. Every word of length 1 in S′ = Inv〈γ0,t, f |γ0,t1γ0,t2 =
γ0,t1t2 , fγ0,t = γ0,θ(t)f, ff

−1 = γ0,1, t, t1, t2 ∈ T 〉 can be written in the form
f−n1γ0,tf

n2 for some t ∈ T and n1, n2 ∈ N0 where f0 = γ0,t.

Proof. The words in S′ of length 1 are given by fn, f−n, γn0,t (∀n ∈ N0, t ∈
T ). First, fn = γ0,1γ0,1f

n = f0γ0,tf
n. Similarly, f−n = f−nγ0,1f

0. Finally,
γn0,t = γ0,tn = γ0,1γ0,tnγ0,1 = f0γ0,tnf

0.

Theorem 5.4.15. Every word in S′ = Inv〈γ0,t, f |γ0,t1γ0,t2 = γ0,t1t2 , fγ0,t =
γ0,θ(t)f, ff

−1 = γ0,1, t, t1, t2 ∈ T 〉 can be written in the form f−n1γ0,tf
n2 for

some t ∈ T and n1, n2 ∈ N0 where f0 = γ0,t.

Proof. Say that this theorem is true for words up to length m ∈ N. Any
word of length m+ 1 in S′ is therefore given by the product of f−n1γ0,tf

n2

for some t ∈ T and n1, n2 ∈ N0 and an element in the set {γ0,t̄, f
n, f−n|t̄ ∈

T, n ∈ N}. That is two say the words of length m + 1 in S′ can be written
as f−n1γ0,tf

n2γ0,t̄, f
−n1γ0,tf

n2fn or f−n1γ0,tf
n2f−n for some t, t̄ ∈ T and

n1, n2, n ∈ N0.
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First look at f−n1γ0,tf
n2γ0,t̄. This is equal to f−n1γ0,tγ0,θn2 (t̄)f

−n2 (by
the relation fγ0,t = γ0,θ(t)f in S′). It must therefore be the case that
f−n1γ0,tf

n2γ0,t̄ = f−n1γ0,tθn2 (t̄)f
−n2 . The next value, f−n1γ0,tf

n2fn, can
easily be put in the desired form since f−n1γ0,tf

n2fn = f−n1γ0,tf
n2+n. Our

final value, f−n1γ0,tf
n2f−n is slightly trickier. Since ff−1 = γ0,1 which is

the identity in S′ we have two possible values this can equal.

f−n1γ0,tf
n2f−n =

{
f−n1γ0,tf

n2−n when n ≤ n2

f−n1γ0,tf
−(n−n2) when n > n2.

(98)

Given the realtions in S′, we can say that ∀t ∈ T , γ0,tf
−1 = f−1γ0,θ(t).

Therefore, f−n1γ0,tf
−(n−n2) = f−(n1+n−n2)γ0,θn−n2 (t)f

0.

Now that we have a standard form for the elementsin S′ we can create a
map from S to S′. From Theorem 5.1.5 we know that a generating set of S
is given by {(1, 1, 0), (0, 1, 1)}∪{(0, ti, 0)|i ∈ I} where {ti|i ∈ I} is the gener-
ating set of T for some index set I. In particular, ∀(m, a, n) ∈ S, (m, a, n) =
(0, 1, 1)−m(0, a, 0)(0, 1, 1)n where (0, 1, 1)0 = (0, 1, 0). Knowing this, we can
create a semigroup morphism µ : S′ → S given by µ(f−mγ0,tf

n) = (m, t, n).

Theorem 5.4.16. The morphism µ is an isomorphism and hence S ' S′.

Proof. Say µ(s1) = µ(s2) for some s1, s2 ∈ S′. By Theorem 5.4.15, ∃m1,
m2, n1, n2 ∈ N0 and t1, t2 ∈ T such that s1 = f−m1γ0,t1f

n1 and s2 =
f−m2γ0,t2f

n2 . So, µ(f−m1γ0,t1f
n1) = µ(f−m2γ0,t2f

n2). This implies that
(m1, t1, n1) = (m2, t2, n2) ⇒ m1 = m2, t1 = t2 and n1 = n2. Therefore,
s1 = f−m1γ0,t1f

n1 = f−m2γ0,t2f
n2 = s2 and hence µ is injective. Also

∀(m, a, n) ∈ S, a ∈ T . Therefore, γ0,a ∈ S′ ⇒ f−mγ0,af
n ∈ S′. Hence,

µ(f−mγ0,af
n) = (m, a, n) and µ is surjective.

