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In group theory we are able to derive many properties about a group from how it acts
on a graph. Knowing this, we aimed to find similar results for inverse semigroups
acting on graphs. We were able to find a consistent method of defining an action for a
free product of inverse semigroups provided we already have actions for the
semigroups that make up this product. Furthermore, this action will deliver back to us
a fundamental inverse semigroup that is isomorphic to the free product. Following
this, we looked at how our method works with polycyclic, Bruck-Reilly and Brandt
semigroups. After finding that it does not work in the general case, we looked at what
additional properties we will need for our semigroup in order to make it work. In
particular, we found that a zero element in an inverse semigroup causes a lot of
problems for our current method.
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1 Introduction

In group theory, we are able to determine many properties of a group based
on how it acts on a graph. It is therefore a logical next step to investigate if
we can replicate such results with inverse semigroups. A method of defining
an action of an inverse semigroup on a non-trivial graph has been around
for some time but it is yet to be proven either way if this tells us anything
about the inverse semigroup. This project aimed to take inverse semigroups
with certain properties and see if said properties can be proven with the
inverse semigroup action.

We begin by covering the method currently in place for defining an action
of an inverse semigroup on a graph and how we get back what we call the
fundamental inverse semigroup from this method. As we demonstrate this,
we will be comparing it to how the same process is done in group theory so
that we may better understand the logic behind the process.

Following this, we look at how we can create a graph that a free product
of inverse semigroups can act on when we already have graphs that these
semigroups act on independently of each other. Furthermore, we demon-
strate how the fundamental inverse semigroup from this sytem is isomor-
phic to the free product of inverse semigroups. Next we investigate poly-
cyclic semigroups and demonstrate how this method does not always work
for such semigroups. The final sections show how our method can be used
for Bruck-Reilly semigroups and Brandt semigroups and more importantly,
when this method will give the desired results for such semigroups.

2 Preliminary Ideas

The motivation for this project comes from the Bass-Serre theory of groups.
As such it will be worthwhile giving a brief overview of this theory and how
we try to reflect this method with inverse semigroups. The notation and
terminlogy used in Bass-Serre theory will be the same used by Dicks and
Dunwoody [6]. Similarly the ideas behind how we can adapt these ideas to
work with inverse semigroups comes from James Renshaw’s paper [22].

We will also be defining graphs by the sets V' and E where V is the set
of vertices of the graph and FE is the set of edges that connect them.

2.1 Semigroup Actions

We will begin with the definiton of a group action outlined by Dicks and
Dunwoody [6].

Definition 2.1.1. Let G by a group and X a set of elements. We say G
acts on X if we can define a function f : G x X — X such that:

® V91,92 € G,z € X, f(9192,7) = f(g1, f(g2, 7))



e Vze X, f(l,z)=x

If such a function exists we call X a G-set and say that a (left) G-act exists
on X.

Note that this is equivalent to saying there exists a group homomorphism
from G to Sym(X) (the set of permutations of X). Another important
property that we can derive from this definition is that Vg € G and x,y € X,
flg.2)=y=z=f(g""y).

Similarly we can expand this definition to apply to inverse semigroups.

Definition 2.1.2. Let S by an inverse semigroup and X a set of elements.
We say S acts on X if we can define a partial function f : S x X — X such
that:

o Vsi,s0 € S,z € X, f(s152,7) exists & f(s1, f(s2,7)) exists. Then

f(s1s2,2) = f(s1, f(s2,@)).
o V., ye X,se S, f(s,z) = f(s,y) =x=y

If such a partial function exists it defines X as an S-act and we say that a
(left) S-act exists on X.

This definition when applied to groups is in fact the same definition as
a group action. In other words, all group actions can be considered to be
semigroup actions. In fact it is easy to prove that inverse semigroup actions
share some properties with group actions.

Lemma 2.1.1. /22, Lemma 3.1.] Let X be an S-act of an inverse semigroup
S':

i VSES,ZL',yGX, f(5,$):y:>l‘:f(8_l,y)
o Ve c E(S),z € X, f(e,x) exists implies that f(e,x) = x.

It is important to mention one difference in these two actions that will
complicate our objective. By definition, in a group action f(g,x) will exists
for all ¢ € G and z € X, however the same cannot be said for inverse
semigroup actions. Going forward, we will say f(s,z) = sx when the context
is clear.

Right group and inverse semigroup actions are also defined dually, but
unless otherwise specified we will be considering all our actions to be left
actions. It will also be helpful to define some other terminology that we
will be using alongside their roots in group theory when applicable. For the
following definitions, we say GG, S and X are a group, inverse semigroup and
set respectively. Furthermore, we are assuming that X is a G-act and S-act.

Definition 2.1.3. Let X and Y also be G-sets. If a function f: X — Y
exists such that Vo € X, g € G, f(gr) = gf(x) then we define f to be a
G-map.



Definition 2.1.4. Let X and Y be S-sets. If a function f : X — Y exists
such that Vo € X, s € S, f(sz) = sf(x) then we define f to be a S-map.

Definition 2.1.5. Let X be a graph defined by a set of vertices, V' that is
a G-set and a set of directed edges, F. Say the graph is such that F is also
a G-set where any g € G acts on e € E if it acts on both the edge’s initial
and terminal vertices in V' which we shall label v; and vy respectively. The
action will then map the edge to another edge in E whose inital vertex is
gv1 and whose terminal vertex is guvo. We define two G-maps ¢ : E — V
and 7 : E — V which map the graph’s edges to their initial and terminal
vertices respectively. Collectively, (X,V, E,¢,7) is defined to be a G-graph
which will just be denoted by X when the context is clear.

Definition 2.1.6. Let X be a graph defined by a set of vertices, V' that is
a S-set and a set of directed edges, E. Say the graph is such that F is also
a S-set where any s € S acts on e € F if it acts on both the edge’s initial
and terminal vertices in V' which we shall label v; and v respectively. The
action will then map the edge to another edge in E whose inital vertex is
sv1 and whose terminal vertex is svpo. We define two S-maps ¢ : £ — V
and 7 : E — V which map the graph’s edges to their initial and terminal
vertices respectively. Collectively, (X, V, E,,7) is defined to be a S-graph
which will just be denoted by X when the context is clear.

Definition 2.1.7. For every s € S we define the domain of s to be given
by the set;
DY = {x € X|sz € X} (1)

In other words, the domain of s is the set of elements in X that s can act
on. Likewise, the domain of any x € X is the set;

D ={se S|sz e X} (2)
Remark. In a group action, the domain of every element would be X.

Knowing this,we can prove certain properties of the domains of an S-act
based on the properties of S.

Lemma 2.1.2. Let s € S such that Ds # 0:
o [If s is the zero element in S, then Vt € S, Dy C Dy.
o [f s is the identity element in S, then Vt € S, Dy C Dy.

Proof. Let s € S and x € X be defined so x € D,. Say s is the zero element
in S. Then, Vt € S, st =s. So, x € Dy = sx = s(tzx) exists. Therefore,
x € Dy which tells us that Dy C Dy. If instead, s is the identity element in
S, then ts = t. Let y € Dy, then ty = t(sy) exists. Consequently, y € Dy
and thus D; C Dy, ]



Corollary 2.1.3. If S is an inverse semigroup with zero and x € X is such
that x € Dy, then Vs € S, sx = .

Proof. From Lemma 2.1.2, we know that Dy C D, and hence sz will exist.
Therefore, since 0 = 0s, we can say that Ox = Osx which then implies that
T = sx. O

Lemma 2.1.4. Vs,t € S, Dy C D;.

Proof. Let s,t € S. If Dy = (), then Dy C D; by definition. Assume
Dy # 0. Then, Vo € Dy, (st)x exists = tx exists. Hence, z € Dy and
Dy C D, N

A consequence of Lemma 2.1.4 is that if s,¢ € S are such that ss™! =

tt=', then Dy—1 = D;-1.
Lemma 2.1.5. Let s € S. If |Ds| # |Dy-1| then |X| = oc.

Proof. Say X is a finite set. This then implies that |Dg| and |D,-1| are also
finite. So, say Ds = {x;li € {1,2,...,n}} for some n € N*. Then, for
each x; € D, Jy; € X such that sx; = y;. Furthermore, this implies that
x; = s~ 'y; and hence y; € Dy—1. Given that the action of s is a bijection
Dy — D1 we can say that |Ds| = |Dy-1]. O

Lemma 2.1.6. If dx € X such that D* is an inverse semigroup, then
S = D¥ or S is a union of two disjoint inverse semigroups.

Proof. Say x is an element in an S-act such that D* is an inverse semigroup.
Assume S # D¥, so Js,t € S such that s,t ¢ D*. If st € D*, then (st)xr =
s(tz) exists. However, this then implies that tx exists and hence t € D*
which contradicts our definition of t. Hence, s,t ¢ D* = st ¢ D*. Finally,
since D? is an inverse semigroup, we know that for any s ¢ D? = s~1 ¢ D=,
This then makes S\D? an inverse semigroup. S can therefore be thought
of as a union of the inverse semigroups D* and S\D* which, by definition,
must be disjoint. O

Lemma 2.1.7. If D® is a proper inverse subsemigroup of S for some x € X,
then S\D?* is an ideal of S.

Proof. Let s be an element in S such that s ¢ D*. Say 3t € S such that
ts € D*. This would then imply that (ts)x = t(sx) exists and hence s € D*
which contradicts our definition of s. Therefore, S\D? is a left ideal of S.
Now instead assume that ¢ is such that st € D*. Since D” is an inverse
semigroup, it must be the case that (st)™' = t~'s~! € D*. This further
implies that s~ !z exists meaning that s~! € D*. However, since D® is an
inverse semigroup, s~ € D = (s71)7! = s € D® which again contradicts
our definition of s. This means that st € S\D* making S\D?" a right ideal
of S. O



Remark. To prove that S\D?” is a left ideal of S, we never needed to use
the fact that D” is an inverse semigroup and so this must be true for the
domain of any element in an S-act.

Definition 2.1.8. Vax € X the S-orbit of x is given by;
Sz = {sz|s € D¢} (3)

These orbits are used to define the quotient set of S-acts. For example,
S\X = {Sz|z € X}.

Definition 2.1.9. The G-stabilizer of any x € X is defined to be the set of
elements in G that fix x. This set is given by;

G = {g € Glgz = z}. (4)
Similarly we define the S-stabilizer of x to be the set;
Sy = {s € S|sz = z}. (5)

Remark. It is easy to prove that any G-stabilizer is itself a group. Likewise
any S-stabilizer is an inverse semigroup.

Any G-stabilizer or S-stabilizer can be considered to be a subgroup and
inverse subsemigroup of G and S respectively. Furthermore, we define the
set of G-orbits of X to be the quotient set of X given by G\ X. Similarly, if
we define X to be an S-act then the quotient set, S\ X, is defined to be the
set of S-orbits of X. It is easy to see that we can map a G-set (or S-set) to
its quotient set by mapping the elements to their orbits.

Definition 2.1.10. Consider X to be a G-graph. The graph (G\ X, G\V,G\E, 1, T)
is called the quotient graph of a G-graph where ¢ and 7 are functions from

G\E to G\V. They are defined by 7(Ge) = Gre and 7(Ge) = Gre. The
quotient graph of an S-graph is defined dually.

Definition 2.1.11. A G-transversal of X is a subset of X that meets each
of its G-orbits exactly once. We also define an S-transversal dually.

Now consider our action to be a G-graph (resp. S-graph) and let Y be
a G-transversal (resp. S-transversal) of X. If 3Yy C Y C X such that Yy
is a subtree of X, VNY C Yy and t(e) € VNY (Ve € ENY) then we
call Y a fundamental (G-)transversal in X. The definition of a fundamental
(S-)transversal of an S-graph is given dually.

Remark. Note that for any G-transversal, Y the composite Y C X — G\ X
given by mapping elements in Y to their orbits is a bijection.

It has been proven that if the quotient graph G\X is connected then
such subsets of X can be shown to exist [6, Proposition 1.2.6.].

For the following definitions, we will be assuming our set X gives us a
fundamental transversal when we take it to be a G-graph or an S-graph.



Definition 2.1.12. A graph of groups associated to X is a graph derived
from a fundamental G-transversal of X and its quotient graph whose vertices
and edges are all groups. If we take a fundamental G-transversal of the
quotient graph then there exists a bijection between it and a fundamental
G-transversal of X, say Y. For every vertex v in Y we assign the group G,.
Similarly for every edge e in Y we wish to assign the group G., however
7(e) may not exist in Y. If such an edge exists, the graph formed from these
stabilizers will not be a graph. To account for this, we also need to assign
to every edge stabilizer a group monomorphism from Ge to Gz ge) (which
is the stabilizer of the unique vertex in Y whose orbit contains 7(e)).

Given our definition of Y, we know that it contains a unique vertex that
exists in the same orbit as 7(e). If we call this vertex v we can say that
Gr(e) = Gy. Therefore, 3te € G such that t.v = 7(e). Note that t.G,t; ! =
Gr(e)- Hence we can say that there exists an embedding f. : Ge — G given
by g — t_ lgt. since G, is a subset of G(e)- So in our graph of groups the
terminal vertex of G, will be given by GG,,. Using this we are able to create a
connected graph whose vertices and edges are stabilizers of the vertices and
edges in Y.

Definition 2.1.13. We define a graph of inverse semigroups of an S-graph
from a fundamental S-transversal and its quotient graph in a similar way to
how we would define a graph of groups of a G-graph. The only difference
comes from how we find embeddings of edges in our graph. In the definition
of the graph of groups, the embedding that we presented is always guar-
enteed to exist. In the inverse semigroup case, however, this is not always
true. As such it may not be possible to find a suitable embedding and hence
the graph of inverse semigroups cannot be defined.

We do however have a method of proving the existence of certain embed-
dings. Say we have an edge e € Y such that 7(e) ¢ Y, and therefore need to
find an embedding from S, to S, where v is the unique vertex in Y N .S7(e).
Since v € ST(e) we know that 3t. € S such that t.v = 7(e). Unlike with the
group scenario, it is not always possible for us to say that t.S,t; = Sr(e)-
We can however say that te_lST(e)te C S,. Knowing this, it can be shown
that an embedding exists from S;() to a subset of S, if S () is a monoid
whose identity is t.t; [22, Theorem 3.8.]. Again we label this embedding
with fe and define it as mapping every s € S;(¢) to fe(s) = t;lste € 9,

If these graphs exist we are able to use them to create fundamental
groups and inverse semigroups.

Definition 2.1.14. Let Y be a fundamental G-transversal of X such that
we can define a graph of groups from it and Vy to be the vertices in Y. Also
let E; be the set of edges in Y whose terminal vertices do not exist in Y and
Ve € E; let t. be an element in S such that the map f. : Go — G, given by
g — te_l gte is an embedding. Note that we know such a t. must exist due
to the existence of the graph of groups.



From this we define a group interms of its generators and relations. The
generators of the group are given by the set {tcle € Er} U,y Goo In
other words, the set is a union of the vertices in the graph of groups and
any other elements in GG that are required for the existence of the relavent
embeddings in said graph. The relations of our group are the relations of
the groups G, (Vv € Vy) and that f.(g) = t_lgt. (Ve € E;, g € G¢). We
call this group the fundamental group of G' and label it G'.

The fundamental (inverse) semigroup is defined dually from a graph of
inverse semigroups where the genrators and relations we obtain are instead
used to define an inverse semigroup instead of a group. That is to say, if
Y is instead a fundamental S-transversal of X for every edge e € E, we
require an element t. € Ssuch that f. : S, — S, given by s — te_lste is an
embedding. Then the generators of the fundamental inverse semigroup is
given by the set {tc|e € E;} Ul,cy; Sv and the relations are the relations
of the inverse semigroups S, (Vv € Vi) and that f.(s) = t_!st. (Ve € E,,
s € S.). Similarly we label the fundamental inverse semigroup S’

It is known that if we have a group that acts on a tree then the fundamen-
tal group we obtain will be isomorphic to the original group. In particular,
for any group we can define a graph that it acts on.

Definition 2.1.15. For any group G take a subset T' C G. Define a graph
whose vertices are the elements of G and whose edges are given by £ = G xT
where V(g,t) € E, 1((g9,t)) = g and 7((g,t)) = gt. Such a graph is called the
Cayley graph of G with respect to T

If we take the Cayley graph of G with respect to a generating set of
G, then the quotient graph is connected. As such, we are able to find
a fundamental group from this system that is isomorphic to the original
group.

There is not, however, an equivalent theory for inverse semigroups acting
on graphs. Like with group actions, we are able to make a graph from a
generating set of any inverse semigroup that it can subsequently act on.

Definition 2.1.16. [22] Let X be a partial S-biact of an inverse semigroup
S and T C S. We define an S-graph, (X,V, E, ., 7T) to be given by X =V,
E ={(z,t) € X x E: zt exists and xt # x}, v(x,t) = x and 7(x,t) = xt for
any (x,t) € E. Such a graph is called the Schiitzenberger graph of X with
respect to 7" and is denoted by I' = T'(X, T).

The particular Schiitzenberger graph we are interested in is when V =S
(where S is an inverse semigroup) and 7' is a generating set of S. In such a
case, the Schiitzenberger graph will be a set of trees where the set of vertices
of any such tree is equivalent to an R-class of S.

Definition 2.1.17. Let S be an inverse semigroup. We define xg to be a
function from S to itself where, Vs,t € S, s *xg t is defined if and only if



t = s st. If sxgt does exist, then sgt = st. Such a function is then called
the Preston- Wagner representation with respect to S

Remark. The Preston-Wagner representation is usually defined in a slightly
different way. For any s € S, we define ps to be a partial bijective map given
by ps(t) = ts where t € dom(ps) if and only if ¢t € Ss~!. The map s — py is
then called the Preston-Wagner representation of S. It is easy to see that
this definition is equivalent to the one that is used in this paper.

Using this, we can define an action of S on itself by setting f(s,t) = sxgt
(Vs,t € S). By doing this, we find that the orbits of elements to be the
L-classes of S. The problem with this method is that, unlike the Cayley
graph of groups, the quotient graph of this system may not be connected.
Therefore, we not be able to define a graph of inverse semigroups. Even if
we are able to do this, we would still need to show that the fundamental
inverse semigroup would be isomorphic to the original. As such,we do not
always use this method when finding an action of our inverse semigroup on
a graph.

Example 2.1.8. For clarity, it will be helpful to look at an example of when
we have an action of an inverse semigroup on a graph which returns to us
a fundamental inverse semigroup that is isomorphic to the original. Let S
be a monogenic inverse semigroup given by S = Inv(a|) and define the set
V ={a1,a0,a_1,...} to be the set of vertices of a graph.

We then define a partial map ¢ : S x V' — V to be such that ¢(s,v) =
ps(v) where p; is given by;

al aO a—]_ DY
= . 6
= () (6)
Say our graph with vertices V is;

a~xr a72 o~ a/il axr aO T a1

Now we need to find our vertex and edge orbits to get our quotient graph.
From our definition of p, we can see that all our vertices share the same
orbit and all the edges share the same orbit. Let a represent the orbit of the
vertices in the graph and z represent the orbit of the edges. Then we have
the following quotient graph;

Ql
Kl



By picking the vertex ag to represent a in an S-transversal, we must
then pick = to represent = as this is the only edge in the graph that has ag
as its start point. This then means that our S-transversal is;

xX
ay ——

Therefore, we wish to construct a graph of inverse semigroups from the
stabilizers of ag and x which looks like;

Sag Sz

However, for such a graph to exist, we require a map from S,, — Sg,
such that it gives a monomorphism from S, C S,, to S,,. We know that
such a monomorphism exists if 3 € S such that #t~! is the identity in Sy,
and tag = a1. Said monomorphism is then defined by s+ t~!st Vs € S,,.

Before we can identify ¢, we need to find the values of S,,, S,, and S;.
From examination of p, we can see that ag can be acted on by a1 and all
positive powers of a. Hence, S,, = Inv(a "a", aa~tn € IN). Similarly we
can find that S,, = {a™"a"|n € N} and S; = {a "a™|n € IN}. Therefore,
we can now say that we are looking for a ¢t € S such that tt~! = a~'a. An
obvious choice is a~! and since o~ 'ag = a; we can say that t = o~ L.

We now construct a semigroup presentation, say S’, from the information
we have from our graph of inverse semigroups. First we will say that v =
aa~tand B, = a "a" Vn € IN. These along with ¢ then give the generators
of §’.

The first relations we set for S are those of S,,. These are (Yn,m € IN)
B2 = By, 7 = v and Bnfm = Bmaz{nm}- We also need the following
relations, tt~1 = B; and t~'B,t = yB,—1 if n > 1 and 7 otherwise.

We now show that S’ is equivalent to S. We prove this by simplifying
the presentation of S’. First, tt=! = 81 and ¢t !5t = v imply that v = ¢t~ 1¢.
So we can now remove v from our generators providing we account for the
relations in S’ that contain . Both 72 = v and t~!pt = ~ are given
by v = t~!t and can therefore also be removed. However, we can not do
the same for t7!8,t = vB,—1 if n > 1. We therefore replace this relation
witht ~'f,t = t~'B3,_1 if n > 1, but this is equivalent to another equation.

1Bt =t B if n > 1t Bt =t 16,
St Bttt =6, t !
& B1Bn1 B = tBpt !
& Busr =Pt

(7)



So we can replace our relation with 8,11 = t8,t~! Vn € IN.

Furthermore, we can prove by induction that 3,41 = tB,t ! Vn € N =
Bn = t"t™". We know this holds when n = 1 as 8; = tt~! is given in the
relations. Say S = t*t* for some k € IN. Then we can say;

Also note that £, = t"t™" = B,41 = tB,t~!, so again we can replace our
relation with a new equivalent equation.

Bn = t"t~" then allows us to remove the generators 3, from our presen-
tation of S’. It is immediately obvious that 3,41 = t8,t~ !, 82 = B, and
B = tt~! are all given by 8, = t"t™™. So we now need only check if it
also implies that 5,8y = Bnazn,my ¥n,m € IN. Assume that n < m, then
ﬁnﬁm = g ngmp—m (tnt—ntn)tm—nt—m — MmNy m _ ymy—m Bm
Similarly, if n > m then 3,06, = Bn. Note that we don’t need to check for
when n = m as this is covered by 32 = f3,,.

So, S" = Inv(t|) which is equivalent to S.

We could equally have gotten a working example if we had defined ¢ by
#(s,v) = p;'(v) and our graph given by;

a—o a—q ap al

Though this example does work, we cannot say that we can always follow
a similar method whenever we have such a semigroup acting on a graph.

