
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data

are retained by the author and/or other copyright owners. A copy can be downloaded for

personal non-commercial research or study, without prior permission or charge. This thesis and

the accompanying data cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the copyright holder/s. The content of the thesis and accompanying

research data (where applicable) must not be changed in any way or sold commercially in any

format or medium without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be

given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of

the University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science: Agents, Interaction & Complexity

and
Faculty of Social Sciences

Southampton Business School: Centre for Digital Finance

Machine Learning in Fixed Income Markets:
Forecasting and Portfolio Management

by

Manuel Clemente Mendonça Nunes
BSc, MSc, MBA, PhD

ORCiD: 0000-0002-7116-5502

A thesis for the degree of
Doctor of Philosophy

January 2022

http://www.southampton.ac.uk
https://orcid.org/0000-0002-7116-5502

University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science: Agents, Interaction & Complexity

and
Faculty of Social Sciences

Southampton Business School: Centre for Digital Finance

Doctor of Philosophy

Machine Learning in Fixed Income Markets:
Forecasting and Portfolio Management

by Manuel Clemente Mendonça Nunes

The fixed income market (i.e. bonds) is a massive asset class with an overall size of
USD 100 trillion that remains relatively under-investigated using machine learning.
The yield curve is its centrepiece for investors, regulators and the overall economy. In
this thesis we apply machine learning to both bond forecasting and portfolio manage-
ment. More specifically, we consider three different topics. The first two topics focus
on machine learning models for forecasting, using multilayer perceptrons (MLPs) and
long short-term memory (LSTM) networks, respectively. The third and final topic is
on using reinforcement learning (RL) for portfolio management. These topics address
specific gaps in the literature. In particular, existing literature lacks direct solutions for
modelling the yield curve as a whole using machine learning. In addition, there is lack
of work analysing and drawing interpretations from internal signals of black-box type
of models like MLPs and LSTMs. Finally, there is no work that establishes RL as a
framework for bond portfolio management.

In more detail, for the first topic, two models are used for forecasting the European
yield curve: multivariate linear regression and MLP, at five forecasting horizons. Five
variants of MLPs are analysed, using different sets of features and, in some cases, in-
cluding artificially-generated data from the linear regression model. We introduce a
methodology relying on a rigorous feature selection process to identify the most rel-
evant features, which we found to be different for each target and each forecasting
horizon studied, reinforcing the importance of custom-built models. Considering all
forecasting horizons, the results show that the MLP using the most relevant features
achieve the best results and the addition of artificially-generated data tends to improve
accuracy. Overall, the results demonstrate the superiority of MLPs to forecast the yield
curve, when compared to benchmarks and other studies in the literature.

http://www.southampton.ac.uk

iv

For the second topic, we conduct a study of 10-year bond yield forecasting using dy-
namic LSTMs. In doing so, we study multiple temporal horizons, and compare the
results to static MLPs using different covariates. Results show that the LSTM is capable
of achieving lower prediction errors with higher confidence. Using a novel method we
refer to as LSTM-LagLasso, we then go on to study the internal gating signal of a trained
LSTM, and explain their dynamics using exogenous variables that can potentially in-
fluence bond price formation. By considering these variables at various lags and the
Lasso method to select features, we show how different hidden units of the LSTM dy-
namically switch to make predictions during different temporal regimes and how their
evolution is influenced by different external variables.

Finally, for the third topic we develop an autonomous RL system which includes a
purpose-built environment for fixed income portfolio management. It interacts with an
agent with a state-of-the-art algorithm, the deep deterministic policy gradient (DDPG).
We successfully test this system with environment inputs from four bond exchange
traded funds (ETFs), using a novel methodology which involves a number of modific-
ations in relation to the literature. The RL algorithm showed some signs of instability
requiring further research. Despite this, we demonstrate how to extract the best agents
from the system, during training, using principled selection criteria. With this selec-
tion, we are able to find agents capable of outperforming both the static buy and hold
strategy and the best asset in the portfolio. Overall the results confirm the potential of
RL for this application.

In conclusion, this research covers three topics using machine learning in fixed income
markets. In doing so, we have extended the state-of-the-art literature. The main overall
objective is to provide financial practitioners with additional machine learning tools.

v

Contents

List of Figures ix

List of Tables xi

Declaration of Authorship xiii

Acknowledgements xv

Nomenclature xix

Acronyms xxv

1 Introduction 1
1.1 Motivation and challenges . 1

1.1.1 Fixed income markets . 1
1.1.2 Machine learning . 4
1.1.3 Forecasting . 5
1.1.4 Portfolio Management . 6

1.2 Objectives . 7
1.3 Hypotheses . 8
1.4 Contributions . 8
1.5 Structure of report . 10

2 Literature Review 11
2.1 Classical financial modelling . 11

2.1.1 Time series models . 12
2.1.2 Yield curve models . 13
2.1.3 Limitations of classical financial modelling 14

2.2 Machine learning models in financial applications 15
2.2.1 Fixed income . 15
2.2.2 Foreign exchange . 18
2.2.3 Equities . 20
2.2.4 Equity options . 22
2.2.5 Other financial applications . 23
2.2.6 Asset pricing and factor models 25
2.2.7 Double machine learning . 27

2.3 Combining predictors . 29
2.4 Machine learning models . 30

vi CONTENTS

2.4.1 Selection of models . 30
2.4.2 Linear regression . 31

2.4.2.1 Linear regression models 31
2.4.2.2 Feature selection using Lasso 33

2.4.3 Artificial neural networks . 34
2.5 Multitask learning . 37
2.6 Deep learning models . 42

2.6.1 Standard recurrent neural networks 42
2.6.1.1 Overview . 42
2.6.1.2 Limitations of feed-forward neural networks 44
2.6.1.3 Backpropagation through time 45
2.6.1.4 Vanishing or exploding gradients 45

2.6.2 Long short-term memory networks 47
2.6.3 RNN-LSTM advantages and limitations 52
2.6.4 RNN-LSTM applications in finance and other fields 53
2.6.5 LSTM networks’ potential for yield and yield curve forecasting . 54

2.7 Reinforcement learning . 55
2.7.1 Limitations of supervised learning for portfolio management . . 55
2.7.2 Traditional portfolio management methods 56
2.7.3 Reinforcement learning concept 59
2.7.4 Agent taxonomy . 60
2.7.5 RL applications in portfolio management and trading 62

2.7.5.1 Critic-only . 62
2.7.5.2 Actor-only . 63
2.7.5.3 Actor-critic . 64
2.7.5.4 Discussion and potential advantages of actor-critic . . . 65

2.7.6 RL potential for portfolio management 67
2.8 Summary and conclusions . 68

3 Multilayer Perceptrons for Yield Curve Forecasting 71
3.1 Data . 71

3.1.1 Targets . 71
3.1.2 Features . 72
3.1.3 Datasets . 73
3.1.4 Generation of additional features 73
3.1.5 Train-test split and normalisation 74

3.2 Methodology . 74
3.2.1 Forecasting horizon . 74
3.2.2 Feature selection . 75
3.2.3 Number of hidden units . 75
3.2.4 Single task and multitask learning 76
3.2.5 Models . 76
3.2.6 Moving window and retraining of models 77
3.2.7 Cross-validation . 78
3.2.8 Model comparison metrics . 80

3.3 Results and discussion . 81
3.3.1 Feature selection . 81

CONTENTS vii

3.3.2 Comparison of models . 84
3.3.2.1 Introduction . 84
3.3.2.2 Multilayer perceptron models 86
3.3.2.3 Single task versus multitask learning 88
3.3.2.4 Comparison with results in the literature 89

3.4 Summary and conclusions . 90

4 Long Short-Term Memory Networks for Bond Yield Forecasting 93
4.1 Specific background literature . 93
4.2 Data . 95
4.3 Methodology . 95

4.3.1 LSTM networks for bond yield forecasting 95
4.3.2 Extraction of LSTM internal signals 97
4.3.3 Exogenous covariates explaining LSTM internal signals 97

4.4 Results and discussion . 99
4.4.1 Dynamic versus static models: comparing LSTM and MLP 100
4.4.2 Analysis of LSTM internal signals 102
4.4.3 Explaining internal states with exogenous variables 104
4.4.4 Discussion . 105

4.5 Summary and conclusions . 109

5 Deep Reinforcement Learning for Bond Portfolio Management 111
5.1 Theoretical formulation of portfolio management in RL 111

5.1.1 Introduction . 111
5.1.2 States and actions . 112
5.1.3 State transition and assumptions 113
5.1.4 Rewards . 113
5.1.5 Policy . 114
5.1.6 Action-value function . 115

5.2 Data . 116
5.3 Methodology . 118

5.3.1 Top level options . 118
5.3.1.1 Discrete versus continuous spaces 119
5.3.1.2 Policy optimisation and function approximators 119
5.3.1.3 Objective function . 120
5.3.1.4 Normalisation of observations 120
5.3.1.5 Performance metric . 120
5.3.1.6 Hyperparameter tuning 121

5.3.2 Agent . 121
5.3.2.1 Algorithm selection . 121
5.3.2.2 Original algorithms leading to the DDPG 123
5.3.2.3 Deep deterministic policy gradient algorithm 124
5.3.2.4 Actor and critic deep neural networks 126

5.3.3 Environment . 127
5.3.3.1 Platform selection . 127
5.3.3.2 Simulink environment 128

5.3.4 Empirical work to test the RL system 129

viii CONTENTS

5.4 Results and discussion . 131
5.4.1 Reward alternatives . 131
5.4.2 Training results . 131
5.4.3 Testing results . 132

5.5 Summary and conclusions . 134

6 Conclusions and Future Work 137
6.1 Conclusions . 137
6.2 Future work . 141

Appendix A Chapter 3 - Initial List of Features 143

Appendix B Chapter 4 - Additional Figures 147

Appendix C Chapter 5 - Additional Information 151

Bibliography 153

ix

List of Figures

2.1 Feed-forward neural network example. 35
2.2 Neuron of a multilayer perceptron. 36
2.3 Single task learning for four different targets. 38
2.4 Multitask learning for four different targets. 39
2.5 Recurrent neural network for a particular time step. 43
2.6 Recurrent neural network unrolled in time. 43
2.7 Long short-term memory cells (based on Olah (2015), with modifications

made by the author). 47
2.8 Long short-term memory detailed cell diagram (based on Prügel-Bennett

(2017), with modifications made by the author). 49
2.9 Long short-term memory cell gates. 50
2.10 Simplified agent-environment interaction in RL (Sutton and Barto, 2020). 59
2.11 Types of model-free RL agent. 61

3.1 Representation of the yield curve across time. 72
3.2 Moving window methodology. Note that at any time step t (present time

for the correspondent time step), all data up to this point is historical data
and is incorporated in the training moving window for better results. . . 78

3.3 Change in the number of features as a function of the linear regression’s
regularisation parameter (γ), for target 30-year bond yield. Inside chart:
zoom in range γ = 1.5 to 4. 81

3.4 Comparison of models: linear regression (LR Linear Reg); MLP using
relevant features per target and per forecasting horizon (NN RelFeat);
MLP using only past values of the target(s) to predict (NN TgtOnly); and
the last two models with synthetic data from the linear regression model
as additional feature (NN RelFeat+LRdata and NN TgtOnly+LRdata, re-
spectively). In all cases: neural network (NN) models with 10 hidden
units and feature selection with regularisation parameter γ equal to 4. . 85

3.5 Forecasting results for 10Y yield (model: MLP using relevant features;
forecasting horizon: next day). 87

3.6 Example of single task versus multitask learning for the MLP model
using relevant features per target and per forecasting horizon. In both
cases: neural network models with 10 hidden units and feature selection
with regularisation parameter γ equal to 4. 88

x LIST OF FIGURES

4.1 Comparison of models: two types of MLPs (NN RelFeat using the relev-
ant features determined for the 10-year yield target and for each forecast-
ing horizon and NN TgtOnly the univariate MLP) vs. LSTMs with input
sequences of 6, 21 and 61 time steps (LSTM06, LSTM21 and LSTM61,
respectively). 101

4.2 Direct comparison of models: univariate multilayer perceptron NN Tg-
tOnly vs. long short-term memory networks for input sequence of 6 time
steps LSTM06. 102

4.3 Long short-term memory network signals. 103
4.4 LSTM-LagLasso relevant features for the hidden state, unit 1, considering

a regularisation parameter γ equal to 1.0. [Terminology: An example
of technical analysis indicator used is “EUR 30Y MA 48-MA 35 days”
corresponding to the 48-day Moving Average (MA) minus 35-day MA,
of the 30-year Euro government bond yield (EUR 30Y)]. 106

4.5 Forecasting error of LSTM-LagLasso using macroeconomic market fea-
tures and using Gaussian random features. 109

5.1 Cumulative performance of individual assets. 118
5.2 Diagrams of actor and critic neural networks’ paths, where observation

represents the state observations; action the agent’ actions; f c is a fully
connected layer; f cact is also a fully connected layer in the action path of
the network; relu the activation function; scaction the scaled actions; and
value is the action value, or Q-value. 127

5.3 Portfolio management Simulink environment and agent. 128
5.4 Portfolio total return at various episodes during the training phase, com-

pared to the total return of the individual assets. 132
5.5 Portfolio total return with testing data, using the final agent of the train-

ing phase, and compared to the total return of the individual assets. . . 133
5.6 Portfolio total return with testing data, of the top three agents selected

during the training phase, and compared to the total return of the indi-
vidual assets. For reference, we also add the bottom performer of the
selected agents. Selection criteria: agents with episode reward above
90% of the maximum, when the running average episode reward is also
above the 90% level. 133

Appendix B.1 Hidden state signals for feature sets 2 and 3. 148
Appendix B.2 LSTM-LagLasso relevant features for the hidden state, unit 3,

considering a regularisation parameter γ equal to 1.0. [Terminology: An
example of technical analysis indicator used is “EUR 30Y MA 48-MA 35
days” corresponding to the 48-day Moving Average (MA) minus 35-day
MA, of the 30-year Euro government bond yield (EUR 30Y)]. 149

xi

List of Tables

3.1 Descriptive statistics of the target variables. 72
3.2 Summary of empirical work. 75
3.3 Top relevant features per target, considering only those with weights

above 0.01 and when they remain relevant in at least 4 of the 5 forecasting
horizon studied. Dominant feature in bold. 83

3.4 Number of relevant features per yield, per forecasting horizon and in
MTL mode (simultaneous modelling of all yields). 84

3.5 Forecasting errors for 10Y yield, for Model MLP using relevant features,
and Forecasting horizon next day. The non-normalised MAPE excludes
two data points with real yields equal to 0.0% (less than 5 bp), where
this metric does not become appropriate. 86

4.1 Summary of the models used. 96
4.2 Summary of the LSTM model used for signal analysis. 98
4.3 Summary of most influential relevant features for both states. The listed

features have a sum of absolute weights greater than or equal to 0.15 in
at least one of the LSTM units. The cells in the table for which the weight
is equal to zero are left empty. [Terminology: An example of technical
analysis indicator used is “EUR 30Y MA 200 days” corresponding to the
200-day Moving Average (MA), of the 30-year Euro government bond
yield (EUR 30Y)]. 107

5.1 Summary of bond ETFs selected. 117
5.2 Summary of agent types and algorithms. Based on MathWorks (2021a),

with changes made by the author. Terminology: SARSA, State-Action-
Reward-State-Action; DQN, Deep Q Network; PPO, Proximal Policy Op-
timization; SAC, Soft Actor-Critic; DPG, Deterministic Policy Gradient;
DDPG, Deep Deterministic Policy Gradient; TD3, Twin Delayed DDPG. 122

5.3 Empirical work for RL system testing. 130

Appendix A.1 Initial list of features selected from financial markets, macroe-
conomic and technical indicators. 143

Appendix C.1 List of hyperparameters used in the RL empirical work. . . . 151

xiii

Declaration of Authorship

I declare that this thesis and the work presented in it is my own and has been generated
by me as the result of my own original research. I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree at
this University;

2. Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated;

3. Where I have consulted the published work of others, this is always clearly attrib-
uted;

4. Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published or presented in conferences as:
Manuel Nunes, Enrico Gerding, Frank McGroarty, and Mahesan Niranjan. A com-
parison of multitask and single task learning with artificial neural networks for yield
curve forecasting. Expert Systems with Applications, 119:362–375, 2019a. https://doi.
org/10.1016/j.eswa.2018.11.012
Manuel Nunes, Enrico Gerding, Frank McGroarty, and Mahesan Niranjan. The mem-
ory advantage of long short-term memory networks for bond yield forecasting. In-
ternational Conference on Forecasting Financial Markets, FFM, 2019b. https://doi.org/
10.2139/ssrn.3415219
Manuel Nunes, Enrico Gerding, Frank McGroarty, and Mahesan Niranjan. LSTM-
LagLasso for bond yield forecasting: Peeping into the long short-term memory net-
works’ black box. Workshop Advancing Machine Learning in Finance, Insurance and
Economics, 2020. https://arxiv.org/abs/2005.02217

Signed: Date:

https://doi.org/10.1016/j.eswa.2018.11.012
https://doi.org/10.1016/j.eswa.2018.11.012
https://doi.org/10.2139/ssrn.3415219
https://doi.org/10.2139/ssrn.3415219
https://arxiv.org/abs/2005.02217

xv

Acknowledgements

The author wishes to express his sincere gratitude to his supervisory team, Professor
Enrico Gerding, Professor Frank McGroarty, and Professor Mahesan Niranjan, for their
guidance and expert advice throughout this research and for the opportunity given
to conduct this study. Apart from embracing this research from the beginning, their
friendship and unreserved support was permanently present, something I will remem-
ber forever with gratitude.

The author would like to extend this acknowledgement to Professor Adam Prügel-
Bennett , and Professor Georgios Sermpinis, for having accepted the invitation to be
my examiners, and to all my colleagues and friends in the department.

Acknowledgement is also due to the UK Engineering and Physical Sciences Research
Council (EPSRC Award 1921702), Doctoral Training Partnership with the University of
Southampton, for sponsoring this research programme.

In addition, the author would like to express his profound indebtedness to Professor
Peter Johnson and all his team at the University Hospital Southampton.

