

Differential Effects of Device Modalities and Exposure to Online Reviews on Online Purchasing: A Field Study

Journal:	<i>Journal of Advertising</i>
Manuscript ID	UJOA-2021-0252.R4
Manuscript Type:	Special Section: Mobile Technology and Advertising
Keywords:	Online consumer behavior, e-commerce, Mobile Advertising < Topic/Issue/Application Areas, Consumer reviews

SCHOLARONE™
Manuscripts

Differential Effects of Device Modalities and Exposure to Online Reviews on Online

Purchasing: A Field Study

Larry Olanrewaju Orimoloye, Ph.D.

Research Fellow

Centre for Risk Research, Southampton Business School, University of Southampton

Highfield, Southampton SO17 1BJ, United Kingdom

O.Orimoloye@soton.ac.uk

Angeline Close Scheinbaum, Ph.D.

Dan Duncan Professor of Sports Marketing

Associate Professor of Marketing

Wilbur O. and Ann Powers College of Business

Clemson University

Clemson, SC 29634, USA

512-788-2480; aschein@clemson.edu

Monika Kukar-Kinney, Ph.D.

Professor of Marketing

The F. Carlyle Tiller Chair in Business

102 UR Drive, Robins School of Business, University of Richmond

Richmond, VA 23173, USA

(804) 287-1880; mkukarki@richmond.edu

Tiejun Ma, Ph.D.

Associate Professor of Decision and Risk Analysis

Centre for Risk Research, Southampton Business School, University of Southampton

Highfield, Southampton SO17 1BJ, United Kingdom

+44 (0) 23 8059 8976

tiejun.ma@soton.ac.uk

Ming-Chien Sung, Ph.D.

Professor of Risk and Decision Sciences

Centre for Risk Research, Southampton Business School, University of Southampton

Highfield, Southampton SO17 1BJ, United Kingdom

+44 (0) 23 8059 8974

ms9@soton.ac.uk

Johnnie Johnson, Ph. D.

Professor of Decision and Risk Analysis

Nottingham Business School
Nottingham Trent University, Burton St.
Nottingham, NG1 4BU, UK
+44 115 848 8159; johnnie.johnson@ntu.ac.uk

In addition to the company that provided the data, we thank participants at the *Journal of Marketing* author development seminar at Winter AMA 2020.

1
2
3 **Differential Effects of Device Modalities and Exposure to Online Reviews on Online**
4
5 **Purchasing: A Field Study**
6
7

8 **Abstract**
9

10 We model the effect of online information search across mobile (smartphone and
11 tablet) and non-mobile (PC – desktop and laptop) platforms on frequency of purchasing per
12 online shopping session. Using clickstream data from a multinational retailer, we find that
13 device modality drives purchase frequency, likely due to the differential ease of use of PCs,
14 tablets, and smartphones. In particular, frequency of completed orders is highest when
15 information search and purchase completion are highly convenient, such as when shopping
16 via tablet. We also determine that information search in the form of reading online product
17 reviews has no effect on mobile (while it does so on other platforms). These findings
18 contribute to information search theory, suggesting that information search increases
19 purchase likelihood when it is goal-directed, extensive, and easy to conduct. Thus, the broad
20 role of digital advertising should be to make the information search process easier and more
21 convenient for consumers in order to stimulate purchases. These findings help digital
22 advertisers understand information search patterns across device modalities. Implications for
23 digital advertisers on e-commerce platforms are offered.
24
25

26 **Keywords**
27

28 Mobile commerce, online consumer behavior, online information search theory, consumer
29 reviews
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 The advertising literature has a demonstrated interest in digital and mobile advertising
4
5 (e.g., Ahrens and Coyle 2011; De Keyzer et al. 2021; Huang et al. 2021; Lu and Du 2020;
6
7 Maslowska et al. 2017; Okazaki et al. 2007; Okazaki et al. 2009). This interest is in part
8
9 driven by relevance to the ever-evolving e-commerce industry. Understanding mobile media
10
11 and mobile consumer behavior is paramount for digital advertisers (Ford 2017), especially
12
13 advertisers on e-commerce platforms. In fact, the world's biggest advertiser is the electronic
14
15 retailer Amazon—where consumers shop from their phones, tablets, and/or PCs. US
16
17 consumers alone had a forecasted e-commerce spend of \$933.30 billion in 2021, an annual
18
19 increase of almost 18% (Davidkhanian 2021).
20
21
22

23 At the same time, advertisers are projected to invest over \$167 billion on mobile
24 advertising in the US by 2024, a vast increase from \$87.3 billion in 2019 (Perrin 2020).
25
26 According to the EVP of Measurement and Impact of NBC Universal, advertisers are putting
27 a new priority on cross-platform measurement because consumers are sharing their time
28
29 across a wider range of screens (Williams 2021). Hence, advertisers could benefit from
30
31 understanding more about which screens consumers use for shopping – i.e., conducting
32
33 information search as well as purchasing. Advertisers should find it especially valuable to
34
35 understand the role that device modalities (such as a smartphone, tablet, or a PC) **may play on**
36
37 **consumer search and purchase frequency**. Thus, device modality and consumer **product**
38
39 information search (**by way of reading product reviews**) are two key concepts that call for
40
41 deeper investigation.
42
43

44 Knowledge of consumer behavior across device modalities can help inform
45 advertising spending share, which for 2022 is a projected 14.2% on **PCs** and 47.9% on mobile
46 advertising (eMarketer 2018). **Knowledge of online search behavior can inform specific**
47
48 placement of ads across devices. Thus, there is practical reason to study shopping device
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 types as well as exposure to online product reviews, as this information can help inform
4
5 digital/mobile media placements.
6
7

8 This industry relevance opens a need for advertising scholarship on purchase behavior
9 across device modalities in electronic commerce (e-commerce) and more specifically mobile
10 commerce (m-commerce). M-commerce refers to online shopping from mobile devices such
11 as smartphones and tablets. When consumers shop from a PC, they presumably stay in a
12 given location; yet, when shopping from a mobile device, consumers tend to move about to a
13 higher degree and often use smaller screen sizes (de Haan et al. 2018). Consumers prefer
14 mobile over stationary devices for online shopping (de Haan et al. 2018; Xu et al. 2017). Yet,
15 preference for shopping via mobile devices does not necessarily translate into more buying;
16 research also suggests that customer click-through behavior in paid search advertising varies
17 for different devices (Lu and Du 2020). Such past work shows an importance of
18 understanding the effect of mobile device use as well as aspects of online search behavior,
19 which includes clicking on product reviews during the online shopping process.
20
21

