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Abstract We propose a new projection-type method with inertial extrapolation for solving
pseudo-monotone and Lipschitz continuous variational inequalities in Hilbert spaces. The
proposed method does not require the knowledge of the Lipschitz constant as well as the se-
quential weak continuity of the corresponding operator. We introduce a self-adaptive proce-
dure, which generates dynamic step-sizes converging to a positive constant. It is proved that
the sequence generated by the proposed method converges weakly to a solution of the con-
sidered variational inequality with the nonasymptotic O(1/n) convergence rate. Moreover,
the linear convergence is established under strong pseudo-monotonicity and Lipschitz con-
tinuity assumptions. Numerical examples for solving a class of Nash–Cournot oligopolistic
market equilibrium model and a network equilibrium flow problem are given illustrating the
efficiency of the proposed method.
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1 Introduction

Variational inequalities (VIs) are fundamental in a broad range of mathematical and applied
sciences, such as economics, engineering mechanics, transportation, and many more, see for
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example, [1,5,13]. The VIs theoretical, algorithmic foundations and applications have been
extensively studied in the literature. For the current state-of-the-art results, see for instance
[13,24] and the extensive list of references therein. In order to solve a VI, many solution
methods have been proposed. Among them, projection-type methods are simple in form
and useful in practice, provided that the projection is easy to calculate [13]. Various projec-
tion methods such as basic projection, extragradient projection, and hyperplane projection
methods, have been designed to solve different class of VIs [1,13,24,22]. In principle, each
projection method is confined to certain class of VIs so that the convergence of the algorithm
can be guaranteed.

Recently, when monotonicity is replaced by pseudo-monotonicity, the extragradient
method has been considered for solving VIs in infinite dimensional Hilbert spaces [45,46].
It is proved that the iterative sequence generated by the extragradient method converges
weakly to a solution. However, it is known that the extragradient method requires two pro-
jections onto the feasible set at each iteration. If the feasible set is a general closed convex
set, then this might seriously affect the efficiency of the algorithm. So, a natural question
which raises is: Can we reduce the number of projections in the extragradient method for
solving pseudomonotone VIs in real Hilbert spaces? Some first attempts were considered in
[7,38], where a modified forward-backward-forward method was analyzed, see also [19,37,
42] for weak and strong convergence with some applications.

We continue this research direction by considering a new projection-type method with
inertial effect. Inertial type algorithms recently becomes a new research direction which at-
tracts interests of many mathematicians. The technique is based upon a discrete version of a
second order dissipative dynamical system, see, for example, [3,4] and can be regarded as a
procedure of speeding up the convergence properties, see, e.g., [2,27,33]. These results and
other related ones analyzed the weak convergence properties of inertial extrapolation type
algorithms and demonstrated their improved performance numerically on some imaging and
data analysis problems.

In this paper, we consider a new method, which is a combination of projection and con-
traction method [8,10,18,36] for solving pseudo-monotone VIs with inertial extrapolation.
It is proved that the iterative sequence generated by the proposed method converges weakly
to a solution of the VI considered. While we still require the operator to be Lipschitz con-
tinuous, the knowledge of the Lipschitz constant is not necessary. Moreover, we introduce a
self-adaptive procedure, in the spirit of [47], which generates a sequence of step-sizes con-
verging monotonically to a constant dominating the small step-size in the gradient projection
method [17,22]. Comparing with extragradient-type methods [20,40,45], it requires only
one projection instead of two. In addition, we further weaken the sequential weak continuity
assumption required in recent research [7,38,45,46]. While this paper was under reviewed,
we are aware of another algorithm in [37] which proposes a similar idea, i.e. to incorporate
the inertial technique into the projection and contraction method for solving monotone VIs.
Nevertheless, there are several key differences between our method and [37, Algorithm 1].
While the range of the inertial factor in [37, Algorithm 1] is more relaxed than ours, the
new iteration in [37, Algorithm 1] must be combined linearly with the previous iteration
with a factor larger than 1/2 (see Remark 2 for more detail), which may cause slow conver-
gence (see numerical experiments in Section 5). In addition, our stepsizes can be increase
during the course of iterations, instead of monotonically decreasing as in [37, Algorithm 1].
Moreover, while [37, Algorithm 1] is for solving monotone and global Lipschitz continu-
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ous VIs, our proposed Algorithm solves a broader class VIs, namely pseudo-monotone and
local Lipschitz continuous VIs. We also provided a linear convergence analysis, which was
not provided in [37].

A special class of pseudo-monotonicity VIs is the class of strongly pseudomonotone
VIs, which has attracted a lot of attentions in recent years, see e.g. [11,12,17,20,22,25,
40,44]. The existence and uniqueness as well as stability of this problem were studied in
[25]. In [22], the authors proved that the gradient projection method converges linearly to
the unique solution provided that the step-size is sufficiently small, depending on the strong
pseudo-monotonicity and Lipschitz continuity constants of the considered operator. Some
modifications of the gradient projection method were recently considered in [17], where di-
minishing step-sizes were required but the Lipschitz continuity was relaxed to continuity.
Variants of the extragradient method, where two projections per iteration are needed, were
studied in [23]. Under additional strong pseudo-monotonicity, our proposed algorithm con-
verges linearly to the uniques solution of the VI problem.

The paper is organized as follows. We first recall some basic definitions and results
in Section 2. Our algorithm is presented and analyzed in Section 3. Section 4 considers
the linear convergence analysis when pseudo-monotonicity is replaced by strong pseudo-
monotonicity. We provide some examples which demonstrate the performance of the pro-
posed algorithm by comparing it with some related algorithms in Section 5. Final remarks
and conclusions are given in the last Section.

2 Preliminaries

Let H be a real Hilbert space and C be a nonempty, closed and convex subset of H. Let
F : H → H be a single-valued continuous mapping. We consider a classical variational in-
equality VI(F,C) in the sense of Fichera [14] and Stampacchia [35] (see also Kinderlehrer
and Stampacchia [24]) which is formulated as follows: Find a point ϕ∗ ∈C such that

〈Fϕ
∗,ϕ−ϕ

∗〉 ≥ 0 ∀ϕ ∈C. (1)

We denote by Ω the solution set of the VI(F,C) (1), which is assumed to be nonempty.

Definition 1 [32] Let {xn} be a sequence in H.
i) {xn} is said to converge R-linearly to x∗ with rate ρ ∈ [0,1) if there is a constant c > 0
such that

‖xn− x∗‖ ≤ cρ
n ∀n ∈ N.

ii) {xn} is said to converge Q-linearly to x∗ with rate ρ ∈ [0,1) if

‖xn+1− x∗‖ ≤ ρ‖xn− x∗‖ ∀n ∈ N.