Example 2.1.9. Consider ¢ to be the same partial mapping as in Example
2.1.8 but this time we have an S-act on the graph;

a1 T ao az a1 a‘x a_s a

Again as in Example 2.1.8 we see that the vertices all share the same
orbit which we shall denote a. Similarly, the edges of our graph also share
the same orbit which we denote by Z. Therefore, we have the same quotient
graph as in the last example.

l
8

However, this example differentiates from Example 2.1.8 when we find
the S-transversal of this system is. First say we take a1 to represent a. Since
a1 is the initial vertex of only one edge in our graph, we must take the edge
representing T to be said edge, which is x. This then gives us the following
S-transversal,

10



x
a)] ———

So, we wish to find a monomorphism from S, to Sy, given by some
element ¢t € S such that ta; = ag and t¢~! is the identity element in S,. As
S, = {a™"a"|n € N}, we can see that it is a monoid with identity a~'a.
We also note that a; is mapped to ag by «, elements of the form o~ "a"*!
and those of the form aa™"a" (where n € IN) and hence are all the possible
values of t. However, none of these elements will satisfy tt! = ala.
Therefore we can go no further with this S-transversal and must choose a
different representative of @ when constructing an S-transversal.

Note though, that S, is the only stabilizer of an edge in this system that
contains an identity element. However, we have already examined the only
S-transversal that contains x. So, there is no S-tranversal in this system

that will allow us to create a graph of inverse semigroups from our method.

3 Free Products of Inverse Semigroups

The topic of the free product of inverse semigroups was first investigated by
Preston [20] when he examined the free products of semigroups in general.
Though he did not go in depth with his analysis, Preston did suggest the
idea of a theorem that tells us the strucre of this product similar to what
Scheiblich [23] had recently done with free inverse semigroups. Later work
was done on the inverse free product of groups [12] [16] and E-unitary semi-
groups [10], but it was work by Jones [11] that gave us a general structure of
the free product of inverse semigroups that we will be using in this section.

3.1 Previous Results of the Free Product

We will begin by covering work presented in Free Products of Inverse Semi-
groups [11] that gives us some of the terminology and foundational knowl-
edge that I will use in this section. Note that in this paper, Jones presents
results for both the free product of inverse semigroups in the categories of
semigroups and of inverse semigroups. It should be mentioned that we will
be taking the free product to be in the category of inverse semigroups. We
do this in the following way.

Definition 3.1.1. Let S and T be inverse semigroups. The inverse free
product is defined to be the set of words a = ajas---a,, over S UT such
that no two adjacent letters belong to the same factor of S or T" along with
the relation that a=! = a;,'a ! ---a7" and that letters in E(S) U E(T)
may commute with each other in a word. We then label such a product by
Sx*T.

It can then be proven that this product is an inverse semigroup [7]. We
then need some terminology used by Jones. In particular, we will be using

11



the notation that any word a € S T can be given by ajas - - - a,, (as in the
previous definition) and the integer m is defined to be the length of a.

Definition 3.1.2. Let a € ST
e a is called reduced if a; ¢ E(S) U E(T) for any letter a; in a.

o If a,, is idempotent then a is called right idempotent.

a is defined to be left reduced if a,, is the only idempotent letter in a.

The set of prefixes of a is the set, pre(a) = {alal_l, alagaz_l, ceya1 e amantt.

If a is right idempotent, then we define a, for any positive integer r in
the following way;

ay - (ap—1Gr41) - am r<m-—1
ar=4qap--- am73(am72ama;nlf2) r=m-—1 (9)
a r>=>m

We define a, differently when r = m — 1 so that a, is always right-
idempotent.

If AC S =T is such that Ya € A, pre(a) C A then A is called prefix closed.
Furthermore, A is called precanonical if it is a finite, nonempty, prefix closed
set of right idempotent words. Note that pre(a) is a precanonical set.

Definition 3.1.3. Let A C S T. A is said to have unique last letters if
149+ * Amp—1Qm, 4102 * * * Ayy—1bm € A = Ay = by,

Definition 3.1.4. Let A be a precanonical subset of S*T. Va € A, €(a) =
aa™!. Furthermore, €(A4) = [],c 4 €(a).

Using this notation, Jones showed that e(pre(a)) = e(a) = aa™! and

hence we can write any word a € S x T by €(pre(a))a. Using certain oper-
taions, we are then able to change this into a form that is unique.

Definition 3.1.5. Let A be a precanonical subset of S xT. We can then
define the following functions:

e [(A) = Awhen Ais left reduced. Otherwise, let i be the least positive
integer such that Ja € A whose ith letter is an internal idempotent

(that being an idempotent that is not the last letter in a). Then,
L(A) = (ay|a € A).

e R(A) = A if A has unique last letters. Otherwise, 3k € INT such that
for some x,y € A, x; = y;,Vj < k and xj, # yi. R(A) is then obtained
by replacing each word a € A of length m > k by aq - - - (ex(a)ak) - - - am
where eg(a) = [[{fla1---ar—1f € A}. Notice that since A contains
right idempotent words, ex(a) is a product of idempotents. Therefore,
if a is a word of length k, er(a)ar = er(a).

12



Note that the L and R operations give a left reduced set and a set
with unique last letters respectively. Jones shows us that if we start with a
precanonical set A, the sequence L(A), R(L(A)), L(R(L(A))), ... eventually
terminates [11, Corollary 3.2.] with a set we label ¢l(A). Furthermore, cl(A)
is called a canonical set which is defined in the following way;

Definition 3.1.6. Let A be a precanonical set. If A is both left reduced
and has unique last letters then A is called canonical.

As previously stated, any element a € S*T can be written as e(pre(a))a.
Further work by Jones also shows that we can also use this to further say
that a = e(cl(pre(a)))z for some element x € S x T is an associate of
cl(pre(A)) [11, Theorem 3.3.]. An associative element of a set is defined
in the succeeding definition.

Definition 3.1.7. Let A be a precanonical set and a € S+«T. If a = 1 or
am ¢ E(S)U E(T) and aa;,' € A then we define a to be an associate of A.

So all that remains is to explain how x is found. To do so, we need to
define how the L and R functions act on words in S % T.

Definition 3.1.8. Let a be an associate of a precanonical set A and E =
E(S)UE(T).

o Ifa=1or L(A) = A, then La(a) = a. Otherwise, let i be as defined
for L(A). If a; is nonidempotent or m < i, then L4(a) = a. If a; does
not satisfy either condition then:

a; 1<i<m—-1

Li(a) a; i=m-—1and am_sam ¢ E (10)
a) =

A a1as - am-3 t=m—1,m=#3 and aym_2am € F

1 t=m—1,m=3and a,,,_ 20y, € F

e If a=1or R(A) = A, then Rjs(a) = a. Otherwise, let k and ey be as
defined for R(A).

a m <k

Ra(a) = { (11)

al...(ekak)...am m)k

Finally, given that cl(A) is defined to be the terminating set of the
sequence L(A), R(L(A)), ..., we define cl4(a) to be the corresponding word
in the sequence L4(a), Rray(La(a)),. ...

Jones uses this to say that any word in S'*T" can be given by a canonical
set and an associate of that set [11, Theorem 3.3.]. This is shown by the
following equation;

a=aa"ta = e(pre(a))a = e(cl(pre(a)))clpre(a)(a) (12)
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In fact, this form is unique to the word [11, Theorem 5.4.] and we define
it to be the canonical form of a. Note that a is idempotent if and only if

Clpre(a)(a) = 1.

3.2 Stabilizer of S-action

Using this information, we wish to investigate if there is a relation between
the graphs that inverse semigroups act on and those that their free inverse
product will act on (under inverse semigroup actions). Depending on which
action I started with, I defined the corresponding actions in the following
way;

Definition 3.2.1. Let S and T be inverse semigroups.

e If we have a known action of ST on a set X, we also have actions of
S and T on X since S,T C SxT.

e If S and T both have known actions on a set X, we can define an
inverse semigroup action of S * T on X by having words in S T act
on elements from our set with respect to how the letters that compose
them act on elements. For example, let a € ST, z € X, a;, € T
and -g and -p be the S-actions of S and T on X respectively. Then
we define a acting on x by;

Q- -SxT7 T = (al tet am—l) *SxT (am T .Z)
= (a1 am-2) 5«7 (Am—1 -5 (am T T)) (13)

Note that since idempotents preserve elements they act on, this still
holds as an (S*T')-act given that idempotents commute under the free
inverse product.

It is easy to show that the second case would give us an inverse semigroup
action. First let a,b € S*T. So, a = ajag---a, and b = byby - - - by (for some
p,q € N) where a,...ap,b1,...by € SUT such that no two adjacent letters
belong to the same factor of S or T'. Assume that (ab) -g.r = is defined for
some xr € X. By definition of g7, it is the case that:

(ab) -ssr @ = (@1 -+~ apby1---by) -suT @

14
= a1 -s¢7 (a2 541 - - (ap 557 (b1 557 - - (bg S5 T) . .. ). (14)

Since by,...,bq € SUT, we know that when any of these values act on
an element in X under the function defined by -g.p then -g,p is equivalent
to an inverse semigroup action (either -g or -r). Knowing this, we can say
that by -gur (b2 g4 - .. (bg “sv7 @) ... ) = b-ge7 x. Therefore, (ab) -su7 x =
ar 5«7 (a2 557 - - - (ap -5 (b-ser ) . ..).
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Let y :=b-gur 2. S0, (ab) -gxr @ = a1 -gx7 (a2 557 ... (ap-sy) ...). Using
the same method that let us say b1 -gu7 (b2 -s47 ... (bg"sv7 ) ...) =b-sur @
we can say that ay -ger (a2 -se7 ... (ap "s47Y) ... ) = @ 547 .

(ab) -ss7 x = ay g1 (a2 557 - (ap -5 (b-ssr x)...)

= Q- SxT (b *SxT x) (15)

Now assume a -g.7 1 = a -5« 2 for some x1,z9 € X.

When working on this topic it became helpful to have a method of defin-
ing the stabilizer of a point with respect to .S * T" using the stabilizers with
respect to S and T'. One idea as to how the stabilizer might be defined was
(89 % STYw = S5*T" (where x is any element in a set that S * T acts on and
for any inverse semigroup A, Aw is the closure of A) since it is easy to see
that one is a subset of the other;

Lemma 3.2.1. Let S and T be inverse semigroups and X a set they both
act on. For all x € X;
(85 + STw C 2% (16)

Proof. Say w € (S5 % ST)w. By definition, 3a € S7 ST and e € F(S%  ST)
such that a = we. Furthermore, we can say that a -gu7 ¢ = € -g47 T = .
Then;

W g4 T = W 54T (€ 547 ) = (WE) 547 T = @ 557 T = T. (17)

Therefore, w € S5*T O

The obvious next step was to take an s € S>*7" and see if it exists in

(S5 % STYw. Tt is not known if the converse is true, however, given that s
has the canonical form e(cl(pre(s)))clye(s)(s) we can determine some more
properties of the stabilizer.

Let ¢ = clpe(s)(s). Clearly ¢ € S2*7 (since s € S5*7" = e(cl(pre(s))) €
S5*T) and s < c. It is also a simple matter to find the canonical form of c.

Lemma 3.2.2. ¢ = ¢(pre(c))c is the unique canonical form of c.

Proof. Given Jones’ method of finding the canonical form of a word, we
begin with ¢ = e(pre(c))c. The next step will be to find cl(pre(c)). Given
that ¢ is defined to be an associate of a canonical set, we can say that it
is left reduced. Therefore, pre(c) is left reduced and L(pre(c)) = pre(c).
Furthermore, by the definition of pre(c), R(pre(c)) = pre(c). So, we can say
cl(pre(c)) = pre(c) and hence clpye() (c) = . O

Using this we can then show the following;

Corollary 3.2.3. ¢ is a mazimal element in S3*T
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Proof. Say 3d € S*T such that ¢ < d. By definition, Je, f € F(S5*T) such
that ¢ = ed = df.

c=ed=edd'd = e*dd™'d = edd 'ed
= (ed)(d"'e)d = (df )(df)~"d = e(pre(df))d.

Note that d is an associate of pre(df). Therefore, e(cl(pre(df)))clyrear)(d) is
a canonical form of ¢. Given the uniqueness of this form and Lemma 3.2.2,
we can say that pre(c) = cl(pre(df)) and ¢ = clpye(ar)(d)-

However, ¢ = df = ¢ = clpe(ap)(d) = clpre(e)(d). Also from the proof of
Lemma 3.2.2 we know that L(pre(c)) = pre(c) and R(pre(c)) = pre(c) and
so we can say that cl,.e(c)(d) = d. Therefore ¢ = d. O

(18)

3.3 Action of a Free Product of Bicyclic Semigroups

Say we have two copies of the Bicyclic semigroup;

A = Inv{alaa™" = 14)

19
B = Inv(b|bb~' = 1p) (19)

where 14 and 1p are the identities in A and B respectively.
The set of elements X = {x, ag, Quw,, Bo, Buw, |Wa € a™,wp € bT} can be
considered to be an A-act under the semigroup action;

Qg fory =2«
aly=<=z for y = ag (20)

Qg fOr ¥y = ay,
Similarly X is also a B-act with the action;

B fory==x
b ly="{uz for y = By (21)
Bow  for y = By

We include x in X so that there exists an element that both A and B can act
on. Note that though a~! does not act on 3y and b~! does not act on «p, this
action still satisfies to the properties of the Bicyclic semigroup in A and B.
Even though the domain of any element in a monoid must be a subset of the
domain of the identity, aa~"' is defined to be an identity element only on A.
Therefore, our action need only satisfy nga - Dg(,l (Vw, € A) for our action
to hold and this is clearly true given that DX, = {z, a, atw, |we € a*} and
elements in A cannot act on Sy or By, (Vw, € b). The justification for why
b~! not acting on g does not contradict bb~! = 1p is given dually. Hence,
we can say that we have n inverse semigroup action of A x B on the set X.
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Lemma 3.3.1. Let w € a™ UbT. Then;

wlp — aw  forw €aT (22)
Bw  forw € bt
Proof. Say w € a*. This would mean that w = a” for some n € IN.
wlz=a "z
e a_(n_l) (a_lﬁ) — a_(n_l)aa (23)
| — _
=a TQgn-1 = Qgn = Q.
The same method also shows us that w € bT = w™tz = S, O

Corollary 3.3.2. Under our action, there is only one vertex orbit.

Proof. By Lemma 3.3.1, all elements in {cv,, B,|w € atUbT} can be mapped
to . Furthermore, the definition of our action tells us that a 'ag = x and
b=18y =z. So, Vy € X, 3s € (A x B)! such that sy = . O

At this point it would be helpful to demostrate how we can get back
the Bicyclic semigroup as the fundamental semigroup using this action on a
graph.

Example 3.3.3. Let X4 = {z,ap, agn|n € IN} and define a directed edge
e given by t(e) = x and 7(e) = ag. We take this edge to be the single base
edge of a graph where the other edges are given by the semigroup action of
A on e. Call this graph G4. As shown below, this graph is a chain.

Qo T Qg Qg2

Lemma 3.3.4. V(G4) = X4.

Proof. We can immediately say that x,ag € V(G 4) since they are the ver-
tices that define e. From Lemma 3.3.1 we can also say that (Vn € IN)
t(a™"e) = agn and so agn € V(Gh). O

Given that our graph can be defined from a single base edge, there is
only one edge orbit, say €. We also know from Corollary 3.3.2 that there is
a single vertex orbit. Hence, the quotient graph of this system will be given
by:
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One (A x B)-transversal we can get from this is;

e
T

(@)

Lemma 3.3.5. Under our action of A on Xa;

D% ={14,a™ ", a "aln € N°},

24
DY° ={14,a™"|n € IN}. (24)

Proof. Let w € D%. We can write w in the form of a normal element in
the bicyclic semigroup, in other words, w = a~Pa? for some p, ¢ € INY where
p=0and g =0= w =14. Then, w € D} = a Pa%r exists = av exists.
By definition of our action, a?x exists == ¢=0or 1. If ¢ =0, then w =a™?
which acts on  Vp € IN?. If ¢ = 1, then w = a™Pa. According to our action,
a"Pax = a Pag and hence;

fo when p =0
wr =14 x when p =1 (25)

Qgp-1  when p > 1.

Therefore, D% = {14,a™",a "a|n € N'}.

Similarly, if w € D% we again say w = a~Pa? for some p,q € INY where
p=0and ¢ =0 = w = 14. Then waqg exists = a Palay exists = alqyg
exists. However, a%qq is undefined when g # 0 so it must be the case
that ¢ = 0 and w = aP. By our action, a Pag exists ¥p € IN? and so
DY’ = {14,a "|n € IN}.

O

Corollary 3.3.6.
S, ={la,a ta} C A,
Sep = {141%4 = 14}.

Proof. Lemma 3.3.5 tells us that S, C {14,a~ "D o "aln € IN°}. So we
need only check which of the elements in this set will fix x. By definition,
1ax = x since 14 is idempotent. Also, given Lemma 3.3.1 it is not possible
for a™"z = x for any n € IN. Therefore, it only remains to check a™"a fixes
for any n € IN. Say ¢ "ax = x. This implies that ax = a"z, but a™x is only
defined when n = 1. So, a~'a is the only possible stabilizer of = of the form
a""a. Furthermore, since ¢~ 'a is idempotent, we can say that a laz = .
Hence, S, = {14,a tal1% = 14, 1a(ata) = (a7 ta)ls = a~la}. Similarly,
Sap = {14]1%4 = 14}. O

(26)

Now that we know S, and S, we can find a ¢t € A such that tx = o and
tt=! = Id(S,,). Such atis given by t = a. Therefore this (A* B)-transversal
will give us the following graph of inverse semigroups.
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Lemma 3.3.7. The fundamental inverse semigroup of this system is equal
to A.

Proof. Let S be the fundamental inverse semigroup of this system. By
definition the generating set of S will be given by {s1, s2,t} where s = 14,
sy = a 'a and t = a. The relations of S are then given by s% = s1, 53 = s2,
5189 = S981 = 9, tt71 = 51 and t " sit = s9.

Note that tt~! = s; and t~'s;t = sy imply that so = ¢t~ 1t~ = t~1¢.
Since s2 can be expressed this way, we can remove it from our generators
and replace it in our relations with ¢t~'¢. Similarly, since tt~! = s; we can
also remove s1 from the generators and replace it in the relations. This will
then give us S = Inv(t|tt =2t =t 1¢?t~! = ¢~!t). Note that we have already
removed the relations (tt71)% = tt~! and (t~'t)? = ¢t~ 't since these are given
by definition of an inverse semigroup.

Given the relation we have in S we can say that;

ttt™h) = () () = (e D) =ttt =ttt =t (27)

Since we also know that (tt~1)t = ¢, we can say that ¢! acts as an identity
on t in S. This would further imply that it also fixes = and since ¢ is the
only generator of S we can say that t¢~! is the identity in S. Knowing this
we can rewrite our original relation as (tt~1)(t71t) = (t7't)(tt~!) = t 't and
see it is given by ¢! = 1g. Therefore, we can say that S = Inv(t|tt™1 = 1g)
which is the bicyclic semigroup. O

Example 3.3.8. Now consider an action of A * B on X as defined by
Definition 3.2.1. Create a graph with edges e4 and ep as our base edges
where z = 1(es) = t(ep), agp = 7(ea) and By = 7(ep). This then gives us
the following graph that we shall label G.

a*2e,4 aigeA

oo Qg
&A\ //
T a‘leA
/e‘B/ \
-1 b72€B bigeB
Bo bes By

Lemma 3.3.9. V(G) =X

Proof. Given our definition, we know that z,aq, 5y € V(G). Also, using
Lemma 3.3.1 we can say that Yw € (a), 7(w™tes) = a, and Yw € (b),
T(w™tep) = By. Therefore, ay,, Buy € V(G) (Vwa € (a), wp € (b)). O

19



Lemma 3.3.10. YVw € A x B;

wey erists = w € A
. (28)
wep exists = w € B

Proof. Say wey exists. This implies that wi(eq) = wzr and wr(es) = wag
are both defined. Let n be the word length of w in A B and assume n > 1.
Then, w = wiws - - - w, for some wi,ws,...,w, € AU B where (Vi € [1,n])
w; € A (resp. B) implies that w;_1,w;11 € B (resp. A) if they exist. From
our action, we know that wag can only exist if w, € A. Therefore, we4
exists = w, € A. We also know that if w acts on ey, then w, acts on
x. Since w, € A either w,x = z or «a, for some z € (a|). If wy,z = =,
then Corollary 3.3.6 tells us that w, = 14, since w, must also act on «y.
In which case t(wpeq) = x and 7(wpes) = ap. However, this would mean
that w,_1 can not exist, since it must exist in B and act on «ag which is
not possible. Alternitively, if w,x = «, for some z € (a|) then agaain wy,_;
cannot be defined since it must act on «, and exist in B. So in both cases
w can only be a word of length 1 and hence it exists in A. The existence of

wep implying w € B is defined dually. O
Corollary 3.3.11.
D g ={1a,a "n € N} (29)
Dy = {15, b "n € IN} (30)

Proof. By definition, D%, = D%z N D%, 5. However, Lemma 3.3.10 tells
us that D% 5 C A. Therefore, D\ 5 = DY° N D%. Using Lemma 3.3.5
we get that D 5 = {14,a7"|n € IN}. Similarly, we can use a dual proof
of Lemma 3.3.5 in B to define D% and D'BB0 and Lemma 3.3.10 to say that

D%, = {1p,b~"|n € N}. 0

From the construction of G, it is safe to assume it is a tree. However, it
will be worth while to prove this properly to be certain of this fact.

Corollary 3.3.12. G is a tree

Proof. We know that edges e4 and ep are connected since they both share
an initial vertex. From Lemma 3.3.10 we have that every other edge in G
can be written as we 4 for some w € A or wep for some w € B. Say we have
an edge given by we 4. Corollary 3.3.11 tells us that w € {14,a "|n € IN}. If
w = 14, then weq = e4 and so is connected to our base edges by definition.
Instead assume w = a~ ™. If n = 1, then 7(we4) = t(ea) = x and so we, is
connected to a base edge. Now assume n > 2. We can then say that weg
is connected to the edge a~("Vey, since 7(wea) = t(a= " Vey) = agn-1.
Then either a= (™ Ve, is connected to eq or a=("2ey depending on the
value of n. If we continue this method, we find that we can show that there
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is a chain of edges creating a path of edges that connect wey4 to e4 for any
n € IN. Similarly, we can show that any edge of the form wep is conencted
to e and hence our graph must be connected.