Finally, I am deeply grateful to all my family members, in particular my wife and sons,
for their unconditional love and support.

xvii

To my family for their love and support

xix

Nomenclature

a linear regression: (p + 1)× 1 vector of weights. 32

E linear regression: error function. 32

ϵ linear regression: error. 32

f linear regression: N × 1 vector of outputs. 32

f (x) linear regression: target or dependent variable. 32

γ linear regression: regularisation parameter. 33, 34, 75, 81, 82, 91, 98, 99

I identity matrix. 33

∥.∥1 L1-norm. 34, 98

∥.∥2 L2-norm. 34, 98

λ MTL: parameter that controls how sensitive learning is to the extra tasks. 40, 76

N linear regression: number of observations. 32

p linear regression: number of features. 32

wj, w0 linear regression: weights (unknown parameters). 32

xj linear regression: inputs, independent variables or features. 32

Y linear regression: N × (p + 1) matrix. 32

Double Machine Learning

D double machine learning: variable of interest, treatment, policy or intervention vari-
able. 28

E [.] double machine learning: denotes the expected value of a random variable. 28

g0, m0 double machine learning: generic functions. 28

xx Nomenclature

θ0 double machine learning: parameter of interest or causal parameter. 28

U, V double machine learning: disturbance or error terms. 28

X double machine learning: set of control variables. 28

Y double machine learning: outcome variable. 28

Long Short-Term Memory

b f , bi, bg, bo bias vectors. 48

c(t) cell state at time step t. 48

c(t−1) cell state at time step t-1. 48

f (t) function for the forget gate. 48

g(t) function for the input node. 48

h(t) hidden state at time step t. 48

h(t−1) hidden state at time step t-1. 48

i(t) function for the input gate. 48

slstm LSTM-LagLasso: LSTM cell and hidden state signals (target vectors). 98

w LSTM-LagLasso: vector of unknown parameters. 98

X LSTM-LagLasso: matrix of features and respective lags. 98

o(t) function for the output gate. 48

⊗ Hadamard product (element-wise multiplication). 48

σ logistic sigmoid activation function. 48

tanh hyperbolic tangent activation function. 48

W weight matrices. 48

W f x weight matrix for the connection input-to-forget gate. 48

x(t) input vector at time step t. 48

Recurrent Neural Network

bh bias vector at the hidden level. 44

by bias vector at the output level. 44

h(t) hidden state at time step t. 44

Nomenclature xxi

h(t−1) hidden state at time step t-1. 44

σh activation function at the hidden level. 44

σy activation function at the output level. 44

W weight matrices. 44

W hh recurrent weight matrix for hidden-to-hidden connections. 44

W hx weight matrix for input-to-hidden connections. 44

Wyh weight matrix for hidden-to-output connections. 44

x(t) input vector at time step t. 44

ŷ(t) output at time step t. 44

Reinforcement Learning

1m m-dimensional column vector of ones. 57, 113

{1 + RP,t} reward received by the agent at time step t. 114, 130, 131

A action space. 116

at agent actions at time step t. 111, 113

at−1 agent actions at time step t− 1. 113

β behaviour policy. 116

E environment. 111

E [.] denotes the expected value of a random variable. 114

f (.) unscaled output, before the softmax function is applied. 115

γ reward discounting factor. 111, 114

J objective function. 114

m number of assets. 57, 113

µ deterministic policy. 116

n number of previous time steps of historical prices. 113

∇a gradients with regards to the action a. 125

∇θµ gradients with regards to the parameters of the behaviour policy network θµ. 125

N stochastic noise sampled from a noise process. 125

xxii Nomenclature

P0 initial value of the portfolio. 114

PA,t−1,close closing prices of the assets at time step t− 1. 114

PA,t,close closing prices of the assets at time step t. 114

π policy. 114, 116

µ(s|θµ) behaviour policy network. 124

µ′(s|θµ′) target policy network. 124

P(A) probability distribution over the actions. 116

Pt total portfolio value. 113, 114

Qµ action-value of the state-action pair (deterministic policy). 116

Q(s, a|θQ) Q network. 124

Q′(s, a|θQ′) target Q network. 124

Qπ(st, at) action-value of the state-action pair. 115

R1 state return from the initial state. 114

rA vector of expected returns of the assets in the portfolio. 57

rA,t return of the assets at time step t. 114

ρµ discounted state visitation distribution for a policy µ. 124

θQ parameters of the Q network. 124

θQ′ parameters of the target Q network. 124

RP,t return of the portfolio at time step t. 114

RP,target target expected portfolio return. 57

r(si, ai) reward received following state si and action ai. 114

r(st, at) immediate reward at time step t. 116

Rt state return at time step t. 114

rt reward at time step t. 111

Σ covariance matrix. 57

st state at time step t. 111, 113

S state space. 116

Nomenclature xxiii

τ ≪ 1 target smooth factor used for the updates of the target networks. 125

θµ parameters of the behaviour policy network. 125

θµ′ parameters of the target policy network. 124

θt function approximator parameters at time step t. 115

w weights of the assets in the portfolio. 57

wt weights of the assets in the portfolio at time step t. 113

wt−1 weights of the assets in the portfolio at time step t− 1. 113

(st, at) state-action pair at time step t. 115

xt historical prices of the assets. 113

yt target action-value. 124

xxv

Acronyms

A | B | C | D | E | F | G | L | M | N | O | P | R | S | T | V | X

A

ANN Artificial Neural Network. 5, 6, 16, 19, 20, 22, 30, 34, 35, 69

AR AutoRegressive. 12, 14, 68

ARCH AutoRegressive with Conditional Heteroskedasticity. 13, 68

ARIMA AutoRegressive Integrated Moving Average. 12, 14, 16, 29, 68

ARMA AutoRegressive Moving Average. 12, 14, 17, 30, 68

B

bp basis point. xi, 86, 117, 130

BPTT Backpropagation Through Time. 45, 46

C

CAPM Capital Asset Pricing Model. 25, 26

CDS Credit Default Swap. 3

CEC Constant Error Carousel (LSTM networks). 51

COPDAC Compatible Off-Policy Deterministic Actor-Critic. 123

CPI Consumer Price Index. 13, 16, 41, 105, 145

D

DAX German Stock Market Index. 21, 62

DDPG Deep Deterministic Policy Gradient. iv, xi, xxviii, 9, 64, 65, 68, 121–126, 129–
132, 135, 140, 142

DNS Dynamic Nelson–Siegel model. 13, 14, 17, 37, 68, 95

xxvi Acronyms

Double ML Double Machine Learning. 27, 28

DPG Deterministic Policy Gradient. xi, 64, 122–124

DQN Deep Q Network. xi, xxviii, 62, 63, 122–125

E

ETF Exchange Traded Fund. iv, xi, 63, 66, 116, 117, 120, 128, 130, 140

EUR-USD Currency pair euro / United States dollar. 18, 108, 145

F

forex Foreign Exchange. 5, 7, 15, 18, 19, 24, 53, 63, 66, 68, 90, 108, 116, 137

G

GARCH Generalised AutoRegressive with Conditional Heteroskedasticity. 13, 21, 68

GDP Gross Domestic Product. 23, 24, 145

GRU Gated Recurrent Unit. 53

L

LagLasso Variant of Lasso, which includes the selection of features and lags. 9, 34, 94,
98, 105, 140

Lasso Least Absolute Shrinkage and Selection Operator. iv, xxvi, 9, 31, 33, 34, 75, 76,
94, 97–99, 104, 139, 140

Libor London InterBank Offered Rate. 16

Logit Logistic Model. 17, 24

LSTM Long Short-Term Memory. iii, iv, x, xi, xx, xxv, 2, 6, 9, 10, 30, 42, 47, 48, 51–55,
69, 93–102, 104, 105, 107–110, 117, 139, 140, 142

LSTMVis Long Short-Term Memory visualisation tool. 93

M

MA Moving Average. x, xi, 12, 106, 107, 146, 149

MACD Moving Average Convergence Divergence. 17

MAE Mean Absolute Error. 80, 86

MAPE Mean Absolute Percentage Error. xi, 56, 80, 84, 86

Acronyms xxvii

MDP Markov Decision Process. 111, 112

MLP MultiLayer Perceptron. iii, iv, ix–xi, 5, 8–10, 16, 18, 24, 30, 35, 36, 43–45, 52, 69,
71, 74–77, 84–88, 90–92, 95–97, 99–102, 109, 117, 138, 139

MSE Mean Squared Error. 80, 86, 87, 91, 100, 108

MTL Multitask Learning. xi, xix, 11, 38–41, 54, 55, 69, 71, 75, 76, 82, 84, 89, 92

N

NS Nelson–Siegel model. 13, 37, 68

O

OECD Organisation for Economic Co-operation and Development. 108

P

PMI Purchasing Managers Index. 16, 145

PPO Proximal Policy Optimization. xi, 64, 65, 122, 142

Probit Probit Model. 24

R

R&D Research & Development. 28

RBF Radial Basis Functions. 35, 69

ReLU Rectified Linear Unit (activation function). 36, 126, 127

RF Random Forests. 21, 22, 69

RL Reinforcement Learning. iii, iv, ix, xi, 6, 7, 9–11, 55, 56, 58–67, 70, 111, 112, 114–123,
125, 127–132, 134, 135, 138, 140, 141, 151

RMSE Root Mean Squared Error. 80

RNN Recurrent Neural Network. 5, 6, 9, 24, 25, 30, 35, 42–47, 51–54, 69, 93, 94

S

S&P 500 Standard & Poor’s US Stock Market Index. 21, 22, 63, 64, 66, 94

SAC Soft Actor-Critic. xi, 64, 122, 142

SARSA State-Action-Reward-State-Action. xi, 122

SPG Stochastic Policy Gradient. 64

xxviii Acronyms

SVM Support Vector Machines. 20–25, 69

SVR Support Vector Regression. 17, 18

T

TD3 Twin Delayed DDPG. xi, 64, 122, 123, 142

TDQN Trading DQN. 63

TRPO Trust Region Policy Optimisation. 64

V

VIX Volatility Index (US). 16, 145

X

X-Rate Exchange Rate. 145

1

Chapter 1

Introduction

In this introductory chapter, we will present an overview of the motivations to conduct
this research, we detail the research objectives, hypotheses and contributions that were
made. We finalise with the structure of the thesis.

1.1 Motivation and challenges

In this section, we detail the motivations for embracing this research incorporating four
key themes that make the title of this thesis, namely: fixed income markets, machine
learning, forecasting and portfolio management. We outline the motivations and chal-
lenges of each area.

1.1.1 Fixed income markets

Fixed income is one of the segments of financial markets, where debt instruments are
traded among market participants. Bonds represent the most important debt instru-
ment and is the focus of this research, but this market is much wider and encompasses
an extensive number of assets such as treasury bills, commercial paper, certificate of
deposits, preferred stocks and structured products. In turn, bonds are financial assets
representing loans between an investor and a borrower, for a specified period of time
and interest rate, which can be traded in the fixed income marketplace.

In this type of instrument, investors have a “fixed” income in the sense that the ob-
ligations from the borrower are specified upfront in the conditions of the instrument,
specifically: the interest rate (which may be fixed, floating or variable); the timing of
payments; and the return of capital invested. In other words, the cash flow from this
financial instrument is fixed a priori. This contrasts with “variable” income associated

2 Chapter 1. Introduction

to equity instruments, where there is no obligation to pay a certain dividend or assure
any fixed or otherwise return to investors.

Importance of fixed income markets

The bond market, in particular the government sector, plays a fundamental role in the
overall functioning of the economy and is of paramount importance for financial mar-
kets. This is the case as an asset class by itself, with an overall size of USD 102.0 trillion,
as of 31-Dec-2016 (Bloomberg, 2017a), which compares to a global equity market of
USD 66.3 trillion. But it is also because the valuation methods of other asset classes of-
ten depend on bond yields as input information, especially for equities and corporate
bond yields, as well as in pricing derivatives. In addition, bonds being fixed income
securities form significant components of the portfolios held by pension funds and in-
surance companies (OECD, 2015a) whose investment interests tend to be long term.

Despite the importance of this asset class in financial markets, empirical work on bond
yields is significantly lower than the corresponding work on equity and index prices
(Booth et al., 2014a; Ballings et al., 2015; Fischer and Krauss, 2018; Kraus and Feuer-
riegel, 2017; Qin et al., 2017; Sermpinis et al., 2019) or foreign exchange rates (Gradojevic
and Yang, 2006; Choudhry et al., 2012; Sermpinis et al., 2013; Hassanniakalager et al.,
2021). When we move to more complex deep learning models, almost no scientific pub-
lications have been found covering yield forecasting with the long short-term memory
networks – LSTMs (for transparency, we found parallel and independent work conduc-
ted by Ying et al. (2019)).

To conclude, the societal value of this research is directly related to the importance of
bonds in pension funds and insurance portfolio holdings. However, several sectors
of society and industry could benefit directly from this research, in particular: central
banks, the asset and risk management industries, and academia.

Present market conditions

In recent years and especially after the last global financial crisis, financial markets have
been under a specially dangerous combination of three factors. First, on the financial
markets side, we have witnessed declining yields in fixed income markets for four
decades. As a result, yield levels are extremely low, even with incursions into negative
yields, which by its nature should tend to be limited both in magnitude and in time.
Consequently, there is, potentially, a very high market risk for investors in the case of
an inversion of the cycle.

1.1. Motivation and challenges 3

Second, since the last global financial crisis of 2008-2009 (the so-called Great Reces-
sion), central banks around the world are taking unprecedented actions. This com-
prises strong conventional and also unconventional monetary policy. Central banks
and the economy are clearly in uncharted territory and, as a result, it is no surprise that
conventional thinking and models have been challenged by the financial crisis. Several
studies are referred as indicating that while standard models are still leading to reas-
onable predictions, in some cases their forecasting ability has been diminished in the
recent past (Gogas et al., 2015; Morell, 2018).

Third, given the new market conditions, in particular the very low yield environment,
a generalised increase in risk exposure in investment portfolios has been observed as
a result of a tendency to “search for yield” from investors (Mello, 2015; Kräussl et al.,
2017). This has been observed both in pension funds’ portfolios (OECD, 2015a,b), and
in insurance companies (Becker and Ivashina, 2015), which represent the most import-
ant investors in fixed income markets. Insurance companies have capital requirements
dependent on the credit ratings of their investment, discouraging excessive risk taking.
However, conditional on ratings, the study showed that their portfolios are systemat-
ically biased towards bonds with higher yield and higher credit default swap (CDS)
spreads, and therefore to higher levels of risk. Overall, theses two sectors have to meet
returns promised when financial markets were yielding higher returns. The resulting
increased exposure to risk is a dangerous path that may lead to higher levels of insolv-
encies which is a global concern (OECD, 2015a).

In summary, fixed income markets are presently operating under very special circum-
stances in historical terms: higher market risk (potential inversion of cycle); higher
levels of risk in investment portfolios; higher levels of uncertainty and lower predic-
tion ability of conventional models and tools used for policy making and asset manage-
ment. Consequently, the study of this asset class gains special relevance in the present
moment for all those intervening in the financial industry and respective regulatory
bodies.

Focus of research and challenges

In our research we focus on forecasting, individual yields and the yield curve, and also
on bond portfolio management. Taking government bonds as an example, the yield
curve represents the annualised interest rates (or “yield”) that a particular government
has to pay to borrow funds from investors, as a function of the length of time in which
the borrowing occurs (or “time to maturity”). It is also known as the term structure of
interest rates. In fact, the yield curve is the centrepiece in bond markets and the overall
economy. It is used by borrowers, investors and central banks. In fact, central banks use
short-term rates’ fixing, among other instruments at their disposal, to fulfil its mission
of maintaining global monetary and financial stability.

4 Chapter 1. Introduction

Forecasting yields is a particularly challenging subject due to the complex and dynamic
nature of financial markets, and the number of factors that may influence the pricing of
securities. Both the market dynamics and participants reflect nonlinear behaviour and
evolve over time.

1.1.2 Machine learning

The developments in the last thirty years in the computer industry and the widespread
availability of powerful computers and networks have contributed to a parallel evol-
ution in sophisticated modelling techniques that have been introduced successfully in
several scientific fields. Among those techniques, machine learning has evolved as a
subfield of computer science and artificial intelligence and has been applied in biology,
medicine, engineering and other scientific domains. Its use is widespread nowadays
in web search engines, online shopping, social and professional networking, text and
speech recognition, and high profile projects such as self-driving cars and the under-
standing of the human genome. Machine learning tools are also readily available in free
and open-source software such as Python and R. More importantly, machine learning
models have become more efficient and powerful following far-reaching new develop-
ments in deep learning and the diverse number of architectures under this umbrella.
Hence, these models seem more adequate and capable of modelling fixed income mar-
kets now than in the past and for this reason they are the main focus of this research.

Additionally, one has to take into account the interest from the industry. It is evident
that machine learning has been used in finance by companies such as Bloomberg, the
financial software, data and media company (Bloomberg, 2017b) and other financial
institutions such as banks, asset management companies and hedge funds (Kolanovic
and Krishnamachari, 2017; Petropoulos et al., 2022). In this industry, however, systems
and applications tend to be proprietary and do not result in publications available to the
scientific community. The development of such systems are time-consuming, resources
and financially demanding and can be an important source of revenue for the company.
Therefore, they do not want to make them available to third parties in this competitive
world.

The range of applications of machine learning to finance is wide and include (Hambly
et al., 2021): optimal execution, portfolio optimisation, option pricing and hedging,
market making, robo-advising, and smart order routing. Regarding one of those ap-
plications, the introduction of robo-advisors (platforms using automated algorithms
for financial advice to investors), has been considered one of the important contribu-
tions of the fourth industrial revolution (Tao et al., 2021). The authors found that on
average, robo-advisors demonstrate superior risk-adjusted performance in comparison
to conventional mutual funds.

1.1. Motivation and challenges 5

In sharp contrast to equities and foreign exchange (forex) rates, it is clear that fixed
income markets are in the early stages of both quantitative investing and electronic
market-making (Wigglesworth and Fletcher, 2019; Gutscher et al., 2019). And the fast
developments on both sides may result in what some characterise as a bond market
revolution (Wigglesworth and Fletcher, 2021).

Moreover, there are several examples of very successful hedge funds working with
black-box type of systems. One of the most famous that could be mentioned for its long
standing success is Medallion, the flagship fund managed by Renaissance Technolo-
gies, founded in 1982 by American mathematician James Harris Simons. The company
was an early adopter of systematic, quantitative trading strategies in futures, curren-
cies and equities. At the core of Medallion was a proprietary high frequency futures
trading system developed in the late 1980s (FRM, 2002). In the early 2000s, before clos-
ing the fund to Renaissance employees and their families only, the fund was charging
astonishing fixed management fees of 5% plus a performance fee of 45% on new profits.
Despite this high level of fees, the fund went on to become one of the most successful
in history (Burton, 2016; Roux and Burton, 2017).

1.1.3 Forecasting

Time series forecasting has attracted much interest in the literature on empirical finance.
Financial time series arise from a complex system in which the interactions between the
underlying economic conditions, flow of information (Atkins et al., 2018) and investor
behaviour determine the prices of various financial instruments. Such complex set-
tings lead to nonlinear relationships between covariates and non-stationary variations
of such prices over time. Hence several tools of statistical signal analysis and time series
modelling have been developed around the challenging forecasting problems.

Artificial neural networks (ANNs) are a particular form of nonlinear function approx-
imation methods that have been applied to financial time series analysis, among a wide
range of other applications. While there is some motivation behind neural networks
that arise from a biological analogy, the capability to model nonlinear relationships,
cast in a probabilistic framework along with rich optimisation algorithms, make this
class of models appealing tools. The most popular ANN is the multilayer perceptron
(MLP), also known as a feed forward network, which implements a static mapping
between input covariates and a target to predict. An alternate architecture with more
favourable capabilities for modelling in dynamic environments is the recurrent neural
network (RNN) which includes feedback of its internal states over time, i.e. among
its inputs we include time delayed versions of its internal states. Such architectures
have been used with great success in various applications in finance (Hutchinson et al.,
1994; Niranjan, 1996). However, there are situations in which the use of a basic RNN is
problematic, because its forgetting behaviour is exponential in time. This is when one

6 Chapter 1. Introduction

needs to strike a differential balance on how far back in time one needs to remember
in modelling and forecasting. This long-short memory compromise led to the LSTM
architecture, currently very popular in sequence modelling tasks such as signal pro-
cessing and language modelling, and forms the focus of attention in our forecasting
study.

Despite successful empirical performance shown in a range of tasks, ANN or RNN
models are often criticized for being black-box models with no explanatory power.
After all, the purpose of modelling is not merely to make predictions, but to be able
to make some sensible statement about the underlying physical system from which
data being modelled arose. For financial data, decoupling the effects of various forces
that determine traded prices would be that ultimate explanation. Our work is a step in
that direction. Overall, the extraction of information through internal signals is a chal-
lenging task, without obvious positive results in the literature (Giles et al., 2001; Persio
and Honchar, 2017).

1.1.4 Portfolio Management

Dynamic portfolio management is a sequential-decision making process in which an in-
vestor or portfolio manager allocates the available capital to invest, over time, among a
universe of possible financial assets. This allocation is optimised to meet the investor’s
objective for a specified period. Transitioning to RL, this involves the agent acting upon
the knowledge of the environment, specifying the allocation that optimises a specific
objective function, over time. Portfolio optimisation is one of the most studied prob-
lems in finance (Haugh and Lo, 2001), due to the challenges involved which are truly
motivating for researchers, and because it is a fundamental activity within asset man-
agement.

Some of the first problems in portfolio management with RL is that the environment is
only partially observed, it is non-stationary and regime dependent, and is influenced
by a multiplicity of factors. For this reason, feeding the agent with the best possible
representation of the environment is a difficult task. Being a multi-asset type of prob-
lem, it is more demanding computationally than, for example, trading of an individual
asset. In fact, with one asset it is easier to discretise the actions of the agent, although
this is a limiting solution when compared to the continuous alternative (we will discuss
this in more detail in Section 5.3.1.1). In addition, there are real-world constraints that
add complexity to the problem. For example, the consideration of transaction costs,
investor taxes, allocation limits and investor preferences.

On the agent side, different types of algorithms have been developed recently (Mnih
et al., 2015; Lillicrap et al., 2015). Although they have achieved in some cases outstand-
ing success in applications such as games, their use in portfolio management has been

1.2. Objectives 7

less clear. In fact, some of the algorithms suffer from known problems of instability and
divergence (Sutton and Barto (2020), and Section 2.7.5 for more detail). Our work aims
to contribute to a better understanding of these systems.

Overall, this is the most challenging topic of this thesis, an area that has seen important
recent developments due to parallel breakthroughs in deep learning, which have been
subsequently incorporated in the latest RL algorithms. In other RL tasks, where the
environment follows defined rules, e.g. in games, or are governed by physics laws,
e.g. CartPole or MountainCar, the chances of success are higher. Despite the above, RL
remains one of the most promising research areas for financial markets.

1.2 Objectives

While considerable attention is devoted to the use and development of techniques es-
pecially for equity markets, and also for forex markets, there is a significant gap in both
the academic literature and the finance industry when it comes to the application of
machine learning in fixed income markets. The aim of this research is to fill this gap.

