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v 

This thesis is concerned with the evolution of hierarchical modules in a model of gene 

regulation, and the consequences thereof for evolvability. Developmental processes map 

genotypes to phenotypes, and translate random variation at the genetic level into bi­

ased, selectable variation at the phenotypic level. These developmental processes are 

themselves subject to evolution by natural selection and it might be the case that nat­

ural selection favours developmental architectures that facilitate phenotypic variation 

that is adaptive and enhances evolvability. One manner of developmental organisation 

that has inspired much interest is modular hierarchy. Such hierarchy - where one gene 

directs many others - has the potential to be very important to evolvability because 

it effectively rescales the variability of phenotypes, enabling natural selection to search 

combinations of modules rather than combinations of individual genes. However, the 

conditions where natural selection favours hierarchical organisation and the conditions 

where its consequences enable such rescaling are not well understood. 

Considering a developmental model based on a recurrent regulatory process, we describe 

conditions where natural selection favours the evolution of single-layer hierarchical mod­

ular structures, where independent ‘switch’ genes direct independent subsets of genes. 

We show that these structures increase evolvability by rescaling the genetic neighbour­

hood of phenotypes, from combinations of genes to combinations of modules, and that 

this makes high-fitness phenotypes more accessible to natural selection. This improved 

evolvability enables a micro-evolutionary process to better exploit a changing or static 

modular environment so long as sufficient long-term variation is maintained. 

We then investigate the underlying cause of the evolution of hierarchy. Interestingly, 

we find that the observable increase in evolvability (in particular, the ability to rescale 

the variability of phenotypes) is not required for natural selection to favour hierarchy in 

this model. Rather, hierarchy evolves due to a selective pressure for efficient phenotypic 

expression and because it is an efficient organisation for increasing the expression of 

many genes given limited regulatory connections. Thereby, we show that - in some cases 

- the causes and consequences of developmental hierarchy are not the same. That is, 

hierarchy evolves - and it increases evolvabilty - but increased evolvability need not be 

the reason it was favoured by selection. 
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Chapter 1 

Introduction 

Evolution is the process by which species change over many generations. A simple 

mechanism based on heritable variation in reproductive success goes a long way to 

explain the emergence of organisms that are well-suited to the environments in which 

they exist. However, evolution is a ‘local search’ process: it is inherently limited in its 

capacity to escape from ‘local fitness peaks’ (local optima), which may trap it in sub­

optimal regions of the phenotype space. If an evolutionary process is to find high fitness 

phenotypes, it is necessary that it has suitable variability, else those phenotypes will 

be inaccessible, regardless of how long the process spends searching. This dissertation 

is concerned with how such variability may emerge as the result of the evolution of 

hierarchy in a gene regulation network, and its consequences for ‘evolvability’. 

The term evolvability bares various definitions (Houle, 1992; Lynch, 2007; Wagner, 2005, 

2008; Wagner and Altenberg, 1996; Hansen, 2006), and some authors have sought to 

make a distinction between the evolvability of populations and the evolvability of in­

dividuals (Wilder and Stanley, 2015); of genotypes and of phenotypes (Wagner, 2008; 

Hansen, 2006). Here we consider the general definition provided by Payne and Wagner, 

“the ability of a biological system to produce phenotypic variation that is both heritable 

and adaptive” (Payne and Wagner, 2019). To a great extent, this ability is direct func­

tion of the systems variability. One notion of evolvability is that random mutation can 

be guided to produce biased variation. Further, evolution itself can change the nature of 

this variation, implying that evolvability could itself be evolved: how this might occur 

is an open question (Pigliucci, 2008). 

A significant factor in the discussion of evolvability is the role of developmental processes 

(‘evo-devo’), which can be abstracted as mappings between genotypes and phenotypes 

(Laland et al., 2015; Watson and Szathmáry, 2016; Waddington and Robertson, 1966). 

These genotype-phenotype maps (‘GP maps’) impose a developmental bias upon the dis­

tribution of phenotypes that can be produced by variation in genotypes due to random 

mutation, and thereby present an opportunity for a lineage to adapt, by incrementally 

1
 



2 Chapter 1 Introduction 

updating what amounts to a genetic model of the phenotype space. This ‘modelling’ 

ability is revealed by the capacity for a GP map to translate homogeneous genetic 

variation into adaptive variation in the phenotype: while mutations inflicted upon an 

individual may be random, their phenotypic consequences may be a function of the indi­

vidual’s genetic background, and so its genetic history. As such, the GP map represents 

an important means by which evolvability might evolve. This dissertation focusses on 

modularity and hierarchy in the genotype-phenotype map, which both provides means 

by which evolvability might be achieved (Hansen, 2006; Kashtan et al., 2009; Clune 

et al., 2013; Mengistu et al., 2016; Watson et al., 2011c; Kouvaris et al., 2017). 

Modularity is a prominent feature of many natural and artificial systems (Kashtan et al., 

2005). A modular network is one containing “highly connected clusters of nodes that 

are sparsely connected to nodes in other clusters” (Clune et al., 2013). Modularity is 

generally recognised as beneficial in facilitating maintainability in ‘nearly-decomposable 

systems’ (Simon, 1969), as it allows parts with different jobs to be modified indepen­

dently: a change in component should not interfere with another. The observation 

of functional equivalence between genes in different animals suggests that evolution is 

capable of maintaining modular developmental structure over long timespans (Carroll, 

2008), and it has been suggested even that such structure can evolve without providing 

a fitness advantage (Force et al., 2005; Lipson et al., 2002). 

Hierarchy, which is also found in natural systems (Riedl, 1977; Force et al., 2005), sug­

gests a manner of organisation wherein a set of nodes have a role in coordinating some 

subset of the broader system. Hierarchy is often multi-layered, such that a function 

is divided into smaller and smaller sub-functions, with nodes coordinating some set of 

subordinate nodes which themselves coordinate their own (disjoint) sets of subordinate 

nodes (Force et al., 2005). This tree structure minimises the number of interfaces be­

tween components, avoiding polynomial growth of system complexity with the number 

of components. This conferred scalability may be necessary for the development of larger 

systems. 

Both modularity and hierarchy in a system imply a limited degree of coupling, and facil­

itate local (independent) variation. This enables phenotype components to change and 

improve independently (Force et al., 2005), which can enable simple adaptive processes 

to readily respond to change despite the undirected nature of genetic variation: variation 

in the genotype is inherited, but fitness is a function of the phenotype and so a product 

of the genotype-phenotype map Watson and Szathmáry (2016). 

Gene regulation is a classic example of a complex developmental process (Carroll, 2008), 

has inspired many models by various authors (Payne et al., 2014; Ho and Charleston, 

2011; Siegal and Bergman, 2002; Wilder and Stanley, 2015), and provides one way to 

look at modularity (Kouvaris et al., 2017) and hierarchy. Some such models map onto 

a type of ‘Recurrent Neural Net’ called a ‘Hopfield Network’ (Hopfield, 1982; Watson 
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et al., 2011b), and parallels have been drawn between the evolution of higher-order 

developmental parameters and the explicit models of machine learning (Watson and 

Szathmáry, 2016; Watson et al., 2016). In this context, it has been shown that evolution 

can mimic Hebbian Learning (Watson et al., 2014), which amounts to learning recurring 

correlations in a system. The exploitation of higher-order non-linear dynamics by the 

evolutionary process in these biologically inspired models provides a powerful tool to 

investigate spontaneous learning, and suggests that techniques employed by machine 

learning theorists and practitioners could be applicable to these natural processes (and 

vice versa). 

One pertinent method in machine learning is regularization, which can involve augment­

ing an objective function with additional ‘entropy’ terms that impose some constraint on 

the system parameters. One style of regularisation that originated in regression models 

is to impose a cost on model coefficients (e.g. the linear (L1) LASSO Tibshirani (1996), 

which is particularly relevant to this work). Clune et al. (2013) and Mengistu et al. 

(2016) showed that an analogous cost of connections could promote the evolution of 

modularity and hierarchy in neural networks, while Kouvaris et al. (2017) demonstrated 

that applying a cost of connections to a standard model of gene regulation (Siegal and 

Bergman, 2002; Spirov and Holloway, 2013) can promote the evolution of modular gene 

regulation networks (GRNs). 

The work described in this dissertation primarily comprises computer simulations and 

interrogation of their dynamics, following from Kouvaris et al. (2017) and Kounios et al. 

(2016). We consider the same developmental model (based on a recurrent regulatory 

process as described by Siegal and Bergman (2002)), and describe conditions where 

natural selection favours the evolution of hierarchy and modularity. We show that 

these structures can be promoted by the inclusion of a linear cost of connections, and 

facilitate evolvability by making useful phenotypes more accessible. This evolvability is 

achieved by essentially reducing the important parameter space of the initial conditions 

of the developmental process: modules of genes change independently, and a directed 

by a single ‘lead’ gene (a ‘switch like function’ (Erwin and Davidson, 2009)). This 

allows mutations which affect this single gene to determine the phenotypic expression 

of modules of genes, effectively changing the level at which variation operates from 

individual genes to modules of genes. 

Chapter 2 will briefly outline some of the key ideas that will be explored in this disser­

tation, and the past works that have inspired their use and exploration. We will review 

the meaning and importance of ‘evolvability’, and explore the abstractions that we use 

to relate our computer simulations to the real world. This chapter will not discuss any 

model in detail, but will introduce some of the previous literature that has used the 

same (or similar) models of gene regulation, and discuss how the concepts of modularity 

and hierarchy can be related to such a model. 
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Chapter 3 will start by discussing the distinction between ‘rate’ evolvability (the ability 

of a system to evolve accessibly phenotypes more quickly) and ‘access’ evolvability (the 

ability of a system to evolve previously inaccessible phenotype). While both have been 

variously demonstrated by multiple authors (Wagner and Altenberg, 1996; Clune et al., 

2013; Mengistu et al., 2016; Kashtan et al., 2005; Kouvaris et al., 2017; Parter et al., 

2008)) it can be difficult to separate the two. We attempt to show the evolution of 

access evolvability specifically. To do so, we evolve a gene regulation network (GRN) 

in a changing environment comprising independent modules which differentially reward 

complementary phenotypes: sometimes it is ‘easy’ for a micro-evolutio process to find 

the fitter phenotype; sometimes it is not, and the process becomes trapped at a locally 

(and not globally) optimal phenotype. We find that - so long as there is sufficient long 

term variation - the system evolves independent modules consistent with the variation 

in the environment as in Kouvaris et al. (2017). Furthermore, these modules evolve a 

regulatory topology that facilitates ‘module flips’, and consequently the system is able 

to fully exploit the changing environment: it no longer becomes trapped. 

Chapter 4 will transfer the observations from Chapter 3 to a modular but unchang­

ing environment, and a hierarchical unchanging environment. The environments used 

are rugged, and so contain many local optima (fitness peaks) that will readily trap a 

micro-evolutionary process: the fittest phenotypes are inaccessible from much of the 

genotype space. The evolution of hierarchy facilities a rescaling of the level at which 

the evolutionary process operates from genes to modules. This provides a biologically 

plausible mechanism by which evolution can exploit modularity and hierarchy to access 

previously inaccessible phenotypes, in much the same way as has been implemented 

in previous studies (e.g. Iclanzan and Dumitrescu (2007) and Watson et al. (2011c)). 

We go on to discuss the importance of long-term episodic variation in our models, and 

extend the results of Kounios et al. (2016). 

Chapter 5 will explore the main causes of the hierarchy that evolved in the Chapters 3&4, 

and show that they can be separated from the evolvability benefits conferred. Crucially, 

we reject selection for evolvability as a necessary condition for the evolution of hier­

archy. We shall discuss the observation that a hierarchical topology which produces a 

‘dominant’ gene consistently evolves in the presence of a linear (L1) cost of connections, 

and prove that this topology is the one that maximises fitness. We shall also argue that 

when there is a dominant gene that there is a gradient toward the hierarchical topol­

ogy, indicating that direct selection for high fitness could provide an explanation for the 

evolution of hierarchy. We settle on the idea that hierarchy evolved because it is an 

‘efficient’ regulatory topology for producing strongly expressed genes. The understand­

ing acquired in this work enables us to cast the evolution of hierarchy as consequence 

of differential selection on regulatory connections when a module becomes ‘saturated’. 

It is possible to characterise the effect of changing many model parameters in terms of 

how they influence the amount of time the system spends saturated, which allows us 
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to model how quickly hierarchy can evolve. We further discuss the importance of the 

‘strong-selection weak-mutation’ assumptions in our model, and how the circumstance 

in which hierarchy is evolved may be different if these are relaxed. 

Chapter 6 shows that the conditions to promote hierarchy can occur even when the 

efficiency benefits of hierarchy are limited by removing the ability for the regulatory 

network to up-regulate genes to different extents. In this case, selection for hierarchy 

only occurs during transitionary periods where there is an imbalance between gene 

expression brought about by changes in the initial developmental conditions. In light 

of these results, we formulate the idea that the mechanism by which hierarchy evolves 

is through positive-feedback between dominance in gene expression and hierarchy in 

gene regulation, whereby genes which exert great influence become systematically more 

influential, until all genes (within their modules) are directed by them alone. 

Chapter 7 will review the observations made in each of the chapters, and highlight 

the main conclusions drawn from them: hierarchy in gene regulatory networks can 

increase access evolvability; significant long-term ((episodic) variation is required to infer 

modular patterns in the selective environments; and that the causes and consequences 

of evolvability enhancing hierarchy need not be the same. The dissertation will conclude 

by outlining some potential directions for future work. 





Chapter 2 

Background 

2.1 Evolvability 

The term ‘evolvability’ was originally used in a precise manner in quantitative genet­

ics, but has acquired various definitions over the years. Multiple authors have provided 

different definitions for the term ‘evolvability’ in accordance with the targets of their re­

search (Lynch, 2007; Hansen, 2006), and some have become vogue (Wagner, 2005). For 

instance, Houle (1992) talks about “the ability of a population to respond to natural 

or artificial selection”, discussing the rate at which a population can respond to some 

selective pressure, and recognises that it is not feasible to define a general measure of 

the evolvability of a population. Wilder and Stanley (2015) make a clear distinction be­

tween evolvable individuals and evolvable populations, concluding that the evolvability 

of populations - the number of accessible phenotypes - is of paramount concern, which 

is reflected in various works (Mayer and Hansen, 2017; Jiménez et al., 2015). It is clear 

that each author has a particular focus, and adopts a meaning which allows them to pro­

ceed to discuss their particular concern without confounding matters with unnecessary 

detail. In this dissertation we focus on the evolvabilty of genotypes. For our purposes, 

the definition of evolvability provided by Wagner and Altenberg (1996) is salient, and 

suggests an interpretation whereby 

Evolvability is the genome’s ability to produce adaptive variants when acted 

upon by the genetic system. This is not to say that the variants need to be 

“directed” (Foster and Cairns 1992) for there to be evolvability, but rather, 

that they cannot be entirely “misdirected,” that there must be some small 

chance of a variant being adaptive. 

Hansen, in suggesting that evolvability is a property of genotype-phenotype maps and 

not of populations, highlights the distinction between variance and variability, suggesting 

7
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that statistical measures of evolvability based on variation of traits within populations 

are misleading (Hansen, 2006). He incorporates a notion of robustness in a definition of 

evolvability, which he explicitly relates to genotype-phenotype maps: 

Evolvability is the ability of the genetic system to produce and maintain 

potentially adaptive genetic variants. 

Hansen, in particular, writes about epistasis, which he sees an essential tool for un­

derstanding evolvability (Hansen, 2013). Epistasis refers to the idea that the fitness 

effect of a genetic mutation will depend on the genetic background: a mutation may 

be deleterious in one genotype but provide a fitness benefit in another. As such, the 

presence of epistasis means that it is possible for past evolution to influence the nature 

of future evolution. In general, epistasis can be introduced into models of evolution by 

means of a non-additive genotype-fitness (G-F) map. For the purposes of our discus­

sion, epistasis may be introduced either in the genotype-phenotype (G-P) map, or the 

phenotype-fitness (P-F) map, the former of which can be thought of as development, the 

later as fitness evaluation (how successful the developed individual is in the environment 

in which it lives). 

Along with the various definitions of evolvability, there have inevitably been suggested 

various schemes for measuring the evolvability of a system or population. Simple defini­

tions have been provided which are applicable to systems of discrete phenotype spaces, 

which involve counting the number of phenotypes that are accessible by mutation from 

points of genotype or phenotype space. These metrics where introduced and employed 

to suggest that while robustness and evolvability may seem at odds, when a distinction 

is drawn between genotype and phenotype, it is not unreasonable to expect ‘phenotypic 

robustness’ (small changes in genotype space rarely resulting in a change in phenotype) 

should co-occur with high ‘genotypic evolvability’, whereby small changes in genotype 

can result in many new phenotypic structures (Wagner, 2008). Such observations are 

applicable to various biologically inspired dynamic processes, as presented in Steinacher 

et al. (2016) with a model of gene regulation, though recent discussion has shown that 

the situation cannot be so simple: Mayer and Hansen (2017) indicates that in general 

there cannot be a strong propensity for robustness and evolvability to co-occur, and 

that previous observations may have been limited to biologically unreasonable scenar­

ios. While these later observations do not undermine any previous work, they highlight 

an ever-present concern with research in this field, that seemingly small details can have 

profound implications, and that the diversity of ways in which additional complexity 

may be introduced together present a concern as to the biological applicability of such 

work. 
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2.2 Development 

‘Development’ is a slightly friendlier term than ‘ontogenesis’ often used to refer to the 

growth of an embryo – a relatively simple entity with a complete genetic makeup – 

to an adult organism capable of reproduction. Loosely, it is a mechanism by which the 

genotype of an individual is transformed into a phenotype, as an egg grows into a pigeon. 

Developmental processes have long been recognised as a potential mechanism to facilitate 

evolvability by means of directed variation, and particular attention was brought to its 

significance by Waddington and Robertson (1966), who compared development to a 

ball rolling down an ‘epigenetic landscape’: the initial position of the ball is genetically 

determined, and the shape of the epigenetic landscape will determine where the ball rolls 

(which terminal phenotype is produced). He used this idea to explain how a phenotype 

may become robust to genetic variation, as a small change in the ball’s initial position 

won’t influence its final resting position if the path is sufficiently ‘canalized’ (a landscape 

with deep canals will direct the ball the same way when its initial position is perturbed 

slightly). Hansen (2006) described canalization in terms of epistasis, such that the fitness 

gradient in a region of genotype space is shallow. 

Research into the evolution of developmental processes continues under the title ‘evo­

devo’ (Müller, 2007) and as part of the broader ‘Extended Evolutionary Synthesis’ (La­

land et al., 2015). Some elements of the developmental process are sometimes cast as a 

genotype-phenotype mapping (G-P map), where the genotype is the genetic information 

inherited from its parent(s) and the phenotype determines its fitness. The separation 

of genotype and phenotype is important because the G-P map may translate random, 

undirected variation in the genotype to biased variation in the phenotype. The biases 

in the developmental process may significantly limit the space of accessible phenotypes, 

leading to “developmental constraints” (Smith et al., 1985): 

A developmental constraint is a bias in the production of a variant phenotype 

or a limitation on phenotypic variation caused by the structure, characteris­

tics, composition, and dynamics of the developmental system 

Such constraints have a direct evolvability consequences: they may be beneficial in 

preventing the developmental of unviable types (improved robustness), may facilitate 

useful phenotypic variation, or may unhelpfully limit the accessibility of fit phenotypes. 

Crucially, the developmental process itself is a product of past evolution, and so the 

nature of the constraints on a lineage may change over time (Watson and Szathmáry, 

2016). 

Observations like Hansen’s highlight an important consideration when a separation 

between genotype and phenotype is employed: evolution cannot strictly change the 
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genotype-fitness map. Consequently, we must be careful when we describe an evolu­

tionary change in the genotype which appears to produce a change in the genotype-

phenotype map; rather, the evolutionary process is exploring a different region of the 

genotype-fitness map, one with different properties (of particular importants to Hansen, 

the nature of the local epistasis may be different). None-the-less, it is instructive to 

make this separation, as it allows us to discuss the evolution of specific phenotypes, 

rather than deferring to changes in fitness. 

Hansen (2013) discusses how non-linear developmental processes introduce epistasis, and 

that ignoring development is akin to ignoring the higher-order components of a series 

expansion (i.e. only considering the tangent of a fitness curve). While useful predictions 

can be made about short-term evolution without considering the developmental process, 

this omission will fail to generalise as you move further from the original genetic back­

ground (the tangent tells you little about the global properties of a curve). Furthermore, 

in the absence of some other source of epistasis (e.g. in the determination of fitness), 

such a model is unable to model evolvability. This important observation provides some 

indication that the various complexities introduced to better model biological systems 

(e.g. development, niche-construction) are necessary to make inferences about the real 

world. 

One aspect of development that has been treated as form of G-P map is the regulation 

of gene expression. Many models of gene regulation have been used (Ho and Charleston, 

2011; Spirov and Holloway, 2013), including boolean nets (Payne et al., 2014), petri-nets, 

Bayesian nets, Hopfield Networks (Hopfield, 1982), and other systems of differential 

equations (Hopfield, 1982; Watson et al., 2014; Siegal and Bergman, 2002; Steinacher 

et al., 2016). Such models usually have a small state space, and encode, along with 

the initial conditions, some information about transitions between states (e.g. how 

genes influence one-another). These transitions may be discrete or continuous, but 

often the dynamics allow only a limited number of stable terminal states, each reachable 

from multiple embryonic states, which provides a directly analogy to developmental 

constraints (Watson et al., 2014; Smith et al., 1985) and canalization Waddington and 

Robertson (1966); Siegal and Bergman (2002). 

This dissertation is concerned with a variation on the continuous model of gene regulation 

introduced by Siegal and Bergman (2002), which has previously been compared to a 

Hopfield network (Kounios et al., 2016). In this model, the expression of each gene is 

represented as a vector of gene expression levels, and the change in expression levels is 

governed by a matrix of interactions. Siegal and Bergman (2002) used this model to 

demonstrate how the principles of canalization (from Waddington and Robertson (1966)) 

could depend on the nature of gene regulation, and to show that no special evolutionary 

explanation is needed for properties like robustness and evolvability: they may be an 

inevitable consequence of development. 
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While this continuous model is capable of producing oscillations (i.e. the developing gene 

expressions may not settle in some cases), in practise the regulatory networks that are 

explored tend to be consistent - if not symmetric - and guide the developmental process 

to a handful of possible (stable) states. These developmental constraints were explored 

by Watson et al. (2014), showing that a gene regulation network could evolve to reliably 

reproduce one of two possible patterns, but that the regulatory network imposed sig­

nificant constraints on what could be developed from different initial conditions despite 

the theoretically large space of possible phenotypes. They considered two versions of 

the gene regulation model: one ‘linear’1 with no epistatic effects, and one ‘non-linear’ 

with ample opportunity for epistasis. They found that the non-linear regime was able 

to evolve a ‘developmental memory’ of multiple previously evolved phenotypes (corre­

sponding to previous selective environments); the linear model could not (as indicated 

by Hansen (2013)). This ‘memory’ was a consequence of what amounted to correlation 

learning in the regulatory connections: the strength of the regulatory connection be­

tween each gene was proportional to the average ‘signal’ (the proportion of the time the 

genes were positively correlated minus the proportion of the time the genes were nega­

tively correlated). This was compared to Hebbian learning, and the GRN was described 

as a ‘self-modelling system’ (Watson et al., 2011a,c; Power et al., 2015): it evolves in 

such a manner as to reproduce previously experienced states. 

Kounios et al. (2016) proceeded to explore the same (non-linear) model of gene regulation 

as Watson et al. (2014). Kounios et al. (2016) evolved the initial expression of the 

genes and the connections between them in a fixed, epistatic environment, but with 

regular ‘resets’, representing periods of genetic drift. Because the system was regularly 

partially reset, it would explore many different (locally optimal) phenotypes, and so 

the evolving connections in the GRN would again reflect the average signal. Though 

the selective environment was chosen to have only local epistatic constraints (disparate 

genes experienced almost no signal on average), so long as the rate at which the GRN 

evolved was slow enough, the system was able to integrate these signals and ultimately 

canalized the globally optimal phenotypes2 . 

Models of gene regulation with a non-continuous representation of gene expression (such 

as the model from Wagner (1994) whence the Siegal and Bergman (2002) model is de­

rived, and that in Crombach and Hogeweg (2008)) can show many of the same behaviours 

as the continuous models; however, because the non-continuous models have an inher­

ently limited space of phenotypes (they only record whether a gene is strongly or weakly 

expressed, rather than to what extent they are expressed), they do not lend themselves 

to self-modelling as described by Watson et al. (2011c): in discontinuous models, fitness 

evaluation may, for example, be performed by computing the hamming distance between 

1The terminal gene expression is a linear function of the initial gene expression; it is a polynomial 
function of the connections in the GRN. 

2The model had 2 complementary globally optimal phenotypes, both stable states for the same GRN. 
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the phenotypic gene expression and a target phenotype (Wagner, 1994) or by the num­

ber of inter-gene constraints that are satisfied. In a continuous model, fitness evaluation 

may depend on how strongly the genes are expressed, and so there is opportunity for 

directional selection: even if all genes are strongly expressed (as opposed to weakly), 

there my be a fitness benefit to making them more strongly expressed. This property 

is crucial to the results in Watson et al. (2011c) and others that follow (Watson et al., 

2014; Kounios et al., 2016; Kouvaris et al., 2017). 

2.3 The Evolution of Evolvability in Network Models 

The evolution of evolvability is of interest not only because it may help to explain the 

adaptability of biological systems, but also because of the seemingly implausible notion 

that natural selection should favour beneficial future variability when it can only select 

from present variation. While many features have been suggested that may increase the 

evolvability of organisms, it remains an open question how many of these features might 

evolve: one challenging question is to what extent evolvability evolves in response to 

selection for evolvability itself (Pigliucci, 2008; Payne and Wagner, 2019; West-Eberhard, 

2019; Wagner and Draghi, 2010). 

Draghi and Wagner (2008) discuss some general suggestions as to why selection for 

evolvability may be infeasible, and cite evidence to the contrary, suggesting that selection 

for evolvability may indeed be a significant factor. Addressing the idea that evolution 

is myopic and incapable of anticipating the (unknown) future, they say 

... evolutionary biology contains several frameworks for understanding adap­

tation, such as geometric mean fitness (Stearns, 2000) and lifetime reproduc­

tive success, in which selection, by integrating information about the past, 

appears to anticipate the future. Seen in this context, this objection to the 

evolution of evolvability is simply an empirical question about how well past 

environments predict future ones, and not a logical paradox. 

Watson and Szathmáry (2016) make a similar observation, comparing evolution to a 

learning process, and suggest that the evolution of evolvability is no more mysterious 

than the ability of (human designed) machine learning models to generalise over a train­

ing set, and thereby achieve good performance against a (previously unseen) test set 

drawn from the same distribution of problems. In the evolutionary sense, this distribu­

tion of problems could be collections of temporally or spatially separated environmental 

conditions which provide fitness landscapes with ‘structural regularities’: experience in 

one set of such environmental conditions may enable a population to evolve a ‘model’ 

of these regularities, and consequently be better able to adapt in newly - or repeatedly 
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- experienced environmental conditions. It may even be that the evolution of the model 

could occur under any sort of adaptive selection. 

Riedl (1977) describes a possible mechanism by which evolvability may be increased as 

a result of selection preserving mutations which have a positive epistatic effect: if an 

evolvability enhancing mutation is accepted into a population for any reason (perhaps 

even drift), it may remain in the population if other mutations occur which depend on 

its epistatic contributions. Another mechanism by which evolvability could be directly 

selected is presented by Pavlicev et al. (2011), where the propensity of mutations to occur 

is determined by a ‘G’ matrix of coefficients, which effectively determine the principle 

directions in genotype space in which variation operates. 

A more general mechanism by which evolvability might evolve is lineage selection, a phe­

nomenon whereby diversity in a population permits selection for variation with long-term 

– rather than immediate – fitness consequences, provides a possible explanation for selec­

tion for evolvability Kirschner and Gerhart (1998); Virgo et al. (2017); Nunney (1999); 

Watson (2020). Lineage selection can be understood if we consider a heterogeneous 

population containing two types, one of which is better able to respond to a changing 

environment than the other. If the environment changes, the more responsive lineage 

will out-compete the other during the transitional period where the whole population is 

responding. Consequently, in the absence of recombination, the genes which conferred 

the greater evolvability will proliferate so long as they have a non-deleterious fitness 

effect or the environment continues to vary with a sufficiently high frequency that drift 

or selection against the evolvability increasing genes can be overcome. 

These different mechanisms are largely compatible, and as such even if any one of them 

may be present in a given scenario, it can be difficult to rule out the others. This can 

make it difficult to discerne why evolvability emerges both in models and in the real 

world. 