6 Action of Bn

In this section, we define S to be an inverse semigroup given by;

S = Inv〈x1, x2, . . . xn−1|x−1
i xi = xi+1x

−1
i+1, x

3
1 = xjxk〉 (99)

where all the generators of S are non-zero and i, j and k are integer values
such that i, j, k ∈ {1, 2, . . . n−1}, i < n−1 and k 6= j+ 1. We wish to prove
that S is isomorphic to Bn when n ≥ 3 (so throughout this proof we will
be assuming n ≥ 3) where Bn is defined to be a Brandt semigroup that is
generated by the trivial group and a finite index set of n elements as defined
by Howie [8]. Using this presentation of Bn, we will then define a Bn-act
and see how it acts on a graph.

The origins of the Brandt semigroup come from work by Brandt [2] on
the Brandt groupoid. Clifford [4] found that adjoining a zero to this groupoid
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gives us a semigroup that we call the Brandt semigroup. Further properties
of this semigroup were found by Munn [17] as well as further work done by
Clifford with Preston [5]. In particular, Vagner [24] found that the Brandt
semigroup is an inverse semigroup.

6.1 Properties of S

In this section, we will prove that S is isomorphic to Bn and we will deter-
mine some properties of S.

Lemma 6.1.1. Any word in S that contains a subword xixj or x−1
j x−1

i

where j 6= i+ 1 is the zero element in S.

Proof. For all, xi, xj ∈ S, x2
i = x2

j since both these values equal x3
1. In

particular, x3
1 = x2

1 and xixj = x3
1 when j 6= i + 1. Therefore, ∀xk ∈ S,

x2
k = x2

1.
If xk ∈ S, then;

x2
1xk = x2

kxk = x3
k = xkx

2
1 = (xkx1)x1 = x2

1x1 = x3
1 = x2

1 (100)

Similarly, we can show that xkx
2
1 = x2

1. So x2
1 acts as a zero element on all

xk ∈ S making it the zero element of S.
Therefore, x2

1 = 0, but since x3
1 = x2

1 and xixj = x3
1 when j 6= i + 1 we

conclude that any xixj or x−1
j x−1

i where j 6= i + 1 is the zero element in
S.

Lemma 6.1.2. Any word in S that contains a subword xix
−1
j or x−1

i xj
where i 6= j is the zero element in S

Proof. Let xi, xj ∈ S be such that i 6= j. If i < n− 1, then;

xix
−1
j = xix

−1
i xix

−1
j = xixi+1(x−1

i+1x
−1
j ) = 0 (101)

If i = n− 1, then;

xn−1x
−1
j = xn−1x

−1
j xjx

−1
j = (xn−1xj+1)x−1

j+1x
−1
j = 0 (102)

So, xix
−1
j = 0 if i 6= j.

Similarly, say i > 1, then;

x−1
i xj = x−1

i xix
−1
i xj = x−1

i x−1
i−1(xi−1xj) = 0 (103)

If i = 1, then;

x−1
1 xj = x−1

1 xjx
−1
j xj = (x−1

1 x−1
j−1)xj−1xj = 0 (104)

So, x−1
i xj = 0 if i 6= j.
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It is then clear that these Lemmas give us the structure of all non-zero
words in S.

Corollary 6.1.3. Let i ∈ {1, 2, . . . n − 1}. All non-zero elements in S can
be written in one of the following forms:

(i). xixi+1 . . . xi+p where p ∈ {0, 1, . . . n− i− 1}

(ii). x−1
i x−1

i−1 . . . x
−1
i−p where p ∈ {0, 1, . . . i− 1}

(iii). xix
−1
i

(iv). x−1
n−1xn−1

Later on, it will be helpful to have a more concise way describing these
non-zero words. We will do this with the following notation and properties.

Definition 6.1.1. Define wa,b = xaxa+1 . . . xa+b−1, so that b is the length
of wa,b.

Remark. Notice that if wa,b is well defined if and only if a and b are positive
integers such that 2 ≤ a+ b ≤ n.

By Corollary 6.1.3, any element in S that is not an idempotent can be
written as wa,b or w−1

a,b for some a or b. Also note the following properties of
this form.