The overall objective of this research is to demonstrate that machine learning can rep-
resent an edge in present financial markets and contribute to the development of appro-
priate models/methodologies that could be used in the industry and by policy makers.

Given the importance of the yield curve to this market and to the economy, this re-
search will focus on ways to improve the body of knowledge in this particular topic.
Specifically, the objectives of this thesis are:

1. To consider a wide range of macroeconomic and financial time series and determine
the most important explanatory variables through feature selection.

2. To assess a range of existing machine learning techniques, including standard and
deep learning models, and evaluate their adequacy for fixed income forecasting, in
particular for yield forecasting.

3. To determine the impact of additional financial markets and macroeconomic inform-
ation on forecasting results.

4. To evaluate the benefits of multitask learning when compared to the transformation
of the problem into independent single-output problems (single task learning).

5. To develop and test methodologies that could result in improved forecasting, such
as combination of models, or adaptation to a hybrid type of model with inputs from
other models.

8 Chapter 1. Introduction

6. To develop and test an autonomous system, using online learning, capable of per-
forming fixed income portfolio management. In particular, the system should be
able to allocate capital among a selected number of fixed income assets.

1.3 Hypotheses

The hypotheses to be tested are:

1. The use of machine learning to forecast the yield curve, combined with appropriate
feature selection based on both macroeconomic and market variables, leads to better
forecasting results when compared to the baseline linear regression model.

2. The use of multitask learning to forecast the yield curve, help hidden layers to learn
better models and improve forecasting, when compared to single task learning.

3. It is possible to improve forecasting performance of machine learning models by
combination of models, or adaptation to a hybrid type of model.

4. It is possible to build autonomous systems capable of performing fixed income port-
folio management tasks, using online learning.

1.4 Contributions

The main innovative contribution of this research has been the extension of existing
machine learning models to the fixed income asset class that has not been comprehens-
ively and extensively covered using these techniques, as it is the case with other finan-
cial asset classes. Specifically, the contributions to current state of the art are described
below, covering Objectives 1–6.

In our work in Chapter 3, we conduct the first comprehensive study on yield curve fore-
casting using MLPs and multitask learning, showing that MLPs can be used to forecast
the yield curve (Objectives 2 and 4). We introduce a methodology which includes the
following characteristics. We use a rigorous feature selection process, instead of relying
on a pre-selection of individual features. This is a vital part of the methodology given
that the most relevant features depend on both target yield to predict and forecasting
horizon. In addition, we use a moving window of training data to incorporate the most
recent information as it becomes available in financial markets, and the retraining of
models at every time step for enhanced results. This methodology makes models more
flexible to changing market conditions. Finally, our dynamic cross-validation technique
presents a number of advantages and innovative aspects in comparison to some of the

1.4. Contributions 9

most popular and widely used techniques. First, it introduces diversity in the train-
ing dataset through the bootstrapped samples. Second, it ensures a fair comparison of
models, by forecasting yields at the same dates. Third, it guarantees forward-looking
forecasting (using only past data to predict future data, unknown to the model). Fourth,
it avoids any type of overlapping between training data and data used for calculating
the forecasting errors, by using testing data to determine the metrics. Fifth and last,
it enables a direct calculation of out-of-sample forecasting errors (Objectives 1 and 3).
We expand existing methodologies by including synthetic data generated by the linear
regression model in our neural network models, and show that they outperform mod-
els where this data is not included. This is relevant for the possibility of using hybrid
models incorporating data generated by industry-established models (Objective 5).

Using the application of LSTM neural networks to bond yield prediction (Chapter 4),
our work makes two important contributions. First, from the point of view of finance,
our study is among the first to explore RNNs in bond yield forecasting, and, by doing
a comparison with MLPs with various inputs and prediction horizons on the same
tasks, we are able to identify regions in which the advantages of recurrent modelling is
helpful (Objective 2). Second, from the neural network point of view, we contribute to
a particular analysis of explanations of hidden unit representations, by extracting the
internal signals and explaining them by regressing on covariates of putative relevance.
For this purpose, we develop a new methodology which we refer to as LSTM-LagLasso,
which is based on both Lasso (Tibshirani, 1996) and LagLasso (Mahler, 2009). Applied
to our setting, this sparsity-inducing regression approach is able to identify economic
variables that are most relevant for the individual internal signals of the LSTM. Such
“peeping into” what the model learns is bound to have broader use in nonlinear and
non-stationary signal processing than the particular financial application in which we
develop it (Objectives 1 and 2).

Finally, in the RL work (Chapter 5) we develop an autonomous RL system using an
environment created specifically for fixed income portfolio management (Objective 6).
The methodology had to adopt a number of modifications in relation to studies in the
literature. This included the scaling of rewards which was identified in the literat-
ure but not given proper attention in subsequent research. Our work is among a re-
duced number of studies testing the state-of-the-art deep deterministic policy gradient
(DDPG) algorithm in portfolio management. With our work, we confirm the potential
of RL for fixed income portfolio management. In fact, we show that even when the al-
gorithm is not stable, it is possible to select agents during the learning process, capable
of outperforming both static buy and hold strategy and the best asset in the portfolio.

10 Chapter 1. Introduction

1.5 Structure of report

This thesis is structured in six chapters, the first being the present introduction. In
Chapter 2, the relevant literature review is presented, with special focus on studies us-
ing machine learning both for financial applications in general and specifically for fixed
income markets. Then, the theory behind the selected machine learning models used in
our research and the multitask learning methodologies are described. In Chapter 3, the
empirical research carried out with MLPs and multitask learning for yield curve fore-
casting is presented. It includes the collection of macroeconomic and market variables
data, with full description of the dataset used and pre-modelling operations, together
with the results from the linear regression and MLP models (in single task and mul-
titask learning mode). In Chapter 4, we present the study conducted with the LSTM
networks, which has three main components: bond yield forecasting using LSTMs and
comparison to the previous work with MLPs (Chapter 3); extraction of internal signals
within the LSTM cell; and explanation of the states’ signals using exogenous inform-
ation. Finally, in Chapter 5, we present the work carried out on RL. It comprises the
mathematical formulation of the portfolio management problem, the data used, all as-
pects of the methodology developed bearing in mind our target asset class (bonds),
together with the presentation and discussion of results. Finally, in Chapter 6, a sum-
mary of the main conclusions is outlined, as well as potential themes for future work.

11

Chapter 2

Literature Review

The literature review will cover a number of topics. First, classical financial models for
time series and yield curve models are briefly presented (Section 2.1), with relevance
for Objectives 1 and 5 (Section 1.2). Second, a review of the literature using machine
learning specifically for fixed income markets is carried out (Section 2.2.1). Given that
this literature is limited, the review was then extended to adjacent areas in financial
markets (Sections 2.2.2 to 2.2.5), with this part of the literature review organised es-
sentially by asset class. This review is particularly important for Objectives 1–3. For
clarity, at the end of each section a brief link between the studies covered and the main
objectives of our research is outlined. Third, some methodologies for combination of
models are very briefly presented in Section 2.3. This was not a specific topic of this
review, but a result of the broader literature review. This subject is presented due to
its potential interest for Objectives 2, 5 and 6. Fourth, the standard and deep learning
models used in this research and the multitask learning (MTL) methodology will be
covered (Sections 2.4, 2.5 and 2.6). These three topics are linked to Objectives 2 and 4.
Finally, in Section 2.7 we introduce reinforcement learning (RL) to address Objective 6.
We describe the concept and components of an RL system, contrasting with supervised
learning and traditional industry methods for portfolio management.

2.1 Classical financial modelling

In this section, classical financial models are presented, including all models that may
still be considered within statistics, leaving those on the machine learning field to be
covered separately in this chapter. Although these models are clearly not the main
focus of our research, they are important for background, because they are still relevant
and used in the industry, and some of those models use additional macroeconomic
variables that are relevant information for our research.

12 Chapter 2. Literature Review

2.1.1 Time series models

Time series modelling has been a well established subject for many years and there
are many comprehensive textbooks available (Hamilton, 1994; Enders, 2014; Box et al.,
2015). Since these models will not be the principal focus of our research a very brief
listing of the main methods available is presented below.

The simplest model for stationary time series is the autoregressive (AR) model, where
the predicted values correspond to weighted combinations of past values plus a noise
component. In other words, the model regresses on itself, on the same variable, al-
though at different time steps.

Also for stationary time series, there is the moving average (MA) model in which the
future value depends on the error values from prior periods plus a noise component.
This model combines the moving average concept and the random walk, in which the
best prediction is the last available value plus a random error term. Nonetheless, this
model is not commonly used.

The combining of these two processes (AR and MA), led to one of the most popu-
lar models for time series analysis and forecasting, the autoregressive moving average
(ARMA) model, which uses pure statistical methods for modelling and forecasting fu-
ture values (Box and Jenkins, 1968). In this case, the available data for the model are also
current and past observations of the variable (univariate model). The model assumes
persistence or autocorrelation in the movement of the time series, with the autocorrel-
ation referring to the correlation between current and lagged value. In financial time
series it is a positive autocorrelation, i.e. when prices (assuming for example a prices
series) have been moving up, they will tend to continue moving up and vice-versa.
Further, the model comprises an AR component and a MA component, reason why it
is usually referred to as ARMA(p, q) model, where p is the order of the AR part and q
is the order of the MA part. The order refers to the number of prior values used for the
autoregression and for the moving average.

Additionally, an autoregressive integrated moving average (ARIMA) model is a gener-
alization of an ARMA model and it may be applied in cases where data show evidence
of homogeneous non-stationarity (Box and Jenkins, 1968). In fact, the first stage with
this model is to transform the time series by differencing in relation to previous val-
ues, until it becomes stationary, thus removing trend and seasonal components. Non-
seasonal ARIMA models are generally referred to as ARIMA(p, d, q) model, where p
is the order of the AR component, d is the degree of differencing needed to achieve
stationarity, and q is the order of the moving average component. In practice, when a
time series is stationary the ARIMA model becomes ARMA model.

When heteroskedasticity is present, the variance of the errors is not constant in time, a
necessary assumption for linear regression. This is common in financial time series. In

2.1. Classical financial modelling 13

these cases, the variance of the error terms is modelled using the autoregressive with
conditional heteroskedasticity (ARCH) model (Engle, 1982) or the generalised ARCH
(GARCH) model (Bollerslev, 1986). These models are very useful to analyse and fore-
cast volatility.

More complex econometric modelling and forecasting seek to introduce additional in-
dependent variables to the problem that may explain the dependent variable. Those
variables should be a result of the overall understanding of economic theory and factors
that may influence the result of the dependent variable. In other words, there should be
economic reasoning behind the selection of model structure and independent variables
to be included.

2.1.2 Yield curve models

In the previous section, several models for generic time series were covered. In this sec-
tion, models for the complete yield curve are outlined, for which a different approach is
needed. There are two main groups of models. The first, “yields-only models” use only
yield data to estimate the complete yield curve. Two of the most widely used models
within this category are polynomial functions and Nelson–Siegel (NS) functions (Nel-
son and Siegel, 1987). The second group, “yields-macro models” predict specified mac-
roeconomic variables using the yield curve or vice-versa, i.e. predict the shape of the
yield curve using macroeconomic variables.

Most of these yields-macro models assume that the influence happens only in one-
direction, i.e. macroeconomic variables affecting the yield curve or vice-versa, but
without feedback effects. However, other models have been developed to study the
possible feedback effects (Diebold and Li, 2006; Diebold et al., 2006; Diebold and Rude-
busch, 2013). Departing from the Nelson and Siegel curve, they developed a yield
curve model incorporating both intrinsic yield factors (level, slope, and curvature) and
macroeconomic factors (manufacturing capacity utilization, change of consumer price
index (CPI) over the past 12 months or annual price inflation and federal funds rate).
This model is generally known as the Dynamic Nelson–Siegel model (DNS).

On these two types of model, the time series estimates of level, slope, and curvature
factors obtained with the yields-macro model were found to be very similar to the ones
obtained with the yields-only model, fitting well US Treasuries data over the period
January 1972 to December 2000 (Diebold et al., 2006). Regarding the dynamic interac-
tions between macroeconomics and the yield curve, the authors found strong evidence
of macroeconomic effects on the future yield curve, but, on the other hand, weaker
evidence of yield curve effects on future macroeconomic developments.

Other studies extended the geographical application of this yields-macro model to es-
timate government bond yield curves of the US, Japan and Germany (Tam and Yu,

14 Chapter 2. Literature Review

2008). The results confirm the dynamic interaction between yield curve latent factors
and the macroeconomic variables for two of the three bond markets analysed, US and
Germany. For the Japanese bond markets the insignificant interaction between yield
curve factors and macro-variables is justified by the authors with the ineffectiveness of
monetary policy in a period of prolonged depression.

An alternative for yield curve modelling can be found in an emerging area in statist-
ics called functional data analysis. This is a nonparametric statistical technique deal-
ing with infinite-dimensional data as in the case of functions, curves, surfaces and im-
ages. This type of models has been applied to forecast the US yield curve, where the
yield curve is considered the functional variable (curve) that links maturities to yields
(Caldeira and Torrent, 2017). The dataset used comprised end-of-month yield curves
for the US zero-coupon bond. The benchmarks for comparison are well-known para-
metric estimators, most of them already covered in the present and previous sections
(Sections 2.1.1 and 2.1.2): linear models (random walk, autoregressive models, vec-
tor autoregressions) and dynamic factor models (DNS model). The findings of this
research produced mixed results, not demonstrating a systematic superiority of func-
tional data analysis, although that was the case for forecasting short-maturity interest
rates. Besides, the study did not include any macro or financial data apart from the
yield curve itself, which could also be a limitation.

2.1.3 Limitations of classical financial modelling

Financial modelling and forecasting of financial assets is a non-trivial exercise consid-
ering the markets’ complexity, its dynamics, the number of factors affecting valuations
with varying degrees of importance over time, and the behaviour of market parti-
cipants. For this purpose, there is some evidence in the literature that classical models
considering exclusively past values of the variable to predict have limitations. To start
with, autocorrelation is the basic assumption in some of the previously presented mod-
els, in particular the AR, ARMA and ARIMA models. However, in a comprehensive
literature review of the characterisation of financial time series (Sewell, 2011), the au-
thor clearly concludes that the autocorrelation of price changes, or returns, is largely
insignificant, presenting results based on twenty financial time series.

Furthermore, excluding other potentially strong explanatory variables that could also
be considered into a model may represent a limitation of the model by itself. This is
also emphasised by the fact that several studies in the literature refer that additional
domain-specific features could improve forecasting ability (Dunis and Morrison, 2007;
Mettenheim and Breitner, 2010, 2011). In fact, recent studies also reinforce that in the
literature approaching the yield curve from an empirical perspective. One of the pre-
valent lines of research latterly has been through data-driven approaches using expert
systems and knowledge-discovery techniques. This tendency is motivated by the need

2.2. Machine learning models in financial applications 15

to address the limitations of previous econometric models (Diaz et al., 2016). Overall,
machine learning models make fewer assumptions about the mapping function, being
more flexible and capable of learning the complex nonlinear relationships necessary to
model financial markets.

2.2 Machine learning models in financial applications

In this section, a review of the literature using machine learning for financial markets is
presented, with particular relevance for Objectives 1–3 and 5 (Section 1.2) covering the
type of features, their impact in model predictions, type of models and methodologies
to improve forecasting. The section starts by reporting on studies focusing specifically
on fixed income markets (Section 2.2.1). Then, the review is extended to other areas of
research in financial markets, namely: forex, equities, options and other applications
that could not fit directly into the previous asset classes (Sections 2.2.2 to 2.2.5). Finally,
we briefly present the topics of asset pricing with factor models and double machine
learning in separate sections given their importance and weight in the literature as
applications of machine learning in finance.

In these areas adjacent to fixed income only a small number of studies is selected from
each asset class. This is because first, these classes are not the main focus of our re-
search, second, different assets classes have their own specific issues and are affected by
different factors, and third, they have their own pricing methodologies not transferable
to other asset classes. As a result, particular attention is given to the following aspects:
methodologies and models that have demonstrated promising results in previous re-
search works; use of ensembles; type of variables and general problems encountered in
previous research, such as overfitting of models; and to areas that could be exploited in
our research.

2.2.1 Fixed income

Studies applied specifically to fixed income markets are much less common in the lit-
erature. In this market, we can model individual assets, such as bonds, bond indices,
bond funds or bond futures. In this case the datasets for this purpose are time series
and this is a single target regression problem. However, the main focus of our research
is the yield curve. This is a more complex issue because we have a modelling target
which is a curve and not a single value. In fact, this is not the one-dimension type
of problem we had before, but a two-dimensional one: time and maturity. With in-
terest rates data in a two-dimensional space, modelling and forecasting is additionally
challenging. One of the objectives of this literature review is to find a solution for this.

16 Chapter 2. Literature Review

Along this line, a study was conducted (Kanevski et al., 2008; Kanevski and Timonin,
2010) using spacial statistics, to map the yield curves into a two-dimensional space
(maturity and time). Then via interpolation, using geostatistical or machine learning
models, the authors reconstruct full yield curves from a specified number of points
considered in the data as inputs. In this case, the points of the curve selected included
13 maturities: Libor rates - 1 week, 1, 2, 3, 6 and 9 months; and swap rates - 1, 2, 3, 4,
5, 7 and 10 years. At this stage, after reconstruction of the yield curves, a full repres-
entation of the yield “surface” against maturity and time is available. Additionally, by
using extrapolation techniques this methodology permits forecasting of the yield curve
into the future. Promising results were obtained with this methodology using ANNs,
although additional simulations are necessary under different market conditions and
time horizons, to validate this methodology. In this study, two areas for further im-
provement were identified, which are relevant to our research. First, the development
and retraining of models performed within a flexible moving window. The advantage
is that this moving window will take into account the evolution of the market (different
market conditions). Second, the assessment of hybrid approaches combining machine
learning and geostatistical models that have been applied successfully with spatial en-
vironmental data.

A different approach is needed when modelling individual assets, since we do not have
the additional maturity dimension. An example of this type of modelling was carried
out to evaluate the performance of “artificial intelligence” and classical algorithms for
forecasting one individual asset, in this case the monthly yield of the US 10-year Treas-
ury bond (Castellani and Santos, 2006). The “artificial intelligence” approaches con-
sidered were: manually built fuzzy logic model, machine learned fuzzy logic model, a
self-organising map model and neural networks (an MLP). For comparison purposes
two models were taken into account: the statistical ARIMA model and an econometric
error correction model. The data used was a complete series of monthly US 10-year
Treasury bond yields ranging from January-1986 to December-2004 (dependent vari-
able) and four economic indicators (independent variables), namely: purchasing man-
agers index (PMI), CPI, Libor and the volatility index (VIX). The results of this study
were not very encouraging. First, the best results were obtained by the ARIMA model,
the econometric model and the neural networks, with the econometric model slightly
better than the other two models. Second, in terms of the prediction accuracy the best
models are only marginally better than a basic one-step lag predictor, which predicts
the yield of the US 10-year Treasury bond from the figure of the previous month. The
study concludes pointing out the difficulty in building reliable predictors for financial
markets in general. However, it also identifies the sparseness of the data as a possible
problem, due to the fact that they used a monthly series of the 10-year US Treasuries,
with a total of only 216 data points available for modelling. Finally, and with potential
relevance for Objective 5 of our research, on other type of models, Castellani and Santos
(2006) suggest a combination of statistical or machine learning models with economic

2.2. Machine learning models in financial applications 17

theory and expert knowledge of the financial markets to improve forecasting results;
a second alternative suggested is the combination of different predictors into a final
forecast.

With different type of results when compared to the previous study, another single-
asset research was conducted by Dunis and Morrison (2007). By using state space
modelling with a Kalman filter and neural network regression, they aimed to fore-
cast the 10-year yield government bond of three countries: United Kingdom, United
States and Germany. The performance of these models was compared with more tra-
ditional methods to serve as benchmarks, specifically: moving average convergence
divergence (MACD), ARMA and a logistic binary estimation model (Logit). There are
two interesting aspects in this study. First, they included a wide range of additional fin-
ancial variables from main European countries, the United States and Japan, to work as
features: bond yields, short-term interest rates, index stock prices, exchange rates and
commodities. Second, the performance evaluation of the models was based on meas-
ures of accuracy, and also on results from a simulated trading strategy, with proper
consideration of trading costs. For the period considered in this research, April 2001 to
June 2003, the neural network regression showed the best results and a more consist-
ent outperformance of the benchmarks in both performance measures. For the Kalman
filter model the results were mixed, with outperformance using accuracy but not in the
trading strategy performance. The authors concluded that neural network regression
models represent a promising alternative to more traditional techniques currently used
in the industry.