Definition 2 [21] Let F : H→ H be an operator. Then F is called

1. L-Lipschitz continuous with constant L > 0 if

‖Fx−Fy‖ ≤ L‖x− y‖ ∀x,y ∈ H;

2. monotone if
〈Fx−Fy,x− y〉 ≥ 0 ∀x,y ∈ H;
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3. pseudo-monotone if

〈Fx,y− x〉 ≥ 0 =⇒ 〈Fy,y− x〉 ≥ 0 ∀x,y ∈ H;

4. κ-strongly pseudo-monotone if there exists a constant κ > 0 such that

〈Fx,y− x〉 ≥ 0 =⇒ 〈Fy,y− x〉 ≥ κ‖x− y‖2 ∀x,y ∈ H.

For every point x ∈H, there exists a unique nearest point in C, denoted by PCx such that
‖x−PCx‖ ≤ ‖x− y‖ ∀y ∈C. PC is called the metric projection of H onto C. It is known that
PC is nonexpansive. For properties of the metric projection, the interested reader could be
referred to Section 3 in [15].

Lemma 1 ([15, Sec. 3]) Let C be a nonempty closed convex subset of a real Hilbert space
H. Given x ∈ H and z ∈C. Then z = PCx⇐⇒ 〈x− z,z− y〉 ≥ 0 ∀y ∈C. Moreover,

‖PCx−PCy‖2 ≤ 〈PCx−PCy,x− y〉 ∀x,y ∈C.

Lemma 2 ([2]) Let {ϕn}, {δn} and {αn} be sequences in [0,+∞) such that

ϕn+1 ≤ ϕn +αn(ϕn−ϕn−1)+δn ∀n≥ 1,
+∞

∑
n=1

δn <+∞,

and there exists a real number α with 0 ≤ αn ≤ α < 1 for all n ∈ N. Then the following
hold:

i) ∑
+∞

n=1[ϕn−ϕn−1]+ <+∞, where [t]+ := max{t,0};
ii) there exists ϕ∗ ∈ [0,+∞) such that limn→+∞ ϕn = ϕ∗.

Lemma 3 ([31]) Let C be a nonempty set of H and {xn} be a sequence in H such that the
following two conditions hold:

i) for every x ∈C, limn→∞ ‖xn− x‖ exists;
ii) every sequential weak cluster point of {xn} is in C.
Then {xn} converges weakly to a point in C.

Lemma 4 ([9, Lemma 2.1]) Consider the problem V I(F,C) with C being a nonempty,
closed, convex subset of a real Hilbert space H and F : C → H being pseudo-monotone
and continuous. Then, ϕ∗ is a solution of V I(F,C) if and only if

〈Fϕ,ϕ−ϕ
∗〉 ≥ 0 ∀ϕ ∈C.

The following simple identity will be used repeatedly in the sequel

‖αx+βy‖2 = α(α +β )‖x‖2 +β (α +β )‖y‖2−αβ‖x− y‖2 ∀x,y ∈ H,∀α,β ∈ R. (2)
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3 The Algorithm and Convergence Analysis

For solving (1), we propose the following algorithm:

Algorithm 1

Step 0. Given ν1 > 0,µ ∈ (0,1),θ ∈
[

0,
1
3

)
. Let ϕ0,ϕ1 ∈ H be arbitrary and {αn} be a

nonnegative real numbers sequence such that ∑
∞
n=1 αn <+∞.

Step 1. Set tn = ϕn +θ(ϕn−ϕn−1). Compute

sn = PC(tn−νnFtn).

If tn = sn then stop and sn is a solution of V I(F,C). Otherwise go to Step 2.
Step 2. Compute

ϕn+1 = tn−ηnΩn,

where

Ωn = tn− sn−νn(Ftn−Fsn) and ηn =


〈tn− sn,Ωn〉
‖Ωn‖2 if Ωn 6= 0,

0 if Ωn = 0

and update

νn+1 =

min
{

µ‖tn− sn‖
‖Ftn−Fsn‖

,νn +αn

}
if Ftn 6= Fsn,

νn +αn otherwise.
(3)

Set n := n+1 and go to Step 1

Remark 1 As noted in [26] the sequence {νn} generated by (3) is allowed to be increase
from iteration to iteration. In particular, it needs to emphasize here that our results in this
work are proved under the condition that the mapping F is locally Lipschitz. Hence, our
results in this paper are different from the studied results in [18,26,36,37,47].

Remark 2 A similar idea was considered recently in [37, Algorithm 1] for solving mono-
tone and global Lipschitz continuous VIs, where the inertial factor θ can be taken in [0,1).
Nevertheless, the new iteration in [37, Algorithm 1] is updated as

ϕn+1 = (1−ρn)ϕn +ρn(tn−ηnΩn),

where ρn ∈ (0, 1
2 ) for all n, i.e. the new iteration ϕn+1 must be linearly combined with the

previous iteration ϕn with a factor 1−ρn > 1/2. The stepsizes {νn} in [37, Algorithm 1] are
chosen as

νn+1 =

min
{

µ‖tn− sn‖
‖Ftn−Fsn‖

,νn

}
if Ftn 6= Fsn,

νn otherwise.

which is monotonically decreasing. They are different with Step 2 in our Algorithm 1. In
addition, our proposed algorithm solves a broader class of VIs, i.e., pseudo-monotone and
local Lipschitz continuous VIs.
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Lemma 5 Assume that F is pseudo-monotone on C. Then for every solution ϕ∗ of VI(F,C)
it holds

‖ϕn+1−ϕ
∗‖2 ≤ ‖tn−ϕ

∗‖2−‖ϕn+1− tn‖2.

Proof Let ϕ∗ be a solution of V I(F,C). We first prove that

〈tn−ϕ
∗,Ωn〉 ≥ 〈tn− sn,Ωn〉.

Indeed, we have

〈tn−ϕ
∗,Ωn〉= 〈tn− sn,Ωn〉+ 〈sn−ϕ

∗, tn− sn−νn(Ftn−Fsn)〉.

On the other hand since sn = PC(tn−νnFtn), we get

〈tn− sn−νnFtn,sn−ϕ
∗〉 ≥ 0.

By the pseudomonotonicity of F it holds

〈νnFsn,sn−ϕ
∗〉 ≥ 0.

Thus
〈tn− sn−νn(Ftn−Fsn),sn−ϕ

∗〉 ≥ 0.

Therefore
〈tn−ϕ

∗,Ωn〉 ≥ 〈tn− sn,Ωn〉.