2.3.1 The Evolution of Modularity and Hierarchy in Network Models 

Though this dissertation is primarily concerned with the evolutionary causes and con­

sequences of hierarchy, past and present work on hierarchy is often also concerned with 

modularity, and this dissertation is no exception. Both modularity and hierarchy are 

related to the concept of sparsity (Espinosa-Soto, 2018), where there are few connec­

tions between components, and are natural concepts in the discussion of the topologies 

of networks and graphs. In the context of a gene regulatory network, the components 

may be genes (or groups of genes) and the connections the various regulatory interac­

tions between them. Per Clune et al. (2013), “Networks are modular if they contain 
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highly connected clusters of nodes that are sparsely connected to nodes in other clus­

ters”. The prevalence and significance of modularity has long been recognised in bio­

logical systems, and specifically in gene regulation networks and other developmental 

systems (Wagner and Altenberg, 1996). More abstractly, the value of modularity in prob­

lem solving has previously been demonstrated by work relating to the Building Blocks 

Hypothesis (Goldberg, 1988), which shows that modularly decomposable problems (or 

‘nearly-decomposable systems’ (Simon, 1969)) can be solved by recombinative evolution­

ary processes so long as there is strong linkage within modules and weak linkage between 

them. The challenge for an evolutionary system, then, is to infer the appropriate linkage 

within and between modules. Intuitively, a modular gene regulatory network would be 

one there genes which contribute to particular function may be closely connected by 

regulation, while genes with disparate fitness effects will be largely decoupled. Conse­

quently, mutations may significantly affect just one aspect of morphology or behaviour, 

making it possible to change different parts of the body or behaviour independently in 

a modular GRN. 

Hierarchy imposes some assumption of asymmetry such that some components in a 

network may direct the action of many other components. This is also recognised as a 

potentially significant property of biological networks (Koza, 1994; Hallinan, 2004; Erwin 

and Davidson, 2009), and it has been shown that biological regulatory networks (which 

are inherently recurrent systems) can include large hierarchies (Force et al., 2005). One 

simple - though important - consequence of hierarchy is ‘switch-like behaviour’ in gene 

regulation (Yu and Gerstein, 2006): the expression of one gene may determine the ex­

pression of many others. On a larger scale, hierarchies can enable reuse and independent 

evolution of sub-tasks (Yu and Goldberg, 2006; Mengistu et al., 2016; Kashtan et al., 

2005) over evolutionary time and as such is an important consideration for research 

on evolvability. Because hierarchies limit the number of connections between compo­

nents, they provide the basis for a scalable organisation: potentially many components 

can coordinate without the need for reliable multi-way communication, which would be 

problematic when channels of communication are slow or costly to maintain. 

Wagner and Altenberg (1996) and Wagner (1996), in discussing possible explanations 

for the evolvability of modularity, suggest that modularity should not be taken for 

granted and discussed the mechanisms whereby it might evolve. Using the language 

of pleiotropy (the propensity for individual genes to influence multiple phenotypic char­

acters (Pavlićev, 2016)), Wagner and Altenberg (1996) suggested that there are two 

general processes that can lead to modularity: ‘integration’ and ‘parcellation’. Integra­

tion involves the emergence of connections between related components (e.g. greater 

pleiotropy between genes in a GRN), while parcellation involves the loss of associations 

between components. Wagner and Altenberg (1996) suggested that these two processes 

can occur due to differential selection on pleiotropy between components, making a 

distinction between ‘acquisition’ and ‘suppression’: there may be selective pressures to 
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increase pleiotropy or to reduce pleiotropy; either could lead to the evolution of mod­

ularity if the initial conditions are appropriate (e.g. integration assumes an initially 

sparsely coupled system; parcellation assumes an initially tightly coupled system). 

One possible explanation for the differential selection described by Wagner and Al­

tenberg (1996) would be evolution under ‘Modularly Varying Goals’ (MVG) (Kashtan 

et al., 2005), which refers to tasks with multiple problem instances, each of which has 

the same underlying modular structure. In evolutionary terms, MVG might occur as a 

consequence of a regularly changing environment where different aspects of the environ­

ment challenge different aspects of the morphology or behaviour of the organisms that 

live there. For instance, the environment may be variously hot or cold, selecting for short 

or long fur, while food may be abundant above or below ground, selecting for burrowing 

and foraging behaviours. The idea is that there will generally be selective pressure to 

acquire or suppress pleiotropy in order to produce a fit individual, and that the pattern 

of selection will be consistent within modules, and inconsistent between modules. It has 

been shown that exposure to such modularly varying goals can promote the evolution of 

modularity in simulated networks (Wagner and Altenberg, 1996; Kashtan et al., 2005, 

2009), and represent a class of problems that promote an acceleration in the rate of 

evolution (Kashtan et al., 2007), but also that modularity in the problem by no means 

guarantees the evolution of a modular or efficient solution (Clune et al., 2013; Kouvaris 

et al., 2017). 

Following from Kashtan et al. (2005) (which introduced the term MVG), Kashtan et al. 

(2007) describes how the long term evolutionary consequences of exposure to modularly 

varying goals affects multiple different evolutionary scenarios, and compared how quickly 

evolution operates under MVG than with randomly varying goals. One of the models 

used was that of a multi-layer neural network, where fitness was determined by the 

networks ability to classify different stimuli. The stimuli comprised multiple inputs, 

and in the modular case, the relations between the inputs varied in a modular manner, 

such that the problem could be modularly decomposed. Using the same model, Clune 

et al. (2013) and Mengistu et al. (2016) showed that a system of modularly varying 

goals could be ‘solved’ by a non-modular recognition network, but that the inclusion 

of a cost of connections between components promoted the evolution of a modularly 

and hierarchical structured networks. These sparse networks where able to find fitter 

solutions more quickly than their non-modular cousins when the goal changed in manner 

consistent with previous variation, providing a stark demonstration of the evolution of 

evolvability. 

Kouvaris et al. (2017) used the same (non-linear) model of gene regulation as Watson 

et al. (2014) and Kounios et al. (2016) discussed above, where connections between genes 

are modelled as either have a positive or negative regulatory effect. They evolved the 

initial conditions of the genes and the connections between them in a modularly changing 

environment. Importantly, they used a somewhat ‘unbalanced’ environment, where 
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the different environmental modules did not vary completely independently: different 

modules had a significant co-variance. As in Clune et al. (2013) and Mengistu et al. 

(2016), they showed that the inclusions of a cost of connections provided the necessary 

selective pressure to suppress pleiotropy to evolve a suitably modular (in their case 

regulatory) network. 

Notably, Kounios et al. (2016) (and other similar investigations (Watson et al., 2011c)) 

employ directional selection, such that there is always a way to increase fitness, if only 

marginally, by evolving in a particular ‘direction’. The directional selection on geno­

types is a consequence of the use of a continuous GRN (where, in practise, the gene 

expressions can always be increased) and directional selection on phenotypes. These 

investigations certainly result in canalization of fit phenotypes. The use of selection 

toward ‘extreme’ (often unobtainable) phenotypes was identified as a common weakness 

in such investigations by Rünneburger and Le Rouzic (2016). Importantly, the use of 

a cost of connections by Kouvaris et al. (2017) changes selection on genotypes (but not 

phenotypes) to stabilising selection (selection toward a ‘peak’, where any deviation from 

the peak would produce a reduction in fitness), which has the effect of reducing the 

extent of canalization. 

Accepting that modularity may confer evolvability, Clune et al. (2013) address the ques­

tion of how such modularity might evolve as a consequence of selective forces, without 

wishing to assume that the long-term benefits of evolvability will be recognised by short­

sighted selection: 

We investigate an alternate hypothesis that has been suggested, but hereto­

fore untested, which is that modularity evolves not because it conveys evolv­

ability, but as a by-product from selection to reduce connection costs in a 

network. 

They proceed to demonstrate the evolution of modular network topologies for classi­

fication problems using a stochastic variation on the Non-dominated Sorting Genetic 

Algorithm version II (NSGA-II) (Deb et al., 2002), which employs the concept of Pareto 

dominance to optimise multiple objective functions within a single population. Such 

methods are employed in genetic algorithms for optimisation problems, and increase the 

diversity of the population without repeatedly exploring unfit regions of the phenotype 

space. As already noted, modularity bounds, to some extent, the complexity of a sys­

tem, and this paper explicitly encodes the intuition that by punishing complexity we 

can promote the evolution of meaningful structure: a ‘parsimony pressure’ (a cost of 

connections) is included in the multi-dimensional objective function on the individuals 

in the population. 

Following therefrom, Mengistu et al. (2016) shows the evolution of hierarchical imple­

mentations of binary functions in essentially the same model as Kashtan et al. (2005). 
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Again, a cost of connections is employed as a parsimony pressure, and they showed 

that it induced the system to evolve a hierarchical topology. Furthermore, they tested 

the evolvability of the hierarchical topologies by making localised changes to the prob­

lem, and showed that, when an appropriate representation was evolved, the system was 

able to quickly evolve a high fitness phenotype due to weak coupling of independent 

components. 

Cost of connections were further explored by Kouvaris et al. (2017), wherein they show 

that a simple developmental model with a recurrent network topology evolves indepen­

dent modules of correlated traits under MVG when combined with a linear (L1) costs 

of connections. They conclude that the relatively sparse, modular networks produced 

confer an evolvability benefit as they provide a generalisation capability. They also make 

the suggestion that a quadratic (L2) cost of connections provides a lesser advantage, and 

Parter et al. (2008) find in their model that a cost of connections hampers the ability of 

their developmental system to facilitate useful variability. It is apparent, therefore, that 

a cost of connections by no means guarantees the evolution of a useful developmental 

mapping. 

2.4 Learning in Network Models 

While this dissertation is primarily concerned with concepts in evolution, it is instructive 

to briefly discuss its relation to ‘learning’, concepts from which our work (and prior works 

Watson and Szathmáry (2016); Kouvaris et al. (2017)) have borrowed. Learning is the 

ability for a system to improve its performance in some task as a result of past experience: 

genomes do not read books, but they are the result of continuous exposure to a variety of 

environments, and therefore evolutionary processes can – in theory – learn (Watson and 

Szathmáry, 2016). The evolution of evolvability can be considered a learning process, as 

a population or lineage becomes better at adapting to its environment after prolonged 

exposure. In the simplest case, this might only entail reproducing previously generate 

phenotypes more precisely and rapidly (robustness), or may be a dramatic change in 

variability that changes the accessibility of fit phenotypes. A change in variability that 

conferred robustness is presented in Kouvaris et al. (2017), and the authors directly 

invoke the concept of regularisation in machine learning to explain this: just as neural 

networks and other machine learning devices can learn to generalise over an incomplete 

training set when appropriately configured, so can non-trivial evolutionary models: the 

use of a suitable model (a GRN) and regularisation (a linear cost of connections) enabled 

the evolution process to ‘learn’ the environmental associations between genes. 

Because learning requires continuous or repeated exposure to something (the ‘training
 

set’ (Watson and Szathmáry, 2016)), it is necessary for a process to have some long­

term storage capability if it is to improve its performance. In some models which have
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shown evolvability enhancing changes in variability, the storage medium is not so clear. 

Parter et al. (2008), for instance, presents the evolution of evolvability in a model of 

RNA folding, where the short-term and long-term consequences of evolution are tightly 

coupled: if there are two time-scales at play here, it is much less apparent, and no 

mechanism of learning can be inferred. 

As discussed above, this dissertation will focus on the models employed by Kouvaris 

et al. (2017) and Kounios et al. (2016) derived from Siegal and Bergman (2002), where a 

matrix of regulatory connections provides an ideal medium for long-term accumulation 

of information. The learning mechanism involves integrating small changes (beneficial 

mutations) on the regulatory connections over many exposures, which has led to a notion 

of the importance of having two time-scales in such models: one time-scale exploits the 

information already integrated in the regulatory connections to evolve and express fit 

phenotypes; the other integrates the signal from directional selection (Kounios et al., 

2016). In practise, it seems that necessary for the first time scale to be much shorter 

than the latter (i.e. the stored information have short-term consequences but long-term 

causes). 



Chapter 3 

The Evolution of Hierarchy and
 

its Consequences for Evolvability
 

3.1 Introduction 

As discussed in Chapter 2, the term ‘evolvability’ has many definitions (Pigliucci, 2008; 

Lynch, 2007; Brown, 2013), but here we consider the general definition provided by Payne 

and Wagner, “the ability of a biological system to produce phenotypic variation that is 

both heritable and adaptive” (Payne and Wagner, 2019). There are at least two senses 

in which the ability of natural selection to find fit phenotypes might be improved. The 

first is an increase in rate: the ability of one process to to reach a particular high fitness 

phenotype more quickly than another. This sense presupposes that the two process can 

reach the same high fitness phenotype. The second is an increase in access: high fitness 

phenotypes that are unreachable with one evolutionary system (e.g. due to wide fitness 

valleys) are reachable with another (Watson, 2020). Loosely, a phenotype needs not 

only to be evolvable (access) to be useful, but also evolvable in a timely manner (rate). 

While much prior work discusses rate (directly or otherwise), here we focus on access in 

the context of a changing environment, where the ideal phenotype changes regularly. 

Many biological mechanisms have been identified as possible facilitators of such evolv­

ability, with some of these relying on a developmental process to provide a non-trivial 

mapping from genotype to phenotype (Payne and Wagner, 2019). Such mechanisms 

can introduce functional epistasis, with the consequence that the phenotypic effect (and 

hence fitness effect) of a single genetic substitution may depend heavily on the genetic 

background. Consequently, the same mutation may produce little change in the adult 

phenotype in one genetic background, but in another may effect a dramatic change. 

The developmental processes that might effect such phenotypic variability are them­

selves genetically encoded, and so subject to random variation and selection. As such, 

the genotype-phenotype mapping may itself be shaped by natural selection (Watson 

19
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and Szathmáry, 2016; Dall et al., 2015). We must also recognise that while a given 

genotype-phenotype map may be beneficial in some circumstances - perhaps enabling 

rapid evolution of viable phenotypes (rate or access evolvability) or minimising the oc­

currence of deleterious types (robustness) - it may have negative consequences in others. 

Two properties of systems that are regularly considered are modularity (the ability of a 

system to vary individual sub-systems independently of one-another) and hierarchy (the 

arrangement of a system such that a subset of components direct the action of others). 

Both have long been recognised as potentially significant to evolvability (Wagner and 

Altenberg, 1996; Wagner et al., 2008; Mitteroecker, 2009; Berg, 1960; Hansen et al., 

2007; Lipson et al., 2002; Lipson, 2007; Melo et al., 2016; Conrad, 2017; Hansen, 2003; 

Yu and Gerstein, 2006; Hallinan, 2004). Both can facilitate reusability and separation 

of concerns in systems designed by humans: properties which can permit robustness 

in natural systems (Lipson, 2007). Figure 3.1C shows how a modular regulatory net­

work might map multiple disparate genotypes to similar phenotypes. The clusters of 

phenotypes approximate neutral nets in the sense that individual mutations have little 

phenotypic - and so fitness - consequence. This is in stark contrast to a regulatory pro­

cess without developmental epistasis (e.g. Figure 3.1A) where changes in genotypes have 

correspondingly significant changes in phenotype. A regulatory network with epistasis 

but no semblance of decoupled modules (Figure 3.1B) may be robust to variation in 

some dimensions, but is limited in the variety of phenotypes it can actually produce. 

Figure 3.1D shows how a system of internally hierarchical modules, where one gene de­

termines the developmental trajectory of the whole module. This topology retains much 

of the robustness of the more densely connected modules in Figure 3.1C (where most 

mutations have little fitness consequence), but in addition maps some single-point mu­

tations (those which affect the controlling gene) to large changes in phenotype. These 

large moves in genotype space have the potential to ‘jump’ fitness valleys that may 

exist between viable phenotypes (e.g. on the boundaries of neutral nets), allowing an 

evolutionary process to explore variation at the module level directly. The fundamen­

tal difference between the ‘dense’ modules (Figure 3.1C) and the hierarchical modules 

(Figure 3.1D) is that in the case where both clusters are fit, the hierarchical topology is 

able to move from one to the other as it is not obstructed by any unfit phenotypes that 

may separate the two. Note that this is explicitly a case of a difference in access: it is 

immaterial how many mutations might be required for a system with dense regulatory 

modules to move through the phenotype space if any sequence of mutations necessar­

ily involves an initial reduction in fitness before reaching a potentially fitter alternative 

phenotype. 

Some prior work on the study of the evolution of evolvability characterise evolutionary 

process using only a mapping between genotype and fitness. Others decompose this 

into a mapping between genotype and phenotype, and a mapping between phenotype 

and genotype. Doing so enables one to talk about evolvability in terms of the ability 
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G-P Map
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Multi-modal
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Figure 3.1: Different regulatory networks have different consequences for 
the variability of the phenotype by changing the effects of variation in the 
genotype. Some examples of genotype-phenotype mappings that might occur in a 
gene regulatory network and their consequences for variability. (A) A one-to-one map­
ping effects no constraint on phenotypic gene expression. In the absence of external 
factors (e.g. noise, environmental influence) it preserves embryonic gene expression 
levels. Small changes in the genotype map directly to small changes in the phenotype. 
(B) A tightly coupled unstructured gene regulatory network constrains the phenotype 
significantly. Random variation in the genotype maps to biased variation in the phe­
notype, and may influence the rate at which the genotype space can be traversed. (C) 
Independent strongly connected modules restrict the phenotype within each module. 
Mutations in fit genotypes produce little variation in the phenotype. (D) Indepen­
dent hierarchical modules impose the same constraints and robustness within modules 
but provide access to other phenotypes by mapping some gene-level mutations in the 

genotype to module-level variation in the phenotype. 
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and rate at which a system can evolves phenotypes. This is the approach we take here, 

as it allows us to discuss access evolvability. Various works demonstrate the ability 

of a population with a genotype-phenotype map or complex genotype-fitness map to 

evolve some manner of evolvability (Kashtan et al., 2005; Parter et al., 2008; Clune 

et al., 2013; Mengistu et al., 2016; Kashtan et al., 2009; Rünneburger and Le Rouzic, 

2016; Crombach and Hogeweg, 2008); however, it is often not wholly apparent whether 

a measured increase in evolvability is due to a change in access (because fit phenotypes 

were previously inaccessible), or rate (the time to reach fit phenotypes was prohibitive). 

A successful line of enquiry for evolvability research is the use of Modularly Varying 

Goals (MVG) (Kashtan et al., 2005). MVG entails the exposure of a system to multiple 

‘goals’ (e.g. environmental conditions) which have the same underlying modular struc­

ture. Parter et al. (2008) use this paradigm to demonstrate ideas concerning ‘Facilitated 

Variation’ (Gerhart and Kirschner, 2007; Kirschner and Gerhart, 2005), providing vivid 

demonstrations of the potential for a non-trivial genotype-phenotype map to enable use­

ful variability. They found that a population of Boolean-networks selected in rapidly 

changing environments becomes better able to adapt to new environments. The in­

creased evolvability was due to the phenotypic neighbourhood becoming ‘enriched’ with 

novel types which represent appropriate evolutionary targets for environments which 

share the same modular structure as those in which the population evolved. Further­

more, their results with a model of RNA folding illustrate the dramatic consequences 

that a non-trivial developmental process can have on phenotypic variability, by facilitat­

ing adaptive structural changes in the phenotype with minimal variation in the genotype 

(Parter et al., 2008). In these works, it is shown that novel phenotypes are evolved, which 

could be interpreted as access evolvability; however, it is not clear that these phenotypes 

could not be reached given sufficient time. 

Clune et al. (2013) suggested that evolvability could evolve as a side-effect of selective 

forces favouring parsimonious (simple) systems. To explore this, they investigated the 

evolution of feed-forward recognition networks (as originally employed by Kashtan et al. 

(2005) to investigate MVG). They demonstrated the consistent evolution of modular 

structures under a cost of connections when a population of networks is evaluated on 

a modular recognition problem (Clune et al., 2013). This line of inquiry was continued 

by Mengistu et al. (2016), where they found that the same cost of connections can pro­

mote the evolution of sparse hierarchical networks. The hierarchical topology provides 

an evolvability benefit, enabling a population to adapt more readily than more dense 

networks to a new problem with the same underlying structure. The precise cause of the 

evolution of hierarchy they observe is not apparent - as the use of a population and a 

diversity maintenance mechanism would provide ample opportunity for lineage selection 

- though it is clear that the cost of connections is a significant factor (Mengistu et al., 

2016). 
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Kouvaris et al. (2017) employed MVG and a cost of connections to demonstrate the 

evolution of modular structures in a developmental regulatory network. They found 

that applying a cost of connections resulted in the evolution of relatively sparse modular 

networks. By removing dependencies between modules, the system permits modular 

variability which allows the development of a whole class of phenotypes, and provides 

robustness against deleterious mutations. 

A parsimony pressure will not always promote evolvability: Parter et al. (2008) found 

that a cost of connections hindered facilitated variation in two models, and Kouvaris 

et al. (2017) showed that different types of parsimony pressure could result in different 

extents of pleiotropy, affecting the ability of evolved modules to vary independently (i.e. 

weak linkage to a greater or lesser extent). Just as with regularisations in learning, 

different cost functions produce different results. 

3.2 Methodology 

We use variations on a model previously employed by Kounios et al. (2016) and Kou­

varis et al. (2017). It describes asexual individuals whose phenotypes are a deterministic 

function of their individual genotypes. An individual’s fitness is a function of the suit­

ability of their phenotype to the environmental conditions and a cost term computed 

from their genotype that models the cost of gene-regulation (the cost of connections). 

A hill-climber model provides an approximation of a population undergoing a micro-

evolutionary process with strong-selection weak-mutation assumptions (Gillespie, 1984) 

which imply genetic homogeneity. Short-term variation is supplied through random mu­

tation of the genotype each evolutionary step, and we assume perfect elitism such that 

no genotype will ever be displaced by a less fit mutant genotype. 

In some experiments, additional variation will be introduced at regular intervals, called 

episodes, as in Kounios et al. (2016), simulating periods of neutral selection where the 

genome is subject to drift. In others, the environmental conditions experienced by the 

hill-climber change each episode, with the variation following a modular pattern per 

MVG, as in Kouvaris et al. (2017). Different environments are used to explore different 

dynamics. The fitness landscapes will routinely contain local fitness optima, which would 

trap an incremental hill-climber operating in the phenotype space directly. Crucially, 

the inclusion of a genetically controlled developmental step allows for the evolutionary 

process to change the genotype-phenotype mapping, and thereby change the accessibility 

of different phenotypes over time (future variability will depend on past selection). 



24 Chapter 3 The Evolution of Hierarchy and its Consequences for Evolvability 

3.2.1 Developmental Model 

The developmental mapping between genotype and phenotype (the G-P map) is a vari­

ation on a standard model of gene regulation (Siegal and Bergman, 2002; Vohradsky, 

2001; Spirov and Holloway, 2013), which has been used by various works from which this 

dissertation follows (Watson et al., 2014; Kounios et al., 2016; Kouvaris et al., 2017). 

The developmental process guides an initial ‘embryonic’ state of gene expressions to a 

phenotype of terminal ‘adult’ gene expressions. The genotype of an individual comprises 

a vector of initial gene expressions G and a matrix B that describes the interactions be­

tween each gene during development. A vector P describes the levels of gene expression 

in the adult phenotype. Development is deterministic, so the phenotype is solely a func­

tion of the individual’s genotype (it is not a function of the environment or any random 

noise). The vectors P and G have length N (the number of genes), and the matrix B 

is square with dimensions N . Elements in G are binary (except at the very start of the 

simulation, when they are initialised to zero), either −1 or +1, while the values in B 

vary continuously and are unbounded. 

The developmental process is the same used by Kouvaris et al. (2017), a slight variation 

on that introduced by Siegal and Bergman (2002). It is an iterative regulatory process, 

which is run for a fixed number of time-steps. The levels of expression of the ith gene 

expression at time-step t is denoted by yi(t). The process is described by an update 

equation, which gives the expression of the ith gene at time t + 1 as a function of the 

regulatory matrix B, decay term τ = 0.2, squash function σ(x) = tanh(x/h), squash 

constant h = 2, and the gene expressions at time t. 

⎛ ⎞ 
N 

yi(t + 1) = (1 − τ )yi(t) + σ ⎝ Bij yj (t)⎠ (3.1) 
j 

The phenotypic gene expression is then given by P = τY (T ) where Y (t) describes the 

vector of all gene expressions at time t and T is the number of developmental time-steps. 

The initial state is Y (0) = G, and we set T = 10 in most experiments for consistency 

with previous literature (Kouvaris et al., 2017). 

By selecting σ such that σ(x) ∈ (−1, +1), and recalling that the initial gene expressions 

yi(0) ∈ [−1, +1], we can show that the gene expressions are bounded such that yi(t) ∈ 

(−1/τ, +1/τ). Consequently, the phenotypic gene expressions Pi (which are the terminal 

conditions scaled by τ) are in the range (−1, +1). A proof of this is provided in Proof 

of Bounded Phenotypic Expression for completeness. 

Each entry Bij of the regulatory matrix B describes the regulatory effect of gene j 

on gene i. A positive regulation coefficient contributes a change in the expression of 

gene i which is consistent with the sign of the expression of gene j; a negative value 
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produces the opposite effect (because negative expressions are permitted, these do not 

map directly to activation and inhibition in a biological gene network). The greater 

the magnitude of Bij , the larger the additive contribution of gene j’s expression to the 

term inside the ‘squash’ function σ, and so the more influence it has on gene i. We use 

σ(x) = tanh(x/2), as it is a suitably bounded continuous and monotonically increasing 

function. Being odd (symmetric), it produces no bias between positive and negative 

values which might influence the system. Because the output has the same sign as the 

input, it doesn’t disrupt directional selection. 
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Input
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O
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t
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Figure 3.2: The squash function tanh(x/2) is (odd) symmetric around x = 0, mono­
'tonically increasing (x > 0), and asymptotically approaches −1 and +1. 

Table 3.1 provides a summary of the developmental parameters. Apart from the number 

of genes N and number of developmental timesteps T , these will be the same in all 

experiments, and the same as those found in Kouvaris et al. (2017) (though τ2 is renamed 

τ and the update-rate τ1 = 1 is omitted for simplicity). 

Parameter Symbol Values 

Number of genes N Variable 
Number of developmental timesteps T Variable (usually 10) 
Squash Function σ σ(x) = tanh(x/h) 
Squash Constant h 2 
Gene Expression Decay Rate τ 0.2 

Table 3.1: Parameters of the developmental model. 

3.2.2 Evolutionary Model 

The evolutionary process is modelled as a hill-climber, which represents a population 

undergoing a micro-evolutionary process of strong-selection and weak-mutation assump­

tions (Gillespie, 1984) with elitism. These assumptions approximate the behaviour of a 

population where any mutation that occurs will either rapidly fix in the population or 

be lost before another mutation occurs, restoring genetic homogeneity. 
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Algorithm 1 Pseudocode for the developmental process.
 
1: procedure Develop(G, B, T, σ, τ) 
2: t ← 0 
3: Y (0) ← G 
4: while t < T do 
5: 

6: 

for i ∈ N do 
yi(t + 1) ← (1 − τ)yi(t) + σ(

 N 
j Bij yj (t)) 

7: end for 
8: t ← t + 1 
9: end while 

10: return τ Y (T ) 
11: end procedure 

The hill-climber operates on an individuals which comprise the genetic information 

(G, B) and the developed phenotype P . The state of the hill-climber is a ‘current’ indi­

vidual representing the homogenous population, and each evolutionary step this current 

individual’s genotype is cloned and mutated to produce a new ‘candidate’ genotype. 

This candidate genotype is developed to produce a phenotype, and together they com­

prise the candidate individual. The current and candidate individuals are both awarded 

a fitness based on their suitability to the current environmental conditions and a cost 

of regulation (a function of B). If the candidate individual’s fitness is greater than 

the fitness of the current individual, then it replaces the current individual; otherwise, 

the current individual is retained for that evolutionary step: beneficial mutations fix 

immediately, and neutral or disadvantageous mutations are lost. 

During mutation, either the matrix of regulatory coefficients B or the vector of initial 

gene expressions G is mutated. B is mutated with probability RB, which equals one-half 

in experiments where both components are free to change. In some experiments we will 

fix G, and so the probability of mutating B will be RB = 1. 

Excepting those in Chapter 6, the manner of variation (simulating mutates) is as fol­

lows. When B is mutated, a single entry is chosen at random to be modified by addi­

tion of a random number. The random number is sampled uniformly from the range 

[−MB , +MB ]. When the vector of initial gene expressions G is mutated, a single el­

ement is chosen at random to be mutated. In some models, a small number sampled 

uniformly from the range [−MG, +MG] is added to this element, and clamped to the 

range [−1, +1]. In others, the element is assigned the value −1 or +1 with equal prob­

ability. While the possible values in G are consequently limited, the entries in B are 

unbounded. Unless otherwise specified, the values in B and G are initialised as all zero. 

The fitness f of an individual is the difference between a benefit term b (a function of 

the phenotype and environment) and a cost term λc (a function of the genotype). The 

benefit term describes how well suited a phenotype P is to the current environmental 

conditions and is detailed in the next section. The cost term simulates a cost of gene 
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regulation, which is known to be costly in biological organisms (Lang et al., 2009; Lynch 

and Marinov, 2015). We model this cost as the mean of some function φ over the 

magnitudes of the regulation coefficients found in the regulation matrix B (Eq 3.3) 

scaled by the parameter λ (Eq 3.2): this is the ‘cost of connections’. 

f = b − λc (3.2) 

N,N 
1 

c(B) = φ(|Bij |) (3.3)
N2 

i,j 

Table 3.2 provides a summary of the evolutionary parameters used throughout this 

thesis. 

Parameter Symbol Values
 

Number of genes N Variable 
Number of simultaneous G mutations CG Variable 
G vector mutation magnitude MG Variable 
G vector mutation type Binary or Uniform 
B matrix mutation probability RB 0.5 or 1 
B matrix mutation magnitude MB Variable 
B matrix mutation type Uniform 
Regulation Cost Coefficient λ Variable 
Regulation Cost Function φ Usually φ(|x|) = |x| 

Table 3.2: Parameters of the evolutionary model. 