From the studies covering directly fixed income, it was not possible to find a direct solu-
tion for modelling the yield curve using machine learning. A notable exception is the
work carried out by Sambasivan and Das (2017) proposing a dynamic Gaussian pro-
cess for modelling the yield curve. In this work, the authors compare the results of this
machine learning model with multivariate time series forecasting (vector autoregress-
ive model) and the DNS model. The results show that multivariate time series method
performed best for yields with maturities up to 1 year, while the dynamic Gaussian
process model was superior for the longer maturities (2 to 30 years). These results will
be mentioned again in Section 3.3.2.4 for comparison purposes.

Other publications cover different targets within fixed income, such as corporate bonds
or bond spreads. Although they fall outside the objectives of our study of forecasting
government yields and government yield curves, those studies represent an important
part of the research using machine learning in fixed income. In this vein, Fernandes
et al. (2019) conduct a study to forecast daily and weekly long-term government bond
spreads from five European countries, using support vector regression (SVR) models.
For their parameterisation process, the authors explore heuristic and metaheuristic al-
gorithms. Apart from that, they use several linear and nonlinear models to create a
large pool of individual predictors, which are then subject to dimensionality reduction

18 Chapter 2. Literature Review

techniques (in this case, principal component analysis), to reduce the number of inputs.
The resulting best predictors are then combined with the aim of achieving superior out-
of-sample statistical performance. Overall, the results indicate that this technique pro-
duces strong performance for this type of forecasting problem, and the metaheuristic
calibration of the SVR parameters lead to better forecasting performance. In addition,
the combination of predictors from individual models improves accuracy. This aspect
will be further covered in Section 2.3.

To summarize, the details described in these studies are important for Objectives 1–3
and 5 of our research (Section 1.2). In fact, the studies were particularly fertile regard-
ing ideas for the latter objective and for potentially better models: from the use of
ensembles to different types of hybrid models (Castellani and Santos, 2006; Kanevski
et al., 2008; Kanevski and Timonin, 2010), with inclusion of broad information from
several sources (Dunis and Morrison, 2007). Among those they should incorporate
macroeconomic, financial and, whenever possible, practitioner type of information. Re-
garding Objective 2, mixed information and results were seen (Castellani and Santos,
2006; Dunis and Morrison, 2007) while using the same type of models, in this particular
case, neural networks (MLP). From the study with negative prediction results, another
important conclusion is that insufficient amounts of data may lead to poor performance
of models and to minimum differentiation among them.

Overall, the studies covered did not provide a solution for modelling the yield curve
using machine learning, with the exception of the work mentioned above (Sambasivan
and Das, 2017). Notwithstanding the potential of spatial / geostatistical models and
possibly of hybrid approaches combining them with machine learning models, they
base the whole mapping and forecasting processes in intra and extrapolation using his-
torical yield curve data only. For this reason, we perceive machine learning models
with greater potential and flexibility. Furthermore, our research has the objective of
going beyond the use of historical data from the variable to predict. In particular, Ob-
jectives 1 and 3 have in mind the assessment of a wide range of potential explanatory
variables from a variety of fields. This is a gap in terms of academic research and we
will proceed the literature review in adjacent asset classes pursuing a possible solution
for the yield curve modelling.

2.2.2 Foreign exchange

In a recent study (Fletcher, 2012; Fletcher and Shawe-Taylor, 2013), machine learning
techniques incorporating exogenous financial data from forex were investigated. This
work concludes that machine learning models can be theoretically used to make ef-
fective predictions in currencies. In particular, they can be used for forecasting the
direction of the movement of the currency pair euro / US dollar (EUR-USD) exchange
rate, for periods of 5 to 200 seconds into the future, with accuracies ranging from 90%

2.2. Machine learning models in financial applications 19

to 53%, respectively. The research also demonstrated the possibility of forecasting turn-
ing points in the prices of a basket of currencies. In addition, the incorporation of do-
main knowledge from forex markets, for example market microstructure, to improve
predictive ability was also covered. Market microstructure focuses on the real trading
process, analysing how the different mechanisms affect prices, volume, trading costs
and trading behaviour. The following two main conclusions were reached. First, the
predictive accuracy improved significantly when models incorporated features based
on commonly used trading rules. And second, the author points out that given the
results obtained with very simple features, a better performance could be achieved by
increasing the number of features translating common trading concepts.

Choudhry et al. (2012) also conducted a study to forecast forex rates using ANNs, based
on high frequency market microstructure variables. The high frequency forex data on
global inter-dealer electronic transactions covered three main exchange rates: JPY-USD
(yen-US dollar), DEM-USD (German mark-US dollar) and USD-EUR (US dollar-euro).
On the one hand, the dependent variable modelled was return, defined as the differ-
ence between consecutive log prices. On the other hand, the independent market mi-
crostructure variables considered were: previous return values; the last available value
of high, low and average price; last available order flow and trading volume (here
cumulative values are used, with positive or negative signs for buying or selling, re-
spectively); and finally, last available bid and ask prices. The authors concluded that
ANNs can be used to forecast exchange rates and lead to profitable strategies, with
proper consideration of transaction costs. In fact, the results show a very significant
outperformance versus the buy and hold benchmark in all cases. Further, apart from
transaction prices, the most important microstructure variables identified were the im-
mediately preceding bid and ask prices, which were shown to contain separate and
additional information for the model.

Other studies have been carried out with different nuances using ANNs and market
microstructure variables (Gradojevic and Yang, 2006; Huang et al., 2007). These are not
detailed here, since this is not the main focus of our research.

To sum up, the aspects described in these studies are important for Objectives 1–3 of our
research (Section 1.2). Within machine learning models neural networks have provided
good results in forex markets and could be of interest also for fixed income. Although
the data used in forex markets is in general high frequency data, it may be possible to
use data with lower frequencies envisaged for our research, namely daily data. Besides,
the inclusion of additional domain-specific features, in this case market microstructure
variables, seem to be positive for performance. Furthermore, there are two important
aspects implicit in the objectives of our research that are not answered by these studies.
First, these models do not use additional macroeconomic variables, one of the object-
ives of our research. This is due to the fact that, for forex forecasting high frequency
data is generally used in order to enable intraday predictions. In turn, macroeconomic

20 Chapter 2. Literature Review

data is released at a completely different and much lower frequency, not compatible
with high frequency models. Second, this type of model does not cover multitarget
modelling, necessary for the main focus of our research, the yield curve.

2.2.3 Equities

Studies covering equities are the most common applications of machine learning in
financial markets. In this section only a small number of those studies will be briefly
presented, starting with a couple of published state-of-the-art reviews in this area, for
their broad scope. As mentioned before, at the end of the section, the link to our re-
search objectives will be emphasised.

In the first review, Agrawal et al. (2013) present state-of-the-art techniques for stock pre-
diction. It starts with a brief incursion into basic ratios for fundamental analysis and
also technical analysis indicators. Then, and more relevant to our research, it continues
with a summary from a collection of papers using a variety of quantitative methods
for stock prediction: multinomial logistic regression, time series and chaotic time series
forecasting, neural networks, including neural and neuro-fuzzy models, support vector
machine (SVM) and a hybrid machine learning system based on both genetic algorithm
and SVMs. The authors then conclude that “On the basis of published and available literat-
ure, it can be safely concluded that the existing techniques are not suitable for prediction of stock
market trends as well as price of different stocks”. Nevertheless, they point out two meth-
ods for potentially improving results: the inclusion of political and economic factors
that affect the stock markets, as input variables, in addition to the technical indicators
most frequently used; the incorporation of market-specific domain knowledge into the
system.

The second review covers the application of ANNs again in the field of stock market
prediction (Vui et al., 2013). The study shows encouraging results with the use of this
technique and points out two themes researchers are embracing in a quest to improve
the accuracy of stock market predictions: the use of hybrid methods and the incor-
poration of additional external factors. These two reviews agree on the importance of
additional information for better models.

Moving onto individual research studies, Arrieta-Ibarra and Lobato (2015) pointed out
the inconclusiveness of most of the results presented in the literature, because they are
mostly concerned with the comparison between different techniques without present-
ing statistical inference to assess the improvement in predictive ability. These research-
ers conducted a study using several machine learning models to forecast stock market
daily returns and squared returns, considering three forecasting horizons: 1, 5 and 20
days. The data used was comprised of: series of past values of daily returns of the

2.2. Machine learning models in financial applications 21

S&P 500 index and the combination of those series plus additional economic/finan-
cial variables, specifically: interest rates (returns using the US 3-month treasury bill);
commodities prices (gold price in dollar per troy ounce, London Bullion Market and
crude oil prices in dollar per barrel, West Texas Intermediate); and exchange rates (yen,
pound and Swiss franc against the dollar). The machine learning models tested were:
regression trees, conditional regression trees, random forests (RF), neural networks and
SVMs. In order to rank the out-of-sample forecasting performance of these methods
and test their predictive ability, they used as benchmark the GARCH(1, 1). The res-
ults were not fully conclusive, but there are some positive indications for our research.
First, for predicting returns, the results did not show any evidence that machine learn-
ing improves the predictive ability of the simple historical sample mean. Second, for
predicting squared returns, neural networks and SVMs showed real potential for im-
proving forecasting ability, with the latter improving on the results of the benchmark
by about 10%. To conclude, this study encountered some problems that are worth men-
tioning, due to its relevance to our research: tendency to overfit in all machine learning
procedures tested; necessity to assess cautiously the number of predictors to use, since
the use of too many variables lead to overfitting and to larger standard errors; while
the study was conducted with standard computing packages (R packages) using its
default settings, they concluded that some improvements are still necessary before a
strong case for the use of these techniques can be made.

Since forecasting is frequently connected to the trading activity that could directly be-
nefit from superior sources of information, some research studies aim to integrate the
forecasting models within a trading platform. In one of those studies, an automated
trading system based on ensembles of random forests was developed (Booth et al.,
2014b, 2015; Booth, 2016), predicting price returns of equities from the German stock
market index (DAX) and integrating those forecasts in a three-layer trading system
(random forest predictions, expert weighting and risk management). The study ana-
lysed specifically the possibility of taking advantage of three seasonality events de-
scribed in the literature, namely: downward bias over weekends; upward biases over
exchange holidays and at the turn-of-the-month. Some results of this research are most
relevant for our research, in particular the methodologies adopted. First, to capture
the state of the market, the system used a range of features: open, high, low and close
values of the day before the seasonality events; a number of technical analysis indicat-
ors; the DAX index closing price; and a proprietary risk-based indicator based on the
concept of value-at-risk. Features were then ranked and only the most important used.
Second, all continuous input data was taken as logs and normalised using the closing
price of the stock. Third, random forests were trained based on moving windows of
training data and added to the ensemble in an online fashion. This has the advantage
of adapting dynamically to changes in market conditions, being more appropriate for
non-stationary financial time series. Additionally, the use of random forests has the
advantage of not having the tendency to overfitting. Finally, regarding the ensembles

22 Chapter 2. Literature Review

used, the recency biased performance-weighted ensemble (exponential moving aver-
age of returns) was shown to produce the best results both in terms of profitability and
prediction accuracy. Hence, the results achieved a 10% improvement in risk adjusted
return, decreased drawdowns and prediction error. In addition, the ensemble results
are significantly better than simple averaging (70% higher returns).

Other studies have also emphasised the benefits of using ensembles for forecasting
stock price direction with classifiers (Ballings et al., 2015) and for sentiment analysis in
social applications (Araque et al., 2017).

In some of these studies, the challenges and difficulties of forecasting stock markets is
emphasised (Agrawal et al., 2013; Arrieta-Ibarra and Lobato, 2015). This is a concern
that is also applicable to fixed income markets. Nevertheless, it should be stressed that
suitable techniques for market forecasting may be developed. In fact, there is evidence
that they have been used in the industry, as referred in Section 1.1.2.

Overall these studies are important for Objectives 1–3 (Section 1.2). In fact, although
they are applied to another asset class, with different characteristics, important inform-
ation can be taken from them regarding methodologies, type of features and models.
On features, the benefits of including additional information from different sources as
independent variables have been reported, including political, economic and financial
factors. On the type of models, results achieved are sometimes mixed, even with the
same type of machine learning model, and are not totally conclusive in their superiority
versus common benchmarks. Nonetheless, ANN, SVM and RF have demonstrated po-
tential in previous studies for forecasting equities. This could be a positive indication
also for forecasting fixed income. Again, as in the previous section, possible solutions
for modelling the yield curve are not evident in these studies.

2.2.4 Equity options

Other financial applications have been the object of study through the use of machine
learning. This is the case in equity and future options, in the derivatives asset class
(Hutchinson et al., 1994; Niranjan, 1996; Montesdeoca and Niranjan, 2016).

For pricing options, the traditional method and one of the most commonly used in the
industry is the parametric Black-Scholes model (Black and Scholes, 1973). Hutchinson
et al. (1994) demonstrated that this formula can be learnt by a radial basis function
network when trained with data in which the call option prices (target variable) were
calculated using the Black-Scholes formula. The technique was also applied to real
data, daily call options on the S&P 500 futures, and the results compared with the Black-
Scholes formula. The authors found that the radial basis function network outperforms
the parametric model in many cases. The main advantages of this method are: the
extra flexibility for cases when the Black-Scholes formula is not applicable given its

2.2. Machine learning models in financial applications 23

assumptions; and the model is more robust being able to adapt to structural changes,
something that a parametric model is not able to do.

Recent developments have been introduced into this model by including additional in-
put variables capable of better explaining the option price (Montesdeoca and Niranjan,
2016). Hence, apart from the normalised asset price (stock price / strike price) and time
to maturity, the additional inputs introduced were: volume traded, historical volatility,
risk-free interest rates and combinations of these variables. The authors demonstrate
that model accuracy is improved with the new features.

In summary, the aspects described in these studies are linked to Objectives 1–3 of our
research work (Section 1.2). A further objective in this section was to briefly present an-
other financial area where machine learning has been used. This is a very specific field
within derivatives, but one where the type of features used and models may have in-
terest for fixed income. From the studies covered, it emerges that radial basis functions
demonstrated the capacity to model the complex relationship between option price and
the underlying stock price. Additionally, the inclusion of financial information leads to
better forecasting performance. This is a common theme in the literature for other asset
classes as well. In our research the extra features included is broader, both financial and
macroeconomic variables, bearing in mind the number of factors that could influence
fixed income prices and yields. The type of model used for option pricing is also single
target, not ideal for yield curve modelling.

2.2.5 Other financial applications

In the financial applications included in this section it was not possible to group them
by asset class, the general rule followed so far. Two different research studies are
presented. The first covers the prediction not of a financial asset, but rather the pre-
diction of a macroeconomic variable. In the second, a different architecture of neural
networks is used in three different financial applications, and for this reason not fitting
directly in one of the asset classes considered in previous sections.

In the first study, machine learning frameworks were used to predict recessions in the
United States, in what the authors claim to be first application of SVM using the inform-
ation from the yield curve to forecast the gross domestic product (GDP) cycle (Gogas
et al., 2015). In this study, short and long-term interest rates were used as independent
variables (US Treasuries: 3 and 6-month bills and 2, 3, 5, 7 and 10-year bonds) and real
GDP data for the dependent variable (real seasonally-adjusted US GDP, transformed
into natural logarithms). The GDP series was decomposed into the cyclical and trend
components using the Hodrick - Prescott filter (Hodrick and Prescott, 1997) and the
cyclical component transformed into a binary variable (equal to +1 for cyclical com-
ponent higher than zero and equal to -1 otherwise). Gogas et al. (2015) used an SVM

24 Chapter 2. Literature Review

model (with linear and radial basis function kernels), for classification of future eco-
nomic activity into two outcomes of the dependent variable: recession or output gap,
defined as GDP below the long-term trend of real GDP (class “-1”); and inflationary
gap, defined as GDP above the long-term trend (class “+1”). The forecasting of the
cyclical components was performed for 1, 2 and 3 quarters in the future. To avoid over-
fitting, the authors used in this case the k-fold cross-validation. The results were prom-
ising but not completely satisfactory, with the out-of-sample overall accuracy of 66.7%,
predicting correctly all recession periods one quarter ahead, but at the same time pre-
dicting as recession 60% of the growth periods, clearly undesirable. The results from
the SVM model was compared to econometric methods used in binary forecasting /
classification, namely the Logit and Probit models. In both cases the overall accuracy
was 50%, comparing unfavourably with the performance of the SVM model. The au-
thors emphasised the importance of correctly predicting recession periods with this
type of model for policy makers, governments and central banks, to adjust in advance
fiscal and monetary policies to the GDP cycle. From the results it is clear that some
further work will be needed.

In the second study, an RNN topology called shared layer perceptron was developed
(Mettenheim, 2010; Mettenheim and Breitner, 2010, 2011). Despite its name, it is not
a standard MLP and the network allows multi-asset and multi-step forecast. The au-
thors have strong claims on the new architecture: consistent and robust performance
over a period of eight years without the need for retraining, demonstrating superiority
in relation to all benchmarks considered. The neural network considers not only the ob-
servable states (inputs) but additional hidden states, which enables the model to build
memory. Further, by entering extra hidden states in the model, it is implicitly assuming
that the input variables do not represent a complete set of explanatory variables. That
is, it allows for uncertainty by incorporating these hidden states, which will also influ-
ence the model. At each time step the network produces as output all inputs necessary
for the next time step forecast. On the one hand, this structure enables the forecasting
of all inputs simultaneously; on the other hand, using the outputs it can follow on fore-
casting the next step ahead. The data collected was for a period of ten years, from 1999
to 2009, and used 25 time series, including equity indices, interest rates, forex rates and
commodities. In the case of interest rates, a proxy was used corresponding to the slope
of the yield curve between the maturities of 3 months and 10 years. Three applications
were used for testing the new model.

First, for forecasting market value at risk, over the next 10 days, benchmarked against
historical simulation. Second, for forecasting the economic indicator Baltic Dry Index,
over the next 20 days, to identify a low entry point. This is benchmarked against the
investment on a given fixed day over the 20-day time frame. Finally, for forecasting the
sign of next day return of portfolios, the benchmarks being a simple naive and a moving
average strategies. In the latter application, the results are reported to be particularly

2.2. Machine learning models in financial applications 25

satisfactory for equities and currencies. As to the first two applications, the results of
the shared layer perceptron were consistently better than those of the benchmarks.

To summarize, the aspects described in this section are linked to Objectives 1–3 of our
research (Section 1.2). However, given the results described, the main link is to Object-
ive 2, covering the assessment of machine learning models.

In the first study, the SVM model did not deliver satisfactory recession prediction res-
ults, even though they were better than those of the benchmarks used. There are two
main fundamental differences in relation to our research for forecasting yield curves.
First, the research focused on the prediction of recessions using exclusively several
points of the yield curve, not including any other information. In our research a more
comprehensive set of variables will be considered. Second, the forecasting problem
was also converted into a classification problem, while in our research, for forecasting
yield curves, we have essentially a regression problem.

In the second study, the benchmarks used in the three applications described above
are simplistic, taking into account that the objective is to assess sophisticated neural
network models. Nevertheless, the selected benchmarks may be acceptable from a
passive investment point of view. The characteristics of the RNN/shared layer per-
ceptron appear to indicate high potential for yield curve forecasting, given the multi-
asset and multi-step characteristics. This directed our interest to the RNN family of
models, which will be the focus of Section 2.6.

2.2.6 Asset pricing and factor models

The asset pricing theory started with Sharpe (1964), and the capital asset pricing model
(CAPM). This is the first single-factor model developed. Early work by Fama and
French (1989) on multifactor asset pricing point out to mounting evidence that stock
and bond returns are predictable and show that the expected asset returns are directly
dependent on economic conditions. Subsequent work by the same team, has produced
seminal papers leading to the well-established three- and five-factor Fama and French
(1993, 2015) models. There are two main approaches to factor modelling considering
the type of regression used for estimating and testing the models: time-series or cross-
sectional regression. However, since the pioneer work by Fama and French (1993), their
proposed time-series methodology became dominant and generally used by academics
and researchers (Jacobs and Levy, 2021).

Asset pricing has been one of the most studied fields in finance over the years, but
recently with the incorporation of machine learning models they have gained a new di-
mension and it is another fundamental example of applications of machine learning to
finance. A thorough survey of recent contributions in asset pricing using factor models
is the work by Giglio et al. (2021), where they emphasise the importance of machine

26 Chapter 2. Literature Review

learning models for future empirical asset pricing research, appropriately combined
with economic theory.