Lemma 6.1.4. The following are true for any wa,b and wc,d in S:

(i). wa,bwc,d =

{
0 if c 6= a+ b

wa,b+d if c = a+ b

(ii). w−1
a,bw

−1
c,d =

{
0 if a 6= c+ d

w−1
c,b+d if a = c+ d

(iii). wa,bw
−1
c,d =


0 if a+ b 6= c+ d

wa,b−d if a+ b = c+ d and b > d

w−1
c,d−b if a+ b = c+ d and b < d

xax
−1
a if a = c and b = d

(iv). w−1
a,bwc,d =


0 if a 6= c

w−1
a+d,b−d if a = c and b > d

wa+b,d−b if a = c and b < d

x−1
a+b−1xa+b−1 if a = c and b = d
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Proof. First note that wa,bwc,d = xaxa+1 . . . xa+b−1xcxc+1 . . . xc+d−1. By
Lemma 6.1.1 this word equals zero unless xc = xa+b, which is to say c = a+b.
In this case, wa,bwc,d = xaxa+1 . . . xa+b+d−1 = wa,b+d so (i) holds. A similar
proof is used to show that (ii) holds as well.

Now look at wa,bw
−1
c,d . This equals xaxa+1 . . . xa+b−1x

−1
c+d−1x

−1
c+d−2 . . . x

−1
c ,

but this word equals zero unless x−1
c+d−1 is the inverse of x−1

a+b−1. In other
words, this element is equal to zero unless a+ b = c+ d. Now we can then
say that;

wa,bw
−1
c,d = xaxa+1 . . . xa+b−2xa+b−1x

−1
a+b−1x

−1
a+b−2 . . . x

−1
a+b−d. (105)

Recall from our relations of S that xix
−1
i = x−1

i−1xi−1. Therefore;

xa+b−2xa+b−1x
−1
a+b−1x

−1
a+b−2 = xa+b−2x

−1
a+b−2xa+b−2x

−1
a+b−2

= xa+b−2x
−1
a+b−2.

(106)

Therefore, we can reduce the length of wa,bw
−1
c,d . We can keep using this

method to reduce our element unti it is of one of our known forms of words
in S (as given by Corollary 6.1.3). If b > d, then a < a+ b− d. Hence, if we
keep reducing our word, we find that;

wa,bwc,d = xaxa+1 . . . xa+b−1x
−1
a+b−1x

−1
a+b−2 . . . x

−1
a+b−d

= xaxa+1 . . . xa+b−2x
−1
a+b−2x

−1
a+b−3 . . . x

−1
a+b−d

= . . .

= xaxa+1 . . . xa+b−d−1xa+b−dx
−1
a+b−d

= xaxa+1 . . . xa+b−d−1 = wa,b−d.

(107)

Similarly, if b < d, then a > a+ b− d. So;

wa,bwc,d = x−1
a−1x

−1
a−2 . . . x

−1
a+b−d

= w−1
a+b−d,d−b = w−1

c,d−b.
(108)

Finally, if b = d, then a + b = c + d ⇒ a = c and we find that wa,bw
−1
c,d =

xax
−1
a . Hence (iii) holds. A similar method is used to sow that (iv) holds.

Now that we know the non-zero elements in S, we can find the cardinality
of S.

Lemma 6.1.5. |S| = |Bn|

Proof. From our presentation of S, we can see there is a surjective homo-
morphism S → Bn given by xi 7→ (i, i + 1). Therefore, |S| ≥ n2 + 1 since
|Bn| = n2 + 1.

From the found forms of non-zero elements in S (given by Corollary
6.1.3) we can also say that |S| ≤ n2 + 1. Therefore, |S| = n2 + 1 = |Bn|
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Given that |S| = |Bn| we can conclude that S and Bn are isomorphic.
Going forward, we will continue to use S as our presentation for Bn

rather then any more well known presentations since it allows us to bet-
ter demonstrate how our action works and its relation to the reltions and
generators given by S.

6.2 Bn acting on a Set

Now we have a presentation for Bn, we can look at how it could act on a set,
V . Define a map φ : Bn × V → V to be the map such that ∀s ∈ Bn, v ∈ V ,
φ(s, v) = ρs(v) where ρs is an injective function from V to itself. To define
φ, we need to define ρxi , ∀i ∈ {1, 2, . . . n − 1} such that the relations of Bn
still hold. In particular, we start by looking at the zero element in Bn

Lemma 6.2.1. For any generator xi of Bn, Dx31
⊂ Dxi.