22 Consumer online search behavior (Taneja 2020) is relevant for both advertisers and
23 advertising scholarship. An area of keen interest to digital advertisers is sponsored search
24 advertising and understanding consumers' shopping goals (Huang et al. 2021). Advertising
25 scholarship has made many advances in online or digital related topics, and there are many
26 more aspects in this space that advertisers need to understand (Liu-Thompkins 2019).
27
28

29 Yet, despite its economic and theoretical importance, few studies examine the
30 relationship between device modality, information search (including exposure to online
31 product reviews), and buying (Kannan and Li 2017). Scholarship employing e-commerce
32 clickstream data that focuses on mobile technology for shopping is a ripe area for advertising
33 scholarship and digital advertisers alike (Bernritter, Okazaki, and West 2021). Utilizing
34 clickstream data across device types enables advertisers to gather information to personalize
35
36

1
2
3 their communications and increase advertising effectiveness (Liu-Thompkins 2019). Such is
4 similar to benefits for advertising gained by capturing information from registered customers
5 on websites (Ahrens and Coyle 2011). Clickstream data can also advance knowledge on
6 online information search theory, adding insights into how consumers search for information
7 online (Browne, Pitts, and Wetherbe 2007).
8
9

10 Hence, our objective is to use clickstream data to explain and predict individual and
11 joint effects of 1) consumers' online browsing across device modalities (PC, smartphone and
12 tablet), and 2) consumers' information search behavior, more specifically, exposure to online
13 product reviews, on the frequency of orders completed per shopping session. We suggest and
14 find that information search behavior increases purchase frequency, especially when it is easy
15 and convenient. This effect is driven both by device modality and by clicking on product
16 reviews. We also develop knowledge on the moderating role of device modality as it interacts
17 with information search in the form of online shoppers' clicking on online product reviews.
18 The theoretical contribution is to add behavioral insights to online information search theory.
19 We are not testing online information search theory per se but use it as a guiding lens to
20 inform inclusion of these two search-related aspects (i.e., device modality and reading
21 product reviews) in the proposed model. We also aim to make a contribution to advertising
22 practitioners. In doing so, we intend to bring industry and academic research more closely
23 together and to supply industry relevant insights. We also contribute by moving away from
24 behavioral intentions and documenting actual online consumer behaviors.
25
26

27 Next, we supply a synopsis of the relevant literature. An overview of the empirical
28 context follows. The next section entails a description of the model used, followed by results
29 and a discussion. We conclude with implications for information search theory and digital
30 advertisers, along with limitations and future research areas that are relevant for advertising
31 scholarship.
32
33

LITERATURE REVIEW AND THEORY

Here, we synthesize literature on device modalities. Then, we discuss the role of device modalities in e-commerce and develop expectations for the effect of device modality on purchase frequency. Next, we review complementary studies in digital advertising and online reviews and link them with information search behavior research. This allows us to develop expectations for the main effect of reading product reviews. Last, based on the synthesized literature streams, we develop rationale for the moderating role of device modality on the effect of product reviews.

Advertising, e-commerce and device modality

Broadly, advertising research in digital advertising and online consumer behavior includes the importance of distinct types of devices or cross-platform analyses. Namely, Lu and Du (2020) used data from Google's advertising platform AdWords to examine consumers' clickstream behavior after exposure to search ads. They considered if the customer was shopping from a PC, smartphone, or tablet to see how that could impact clicking on the top search ad (Lu and Du 2020). Based on click-through behaviors on paid search advertisements, they found consumers are sensitive to position changes of the online ad (Lu and Du 2020). They also found that consumers prefer paid search advertisements that are on the top of the page (Lu and Du 2020). Similarly, Huang et al. (2021) studied online click-through behavior on a popular e-tail site in China; they found that click-through rates and conversion rates go down when the advertising position is lower. They further found that there is a moderating effect of the type of product that the consumer searches for online; specifically, experience (vs. search) products have a reduced effect of advertising position on consumer's click-through and purchase rates (Huang et al. 2021).

Complementary to advertising scholarship that has examined intention to click on digital ads (e.g., De Keyzer, Dens, and De Pelsmacker 2021), we examine click-through

1
2
3 purchase behavior from various device modalities. Most scholarship examining purchasing
4 using mobile devices examines one modality used in isolation (e.g., Andrews et al. 2016; Li
5 et al. 2017; Luo et al. 2014). Two papers that focus on clickstream purchase behaviors across
6 different device modalities are by Xu et al. (2017) and de Haan et al. (2018). First, Xu et al.
7 (2017) examined the complementary and substitution impacts of the tablet on the smartphone
8 and PC. They used a dataset from the e-tailer Alibaba and found that adoption of tablets
9 enhanced Alibaba's e-commerce growth. Their study examined cross-device browsing, or
10 where consumers browse on two different devices during a one-hour time window (Xu et al.
11 2017). Similarly, de Haan et al. (2018) analyzed browsing patterns across PCs, smartphones
12 and tablets. They analyzed device switching using e-tail clickstream data. They found that the
13 increased adoption of mobile devices significantly affects online shopping behavior, and that
14 customers at times switch between mobile and fixed devices when shopping online. They
15 also found that when customers switch from a mobile device to a stationary device, their
16 conversion rate from browsing to buying is significantly higher (de Haan et al. 2018).
17
18