Reinforcing the importance of machine learning in asset pricing, Gu et al. (2020) con-
duct a broad study involving all stocks listed in three US stock exchanges, comparing
a wide range of machine learning methods. In more detail, they include the follow-
ing models: linear regression, generalized linear models with penalisation, regression
trees (boosted regression trees and random forests), and neural networks. The latter is
responsible for the best performance, with shallow networks outperforming deep net-
works, contrary to what happens in other scientific fields. Considering their results,
they demonstrate large economic gains from using machine learning, in some cases
doubling the performance of standard strategies, such as the Fama-French portfolios.
Finally, regarding the most relevant factors, the models used point out to variables
associated with price trends (return reversal and momentum), stock liquidity, stock
volatility, and valuation ratios.

In this field of research but applied to fixed income, Bali et al. (2022) conduct a compre-
hensive study, focusing on cross-sectional techniques to forecast future corporate bond
returns (one month ahead), using as inputs corporate bond and stock characteristics,
also known as factors. Most of the studies for this purpose use linear methods. How-
ever, machine learning is a better alternative given the nonlinear payoffs of bonds in
general and the high correlation between some of those bond and stock characteristics.
Inspired by the Merton (1974) model, the authors explicitly linked the functional forms
of corporate bond and stock expected returns. They conclude that using stock char-
acteristics in addition to bond characteristics is beneficial for bond return forecasting.
Moreover, imposing the Merton model dependence between expected bond and stock
returns leads to better bond returns predictions, when compared to the models where
that dependence is not taken into account (which the authors call the reduced-form ap-
proach). In order to determine the most relevant bond characteristics for each machine
learning model, the authors follow the ranking methodology proposed in Kelly et al.
(2019) and Gu et al. (2020). From their results, the most influential variables for the
forecasting performance can be grouped as follows (Bali et al., 2022): interest rate risk
(e.g. duration, time-to-maturity); downside risk (proxied for example by value-at-risk,
expected shortfall, total return volatility); systematic risk (proxied by bond market beta,
default beta and term beta); liquidity risk (e.g. bid-ask spread); and historical return
characteristics such as bond momentum, short- and long-term reversals.

Since the CAPM model was created, over 300 different risk factors have been identi-
fied by researchers, in some cases resulting in new multifactor asset pricing models
being developed (Maiti, 2021). To navigate the potential high dimensionality of factors
that could be relevant to the forecasting process, Feng et al. (2020) proposed a model
selection methodology to evaluate the contribution of each additional new factor we

2.2. Machine learning models in financial applications 27

want to study, in relation to a pre-existing set of factors. Hence, new factors are con-
sidered only when they result in increased explanatory power for asset pricing. The
authors concluded that if their methodology was applied recursively over time, only a
small number of the factors identified in the literature would have been considered as
significant.

Another example of recent research using machine learning in this area is the work of
Zhao et al. (2019). The authors use the five-factor Fama and French (2015) model and
explore their optimal portfolio allocation for factor investing. They propose a novel
methodology comprising three main stages: First, obtain a large number of individual
forecasts of the five Fama-French factors using linear and non-linear forecasting mod-
els. Second, combine the individual forecasts using Bayesian dynamic model aver-
aging, which results in more robust and improved forecasting performance. Finally,
determine the optimal portfolio allocations for each factor using a dynamic asymmet-
ric copula model. Overall, the results from this study reveal factor investing as a robust
asset allocation technique.

2.2.7 Double machine learning

Machine learning in finance is mainly devoted to forecasting tasks, while econometrics
is more interested in causation and decision making. The study of causal relationships
has become a hot research topic in artificial intelligence and it is believed that it may
be an essential tool to address some limitations of correlation-based machine learning
models (Nogueira et al., 2022). Double, or debiased, machine learning (Double ML), an
evolution in relation to the double selection technique (Belloni et al., 2012), is a frame-
work developed by Chernozhukov et al. (2018), applying machine learning to financial
forecasting, planning and analysis. It enables statistical inference, thus going beyond
forecasting to infer causal relationships. For this reason, it is at the intersection of ma-
chine learning and econometrics, taking advantage of the best of both worlds. More
specifically, the main objective of Double ML is to produce valid inferential statements
about the effect of a specific intervention (also called variable of interest, “policy” or
“treatment”, the latter imported from the use of these methods in medicine), on an out-
come variable we are analysing, in the presence of a potentially high-dimensional set
of control variables or confounders. These confounders are factors that influence both
treatment and outcome variable.

Let us consider the simplest example of a partially linear regression model (Robinson,
1988; Chernozhukov et al., 2018):

Y = Dθ0 + g0(X) + U, E[U | X, D] = 0 (2.1)

D = m0(X) + V, E[V | X] = 0 (2.2)

28 Chapter 2. Literature Review

where Y is the outcome variable; D is the variable of interest or treatment; θ0 is the
parameter of interest or causal parameter, i.e. the main regression coefficient that we
want to infer; g0, m0 are generic functions, which may be nonlinear; X is a set of control
variables; U, V are disturbances or error terms; and E [.] denotes the expected value of
a random variable.

Naive attempts to use machine learning for directly determining the parameter of in-
terest (θ0) result in biased estimations. There are two biases involved, namely: the regu-
larization bias and the overfitting bias. Chernozhukov et al. (2018) propose two ingeni-
ous solutions to produce debiased estimations: using Neyman-orthogonal moments or
scores to address the regularization bias; and data-splitting followed by cross-fitting to
tackle the overfitting bias.

Briefly, the method can be described as follows. First, we regress the outcome vari-
able on the control variables. Second, we regress the treatment variable on the control
variables. Then we compute the residuals for both, outcome and treatment. Finally,
to estimate the parameter of interest (θ0) we regress the residuals of the outcome on
the residuals of treatment. To address the overfitting bias, this process is conducted
on subsamples of the original data and averaging the results of the estimated para-
meter of interest. This is the final estimate of the causal effect of the treatment vari-
able on the outcome. In addition, Chernozhukov et al. (2018) verify that the resulting
solution achieves root-N-consistency (Robinson, 1988), with N being the sample size,
with values approximately unbiased and closely following a normal distribution. Con-
sequently, it is possible to determine valid confidence intervals for the treatment effect
estimates.

The application of Double ML in finance is still at very early stages. Nevertheless, there
are some good examples of empirical applications to financial planning (Wasserbacher
and Spindler, 2022), specifically to assess the effectiveness of marketing activities (treat-
ment or intervention) in generating sales (outcome). The authors conclude that using
the naive approach, instead of Double ML, would greatly overestimate the causal ef-
fect of the marketing activities on sales. This would represent a mismanagement of re-
sources. We can also find applications of Double ML in public policy recommendations
and regulatory oversight (Varaku, 2021), with multiple objectives: to study the effects
of public subsidies on innovation, i.e. on companies’ research & development (R&D)
input and output; or the effects of public subsidies incentivising, or not, collaborative
agreements among different organisations, on R&D output; the effect on the perform-
ance of microfinance institutions (outcome), of having a product range including only
core microfinance products (loans and savings) or a more extended range including
non-financial services (treatment); and the impacts of regulation on microfinance in-
stitutions’ performance. Finally, we refer the work of Farbmacher et al. (2022), where
the authors investigate the causal effect of health insurance coverage (treatment) on
general health of selected individuals (outcome).

2.3. Combining predictors 29

2.3 Combining predictors

Another approach to forecasting is the combination of various predictors, which tends
to improve accuracy, reducing the bias and variance components of the prediction error.
The traditional combination is carried out with predictions from different algorithms
using model ensembling. Different techniques have been employed in the literature
and several variants of the same technique can also be found (Ballings et al., 2015;
Booth et al., 2015; Araque et al., 2017).

An alternative to the combination of different algorithms is to perform repeated sub-
sampling of the dataset and run a single model on each subsample. This technique is
commonly applied for predictive classification and creates diversity in the data rather
than in the models used (Barrow and Crone, 2016). The most common methods used
for combining similar algorithms are: bootstrap aggregating (or bagging), boosting and
random forests.

Yet another approach to combine predictors is the use of cross-validation techniques.
Along this line, Donate et al. (2013) built ensembles of neural networks using weighted
k-fold cross-validation for the prediction of six real-world time series. The resulting
accuracy was enhanced for short and medium time series. In a different study, Sorić
and Lolić (2015) employed leave-h-out cross-validation in a study to forecast euro area
inflation. The results from this study have shown that forecasting accuracy was im-
proved when using this methodology, especially for longer forecasting horizons. For
short horizons the improvement was not so evident.

A new type of ensembling method has been proposed in a study for time series fore-
casting by Oliveira and Torgo (2014), which departs from standard bagging. In this
technique (bagging), diversity in the predictors is a result of the different random boot-
strap samples. Considering the diversity of members as one of the most important
drivers of the success of ensembles, and also aiming to deal with the diverse dynamic
regimes and non-stationarities of time series, the authors introduce different forms of
diversity related with properties of the time series. Specifically they used: different
embed sizes (embed is the set of recent past values of a time series used in the model);
additional variables related to the past data and that may explain the recent dynam-
ics of the time series (in this particular case, they used the mean and variance); and
additional models with combinations of the previous points. For the implementation
bagged regression trees were used on fourteen different real-world time series, treated
independently. The final prediction of each ensemble was calculated using the stand-
ard bagging approach of averaging the predictions of all models. The standard ARIMA
model was also used for comparison purposes, but all performances were evaluated in
relation to the standard bagging approach.

30 Chapter 2. Literature Review

Results from this research showed that the models where additional diversity was in-
troduced showed better prediction accuracy. In fact, the model that introduces more
diversity is the best performing, always beating the standard bagging in terms of pre-
diction accuracy, although not always with statistical significance (Oliveira and Torgo,
2014). One additional aspect from this research that may be useful for our work is
that, instead of using the absolute values of the time series, they used the differences
between consecutive values to avoid trend effects.

In financial applications, the combination of predictors through ensembles is frequently
referred in the literature as a methodology that could result in improved forecasting
and potentially better models (Booth et al., 2014a; Ballings et al., 2015; Booth et al.,
2015; Caldeira and Torrent, 2017).

2.4 Machine learning models

The standard machine learning models presented in this section are the ones that will
be used in Chapters 3 and 4 for implementation.

2.4.1 Selection of models

From the literature review, ANNs, in particular MLPs, stand out as a model with po-
tential to be used as a forecasting tool in fixed income markets. This type of model
possesses the necessary flexibility, taking into account the fact that we aim to incorpor-
ate a wide range of features. In addition, we identified the RNN family of models as
having high potential (Section 2.2.5) Thus, in our empirical work we consider several
MLP models, with different sets of features (Section 2.4.3 and Chapter 3), and also a
variety of LSTM models (Section 2.6.2 and Chapter 4). Both MLPs and LSTMs are com-
pared to each other and benchmarked against the multivariate linear regression model,
covering a wide range in terms of model complexity.

The research presented in this thesis focuses only on machine learning models, and
excludes industry models. The main reasons for not considering one of those as bench-
mark are twofold: previous work already covers the comparison of machine learning
versus that type of model; and due to the limitations of the most popular industry
models used in fixed income markets. Indeed, there is already abundant literature on
these subjects. On the first reason, the following work can be referred. First, Sambas-
ivan and Das (2017) compared the Nelson–Siegel model for yield curve forecasting to
the multivariate time series method and to the dynamic Gaussian Processes, obtaining
the best results with the latter model and poor results with the first. Second, Dunis
and Morrison (2007) compared the ARMA to neural network models, concluding that

2.4. Machine learning models 31

the latter offer a promising alternative to the traditional models. A comparison of the
results from our research with those of the studies mentioned above is included in Sec-
tion 3.3.2.4.

Regarding the limitations of the most popular industry models used in fixed income
markets, the following studies are some possible examples. First, classical financial
models for government bonds, a “risk-free” type of asset trading in large and very
liquid markets, tend to follow the theoretical restrictions that prevent arbitrage oppor-
tunities. However, Björk and Christensen (1999) demonstrated that the Nelson–Siegel
model does not ensure the arbitrage-free condition. Second, Pooter (2007) studied sev-
eral extensions of the Nelson–Siegel model and found that with more flexible models
predictability improves, both in-sample and out-of-sample. Third, Tam and Yu (2008)
also point out their limitations. Hence, yields-only models are simpler for yield fore-
casting but they have lower explanatory power, while yields-macro models are more
explanatory due to the link to economic variables, but they are less capable of describ-
ing several shapes of the yield curve. Fourth, Ullah et al. (2015) faced difficulties fit-
ting particular shapes of the yield curve. In fact, they reported that the Nelson–Siegel
model, and even the Svensson generalisation of this model, do not fit well the Japanese
yield curve. Finally, Caldeira and Torrent (2017) emphasize the need for alternatives to
the available estimators. In the case of factor models, the authors point out that they fit
the yield curve assuming a known function of maturities with unknown parameters.
They show that better out-of-sample performance can be achieved with a more flexible
non-parametric model.

2.4.2 Linear regression

In this section, the multivariate linear regression model is presented, with the main
objective of describing the feature selection approach we use in this research called
Lasso.

2.4.2.1 Linear regression models

Linear regression models are still very popular nowadays, despite the advances in com-
puter science: they are simple; for a large number of applications they provide adequate
models; the interpretability of those models is much higher; and the optimisation pro-
cess is easier and faster. Unless more complex nonlinear models offer a clear improve-
ment versus the linear solution, one should favour the linear models. It is also a good
model to take as baseline to compare more complex solutions.

32 Chapter 2. Literature Review

The linear regression models can be expressed in the following form (Bishop, 2006;
Hastie et al., 2013):

f (x) =
p

∑
j=1

xj wj + w0 + ϵ (2.3)

where f (x) is the target or dependent variable; xj represent the inputs, independent
variables or features; wj, w0 are the weights (unknown parameters); ϵ is the error; and
p is the total number of features.

In vector notation, it can be written as follows. Note that bold lowercase will be used
for vectors, bold capital letter will be used for matrices.

f = wT x + w0 + ϵ (2.4)

In order to avoid treating the constant w0 independently, one can work with an addi-
tional dimension (p+1), with the following changes:

y =

(
x
1

)
a =

(
w
w0

)
(2.5)

f = yT a + ϵ (2.6)

As a result, the general equation for linear regression models, considering all observa-
tions of the input dataset can be written as:

f = Y a + ϵ (2.7)

where f is the N× 1 vector of outputs; Y is an N× (p + 1) matrix, with nth row corres-
ponding to yT

n , N being the number of observations and p the number of features; a is
the (p + 1)× 1 vector of unknown parameters; and ϵ is the N × 1 vector of errors.

For the calculation of the unknown parameters a training dataset is used and the most
common method for this purpose is the least squares. The objective in this case is to
minimise the residual sum of squares, that is, to minimise the error function E:

E = ∥Ya− f∥2 (2.8)

The gradient can then be written as follows:

∆aE = 2 YT (Ya− f) (2.9)

2.4. Machine learning models 33

Finally, the solution for the linear regression model can be obtained by equating the
gradient to zero, thus obtaining the unknown parameters:

a = (YTY)−1 YT f (2.10)

This is called the pseudo inverse solution and (YTY)−1 YT the pseudo inverse. Al-
ternatively, the solution can also be obtained using a gradient descent algorithm to
minimise Equation 2.8.

Whenever we have a matrix YTY close to being singular, i.e. it is ill-conditioned, one
possible approach to make it better conditioned is to use regularisation as shown below:

a = (YTY + γI)−1 YT f (2.11)

where I is the identity matrix and γ the regularisation parameter.

This is equivalent to minimising Equation 2.8, imposing a quadratic penalty term. The
resulting equation is presented below. A small variant of this will be covered in the
next section and it is important for feature selection.

E = ∥Ya− f∥2 + γ∥a∥2 (2.12)

2.4.2.2 Feature selection using Lasso

It is well known that the ordinary least squares method as a regression tool has some
shortcomings in terms of prediction accuracy and also in terms of interpretation (Tib-
shirani, 1996; Hastie et al., 2013). In fact, least squares predictions tend to suffer from
low bias but high variance and the interpretability of models with a large number of
features is challenging.

Several methods may be used to overcome this issue and improve out-of-sample pre-
diction accuracy, such as: selection of a subset of features, the well-known shrinkage
methods, including ridge and Lasso regression, and other strategies to reduce the di-
mensionality of the problem. In more detail, the ridge regression is attributed to Hoerl
and Kennard (1970), while the Lasso (standing for Least Absolute Shrinkage and Se-
lection Operator) regression was proposed by Tibshirani (1996). The error function to
minimise may be expressed in the following forms:

Ridge regression
E = ∥Ya− f∥2

2 + γ∥a∥2
2 (2.13)

Lasso regression
E = ∥Ya− f∥2

2 + γ∥a∥1 (2.14)

34 Chapter 2. Literature Review

where ∥.∥1 denotes the L1-norm; ∥.∥2 the L2-norm; and γ the regularisation parameter.

As can be seen from these equations, the L2-norm in the ridge regression penalty is
replaced by the L1-norm in the Lasso regression. Hence, the Lasso regression determ-
ines the parameters of the model by minimising the sum of squared residuals, using
an L1-norm penalty for the weights. Due to the type of constraint, it tends to lead to
sparse solutions, i.e. some coefficients are exactly zero and as a result the correspond-
ing features are discarded. This is particularly important since it enables a continuous
type of feature selection through the tuning of the regularisation parameter γ, and the
identification of the most relevant features for the model.

A variant of this method, called LagLasso, has been used by Mahler (2009), which
includes the selection of features but also of lags, to take into account that the influence
of those features may be lagged. In this work, three different maximum number of lags
were considered: 1, meaning that only the last value was included in the simulation, 6
and 12 lags. A small improvement in the results can be identified from 1 lag to 6 lags,
but not from 6 to 12. Yet, overall the results for the different lags considered were mixed
and very close, not highlighting its importance to improve predictions.

The Lasso procedure for feature selection is directly applicable to linear regression
models. Although this can be used as a first approach to selecting features for other
techniques, different methodologies exist for nonlinear methods. For neural networks,
a Bayesian regularisation procedure has been proposed using a Laplace rather than a
Gaussian prior (Williams, 1995).

Alternatively, Takeda et al. (2013) perform model selection using a greedy forward se-
lection algorithm in the context of index tracking. They show that the inclusion of an
L2 regulariser enhances out-of-sample performance. However, greedy feature selection
is usually more complex than Lasso, which gives a relaxed convex problem to solve.

To conclude, the Lasso regression was used in this study for the feature selection, which
seems to combine the benefits of subset selection and ridge regression (Tibshirani,
1996). The reduction in features improves interpretability of models, helping also in
cases of low bias / high variance, thus improving generalisation.

2.4.3 Artificial neural networks

The first study on ANNs is associated to the work of neurophysiologist Warren McCul-
loch and mathematician Walter Pitts, to simulate the activity of the nervous system as
a net of neurons using electrical circuits (McCulloch and Pitts, 1943). And that is where
the term “neural” comes from. Although we are still far from completely understand-
ing the functioning of the brain, the neural network unit would represent a neuron and
the connections would represent synapses.

2.4. Machine learning models 35

Recently, this field of computer science has been experiencing a very rapid develop-
ment and there are now many different types of neural networks. In this section,
only the feed-forward neural network will be covered, i.e. the MLP. The RNN will
be presented in Section 2.6.

A feed-forward neural network is the simplest type of ANN, where the information
flows from the inputs, to the hidden layers, to the outputs, only in one direction. That
is, the information is “fed forward”, as shown in Figure 2.1. There are no connections

FIGURE 2.1: Feed-forward neural network example.

between units in the same layer, and also no connections from the hidden layers to the
outside environment, only through the input and output layers. The most important
types of feed-forward neural networks are: radial basis functions (RBF) and MLP. We
briefly describe the latter, since it will be used in Chapters 3 and 4.

Multilayer perceptron

The structure of an MLP is similar to the one presented previously in Figure 2.1. It
includes an input layer, one or more hidden layers and one output layer. In terms of
terminology, the inputs may or may not be considered a layer in the literature. For

36 Chapter 2. Literature Review

this type of neural network, the functioning of a unit (also called node and neuron), is
schematically presented in Figure 2.2.

FIGURE 2.2: Neuron of a multilayer perceptron.

Therefore, an MLP neuron comprises a linear function, and a nonlinear function, called
activation function. The linear component corresponds to the weighted sum of the
inputs plus an independent term. The result of the linear function is then squashed
through a differentiable, nonlinear activation function.

The most common nonlinear functions used are the logistic sigmoid function and the
hyperbolic tangent function (tanh). More recently, another activation function used is
the rectified linear unit (ReLU). This activation function has gained importance in deep
learning research, where it has been shown to improve training of deeper networks
(Glorot et al., 2011).

At the output nodes’ level the activation function depends on the type of problem. For
classification problems sigmoid or softmax functions may be used, for binary classific-
ation and classification tasks with more than two classes, respectively. For regression
type of problems, in general a linear output is chosen (Graves, 2012; Lipton et al., 2015).

