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Abstract

Machine learning algorithms are increasingly used in making people’s life decisions across
a range of different areas such as loan applications, university admissions, insurance
pricing and criminal justice sentencing. If the historical data used to train the algorithm
is biased against certain demographic groups (e.g. black people or women), the predictive
results of the algorithms will too. From both regulation and ethical perspectives, we need
to reduce discrimination and improve group fairness which concentrates on equalizing
the outcomes across distinct groups. However, there are cases where the outcomes
are unfair from an individual’s point of view when group fairness is satisfied. Individual
fairness states that similar individuals should be treated similarly. It is also an important
concept of fairness and needs to be considered carefully while we improve group fairness,
but it has not yet received much attention in the literature. Most of the existing fairness
algorithms concentrates on achieving group fairness disregarding individual fairness.

It is important to explore the relationship between group fairness and individual fair-
ness, specifically, in what cases the individual fairness would be affected when we improve
group fairness. We show by practical results from real data sets that, after removing
the sensitive attributes, there generally exists a trade off between group fairness and
individual fairness. Moreover, we use experimental results from simulated data sets to
show that satisfying group fairness decreases the level of individual fairness when the
Wasserstein distance (which is a measure of the distance between two distributions)
between the attribute distributions of two groups is large. By adjusting the parameters
of the simulated distributions, we show that, if a large Wasserstein distance is caused
by a large mean difference rather than a large variance difference, individual fairness is
more likely to be affected when group fairness is satisfied.

Furthermore, we not only tweak the existing reweighing algorithm to obtain more
flexible performance on individual fairness and group fairness, but also construct a new
algorithm to achieve fairness. This approach reduces the mean difference in attribute val-
ues between different groups so that the association between the sensitive attribute and
non-sensitive attributes is decreased. This method can be used to achieve fairness among
more than two demographic groups and solve fairness problems in multi-classification or
regression scenarios. We assess the performance of this method in terms of both group
fairness and individual fairness and the results show that our method outperforms two
existing fairness algorithms: reweighing and reject option based classification.
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1. Introduction

Nowadays, increasingly machine learning techniques are replacing humans and they are
widely used in decision-making systems in many areas such as credit scoring, insurance
rates, job applications, criminal justice and so on [1, 2, 3]. It is commonly believed that
automated algorithms improve objectivity since decisions made by humans are highly
subjective [4]. For instance, bank officers may prefer to issue loans to white applicants
than non-white applicants and make decisions depending on their mood. Moreover, two
officers may make different decisions on the same candidate which means that there is a
lack of consistency. However, machine learning can also lead to unfairness and there are
some potential causes [5]. The most prevalent cause is that the algorithm inherits past
biases from the historical data on which it is built. If we train an algorithm on data
where the outcomes are biased against a demographic group, the algorithm is highly
likely to predict outcomes that are biased against that demographic group. Missing
data and selection bias can also cause discrimination [6]. The problem of missing values
leads to less informative data since people are reluctant to provide information that
are disadvantageous to them. Selection biases occurs when the number of individuals
selected from each demographic group is very different during the data collection process
and would cause the data being less representative of the population. Training algorithms
on less informative or representative data can lead to biases. Thus, automated algorithms
are not always as objective as we expect and the growing use of automated algorithms
has raised social and ethical concerns [7, 8].

Now, there are two types of discrimination in the legal domain: direct discrimination
and indirect discrimination [9]. Direct discrimination, also known as disparate treat-
ment, applies when you treat someone less favourably because the person belongs to
one of the protected groups. In machine learning, it occurs if the decisions made by the
algorithm are based on the sensitive attributes including gender, race and sexual orient-
ation, also known as protected characteristics [10]. There are laws in many countries
that prohibit unfair treatment such as the Civil Rights Act of 1964 in the US which
ended racial discrimination in public places and the Equality Act 2010 in the UK which
legally protects people from discrimination in the workplace [11]. Indirect discrimina-
tion, also referred to as disparate impact, is present if the system produces outcomes
that disproportionately hurt people with certain sensitive attribute values compared to
other people. The 80% rule advocated by the US Equal Employment Opportunity Com-
mission (EEOC) states that disparate impact is admitted when a selection rate for any
group is less than 80% of that for the group with the highest rate [12].
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If we simply eliminate the sensitive attribute, the algorithm does not make use of the
sensitive attribute so that direct discrimination is avoided. However, this is insufficient
for removing indirect discrimination as the other attributes may be highly correlated
to the sensitive attribute so that they carry the sensitive information [13, 14]. For in-
stance, in credit scoring, although the attribute race is not explicitly used, race still has
an indirect influence on the outcome via a strongly linked attribute, namely postcode.
One might suggest to remove both race and postcode so that most influence of race
can be removed but, in this case, the information that postcode contains which is in-
dependent of race is also removed. This method is not recommended since losing more
information may reduce the accuracy of the predictive model. The literature identifies
three different types of approaches: pre-processing, in-processing and post-processing
[15]. Pre-processing techniques modify the biased data to remove discrimination before
we feed it into a machine learning algorithm. In-processing involves tweaking a specific
algorithm during the training time such as adding a regularizer to restrict its behavior.
Post-processing methods adjust some of the decisions which are obtained from the pre-
dictive model. Each of them has its own advantages and disadvantages, and the best
approach varies depending on the application. For instance, pre-processing may be selec-
ted because of its flexibility since it can be used with any algorithm unlike in-processing
[16].

If both direct discrimination and indirect discrimination are removed, different demo-
graphic groups are being treated more equally. The fairness that we achieve here is
group fairness, which concentrates on equalizing the outcomes across distinct groups.
There are many definitions of group fairness in machine learning and we introduce them
in Chapter 2. However, there are situations where group fairness is satisfied but the
outcomes may be unfair from an individual’s point of view. Consider the following ex-
ample. Suppose there are 50 male and 50 female applicants for a university course and
each individual has a score. The university admission team makes decisions on whether
to accept or reject an individual based on the score only and they accept 10 male and 10
female applicants. Also, we suppose that the 10th highest score of male applicants is 90
and the 10th highest score of female applicants is 85. In this situation, as the proportion
of female accepted is equal to the proportion of male accepted, statistical parity — a
typical notion of group fairness — is satisfied. However, a female applicant with score
85 will be accepted but a male applicant with the same score will be rejected. Although
group fairness is satisfied in this example, the problem of individual unfairness occurs
since two individuals with the same score obtain different outcomes. In fact, individual
fairness is also an important concept of fairness and needs to be monitored carefully
while we improve group fairness.

Individual fairness requires similar individuals to be treated similarly [17]. Similarity
is evaluated by the distance between individuals which is measured by a distance metric
based on their attributes values. The shorter the distance is, the more similar the two
individuals are. However, two individuals can be similar in one domain but different in
another. For example, if we consider two individuals with exactly the same features but
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different A-level grades, they would be considered as similar individuals when a bank
makes decisions on whether to issue a credit card, but are considered to be different in
the university admission domain. Therefore, defining the distance metric is a challenge
since we require different distance metric in different situations.

Some prominent definitions and measures of group and individual fairness are intro-
duced in Chapter 2. One of our interests is to study the relationship between group
fairness and individual fairness, specifically, in what cases there would exist a trade-off
between them. Most of the existing fairness algorithms on fairness has concentrated on
group fairness only without considering individual fairness. One goal is to build an al-
gorithm so that we improve group fairness and make fairer decisions without sacrificing
too much accuracy or individual fairness. There are some other shortcomings of exist-
ing algorithms. One is that they have been focusing on achieving group fairness across
only two groups such as male and female, or white and non-white. There are not only
two distinct groups in many real-world problems, so we need to consider group fairness
across more than two groups. Another one is that they solve only binary classification
problems where the outcome is either positive or negative such as whether or not to issue
a loan. However, fairness is also essential in many multi-class classification or regression
problems. For instance, we want to achieve fairness in the cases where an individual is
predicted with a continuous score or is classified into one of the three risk levels: low,
medium or high.

1.1. Research Challenges

There is extensive literature on algorithmic fairness over the past decade, yet some
challenges still need to be addressed. Specifically:

1. One of the challenges is to explore the relationship between group fairness and
individual fairness, specifically, in what cases the individual fairness would be
affected when we improve group fairness. Satisfying group fairness has been the
goal of most existing algorithms whereas individual fairness has not received much
attention. It is challenging to build algorithms that consider both group fairness
and individual fairness.

2. Most fairness definitions and algorithms deal with only one binary sensitive at-
tribute and consider only two demographic groups. For example, when race is the
sensitive attribute, we often divide the individuals into white people and non-white
people since most algorithms can only deal with two groups. When we consider
race and sex at the same time, there are four groups in total: black females, black
males, white females and white males. The discrimination problem becomes more
complicated and difficult when we handle multiple attributes or a sensitive attrib-
ute with multiple values [18].
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3. To date, most existing algorithms to achieve fairness have focused on only binary
classification problems. A challenge is to develop algorithms that can be used to
solve multi-class classification problems and even regression problems. Also, we
need to carefully define fairness in multi-class classification and regression prob-
lems as they are slightly different from binary classification. In regression, one
might measure fairness by the magnitude of the mean difference in the continuous
outcome between distinct groups.

4. Similarity is measured by a distance metric, but defining distance metric is a chal-
lenge. We can generate a principled approach that allows us to set the appropriate
distance measures for any domain. For example, we can explore the relevance of
each feature in a specific situation and assign weights to features based on their
relevance. The features with higher relevance can be assigned with higher weights
and have a larger influence on the distance between two individuals.

1.2. Research Contributions

We have addressed several challenges from Section 1.1 in this report.

• For the first time, we show by some practical results that when we want to im-
prove group fairness further after removing the sensitive attributes, there generally
exists a trade off between group fairness and individual fairness. Although simply
eliminating the sensitive attribute has been criticised for incompletely removing
sensitive information, we point out that in general this method maximises indi-
vidual fairness. This partially addresses Challenge 1.

• Wasserstein distance, also known as Earthmover distance is a measure of the dis-
tance between two probability distributions. It is shown that individual fairness
implies group fairness when the Wasserstein distance between two demographic
groups’ attribute distributions is small (i.e. the attribute follows similar distri-
butions for the two groups) [19]. In this report, we show from practical results
that individual fairness can be worsened when we try to achieve group fairness if
the Wasserstein distance is large. There are different causes which lead to large
Wasserstein distance such as large mean difference between the two distributions
or large variance difference. A new result is that the influence on individual fair-
ness can be affected by the causes of large Wasserstein distance. This partially
addresses Challenge 1 as well.

• We discover ways of slightly altering the reweighing algorithm to change the weights
assigned to each individual so that we can change group and individual fairness
performance according to specific requirements. Also, we extend reweighing al-
gorithm and show that it can be applied to fairness problems with more than two
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demographic groups. This partially addresses Challenge 1 and 2.

• We propose a new pre-processing approach: we adjust the feature values to reduce
the gap between the mean of the groups so that we lower the correlation coefficient
between the sensitive attribute and other attributes, and we monitor individual
fairness while improving group fairness. The performance results show that it
outperforms existing approaches. This method allows a sensitive attribute with
multiple levels or multiple sensitive attributes and can be applied to not only
binary classification but also multi-class classification and regression problems.
This contribution partially addresses Challenges 2 and 3.

1.3. Report Outline

The outline of the report is as follows. Chapter 2 introduces the background of algorithm
fairness and gives a literature review. We present some prominent definitions of both
group and individual fairness measures, theory of existing algorithms and the defini-
tion of Wasserstein distance. In Chapter 3, we discover the relationship between group
fairness and individual fairness, then analyse the influence of Wasserstein distance on in-
dividual fairness when satisfying group fairness. In Chapter 4, we extend the reweighing
algorithm, describe a new pre-processing approach in detail and present its performance
based on real data. Finally, we conclude the report in Chapter 5.
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2. Background

Since algorithmic fairness started to attract our attention, many notions of fairness have
been proposed in the literature, yet there is no clear agreement on the most appropriate
way to define it. In the first section, we provide the most prominent definitions and
measures of group fairness. We also detail the most common group fairness algorithms
that have been used in existing literature and their mathematical descriptions. The
advantages and limitations of each algorithm are analysed. Next, we introduce the
definition of individual fairness and algorithms the aim to achieve individual fairness.
Then, we introduce Wasserstein distance, an prominent statistical distance measure,
since we need to discover the influence that applying group fairness algorithms has on
individual fairness when the distance between attributes in two demographic groups are
different. Finally, we summarise the state of art and main gaps from the literature.

2.1. Group Fairness

In Section 2.1.1, we start with introducing the most common definitions of group fairness
in the basic setting of a binary classification problem with a binary sensitive attribute.
Then, we extend them to more complicated settings. Next, in Section 2.1.2, we describe
the most prominent group fairness algorithms.

2.1.1. Group fairness definitions

The first concept of fairness we introduce is demographic parity, also known as statistical
parity [20]. It is satisfied if a decision is independent of the protected attribute. That is,
the proportion of individuals in any group receiving a positive outcome is equal to the
proportion of the population as a whole [21]. For a binary sensitive attribute S ∈ {0, 1},
the privileged group is the set of all individuals for which S = 1 and the unprivileged
group is the set of all individuals for which S = 0. In binary classification Ŷ ∈ {0, 1}
with a single binary sensitive attribute S ∈ {0, 1}, statistical parity can be formulated
mathematically as P (Ŷ = 1) = P (Ŷ = 1|S = 0) = P (Ŷ = 1|S = 1), where Ŷ = 1
if the individual is predicted to have a positive outcome and Ŷ = 0 if the individual
is predicted to have a negative outcome. To measure it, we can use statistical parity
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difference, i.e.:
P (Ŷ = 1|S = 0)− P (Ŷ = 1|S = 1). (2.1)

Here, a value close to 0 means that statistical parity is satisfied. Another measure
is the fraction P (Ŷ=1|S=0)

P (Ŷ=1|S=1) where its value is close to 1 if statistical parity is satisfied.
However, this definition ignores any possible correlation between the outcome Y and the
sensitive attribute S. In particular, a perfect classifier (i.e. Ŷ = Y ) does not even ensure
statistical parity when base rates are different (i.e. P (Y = 1|S = 1) 6= P (Y = 1|S = 0)).