Now assume dn € IN such that n > 1 and a4~ exists on an edge where
the other endpoint is not an-1 or agn+1. Then 3s € Ax B such that ¢(seq),
t(sep), T(sea) or T(sep) equals agn and the correponding endpoint does
not equal a,n-1 or agn+1. Using Corollary 3.3.11 we can immediately say
that «(sep) and 7(sep) can’t possibly equal ayn due to the fact that there
is no element in D ; that satisfies this property. Similarly, given the value
of D5 we know that t(seq) = agn = s = a™" and 7(seq) = agn =
(n+1)  However, in these circumstances the other endpoints are Qgn—1
and agn+1 respectively. Hence the only other vertices that agn is directly
connected to are agn-1 and agn+1. It can also be proven dually that the
only vertices Byn is directly connected to are Syn—1 and Byn+1. Knowing this
we can say that no loops can exist in G since it would require the existence
of a unique set of edges that create a path from a vertex to itself. O

s=a

From Corollary 3.3.2 and Lemma 3.3.10 we know there is one vertex
orbit and two edge orbits in this system. Hence the quotient graph of this
system is given by;

From this we then have the following as an (A * B)-transversal.

€A €B

(a0) r (Bo)

The next step is then to find the stabilizers.

Lemma 3.3.13.
5';4*3 = Sﬁ*SxB = <1A’1B,(I_1(l, b_1b> (31)

Proof. Tt is clear to see from our action that S4%SEZ C S8 solet w € AxB
be such that wx = x. Take w to be a word of length n in A * B we can
say that, w = wiws - w,. Assume n = 1. If w, € A, then we can say
that w, € D%. Then w = w, and so w,z = = w, € Sf. Similarly,
wp € B = w, € S2. So in this case, w € S4 x S5,

Now assume our lemma holds when n = m for some m € IN. Now let
n=m+1. If wyy1 € A then we require w,, 11z to exist Furthermore,
W Wm+12 must also exist and so wy, 412 is a value that an element in B can
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act on. This is only possible if w,, 12z = x since this is the only value in Az
that an element in B can act on. Therefore, z = wz = wy + - - Wy (W12) =
w1y -+ - Wypx. From our assumption, wi - Wy =T = Wy -+ Wy, € Sf * Sf.
Since wy, 11 € S2 we can say that w € S+ SE. Tt can be shown dually that
W1 = Wyt € SE = w € 54 % SB. Hence, S C 2 x S8 = gB =
S % SB.

Finally, from Corollary 3.3.6 we know that S4 = {14,a"'a}. The proof
of this corollary can be used dually with B instead of A to show that SZ =
{1p,b'b}. Therefore, S4 % SB = (14,15,a7 a,b'b). O

Lemma 3.3.14.

SSO*B :{lA,awafl\w € Sf*B},

S4B ={15,bwb " w € S*P}. (32)
Proof. Let w € Sy,. From the definition of our action, we know that if wayg
exists then w = w'a™! for some w’ € (A B)! since a~! is the only generator
of A x B that will act on «g. By the same logic, since wag = g = ag =
w™lag we can say that w™! = w”a~! for some w” € (A * B)!. Therefore,
we can say that w = awa™! for some w € (A * B)*.

If w =1, then w = aa~' = 14. Alternatively, assume w € A * B.
Then, way = a9 = awa oy = a9 = w(alag) = alay = wr = .
Therefore, w € S*B and so w € aS&*Pa~!. From this we can say that
S4B C {14, awa™tw € S*PY.

Conversely, the definition of our action tells us that 1409 = «ag. Fur-
thermore, if w € Sf*B, then awa™lag = awz = axr = ap. From this we
can say that, {la,awa ™ w € S2*B} C S,, Hence it must be the case
that S24*B = {14, awa'|lw € S#*B}. It can also be proven dually that
S&*B = {1p,bwb~!|w € SHB}. O

Corollary 3.3.15. SﬁO*B and S&*B are monoids with identities 14 and 1p
respectively.

Proof. Let s € S{jo*B. Lemma 3.3.14 tells us that s = 14 or is of the
form awa™! for some w € Sf*B. If s = 14, then by definition 14 acts as
an identity on s. Alternatively, if s = awa™' for some w € S2*B then
las = 1a(awa™t) = (14a)wa™? l'= s and slg = (awa™')14 =
aw(a"114) = awa™ = 5. Hence, 14 = Id(Sg‘O*B). Similarly, we can show
that 1p = Id(S5*5). O

= awa

From Lemmas 3.3.13 and 3.3.14 we can begin to construct the graph of
inverse semigroups from the aforementioned (A * B)-transversal. As pre-
viously established, we would need to find an embedding from SfO*B into
Sé“A*B. To do this, we need to find a t4,tp € A * B such that tgz = «ay,
tat,' = Id(Sg?O*B), tpr = Bo and tpty' = Id(SZ%)*B). Using the identities
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found in Cororllary 3.3.15, we know that t4 = a and tp = b satisfy these
conditions. Note that t4 is equal to the ¢ we defined in Example 3.3.3.

Theorem 3.3.16. If S is the fundamental inverse semigroup of this system,
then S = Ax B.

Proof. The generators of S are the generators of S;?*B as well as t4 and
tp. From Lemma 3.3.13, Sf*B is generated by 14, 15, a~'a and b~'b. We
label these values g1, g2, g3 and g4 respectively. So the generating set of S
is {91,92,93,94,t4,tp}. Let R be the set of relations in S that come from
the relations in S2*B. Then;

R={g{ = 01,9195 = 9391 = g3 = 93, 95 = G2, G294 = gag2 = g4 = g3 }. (33)

We also have relations of S given by the embeddings. These are t At;ll = g1,
ta'gita = g3, tety = go and t5' gatp = g4

Given that we have ¢ At;‘l = ¢g; and tBtE;l = g2 we can remove g; and
go from the set of generators of S. Since ¢ Atgl and tBtgl are idempotent,
we can remove the relations g7 = g; and g2 = g2 as well. Furthermore, if
we substiture this new value for g; into the relation t;l gita = g3 we find
that g3 = t ;' (tat;')ta = t;'ta. Simlarly it can be shown that g4 = t5't.
Therefore, as with g; and go, we can remove g3 and g4 from our generators.
Also since we are values for g3 and g4 are idempotent by definition we can
remove he relations g3 = g3 and g4 = g3. This then leaves us with S in the
following form;

S = Inv(ta, tp|(tat )t ta) = (t ta)(tatt) =t ta,

(tetp )(tp'ts) = (t5'ts)(tats) = t5'tn). (34

Using what we did in the proof of Lemma 3.3.7 we can simplify this to
get S = <tA,tB]tAt21 = 1TA,tBt§1 = 17y,). It is clear from this that S is
isomomorphic to A x B. ]

3.4 Action of the Free Product

Say we have two inverse semigroups A and B that act on the graphs G 4 and
G p respectively. Furthermore, say that the actions of A on G4 and B on
Gp in such a way that we can get fundamental inverse semigroups S4 = A
and Sp = B respectively. Knowing this it is possible to construct a graph
G that A x B can act on such that the fundamental inverse semigroup is
isomorphic to A * B.

In order to define S4 it must be possible to define an A-transversal from
our action of A acting on G4 that we in turn can obtain the fundamental
inverse semigroup, S4 from. Similarly, we know that Sp was defined from a
B-transversal. Let v4 and vp be any fixed vertices from the A-transversal
and B-transversal respectively. We then have an action of A x B on the
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set V= (V(G4) UV(Gg))/(va = vp) given by Definition 3.2.1. Let v =
va = vp. G is then defined to be the graph where V(G) =V and E(V) =
E(G4)UE(GpR). Note that by the definiton of our action, v is the only value
in V that can be acted on by elements in both A and B.

Lemma 3.4.1. For allx € V(G) if v ¢ (A* B)lo:
- D% when x € V(Gy)
Dis =14 e (35)
% when x € V(Gp)

Proof. Let w € D%, 5 and assume € V(G 4). We can take w to be a word
of length n with respect to A x B and so can write it as w = wjws - - - wy,
where each letter alternates between being an element of A or an element
of B. So, wx exists = wyx exists. Since w, € AU B and x # v it must be
the case that w, € A. If n =1, w € A. Otherwise, wy,—1(w,z) exists. Since
x ¢ (Ax B)'v implies that w,z # v we require w,_; € A. However, this
contradicts the definition of w,_1. We therefore conclude that w can only
be a word of length 1 and it exists in A. Hence, D%, 5 = D?%. Dually it can
be shown that D%, 5, = D% if © € V(Gp). O

Lemma 3.4.2. For all x € (A% B)'v such that x # v define X4 = {w €
Alwz =v} and Xp = {w € Blwx =v}. Ifx € V(Ga) then;

Diup = D4 U {wrwaws, wiws|wor € Dlyyp,wz € Si' )7 wy € Xa}.  (36)
Similarly, if v € V(Ga);
D%, p = Df U {wiwows, wiws|wy € DYy p,wa € Si' * S2,ws € Xp}.  (37)

Proof. Without loss of generality, assume « € V(G4). Let w € DY, 5 be
a word of length n. Assume n = 1. Given that x # v, the only words of
length 1 that can act on z exist in A. Thereofore, w € D¥.

Now say n = 2. So w = wow; for some wy,ws € AU B. Given that wiz
must exist we can say that w; € A since ¢ # v = w; ¢ B. Additionally,
wg must be an element in B that can act on wyx. This is only possible if
wix = v and so wy € X4. It must then also be the case that wy € D}.

We have now shown that w € D} U {wiwows, wiws|wy € DY g w2 €
S4 % SB w3 € X4} when n = 1 or 2. Now assume this statement is true
Vn < m (where m > 2) and say n = m+ 1. In this case w = Wy, 41wy, - - w1
where every letter w; alternates between existing in A or B. In particular,
this means wy, - - - w1 is a word of length m that exists in D%, 5. It therefore
also exists in DY U {wiwows, wiws|wi € DY g w2 € S x SB w3 € Xa}.
Since m > 2, wp, - - -wi ¢ DY, S0, W = Wy 1wWiwaws OF Wy4iwiws for some
w1 € DZXUB’ Wy € 511)4*557 and wg € X 4.

Assume w,, € A. This implies that wy,11 € B. Given the definition of
w1, wy and w3, W = Wy41WiwWaw3s OF Wy41Wiws = W1 = Wy, and w3 = wy.
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If we assume w = wp,;1wiwz then we can say that wqy € B = w; € Dj.
Therefore, wy,+1 € A and we require wjwsx = v so that wzx is defined
Hence, w41 € DY. Furthermore, w3z = v and wiwsr = v = wiv = v and
sow; € SB.

Now instead take w = wp,1wiwows and assume m is a value such that
w1 € A. By definition, wowsxr = v and w11 € B. Therefore, w; € 5’{)4.
since the only possible value that w; can map v to so that an element of
B can act on it is v itself. So, w41 € Dj. A dual proof tells us that
w1 € B = wpy1 € DY and wy € Sf. So by induction we can say that

fl*B - Dﬁ U {wlwgwg,wlwglwl S DZUB’“‘)Q € S{;‘ * SUB,W:J, S XA}.

Conversely, say w € {wiwows, wiwslwi € DY g, w2 € S+ SE w3 € Xa}.
If w = wiwews, then wr = wiwsv = wiv and wyv exists by definition of wy.
Simlarly if w = wiws we again have wz = wiv. So in both cases, w € D%, 5.
Since D% C D%, 5 we can conclude that D%, 5 = D% U {wjwows, wiwslwy €
DY g w2 € S SB w3 € X4}, A dual proof for when = € V(Gp) gives us

the value for D7 stated in the lemma. O
Lemma 3.4.3.
Dj.p = Diyp U{wiws|wr € Dy p,w2 € Sitx SP} (38)

Proof. Let w € DY, be a word of length n in A x B. It can therefore be
written as w = w,, - - - wow, where w; are the letters that compose w. Then
w € DY, p = w1 € DY, 5. Given the definition of wy, w1 € AUB. Therefore
ifn=1 w=w € DY 5.

Assume our lemma holds for n = m. If n = m+1, then w = wy,+1wWy, - - - w1.
Given that wv exists know that w,, ---w; is a word of length m that acts
on v. Therefore it exists in DY 5 U {wiws|wi € DY g, w2 € Si' * SP}. Let
w' = wp---wy. If W' € DY p then w' has to have a length of 1 since
DY, € AUB. If w' € A then w41 € B. Furthermore, for wp,1ijw'v
to be defined we require w' € S’{f‘ since this is the only value in Av that
Wm41 can possibly act on. We could then say that w11 € D%. Similarly,
w' € B=w €SP and w41 € DY.

If w ¢ DY g then w' = wiwy for some w; € DY g and ws € S{f‘ *
Sf . By definition of wi, w,, = wj. This further implies that m > 1 and
Wp—1 - W] = W9. S0, WU = Wyt 1WiWa¥ = Wpa1wiv by definition of wo.
It is then the case that wyv must be a value that w,,+; can act on. Since
w1 € A (resp. B) = w41 € B (resp. A) we can again say that this would
further imply that wy € S{' (resp. SP) and wp,+1 € DY (resp. DY).

We have therefore shown that DY, 5 C DY gz U {wiwa|wi € DY g, w2 €
SA % 8BY. Tt is also clear that DY p U {wiwalwi € DY p,w2 € Si*
SBY C DY, 5. We can therefore conclude that DY, 5 = DY 5 U {wiws|w €
DY g, w2 € S SBY. O
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Lemma 3.4.4. Let QQ be the quotient graph we get when Ax B acts on G. Q
is the graph obtained by equating the vertices Ava and Bvp in the quotient
graphs derived from A acting on G o and B acting on Gp respectively.

Proof. Let Q4 and @p be the quotient graphs of A acting on G4 and B
acting on G g respectively. Furthermore, let a1 and o be vertices in G 4 such
that A'ay and Alasy are seperate vetices in Q4. Assume o and oy exist in
the same orbit under the action of A * B on V(G). Since A'a; # Alay it
must be the case that 3b € B, a1, as € A such that (agba;)a; = as.

Under our action, the only vertex in V(G 4) that can be acted on by an el-
ement in B is v. Therefore, it must be the case that a;a; = v. Consequently,
Alay = Alv. So, two elements that exist in seprate orbits under the action of
A on V(G 4) can only possibly exist in the same orbit when acted on by AxB
if one of those vertices is v. Also, (agbai)a; = ag = a; = (aflb_lagl)ag
and so we can also say that A'as = Al'v. Therefore, if two vertices have
unique orbits under an action of A on G4 then they are also give unique
orbits under the action of Ax B on G. A dual proof tells us the same is true
for vertex orbits obtained from an action of B on Gp.

If instead we start with the assumption that a; and as exist in the same
vertex orbit when G 4 is acted on by A then they must also exist in the same
vertex orbit when A % B acts on G. This is because A'a C (A* B)'a (Ya €
V(G4)). A dual statement can be made for the vertex orbits obtained from
our B-act. We can therefore conclude that Vo € V(G4) (resp. 8 € V(Gp)),
a ¢ Alv (resp. B¢ Blv) = (Ax B)la = Ala (resp. (Ax* B)'3 = B'p3).

Under our action of A B on V(G), v can be mapped to any element in
Ay or Blv. Therefore, AlvUBw C (AxB)'v. Conversely, say x € (A*B)w
and z # v. By definition, x exists in V(G4) or V(Gp) but not both since
V(Ga) NV (Gp) = {v}. Without loss of generality, let € V(G4). Since
r € (A% B)'v, we know that 3w € Ax B such that wx = v. If we assume w is
a word of length n in A% B then it can be written in the form w = wiws - - - wy,
where each w; is a letter with respect to A x B. Given our action, Bz = (.
Hence w, € A. Soifn=1, w =w, = w € A = v € Av. If instead
n > 1 then it must be the case that w,—1 € B. For wz to be defined we
require wy,_jw,z to exist. Since w, € A = w,r € V(G4) we conclude
that w,z = v since v is the only vertex in V(G4) such that Blv # 0.
Then, w,r = v = = € Alv. Simlarly, x € V(Gg) = = € B'v. Therefore,
(Ax B)lv C Alv U Blv = (Ax B)'v C Alv U Blo.

It must therefore be the case that the vertices in () are the same as in
Q4 and Qp except for the vertices represented A'v and B'v which have
been replaced by a single vertex, (A * B)'z = Alv U Blv. Given how an
inverse semigroup acts on an edge is determined by the edge’s endpoints,
we can say that the edge orbits remain the same under the action of A x B.
Therefore, () is as described in the lemma. O
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Corollary 3.4.5. Vz € V(G):

AlwUuBYW  when x € A'v U Bl

(Ax B)lz = { Alz when € V(G4),x ¢ Alv (39)
Blx when x € V(Gpg),r ¢ B
Proof. Given in the proof of Lemma 3.4.4. O

Now consider the A-transversal and B-transversal used in our original
actions. By definition, they include the vertices v4 and vp respectively.
Given what we know the quotient graph of A x B acting on G will look
like, we can say that an (A % B)-transversal is given by the A-transversal
and B-transversal when we equate the vertices v4 and vg. We label this
transversal T. Now that we have a transversal, we need to establish some
properties of the stabilizers if we wish to say that it can create a graph of
inverse semigroups.

Lemma 3.4.6. Let x € V(G) such that x ¢ (A * B)lv.
A
ginB _ S% when x € V(Ga) (40)
S2  when x € V(Gp)

Proof. By definition, S2*B C D%_5. Say x € V(G4). From Lemma 3.4.1 we
know this implies that DY, 5 = D%. Therefore, Sf*B C D%. In other words,
wr =2 = w € A and so SHB C SA. Conversely, w € S2 = w € S8 by
definition of our action. It must then be te case that S2*F = S4. Tt can be
shown dually that z € V(Gg) = S8 = S5, O

Lemma 3.4.7. Vx € (A * B)'v such that x # v define X4 = {w € Alwz =
v} and Xp = {w € Blwx =v}. If v € V(G4) then;

SAB — 4 {wi wows|wi, w3 € Xa,wy € S % SB}. (41)
Similarly, if © € V(G4) then;
SMB — 8B U {w  waws|wr,ws € Xp,ws € 52 % SPY. (42)

Proof. Assume z € V(G4). Let w € S2*B. From Lemma 3.4.2 we know
that either w € D% or Jw; € DY 5, w2 € Sf * Sf, w3 € X4 such that
W = wiwows or wiws. If w € DY ;then w € A. Furthermore, w € S’f*B and
weA=we S

If instead we assume that w = wjwaows or wiws, then wx = wijv (by
definition of wy and w3). Then wx = ¢ = wiv = ¢ = v = wl_lx. So,
cul_l € X 4. Therefore, w € {w1_1WQW3,w1_1W3|W1,W3 € Xa,wo € S{f‘ * SBY.

It is then the case that S2*F C Sfu{wflwgwg,wflwgwl,wg € Xa,wo €
S4 % SBY. We can also easily see that wy 'waws, wy tws € SA*F (Vwy,wy €
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Xa,wo € Sf * SB). However given that wy,ws € A, wiws € Safl. Therefore,
we can say that S2*P is as defined in the lemma. A dual proof can be used
to define S24*F when x € V(Gp). O

Lemma 3.4.8.
SP =5t w 8P (43)

Proof. Let w € Sf*B. Lemma 3.4.3 tells us w € DY g or Jwy € DY, p,w2 €
S4 % S8 such that w = wiwy. If w € Dayp, then w € AUB = w € SAUSE.
Alternitively, if w = wiws then wv = wiwev = wyv (by definition of wsy). We
have defined w to be a stabilizer of v and so v = wv = WiV = w; € S,j‘*B.
Furthermore, w; € DY 5 = w1 € SFUSE. Hence, w = wiwy € SAxSE. O

Corollary 3.4.9. Ve € E(T) such that 7(e) ¢ V(T), 3te € A* B such that

tet(e) = T(e) and tot;t = Id(sf(z?)'

Proof. Let e € E(T) and 7(e) ¢ V(T'). By definition of the edges in G,
e € E(Ga) or e € E(Gp). Assume e € E(Gy4). Our defintion of 7' means
that e must have also been an edge in the A-transversal taken when A acted
on GG4. Since this system was defined to give us a fundamental inverse
semigroup we know that we could create a graph of inverse semigroups
from this transversal. In other words, 3t. € A such that t..(e) = 7(e) and
tet; ! = Id(sf(e)).

If 7(e) ¢ (A B)'v, then Lemma 3.4.6 states that Sf(”:)g = Sf(e). There-

fore, tet;! = 1T d(S’TA(’Zf ) and t. satisfies the required properties. If instead
7(e) € (A% B)'v then we know that 7(e) # v since T is defined so that
v € V(T). Lemma 3.4.7 tells us that Yw € Sf(zj)g, w e Sf(e) or w = wy twaws

for some wy € Sf(e) * Sf(e) and wy,w3 € X4 = {a € Alar(e) = v}.

Ifwe 57‘_4(6), then tetglw = wtetgl = w by definition of ¢.. Alternitively,
say w = wflwgwg. Note that wflwl,wglwg € Sf(e) and so tete_lwflwl =

1

w; wi and wg_lwgtetgl = wg_lwg. Knowing this we can say that;

w = wy wawsz = (wi twi)wy waws = (tety wi twr )w] twaws (44)
= (tets ") (wi twiw] Nwaws = (tet wy twaws = tet, ' w.

Similarly it can be shown that wy 'wst ;! = wylws = w = wtt;'. So in
both cases t.t, ! acts as an identity on w and hence t.t, ' = Id(Sf(’:)B). O

This Corollary means that we can create a graph of inverse semigroups
from T which we can then use to create a fundamental inverse semigroup
which we shall call S.

Lemma 3.4.10. Let G(S), G(Sa) and G(SB) be the generating sets of S,
Sa and Sp respectively that we intially get from their transversals. Then

G(S4) UG(Sp) = G(S).
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Proof. Let g € G(S4) UG(Sp). Assume g € G(S4) then by the defintion
of G(S4) we know the either g is a generator of the stabilizer of a vertex in
the A-transversal or ¢ is an element that defines an embedding of an edge
in the transversal to it’s initial point. If g is the latter then Corollary 3.4.9
tells us that g € G(.9) since it again defines an embedding this time in the
(A = B)-transversal.