The training of an MLP is usually performed using stochastic gradient descent and the
backpropagation algorithm, first described in 1970 (Linnainmaa, 1970; Schmidhuber,

2.5. Multitask learning 37

2015). However, it was only several years later that this technique gained popularity in
its application to neural networks due to the work of Rumelhart et al. (1987), demon-
strating the development of internal representations on the hidden units. The main
objective of the training process is to minimise the error at each neuron output and,
as a consequence, for the overall neural network. For this purpose, the gradients of
the network error function with respect to the weights are determined, by applying
the chain rule of differentiation and new weights calculated. Then all weights are up-
dated simultaneously and used for a new prediction. And the process is repeated until
convergence.

2.5 Multitask learning

The interest rate curve has intrinsic properties where the yields for the various matur-
ities are in higher or lower degrees correlated to each other. Those yields also tend
to move together forming continuous and coherent lines at any point in time. Con-
sequently, the simultaneous modelling of all benchmarks of the yield curve should be
beneficial for the model learning process. Additionally, the modelling of the whole
yield curve has potentially higher attractiveness for central banks and national govern-
ment agencies, but also for the financial industry in general.

However, this modelling is clearly more complex than that of individual assets, since it
introduces an additional dimension to the problem, to model both yield and maturity,
necessary for dealing with the complete term structure of interest rates. Techniques to
deal with the two dimensions using spatial statistics and its modelling tools have been
used and were mentioned in Section 2.2.1 (Kanevski et al., 2008; Kanevski and Timonin,
2010).

Recall from Section 2.1.2, that among the most important and widely used models for
yield curve modelling and forecasting are the NS (Nelson and Siegel, 1987) and the
DNS (Diebold et al., 2006) models. In the latter, the model incorporates both intrinsic
or latent factors of the yield curve (level, slope and curvature) and a restricted number
of macroeconomic factors (manufacturing capacity utilization, annual price inflation
and federal funds rate). Notwithstanding the real and incontestable value of these
models in practice and for the industry, a comprehensive research on modelling and
forecasting the yield curve using machine learning techniques should start without
these factor boundaries already established for the NS and DNS family of models. In
fact, we may find other variables that are as important or even more than the ones
considered in those models. For this reason, leaving feature selection for the models to
decide, through a well designed methodology, seems a better approach.

Taking all this into consideration, an alternative to modelling the curve itself could be
the modelling of several points of the yield curve, identifying those points as the most

38 Chapter 2. Literature Review

relevant benchmarks in the money and bond markets. For example, the benchmarks
for the following maturities: 3 and 12 months (money market), 2, 5, 7, 10 and 30 years
(bond market). Focusing only on the bond market, those benchmarks could be reduced
to 2, 5, 10 and 30 years, representing four variables to be predicted. Now we will
explain how to consider this extended number of targets in a model.

In the machine learning domain, the standard methodology for regression problems is
the modelling of one target variable (single task learning), using several inputs. For
the yield curve, if we consider a reduced number of benchmarks, for example four,
it would represent four different models to forecast the target bond yields. This is
represented in Figure 2.3 using four neural networks. This method does not take into

FIGURE 2.3: Single task learning for four different targets.

account the functional form of the yield curve. In other words, it does not consider that
those interest rates in the yield curve tend to move together having some functional
relationship, which could be beneficial for the model.

In contrast to single task learning, MTL, also known as multi-target regression, multi-
output or multi-response (the terminology task, target and output will be used with
the same meaning henceforth), enables the learning of several targets simultaneously.
This is represented in Figure 2.4 and this methodology could be used to model the yield
curve, through the modelling of its most relevant benchmarks.

From the literature and the graphical representation of MTL (Figure 2.4) result some of
the characteristics of multitask learning, which include the following (Caruana, 1993,
1997; Cai et al., 2014; Borchani et al., 2015; Ruder, 2017): the hidden layer of the neural
network is shared by all targets; the learning process occurs in parallel, simultaneously
for all targets; some hidden units may specialise in specific targets, which can be useful
for yield curve modelling where some features may be more important for short-term
bonds and others for long-term bonds; the use of the domain specific information from
additional targets functions as constraints to the overall model, improving generalisa-
tion accuracy.

2.5. Multitask learning 39

FIGURE 2.4: Multitask learning for four different targets.

In a comprehensive study on MTL (Caruana, 1997), a review of prior work was carried
out and new evidence on how MTL functions was also presented. This study emphas-
izes the importance of the information contained in the extra targets in helping the
hidden layer to learn better representations. This research was also careful in ruling
out some alternative explanations for the improvement observed. On the one hand,
by showing that breaking the relationship between main and additional targets, per-
formance was negatively affected. On the other hand, by excluding the hypothesis that
better results were due to restricting net capacity with the introduction of additional
targets.

On the architecture of backpropagation neural networks for MTL, the above mentioned
study concluded that the number of units in the hidden layer used for MTL should
not be much lower than the sum of hidden units leading to good performance when
using single target learning on each task individually. The objective is to allow targets
to learn individual models, overlapping only when there is common hidden structure
(Caruana, 1997).

The type of applications described in the same study, seems to give good indication
regarding its potential for applications in the financial domain. One such example, is its
use with the data from a robot that captures sonar readings and camera images while

40 Chapter 2. Literature Review

moving. MTL is then used to predict what the robot will sense at several distances
in the future (1, 2, 4 and 8 meters). One interesting result from this particular study,
worth emphasising here, is that the error increases with the distance (as one would
expect), but the use of MTL is more beneficial for the most challenging tasks. In other
words, MTL leads to a higher decrease in error for the longer distances ahead (2, 4 and
8 meters). On the contrary, it leads to an increase in error for the shorter distance (1
meter). In summary, MTL seems to be most useful for the most difficult tasks.

The main objective with MTL is to predict the main target, with the additional targets
being used to help in that purpose. But, in principle, it may be necessary to train and
run additional MTL structures for each main target to be forecast (Caruana, 1997). This
may be a limitation of this methodology. Nevertheless, for backpropagation neural
networks, with enough hidden units, it is also referred that some of these units may
specialise in different targets, so that one neural network model may be enough for the
complete set of targets.

The differentiation between main target and additional targets is in general natural
and domain specific, as will become clear from the pneumonia prediction example, de-
scribed below. When that is not the case, the original study (Caruana, 1997) suggests
that the differentiation may also be imposed by considering different relative weights
for each target, as presented below (Equation 2.15). The study also notes that this dif-
ferentiation may not be necessary in the case of backpropagation neural networks.

EvaluationMetric = Per f ormanceMainTask +
NoTasks

∑
i=1

λi Per f ormanceExtraTaski (2.15)

where λ is the parameter that controls how sensitive learning is to the extra tasks. When
λ = 0 the extra task is ignored, while λ = 1 gives the main and extra task the same
weight on the performance metric.

Another important application of MTL described by Caruana (1997) is on pneumonia
prediction and the filtering of low risk patients. For these, an admission to the hos-
pital can be avoided since they could be better treated at home. However, the most
important laboratory tests for that screening are performed after they are hospitalised.
The decision on whether or not to hospitalise a patient has to be taken before those
tests are carried out, based on the results of a preliminary evaluation of the patient.
A solution for this dilemma was found with the use of MTL. With this methodology,
the inputs of the model are features available before admission to hospital, and the fu-
ture laboratory results are used as additional targets in the neural network structure.
The model is trained using a database of patients for which both results are available
(preliminary and future labs). In this example, the differentiation between main task
(pneumonia mortality ranking) and additional tasks (future lab results) is evident and
domain specific.

2.5. Multitask learning 41

This solution is also very meaningful for financial data, given that many potential fea-
tures for financial data may not be available in advance to the data to be forecast. This is
also the case when the data is published on a less frequent basis, for example quarterly,
and advanced interpolation is not possible. In this case, rather than just excluding the
data, which may be very relevant for the problem, it is possible to include it as addi-
tional targets. One such example is inflation in the United States, or the CPI, which is
published quarterly.

Furthermore, the data to be considered for additional targets could also result from
the use of synthetic data generated from existing domain-specific models. Obviously,
it is necessary to bear in mind that if the model is poor, they will not become a good
constraint for the overall model (Caruana, 1997).

According to a recent survey on multitask regression (Borchani et al., 2015), covering a
varied number of applications of this methodology in different scientific fields, existing
MTL methods can be categorised into two groups: problem transformation methods,
in which the problem is transformed into independent single target problems; and al-
gorithm adaptation methods, implying the modification of single output methods in
order to handle multiple targets.

Several advanced multi-output regression methods are covered in the above mentioned
survey, namely (Borchani et al., 2015): statistical methods, multioutput support vec-
tor regression, kernel methods, multi-target regression trees and rule methods. Even
though neural networks were not covered as a model in the survey, MTL using neural
networks is not a new theme, as mentioned previously in this chapter (Caruana, 1997;
Ghosn and Bengio, 1997).

Taking into account the applications of this methodology, several uses strike as possible
for financial time series prediction in the bond market, where targets would represent:
different points in the yield curve at the same time t, representing a multi-asset process
and enabling the forecast of the overall curve; the same yield of a particular bond, at
different times, thus enabling the estimation of several time steps ahead in the future;
a combination of previous items, enabling a multi-asset and multi-step forecast; addi-
tionally, when data is not available on time to be used as feature, it can still be used as
target variable if it is relevant for the model.

In summary, MTL can be performed using two different methodologies: transforming
the problem into multiple single target and using simultaneous modelling of all targets
(multitask learning). Both techniques were used in our research.

42 Chapter 2. Literature Review

2.6 Deep learning models

The literature review presented in Section 2.2.5 revealed the importance of RNNs for
financial applications. In this section, an overview of this type of model is provided, in-
cluding the LSTM used for the comparative study presented in Chapter 4. Advantages
and limitations of this type of model are listed, as well as the most common type of
practical applications. Finally, the LSTM networks’ potential for yield and yield curve
forecasting is discussed, mainly with regards to Objective 2 (Section 1.2) of the present
work, but also with potential implications for Objective 5.

To introduce the concept of deep learning, it is part of a broader type of machine learn-
ing models, capable of learning high-level representations in data. They have a deep
type of structure and at each level, using simple but nonlinear modules, the represent-
ation is transformed successively into higher and more abstract levels (LeCun et al.,
2015). At the end of such structure, very complex nonlinear representations can be
learnt directly from the data. In feedforward neural networks, the “deep” in deep
learning implies architectures with many hidden layers, in contrast with “shallow”
neural networks. But there are other types of deep learning model such as deep belief
networks and RNNs.

2.6.1 Standard recurrent neural networks

In this section, we will be presenting the standard RNN, including an overview and
the limitations of feed-forward neural networks versus this type of model. In addi-
tion, some specific technical aspects will be covered, namely, backpropagation through
time and the vanishing or exploding gradients. These led to the so-called fundamental
deep learning problem, which for several years was an obstacle to the progress of deep
learning.

2.6.1.1 Overview

Neural networks in general are inspired in the functioning of the brain as mentioned
in Section 2.4.3, based on the early work of McCulloch and Pitts (1943). One of the
characteristic of brain functioning and of our thought process is that we do not start
from zero at every moment in time. Our thoughts and knowledge persist in time and
we can use what we have learnt in the past at every moment. In other words, we have
memory. Additionally, there is also an implicit recurrent process in the sense that, at
any point in time, we are receiving different inputs (e.g. environmental factors), that
are processed by our brain producing results (e.g. knowledge). In fact, there is a new
line of research in neuroscience using this type of model, and Güçlü and van Gerven

2.6. Deep learning models 43

(2017) have shown that RNNs can be used to predict how the human brain processes
sensory information.

The initial studies on RNNs date back to the 1980s with the work of Hopfield (1982),
Jordan (1986) and Elman (1990). The new architecture of RNNs includes a clever feed-
back loop mechanism delayed in time that enables the model to “remember” past in-
formation. This loop system is shown in Figure 2.5 for a particular time step t.

FIGURE 2.5: Recurrent neural network for a particular time step.

Consequently, the output at each time step depends on both the inputs at that time step
and the feedback from the previous hidden layers, which form the hidden or internal
state responsible for making the connection across time. Furthermore, we can unroll
the RNN in time to have a full perspective of the network. This is shown in Figure 2.6.

FIGURE 2.6: Recurrent neural network unrolled in time.

Considering the unrolled architecture, each cell in the RNN is, in fact, a standard neural
network and the cells are connected by the hidden state. This state can be interpreted
as the “memory” of the network. The implications for sequence learning are immense.
While the MLP maps inputs to outputs in a rigid manner, theoretically the RNN can
map the entire history of inputs to each output (Graves, 2012). We will see that in

44 Chapter 2. Literature Review

practice this is not the case and the “memory” of the recurrent network fades as the
time steps become distant from the present time step (Section 2.6.1.3). Nevertheless,
the previous inputs persist in time, affecting outputs, and this is a characteristic that
completely separates feed-forward neural networks from RNNs.

Continuing the analysis of the unrolled architecture, the RNN can also be interpreted
as a deep feedforward learning network, with each time step as an additional hidden
layer of the network (LeCun et al., 2015). However, in deep learning the weights of
the network differ at each layer. On the contrary, RNNs share the same weights across
time steps, with multiple repetitions of the same model across time steps. This reduces
significantly the number of parameters the network needs to learn during training.

More formally, the equations for the forward pass of a vanilla RNN are as follows
(Graves, 2012; Lipton et al., 2015; Goodfellow et al., 2016):

h(t) = σh (W hx x(t) + W hh h(t−1) + bh) (2.16)

ŷ(t) = σy (Wyh h(t) + by) (2.17)

where x(t) is the input vector at time step t; h(t) and h(t−1) are the hidden states at
time step t and t-1; ŷ(t) is the output at time step t; W are the weight matrices; W hx

and Wyh represent the conventional weight matrices for input-to-hidden and hidden-
to-output connections, respectively; and W hh representing the recurrent weight matrix
for hidden-to-hidden connections at adjacent time steps; bh and by are the bias vectors;
and finally σh and σy the activation functions at the hidden and output nodes’ level,
respectively.

2.6.1.2 Limitations of feed-forward neural networks

After describing the architecture of the RNNs and its capabilities we now identify
the limitations of the traditional feed-forward neural networks, in particular the MLP
covered in Section 2.4.3, that RNNs can overcome (Prügel-Bennett, 2017; Brownlee,
2018). First, the memory capability is one of the characteristics that clearly separates
both types of models. Given the stateless condition of MLP models they only learn fixed
function approximations. Second, in sequence prediction problems, the sequence im-
poses an order on the data that must be respected when training and forecasting, i.e. the
order of the observations is important for the modelling process. This is the case with
financial time series. However, in feed-forward neural networks / MLPs, the model-
ling of time series’ temporal structure is only done indirectly through the consideration
of multiple time steps as different input features. Although using this method previous
values are included in the regression problem, the natural “sequence” or structure of
the time series is not really present in the modelling process and the model does not
have any knowledge of it. Third, and also related with the previous limitation, when

2.6. Deep learning models 45

we are dealing with problems involving multiple input time series the ensuing number
of input features grow rapidly, resulting in a complex and computationally demanding
scaling up of this type of model. Furthermore, there is not a clear separation between
time series, all considered as additional input features. The final disadvantage of feed-
forward NNs is that both inputs and outputs need to have fixed size. Thus, this type
of model has serious limitations for some applications involving variable length input
and/or output sequences.

Despite its limitations, feed-forward neural networks / MLPs are always a good start-
ing point for modelling financial time series. This is especially the case given the dom-
inant characteristics of the most recent historical values of the target variable (as will
be shown by the results presented in Section 3.3.1).

2.6.1.3 Backpropagation through time

The training of RNNs is done using the same technique used for feedforward neural
networks, namely the backpropagation algorithm (Section 2.4.3). However, given the
dependence of previous states, the back propagation of error must be carried out on the
unrolled RNN (Figure 2.6), considering not only the present time step corresponding
to the error being backpropagated but also previous time steps up to the first of the
sequence. This is why in the case of RNNs, the technique is called backpropagation
through time, also known as BPTT. The corresponding equations were first introduced
by Werbos (1990). Given this architecture, the model may become computationally
expensive for networks with a large number of time steps. Although truncated back-
propagation through time may be a solution, it comes at the cost of not being able to
learn long-term dependencies (Williams and Peng, 1990).

In the late 1980s and early 1990s, it became more evident that, although RNNs were
theoretically capable of modelling those long-term dependencies, they appear to work
only for shallow problems, i.e. considering shorter sequences (Schmidhuber, 2015).
This problem was also being observed with feedforward neural networks, where the
benefits of going deeper with additional hidden layers did not appear to produce em-
pirical benefits. This is now known as the fundamental deep learning problem of gradi-
ent descent and for several years it was a huge obstacle for training deep neural net-
works.

2.6.1.4 Vanishing or exploding gradients

The first milestone for identifying the now well known problem of vanishing or ex-
ploding gradients was the work of Hochreiter (1991) in a diploma thesis (Hochreiter
et al., 2001; Schmidhuber, 2015).

46 Chapter 2. Literature Review

In parallel and independent work, the research by Bengio et al. (1993, 1994) contrib-
uted to overcome the impasse that this problem has then caused to the progress of
deep learning. Hence, these authors published theoretical and experimental evidence
that the training with gradient descent and BPTT could be inadequate, in a paper ap-
propriately titled “Learning long-term dependencies with gradient descent is difficult”
(Bengio et al., 1994). More recent research by Sutskever (2013) presents a methodology
to enable the training of RNNs with long-term dependencies using gradient descent
with momentum, which involves random initialisation of parameters. The author also
observes that this work directly contradicts previous findings and suggests that the
lack of satisfactory results with RNNs having long-term dependencies could be due to
deficiencies in the random initialization.

The vanishing or exploding gradients problem was presented in an elegant and sim-
plified way by Goodfellow et al. (2016). RNNs share the same weights across time
steps, implying the application of the same function at each time step (Section 2.6.1.1),
in what compares with matrix multiplication. To explain, let us consider the simplest
form of an RNN without inputs, which corresponds to isolating the recurrence term in
Equation 2.16 for calculating the hidden state at time step t. Assuming for simplicity a
linear activation function and zero bias, we obtain the following equation:

h(t) = W T h(t−1) (2.18)

This recurrence term essentially describes the power method, so we can rewrite it as:

h(t) = (W t)T h(0) (2.19)

Let us assume that W can be eigendecomposed in the following form:

W = Q Λ QT (2.20)

Then, the recurrence term may be written as:

h(t) = QT Λt Q h(0) (2.21)

From this equation where the eigenvalues are raised to the power of t, we can easily
conclude that any eigenvalue lower than 1 will tend to decay exponentially (“vanish”)
and any eigenvalue higher than 1 will tend to increase exponentially (“explode”).

The vanishing or exploding gradients problem refers to the fact that during back-
propagation the gradients will suffer the same effect of vanishing or exploding as de-
scribed above. In practice, vanishing gradients will cause difficulties in knowing which
direction the parameter should move to minimise the cost function, while exploding

2.6. Deep learning models 47

gradients will cause the learning process to be unstable. This is a specific problem of
RNNs given that they share the same weights across time steps, i.e. they use the same
matrix W at each time step.

Subsequently, extensive research has been carried out to find a solution to the problem
just described. Some methods proposed include (Hochreiter et al., 2001; Schmidhuber,
2015): unsupervised pre-training for a hierarchy of RNNs; Hessian-free optimization,
in the case of feedforward neural networks; and searching the space of weight matrices
using alternative methods to error gradients. But the most important of them was
the development of a new sub-type of RNNs, whose architecture is unaffected by the
fundamental deep learning problem. This model is the LSTM and will be presented in
Section 2.6.2.

2.6.2 Long short-term memory networks

The LSTM architecture was first introduced by Hochreiter and Schmidhuber (1997),
and subsequently adapted by other researchers such as Gers et al. (1999), Gers and
Schmidhuber (2000), and Graves and Schmidhuber (2005).

The LSTM model is a type of RNN and consequently the diagrams presented in Sec-
tion 2.6.1.1 are also valid for LSTMs, i.e. they also have a structure that can be unrolled
in time. In the case of RNNs the repeating cells (Figure 2.6) have a single neural net-
work layer. In fact, at each time step the structure of an RNN is a standard feedfor-
ward neural network. In contrast, the LSTM architecture is substantially more com-
plex, incorporating four complete neural network structures in each of those cells, in
this model also called memory cells. In Figure 2.7 a simplified diagram of the unrolled
chain-type structure is presented, identifying the main components of a memory cell.
There are some variants to this standard LSTM model, but they do not differ signific-
antly from this structure (Prügel-Bennett, 2017).