The second definition we introduce is equalized odds. Unlike statistical parity, it allows
the decisions to depend on the sensitive attribute but only through the actual outcome
[22]. It states that the decision Ŷ and the sensitive attributes are independent conditional
on the real outcome Y . In binary classification with a single binary attribute, it requires
P (Ŷ = 1|Y = y, S = 0) = P (Ŷ = 1|Y = y, S = 1) for y = 0, 1. This can be interpreted as
equalizing false positive rates across the groups and true positive rates across the groups.
We can use average odds difference to measure it. Formally, 1

2

([
P (Ŷ = 1|Y = 1, S =

0) − P (Ŷ = 1|Y = 1, S = 1)
]

+
[
P (Ŷ = 1|Y = 0, S = 0) − P (Ŷ = 1|Y = 0, S = 1)

])
where a value close to 0 means that equalized odds is satisfied.

The third one is called equal opportunity which is a relaxation of equal odds as it
only requires true positive rates of each group to be equal. Formally: P (Ŷ = 1|Y =
1, S = 0) = P (Ŷ = 1|Y = 1, S = 1). We can evaluate it by equal opportunity difference
P (Ŷ = 1|Y = 1, S = 0) − P (Ŷ = 1|Y = 1, S = 1), a value close to 0 indicates that we
satisfy equal opportunity.

There are other common notions of fairness such as fairness through unawareness,
calibration and predictive parity that have been proposed, which we introduce now.
First of all, fairness through unawareness is a naive definition which states that an
algorithm is fair if no sensitive attributes are explicitly used in the decision-making
process [23]. It was proposed as a baseline and simply requires us to ignore all the
sensitive attributes when training the algorithms. Despite its simplicity, this definition
has a clear weakness as other existing attributes can be highly correlated to the sensitive
attribute and still contain the discriminatory information. In such a situation, fairness
through unawareness is ineffective as the algorithm that uses high-correlated attributes
will indirectly discriminate [24]. The second one is calibration which is defined such
that, for a set of individuals whose predicted probability of being positive is p, we
expect a p fraction of them to have a positive outcome [25]. Calibration within groups
is satisfied if calibration holds simultaneously within each demographic group. Thirdly,
predictive parity is satisfied if positive predictive values for the groups are equal. In
binary classification with a binary sensitive attribute, it is equivalent to P (Y = 1|Ŷ =
1, S = 0) = P (Y = 1|Ŷ = 1, S = 1) [26].

We have introduced the most common notion of group fairness in the basic set-
ting of binary classification with a binary sensitive attribute. When there are mul-
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tiple sensitive attributes or a single sensitive attribute is multi-dimensional instead of
binary, the population is divided into more than two groups. Then statistical parity
means that all the groups have equal probabilities of being predicted positive. For in-
stance, when there are two binary sensitive attributes, it means P (Ŷ = 1|S1 = s1, S2 =
s2) is equal for any s1, s2 ∈ {0, 1}. When there is a single sensitive attribute with three
categories, statistical parity is satisfied if P (Ŷ = 1|S = 0) = P (Ŷ = 1|S = 1) = P (Ŷ =
1|S = 2) for S ∈ {0, 1, 2}. When there are more than two distinct groups, we often
compare the most privileged group with the other groups [24]. For example, when the
two binary sensitive attributes are S1 sex and S2 race (consider white and black only),
there are four distinct groups: white male, black male, white female and black female.
Then we compare the most privileged group white male with the other three groups.
The idea is similar for equalized odds and equal opportunity, but the only difference is
that the condition of the actual outcome is given.

Now we review the fairness concepts used for solving multi-class classification or re-
gression problem instead of binary classification. Regression problems have a continuous
outcome and multi-class classification problems have a categorical outcome with more
than two categories. Therefore, it would not be appropriate to use equalized odds or
equal opportunity since false positive rates and true positive rates are restricted to a bin-
ary outcome. Instead, statistical parity can be easily extended to the multi-class classi-
fication setting. Specifically, statistical parity is satisfied if the proportion of individuals
in any group receiving any type of outcome is equal to the proportion of the population
as a whole. In regression, if we suppose that the predicted outcome Ŷ is continuous and
ranges from 0 to 1, then statistical parity is satisfied if P (Ŷ ≥ z|S = s) = P (Ŷ ≥ z) for
all s ∈ S and z ∈ [0, 1] [27].

Since statistical parity is the most common group fairness definition and can be ad-
justed flexibly in more complicated settings, we use it to measure group fairness in this
report. In a real-world scenario, we can select the most appropriate measure based on
the specific interest or requirement. Another possible approach is to investigate public
views on definitions of fairness by survey and opinion polling so that we can understand
how people perceive the meaning of fairness [28].

2.1.2. Group Fairness Algorithms

After understanding common definitions of fairness, we now review existing fairness al-
gorithms in this section. The three main approaches to achieve fairness in the literature
are pre-processing, in-processing and post-processing. In what follows, we describe the
ideas behind each approach with some mathematical rationale and analyse the limita-
tions critically.

Pre-processing indicates that, before learning any classifier on the data, we modify the
data first to remove discrimination. An advantage of pre-processing is its flexibility since
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we can apply any machine learning algorithm after obtaining a fairer data set. The idea
is that, if we learn a classifier on fairer training data, it is more likely that the predicted
outcomes will be fairer. In the literature, pre-processing principles include changing
the outcome labels, assigning different weights to different individuals and finding fairer
representations of X [21, 24, 29, 30, 31]. We now present three typical methods that
corresponds to the principles: Massaging, reweighing and disparate impact remover.

Massaging focuses on modifying outcome labels Y in the training data [30]. It changes
the labels of some individuals in the privileged group (i.e S = 1) from positive to
negative and changes the same number of individuals in the unprivileged group from
negative to positive so that the modified data satisfies statistical parity, i.e. P (Ỹ =
1|S = 0) = P (Ỹ = 1|S = 1) where Ỹ represents the modified label. The individuals
to relabel are selected based on their scores (predicted probabilities of being positive)
produced by a ranker. The explicit explanation on how to determine the number of
individual to relabel and how to select those individuals is presented in Appendix A.1.
This method is straightforward and simple, but can be criticised for being intrusive. In
addition, massaging is restricted to only two demographic groups (one privileged and
one unprivileged group) and a binary outcome label. Thus, it cannot deal with multiple
sensitive attributes or an attribute with multiple values, and cannot be extended to solve
multi-class classification or regression problems.

A less intrusive approach is reweighing which assigns different weights to different
individuals without modifying labels or attribute values [30]. For instance, individuals
with S = 0 and Y = 1 have higher weights than those with S = 0 and Y = 0 and
individuals with S = 1 and Y = 1 have lower weights than those with S = 1 and Y = 0.
When we assign weights

Ws,y = |S = s| × |Y = y|
|D| × |S = s ∩ Y = y|

to each individual (e.g. each positive instance from the unprivileged group is assigned
with a weight W0,1), the weighted data can achieve statistical parity. The mathematical
proof is presented in Appendix A.2. It is easier to be implemented than Massaging since
it does not require the process of training a ranker first to obtain scores and select which
individuals to relabel. However, the weights Ws,y still consider binary classification
problems only and cannot be used in multi-class classification or regression.

Disparate impact remover removes the sensitive information about S from the numer-
ical attributes [24]. The main idea is that the data is fair if X does not contain the
information content about S and cannot be used to predict the sensitive S. It modifies
the attribute values to make the modified distributions of X for the two demographic
groups closer to each other, then the modified data becomes fairer. The modification
level λ ∈ [0, 1] indicates the extent in which we modify the non-sensitive attribute values
X, where λ = 1 indicates that X is fully modified and λ = 0 indicates that X is not
modified. The modifying procedures are detailed in Appendix A.3. Disparate impact
remover has several advantages compared with the previous two methods. Firstly, it can
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be used to solve multi-class classification and regression problem since the procedures
do not involve the outcome labels. Secondly, it allows multiple sensitive attributes and a
sensitive attribute with multiple values. Finally, the modification level can be adjusted
depending on how close we make the distributions of X be. However, a shortcoming is
that only numerical attributes can be modified using this method.

We focus on pre-processing approaches in this report, and so we introduce in-processing
and post-processing only briefly. In-processing approaches tweak the machine learning
algorithm to achieve fairness during the training time, which make them inflexible since
they are tightly coupled with the specific algorithm itself [20, 32, 33]. Take prejudice
remover as an example [32]. It restricts the learner’s behavior by adding a regularization
term that penalizes the mutual information between the sensitive attribute S and the
outcome label Y to the objective function. Nevertheless, it can only be applied to prob-
abilistic models such as logistic regression. It cannot be applied directly if the sensitive
attribute is multivariate or there are multiple sensitive attributes.

Post-processing adjusts some of the outputs which are obtained from the classifier to
make the decisions satisfy fairness definitions such as statistical parity, equalized odds
or equal opportunity [22, 34, 35]. A drawback is that they are likely to give inferior
results due to the fact that they are applied at a late stage [36]. We introduce two
methods that focus on statistical parity [35], the first one is called discrimination-aware
ensemble (DAE). In this method, there is an ensemble of different classifiers. If all the
members predict the same outcome label, we assign the individual with the agreed label.
If any of the members produces the opposite labels, we assign individuals belonging
to the privileged group with negative labels and assign individuals belonging to the
unprivileged group with positive labels. The idea is that instances which are close to the
decision boundary are more likely to be misclassified and cause disagreement among the
classifiers. The other method is reject option based classification (ROC) which can be
applied to probabilistic classifiers only. Each individual has a predicted probability of
being positive and we choose a threshold θ ∈ [0.5, 1]. A positive label is assigned if the
predicted probability is greater than θ and a negative label is assigned if the predicted
probability is lower than (1− θ). If the predicted probability is between (1− θ) and θ,
we predict the individuals who belong to the unprivileged group as positive and predict
those who belong to the privileged group as negative. DAE and ROC are both restricted
to a single binary sensitive attribute and binary classification. Also, they damage the
individual fairness deliberately since two similar individuals who are close to the decision
boundary are treated differently because they belong to different groups.

2.2. Individual Fairness

In the previous section we discussed the most common definitions of group fairness, which
require parity of some statistical measure across groups. Now we introduce the most
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common definitions of individual fairness in the literature. One way to define individual
fairness is that if two individuals from different groups have exactly the same attributes
(except the sensitive attribute), the classifier should predict the same outcome [26].
To measure it, we first obtain test individuals’ predicted outcomes using the classifier,
then switch the label sensitive attribute and obtain new predicted outcomes, finally we
compute the fraction of test individuals whose predicted outcome remains the same after
switching the label of the sensitive attribute. A value of 1 means that this individual
fairness definition is satisfied. However, a drawback is that simply removing the sensitive
attribute when training an algorithm will give 100% fairness in terms of this definition.

The most common concept of individual fairness is fairness through awareness [19, 37]:
similar individuals should have similar classification where similarity is defined by a
distance metric. We can formulate it in mathematical expression as follows. Suppose
that we have N individuals in a data set with a sensitive attribute S and non-sensitive
attributes X, and suppose that the output of an algorithm is Ŷ = (ŷ1, . . . , ŷN ). Fix two
thresholds ε, ε′, the algorithm is (ε, ε′)-fair if d(xi,xj) ≤ ε =⇒ dO(ŷi, ŷj) ≤ ε′ for any
xi,xj where i, j ∈ {1, . . . , N}, a distance metric for the input space d and a distance
metric for the outcome space dO. It is assumed that the distance function which measures
similarity between individuals is somehow pre-defined, but in fact, it is difficult to be
determined [38]. One simple approach is to apply nearest neighbours algorithm to each
individual so that we identify individuals that are similar to it. Consistency is a measure
used to evaluate individual fairness and it compares the classifier’s predicted outcome
of each individual to its k-nearest neighbours where the k-nearest neighbours is found
based on attributes excluding the sensitive attribute [21]. It is formulated as

1− 1
N

N∑
i=1
|ŷi −

1
k

∑
j∈kNN(xi)

ŷj |, (2.2)

where ŷi, ŷj ∈ {0, 1}, N is the number of test individuals and kNN(xi) represents the
k-nearest neighbours of the individual xi. A value close to 1 indicates that the classifier
treats similar individuals similarly. Inspired by fairness through awareness, [39] proposed
another notion of individual fairness for pre-processing approaches. Individual fairness is
what the existing fairness algorithms tend to ignore, but in fact, it should be monitored
while we try to achieve group fairness.

In the literature, most fairness algorithms have exclusively concentrated on achieving
group fairness such as statistical parity or equalized odds disregarding individual fair-
ness. The most notable work on individual fairness is learning fair representations which
formulates fairness as an optimization problem of finding a good representation of the
data to compromise classifier accuracy, group fairness and individual fairness [21]. How-
ever, it burdens the learning since its objective function tries to find a compromise over
all three components. A detailed procedure is in Appendix A.4. A recent approach iFair
inspired from it has considered individual fairness but disregarded group fairness[39].
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2.3. Wasserstein Distance Metric

Researchers became motivated to discover the relationship between individual fairness
and group fairness after it was initially formulated in [19], where it has been shown that
individual fairness implies group fairness when the Wasserstein distance between two
demographic groups are small. Despite Wasserstein distance (also known as Earthmover
distance), there are other statistical distance measures which can be used to measure the
distance between two groups’ attribute distributions KL-Divergence and Total Variation
Distance. In this section, we introduce the most prominent statistical distance measure,
Wasserstein distance [40].