Alternatively, ¢ is a generator of S/ or S4 for some x ¢ A'v where
is a vertex in the A-transversal. By Lemmas 3.4.6 and 3.4.8, S2*B = §4
and SA*B = §4 « S5 Therefore, since all vertices in the A-transversal are
also vertices in the (A * B)-transversal we can say that g is a generator of
S4 or SZ implies that g is a generator of the stabilizers of a vertex in the
(A x B)-transversal. By definition, this makes g a generator of S. The same
can be shown if g € G(SB).

Conversely, say g € G(S). By definition, this meanst that either g comes
from an embedding of an edge in the (Ax* B)-transversal into it’s intial vertex
or it is a generator of the stabilizer of a vertex in the (A * B)-transversal.
If it’s the former, then we know from the proof of Corollary 3.4.9 that
g9 € G(S4) UG(SB).

Otherwise g is a generator of SA4*B for some vertex z in the (A * B)-
transversal. Given the defintion of the (A % B)-transversal, either z = v
orx ¢ (Ax B)lv. If x ¢ (A B)'v then g is a generator of S4 or SP
depending on if x € V(G4) or V(Gp) (Lemma 3.4.6). In either case this
means g € G(S4) UG(Sp). If instead x = v then g is a generator of
S4B — §A 4 SB (Lemma 3.4.8). This makes g a generator of either SA or
SB which in turn means g € G(S4) U G(Sg) (since v exists in both the A
and B-transversals). O

Lemma 3.4.11. Let R(S), R(S4) and R(Sp) be the sets of relations of S,
Sa and Sp respectively that we initially get from their transversals. Then
R(S4) UR(SB) € R(S).

Proof. Let 7 € R(S4). By definiton, r can originate from two places. The
first is when r is a relation in SZ' for some vertex x in the A-transversal.
The second is if 7 is of the form ¢~ lwit = ws for some w; € A that is a
generator of a stabilizer of an edge in the A-transversal, wy € SZ for some
vertex x in the A-transversal and ¢t € A such that ¢ is the required element
to define an embedding of a stabilizer of an edge in the A-transversal (whose
terminal vertex does not exist in the A-transversal) into the stabilizer of the
intial vertex of the edge.

If it’s the former and x ¢ A'v then Lemma 3.4.6 tells us r must be a
relation in SA4*B. Therefore, r € R(S). If instead 2 € A'v then x = v (since
the A-transversal can only contain one element from each vertex orbit).
Therefore, r is a relation in SA. Given the value of S*F (from Lemma
3.4.8) we can the also say that r is a relation in S/*5.
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Alternatively, say r is of the form t~1wt = wy. From Corollary 3.4.9 we
know that the embedding ¢ defines in the graph of inverse semigroups for
the A-act is also used in the graph of inverse semigroups for the (A * B)-act.
Given this, we know that r» € R(S). The same logic can be used to say that
r € R(Sp) = r € R(9). O

Lemma 3.4.12. Let R(S), R(S4) and R(Sp) be the sets of relations of S,
Sa and Sp respectively that we initially get from their transversals. Then

R(S) C R(S4) U R(Sp).

Proof. By definition the elements in R(S) either came from relations in the
stabilizers of vertices of the (A * B)-transversal or they come from embed-
dings of stabilizers of edges in the transversal without terminal vertices into
the stabilizer of their inital vertices. If it’s the former, then Lemmas 3.4.6
and 3.4.8 tells us that such relations would also exist in R(S4) U R(Sp). If
it’s the latter then there exists an edge e in the (A B)-transversal such that
7(e) does not exist in the transversal. This then gives us relations of the
form ¢ twit. = wy where t, € Ax B is the element with respect to e defined
by Corollary 3.4.9, w1 € A * B is a generator of Sf*B and wq € SZ‘(‘;“)B.

Say e is an edge in G4 = 7(e) € G4. Then since SM*F = S:?:)]B ﬁSf(’;? it
must be the case that i(e) or 7(e) ¢ (AxB)'v = SM*B = S4 (by definiton of
the stabilizers of t(e) and 7(e) from Lemmas 3.4.6, 3.4.7 and 3.4.8). In which
case, any relation we obtain from the embedding of e would be equivalent to
a relation obtained from embedding e in the A-transversal. In other words, if
r is a relation in R(S) that we obtained from such an edge, then r € R(Sy).

Now instead say c(e),7(e) € (A * B)'v. By definition of our (A * B)-
transversal this means that ¢(e¢) = v. So using Lemmas 3.4.7 and 3.4.8
we say SL’?;‘)B = 5S4 % S5 and S;_“(’;’)B = Sf(e) U {wf1WQW3|W1,W3 € Xa,wg €

S % SBY where we define X4 = {a € Alar(e) = v}. So, to define SM*B we
need only define the union of these sets. Since Sﬁe) C A, we can say that

She N (S SP) =52,
elements (if any) exist in both {w; 'waws|wr,ws € Xa,ws € S+ SBY and
S;j‘ * Sf. Let w be such an element, so w = wflwgwg for some wy,ws3 € X4,
wy € SA % SB. If w € SA % SB, then ws must preserve v. However, this
means wsv = v = w37 (e) which contradicts our action. Therefore, the union
of these sets is empty, meaning that S4B = S4. Again this means any
relation we have from the embedding of e in the (A % B)-transversal we
would also get from the A-transversal. The same can also be said for when

e is an edge in Gp. 0

)N S4 = SA. It now only remains to find out which

Corollary 3.4.13.
R(S4) U R(SB) = R(5) (45)

Proof. Follows from Lemmas 3.4.11 and 3.4.12. 0

30



Theorem 3.4.14.
S~AxB (46)

Proof. From Lemma 3.4.10 and Corollary 3.4.13 we have the intial set of
generators and relations that define S and can therefore say;

S = Inv(G(54),G(SB)|R(Sa), R(SB))- (47)

Given that there are no relations in R(S4) (resp. R(Sp)) that involve any
of the generators in G(Sg) (resp. G(S4)) our value of S implies that;

S = Inv(G(Sa)|R(Sa)) * Inv(G(SB)|R(SB))- (48)

By defintion, S4 = Inv(G(S4)|R(S4)) and Sp = Inv(G(Sp)|R(Sp)). Hence,
S =S4 % Sp. Since S4 and Sp are defined to be isomorphic to A and B
respectively we can say that S ~ A *x B. O

Given that if C' is also an inverse semigroup A x (B*C) = (A B) x C
we can use the same logic used in this section to define actions for the free
product of any number of inverse semigroups provided we have an action
of them on a graph for each semigroup seperately. One area where this is
useful is for inverse semigroups that can be expressed as a free product of
groups. Given that we have a method of defining a group action on a graph
that will give us back a fundamental group isomorphic to the original group,
we now in turn have a method of defining an action of their free product.
Note though that the definition of the free product used here is different
to the defintion used in group theory which equates the idenity of the two
groups so that the identity is itself a group. Under our defintion the free
product of two groups would be an inverse semigroup, but not a group.

4 Actions of Polycyclic Monoids

In this section, we will examine a way of defining an action of a polycyclic
monoid on a set of infinitely many elements. Polycyclic monoids were first
defined by Nivat and Perrot [19]. We will begin by establishing some of the
properties of a polycyclic monoid that we will then use to define a semigroup
action.

4.1 Polycyclic Monoid Action

Definition 4.1.1. A polycyclic monoid with n generators is an inverse semi-
group with zero given by the following presentation;

P, = Inv(p1,p2,. .. ,pn|pip;1 = l,pip]71 = 0 when i # j). (49)
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We can define a set and an action on this set by F,,. To do this we require
an action so that p;” L acts on every element in the set (so that the identoty
element acts on every element), but also p; cannot act on every element
(since otherwise the zero element will act on every element in the set). To
define our P,-act, first let V' be a set of elements given by V' = {v,v9,...}
and define a partial map ¢, : P, Xx V — V to be the partial map such that
®n(s,v) = pn,s)(v) Where p(, o) is given by Plnp=1yUj = Un(j—1)+i (note that
the inverses of generators of an inverse semigroup will also generate the same
semigroup and hence our definition of Plnp ) will define p(, q), Vs € P,).
One immediate property that can be observed is that Vi € {1,2,...,n}, if
pi_lvj = v, then 5 < k.

Lemma 4.1.1. If P, is a polycyclic monoid with generators p1,p2,...,Pn,
then p(n p,yvj exists if and only if j = n(j'—1)+i for some j' € {1,2,...,n}.

Proof. p(np,) 1s defined to be the inverse map of Plnp - Therefore, the
domain of p(, ) is equivalent to the image of Plnp ™ty Given the definition
of Plnp ) and the fact that it acts on every element in V', we know that
the image of Plnph) consists of all elements of V' of the form v; where
j=n(j —1)+1i for some j' € {1,2,...,n}. O

Remark. Note that we can further prove that p(, ,, v; = vy. It can also
be inferred that p(, ,,)v; exists if and only if j — ¢ is divisible by n.

In fact, the images of v; under pfl,pgl, ...,p,; ! are vy, va, ... v, Tespec-
tively. Furthermore, our action will map any v; to a complete set of represen-
tatives mod(n). We will now prove that our action is in fact a well-defined
P,,-act.

Lemma 4.1.2. For any polycyclic monoid P, V is a Py-act with respect
to the semigroup action on V' given by p(y s)-

Proof. As p(y ) is defined from the generators of s, we know Vs, ¢ € P, and
any v; € V, (st)v; = s(tv;). Now say, 3s € P, and vj,vy € V such that
svj = svg. As s € Py we know it can be written as a product of the gen-
erators of P, and their inverses. Therefore, s = s;, s, - - - 5;,, Where s;, = v;,
or U;l, VI € {1,2,...,m}. Hence, svj = svy, implies that s;, s;, - - - 8;,v; =
iy 8iy "+ * Siy, Uk S0, given that we have already proven the associativity prop-
erty of our potential S-act, we can say that s;, (si, - - - 5i,,05) = i1 (Siy -+ * Si,, Uk)-
Define vy = s;, - -+ 54,,vj and vy = 84, - - - 54,, v and suppose s;, = pi_ll. Then
we can say the following;

Di, Vit = pfllvk/ = Un(j'—1)+i = Un(k'—1)+i

50
:>n(j/_1)+i:n(k,—1)+i:>j/:k’. ( )
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Therefore, vy = viy. Alternatively, if s;; = p;,, then for p; vy = p; vy
to exist, we require j/ = n(j” — 1) +4; and k' = n(k” — 1) + i1 for some
J" K" € {1,2,...,n} (by Lemma 4.1.1). This further tells us that;

Pi vy = piy U = vy = vpr = j" = K"
-/ - /
—1 k-1
J LRI
n n

:>j/:/€,:>1)j/ = Vg/.

= +1 (51)

Hence, s;, (84, = - - 8i,,05) = Siy (Sig * * * SipyVk) = Sig *** SipyVj = Sig * * * Sipy, U
Using the method we just used to prove this, we can further imply that
Siz " SimVj = Siz -8, vr and hence we can keep repeating this process
until we find that v; = vy. ]

Now that we have shown that this is a semigroup action, we can say the
following.

Lemma 4.1.3. In P,, Vm,i € N*:
° pfmvi = Upmi—npm41
e p,"vi = Vipm

Proof. Say m = 1, then pl_lvi = Up(i—1)+1 = Uni—n+1 and so our first state-

ment holds when m = 1. If we assume it holds when m = k, then we can

—(k+1) 1 _ —
say that p; Vi = D1 Upki—phl = Un(nkimnk41-1)41 = Upk+li_pk+141 and

so our first statement holds by induction.
Similarly, when m = 1 we can say that p, 'v; = Up(i—1)4n = Vin and if we

k+1,, _ ,—1 _
n Ui = Pp Uppk =

Un(ink—l)—i-n == 'U,l'nk+1 . D

assume the second statement holds when m = k, then p

At this point it is worth mentioning that elements in P, have a normal
form. That being any non-zero element has the form a~'b where aand b are
positive words generated by the generators of P, or the identity element in
P,,. We can also notice the following property of v; under this action.

Lemma 4.1.4. For any polycyclic monoid P,;
Svl = Im)<p1> = {1’p71n’p17m’p177’p§n|r’m S IN+} (52)

Proof. Let w € S,,, so w = a~'b for some positive words a and b generated
by the generators of P, or the identity elemnet in P,. From our action, we
know that a~'bv; exists = bv; exists = b € (p1) or b=1p,. So, b =1p,
or p* for some m € IN*. In either case, a='bv; = a~'v;. Therefore, w €
Sy, = a~'v; = v1. By the rules of inverse semigroup actions,a™'v; = v; =
v1 = avy. Again, we can use this to say that a € (p1) or a = 1p,. Therefore,
w € Invipr) = {1,p7", p7",py p*|r,m € Nt} and hence S,, must be a
subset of this set. Finally, it is clear that every word in this set will fix v; and
so we conclude that S,, = Inv(p1) = {1,p, p; ™", py "p{*|r,m € Nt} O
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It will also be important for us to establish how elements of P, will act
on v; in particular.

Lemma 4.1.5. Think of V as a Py-act for some fized n and take any
v; € V such that i = jo + jin + jon® + -+ + jun™ for some m € INY,
JosJis--sJm € {0,1,...,n — 1} and jo # 0. Then, Is € P, such that
sv; = v;. Such an s is given by pjf()lpjfll_s_lpj;il - ‘pj_n}H when m > 0 and
pj_o1 when m = 0.

Proof. First say m = 0, then;

-1
Djy V1 = Un(1-1)+jo = Yjo = Vi (53)
and so our lemma holds in this case.

If m =1, then i = jo + j1n and;

-1, -1 1 R
Pjy Pji+1V1 = Pjy Un(1-1)+51+1 = Py, Vir+1 (54)
= Un(j1+1-1)+jo = Yjot+jin = Vi:

Now assume our lemma holds for m = k and say ¢ is equivalent to jy +

jin+ jan? 4+ - + jpnFtt As our Lemma holds for m = k, we know that
-1 =1 -1 .

Pji+1Pj541 " Piyr 4101 = V(i +1)+jant-tjpy nk- From this, we can then say

that;
-1 -1 -1 -1 _ -1
Pjo Pj141Pjpr1 """ P 4191 = Py V(i +1)+dant-+jxp1nk
= Un((r4 D) Hjanttjpgnf—Djo  (99)
= vj0+j1n+"'+jk+1n’“+1 = V;

O]

Remark. The proof of this Lemma does not apply to all v; € V as if jo = 0,
then pj_o1 is not defined. It is also worth noting that we know that p;, 1 exists
forany [ € {1,2,...,m} as j; € {0,1,...,n — 1}.

Corollary 4.1.6. Consider V to be a P,-act for some n. If v; € V is such

that i = Jknk +jk‘+1nk+1 + ot Jmn™ fOT some m € IND; jkajk-ﬁ-b ooy Jm €
. k-1 —1 -1

{0,1,...,n — 1} and ji # 0, then pnkpjk Pyl PVl = Ui

Proof. From Lemma 4.1.5, we know that;

1, -1 ~1 _
P, Pir 1" P 1191 = Vjtf b jnm=h- (56)
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Note that since ji # 0, we know that p;kl exists. This then implies that;
—k, -1, —1 -1 -
Pr Py, Pjppq 417" Pjy41V1 = P

= p, *Y

(k=1), -1,
P Ujp+jyinttjmnm =k

YUn(jk+jrs1n+-+imnm =k —1)+n

L —(k-1)
=Dn Yjintjppin2++jmnm=k+l—ntn

_ . —(k-1)
= Pn Ujkntjpyin?+-4jmnm—h+1

(57)

—1
= Pn Un(pnk=14jp 10t tjmnm—1

= Ujpnk+tjppank 4ot jmnm = Vi

These lemmas then give us a relation for the elements in V.

Proposition 4.1.7. All elements of V' exist in the same P,-orbit for a fixed
n with respect to the action given by ¢, : P, x V. — V. In particular,
Yo, € V, ds € P, such that sv; = v; where s = pgkpjjclp;il_s_l . -p;i_ﬂ for
50Me Ji, Jrats -« dm € {0,1,...,n—1} such that ji, jm # 0 and k,m € N,
such that k < m.

Proof. By Lemma 4.1.5 and Corollary 4.1.6, Vv € V, ds € P, such that
sv1 = v. Therefore, all elements in V are in the same orbit as Vi and
hence they must all exist in the same orbit. Furtheremore, if j,, = 0, then
pj:iﬂvl = v1 and so then s’ = p;kpjjclp;clﬂﬂ . -pj:i_lﬂ satisfies s'vq = v;.
Therefore, we can always assume that j,, # 0. O

Remark. Note that Vi € INT, i is uniquely defined as a polynomial of n.
Hence, the value of s defined in Proposition 4.1.7 is unique for every i.
Therefore it will be helpful to define s; € P, to be given by s;v; = v; where
8i = pgkpjjclpjjci1+1 " 'pjji+1 when i = jgn® + jrpnft 4+ Gpn™ (so s
is uniquely defined for each v; € V).

4.2 Polycyclic Monoids Acting on a Graph

If we take V' to be the set of vertices of a graph, we wish to find a set of edges
of such a graph such that it is connected and if an element of P, acting on
an edge exists, it is equivalent to an edge that exists in the graph. One such
example of a set of edges is defined by the following;

Definition 4.2.1. Let E, be a set of edges connecting elements in V' given
by base edges e; = (v1,v;) which are defined Vi € {2,3,...,n}. In other
words, E, = {se; = (v1,v)|i € {2,3,...,n},s € P,}. Furthermore, we
define GG, to be the graph whose vertices are given by V and edges are given
by E,. Part of this graph is shown in the diagram below (where m € N).
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U3 V2n+2

€3 p2_1€3
—1
€2 by €2
U1 () Un+2
—m -1, —m
b1 €2 by P €2
Upm41 Upm+142

From the injectivity of our action, it is clear that G, will contain no
loops.

Lemma 4.2.1. Ifi # 1, then v; is the terminal vertex of an edge in G,.

Proof. Say i € {2,3,...,n}. Then we know that v; is the terminal vertex of
the edge e;. Now say i > n. Let i = jpn® 4 jrpn*+t1 4+ + j,,n™ for some
Jhs Jhtts - > Jm € {0,1,...,n — 1} such that jg, jm # 0 and k,m € IN°, such
that k¥ < m. By Proposition 4.1.7, s; = pgkpj_klpj_kiﬁl . 'pj_riﬂ is such that
siv; = v;. Now assume k < m and define s, = p;kpj_klpj_kil+1 x 'pj_n}fﬂrl'
So, s; = s;pj_ri +1- The endpoint of the edge sjej,, 11 is then given by
SivjL 41 = s;pj:iHm = s;v1 = v; (we know that the edge ej,, 1 exists
as jm € {1,2,...n — 1}). Similarly, if &k = m and i = j,n™ for some
Jm € {2,3,...n — 1}, then we define s, = p;* so s; = s;pj:j_H and find
v; is the endpoint of the edge siej, 1. Finally, if i = n™ then we define

s = pﬁ(mfl) and can show that v; is the endpoint of the edge s}e,. O

Remark. Our definition of s, with respect to some v; € V will be used
throughout the rest of this section. Furthermore, we also define i/ € INT
to be the element such that siv; = vy is satisfied. In other words s, = s;.
From our proof of this Lemma, we can then see that since v; is the terminal
vertex of the edge given by s,e; for some j € {2,3,...,n} the other endpoint
will be given by v;.

Theorem 4.2.2. Let v; € V be such that i # 1. Then v; is the terminal
vertex of exactly one edge in Gy,.

Proof. From Lemma 4.2.1, we know that every such v; is an endpoint of
an edge, so it only remains to show that it is unique. By definition, we
know that Yv; € V', 3k, jrs1,---»dm € {0,1,...,n—1}, k,m € N such that
i = jpn® + jppnf T 4o+ §,,n™ where ji, jm # 0 and k < m. Proposition
4.1.7 tells us that s; = p;"ﬂnj_klpj_ljrl_|r1 .- 'pj_n}H is such tlhat1 Siv1 = vi.l Now
assume k < m and so i’ = i — j,,n™ and sy = p;, Di Pt i1
Then, from our proof of Lemma 4.2.1, we can say that ¢(syej,,+1) = vy and
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7(Sir€j,,+1) = vy. Finally assume 3t € P, and I € {2,3,...,n} such that
T(te;) = v; and u(tey) # vy, so te; is an edge with v; as an endpoint that is
not equal to s;ej,, 41

As t € P,, we can think of it as a product of generators of P, and
their inverses. In other words, let t = q1q2 - - g, for some z € N where
Vy € {1,2,...x}, ¢y = p;, or pi_y1 for some i, € {1,2,...n} such that ¢
can not be reduced to a word of a shorter length. Let’s first assume that
q1 = pi,, then for ¢ to be in its reduced form, we require g2 = p;, (as
otherwise q1g2 = 1 or 0). By repeating this logic, we eventually find that
t = pi,Di, - - Di,. Therefore, te; exists if and only if p; v; and p;,v; both
exist. In other words, i, € {1,2,...n} must be such that 1 — i, and [ — i,
must be divisible by n (by Lemma 4.1.1). The only i, that will satisfy 1 —1i,
being divisible by n is 1, but then there is no [ € {2,3,...,n} such that
I — 1 is divisible by n. So no such t exists and hence our assumption that
g1 = pi, 1s not true, meaning that q; = pi_ll. Furthermore, this then implies
that every g, is of the form pi_y1 as otherwise our relations of P, tell us that
t would be reducible.

By definition, tv; = q1qo - - - gzv; = v; so it must be the case that ql_lvi
exists and hence p;, v; to exists. Then, by Lemma 4.1.1, 7 — 41 must be
divisible by n. Given that i = jpn®f + jrn*+t + .-« + j,n™ and our
definition of 71, we know this is only possible if i1 = n if k # 0 or ji if k = 0.
Therefore, p;,v; = vl where i} = Gen* 4 Gpn® 4+ ™ i R >0
and 1+ j1 + jon + -+ + jmn™ L.

So, we have found that p; 1pi_3 Lo p;, 1= vy and hence we require that
Py vy to exist. Using the same method used to find the possible values of
i1, we can show that io =nif k> 1, jp if k =1 or jy +1if &k = 0. If we keep
repeating this method, we find that ¢, = p‘;y1—17 Yy € {1,2,...min{x,m+1}}
where when &k # 0, we will define pj_wl =p, b Ywe {1,2,... k—1}.