It should be noted that there is some redundancy between these parameters and those 

described in Section 3.2.1. In the absence of a cost of connections, the squash coefficient 

h from the developmental model, the B mutation magnitude MB can be changed in 

proportion without changing the model (a property that is largely respected by the 

software implementation); for a linear (L1) cost of connections, λ must also be changed 

in proportion. The squash coefficient h and cost coefficient λ can be subsumed into the 

squash function σ and cost function φ respectively but are preserved for interpretability 

and consistency with previous literature. 

3.2.3 Model of a Modularly Changing Environment 

The benefit term b in Eq 3.2 is a function of the expression of phenotypic gene expressions 

P and the environmental conditions η it experiences. In this Chapter, we consider 

individuals of size N = 16, and – for the purposes of selection only – logically divide 

the phenotype into 4 ‘modules’ of 4 genes. The environmental conditions regularly 

change in a modular manner, such that coordination between genes within a module 
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Algorithm 2 Pseudocode for mutation.
 
1: procedure Mutate(G, B, MG,MB , RB, BinaryG) 
2: G " ← G 
3: B " ← B 
4: if rand([0, 1)) < RB then 
5: i ← rand({1..N}) 
6: j ← rand({1..N}) 
7: µ ← rand(U [−MB, +MB]) 
8: B " ← B " ij ij + µ 
9: else 

10: i ← rand(1..N) 
11: if BinaryG then 
12: µ ← rand({−2, 2}) 
13: else 
14: µ ← rand([−MB, +MB]) 
15: end if 
16: G " ← clamp([−1, 1], G " i + µ)i 
17: end if 
18: return G " , B " 

19: end procedure 

Algorithm 3 Pseudocode for evolution.
 
1: procedure Evolve(G0, B0, E, λ, epochs, K, MG,MB , RB , BinaryG, Z, cL, cH , c0) 
2: G ← G0 

3: B ← B0 

4: epoch ← 0 
5: while epoch < epochs do 
6: Randomise(E, Z, cL, cH , c0) 
7: evolutionary step ← 0 
8: while evolutionary step < K do 
9: G " , B " ← Mutate(G, B, MG,MB, RB, BinaryG) 

10: f ← Evaluate(G, B, E, λ) 
" 11: f ← Evaluate(G, B, E, λ) 

" 12: if f > f then 
13: G ← G " 

14: B ← B " 

15: end if 
16: evolutionary step ← evolutionary step + 1 
17: end while 
18: epoch ← epoch + 1 
19: end while 
20: return G " , B 
21: end procedure 
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Algorithm 4 Pseudocode for randomising the modularly changing environment.
 
1: procedure Randomise(E, Z, cL, cH , c0) 
2: + , cm m

−for (c
 ) ∈ E do 
multipeaked ← rand([0, 1)) < Z 3: 

4: positive ← rand(0, 1) = 0 
5: if positive then 

+ ← cH6: cm 
7: if multipeaked then 

− ← cl8: c
9: else 

10: c

m 

− ← c0m 
11: end if 
12: else 

− ← cH13: cm 
14: if multipeaked then 

+ ← cl15: c
16: else 
17: c

m 

+ ← c0m 
18: end if 
19: end if 
20: end for 
21: end procedure 

Algorithm 5 Pseudocode for evaluating an individual.
 
1: procedure Evaluate(G, B, E,) 
2: P ← Develop(G, B) 
3: benefit ← Judge(E, P ) 

N,N 
4: cost ← i,j Bi,j 

5: return benefit − λ × cost 
6: end procedure 

is consistently rewarded, but there is no such pattern between modules. We describe a
 

class of environments with the following benefit function (Eq 3.4), where M is the set of
 

modules, m ∈ M is the set of genes in a module, and η is a collection of ‘module benefit
 

functions’ ηm : R → R. 

� � 
1 1 

b(P, η) = 
|M | 

m∈M 

ηm |m| 
i∈m 

Pi (3.4) 

This computes the benefit of the phenotype P as the mean of the independent contri­

butions of each module, which is in turn some function of the mean phenotypic gene 

expressions within each module. We use a piecewise-linear module benefit function ηm 

to describe a (potentially epistatic) fitness landscape based on the current environment 

conditions related to the module m. We define this function as the maximum of two 

contributions: one positive product with coefficient c
+ 
m, and one negative product with
 

coefficient c
− .m
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+ −ηm(x) = max(x × c , −x × c
 ) (3.5)
m m

This rewards a positive mean gene expression when c
+ 
m is high, and a negative mean gene
 

expression when c
− + −is high. Three values for c
 and c
 are used: 1.0, 0.7, and −1.0. We
 m m m

restrict the combinations of these to four environmental ‘instances’, the module benefit 

functions for which are depicted in Fig 3.3. 
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Figure 3.3: The four module instances that may occur. Headers show the values of 
c− and c+ respectively in parentheses. At any time, the environment comprises four of m m 
these (one for each module) selected independently at random according to the param­
eter Z ∈ [0, 1]. Top: the single-peaked instances, where there is only one optimum for 
the module. The optimum can easily be found by a local search process operating in 
the phenotype space. Because the module-benefit-functions are completely linear, there 
is no epistasis in these instances. Bottom: the multi-peaked ‘trap’ instances, where a 
local-search process can easily become trapped at the local optimum because the global 
optimum is made inaccessible by the fitness valley with minimum at 0. These instances 
introduce epistasis, because the marginal benefit of a mutation on a gene depends on 
the phenotypic expression of the other genes in its module: you should ‘go with the 

Zmajority’. The ‘trap’ instances occur with frequency , and the ‘easy’ instances with 2 
probability 1−Z 

2 

Instances S+ and S− describe an easily solved ‘single-peak’ problem, where there is 

a positive benefit gradient toward the global optimum everywhere. A positive mean 

gene expression is rewarded in S+; a negative mean gene expression is rewarded in 

S− . Instances M+ and M− pose a problem for a local-search process – such as our hill-

climber – because they describe conditions where there are two local optima, one being a 

global optimum that provides a significantly greater fitness than the other. Whereas the 
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single-peaked environments are easily solved no-matter the initial population, the multi-

peaked environments represent a ‘trap’: a näıve hill-climber with a positive mean gene 

expression will be ‘trapped’ at the worse local optimum if placed in the M− conditions; 

a hill-climber with a negative mean gene expression will be ‘trapped’ at the worse local 

optimum if placed in the M+ conditions. 

The environment is randomised every K = 1000 evolutionary steps, whereupon each 

module is assigned one of the four instances independently: some modules may be 

presented with a single-peaked instance, while others find themselves confronted with a 

multi-peaked instance. We refer to each period of K evolutionary steps as an ‘episode’. 

We control the incidence of the different type of module configurations with a parameter 

Z, which is the probability of any module being assigned a multi-peaked instance in any 

episode. There is an equal probability of a ‘positive’ or ‘negative’ instance (i.e. S+ is 

observed just as often as S−). Note that the maximum attainable benefit is constant in 

any environment, as the benefit at the global optimum of any instance is always 1. 

One possible interpretation for this type of environment is one in which resource avail­

ability changes regularly, and where specialisation is rewarded. For instance, an insect 

ridden environment may benefit birds with a narrow probing beak, while a nut-rich envi­

ronment will favour birds with broader crushing beaks. The abundance of either resource 

may occasionally decline significantly, necessitating re-adaptation if a single population 

is to survive; when both resources are available, there remains a benefit to specialising 

on the more abundant. Consequently, a population that is able to readily re-specialise 

will be able to fully exploit the environment. By taking each module as independent, 

we assume that the fitness consequences of other characters are independent (epistasis 

is restricted to within the modules). 

3.3 Experimental Results 

In order to demonstrate the evolution of independent modules of single-layer hierarchies, 

we simulate many thousands of episodes (each of K = 1000 evolutionary steps) with 

a linear (L11) cost of connections (equivalent to a LASSO regularisation (Tibshirani, 

1996)), cost coefficient λ = 0.1, and variable choice of Z (the probability of a multi-

peaked module instance). For sufficiently low values of Z, we consistently observe the 

evolution of hierarchical modules, which increase the accessibility of fit phenotypes, and 

enable the hill-climber to always find the globally optimal phenotype in any of the 

possible environmental conditions. Below we show results for a run with Z = 0.95 

randomly chosen from 40 replicates (independent runs with different random seeds) for 

illustrative purposes. 

1φ(|x|) = |x|, the linear sum of absolute values 
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Parameter Symbol Values
 

Number of episodes 400000 
Evolutionary steps per episode K 1000 
Number of genes N 16 
Number of modules 4 
Number of genes per module 4 
B matrix mutations probability RB 0.5 or 0 
B matrix mutation magnitude MB 0.001 
B matrix mutation type Uniform 
Regulation Coefficient λ 0.1 

Table 3.3: Parameters for the changing modular environment. 

The evolution of independent hierarchical modules 

Hierarchy evolves dependably when λ is small (but not too small) and Z sufficiently 

smaller than 1. Simulating 100,000 episodes (each of K = 1000 evolutionary steps), with 

a multi-peaked module configuration probability of Z = 0.95 and cost of connections 

λ = 0.1, we observe the evolution of independent modules with internal hierarchical 

structure in all of 40 independents replicates. 720 additional runs with values of Z in the 

range [0, 0.9] also evolved independent hierarchies corresponding to the environmental 

structure. The modules facilitate adaptation to changing environmental conditions by 

increasing the accessibility of potentially fit phenotypes. Figure 3.4 shows how the 

regulatory coefficients in the matrix B evolve. 

Initialised as zero, the regulatory connections quickly form dense regulatory modules 

of many genes each regulating each other. This initial growth doesn’t always produce 

independent regulatory modules consistent with the modules of the environment (Fig­

ure 3.4B), and the following episodes are marked by parcellation events, where previously 

connected modules disassociate in a dramatic fashion (Figure 3.4C&D). While the mod­

ules are disassociating – and for thousands of episodes thereafter – they are also slowly 

‘disintegrating’ (pleiotropy is lost within the module) from the fully-connected ‘dense’ 

configuration (Figure 3.4D) toward a sparser ‘hierarchical’ configuration (Figure 3.4E). 

This hierarchical configuration is characterised by a single gene directing all genes within 

its regulatory module. Like the dense module disassociations, the tendency toward hi­

erarchy is initially gradual, but later accelerates dramatically. This acceleration is a 

consequence of the benefits of hierarchy, which we present in the next section. 

The disassociation of modules is not perfect, and for difficult selective environments 

(e.g. higher frequency of multi-peaked instances Z and greater cost of connections λ) 

can result in the evolution of one or more hierarchical ‘super-modules’ commanding more 

than one of the modules defined by the environment (Figure 3.5, additional results in 

Appendix C.2). In an extreme case, every gene may become part of a single regulatory 

modules, and the system fails to model all the variation expressed in the environment. 
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Figure 3.4: The evolution of independent internally hierarchical modules in a regu­
latory network. The trajectories of each regulatory connection (A) and partial illus­
tration of the regulatory network at 500 (B), 10,000 (C), 20,000 (D), and 70,000 (E) 
episodes for a single run (Z = 0.95, λ = 0.1), showing the sequence of events that 
leads to the evolution of four independent ‘dense’ modules (D), which ultimately be­
come hierarchical (E). Each line in (A) corresponds to a single entry in the B matrix. 
Shades of green are used only to aid in visual discrimination, and should otherwise 
be ignored. Each network diagram ((B-E)) shows the presence or absence of inter­
module connections between all modules, and the intra-module connections for the 
module which happened in this simulation to evolve a hierarchical configuration most 
quickly. By around 110 thousand episodes, all modules are completely hierarchical, 
and the trajectory is reduced to 3 groups: many inter- and intra-module connections 
with weight 0, 4 self-connections on the lead (or dominant) gene (one for each module) 
with weight 2.7, and 12 other intra-module connections with weight 2.5. Red arrows 
between modules correspond to negative connections between modules in the two mod­
ules; all connections between genes within modules are positive per the environmental 

conditions. 
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A B

Figure 3.5: Hierarchy reflects evolved modules. (A): In a modularly varying envi­
ronment which induces variation between episodes (i.e. when Z isn’t too large), each 
module evolves into a separate 1-layer hierarchy. (B): In a non-changing environment, 
or one where the environmental variation does not permit significant phenotypic vari­
ation between episodes (e.g. when Z = 1), a single hierarchy directing all genes may 

evolve. 

Evolved hierarchy enables macro variation 

The emergence of independent hierarchical modules has dramatic consequences for the 

end-of-episode fitness achieved by the hill-climber. Figure 3.6C shows how the initially 

variable end-of-episode fitness becomes consistently higher as the degree of hierarchy 

within each module increases (Figure 3.6B). This occurs because the hill-climbing process 

becomes able to ‘switch’ whole modules with a single mutation. Consequently, genotypes 

that would previously be trapped producing phenotypes at a lower-fitness local optimum 

when the environmental conditions change are able to ‘solve’ the problem, by jumping 

the fitness valley that separate the local optima of a multi-peaked module instance. 

Each ‘step’ in Figure 3.6D – which depicts the frequency of switch events – represents a 

module which is no-longer trapped when an environmental change leaves it mismatched 

(i.e. the sign of the genes in a module do not correspond to the global optimum of the 

environmental module instance). Each jump corresponds to jump in Figure 3.6C, which 

shows the frequency with which the globally optimal phenotype is evolved. A ‘partial’ 

hierarchy (where the lead gene controls somewhat over half of the total connection 

weight) is sufficient to permit these switches, and the ability to switch coincides with 

the sudden increase in the rate at which the degree of hierarchy increases for each module 

(see Figure 3.6B&D). 

The ability of the system to switch the modules is a direct consequence of the evolved 

hierarchy: independence of modules (as observed in Kouvaris et al. (2017)) is not enough. 

In these single-layer hierarchies, the state of one ‘switch’ gene ultimately determines the 

state of all others. As such, only the ‘switch’ gene of a module need be switched in 

order to effect a change in the sign of the phenotypic expression of the whole module. 

Consequently, a single-point mutation in G is sufficient to switch a whole module in 

the phenotype and so jump the fitness valley in the multi-peaked module instances (as 

depicted in Figure 3.7). Switch events can be observed by plotting the per-evolutionary 

step fitness of the hill-climber as it responds to a change in environment, as depicted 
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Figure 3.6: The evolution of hierarchy enables the system to achieve a high fitness 
under any of the possible conditions. (A): trajectories of each regulation coefficient 
for a single run with Z = 0.95 and λ = 0.1 (the same run as Figure 3.4) (B): the 
degree of hierarchy for each of the 4 modules over time (1 sample per 500 episodes); 
see Degree of Hierarchy for a definition of the degree of hierarchy dh, which reflects 
how much influence the dominant gene has within its module. (C): the proportion of 
episodes where a phenotype is evolved such that the sign of terminal gene expressions 
matches the environmental conditions (1 averaged data-point per 500 samples, 1 sample 
per episode). When a module becomes sufficiently hierarchical, it no longer becomes 
trapped by multi-peaked environmental instances. Consequently, the number of mod­
ules that may become trapped decreases, and the frequency with which the globally 
optimal phenotype is found suddenly increases (roughly (1 − Z/2)x where x is the num­
ber of non-hierarchical modules). (D): the mean number of multi-peak module switches 
within each module per episode over time, with ‘steps’ (corresponding to those in C) 
revealing when each module becomes sufficiently hierarchical to start switching. Each 
module switches within a multi-peak module instance during Z/2 = 47.5% of episodes 
once it becomes sufficiently hierarchical, giving an expected rate of 4 × Z/2 = 1.9 
switches per episode when all four modules are hierarchical (1 averaged data-point per 
500 samples, 1 sample per episode). For Z = 0.95, the system produces such a result 

in each of 40 repeats. 
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in Figure 3.8B. A ‘dense’ module configuration (Figure 3.4B-D) - where each gene in a 

module regulates all others in its module with roughly the same interaction coefficient 

- would require at least half of the genes to switch simultaneously to achieve such a 

switch. Such an eventually is incompatible with the assumptions of strong selection and 

weak mutation. 
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Figure 3.7: Hierarchy enables adaptation in a multi-peaked environmental instance: 
the phenotype space and fitness-contribution for a dense (A) and hierarchical (B) 
module in the D+ environmental module instance. Blue dots represent accessible phe­
notypes in a 3-gene module. Arrows between phenotypes show mutations which switch 
a negative (−1) initial gene expression to positive (+1). The horizontal displacement 
between phenotypes has been exaggerated for the purpose of clarity. (A): With a 
dense regulatory module and initially negative gene expressions, a single-point muta­
tion switching any gene’s initial expression (brown arrow) always results in a loss of 
fitness for regulatory module with more than 1 gene, as it is working contrary to the 
other genes in the module. (B): With a hierarchical regulatory module, a single-point 
mutation on a subordinate gene (brown arrows) results in a small negative change in 
fitness, but switching the dominant gene (purple arrows) inverts the phenotypic expres­
sion of every gene in the module, and is able to achieve a higher fitness despite the lack 
of agreement in the initial state. This does not completely switch the phenotype, as 
the initial expression of the subordinate genes does have a small additive contribution 
to their final expression, but once the dominant gene switches it becomes beneficial 
to switch them also. Consequently, there is a sequence of mutations (including the 
orange arrows) which lead from one local peak to the other with a monotonic increase 

in fitness. 

3.4 Conclusions 

This chapter has introduced the evolutionary and developmental model that will be 

used throughout the dissertation, and one style of modularly changing environment. 

Our results demonstrates that the evolution of hierarchy can change the level at which 

an evolutionary process is operating from gene space to module space. This produces 

an increase in the accessibility of useful phenotypes, as it enables switch like behaviour, 

where single-point mutations in the G vector of initial gene expression to effect whole-

module switches. 

The benefit of this re-scaling is most apparent when considering an environment where
 

Z is close to 1. In any given episode, multiple environmental modules are likely to be
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Figure 3.8: Hierarchical regulatory networks are able to escape local fitness optima 
after an environmental change. The response of a hill-climber with a dense regulatory 
network (A) and hierarchical regulatory network (B) to the same changing environ­
ment with Z = 0.95. Every 1000 evolutionary steps, a new episode begins, and the 
environmental conditions are randomised. With the dense regulatory network, the sys­
tem is only able to respond to the dramatic reductions in fitness that coincide with 
a mismatch against a single-peaked module instance, as occurs at evolutionary steps 
1000 and 2000. In these instances, there is no local optimum to trap the module. In 
contrast, a hierarchical regulatory network allows the system to quickly respond to any 
change in environment, quickly attaining a high fitness regardless of the environment 
conditions in which is finds itself, as at evolutionary steps 0 and 3000. 1 sample every 

100 evolutionary steps. 

multi-peaked and so present traps. For a restart hill-climber with a non-hierarchical 

regulatory network performing single-point flips in G, the expected number of attempts 

to find the global optimum is exponential in the number of modules, because each restart 

can only explore the local phenotypic optimum it happens to find for each module. Once 

evolved, a hierarchical regulatory network can enable the evolutionary process to readily 

find the global optimum in any environment, regardless of its initial conditions. This 

enables it to achieve a consistently high fitness over evolutionary time by finding the 

globally optimal phenotype each episode. 

This represents the evolution of evolvability as it enables a micro-evolutionary process to 

better exploit a changing environment where previously it would become trapped in local 

optima. The hierarchical modules effectively reduce the parameter space of the genetic 
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process, as only the initial states of the dominant genes in each module have a significant 

bearing on the terminal phenotype after development. This provides a concrete example 

of an in silico evolutionary system achieving greater access evolvability by changing its 

level of operation from gene space to an adaptive module space by means of evolved 

co-variation mediated by a developmental process. 

It is notable that the evolution of hierarchy precedes the change in variability that the 

hierarchy confers. This is the first indication that the reasons for which hierarchy evolves, 

and consequences of its evolution for evolvability, may be distinct. We will expand on 

this thought in Chapter 5. 



Chapter 4 

Rescaling Variability with 

Hierarchy 

4.1 Introduction 

In this chapter, we use the same developmental model as in the previous chapter to 

show how the evolution of hierarchy can help to solve a modular constraint-satisfaction 

problem by rescaling the level of variation from genes to modules, enabling a micro-

evolutionary process to search in the space of modules, and consequently satisfy inter­

module dependencies. Using a generalised modular constraints problem (Watson et al., 

2011c), we explore the properties of the fitness landscape that make such a problem 

solvable by an evolutionary process that does not exploit hierarchy (Kounios et al., 

2016), and discuss how the inclusion of a cost of connections promotes the evolution 

of hierarchy that can solve the problem in a different way, by evolving independent 

hierarchical modules (as in Chapter 3) which enable the system to coordinate these 

modules to satisfy a global (i.e. between module) fitness constraint. We find that the 

evolution of hierarchy is somewhat scale-invariant, as hierarchies can evolve in modules 

of differing size; however, there are limits as to this process, and to where hierarchy can 

provide an evolvability benefit. We show that the evolution of hierarchical modules at 

one ‘layer’ of a problem enables the evolutionary process to exploit structure from the 

layer above, which can motivate the evolution of hierarchy at the layer above enabling 

the evolutionary process to ‘solve’ a hierarchically structured problem. 

As in the previous chapter, variation in the G vector of initial gene expressions over 

the course of many episodes allows the evolutionary process to explore a rugged fitness 

landscape. In this chapter, the fitness benefit landscape is defined by epistatic interac­

tions within and between a number of modules, unlike in the previous chapter where 

the fitness benefit of each environmental module was independent. When hierarchy 

evolves in these modules, the variability conferred enables the evolutionary process to 

39
 



40 Chapter 4 Rescaling Variability with Hierarchy 

satisfy the (weaker) epistatic constraints between modules as it becomes able to make 

whole-module switches which reveal the fitness gradients these constraints produce. In 

the previous chapter, the inclusion of single-peaked environmental instances (controlled 

with parameter Z) provided between-episode phenotypic variation by permitting the 

evolutionary process to make ‘easy’ adjustments (i.e. inducing it to invert a module 

without requiring the variability afforded by the not-yet-evolved hierarchy). In this 

chapter, the environment will be fixed, and the long-term variation in G will be in­

duced through ‘partial-resets’: a large number of mutations will be applied between 

each episode without selection, this representing periods of genetic drift as per Kounios 

et al. (2016). 

We will use explicitly modular problems derived from the Modular Constraints (MC) 

Problem of Watson et al. (2011c). The original MC problem uses quadratic epistatic 

interactions within modules, and the nature of the shallow gradients reveals information 

about the inter-module constraints when the evolutionary process to the genes con­

tributing to undecided (i.e. internally inconsistent) modules. This property means that 

the MC problem can be solved without a self-modelling process (see Appendix B.2 for 

some discussion on that matter). We introduce a generalised version of the MC problem 

with which we define a problem with non-smooth (piecewise-linear) epistatic interac­

tions, but otherwise the same modular properties: we will refer to the MC problem 

with quadratic epistatic interactions as the ‘smooth’ MC, and the MC problem with the 

piecewise-linear epistatic interactions as the ‘spiky’ MC (for reasons that will become 

clear). The spiky MC problem is more comparable with the model used in Chapter 3, 

and does not so readily reveal information about global constraints as the smooth MC 

because the gradients produced by within-module epistatic interactions are steep almost 

everywhere (and so dominate the shallow between-module constraints). We show that 

both the smooth and spiky MC problems can be solved by an evolutionary process that 

is able to evolve independent hierarchical modules, and find that the hierarchy scales 

up to produce a single ‘grand’ hierarchy (where one gene directs all other genes in the 

genotype: one big developmental module) once it is able to coordinate between modules, 

and so has reduced phenotypic variability between modules. 

Based on the observation that the hierarchy will scale-up with the phenotypic variabil­

ity, we shall then extend our results with the generalised MC problem to a hierarchi­

cal ‘multi-layer’ modular constraints problem based on the Hierarchical If-and-only-if 

(HIFF) (Watson and Pollack, 1999) problem, showing that the evolution of hierarchy 

is somewhat scale-invariant, and can ‘bootstrap’ itself: smaller hierarchies can facilitate 

larger hierarchies, which facilities even larger hierarchies. We discuss the limits of this 

process, which affirms the observation in the previous chapter that hierarchy evolves 

even when it cannot provide an evolvability benefit, and sets the scene for Chapter 5, 

where we will explore in detail why hierarchy evolves. 
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4.2 Partial Resets 

In the previous chapter, phenotypic variation between episodes was introduced into the 

system by changing the environment at the start of each episode of K evolutionary step: 

the inclusion of single-peaked environmental instances S+ and S− with frequency Z 

ensured that the evolutionary process wasn’t trapped at a single point in phenotype space 

for too long. In this chapter, however, we consider a static but rugged fitness landscape: 

one that doesn’t change over evolutionary time, and that contains many local optima. 

Because the environment does not change, we use an explicit partial reset of the state 

of the evolutionary process (simulating an extended period of genetic drift per Kounios 

et al. (2016)) to introduce the long-term variation necessary for the system to infer 

problem structure. While the environment has many local-optima which can trap an 

incremental local search process, the frequent partial resets ensure that many different 

local-optima are visited over evolutionary time. Different local optima have different 

correlations between modules, and so with sufficient variation the average correlation 

will be zero. Kounios et al. (2016) demonstrated that an evolutionary model including 

a GRN (the same developmental model as described in Section 3.2) with partial-resets 

(where G is randomised completely but B is left unchanged) was able to solve both a 

2-dimensional local constraints problem (the ‘Concentric Squares’ problem). The same 

evolutionary process could also find high-fitness phenotypes when selection was on the 

basis of random (potentially inconsistent) constraints. Both of these problems were 

modelled with a constraints matrix, such that the benefit was given by 

b = P T CP (4.1) 

Starting from an empty B matrix, the system would quickly reach a local optimum 

in the rugged fitness landscape after each reset. While the B matrix has only small 

values, it has little effect on the evolution of G, and the system explores local optima at 

random, though the distribution may be biased to ‘find’ higher fitness local optima with 

greater frequency than lower fitness local optima depending on the problem. Owing 

to the directional selection on the phenotype (i.e. the more strongly the genes are 

expressed, the higher the potential fitness) there is a benefit advantage to be obtained by 

increasing the magnitude of the connection strengths in the B to reflect the correlations 

in the phenotype. In Kounios et al. (2016), an explicit ‘delta-rule’ update process is used, 

which updates each entry in the B matrix of regulatory connections in the direction that 

most increases fitness at the end of each episode. If the ‘learning rate’ of the delta-rule 

updates process is low enough, then after many episodes the B matrix would steadily 

evolve to reflect the constraint matrix representing the problem. When the connections 

in the B matrix are strong enough, they begin to influence the space of representable 

phenotypes. The more constrained the system becomes, the more consistently it ‘finds’ 
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relatively good solutions to the problem where many of the constraints expressed in the 

C matrix are satisfied. 

In those problems where the global structure is not revealed by the constraint matrix 

(i.e. the C matrix only includes local constraints), the B matrix would eventually 

reflect not only the explicit local constraints, but also the implicit global structure in 

the problem (i.e. constraints between genes implied but not explicit in the C matrix). 

As the strength of the connections in B grew, it constrained the developmental process 

more and more, until it was only able to represent high-fitness solutions (those that 

satisfied many constraints). In one of the constraint problems they considered (the 

‘concentric squares’ problem), this corresponded to modelling the correlations in the 

optimal phenotype. Initially the evolutionary process would become trapped at low-

fitness local optima in each episode (that only satisfied some local constraints), but 

after many exposures with sufficient phenotypic variation and a low enough learning 

rate, the evolved B matrix would cause it to always evolve a globally optimal phenotype 

regardless of the state of the G vector after a reset. Note that it is impossible to 

canalize a specific phenotype, only a pattern of correlations, as the model is completely 

symmetric (inverting the values in G will always produce an inverted P with the same 

B). Accordingly, complementary phenotypes have the same fitness in these scenarios. 

In the same paper, Kounios et al. (2016) compared the evolutionary process including 

the GRN model to one in which there is a one-one G-P map. Without the genetically 

controlled developmental step, the evolutionary process is unable to improve its perfor­

mance over time because it undergoes a total reset: its whole state is G (there is no 

B), and G is randomised each episode. This is in contrast to the GRN model where 

B provides additional state which is not lost each episode. Because the GRN model 

has partial resets, the system is forced to explore disparate regions of the genotype and 

phenotype spaces, but is still able to integrate useful information over time. Similar 

behaviour was demonstrated in the random constraints problem. 

To demonstrate the importance of partial resets, and to address some concerns raised 

by reviewers with the model presented in Kounios et al. (2016), the model we use (as 

described in Section 3.2) differs in the following ways: 

•	 B mutates along with G. In Kounios et al. (2016), the ‘delta-rule’ update 

process is used to evolve the entries in the B matrix. This process explicitly 

separates the process of hill-climbing to a local optimum and updating the weights 

in B. In our evolutionary model there is no separation: B accumulates random 

mutations subject to selection through each episode. Each evolutionary step, a 

mutation is performed in either B or G with equal probability as described in 

Chapter 3. 

This change addresses the concern that the ‘delta-rule’ update process is not bi­

ologically realistic: it is an explicit learning rule, and though it is intended to 
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simulate long periods of slow evolution, the conditions where this might be the 

case are not clear. 

•	 All resets are partial, and parameterized. At the start of each episode, rather 

than resetting G and leaving B unmodified, a fixed number (Q) of mutations are 

applied without selection. This includes mutations in B. The parameter allows 

us to vary how large the partial resets are: a parameter that directly controls how 

much phenotypic variation the system experiences over evolutionary time. In this 

role, it is somewhat analogous to the frequency of multi-peaked instances Z in 

Chapter 3 (see discussion in Section 4.7.1). 