FIGURE 2.7: Long short-term memory cells (based on Olah (2015), with modifications
made by the author).

48 Chapter 2. Literature Review

A more detailed representation of an LSTM cell is presented in Figure 2.8. The main
components of the memory cell will be explained in the following text.

The corresponding equations that govern the modern LSTM model can be expressed in
the following form (Hochreiter and Schmidhuber, 1997; Lipton et al., 2015; Goodfellow
et al., 2016):

f (t) = σ (W f x x(t) + W f h h(t−1) + b f) (2.22)

i(t) = σ (W ix x(t) + W ih h(t−1) + bi) (2.23)

g(t) = tanh (W gx x(t) + W gh h(t−1) + bg) (2.24)

o(t) = σ (W ox x(t) + W oh h(t−1) + bo) (2.25)

c(t) = f (t) ⊗ c(t−1) + i(t) ⊗ g(t) (2.26)

h(t) = o(t) ⊗ tanh(c(t)) (2.27)

where f (t) is the function for the forget gate; i(t) and g(t) are the functions for the input
gate and for the input node, respectively; o(t) is the function for the output gate; c(t)

and c(t−1) are the cell states (also known as internal state) at time step t and t-1; h(t) and
h(t−1) are the hidden states at time step t and t-1; x(t) is the input vector at time step t; W
are the weight matrices, with W f x as an example, representing the weight matrix for the
connection input-to-forget gate (indices indicating ‘to-from’ connections); b f , bi, bg, bo

are the bias vectors; σ is the logistic sigmoid activation function; tanh the hyperbolic
tangent activation function; and ⊗ represents the Hadamard product (element-wise
multiplication).

Figure 2.8 show where these operations (Equations 2.22–2.27) occur in the LSTM cell.
It is possible to simplify Equations 2.22 to 2.25, by concatenating the inputs to the cell
and the previous hidden state as follows:

x(t)c = [x(t), h(t−1)], (2.28)

resulting in the equations presented below:

f (t) = σ (W f x(t)c + b f) (2.29)

i(t) = σ (W i x(t)c + bi) (2.30)

g(t) = tanh (W g x(t)c + bg) (2.31)

o(t) = σ (W o x(t)c + bo) (2.32)

We will now explain in detail how an LSTM works, the main components of the cell
(Figure 2.8) and the complete algorithm (Equations 2.22 to 2.27). In each LSTM cell the

2.6. Deep learning models 49

FI
G

U
R

E
2.

8:
Lo

ng
sh

or
t-

te
rm

m
em

or
y

de
ta

ile
d

ce
ll

di
ag

ra
m

(b
as

ed
on

Pr
üg

el
-B

en
ne

tt
(2

01
7)

,w
it

h
m

od
ifi

ca
-

ti
on

s
m

ad
e

by
th

e
au

th
or

).

50 Chapter 2. Literature Review

flow of information is controlled by tree gates, namely: forget, input and output gates.
The operations performed at cell level are schematically presented in Figure 2.9.

(A) Forget gate. (B) Input gate and input node.

(C) Cell state update. (D) Output gate.

FIGURE 2.9: Long short-term memory cell gates.

All calculations at each gate depend on the current inputs at the same time step and
the previous hidden state (at time step t-1). The output from the cell depends on those
two variables plus the cell state at time step t. Additionally, the cell or internal state
represents the long-term memory of the model and the hidden state corresponds to the
short-term memory.

Forget gate

The forget gate defines which information to remove or “forget” from the cell state. For
this purpose, the forget gate has a neural network with a logistic sigmoid activation
function ranging from 0 to 1 (Figure 2.9a). The extremes of that interval correspond
to: keep this information (1) or completely remove this information (0). The maths
operations performed at this gate are represented by Equation 2.22.

2.6. Deep learning models 51

The forget gate was not present in the original formulation of this model (Hochreiter
and Schmidhuber, 1997). It was introduced at a later stage by Gers et al. (1999). This
gate is especially important for very long or continuous time series, for which the au-
thors found that the network needed resets to release internal resources and remove
irrelevant information.

Input gate and input node

The input gate specifies which information to add to the previous cell state. This part
of the cell comprises two elements as shown in Figure 2.9b. The first component is the
input gate, where the inputs (hidden state at time step t-1 and inputs at time step t) go
through a neural network with a logistic sigmoid activation function (corresponds to
node i and function i(t)). The second component is the input node (to differentiate from
“gate”) and represents the new “candidates” that could be added to the cell state. These
are generated through a neural network with a hyperbolic tangent activation function
(corresponds to node g and function g(t)). The corresponding operations carried out in
this section of the cell are represented by Equations 2.23 and 2.24.

In the original structure proposed for this model (Hochreiter and Schmidhuber, 1997),
the activation function in node g was also a logistic sigmoid function as in the other
gates. However, the standard LSTM nowadays uses a hyperbolic tangent function
(Lipton et al., 2015).

Cell state update

The cell state update is performed using the results of both the forget and input gates.
The operations implemented for this purpose are presented schematically in Figure 2.9c
and in mathematical terms by Equation 2.26.

This cell or internal state is the recurrent connection across time steps, having unit
weights. It is the basis of the so-called “constant error carousel” (CEC) described in
the original LSTM work by Hochreiter and Schmidhuber (1997). This together with
the gated type of structure is the reason why, during the backwards pass, gradients
can propagate in the unrolled-in-time network without vanishing or exploding, thus
keeping the network stable. The main implication is that it enables the LSTM to learn
the long term dependencies that were difficult for the standard RNNs.

Output gate

The output gate defines the information from the cell state that will be used as output
of the memory cell for the present time step. This gate has the fourth neural network of

52 Chapter 2. Literature Review

the LSTM cell, with a logistic sigmoid activation function (Figure 2.9d). The operations
applied in this gate are represented by Equation 2.25. Finally, the actual output from
the cell is computed using Equation 2.27, taking into account the results of the output
gate and the present cell state, pushed through a hyperbolic tangent function.

An overall observation that can be made from the previous description is that the train-
ing of this type of model is usually slow, considering that the LSTM gates comprise four
neural networks inside each memory cell as mentioned before.

2.6.3 RNN-LSTM advantages and limitations

The main advantage of the LSTM model is related to the reason why it was developed
in the first place. The RNNs could not capture the long-term dependencies due to the
vanishing or exploding gradients problem already described in Section 2.6.1.4. Another
important characteristic of this type of model is that it can input and output sequences
time step by time step, enabling variable length inputs and/or outputs. With this prop-
erty, they overcome one of the main limitations of standard feedforward neural net-
works.

However, some time series forecasting problems are technically simpler, not requiring
the characteristics of a recurrent type of model. This is the case in particular when the
most relevant data for making the prediction is within a small window of recent his-
torical values. Here, the capability to deal with long-term dependencies and the model
“memory” is clearly not necessary. In this type of situation, MLPs and even linear
models may outperform the LSTM pure-autoregressive univariate model, with lower
complexity (Gers et al., 2002; Brownlee, 2018). Overall, given the additional complex-
ity of the model, it should be used only when the type of problem we have is better
modelled by this type of neural network architecture. And this is reflected in two main
conditions: sequential data and when the long-term dependencies may help the fore-
casting process.

Several other issues have been pointed out to RNN/LSTMs. Culurciello (2018) em-
phasises the limitations of the recurrent family of models, highlighting that some of
the largest tech companies such as Google, Meta and Salesforce are moving away from
these models. Although LSTMs in particular can learn long-term information, that be-
comes more difficult for long sequences.

The sequential nature of recurrent models, requiring sequential computation, represent
a fundamental limitation (Vaswani et al., 2017). This makes this type of model hard-
ware unfriendly, inhibiting parallelisation within training examples, requiring more
resources and time to train and run than, for example, attention-based models. As a
result, RNN/LSTM networks are inefficient and not scalable (Culurciello, 2018).

2.6. Deep learning models 53

For clarity, the initial implementations of attention mechanisms were proposed with
architectures based on recurrent or convolutional neural networks that include an en-
coder and a decoder (Bahdanau et al., 2015; Luong et al., 2015). Even though this type
of model is not covered in this thesis, we refer the Transformer as a high profile and
popular example. The Transformer, initially proposed by Vaswani et al. (2017), signi-
ficantly changed the use of attention in machine learning, totally dispensing recurrence
and convolutions, and enabling more parallelisation. Its self-attention mechanism is
what permits the Transformer to map global dependencies between inputs and outputs
and deal with long sequences, by selectively focusing on the relevant parts of the input
data. Attention-based models were developed with neural machine translation tasks
in mind. However, they have been successfully implemented for time series prediction
in finance (Qin et al., 2017).

2.6.4 RNN-LSTM applications in finance and other fields

This family of model, especially the LSTM networks, has shown to significantly out-
perform. In fact, in one of the most recent and comprehensive books on deep learning
the authors categorically affirm that gated RNNs are the most effective sequence mod-
els used in practical applications, i.e. LSTMs and gated recurrent unit (GRU) based
networks (Goodfellow et al., 2016).

The applications are almost endless, and span a wide variety of activities and scientific
fields, such as (Lipton et al., 2015): handwriting recognition, text generation, natural
language processing (recognition, understanding and generation), time series predic-
tion, video analysis, musical information retrieval, image captioning, music generation,
and in interactive type of problems such as controlling a robot. For natural language
processing in particular, LSTMs are among the most widely used deep learning models
to date.

Most of these activities have in common the fact that they have sequential data. And
this is what RNNs and LSTMs do best. They can process sequences as input, as output
or in the most general case on both sides (Karpathy, 2015). Furthermore, the LSTMs are
used to take advantage of their capability to learn long-term dependencies.

In the financial domain, the situation is even more extreme than the one found for the
previously presented machine learning models (Section 2.4). In fact, no publication
could be found in the current literature using this type of model in fixed income mar-
kets. A discussion on its potential in this area will be the focus of Section 2.6.5.

Indeed, applications of RNN and LSTM models were found first and foremost for
equities. See, for example, the works by Xiong et al. (2016), Persio and Honchar (2016a,
2017), Fischer and Krauss (2018), Munkhdalai et al. (2017) and Qin et al. (2017). In ad-
dition, substantial work can be found on forex markets (Giles et al., 2001; Maknickienė

54 Chapter 2. Literature Review

and Maknickas, 2012; Persio and Honchar, 2016b). Other applications can be detected
for financial crises prediction (Gilardoni, 2017) and for credit risk evaluation in P2P
platforms, or peer-to-peer lending (Zhang et al., 2017).

2.6.5 LSTM networks’ potential for yield and yield curve forecasting

Following the presentation of the deep learning models, in particular the RNN and
the LSTM networks, we will discuss the potential of this type of model for yield and
yield curve forecasting. This is important to fulfil Objective 2 (Section 1.2), covering
the assessment of existing machine learning techniques. Besides, it is also relevant
given the lack of published work in this area, which may reflect lack of adequacy of
the model when applied to the bond market or an opportunity worth exploiting in our
current research.

In Section 2.2.5, we have mentioned an RNN topology called shared layer perceptron,
and argued that its characteristics appear to indicate high potential for yield curve fore-
casting. Now that the models were described in greater detail, it is also possible to give
more concrete justifications.

First, with sequences we can model directly the time structure of time series, which
is not possible with feedforward neural networks. Recall from Section 2.6.1.2 that, in
the latter type of network, the temporal structure was considered indirectly through
different input features representing a chosen number of time steps. The LSTMs are the
most effective models for sequence learning, modelling these time sequences naturally.
Effectively, the consideration of a sequence in the model is adding a new dimension to
the mapping function being learnt by the model. Instead of a simpler mapping function
input-to-output, the network learns a more complex function of the type “input over
time”-to-output.

Second, it seems probable that long-term dependencies are also important for mod-
elling financial time series. Even though the last available value of the series is the
one collecting all the available information in the market up to the present moment,
inversion points tend to follow certain patterns, frequently exploited by technical ana-
lysts looking essentially at chart data. A model with memory and capable of learning
long-term dependencies may be beneficial for this reason. The LSTMs were specifically
designed to deal with the long-term dependencies’ problem of RNNs, so they should
also fulfil this requisite.

Third, for modelling the yield curve we have some additional requirements from the
model to be used. We should be able to perform multi-asset forecasting, for the pre-
diction of several points of the yield curve to define the whole curve as accurately as
possible or with more detail in the areas we would like to cover. The LSTM is cap-
able of dealing with multivariate type of problem. Consequently, the MTL required

2.7. Reinforcement learning 55

for yield curve forecasting can be carried out with LSTMs in both forms, MTL or by
transformation into multiple single task problems.

Finally, it would be desirable to perform multi-step forecasting, to consider several
forecasting horizons into the future. This can be accomplished naturally with LSTMs
by using sequence-to-sequence architectures (a sequence as input and as output, also
known in short as “seq2seq”). In this configuration, the output sequence contains pre-
dictions of the same time series at different time steps in the future.

Overall, LSTM networks’ potential for yield and yield curve forecasting seems evident.
Despite being predominantly used for non-financial applications, their characteristics
make them suitable for financial time series predictions.

Notwithstanding, in some cases the LSTM complexity is not really required and a sim-
pler model can result in better results (Section 2.6.3 and Gers et al. (2002)). The main
conclusion is that simpler models should be tested first during the experimental part of
the research. Then, more sophisticated models can be employed and compared to the
previous solutions, which may work as benchmarks.

2.7 Reinforcement learning

In this section, we introduce the topic of RL, starting by outlining the problems and
limitations of supervised learning methods when applied to common activities such as
portfolio management and trading. We then present the base concept of an RL system,
its components, the main types of algorithms that are available, and a review of recent
studies. We conclude with a discussion of its potential, specifically for fixed income
portfolio management.

2.7.1 Limitations of supervised learning for portfolio management

In the work conducted so far, we have covered direct forecasting of assets, in this case
to predict yields. This is undoubtedly very important for practitioners and regulators
across financial markets. But the ultimate purpose in this industry is for the forecasting
to be used both in the portfolio management and trading activities. These are the areas
where better forecasting tools can produce profits for the institution and their clients.
However, this is a different type of problem when compared to the predictions of a
random-type variable, which could be price or yield.

In fact, when using supervised machine learning for portfolio management or trading,
it is common practice to predict asset values or even their returns first, and then follow
a strategy that takes into account that forecast (Freitas et al., 2009; Abe and Nakayama,

56 Chapter 2. Literature Review

2018). Nevertheless, although these methods may improve forecasts when compared
to traditional methods, in general, the prediction accuracy in financial markets tends to
be lower than in other scientific fields. And this is both a problem and a limitation of
supervised learning approaches.

Another important aspect, it that in portfolio management and trading, the aim is to
optimise a certain strategy metric, which could be simply the portfolio return, or any
other type of risk-adjusted metric, such as Sharpe ratio. Any of these metrics are a
function of the variable (price or yield) and, as a result, getting correct predictions on
the variable does not necessarily translate into profitable strategies. To take this into
account, the evaluation of models in some studies covered in the literature is carried
out considering not only standard measures for forecasting accuracy, such as RMSE
and MAPE, but also the results from simulated trading strategies (Dunis and Morrison,
2007; Mettenheim, 2014; Caldeira and Torrent, 2017). But they still have to deal with the
problem of low asset-value accuracy in financial markets.

In summary, for those working in asset management, forecasting asset values is an
intermediate problem (with colossal challenges), while total investment returns is the
target problem. Focusing directly on the target problem is what RL enables.

2.7.2 Traditional portfolio management methods

A portfolio is formed by a group of financial assets. The main purpose of investing
in portfolios instead of in one individual asset, is diversification and, through it, risk
reduction per unit of risk in the investment (Fabozzi et al., 2021). It is also easier to
combine assets and adjust the composition of a portfolio to the requirements and risk
characteristics of an investor, than to find only one asset that could satisfy the same
conditions.

Markowitz is the pioneer of what is known as modern portfolio theory, with the public-
ation of a seminal paper entitled “Portfolio selection” (Markowitz, 1952). Markowitz’s
mathematical formulation determines the weights of the assets to form portfolios that
fall in the efficient frontier. They are called efficient portfolios in the sense that they
correspond to the best mean-variance (return-risk) combinations, from the universe of
possible portfolios built with the available assets. In other words, they correspond to
portfolios that minimise the risk for a given level of expected returns, (investor property
called risk aversion), or maximise the expected returns for a given level of risk (investor
property called nonsatiation). Considering the first of those two styles, for a portfolio
of m assets, a specific target expected portfolio return, and for the case where the asset

2.7. Reinforcement learning 57

weights can be negative (short selling of assets permitted), we obtain the minimum-
variance portfolio as follows (Markowitz, 1952; Kroll et al., 1984):

minimise
w

1
2

wTΣw (2.33)

subject to wTrA = RP,target (2.34)

and 1T
mw = 1 (2.35)

where w is the vector of weights of the assets in the portfolio; Σ denotes the covariance
matrix; rA is the vector of expected returns of the assets in the portfolio; RP,target is the
target expected portfolio return; and 1m represents an m-dimensional column vector
of ones. Both the expected returns of the assets and their covariances need to rely on
forecasts for the future period in analysis, which would involve additional models for
this purpose. In practice, they may simply be estimated using historical data, with all
the shortcomings of this solution.

To minimise Equation 2.33, the problem is solved using Lagrange multipliers, differen-
tiating the Lagrangian with respect to each weight of the assets and setting the partial
derivatives equal to zero. Hence, for a portfolio of m assets, we will have m + 2 lin-
ear equations (two for the constraints), to determine m weights and the 2 Lagrange
multipliers.

When short selling is not permitted, i.e. the portfolio can only contain long positions,
we need an extra constraint as follows:

minimise
w

1
2

wTΣw (2.36)

subject to wTrA = RP,target (2.37)

and 1T
mw = 1 (2.38)

and w ⪰ 0 (2.39)

With these three constraints, the optimisation problem becomes a quadratic program-
ming problem, with a quadratic objective function and linear constraints.

The Markowitz mean-variance portfolio is widely used in the industry, it is relatively
simple to implement and the idea behind it makes intuitive sense. However, there are
a number of limitations pointed out in this model (Board et al., 2009; Zhang et al., 2018;
Hambly et al., 2021). Some of those limitations are related to specific practical problems
that cannot be addressed with this formulation. Some examples are: the inclusion of
constraints related to trading rules, asset classes, type of security, transaction costs, and
others to enable risk diversification (by sources of risk).

Another common criticism is the single-period framework, i.e. it assumes that the in-
vestor decides on allocation at the beginning of the period, freezing the exposure for

58 Chapter 2. Literature Review

the whole period. Indeed, it does not consider the benefits and costs of rebalancing the
portfolios, usually necessary as market conditions change. In some way connected to
the previous point, additional criticism is related to time inconsistencies, in the sense
that the optimal portfolio selected at time t, is no longer optimal in subsequent time
steps.

In addition, several characteristics of the inputs (expected return means, variances and
covariances) have also been criticised, namely: the fact that they are static over the
period in analysis; the estimation of the inputs in the future may have questionable
accuracy and the optimal portfolios are sensitive to those errors; it assumes that re-
turns have a Gaussian distribution, which is known not to be the case, so, the first
two moments of the distribution (mean and variance) are a poor representation of the
risk-return profile; and finally, the representation of risk by variance, which considers
equally positive and negative returns.

To contrast more directly this model with an approach using RL, we discuss below
a number of points. First, in this formulation, the agent (the portfolio manager, the
investor, or even the final client), needs to provide in advance a specific desired target
return or target risk. Similar to what we have seen in Section 2.7.1, in this type of
solution the focus is not in the ultimate objective (to maximise return or maximise risk-
adjusted return), but to minimise risk for a desired, predetermined return (or maximise
return for a desired level of risk).

Second, the mean-variance model is also not compatible with the concept of outper-
forming the assets we have in the portfolio. In fact, we are inputting a target return,
based on the expected returns of the assets, and we cannot set a target above the best
performing asset in the portfolio, given the nature of Markowitz’s efficient frontier. The
exception occurs if we allow short positions (Luenberger, 1998), in other words, if we
leverage the portfolio. In RL we do not have this limitation and the agent will focus
only on maximising its objective function.

Third and last, the model takes as input the expected mean returns and covariances,
resulting from forecast or simply calculated from historical prices only. It cannot, for
example, use additional information from other variables, or benefit from the informa-
tion contained in the sequence and shape of the historical values used. In essence it is
a relatively rigid model, in contrast to the model-free type of architectures in RL, that
have all the flexibility required.

Finally, we should refer that departing from Markowitz’s work, an extensive number of
adaptations have been made in order to overcome some of its drawbacks Zhang et al.
(2018); Hambly et al. (2021). However, they fall outside the scope of this review.