19 Device modality is linked with the process of online information search. Online
20 information search theory is a theory from management information systems (MIS) offered
21 by Browne et al. (2007) that explains and predicts consumers' online information search and
22 notes that consumers start and end online searches depending on the type of task. While a
23 shopping task can be entertainment-related, it is often goal (purchase and/or information
24 search) driven. Device modality can be seen as an indicator of ease and convenience of online
25 product/information search. Mobile devices such as smartphones may be more convenient for
26 browsing, as they can be used almost anywhere due to their small size (de Haan et al. 2018).
27 However, they are also used for shorter shopping sessions, while stationary devices are more
28 convenient for purchase completion (de Haan et al. 2018).
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 The focus of the present research is on purchase completion and exposure to product
4 reviews on various device types, rather than browsing behavior. As such, based on the above
5 literature and the assumption that it is easier to conduct an extensive search for information as
6 well as complete purchase on a larger, more stationary device, such as PC or tablet (vs.
7 smartphone), we expect that both tablets (as per Xu et al. 2017) and PCs (as per de Haan et al.
8 2018) should be more effective in increasing purchase frequency than smartphones.
9
10 However, the question of whether PCs or tablets are more effective compared to the other is
11 still open, and we hope to also shed light on this relationship.
12
13

21 **Reading product reviews and device modality**

22

23 While our work builds on the contrasting findings about device modality from Xu et
24 al. (2017) and de Haan et al. (2018), there is complementary advertising scholarship in the
25 areas of mobile advertising and online reviews (e.g., Andrews et al. 2016; Bart et al. 2014;
26 Ford 2017; Grewal and Stephen 2019; Luo et al. 2014; Okazaki et al. 2007; Okazaki et al.
27 2009). Research shows that product reviews positively affect purchase probability (Allard et
28 al. 2020). Purchase probability is also influenced by product review features, with some
29 reviews being less believable (Maslowska et al. 2017). However, *mobile* product reviews are
30 different (Ransbotham et al. 2019); specifically, reviews posted from a mobile device drive
31 purchase intentions due to less perceived effort and enhanced credibility (Grewal and Stephen
32 2019). This literature is used to further inform the model and help interpret the findings for
33 advertising practice.
34
35

36 Similar to device modality, consumer behavior in the form of *reading online product*
37 *reviews* is also intricately linked with the process of online information search. Specifically,
38 reading product reviews can serve as an indicator of an extensive and involved online
39 information search. When consumer is conducting an extensive search, they may be more
40 committed to a purchase and closer to making the purchase decision. Existing research shows
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 that there is an effect of product reviews on online consumer purchase intentions and
4 behavior (Liu et al. 2020; Maslowska et al. 2017) and that exposure to product reviews
5 ultimately results in positive consumer responses (Allard et al. 2020). We extend this
6 reasoning to purchase behavior and suggest that *reading product reviews will positively affect*
7
8 *frequency of orders completed.*

9
10 However, reading online product reviews and moving between different product
11 review page when using mobile device, especially small one, such as smartphone, can be
12 cumbersome and time-consuming, and may be ineffective in helping the customer make the
13 final purchase decision. As such, it is important to address the following research question:
14
15 *How does device modality interact with the information search in the form of reading online*
16
17 *product reviews in order to influence the frequency of purchasing?*

18
19 Consumers use smartphones for convenience and shorter shopping sessions (de Haan
20 et al. 2018), rather than for conducting extensive product research and information search,
21 such as reading customer reviews. Consumer exposure to mobile advertising and user
22 generated content (such as consumer reviews) does not work the same as it does for
23 nonmobile online media (Grewal and Stephen 2019; Melumad et al. 2019). While there is a
24 growing literature on product reviews in advertising (e.g., Allard et al. 2020; Maslowska et
25 al. 2017; Ransbotham et al. 2019), there is little other evidence for the effect of product
26 reviews on frequency of orders completed for different devices using behavioral data.

27
28 Based on the information search literature pertaining to online product reviews
29 (Allard et al. 2020; Liu et al. 2020; Maslowska et al. 2017) and works on device modality (de
30 Haan et al. 2018; Xu et al. 2017), we anticipate that information search in the form of reading
31 online product reviews, which represents goal-directed and involved search behavior, will be
32 most effective in stimulating higher frequency of purchase completion when conducted on a
33 stationary device with the largest screen size, therefore, a PC, in comparison with mobile
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 devices. Such devices are also more fitting for longer, more involved and complex shopping
4 sessions. Tablet should follow, while searching through online product reviews should be
5 least effective in stimulating purchase completion when conducted on smartphone.
6
7
8
9

10 Table 1 synthesizes the relevant literature on e-commerce/mobile consumer behavior
11
12 and device modalities that employs field study data. These papers each consider mobile
13
14 consumer behavior as relevant to online shopping, and many consider either multiple types of
15
16 devices and/or consumer reviews. Each of them in the table are featured because they rely on
17
18 field data and have a focal area or dependent variable that is relevant to advertisers or e-
19
20 tailers.
21
22

23 [Table 1]
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

30 Next is an overview of the methods, data, variables, and analyses.

METHODS

Data

31 We use individual-level clickstream data (see Kukar-Kinney et al. 2022) to develop a
32 model to explain consumers' search and buying behavior across device modalities. The data
33 is from a large European (British) multi-purpose retailer with home products,
34 sportswear/clothing, and footwear with a large multinational presence (over 500 stores
35 worldwide). We use observations from customers who engaged in two or more sessions
36 during the observed time period. A session is one continuous period where the customer is
37 active on the site that begins when they enter the site and ends either when they leave the site
38 or after being inactive for at least 30 minutes.

39 The data have unique device IDs which allows us to track and link a consumer
40 identifier to the devices used on the site. We use data from registered customers because
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 registration is necessary to place an order or complete a purchase. Registration is also
4
5 important because in digital advertising, advertisers gather information based on registration
6
7 on e-commerce sites in order to send customized communications (Ahrens and Coyle 2011).
8
9 While the original data had over one million shopping sessions observations, the data used
10
11 after removing nonregistered customers, and those who did not engage in two or more
12
13 sessions during the time period leaves the final sample at 179,473 customers who engaged in
14
15 958,859 sessions in a two-week period in July-August 2018.
16
17
18