Proof. Since x3
1 is the zero element in Bn this is given by Lemma 2.1.2.

Lemma 6.2.2. ∀i ∈ {1, 2, . . . n − 1}, ρxi maps Dx31
to Dx31

. Furthermore,

∀i, j ∈ {1, 2, . . . n− 1}, v ∈ Dx31
, xiv = xjv.

Proof. Let v ∈ Dx31
, then by Lemma 6.2.1 we can say that xiv = u for some

u ∈ V . We also know from our relations that x2
i = x3

1 and so xixiv = v
which implies that xiv = x−1

i v = u. Then x−1
i v = u⇒ v = xiu. As v ∈ Dxi ,

xiv = xixiu = x3
1u exists and hence u ∈ Dx31

.

Since v ∈ Dx31
we know that for any j ∈ {1, 2, . . . n−1}, xjv exists (again

by Lemma 6.2.1). Then, xjv = xjx
−1
i u. If xjx

−1
i 6= x3

1, it must be the case
that j = i. In which case xjv = xix

−1
i u = u = xiv (as xix

−1
i is idempotent).

Alternatively, if xjx
−1
i 6= x3

1, then xjv = u.

Lemma 6.2.3. If v is an element in Dx31
, then xiv = v or x2

i v = v for any
generator xi of Bn.

Proof. First, we know from Lemma 6.2.1 that for any v ∈ Dx31
and generator

xi, xiv exists as Dx31
⊂ Dxi . Also, our relations tell us that we require that

ρx2i
= ρx31 . Therefore, x2

i v and must be equivalent to v (as x3
1 is idempotent).

This means that xiv = v or ∃v′ ∈ Dx31
such that xiv = v′ and xiv

′ = v.

Remark. This Lemma as well as Lemma 6.2.2 tells us that the orbit of any
element in v contains at most 2 elements.

We must now consider what happens to elements in Dxi that are not in
Dx31

.

Lemma 6.2.4. If vi ∈ Dxi is such that vi /∈ Dx31
, then ∀j ∈ {1, 2, . . . n−1},

Dxj contains at least one element in Bnvi.
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Proof. If vi is such an element and i 6= n−1, then we know that since x−1
i xi =

xi+1x
−1
i+1, vi ∈ Dx−1

i+1
. Therefore, ∃vi+1 ∈ Dxi+1 such that xi+1vi+1 = vi.

Furthermore, it must be the case that vi+1 /∈ Dx31
as if x3

1vi+1 = vi+1 exists,

then x3
1x
−1
i+1vi = x3

1vi must also exist. This means that if i + 1 6= n − 1 we
can repeat our process and find a vi+2 ∈ Dxi+2 such that xi+2vi+2 = vi+1.
In other words, we can keep repeating this process all the way up to finding
a vn−1 ∈ Dxn−1 such that xi+1xi+2 · · ·xn−1vn−1 = vi.

Similarly if i 6= 1 then we can say that x−1
i−1xi−1 = xix

−1
i . As vi ∈ Dxi ,

we know that ∃vi−1 ∈ V such that xivi = vi−1. This then implies that
vi = x−1

i vi−1 meaning vi−1 ∈ Dx−1
i

. Since x−1
i−1xi−1 = xix

−1
i , this means

that vi−1 ∈ Dxi−1 . Furthermore, we can then prove that vi−1 /∈ Dx31
in the

same way we showed that vi+1 /∈ Dx31
. This allows us to say ∃vi−2 ∈ V such

that xi−1vi−1 = vi−2. Again we keep repeating this process until we find a
v1 ∈ D1 such that x1x2 · · ·xivi = v1.

Remark. Note that in our proof, we also showed that the elements we found
in the orbit of vi will also not exist in Dx31

.

Lemma 6.2.5. ∀i ∈ {1, 2, . . . n − 1}, any two unique elements in Dxi that
don’t exist in Dx31

exist in separate orbits.

Proof. Define vi and ui to be two distinct elements in Dxi for some i ∈
{1, 2, · · ·n − 1} that do not exist in Dx31

. If we assume that vi and ui are
in the same orbit, then ∃s ∈ Bn such that ui = svi. By Corollary 6.1.3,
we know the four possible forms s can take. We can immediately rule out
s being of the form (iii) and (iv) as these are idempotents and will hence
map vi to itself if they act at all on it.