Wasserstein distance is a distance function defined between probability distributions
on a given metric space. One way to understand Wasserstein distance is to consider the
optimal mass transport problem which seeks the most efficient way of transforming one
distribution of mass to another relative to a given cost function. Consider two probability
density functions I0, I1 : Rd → R defined over respective domains Ω0 and Ω1 such that∫

Ω0
I0(x)dx =

∫
Ω1
I1(y)dy = 1. Let J (I0, I1) denote all joint distributions J for (X,Y )

that have marginals I0 and I1. We define the p-Wasserstein distance using the optimal
transportation problem with the cost function ||x− y||p,

Wp(I0, I1) =
(
infJ∈J (I0,I1)

∫
||x− y||pdJ(x, y)

)1/p

where p ≥ 1. When p = 1, this is also called the Earthmover distance.

Consider two data matrices

X =


− X1 −
− X2 −

...
− Xn −

 =


x11 . . . x1d
x21 . . . x2d
...

...
xn1 . . . xnd

 and Y =


− Y1 −
− Y2 −

...
− Yn −

 =


y11 . . . y1d
y21 . . . y2d
...

...
yn1 . . . ynd

.

For any d, let I0 and I1 be empirical distributions of X and Y respectively, then the
p- Wasserstein distance is

Wp(I0, I1) = infπ
( n∑
i=1
||Xi − Yπ(i)||p

)1/p

where infimum is over all permutations π.

When d = 1, the one dimensional p-Wasserstein distance is a simple function of ordered
statistics:

Wp(I0, I1) =
( n∑
i=1
|X(i) − Y(i)|p

)1/p

where ordered statistics X(1) ≤ X(2) ≤ · · · ≤ X(n) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(n).
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When n and d become large, the computation of the Wasserstein distance is com-
putationally too demanding. Therefore, we introduce a method where we obtain a set
of one-dimensional representations (d = 1) for a higher-dimensional probability distri-
bution through projections, then calculate the distance as a functional on the Wasser-
stein distance of their one-dimensional representations so that we only solve several
one-dimensional optimal transport problems. We use Radon transform R to transform
a function I : Rd → R to RI : R→ R which is defined as

RI(t; θ) =
∫
R
I(tθ + sθ⊥)ds ∀t ∈ R,∀θ ∈ Sd−1,

where θ⊥ is the subspace orthogonal to θ and Sd−1 = {θ ∈ Rd : ||θ|| = 1} is the unit
sphere in Rd. Radon transform projects a pdf into an infinite set of one-dimensional pdf
RI(.; θ). The sliced Wasserstein distance for pdf I0 and I1 is defined as

SWp(I0, I1) =
( ∫

Sd−1
Wp

(
RI0(.; θ),RI1(.; θ)

)p
dθ
)1/p

,

which we use to compute multi-dimensional Wasserstein distance.

2.4. State of the Art and Limitations

In this section, we summarise the state of the art and the main gaps from the literature.
There are many prominent fairness definitions that have been defined in Section 2.1.1
and 2.2, but recent studies have shown that some of them are incompatible [41, 42]. For
example, it has been shown that, except in the most trivial cases, equalized odds and
calibration within groups cannot be satisfied simultaneously [43]. In order to maintain
calibration, we have to relax equalized odds conditions e.g. by only requiring equal
opportunity. Some real-world cases also show a lack of agreement among the definitions
of fairness. For instance, COMPAS is a risk assessment tool which is used to assign
a score that predicts a defendant’s risk of recidivism. In terms of predictive parity,
COMPAS is fair since positive predictive values for white and black people are similar
[44, 45]. However, ProPublica analysed COMPAS predictions for 10,000 criminals and
claimed that the tool is biased against blacks [46]. The team pointed out that blacks
are twice as likely as whites to be predicted as high risk but not actually reoffend,
whereas whites are much more likely than black to be predicted as low risk but actually
reoffend, so the algorithm is discriminatory by equalized odds. This example is an
evidence for incompatibility between predictive parity and equalized odds. Therefore,
a main gap from literature is that although researchers have proposed different notions
of algorithmic fairness, there is no clear agreement on the most appropriate fairness
definition yet since different domains would require different definitions.

Although individual fairness was initially formulated in 2012 in [19], most of the work
in the literature has only focused on group fairness where different group fairness meas-
ures and algorithms have been introduced [16, 17, 26]. We have introduced prominent
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group and individual fairness measures and mentioned that it is difficult to determine a
similarity metric for individual fairness. One of the challenges is to provide an approach
that allows us to set appropriate distance functions for any domain, which corresponds
to Challenge 4 in Section 1.1.

Moreover, there has been discussion on the relationship between group fairness and
individual fairness in the literature. On one hand, it has been shown theoretically
that fairness for individuals implies group fairness (statistical parity) if and only if the
Earthmover distance between two groups is small [19]. Thus, when the distribution of
features are similar across different groups, group fairness and individual fairness can
be satisfied simultaneously. On the other hand, group fairness measures and individual
fairness measures appear to conflict if we have to assign similar individuals from different
groups with opposite outcomes in order to satisfy group fairness. However, the literature
needs more work on theoretical discussion on the conflict or when there would be a trade
off between group fairness and individual fairness, which is part of Challenge 1 in Section
1.1. There are many areas which need to be explored such as (i) finding out whether
there is a trade off when Wasserstein distance is large, (ii) the influence on individual
fairness when a large Wasserstein distance is caused by different factors, (iii) analysing
how different algorithms respond to different Wasserstein distance.

Furthermore, in the literature, most fairness algorithms have concentrated on improv-
ing group fairness measures such as statistical parity and equalized odds [13, 20, 22,
24, 35]. The most notable work on individual fairness is [21] which formulates fairness
as an optimization problem of finding a good representation of the data to compromise
classifier accuracy, group fairness and individual fairness. However, a big limitation is
that its objective function tries to find a compromise over all three components. We also
point out two major limitations of the existing algorithms which are i) they only allow
one single binary sensitive attribute, which means that they can only be used when there
are only two demographic groups. ii) they are restricted to a binary classification prob-
lem but multi-class classification and regression scenarios also require fairness. These
correspond to part of Challenge 1, Challenge 2 and 3 in Section 1.1.
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3. Group Fairness vs. Individual Fairness

In this chapter, we explore the relationship between group fairness and individual fair-
ness especially when there exists a trade-off between them. As we mentioned in Section
2.1.2, one of the pre-processing approaches to achieve group fairness is to first eliminate
the sensitive attribute, then modify the non-sensitive attributes to obtain a fairer rep-
resentation. Suppose that simply removing the sensitive attribute will give us a group
fairness level G1 and an individual fairness level I1, in Section 3.1, we experiment on a
real data set Adult and observe the influence on individual fairness level I1 if we modify
the non-sensitive attributes to improve the group fairness level G1 further.

Furthermore, it has been shown that, when the Wasserstein distance between attrib-
ute distributions of the two groups is small, individual fairness implies group fairness
[19]. In Section 3.2, on a simulated data set, we discover how satisfying group fairness
affects individual fairness when the Wasserstein distance between two groups’ attribute
distributions is large. There are different factors that affect the Wasserstein distance
such as mean difference and variance difference between two groups. We also discover
how individual fairness is affected when a large Wasserstein distance is only caused by
a large mean difference or a large variance difference.

3.1. Trade-off between Group Fairness and Individual Fairness

Suppose that we have N instances which represent N individuals in a data set with a
sensitive attribute S and other attributes X: (S,X) = {si,xi}Ni=1 where si,xi are the ith
individual’s sensitive attribute value and the non-sensitive attribute values respectively.
Also, we suppose that the predicted outcome of a binary classification algorithm is Ŷ =
(ŷ1, . . . , ŷN ) which takes value 1 or 0. In the case where we train an algorithm f1 without
group fairness consideration and both the sensitive attribute and the other attributes
are used, the predicted outcome of the ith individual is ŷi = f1(si,xi). To improve group
fairness, we can train an algorithm f2 after removing the sensitive attribute. If only
non-sensitive attributes are used in the algorithm, then ŷi = f2(xi).

Now that we have introduced the necessary notation, we can proceed with defining
individual fairness more precisely. It can be defined in a mathematical form as follows
[37]: Fix two thresholds ε, ε′, the algorithm is (ε, ε′)-fair if, for any xi,xj where i, j ∈
{1, . . . , N}, a distance metric for the input space d and a distance metric for the outcome
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space dO,
d(xi,xj) ≤ ε =⇒ dO(ŷi, ŷj) ≤ ε′. (3.1)

This equation can be interpreted as follows. If individuals are similar in terms of their
non-sensitive attributes, their outputs should be close as well. It is natural to think that
when the outputs come from an algorithm which was trained using only the original
non-sensitive attributes, this definition is the most likely to be satisfied.

Inspired by Definition 3.1, another notion of individual fairness was proposed by [39].
Suppose we apply a pre-processing approach where a mapping φ maps the original
attributes to modified attributes, then the mapping is individually fair if, for any two
individuals and for small ε′′, we have

|d(φ(si,xi), φ(sj ,xj))− d(xi,xj)| ≤ ε′′. (3.2)

The mapping is individually fair if individuals who are close on their non-sensitive at-
tributes are also close in their modified representations. If Definition 3.2 is satisfied,
individuals who are close on their non-sensitive attributes are also close in their mod-
ified representations, then outputs of an algorithm which was trained using modified
data would be close and Definition 3.1 is satisfied. From Definition 3.2, we notice that,
when d(φ(si,xi), φ(sj ,xj)) is equal to d(xi,xj), the left hand side equals 0 and individual
fairness can always be satisfied even when ε′′ is set to 0. The simplest way to achieve
d(φ(si,xi), φ(sj ,xj)) = d(xi,xj) is to let φ(si,xi) = xi for all i (i.e. simply remove the
sensitive attribute).

We have mentioned earlier that non-sensitive attributes may be highly correlated
to the sensitive one and still contain sensitive information. Thus, to improve group
fairness further, we can modify the non-sensitive attributes and train an algorithm f3
on modified non-sensitive attributes only. Then, the output is ŷi = f3(φ(si,xi)) =
f3(x̃i) where φ is the modification function and x̃i represents the modified xi. The
idea behind improving group fairness by modifying the non-sensitive attributes is to
make the attribute distributions for the privileged group and the unprivileged group
become closer to each other. If we feed an algorithm with data where it is more difficult
to recognize which demographic group an individual belongs to from its non-sensitive
attributes, group fairness of the algorithm would improve.

Now, we consider the influence on individual fairness if we remove the sensitive attrib-
ute and modify the non-sensitive attributes to improve group fairness. From Definition
3.2, we can see that the left hand side becomes |d(x̃i, x̃j)−d(xi,xj)|. The two individuals
i and j can either belong to different groups or belong to the same group. When they
belong to different groups, d(x̃i, x̃j) will generally decrease as the distributions for two
groups are moved closer to each other. Since d(xi,xj) is fixed and d(x̃i, x̃j) ≤ d(xi,xj),
decreasing d(x̃i, x̃j) will increase |d(x̃i, x̃j)−d(xi,xj)|, which means that individual fair-
ness gets worse. For any two individuals from the same group, the change in the distance
between them would be negligible compared to the change in distance between two in-
dividuals belonging to different groups. Therefore, after the sensitive attribute has been
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removed, if the distributions of non-sensitive attributes for the two groups become closer
to each other, although group fairness will improve, individual fairness would fall. In
fact, if the non-sensitive attributes are modified by too much, not only the individual
fairness will get worse, the accuracy of the algorithm will fall as well.

We can illustrate the trade-off between group fairness and individual fairness using a
real data set Adult [47]. The data set D = (S,X, Y ) consists of one binary sensitive at-
tribute S: sex (1: Male; 0: Female) or race (1: White; 0: Non-white), five non-sensitive
attributes X: age, education-num, hours-per-week, capital-loss and capital-gain and a
binary outcome label Y (1: income exceeds 50K/yr; 0: income does not exceed 50K/yr).
Then, we apply disparate impact remover with repair levels λ = (0, 0.05, . . . , 0.95, 1)
which we have introduced in Section 2.1.2 and obtain a modified data set D̃ = (X̃, Y ).
Notice that, at repair level λ = 0, we remove the sensitive attribute only and do not
modify the non-sensitive attributes. For each repair level, we compute statistical parity
difference defined by Equation 2.1 to measure group fairness and consistency defined by
Equation 2.2 to measures individual fairness. The procedure is as follows:

1. Split the modified data D̃ randomly into a training, validation and test data set
in the ratio 7:1.5:1.5, then standardise the data.

2. Train a logistic regression model on the training data.

3. Fit the model on the validation data and obtain each validation individual’s score,
also known as the predicted probability of having a positive outcome. For a
threshold t ∈ (0, 1), we predict labels Ŷ = 1 if score ≥ t and Ŷ = 0 if score ≤ t. For
a set of thresholds, we compute the balanced accuracy 1

2 [P (Ŷ = 1|Y = 1)+P (Ŷ =
0|Y = 0)] of the model on these validation individuals for each threshold. Then
we find the optimal threshold that maximises the balanced accuracy.

4. Fit the model on test data and predict the outcome labels of test individuals using
the optimal threshold.

5. Compute statistical parity difference and consistency.

After obtaining the statistical parity difference and consistency for each repair level,
we can plot them against the repair level on the same graph for a better visualisation.
Consistency is shown as the blue thick line with the scale showing on the y-axis on the
left hand side. Statistical parity difference is represented by the green thin line with
scale showing on the y-axis on the right hand side. The two plots are shown in Figure
3.1 and Figure 3.2.