19 **Addressing Endogeneity**

20

21 Because there was no random assignment to the device modality (treatment), there
22
23 could be self-selection bias across the device modalities. To address this, we use propensity
24
25 score matching and make a control group. One, with binary logistic regression, we estimate
26
27 each consumer's propensity to use a certain device modality to purchase. Two, for the
28
29 matching process, each consumer in the treatment group is paired with a statistical twin from
30
31 the control group who did not purchase using a particular device modality (but had the same
32
33 propensity to use that device type). We match each treatment case to its nearest neighbor if
34
35 two propensity scores fall within a tolerance zone. Limiting the scores to differ by no more
36
37 than .001, we match 179,473 customers from the treatment customers. Three, we compute
38
39 percentage reductions in bias for the matches (i.e., 91%), showing a reduction in self-
40
41 selection biases. Four, we compute standardized differences in averages before and after
42
43 matching. The matched sample is used in further analysis.
44
45
46

47 **Variables**

48

49 The variables are selected in line with the above review of the literature in advertising
50
51 and marketing and online information search theory. The dependent variable is frequency of
52
53 purchasing during the session. The dependent variable brings novelty to existing work, which
54
55 typically focuses on if a sale was made. The two independent variables are device modality
56
57
58
59
60

1
2
3 and product reviews accessed. Device modality is also examined as a potential moderator.
4

5 Thus, an interaction of device modality and product reviews is included in the model.
6

7 Control variables include time spent shopping (in seconds), number of pages seen,
8 cart value, and dummy variables denoting a visit to the website before work, during lunch,
9 after work and during the evening. To control for any impact of user interfaces, device screen
10 sizes are also included. Lastly, we control for variation in geographical differences by using
11 six dummy variables to account for continents where the consumer is browsing from, with
12 Asia as the baseline (vs. Africa, North America, South America, Europe and Australia).
13
14

15 **Empirical Models and Analyses**

16

17 To model the frequency of orders completed and a random intercept to account for
18 customer heterogeneity at the individual level, we compare three models (Poisson regression
19 model, the negative binomial regression model, and the zero-inflated negative binomial). We
20 supply a web appendix for a comparison of the three models introduced (as well as MCMC
21 parameter estimates to enhance validity). We conducted analysis using R. Based on the
22 smallest BIC value and the Vuong test statistic, NB is the preferred model. Hence, results
23 presented next are based on the NB model (Web Appendix).
24
25

26 **RESULTS AND DISCUSSION**

27

28 **Findings**

29

30 *The Effect of Device Modality on Frequency of Completed Orders*

31

32 Device modality has a significant effect on the frequency of orders completed.
33 Particularly, the coefficient of frequency of completed orders on smartphones is 0.226 lower
34 ($p < .001$) than for those using PC. However, for those on tablet, the estimate of the coefficient
35 of the frequency of completed orders is significantly higher vs. PC by 0.101 ($p < .001$). *Thus,*
36 *purchase frequency is highest when consumers shop via tablet, followed by PC, and lowest*
37 *when using a smartphone.*

when shopping occurs via smartphone. Our finding showing the strength of tablets is consistent with Xu et al. (2017) in that both show that tablets are the strongest device type for online sales. Our finding is also consistent with complementary work on purchase intentions when using mobile devices. Studies by Bart, Stephen, and Sarvary (2014) as well as Grewal and Stephen (2019) find a positive impact of mobile devices on purchase intentions. Another study about mobile devices finds a positive role of mobile devices (Lou, Andrews, Fang and Phang 2014) on purchase of a promoted movie. Despite this, our finding contradicts the finding from de Haan et al. (2018), who found that a PC has a higher conversion rate than mobile devices. Other work examining mobile devices also found a negative impact of mobile devices. Namely, Ghose, Goldfarb and Han (2013) found less clicks from a mobile device and Marz, Schubach, and Schumann (2017) and Ransbotham, Lurie, and Liu (2019) found less perceived helpfulness from mobile reviews.

In support of our finding that there is a positive effect for e-commerce conversions when tablets are used, we find that e-cart value is also highest with tablets. The average total e-cart value of shoppers shopping via tablet (£33.00 or \$40.71) is higher than of those shopping via PC (£29.84 or \$36.81) or smartphone (£24.24 or \$29.90). Thus, we find that consumers have the highest valued e-cart when shopping on tablets and lowest when on smartphones.

The Effect of Exposure to Product Reviews on Frequency of Orders Completed

A further result concerns the impact of information search in the form of clicking on product reviews on online purchase frequency. *There is a positive main effect of exposure to product reviews on frequency of orders completed (0.002, p < .001)* overall. This is consistent with our expectation and in line with both Maslowska et al. (2017) and Liu et al. (2020), who showed that product reviews impact online consumer purchase intentions and behavior. Our finding also extends work by Allard et al. (2020), who found that exposure to

1
2
3 product reviews ultimately results in positive consumer responses. As depicted in Figure 1, in
4
5 addition to the significant main effect of product reviews, we also find a significant
6
7 interaction effect of device modality and exposure to product reviews.
8
9

10 [Figure 1]
11

12 We expected that device modality will moderate the effect of searching product
13 reviews on the frequency of orders completed, with information search of product reviews
14 conducted on stationary devices leading to the largest positive effects. Our findings show that
15 customers who are exposed to product reviews on PCs complete more orders than those using
16 smartphones and tablets. Further, reading product reviews on smartphones is the least likely
17 and does not significantly drive purchase behavior. **Information search in the form of reading**
18 **online product reviews has no effect on mobile (while it does so on other platforms).** Thus,
19 we supply evidence showing that viewing product reviews increases the frequency of
20 completed online shopping orders, but primarily so for PCs.
21
22

33 *Effects of Control Variables on Frequency of Orders Completed* 34

35 The number of pages viewed has a positive relationship with frequency of purchase
36 completion (.051, $p < .001$). Also, shopping before typical work hours (0.044, $p < .001$) and
37 shopping during lunch hours (0.032, $p < .001$) have a positive relationship with purchase
38 frequency, while shopping in the evening has a negative relationship (-0.051, $p < .001$). Time
39 spent online searching for items (in seconds) is positively related with purchase frequency
40 (0.0003, $p < .001$), while e-cart value is negatively related with it (-0.00004, $p < .01$). Last,
41 two largest screen sizes have a significant positive effect, while smaller screen sizes have a
42 negative or non-significant effect on purchase frequency (see Web Appendix).
43
44
45
46
47
48
49
50
51
52