So, we now have 3 possible values of ¢t depending on if x < m + 1,
z>m+lorz=m+1 Ifx<m+1, thent:p;”“pj_kljr)j_kilJrl-~pj_90171Jr1 if
k < z or p,* otherwise. Assume t = p,;k;t)j_;z)j_klﬂJrl - -pj;l_lﬂ, then we can
say that;

o —k, —1_—1 -1 -1, _
vy =v; = p, Dy, Pjrpr+1" " Pj, 1 41Pp V1= 801
-1, _ -1 -1 _
=PV = P17 P41V = V(D jagint o jmnm e (58)
_ -1 -1 _
= U] = plpszrl o 'pjm+1vl = DIV 4+1)+jpr1int-Fjmnm—2
-1 -1 : -1 -1
For Pipj, 41 Py, 4101 o be defined, we require PP 1P # 0 and so
. . -1 -1
the1 relations ?f P, tell us that p; = pjzl_l,_l. In whllch case, pipj 1 Py 4101 1:
Pjoiit1 Py 4101 = vi. Hence, p, ' oy --p; 1y € Sy, . However, as p.-
will map any v; € V' to some vy € V such that 7 < ¢’ it must be the case that

element in this product is equal to pfl for it to exist in S,,. In particular,
this means that pj_ri 41 = pl_l, but this would further imply that j,, = 0
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which contradicts our definition of j,,. If instead we assumed that k < x we
use the same method to show that [ = n and again finding this implies that
Jm = 0. So, it is not possible that x < m + 1.

Now assume = > m+1. We can therefore define ¢, Vy € {1,2,...,m+1}.
So we can say that;

-k, —1_—1 -1
L =p, Pj, Pjpi+1" " Pjp419m+29m+3 " " 4o

59)
—k, —1,—1 -1 -1 -1 —1 (
= Pn Py, pjk+1+1 P 41Pi 9 Pipy s Piy
We can now take tv; = v; to imply the following.
top = v = P, 0y s Dy P Py DiL PIVL = U1 (60)

-1 -1 —1 _
= PipyyoLip s Piy, PIVL =01

We therefore require pyv; to exist for p,;nlﬂ pi_mlJr3 e p;clpl to exist. However,
pv1 exists if and only if 1 — [ is divisible by n. Given that [ is defined such
that the edge e; exists, we know that 1 — [ can never be divisible by n (as
I €{2,3,...,n}. Therefore, such a p;v; can not exist and our assumption
that £ > m + 1 is incorrect.

This leaves us with only one option, x = m + 1. However, since ¢, =
pj_yL, this then implies that ¢ = s;. As (e;) = v1, Vi € {2,3,...,n}, this
tells us that ¢(te;) = vy which contradicts our initial definition of ¢. This
same method could have also been applied if we had instead assumed that
k=m. O

Remark. In the proof of this Theorem, we also showed that the value of
the other endpoint on the edge with a terminal vertex of v; will be given by
vir. We could then find the edge that vy is the terminal vertex of and the
other endpoint of this edge. It is possible for us to repeat this method until
we reach a base edge of GG,,. As these base edges are all connected, we can
say that G, will be connected.

Corollary 4.2.3. G, contains no cycles.

Proof. Assume that v;,,v;,,...,v;, € V and their adjacent edges make a cy-
cle in Gy,. In other words, 3t;,ta,...t, € P, and ly,1o,...,1l, € {2,3,...,n}
such that;

tiey toeg, tz—1€1,_, tzey,
i1 io e Vi, Uiy

We know that for any v;, € V, Jjr,, jr,+1,---,Jm, € {0,1,...n — 1} and
ky,my € INY such that by = jkynky + jkyany“‘l + 0+ Jm,n™¥ where
Jkys Jmy # 0 and ky, < m,. Furthermore, from the proof of Theorem 4.2.2,
we know that v;, can only be the terminal vertex of the edge 53t €y +1 where
-/

iy = iy — Jm,n" if my # ky, n™ if ky = my and jp, # 1 and n™—L if
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ky = my and j,, = 1. The other endpoint of the edge will then be given
by Vyy - Furthermore, Theorem 4.2.2 tells us that for our cycle to exist, we
require that iy, =i, 1, Yy € {2,3,...,z} and @] = ;.

Note that if there is some v;, in our cycle such that i, = jkynky +
jky+1nk9+1 + 4 Jm,n™ where ji, , jm, # 0 and ky < m, then the highest
order of n in 4, will be greater than the highest order of n in Z;J The same
can also be said if i,, = n™v for some m, € IN*. Finally, if i, = Jm,n"™v for
some jp,, € {2,3,...n —1}, my € IN* then the highest order of n in 4, is
equal to the highest order of n in 7). So, if we define h(iy) to be the highest
order of n in iy, then we can say that h(i1) < h(iz) < --- < h(ip) < h(iy).
Therefore, for this property to hold, it must be the case that every 4, in our
cycle is of the form jy,, n™¥ for some jn,, € {2,3,...n — 1} and m, € IN*.
However, if i, is in such a form, then i, = ¢, = n™v which contradicts the

Y
required form for 4, 1. Therefore, no such cycle can exist. O

Theorem 4.2.4. Let V = {v;,v2,...} be a Py,-act with respect to ¢, (s,v) =
P(n,s)(v) where pe, s is given by Plnp=)Vi = Un(j—1)+i- Let E be a set of
edges connecting elements in V' given by base edges e; = (v1,v;) which are
defined Vi € {2,3,...,n}. By base edges, we mean the set of edges such that
b= Uz‘e{2,3,...,n} Se;. Then the graph with vertices V' and edges E will give
us a connected tree.

Proof. By definition, Vi € {2,3,...,n}, there exists an edge from v; to v;.
So the elements wvy,vs,...v, are connected in this graph. Theorem 4.2.2
then tells us that every other v; is the terminal vertex of a multiple of one
of these edges. Therefore, our graph is connected. Finally, Corollary 4.2.3
tells us our graph will have no cycles and therefore, it must be a connected
tree. O

4.3 The Graph of Inverse Semigroups from the Polycyclic
Monoid

To begin with, we need to find the vertex and edge orbits of our P,-action.
We know from Proposition 4.1.7 that we will have a single vertext orbit
which we will define by v. It only remains to find the edge orbits of our
graph.

Lemma 4.3.1. Vi,j € {2,3,...n}, Pye; N Prej = 0.

Proof. Take edges e; and e; such that ¢ # j and assume they exist in the
same edge orbit. In other words, ds € P, such that se; = e;. Given our
definition of e; and e;, it must be the case that svy = v1 and sv; = v;. From
Lemma 4.1.4, we know that S, = {1, p}*, p; ", p1 " p}*|r,m € IN*} and hence
s must be equivalent to one of the values in this set. By definition of the
action of idempotents, we know that s # 1 or p; "'p{* as sv; = v; would then
imply that i = j.
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Now say s = p; ™ for some m € {1,2,...,n}. Then, sv; = v; implies
that v; = p"v; and hence pjv; must be defined. This is only possible if
i =n(’—1)+ 1 for some ¢/ € {1,2,...}. Tt is simple to show this then
means that i/ = % + 1. For this to hold, we require % € IN°. However,
given that ¢ € {2,3,...,n} this is not possible.

Similarly, if s = p{*, then piv; must exist, but there is no j € {2,3,...n}
that satisfy this. Finally if s = p;"p{" then pjv; and piv; must both exist
which again contradicts our definition of ¢ and j. Therefore, no such s can
exist. O

It must therefore be the case that P, will give n — 1 edge orbits when
acting on the graph G, since each orbit is defined by one of our base edges,
e; for some [ € {2,3,...n}. Hence, we shall define ¢ to be the edge orbit
containing the base edge ¢;. This then gives us the following quotient graph:

When picking a vertex to represent v for our S-transversal, we will need
a vertex that is the initial point of an edge in each of our edge orbits. The
only such vertex in V' is v;. Therefore we find our S-transversal will be given
by;

So we wish to construct a graph of inverse semigroups given by;
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To make use of this graph, for each edge S,, in our graph we need to
find t; € P, such that t;v; = v; and tltfl = 1d(S,,) = 1. However, no such
t; exists given the following lemma.

Lemma 4.3.2. Vs € P,, ss*! =1p = s € (p;|i € [1,n]).

Proof. Say s € P, is such that ss~! = 1. Given the aforementioned normal
form of elements in P, we can say that s = a~'b for some positive words
a and b generated by the generators of P, or are the identity element in
P,. So, 1p, = ss7! = 1p, = a~'bb~la = a~'a. Therefore, a = 1p, and
s=b. O

Knowing this, we can say that tt~! = 1 = tv; # v; since Piv; = v =
k < j. Therefore, we cannot continue our process any further with this
graph.

If our base edges where the other way round, then we are able to find
such a t;, however this would require a vertex in V to be the initial point
of an edge in each orbit. Proposition 4.1.7 will then tell us that each vertex
is the inital point of a single edge in our graph (except v; which is not
a initial point of any edge) and so we will be unable to find a vertex to
represent v unless n = 2. It is worth mentioning that when n = 2, we can
say some additional properties for P,. Birget found a connection between
such a monoid and certain Thompson groups [1], though relations between
P,, and Thompson groups where later found Vn € N [15]. However, we will
still be unable to complete our method as shown in the following example.

Example 4.3.3. We define P, to act on the graph G whose vertices are
given by V and whose edges are generated from the base edge e = (va,v1).
We know that all the elements in V' exists in the same orbit which we shall
call 9. By definition, there is only a single edge orbit which we label . This
then gives us the following quotient graph;

<
o
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If we then pick v9 to represent v, we find our S-transversal will be given by;

e

V2

So, the graph of inverse semigroups that we will construct is;

Sy Se

Therefore, we wish to find a t € P, such that tve = vy and tt=1 = Id(S,,).
These conditions will be satisfied by ¢t = ps, however before we continue, we
need to find the value of S,,.

Lemma 4.3.4. In P, the words of length 2 in D,, are given by the set
{pa ™' o™y ™ 0y ™0 py " D2, Py ™ P2, DY palmo, m1 € INT

Proof. We know that the words of length 1 that act on vy are given equal
to 1 or py our are of the form p; ™ or p, ™ for some mgy € IN*. Therefore
to find the words of length 2 that act on vo we need only multiply these
values on the left by pi",p; ™, py't, p, ™' where my is any element in INT.
By definition of the identity, we know that we need not check if multiplying
1 on the left by any of these terms gives a word of length 2 as we know this
will never happen. The solutions to our remaining equations are then given
in the following table;

p " py " P2
pit | ey ™ ™ M
pr™ | pp () prmpym - prmoy,
Pyt phtpr™ phipy™ phntt
p™ | py Mo py M)y,

"0 and phy" pa are words

So we can immediately see that p;"™'p; ™, p; "' py

of length one. Furthermore, our relations of P tell us that p/*'p; ™ will
equal a word of length 1 if ¢ = j and will equal 0 if ¢ # j (in which case
it won’t act on vy). The remaining values then form the set defined in the

lemma. O

Lemma 4.3.5. The words of length 3 in D,,, are of the form p; " ?py "™ p; ™,

—m —m —m —m —m —m —m —m m —m m
Do 2]71 1}72 0, Do 2171 'pa, D1 2172 *pa, b1 2p1 'pa or V%) 2p1 'pa for
some mg, my, mg € NT.

Proof. Similiar to how we proved Lemma 4.3.4, we obtain words of length 3
by multiplying words of length 2 on the left by pi*?, p; "%, p5'?, p, "*? where
mao is any element in INT and checking that our new word is of length 3 and
still exists in D,,. Our equations are given in the following table;
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—my . —mg —my1 . —mg —mq —m1 M1
D2 Do D2 b1 P2

Do D1 D1 Do Py

P72 | Py ™M™ e e PP e piRpy e P,
Py | py My My py Rt pome gy ma )  mam pp  py
Pa® | Paipy pr ™ pyPpy " py

ma, 11
—ma —(m2+m1) —mg —mg, _—mi, _—mg

A R R e S TR A i
2 Do Py Py "P1 P9

mo

—mg, — —(ma+ma1)

Py P2 Dy P2 Dy P e

In the same way we ruled out scenarios in Lemma 4.3.4 using the relations of
P, we can also rule out the values in our table when our word equals 0 or is
not of length 3. This then leaves us with the required forms and p5"2p]"* ps.
However, for p5"?p" pa to act on v we need pav; to exist as p|''pave = v1.
Lemma 4.1.1 rells us this value doesn’t exist and so py?p|"'ps € D,,. We
can also use Lemmas 4.1.1 and 4.1.3 to say that all the other words of length

3 we have defined will act on vs. ]
It will now be helpful to define the following form of words in P;.

Definition 4.3.1. Let s be a word of length n in P. If s is of the form

W(p,1) then Imy,ma, ... ,my, € IN? it is equal to p; ™ py "t - py 2 py ™
if nis odd or py " p; "t - py M2pT ™ if s even.

Similarly, we say s is of the form w(, 9) if 3m1,ma, ..., m, € INY such that

sisequal topy "mpy "t p] ™ py M if niiseven or py ™y e py M2 py ™

if n is odd.

Corollary 4.3.6. Words of length n > 3 in D,, are given by words of the
form W(n,), Win-1,i)P2 0T w(n—2,i)p7lnop2 NmO € IN+) IS {1a 2})

Proof. Lemma 4.3.5 tells us our Corollary holds when n = 3, so we now
assume it holds when n = k. Then, the words of length £ in D,, are of the
form w,, ;y, W(n_1,4)P2 OF W_o:Py P2 (Ymo € NT, i € {1,2}). The words
of length k£ + 1 will be given by multiplying words of length k on the left by
Py p T py T or py, MY for any myyq € INT.

If we multiply a word of the form wy, 1) on the left by p;"*™* or py™**
then our relations tell us we will either get the zero element or a word whose
length is less then or equal to n (depending on if the first term of our word

is p;! or py!). The same can also be said for words of the form W(n,2)-

If instead we multiplied a word of the form w, 1) on the left by py

then we get a word of length n if n is odd (in which case the first term in
our word is pfl) or a word of length n+ 1 if n is even which would then give
us a word of the form w(, 41 1). Similarly, if we multiplied our word on the

+1 1

left by p, **! instead we will get a word of length n if n is even or a word
of the form wy, 1) 1) if n is odd.

The same logic will also tell us that if we multiply a word of the form
W(p,2) On the left by p;mk“, then we get a word of length n if n is even and
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a word of the form w, 19y if n is odd. If we instead multiply our word on

the left by p, "+ we will get a word of length n if n is odd and a word of

the form wy, o if n is even.
—MEk41

Therefore, if we multiply our words of length & on the left by p;"***, p; )
Pyt or p, " we will see that the words we get will be in the forms re-

quired to say our Corollary holds for n =k + 1. O

Now that we know the form elements in D,,, take, we can identify which
of them will also exist in S,,.

Lemma 4.3.7. The stabilizer of vy with respect to Ps is given by;

Suy = {1,105 P2, 3 'y ™ 2, Dy DO D2, Dy Ly ™ O palme, my € NT} (61)

Proof. We begin by finding the words with a length greater than 3 that
are stabilizers of ve. From Corollary 4.3.6, we know the forms that these
elements in D, will take. First we shall check if any elements of the form
Wiy (for some i € {1,2}) will exist in S,,. By definition, py - will map any
vj € V to some vy € V such that j < j'. Simliarly, we can say that pl_1
will map v; to some v;» € V such that j < j”, but j = j” only when j = 1.
Therefore, we can say that no word of the form wy, ;) will fix vo.

Now assume s € S, is a word of length n > 3 that’s of the form
W(n—1,)p2. We can say that ppvs = v1 and so we wish to see which words of
the form Win—1,) will map v1 to vo. Given that pl_lvl =7 and pz_lvl = V9,
we can say that the only words of the form w(y;) and w( ;) that’ll satisfy
this are py lpfml and py ! yespectively (for any m; € INt). Given that Doy !
will always map v; to a vertex with a greater index and pl_l will do the same
unless 7 = 1 (in which case pl_lvj = v1) we can say that these will be the
only possible words of the form w,_; ;) that map v; to ve. Therefore, the
only possible value of s is p, 1p1_m1 po for some m; € INT (as if s is given by
pglpz, then it is a word of lenght 2).

Finally let’s say s € S,, is a word of length n > 3 that’s of the form
w(n_27i)p71710p2 for some mg € INT. We can use Lemmas 4.1.1 and 4.1.3 to
say that p"°pave = v1. So, we are looking for elements of the form W(n—2,4)
that map v1 to vo. We have previously found that the only such elements
are py Land Doy 1301_7”1 for any m; € INT. Therefore, we can say that s equals
Py P pg or py tp] " P py for some mg, my € INT.

Finally, from observation of our result of Lemma 4.3.4 we can see that
the words of length 1 or 2 that are stabilizers of vs are py 1o and 1. O

Corollary 4.3.8. The stabilizer of vy with respect to Py is given by;

Sy, = Inv(1,p; 'p2, py ' p1p2) (62)
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Proof. From Lemma 4.3.7 we know that the stabilizer of vy is given by

Suy = {1,035 P2, 03 01 ™ D2, Py P OP2, Py oy ™ O palmo, my € N} How-
ever, note that;

Py 12 = (p3 Py ™ p2) (py DY p2) (63)

since papy ' = 1. So all elements of the form py 'p] ™ pi"py can be written
as a product of elements of the forms p; lpfml p2 and py lpTOpQ.

Also note that we are also able to use the relation that pap; 1=1+to say
that;

P2 PVp2 = (03 'pip2) (03 DT pe) = o = (0 pp)™ (64)
Similarly we can say that pglpfmlpg = (pglpflpg)ml. Finally, note that
(py'p1p2) ™" =3 'py P2 M

We may now continue with our example. From Lemma 4.1.4 we know
that Sy, = Inv(p1) = {1,p}*, p7™, p; "PT*|r,m € IN"} and hence we can say
that S, = S,, NS, = {1}.

Therefore, the generators of our fundamental inverse semigroup will be
given by, 81 = psy Yo, Bo = 123 Lpipa, 1 and ¢. Furthermore, the relations will
be given by:

e The relations in the stabilizers which are B% = f1, ﬂ252—1 =B, B182 =
Bofi = Bo and 1By = By B = By

o it 1 =1

First we note that since 8235 1 — B, we can remove f3; from our genera-
tors. So our fundamental inverse semigroup will be given by;

' = Inv(Ba, 1By = Bafiy 1t~ = 1) (65)

which is obviously not equivalent to P» since it does not include a zero
element.

The main problem here seems to be that we lose our information about
the zero element in our semigroup when it acts on the graph since there is
no vertex or edge that the zero element acts on. If we had a vertex that
0 acted on, then every other element in our semigroup would not only also
have to act on it, but will also exist in the stabilizer of that vertex (as seen in
Corollary 2.1.3). Therefore, this vertex would exist in its own orbit and will
have to be a vertex in our S-transversal. Since the stabilizer of this vertex
is the whole semigroup, if we are able to create a fundamental semigroup
from this system it will have to be equivalent to the initial semigroup, but
not in a way that’ll interest us.

It is obvious now that if we want an action on a graph to return P, as
the fundamental inverse semigroup, we require that 0 is not a stabilizer of
any element in a P,-transversal that we derive from this system. However,
there is more to this property then we might originally expect.
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Lemma 4.3.9. Let T be any inverse semigroup and G a graph such that
there exists a T-act on G. Let A be a T-transversal obtained from this
system.

Yo € V(A),0¢ ST Vo e V(G),0¢ ST (66)

Proof. The fact that Vv € V(G),0 ¢ SI' = Vv € V(A),0 ¢ ST is obvious.
Therefore, assume our action and 7-transversal are such that Vv € V(A),0 ¢
ST and assume 0 € S!' for some u € V(G). By definition, this means that
u ¢ V(A), however, given the definition of A, 3t € T, v € V(A) such that
tu = v. However, since v = Ou, we can say that tu = t(0u) = v = t(0u) =
(t0)u = Ou = u which means 0 € SI" which is a contradiction. So our intial
assumption that 0 acts on some vertex in G is incorrect. O

Therefore any action must be such that 0 does not act on any element
in the S-act since otherwise we would get 0 as an element in the stabilizer
of a vertex in any S-transversal we may obtain.

So if we have an action of P, on a graph in such a way that the funda-
mental inverse semigroup is isomorphic to P, and 0 € P, does not act on
any element in the graph, we would need to be able to derive the 0-element
property from the relations we obtain from the embeddings of edges into
their intial points that are sometimes required to create the graph of inverse
semigroups. In other words, we need to be able to define a zero element
existing from equations of the form wlwiw = wy for some wi,ws € P,
and w € {p;i|p; € P,) (since ww~! = 1 implies w must exist in this subset
of P, (by Lemma 4.3.2)). Furthermore, we would also require wy,ws # 0
since this would then make 0 an element in a stabilizer of a vertex. Lawson
tells us that the only possible values for a non-zero element in F,, are given
by the set {s]'sa|s1,52 € P'} where P = (py,...,pn|) [14]. Knowing this,
I have been unable to find any embeddings from relations that (along with
relations that can exist in a set of stabilizers) will define a zero element in
the fundamental inverse semigroup.

It is also worth mentioning that polycyclic monoids can be thought of as
an amalgamated free product of inverse moniods. In the previous section we
discussed how we can create actions for free products, however the difference
here is that the identity (resp. zero) element in each monoid that makes the
polycyclic monoid must also act as an identity (resp. zero) element in every
other monoid in the product. As such, we cannot apply many of the ideas
discussed there to the polycyclic monoid.

5 Bruck-Reilly Semigroup Actions

For this section, we will define S = N° x 7' x NY to be a Bruck-Reilly
semigroup where 7' is an inverse monoid with identity 1. By doing so, we
are also defining S to be an inverse semigroup [8, Proposition 5.6.6.(4)]. We
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will also define 6 to be a morphism from 7" to U(T) where U(T) is the H-
class of 1 in T', otherwise known as the group of units of 7". In such a case,
we write S = BR(T, 0). The semigroup operation of S is defined to be given
by (V(m,a,n), (p,b,q) € 5);

(m,a,n)(p,b,q) = (m —n+t,0""(a)0P(b),q —p+1) (67)

where t = maz{n,p} and 6° is defined to be the identity map on 7. Note
that S is also a monoid with an identity given by (0,1,0) [8, Proposition
5.6.6.(1)].

Such semigroups were first described by Bruck in his book a Survey of
Binary Systems [3]. However, he only examined the properties when 6 is the
morphism that maps any element in 7" to the identity 17 € T. Reilly [21]
also proposed something similar, but he only considered the case when T'
was a group. It was Munn [18] who put these two ideas together to give us
what we are working with today.