Hence

‖ϕn+1−ϕ
∗‖2 =‖tn−ηnΩn−ϕ

∗‖2

=‖tn−ϕ
∗‖2−2ηn〈tn−ϕ

∗,Ωn〉+η
2
n‖Ωn‖2

≤‖tn−ϕ
∗‖2−2ηn〈tn− sn,Ωn〉+ηn.ηn‖Ωn‖2

=‖tn−ϕ
∗‖2−ηn〈tn− sn,Ωn〉

=‖tn−ϕ
∗‖2−η

2
n‖Ωn‖2

=‖tn−ϕ
∗‖2−‖ϕn+1− tn‖2.

Lemma 6 Assume that F is pseudo-monotone on C then for every solution ϕ∗ of VI(F,C) it
holds that

(i) the sequence {Σn} defined by

Σn := ‖ϕn−ϕ
∗‖2−θ‖ϕn−1−ϕ

∗‖2 +(1−θ)‖ϕn−ϕn−1‖2.

is non negative and non-increasing;
(ii)

∞

∑
n=1
‖ϕn−ϕn−1‖2 <+∞.

(iii) the sequence {‖ϕn−ϕ∗‖} is convergent.
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Proof (i) and (ii): For every ϕ∗ ∈C we have from (2) that

‖tn−ϕ
∗‖2 = ‖ϕn +θ(ϕn−ϕn−1)−ϕ

∗‖2

= ‖(1+θ)(ϕn−ϕ
∗)−θ(ϕn−1−ϕ

∗)‖2

= (1+θ)‖ϕn−ϕ
∗‖2−θ‖ϕn−1−ϕ

∗‖2 +θ(1+θ)‖ϕn−ϕn−1‖2, (4)

and from the Cauchy-Schwarz inequality that

‖ϕn+1− tn‖2 = ‖ϕn+1−ϕn−θ(ϕn−ϕn−1)‖2

= ‖ϕn+1−ϕn‖2 +θ
2‖ϕn−ϕn−1‖2−2θ〈ϕn+1−ϕn,ϕn−ϕn−1〉

≥ ‖ϕn+1−ϕn‖2 +θ
2‖ϕn−ϕn−1‖2−2θ‖ϕn+1−ϕn‖‖ϕn−ϕn−1‖

≥ (1−θ)‖ϕn+1−ϕn‖2 +
(
θ

2−θ
)
‖ϕn−ϕn−1‖2. (5)

It follows from (4), (5) and Lemma 5 that

‖ϕn+1−ϕ
∗‖2≤ (1+θ)‖ϕn−ϕ

∗‖2−θ‖ϕn−1−ϕ
∗‖2+2θ‖ϕn−ϕn−1‖2−(1−θ)‖ϕn+1−ϕn‖2,

(6)
or equivalently

‖ϕn+1−ϕ
∗‖2−θ‖ϕn−ϕ

∗‖2 +(1−θ)‖ϕn+1−ϕn‖2 ≤‖ϕn−ϕ
∗‖2−θ‖ϕn−1−ϕ

∗‖2

+(1−θ)‖ϕn−ϕn−1‖2− (1−3θ)‖ϕn−ϕn−1‖2.
(7)

Let
Σn := ‖ϕn−ϕ

∗‖2−θ‖ϕn−1−ϕ
∗‖2 +(1−θ)‖ϕn−ϕn−1‖2.

Now, we show that Σn ≥ 0 for all n. Indeed, we have

‖ϕn−1−ϕ
∗‖2 = ‖ϕn−1−ϕn +ϕn−ϕ

∗‖2 = ‖ϕn−1−ϕn‖2 +‖ϕn−ϕ
∗‖2 +2〈ϕn−1−ϕn,ϕn−ϕ

∗〉
≤ ‖ϕn−1−ϕn‖2 +‖ϕn−ϕ

∗‖2 +2‖ϕn−1−ϕn‖‖ϕn−ϕ
∗‖

≤ ‖ϕn−1−ϕn‖2 +‖ϕn−ϕ
∗‖2 + k‖ϕn−1−ϕn‖2 +

1
k
‖ϕn−ϕ

∗‖2

= (1+ k)‖ϕn−1−ϕn‖2 +

(
1+

1
k

)
‖ϕn−ϕ

∗‖2, (8)

for all k > 0. Substituting (8) into Σn, we get

Σn ≥
[

1−
(

1+
1
k

)
θ

]
‖ϕn−ϕ

∗‖2 +

[
1− (2+ k)θ

]
‖ϕn−ϕn−1‖2.

Choosing k = 1 we obtain

Σn ≥ (1−2θ)‖ϕn−ϕ
∗‖2 +(1−3θ)‖ϕn−ϕn−1‖2 ≥ 0

for all θ ∈ (0,1/3). From (7) we obtain

Σn+1−Σn ≤−(1−3θ)‖ϕn−ϕn−1‖2,

or equivalently
(1−3θ)‖ϕn−ϕn−1‖2 ≤ Σn−Σn+1, (9)
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which implies (i). This follows from (9) that

∞

∑
n=1
‖ϕn−ϕn−1‖2 <+∞,

which is (ii).
(iii) It follows from (6) that

‖ϕn+1−ϕ
∗‖2 ≤ ‖ϕn−ϕ

∗‖2 +θ
(
‖ϕn−ϕ

∗‖2−‖ϕn−1−ϕ
∗‖2)+2θ‖ϕn−ϕn−1‖2.

Hence from Lemma 2 and (ii), we deduce that limn→∞ ‖ϕn−ϕ∗‖2 exists for any solution ϕ∗

of V I(F,C).

Corollary 1 Assume that F is pseudo-monotone on C and L-Lipschitz continuous on any
bounded subset of H. Then the sequences {ϕn},{tn} and {sn} are bounded.

Proof Fixing ϕ∗ ∈ Ω we have ϕ∗ = PC(ϕ
∗− νnFϕ∗) for all νn > 0. Since the sequence

{‖ϕn−ϕ∗‖2} is convergent, there exists r1 > 0 such that ‖ϕn−ϕ∗‖ ≤ r1 for all n≥ 0, i.e.,
{ϕn} is bounded. Moreover

‖tn−ϕ
∗‖= ‖(1+θ)(ϕn−ϕ

∗)−θ(ϕn−1−ϕ
∗)‖ ≤ (1+2θ)r1 =: r2,

which implies that {tn} is bounded. Using the Lipschitz continuity of F on any bounded
subset of H, there exists L1 > 0 such that ‖Ftn−Fϕ∗‖ ≤ L1‖tn−ϕ∗‖ for all n > 0. From
the nonexpansiveness of PC we deduce

‖sn−ϕ
∗‖= ‖PC(tn−νnFtn)−PC(ϕ

∗−νnFϕ
∗)‖

≤ ‖tn−ϕ
∗−νn(Ftn−Fϕ

∗)‖
≤ ‖tn−ϕ

∗‖+νn‖Ftn−Fϕ
∗‖

≤ (1+νnL1)‖tn−ϕ
∗‖

≤ (1+ν0L1)‖tn−ϕ
∗‖ ≤ (1+ν0L1)r2 =: r3,

which implies that {sn} is bounded.