This addresses the concern that drift in B would undermine the products of evo­

lution, though this is primarily a matter of timescales: if periods of drift are short 

compared to periods of strong selection (as simulated by the delta-rule), then the 

assumption that B doesn’t change may be reasonable. In any case, this change 

shows that the model is not too sensitive to mutation in B. 

Additionally, the ability to parameterize the amount of drift will help to confirm 

that the description of the mechanism in Kounios et al. (2016) by which local (and 

ultimately global) problem structure is inferred is accurate; specifically, we will be 

able to show that the ability to ‘solve’ a problem depends directly on the size of 

the partial-resets at the end of each episode. 

•	 Use of an explicitly modular environment. In Kounios et al. (2016), two 

environment models are used to demonstrate the evolutionary consequences of 

evolving a GRN, the first of which is a local-constraints problem (the concen­

tric squares problem), and the second of which is a random-constraints problem. 

Here we use explicitly modular problems (described in Sections 4.3 and 4.6) where 

inference at one level of variation will reveal structure at a higher level. 

Neither problem employed by Kounios et al. (2016) lends itself to being solved by a 

hierarchical process (there is no hierarchy in the problem), but the second problem 

(the random constraints) is related to the modular problems we will use. Unlike 

the random constraints problems, the modular problems we use are well charac­

terised, and contain easy-to-identify structure, which will help us to understand 

the evolutionary dynamics that occur. 

A further difference is that we change the model initialisation for experiments where we 

include a cost of connections such that B begins with a strong set of self-connections (an 

identity matrix). This change enables us to use a high cost coefficient λ which causes 

the evolutionary system to come to completion more quickly and reliably. Without this 

change, the system exhibits too unfortunate tendencies: for reasonable choices of the 

mutation rate MB , it it tends to rapidly canalize a single module assignment, and so loses 

necessary variability (as in the high Z case in Chapter 3); for high λ the system becomes 

trapped in the ‘pit of despair’ (see Figure 5.1 in a later chapter), where the cost of 
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connections suppresses the evolution of any connections in the B matrix from the outset 

because the marginal benefit is very small when the B matrix is weak. The entries on the 

diagonal of the matrix cause the system to start near saturation of the developmental 

curve, which avoids the shallow region of the developmental function (which produces 

the pit of despair) and prevents a disproportionate increase in connection weights in 

the first few episodes that can bias future variability according to the limited variability 

observed by the system. It seemed to be the case that the system behaved well for lower 

values of λ and MB ; however, the long run-times made it infeasible to comprehensively 

explore this scenario. 

4.3 Model of an Unchanging Modular Environment 

The MC (Modular Constraints) problem Watson et al. (2011c) describes a class of 

‘correlation’ problems, where the benefit awarded to a phenotype P is proportional 

to Cij PiPj , where C is a square matrix of the same dimensions as P , and represents ij 

the benefit constraints between genes. The MC problem is of interest because it provides 

an idealised modular constraints problem: the benefit constraints between genes is large 

within modules, and small between modules. Traditionally, the problem is described by 

3 parameters: 

•	 N , the number of modules (we will generally not use this symbol in the text as it 

conflicts with the number of genes N used in other parts of this document) 

•	 K, the number of genes in each module (conflicts with the number of evolutionary 

steps per episode; we will use alternative notion were possible) 

•	 p, the relative magnitude of the inter-module benefit constraint 

A phenotype vector of length N × K is divided into N equally sized ‘modules’ of K 

genes. A large benefit is awarded to phenotypes where the genes within modules agree 

(i.e. all −1 or all +1): the stronger the agreement, the greater the reward. A weaker 

benefit (proportional to p < 1) is also awarded for agreement between modules (or, more 

precisely, between the genes in every module). 

Though it is nicely characterised with matrix products, and can be implemented with 

a constraints matrix as in Equation 4.1, here we define a generalised MC problem as a 

sum of explicit epistatic module contributions. Each module contribution is a non-linear 

function of the mean of the expression of its component genes, η(x), the ‘module-benefit­

function’, multiplied by a coefficient cm. The mean expression of the genes within each 

module is a value in the range [−1, 1], and the module-benefit-function produces a result 

in the range [0 − 1]. Unlike in Chapter 3, the module-benefit-function is the same for 
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all modules, is symmetric (no preference for positive or negative gene expression, only 

agreement between genes), and the coefficient cm for each module m ∈ M does not 

change over time. For no particular reason, the sum of these contributions is normalised 

into the range [0 − 1] to compute the benefit, b: 

1 
m∈M cm × η |m| i∈m Pi 

b(P ) = (4.2) 
m∈M cm 

As in Chapter 5, a cost term will be included in some experiments, the mean cost of 

each individual entry in the B matrix: 

N,N 
1 

c(B) = φ(|Bij |) (4.3)
N2 

i,j 

In this chapter, the cost-function φ will always be the identity φ(x) = x. The cost is 

scaled by a parameter λ, with the final fitness of an individual given by: 

f(B, P ) = b(P ) − λc(B) (4.4) 

In addition to the ‘sub-modules’ of K genes, the set of modules M include an additional 

‘super-module’ that contains every gene. This module provides the inter-module fitness 

contributions, and will have a different choice of cm that the sub-modules modules, for 

which cm = 1. Rather than using the traditional p parameter for this purpose, we 

will instead use a more general ‘decay factor’ df , which is proportional to 1/(1/p − 1) 

(roughly p for p small), of which we will make greater use in Section 4.6. 

Note that the denominator of Equation 4.2 is a constant factor (the sum of the module 

benefit coefficients) included to scale the benefit into the range [0, 1] given the module 

benefit function η(x) ∈ [0, 1] for x ∈ [−1, 1]. 

In our experiments, we use an MC problem where positive correlations are rewarded 

everywhere. In general, an MC problem may reward a (consistent) combination of 

positive and negative correlations multiplying the phenotype by a ‘target’ vector S of 

−1 and +1 values determining the pattern. Such a modification does not change the 

behaviour of our model; using an all-positive problem makes it easy to discuss and 

interrogate the system without losing any generality in the result. 
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Figure 4.1: This plot shows how the fitness benefit of a phenotype changes as it 
transitions from a vector of all −1 to all +1, one trait (or equivalently, module) at 
a time. Each peak represents a locally optimal phenotype, where the traits within 
every module are strongly expressed (all have magnitude 1) and of the same sign. 
The height of each peak is a quadratic function of the number of modules which are 
all of the same sign (that is, the degree of between module concurrence). Though 
traditionally characterised by a correlation matrix, the MC problem is equivalent to 
a sum of quadratic epistatic module contributions, where all modules - apart from 
making their individual contributions - are considered part of an additional ‘super­
module’ which contains every trait. Crucially, the shallow gradient in the middle of 
the quadratic function means that ‘undecided’ modules (i.e. modules whose mean 
expression is close to zero) are influenced by the gradient in the ‘global’ module: the 
basin of attraction for phenotypes is larger if there is more agreement between modules. 

4.4 Smooth MC 

We refer to the MC generalisation where the module-benefit-function is η(x) = x2 as the 

‘Smooth MC’ problem. Figure 4.1 provides some indication as to the nature of the benefit 

landscape produced by the smooth MC: the quadratic choice of module-benefit-function 

function produces the smooth, rounded basins, and makes the problem equivalent in 

shape to an MC problem. A proof of the equivalence between this description of the MC 

problem as a sum of independent module-benefit-functions and the traditional matrix 

formulation is given in Appendix B.1, but the idea behind the equivalence is that the 

benefit within a module (i.e. a constraint matrix where each entry is has the same 

positive value c) is equal to 

2 

cPiPj = c Pi (4.5) 
ij i 



47 Chapter 4 Rescaling Variability with Hierarchy 

i.e. the sum of the module expressions squared times the constant. The constraint matrix 

for the whole MC problem can be decomposed into the sum of one fully populated matrix 

where c = p is small, and one with block-diagonal entries where c = 1 − p. The first 

represents the large module of all genes, and the second all of the smaller sub-modules. 

The evolutionary process was run with various neutral (i.e. without selection) mutation 

counts Q to investigate the ability of the system to ‘learn’ the problem structure for 

different amount of simulated genetic drift. Two configurations were used: one with a 

continuous G space and no cost of connections (see Table 4.2); another with a binary 

G space and L1 cost of connections (see Table 4.3). Each configuration underwent 40 

replicates (complete runs with different random seeds). The parameters for the smooth 

MC probably are summarised in Table 4.1). 

The distribution of fitnesses at the end of the simulations for each evolutionary process 

are shown in Figures 4.2&4.3. It is clear that both evolutionary processes are able to 

find higher fitness phenotypes more often when the neutral mutation count Q is greater 

(though if the values were too large the noise introduced into B may reverse the trend). 

Parameter Symbol Values
 

Number of genes N 64 
Number of modules 8 
Number of genes per module 8 
Generalised decay factor df 0.75 
Super-module correlation p 1/(1 + 642/(0.75 × 82)) ≈ 0.012 
Smooth Module benefit function η η(x) = x2 

Spiky Module benefit function η η(x) = |x| 

Table 4.1: Parameters for the MC Problem. The equivalent p value is computed from 
the actual choice of df = 0.75. 

Parameter Symbol Values
 

Evolutionary steps per episode K 50000 
Episodes 10000 
Number of developmental time-steps T 10 
Gene Expression Decay Rate τ 0.2 
G vector mutation magnitude MG 0.1 
G vector mutation type Uniform 
B matrix mutations probability RB 0.5 
B matrix mutation magnitude MB 2 × 10−6 

B matrix mutation type Uniform 
Cost Coefficient λ 0 
Neutral Mutation Count Q Variable 

Table 4.2: Parameters for the evolutionary model without cost of connections. 

http:642/(0.75
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Parameter Symbol Values
 

Evolutionary steps per episode K 2000 
Episodes 100000 
Number of developmental time-steps T 10 
Gene Expression Decay Rate τ 0.2 
G vector mutation type Binary 
B matrix mutations probability RB 0.5 
B matrix mutation magnitude MB 0.1 
B matrix mutation type Uniform 

|x|Regulation Function φ φ(x) = 
N2 

Regulation Coefficient λ 2 
Neutral Mutation Count Q Variable 

Table 4.3: Parameters for the evolutionary process with cost of connections. 
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Figure 4.2: Terminal fitness distributions for the Smooth MC without cost of con­
nections. For low neutral mutation counts (Q small), there is insufficient variation 
between episodes, and the system fixes to a locally optimal phenotype that is not the 
global optimum. For large neutral mutation counts, the variability in observed pheno­
types enables the system to learn the problem structure, and ultimately canalizes the 
pattern of gene expression of the globally optimal phenotypes in most cases. In this 
figure, the fitness is computed on the sign of the phenotype: this reveals the change in 

distribution without the distraction of the absolute magnitudes of the phenotype. 

When either evolutionary model is applied to the smooth MC problem, it quickly ‘learns’ 

the genes that make up each module, creating a developmental module of positive intra-

module interactions, just as in Chapter 3. These modules in B provide a developmental 

constraint that practically limits the space of representable phenotypes to those where 

the genes are consistent within the modules. While this may provide valuable robustness, 

it is not necessary in order for the system to find fit phenotypes: the hill-climber without 

a cost of connections (which does not evolve hierarchy) is able to search locally to 
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Figure 4.3: Terminal fitness distributions for the Smooth MC with cost of connec­
tions. Just as without the cost of connections (Figure 4.2), for low neutral mutation 
counts (Q small), there is insufficient variation between episodes, and the system fixes 
to a locally optimal phenotype that is not the global optimum. For large neutral mu­
tation counts, the variability in observed phenotypes enables the system to learn the 
problem structure, and ultimately canalizes the globally optimal phenotypes in most 
cases. Compared with Figure 4.2, the comparative low fitnesses and small choices of Q 
are due to the inclusion of the cost of connections and binary nature of G respectively. 

resolve conflicts within modules when the B matrix is empty or the within-module 

connections are removed, and the evolutionary process can still solve the problem (find 

the global optima) if we prevent mutations on the within-module regulatory connections 

(such that they remain zero). The ability of the evolutionary process without a cost of 

connections to ultimately canalize the globally optimal phenotypes is a consequence of 

the system visiting higher fitness local optima more often than low fitness phenotypes. 

These high fitness phenotypes are characterised by having more modules in agreement 

(their component genes have the same sign for their phenotypic expressions) than lower 

fitness phenotypes: the larger the majority, the higher the fitness. Evolution changes 

the entries in B to reinforce the correlations in these local optima which, on-average, 

are positive, and so correspond to the environmental inter-module constraints. As the 

magnitude of the connections in the B matrix grows, this limits the variability of the 

evolutionary system further, and transforms the originally unreliable mechanism for 

locating high fitness phenotypes (by following the weak inter-module gradients when 

possible) into a reliable one where only high fitness phenotypes can be represented, and 

genes evolve to coordinate with the majority. 

Were all local optima visited with equal probability (i.e. independent of their benefit), 

the frequency with which any two modules in a phenotype would be coordinated would 

be exactly half. This is not the case, because the basin of attraction - the region of 
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genotype space from which a local search process like out hill-climber may reach it - is 

larger for phenotypes which greater between-module agreement. This is a consequence 

of the quadratic nature of the MC problem (i.e. η(x) = x2): the differential of the benefit 

contribution of a module with respect to any entry in G it contains is proportional to 

the magnitude of the mean expression in the module η " (x) = 2x. As such, when a sub­

module is undecided (the mean gene expression is close to zero), the sign of differential 

of the whole benefit function may be determined by the - potentially larger - differential 

with respect to the super-module. This effect moves the local minima (phenotypes where 

any small change will increase the fitness regardless of direction) closer to low-fitness 

local optima. This means that the basin of attraction is larger for fitter phenotypes, 

and consequently a fine-grained evolutionary process is more likely to visit them after a 

partial reset. The ‘fine-grained’ point is important, and the offset must be comparable 

to the smallest step that can be made by the evolutionary process. 

Again, as in Kouvaris et al. (2017), the evolution of the modules in B in this module 

reveals low-level problem structure and confers robustness, but in this case they do not 

help the system to avoid or escape local optima. Crucially, the modules do not enable 

it to exploit the apparent problem structure (unless they become hierarchical). This 

ability of the evolutionary process without a cost of connections to solve the problem is 

rather due to the – much weaker – between-module connections that reflect the disparity 

in basin size. Indeed, the evolution of strong intra-module connections may preclude 

the evolution of consistent super-module connections, as it has the effect of normalising 

the basin sizes: the ability to observe the wider basins of fit combinations of modules in 

phenotype space is diminished as the intra-module connections grow stronger, as even a 

small deviation from the mid-point in genotype space can produce a large deviation in 

phenotype space. 

4.5 Spiky MC 

As in Chapter 3, the use of a linear (L1) cost of connections can induce the evolution 

of hierarchical modules, which we could expect to increase evolvability by enabling the 

system to switch whole modules and, consequently, hillclimb in the space of modules 

rather than genes. This ability would make it easy for the system to find a globally op­

timal arrangement in short order. However, the same signal that enables the hillclimber 

without L1 cost of connections to solve the smooth MC problem is present with the L1 

cost of connections. Consequently, it is possible for the evolutionary process with cost 

of connections to solve the smooth MC problem relying solely on the signal from differ­

ing basin sizes described in the previous section, rather than exploiting the variability 

afforded by hierarchy. This makes it hard to determine whether it is the signal from 

the distribution of evolved phenotypes or the evolvability enhancing effects of hierarchy 
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that enables the evolutionary process with a cost of connections to find high fitness 

phenotypes. 

In an effort to eliminate the signal, and to provide better consistency with the model from 

Chapter 3, we consider a modification of the generalised MC problem with the explicit 

intention of making the basin of attraction for all modules the same size. The variation 

in basin size in the smooth MC problem is a consequence of the shallow gradient near 

the minimum of the quadratic module-benefit-function, so we substitute the quadratic 

module-benefit-function for a piecewise-linear module-benefit-function, η(x) = |x|. This 

produces a problem with the same ideal properties as the traditional MC problem (strong 

intra-module constraints, weak inter-module constraints), but where the gradient of 

the within-module epistatic effects is steep everywhere (specifically, steeper than the 

between-module epistatic effects). This change prevents a hillclimber operating in the 

phenotype space from observing the super-module gradient for small decay factor df . 

Figure 4.4 provides some indication as to the nature of this modified fitness landscape. 
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Figure 4.4: Here, the MC problem is modified, such that the epistasis function within 
each module (including the all-encompassing super-module) is an even-symmetric piece­
wise linear function, rather than an even-symmetric quadratic function. Because this 
function has the same gradient everywhere, it is harder to ‘see’ the weaker super-module 
correlations. The effect is to make the basin of attraction for each locally optimal phe­

notypes the same, regardless of its fitness benefit. 

In this spiky environment, there is no signal in phenotype space to bias the distribution 

of explored local optima, which restricts the ability of the system to integrate useful 

information about the problem early in evolutionary time. 

With the linear (L1) cost of connections, hierarchy readily evolves (Figure 4.5). As each 

module becomes sufficiently hierarchical that module flips become viable, it begins to 

align with the other modules (Figure 4.6). The effect is that the distribution of end-of­

episode phenotypes (and genotypes) changes from essentially random to biased toward 
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patterns with a clear majority (Figure 4.7). Notably, the hierarchical modules are able 

to align with non-hierarchical modules: the system does not need to wait for all modules 

to become hierarchical before it can begin integrating the between-module signal. 

Once there is a consistent majority, the signal for inter-module connections goes from 

providing no signal on average (and so is suppressed by the cost of connections) to each 

module tending to be directed by strong modules that align with it (the reasons for this 

will be explored in Chapter 5). Ultimately, a grand-hierarchy emerges, where a single 

gene controls all other genes (i.e. all genes in the super-module, as in Figure 3.5B). This 

results in a wholly consistent pattern of modules in the phenotype (Figure 4.7). 

As with the Smooth MC, the ability to ‘learn’ the right modules depends on the amount 

of drift between episodes Q (Figure 4.8): low values of Q cause the evolutionary process 

to fix on an incorrect pattern of modules. 
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Figure 4.5: Regulatory connection trajectories for the evolutionary process with L1 
cost of connections in the Spiky MC environment and Q = 140 (1 sample per 250 
episodes). Initially the system evolves 8 mostly independent modules, but by around 40 
thousand episodes a grand hierarchy begins to be emerge, with a single gene controlling 

all others. 

4.6 A Continuous Hierarchical If-and-only-if 

The transition from independent hierarchical sub-modules to a single grand-hierarchy in 

our experiments with the MC problem indicates the evolution of hierarchy can motivate a 

change in variability that can motivate the evolution of hierarchies at a ‘higher-level’ (i.e. 

modules that contain sub-modules). This corresponds to a rescaling from hill-climbing 

in the sub-modules of the MC problem by flipping individual genes, to hill-climbing in 
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Figure 4.6: Phenotype patterns for the evolutionary process with L1 cost of con­
nections in the Spiky MC environment and large Q = 140 at 30 thousand episodes (1 
sample per 100 evolutionary steps, a new episode begins every 2000 evolutionary steps). 
By 30 thousand episodes, some modules are sufficiency hierarchical that they can start 
switching in order to better coordinate with the other modules. Two whole-module 
switches (indicated in red) can be seen in the second episode of this trace: the first 
(lower red allow) creates a majority, and the second (upper red arrow) joins it. Note 
that the same modules do not switch in later episodes: while they can switch under 

some circumstances, it is not yet reliable. 
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Figure 4.7: Phenotype patterns for the GRN hillclimber with L1 cost of connections 
in the Spiky MC environment and large Q = 140 (1 sample per 250 episodes). Initially 
there is no coordination between the phenotypes found by the evolutionary system: 
each module is assigned effectively randomly by the reset operation. After about 35 
thousand episodes, there is some apparent consistency between a number of modules. 
After about 38 thousand episodes, the inter-module variation is lost and all the modules 

are always coordinated, producing a maximally fit phenotype. 
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Figure 4.8: Terminal fitness distributions for the GRN hillclimber with L1 cost of 
connections in the Spiky MC environment. For low neutral mutation counts (Q small), 
there is insufficient long-term variability, and the system over-fits to a locally optimal 
phenotype that is not the global optimum. For large neutral mutation counts, the 
variability in observed phenotypes enables the system to learn the problem structure, 

and ultimately canalises the globally optimal phenotypes. 

the super-module by switching sub-modules. There is no obvious reason why we should 

not be able to perform these transitions at multiple levels, and this possibility is what we 

shall explore next. The ‘Hierarchical if-and-only-if (HIFF)’ (Watson and Pollack, 1999) 

problem is a non-continuous binary problem designed to test the ability of systems to 

solve hierarchically problems, where it is necessary to ‘solve’ the small component sub­

problems before any signal from the large super-problems can be seen, and provides 

a good basis for a problem to test whether hierarchy can perform this ‘scale-invariant 

re-scaling’: combining modules into a larger modules at any level of variation. 

Because our model of development is a continuous (i.e. not discrete) process and we 

depend on directional selection for increasing the magnitude of gene expression (our phe­

notypes are not binary), we need to use a continuous version of HIFF. This landscape 

will be based on the spiky variation on the generalised MC problem we described in 

section 4.3, but with smaller sub-modules and additional modules introduced ‘between’ 

the small sub-modules and the all-encompassing super-module. These additional ‘layers’ 

of modules won’t introduce any local-optima into the fitness landscape, but will change 

the relative benefit of different fitness optima, and further disrupt the signal from the 

all-encompassing super-module. Plotting a cross-section of the benefit curve for phe­

notypes starting from all negative, and ramping individual gene expressions linearly to 

positive, the continuous HIFF problem looks like Figure 4.9. We can visualise the de­

composition by showing the benefit functions for each module at each ‘layer’ of modules, 
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as in Figure 4.10. The maximum benefit attainable from each module decreases (ac­

cording to the decay factor df ) as the modules become larger: the contribution of each 

layer is the product of the contribution of the layer ‘below’ (i.e. the payoff of a single 

sub-module) and the decay factor. By choosing df ≤ 1.0 we guarantee that, for any 

number of layers, the gradient (where it exists) of the whole benefit function will have 

the sign of the module-benefit function of the smallest module contributing: making 

infinitesimal changes in phenotype space, it is better to coordinate the smallest modules 

than to try to coordinate the larger modules. 

As in Section 4.5, we use a piece-wise linear module benefit function η(x) = |x|, so the 

basin of attraction for each local optimum is the same size in phenotype space. In the 

experiments presented, the smallest sub-modules are of size 2, and each super-module 

comprises two sub-modules. There are 32 sub-modules of size 2 (64 genes in total), and 

so 6 ‘layers’ of modules. Model parameters for the Continuous HIFF experiments are 

specified in Table 4.4. 
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Figure 4.9: Cross-section of the Spiky Continuous-HIFF, revealing the many locally 
optimal phenotypes, where modular constraints in different layers of the hierarchy are 
not satisfied. The basins of attraction for the highest fitness phenotypes correspond to 
a very small region of the phenotype space, and are unlikely to be found by change. 

As for the MC problems, a spread of experiments was run with varying partial reset 

size (more or fewer neutral mutations, Q) with the Spiky Continuous HIFF to simulate 

different amounts of inter-episode drift. Figure 4.14 shows how the distribution of fit­

nesses for 40 replicates after 50 thousand episodes of evolution changes with the number 

of neutral mutations Q. When Q is zero, the system simply climbs to a locally optimal 

phenotype and remains there for the rest of the simulation. Because there is no variation 

introduced between episodes, it is impossible for it to infer any problem structure, and 

what evolves is a single grand-hierarchy that efficiently produces one of the 232 possible 
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Figure 4.10: The fitness landscape is the sum of the fitness contributions of multiple 
modules of different sizes. Modules in the ‘upper’ layers are the union of modules in 

the ‘lower’ layers. 

Parameter Symbol Values
 

Number of modules N 32 
Number of developmental time steps T variable 
Decay factor df 0.5 
Evolutionary steps per episode K 4000 
Episodes 100000 
B mutation magnitude MB 0.005 
B mutation probability RB 0.5 
Cost function φ φ(x) = |x|
Cost coefficient λ 8 
Neutral ‘reset’ operations Q variable 

Table 4.4: Model parameters for the Spiky Continuous-HIFF. 

module assignments. Of these possible assignments, only 2 will provide the maximum 

benefit, and so the odds of it occurring by chance are slim (approximately 2−16). 

When Q is sufficiently large, the system explores many local optima, and evolves inde­

pendent hierarchical modules corresponding to the smallest modules (of size 2 in these 

experiments). Once any one module is sufficiently hierarchical, the afforded variability 

of switching the whole module with a single-point mutation means that the module will 

begin ‘aligning’ with its partner module in the layer above. The lack of variation between 

the modules permits a hierarchy to evolve across both of them, which produces a further 

change in variability, enabling this super-module to align with its partner module in the 

next layer up. This process continuous until either all modules are integrated into a 

single hierarchy, it makes a mistake (e.g. due to noise), or it is no longer beneficial to 

perform module switches (the marginal benefit of a switch falls below zero). 

This last effect (the marginal benefit of switching being non-positive) is most easily 

demonstrated with an additional set of experiments where we vary the number of devel­

opmental time-steps T (Figure 4.15). In these experiments, the partial resets were an 

explicit G reset (each entry is assigned either −1 or +1 with equal probability; B is left 
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untouched): this is a less biologically plausible assumption, but avoids conflating param­

eter effects, and produces cleaner (for easy interpretation) evolutionary trajectories. The 

trajectories shown below are from one of these experiments with the maximum number 

of developmental time-steps T = 20, as in the experiments with variable Q. Figure 4.11 

shows one such experiment, and Figure 4.12 the end-of-episode fitness and frequency 

with which a phenotype with a maximum benefit is evolved. 
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Figure 4.11: Evolutionary trajectories of regulatory connections for one experiment 
with T = 14 and Q = 500. It takes a long time for the smallest modules to de­
cay from a near-identity topology to a degenerate hierarchy. Thereafter, however, the 
system rapidly combines pairs of modules into super-modules, until two modules re­
main, which takes somewhat longer to combine into a single grand-module. The strong 
self-connection is an indication of the dominance of the lead gene. The many self-
connections that grow (lines above 1) and then fall-off are leaders of sub-modules that 
are subsumed into another module with a stronger (more dominant) self-connection. 

The spread with variable T shows how hierarchy does not evolve for T < 2 (it requires 

recurrence, as will be discussed in Chapter 5), and in fact the regulatory connections are 

removed altogether, reducing the cost significantly. The larger T , the larger the modules 

that the system can combine, and so the more layers the evolutionary process can model 

from the environment, and so the greater fitness it attains on average. The experiments 

with varying Q use a value of T = 10, which is why they are not able to evolve a grand 

hierarchy, and do not always find the highest fitness phenotype. 
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Figure 4.12: Evolution finds fitter phenotypes as the system becomes able to coor­
dinate larger and larger modules. A: the absolute fitness at the end of each episode 
increases over evolutionary time as higher fitness phenotypes are found and developed 
more efficiently. The very low-fitness dot at the start is due to the large cost of the 
initial entries on the diagonal of B. (1 sample per 5 episodes) B: The frequency with 
which evolution finds the fittest phenotypes (i.e. ones where all genes are in agree­
ment) is initially very low (theoretically on the order of 2/232 . It flat-lines at 1 once the 
evolutionary process is able to coordinate within the larger module: note that this is 
before it evolves the grand hierarchy (the grand-hierarchy does not confer any valuable 

variability (see Figure 4.13) but evolves anyway). 

4.7 Discussion 

In Chapter 3 we showed that the evolution of hierarchy can enable an evolutionary pro­

cess to better exploit a modularly changing rugged environment. In this Chapter we 

have extended this to show the same evolved hierarchy can enable the evolutionary pro­

cess to perform module switches to satisfy inter-module constraints, which we simulated 

with larger modules with relatively weak interactions. At the start of the experiments, 

the system was unable to satisfy the high-level constraints of the super-modules as it 

could only observe the strong gradients from the small sub-modules given the available 

phenotypic variability supplied by the B matrix: each gene would coordinate with its 

neighbours to maximise the benefit conferred by the lowest layer of modules. By using 

the Spiky MC and Spiky Continuous-HIFF problems we minimised the opportunity for 

genes to coordinate between modules by making the basins of attraction for each locally 

optimal phenotype the same size, which is not the case with the traditional quadratic 

module-benefit-functions. 

As in Chapter 3, the evolution of hierarchy is induced by the use of a linear cost of 

connections, and to be useful requires that it evolves in modules that correspond to 

the epistasis in the environment: in this case, the modules correspond to the smaller, 

lower-level modules which must be combined to satisfy the higher level modules. By per­

forming a ‘partial reset’ (a fixed number of mutations without selection to simulate drift) 

we are able to introduce enough long-term variation that these modules can be inferred 

by the evolutionary process. With the inclusion of a linear cost of connections, these 
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Figure 4.13: The phenotypes that evolve reflect the modularity and hierarchy in the 
gene regulatory network: neighbouring genes are consistent when they are members of 
modules, or when their module is a member of a module that contains a hierarchical 
module that can coordinate with its partner. As modules are combined into hierarchical 
super-modules, more of the genes ‘agree’. This is visually apparent, as the modules are 

(superficially) spatially grouped. 

modules evolve as hierarchies with the same key property as those described in Chap­

ter 3: a single-point mutation on the dominant gene effects a near-total whole-module 

switch in the expressed phenotype. This switching ability enables the independent hier­

archical modules to coordinate with the other modules (i.e. align with the majority) by 

following the (now observable) shallower inter-module benefit gradients. This changes 

the inter-module signal from being totally random (i.e. the probability of any two mod­

ules ‘agreeing’ is initially one-half) to being biased, such that the modules within a 

super-module agreed more often than half the time. This agreement implies a reduction 

in variation, and so a new module forms that is the union of its (now coordinating) 

sub-modules. The progression can be seen in Figure 4.16, where the B matrix of regula­

tory interactions is shown along with the auto-correlation between evolved phenotypes 

when the G vector of initial gene expressions is randomised. This ‘Hebbian response’ 

indicates which genes are usually correlated and foreshadows the evolution of hierarchy: 

correlations appear at the layer above the already evolved hierarchy. 