Since ui ∈ Dxi we know that xiui = xisvi exists. We require that
xis 6= x3

1 as otherwise vi must exist in Dx31
. So by Corollary 6.1.3 and the

relation x3
1 = xjxk when k 6= j + 1, meaning that s = xi+1xi+2 · · ·xi+p1 for

some p1 ∈ {0, 1, . . . n−i−1} or x−1
i x−1

i−1 · · ·x
−1
i−q1 for some q1 ∈ {0, 1, . . . i−1}.

Say i < n − 1, then from the relation x−1
i xi = xi+1x

−1
i+1 we can say

that ∃vi+1 ∈ V such that xi+1vi+1 = vi and vi+1 /∈ Dx31
(as shown in the

proof of Lemma 6.2.4). We know from, ui = svi that vi = s−1ui and
hence xi+1vi+1 = s−1ui. This then implies that ui = sxi+1vi+1. Again, for
vi+1 /∈ Dx31

, we require sxi+1 6= x3
1 and hence our Corollary 6.1.3 and our

relations we can say that s = xi−p2xi−p2+1 · · ·xi for some p2 ∈ {0, 1, . . . i−1}
or x−1

i+q2
x−1
i+q2−1 · · ·x

−1
i+1 for some q2 ∈ {0, 1, . . . n− i− 1}. However, neither

of these potential values of s correspond to the two previously established
values of s and so we can say that no such s exists when i < n− 1.

If i = n−1, then (as shown in the proof of Lemma 6.2.4) ∃vn−2 ∈ Dx−1
n−1

such that xn−1vn−1 = vn−2 and vn−2 /∈ Dx31
. We can then say that since

vn−1 = x−1
n−1vn−2, un−1 = sx−1

n−1vn−2. We know that vn−2 does not exist in
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the domain of x3
1 and so sx−1

n−1 6= x3
1. Therefore, by Corollary 6.1.3 and the

relation x3
1 = xjxk when k 6= j + 1, we know that s can only be of the form

xp3xp3+1 · · ·xn−1 for some p3 ∈ {1, 2, . . . n − 1}. However, this contradicts
s = xi+1xi+2 · · ·xi+p1 or x−1

i x−1
i−1 · · ·x

−1
i−q1 . So, we must conclude that vi and

ui cannot exist in the same orbit.

Lemmas 6.2.4 and 6.2.5 then prove the following.

Corollary 6.2.6. If vi ∈ Dxi is such that vi /∈ Dx31
, then ∀j ∈ {1, 2, . . . n−

1}, Dxj contains at exactly one element in Bnvi.

It is also helpful at this point to explicitly state how ρxi maps elements.

Proposition 6.2.7. For any i ∈ {2, 3, . . . n − 1}, ρxi maps Dxi to Dxi−1.
Also, ρx1 maps elements in Dx1 that don’t exist in Dx31

to elements that are
not acted on by any generator of Bn.

Proof. Let v ∈ Dxi for some i ∈ {1, 2, . . . n− 1}. If v ∈ Dx31
, then v ∈ Dxi−1

as Dx31
is a subset of the domain of any generator of Bn. Alternatively, if

v /∈ Dx31
, then ∃u ∈ V such that xiv = u. This implies that v = x−1

i u

and hence u ∈ Dx−1
i

. Since xi−1 exists we can say that x−1
i−1xi−1 = xix

−1
i .

Therefore, Dx−1
i

= Dxi−1 meaning that u ∈ Dxi−1 .

Now define v ∈ Dx1 such that v /∈ Dx31
. Then x1v = u for some u ∈ V .

If xiu exists for some i ∈ {2, 3, . . . n−1}, then xix1v = xiu also exists. Since
v /∈ Dx31

, we require xix1 6= x3
1, but our relations tell us this is only possible

if 1 = i + 1. However, this would then imply that i = 0 which contradicts
our definition of i. Therefore, xiu cannot exist.

6.3 Bn acting on a Graph

Using what we now know about Bn-acts, we can now see what graphs Bn
will act on. However, before we start we note the following;

Lemma 6.3.1. Let e be an edge of a graph with endpoints v and u such that
v /∈ Dx31

. Then e is acted on by an element of Bn if and only if u /∈ Bnv.