Remark 3 It is clear from Corollary 1 that each element of the sequences {ϕn},{tn} and
{sn} belongs to the closed ball B[ϕ∗,r3]. We denote by L the Lipschitz constant of F on
B[ϕ∗,r3], i.e.

‖Fx−Fy‖ ≤ L‖x− y‖ ∀x,y ∈ B[ϕ∗,r3].

From now on we will use this L as the Lipschitz constant of F .

Lemma 7 ([26]) Assume that F is Lipschitz continuous on any bounded subset of H. Let
{νn} be the sequence computed in (3). Then

lim
n→∞

νn = ν with ν ∈
[

min
{

ν0,
µ

L

}
,ν0 +α

]
,

where α = ∑
∞
n=1 αn. Moreover

‖Ftn−Fsn‖ ≤
µ

νn+1
‖tn− sn‖. (10)
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Proof Since F is Lipschitz continuous on any bounded subset of H and {tn}, {sn} are
bounded, we get ‖Ftn−Fsn‖ ≤ L‖tn− sn‖ with L defined in Corollary 1. Consequently

µ‖tn− sn‖
‖Ftn−Fsn‖

≥ µ

L
if Ftn 6= Fsn.

The rest of the proof is similar to the Lemma 3.1 in [26], so we omit it.

Lemma 8 Assume that F is Lipschitz continuous on any bounded subset of H. Then there
exists n0 ∈ N such that

‖ϕn+1− tn‖2 ≥

(
1−µ

νn

νn+1

)2

(
1+µ

νn

νn+1

)2 ‖tn− sn‖2 ∀n≥ n0.

Proof From Lemma 7, we can deduce that

lim
n→∞

(
1−µ

νn

νn+1

)
= 1−µ > 0.

Hence there exists n0 > 0 such that

1−µ
νn

νn+1
> 0 ∀n≥ n0.

We have

ηn‖Ωn‖2 = 〈tn− sn,Ωn〉
= 〈tn− sn, tn− sn−νn(Ftn−Fsn)〉
= ‖tn− sn‖2−νn〈tn− sn,Ftn−Fsn〉
≥ ‖tn− sn‖2−νn‖tn− sn‖‖Ftn−Fsn‖

≥
(

1−µ
νn

νn+1

)
‖tn− sn‖2,

where we have used (10) in the last inequality.
We also have

‖Ωn‖= ‖tn− sn−νn(Ftn−Fsn)‖
≤ ‖tn− sn‖+νn‖Ftn−Fsn‖

≤
(

1+µ
νn

νn+1

)
‖tn− sn‖,

which implies
1

‖Ωn‖2 ≥
1(

1+µ
νn

νn+1

)2 .
1

‖tn− sn‖2.

Therefore, we obtain

ηn =
〈tn− sn,Ωn〉
‖Ωn‖2 ≥

(
1−µ

νn

νn+1

)
(

1+µ
νn

νn+1

)2 .
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Hence for all n≥ n0

‖ϕn+1− tn‖2 = η
2
n‖Ωn‖2 ≥

(
1−µ

νn

νn+1

)2

(
1+µ

νn

vn+1

)2 ‖tn− sn‖2. (11)

The main result of this section can be stated as follows, where we employ the technique
developed originally in [45], see also [34,38,46].

Theorem 1 Assume that F is pseudo-monotone and Lipschitz continuous on any bounded
subset of H. If in addition, the functional f (x) := ‖F(x)‖ is weakly lower semicontinuous,
then the sequence {ϕn} generated by Algorithm 1 converges weakly to a solution of V I(F,C).

Proof Since {ϕn} is bounded, we assume that {ϕnk} is a subsequence of {ϕn} such that
ϕnk ⇀ z. Moreover, we get

‖tn−ϕn‖= θ‖ϕn−ϕn−1‖→ 0 as n→ ∞

and
‖ϕn+1− tn‖ ≤ ‖ϕn+1−ϕn‖+‖ϕn−ϕn−1‖→ 0 as n→ ∞.

From Lemma 8 and ‖ϕn+1− tn‖→ 0 we get ‖tn− sn‖→ 0. Since ϕnk ⇀ z, we have snk ⇀ z.
Moreover, {sn} ⊂ C implies z ∈ C. We will show that z is a solution of V I(F,C). Indeed,
since snk = PC(tnk − vnk Ftnk), we obtain

〈tnk −νnk Ftnk − snk ,x− snk〉 ≤ 0 ∀x ∈C,

or equivalently
1

νnk

〈tnk − snk ,x− snk〉 ≤ 〈Ftnk ,x− snk〉 ∀x ∈C.

Consequently

1
νnk

〈tnk − snk ,x− snk〉+ 〈Ftnk ,snk − tnk〉 ≤ 〈Ftnk ,x− tnk〉 ∀x ∈C. (12)

Being weakly convergent, {tnk} is bounded. Then, by the Lipschitz continuity of F , {Ftnk}
is bounded. As ‖tnk − snk‖ → 0, {snk} is bounded and νnk ≥ min

{
ν1,

µ

L

}
, passing (12) to

limit as k→ ∞, we get
liminf

k→∞
〈Ftnk ,x− tnk〉 ≥ 0 ∀x ∈C. (13)

Moreover, we have

〈Fsnk ,x− snk〉= 〈Fsnk −Ftnk ,x− tnk〉+ 〈Ftnk ,x− tnk〉+ 〈Fsnk , tnk − snk〉. (14)

Since limk→∞ ‖tnk − snk‖= 0 and F is Lipschitz continuous we get

lim
k→∞
‖Ftnk −Fsnk‖= 0

which, together with (13) and (14) implies that

liminf
k→∞

〈Fsnk ,x− snk〉 ≥ 0.
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We choose a sequence {εk} of positive numbers decreasing and tending to 0. For each k, we
denote by Nk the smallest positive integer such that

〈Fsn j ,x− sn j 〉+ εk ≥ 0 ∀ j ≥ Nk. (15)

Since {εk} is decreasing, it is easy to see that the sequence {Nk} is increasing. Furthermore,
for each k, since {sNk} ⊂ C we can suppose FsNk 6= 0 (otherwise, sNk is a solution) and,
setting

vNk =
FsNk

‖FsNk‖2 ,

we have 〈FsNk ,vNk〉= 1 for each k. Now, we can deduce from (15) that for each k

〈FsNk ,x+ εkvNk − sNk〉 ≥ 0.