Despite our efforts to design a selective regime that does not reveal associations at 

higher levels from the outset, it is possible to evolve high-fitness phenotypes with a 
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Figure 4.14: Larger partial resets - as controlled by parameter Q prevent over-fitting 
to sub-optimal solutions in the Spiky Continuous HIFF. As in the spiky MC problem, 
it is necessary to introduce sufficient variation in G that the system explores many 
different phenotypes for it to evolve the ‘correct’ modules. When Q is low, the system 

readily fixes on a sub-optimal phenotype. 

mechanism that does not depend on hierarchy. The mechanism is not entirely clear, 

and we will present no results concerning it. Though the phenotype-fitness landscape 

explicitly has uniform-width basins in phenotype space, the gradients within the basins 

of attraction for low-fitness local optima are shallower than those of high-fitness local 

optima. The introduction of noise into the B matrix of regulatory connections distorts 

the genotype-fitness landscape, and this can cause the basins of attractions to become 

different widths in genotype space. This effect is largely removed by the use of a binary 

G vector of initial expressions, but not completely: if enough noise is present, it can 

move the minima of the valleys between local optima enough that it can change the 

widths of the basins, and so bias the evolutionary process toward evolving higher fitness 

phenotypes. The evolutionary process may fix on whatever phenotypic correlations it 

observes most often, and this may well produce phenotypes of an above-average fitness. 

Importantly, the amount of noise that is required to effect such a change is different 

for different pairs of local-optima: if two modules should be positively correlated to 

produce a fit phenotype, then to modify the landscape so as to bias the system to 

produce more phenotypes where they are negative correlated requires a stronger set of 

negative connections in the B matrix than to bias the system to produce phenotypes 
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Figure 4.15: Longer developmental periods allow better exploitation of evolved hi­
erarchy. For number of developmental time-steps T ≤ 1, hierarchy does not evolve. 
Where hierarchy does evolve, more time-steps reduce the additive loss associated with 
module flips. This loss is larger for larger modules in our continuous-HIFF environment, 
and consequently module flips on large modules are not viable when T is small: the 
larger T , the larger modules can be exploited, and so the better end-of-episode fitness 

after the system has fixed. 
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Figure 4.16: Using a smaller problem (for easy of interpretability), we can see how 
the changing regulatory matrix changes the ‘Hebbian response’ between genes and 
modules. There are clear positive correlations between genes in the evolved phenotypes 
where they are able to coordinate within. These correlations correspond to where new 
(hierarchical) modules will evolve, and emerge where a hierarchical module is able to 

coordinate with its partner module in the next layer. 
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where they are positively correlated. This suggests that it may be possible to ‘solve’ 

these multi-layer problems without any need for hierarchy, as the inter-module signal 

can be detected by exploration of the phenotype space due to drift in the gene regulatory 

connections. This proposed mechanism is close to the same mechanism that makes the 

Smooth MC solvable: rather than experiencing ‘noise’ in the B matrix, it integrates 

the weak inter-module signal already experience by the initial gene expressions in G, 

but it is still necessary that the ‘correct’ regulatory connections more readily influence 

the basin sizes (as is the case due to the relative steepness of the gradients within the 

basins). 

It may also be the case that Spiky MC problem is trivially solvable with binary G when 

the number of genes in the sub-modules is odd, because the benefit curve is sampled 

either side of the minimum rather than the minimum itself. This has not been explored, 

but would in effect allow the evolutionary process to compare the gradients either side 

of the minimum, and so increase the basin size of the fitter phenotypes. 

4.7.1 Amount of Drift and Two Time-scales 

Varying the amount of drift each episode with the parameter Q shows how sufficient 

variation between episodes is necessary for the evolutionary process to evolve suitable 

modules, which the cost of connections motivates to become independent and hierarchi­

cal. We can relate Q from this Chapter with the frequency of dual-peaked environmental 

instances Z from Chapter 3: larger values of Q increase variation in the long term by 

shuffling G to a greater or lesser extent, while smaller values of Z increase variation in 

the long term by trapping the evolutionary system less often (being trapped means that 

the phenotype must be consistent with the previous episode). 

Previous work has characterised the important relations between G and B as being 

along the lines of “G evolves quickly, and B evolves slowly” (Kounios et al., 2016). Just 

as important is the matter that G is restricted to [−1, +1], while B is unconstrained. 

It is necessary that the partial resets in G produces a distribution around zero, but 

that resetting B does not. In all experiments the values are explicitly constrained to 

[−1, +1], such that random mutations scramble (to a greater or less extended depending 

on Q) the vector of initial gene expressions. Random mutations on the B matrix of gene 

regulator interactions, however, introduce isotropic noise, and so, on average, don’t do 

anything: they introduce no bias, and do not systematically undermine the products of 

past evolution so long as the number of mutations is small. This same distinction holds 

for the experiments in Chapter 3, as it is necessary that G approaches fixation during 

any episode: G must be bounded so that the selection from previous episodes can be 

readily ‘undone’ in a short time-frame. The opposite must be true of B: the system 

must integrate changes over a longer time-frame, so it must be practically unconstrained. 

Similarly, it is necessary that G is regularly scrambled (by the changing environment), 
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but the amount of noise introduced into B during the transitionary periods (where G 

doesn’t necessarily reflect the environmental conditions) must be small compared to the 

‘signal’ from directed evolution when G does reflect the environmental conditions. 

The ‘speeds’ with which G and B evolve are important: G must evolve quickly enough 

to produce phenotypes that reflect the environmental constraints and B must evolve 

slowly enough to not ‘over-fit’ immediately; however, these ‘speeds’ can be arbitrarily 

parametrised, and it is the consequences of the relative ‘speeds’ in the short term that 

determines the evolutionary outcomes: G must approach fixation in the short term 

(though it need not fix), and B must not over-fit in the short term. The short time­

scale is determined by the episode duration K, and the other parameters can only be 

interpreted knowing K. The parameters Q and Z to some extent modulate this time­

scale by changing how quickly G varies: it is necessary that it change frequently so that 

on the long time-scale over which B becomes more influential that it sees a somewhat 

balanced distribution of module assignments (however, we know from Kouvaris et al. 

(2017) that truly balanced sample is not necessary when a suitable cost of connections 

is employed). A further complication is that the Smooth MC problem can be solved by 

the evolutionary process without cost of connections if G does not evolve, so strictly the 

G timescale doesn’t matter in such a scenario where the variability conferred by B is 

not necessary. 

These additional details are worth exploring as they allow us to make better predictions 

about the evolutionary dynamics. For instance, in Chapter 3, we do not find a failure to 

evolve independent modules except for the extreme scenario of Z = 1: it is clear that we 

would see a failure to evolve independent modules for values of Z close to 1 but not equal 

to 1 (or similarly, increase K); however, scaling back MB (the magnitude of mutations 

on regulatory interactions in B) or by changing squash constant h and cost coefficient 

λ in proportion would ‘undo’ the effect of reducing the amount of variation, though the 

evolutionary dynamics will be slower by virtue of the effectively reduced mutation rates. 

We shall reiterate and expand on this discussion in Section 5.6.2. 

4.7.2 Limits to Rescaling 

The evolution of hierarchy at any layer enables the evolutionary system to explore com­

binations of modules at that scale. However, as in the experiments with the changing 

environment, it is necessary that the hierarchy is sufficiently dominant that there is 

minimal loss of fitness due to inconsistency within the switching module: when the 

marginal benefit of switching is non-positive, the module will not align with the other 

modules in the layer above. Even in a total hierarchy (where the only gene with any 

influence is the lead gene), there is still an additive loss due to the initial expressions 

of the subordinate genes. The larger the module being flipped, the larger the loss due 
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to the (counterproductive) additive contribution of subordinate genes as there are rela­

tively more sub-ordinate genes. The effect is to make it less favourable to switch larger 

modules, as a larger proportion of the additive contribution isn’t controlled by the lead 

gene. This effect is exacerbated by the nature of our hierarchical problem, in that the 

benefits awarded for coordinating larger modules are smaller than those of coordinating 

smaller modules. Consequently, the system is able to consistently integrate modules up 

to a certain size but becomes stuck as it is unable to coordinate larger, harder-to-switch 

modules that provide less benefit. These effects can be controlled independently: one 

is a property of the developmental process and is determined by the decay rate τ and 

number of developmental time-steps T ; the other is a property of the environment and 

is determined by the decay factor df . 

The regulatory decay rate τ and the number of developmental time-steps T together de­

termine the additive contribution of each subordinate gene in a ‘total’ hierarchy (where 

all connections are from the lead gene). For each subordinate gene, the initial gene ex­

pressions of magnitude 1 decay to magnitude (1−τ)T during development, but otherwise 

have no influence on the terminal gene expression. Because the developmental process 

is linear, this contribution is additive, and for τ = 0.2 and T = 10, this contribution is 

(1 − τ)T /τ = 2%. For the larger value of T = 20 it is about 0.2%, for T = 30 about 

0.02%, etc.. This is one of two reasons why the system is able to achieve higher average 

fitnesses in the Spiky Continuous HIFF when T is larger: the additive loss of switching 

is smaller for larger T , so larger modules can be switched. This in turn means that the 

system can coordinate larger modules, and so satisfy more layers of the fitness landscape 

(as reflected by the small variance in Figure 4.15 for larger T ). The other (more boring) 

reason is simply that larger T provides a slightly greater expression overall for a given 

cost, so high benefit phenotypes provide a greater fitness all else being equal (as reflected 

by the higher peaks in Figure 4.15 for larger T ). 

It should be noted that while the sign of the marginal benefit of switching a module 

is determined solely by the coordination with the modules ‘partner’ module, the mag­

nitude of the benefit depends on the coordination between all modules as – unlike a 

non-continuous HIFF (Watson and Pollack, 1999) – the signal for upper-layers is al­

ways present. This is another complication in describing the conditions in which the 

evolutionary process will be able to coordinate modules, as modules switches effectively 

observe the magnitude of the benefit change of the single mutation (not just the sign of 

the benefit change of switching the whole modules): whether a particular module switch 

is beneficial or not depends on the genetic background. This includes the expression of 

genes in other modules (it is generally easier to switch early in an episode when some of 

the other genes in a module may not have flipped), and the interactions between them. 
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Figure 4.17: For T = 8 on a large problem with parameters per 4.4, the evolutionary 
process cannot reliably switch modules of size 8. Because it cannot always coordinate 
modules of size 8, it does not observe the modules of size 16 consistently, and so gets 
stuck without solving the problem. Note that while it is not reliable, the system is 
often able to coordinate the modules of size 8, as evidenced by the wrong positive inter­
module Hebbian response and single module of size 16: it just isn’t consistent enough 

to cause a new hierarchy to evolve in every case. 
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Figure 4.18: For T = 14 on a large problem with parameters per 4.4, the evolutionary 
process is able to coordinate modules of any size necessary to solve the problem, and 
so ultimately evolves a grand-hierarchy where the phenotype is effectively determined 

by the initial expression of a single gene. 
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4.8 Conclusions 

In this chapter, we have extended the results from Kounios et al. (2016) to an explic­

itly modular problem (a generalised MC problem) using a slightly modified version of 

the model. Mostly significantly, there is no time separation between mutations in the 

G vector of initial constraints and the B matrix of regulatory coefficients. We charac­

terised the conditions in the fitness landscape of the traditional MC problem that permit 

an evolutionary process to observe the inter-module correlations that reveal the global 

structure of the fitness landscape, and based on these conditions, we created a ‘spiky’ 

version of the MC problem. This spiky version if more consistent with the experiments 

from Chapter 3, and ensures that the basin width of each locally optimal phenotype 

is the same, regardless of fitness. Using our Spiky MC, we show that the evolution 

of hierarchical modules enables an evolutionary process to solve the MC problem by 

another means: the evolution of hierarchical modules can enable the evolutionary pro­

cess to follow comparatively shallow inter-module benefit gradients to find the most fix 

phenotypes in the MC problem. By relating the amount of drift (Q) in this chapter 

to the frequency of dual-peaked module instances (Z) from the Chapter 3 we provide 

some additional insight as to the general principles of the developmental model under 

episodic selection that enables an evolutionary process to infer the modular structure of 

a problem. 

The experiments in this chapter with the Spiky Continuous Hierarchical If-and-only-if 

reveal the capacity for the evolution of hierarchy to operate at multiple scales, and hence 

for a micro-evolutionary process to bootstrap its own evolvability: the evolution of hier­

archy in sub-modules permits the coordination of these modules within larger modules, 

which themselves become hierarchical, enabling coordination in larger modules. This 

shows that the evolution of hierarchy is somewhat scale invariant, but we have discussed 

the limitations relating to the additive loss from subordinate genes when switching, and 

provided an example of how this limit can be parameterized in the developmental model. 

The fact that a ‘grand-hierarchy’ can evolve in these experiments, and the observed 

limits to the bootstrapping process both provide additional evidence that the evolution 

of hierarchy may not necessarily be motivated by selection for evolvability, as the ‘last 

layer’ of modules becomes hierarchical despite it not providing an evolvability benefit. 

In the next chapter, we will discuss in some detail why the hierarchy evolves. 



Chapter 5 

The Efficiency of a Hierarchical 

Regulatory Topology 

5.1 Introduction 

In Chapters 3 and 4, we showed that the evolution of internally hierarchical modules 

has dramatic consequences for variability, and so evolvability. In this chapter we explore 

why the hierarchy evolves. In particular, we will show that hierarchy can emerge as a 

result of selection for efficient gene regulation, and that selection for evolvability is not 

necessary. 

The question as to how the evolution of evolvability comes about is an interesting one 

because of the seemingly implausible notion that natural selection should favour ben­

eficial future variability when it can only select from present variation: how is it to 

anticipate what variability will be beneficial in the future if the fitness consequences are 

not visible presently? In this chapter, we will specifically address whether evolvability 

evolves in response to selection for evolvability itself (Riedl, 1977; Payne and Wagner, 

2019; West-Eberhard, 2019; Wagner and Draghi, 2010; Pigliucci, 2008) in our model. 

It is also unclear to what extent a cost of connections is necessary or sufficient to promote 

modularity or hierarchy: Mengistu et al. (2016) acknowledge that selection for evolv­

ability could be necessary to fix hierarchy in their model (indeed, they document that 

a population with an explicit diversity maintenance mechanism was needed to evolve 

suitable hierarchies) but suggest that the cost of connections might provide a necessary 

initial impetus. Many other models showing the evolution of evolvability also employ a 

population of genetically distinct individuals, often with some sort of diversity mainte­

nance mechanism (Kashtan et al., 2005; Parter et al., 2008; Clune et al., 2013; Mengistu 

et al., 2016; Rünneburger and Le Rouzic, 2016; Crombach and Hogeweg, 2008). Conse­

quently, it can be difficult to make strong statements concerning the causes of observed 

67
 



68 Chapter 5 The Efficiency of a Hierarchical Regulatory Topology 

evolvability, because lineage selection remains a possible explanation. Virgo et al. (2017) 

noted that Kounios et al. (2016) use a population of one individual to evolve robustness, 

which shows that lineage selection certainly isn’t always necessary for the evolution of 

evolvability. 

What is apparent is that selection for evolvability is not necessary for the evolution of 

hierarchy in our models, because hierarchy will emerge in circumstances where the evolv­

ability benefits described in Chapter 3 are not exploitable. Indeed, a grand hierarchy 

(where one gene directs all others) will evolve when the initial gene expressions fixed 

(removing any opportunity to switch modules) in an unchanging environment (remov­

ing any potential benefit of switching modules, see Appendix C.4). Furthermore, where 

hierarchy is exploitable, there is a systematic evolution toward a hierarchical module 

topology from the outset, when the hierarchy is too weak to enable single-point muta­

tion module flips: evolution toward a hierarchy precedes the changes in variability it 

confers. 

We can further largely reject lineage selection as a contributing factor, as our experiments 

deal with single-point mutations and populations of just one individual (as per Virgo 

et al. (2017) commenting on Kounios et al. (2016)). These properties limit the variation 

in the population significantly, making it impossible to select for a lineage at all, as 

only one lineage exists. It must be cautioned, however, that lineage selection is not the 

only means by which evolvability enhancing mutations could be directly selected, and it 

would to a certain extent be futile to try to address all possible mechanisms. As such, we 

devote the rest of this chapter to explaining how hierarchy can evolve as a consequence of 

its ‘efficiency’ (the capacity to produce fit phenotypes given a cost of connections) rather 

than its evolvability benefits. We will prove that hierarchy with ‘dominance’ (discussed 

below) is the most efficient regulatory topology under reasonable assumptions and argue 

that we can expect a fitness gradient toward such hierarchy in some relevant cases. We 

will then proceed to explain how the different experimental parameters can influence 

the rate at which hierarchy evolves by characterising their influence on the ‘saturation 

time’ of the evolutionary system. 

5.2 The Evolution of a Hierarchy with a dominant gene 

In this chapter we will assume entirely a narrow definition of hierarchy which reflects 

the structures that we observed evolving in the previous chapters. While there are many 

ways to construct a topology such that it is hierarchical (i.e. a sub-set of genes direct the 

developmental expression of other genes), we consistently see the evolution of ‘columns’ 

in our B matrices of regulatory connection weights - one gene directing all others - when 

evolved with a linear (L1) cost of connections. While much of the analysis in this chapter 

ignores the possibility of other hierarchical topologies (e.g. a chain is explicitly excluded 
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by the ‘two-parameter’ characterisation to follow) we will find that the ‘column’ (or 

‘star’) topology (which we will just refer to as a ‘hierarchy’) is the most efficient, and we 

will make the case that this is precisely why it evolves rather than any other topology. 

It is also necessary to define the terms around dominance. ‘Developmental dominance’ 

is the feature that one gene in a module will tend to be more strongly expressed than 

the others during development. This developmental dominance may be a consequence 

of dominance in the B matrix of regulatory interactions or dominance in the G vector 

of initial gene expressions. Dominance in B is most apparent in the hierarchies that 

evolve in the experiments in the previous chapters, as the ‘self-connection’ on the switch 

gene is stronger than all the other connections: the switch gene up-regulates itself more 

than it up-regulates the other genes, and consequently has the greatest expression levels 

throughout development. Dominance in B comes about well before the evolution of any 

apparent hierarchy due to the stochastic nature of our simulations: any disparity in the 

connections within a module can produce developmental dominance. 

Dominance in G is less apparent in our experiments with hierarchy because we use a 

clamped G vector. Rather than G providing slightly different initially expression levels, 

G determines the sign of the initial gene expression within a module, and it is expected 

that the evolutionary process will cause these to align after the perturbation at the start 

of each episode (either due to a change in environmental conditions, as in Chapter 3, or 

a period of drift, as in Chapter 4). The transitional period during which the G vector is 

aligned to the new environmental conditions, however, is of great interest, and provides 

‘transient dominance’. 

While the transient dominance supplied by G is ephemeral, the evolution of hierarchy (in 

the B matrix) and dominance (in the B matrix) both persist over long time-scales, and 

both have long-term evolutionary consequences as a result: this ‘regulatory dominance’ 

will be the focus of this chapter; transient dominance in G will be discussed in depth in 

Chapter 6. 

In our experiments with the linear cost of connections, the hierarchies that evolve can be 

characterised by the strength of the self-connection on the lead gene s, and the connec­

tion from the lead gene to its subordinates r. These hierarchies have dominance because 

it is always the case that s ≥ r where they evolve. This two-parameter characterisa­

tion provides an immediate clue as to the reasons for the evolution of dominance and 

hierarchy: given a hierarchical topology (which would provide an evolvability benefit in 

the absence of the dominance), there must be some direct fitness consequence as to the 

choice of s and r. Indeed, if we assume that s and r evolve to maximise fitness, then 

we are able to predict the terminal connection strengths by finding the assignment of s 

and r that maximises fitness numerically. 

Figure 5.1 shows how the optimal assignment (that which produces the greatest attain­

able fitness) of s and r in a 4-gene module changes for different total weights. Figure 5.2 
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Figure 5.1: Optimal assignments of s and r for varying total weight along with the 
fitness they produce in a module of 4 genes with a benefit coefficient of 1, cost coefficient 
of λ = 1, and G vector of all +1. The fitness is highest with a total weight a little 
more than 4, with around 30% of the weight on s (25% would correspond to the no-
dominance scenario of s = r). For any positive choice of total weight, the optimal 
assignment always has s > r. Though imperceptible in this figure, there is a dip in 
the fitness curve when the total weight is small. This is affectionately called the ‘pit 
of despair’, which precludes the evolution of anything in B for large values of cost 
coefficient λ (the larger λ, the wider the pit of despair) as the benefit curve is very 
shallow near zero. For small choices of λ, the pit will disappear completely; for some 
assignments, it is present but narrow, representing a hurdle that must be jumped before 

the evolutionary process can proceed. 
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Figure 5.2: The fitness curve has a characteristic ‘S’ shape which for large values 
of λ initially has a negative gradient (the ‘pit of despair’) due to the initially shallow 
benefit curve, and has a maximum where the marginal benefit falls below the marginal 
cost as the benefit curve saturates due to the squash function σ. Shown are curves 
for hierarchical modules, varying the proportion of the total weight that is assigned to 
the self-connection s (same configuration as Figure 5.1). Because there are four genes 
in the module, the s proportion of 0.25 corresponds to a hierarchy without dominance 

(s = r). 
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shows the fitness curves for 3 ratios between s and r with the same total regulatory con­

nection weight. Each curve is the sum of a monotonically increasing S-shaped ‘benefit’ 

curve, and the linearly decreasing fitness loss due to the linear cost of connections when 

the initial expression of all genes is +1, with a linear module-benefit function η(x) = x. 

It is clear that - in this configuration - the maximum fitness is attained for a configu­

ration where s > r. Furthermore, we can infer that the maximum benefit is attained 

for the same assignment, because the cost is proportional to the total weight and so 

independent of the ratio between s and r. 

u

u

u

u

s

r

r

r
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Figure 5.3: When the initial expression of all genes is the same, then the ‘identity’ 
with connections of strength u produces the same phenotype (and so fitness) as a 
hierarchy with s = r = u. A hierarchical topology can achieve a higher fitness with an 

assignment where s > r. 

It is noteworthy that with the high cost coefficient of λ = 1, it is initially the case 

that adding weak connections decreases the fitness due to the shallow benefit curve (the 

‘pit of despair’, apparent in Figure 5.2). In addition, because the benefit curve grows 

steeper initially, the optimal assignment early on is to place all the available weight on 

a single self-connection. This might lead one to assume that a hierarchy would emerge 

from the outset, but in practise this is not what happens, because the marginal benefit 

may still be positive for all connections in the module (see Figure 5.2). As we shall 

see in a later section, evolution only finds the optimal assignments for s and r once it 

has ‘saturated’ the whole module, such that indiscriminately increasing the weight on 

connections within a module no longer provides any benefit. 

We can appreciate why s might evolve to exceed r if we consider the ‘identity’ topology 

where every gene has a self-connection of strength u, and no other connections are 

present (Figure 5.3A): in such a topology, there will be an optimal assignment for u 

where the marginal benefit of increasing gene expression is equal to the marginal cost of 

increasing the connection strength (the marginal fitness is zero). If we assume a linear 

module-benefit-function, then each gene is effectively independent (there is no pleiotropy 

or epistasis). Given this assumption, the optimal assignment of the self-connection will 

be the same for all genes: during development, the expression of each gene follows the 

same trajectory, each gene contributes the same benefit, and each connection has the 

same cost. 

If we select one gene to be the leader, and instead arrange the same weight as a non-

dominant hierarchical topology (where s = r = u, Figure 5.3B), we will find the exact 
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same fitness: genes that previously up-regulated themselves are now up-regulated by 

another gene that follows the same developmental trajectory as itself. Keeping r the 

same, the marginal benefit for increasing the self-connection strength s will be greater 

than it was with the identity topology, as the increase in expression during development 

will not only increase the terminal expression of the lead gene, but will also increase the 

expression of the subordinate genes. Because the marginal cost of increasing s is the same 

as for r, it is clear that the hierarchical topology with regulatory dominance (Figure 5.3C) 

is more efficient than the identity topology under a linear cost of connections as it is 

able to achieve a greater benefit for the same cost. 

5.3	 Proof of the Optimality of Hierarchy under Assump­

tions 

In this section, we prove - under reasonable assumptions - the intuition from the previous 

section: that a hierarchical topology with a dominant lead gene is the topology that 

maximises fitness of independent modules (assuming the initial gene expressions are 

well-matched to the environment). 

We consider here a generalisation of the model, replacing the cost function with Equa­

tion 5.1. The function φ(|x|) controls how the cost of each connection varies with its 

strength (the magnitude of the connection coefficient). In the previous chapters, a linear 

cost of connections was used, which is the same as setting φ(|x|) = |x|. 

N,N 
1 

c(B) = φ(|Bij |)	 (5.1)
N2 

i,j 

5.3.1	 Assumptions 

The assumptions made in this proof are as follows: 

•	 Modules are independent, and the module of interest has only positive intra-

module regulatory connections. Assuming this – and that the developmental func­

tions are all symmetric around zero – we can ignore gene expressions less than 

zero. 

•	 The developmental process must be recurrent: T > 1, where T is the number of 

developmental steps performed during development of the initial gene expression 

levels to the phenotypic expression levels. 
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•	 yy(0) = G must be uniform and match the environment (all initial gene expressions 

of the same magnitude, and the appropriate sign to match the environmental 

conditions). 

•	 The update term must pass through the origin, be (odd) symmetric, and grow 

monotonically with the magnitude of the weighted sum: σ(0) = 0, σ " (x) > 0 

where σ " is the marginal of the squash function σ at x. This simply means that 

stronger gene expressions cannot result in lesser effects. 

•	 The benefit term must grow monotonically with the expression of each gene: 

η " (x) > 0, where ηm is the module-benefit function, and its argument x is them

mean expression level in the phenotype. This implies directional selection such 

that any increase in the expression of a gene ‘in the right direction’ is always 

beneficial, no matter how slight. Note that this holds in our piecewise linear en­

vironments when the population is at a local optimum, which is how the system 

spends most of its time for the values of K which we use. 

•	 The cost term (neglecting any constant contribution) must grow monotonically and 

sub-additively with the magnitude of individual connection weights: φ(|a| + |b|) ≤ 

φ(|a|) + φ(|b|). This means that it no more costly to lump weights together onto 

a single connection than to spread them out among many. The linear cost of 

connections, φ(|x|) = |x|, is a special case of this, which evokes a resource allocation 

game: the cost of each unit of weight is constant, regardless of where it is assigned. 

•	 The decay term must be positive and less than one: 0 < τ < 1. This is a 

fundamental assumption in the model, that when unregulated, gene expression 

levels tend toward zero. 

•	 The cost coefficient must be non-negative: λ ≥ 0. There must be some cost for 

connections for our result to have any meaning. 

The final part of Part 3 requires either of the following stronger assumptions: 

•	 The module-benefit-function η must be linear. 

•	 The squash function has a non-positive second differential (σ "" ≤ 0) locally and 

the cost function φ must be linear. 

5.3.2 Proof 

The proof proceeds in three parts, describing a process for modifying the assignment of 

a fixed total weight to the connections within a module without ever reducing the contri­

bution of the module to the phenotype’s fitness, each part performing a transformation 

which follows from the previous. 
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Part 1 shows that a dominant gene (which always has the greatest level of expression) 

can be selected, and that there is no fitness advantage to having any gene regulate it 

but itself. Part 2 shows that there is no fitness advantage to any gene other than the 

dominant gene regulating any gene, indicating that an optimal fitness can be achieved 

with a hierarchy. Part 3 shows that an optimal hierarchy can be described by only two 

parameters (as in Figure 5.1) if slightly stronger assumptions are made. 

Part 1 Given a matrix describing regulatory connections within a single isolated mod­

ule, we start by making all regulatory coefficients positive without changing any of 
¯their magnitudes to produce a matrix B that produces only positive inter-gene effects. 

Switching the sign of a connection produces no change in cost, and a system where all 

connections are coordinated will always outperform one with any contrary connections 

given the assumption of an odd (symmetric) squash function: σ(x) = −σ(−x). 

Next, we identify the gene in this module which has the greatest total in-coming con­

nection weight and call it s (the index of the gene, not the strength of the connection). 

N 
¯s = arg max Bij 

i j 

Because all genes start with the same initial expression, and σ is assumed to be mono­

tonic, this gene will have the greatest level of expression at time t = 1 (after one 
¯developmental step) given regulatory matrix B, represented by ȳs(1). 