56 **Implications for Theory and Advertising Scholarship** 57

1
2
3 While strengths of the work here are in the timely topic, behavioral nature of data,
4
5 methodological rigor, and interest by advertisers who want to learn more about online
6
7 consumer behavior, there are also contributions to theory that are useful to advertising
8
9 scholars. Online information search theory (Browne et al. 2007) has traditionally been used in
10
11 the MIS field more than in advertising; however, the shift towards digital and mobile
12
13 advertising has sparked a need to consider modern ways to explain or predict how
14
15 characteristics of online information search can impact purchasing online. A contribution to
16
17 online information search theory is that device modality drives purchase frequency, and this
18
19 is likely due to the differential ease of use and convenience of PCs, tablets, and smartphones
20
21 when conducting extensive information search and completing purchases. An individual
22
23 search tendency in the form of clicking on customer reviews further increases online
24
25 purchases, but only when such behavior is easy to complete, such as on a PC. These findings
26
27 contribute to information behavior research, suggesting that when information search is goal-
28
29 directed, extensive, and easy to conduct, it will increase purchase frequency in e-tail. As
30
31 such, a broad role of digital advertising should be to make the information search process
32
33 easier and more convenient for consumers in order to stimulate purchases.
34
35
36

37 In addition to theory, one area in advertising scholarship that this work extends is in
38
39 online/consumer reviews. It has been established that the features of online reviews impact
40
41 consumer probability to buy and that some reviews may seem “too good to be true” or
42
43 untrustworthy (Maslowska et al. 2017). Similarly, our work adds to past findings that product
44
45 reviews have a positive impact (Allard et al. 2020) and that mobile product reviews are
46
47 distinct (Ransbotham et al. 2019). It also adds to the finding that reviews posted from a
48
49 mobile device bring higher purchase intentions (Grewal and Stephen 2019) by examining the
50
51 role of visiting product reviews on actual purchase behavior.
52
53
54
55
56
57
58
59
60

1
2
3 As a further contribution to advertising scholarship, this research also adds to existing
4 literature relevant to mobile advertising. Within advertising, the work is again
5 complementary to the growing body of research in mobile advertising (e.g., Andrews et al.
6 2016; Bart et al. 2014; Ford 2017; Grewal and Stephen 2019; Luo et al. 2014; Okazaki et al.
7 2007; Okazaki et al. 2009) by studying the effect of device modalities on purchase frequency
8 and by using behavioral data. We next discuss specific actions that could be undertaken by
9 digital advertisers to maximize online purchase frequency.
10
11
12
13
14
15
16
17
18
19

Implications for Digital Advertisers

20
21 Our work brings industry and academic research more closely together and supplies
22 advertising industry relevant insights for advertisers who are keenly interested in findings
23 from clickstream data. These findings should lead to updated strategies with respect to
24 advertisers' e-commerce and m-commerce media placements and integrated brand
25 promotions in the areas of device modality and product review pages.
26
27
28
29
30
31
32
33

Device Modality

34
35 Our work confirmed a conversion gap, which is a discrepancy in browsing vs. buying
36 via one device modality compared to another. *Advertisers can place more emphasis on the*
37 *tablet, as advertising to consumers who shop from tablets may be especially effective.* This
38 implication is based on our finding that the conversation rate is highest when consumers shop
39 via tablets, followed by PCs and then smartphones, as well as the fact that the value of the
40 items in the e-carts are highest for tablets. However, if the goal is to increase conversion rates
41 of consumers shopping on PCs and smartphones, pushing other ads or promotions to those
42 devices may be needed to stimulate their purchase completion.
43
44
45
46
47
48
49
50
51
52
53
54

Product Review Pages

55
56 Our findings further suggest that *advertisers can encourage consumers to read*
57 *product reviews, especially from stationary devices such as PCs.* Taking device modality into
58
59
60

1
2
3 account, there is considerable evidence that viewing product reviews increases the frequency
4 of orders purchased. However, when consumers read the reviews from a PC, the effect of
5 reading product reviews is intensified for conversions. The finding that reading online
6 product reviews has no effect on mobile (while it does so on other platforms) is an
7 unintended negative consequence of mobile technology to marketers, who are interested in
8 conversions from browsing to buying.
9
10
11
12
13
14
15

17 Limitations and Areas of Future Research 18

19 There are limitations that set advertising scholars on a path for future research. First,
20 we do not have data on how the e-commerce company incorporated digital advertising on
21 their shopping platform. It would be helpful to add to our model any impact of exposure to a
22 digital ad while shopping, and such an extension would supplement well with the advertising
23 study by Lu and Du (2020) who analyzed clickstream behavior after exposure to search ads.
24 Thus, we encourage advertising scholars to work with companies or ad agencies to obtain the
25 data needed to model the extent to which exposure to digital ads while shopping impacts
26 conversions on different devices. This opportunity is in line with a trend for advertising
27 research to become more quantitative in nature (Chang 2017).
28
29

30 A second limitation is that while we used data based on a multi-national sample
31 spanning hundreds of brands and several countries, the data do not include purchasing
32 services online. Future research can replicate this work in the context of services or
33 experiential goods, such as sport event tickets.
34
35

36 A third limitation is that we could not account for consumer trust perceptions of the
37 reviews or other details about the product review pages. Hence, related topics for added
38 scholarship in mobile research is examining the role of trust in digital advertising (Okazaki et
39 al. 2007) or perceived trust or believability product reviews of varying valences (Maslowska
40 et al. 2017; Grewal and Stephen 2019), as overly positive or negative reviews may not be
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 very trustworthy. It would be further beneficial to examine any differential impact of reviews
4 either written from or read from a mobile device (Ransbotham et al. 2019; Grewal and
5 Stephen 2019). Here, we are only able to consider what type of device the consumer was
6 exposed to the review from as it is not known what type of device the review was written
7 from nor the details of the review contents. We encourage scholars to combine the work done
8 here with studies on how advertisers and e-commerce sites could communicate trust of the
9 site, products, and consumer reviews.
10
11
12
13
14
15
16
17
18