In the first case where sex is the sensitive attribute, the green thin line shows an
upward trend which indicates that the statistical parity difference between female and
male is getting closer to zero as we increase the repair level. When the repair level is
around 0.6, it reaches 0 and statistical parity is satisfied. The blue thick line represents
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the consistency and shows a downward trend. We can see that a trade-off exists since
individual fairness level gradually decreases as we improve group fairness by increasing
the repair level from 0 to 0.6. In the second case where race is the sensitive attribute,
group fairness and individual fairness also show opposite trends although there are some
fluctuations. These practical results show that generally, after the sensitive attribute
has been removed, if we modify the non-sensitive attributes for a further improvement
in group fairness, the level of individual fairness would fall.

Figure 3.1.: Illustration of a trade-off between group fairness (thin line) and individual
fairness (thick line) after the sensitive attribute sex is removed.
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Figure 3.2.: Illustration of trade-off between group fairness (thin line) and individual
fairness (thick line) after the sensitive attribute race is removed.

3.2. Influence of Wasserstein Distance on Individual Fairness

It has been proven that individual fairness implies group fairness if and only if the
Wassertein distance between the two demographic groups is small [19]. However, the
relationship between group fairness and individual fairness when the Wassertein distance
between two groups is large has not been studied yet in the literature. In this section,
we investigate how individual fairness performs at different Wasserstein distance when
we force group fairness to be satisfied. There are different factors that affect Wasser-
tein distance such as mean difference and variance difference between two groups. The
Wasserstein distance between two distributions with the same mean but different vari-
ance can be the same as between two distributions with the same variance but different
mean. Another interesting problem is whether individual fairness will show different per-
formance when the Wasserstein distance between two groups is the same but is caused
by different factors. Therefore, we require data sets with different magnitude and caus-
ing factors of Wasserstein distance to address the two problems. By simulating data
sets, we can adjust parameters and control Wasserstein distance more easily. In Section
3.2.1, we introduce the main idea and process of our experiments. Then we provide the
method on how to adjust Wasserstein distance in details in Section 3.2.3. The results of
our initial experiments are shown in Section 3.2.4.
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3.2.1. Main Process of the Experiment

In this section, we give an overall process. To start with, we need to simulate the data
sets for our experiments. Each individual in the simulated data set belongs to either
the privileged group or the unprivileged group and has five non-sensitive features and a
positive/negative label. We use five features because it is sufficient enough to train an
algorithm and is computationally efficient. Also, we include not only discrete attributes
but also continuous attributes from different distributions. The procedure is as follows:

• Randomly generate a sensitive attribute S of N individuals where the probability
of each individual being in the privileged group is p (N needs to be large so that
the results are more reliable, so we choose N = 20000; We chose a range of p values
from 0.1 to 0.9 and found out the experimental results are not sensitive to the value
p, so we choose an appropriate value p = 0.4, i.e. there are 8000 individuals in the
privileged group and 12000 in the unprivileged group).

• Randomly generate the label Y where the probability of each privileged indi-
vidual being positive is p1 and the probability of each unprivileged individual
being positive is p2 (Since we assume that privileged individuals are more likely
to be predicted positive than unprivileged individuals due to discrimination, we
require that p1 > p2. To make it more realistic, the difference between them is
not set too large. We set p1 = 0.55 and p2 = 0.4, i.e. P (Y = 1|S = 1) = 0.55,
P (Y = 1|S = 0) = 0.4).

• Randomly generate three features V1, V2, V3, V4 and V5. [Details in Section 3.2.3]

• Randomly generate noise and add to each feature to make it more realistic.

• Form a data frame which consists of S, V1, V2, V3, V4, V5 and Y .

Then we split the simulated data set into a training, validation and test data set,
standardise each data set, build a logistic regression model on the training data set,
then use the validation data set to find the optimal threshold and finally predict the
outcome of each test individual. Based on the predicted outcomes of the test data
set, we compute consistency cb and statistical parity difference sb which demonstrate
individual fairness and group fairness respectively. The subscript b means ‘before’ since
these are the fairness performance before we apply fairness algorithms (i.e. no fairness
algorithms are applied).

Since we are interested in how individual fairness changes if we force group fairness to
be satisfied, we need to compare the fairness performance when we do and do not apply
fairness algorithms. We have obtained the fairness measures cb and sb when we do not
apply fairness algorithms, therefore, the next step is to record the fairness performance
when a fairness algorithm is applied. We take a well-performed pre-processing approach
(DI remover or reweighing) and build a new logistic regression model, then record con-
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sistency ca and statistical parity difference sa. If ca > cb, it indicates that individual
fairness improves after we apply group fairness algorithm. Otherwise, it indicates that
individual fairness gets worse after applying the fairness algorithm. By appropriately
adjusting the parameters of distribution from which V1/V2/V3/V4/V5 is generated, we
can obtain different data sets with different Wasserstein distance between the multivari-
ate distributions of the privileged group and the unprivileged group. For each data set,
we compute the sliced Wasserstein distance between the multivariate distributions as
well as consistency and statistical parity difference before and after applying the fairness
algorithm. After testing with DI remover and reweighing, we found out that the results
are not sensitive to which fairness algorithm we use, so we only show the results of apply-
ing DI remover for this experiment. Finally, we plot the fairness performance measures
against the sliced Wasserstein distance to observe the relationship between them.

3.2.2. Exploratory Data Analysis of Real Datasets

In order to generate features more realistically, we carry out exploratory data analysis
(EDA) of real datasets Adult, German and COMPAS. The data set Adult has been
described in Section 3.1. The data set German consists of one sensitive attribute sex
(1: Female; 0: Male), six non-sensitive attributes: month, credit amount,investment as
percentage, residence since, number of credits and people liable for and an outcome label
(1: good credit risk; 0: bad credit risk). The data set COMPAS consists of two sensitive
attributes: sex (1: Female; 0: Male) and race (1: Caucasian; 0: Non-Caucasian), three
non-sensitive attributes: age, decile_score and priors_count and an outcome label (1:
the defendant has reoffended in 2 years’ time; 0: the defendant has not).

For each dataset, we first transform the non-sensitive attributes using standard scalar
since transformed data is the data we feed into the model. Then for each transformed
attribute in each dataset, we summarise the mean difference, standard deviation dif-
ference and one-dimensional Wasserstein distance between two groups. Also, for each
dataset, we compute multi-dimensional sliced Wasserstein distance between two groups’
multi-variate distributions of all non-sensitive attributes. The summary is shown in
Table 3.1. From these values, we obtain a rough range of 1-D Wasserstein distance of a
transformed attribute between 0 to 0.6, and a rough range of sliced Wasserstein distance
between 0.1 to 0.3. Since 1-D Wasserstein distance range is very small in magnitude after
all the attributes are transformed into a standard scale, there is a big difference for an
attribute having 1-D Wasserstein distance 0.1 compared to having distance 0.2. Sliced
Wasserstein distance has a even smaller range, thus, a dataset with sliced Wasserstein
distance 0.1 will be very different if its attributes have been adjusted so that the sliced
Wasserstein distance becomes 0.2. Also, we notice that in most cases, 1-D Wasserstein
distance is affected by mean difference rather than standard deviation difference.

Furthermore, we plot histograms of two groups and obtain a visualisation of their
distribution for some attributes from these three datasets. The datasets are popular
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and have been widely used in the study of fairness as they include a wide range of
attributes, from discrete distributions where they only take a limited number of values
to continuous distributions including both heavy-tailed and light-tailed. We present two
discrete examples in Figure 3.3 and four typical continuous examples in Figure 3.4. It is
important that we include different types of attributes when simulating datasets to make
them more general and realistic, so we include discrete attributes and choose continuous
attributes from appropriate distributions: Gamma, Log-normal, Exponential, Normal,
Cauchy.

Table 3.1.: Mean difference, standard deviation difference and 1-D Wasserstein distance
of each attribute and the sliced Wasserstein distance of each dataset.

Dataset Attributes (Trans-
formed)

Mean
diff.

Standard
deviation
diff.

1-D
Wasserstein
distance

Multi-dimensional
sliced Wasserstein
distance

Age 0.1872 0.0528 0.1878

0.2243
Adult Education-num 0.0198 0.1094 0.1007

+ Capital-gain 0.1000 0.4393 0.1000
Sex Capital-loss 0.0966 0.2236 0.1004

Hours-per-week 0.4855 0.0138 0.4855
Age 0.0910 0.0760 0.1038

0.1057
Adult Education-num 0.1400 0.0051 0.1400

+ Capital-loss 0.0584 0.1459 0.0587
Race Capital-gain 0.0420 0.1315 0.0420

Hours-per-week 0.1324 0.1301 0.1575
Month 0.1761 0.1160 0.1762

0.2273

German Credit Amount 0.2021 0.1061 0.2080
+ Investment as % 0.1866 0.1127 0.1866

Sex Residence Since 0.0299 0.0803 0.1121
Number of Credits 0.2038 0.1031 0.2061
People liable for 0.4399 0.5404 0.4399

COMPAS Age 0.0214 0.0291 0.0415
0.1899+ Decile Score 0.1543 0.0791 0.1543

Sex Priors Count 0.3024 0.2960 0.3024
COMPAS Age 0.3823 0.1527 0.3831

0.2934+ Decile Score 0.4184 0.1156 0.4184
Race Priors Count 0.3061 0.3384 0.3064
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Figure 3.3.: Two examples of transformed discrete attribute histograms (Left: Number
of Credits in German dataset with sex as the sensitive attribute. Right:
Decile Score in COMPAS dataset with race as the sensitive attribute.)

Figure 3.4.: Four examples of transformed continuous attribute histograms and distri-
bution plots (Top left: Age in Adult dataset with sex as the sensitive attrib-
ute. Top right: Hour-per-week in Adult dataset with race as the sensitive
attribute. Bottom left: Age in COMPAS dataset with sex as the sensitive
attribute. Bottom right: Priors Count in COMPAS dataset with race as the
sensitive attribute.)
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3.2.3. Generating the Features

After observing real datasets, we now simulate our own datasets which we have better
control on. This section describes the details of how to generate the features V1, V2,
V3, V4 and V5. By adjusting the parameters of an attribute distribution, we can adjust
the mean difference or variance difference between two groups so that one-dimensional
Wasserstein distance varies. A change in one-dimensional Wasserstein distance of any
attribute will lead to a change in multi-dimensional Wasserstein distance over multiple
attributes. According to EDA of attributes in real datasets, we decide to generate the
five attributes from distributions with similar shape. We generate 2 discrete attributes
V1 and V2 and 3 continuous attributes V3, V4 and V5 from normal, gamma and Cauchy
distribution respectively. For Normal and Gamma, we can easily control mean and
variance by adjusting their parameters. A normal distribution N (µ, σ2) has µ as the
mean and σ2 as the variance. A gamma distribution with shape parameter k and scale
parameter θ has mean kθ and variance kθ2.

Our first task is to study the influence on individual fairness when large Wassertein
distance is caused by different factors (either mean difference or variance difference), we
adjust the difference between mean or variance of the two groups while keeping other
factors constant. In our experiments, we choose to change Wasserstein distance in V3
or V4 only since it is convenient to adjust mean and variance of normal and gamma
distributions. There are four cases: 1) change the difference between mean of V3 of the
two groups only; 2) change the difference between variance of V3 of the two groups only;
3) change the difference between mean of V4 of the two groups only and 4) change the
difference between variance of V4 of the two groups only.

To start with, we introduce the way of generating attributes V1, V2 and V5. We
only generate them once and use the same attributes in all four cases so that the 1-
D Wasserstein distance in V1/V2/V5 distribution of two groups is constant. For each
attribute, we generate from two slightly different distributions based on their actual
outcome to incorporate some correlation between the features and the outcome and, in
doing so, to ensure some level of accuracy of the model. The method is as follows:

1. V1 is a discrete variable which randomly takes values 0, 1, 2, 3, 4, 5, 6 with
probability 0.1, 0.04, 0.2, 0.18, 0.3, 0.06, 0.12 respectively if Y = 0 and takes the
same values with probability 0.1, 0.04, 0.3, 0.155, 0.275, 0.035, 0.095 respectively
if Y = 1.

2. V2 is another discrete variable which randomly takes values 0, 1, 2 with probability
0.25, 0.25, 0.5 respectively if Y = 0 and takes the same values with probability
0.2, 0.2, 0.6 respectively if Y = 1.

3. V5 is a continuous variable generated from Cauchy(x0,γ) where x0 is location para-
meter and γ is scale parameter. We randomly generate V5 Cauchy(0,4) if Y = 0
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and Cauchy(0,2.4) if Y = 1.

After having attributes V1, V2 and V5, we now concentrate on how to generate V3 and
V4 in four cases. In the first case where we only change the difference in mean of V3 of the
two groups, we generate V3 and V4 as follows. To start with, we randomly generate V4
from Gamma(4,1) if Y = 0 and Gamma(4.8,1) if Y = 1, then the Wasserstein distance in
V1/V2/V4/V5 distributions of two groups is constant. Then, we generate the first feature
V3 from a set of normal distributions: i) N (100m, 20) if Y = 0 and S = 0, ii) N (100, 20)
if Y = 0 and S = 1, iii) N (100, 20) if Y = 1 and S = 0, iv) N (100(2−m), 20) if Y = 1
and S = 1 where m = 0.99, . . . , 0.8. There are 30 m values where each m corresponds to
a new V3, so we obtain 30 datasets with different values for V3 but unchanged values for
the other four attributes. When m decreases, the mean for the group S = 0 decreases
while the mean for the group S = 1 increases so that the mean difference increases
and the one-dimensional Wasserstein distance of V3 increases, which leads to an increase
in multi-dimensional sliced Wasserstein distance over multivariate distribution over five
attributes. The variance difference of V1 between the two groups hardly changes with
m, which implies that the increase in Wasserstein distance is led by the increase in mean
difference in this case. For the selection of parameter values and m values, we can select
any as long as they provide a good range of Wasserstein distance between two groups
since we need to observe fairness performance at different Wasserstein distance.