ȳs(1) ≥ ȳj (1) 

We then move all the incoming connection weight onto the self-connection Bss to produce 
˜a new regulatory matrix B: 

⎧ ⎪⎪⎪⎨ ⎪⎪⎪⎩
 

N ¯i = s, j = s j Bij 

B̃ij = i = s, j  0= s 

else B̄ij 

This effects no change in gene expression at time t = 1, as the product within the 

squashed part of the update equation is unchanged. However, we assume a recurrent 

system such that T ≥ 2, and a necessary consequence of reinforcing the self-connection 

on gene s is that it has the greatest level of expression at any point in developmental 

time, as it is motivated by the most strongly expressed gene in the network (itself, s) 

via the strongest connection in the network (its self-connection, Bss). This means that 

the expression of gene s may be greater for time t > 1 than any other gene. 
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ỹs(t) ≥ ỹj (t) 

˜Crucially, the expression of any gene i can only be greater at time t with B than with 

B̄, because none of its influencers will experience a reduction in expression: they can 

only experience an increase in expression due to a greater expression of gene (s). 

ỹi(t) ≥ ȳi(t) 

This change cannot increase the cost, as the cost function is assumed to be sub-additive, 

and we have concentrated all of the cost of regulating gene s on a single connection. 

Consequently, the transformation from B̄ to B̃ can only improve the fitness, as it may 

improve the benefit (a monotonic function of total gene expression) and cannot increase 

the cost. We can therefore say that B̃ is no less efficient than B̄: 

˜ ¯B � B 

ˆPart 2 Next, we generate another regulatory matrix, B, by moving all the weight for 

in-coming connections for every gene i so that it is solely motivated by gene s, which is 

a degenerate hierarchical module configuration (one gene directing itself and all others 

within the module). 

⎧ 
N⎨j = s j B̃ij

B̂ij = ⎩else 0 

Again, the sub-additive cost of connections means the total cost cannot be increased 

by this operation. The expression of gene s is unchanged, as it remains unaffected by 

any other gene, and we have not changed the strength of the self-connection Bss. What 

has changed, is that now every gene is always motivated by the most strongly expressed 

gene. This may increase the expression of each gene at time t ≥ 2 and cannot decrease 

it. 

ŷi(t) ≥ ỹi(t) 

˜ ˆDuly, the transformation from B to B can only increase fitness. 

B̂ � B̃ � B̄



 

 

 � �
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Observe that the total incoming weight for each gene is unchanged in these transfor­

¯mations. A consequence of this is that given any regulatory matrix B we can generate 
ˆa hierarchical regulatory matrix B with the same per-gene weight which is no worse. 

Consequently, if there is an optimal configuration, then hierarchy must be an optimal 

module configuration, as an optimal module configuration will have some particular dis­

tribution of weight per-gene, and a hierarchical assignment of these weights (with the 

most strongly regulated gene leading) achieves the highest possible fitness. 

Part 3 Parts 1 & 2 determine that a dominant hierarchy (the strongest gene driving 

all genes exclusively) is optimal, thought does not prove that it is the only optimal 

topology: it may be that the transformations described have no effect on fitness. This 

final part shows that the topology can be described with just two parameters by two 

routes. 

If we assume that the module-benefit-function is linear, then the subordinate genes are 

completely independent (no pleiotropy or epistasis) because they have no influence on 

any other gene or its benefit contribution: the initial gene expressions simply decay 

exponentially, providing an additive contribution to their own terminal expression (as 

discussed in Section 4.7.2). Because they are independent, the choice of connection 

strength that optimises the fitness contribution of one subordinate can be used for 

them all. As such, we can describe an optimal topology with just the strength of the 

self-connection Bss, and the strength of all other (non-zero strength) connections Bis 

(i = s). 

If we wish to avoid assuming a linear module-benefit-function, then we can instead 

assume that the squash function has a non-positive second differential σ "" (x) ≤ 0 and 

that the cost function is linear φ(|x|) = |x|. In this case, given a set of choices for the 

connection strengths between the lead gene and the subordinates, we can ‘average them 

out’ such the same total weight is preserved, but all subordinate connections have the 

same strength. This doesn’t change the cost (because the cost function is linear) but 

may increase the benefit. The phenotypic expression of subordinate gene i = s is given 

by the expression 

T 

yi(T ) = (1 − τ)T + (1 − τ )(T −p)σ(Bisys(p)) (5.2) 
p=1 

This is a linear combination of update terms, and because we assume σ "" (x) ≤ 0 locally (it 

can’t be the case globally - unless it is linear - due to the assumption of odd symmetry), 

the whole expression must also have a non-positive second differential with respect to 

the regulatory connection Bis. Given any function f for which f "" (x) ≤ 0 and set of 
¯numbers X = x1, x2, ..., xn with mean X = ( xi)/n, Jensen’s inequality says that 
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n 

nf(X̄) ≥ f(xi) (5.3) 
i=1 

We can substitute f for the expression for yi(T ) with respect to Bis, as it has a non-

positive second differential, being the sum of terms with non-positive second differential, 

in which case the summation on the right-hand side of Equation 5.3 is proportional to 

the mean phenotypic gene expression within the module, which is in turn the input to 

the benefit function. 

Consequently, setting Bis equal to the mean of subordinate connection strengths can 

only increase the mean expression within the module (and so benefit, because the benefit 

function is monotone), and does so without changing the total weight (and so cost, since 

we here assume the cost function is linear). As such, this pair of assumptions also lead 

to the result that we can produce an optimal hierarchical topology described by only two 

numbers: as before, these are the strength of the self-connection Bss, and the strength 

of all other (non-zero strength) connections Bis (i = s). 

Finally, note that there can be no fitness advantage to a hierarchical module if all the 

connections are the same weight (it is equivalent to any topology where the sum of 

connections onto each gene is the same). As such, if there is an optimal topology (i.e. 

one that maximises fitness under our assumptions) then it must be a hierarchy with 

regulatory dominance (Bss > Bis∀i = s). 

5.3.3 Discussion 

Most of the assumptions in this proof come directly from the model detailed in Chapter 3, 

though with mild relaxations. Here we will briefly discuss these assumptions and their 

implications. 

The assumption of a recurrent developmental process (T > 1) is reasonable (development 

in living organisms takes a long time). It should be noted that when a gene has no 

influence on any other gene, that its initial expression still makes an additive contribution 

to its terminal expression proportional to (1−τ )T as discussed in Section 4.7.2: increasing 

T reduces this contribution, and so ‘tightens’ the grouping of phenotypes generated by a 

hierarchical developmental process (effectively an increase in robustness) allowing larger 

‘jumps’ from one phenotype to its complement. 

The assumption of a sub-additive cost of connections (of which the linear (L1) is an 

extreme example) corresponds to circumstances where it is no more expensive to in­

crease the strength of strong connections than it is to increase the strength of weaker 

connections. In practise, hierarchy may still be optimal for a slightly super-additive cost 

function, or if there is strong positive epistasis in the benefit function. Figure 5.4 shows 
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some examples of regulatory topologies that can evolve when a strictly sub-additive cost 

of connections is used, indicating that while hierarchy may be the most efficient reg­

ulatory topology, this does not imply that it will always evolve, though it is the case 

that a sparse topology (where each gene is influenced by only one gene) will evolve 

consistently). 

A B C D

Figure 5.4: Examples of regulatory topologies evolved with a strictly sub-additive 
cost of connections (see Appendix C.3). While a ‘column’ hierarchy is the most effi­
cient topology for any sub-additive cost of connections, a strictly sub-additive cost of 
connections produces many locally optimal topologies that are not hierarchical. The 
orange nodes with thick outlines are members of loops which (through positive feed­
back) can retain state (i.e. maintain the pattern of expression of its member genes) 
during development: if more than one node is able to retain state during development, 

then it is unlikely that the module can be switched by a single-point mutation. 

Of note, is that parts 1 and 2 (and 3 with additional assumptions) holds for any benefit 

function which is locally monotonic. Apart from the piece-wise linear and quadratic 

module-benefit functions employed in our experiments, this would hold e.g. for a root­

mean-squared benefit function for a broad class of B matrices. This implies that an 

optimal topology is hierarchy for any such benefit function, but it may be that it is 

not a two-parameter (e.g. when the per-connection cost function φ is non-linear). This 

possibility has not been tested, but suggests that the conditions under which hierarchy 

could emerge are quite general. An assumption of monotonicity is none-the-less an 

assumption of selection toward an extreme (i.e. directional selection). The tendency 

for experiments to assume directional selection (without considering selection for non-

extreme phenotypes) is a concern raised by Rünneburger and Le Rouzic (2016), and 

indeed hierarchy may not evolve if the benefit function is not monotonic. Note that while 

the benefit function must be monotonic, this does not mean that the fitness function 

must be monotonic: indeed, as we shall see, it is necessary for the fitness function to be 

non-monotonic (as in Figure 5.2) to evolve hierarchy in our experiments. 

Finally, note that a hierarchical topology is not sufficient to produce a high fitness 

phenotype: it must also have a doinant lead gene. Fortunately, the more hierarchical a 

topology, the more benefit may be gained by increasing the extent of the dominance (the 

more influence one gene has, the greater the return for increasing its own expression; 

and the more dominance in the connections, the greater the fitness can be obtained by 

increasing the influence of the dominant gene. The proof relies on both these properties 
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in a ‘lump-transfer’ way, but if they hold incrementally as well, then this would provide 

a good indication that direct selection for high fitness can promote the evolution of 

hierarchy. If it is the case that dominance promotes selection for hierarchy and hierarchy 

promotes selection for dominance, there is the potential for positive feedback, and we 

will explore this further in Chapter 6. 

5.4 Fitness Gradients toward Hierarchy 

The previous section showed that hierarchy is the most efficient topology for a sub-

additive cost of connections, but it does not indicate the hierarchy should necessarily 

evolve, or even that it can. In general, we cannot prove that there is always a gradient 

to a ‘column’ hierarchy, but if there exists a gene s, such that ys(t) ≥ yj (t)∀j, and all 

connection weights have the ideal sign (e.g. all positive for an all positive target and 

genotype), then there may be a gradient towards a hierarchy with dominant gene s if, 

in addition to the assumptions in Section 5.3, we assume an additive cost of connections 

φ(|a| + |b|) = φ(|a|) + φ(|b|), such that all regulatory networks B with the same total 

weight (sum of the magnitude of connection strengths) have the same cost. 

We can express the developmental dynamics as an update term, showing the change in 

gene expression for gene i for each of the T developmental steps, as in Equation 5.4. 

⎛ ⎞ 
N 

Δyi = −τyi + σ ⎝ Bij yj ⎠ (5.4) 
j 

We consider a single isolated module with always-positive gene expressions. The final 

fitness contribution of a module is a monotonically increasing function of the sum of 

yi(T ) terms, so we ignore the module-benefit function and only consider the total gene 

expression. For any gene i, the differential of its update term with respect to the within-

module connections that motivate it is given by Equation 5.5. 

⎛ ⎞ 
∂Δyi 
∂Bij 

= σ " ⎝ 
N 

j 

Bij yj ⎠ yj = Qiyj (5.5) 

Qi is then defined for gene i (common for all Bij ), and because σ is monotonically in­

creasing (σ " > 0) we know Qi is non-negative. Assuming that the target phenotype is 

one where all genes have a positive gene expression, and that yj > 0, it is apparent 

then that the partial differential for Δyi at each step is greatest with respect to the 

gene which, at that step, has the highest expression. Should one gene always have the 

highest level of expression, then there is always an advantage to moving weight from 

connections that are not outgoing from this gene as they provide a shallower expression­
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(and so benefit-) gradient than those that are outgoing from this dominant gene. This 

essentially motivates incrementally moving weight from any row of the regulatory ma­

trix onto one column, which will ultimately lead to a degenerate (single-layer) hierarchy, 

when directional selection provides a pressure to increase the magnitude of every gene 

when the phenotype matches the environment well. We do not present this as a proof, 

because changes to the expressions of genes early on in develop may violate our assump­

tions of developmental time dominance; however, this argument does suggest that if 

there is a gene which is significantly more strongly expressed than all others through­

out developmental time, then this indicates that there is a greater marginal benefit to 

be gained from increasing its influence over any other, and that a micro-evolutionary 

process could in theory evolve a hierarchy. 

The assumption of developmental time dominance is not one that always holds; though 

it is generally the case in our experiments, it is unclear whether this is just down to 

stochasticity in the simulation, or is a consequence of selection for dominance. Figure 5.5 

shows how the number of modules with a dominant gene throughout development was 

usually four during an experiment from Chapter 3 with Z = 0.5 (where there were four 

modules in total), showing that this can be the case, and indicating that as the evolution 

progresses, the probability of any module having sufficient regulatory dominance to 

induce developmental-time dominance may grow. 
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Figure 5.5: The number of modules with dominance, alongside regulatory coefficient 
trajectories, for an example simulation from Chapter 3 with Z = 0.5. One sample per 

10 episodes. 
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5.5 Saturation 

We have proved that an optimal module topology would be hierarchical (Section 5.3) 

and argued that in some cases a gradient exists that leads toward such a topology (Sec­

tion 5.4); however, this does not explain why it evolves in our simulations. Furthermore, 

while the assumptions made allow us to make predictions about the circumstances in 

which hierarchy could evolve, they may not represent necessary conditions, and they say 

nothing about how long it should take to evolve. 

It is possible for an explicit gradient descent mechanism to ‘evolve’ hierarchy (Ap­

pendix D), but this doesn’t imply is must evolve in a dynamic environment with a 

stochastic evolutionary process. Note that - when talking about the evolution of hierar­

chy - we always presume the existence of a strongly connected module. This is the case 

in our experiments, where either the modules initially emerge as dense (fully connected) 

modules (Chapter 3), are initialised as the identity (all self-connections, Chapter 4), or 

evolve from two or more independent modules (Chapter 4). This is a subtle but impor­

tant point: a module can only observe the fitness advantages of hierarchy in B when 

improving its efficiency is the only means by which to increase its fitness: a dense but 

weakly connected module can increase its gene expression by indiscriminately increas­

ing the strength of its connections; a strongly connected module is confronted by the 

cost/benefit trade-off shown in Figure 5.2. 

In this section we will explore the idea that there is only a tendency for hierarchy to 

evolve in a strongly connected module: one that approaches ‘saturation’ of its benefit 

function, such that the marginal benefit of indiscriminately increasing the strength of 

the connections within the module is equal to the marginal cost of doing so. Using a 

very simple environment (with some of the properties of that used in Chapter 3) we will 

observe steady evolution toward hierarchy within episodes and realise that the amount of 

time a module spends saturated largely determines the rate at which hierarchy evolves. 

We will use this insight to describe the ‘saturation time’ (how much time a module spends 

saturated) and explain how various parameters influence this value and consequently the 

rate at which hierarchy evolves. 

5.5.1 Saturation Points 

The ‘saturation point’ refers to the state where, for a given module and its internal 

interactions, indiscriminately increasing or decreasing the total connection strength does 

not provide an increase in fitness. The saturation point is important for explaining 

the evolution of modularity and hierarchy under single-point mutations, as there can 

be no comparisons made between mutations. If we allowed multiple mutations in B 

simultaneously (as is the case in Kouvaris et al. (2017)), then it would be possible for 

more beneficial mutations to accumulate more rapidly than less beneficial mutations even 
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when not saturated. With single point mutations, this is not the case: each mutation 

is judged only on the sign of its induced fitness difference (does it help (positive) or 

hinder (negative)?). Given that we observe hierarchy evolving from dense modules, this 

means that there must occur situations where increasing the influence of a leading gene 

is beneficial, while decreasing the influence of a subordinate gene is also beneficial. 

We can describe a sub-set of connections C in B as at saturation when the marginal 

fitness ∂f of increasing the weight of all members is zero. 

∂f 
= 0 (5.6)

∂Bij(i,j)∈C 

Assuming a linear cost of connections, this is equivalent to saying that the marginal 

benefit of increasing the weight of all members by the same amount is equal to the cost 

coefficient λ. 

∂b 
= λ (5.7)

∂Bij(i,j)∈C 

Of course, this doesn’t mean that the marginal benefit of the individual components need 

be the same: in the extreme case of a hierarchy, we have already determined that there is 

a fitness benefit to ‘over-expressing’ the dominant gene, such that the subordinate genes 

can be regulated by a stronger gene. Importantly, this definition says nothing about the 

individual connections: if we assumed that every connection had a marginal fitness of 

zero, then we have presupposed an efficient regulatory network. Rather, this definition 

indicates a network where indiscriminately increasing (or decreasing) connection weights 

won’t provide a fitness benefit: to improve the network we must change the assignment 

of weights in different proportions or directions. The discussion above indicates that 

this can be achieved by making the network more hierarchical (assuming some measure 

of dominance): if we assume that evolution is able to perform such reassignments, then 

we should not be surprised if a module tends toward hierarchy when nearly saturated 

(the discrete nature of mutations prevents us from considering any ideal circumstances). 

Just as importantly, we should expect that when a module is not saturated that it 

should tend toward being saturated: it will increase or decrease the strength of indi­

vidual connections in B to try to make their individual marginal fitness zero, which 

has the effect of saturating the whole module. Note that it need only be that the sign 

of some connections within a module are different for evolution with strong-selection 

weak-mutation assumptions to rebalance the distribution of connection weights, and the 

non-differentiable nature of the L1 cost of connections at zero means that the concept 

of saturation breaks down for weak connections; however, the notion of the saturation 

point is a useful tool because it is easy to see how it depends on experimental parameters. 
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5.5.2 Changing Saturation Points 

To test the assumptions that hierarchy will increase when a module is saturated, we 

will use a simple experimental set-up designed to mimic some of the properties of the 

changing-environment model from Chapter 3 while removing much of confusing stochas­

ticity. We will use the same developmental model, but a slightly changed evolutionary 

model, and a different environmental setup. We fix G so that it matches the environ­

ment (as in Appendix C.4): this eliminates any transient dominance in G, allowing us 

to be confident we only keep the effects of regulatory dominance from B. We replace the 

complex environment with a simple one which has only two possible conditions: either 

it awards a high benefit proportional to the mean gene expression, or it awards a low 

benefit proportional to the mean gene expression. We will switch between these two 

environmental conditions consistently and regularly, changing the relative duration of 

exposure with a ‘duty cycle’ parameter D ∈ [0, 1]: the higher benefit environment will re­

main for 2KD evolutionary steps before being replaced by the lower benefit environment 

for 2K(1 − D) evolutionary steps. 

Because we are changing the benefit awarded (while keeping the cost function the same), 

the saturation point of the module will change as well. If the amount of weight that needs 

to be moved to switch between saturation points (the ‘saturation gap’) is large then it will 

take the evolutionary process a significant amount of time to respond to the change. If it 

is the case that the degree of hierarchy will increase when a module is saturated, then we 

would expect the rate at which hierarchy evolves to depend on how long the evolutionary 

process takes to respond to the changing environment: the wider the saturation gap, the 

more mutations will be required each episode to traverse the saturation gap, and so the 

shorter the ‘saturation time’. Assuming that the saturation time is the only significant 

factor in determining the rate at which hierarchy evolves (something which we know 

can’t be true, but may none-the-less be a useful characterisation) then we would expect 

hierarchy to evolve most quickly when the duty-cycle is 0 or 1 (i.e. when we only present 

the high or low environmental conditions). How transitional periods of non-saturation 

will influence matters is not immediately obvious. 

Figure 5.6 shows that the number of episodes it takes to evolve hierarchy changes dra­

matically as we vary the duty cycle: it evolves quickly near 0 and 1 as expected, but for 

a duty cycles of 50%, hierarchy did not readily evolve within the 10000 episodes of the 

simulation. Figure 5.7 shows how the rate at which hierarchy evolves is proportional to 

|D − 0.5|. 

Figure 5.8 shows the within-episode behaviour for a duty-cycle of D = 0.8 (meaning the 

higher-benefit environmental conditions are observed 80% of the time). With a duty 

cycle greater than 0.5, the high benefit environmental conditions predominant, such 

that the system spends most of its time at the high saturation point. Owing to the 

wide saturation gap, the system does not have time to saturate in the lower-benefit 
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environmental conditions. When exposed to the lower-benefit environmental conditions, 

the fitness plummets, and weight is removed indiscriminately to reduce the cost paid for 

the low marginal benefit. Though the module is not saturated, the degree of hierarchy 

measure continues to increase because removing weight from all connections at the same 

rate has the effect of increasing the proportion of weight controlled by the dominant gene 

(i.e. its relative influence). This effect is stronger when the degree of hierarchy is greater. 

It doesn’t effect a long-term increase in hierarchy, but does introduce some noise. This 

is because once the evolutionary system returns to the higher-benefit environmental 

conditions, there is a period of time where all regulatory connections again increase 

together, resulting in an apparent reduction in the degree of hierarchy. This undoes the 

prior reduction in weight and introduces more noise. Once the module has saturated 

again, then selection for efficient regulation takes over, and the degree of hierarchy 

increases as weight is steadily shifted from the connections of less influential genes to 

the connections of more influential gene. Importantly, the system never reaches the low 

saturation point. On average, the time spent not saturated can be expected only to 

introduce noise: the apparent increase in hierarchy when weights are suppressed should 

be undone by the apparent decrease in hierarchy when weights are free to grow. The 

noise is a consequence of the indiscriminate nature in which mutations occur and fix 

when not saturated (the number of mutations on each regulatory connection will not 

be totally consistent) and may serve an important purpose for ‘symmetry breaking’: 

some measure of asymmetry is need in the developmental network to permit selection 

for hierarchy. 

Parameter Symbol Values 

Number of evolutionary steps per episode K 1000 
Episodes 10000 
B matrix mutations probability RB 1.0 
B matrix mutation magnitude MB 1 × 10−3 

B matrix mutation type Uniform 
High module benefit coefficient cH 1.0 
Low module benefit coefficient cL 0.7 
High-benefit Duty cycle D Variable 
Cost Coefficient λ 0.1 

Table 5.1: Parameters for the duty-cycle experiments. 

Figure 5.9 shows that for duty cycles near 50% there is little systematic tendency toward 

hierarchy because the saturation-gap is wide enough that during the K evolutionary 

steps available to re-adjust to the changed environment, the evolutionary process cannot 

traverse the saturation gap: the system performs a random walk in the saturation gap 

and rarely saturates, so there is limited selection for hierarchy. Consequently, these 

specific duty-cycles tests do not indicate much about the saturation gap: the saturation 

time in these experiments is rather a function of how much time the system spends 

‘desaturating’ away from the high saturation point (if the duty cycle is high) or low 
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Figure 5.6: The number of episodes required to evolve a hierarchy (dh ≥ 0.9). For a 
duty cycle of 50%, hierarchy did not routinely evolve in the 10000 episodes allotted. 

saturation point (if the duty cycle is low): the system will remain in the locality of 

whichever saturation point it most often experiences, and when the environment is 

(temporarily) in the more uncommon condition it will depart from this. Assuming that 

the saturation gap is much wider than can be traversed in K evolutionary steps, we 

can expect the saturation time to be proportional to 2|0.5 − D|, and the rate at which 

hierarchy evolves should be approximately proportional to this. 

Figure 5.10 shows how the time-to-hierarchy changes when we vary the ‘low’ benefit 

coefficient cL. These are relatively large values of cL; previous experiments have all used 

cL = 0.7. In these experiments, the time-to-hierarchy depends directly on the saturation 

gap, as values of cL closer to the ‘high’ benefit coefficient cH = 1 moves the low saturation 

point closer to the high saturation point, tightening the saturation gap. Such values of 

cL close to cH enable the evolutionary process to traverse the saturation gap within 

the K = 1000 evolutionary steps of each episode: the more quickly the saturation gap 

is traversed, the more quickly the modules saturate, the longer the system spends at 

saturation, and so the more quickly the system tends toward hierarchy. 

The duty-cycle and saturation gap experiments provide significant clues as to the dy­

namics in the experiments in Chapter 3, where the parameter Z effectively determines 

the frequency with which each module experiences a low saturation point. For Z < 1, 
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Figure 5.7: With a four gene module, the number of episodes elapsed prior to the 
emergence of hierarchy (dh ≥ 0.9 is a linear function of 1/|0.5−D|. This suggest that the 
rate at which hierarchy evolves is approximately proportional to |0.5 − D| × 2, which is 
proportional to how much more time the evolutionary processes is exposed to the more 
common environmental conditions (e.g. for D = 0.8, |0.5−D|×2 = 0.6 = 0.8−(1−0.8)). 
The intercept in the regression is consistent with the early period during evolution where 

the modules have not yet saturated. 

in a randomly selected episode, any module will fix at a high fitness local-optimum 

(where the benefit coefficient is cH ) with probability 1 − Z + Z/2 = 1 − Z/2: either it 

experiences an S-type environment with probability 1 − Z, or it experiences a D-type 

environment consistent with its expression with probability Z/2. Crudely, we can treat 

this probability as the duty cycle of the system. This provides some explanation for 

why the experiments with lower Z evolve hierarchy more quickly (see Appendix C.1). 

It also provides an explanation for why the rate at which hierarchy evolves in each 

module increases dramatically when the module is sufficiently hierarchical to perform 

module switches: no longer does the module have to slide between the high and low 

saturation points; rather it can escape the low saturation point local optimum, and so 

always sees a high saturation point. Consequently, the duty cycle is effectively changed 

to 1 by the enhanced evolvability. Note that we can be confident that the experiments 

from Chapter 3 must be operating in this ‘mode’ (where the saturation gap cannot be 

traversed) because they used the same choice of λ = 0.1 and MB = 0.001, use the low 

value of cL = 0.7 as the experiments presented in Figure 5.9, have twice the probability 

of mutating B each evolutionary step, have 16 times as many entries in the B matrix 
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Figure 5.8: Short-term changes in the degree of hierarchy with a duty cycle of 80% 
across a number of episodes. Fitness is high in the high-benefit conditions, and because 
this is the most common condition, the system remains in the locality of the high sat­
uration point. When exposed to the low-benefit conditions, all regulatory connections 
decrease in magnitude to compensate, taking the system away from the high saturation 
point. When the high-benefit environmental conditions return, the system takes ap­
proximately as long as to return to saturation as it spent in the low-benefit conditions, 
during which time the degree of hierarchy decreases by approximately the same amount 

as it increased while desaturating. 

of regulatory connections, so we would expect it to take on average 64 times as long to 

traverse the saturation gap in each module, but they have (on average) half as long to 

do so. 
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Figure 5.9: Plot of changing degree of hierarchy in a 4-gene module for a select number 
of duty cycles, showing the jittery behaviour for D = 0.5 where the system becomes 

‘lost’ in the saturation gap. 
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Figure 5.10: With a 4-gene module, the closer cL is to cH = 1, the more quickly 
hierarchy evolves. Hierarchy evolves readily when cL is close to cH despite the duty 

cycle of D = 0.5. 
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5.5.3 The evolution of modularity 

This chapter is focussed on the causes of the evolution of hierarchy, but it is worth briefly 

discussing the cause of the modularity without which the hierarchy cannot provide any 

useful variability. 

Just as individual modules can become saturated, so can combinations of modules. The 

experiments in Chapter 3 show that in some cases the evolving modules (which initially 

have many inter-module connections) go through some disassociation before indepen­

dent modules emerge. These disassociations occur once the whole system saturates, 

because prior to this there is no way selection can prevent the evolution of inter-module 

interactions: when the B matrix is initialised as all zeros, then evolution behaves much 

like a Hebbian learner: all regulatory connections are constantly being changed accord­

ing to whatever pattern of gene expression is currently expressed. During one episode, 

it may be that modules A and B ‘agree’, and so the interactions between the genes in 

the modules will grow more positive. In the next episode, they may disagree, and the 

interactions will grow more negative. If the distribution of phenotypes is balanced, then 

on average the inter-module connections will remain weak; however, if the distribution 

is not balanced, then - as discussed in Chapter 4 - the B matrix will reflect this. If the 

B matrix becomes too fixated on one pattern, it will start to bias the distribution of 

phenotypes observed and further selection will reinforce this pattern. 

Indeed, the simulation shown in Figure 3.4 initially ‘over-fits’ onto a single pattern of 

expressions. Despite this, it is still able to disassociate the modules as is necessary to 

fully exploit the changing environment. The disassociations occur because the whole 

system saturates, stopping the yet unchecked growth of all interactions: from now on, 

an increase in magnitude of one connection will only come at the expense of another. For 

instance, the single-peaked (S type) environmental instances select against interactions 

that produce a phenotype ill-matched to the environment: selection actively reduces 

their magnitude, which moves the module away from the saturation point. Because 

the module is no longer saturated, evolution will re-enforce the other interactions (those 

which are consistent with the environmental conditions). Over many episodes, this moves 

weight from ‘incorrect’ connections to other connections. The dramatic completion of 

the disassociations observed in Chapter 3 occur once the B matrix no longer limits 

the variation in phenotypes, and so the interactions are also suppressed when they are 

inconsistent with the phenotype, regardless of the environmental conditions. Figure 5.11 

shows a changing environment of only 2 modules and Z = 0.7, where the different stages 

in the evolution of the inter- and intra-module connections are more apparent. 
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Figure 5.11: The evolution of independent modules in a changing environment of two 
modules with probability of multi-peaked module instance Z = 0.7 and B mutation 
magnitude MB = 0.0001. Zebra stripes show the phenotype at the end of each episode, 
and the green lines the trajectories of the regulatory connections in the B matrix. A 
logarithmic time axis is reluctantly used to reveal the different stages of the dynamics; 
the apparent durations should be ignored. The upper bundle of connections are the 
intra-module connections; the lower bundle are the inter-module connections. Initially 
there is sufficient variation in the phenotype between episodes that the inter-module 
connections only drift slowly. However, by about 30 episodes they have become strong 
enough to influence the space of developable phenotypes, and the variation between 
the modules is lost. This leads to the rapid growth of the inter-module interactions 
along with the intra-module connections (A). Before 300 episodes (B), the system 
saturates and both bundles of connections stop growing. Now the process of slowly 
disassociating the modules takes over the dynamics (C). By 3000 episodes (D), the 
modules are sufficiently independent that the variation in phenotype returns, and the 
modules rapidly disassociate (the inter-module connections go to zero). Thereafter (E) 
the modules become steadily more hierarchical (it will take another 60000 epochs before 

this process completes). 