19 A last area for future research, such as seen in Okazaki et al. (2009) via mobile
20 advertising in Japan, can more deeply examine country-based location impact of mobile e-
21 commerce than what we controlled for. Such is important given that 61% of global
22 advertising revenue is forecasted to be digital, and there are 114 advertisers who exceeded \$1
23 billion for advertising investments worldwide (Ad Age 2020). Overall, information search
24 theory development that blends online consumer behavior and e-commerce research is an
25 exciting and ripe area for continued advertising scholarship in digital and mobile contexts.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 **REFERENCES**
4

5 Ad Age. 2020. "Global advertising forecast to set a new record in 2021: five key
6 takeaways from ad age marketing factpack 2021." December 21, 2020,
7 <https://adage.com/article/datacenter/global-advertising-forecast-set-new-record-2021/2302256>.
8

9 Ahrens, Jan, and James R. Coyle. 2011. "A content analysis of registration processes on
10 websites: How advertisers gather information to customize marketing
11 communications." *Journal of Interactive Advertising* 11 (2): 12–26.
12

13 Allard, Thomas, Lea Dunn, and Katherine White. 2020. "Negative reviews, positive impact:
14 consumer empathetic responding to unfair word of mouth." *Journal of Marketing* 84
15 (4): 86-108.
16

17 Andrews, Michelle, Xueming Luo, Zheng Fang, and Anindya Ghose. 2016. "Mobile ad
18 effectiveness: hyper-contextual targeting with crowdedness." *Marketing Science* 35
19 (2): 218-233.
20

21 Bart, Yakov, Andrew T. Stephen, and Miklos Sarvary. 2014. "Which products are best
22 suited to mobile advertising? A field study of mobile display advertising effects on
23 consumer attitudes and intentions." *Journal of Marketing Research* 51 (3): 270-85.
24

25 Bernritter, Stefan, Shintaro Okazaki, and Douglas West 2021. *Journal of Advertising*, Call
26 for papers: mobile technology and advertising.
27

28 Browne, Glenn, Mitzi Pitts, and James Wetherbe. 2007. "Cognitive stopping rules for
29 terminating information search in online tasks." *MIS Quarterly* 31 (1): 89-104.
30

31 Chang, Chingching. 2017. "Methodological issues in advertising research: Current status,
32 shifts, and trends." *Journal of Advertising* 46 (1): 2-20.
33

34 Davidkhanian, Suzy. 2021. "US e-commerce forecast 2021." *Insider Intelligence*, July 2021,
35 <https://store.businessinsider.com/products/us-e-commerce-forecast-2021>.
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1
2
3 de Haan, Evert, P.K. Kannan, Peter Verhoef, and Thorsten Wiesel. 2018. "Device switching
4
5 in online purchasing: examining the strategic contingencies." *Journal of Marketing* 82
6
7 (5): 341-349.
8
9
10 De Keyzer, Freya, Nathalie Dens, and Patrick De Pelsmacker. 2021. "How and when
11
12 personalized advertising leads to brand attitude, click, and WOM intention." *Journal
13
14 of Advertising*, in press.
15
16
17 eMarketer. 2018. Mobile ad spending to surpass TV in 2018." April 19, 2018.
18
19 [https://www.emarketer.com/content/mobile-advertising-is-expected-to-surpass-tv-ad-
20
21 spending.](https://www.emarketer.com/content/mobile-advertising-is-expected-to-surpass-tv-ad-spending)
22
23
24 Ford, John B. 2017. "What do we know about mobile media and marketing?" *Journal of
25
26 Advertising Research* 57 (3): 237-38.
27
28 Ghose, Anindya, Avi Goldfarb, and Sang Pil Han. 2013. "How is the mobile internet
29
30 different? Search costs and local activities." *Information Systems Research* 24 (3):
31
32 613-631.
33
34
35 Grewal, Lauren and Andrew T. Stephen. 2019. "In mobile we trust: the effects of mobile
36
37 versus nonmobile reviews on consumer purchase intentions." *Journal of Marketing
38
39 Research* 56 (5): 791-808.
40
41
42 Huang, Qing, Bingjia Shao, Xiaoling Li, Tao He, Juanyi (Sunny) Liu, and Xinjian Li.
43
44 2021. "The challenge of a prominent position: Decomposing shopping goals in
45
46 sponsored search advertising." *Journal of Advertising*, in press.
47
48
49 Kannan, P.K. and Hongshuang (Alice) Li. 2017. "Digital marketing: a framework, review
50
51 and research agenda." *International Journal of Research in Marketing* 34 (1): 22–45.
52
53
54 Kukar-Kinney, Monika, Angeline Close Scheinbaum, Olanrewaju Orimoloye, Jeffrey
55
56 Carlson, and Heping He. 2022. "A model of online shopping cart abandonment:
57
58 Evidence from e-tail click-stream data." *Journal of the Academy of Marketing
59*
60

1
2
3 *Science*, in press.
4

5 Li, Chenxi, Xueming Luo, Cheng Zhang, and Xiaoyi Wang. 2017. "Sunny, rainy, and cloudy
6 with a chance of mobile promotion effectiveness." *Marketing Science* 36 (5): 762–
7 779.
8

9
10 Liu, Zhen, Shao-hui Lei, Yulang Guo, and Zhi-an Zhou. 2020. "The interaction effect of
11 online review language style and product type on consumers' purchase intentions."
12
13 *Palgrave Communications* 6 (1): 11.
14

15
16 Liu-Thompkins, Yuping. 2019. "A decade of online advertising research: What we learned
17 and what we need to know." *Journal of Advertising* 48 (1): 1–13.
18

19 Lu, Chongyu and Rex Yuxing Du. 2020. "Click-through behavior across devices in paid
20 search advertising." *Journal of Advertising Research* 60 (4): 394–406.
21

22 Luo, Xueming, Michelle Andrews, Zheng Fang, and Chee Phang. 2014. "Mobile targeting."
23
24 *Management Science* 60 (7): 1738–1756.
25

26 Marz, Armin, Sebastian Schubach, and Jan H. Schumann. 2017. "Why would I read a
27 mobile review?" Device compatibility perceptions and effects on perceived
28 helpfulness." *Psychology & Marketing* 34 (2): 119–37.
29