5.1 Decomposition of Elements

We begin by looking at what different elements in S can be written as with
the goal of finding a presnetation of S. The presentation that we find is
similar to the one proposed by Yamamura [25], however, we will derive the
result in a different way. Similar work was also done by Lavers [13], but the
results are presented differently there. A presentation for the Bruck-Reilly
semigroups is also given by Howie and Ruskuc [9].

A lot of the material presented in this section is already well known
for Bruck-Reilly semigroups, however, it is helpful to prove them within
the context of the presentation we will be using throughout our work on
Bruck-Reilly semigroups.

Lemma 5.1.1. Let (m,t,n) € S wheret = tity ...t for generatorsty,ta,. .., t
of T andn >m. If n =m+ k, then;

(m,t,n) = (m,t;,m+1)(m+ 1,ta,m+2)...(m+k—1,t,,m+ k). (68)
If n > m+k, then;

(m,t,n) =(m,t;,m+1)(m+ 1,to,m+2)...
coom+k-1Ltg,m+k)(m+k1m+k+1)... (69)
. (n—=1,1,n).

Finally, if n <m + k then;

(m,t,n) =(m,t;,m+1)(m+ 1,to,m+2)...

(70)
coon=1tp—m,n)(ny tn—mt1,n) . .. (N, tg, ).
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Proof. By the definition of the semigroup action of a Bruck-Reilly semi-
group, we know that for any p, ¢, € N° and u,v € T we can say;

(P, u,9)(g; v,7) = (p, uv, 7). (71)

Therefore, if we set (m,t,n) to be the same as in our Lemma, we can im-
mediately say that our statement holds when n = m + k. For the other two
cases, note the following for any (p,u,q) € S and any generator t; of T

(p,u,q)(q; 1, +1) = (p,u,q + 1) (72)

(p, u,q)(q, ti, q) = (p, uti, q). (73)

It then follows that our Lemma must also hold when n > m + &k or n <
m+ k. O

A similar proof is used to give the following Lemma for when n < m.

Lemma 5.1.2. Let (m,t,n) € S wheret = tita ...t for generatorsty, ta, ..., tg
of T andn <m. If m =n+k, then;

(m,t,n) = (m,t1,m—1)(m—1,tog,m —2)...(m —k+ 1,tg,,m — k). (74)
If m > n+k, then;
(m,t,n) =(m,t1,m —1)(m —1,ta,m —2) ...

oom—=—k+1Lty,m—k)(m—k,I,m—k—1)... (75)
...(n+1,1,n).

Finally, if m < n+ k, then;

(m,t,n) =(m,t;,m —1)(m —1,ta,m — 2) ... (76)
coon+ Ltpmen,n)(ny tm—n+1,n) ... (0, tg, ).

Lemmas 5.1.1 and 5.1.2 can be used to identify what elements are needed
to generate any element in S, as shown in the following Corollary.

Corollary 5.1.3. Let A be a set of elements in S. If any element of the
form (m,t;,m+1),(m,t;,m—1),(m,1,m+1),(m,1,m—1) or (m,t;,m) in
S (where t; is any generator of T and m € N°) can be generated by A, then
A is a set of generators of S.

Proof. By Lemmas 5.1.1 and 5.1.2, any element in S can be written as a
combination of words of the from (m,t;,m + 1), (m,t;,m — 1), (m,1,m +
1), (m,1,m — 1) or (m,t;,m). Hence, the Corollary holds. O

This then leads us to make a test for determining if a set generates a
Bruck-Reilly semigroup.
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Proposition 5.1.4. Let A be a set of elements in S. Say all elements of
the form (m,1,m +1) or (m,1,m — 1) in S (where m € N°) are generated
by the set A. If A also generates all elements of one of the following forms,
then A generates all of S':

o (m,t;,m+1)
e (m,t;,m—1)
e (m,t;,m)
where t; is any generator of T'.

Proof. From Corollary 5.1.3 we know that to prove a set generates the whole
of a Bruck-Reilly extension, we need only show that it generates all elements
in S of the form (m,t;,m+ 1), (m,t;;m —1),(m,1,m+1),(m,1,m —1) or
(m,t;,m) (where t; is any generator of 7' and m € N°). However, note the
following;:

(m,ti,m+1)=m,l,m+1)(m+1,t;,m)(m,1,m+ 1)

= (m,t;,m)(m,1,m+1). (77)

Therefore, elements of the form (m, t;,m+1) can be written as a product of
elements of the form (m,1,m+1), (m,t;,m —1) and an element of the form
(m,t;;m — 1) or (m,t;,m). We can also give corresponding statements for
elements of the form (m, t;, m—1) or (m,t;, m) using the following equations:

(matiam - 1) = (m7tiam+ 1>(m + 1, 17m)(m7 L,m— 1)
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(m,ti,m) = (m,t;,m+1)(m+1,1,m) (79)
=(m,1,m+1)(m+ 1,t;,m).

Hence, our Proposition holds. O

Remark. Note that the process we used to create this Proposition can be
done for any Bruck-Reilly extension, not just those that are inverse semi-
groups.

In fact, this Proposition can then be used to find a subset of a Bruck-
Reilly extension that will always generate the semigroup.

Theorem 5.1.5. Let S = BR(T,0) be the Bruck-Reilly extension of T
determined by 6. If {t;|i € I} is the generating set of T for some index set
I, then {(1,1,0),(0,1,1)} U{(0,t;,0)|i € I} is a generating set of S.
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Proof. First, note that by the definition of 8, any such morphism must map
the identity element in T to itself. Knowing this, we can say that;

(1,1,0)(1,1,0) = (2,1,0) (80)

(1,1,0)(n,1,0) = (n+1,1,0) (Vn € N). (81)

Hence, Vn € N, (n, 1,0) can be generated by {(1,1,0),(0,1,1)} in S. Simi-
larly, we can show that (0,1,n) can also be generated by {(1,1,0),(0,1,1)}
in S for any n € N.

We can then say that (m,1,n) € S is generated by {(1,1,0),(0,1,1)}
Vm,n € N by the equation;

(m,1,0)(0,1,n) = (m,1,n). (82)

In particular, this means that (m,1,m+1),(m+1,1,m) € S are generated
by {(1,1,0),(0,1,1)} ¥m € N°.
Now we note the following where ¢; is any generator of T and m € N;

(m,1,0)(0,t;,0)(0,1,m) = (m,t;, m). (83)

So, (m, t;, m) must be generated by the set {(1,1,0), (0,1,1),(0,%;,0)} when
t; is a generator of T and m € N since (m,1,0) and (0,1,m) can be gen-
erated from the set {(1,1,0),(0,1,1)}. Hence, for any generator t; of T
and m € N°, (m, t;, m) is generated by {(1,1,0), (0,1,1)} U {(0,;,0)|i € I}.
Then by Proposition 5.1.4, our Theorem holds. O

We now wish to find the relations of our Bruck-Reilly semigroup. These
are given to us by the relations in the semigroup that generates the Bruck-
Reilly semigroup. To see how, we first note the following;

Lemma 5.1.6. Let T be an inverse monoid such that there exists a mor-
phism 0 : T — U(T). Then, {0} x T x {0} € BR(T,0) is isomorphic to
T.

Proof. Define a map ¢ : T — {0} x T x {0} to be given by ¢(t) = (0,t,0),
VvVt € T. It is immediately obvious that ¢ is a bijection, so we need only
check that it is a homomorphism. Take any t1,t2 € T', then;

é(tl)(b(t?) = (O,tl,O)(O,tQ,O)
= (0, (1260°)(t26°),0) (84)
= (0,t1t2,0) = @(t1t2).

O]

The existence of such an isomorphism then gives us the relations in
BR(T,0).
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Corollary 5.1.7. Let R(t1,ta,...,t,)r describe a relation between elements
t1,to,...,t, € T with respect to the semigroup operation of T. Then the
relations of BR(T,0) contain R((0,t1,0),(0,t2,0),...,(0,%,,0))Br(1,0)-

Remark. What this Corollary is saying is that any relation in 7' gives rise
to a relation in {0} x T' x {0} and consequently a relation in BR(T,0). For
example, if t1,to,t3 € T are such that t%t;l = 3, then (0,%1,0)%(0,t2,0)~! =
(0,t3,0)% in BR(T, ).

5.2 Bruck-Reilly Action

If we know that there exists an action of the monoid 7" on a set V', then we
can define an action for BR(T, 6).

Lemma 5.2.1. Say the set V is a T-act with an action given by tv = f(t,v)
(Vt €T, v e V). The set N’ x V can be considered to be an S-act with an
action such that ¥(m,a,n) € S, (a,v) € N® x V, (m,a,n)(a,v) is defined if
and only if n < a and 0*"(a)v is defined in the T-act. This action is given
by;

(m,a,n)(a,v) = (m —n+a,0°"(a)v) (85)

Proof. In this proof, we will be defining ¢t = maz{n,p}. Say I(m,a,n),
(p,b,q) € S such that (m,a,n)(p,b,q) = (m—n+t,07"(a)0=P(b),q—p+1t)
acts on (o, v) € N° x V. By definition, this means that ¢ — p + ¢ < a and
GO atP=t(GI=" (a)0 P (b))v = (02 9TP~"(a)0*9(b))v exists. Since p < t we
can say that 0 < —p+t = ¢ < q¢—p+t < a. Also, by the definition of an
inverse semigroup action, (9*~9tP~"(q)0*"9(b))v exists = 6% 9(b)v exists.
Therefore, (p, b, q)(a,v) is defined and equals (p — g+ a, 0%~ 9(b)v). Further-
more, g —p+t<a=>n<t<p—qg+aand (0% 1P "(a)0*9(b))v exists
= 0" ITP"(a)(0*1(b)v) exists. So, (m,a,n)((p,b,q)(a,v)) is defined and
equals (m —n+p—q+ a,* TP "(a)(0“79(b)v)).

Conversely, say (m, a,n) and (p, b, q) are such that (m, a,n)((p, b, q)(a, v))
is defined. So, since (p,b,q)(a,v) = (p — g+ «, 0% 4(b)v), we can say that
g<a,n<p—q+a, 0*9b)v exists and P~ (q) (> 9(b)v) exists. If
t = p, then ¢—p+t = q¢ < . Alternitively, if t = n, then ¢—p+t = g—p+n.
Sincen <p—q+o,¢q—p+t < g—p+p—q+a = a. Therefore, g—p+t <«
is true regardless of the value of t.

By defintion of an inverse semigroup action (67~9T%"(q)0*~%(b))v ex-
ists and is equal to 0?97 (q)(9*~9(b)v). The properties of a morphism
also tell us that 6P~9T9~"(g)P*4(b) = 9> 4TP=L(9'="(q)0'"P(b)) and so
G atP=t(GI="(q)0! P (b))v = OP~9T(a)(0*"9(b)v). Note that ¢ < a and
n < p— q+ « tell us that these morphisms are always defined (which is
to say their index is always a value in NY). From this, we can say that

((m,a,n)(p,b,q))(a,v) exists.
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Finally, note that;
(m,a,n)((p,b, q)(e,v)) = (m —n+p—q+ a0 TP7"(a)(0*"(b)v))
= (m—n+p—q+a,0 PO (a)0"7P(b))v)
= (m—n+t0""(a)0" P(b),q — p+1t)(a,v)
= ((m,a,n)(p, b, q)) (e, v).
(86)
O
Now that we have defined our action, we can find some properties of it.
As stated when we defiend the action, (m,a,n) € S acts on (a,v) € NO x V
if and only if n < o and % "(a)v exists. Therefore, V(a,v) € NO x V;

D) = {(m,a,n) € Sln < @, 6% "(a) € DY} (87)
Lemma 5.2.2. V(a,v) € N x V;
S(SDW) ={(n,a,n) € S|n < a,0 " (a) € ST}. (88)

Proof. Let (m,a,n) € S° .. Since S . C Dga’v) we can say that n < «

and 0 "(a) € D¥. B}(f dv)sﬁnition, ((a,i)) = (m,a,n)(a,v) = (m —n +
a,0*"(a)v). Then, « = m—n+a = m = nand v = 0* "(a)v =
0°~"(a) € SI. Therefore, S(Scw) C {(n,a,n) € Sin < a,0°""(a) € SI'}.

If (n,a,n) € S is such that n < « and 0*"(a) € SI C DY then
(n,a,n)(a,v) is defined. Furthermore, (n,a,n)(a,v) = (n—n+a, 04 "(a)v) =

(v, v). Hence, Sfa » ={(n,a,n) € SIn < a,0%7"(a) € s, O

Lemma 5.2.3. V(a,v) € N0 x V;
S, v) = {(B,u) € N’ x V]u € Tv} (89)
where T v is the stabilizer of v under the T-act.

Proof. Let (3,u) € S*(a,v). So, I(m,a,n) € S such that (a,v) = (m,a,n)(B,u)
(note that since S is a monoid, S' = S). Therefore, (a,v) = (m —n +
B,0° " (a)u) Since v = 0°"(a)u = (0°7"(a))"'v = u we can say that
u € T'v and hence S'(a,v) C {(B,u) € N® x V]u € Ttv}.

Conversely, say (3,u) € N° x V is such that u € T'v. Then, 3z € T
such that zv = u (again since T is a monoid, T' = T'). Then;

(8,2, 0) (e, v) = (B — a4 0, 0°7%(2)v)

— (8, 20) = (B,) 0

and so, by definition, (3,u) € S'(«a,v) since (3,z,a) € S. O
Corollary 5.2.4. Va,3 € N, v, vy € V;

SHa,v1) = SY(B, 1) & Tloy = Ty, (91)

Proof. Follows from Lemma 5.2.3. O
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5.3 Action on a Graph

Say that we had an action of T" on a tree G such that we not only get back
a fundamental inverse semigroup but said semigroup is isomorphic to 7T'. In
other words, in this system we get a quotient graph, )7, which then gives us
a T-transversal, A7, which then gave us a fundamental inverse semigroup 7"
such that T" ~ T'. Furthermore, let E7 be the set of base edges that generate
E(Gr) under the T-act. Knowing this, it is possible to create a graph that
S = BR(T,0) will act on such that the fundamental inverse semigroup is
isomorphic to S provided T and 6 have additional properties. What these
properties are and why we require them will be discussed later.

First we define a graph Gg in the following way. Let V(Gg) = IN? x
V(Gr). For all u € V(Ar), define an edge f, € E(Ggs) by ¢(fu) = (1,u) and
7(fu) = (0,u). We define the set of base edges of Gg (with respect to the
S-act) to be given by {(0,e)le € Ep} U{f.} where the edge (0, e) is defined
by ¢((0,e)) = (0,¢(e)) and 7((0,€e)) = (0,7(e)). It is then the case that every
edge in Gg that is not in the orbit of an edge of the form f, is given by
(a,e) € N’ x BE(Gr) where t((a,e)) = (a,i(e)) and 7((a,e)) = (a, 7(€)).
This structure means that Gg can be thought of as an infinite number of
graphs that are isomorphic to G with neighboring layers connected edges
that exist in the same orbit as edges of the form f,.

Lemma 5.3.1. Gg s a connected graph.

Proof. Let (a,v) € N’xV and u € V(A7). By definition of G, there exists
aset, P C E(Gr), that defines a path connecting v and u. Therefore, in Gg,
there exists a path connecting (0,u) to (0,v) given by the set Py = {(0,¢) €
E(Gg)le € P}. Similarly, there is a path between (o, u) and («,v) given by
Pa = (Ck, 1,0)P0.

Note that ¢((1,1,0)" fu) = (1,1,0)"¢(fu) = (n+1,u) and 7((1,1,0)" f,) =
(1,1,0)"7(fu) = (n,u) and so ¢((1,1,0)"f,) = 7((1,1,0)"*1 £,) (vn € NY),
Therefore, there is a path in Gg connecting (0,u) and («,u) meaning that
(e, ) is connected to (0,u). Since this is true for any element in N° x V we
can say that Gg is connected. O

It is possible that G g will contain a loop. However, this does not stop us
from using our method since the quotient graph of this system will be a tree
no matter the properties of S as we will show later. We can still identify
the circumstances under which Gg contains no loops.

Lemma 5.3.2. Gg contains no loops < T'u = {u} and V(Ar) = {u} (for
someu e V).

Proof. Say T'u # {u} and hence Jv € T u such that v # u. So, 3t € T such
that v = tu (where ¢t # 1 since this will contradict v # u). Given that G
is a tree there must exist a set of edges P C E(Gr) that define the unique
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path going from u to v. Therefore, the sets Py = {(0,e) € E(Gg)le € P}
and the set P, = {(1,e) € E(Gg)|e € P} define paths from (0,u) and (1,u)
to (0,v) and (1,v) respectively. Also, we know that the edge (0,t,0)f, is
in E(Gg) (by definition of a base edge) where ¢((0,¢,0)f,) = (1,v) and
7((0,¢,0) fu) = (0,v). This gives us two paths in Gg from (0,u) to (1,v):
going against the direction of f, and following the path given by P; or
following the path Py and going against the direction of (0,¢,0)f,. These
paths share no edges and hence there is a loop in Gg.

Conversely, say T'u = {u} and V(A7) = {u}. Then, S'(0,u) =
S1(1,u) = {(o,u)|a € N°} (by Lemma 5.2.3) and so S f, = {f € E(Gg)|c(f)
(n+ 1,u),7(f) = (n,u)(Vn € N°)}. Since G contains no loops, any loop
in G must contain an edge in the orbit of f,. Given the elements in S!f,,
there is only one path between the different subgraphs of Gg¢ that are iso-
morphic to Gr. Therefore, we are unable to create a loop in Gg. O

Note that this condition on G does not mean that it has a single vertex,
only that the Gr-transversal we obtain from the T-act will have a single
vertex. We have seen previously in this paper examples of graphs with
multiple vertices whose transversal has just a siungle vertex like in Example
2.1.8.

Now we can examine the quotient graph we will obtain when S acts on
INY x V. Let Qg the quotient graph obtained when S acts on Gg.

Lemma 5.3.3. V(Qgs) = {S*(0,v)|v € V(Q7)} and E(Qs) = {S'(0,¢)|e €
Ei}(L(J {S)l)fu]u € V(Ar)} where 1(S*(0,e)) = S'u((0,€)) and 7(S*(0,e)) =
S*7((0,¢)).

Proof. By Lemma 5.2.3 we know that Vv € V(G7),a € N°, (o, v) € S1(0,0).
Therefore, the orbits of elements in the S-act is determined by the orbits of
elements in the T-act. In other words, Vo, 3 € N°, vy, ve € V, St(a,v1) =
S1(B,v2) & Tlvy = T'va. So, V(Qs) = {S1(0,v)|v € V(Qr)}. Note that
a consequence of this is that the number of vertices in Qg is equal to the
number of vertices in Q7. Furthermore, by definition of the base edges of
Gg we know that E(Qg) is as described in the Lemma. O

Remark. Notice that if we did not include the edges S'f, in Qg then
Corollary 5.2.4 tells us Qg ~ Q7.

From Qg we can define an S-transversal. We define a graph Ag by saying
V(As) = {(1,v)|v € V(Ar)} and E(As) = {(1,e)le € E(Ar)} U {fulu €
V(Ar)}.

Lemma 5.3.4. Ag is an S-transversal.

Proof. Since every vertex and edge that isn’t of the form f, corresponds to
a vertex or edge in Ap it must be the case that Ag is connected since A
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is connected. Similarly, since Ay contains no loops, a loop in Ag is only
possible if said loop includes an edge f, for some u € V(Ar). However,
(Vu € V(Ar)) 7(fu) ¢ V(As) and so no such loop can exist.

Now assume 3(1,v1), (1,v2) € V(Ag) such that these vertices exist in
the same orbit. In other words, S'(1,v1) = S'(1,v2). This implies that
T'vy = T'vy (Corollary 5.2.4). However, vi,v2 € V(A7) and therefore can
not exist in the same orbit with respect to the T-act. Therefore, all vertices
in Ag exist in seperate orbits. Consequently every edge in Ag exist in their
own orbit as well. Also note that V(a,v) € N° x V| Jus € V(Ar) such that
va € T'v. Therefore, (1,v4) € S'(a,v) is an element in V(Ag). Similarly,
we can show that every edge orbit in our S-act has an element in E(Ag).
S0, Ag contains exactly one element in every vertex and edge orbit.

Finally, let (1,e) € E(Ag). By definition, e € E(Ar) and hence (e) €
V(Ar) since Ar is a T-transversal. So, (1,:(e)) = ¢((1,e)) € V(Ag). Simi-
larly, o(fu) = (1,u) € V(Ag) (Yu € V(Ar)). Therefore, the intial vertex of
every edge in F(Ag) exists in V(Ag). O

Now that we have an S-transversal, we need to examine it to see if it
will give us a graph of inverse semigroups. This is where the restriction on
T and 6 that was mentioned at the start of this section becomes important.
We add the restriction that 6 preserves the T-act. In other words, tv = u
for some t € T, v,u € V = 0(t)v = u.

Lemma 5.3.5. Ve € E(Ag) such that 7(¢) ¢ V(Ag), Isc € S such that
sesct = 1d(S.) and scu(e) = 7(e).

Proof. Recall that since (0,1,0) = Id(S), (0,1,0) exists in every domain
and hence is the identity in every stabilizer. Let € € E(Ag) be such that
T(e) ¢ V(Ag). If e = f, for some u € V(Ar), then ¢(f,) = (1,u) and
7(fu) = (0,u). Then, (0,1,1)(1,u) = (0,u) and (0,1,1)(1,1,0) = (0,1,0) =
Id(Sy,). Hence sc = (0,1,1) satisfies our conditions Yu € V(Ar).

If € is not of this form, then ¢ = (1, e) for some e € E(Ar). Furthermore,
T(€) ¢ V(Ag) = 7(e) ¢ V(Ar). Since we know that we can create a graph
of inverse semigroups from the T-transversal A it must be the case that
Jte € T such that t.t;! = Id(Se) and t.e(e) = 7(e). Since Id(Se) = 1,
we can say that (0,t.,0)(0,t.,0)~ = (0,%.,0)(0,¢-1,0) = (0,1,0). Also,
(0,te,0)e(e) = (0,t¢,0)(1,e(e)) = (1,0(te)e(e)). Due to the aforementioned
restritions on T and 6, 0(t.)i(e) = tet(e) = 7(e). So, se = (0, t.,0) satisfies
our required conditions for s.. O

Remark. Without the additional properties of T" and 6 we would have been
unable to say that (0,t.,0)(1,c(e)) = (1,7(e)). If, however, it can be shown
that 3t € T such that tt~! = 1 and 0(¢)c(e) = 7(e) then such a restriction is
not required to create a graph of groups.
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A consequence of this restriction on the T-act comes from the fact that 6
maps elements in T to H 1T . Therefore, because 6 now preserves our actions,
O(tt™1) = 0(t7't) = 1 = tt~! and ¢!t act on and preserve any element in
V (vteT).