Since F is pseudomonotone, we get

〈F(x+ εkvNk),x+ εkvNk − sNk〉 ≥ 0.

This implies that

〈Fx,x− sNk〉 ≥ 〈Fx−F(x+ εkvNk),x+ εkvNk − sNk〉− εk〈Fx,vNk〉. (16)

We claim that limk→∞ εkvNk = 0. Indeed, since tnk ⇀ z and limk→∞ ‖tnk−snk‖= 0, we obtain
sNk ⇀ z as k→ ∞. By {sn} ⊂C, we obtain z ∈C. Suppose that 0 < ‖Fz‖, otherwise z is a
solution. By the weak lower semicontinuity of the functional ‖F(x)‖, we have

0 < ‖Fz‖ ≤ liminf
k→∞

‖Fsnk‖.

Since {sNk} ⊂ {snk} and εk→ 0 as k→ ∞, we obtain

0≤ limsup
k→∞

‖εkvNk‖= limsup
k→∞

(
εk

‖Fsnk‖

)
≤ limsupk→∞ εk

liminfk→∞ ‖Fsnk‖
= 0,

which implies that limk→∞ εkvNk = 0.
Now, letting k→ ∞, then the right hand side of (16) tends to zero since F is Lipschitz

continuous, {sNk},{vNk} are bounded and limk→∞ εkvNk = 0. Thus, we get

liminf
k→∞

〈Fx,x− sNk〉 ≥ 0.

Hence, for all x ∈C we have

〈Fx,x− z〉= lim
k→∞
〈Fx,x− sNk〉= liminf

k→∞
〈Fx,x− sNk〉 ≥ 0.

By Lemma 4, z ∈V I(F,C) and applying Lemma 3 the proof is completed.

Remark 4 1. In recent works on pseudomonotone variational inequalities, see, [7,19,38,
45,46], the sequential weak continuity of the mapping F is often required. Clearly, if
F is sequentially weakly continuous then the functional ‖F(x)‖ is weakly lower semi-
continuous. The following example shows that the converse statement is not true. Let H
be a Hilbert space with an orthonomal sequence {en}, C be a closed ball centered at 0
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and with a radius r ≥ 2, and let F(x) := ‖x‖x. Let C 3 ϕn ⇀ z. Due to the weak lower
semicontinuity of the norm, one has ‖z‖ ≤ liminfn→∞ ‖ϕn‖, hence,

‖F(z)‖= ‖z‖2 ≤ (liminf
n→∞

‖ϕn‖)2 ≤ liminf
n→∞

‖ϕn‖2 = liminf
n→∞

‖F(ϕn)‖,

which means the weak lower semicontinuity of ‖F(x)‖ on C. On the other hand, let
C3 sn = en+e1. Then sn ⇀ e1. For n> 1, F(sn) =

√
2(en+e1)⇀

√
2e1 and F(e1) = e1.

Thus, F(x) is not sequential weakly continuous. Besides, it is obvious that the mapping
F is Lipschitz continuous with constant L = 2r on C.

2. The imposed sequential weak lower semicontinuity of ‖F(x)‖ can be omitted in one of
the following cases: either F is monotone (see, [11,45]), or F is strongly pseudomono-
tone (see next Theorem 3).

Next, we establish the nonasymptotic O(1/n) convergence rate of the weak convergence
Algorithm 1. The O(1/n) convergence rate of projection-contraction method for monotone
VIs was studied in [8]. This convergence rate result has been recently obtained for a different
projection method in [34].

Theorem 2 Assume that F is pseudo-monotone and Lipschitz continuous on any bounded
subset of H. Let the sequence {ϕn} be generated by Algorithm 1. Then for any ϕ∗ ∈V I(F,C)
there exists constants M,γ > 0 and n0 > 0 such that the following estimate holds

min
n0≤k≤n

‖sk− tk‖2 ≤
1
γ
(‖ϕn0 −ϕ∗‖2 +

1
1−θ

[‖ϕn0 −ϕ∗‖2−‖ϕn0−1−ϕ∗‖2]++
1

1−θ
M)

n−n0 +1
.

Proof Combining Lemma 5 and Lemma 6, we get

‖ϕn+1−ϕ
∗‖2 ≤ ‖tn−ϕ

∗‖2−

(
1−µ

νn

νn+1

)2

(
1+µ

νn

νn+1

)2 ‖sn− tn‖2. (17)

Let γ <
(1−µ)2

(1+µ)2 , then we have limn→∞

(
1−µ

νn

νn+1

)2

(
1+µ

νn

νn+1

)2 =
(1−µ)2

(1+µ)2 > γ .

Hence, there exists n0 ∈ N such that

(
1−µ

νn

νn+1

)2

(
1+µ

νn

νn+1

)2 > γ ∀n≥ n0, which together with

(17) implies
‖ϕn+1−ϕ

∗‖2 ≤ ‖tn−ϕ
∗‖2− γ‖sn− tn‖2,

or equivalently
γ‖sn− tn‖2 ≤ ‖tn−ϕ

∗‖2−‖ϕn+1−ϕ
∗‖2. (18)

Substituting (4) into (18) we get

γ‖sn− tn‖2 ≤(1+θ)‖ϕn−ϕ
∗‖2−θ‖ϕn−1−ϕ

∗‖2 +(1+θ)θ‖ϕn−ϕn−1‖2−‖ϕn+1−ϕ
∗‖2

=‖ϕn−ϕ
∗‖2−‖ϕn+1−ϕ

∗‖2 +θ(‖ϕn−ϕ
∗‖2−‖ϕn−1−ϕ

∗‖2)

+(1+θ)θ‖ϕn−ϕn−1‖2

≤‖ϕn−ϕ
∗‖2−‖ϕn+1−ϕ

∗‖2 +θ(‖ϕn−ϕ
∗‖2−‖ϕn−1−ϕ

∗‖2)

+2θ‖ϕn−ϕn−1‖2.
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Setting ρn := ‖ϕn−ϕ∗‖2, γn := ρn−ρn−1 and δn := 2θ‖ϕn−ϕn−1‖2 and [t]+ := max{0, t},
we obtain

γ‖sn− tn‖2 ≤ ρn−ρn+1 +θγn +δn

≤ ρn−ρn+1 +θ [γn]++δn. (19)

From (6), we get

‖ϕn+1−ϕ
∗‖2 ≤ (1+θ)‖ϕn−ϕ

∗‖2−θ‖ϕn−1−ϕ
∗‖2 +2θ‖ϕn−ϕn−1‖2 ∀n≥ n0,

or equivalently
γn+1 ≤ θγn +δn ≤ θ [γn]++δn.