30 Maslowska, Ewa, Edward C. Malthouse, and Stefan F. Bernritter. 2017. "Too good to be
31 true: The role of online reviews' features in probability to buy." *International Journal*
32
33 of Advertising 36 (1): 142–163.
34

35 Melumad, Shiri, J. Jeffrey Inman, and Michel Tuan Pham. 2019. "Selectively emotional:
36 how smartphone use changes user-generated content." *Journal of Marketing Research*
37 56 (2): 259–275.
38

39 Okazaki, Shintaro, Akihiro Katsukura, and Mamoru Nishiyama. 2007. "How mobile
40 advertising works: The role of trust in improving attitudes and recall." *Journal of*
41
42 *Advertising Research* 47 (2): 165–178.
43

1
2
3 Okazaki, Shintaro, Hairong Li, and Morikazu Hirose. 2009. "A study of mobile advertising
4
5 in Japan." *Journal of Advertising* 38 (4): 63-77.
6
7

8 Perrin, Nicole. 2020. "US mobile ad spend in 2019 was lower than previously estimated."
9
10 eMarketer, March 31. <https://www.emarketer.com/content/us-mobile-ad-spend-in->
11
12 2019-was-lower-than-previous-estimated.
13

14
15 Ransbotham, Sam, Nicholas H. Lurie, and Hongju Liu. 2019. "Creation and consumption of
16
17 mobile word of mouth: how are mobile reviews different?" *Marketing Science* 38 (5):
18
19 773-792.
20

21
22 Taneja, Harsh. 2020. "The myth of targeting small, but loyal niche audiences: double-
23
24 jeopardy effects in digital-media consumption." *Journal of Advertising Research* 60
25
26 (3): 239-25.
27

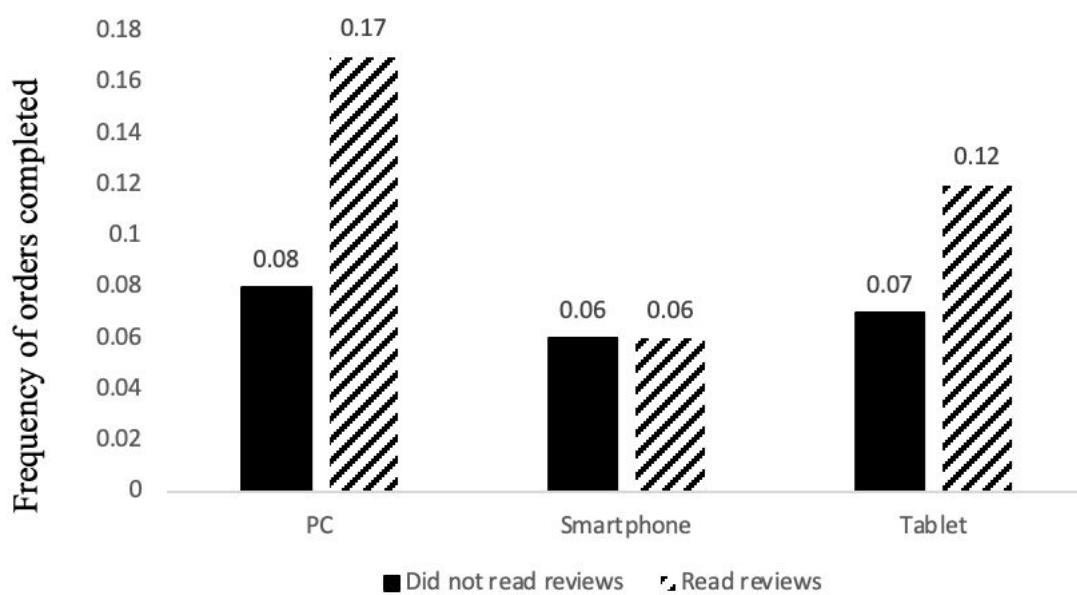
28
29 Williams, Robert. 2021. "Cross-platform measurement is ready: NBC Universal's Kelly
30
31 Abcarian." December 22, 2021, <https://www.beet.tv/2021/12/cross-platform->
32
33 measurement-is-ready-nbcuniversals-kelly-abcarian.html.
34

35
36 Xu, Kaiquan, Jason Chan, Anindya Ghose, and Sang Pil Han. 2017. "Battle of the channels:
37
38 the impact of tablets on digital commerce." *Management Science* 63 (5): 1469–92.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Table 1. Synthesis of Relevant Studies with Field Data in E-Commerce/M-Commerce

Source	Focal Area or DV	Considers Device Types	Considers Consumer Reviews	Key Findings
Ghose et al. (2013)	Click-behavior	Yes	No	Clicks based on brand posts can differ by two device types (mobile vs. PC).
Andrews et al. (2016)	Mobile ads	No	No	Consumers in more crowded trains are approx. 2 x more likely to make a purchase from a mobile offer (vs. those in not as crowded trains).
Li et al. (2017)	Mobile promotion	No	No	Mobile promotion effectiveness is better (& faster) in sunny weather compared to cloudy weather & is lower (& slower) when it rains.
Marz et. al (2017)	Helpfulness, value	Yes	Yes	Differences in real online reviews written on mobile vs. nonmobile devices can determine how helpful or valuable they are to customers.
Xu et al. (2017)	Tablets & e-commerce sales	Yes	No	Tablets are substitutes for computers but complements to smartphones. Tablets bring more impulse product sales & a bigger variety of types of products bought. Cross-device browsing enhances sales.
de Haan et al. (2018)	Device switching	Yes	No	When customers switch from a phone to a desktop, the sales conversion rate is higher. The effect is bigger when there is more product category risk and higher prices.
Grewal & Stephen (2019)	Purchase intentions, review perceptions	Yes	Yes	Consumers knowing a review was done on a mobile device brings higher purchase intentions/may be perceived as more trustworthy.
Melumad et al. (2019)	Emotionality	Yes	Yes	Differences in mobile (vs. nonmobile) UCG exist for content emotionality.
Ransbotham et al. (2019)	Value	Yes	Yes	Mobile reviews are more affective, less extreme, and more concrete when written via mobile devices.
Kukar-Kinney et al. (2022)	Cart abandonment	Yes	Yes	Online cart abandonment is driven by uses & gratifications: cart use, items in the cart from a past session, seeing sold-out items, visiting clearance pages, removing items from the cart, seeing reviews, and seeing many products. A convenience motivation moderates purchase, economic control, organization, & research/information motivations on online cart use.
<i>The current research</i>	Frequency of orders completed	Yes	Yes	The effect of reading reviews on purchase frequency is the most positive on PC, followed by tablet. Reading reviews on smartphones is not effective in stimulating purchase completion.