In the second case where we only change the difference in variance of V3 of the two
groups, we use the same V1, V2, V4 and V5 as in the first case, then generate V3 from
i) N (100, 20s) if Y = 0 and S = 0, ii) N (100, 20) if Y = 0 and S = 1, iii) N (100, 20)
if Y = 1 and S = 0, iv) N (100, 20/s) if Y = 1 and S = 1 where s = 0.96, . . . , 0.15.
As s decreases, the variance for the group S = 0 decreases but the variance for the
group S = 1 increases so that the variance difference and the Wasserstein distance both
increase. In this case, the increase in multi-dimensional Wasserstein distance is caused
by the increase in variance difference since the mean difference between the two groups
barely changes.

In the third case where we only concentrate on changing the mean of V4, we generate
V3 from N (90, 20) if Y = 0 and N (110, 20) if Y = 1, then the Wasserstein distance
in V1/V2/V3/V5 distributions of two groups is constant. Then we generate V4 from i)
Gamma(100

k , 30
√
k) if Y = 0 and S = 0, ii) Gamma(100, 30) if Y = 0 and S = 1, iii)

Gamma(100, 30) if Y = 1 and S = 0, iv) Gamma(100k, 30√
k
) if Y = 1 and S = 1 where

k = 0.9975, . . . , 0.85. The mean for Gamma(100/k, 30
√
k) is 100

k ×30
√
k = 3000/

√
k and

the mean for Gamma(100k, 30/
√
k) is 100k × 30/

√
k = 3000

√
k. The variance for these

two gamma distributions is theoretically the same since 100
k × (30

√
k)2 = 100 × 302 =

100k × (30/
√
k)2. Therefore, the mean of group S = 0 increases whereas the mean of

group S = 1 decreases as k decreases. The mean difference between two groups increases
but the variance difference does not change, thus, the multi-dimensional Wasserstein
distance increases due to the increase in the mean difference.
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In the fourth case where we consider changing the variance of V4 only, we use the
same V1, V2, V3 and V5 as in the third case, then generate V4 from i) Gamma(100/l, 30l)
if Y = 0 and S = 0, ii) Gamma(100, 30) if Y = 0 and S = 1, iii) Gamma(100, 30) if
Y = 1 and S = 0, iv) Gamma(100l, 30/l) if Y = 1 and S = 1. As l decreases, the mean
difference remains unchanged, but the variance difference increases since the variance for
group S = 0 increases but the variance for group S = 1 decreases. Therefore, the cause
of an increase in multi-dimensional Wasserstein distance in this case is the increase in
variance difference.

3.2.4. Experimental Results

In each of the four cases mentioned above, we generate 30 data sets where the multi-
dimensional sliced Wasserstein distance between two groups is different in every data
set, then compute statistical parity difference and consistency before and after we apply
the fairness algorithm (DI remover) for every data set. Finally, we plot these fairness
measures on one graph with x-axis representing the sliced Wasserstein distance. The
results of these four cases are shown in Figures 3.5, 3.6, 3.7, 3.8. The thick blue dashed
line and thick red solid line represent the consistency before and after applying DI
remover respectively, with the scale showing on the y-axis on the left hand side. If the
red thick line is below the blue thick line, it means that consistency decreases after
applying the fairness algorithm. The thin blue dashed line and think red solid line
represent the statistical parity difference before and after DI remover respectively, with
the scale showing on the y-axis on the right hand side. If the red thin line is closer to
zero compared to the blue thin line, it shows that group fairness has been improved after
applying the fairness algorithm.

We notice that in all four cases, ‘statistical parity difference after’ gets closer to zero
after DI remover is applied which means that group fairness is achieved regardless of
multi-dimensional Wasserstein distance. Also, we notice that when Wasserstein distance
is large, ‘consistency after’ is generally lower than ‘consistency before’ which indicates
that individual fairness is harmed after satisfying group fairness. However, it is diffi-
cult to determine ‘large’ quantitatively since we observe that individual fairness shows
different performance in different cases even at the same multi-dimensional Wasserstein
distance. For instance, when it equals 0.2, i) applying DI remover decreases consistency
from 0.98 to 0.94 approximately in the first case, ii) consistency increases from 0.953
to 0.963 approximately after applying DI remover in the second case, iii) consistency
decreases from 0.95 to 0.93 approximately in the third case, iv) consistency increases
0.92 to 0.95 in the fourth case.

Moreover, by comparing Figure 3.5 and 3.6, we see that individual fairness gets worse
after applying the DI remover algorithm when multi-dimensional Wasserstein distance
reaches 0.125 if it is only affected by mean difference of V3. However, if the variance
difference of V3 is the causing factor, up to the point when Wasserstein distance reaches
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0.225, individual fairness does not worsen after applying DI remover. Similarly, we can
compare Figure 3.7 and 3.8: Individual fairness gets worse after applying the DI remover
algorithm when multi-dimensional Wasserstein distance reaches 0.16 if it is only affected
by mean difference of V4, but does not get worse until Wasserstein distance reaches 0.24
if it is only affected by variance difference of V4. Therefore, a large Wasserstein distance
caused by mean difference of a feature is more likely to have a bad influence on individual
fairness than the same amount of Wasserstein distance caused by variance difference of
that feature. This means that if we want to achieve group fairness in a dataset and
we find out the attribute distributions of two groups are very different due to a large
difference between their mean, we need to be careful as individual fairness as it is likely
to be sacrificed.

Figure 3.5.: When only changing the difference in mean of V3 of the two groups, consist-
ency decreases after applying DI remover when multi-dimensional Wasser-
stein distance reaches 0.125.
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Figure 3.6.: When only changing the difference in variance of V3 of the two groups,
consistency does not fall after applying DI remover up to the point when
Wasserstein distance reaches 0.225.

Figure 3.7.: When only changing the difference in mean of V4 of the two groups, con-
sistency falls after applying DI remover when Wasserstein distance reaches
0.16.
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Figure 3.8.: When only changing the difference in variance of V4 of the two groups, con-
sistency falls after applying DI remover when Wasserstein distance reaches
0.24.

3.2.5. More Experimental results

In Section 3.2.3 and 3.2.4, we have concentrated on changing the mean/variance dif-
ference between two groups for only one of the attributes and generated 30 different
datasets each time. In this section, we expand the experiments further by adjusting
mean for multiple attributes at one time or adjusting their variance at one time. In both
cases, we generate 1000 datasets. The generation procedure is only slightly different
from the one we introduced in Section 3.2.3.

To start with, we simulate exactly the same attributes V1, V2 and V5. Then in the first
case where we focus on adjusting mean for multiple attributes, we randomly generate V3
from a set of normal distributions: i) N (100m, 20) if Y = 0 and S = 0, ii) N (100, 20) if
Y = 0 and S = 1, iii) N (100, 20) if Y = 1 and S = 0, iv) N (100(2−m), 20) if Y = 1 and
S = 1 where m = 0.99, . . . , 0.8, and randomly generate V4 from i) Gamma(100

k , 30
√
k)

if Y = 0 and S = 0, ii) Gamma(100, 30) if Y = 0 and S = 1, iii) Gamma(100, 30) if
Y = 1 and S = 0, iv) Gamma(100k, 30√

k
) if Y = 1 and S = 1 where k = 0.9975, . . . , 0.85.

There are 32 m values and 32 k values where each m corresponds to a new V3 and
each k corresponds to a new V4, so we obtain 32 × 32 = 1024 datasets with different
combinations for V3 and V4. For simplicity, we then randomly select 1000 datasets from
these 1024 datasets without loss of generality. In second case when we concentrate on
adjusting variance for multiple attributes, we randomly generate V3 from i) N (100, 20s)
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if Y = 0 and S = 0, ii) N (100, 20) if Y = 0 and S = 1, iii) N (100, 20) if Y = 1 and
S = 0, iv) N (100, 20/s) if Y = 1 and S = 1 where s = 0.96, . . . , 0.15 and randomly
generate V4 from i) Gamma(100/l, 30l) if Y = 0 and S = 0, ii) Gamma(100, 30) if Y = 0
and S = 1, iii) Gamma(100, 30) if Y = 1 and S = 0, iv) Gamma(100l, 30/l) if Y = 1
and S = 1. We also set 32 s values and l values, then select 1000 datasets from the 1024
generated.

Finally, we compute multi-dimensional sliced Wasserstein distance and the change in
consistency after applying a fairness algorithm, then present the results in scatter plots
shown in Figure 3.9 and 3.10. We plot a horizontal line y = 0 as a reference line, a point
above the 0 line indicates that there is an increase in consistency (i.e. improvement in
individual fairness) after satisfying group fairness whereas a point below 0 means that
individual fairness falls after satisfying group fairness. The two figures also show that
when a large multi-dimensional Wasserstein distance is caused by large mean differences
in attributes rather than large variance differences, individual fairness is more likely to
be sacrificed when group fairness is satisfied.

Figure 3.9.: When changing the difference in mean of multiple attributes only, consist-
ency starts to fall after applying DI remover when multi-dimensional Wasser-
stein distance is in the range (0.225, 0.265).
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Figure 3.10.: When changing the difference in variance of multiple attributes only, con-
sistency increases after applying DI remover (change in consistency is al-
ways positive).

3.3. Summary

In this chapter, we show on a real data set Adult that if we achieve a group fairness level
and an individual fairness level by simply removing the sensitive attribute and we then
modify the non-sensitive attributes to improve the group fairness level further, the indi-
vidual fairness level decreases. Therefore, simply eliminating the sensitive attributes has
an advantage if we concentrate on achieving individual fairness. On simulated data sets,
we show that satisfying group fairness worsens individual fairness when the Wasserstein
distance between two groups’ attribute distributions is large. Moreover, experimental
results indicate that if a large Wasserstein distance is caused by a large mean difference
rather than a large variance difference, individual fairness is more likely to be affected
when group fairness is satisfied. This means that if the attribute distributions of two
groups are very different, especially when there is a large difference between their mean,
individual fairness tends to be sacrificed when we force group fairness to be satisfied.
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4. Pre-processing Approaches

In Chapter 3, we investigated the relationship between group fairness and individual
fairness. In this chapter, we concentrate on studying pre-processing fairness algorithms
and assessing their performance in terms of both group and individual fairness. We start
with tweaking the existing reweighing algorithm in Section 4.1 by changing the assigned
weights to individuals. For example, if original reweighing algorithm achieves a statistical
parity difference of -0.01 and we only require -0.05, then we could adjust the weights
to achieve a higher level of individual fairness while meeting the requirements for group
fairness. Then, in Section 4.2, we propose a new pre-processing algorithm. To achieve
group fairness, one way is to modify the data so that distributions of the attributes of
different groups become more similar. In other words, we want to make the non-sensitive
attributes to be less associated with the sensitive attribute. Our new algorithm reduces
the mean difference in attribute values between different groups so that the association
between the sensitive attribute and non-sensitive attributes is decreased.

4.1. Tweaking Reweighing Algorithm

As we introduced in Section 2.1.2, disparate impact remover has an outstanding advant-
age which is that modification level can be adjusted from 0 to 1, where 0 gives original
data and 1 gives fully modified data. Adjusting modification level allows us to choose a
desirable performance which meets specific requirements of individual fairness and group
fairness. Therefore, similarly, we can slightly alter reweighing algorithm by changing the
weights assigned to each individual. In Section 4.1.1, we introduce the idea of changing
the reweighing level for all individuals and analyse the performance on 1000 simulated
datasets. Then we evaluate the performance of reweighing algorithms with a mixture of
two reweighing levels in Section 4.1.2. Finally, we introduce other forms of reweighing
such as conditional reweighing and reweighing with multiple attributes in Section 4.1.3.
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4.1.1. Reweighing Level

To start with, we remind ourselves of the theory of reweighing, which is described in
Appendix A.2. For each individual in training data, reweighing algorithm assigns weight

W (s, y) = Pexp(S = s ∩ Y = y)
Pobs(S = s ∩ Y = y) = |S = s| × |Y = y|

|D| × |S = s ∩ Y = y|
,

then trains a classifier with the weights.