This follows that

[γn+1]+ ≤ θ [γn]++δn

≤ θ
n−n0+1[γn0 ]++

n−n0+1

∑
k=1

θ
k−1

δn+1−k.

Hence
∞

∑
n=n0

[γn+1]+ ≤
∞

∑
n=n0

θ
n−n0+1[γn0 ]++

∞

∑
n=n0

n−n0+1

∑
k=1

θ
k−1

δn+1−k.

Using Lemma 2, we get
∞

∑
n=n0

[γn+1]+ ≤
θ

1−θ
[γn0 ]++

1
1−θ

∞

∑
n=n0

δn

≤ θ

1−θ
[γn0 ]++

1
1−θ

M,

for some M > 0. From (19), we can deduce

γ

n

∑
k=n0

‖sk− tk‖2 ≤ ρn0 −ρn+1 +θ

n

∑
k=n0

[γk]++
n

∑
k=n0

δk

≤ ρn0 +[γn0 ]++θ

n

∑
k=n0

[γk+1]++
n

∑
k=n0

δk

≤ ρn0 +[γn0 ]++
θ 2

1−θ
[γn0 ]++

θ

1−θ
M+M

≤ ρn0 +[γn0 ]++
θ

1−θ
[γn0 ]++

1
1−θ

M

≤ ρn0 +
1

1−θ
[γn0 ]++

1
1−θ

M.

This follows that

γ

n

∑
k=n0

‖sk− tk‖2 ≤ ‖ϕn0 −ϕ
∗‖2 +

1
1−θ

[‖ϕn0 −ϕ
∗‖2−‖ϕn0−1−ϕ

∗‖2]++
1

1−θ
M,

which implies

min
n0≤k≤n

‖sk− tk‖2 ≤
1
γ
(‖ϕn0 −ϕ∗‖2 +

1
1−θ

[‖ϕn0 −ϕ∗‖2−‖ϕn0−1−ϕ∗‖2]++
1

1−θ
M)

n−n0 +1
.

The proof is completed.
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4 A Linear Convergence Analysis

Lemma 9 Assume that F : H → H is L-Lipschitz continuous on any bounded subset of H
and κ-strongly pseudo-monotone on C. Let ϕ∗ be the unique solution of V I(F,C). Then for
all ξ ∈ (0,1) there exists n1 > 0 and ρ ∈ (0,1) such that

‖ϕn+1−ϕ
∗‖2 ≤ ρ‖tn−ϕ

∗‖2−ξ‖ϕn+1− tn‖2 ∀n≥ n1, (20)

where ρ := 1−β ∈ (0,1) with

β := min
{
(1−ξ )(1−µ)

4(1+µ)
,

κν

2

}
and ν = lim

n→∞
νn,

Proof Since sn = PC(tn−νnFtn) and ϕ∗ ∈C, we get

〈tn−νnFtn− sn,sn−ϕ
∗〉 ≥ 0.

Since 〈Fϕ∗,sn−ϕ∗〉 ≥ 0, by the strong pseudomonotonicity of F it holds

νn〈Fsn,sn−ϕ
∗〉 ≥ νnκ‖sn−ϕ

∗‖2.

Hence

〈Ωn,sn−ϕ
∗〉= 〈tn− sn−νn(Ftn−Fsn),sn−ϕ

∗〉 ≥ νnκ‖sn−ϕ
∗‖2.

Therefore

‖ϕn+1−ϕ
∗‖2 =‖tn−ηnΩn−ϕ

∗‖2

=‖tn−ϕ
∗‖2−2ηn〈tn−ϕ

∗,Ωn〉+η
2
n‖Ωn‖2

≤‖tn−ϕ
∗‖2−2ηn〈tn− sn,Ωn〉−2νnκ‖sn−ϕ

∗‖2 +ηn.ηn‖Ωn‖2

=‖tn−ϕ
∗‖2−ηn〈tn− sn,Ωn〉−2νnκ‖sn−ϕ

∗‖2

=‖tn−ϕ
∗‖2−η

2
n‖Ωn‖2−2νnκ‖sn−ϕ

∗‖2

=‖tn−ϕ
∗‖2−‖ϕn+1− tn‖2−2νnκ‖sn−ϕ

∗‖2.

Combining this inequality with (11) we have for all n≥ n0 that

‖ϕn+1−ϕ
∗‖2 ≤‖tn−ϕ

∗‖2−ξ‖ϕn+1− tn‖2− (1−ξ )

(
1−µ

νn

νn+1

)2

(
1+µ

νn

νn+1

)2 ‖tn− sn‖2−2νnκ‖sn−ϕ
∗‖2.

Setting

β := min
{
(1−ξ )(1−µ)

4(1+µ)
,

κν

2

}
where ν = lim

n→∞
νn,

we have

1 > lim
n→∞

(1−ξ )

(
1−µ

νn

νn+1

)2

(
1+µ

νn

νn+1

)2 =
(1−ξ )(1−µ)

(1+µ)
≥ 4β
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and
lim
n→∞

νnκ = νκ ≥ 2β .

Hence we can choose n1 > 0 such that for all n≥ n1

(1−ξ )

(
1−µ

νn

νn+1

)2

(
1+µ

νn

νn+1

)2 ≥ 2β

and
νnκ ≥ β .

Hence for all n≥ n1

‖ϕn+1−ϕ
∗‖2 ≤‖tn−ϕ

∗‖2−ξ‖ϕn+1− tn‖2−2β‖tn− sn‖2−2β‖sn−ϕ
∗‖2

≤(1−β )‖tn−ϕ
∗‖2−ξ‖ϕn+1− tn‖2

=ρ‖tn−ϕ
∗‖2−ξ‖ϕn+1− tn‖2,

where ρ := 1−β ∈ (0,1).

We are now in a position to establish the main result of this section. The argument
technique is adapted from [39].

Theorem 3 Assume that F : H→ H is L-Lipschitz continuous on any bounded subset of H
and κ-strongly pseudo-monotone on C. Let ξ ,δ ∈ (0,1) and θ be such that

0≤ θ ≤min

{
ξ

2+ξ
,

√
(1+δξ )2 +4δξ − (1+δξ )

2
,(1−δ )

(
1− (1−ξ )(1−µ)

2(1+µ)

)}
(21)

Then the sequence {ϕn} generated by Algorithm 1 converges linearly to the unique solution
ϕ∗ of V I(F,C).