1
2
3 **Figure 1. Moderating Effects: Interaction Between Visiting Product Reviews**
4
5 **and Device Modality on Frequency of Orders Completed**
6
7
8
9
10
11
12



Web Appendix

Details on the Analyses and Results

Poisson Regression Model with Random Effects

In the Poisson model, the frequency of orders completed per session is modelled as:

$$\text{Log } E(y_{ij} | u_j) = \alpha + X'_{ij}\beta + u_j \quad (1)$$

Where y_{ij} is the observation for customer (i) in session (j) and u_j is the random effect for session (j). The two distributions are: $y \sim \text{Pois}(\lambda)$ and $u \sim N(0, \sigma^2)$. The Poisson distribution is suitable for sparse event counts; however, the conditional mean is assumed to equal the conditional variance. Thus, we also consider a negative binomial approach.

Negative Binomial Regression Model (NB) with Random Effects

The NB model allows the variance to exceed the mean. The NB distribution is:

$$\text{Pr}(Y_i = y_i) = \frac{\Gamma(k + y_i)}{\Gamma(k)y_i} \left(\frac{k}{k + \mu}\right)^k \left(\frac{\mu}{k + \mu}\right)^{y_i} \quad (2)$$

Where μ is the mean and k is the dispersion parameter. The variance of the above distribution is $\mu + \mu^2/k$, and decreasing values of k correspond to increasing dispersion levels. Here, the dispersion varies randomly among shopping sessions.

Zero-inflated Negative Binomial (ZINB) with Random Effects

Last, we consider a Zero-inflated negative binomial (ZINB) with random effects model because ZINB can handle zero-inflation and over-dispersion. It also has the ability to model the effect on probability and size. Probability is given as:

$$\text{Pr}(Y = 0) = \pi + (1 - \pi)(1 + \alpha\mu)^{-\frac{1}{\alpha}} \quad (3)$$

The mean is μ and α is the over-dispersion parameter.

Results of Fitted Count Regression Model (with Random Effects)

Note: Smartphone and tablet are compared to PC (the baseline).

Variables	Poisson	NB [#]	ZINB	MCMC Parameter estimate
(Intercept)	-2.784*** (0.008)	-3.125*** (0.172)	-2.346*** (0.005)	-3.231 (0.007)
Device modality (smartphone)	-0.011*** (0.049)	-0.226*** 0.012		-0.104 (0.014)
Device modality (tablet)	0.124*** (0.012)	0.101*** (0.011)		0.121 (0.005)
Read reviews	0.024*** (0.002)	0.002*** (0.003)	0.066*** (0.001)	0.086 (0.019)
Read reviews X device modality (smartphone)	0.012*** (0.004)	0.104*** (0.010)		0.022 (0.011)
Read reviews X device modality (tablet)	-0.071*** (0.001)	0.017*** (0.010)		0.123 (0.011)
Control variables:				
Time spent (in seconds)	0.000*** (0.000)	0.0003*** (0.000)		0.000 (0.000)
E-cart value	0.000*** (0.000)	-0.00004*** (0.000)	0.002*** (0.000)	-0.000 (-0.000)
Visit before work	1.016*** (0.01)	0.044*** (0.012)	-0.021 (0.013)	0.054 (0.002)
Visit during lunch	1.615*** (0.012)	0.032*** (0.011)	0.016 (0.012)	0.091 (0.004)
Visit after work	2.455*** (0.002)	0.004 (0.013)	0.014 (0.010)	0.317 (0.008)
Visit during evening	0.748*** (0.004)	-0.051*** (0.003)	-0.065*** (0.006)	-0.371 (0.019)
Pages viewed	0.004*** (0.000)	0.051*** (0.000)		0.015 (0.007)
Screen size '360x640'	-0.023*** (0.017)	-0.214*** (0.012)		-0.008 (0.002)
Screen size '768x1024'	0.417*** (0.156)	1.326*** (0.104)		0.514 (0.127)
Screen size '320x568'	-0.012 (0.016)	0.014 (0.010)		-0.011 (0.002)
Screen size '1366x768'	0.436*** (0.151)	1.019 (0.104)***		0.429 (0.132)
Screen size '414x736'	-0.073*** (0.016)	-0.040*** (0.021)		-0.073 (0.004)
Africa	-1.014** (0.371)	-1.328*** (0.411)		-1.442 (0.241)
North America	-1.934** (0.352)	-1.712* (0.314)		-0.821 (0.421)
South America	-0.604 (0.307)	-0.711 (0.160)		-0.437 (0.121)
Europe	0.217 (0.132)	0.105 (0.276)		0.562 (0.212)
Australia	-1.214*** (0.304)	-1.131** (0.372)		-2.173 (0.821)
Time dummies	Included	Included	Included	Included
(Intercept)			-3.133*** (0.043)	
Read reviews			-0.110*** (0.011)	
Cart quantity			0.155*** (0.003)	
E-cart value			0.009*** (0.000)	

Visit before work		-0.031 (0.053)	
Visit during lunch		0.022 (0.024)	
Visit after work		-0.032 (0.0)	
Visit during evening		-0.103*** (0.029)	
Observations	179,473	179,473	179,473
Number of parameters	23	23	20
Log Likelihood	-162,219	-103,501	-210,011
AIC	224,745	166,168	236,261
BIC	265,128	123,187	349,909
$\sum \hat{f}_i(0)$	77,062	77,886	94,405

Significant levels for variables * p<0.05, ** p<0.01, *** p<0.001.

Key effects (device modality, product reviews, their interactions) are shown in italics at the top of the table.

Negative binomial (NB) is in **bold** as the preferred model.