Since training individuals with weights W (s, y) means that reweighing algorithm is
fully applied whereas training individuals with a weight equal to 1 means that no
fairness algorithm is applied, it is natural to consider adjusting reweighing level by
assigning weights with values between W (s, y) and 1. This method is feasible since
W (0, 1),W (1, 0) > 1 and W (0, 0),W (1, 1) < 1, which are proven as follows:

S = 0 S = 1 Total
Y = 0 a c |Y = 0| = a+ c

Y = 1 b d |Y = 1 = b+ d

Total |S = 0| = a+ b |S = 1| = c+ d |D| = a+ b+ c+ d

Table 4.1.: Number of individuals in each group in an unfair dataset

Suppose that we have an unfair data set shown in Table 4.1 with P (Y = 1|S = 0) <
P (Y = 1|S = 1), then

P (Y = 1|S = 0) < P (Y = 1|S = 1)
|Y = 1 ∩ S = 0|
|S = 0| <

|Y = 1 ∩ S = 1|
|S = 1|

b

a+ b
<

d

c+ d

bc+ bd < ad+ bd

bc < ad

Therefore, we have

W (0, 1) = |S = 0| × |Y = 1|
|D| × |S = 0 ∩ Y = 1| = (a+ b)(b+ d)

(a+ b+ c+ d)b

= ab+ ad+ b2 + bd

ab+ b2 + bc+ bd
= (ab+ b2 + bd) + ad

(ab+ b2 + bd) + bc
> 1

W (1, 0) = |S = 1| × |Y = 0|
|D| × |S = 1 ∩ Y = 0| = (c+ d)(a+ c)

(a+ b+ c+ d)c

= ac+ c2 + ad+ cd

ac+ bc+ c2 + cd
= (ac+ c2 + cd) + ad

(ac+ c2 + cd) + bc
> 1
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W (0, 0) = |S = 0| × |Y = 0|
|D| × |S = 0 ∩ Y = 0| = (a+ b)(a+ c)

(a+ b+ c+ d)a

= a2 + ac+ ab+ bc

a2 + ab+ ac+ ad
= (a2 + ac+ ab) + bc

(a2 + ac+ ab) + ad
< 1

W (1, 1) = |S = 1| × |Y = 1|
|D| × |S = 1 ∩ Y = 1| = (c+ d)(b+ d)

(a+ b+ c+ d)d

= bc+ cd+ bd+ d2

ad+ bd+ cd+ d2 = (cd+ bd+ d2) + bc

(cd+ bd+ d2) + ad
< 1

Suppose that reweighing level 1 indicates that individuals are assigned with original
weights W (0, 1), W (1, 0), W (0, 0), W (1, 1), we can lower the reweighing level by moving
the weights towards 1. We introduce a method to adjust the reweighing level L:

WL(0, 1) = 1 + (W (0, 1)− 1)L
WL(1, 0) = 1 + (W (1, 0)− 1)L
WL(0, 0) = 1− (1−W (0, 0))L
WL(1, 1) = 1− (1−W (1, 1))L

To evaluate the performance of reweighing algorithms with different levels, we apply
reweighing algorithms with levels L = 0, 0.1, . . . , 1 to 1000 data sets generated in Section
3.2.5. When we lower the reweighing level by 0.1 each time, we record the number
of datasets in which the absolute value of statistical parity difference increases (i.e.
group fairness level decreases) and the number of datasets in which consistency increases
(i.e. individual fairness level increases). For a better visualisation, we plot mean of
1000 datasets’ absolute values of statistical parity difference and consistency against
reweighing level. The results are shown in Table 4.2 and Figure 4.1.

From the results, we can see that when reweighing level decreases by 0.1, absolute
value of statistical parity difference increases in most data sets. This indicates that
group fairness level tends to decrease when reweighing level decreases, which is also
demonstrated in the first plot in Figure 4.1. We also notice that in the most of the
time when reweighing level decreases by 0.1, consistency increases in most data sets
although there are cases where consistency only increases in around half of the datasets
at relatively low reweighing levels. The general decreasing trend shown in the second
plot in Figure 4.1 reflects that individual fairness level tends to decrease when reweighing
level increases.
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Change in Re-
weighing level

Number of Data Sets where
Absolute Value of Statistical
Parity Difference Increases

Number of Data Sets
where Consistency In-
creases

From 1 to 0.9 972 942
From 0.9 to 0.8 983 900
From 0.8 to 0.7 974 857
From 0.7 to 0.6 984 836
From 0.6 to 0.5 982 776
From 0.5 to 0.4 985 697
From 0.4 to 0.3 982 663
From 0.3 to 0.2 979 594
From 0.2 to 0.1 989 519
From 0.1 to 0 971 486

Table 4.2.: A table which records the number of datasets out of 1000 in which the abso-
lute value of statistical parity difference increases and the number of datasets
in which consistency increases when decreasing the reweighing level by 0.1

Figure 4.1.: Reweighing algorithm’s average performance over 1000 datasets at different
reweighing level (Left: Mean of absolute values of statistical parity difference
against reweighing level. Right: Mean of consistency against reweighing
level.)

4.1.2. Reweighing Individuals

In Section 4.1.1, we assign the weights to every individual according to one’s actual out-
come and protected attribute. We now discover the situation where only a fraction of in-
dividuals from each group are assigned with the weightsWL1(0, 1), WL1(1, 0), WL1(0, 0),
WL1(1, 1) while the rest is assigned with weights from a lower level L2 (L1 > L2). Take
the data set in Table 4.1 as an example. Suppose the fraction of the first reweighing level
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is m and the fraction of the second reweighing level is (1 −m). Then ma individuals
with S = 0 and Y = 0 are assigned with WL1(0, 0), (1−m)a individuals with S = 0 and
Y = 0 are assigned with WL2(0, 0), mb individuals with S = 0 and Y = 1 are assigned
with WL1(0, 1), (1−m)b individuals with S = 0 and Y = 1 are assigned with WL2(0, 1)
etc. Then the required number of individuals are selected randomly and assigned with
proper weights.

To evaluate the performance of reweighing algorithms with two levels taking different
proportion, we apply reweighing algorithms with levels L1 = 1 and L2 = 0.9 with fraction
m = 0, 0.1, . . . , 1 to 1000 data sets generated in Section 3.2.5. When we decrease the
proportion of reweighing level 1 by 10% and increase the proportion of reweighing level
0.9 by 10% each time, we record the number of datasets in which the absolute value
of statistical parity difference increases (i.e. group fairness level decreases) out of 1000,
a large value indicates that group fairness level decreases in most datasets whereas a
small number indicates that group fairness level increases in most datasets. Also, we
record the number of datasets in which consistency increases (i.e. individual fairness
level increases) out of 1000 each time, a large value means that individual fairness level
increases in most datasets whereas a small value means that individual fairness level
decreases in most datasets. For a better visualisation, we plot mean of 1000 datasets’
absolute values of statistical parity difference and consistency against reweighing level.
The results are shown in Table 4.3 and Figure 4.2.

From Table 4.3, we can see that when the percentage of individuals who are assigned
with level 1 weights decreases, absolute value of statistical parity difference increases in
most data sets, in other words, group fairness level decreases in most data sets. Take the
first row as an example, when we assign level 1 to 90% individuals and level 0.9 to 10%
individuals instead of assigning level 1 to all individuals, group fairness level decreases
in 993 data sets out of 1000. Generally, group fairness level decreases as we increase the
proportion of individuals being assigned a lower reweighing level. However, when we
assign level 0.9 to all individuals instead of assigning level 0.9 to 90% individuals and
level 1 to 10% individuals, only 14 datasets show a decrease in group fairness level, in
other words, group fairness improves in most datasets although the proportion of lower
reweighing level increases. In fact, group fairness level tends to be higher when applying
an algorithm where all the weights are assigned at level 0.9 rather than one where there is
a mixture of two reweighing levels. Similarly, from the results of consistency, we see that
individual fairness level generally increases as we increase the proportion of individuals
being assigned a lower reweighing level, but the level tends to be lower when applying
an algorithm where all the weights are assigned at level 0.9 rather than one where there
is a mixture of two reweighing levels.

Therefore, the performance results suggest that we should avoid mixture of reweighing
levels and set the same reweighing level for all individuals for more efficient results. For
instance, if we are not satisfied with the group fairness level when reweighing every
individual at level 0.9 but the group fairness level is beyond what we require when we
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reweigh every individual at level 1, then reweighing every individual at a level between
0.9 and 1 (e.g. 0.95) is a more effective solution than reweighing some individuals at
level 1 and some at level 0.9.

Change in reweighing level
proportion

Number of Data Sets where
Absolute Value of Statistical
Parity Difference Increases

Number of Data
Sets where Con-
sistency Increases

From (1: 100%, 0.9: 0%)
to (1: 90%, 0.9: 10%)

993 893

From (1: 90%, 0.9: 10%)
to (1: 80%, 0.9: 20%)

794 587

From (1: 80%, 0.9: 20%)
to (1: 70%, 0.9: 30%)

788 613

From (1: 70%, 0.9: 30%)
to (1: 60%, 0.9: 40%)

808 619

From (1: 60%, 0.9: 40%)
to (1: 50%, 0.9: 50%)

786 575

From (1: 50%, 0.9: 50%)
to (1: 40%, 0.9: 60%)

786 619

From (1: 40%, 0.9: 60%)
to (1: 30%, 0.9: 70%)

789 567

From (1: 30%, 0.9: 70%)
to (1: 20%, 0.9: 80%)

810 594

From (1: 20%, 0.9: 80%)
to (1: 10%, 0.9: 90%)

767 555

From (1: 10%, 0.9: 90%)
to (1: 0%, 0.9: 100%)

14 141

From (1: 100%, 0.9: 0%)
to (1: 0%, 0.9: 100%)

980 889

From (1: 90%, 0.9: 10%)
to (1: 0%, 0.9: 100%)

213 370

Table 4.3.: A table which records the number of datasets out of 1000 in which the abso-
lute value of statistical parity difference increases and the number of datasets
in which consistency increases when the proportion of reweighing level 1 de-
creases by 10% and the proportion of reweighing level 0.9 increases by 10%
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Figure 4.2.: Reweighing algorithm’s average performance over 1000 datasets at different
proportion of reweighing levels (Left: Mean of absolute values of statistical
parity difference against fraction of reweighing level 1. Right: Mean of
consistency against fraction of reweighing level 1.)

4.1.3. Other Forms of Reweighing

In reality, there are cases where part of the differences in the probability of positive
outcome for the two groups may be objectively explainable by other attributes. For
instance, suppose that average annual income for females is lower than males but females
work less hours than males on average, then part of difference in annual income can be
explained by working hours. Researchers argue that only the discrimination conditioned
on an explanatory attribute should be removed. Therefore, we introduce conditional
reweighing. If we want to achieve statistical independence between protected attribute
S and outcome Y conditional on another attribute A, i.e. S |= Y |A instead of S |= Y ,
then the expected probability is

Pexp(S = s ∩ Y = y|A = a) = P (S = s|A = a)P (Y = y|A = a)

= |S = s ∩A = a|
|A = a|

× |Y = y ∩A = a|
|A = a|

The observed probability is

Pobs(S = s ∩ Y = y|A = a) = |S = s ∩ Y = y ∩A = a|
|A = a|

For each observation in training data, assign weight

W (s, y, a) = Pexp(S = s ∩ Y = y|A = a)
Pobs(S = s ∩ Y = y|A = a) = |S = s,A = a| × |Y = y,A = a|

|A = a| × |S = s ∩ Y = y ∩A = a|

When A is binary, there will be 8 weights.
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Furthermore, reweighing can also be applied when there are multiple sensitive attrib-
utes in the data set. Suppose that there are two independent sensitive attributes S1 and
S2 and we want to achieve statistical independence between S1, S2 and outcome Y , i.e.
We expect S1 |= Y, S2 |= Y , the expected probability is

Pexp(S1 = s1 ∩ S2 = s2 ∩ Y = y) = P (S1 = s1 ∩ S2 = s2)P (Y = y)

= |S1 = s1 ∩ S2 = s2|
|D|

· |Y = y|
|D|

The observed probability is

Pobs(S1 = s1 ∩ S2 = s2 ∩ Y = y) = |S1 = s1, S2 = s2, Y = y|
|D|

For each observation in training data, assign weight

W (s1, s2, y) = Pexp
Pobs

= |S1 = s1 ∩ S2 = s2| × |Y = y|
|D| × |S1 = s1 ∩ S2 = s2 ∩ Y = y|

4.2. New Pre-processing Approach

After exploring the existing reweighing algorithm, we construct a new pre-processing
approach in this section. We start with introducing a statistic called point-biserial cor-
relation coefficient which measures the association between a categorical variable and a
continuous variable, and another statistic called Cramér’s V which measures the asso-
ciation between two categorical variables in Section 4.2.1. Inspired from their formula,
we then construct a new pre-processing approach in Section 4.2.2: reduce the mean dif-
ference in attribute values between different groups so that the association between the
sensitive attribute and non-sensitive attributes is decreased. Finally, we apply this new
method to the real data sets Adult and COMPAS and compare its group fairness and
individual fairness performance with existing fairness algorithms: reweighing and reject
option based classification (ROC) in Section 4.2.3.

4.2.1. Point-biserial Correlation Coefficient and Cramér’s V

Before we apply a pre-processing approach to the original data, a useful step is to
check the correlation between the sensitive attribute and the other attributes and the
significance of the correlation. Since the sensitive attribute is often categorical, we will
introduce correlation ratio, a measure of the correlation between a categorical variable
and a continuous variable [48]. Then we introduce a point-biserial correlation coefficient
which measures the correlation between a binary variable and a continuous variable [49].
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In more details, we consider a categorical variable S and a continuous variable X,
the continuous variable of each individual is represented as xsi, where s indicates the
category that the individual belongs to and i is the index. Let n be the total number of
individuals and ns be the number of individuals in category s, then the mean of group s
is x̄s = 1

ns

∑ns
i xsi and the mean of the whole population is x̄ = 1

n

∑
s nsx̄s. Given this,

the correlation ratio η is defined as:

η =
√∑

s ns(x̄s − x̄)2∑
s,i(xsi − x̄)2 . (4.1)

The fraction inside the square root is the equivalent to the proportion of the weighted
variance of the group means to the variance of all individuals. Its range is between 0
and 1, where a value of 1 indicates that all the variance is due to the variance between
different groups and no variance is due to the variance within groups, whereas a value
of 0 indicates the opposite. Correlation ratio reflects the relative importance of the
“between group variance” and “within group variance”.