Other restrictions are possible that would make (0, ., 0) satisfy our con-
ditions. For example, saying V¢t € H{,0(t) = t and R C H{ was con-
sidered, but this would not give us the desired set of generators for the
fundamental inverse semigroup.

5.4 Fundamental Inverse Semigroup of the Bruck-Reilly Ac-
tion

Now that we have a graph of inverse semigroups, we can find the fundamental
inverse semigroups of this system, S’. As with the previous section, we will
find the need to add another property to 7" in order to get back the desired
result. Again, we will introduce this property when it is needed. First, we
begin by looking at the generators we obtain from the verticies of the graph
of inverse semigroups.

Lemma 5.4.1. Let Tp, = {t € T|0(t) € SI'}. For all (1,v) € V(Ag), the
set of elements in the generating set of S’ that come from S(S1 ») is given by
Caw) = {10t0:M1t11t0 € Thwit1 € STV with the relations Y0,Y0.4 = Yot 5
Y1,EY0,60 = VoV, = Vi and Y1 gV1e = Vi -

Proof. From Lemma 5.2.2 we know that;
St =Lt Dt STIU{(0,1,0)[0() € 57} (92)

If we set v14 := (1,t,1) and 7o := (0,%,0) then this satisfies I'(; ;) being

the set of elements in the generating set of S’ that come from S(S1 ) The

relations defined in the Lemma then follow. O

Remark. Given these relations, we are able to say that Yo, tl = Y1 and
-1
Y1t = V-t

Corollary 5.4.2. The set of elements in the intial generating set of S’ is
given by the set I' := UUEV(AT)F(LU) with the relations o Yo = Yo,ut'
Y170, = Y0Vt = Ve and YLy = Ve (90670, Vi Y1 € 1)

Proof. Follows from Lemma 5.4.1. ]

Remark. As stated previously, since 1 is the identity in 7" then (0, 1,0) is
the identity in S and consequently exists in the set of stabilizers of every
vertex and edge in Gg. Hence, I' contains an identity element given by o 1.

Lemma 5.4.3. 1 ewists = 7y ewists.
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Proof. y14 exists = t € ST for some v € V(A7). Hence, 0(t) € ST = o,
exists. ]

All other generators are the elements s, € S that are defined in Lemma
5.3.5. Let E be the set of edges € € E(Ax) such that 7(¢) ¢ V(Ax) where
X = S or T. Then the remaining elements in the initial generating set of S’
are given by &£ := {sc € S|e € Ey,scs.! = (0,1,0), see(€) = 7(e)}. However,
it will be beneficial to break down this set into two disjoint sets. In the
following Lemma we will be using the term ¢, as it was defined in the proof
of Lemma 5.3.5.

Lemma 5.4.4. £ =& U{f} where & := {d;.|e € El.}. Furthermore, these
give us the following relations in S’:

o Vo, €&, 5te5t:1 = fft =01,
o Vi €L, flvuf =7

e

b V5te € 87 Yot € I‘(1,L(e))7 61;170,15515@ = 707,5;1” ’

o Vo €&, Y01 € D(uue)): O, M0t = Y100 0(r,)

Proof. From the proof of Lemma 5.3.5 we know what the remaining elements
in the initial generating set of S’ are since they all are the elements we use
to define the required embeddings. First, V(1,e) € E5 we have an element
(0,t¢,0) € S to give us an embedding from S(; . into S, (1)) We label such
elements d;,. If we take any d&;_ then the first relation that we would add to
S’ is that 5te(5;1 is the identiy of S. In other words, (5t55,;1 =70,1-

The other relations that we get from d;, are found from finding what
5,7 0.0, and 8, 1.8, equal in S (Y0714 € SF)).

8; ' v1401, = (0,2, 0)(1,2,1)(0,2,,0) = (1,0(t, 1)tb(te), 1) (93)

Furthermore, our definition of t, means that t_ 'tt, € SLT(e) = 0(t;H)to(t.) €
Sﬁe) and hence Y1006 Yot is defined. Therefore, we can say that 51;1V1,t5te =
V1,006 1) t6(te)" Similarly, it can be show that 5;,1707'55% = Yo, 1s, USING this
method.

By Lemma 5.3.5, the only other element required for our embeddings
is (0,1,1). If we label this element f, then we will immdiately have the
relation ff~! = 49 and so it only remains to define what values f~1vyf
equal Vv € S]*?u,u € V(Ar). Given that S}?u = SLS(fu) U Sf(fu) and Lemma
5.2.2 we can say that we need only add the relation for what f _1707t f equals
(Ve €T).

Fh0ef = (1,1,0)(0,2,0)(0,1,1) = (1,£,1) = 71,4, (94)
provided 71 is defined. By Lemma 5.4.3, 71 being defined implies 7o, is
also defined and so we can say this relation exists Vvy;+ € I O
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Corollary 5.4.5. Vo, € S, 0./~ = [ 0,00 and froe = Y000 S

Proof. Let 70 € I'op. Knowing this and the fact that i is also in the
intial generating set of S’ we can say that vp:v11 = Y1,6(0)- Since Yy o) =
F 0w f> 001 = ey = 0.0 o0 f = 000 f Given that
Yo0,1 is the identity in S’ this equation can be simplified to get vo+f 1 f =
T 000 f = 106" = F 0,00 (since ff~1 = 70,1). Similarly, it can be
shown that v1170t = Y1006 = fY0,t = 0,000/ O

Now that we have an intial set of generators and relation of S’, we can
begin to simplify it. First, Vv € V(Ar), we can define a set T'(g ) := {70,.|t €
ST}, From this definition, it is clear that Cow) € T',0). Therefore, if we

define another set I'g := UveV(AT) [0, it is clear that I'g C T

Lemma 5.4.6. T ~ Inv([y, &).

Proof. Consider the intial set of generators and relations that we obtain
from Ar to define T”. Label this generating set Gr and let Ry be the set
of relations. By definition, every 7o+ € I'g corresponds to some (0,¢,0) € S
such that t € ST for some v € V(Ar). Therefore, when finding the initial
set of genrators of T we would have equated ¢ to some element g, € Gr.
Similarly, Vé; € &y, &; corresponds to some (0,¢,0) € S that defines an
embedding of an edge € € E(Ag) such that 7(e¢) ¢ V(Ag) and € # f, (for
some u € V(Ar)). By Lemma 5.3.5, we know that € is defined by an edge
e € E(Ar) such that 7(e) ¢ V(Ar) and t € T satisfies the properties we
have set to define the necessary embedding. Therefore, ¢t would be equated
to some g; € Gr.

Knowing this, we can create a morphism p : Inv(Tg, &) — 1" given by
p(v0.t) = g¢ and p(6r) = g¢ (Vyo, € To, 6 € &). Given Corollary 5.1.7 we
know that any relation between elements in Inv(T'g, &) will be preserved by
p. Also, the definition of how we define the set of relations of the fundmental
inverse semigroup tells us that any relation that exists in 7" must also exist
between the same elements when mapped to Inv(Tg, &) by p~!. Therefore,
we can say that p is an isomorphism and hence Inv(T'g,&) ~ T’. By
definition, 7" ~ T and hence T ~ Inv(Ty, &y). O

Corollary 5.4.7. Vo € S" such that v ¢ To, Yo+ can be expressed as a
product of elements in Inv(Lg, &o).

Proof. Let yp: € S be such that v9¢ ¢ Tg. By definition, ¢ € T and is
therefore isomorphic to an element in 7", say t'. However, vo; ¢ I'o implies
that ¢ is not one of the initial generators of T”. Therefore, the relations
in 77 allow us to write ¢ as a product of elements in the generating set
of T'. Since T" ~ Inv(Ty,&) (by Lemma 5.4.6) these same relations exist
in Inv(l'g,&). Hence, 70+ can be expressed as a product of elements in
I m)(I‘o, 50> . ]
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Using this Corollary we can simplify the generating set of S’ by removing
elements of the form v that do not exist in I'g. Furthermore, given Lemma
5.4.6 and the original values of our elements in S’, we wish to show that
Vw € T we can define a vp,, € S’ such that all our relations relating to
elements of this form still hold. Say 7. := p~'(w’) where p is the same
as in the proof of Lemma 5.4.6 and w’ is the unique element in 7" that is
equated to w under the isomorphism between T and T’. Before we continue,
Y0,w is already defined for some w € T'. Therefore, we neeed to check this
definition does not contradict how we have defined these elements previously.

Lemma 5.4.8. Vo, € 5, Y00 := p L (w).

Proof. Say Yo, € S’. Then w € T can be written as w = t1't5? - - t7m
where ti1,ts,...,t,, are generators of T" and ny,no,...,n, € Z. Given
T ~ T', T' has a generating set isomorphic to the generating set of T
In other words, the generating set includes elements t/,t ... ¢/ such that
t1 ~ th,tg ~ th, ..., tm ~ t,,. Therefore, w is isomorphic to the element
w' = ()" (th)"2 - ()" in T'. Hence, p~'(w') = 151,705, Yor-
Given that 007 = Youz (V0,77 € S') we can say that p~!(w')

Ol

707,5?1 t;Q gtm = Y0,w-

It now remains to show that our relations hold when we set vy, =
p Y (w") (Vw € T). To do this we need only show that those elements given
by 0¢, =70t (Vo € &) satisfy the relations since (together with I'g) these
will generate all other new values of g ;.

Lemma 5.4.9. Vo € I'o, 6, € &, 70,60t = V0,60 and O, Y0, = V0,10t -

Proof. ¥y0+ € To,6, € &, Y0461, = p~(t)p~1(t,) for some ¢’ and ¢, that
exist in the initial generating set of 7”. So, 70.:0:, = p~*(t't)) = Yot (given
that T~ T" we know that t't, = (tt.)’). Similarly, it can be shown that
5t5'70,t = 0,tet- O

Before we continue proving these relations we wish to also say that
Vw e T, vt := fYv0+f. Given Lemma 5.4.4 we know that this defintion
corresponds with what we know about elements of the form 7 ; that we have
defined previously. Again, to prove that the relations relating to elements
of this form still hold, we need only check that they hold for v1;, = f 16, f
(V(Ste S 50)

Lemma 5.4.10. Vv ; € S,a5t6a5te/ € £0, MaV1te = Vitter Vit VLt = Vitet
and Vit Vi, = Vet -

Proof. Yy14 € I'g, ds, € Eo;

Yt = (F 00 H) (00 ) = (F 00 () (o f)
= (0071006 f) = F 0,0 f = Y-
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Similarly, it can be shown that v1 4. v1+ = 71+ and (V&te, € &) ViVt =
71,t6t6/ . Il

Lemma 5.4.11. V1 € To,0r, € o, Y0471t = V1,000t and Y1270t
V1,te6(t) -

Proof. Let v € I'g and d;, € &. By definition, yov1¢ = Yorf "1y f-
Given that v € I'g we can use Corollary 5.4.5 to say that ’707tf_1 =

filp)/o,@(t)' Hence, ’YO,t’Yl,te = f717079(t)70,tf = 71,0(t)t6' A similar method
shows that 71,70, = Y1,t.0(t)- -

At this point, we would wish to show that Vy1, € S, i, € €0, 71,0701, =
Y1,t0(te) And V0,671t = Y1,6(t.)e- Lhough we have been unable to prove this,
there are some properties of S’ that suggest this may be possible. For ex-
ample, V&, € &, t7't, O(t )tz t710(t.) € Sffe) (since O preserves the
action). Therefore, Vgt V10t )t and Vi o(r,) A€ all elements in the
initial generating set of S’ and hence satisfy the initial set of relations.
Furthermore, the embedding that J; is required for would give us the re-
lations 5t:171,t;1te5te = Moo M e0(te) 512171,9(%)515% = V14t and
0 ez 00ty Ote = Va0 Ny to(e2)

Given that we have been unable to prove that the remaining relations
hold, we need to add another property to T that will allow us to continue.
In this case, we will add the property that any initial generator of T that
comes from an embedding of an edge in Ar can be generated by the initial
generators of 7" that come from generators of stabilizers. Consequently,
it can then be shown that & C I'p and our defintions of 7o and 7,
(Voe € &) satisfy our relations.

Therefore, we can now say that S" = Inv(yo ¢, 714, f|t € T, R'), where R’
is the set of relations R’ = {f*1707t1f = V1t V0,61 V0,00 = V0,t1ts Vit Vit =
Vit W00Vt = VLA e Tt V0,02 = Yitiota)s JF 1 = oalty, b2 € T}
Note that we are not missing the relation that o1 is the identity of S’ since
this can be implied by the relations in R’ which we will demostrate in the
next corollary. It is clear to see that this form can be simplified to remove
the set {y1¢|t € T} from our generating set by using the relation f~1yp s, f =
71,4, - This would also allow us to remove the relation 1 71,6, = V1,411, Since
this would already be given by 0.+, 70,65 = 70,t12-

Lemma 5.4.12. (Vt € T) y0:f™" = f'000) © (Vt1,t2 € T) Y0710, =
Y100t )ts- Stmilarly, (vt € T) fryor = Y000 f © (Vti,t2 € T) 17,0, =
Y1,t16(t2)-

Proof. Say (Vt € T) yo+f 1 = f_l’yO’g(t). Then, (Vt1,t2 €T) ;

0.0t = V0.1 f 0028 = £ 0,000 0.80.f
= f_l'VO,G(tl)tgf = 71,0(1&1)162-
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Conversely, if (Vt1,t2 € T') V0,4, V1,62 = V1,6(t1)t, then we can set to =1 € T
to get (Vi1 € T) 0.,71,1 = Y,00) = Y0,/ 01 = f ' 0,00)f- Further-
more, this implies that 50,1, f = 0,1/ f 1 = F 0000 fF 7 = 0.0 01 =
00y = Yaf Y = 6 (since ff~' = ~01). Hence,
(Vt €T) vounft= f_l’)/o’,g(tl). It can similarly be shown that (V¢ € T)
froe =200f € (Vti,t2 € T) Y1,6,%0,00 = V1,010(t0)- O

Note that (Vt € T) yo.f ! = f_l’}/o’g(t) is equivalent to saying (Vt € T')
70t = 70,0+ since one equation is the inverse of the other. Therefore,
we can simplify our set of relations by removing (Vti,t2 € T'), Y0, V1,00 =
Y1,6(t1)t2 AN V16,706, = V1,416(,) and replacing them with (VteT) fyr=
Y0,6(t)

Corollary 5.4.13. v 1 is the identity in S’.

Proof. Since Vt1,ta € T', Y0,t,70,ts = 7Y0,t1t, We can say that V& € T', vo.170,t =
Yot = Y0,.+70,1 and so o1 acts as an identity on elements of the form g, € 5’
Therefore, we need only show it acts as an identity on f to say it is the
identity in S’. Since ff~! = 491, we know that yo1f = ff~'f = f.
Similarly, fy01 = v0,01)f = Y01 = f (since # being a morphism implies
that 0(1) =1). O

We have now simplified our presentation of S’ to get the following;

S, = Inv<70,t7 f"YO,tl’YO,tg = V0,t1ta>» f’YO,t = 70,9(25)‘]07 ffil = 70,1, ta t17 to € T>

(97)

Now that we have simplified S’ we can begin to look at the how we can
describe the elements in it.

Lemma 5.4.14. Every word of length 1 in S" = Inv{you, fV0.6 Y0, =

Yo,ate> S0 = Yoo f> ST = 0,1t t1,t2 € T) can be written in the form
F ™My, f™? for somet € T and ni,na € NO where f0 = Y0,t-

Proof. The words in S’ of length 1 are given by f", f=", Yot (Vn e N t €
T). First, " = y0,170,1/™ = fP90,f". Similarly, f~" = f~",1f°. Finally,
Voo = V0,00 = 70,170,6770,1 = SO0, f°. O

Theorem 5.4.15. Every word in S = Inv(Yot, f170,:70,ts = Y0.t1t25 Y04 =
Yo,06)f fft= Y01, t,t1,t2 € T') can be written in the form f~™~gf" for
somet € T and ni,ne € NO where f0 = Y0,t-

Proof. Say that this theorem is true for words up to length m € N. Any
word of length m + 1 in S’ is therefore given by the product of f~"1~q . f"?
for some ¢ € T and ni,ny € N° and an element in the set {yoz, /™, f "t €
T,n € N}. That is two say the words of length m + 1 in S” can be written
as f7 0007 F"00f™ [ or fTMA0,f"2f~" for some ¢,f € T and
ni,ng,n € NO,
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First look at f~™~0:f"vz This is equal to f~"10 79 gn2 7 f " (by
the relation fyo: = Y00 f in S). It must therefore be the case that
F 0™ %07 = f~™ Yo pma (@ f 2. The next value, f~"0,f"™ f", can
easily be put in the desired form since f~™1yg,f"2f" = f~" 7, f"2 1", Our
final value, f™"1~.f"™2f™" is slightly trickier. Since fft= Yo0,1 which is
the identity in S’ we have two possible values this can equal.

My f™" when n < ng

98
f_nl’YO,tf_(n_nz) when n > ns. (98)

S0 T = {

Given the realtions in ', we can say that V¢t € T, yo.f ! = f_l'YO,@(t)'
Therefore, f~™yg, f~(""2) = f_(n1+"_n2)70,9n—n2(t)fo- D

Now that we have a standard form for the elementsin S’ we can create a
map from S to S’. From Theorem 5.1.5 we know that a generating set of S
is given by {(1,1,0), (0,1,1)}U{(0,¢;,0)|i € I} where {t;]i € I} is the gener-
ating set of T" for some index set I. In particular, V(m,a,n) € S, (m,a,n) =
(0,1,1)7™(0, a, 0)(0,1,1)" where (0,1,1)° = (0,1,0). Knowing this, we can
create a semigroup morphism p : S" — S given by u(f~"vof™) = (m, t,n).

Theorem 5.4.16. The morphism p is an isomorphism and hence S ~ S’.

Proof. Say u(s1) = p(s2) for some s1,s9 € S’. By Theorem 5.4.15, Imy,
ma, n1, n2 € N? and #1,t2 € T such that s; = f~™lyg, f™ and sy =
F™ 0.0, . So, pu(f~™ 0.4 f™) = p(f~"2Y0,4, /™). This implies that
(ml,tl,nl) = (mg,tg,ng) = mip = mo, t1 = t2 and ny = ng. Therefore,
s1 = 7™y f™ = [T f" = s2 and hence p is injective. Also
V(m,a,n) € S, a € T. Therefore, v, € S = fy,.f™ € 5. Hence,
w00 f™) = (m,a,n) and p is surjective. O

6 Action of B,

In this section, we define S to be an inverse semigroup given by;
S =Inv(zy,x Tpq|z e = iy, 23 = ajay) (99)
= 1,425 Ln-1[L; 1 — L1l b — Lyl

where all the generators of S are non-zero and ¢, j and k are integer values
such that 7,5,k € {1,2,...n—1},i <n—1and k # j+ 1. We wish to prove
that S is isomorphic to B, when n > 3 (so throughout this proof we will
be assuming n > 3) where B, is defined to be a Brandt semigroup that is
generated by the trivial group and a finite index set of n elements as defined
by Howie [8]. Using this presentation of B,, we will then define a Bj-act
and see how it acts on a graph.

The origins of the Brandt semigroup come from work by Brandt [2] on
the Brandt groupoid. Clifford [4] found that adjoining a zero to this groupoid
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gives us a semigroup that we call the Brandt semigroup. Further properties
of this semigroup were found by Munn [17] as well as further work done by
Clifford with Preston [5]. In particular, Vagner [24] found that the Brandt
semigroup is an inverse semigroup.

6.1 Properties of S

In this section, we will prove that S is isomorphic to B, and we will deter-
mine some properties of S.

Lemma 6.1.1. Any word in S that contains a subword x;x; or xj_l !

where j # i+ 1 is the zero element in S.

Ly

Proof. For all, z;,x; € 9, r? = x? since both these values equal x3. In
pz;rticuZIar, 73 = 2?2 and Tixj = 23 when j # i + 1. Therefore, Va; € S,
J;k = "L'l'

If ), € S, then;
2 2 3 2 2 3 2
T = Tpak = T = ] = (Tp01)T1 = T = T] = 7] (100)

Similarly, we can show that zxz? = 22. So x? acts as a zero element on all

x € S making it the zero element of S.
Therefore, 27 = 0, but since 23 = 2% and x;7; = 23 when j # i + 1 we

conclude that any z;z; or z; $Z-_1 where j # ¢ + 1 is the zero element in

S. O
Lemma 6.1.2. Any word in S that contains a subword :cia:j_l or mi_la:j
where i # j is the zero element in S
Proof. Let z;,z; € S be such that i # j. If i <n — 1, then;
a:m:{l = xixiflxix;l = xixwl(:p;}lx;l) =0 (101)
If i =n —1, then;
xn,lxjfl = :En,la:jflzr:j:v;l = (xn,lmjﬂ)mjj}lx;l =0 (102)
So, :cixj_l =0ifi#j.
Similarly, say ¢ > 1, then;
vitey = o e ey = o7 e (2iog2) = 0 (103)
If ¢ =1, then;
1. _ -1, -1, _ (.—1.-1 . —0 104
wywy = ay wgay = (X)) = (104)
So,a:;lxj:()ifi#j. O
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It is then clear that these Lemmas give us the structure of all non-zero
words in S.

Corollary 6.1.3. Let i € {1,2,...n — 1}. All non-zero elements in S can
be written in one of the following forms:

(i). Ti%it1 ... Tipp wherep € {0,1,...n —i—1}

(i) ;7 w7l .x:lp where p € {0,1,...1— 1}

(2

(iii). zix;!

(iv). :Ugilxn_l
Later on, it will be helpful to have a more concise way describing these
non-zero words. We will do this with the following notation and properties.

Definition 6.1.1. Define w, = Zq%q+41 ... Tatb—1, S0 that b is the length
of W b-

Remark. Notice that if wg is well defined if and only if @ and b are positive
integers such that 2 < a+b <n.