5.6 Consequences of Model Parameters 

We’ve seen above that the effective duty-cycle 1 of an evolutionary system can affect 

the saturation time directly. We’ve also seen how the saturation gap can affect the 

evolutionary process if the duty-cycle is near 50% 2 . In this section we will discuss how 

other parameters can affect the evolution of modularity and hierarchy. 

1In Chapter 3, duty-cycle is determined by Z; it is unclear if this is especially meaningful in the 
context of Chapter 4. 

2Z = 1 in Chapter 3, though the saturation gap is controlled by the cL parameter; the variation in 
benefit coefficient is small in Chapter 4, and we have not tried to characterise it. 
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5.6.1 System Size 

Changing system size (the number of genes N or the size of modules) has implications for 

the meaning of the benefit and cost functions, which are derived from those described in 

Kouvaris et al. (2017). The benefit function is defined as a function of mean phenotypic 

gene expressions, and the cost function as a mean of a per-connection cost. With a 

sub-additive cost of connections, the total connection weight influencing each gene is 

approximately the same (for sufficiently small modules or non-asymmetric regulatory 

topology), meaning the expected total connection weight will only grow linearly with 

the number of genes, while the per-weight cost is divided by the square of the number 

of genes. 

The system size naturally changes the relative significance of the episode duration K, 

the mutation rates MB and MG, and the probability of mutation in B. The mutation 

rates are simple enough: each mutation only mutates a single entry, so when mutations 

are favourable on only a small number of genes (e.g. for large systems, most connections 

are not involved in the evolution of hierarchy) if there are more entries then we need to 

perform more mutations overall to ‘find’ the mutations that matter. This suggests that 

by increasing the number of modules, we would need to increase K to compensate, so 

that the same amount of information is integrated (as connections in the B matrix) each 

episode. Increasing K, however, and apart from changing the amount of between-episode 

variation, reduces the relative amount of time spent mis-matched to the environment 

(the transitionary period at the start of an episode), though we could compensate for 

this also by adjusting RB , the probability of mutating B rather than G. 

5.6.2 Temporal Parameters 

In the model of a changing environment from Chapter 3, there are three key parameters 

that influence the long-term behaviour of the system: K, the episode duration; Z, the 

probability of a multi-peaked module instance occurring; and MB, the mutation rate of 

the B matrix. 

We know from Kouvaris et al. (2017) that K directly affects the ability of the system to 

generalise to a modular environment. If K is too small, then G does not have enough 

time to adapt to the environmental conditions, and so B does not evolve to reinforce 

well-formed samples. If K is too large, too much information may be integrated during 

early episodes, and the system can ‘over-fit’ (fail to disassociate the modules, resulting in 

a GRN with insufficient variability) due to the influence B exerts on G: this influence is 

positive feedback reflecting the phenotypes it has already experienced, and if it becomes 

fixated on a particular pattern of expression, it will fail to accommodate all of the 

environmental variability if hierarchy evolves before they can disassociate. 



93 Chapter 5 The Efficiency of a Hierarchical Regulatory Topology 

It is, however, possible to choose the other parameters such that the range of values of K 

for which the system is able to evolve independent modules is non-existent or arbitrarily 

large. This is because the reasons why a small or large choice of K are problematic are 

largely separable. The lower-bound for viable K is determined by the size of the system: 

we must provide enough time in each episode for all entries in G to respond, regardless 

how many of them actually respond, because the targets of mutations are random. 

The upper-bound, on the other hand, depends on the rate at which the selective signal 

is integrated and how often the signal changes. The mutation rate MB can be thought 

of as a learning rate (the rate at which the system integrates information). All else 

being equal, if this is too high, then the system over-fits to patterns it sees early on, 

or becomes too noisy to fix at all. Generally, the lower MB , the more consistently 

the system integrates information from each exposure; however, the time to evolve any 

structure increases approximately proportionally to its inverse. The product MB × K 

can be considered the amount of information integrated each episode. The concern with 

over-fitting is that the same signal is integrated too much at the start of the evolutionary 

process, so if the signal is different each episode (i.e. we observe a different phenotype) 

then the amount of information integrated each episode is the only factor that affects 

the propensity to over-fit. Consequently, if the signal is somewhat consistent between 

episodes, then the system will be more likely to over-fit because it integrates more than 

one episode-worth at a time. 

In Chapter 3 the frequency of dual-peaked module instances Z directly affects the 

amount of variation in signal between episodes: if Z is large, then there are few single-

peaked module instances to guide G to produce a different phenotype, and consequently 

the period over which the signal changes can be much longer than K. In Chapter 4 

the propensity for the signal to change depends on Q: the larger the partial reset the 

larger the expected change in signal. By making a larger change to the signal, spurious 

consistency in the signal is lost more quickly. 

Apart from determining whether it is possible to evolve independent modules, MB and 

K directly affect how many episodes it will take for hierarchy to evolve, because it 

changes the saturation point as discussed in Section 5.5.2 and so influences whether or 

not a saturation gap can be traversed. 

5.6.3 The Importance of Discontinuity 

The evolution of hierarchy results in the squashing and stretching non-uniformly of the 

G-P map, such that the genetic distance between strongly-expressed phenotype and 

the basin of attraction for its complement is reduced: a smaller change is needed to 

escape from one phenotype to another, but there are inherent limits as to how small 

these distance can be. Indeed, it is essential to the exploitation of hierarchy that the 
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mutations in G are large: if mutations in G were continuous and small, it would be 

impossible (with a continuous G-P map) to evolve any change in access evolvability in 

dual-peaked environmental conditions. 

The nature of the bit-flipping mutations, which mostly change the initial expression of a 

gene, is essential to the access evolvability enabled by hierarchy: if G varied continuously 

or in small steps, then there could be no ability to ‘flip’ a whole module with a single-

point mutation. Additionally, the targeted nature of the mutations is also important: 

if the same absolute change in initial gene expression were distributed over a whole 

module, it would again be impossible to flip such a module: the mutations must be axis 

aligned, or rather, the selective modules must align with the expressed genes. 

It should also be noted that while the binary nature of G is necessary to exploit the 

hierarchy, it is unnecessary for it to evolve. Hierarchy will evolve happily in the model 

of Kouvaris et al. (2017) if given sufficient time to do so. 

5.6.4 Other Saturation Point Considerations 

One hereto largely ignored effect of different saturation points is that the less the to­

tal amount of connection weight involved, then the more quickly hierarchy can evolve 

because it simply requires fewer mutations. Any parameter that affects the saturation 

point can change this. All parameters which affect the saturation points will also af­

fect the saturation gap (the space between saturation points): this includes the benefit 

function η, the cost function φ, the benefit coefficients, the cost coefficient λ, and the 

developmental process (which depends on T , σ, and h). We’ve seen that the saturation 

gap doesn’t necessarily affect the saturation time, but we should enumerate some of 

the factors that change it none the less. Many parameters will influence the saturation 

point by changing the benefit and cost. The benefit coefficients of the environment have 

already been discussed: they directly modulate the benefit, and we have seen how we 

can narrow the saturation gap to increase the saturation time by changing them. 

Because we use a non-linear squash function and perform many steps of the develop­

mental update process, the mapping between connection weight in B and fitness is a 

fancy curve (Figure 5.2). Consequently, none of these parameters has an easily char­

acterised effect on the saturation points, which are where the gradient of the various 

manifestations of this curve equals the gradient of the cost curve. The gradient is highly 

non-linear, so a linear change in cost or benefit (per the cost and benefit coefficients) 

does not have an easily predictable effect. Furthermore, the marginal benefit is small 

when the connections in B are weak (near 0), so it is possible for λ to exceed it (pro­

ducing the ‘pit of despair’) that prevents the evolution of any regulatory connections in 

B at all: while there may be a nice saturation point further along the curve (the second 
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differential is initially positive), the evolutionary process may be unable to reach it when 

it is initialised with an all-zeros B matrix as in Chapter 3. 

5.7 Comparisons between Mutations 

In this chapter, we explored how the evolution of hierarchy occurs when a module is 

saturated (i.e. the marginal fitness of increasing the connection strength of all intra-

module connections is zero). This happens because the evolutionary process is forced 

to change the distribution of weight for regulatory connections in the B matrix to in­

crease the efficiency of the module (to achieve high levels of gene expression with the 

low cost): evolution is forced to ‘compare’ the marginal benefit of each regulatory con­

nection. This comparison is made indirectly by comparing the marginal benefit of each 

regulatory connection to its marginal cost: the marginal benefit depends on the other 

connections within the module, and the stronger the connections in the module the 

smaller the marginal benefit due to the saturating developmental curve. The reason hi­

erarchy does not readily emerge in our model when modules are not saturated is because 

the evolutionary process cannot otherwise make comparisons between mutations: when 

the marginal fitness of all connections share the same sign then the mutations on them 

are similarly selectable. 

In Kouvaris et al. (2017), variation in B was not provided by single-point mutations; 

rather, every entry in B was changed by a small amount in every generation (in addition 

to a single-point non-binary mutation in G). In these circumstances, any mutation 

to each regulatory connection in B is always evaluated in the context of many other 

changes, and so comparisons can be made: mutations on regulatory connections with 

a small marginal benefit will be compared to mutations on regulatory connections with 

larger marginal benefits: the larger changes will tend to determine whether all mutations 

are preserved. The choice to use single-point mutations in B in this dissertation was 

very deliberate as it better fits the assumptions of strong selection and weak mutation if 

it is presumed that the strength of regulatory connections can vary independently (i.e. 

mutations influence the regulatory effect of one gene on another without significantly 

affecting the interactions of other genes); none-the-less, it is important to recognise that 

this model ‘detail’ determines when selection for hierarchy is possible: in theory, the 

model of Kouvaris et al. (2017) could evolve toward hierarchy without first evolving 

dense (saturated) modules. 

It is hence clear that the strong-selection weak-mutation assumptions adopted in this 

thesis encoded important assumptions about the meaning of the representation of the 

genome and have important consequences for the evolutionary causes and consequences 

of hierarchy. Because genes are well aligned with the environment (all genes make an 

equal contribution to their modules, and no contribution to any other module) and 
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mutation is well aligned with the genes and their connections (mutations operate on 

a single entry in the G vector of initial gene expressions or B matrix of regulatory 

interactions) there is limited opportunity to compare the relative advantage of mutations: 

only the sign of the fitness consequence of a mutation is observed by selection (either a 

mutation increases fitness or does not); a mutation that produces a larger fitness benefit 

has no selective advantage over a mutation that produces are lesser (but still positive) 

fitness benefit. 

5.8 Conclusions 

In this chapter, we introduce the notion of developmental dominance, and discussed in 

some detail ‘regulatory dominance’ (motivated by asymmetries in the B matrix of gene 

interactions). We have shown that hierarchy is an efficient regulatory topology, one that 

maximises fitness for any sub-additive cost function will be a hierarchical one with a 

strong self-connection on the lead gene, and it is the regulatory dominance provided by 

this strong self-connection that is the key to this result. The model assumptions behind 

the proof of this property helped us to understand some of the conditions in which hier­

archy may evolve, particularly if we assume selection will lead to an efficient regulatory 

topology. Crucially, we’ve shown that hierarchy can evolve without selection for evolv­

ability (G was fixed in every experiment in this chapter) as indicated by observations in 

the previous chapters. 

To better understand the mechanism by which hierarchy evolves in our models, we have 

introduced the concept of saturation, and acquired an understanding of how various 

model parameters can affect the ‘saturation time’ of a module. We have shown that 

hierarchy will emerge when comparisons can be made between the marginal benefit 

of individual regulatory connections, and this understanding provides clues as to how 

quickly hierarchy will evolve in a reduced model, and these results are consistent with 

observations in Chapter 3. 

In the next chapter, we will explore dominance in G, and how it may provide another 

mechanism by which hierarchy can evolve: one that doesn’t require regulatory domi­

nance in B. 



Chapter 6 

The Evolutionary causes of 

Hierarchy 

In the previous chapter we explored how regulatory dominance (dominance in the B 

matrix of regulatory connections) might explain the evolution of hierarchy (where one 

gene within a module directs the development of the whole module), and explored the 

possibility that selection for dominance and hierarchy in B to improve fitness at satura­

tion would provide a sufficient explanation for the evolution of hierarchy as observed in 

Chapter 3 and Chapter 4. In this chapter, we develop a picture of a positive feedback 

between dominance and hierarchy, and test this by placing constraints on the model to 

limit two sources of developmental dominance (‘transient dominance’ in G and ‘regula­

tory dominance’ in B) and observing whether hierarchy evolves. 

The previous chapter explained that developmental dominance (the property of one 

gene being more strongly expressed than all others during development) could be due 

to regulatory dominance owing to imbalances in B, and avoiding the issue of dominance 

in G (as occurs when the G vector of initial gene expressions changes in response to a 

perturbation of some sort) by treating it as fixed. In this chapter, we shall show that 

dominance in B is sufficient to motivate the evolution of hierarchy in simple scenarios 

(as indicated by results in previous chapters) but will focus on showing that transient 

dominance in G due to a changing environment is also sufficient to promote the evolution 

of hierarchy. To bring the two ideas together, we will describe the evolution of hierarchy 

as a consequence of positive feedback between the evolution of hierarchy (in B) and the 

evolution of dominance (due to B or G). 
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6.1 Transient Dominance 

The regulatory dominance in B is a property of the gene interactions described in the 

B matrix, and can produce developmental dominance can persists over many episodes 

in our experiments due to the slow rate at which the interactions evolve. In contrast, 

the initial gene expression represented by the vector G change from episode to episode 

in our experiments, and in most cases rapidly fixes. Consequently, the only property 

that we can rely on is its consistency in removing any dominance produced by any per­

turbation. Indeed (in the absence of evolvability enhancing hierarchy) it is only during 

the period at the start of an episode in the experiments of Chapters 3 and 4 (e.g. after 

an environmental change or partial reset) that G shows any dynamics. In the case of a 

changing environment, it may be that the genes of a particular module must transition 

from all negative to all positive to satisfy an S+ single peaked environmental instance 

from Chapter 3. Because the genes are mutated individually, during this transitional 

period there is opportunity for ‘transient dominance’: dominance induced by the tran­

sient imbalances in G. In the case of the partial resets of Chapter 4, the imbalance is 

imposed explicitly. 

We will consider two flavours of transient dominance: 

1.	 Unbiased transient dominance: where the order in which the genes in a module 

switch is random. This is the ‘default’ type of transient dominance, which occurs 

due to the normal dynamics of G responding to changed environmental conditions 

or a partial reset. 

2.	 Biased transient dominance: where the order in which the genes in a module 

switch is biased, such that certain genes tend to lead others. Biased transient 

dominance is exemplified by hierarchy-enabled whole-module switches: the switch 

always starts with the switch gene, with all the subordinates following it wherever it 

goes. The contrast between this and unbiased transient dominance in the changing 

environment model of Chapter 3 is apparent in Figure 6.1. 

Both types are able to motivate the evolution of hierarchy only when there are disparities 

in the relative influence of genes, where the ‘influence’ of a gene is the proportion of the 

regulatory weight that falls on the connections away from it (those to other modules and 

itself). Biased transient dominance is the easiest to observe: once a module is sufficiently 

hierarchical that whole-modules flips become viable (one gene having somewhat more 

than the total influence of all others), then when a module is placed on the worse peak of 

a dual-peaked environmental instance (e.g. a positively expressed module experiencing 

a D− environmental instance from Chapter 3) or is mismatched with a neighbouring 

module (as in Chapter 4), the only gene in that module which can be switched to 

produce an increase in fitness is the lead gene of the hierarchy. During the resulting 
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Figure 6.1: Plot of mean delay before an element in G switches with single-peaked 
and dual-peaked environmental conditions showing unbiased and biased transient dom­
inance respectively. In the single-peaked environment, the order in which entries in G 
mutate is random and unbiased: the mean delay after the start of each episode for each 
gene to switch is roughly the same. In the dual-peaked environment, the order in which 
entries in G mutate is biased. This is most apparent when a hierarchical module is 
switched in a dual-peaked environment, where the switch gene (in this case, gene 3) is 
the only gene that can switch initially, and so the others must follow thereafter (indeed, 
the switch gene switches with the same mean delay as it would in a single-peaked en­
vironment, while the mean delay for the other genes is doubled, as they have to ‘wait’ 

for the switch gene to switch first). 

period of transient dominance - during which other genes with influence are mis-matched 

- mutations in B that increase the influence of this gene or reduce the influence of other 

mis-matched modules will be more beneficial than those that have the opposite effect. 

The cost of connections will provide a threshold which determines which mutations will 

be accepted and which will be rejected (a state of transient saturation, if you will). The 

effect is that for a short period in each episode, there is a tendency to shift weight to 

the (transiently dominant) lead gene. 

Transient dominance can also cause the evolution of hierarchy in the absence of any 

evolvability benefit in the form of unbiased transient dominance. When the environ­

mental conditions change and a module becomes mismatched to its environment (e.g. 

a positive module experiencing an S− single-peaked environment from Chapter 3), se­

lective pressures act to weaken regulatory connections, as they drive development in 

the wrong direction. Selection also drives the G vector of initial gene expressions to 

invert itself, and there will necessarily be a transitionary period where some entries in 

the G vector have flipped, but not all. During this period, some genes will match the 

environment, and others will not. If the genes that match the environment have enough 

influence, then there will be a fitness benefit to increasing their influence because they 
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pull the other genes in the right direction1 . The threshold where increasing the influ­

ence of a group of genes is beneficial depends on many factors, but more influential genes 

are more likely to appear in a group of genes that collectively surpass the threshold by 

virtue of being more influential. This creates positive feedback, as groups of genes with 

more influence are more likely to increase in influence during a transitionary period. 

This effect is certainly applicable in a model of a changing environment where selection 

takes the evolutionary process from a local minimum to a local maximum (as in the 

single-peaked environmental instances in Chapter 3), as is shown in Figure 6.2. 
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Figure 6.2: Plot of the marginal benefit of increasing the influence of switched genes 
in a single-peaked environment instance. When the genes that have switched have 
little influence (switched influence proportion is low), the benefit of increasing their 
influence is exceeded by the cost, so the marginal fitness is negative. There is a peak 
when one-half of the influence is switched (due to a bifurcation in the developmental 
process, see Appendix E). The marginal fitness approaches zero when all the switched 
genes have total control (indicating the module in this example is saturated). In this 
example, the influence of a gene (or group of genes) that controls more than about 
26.5% of the module will be reinforced when they are switched toward the optimum 
because the marginal benefit of increasing their influence is positive. Generally the 
threshold depends on the total connection strength in the system, the benefit function, 
and the cost function. More influential genes are more likely to be members of a group 
of switched genes that (collectively) exceed the threshold. This promotes the evolution 
of hierarchy by increasing the influence of already influential genes during transitionary 

periods. 

Importantly, this process doesn’t depend on any variation in the order in which the 

elements of G switch (it can work with unbiased transient dominance) and operates 

independently of dominance that occurs in the B matrix. Without any local-optima in 

the landscape and assuming a regulatory topology that reflects the correlations in the 

environment, mutations in G that improve the match between G and the environment are 
1It should be cautioned that this analysis assumes a module where all outgoing connections from a 

given gene have the same weight; without this assumption, the marginal benefits of different genes will 
vary within the groups of matched and unmatched genes, but it is not clear whether this is a significant 
effect in practice, and this chapter will explicitly avoid this complication. 
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always beneficial, so the order in which they switch is completely random (as indicated by 

the proxy measure of time-to-switch in Figure 6.1). Despite this, more dominant genes 

will become more dominant over time because they produce a greater (positive) impact 

when they happen to switch early in the transitionary period, and so are more likely 

to be members of a group of switched genes which together command enough influence 

(i.e. exceed the threshold as shown in Figure 6.2) that there is a fitness advantage to 

increasing their influence relative to the non-switched genes (who are pulling the module 

in the wrong direction). On average, the gene with the most influence is most likely 

to be a member of the group that passes this threshold, so this mechanism can readily 

maintain a hierarchy. However, to evolve new hierarchy, it requires sufficient disparities 

in the relative influences of each genes, as genes of similar influence can receive the same 

impetus from this mechanism due to the discrete nature of the groups that emerge. 

For instance, if two genes command 40% and 60% of the influence in a module, then 

they will always be in a sufficiently influential group if the threshold is below 40% as in 

Figure 6.2. As such, this mechanism depends on noise in the B matrix of interactions 

to produce disparities. For these reasons, this effect is somewhat unreliable, though it 

can be very visible. 

The feedback with biased transient dominance in the case of hierarchy-enabled module 

switches is also very apparent, but the examples in our experiments require that an evolv­

ability enhancing hierarchy is already present: this is particularly interesting, because 

it seems that biased dominance selects for evolvability. This will be discussed further 

in the discussion. Note that the 40%/60% scenario which would not trigger selection 

for hierarchy through unbiased transient dominance may well represent a sufficiently 

hierarchical topology that biased transient dominance occurs which can ‘take over’ the 

process. For now, a reminder that while feedback with biased transient dominance may 

seem a compelling explanation for the sudden increase in the rate at which hierarchy 

evolves in the experiments in Chapter 3, our previous explanation (that it changes the 

duty cycle) is probably the more significant contribution. If K were (relatively) smaller, 

this might change. 

6.2 Feedback 

Combining the assertions above regarding transitive dominance in G with dominance 

in B, we can paint a picture of the feedback between hierarchy and dominance in our 

experiments: hierarchy in B is motivated by dominance in B and G independently; 

and hierarchy motivates dominance in B (greater efficiency per Chapter 5), produces a 

signal for unbiased transient dominance, or facilitates biased transient dominance. De­

velopmental dominance is required for a hierarchical topology to provide an efficiency 

benefit, and comes about due to dominance in B (i.e. uneven allocation of weight in 

the regulatory network) or (transient) dominance in G. The presence of a hierarchical 
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topology in B also promotes dominance in B because a hierarchical topology is most 

cost effective when the lead gene is most dominant during development. Additionally, 

a hierarchical regulatory topology can produce biased transient dominance in some en­

vironmental conditions, and asymmetries in influence are necessary for feedback with 

unbiased transient dominance also, so there is opportunity for positive feedback through 

dominance in B or G to motivate the evolution of hierarchy. Sparing the details: devel­

opmental dominance promotes selection for hierarchy, which in turn promotes selection 

for developmental dominance. 

In most of our experiments, it is perfectly possible that both dominance in B and 

transient dominance in G may be contributing to the evolution of hierarchy; however, 

we have already shown that dominance in G is unnecessary in experiments where G is 

fixed to all +1, as this removes any transitional period during which a disparity between 

genes can occur. Rather than removing mutations altogether, we could instead change 

the mutation regime for G such that every gene in a module switches together (rather 

than individually) and for comparison we shall do just that in this chapter to ‘break’ 

the transient dominance (and so preclude the systematic evolution of hierarchy through 

feedback with dominance in G). 

We can similarly preclude within-module dominance in B with a modification to how 

the B matrix is mutated, such that ‘columns’ within modules (corresponding to all 

connections from one gene to those in its module) mutate together, rather than individual 

entries of the B matrix. This means that the sum of regulatory connections influencing 

each gene in a module will be the same (assuming we initialise the system to all zeros 

initially, which we shall) and so there can be no fitness advantage to a hierarchical 

topology when G matches the environment (as discussed in Chapter 5). Figure 6.3 

depicts some examples of modules that might evolve with this constraint. 

Figure 6.3: Examples of networks that might occur with the B dominance constraint. 
Rather than single-point mutations on individual entries of the B matrix, each mutation 
changes every outgoing connection from a gene by the same amount. This has the effect 
of ensuring the ‘row-sum’ (the total amount of incoming weight) is the same for all genes 
because the outgoing connections from each gene have the same strength (indicated by 
arrow thickness). When this is the case, and the initial expressions of all genes are 
initially the same, then the terminal expressions of all genes will also be the same. A 
represents an even distribution of weights (a ‘dense’ module), B represents an uneven 
distribution of weights, and C represents a hierarchy where gene 3 is the switch gene. 
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If our picture of feedback is complete, then we should expect that hierarchy can evolve 

when we apply either one of these modifications, but not both. We shall refer to them 

as the ‘G dominance constraint’ and ‘B dominance constraint’ and explore the four 

possible combinations of applying and not-applying them in a simple 4-gene system. We 

will use two environments to do so: one that comprises only single-peak environmental 

instances, and one that is a combination of single- and dual-peaked instances. The 

former will preclude biased transient dominance, as there will be no local optima to 

escape by way of a single-point mutations module flip; the latter will permit it. 

6.2.1 Single-Peaked Environment 

Our single-peak-only environment will switch between the S+ and S− environmental 

instances every K = 1000 evolutionary steps. This corresponds roughly to Z = 0 in 

the changing environment model of Chapter 3, but with a single module of four genes 

- rather than four modules of four genes - to ease interpretation. Table 6.1 summarises 

the other model parameters used for these experiments. 

Parameter Symbol Value
 

Episodes 10000 
B mutation magnitude MB 0.001 
B mutation probability RB 0.5 
Cost function φ φ(x) = |x|
Cost coefficient λ 0.1 

Table 6.1: Parameters for the feedback experiments. 

With neither dominance constraint, hierarchy evolves readily in this environment (Fig­

ure 6.4): there is no saturation gap, and there is ample time for G to fix during each 

episode. Including the G dominance constraint (Figure 6.5) doesn’t change this, and in 

both cases, a hierarchy readily evolves in around 70 episodes in all of 10 replicates (runs 

with the same configuration but different random seed). 

With 10000 episodes available, hierarchy evolved in 3 of 10 replicates with the B dom­

inance constraint (Figure 6.6). With this constraint and the single-peak environment, 

unbiased transient dominance is the only feedback mechanism available. This indicates 

that it is possible to motivate (and maintain) the evolution of hierarchy given enough 

time, though it is highly stochastic and can take a long time owing to inconsistent signal 

between episodes and short transitioning periods. In many cases, two sets of regulatory 

connections will be effectively suppressed, but two will remain, seemingly trapped with 

roughly the same connection weight. How this state could be maintained is unclear 

(understanding thus far would suggest it should be an unbiased random walk); if either 

set of connections becomes too strong, then it will pass the influence threshold after 

which transient dominance will provide a positive feedback toward hierarchy. 
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Figure 6.4: Representative plot of regulatory connection trajectories without any 
dominance constraint in the single-peaked environment. As in the experiments in 
Chapter 3, initially a dense module evolves (by around episode 16, all connections 
have similar non-zero weights of about 0.5), but the non-dominant genes eventually 
lose all their influence (3 bundles of lines that descend down to zero). What remains is 
a hierarchy with regulatory dominance in B (one strong self-connection, and 3 weaker 

connections to the other genes in the module). 
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Figure 6.5: Representative plot of regulatory connection trajectories with the G dom­
inance constraint, which is much the same as without the G dominance constraint (Fig­
ure 6.4). Transient dominance is evidently not essential for the evolution of hierarchy, 
and indeed does not contribute significantly with this combination of environmental 

instances and choice of K. 

With both the B and G dominance constraints (Figure 6.7) hierarchy did not evolve 

within 10000 episodes in any of 10 replicates. Furthermore, with both constraints, 

evolution is not able to maintain an existing hierarchy: the trajectories of the regulatory 

connections are just random walks. 
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Figure 6.6: Example plot of regulatory connection trajectories with the B dominance 
constraint where hierarchy did evolve within 10000 episodes. Because of the B domi­
nance constraint, there are only 4 lines: each corresponds to all 4 connections emanating 

from one gene (each ‘column’). 
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Figure 6.7: Example plot of regulatory connection trajectories with both the B and G 
dominance constraints. The regulatory connections effectively perform a random walk 
after evolving a dense module, remaining in saturation throughout evolution (the sum 

of connection weights is practically constant). 

6.2.2 Rugged environment 

Adding some dual-peaked environmental instances into the mix, we provide an opportu­

nity for biased transient dominance. We set the switching period to K = 1000, and cycle 

through the instances in the order D+ , S+ , D− , S− (the total duration of each episode 

is the same as in the previous section). As in Chapter 3, the low benefit-coefficient is 

cL = 0.7. 
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With the B dominance constraint (Figure 6.8), unlike with the single-peaked only in­

stances, the biased transient dominance induced by the dual-peaked environments causes 

the system to evolve hierarchy rapidly once two sets of connections have been suppressed, 

as one of the remaining sets becomes able to direct the whole module. For this reason, 

all of 10 replicates evolved a hierarchy in under 10000 episodes. 
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Figure 6.8: Example plot of regulatory connection trajectories with the B dominance 
constraint. Biased transient dominance causes the rapid evolution of hierarchy once one 
gene has enough influence to effect single-point module switches as eventually occurs 

by chance due to the stochastic nature of the simulations. 

With the G dominance constraint (Figure 6.9), the dual-peaked environments are effec­

tively ignored, as the evolutionary process can already perform whole-module switches 

with a single mutation: evolution proceeds essentially the same as it did in the single-

peak-only environmental conditions. 

This consistency is not the case when there is no dominance constraint (Figure 6.10). 