Proof. Say e, v and u are defined as they are in the lemma. Let s ∈ Bn be
the element that acts on e. By the definition of a generator, we know that
s = txi or tx−1

i for some t ∈ B1
n and generator xi of Bn. First assume that

s = txi, in which case xi acts on e. This then implies that xiv and xiu both
exist and hence v, u ∈ Dxi . Corollary 6.2.6 then tells us that v and u must
exist in different orbits.

Alternatively, if s = tx−1
i then x−1

i v and x−1
i u exist. Therefore, ∃v′, u′ ∈

V such that x−1
i v = v′ and x−1

i u = u′. This then implies that v = xiv
′

and u = xiu
′ meaning that v′, u′ ∈ Dxi . By Corollary 6.2.6, Bnv

′ 6= Bnu
′.

Also, by definition, Bnv = Bnv
′ and Bnu = Bnu

′ which allows us to say
that Bnv 6= Bnu. Therefore, v and u exist in different orbits.
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Example 6.3.2. By Corollary 6.2.6, we know that the number of orbits
of elements that x3

1 does not act on is equal to the number of elements in
Dxi that x3

1 does not act on for any generator xi of Bn. We also know from
Lemmas 6.2.2 and 6.2.3 how xi will act on elements in Dx31

. So for simplicity,

we can say that V is such that there is only one orbit of vertices that x3
1

does not act on and that there is only one element in Dx31
that is fixed by

every generator xi.
This then leads us to say that V = {v0, v1, . . . vn−1, u} and ∀s ∈ Bn, ρs

is defined by;

ρxi =

(
vi u
vi−1 u

)
(109)

Note that this form along with Lemma 6.3.1 mean that only an edge
between u and vi (for any i ∈ {1, 2, . . . n − 1}) can be acted on by an
element of Bn.

If say we had a directed edge e such that ι(e) = u and τ(e) = v1 we get
the following graph;

u v0

v1v2

vn−1
e

x−1
1 e

x−1
2 x−1

1 e

x−1
n−1 · · ·x

−1
1 e

However, if we now look at the orbits of the elements in V , we see
that there are are only two, v̄ = {v0, v1, . . . vn−1} and ū = {u}. Also,
Bne = {e, x−1

1 e, x−1
2 x−1

1 e, . . . x−1
n−1 · · ·x

−1
1 e} which we label ē. This means

our quotient graph will be given by;

ū v̄
ē

Therefore, if we now look at the S-transversal we get if we choose v0 to
represent v̄ then we get a graph that is similar to our quotient graph.

u v0
e

Note that no matter what element we pick to represent v̄, we will always
get a graph that is the same form as the quotient graph. The graph of
inverse semigroups would then be given by;
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Su Sv0
Se

However, since Su = Bn, this example would not give us any information
we did not already know about the semigroup. Alternatively, we could’ve
defined Dx31

= ∅ but we would then lose information about the zero element
inBn. This is the same problem we cam across with the polycyclic semigroup
action (Example 4.3.3). As with that case, we need to find an action such
that we get a quotient graph where the zero element does not exist in the
stabilizer of any of it vertices. Consequently our action must be such that
the zero element does not act on any element in our graph (as shown by
Lemma 4.3.9).

6.4 Action without 0

Since we have now established that we wish for our action to be such that 0
does not act on any element in the S-act we again examine what actions will
work. With this new restriction, there are some properties of our desired
action that we can derive. From here on, say that we have an action of
S ' Bn on a graph G such that the zero element of S does not act on any
element in G.

Lemma 6.4.1. Only non-zero idempotents fix elements under our action.

Proof. Let s ∈ Sv for some v ∈ G. Consider the forms of non-zero words in
Bn that we gave in Corollary 6.1.3. If s = wa,b then s2v = v ⇒ w2

a,bv = v.

However, w2
a,b = 0 ⇒ 0 ∈ Sv (by Lemma 6.1.4). Hence, s 6= wa,b. Similarly

we can show that s 6= w−1
a,b . This only leaves non-zero idempotent values

that s can equal.

Corollary 6.4.2. Every element in G can only be acted on by at most one
generator of S. Similarly, every element in G can only be acted on by at
most one inverse of a generator of S.