By Corollary 6.1.3, any element in S that is not an idempotent can be
written as w,p or w;ll) for some a or b. Also note the following properties of
this form.

Lemma 6.1.4. The following are true for any wqep and weq in S:

_ 0 ifc#a+b
(1). W pWed = .
Wa,b+d ifc=a+b
0 ) d
(i) wgpwgy =10 Terer
oo Wy g ifa=c+d
0 ifat+b#c+d
1 Wy b—d ifa+b=c+dandb>d
(iii). wapw, ; = 7 ,
' W, gy, ifa+b=c+dandb<d
k;Izaatgl ifa=candb=d
(0 ifa+#c
-1 .
(iv). w;éwc,d _ J Wardp-d z‘fa =candb>d
’ Watb,d—b ifa=candb<d
x;ib—lxa%—l ifa=candb=d
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Proof. First note that wgpweq = TaTat1 -  Tagp—1TeTep1 - - - Tepd—1- BY
Lemma 6.1.1 this word equals zero unless z. = x4y, which is to say ¢ = a+b.
In this case, WqpWed = TaTat1 - - - Tatbrd—1 = Waptd SO (7) holds. A similar
proof is used to show that (i7) holds as well.

Now look at wa’bw;;. This equals zqxq41 - - . 93a+b—155;:d_155;:d_2 T

¢
but this word equals zero unless xc_jd_l is the inverse of x;ib_l. In other
words, this element is equal to zero unless a + b = ¢+ d. Now we can then

say that;

-1 _ -1 -1 -1
WapW, g = TaZa+1 - - - Ta-+b—2Ta+b—1Tg 1 1% ip 9 Lorpd- (105)

Recall from our relations of S that x;x,” 1= a:,i__llxi_l. Therefore;

—1 -1 _ —1 —1
Lat+b—2La+b—-1L 1y 1Lg1p_o0 = Lat+b—2L 1 _oLa+b—2T 1 o (106)

—1
= Tat+b—-2T g1y o

Therefore, we can reduce the length of wmbwc_cll. We can keep using this
method to reduce our element unti it is of one of our known forms of words
in S (as given by Corollary 6.1.3). If b > d, then a < a+ b — d. Hence, if we
keep reducing our word, we find that;

-1 -1
WahWe,d = TaZat1 - - Tatb—1Tg 1T rp 2 Larp_g

_ -1 ~1 -1
= Tala+l -« Tatb—2Tg1p0Tgip-3 - Loyb—d

=... (107)
= ZaZa+1 - -- $a+bfd71$a+bfd$;ib_d
= LagLa+1 - Latb—d—1 = Wab—d-
Similarly, if b < d, then a > a + b — d. So;
Wa pWe,d = %;1195;12 e x;-il-b—d (108)
—1

e | _
= Worp—dd—b = Wed—p

Finally, if b = d, then a + b = ¢+ d = a = ¢ and we find that wa,bwc_,; =

rqz, ' Hence (4ii) holds. A similar method is used to sow that (iv) holds.
O

Now that we know the non-zero elements in S, we can find the cardinality
of S.

Lemma 6.1.5. |S| = |B,,|

Proof. From our presentation of S, we can see there is a surjective homo-
morphism S — B,, given by z; — (i,i + 1). Therefore, |S| > n? + 1 since
|Bn| =n%+1.

From the found forms of non-zero elements in S (given by Corollary
6.1.3) we can also say that |S| < n? + 1. Therefore, |S| =n?+1=|B,| O
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Given that |S| = |B,| we can conclude that S and B,, are isomorphic.

Going forward, we will continue to use S as our presentation for B,
rather then any more well known presentations since it allows us to bet-
ter demonstrate how our action works and its relation to the reltions and
generators given by S.

6.2 B, acting on a Set

Now we have a presentation for B,,, we can look at how it could act on a set,
V. Define a map ¢ : B, x V — V to be the map such that Vs € B,,v € V|,
¢(s,v) = ps(v) where ps is an injective function from V' to itself. To define
¢, we need to define py,,Vi € {1,2,...n — 1} such that the relations of B,
still hold. In particular, we start by looking at the zero element in B,

Lemma 6.2.1. For any generator x; of By, Dﬁ C Dy,.

Proof. Since z$ is the zero element in B,, this is given by Lemma 2.1.2. [

Lemma 6.2.2. Vi € {1,2,...n — 1}, ps, maps Dw? to Dxif- Furthermore,
Vi,je{l,2,...n—1},v € Dx%, TV = T;v.

Proof. Let v € fo‘i” then by Lemma 6.2.1 we can say that x;v = u for some

u € V. We also know from our relations that m? = :1;‘;’ and so x;x;v = v
which implies that x;v = z;lv = u. Then z;lv =u=0v=uzxiu. Asv € Dy,
TV = T; LU = x‘i’u exists and hence u € Dﬁ.

Since v € D3 we know that for any j € {1,2,...n—1}, ;v exists (again
by Lemma 6.2.1). Then, zjv = :Uj:vi_lu. If :szni_l # 3, it must be the case
that j = 4. In which case zjv = z;2; v =u = x;v (as xiazi_l is idempotent).
Alternatively, if $j.7)l-_1 # 3, then Tjv = u. O
2

Lemma 6.2.3. Ifv is an element in Dz?, then x;v = v or x;

generator x; of By,.

v = for any

Proof. First, we know from Lemma 6.2.1 that for any v € Dﬁ and generator
T;, T;v exists as Dl,'f C D,. Also, our relations tell us that we require that

Pr2 = Py3- Therefore, z7v and must be equivalent to v (as 7 is idempotent).
This means that ;v =v or I’ € Dﬁ such that z;v =v' and z;v' =v. O

Remark. This Lemma as well as Lemma 6.2.2 tells us that the orbit of any
element in v contains at most 2 elements.

We must now consider what happens to elements in D, that are not in
D,s.
1

Lemma 6.2.4. Ifv; € Dy, is such that v; ¢ Dx:;, thenVj € {1,2,...n—1},
ij contains at least one element in B,v;.
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Proof. If v; is such an element and ¢ # n—1, then we know that since x;lmi =

xi+1a:i_+11, v; € D 1. Therefore, Jv;y1 € Dy, , such that z;41v;11 = v;.
i+1
Furthermore, it must be the case that v;y1 ¢ Dx% as if .’L'?'Uz'_i_l = v;41 exists,

then :c:{’xzﬂvi = 23v; must also exist. This means that if i +1 # n — 1 we

can repeat our process and find a viyo € Dy, , such that x;10v;12 = viq1.
In other words, we can keep repeating this process all the way up to finding
a vp—1 € Dy, _, such that z;y1ziy9 - Tr_10n—1 = v;.

Similarly if ¢ # 1 then we can say that x;}lxi_l = ZCiZL‘i_l. As v; € Dy,
we know that Jv;_1 € V such that z;v; = v;_1. This then implies that
v = T i1 meaning v;—1 € D 1 Since z; 111‘1 1 = x;x; -, this means
that v;—1 € D,, ,. Furthermore, we can then prove that v;_1 gé D, 3 in the
same way we showed that v;11 ¢ D 23 This allows us to say dv;_o € V such
that x;_1v;_1 = v;_2. Again we keep repeating this process until we find a
v1 € D1 such that 129 - x;v; = v1. O

Remark. Note that in our proof, we also showed that the elements we found
in the orbit of v; will also not exist in D,a.

Lemma 6.2.5. Vi € {1,2,...n — 1}, any two unique elements in Dy, that
don’t exist in D3 exist in separate orbits.

Proof Define v; and u; to be two distinct elements in D, for some i €
{1,2,---n — 1} that do not exist in D 23- 1f we assume that v; and u; are
in the same orbit, then ds € B,, such that u; = sv;. By Corollary 6.1.3,
we know the four possible forms s can take. We can immediately rule out
s being of the form (ii7) and (iv) as these are idempotents and will hence
map v; to itself if they act at all on it.

Since u; € D,, we know that x;u; = x;s5v; exists. We require that

r;s # o3 as otherwise v; must exist in Dgs. So by Corollary 6.1.3 and the
relation z$ = xjxy when k # j + 1, meaning that s = x; 112492 - - - Ti4p, for
some p1 € {0,1,...n—i—1} orz; 'z} - ~x;_1q1 for some ¢; € {0,1,...i—1}.

Say ¢ < n — 1, then from the relation a:i_lxi = a:i+1:ci__:1 we can say
that Jv; 41 € V such that x;11v;41 = v; and vy ¢ fo‘i’ (as shown in the
proof of Lemma 6.2.4). We know from, u; = sv; that v; = s lu; and
hence z;,1v;41 = s 'u;. This then implies that u; = sz; 1v;41. Again, for
viy1 ¢ Dac:{’? we require sx;11 # 2 and hence our Corollary 6.1.3 and our
relations we can say that s = @j_p,Ti—p,+1 - - - z; for some py € {0,1,...i—1}
or .CEH_lq2 H_lqg = Z._+11 for some g2 € {0,1,...n — i — 1}. However, neither
of these potentlal values of s correspond to the two previously established
values of s and so we can say that no such s exists when i < n — 1.

If i = n—1, then (as shown in the proof of Lemma 6.2.4) Jv,,_o € Dg:_11
such that x,_1v,-1 = vp—2 and v,_o ¢ Dx{’- We can then say that since

Up_1 = x;flvn_g, Up_1 = s:c;ilvn_g. We know that v,_o does not exist in
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the domain of 3 and so S:E;Lil # x3. Therefore, by Corollary 6.1.3 and the
relation z$ = xjxy when k # j + 1, we know that s can only be of the form
TpsTps41 - Tp—1 for some p3 € {1,2,...n — 1}. However, this contradicts
8 = Tj41Tj42 " Titp, OT :Ui_la:;ll e xi:lql. So, we must conclude that v; and
u; cannot exist in the same orbit. ]

Lemmas 6.2.4 and 6.2.5 then prove the following.

Corollary 6.2.6. If v; € Dy, is such that v; ¢ D3, then Vj € {1,2,...n —
1}, Dy, contains at exactly one element in Bpv;.

It is also helpful at this point to explicitly state how p,, maps elements.

Proposition 6.2.7. For any i € {2,3,...n — 1}, py, maps D,, to D,, ;.
Also, py, maps elements in Dy, that don’t exist in D3 to elements that are
not acted on by any generator of B,.

Proof. Let v € Dy, for some i € {1,2,...n—1}. If v € D3, then v € Dy,
as DI§, is a subset of the domain of any generator of B,. Alternatively, if
v ¢ fo‘i” then Ju € V such that xz;v = u. This implies that v = x;lu
and hence u € D 1. Since x;_1 exists we can say that x;}lxi,l = ajimi_l.
Therefore, D -1 = Dy, |

Now define v € Dy, such that v ¢ D,s. Then z1v = u for some u € V.
If z;u exists for some ¢ € {2,3,...n—1}, then z;21v = x;u also exists. Since
v ¢ fo?f’ we require z;x1 # 3, but our relations tell us this is only possible
if 1 =4+ 1. However, this would then imply that ¢ = 0 which contradicts

our definition of 7. Therefore, x;u cannot exist. ]

meaning that v € D,, .

6.3 B, acting on a Graph

Using what we now know about B,-acts, we can now see what graphs B,
will act on. However, before we start we note the following;

Lemma 6.3.1. Let e be an edge of a graph with endpoints v and w such that
v ¢ D:cif' Then e is acted on by an element of By, if and only if u ¢ Byv.

Proof. Say e,v and u are defined as they are in the lemma. Let s € B, be
the element that acts on e. By the definition of a generator, we know that
s = tx; or tw; ! for some t € B}l and generator x; of B,. First assume that
s = tx;, in which case x; acts on e. This then implies that z;v and z;u both
exist and hence v,u € D,,. Corollary 6.2.6 then tells us that v and v must
exist in different orbits.

Alternatively, if s = tx; ! then x; vand x; L exist. Therefore, 3/, u' €
V such that z; 'v = ¢/ and z; 'u = /. This then implies that v = x;v’
and u = z;u’ meaning that v',u’ € D,,. By Corollary 6.2.6, B,v" # Byu'.
Also, by definition, B,v = B,v' and B,u = B,u’ which allows us to say
that Bhv # Bpu. Therefore, v and u exist in different orbits. O

1
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Example 6.3.2. By Corollary 6.2.6, we know that the number of orbits
of elements that w‘z’ does not act on is equal to the number of elements in
D,, that CL‘:{’ does not act on for any generator x; of B,. We also know from
Lemmas 6.2.2 and 6.2.3 how x; will act on elements in D$:1‘>. So for simplicity,
we can say that V is such that there is only one orbit of vertices that z?
does not act on and that there is only one element in Dl“i’ that is fixed by
every generator x;.

This then leads us to say that V' = {vg,v1,...vp—1,u} and Vs € By, ps

is defined by;
(Y u
o, = ( u) (109)

Note that this form along with Lemma 6.3.1 mean that only an edge
between u and v; (for any ¢ € {1,2,...n — 1}) can be acted on by an
element of B,,.

If say we had a directed edge e such that t(e) = v and 7(e) = v1 we get
the following graph;

== Vg V1

However, if we now look at the orbits of the elements in V, we see
that there are are only two, v = {vp,v1,...v,—1} and @ = {u}. Also,
B,e = {e,xfle,xz_lxl_le, . ..ngl . ~~x1_16} which we label e. This means

our quotient graph will be given by;

u (Y

Therefore, if we now look at the S-transversal we get if we choose vy to
represent ¥ then we get a graph that is similar to our quotient graph.

e
U Vo

Note that no matter what element we pick to represent v, we will always
get a graph that is the same form as the quotient graph. The graph of
inverse semigroups would then be given by;
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However, since S, = B, this example would not give us any information
we did not already know about the semigroup. Alternatively, we could’ve
defined D, 3= = () but we would then lose information about the zero element
in B,,. ThlS is the same problem we cam across with the polycyclic semigroup
action (Example 4.3.3). As with that case, we need to find an action such
that we get a quotient graph where the zero element does not exist in the
stabilizer of any of it vertices. Consequently our action must be such that
the zero element does not act on any element in our graph (as shown by
Lemma 4.3.9).

6.4 Action without 0

Since we have now established that we wish for our action to be such that 0
does not act on any element in the S-act we again examine what actions will
work. With this new restriction, there are some properties of our desired
action that we can derive. From here on, say that we have an action of
S ~ B, on a graph G such that the zero element of S does not act on any
element in G.

Lemma 6.4.1. Only non-zero idempotents fix elements under our action.

Proof. Let s € S, for some v € G. Consider the forms of non-zero words in
B, that we gave in Corollary 6.1.3. If s = w,; then s2v=0v= wibv = .

However, wg’b =0=0¢€ S, (by Lemma 6.1.4). Hence, s # w,. Similarly

we can show that s # w;}). This only leaves non-zero idempotent values
that s can equal. O

Corollary 6.4.2. Every element in G can only be acted on by at most one
generator of S. Similarly, every element in G can only be acted on by at
most one inverse of a generator of S.

Proof. Let x; and x; exist in the generating set of S and suppose dv € G

such that z;v and xjv both exist. This implies that xi_lzviv =v = xj_lxjv =

mjx;lxiv =zyv. If agx;l = 0, then we find that x;v = 0z;v = Ov = v which

means x; € S,. This contradicts Lemma 6.4.1, so it must be the case that

x]x;1 = 0. This implies that 33;1 = x;l = x; = x;. The proof that :c;lv,
1 . -1

T v exist = x; 0 = :z:j_l is given dually. O

Note that if no generators of S or their inverses act on an element in G
then said element will have an empty domain. Therefore, for this action we
will assume that every element in G must be acted on by a single element
or inverse of an element in the generating set of S. We will also assume that
every generator of S or every inverse of said generators acts on at least one
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element of G since otherwise we would definintely lose said element from
any fundamental inverse semigroup we might obtain.

Knowing this, we can begin constructing a set of elements that S will
act on. Without loss of generality, we will consider our action to be such
that all elements in the genrating set of S act on at least one value in G
and begin by finding a set that S will act on to give us a set of vertices of
S. First we define a set V = {v;|i € {1,2,...,n — 1}} and say that z;v; is
defined Vi € {1,2,...,n—1}. We will add more elements to our set later to
equal these values, but for now consider the following.

Lemma 6.4.3. Let F be an S-act. Then, Vi € {2,3,...,n—1} andv € F,
m;lv exists = x;_1v exists. Similarly, Vj € {1,2,...,n—2} andv € F, zjv
exists = x;_&lv exists.

Proof. Say a:;lv exists for some i € {2,3,...,n—1} and v € F. This implies

that xﬂ:;lv exists = x;_llxi,lv exists. Note that we know x;_1 is defined
since i € {2,3,...,n}. Since ;Y x;_1v = x; | (z;_1v) it must be the case
that x;_1v exists. The rest of the Lemma can be proven in a similar way. [

So, according to this Lemma, it must be the case that x;_llfui is defined
(Vi € [1,n — 2]). We must now define more elements for S to act on. First,
Vi € [1,n — 1] we define a value y1; and say z;v; = y1;. This then implies
that x;lylyi exists. Furthermore, Lemma 6.4.3 then tells us that x;_1y1;
exists Vi € [2,n — 1] and so we need values in our S-act that these can be
equal to. In this case, we define the values y2; (Vi € {2,3,...,n}) to be
given by y2; = x;—1y1,. However, as happened earlier, Lemma 6.4.3 tells us
that more elements need to be defined. Eventually we will find that we have
added the set Y to our intial set where Y := {y;;|i,j € N,j <i <n —1}.
We also define how S acts on elements in this set by saying Vk € [1,n — 1],
xRy exists & k =i — j (and hence j # i) in which case z1Y;; = Yj+1,-

Similarly, since z, Jrllvi is defined Vi € [1,n — 2] we also add the set
Z = {zj4]i,j € N,i+ j < n} to our proposed S-act where (Vi € [1,n — 2])
x;ﬁlvi =z, and (Vk € [1,n —1], zj; € Z) x;lzj’i = 2j41,, when k —1 =
i 4+ j but is undefined otherwise. Knowing this, we can define how certain
elements will act on values in this set.

Lemma 6.4.4. Yw, € S, wqpv; exists & a+b=1i+1. Then, wqpv; = Yp -
Similarly, ngé es, w;évi exists < a =1+ 1 in which case w;évi = Zp;-

Proof. Given that w,, = qTe41 - Tagp—1 and the conditions under which
TRY;,i exists we can say that wg yv; exists & a+b =i+ 1. Knowing this, we
can say that;

Wq bV = TaLa+1 " La+b—1Vi = Ti—p41Ti—b " " " TiV;
=T py1 - Tio1(Ti0;) = iy L1y (110)

= = Ti—p+1Yb—1,4 = Ybi-
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The existence and value of w;ivi is given dually. O

Corollary 6.4.5. Vy,; € Y, Jwgp € S such that wpv; = yji, a =1 — j+
and b= j. Also, Vz;; € Z, Elw;; € S such that w;évi = zji,a=1+1 and
b=j.
Proof. Take y;; € Y. From this we know that ¢,j € Nand j <¢ <n— 1.
If weset a =49i—j5+1and b = j note that a > j— 5+ 1 = 1 and
a<n—-1-j4+1<n—-j<n-1s0oac€ [l,n—1] and z, € S. Also,
a+b—-1=i—j+1+j—1=1i¢€[l,n— 1] which tells us that wey € S.
Since a + b =i+ 1, we know that wq, yv; = yp; (by Lemma 6.4.4).

Now take zj; € Z and set a = ¢+ 1 and b = j. Given the definition of Z,
1,7 € Nand i+ j < n. Since ¢,j € N we can say that 1 <4, j and therefore,
2<i+j<n—1 Also,i+j<n=i<n—j=1i<n—1 (sincel < j).
Therefore, a = i+1 € [2,n—1]. We also know that a+b—1 =i+j € [2,n—1].
Hence, wqp € S and by Lemma 6.4.4, w;;vi = Zj;. ]

The different actions we can get from S acting on the set VUY U Z
will come from equating different values in the set. However there are some
restrictions on what can be equated.

Lemma 6.4.6. Vi,j € [I,n — 1], i # j = v; # vj;.

Proof. Say i@ # j and v; = vj. Then both z; and z; act on v; = v; which
contradicts Corollary 6.4.2. O

Lemma 6.4.7. Yy, yqi,Yjp €Y and z;;, 24, 2jp € Z:
® Yji=Yqi=>J] =4
® Yji = Yjp = 1 =D,
® 2ji = 2qi = ] =4,
® Zji=2Zjp=1=D.

Proof. Say y;i; = yq,- Corollary 6.4.5 tells us this is equivalent to saying
Wi—j+1,jVi = Wi—g+1,qVi = UV = w;_le,jwi_qHﬂvi. Since are action is
defined such that zero element does not act on anything in our set, we can
use Lemma 6.1.4 to say that i —j+1 =%—-q¢+1 = j = ¢q. The same
method of using Corollary 6.4.5 and Lemma 6.1.4 tells us that y;; = y;, =
1—j+1l=p—j+1=i=p.

A dual proof can then be used to show that z;; = z;; = j = ¢ and
Zji = Rjp = 1=p. ]
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7 Conclusion

A working method of gaining information about inverse semigroups from
their actions is a very promising idea. It would allow us to be able to learn
more about a semigroup without the need of fully understanding theoir
structure. Though I was not able to achieve such a high goal in my studies,
I believe that the work I have shown here demonstrates the current problems
we have.

Our current method for having inverse semigroups act on graphs shows
promising results. In particular, given what we now know about the actions
of free products of inverse semigroups, we can now create working examples
of very complex inverse semigroups if we know we can express them as a free
product of simple semigroups with a known working action. This includes
free inverse semigroups with an infinite number of generators. The ideas
explored can now be applied to any inverse semigroup that can be expressed
as a free product of inverse semigroups.

Our investigation into polycyclic, Bruck-Reilly and Brandt semigroups
suggests we might need to change our approach, however. As demonstrated
in their respective sections, our current way of defining an inverse semigroup
action can not give us back a fundamental inverse semigroup that is isomor-
phic to the original semigroup in some cases. This is due to such semigroups
containing a zero element. I think I have been able to demonstrate the issues
that come with the zero element and our current method of finding an ac-
tion. It is clear that any working method would probably involve diverging
more from the Bass-serre theory of groups then our method currently does.
If such a method can be found that will allow the existence of zero elements
in the fundamental inverse semigroup then it we can re-examine our current
working models to see if they will still work under this new method.
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