While hierarchy will evolve eventually, this environment effectively has a duty cycle of 

50% (per Chapter 5), and so the wide saturation gap causes the evolution of hierarchy 

to proceed slowly until single-point module switches become viable and remove the sat­

uration gap. This dramatic acceleration is the same observed in the larger experiments 

of Chapter 3. 

With both constraints, the system again does not evolve or maintain hierarchy. 

6.3 Discussion 

We have seen that both (regulatory) dominance in B and (transient) dominance in G 

can motivate the evolution of hierarchy in our model and maintain it once evolved. In 

Chapter 5, we explained the evolution of hierarchy through dominance in B as being a 
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Figure 6.9: Representative plot of regulatory connection trajectories with the G dom­
inance constraint, which is much the same as in the single-peaked environment (Fig­

ure 6.5). 
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Figure 6.10: Representative plot of regulatory connection trajectories without any 
dominance constraint in the rugged environment. Due to the wide saturation gap, 
the evolution of hierarchy is slow until the single-point mutation module flips start 

occurring. 

consequence of the efficiency of hierarchy. The experiments in this chapter with the B 

dominance constraint, show that regulatory dominance is not necessary (at least in these 

simple scenarios), though confirmed it is in some way sufficient. These experiments are 

qualitatively quite different from those in Chapter 5, and the dramatic effect of biased 

transient dominance appears like direct selection for evolvability: with biased transient 

dominance, we cannot separate the causes and consequences of the evolved hierarchy, 

because it requires that we can exploit the evolvability benefits of hierarchy before it 



108 Chapter 6 The Evolutionary causes of Hierarchy 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Episodes

0.0

0.2

0.4

0.6

R
eg

ul
at

io
n 

C
oe

ffi
ci

en
t

Figure 6.11: Example plot of regulatory connection trajectories with both the B 
and G dominance constraints. As in the single-peaked environment, the regulatory 

connections effectively perform a random walk. 

comes into effect. This naturally raises the question as to what extent selection for 

evolvability may be considered to be contributing to the evolution of hierarchy. 

Importantly, biased transient dominance is a special case of transient dominance, both 

of which require some luck (i.e. time and noise) to produce an asymmetric regulatory 

topology before they can motivate the evolution of hierarchy. A key difference is that 

biased transient dominance can be consistent across episodes: once module switches 

are possible, the lead gene will always switch first in a dual-peaked environment, while 

unbiased transient dominance relies only on providing a signal more often than not (e.g. 

in a hierarchy, unbiased transient dominance will provide no useful signal when the lead 

gene by chance switches last). 

This feels close to the suggestion by Riedl (1977) regarding direct selection for evolv­

ability; however, we suggest that the increase in hierarchy that comes about in these 

circumstances is, as in Chapter 5, ultimately due to feedback and selection for efficiency: 

the presence of dominance creates a scenario that favours hierarchy (and vice versa). 

The scenarios described in this chapter - where the dependent feature of dominance dis­

appears routinely (it is transient) - does not align well with Rield’s description of direct 

selection for evolvability. This is not to say that selection for evolvability cannot occur, 

but Riedl’s description is not consistent with all our observations, and is not a complete 

explanation, and without a deep understanding of the developmental, evolutionary and 

selective model, has no real predictive power. 
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6.4 Conclusions 

Hierarchy evolves because it exploits developmental dominance: the most efficient way 

to up-regulate genes within a module is for them all to be driven by the most strongly 

expressed genes. This developmental dominance may come about either through the 

uneven allocation of connection weight in the B matrix of regulatory interactions, or 

through variation in the G vector of initial gene expressions as a consequence of a 

changing environment or other perturbation. The evolution of hierarchy itself influences 

these causes, creating two somewhat independent feedback loops, which we are able 

to isolate by the use of ‘dominance constraints’. By applying these constraints in small 

systems, we have shown that either feedback loop is sufficient to evolve hierarchy (though 

dominance in B is much more predicable), and that hierarchy does not readily evolve (nor 

is it maintained) in the absence of one of the feedback loops in a changing environment. 

We have confronted the question as to whether direct selection for evolvability may be 

present in our model, and the question remains as to whether a general notion of selection 

for evolvability is able to predict outcomes like ours without a detailed understanding 

of the dynamics, and it is not clear that it can in our model. 





Chapter 7 

Conclusions 

This thesis has explored the causes and consequences of the evolution of hierarchical 

modules in a model of gene regulation: it is specifically concerned with how the intro­

duction of a non-linear genotype-phenotype map can change the dynamics of evolution 

with respect to the evolution of evolvability. The gene regulatory model is a standard 

model, and the micro-evolutionary assumptions have remained consistent throughout 

the document. 

Multiple selective regimes have been employed, all of which provide directional selection 

on phenotypes, and are specifically designed to minimise confounding factors that would 

make it difficult to assess the ability of hierarchy to affect evolvability. Combined with a 

cost of connections, this produces stabilising selection on the genotype. The evolutionary 

assumptions are specifically designed to be simple, so as to aid in interpretation of 

results. The experiments have primarily been concerned with the circumstances in 

which hierarchy can evolve, and the circumstances in which hierarchy provides an access 

evolvability benefit. 

Based on our results and analysis, we draw these main conclusions: 

•	 Hierarchy in gene regulatory networks can increase evolvability by chang­

ing the level at which (random) variation operates. In Chapter 3 we showed 

how independent hierarchical modules can evolve in a changing environment when 

a linear cost of connections is employed. We showed that this hierarchy can effect 

a dramatic increase in evolvability through a change in variability that enables 

the evolutionary process to ‘jump’ fitness valleys which would otherwise trap the 

evolutionary process in low-fitness regions of the fitness landscape. As a result, the 

evolutionary process is able to find high fitness phenotypes in any of the possible 

environmental conditions. The improved access evolvability is due to the change in 

the level at which mutations operate: mutations on the ‘switch’ genes that evolve 

111
 



112 Chapter 7 Conclusions 

effect change at the level of the module, as they determine the developmental tra­

jectories of all genes within their module. Chapter 4 extended this result to a static 

(unchanging), hierarchically defined environment, where the change in phenotypic 

variability provided by hierarchy could lead to larger hierarchies: the evolvability 

benefits of hierarchy can bootstrap further evolution of hierarchy, and so further 

evolutionary benefits by repeatedly rescaling the level at which variation operates. 

•	 Significant variation in the genotype is necessary for evolution to in­

fer problem structure, but not necessary for the evolution of hierarchy. 

Chapters 3 and 4 build on observations from Kouvaris et al. (2017) and Kounios 

et al. (2016) respectively to show that variation can be induced by either a chang­

ing environment or periods of relaxed selection, and that this variation enables 

evolution to infer local and global problem structure. Chapter 3 relies on an en­

vironment where the conditions regularly permit a change (e.g. a single-peaked 

module instance) in the genotype to produce this variation; Chapter 4 relies on par­

tial resets of the genotype (simulating periods of drift), which directly introduces 

variation at regular intervals. Though similar claims were presented explicitly in 

Kounios et al. (2016), we have taken measures to prevent the inference of problem 

structure as occurs in their work, and have addressed a concern regarding the ne­

cessity of ‘resets’ by parametrising the amount of drift introduced each episode to 

explore this directly. Using this, we have shown that the magnitude of the reset 

(i.e. the number of neutral mutations of drift) affects whether the evolutionary 

process can evolve a suitable regulatory network, such that an insufficient magni­

tude results in over-fitting of the regulatory network to a sub-optimal phenotype. 

Where evolution is able to infer problem structure (i.e. modules that correspond 

to the selective environment) it is also able to evolve hierarchy, but it is clear 

from our results that hierarchy will evolve whether the problem structure can be 

inferred or not. 

•	 The causes and consequences of evolvability need not be the same. Hi­

erarchy evolved in the experiments of Chapters 3 and 4 when a linear (L1) cost of 

connections is applied and does so regardless of whether the evolutionary process 

can find a high-fitness phenotype. Chapter 5 shows that hierarchy will readily 

evolve in circumstances where it provides no evolvability benefit and provides an­

alytic evidence to support the idea that short-term selection for greater fitness 

when a sub-additive cost of connections is employed is sufficient to promote the 

evolution of hierarchy. Chapter 6 attempts to generalise the conclusions from 

Chapter 5 as a general feedback between a hierarchical topology in the regula­

tory network and dominance in the gene expression. By controlling the ability to 

evolve dominance directly, Chapter 6 shows that hierarchy can evolve as a result of 

dominance induced either by selection on embryonic conditions or by disparities in 

the strength of regulatory connections. The chapter concludes by returning to the 



113 Chapter 7 Conclusions 

original question as to what extent selection for evolvability may be responsible 

for the evolution of hierarchy: we conclude it is unnecessary in our model, and 

provides little insight in the situations where it may be argued to occur. 

These conclusions are significant, as they provide evidence that the inclusion of a 

genotype-phenotype mapping (gene regulation) with a parsimony pressure (a cost of 

connection in our models) can enable a micro-evolutionary process to evolve valuable 

structure that reflects its environment, and that this structure can enable it to better 

exploit its environment in the long term as a direct consequence of increased evolvability. 

In addition to these core claims and observations, we have explored the conditions under 

which hierarchy can evolve in depth. We have proved that hierarchy is an efficient regu­

latory topology and demonstrated a mechanism by which this efficiency can be selected 

considering the specifics of the model. This helps us to understand the conditions in 

which hierarchy evolves in our simulations, and to explain the rate at which does so. 

We have characterised the evolution of both modularity and hierarchy under strong-

selection weak-mutation as consequences of ‘saturation’, a generalisation that enables 

us to make predictions about how different model parameters will affect the propensity 

for modularity and hierarchy to evolve. Finally, the characterisation of the evolution 

of hierarchy as feedback between selection for hierarchy and dominance in Chapter 6 

may generalise to other models which include some form of dominance (i.e. non-uniform 

expression) and hierarchy (i.e. asymmetric control). 

7.1 Future Work 

There are a few natural ways that future work could extend the results of this disserta­

tion: 

1.	 Relax the strong-selection weak-mutation assumptions. As discussed in 

Chapter 5, this dissertation has employed a particular evolutionary model where 

small axis-aligned mutations are considered one at a time by a hill-climber. This 

has important consequences, and so relaxing the strong-selection weak-mutation 

assumptions (e.g. by performing multiple mutations or using a population) may 

change the dynamics significantly. For instance, if it is possible to compare the 

magnitude of the change in fitness produced by mutations (as opposed to just the 

sign), then evolution can select for a more efficient (e.g. hierarchical) regulatory 

topology prior to saturating the regulatory connections in a module. Furthermore, 

hierarchy could produce a significant change in rate evolvability by allowing se­

lection to preferentially select mutations on more influential genes (i.e. the lead 

gene in a hierarchy). As such, it would specifically be interesting to explore al­

lowing multiple mutations on G, either by performing mutations simultaneously 
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or by employing a population. Doing so is a natural route for future work, as it 

makes for a more complete model of evolution and it will be comparatively easy 

to untangle the effects of lineage selection from other selection in this model be­

cause we already understand many of its dynamics well. It should be noted that 

Kouvaris et al. (2017) performed mutations simultaneously on G and B, and the 

mutations on B were not axis-aligned: the later allowed selection for modularity 

and hierarchy without the need for saturation, but it is unclear that the former 

has any significant consequences in the scenarios they explored. It may also be 

instructive to change the relative magnitude and frequencies of mutations on dif­

ferent genes, which - while often modelled as indistinguishable in these regards ­

are not in living organisms (Erwin and Davidson, 2009). 

2.	 Exploring hierarchy in other network models. This dissertation has exclu­

sively explored the evolution of hierarchy with a genotype-phenotype map provided 

by a gene-regulatory network. This provides what Watson and Szathmáry (2016) 

describes as ‘co-variation’, where phenotypic characters change together under ge­

netic variation. It would be interesting to see whether the same sort of hierarchical 

organisation could emerge in other network models, such as an ecological model of 

co-selection based on that of Power et al. (2015). Importantly, such a model would 

have the selective unit at the ‘node’ level of the network, rather than mutations and 

selection applying to the whole network. This would make it unlikely that selec­

tion for efficiency in static environmental conditions could motivate the evolution 

of hierarchy, but dynamics like those explored in Chapter 6 may be applicable. 

3.	 Multi-layer hierarchies in a gene regulatory model. It is notable that we 

only evolve single-layer hierarchies (in contrast to e.g. Mengistu et al. (2016) 

who evolve a layered network model) which have limited expressivity: it can only 

represent correlations between the genes (i.e. gene A and gene B should have 

the same or opposite phenotypic expression). One possible way in which more 

exciting topologies might emerge would be due to an alternative cost function 

or mutational regime which encourages somewhat sparse regulatory topologies; 

however, preliminary investigations - for example, where the number of outgoing 

connections is limited - have not provided any promising results: as discussed in 

Chapter 5, indirection is selected against by the cost of connections. 

4.	 Determine whether the spiky continuous HIFF can be solved without 

hierarchy. Chapter 4 introduced the Spiky MC and HIFF problems specifically 

to reduce the potential for a simple evolutionary process to dependably find high 

fitness phenotypes; however, it may be the case that high fitness phenotypes can 

be found in the continuous HIFF without the use of hierarchy (as is the case with 

the single-layer MC problem). Preliminary results have been inconclusive, and 

the mechanism by which this could occur is unclear, though some discussion is 

provided in Chapter 4. It seems that the mechanism is due to positive feedback 
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on drift, and consequently it will be computationally expensive to explore in the 

current model due to the slow mutations rates involved; it may be that imposing 

a variability constraint of the sort used in Chapter 6 to preclude dominance could 

allow us to probe the mechanism directly. Should it transpire that there is no 

mechanism which can reliably solve the Spiky MC or Spiky Continuous HIFF, 

then this would be a strong result; otherwise, there is potential to compare the 

relative time-complexity of such a mechanism with that described in Chapter 4 

(the repeated rescaling of variability due to hierarchy). 

5.	 Explore the evolution of hierarchy without selection toward extreme 

values. As identified by Rünneburger and Le Rouzic (2016), works like ours tend 

to select toward extreme characters: in our case, the linear and quadratic benefit 

functions provide consistent directional selection on phenotypes; however, the in­

clusion of a cost of connections means that the selection is not strictly directional 

on the B matrix part of the genotype. None-the-less, it may be instructive to 

investigate benefit functions which favour intermediate expression levels. 

6.	 Exploring the stability of hierarchy when subjected to changing environ­

mental structure. It is apparent that our model reveals structure that appears 

consistent in the experienced environmental conditions (changing or otherwise), 

and it is also apparent that the premature evolution of hierarchy can prevent the 

evolutionary process from surfacing this structure. It would be interesting to ex­

plore to what extent this is the case by introducing another time-scale to the model, 

such that after some number of episodes the underlying environmental structure 

is changed. We have shown that the evolution of hierarchy can provide evolvabil­

ity benefits when the environmental conditions have a consistent structure, but it 

may be the case that this is at the expense of longer-term variability necessary to 

respond to a radically different environment. 





 

Appendix A 

Definitions and Proofs 

This appendix provides some simple proofs and definitions that are not essential to the 

arguments in the thesis. 

A.1 Proof of Bounded Phenotypic Expression 

During the recurrent process, gene expression decays by a factor of τ ∈ (0, 1) and grows 

by some value produced by a squash function σ(x) with maximum magnitude 1. Duly, 

we can prove that the terminal phenotype P , which is equal to τYT has elements with 

maximum magnitude 1 given the initial conditions have magnitude less than 1/τ . 

Consider the developmental update equation (Eq 3.1) and preconditions: 

⎛ ⎞ 
N 

yi(t + 1) = (1 − τ )yi(t) + σ ⎝ Bij yj (t)⎠ 

j 

|σ(x)| ≤ 1 |yi(0)| ≤ 1 

We want to prove the general case |yi(t)| ≤ 1 , so that Pi = τyi(T ) ≤ 1. The base case τ 

of yi(t = 0) ≤ 1 is given by our initial conditions, and we proceed by induction to prove τ 

the general case. 

|yi(t + 1)| ≤ (1 − τ)|yi(t)| + σ(x)| (A.1) 

1 − τ |yi(t + 1)| ≤ + 1 (A.2)
τ 
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1
∴ |yi(t + 1)| ≤ (A.3)

τ 

A.2 Degree of Hierarchy 

Degree of hierarchy is defined as the proportion of weight that it contributed by the 

module with the greatest total weight contribution (i.e. the weight of connections ‘from’ 

it, those on its column in the regulatory matrix) scaled between 0 and 1. Inter-module 

weights are ignored. For a module m containing n genes with dominant gene s, the 

degree of hierarchy dh is given by Eq A.4. 

1 i∈m |Bis|
dh = · − 1/n (A.4)

1 − 1/n |Bij |i,j∈m 

Though this scalar metric has little descriptive power, it is valuable as an indicator of 

the extent to which a single a gene determines the trajectories of the whole. Indeed, 

if we consider a regulatory system where the weights of connections from each gene in 

a module to the other genes in its module are uniform (and consistent with all other 

connections), then if the proportion of weight ‘owned’ by the dominant gene is over one-

half, and all genes start with the same magnitude of gene expression, the developmental 

process will drive all genes in the module to whatever sign the dominant gene bears. 



Appendix B 

Musing on the MC problem 

This appendix provides some additional commentary on the Modular Constraints prob­

lem employed in Chapter 4. 

B.1	 Proof of equivalence of generalised quadratic MC with 

standard MC 

The traditional definition of the MC problem is as a quadratic matrix product Watson 

et al. (2011c): 

bMC = P T WP	 (B.1) 

Where W is a matrix of gene interaction strengths, such that Wij = 1 if i and j are in 

the same module, and Wij = p otherwise. We can decompose the constraints matrix 

into two matrices, Wg and Wm, where Wg is a matrix where every entry contains the 

value p, and Wm is all zeros, except for the entries that correspond to genes within the 

same module, which have value 1 − p. W is the sum of these two matrices. 

W = Wg + Wm	 (B.2) 

Wg represents a ‘grand’ module which includes all entries; Wm represents the sub­

modules. We can now re-write the matrix product from equation B.1 as the sum of 

two nested summations: 

bMC = P T WgP + P T WmP	 (B.3) 
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bMC = PipPj + Pi(1 − p)Pj (B.4) 
i∈g j∈g m∈M i∈m j∈m 

Where g is the set of all genes, and M is the set of all sub-modules m1,m2, ..., where 

mi is the set of genes in that modules. This simplifies to 

⎛ ⎞2 2 

bMC = p ⎝ Pi⎠ + (1 − p) Pi (B.5) 
i∈g m∈M i∈m 

Given |g| = N and assuming all sub-modules are of size |m| = K (per the traditional MC 

problem), and defining Tg = /N and Tm = /K for each module m ∈ M (thei∈g i∈m 

mean phenotypic expression in each module, in range [−1, +1]), this can be re-written 

as 

bMC = pT 2N2 + (1 − p) T 2 K2 (B.6)g m

m∈M 

bMC = pN2T 2 + (1 − p)K2 T 2 (B.7)g m 
m∈M 

Factoring out (1 − p)K2, we can write this as: 

pN2 

bMC = (1 − p)K2 T 2 + T 2 (B.8)g m(1 − p)K2 
m∈M 

Now we compare this to the generalised MC, with module-benefit-function η(x) = x2 , 

where we use the same g and m notation to differentiate the grand module (with cg = df ) 

and sub-modules (with cm = 1): 

1 
m∈(M∪g) cm × η |m| i∈m Pi 

bGMC = (B.9) 
m∈(M ∪g) cm 

df η(Tg) + η(Tm)
bGMC = m∈M (B.10)

df + |M | 

For η(x) = x2, we have 

1 
df T 2 T 2bGMC = g + m (B.11)

df + |M | 
m∈M 
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Ignoring the constant terms outside the brackets (which change the magnitude of the 

benefit, but not the shape), equations B.11 and B.8 are equivalent when we take the 

decay factor to be 

pN2 

df = (B.12)
(1 − p)K2 

Rearranging, we get an expression for p in terms of df . 

1 
p = 

N2 (B.13) 
1 + 

df K2 

For our experiments, we only used a value of df = 0.75, which gives a value of p ≈ 0.012 

for 8 modules of 8 genes, which is comparable to values used in previous literature. 

Ignoring the constant factors (which we did not equate) only changes the magnitude 

of the benefit function: it does not change its offset or shape, so this has no effect on 

the dynamics of the system with the inclusion of a per-connection cost-of-connection (as 

used in this thesis): this arbitrary benefit factor (which we choose such that the benefit is 

in the range [0, 1] for convenience) can be equivalently simulated with a different choice 

of cost coefficient λ. As such, the generalised MC with η(x) = x2 is equivalent to the 

traditional MC for our purposes. 

Regarding the interpretability of p and df , neither is particularly intuitive, and both 

need to be chosen according to the number of modules in the super/grand-module. df 

is somewhat desirable for our purposes because it implies a consistent ratio in signal 

at each layer of the continuous HIFF in Section 4.6 (the super-modules in each layer 

comprise the same number of sub-module from the layer below at each layer). 

B.2 Partial resets without development 

In Kounios et al. (2016), a total reset hill-climber without a developmental mapping 

was compared to a partial reset hillclimber with a developmental mapping: the total 

reset hill-climber without developmental mapping failed miserably to learn, by virtue of 

having no persistent state. Though not relevant to our investigation into the evolution 

and evolvability of hierarchy, additional experiments were run to evaluate the power of 

a partial resets without a developmental process. 

It transpires that it is possible for a carefully tuned partial-reset hill-climber without 

B to solve the ‘concentric squares’ problem described in Kounios et al. (2016), as well 

as some MC problems. In the case of the MC problem, this is due to the same signal 

causes the model with the developmental mapping to explore high-fitness phenotype 
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more often than one would expect by change. The different sizes basins allow the model 

without developmental mapping to climb uphill in a ‘ratchet’ fashion: the magnitude 

of reset necessary to ‘flip’ a module that is ill-matched with the rest of the phenotype 

(and so achieve a higher fitness) is smaller than the magnitude of a reset necessary to 

‘flip’ such a module back. The distribution of reset magnitudes is controlled by the G 

mutation magnitude MG, the neutral mutation count Q, and the module size K, and 

careful tuning can produce a system which tends toward the global optimum. 

It is noteworthy that the modules in the MC problem are only consequential because 

of variation in the variability: because the module-benefit-functions are taken over an 

average of the expression of each module, the fitness effect of a change in the phenotypic 

expression of a trait is the same for all traits within a module. Variation in module size, 

however, has a significant effect on the types of distributions of phenotypic expressions 

observed after a partial reset (as in Figure B.1): larger modules mean that the distribu­

tion more closely approximates a Gaussian whose mean approaches 0 as the size of the 

reset is increased (i.e. less information is retained about the previous state). 
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Figure B.1: Distributions of mean module expression after a Q = 20k reset, starting 
from all entries being −1, for a genome of size 64 with modules of size K = 8 and 
K = 16. A larger module reduces the variance in the distribution of mean phenotype 
expression, which reduces the ratio of large module resets - which randomise the state 
of a module - to tight module resets, which move the system into a state of uncertainty 

where it is able to follow local gradients. 



Appendix C 

Select additional results 

The experiments results presented in this dissertation represent a small proportion of 

the experiments run in search of understanding. This appendix includes some select 

additional results to support points of discussion. 

C.1	 Time to hierarchy with changing environmental con­

ditions 

Figure C.1 shows the time-to-hierarchy (how many episodes of evolutionary occur before 

4 independent hierarchical modules emerge). Figure C.2 shows how this may be related 

to the choice of Z, the probability of multi-peaked module instance occurring. 

C.2	 Changing environment model with different cost co­

efficients 

Chapter 3 focusses on the dynamics around the evolution of hierarchy, and considers a 

choice of cost coefficient λ. These are additional results with different choices of λ. 

C.3	 Changing environment with a strictly sub-additive cost 

of connections 

Apart from the linear (L1) cost of connections used throughout the dissertation, a 

‘strictly sub-additive’ cost of connections (φ(a + b) ≤ φ(a) + φ(b)) was also consid­

ered, and a spread of experiments were run with the changing environmental model. A 

grid of the evolved B matrices is presented in Figure C.5. 
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Figure C.1: Excepting the results for Z = 1 (where a grand-hierarchy evolves), all 
experiments with the changing environment model showed the evolution of four inde­

pendent internally hierarchical modules. 
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Figure C.2: Excepting the results for Z = 1, the time to hierarchy appears to be a 
linear function of 1/|Z − 1|. Too much should not be read into this regression. 
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Figure C.3: Using a larger cost coefficient of λ = 0.2 (rather than λ = 0.1) the 
distributions of terminal fitnesses reveal that for large choices of multi-peak instance 
probability Z that the system does not always evolve independent modules, resulting 

in an inability to respond to full exploit the changing conditions. 

Figure C.4: Larger choices of λ and Z increase the probability of failing to evolve 
independent modules. Note that for λ = 0 there is no cost of connections, and while 
independent modules evolve, they do not become hierarchical. The fact that indepen­
dent modules evolve is surprising as we explain in Chapter 5 that the ability to evolve 
modules for large values of Z is due to saturation, but saturation itself is due to the 
cost of connections. These experiments reveal that there is another way to saturate a 
system: by running out of numbers. This quite literally saturates the squash function 

in the benefit curve, and has much the same effect as the cost of connections. 
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The exact function used is given By
 

φ(|x|) = 0.8|x| + 0.2|x|/(|x| + 1) (C.1)
 

Figure C.5: GRNs evolved with a strictly sub-additive cost of connections. Excepting 
those for Z = 1 (where the evolutionary process is ongoing), each comprises at least 
4 independent and sparse modules: The environmental modules are reflected in these 
modules, but it many cases the 4 genes that correspond to and environmental module 
will appear in more than one module (e.g. one gene may only have a self-connection, or 
a pair may mutually up-regulate each other). Light values present positive regulatory 
interactions; dark values represent negative regulatory interactions; most interactions 

have strength zero. 

C.4 Fixed environment and initial gene expressions 

Figure C.6 shows the trajectories of the regulatory interactions and the degree of hierar­

chy for a fixed environment and G vector of initial conditions. Experimental parameters 

are otherwise the same as those discussed in Chapter 3. Because the environment is un­

changing and has no epistasis, there is no evolvability benefit to be attained by evolving 

the hierarchy. 
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Figure C.6: As in the case of multi-peaked environmental instance frequency Z = 1, 
a single grand-hierarchy evolves; there are no independent modules. 
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C.5 Spiky MC without a cost of connections 

Figure C.7 shows the terminal fitness distributions for the evolutionary process without 

a cost-of-connection on the Spiky MC. The Spiky MC is not readily solved this case, 

and there is no significant difference between performance for large and small numbers 

of neutral mutations Q, despite the ample between episode variation introduced for the 

large choices of Q. 
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Figure C.7: Terminal fitness distributions for the evolutionary process without a cost 
of connections in the Spiky MC environment. There is no significant improvement 
in performance for different choices of neutral mutation count Q. In this figure, the 
fitness is computed on the sign of the phenotype: this reveals the change in distribution 

without the distraction of the absolute magnitudes of the phenotype. 





Appendix D 

Gradient descent example 

// usage: dotnet fsi Script.fsx 

#r "nuget: DiffSharp.Backends.Reference , 1.0.7" 

open System 

open DiffSharp 

let	 step B P tau = 

let u = dsharp.matmul(B, P) 

let s = dsharp.tanh(u / 2.0) 

(1.0 - tau) * P + s 

let	 develop B G T tau = 

let mutable P = G 

for t = 1 to 10 do 

P <- step B P tau
 

P * tau
 

let	 benefit P = 

dsharp.sum(P) // S+ 

let	 cost B = 

dsharp.sum(dsharp.abs(B)) // linear (L1) 

let N = 16 

let G = dsharp.ones(N). reverseDiff () // G is all +1 

let mutable B = dsharp.randn([ N; N ]). reverseDiff () 

let lambda = 0.1 

let tau = 0.2 

let MB = 1e -2 // ’learning rate ’ 

let T = 10 

for	 iter = 1 to 100000 do 

let P = develop B G T tau 

let b = benefit P 

let c = cost B 

let f = b - lambda * c 

f. reverse ()
 

B <- (B.primal + B.derivative * MB). reverseDiff ()
 

if iter % 1000 = 0 then printfn $"{iter}\tf: {f} {B}" 
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Appendix E 

Partial hierarchies 

Figure E.1 shows developmental trajectories for a system of two genes, where gene has 

self- and outgoing-connections of strength s, and the other gene has connections of 

strength u. This represents a ‘partial’ hierarchy with two ‘columns’. If s > u, then the 

terminal gene expression only depends on the initial gene expression of the lead gene. 

Figure E.1: Developmental trajectories for a two-gene module, where gene 0 has 
influence s ≈ 1.9 and gene 1 has influence u ≈ 0.8. Generally, the boundary between 

the basins of attraction to the two corners is given by y0/y1 = −u/s. 
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Appendix F 

Sources 

The source code and files to generate the key experiments presented in this disserta­

tion can be found at https://git.soton.ac.uk/fjn1g13/m4mtrim. The code, being a 

product of 4 years of frantic incremental development by a single individual, is pretty 

dense and generally badly designed. If for whatever reason you would like to mess around 

with this implementation, feel free to contact me. The readmes should be useful. 

A simple implementation of the changing environments model used in Chapter 3 can 

be found at https://git.soton.ac.uk/fjn1g13/ivmctrim. This includes the same 

developmental model as used throughout the dissertation. This is a better place to 

look if you want to understand the model. It also includes an (older) copy of the main 

sources, but they can be ignored. 
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