Proof. Let xi and xj exist in the generating set of S and suppose ∃v ∈ G
such that xiv and xjv both exist. This implies that x−1

i xiv = v = x−1
j xjv ⇒

xjx
−1
i xiv = xjv. If xjx

−1
i = 0, then we find that xjv = 0xiv = 0v = v which

means xj ∈ Sv. This contradicts Lemma 6.4.1, so it must be the case that
xjx
−1
i 6= 0. This implies that x−1

i = x−1
j ⇒ xi = xj . The proof that x−1

i v,

x−1
j v exist ⇒ x−1

i = x−1
j is given dually.

Note that if no generators of S or their inverses act on an element in G
then said element will have an empty domain. Therefore, for this action we
will assume that every element in G must be acted on by a single element
or inverse of an element in the generating set of S. We will also assume that
every generator of S or every inverse of said generators acts on at least one
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element of G since otherwise we would definintely lose said element from
any fundamental inverse semigroup we might obtain.

Knowing this, we can begin constructing a set of elements that S will
act on. Without loss of generality, we will consider our action to be such
that all elements in the genrating set of S act on at least one value in G
and begin by finding a set that S will act on to give us a set of vertices of
S. First we define a set V = {vi|i ∈ {1, 2, . . . , n − 1}} and say that xivi is
defined ∀i ∈ {1, 2, . . . , n− 1}. We will add more elements to our set later to
equal these values, but for now consider the following.

Lemma 6.4.3. Let F be an S-act. Then, ∀i ∈ {2, 3, . . . , n− 1} and v ∈ F ,
x−1
i v exists ⇒ xi−1v exists. Similarly, ∀j ∈ {1, 2, . . . , n− 2} and v ∈ F , xjv

exists ⇒ x−1
j+1v exists.

Proof. Say x−1
i v exists for some i ∈ {2, 3, . . . , n−1} and v ∈ F . This implies

that xix
−1
i v exists ⇒ x−1

i−1xi−1v exists. Note that we know xi−1 is defined

since i ∈ {2, 3, . . . , n}. Since x−1
i−1xi−1v = x−1

i−1(xi−1v) it must be the case
that xi−1v exists. The rest of the Lemma can be proven in a similar way.

So, according to this Lemma, it must be the case that x−1
i+1vi is defined

(∀i ∈ [1, n− 2]). We must now define more elements for S to act on. First,
∀i ∈ [1, n − 1] we define a value y1,i and say xivi = y1,i. This then implies
that x−1

i y1,i exists. Furthermore, Lemma 6.4.3 then tells us that xi−1y1,i

exists ∀i ∈ [2, n − 1] and so we need values in our S-act that these can be
equal to. In this case, we define the values y2,i (∀i ∈ {2, 3, . . . , n}) to be
given by y2,i = xi−1y1,i. However, as happened earlier, Lemma 6.4.3 tells us
that more elements need to be defined. Eventually we will find that we have
added the set Y to our intial set where Y := {yj,i|i, j ∈ N, j ≤ i ≤ n − 1}.
We also define how S acts on elements in this set by saying ∀k ∈ [1, n− 1],
xkyj,i exists ⇔ k = i− j (and hence j 6= i) in which case xkyj,i = yj+1,i.

Similarly, since x−1
i+1vi is defined ∀i ∈ [1, n − 2] we also add the set

Z := {zj,i|i, j ∈ N, i + j < n} to our proposed S-act where (∀i ∈ [1, n − 2])
x−1
i+1vi = z1,i and (∀k ∈ [1, n − 1], zj,i ∈ Z) x−1

k zj,i = zj+1,i when k − 1 =
i + j but is undefined otherwise. Knowing this, we can define how certain
elements will act on values in this set.

Lemma 6.4.4. ∀wa,b ∈ S, wa,bvi exists ⇔ a+b = i+1. Then, wa,bvi = yb,i.
Similarly, ∀w−1

a,b ∈ S, w−1
a,bvi exists ⇔ a = i+ 1 in which case w−1

a,bvi = zb,i.

Proof. Given that wa,b = xaxa+1 · · ·xa+b−1 and the conditions under which
xkyj,i exists we can say that wa,bvi exists ⇔ a+ b = i+ 1. Knowing this, we
can say that;

wa,bvi = xaxa+1 · · ·xa+b−1vi = xi−b+1xi−b · · ·xivi
= xi−b+1 · · ·xi−1(xivi) = xi−b · · ·xi−1y1,i

= · · · = xi−b+1yb−1,i = yb,i.