Proof We have from (2) that

‖tn−ϕ
∗‖2 = ‖(1+θ)(ϕn−ϕ

∗)−θ(ϕn−1−ϕ
∗)‖2

= (1+θ)‖ϕn−ϕ
∗‖2−θ‖ϕn−1−ϕ

∗‖2 +θ(1+θ)‖ϕn−ϕn−1‖2

and from the Cauchy-Schwarz inequality that

‖ϕn+1− tn‖2 = ‖ϕn+1−ϕn−θ(ϕn−ϕn−1)‖2

= ‖ϕn+1−ϕn‖2 +θ
2‖ϕn−ϕn−1‖2−2θ 〈ϕn+1−ϕn,ϕn−ϕn−1〉

≥ ‖ϕn+1−ϕn‖2 +θ
2‖ϕn−ϕn−1‖2−2θ‖ϕn+1−ϕn‖‖ϕn−ϕn−1‖

≥ ‖ϕn+1−ϕn‖2 +θ
2‖ϕn−ϕn−1‖2−θ‖ϕn+1−ϕn‖2−θ‖ϕn−ϕn−1‖2

≥ (1−θ)‖ϕn+1−ϕn‖2−θ(1−θ)‖ϕn−ϕn−1‖2.

Combining these inequalities with (20) we obtain for all n≥ n1 that

‖ϕn+1−ϕ
∗‖2 ≤ ρ(1+θ)‖ϕn−ϕ

∗‖2−ρθ‖ϕn−1−ϕ
∗‖2 +ρθ(1+θ)‖ϕn−ϕn−1‖2

−ξ (1−θ)‖ϕn+1−ϕn‖2 +ξ θ(1−θ)‖ϕn−ϕn−1‖2,
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or equivalently

‖ϕn+1−ϕ
∗‖2−ρθ‖ϕn−ϕ

∗‖2 +ξ (1−θ)‖ϕn+1−ϕn‖2

≤ρ
[
‖ϕn−ϕ

∗‖2−θ‖ϕn−1−ϕ
∗‖2 +ξ (1−θ)‖ϕn−ϕn−1‖2]

− (ρξ (1−θ)−ρθ(1+θ)−ξ θ(1−θ))‖ϕn−ϕn−1‖2.

Setting
an := ‖ϕn−ϕ

∗‖2−θ‖ϕn−1−ϕ
∗‖2 +ξ (1−θ)‖ϕn−ϕn−1‖2,

since ρ ∈ (0,1) we can write

an+1 ≤‖ϕn+1−ϕ
∗‖2−ρθ‖ϕn−ϕ

∗‖2 +ξ (1−θ)‖ϕn+1−ϕn‖2

≤ρan− (ρξ (1−θ)−ρθ(1+θ)−ξ θ(1−θ))‖ϕn−ϕn−1‖2.

Note that from (21) and Lemma 9 we have

θ ≤(1−δ )

(
1− (1−ξ )(1−µ)

2(1+µ)

)
≤(1−δ )(1−β ) = (1−δ )ρ,

which implies
ξ θ(1−θ)≤ (1−δ )ρξ (1−θ). (22)

Since

θ ≤
√

(1+δξ )2 +4δξ − (1+δξ )

2
it holds

θ
2 +(1+δξ )θ −δξ ≤ 0,

or equivalently
θ(1+θ)≤ δξ (1−θ).

Hence
ρθ(1+θ)≤ δρξ (1−θ). (23)

From (22) and (23) we deduce

ρξ (1−θ)−ρθ(1+θ)−ξ θ(1−θ)≥ 0.

Moreover, since θ ≤ ξ

2+ξ
, we have θ ≤ ξ (1−θ)

2 , which implies

an = (1−ξ (1−θ))‖ϕn−ϕ
∗‖2 +ξ (1−θ)

(
‖ϕn−ϕ

∗‖2 +‖ϕn−ϕn−1‖2)−θ‖ϕn−1−ϕ
∗‖2

≥ (1−ξ (1−θ))‖ϕn−ϕ
∗‖2 +

ξ (1−θ)

2
‖ϕn−1−ϕ

∗‖2−θ‖ϕn−1−ϕ
∗‖2

≥ (1−ξ (1−θ))‖ϕn−ϕ
∗‖2 ≥ 0.

Hence for all n≥ n1 it holds

an+1 ≤ ρan ≤ ...≤ ρ
n−n1+1an1 .

This follows that
‖ϕn−ϕ

∗‖2 ≤
an1

ρn1(1−ξ (1−θ))
ρ

n,

which implies that {ϕn} converges R-linearly to ϕ∗.
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Fig. 1: Inertial effect θ as a function of ξ when δ = µ = 1/2

Remark 5 Let us emphasize that (21) allows some freedom in choosing the inertial effect θ .
For example, if δ = µ = 1/2 then θ ∈ [0,0.27] depending on ξ , see figure 1.

As a strongly monotone operator is obviously strongly pseudo-monotone, we have im-
mediately the following corollary.

Corollary 2 Assume that F : H→ H is L-Lipschitz continuous on H and κ-strongly mono-
tone on C. Then, any sequence {ϕn} generated by Algorithm 1 converges linearly to the
unique solution ϕ∗ of VI(F,C).

5 Numerical Illustrations

In this section, we present some numerical examples to illustrate the main results obtained in
Section 3 and 4. All codes are implemented in Matlab 2019b and performed on a Windows
PC Desktop Intel(R) Core(TM) i5-2400CPU @ 3.1Hz, 8GB RAM. In the experiments, we
choose

µ = 0.5,ν0 = 1, αn =
1

n
√

n

and stopting conditions is Residual := ‖tn− sn‖ ≤ 10−10. We perform Algorithm 1 with two
values of inertial parameters, θ = 0.1 (PCiFBF1) and θ = 0.2 (PCiFBF2). We compare the
performance of (PCiFBF1) and (PCiFBF2) with the algorithm proposed by Shehu et. al. [37,
Algorithm 1] with θ = 0.9 and ρn = ρ = 0.4 (Shehu et. al.).