Specifically, when S is binary, there are two categories: s = 0 or 1. The number of
individuals in each group is represented by n1 and n0 and the mean of each group is
represented x̄1 and x̄0. Then we define point-biserial correlation coefficient as [49]:

x̄1 − x̄0√
1
n

∑
s,i(xsi − x̄)2

√
n0n1
n2 . (4.2)

A value of 0 indicates no correlation and a value of 1 or -1 indicates perfect correlation.
Moreover, a p-value is yielded from the point-biserial correlation coefficient. The inter-
pretation of the p-value is as follows. Our null hypothesis H0 is that the point-biserial
correlation coefficient is 0. The alternative hypothesis, H1, is that the coefficient is not
equal to 0. If the p-value is less than the significance level that has been set, there is
sufficient evidence to show that the point-biserial correlation coefficient does not equal
0, so we reject H0, equivalently it means that there is evidence showing the existence of
association between the two variables. If the p-value is greater than the significance level,
there is insufficient evidence to reject H0 so that there is insufficient evidence showing
the existence of association between the two variables. We show that the magnitude of
point-biserial correlation coefficient is equivalent to correlation ratio when S is binary.
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Formula 4.1 can be written as:

1√
1
n

∑
s,i(xsi − x̄)2

√
1
n

[
n0(x̄0 − x̄)2 + n1(x̄1 − x̄)2

]

= 1√
1
n

∑
s,i(xsi − x̄)2

√
1
n

[
n0
(
x̄0 −

n0x̄0 + n1x̄1
n

)2 + n1
(
x̄1 −

n0x̄0 + n1x̄1
n

)2]

= 1√
1
n

∑
s,i(xsi − x̄)2

√
1
n

[
n0
(nx̄0 − n0x̄0 − n1x̄1

n

)2 + n1
(nx̄1 − n0x̄0 − n1x̄1

n

)2]

= 1√
1
n

∑
s,i(xsi − x̄)2

√
1
n

[n0n2
1

n2
(
x̄0 − x̄1

)2 + n1n2
0

n2
(
x̄1 − x̄0

)2]

= |x̄1 − x̄0|√
1
n

∑
s,i(xsi − x̄)2

√
1
n

[n0n2
1 + n1n2

0
n2

]

= |x̄1 − x̄0|√
1
n

∑
s,i(xsi − x̄)2

√
n0n1
n2 ,

which is equal to the absolute value of Formula 4.2.

So far, we have described how to measure the association between a categorical variable
(the sensitive attribute) and a continuous variable. However, the non-sensitive attributes
may include categorical attributes as well. Therefore, we now move onto a statistic that
measures the association between a categorical variable and another categorical variable:
Cramér’s V [50]. Consider a categorical variable, S, and another categorical variable,
C, of n individuals. In addition, suppose that there are r categories in variable S and
k categories in variable C. Let ni· be the number of individuals with S = i, n·j be the
number of individuals with C = j, and nij be the number of individuals with S = i and
C = j for i = 1, . . . , r and j = 1, . . . , k. Then, Cramér’s V is defined as:

V =
√

χ2/n

min(k − 1, r − 1) , (4.3)

where χ2 = ∑
i,j

(nij−
ni·n·j

n
)2

ni·n·j
n

. When the variable S is binary, Cramér’s V is simply√
χ2/n since r = 2. It varies from 0 to 1, where a value of 0 corresponds to no association

between the variables and a value of 1 corresponds to perfect/complete association. Also,
as with the point-biserial correlation coefficient, we can compute the p-value yielded from
Cramér’s V to evaluate the significance.
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4.2.2. Framework of a New Algorithm

Inspired from point-biserial correlation coefficient and Cramér’s V, we start to build a
new pre-processing fairness algorithm. One of the approaches to improve group fairness
is to obtain a fairer representation of the non-sensitive attributes by making the attribute
distributions for different groups similar to each other. Equivalently, we decrease the
correlation between the sensitive attribute and non-sensitive attributes and make point-
biserial correlation coefficient or Cramér’s V closer to 0.

To decrease Cramér’s V, we decrease χ2 by adjusting the number of individuals in each
group so that nij increases or decreases towards ni·n·j

n . Taking the sensitive attribute
S and a categorical variable C in Table 4.4 as an example, we can see that n0· = 98,
n1· = 102, n·0 = 104 and n·1 = 96. Thus, the expected frequencies are n0·n·0

n = 51,
n1·n·0
n = 53, n0·n·1

n = 47 and n1·n·1
n = 49, which are shown in Table 4.5. We modify some

individuals’ C categories so that the modified frequencies are closer to the expected
frequencies. The closer we move the frequencies to the expected ones, the higher the
attribute’s modification level is.

Table 4.4.: Observed Frequencies
Observed S=0 S=1 Total

C=0 56 48 104
C=1 42 54 96
Total 98 102 200

Table 4.5.: Expected Frequencies
Expected S=0 S=1 Total

C=0 51 53 104
C=1 47 49 96
Total 98 102 200

To lower the magnitude of point-biserial correlation coefficient, the first intuition is to
reduce the gap between the mean of the two groups so that the numerator term decreases.
Nevertheless, the denominator also decreases since the variance of all individuals tends
to decrease as the mean difference between two groups gets smaller. Now we show
mathematically how point-biserial correlation coefficient responds to a decrease in the
mean difference. Suppose that, originally, x̄1− x̄0 = a so that the numerator is a

√
n0n1
n2 .

If we do not change the attribute values of individuals in group s = 1 but add λa to every
individual’s value in group s = 0 where 0 ≤ λ ≤ 1, then x̄0new = x̄0 + λa and the new
numerator becomes (1−λ)a

√
n0n1
n2 . The new population mean is x̄new = n1x̄1+n0x̄0new

n =
n1x̄1+n0(x̄0+λa)

n = n1x̄1+n0x̄0
n + n0

n λa = x̄+ n0
n λa. Then, the part inside the square root of
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the new denominator becomes:
1
n

[ ∑
i:s=0

(x0i + λa− x̄− n0
n
λa)2 +

∑
i:s=1

(x1i − x̄−
n0
n
λa)2

]
= 1
n

[ ∑
i:s=0

(x0i − x̄+ n1
n
λa)2 +

∑
i:s=1

(x1i − x̄−
n0
n
λa)2

]
= 1
n

[ ∑
i:s=0

[
(x0i − x̄)2 + 2n1

n
λa(x0i − x̄) + (n1

n
λa)2]

+
∑
i:s=1

[
(x1i − x̄)2 − 2n0

n
λa(x1i − x̄) + (n0

n
λa)2]]

= 1
n

[∑
s,i

(xsi − x̄)2 + 2n1λa

n

∑
i:s=0

(x0i − x̄)− 2n0λa

n

∑
i:s=1

(x1i − x̄)

+ n0n
2
1λ

2a2

n2 + n1n
2
0λ

2a2

n2

]
= 1
n

[∑
s,i

(xsi − x̄)2 + 2n1λa(n0x̄0
n
− n0x̄

n
)− 2n0λa(n1x̄1

n
− n1x̄

n
) + n1n0λ

2a2(n1 + n0)
n2

]
= 1
n

[∑
s,i

(xsi − x̄)2 + 2n1n0λa

n
(x̄0 − x̄)− 2n1n0λa

n
(x̄1 − x̄) + n1n0λ

2a2

n

]
= 1
n

[∑
s,i

(xsi − x̄)2 + 2n1n0λa

n
(x̄0 − x̄1) + n1n0λ

2a2

n

]
= 1
n

[∑
s,i

(xsi − x̄)2 − 2n1n0λa
2

n
+ n1n0λ

2a2

n

]
= −n1n0a

2

n2 λ(2− λ) + 1
n

∑
s,i

(xsi − x̄)2.

Therefore, the new point-biserial correlation coefficient becomes

(1− λ)(x̄1 − x̄0)
√

n0n1
n2√

−n1n0a2

n2 λ(2− λ) + 1
n

∑
s,i(xsi − x̄)2

.

We can see that the numerator has been multiplied by a factor of (1 − λ), the new
coefficient will be smaller than the old one as long as the denominator is multiplied by
a factor larger than (1− λ). That is,√√√√−n1n0a2

n2 λ(2− λ) + 1
n

∑
s,i

(xsi − x̄)2 > (1− λ)
√√√√ 1
n

∑
s,i

(xsi − x̄)2,

which is equivalent to,

−n1n0a
2

n2 λ(2− λ) + 1
n

∑
s,i

(xsi − x̄)2 > (1− λ)2
[ 1
n

∑
s,i

(xsi − x̄)2
]
.
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By representing the variance of the whole population as V , the condition required for
the point-biserial correlation coefficient of the attribute to decrease is simply

V − n1n0a
2

n2 λ(2− λ) > (1− λ)2V,

where a is difference between the mean of the two groups and 0 ≤ λ ≤ 1 is repair level
of the attribute.

After describing the methods on how to decrease Cramér’s V and point-biserial cor-
relation coefficient, we now construct a simple pre-processing approach. When there is
one single binary sensitive attribute S, the procedure is as follows:

• Transform the data matrix which consists of non-sensitive attributes by standard
scalar.

• If a categorical non-sensitive attribute C is to be modified, we switch some in-
dividuals’ categories so that Cramér’s V is lowered. If a continuous non-sensitive
attribute X is to be modified, we calculate the mean x̄1 and x̄0 for the group S = 0
and S = 1 respectively. The mean difference is a = x̄1 − x̄0. Then we add λa to
the attribute value of every individual in group S = 0 but keep the value of every
individual in group S = 1 the same, where 0 ≤ λ ≤ 1.

• Monitor balanced accuracy, statistical fairness difference and consistency as we
modify a single non-sensitive attribute at its different repair levels.

If the sensitive attribute has multiple levels, then the population is divided into multiple
groups and we decrease correlation ratio or Cramér’s V of non-sensitive attributes. For
continuous attributes, we compute the mean for each group and reduce the gap between
every two groups. When there are multiple sensitive attributes, we create a categorical
variable where each category represents one of the groups. Then the categorical variable
becomes a sensitive attribute with multiple levels.

One way to select which non-sensitive attributes to modify is based on their correlation
coefficient and p-value. Firstly, we compute the correlation coefficient and corresponding
p-value of each non-sensitive attribute and select those attributes whose p-value is lower
than significance level. Then we put those attributes in the descending order of the
correlation coefficient’s magnitude and modify them in this order. If group fairness
still needs to be improved after the first attribute is fully modified, we will continue
modifying the second one. For better visualisation, we summarise the procedure in a
diagram, shown in Figure 4.3. For example, if the rule is that consistency should not
be lower than 98%, we select the repair level of the first attribute which provides the
highest group fairness level given at least 98% consistency. If the consistency does not
fall to 98% after fully modifying the first attribute, we then modify a second attribute,
a third attribute and so on until we obtain an optimal result.
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Figure 4.3.: Demonstration of the order in which we apply our method

4.2.3. Performance on Real Data Sets

In this section, we test this new algorithm on real data sets: Adult and COMPAS, which
have been described in Section 3.1 and Section 3.2.2. On these data sets, we first train
an algorithm without any fairness consideration, and then apply two existing algorithms
which are detailed in Section 2.1.2, namely the original reweighing algorithm and reject
option based classification (ROC), and record their performance results. The results are
summarised in Table 4.6.

Then, we test the new method on the same data sets. Specifically, we first compute
the point-biserial correlation coefficient and its p-value of each non-sensitive attribute for
each data set. These are shown in Table 4.7. After obtaining these statistics, we apply
our new method on the attributes in descending order of their correlation coefficient (i.e.
modify the attribute which has the highest correlation coefficient first). At different levels
of modification, we obtain a set of corresponding statistical parity difference, consistency
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Data set Algorithms Statistical
Parity
Difference

Consistency Balanced
Accuracy

Adult i) Reweighing -0.0399 0.9611 0.7083
(sensitive: sex) ii) ROC -0.0451 0.9615 0.7131
Adult i) Reweighing -0.0467 0.9684 0.7100
(sensitive: race) ii) ROC -0.0528 0.9725 0.7115
COMPAS i) Reweighing 0.0694 0.9594 0.6703
(sensitive: sex) ii) ROC 0.0961 0.9549 0.6672
COMPAS i) Reweighing -0.0090 0.9184 0.6677
(sensitive: race) ii) ROC 0.0362 0.9037 0.6652

Table 4.6.: Performance on the four data sets when we i) apply reweighing algorithm,
ii) apply ROC algorithm.

and balanced accuracy. We observe the performance results by plotting consistency
and balanced accuracy against statistical parity difference. Finally, we compare its
performance with the performance of reweighing and ROC which is shown in Table 4.6.

For the data set Adult with sex as the sensitive attribute, we apply the new method
on the attribute ‘Hours-per-week’ since it has the highest correlation coefficient with the
lowest p-value. The results are shown in Figure 4.4. From Figure 4.4 and Table 4.6,
we can see that when the statistical parity difference of the new algorithm is the same
as reweighing (-0.0399), the consistency is approximately 0.975 and balanced accuracy
is approximately 0.711, both higher than reweighing which has consistency 0.9611 and
balanced accuracy 0.7083. Similarly, when the statistical parity difference of the new
algorithm is the same as ROC (-0.0451), the consistency (approximately 0.978) is higher
than ROC (0.9615) and balanced accuracy (approximately 0.713) is similar to ROC
(0.7131). Thus, our method outperforms reweighing and ROC since it obtains an ap-
proximately 1.5% higher level of individual fairness and similar balanced accuracy given
the same level of group fairness.

Then, for the data set Adult with race as the sensitive attribute, we modify the attrib-
utes in descending order of correlation: ‘Education-num’, ‘Hours-per-week’ and ‘Age’.
From Figure 4.5, if we select the modification level where the statistical parity difference
is -0.02, then consistency is approximately 0.978 and balanced accuracy is approximately
0.711. This result outperforms both reweighing (statistical parity difference: -0.0467;
consistency: 0.9684; balanced accuracy: 0.7100) and ROC (statistical parity difference:
-0.0528; consistency: 0.9725; balanced accuracy: 0.7115) since it has similar balanced
accuracy but higher group fairness level and individual fairness level.