(110)
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The existence and value of w−1
a,bvi is given dually.

Corollary 6.4.5. ∀yj,i ∈ Y , ∃wa,b ∈ S such that wa,bvi = yj,i, a = i − j+
and b = j. Also, ∀zj,i ∈ Z, ∃w−1

a,b ∈ S such that w−1
a,bvi = zj,i, a = i+ 1 and

b = j.

Proof. Take yj,i ∈ Y . From this we know that i, j ∈ N and j ≤ i ≤ n − 1.
If we set a = i − j + 1 and b = j note that a ≥ j − j + 1 = 1 and
a ≤ n − 1 − j + 1 ≤ n − j ≤ n − 1, so a ∈ [1, n − 1] and xa ∈ S. Also,
a + b − 1 = i − j + 1 + j − 1 = i ∈ [1, n − 1] which tells us that wa,b ∈ S.
Since a+ b = i+ 1, we know that wa,bvi = yb,i (by Lemma 6.4.4).

Now take zj,i ∈ Z and set a = i+ 1 and b = j. Given the definition of Z,
i, j ∈ N and i+ j < n. Since i, j ∈ N we can say that 1 ≤ i, j and therefore,
2 ≤ i + j ≤ n − 1. Also, i + j < n ⇒ i < n − j ⇒ i < n − 1 (since 1 ≤ j).
Therefore, a = i+1 ∈ [2, n−1]. We also know that a+b−1 = i+j ∈ [2, n−1].
Hence, wa,b ∈ S and by Lemma 6.4.4, w−1

a,bvi = zj,i.

The different actions we can get from S acting on the set V ∪ Y ∪ Z
will come from equating different values in the set. However there are some
restrictions on what can be equated.

Lemma 6.4.6. ∀i, j ∈ [1, n− 1], i 6= j ⇒ vi 6= vj.

Proof. Say i 6= j and vi = vj . Then both xi and xj act on vi = vj which
contradicts Corollary 6.4.2.

Lemma 6.4.7. ∀yj,i, yq,i, yj,p ∈ Y and zj,i, zq,i, zj,p ∈ Z:

• yj,i = yq,i ⇒ j = q,

• yj,i = yj,p ⇒ i = p,

• zj,i = zq,i ⇒ j = q,

• zj,i = zj,p ⇒ i = p.

Proof. Say yj,i = yq,i. Corollary 6.4.5 tells us this is equivalent to saying
wi−j+1,jvi = wi−q+1,qvi ⇒ vi = w−1

i−j+1,jwi−q+1,qvi. Since are action is
defined such that zero element does not act on anything in our set, we can
use Lemma 6.1.4 to say that i − j + 1 = i − q + 1 ⇒ j = q. The same
method of using Corollary 6.4.5 and Lemma 6.1.4 tells us that yj,i = yj,p ⇒
i− j + 1 = p− j + 1⇒ i = p.

A dual proof can then be used to show that zj,i = zq,i ⇒ j = q and
zj,i = zj,p ⇒ i = p.
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7 Conclusion

A working method of gaining information about inverse semigroups from
their actions is a very promising idea. It would allow us to be able to learn
more about a semigroup without the need of fully understanding theoir
structure. Though I was not able to achieve such a high goal in my studies,
I believe that the work I have shown here demonstrates the current problems
we have.

Our current method for having inverse semigroups act on graphs shows
promising results. In particular, given what we now know about the actions
of free products of inverse semigroups, we can now create working examples
of very complex inverse semigroups if we know we can express them as a free
product of simple semigroups with a known working action. This includes
free inverse semigroups with an infinite number of generators. The ideas
explored can now be applied to any inverse semigroup that can be expressed
as a free product of inverse semigroups.

Our investigation into polycyclic, Bruck-Reilly and Brandt semigroups
suggests we might need to change our approach, however. As demonstrated
in their respective sections, our current way of defining an inverse semigroup
action can not give us back a fundamental inverse semigroup that is isomor-
phic to the original semigroup in some cases. This is due to such semigroups
containing a zero element. I think I have been able to demonstrate the issues
that come with the zero element and our current method of finding an ac-
tion. It is clear that any working method would probably involve diverging
more from the Bass-serre theory of groups then our method currently does.
If such a method can be found that will allow the existence of zero elements
in the fundamental inverse semigroup then it we can re-examine our current
working models to see if they will still work under this new method.
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