5.1 Nash–Cournot oligopolistic market equilibrium

In this example, we study an important Nash–Cournot oligopolistic market equilibrium
model, which proposed orginally by Murphy et. al. [29] as a convex optimization prob-
lem. Later, Harker reformulated it as a monotone vaiational inequality in [16]. We provide
only a short description of the problem, for more details we refer to [13,16,29]. Consider
N firms, each of them supplies a homogeneous product in a non-cooperative fashion. Let
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Table 1: Parameters for experiment 1

firm i ci Li βi

1 10 5 1.2

2 8 5 1.1

3 6 5 1.0

4 4 5 0.9

5 2 5 0.8

qi ≥ 0 be the ith firm’s supply at cost fi(qi). Let p(Q) be the inverse demand curve, where
Q ≥ 0 is the total supply in the market, i.e., Q = ∑

N
i=1 qi. A Nash equilibrium solution for

the market defined above is a set of nonnegative output levels (q∗1,q
∗
2, ...q

∗
N) such that q∗i is

an optimal solution to the following problem for all i = 1,2.....N:

max
qi≥0

qi p(qi +Q∗i )− fi(qi) (24)

where

Q∗i =
N

∑
j=1, j 6=i

q∗j .

A variational inequality that corresponds to (24) is (see [16])

find (q∗1,q
∗
2, ...q

∗
N) ∈ RN

+ such that 〈F(q∗),q−q∗〉 ≥ 0 ∀q ∈ RN
+, (25)

where F(q∗) = (F1(q∗),F2(q∗), ...FN(q∗)) and

Fi(q∗) = f ′i (q
∗
i )− p

(
N

∑
j=1

q∗j

)
−q∗i p′

(
N

∑
j=1

q∗j

)

As in the classical example of the Nash-Cournot equilibrium [16,29], we assume that the
inverse demand function p and the cost function fi take the form

p(Q) = 50001/1.1Q−1/1.1 and fi(qi) = ciqi +
βi

βi +1
L

1
βi
i q

βi+1
βi

i

with some constants that are defined as follow.

In the first experiment, we consider N = 5 and the parameters ci,Li,βi as in [29], see
Table 1. We perform Algorithm 1 with two values of inertial parameters, θ = 0.1 (PCiFBF1)
and θ = 0.2 (PCiFBF2). Figure 2 compares the performance of (PCiFBF1) and (PCiFBF2)
with the algorithm proposed by Shehu et. al. [37, Algorithm 1] with θ = 0.9 and ρn = ρ =
0.4 (Shehu et. al.). It can be seen that (PCiFBF1) and (PCiFBF2) are comparable and both
outperform Shehu et. al..

In the second experiment, to make the problem even more challenging, we take N =
1000 and generate our data randomly. Each entry of ci,Li and βi are drawn independently
from the uniform distributions with the following parameters

ci ∼U (1,100), Li ∼U (0.5,5), βi ∼U (0.5,2)
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Fig. 2: Performance of Algorithm 1 with different inertial parameters and comparison with
Shehu et. al. in the first experiment.

and the other parameters are chosen as in the first experiments. In Figure 3, we also compare
the performance of (PCiFBF1) and (PCiFBF2) with Shehu et. al. [37, Algorithm 1] with
θ = 0.9 and ρn = ρ = 0.4. Again it is clear that both (PCiFBF1) and (PCiFBF2) outperform
Shehu et. al., although the difference is not significant as in experiment 1.
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Fig. 3: Performance of Algorithm 1 with different inertial parameters and comparison with
Shehu et. al. in the second experiment.

5.2 Network equilibrium flow

In this example, we consider a variational model for one of the most important problems in
traffic networks, namely, the network equilibrium flow which is characterized by minimum
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cost flow traditionally in the context of operations research. This model was formulated by
means of a suitable variational inequality [28,30]. We provide only a short description of
the problem, for more details we refer to [28,30]. We will use the following notations:

• fi is the flow on the arc Ai := (r,s) and f := ( f1, ..., fn)
T is the vector of the flows on all

arcs;
• we assume that each arc Ai is associated with an upper bound di on its capacity, d :=

(d1, ...,dn).
• ci( f ) is the cost-variation on the arc Ai as function of the flows, ∀i = 1, ...,n and c( f ) :=

(c1( f ), ...,cn( f ))T ; we assume that c( f )≥ 0;
• q j is the balance at the node j, j = 1, ..., p and q := (q1, ...,qp)

T ;
• Γ = (γi j) ∈ Rp×Rn is the node-arc incidence matrix whose elements are

γi j =


−1, if i is the initial node of the arc A j,

+1, if i is the final node of the arc A j,

0, otherwise.

A flow f is a variational equilibrium flow for the capacitated model if and only if it solves
the following VI (see [28])

find f ∗ ∈ K f such that 〈c( f ∗), f − f ∗〉 ≥ 0 ∀ f ∈ K f , (26)

where
K f = { f ∈ Rn, Γ f = q, 0≤ f ≤ d}.

The problem (26) collapses to the minimal-cost network-flow problem when the function
c( f ) is independent of f , namely, c( f ) := (ci j,(i, j) ∈ A). In the numerical experiment, as
in [28, Example 2.1] we take

Γ =


−1 −1 0 0 0 0 0 0
1 0 −1 −1 0 0 0 0
0 1 0 0 −1 −1 0 0
0 0 1 0 1 0 −1 0
0 0 0 1 0 1 0 −1
0 0 0 0 0 0 1 1

 ;

q = (−2,0,0,0,0,2)T , d = (2,1,1,1,1,1,2,2)T .

The cost function is defined by c( f ) :=C f where C = diag(D) with

D = (5.5,1,2,3,4,50,3.5,1.5).

The solution of this network flow problem is given by

f ∗ = (1.000,1.000,0.1575,0.8425,0.885,0.115,1.0425,0.9575)T .

In the experiment, we choose f0 = f1 = (1,1,1, ...1)T . We perform Algorithm 1 with two
values of inertial parameters, θ = 0.1 (PCiFBF1) and θ = 0.2 (PCiFBF2). We compare the
performance of (PCiFBF1) and (PCiFBF2) with the algorithm proposed by Shehu et. al. [37,
Algorithm 1] with θ = 0.9 and ρn = ρ = 0.4 (Shehu et. al.) in Figure 4, which shows that
(PCiFBF1) and (PCiFBF2) are comparable and both outperform Shehu et. al..
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Fig. 4: Performance of Algorithm 1 with different inertial parameters and comparison with
Shehu et. al. in the network flow experiment.

6 Conclusions

In this work, we have introduced new a projection and contraction method with inertial effect
for solving variational inequalities in real Hilbert spaces. The weak convergence is proved
under pseudomonotonicity and Lipschitz continuity of the mapping F . The linear conver-
gence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions.
The advantage of our algorithm is that it requires only one projection onto the feasible set C
per iteration and does not require the knowledge of Lipschitz constant as well as the weak
continuity of the mapping F .
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