Next, for the data set COMPAS with sex as the sensitive attribute, we modify the at-
tribute ‘Priors count’ which has the highest correlation and significance (lowest p-value).
From Figure 4.6, if we select the modification level where the statistical parity difference
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Data set Non-sensitive
attributes

Correlation
coefficient

P-value

Age 0.0881 8.65× 10−85

Adult (sensitive: sex) Education-num 0.0093 0.0393
Hours-per-week 0.2286 0.0
Age 0.0320 1.45× 10−12

Adult (sensitive: race) Education-num 0.0493 1.17× 10−27

Hours-per-week 0.0466 6.66× 10−25

Age 0.0084 0.5090
COMPAS (sensitive: sex) Decile score -0.0606 1.91× 10−6

Priors count -0.1187 8.11× 10−21

Age 0.1812 1.06× 10−46

COMPAS (sensitive: race) Decile score -0.1983 8.91× 10−56

Priors count -0.1451 2.16× 10−30

Table 4.7.: Point-biserial correlation coefficient and its p-value of each non-sensitive
attribute in each data set.

is -0.0095, then consistency is 0.9844 and balanced accuracy is 0.6779. Our method
outperforms both reweighing (statistical parity difference: 0.0694; consistency: 0.9594;
balanced accuracy: 0.6703) and ROC (statistical parity difference: 0.0961; consistency:
0.9549; balanced accuracy: 0.6672) since it has higher balanced accuracy, group fairness
level and individual fairness level.

Finally, for data set COMPAS with race as the sensitive attribute, we modify the at-
tributes in the order: ‘Decile score’, ‘Age’ and ‘Priors count’ and obtain the performance
results in Figure 4.7. One of the performance results we obtain is that statistical parity
difference, consistency and balanced accuracy are 0.0006, 0.9235 and 0.6672 respectively.
This result outperforms both reweighing (statistical parity difference: -0.0090; consist-
ency: 0.9184; balanced accuracy: 0.6677) and ROC (statistical parity difference: 0.0362;
consistency: 0.9037; balanced accuracy: 0.6652) since it has similar balanced accuracy
but higher group fairness level individual fairness level.

To summarise, our algorithm performs better than both reweighing and ROC on
all the data sets Adult+sex, Adult+race Compas+sex and Compas+race. We obtain
0.5∼3% higher consistency and 1∼9% lower statistical parity difference. On the data set
Adult+sex, our algorithm achieves a higher individual fairness level and higher balanced
accuracy given the same level of group fairness. On the other data sets, our algorithm
obtains higher group and individual fairness levels with similar or higher balanced ac-
curacy.
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Figure 4.4.: Performance of our new algorithm on Adult+Sex

Figure 4.5.: Performance of our new algorithm on Adult+Race
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Figure 4.6.: Performance of our new algorithm on Compas+Sex

Figure 4.7.: Performance of our new algorithm on Compas+Race
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4.3. Summary

In this chapter, we introduce the idea of reweighing level and find out that when re-
weighing level increases, group fairness tends to increase and individual fairness tends
to decrease. Also, it is suggested that we should avoid mixture of reweighing and set the
same reweighing level for all individuals in order to obtain group fairness more effectively.

Moreover, we introduce two statistics, namely the point-biserial correlation coeffi-
cient and Cramér’s V, which measure the association between a categorical variable
and another variable. Since a sensitive attribute is categorical, we use these statistics
to measure the association between the sensitive attribute and non-sensitive attributes.
Then we build a new pre-processing fairness algorithm. This algorithm reduces the mean
difference in attribute values between different groups so that the magnitude of these
statistic and the association between the sensitive attribute and non-sensitive attributes
is decreased. Finally, we apply this new method to the real data sets Adult and COM-
PAS and compare our performance with reweighing and ROC. We obtain 0.5∼3% higher
consistency, 1∼9% lower statistical parity difference and similar balanced accuracy, the
performance results show that our method outperforms both original reweighing and
ROC algorithm.
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5. Conclusions and Future Work

This chapter summarises the work presented in this report in Section 5.1 and introduces
a plan for the future work in Section 5.2.

5.1. Conclusions

In this report, we present three research contributions. Firstly, we explore the rela-
tionship between group fairness and individual fairness after the sensitive attribute is
removed. On the real data set Adult, we apply DI remover and record the fairness per-
formance at difference repair levels. The results show that if we improve group fairness
further by modifying the non-sensitive attribute values after the sensitive attribute is
removed, individual fairness falls. In other words, there is a trade-off between individual
fairness and group fairness after the sensitive attribute is removed. Thus, although
simply eliminating the sensitive attribute has been criticised as it may not sufficiently
remove discrimination since non-sensitive attributes may be highly correlated to the sens-
itive attribute and carry sensitive information, it can be advantageous if we concentrate
on achieving individual fairness.

Secondly, we simulate data sets with different Wasserstein distance and record the
fairness performance when applying DI remover to these data sets. We show that when
Wasserstein distance between the attribute distributions of two groups is large, the level
of individual fairness decreases when we apply fairness algorithms to satisfy group fair-
ness. It is useful if we can find a universal threshold such that a distance above it is
classified as being large. However, the threshold varies in different cases which makes
it difficult to define ‘large’ quantitatively. Moreover, if a large Wasserstein distance is
caused by a large mean difference rather than a large variance difference, individual
fairness is more likely to be affected when group fairness is satisfied. This result indic-
ates that if we want to achieve group fairness when the attribute distributions of two
groups are very different, especially when there is a large difference between their mean,
individual fairness is likely to be sacrificed.

Thirdly, we slightly alter the existing reweighing algorithm by inserting a setting called
reweighing level. By decreasing the reweighing level, group fairness level tends to de-
crease whereas individual fairness level tends to increase. Also, the results show that in
order to achieve group fairness more effectively, we should use the same reweighing level
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for all individuals rather than use a mixture of reweighing levels. We not only expand
an existing algorithm, but also build a simple pre-processing algorithm to achieve fair-
ness. The idea is to reduce the association between the sensitive attribute and the other
attributes. This method can be applied to both continuous and categorical attributes.
Also, this algorithm allows a single sensitive attribute with multiple levels or multiple
sensitive attributes so that it is not restricted to achieve fairness across only two demo-
graphic groups. Since it is a pre-processing method without involving outcome labels,
we can use it to solve multi-class classification and regression problems. We test this new
algorithm on real data sets Adult and COMPAS and compare its performance with two
existing algorithms, namely reweighing and ROC. The results show that our algorithm
outperforms the existing ones since it obtains 0.5∼3% higher consistency, 1∼9% lower
statistical parity difference and similar balanced accuracy.

5.2. Future Work

Future work will concentrate on improving our algorithm which was introduced in
Chapter 4 so that the algorithm can deal with high-dimensional datasets, considers
both group and individual fairness and are not restricted to one binary attribute or
binary classification only. We applied the method to the non-sensitive attributes in the
descending order of their magnitude of correlation coefficients in this report, but we
have not tested the algorithm using other ways of ordering the attributes. In the fu-
ture, we are going to explore the influence on the performance if we change the order in
which we apply the algorithm. Also, to improve our algorithm, we are going to learn a
fairer presentation of the data using optimisation. To optimize the performance of the
algorithm and find a good compromise between individual fairness and group fairness,
we are going to define a penalty term for group unfairness and another penalty term for
individual unfairness. One possible penalty term for individual fairness is data distortion
after the non-sensitive attributes are modified and the penalty term for group fairness
will be defined based on statistical parity difference, but these will be discussed in more
detail in the future. Then we will solve the optimisation problem by finding the min-
imum of an objective function which involves both penalty terms. Moreover, we need to
consider how the algorithm deals with the case where there is a large number of features.
Dimensionality reduction will be a good approach. There are some popular techniques
such as principal component analysis (PCA) and autoencoders which are used to learn
a lower-dimensional representation for a set of data which ignores nuisance factors but
minimises information loss at the same time. We are going to combine these methods
with our algorithm and test on high-dimensional data sets.

In addition, we can address Challenge 4 mentioned in Section 1.1 which states the
difficulty on defining distance metric when measuring individual fairness. In more detail,
we have only used consistency to measure individual fairness so far. In future work, we
plan to study how to define new metrics which may depend on the specifics of each
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domain. In particular, given a specific domain, we will produce a survey to investigate
public views on the relative importance of each feature and define a new distance metric
according to public opinions. We will also use a survey to determine the most appropriate
fairness definition given the domain. Insurance will be the first domain that we look at.

Furthermore, we will look at non-binary classification or regression problems where
the outcomes are multi-class or continuous. For instance, we will look at an insurance
premium data set where the outcome is premiums and discuss whether they are fair.
The definition of individual fairness and group fairness in regression or multi-class clas-
sification is different from the fairness definition in binary classification and needs to
be carefully defined. We will also look at the trade-off between individual fairness and
group fairness when applying a group fairness algorithm, then interpret the results to
the insurance company.
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A. Appendix

A.1. Massaging

We modify M individuals in each demographic group, the statistical parity difference is:

P (Ỹ = 1|S = 0)− P (Ỹ = 1|S = 1) = |Ỹ = 1 ∩ S = 0|
|S = 0| − |Ỹ = 1 ∩ S = 1|

|S = 1|

= |Y = 1 ∩ S = 0|+M

|S = 0| − |Y = 1 ∩ S = 1| −M
|S = 1|

= |Y = 1 ∩ S = 0|
|S = 0| − |Y = 1 ∩ S = 1|

|S = 1| −M
( 1
|S = 0| + 1

|S = 1|
)

= |Y = 1 ∩ S = 0|
|S = 0| − |Y = 1 ∩ S = 1|

|S = 1| −M N

|S = 0| × |S = 1|

We aim to reduce the left hand side to zero, thus

M = 1
N

[( |Y = 1 ∩ S = 0|
|S = 0| − |Y = 1 ∩ S = 1|

|S = 1|
)
× |S = 0| × |S = 1|

]
How to select individuals to relabel using a ranker which is a model that can produce
scores (predicted probabilities of being positive):

1. Learn a ranker on training data and produce scores for each individual

2. Order the group of individuals with S = 0 and Y = 0 in descending scores and
call it G0, and order the group of individuals with S = 1 and Y = 1 in ascending
scores and call it G1

3. Change the labels of the top M individuals in G0 from negative to positive and
change the labels of the top M individuals in G1 from positive to negative

4. Keep the labels of the other individuals the same, now we have a new outcome
label Ỹ for the training data

5. Train any classifier on the training data with modified outcome labels.
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A.2. Reweighing

We expect S and Y to be statistically independent.
The expected probability is

Pexp(S = s ∩ Y = y) = P (S = s)P (Y = y) = |S = s|
|D|

× |Y = y|
|D|

where |D| indicates the number of individuals in the training data set.
The observed probability is

Pobs(S = s ∩ Y = y) = |S = s ∩ Y = y|
|D|

For each observation in training data, assign weight

Ws,y = Pexp(S = s ∩ Y = y)
Pobs(S = s ∩ Y = y) = |S = s| × |Y = y|

|D| × |S = s ∩ Y = y|

We can show that after multiplying each individual by its weight, the weighted data
satisfies statistical parity.

Pw(Y = 1|S = 0)−Pw(Y = 1|S = 1) = |Y = 1 ∩ S = 0| ×W0,1
|S = 0| −|Y = 1 ∩ S = 1| ×W1,1

|S = 1|

= |Y = 1 ∩ S = 0|
|S = 0| × |S = 0| × |Y = 1|

|D| × |S = 0 ∩ Y = 1|−
|Y = 1 ∩ S = 1|
|S = 1| × |S = 1| × |Y = 1|

|D| × |S = 1 ∩ Y = 1| = 0

A.3. Disparate Impact Remover

The modifying procedures when focusing on a single numerical X:

• Let Fs : Xs → [0, 1] be the cumulative distribution function whereXs is the domain
of X condition on S = s and F−1

s : [0, 1]→ Xs be the quantile function.

• Define median distribution A : F−1
A (u) = medians∈SF−1

s (u) for u ∈ [0, 1]

• ∀x ∈ Xs, the corresponding x̃ = F−1
A (Fs(x))

• Delete the sensitive attribute from the data, the resulting data is (X̃, Y )

The above shows the procedures of obtaining a fully repaired data (distributions are the
same), we can obtain a partially repaired data by:

x̃ = (1− λ)x+ λF−1
A (Fs(x))

where λ ∈ [0, 1] indicates the repair level. λ = 0 stands for unmodified data and λ = 1
stands for fully modified data.
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A.4. Learning Fair Representations

Let X+ = {x ∈ X : S = 1}, X− = {x ∈ X : S = 0}, X0 be the training dataset (N
observations) with X0 = X+

0 ∪X
−
0 , xn = (xn1, xn2, . . . , xnp) ∈ X and (α1, α2, . . . , αp) is

the weight for each feature. Let Z be a multinomial random variable with K possible
outcomes-“prototypes" which are associated with K vectors v1,v2, . . . ,vK where vk =
(vk1, vk2, . . . , vkp)

A probabilistic mapping X → Z via softmax:

Mn,k = P (Z = k|xn) = exp(−d(xn,vk, α))/
K∑
j=1

exp(−d(xn,vj , α))

where d(xn,vk, α) = ∑p
i=1 αi(xni − vki)2 is the Euclidean distance measure.

The reconstructions of xn from Z:

x̂n =
K∑
k=1

Mn,kvk

The prediction ŷn from Mn,k and parameters {wk} between 0 and 1:

ŷn =
K∑
k=1

Mn,kwk

Then we learn two sets of parameters {vk} and {wk} by L-BFGS to minimize L =
Az · Lz +Ax · Lx +Ay · Ly where Ax, Ay, Az are hyperparameters and

Lz =
K∑
k=1
|M+

k −M
−
k | =

K∑
k=1
| 1
|X+

0 |
∑
n∈X+

0

Mn,k −
1
|X−0 |

∑
n∈X−

0

Mn,k|

aims at group fairness/statistical parity,

Lx =
N∑
n=1

(xn − x̂n)2 =
N∑
n=1

p∑
i=1

(xni − x̂ni)2

quantifies the information lost in the new representation, and

Ly =
N∑
n=1
−yn log ŷn − (1− yn) log(1− ŷn)

requires the prediction of y is as accurate as possible.
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