2.7. Reinforcement learning 59

2.7.3 Reinforcement learning concept

RL is the third area of machine learning together with supervised and unsupervised
learning. It can be used whenever we have sequential decision-making problems, as in
the case of trading and portfolio management, and we want to find an optimal strategy
to achieve a certain objective.

In more detail, the objective of the agent (Figure 2.10) is to learn what action to take,
by trial-and-error, given the conditions or state of the environment. Hence, at each

FIGURE 2.10: Simplified agent-environment interaction in RL
(Sutton and Barto, 2020).

time step in the learning process, the agent receives (or observes) the state of the en-
vironment and also receives a delayed feedback reward corresponding to the last state
transition. In fact, the two most important characteristics of RL are precisely the trial-
and-error search and the delayed reward (Sutton and Barto, 2020).

With knowledge of the environment state and the reward received, the agent can cal-
culate the action that will be sent to the environment. As a result, the system will
transition to the next state, and the whole cycle is repeated. The final objective of the
agent is to learn how to control this dynamic system (the policy), in order to maximise
the cumulative rewards. Indeed, the agent is the RL system component responsible for
updating and improving the policy. For this purpose, the agent comprises an algorithm
which is the “brain” of the overall system. The main types of algorithms available will
be presented in Section 2.7.4.

For a top-level comparison, in supervised learning we map features to targets, whereas
in RL the mapping occurs from state to action, or to a probability distribution over ac-
tions, maximising reward. Thus, RL is fundamentally different from forecasting asset
prices or yields. Above all, there is a perfect alignment of the objectives of the RL sys-
tem user, and the agent controlling that system. This is something that was missing
in previous frameworks (Sections 2.7.1 and 2.7.2). Apart from the ultimate objective
alignment, we have the flexibility of a framework that does not require models of the

60 Chapter 2. Literature Review

environment in which it operates. Thus, the need to build forecasting models is elim-
inated. This is achieved with model-free type of algorithms (more in Section 2.7.4) and
the introduction of function approximators, both being components of the agent.

From a historic perspective, RL has been present since the early 1980s (Sutton and
Barto, 2020). But recently this area has managed to progress at a faster pace. Reas-
ons for this may be found in the advances in computational resources, together with
the developments in machine learning, and in particular deep learning (Goodfellow
et al., 2016), feeding through RL via the introduction of deep neural networks as func-
tion approximators. And it was only recently, that it has been possible to stabilise the
learning with deep neural networks through the work of Mnih et al. (2013, 2015). We
will elaborate on the techniques used in Section 5.3.2.2.

These developments have translated in practice into brilliant results achieved in some
areas. Some of the most emblematic were achieved in games, such as the game of Go
(Silver et al., 2016), and Atari (Mnih et al., 2015), where the RL agent was able to reach
professional players’ performance and, in some cases, outperform them (beating the
European Go champion). But impressive results have also been achieved in robotics
(see for example Andrychowicz et al. (2020)).

2.7.4 Agent taxonomy

The first distinction of the type of RL agent, and consequently, of the type of algorithm,
is between model-based and model-free. Model-based RL agents are used when we
have a model that totally represents the workings of the environment, or it will be an
additional task of the agent to learn. This model needs to be capable of predicting
both state transitions and rewards. It has been shown that, for systems with relatively
simple dynamics, this type of RL is appropriate, being more data efficient, finding bet-
ter policies and handling changing objectives better than the model-free counterparts.
However, they are subject to errors in case of inaccurate model representations (Ray
and Tadepalli, 2010). For financial markets, the model-based approach is usually not
considered, although there are exceptions, such as the work of Yu et al. (2019).

Regarding model-free agents, we have three main types of architectures that can be
used, as the diagrams in Figure 2.11 indicate.

In the first group of agents, they use in their algorithms a value function. In this case,
the agent is said to be value-based and this type of architecture correspond to a critic-
only. In this group, the value function is used to determine the value of each possible
action from a given state, so that the action with the highest value is then selected
(policy). For this reason, it is used for discrete action spaces, and it becomes compu-
tationally expensive when the number of discrete actions is high, due to the “curse of

2.7. Reinforcement learning 61

FIGURE 2.11: Types of model-free RL agent.

dimensionality” (we will explain this concept in more detail in Section 5.3.1.1). The
critic-only type is the most commonly used in the literature (Fischer, 2018).

The second group uses a function to map state to actions, i.e. the agents focus directly
on the policy. These agents are known as policy-based and this type of architecture
corresponds to an actor-only. Policy improvement and function parameters’ updates are
obtained by maximisation of the objective function, using gradient ascent. Contrary to
the previous group, this type of agent can deal with both discrete and continuous action
spaces. This is also a common type of agent and some of the early work was produced
by Moody and Wu (1997).

The last group is known as the actor-critic, and is a combination of the previous models.
Thus, they incorporate both an actor and a critic, with the corresponding value and
policy functions. The overall idea is to have both the actor and the critic in the same
agent, interconnected and working with the same overall objective. In this way, the
actor focuses on the policy and determines the agents’ actions, but taking into account
the work of the critic. In turn, the critic judges the actions taken by the actor, by estimat-
ing the value of the state-action pair, while trying to improve its estimations. Contrary
to the critic-only case, the value function is used to estimate the value of the single ac-
tion taken by the actor, and not of all possible actions. As a result, most algorithms in
this class can be used for both discrete and continuous action spaces.

The actor-critic class is the latest type of state-of-the-art algorithms, where less pub-
lished work is available. In fact, a recent survey of RL in financial markets (Fischer,
2018), confirms that this is the least researched type of algorithm in financial applica-
tions. This may be related with the higher complexity of the corresponding algorithms

62 Chapter 2. Literature Review

and the fact that most of them were developed recently. Nevertheless, it is somewhat
surprising given their potential advantages.

Additional information about the policy, the value function and algorithms will be
presented in Chapter 5, targeting the specific algorithms that are relevant for our em-
pirical work.

2.7.5 RL applications in portfolio management and trading

In this section, we present some examples of recent studies where RL is used for portfo-
lio management and trading, sub-dividing the review by type of agent and algorithm
used and the target asset class, and followed by a brief discussion.

2.7.5.1 Critic-only

In the critic-only arena, Q-learning dominates the early works in this area. The model
was developed by Watkins (1989) and Watkins and Dayan (1992). Recognising the
early interest from investors in computerised portfolio management, Neuneier (1996)
adapted Q-learning to this problem and introduced a function approximator to rep-
resent the action-value function. This initial work was subsequently developed by the
same author (Neuneier, 1998), simplifying the action-value representation and allow-
ing model-free policy iteration. The application was specifically for asset allocation,
using real market data from the Genman DAX index (equities). The results showed a
18.5% outperformance at the end of the testing phase (of almost three years). It should
be noted that this asset allocation problem includes only one asset (DAX index), which
is not the typical multi-asset portfolio management problem. In fact, it is closer to the
trading activity than to portfolio management. In addition, the action state is totally
discrete, with only “invest” and “not-invest” options. The discrete action space is a
common characteristic of all studies using the critic-only type of algorithm, due to the
need to perform a greedy maximisation of Q at every time step. Nevertheless, the
studies may include different levels of discretisation (finer or coarser).

This type of RL architecture has been used since then and the initial Q-learning has
evolved into more sophisticated algorithms. Pigorsch and Schäfer (2021) used the Deep
Q-learning (DQN) algorithm developed by Mnih et al. (2013, 2015). Its application was
on 48 US equity portfolios, including between 10 and 500 stocks each. The input data
comprises the stock historical prices and fundamental indicators extracted from the
companies’ quarterly statements. Regarding the agent’s actions, they are also discrete,
of the type invest (at = 1) and not-invest (at = 0). The algorithm results outperform the
benchmarks considered (equal-weight buy and hold, and simplistic momentum and
reversion strategies), in 75% of the portfolios. However, the results also show that the

2.7. Reinforcement learning 63

agent could not avoid the big market correction (in February–March/2020) included in
the data, underperforming during this period.

In the same line of model, Théate and Ernst (2021) adapted the DQN algorithm, calling
the modified version the trading DQN (TDQN). The application carried out is in al-
gorithmic trading, applied individually to several equity indices and individual stocks,
covering several sectors and world regions. As inputs to the system they used historical
data for the periods 2012–2017, training data, and 2018–2019, testing data. With respect
to the agent actions enabled in this model, the authors considered three discrete ac-
tions, where the agent can buy, sell or hold. The results of this study were promising,
but mixed, showing outperformance in some stocks but not in others. Overall, the
TDQN algorithm only barely surpasses the passive buy and hold strategy.

Finally, we also present the recent study from Park et al. (2020), which overall produces
slightly better results. This study applies the DQN algorithm to management of two
equity portfolios composed by three assets each: US equities’ ETF funds (first portfolio)
and Korean stock market indices, assumed as tradeable (second portfolio). Adopting
discrete action space, they demonstrate that the model outperforms their benchmarks,
specifically: buy and hold strategy; randomly selection; momentum strategy, looking
at the previous period return only; and finally, reversion strategy, the opposite of the
momentum strategy. These benchmarks are relatively simplistic and no information is
provided regarding the comparison of their results versus the performance of the best
asset in the portfolio as a reference. Nevertheless, they present good results, being a
promising outcome for this type of application.

2.7.5.2 Actor-only

Contemporary to the work of Neuneier reported earlier, Moody and Wu (1997) have
pioneered the approach to portfolio management optimising directly an objective func-
tion that measures investment performance. This approach is also called direct RL, in
contrast to indirect RL, where the optimal policy is obtained “indirectly” by solving the
Bellman equation (Bellman, 1957; Guan et al., 2021). The authors also developed the
concept of differential Sharpe ratio as new reward signal, which enables this type of
agent to learn efficiently online at each time step, rather than having to wait until the
end of the episode. This addresses one of the problems pointed out to the actor-only
architecture.

The corresponding experimental work, targeted first a portfolio of the S&P 500 index
(assumed as tradeable) and US 3-month Treasury Bills, considering monthly data over
45 years (25 years for testing), and enabling leverage of 2:1 in the portfolio (Moody et al.,
1998). This was benchmarked against Q-learning in Moody and Saffell (1999) and the
buy and hold strategy. In subsequent studies, they also targeted forex, specifically the

64 Chapter 2. Literature Review

currency pair US dollar / British pound, using 30-minute data, for a period of 8 months
during 1996 (Moody and Saffell, 2001). Overall, the results demonstrate outperform-
ance in relation to the benchmarks, including the Q-learning algorithm. In addition,
in a parallel simulation with artificially generated data, the authors also demonstrated
superiority versus a supervised method, minimising the forecasting error.

It is worth referring that, although the the actor-only architecture is fundamentally dif-
ferent from supervised learning (as RL in general, see Section 2.7.3), this is the simplest
RL problem representation, and conceptually closer to the supervised learning ap-
proach. In fact, recent studies inspired by the work of Moody and Wu (1997), have
followed exclusively deep learning techniques to optimise directly the weights of the
assets in the portfolio and bypassing the need to forecast expected returns, the tradi-
tional method in supervised learning (Zhang et al., 2020, 2021). For this purpose they
consider directly objective functions such as Sharpe ratio, portfolio variance or a gen-
eral expression translating the mean-variance problem. This is an interesting example
where the frontiers between deep learning and RL with deep learning function approx-
imators are somewhat diluted.

2.7.5.3 Actor-critic

In this class of agents, one of the most comprehensive studies of state-of-the-art al-
gorithms applied to portfolio management is the work of Aboussalah et al. (2021). The
authors started by considering a very wide range of algorithms suitable for continuous
action spaces, namely: Deterministic Policy Gradient (DPG); Stochastic Policy Gradi-
ent (SPG); Deep DPG (DDPG); Trust Region Policy Optimization (TRPO); Proximal
Policy Optimization (PPO); Twin Delayed DDPG (TD3); Soft Actor-Critic (SAC); and
Evolution Strategies. However, initial results were unsatisfactory, with most of the al-
gorithms demonstrating difficulties converging during the training phase. As a result,
the authors decided to streamline the initial list, selecting four algorithms that had the
most promising performance for further studies, specifically: DPG, SPG, DDPG, and
PPO. The portfolio included ten stocks from the US S&P 500 index and the data was
historical open, low, high, close prices, and volume, for the years 2013 and 2014. Des-
pite the initial filtering of algorithms to the most promising ones, the final results were
disappointing considering that most of the actor-critic models could not outperform
the benchmarks, namely buy and hold strategy and dynamical multi-period mean-
variance portfolio. Moreover, the DPG model was the one obtaining the best perform-
ance.

Snow (2020a,b) also presented an implementation of the DDPG algorithm to portfolio
management of a group of fifteen stocks from the US stock market. The analysis covers
the first ten months of 2018 using historical minute data, and the agent is enabled to

2.7. Reinforcement learning 65

trade every seven minutes. In terms of results, the agent underperforms the market for
most of the months in analysis, in some cases significantly.

The DDPG algorithm has been used in at least two additional studies, with contrasting
results. The first from Xiong et al. (2018) is an application to stock trading, using as
input data the daily prices of the thirty stocks composing the US Dow Jones index.
They cover the period from 2009 to 2018, with the testing phase between 2016 and 2018.
Despite using an algorithm that permits continuous actions, the authors considered a
discrete action state of the type buy, hold and sell. The results in this case demonstrated
a significant outperformance of the mean-variance and buy and hold benchmarks, with
final annualised returns of approximately 26% versus 16% for the benchmarks.

The second study on DDPG used for portfolio management by Liang et al. (2018) also
included two additional algorithms: PPO and policy gradient. The target asset class
was equities and they used market data from five stocks from the Chinese stock mar-
ket. As far as results are concerned, only the policy gradient agent outperformed their
benchmark. Notably, with the DDPG and the PPO models the authors reported that
the algorithms could not converge to an optimal policy during the training phase.

In strong contrast with the latest example, Betancourt and Chen (2021) adapted PPO to
manage a portfolio of cryptocurrencies. Considering that their approach can deal with
portfolio management of a dynamic number of assets, they named their method DNA.
Their study included a variable number of cryptocurrencies, from 3 to 85, covering a
period between 2017 and 2019. The inputs to the model are historical prices (open, high,
low and close) and two types of volume, with different frequencies: 30 min, six hours
and one day. The authors benchmarked their results against three previous studies se-
lected from the literature (Jiang and Liang, 2017; Bu and Cho, 2018; Pendharkar and
Cusatis, 2018), obtained by other researchers using the same asset class (cryptocurren-
cies). Overall, the results obtained were impressive, with significant outperformance
of the benchmarks.

2.7.5.4 Discussion and potential advantages of actor-critic

Target asset class

In what concerns the target asset class considered in RL studies, we have seen in pre-
vious sections (2.7.5.1– 2.7.5.3) that the vast majority is applied to equities or equity in-
struments (Neuneier, 1996; Moody and Wu, 1997; Liang et al., 2018; Xiong et al., 2018;
Park et al., 2020; Snow, 2020b; Théate and Ernst, 2021; Aboussalah et al., 2021; Pigorsch
and Schäfer, 2021). Lately, an increasing number of studies is also dedicated to crypto-
currencies as it has become a popular asset class and research topic (Jiang et al., 2017;

66 Chapter 2. Literature Review

Bu and Cho, 2018; Betancourt and Chen, 2021). We can also find published work tar-
geting forex, although on a less frequent basis (Moody and Saffell, 2001; Dempster and
Leemans, 2006).

Other researchers target simplified mixed portfolios of equities and bonds. One such
example is the work of Pendharkar and Cusatis (2018) investigating the use of RL in
personal retirement portfolio management. The authors consider a portfolio with only
two assets, one from the equities class and the other from bonds, specifically: the S&P
500 ETF and either the US Aggregate Bond ETF or the 10-year US Treasury note. In a
different study, Almahdi and Yang (2017) propose an RL method to produce buy and
sell signals and asset allocation weights, using a portfolio made of five assets represen-
ted by five of the most commonly traded ETFs, of which four are equity ETFs and one
from the bond asset class.

Finally, to put our own work in context, it is worth emphasising that no study was
found where the target asset class is specifically bonds or other financial securities in
which the composition is exclusively bonds.

Quality of results

As far as quality of results is concerned, the literature is mixed on this type of RL ap-
plication, showing that algorithms do not always work as expected, and sometimes the
results are suboptimal. While some studies showcase good results (Neuneier, 1996;
Moody and Wu, 1997; Xiong et al., 2018; Betancourt and Chen, 2021; Pigorsch and
Schäfer, 2021), others are not able to outperform their benchmarks, reporting conver-
gence, stability and overfitting problems (Liang et al., 2018; Snow, 2020b; Aboussalah
et al., 2021). This overall picture clearly demonstrates the need for additional research
in this field.

Type of agent

The actor-only type of agent directly optimises the objective function the investor is
interested in. This fact makes it conceptually stronger and thus, it tends to be more
stable and reliable (OpenAI, 2022b). In fact, it is the simplest RL problem representa-
tion, avoiding the “curse of dimensionality” (we will discuss this concept in more detail
in Section 5.3.1.1).

In contrast, critic-only methods optimise the performance of the agent “indirectly” by
learning a value function and solving the Bellman equation. As a result, this approach
tends to be less stable and many possible problems have been pointed out. Hence, Sut-
ton and Barto (2020) refer the “deadly triad” of function approximation, bootstrapping,

2.7. Reinforcement learning 67

and off-policy data, which cause instability in value-learning algorithms when they co-
exist. If only two of those are present instability can be avoided. The same potential
problem has been reported by Tsitsiklis and Van Roy (1997), when using function ap-
proximators and temporal difference learning. To clarify, function approximators refer to
linear or nonlinear functions to estimate the action value; off-policy is when the agent is
learning the value of a policy and not using it for control, i.e. when the target policy is
different from the behaviour policy; and the concept of bootstrapping in RL refers to the
case when estimates are updated on the basis of other estimates without waiting until
the end of the episode, as in temporal difference learning.

Despite these potential problems, the critic-only benefits from higher sample efficiency,
since data can be reused more effectively than with actor-only methods (Schulman
et al., 2017a). The authors also demonstrated that under specific circumstances (con-
sidering entropy-regularized Q-learning), both methods are equivalent.

The actor-critic type of agent, combines the previous solutions. As a result, it should
be able to trade-off between the strengths and weaknesses of each, since they are in-
tegrated and use the information from one to improve the task of the other. However,
there is much less work we can refer to, so the challenges are higher in this approach.
This is compounded by the reports in the literature of difficulties encountered when
using this architecture.

2.7.6 RL potential for portfolio management

In this section, we present the main points justifying our selection of RL to address
Objective 6 (Section 1.2). We start by pointing out that the literature is very supportive
for research in this area. Indeed, there is a considerable amount of research in applic-
ations to portfolio management and trading, and the field is still at a very early stage
of development. While we feel some reassurance from the success that RL algorithms
have been achieving in other areas (Silver et al., 2016; Mnih et al., 2015; Andrychowicz
et al., 2020), published results related to our application are also encouraging, making
it a challenging option.

In addition, it has been demonstrated that in comparison to alternative methods us-
ing supervised learning, RL is more “elegant and effective” for systems where trading
frictions are taken into account. Besides, the need to build forecasting models is elim-
inated, and better performance has been obtained (Moody and Saffell, 1999, 2001).

Furthermore, as a proof of concept in financial applications, it has also been demon-
strated that RL is able to find and exploit arbitrage opportunities. Hence, in simulated
market conditions, where the existence of arbitrage opportunities was known in ad-
vance, Ritter (2017) developed a system where the agent was able to find them in a

68 Chapter 2. Literature Review

successful trading strategy, with proper consideration of transaction costs. The author
used the Q-learning technique for this purpose.

Finally, in our work we will focus on a specific type of agent (actor-critic), using a
specific algorithm (DDPG), and applied to a specific asset class (bonds). All of these
correspond to niches where less or no research has been produced.

2.8 Summary and conclusions

The principal focus of our research is on machine learning for forecasting and portfolio
management in fixed income markets. We also selected as a target the yield curve,
taking into account its importance for bond markets and for the overall economy.

The most common models for time series are the AR, ARMA, ARIMA, ARCH and
GARCH type of models. These are based on the assumption of autocorrelation in the
movement of the time series, that is correlation between current and lagged values.
However, there is some evidence from the literature, in particular for time series of
returns, that the autocorrelation is largely insignificant.

On yield curve models, the most important and widely used models are the NS and the
DNS models. The latter is a development of the original model and incorporates both
intrinsic factors of the yield curve, namely level, slope and curvature, and a restricted
number of macroeconomic factors, which are manufacturing capacity utilization, an-
nual price inflation and federal funds rate. These models are undoubtedly valuable
and well established in the industry, but for a new research using machine learning
techniques, the limitation by those factors is undesirable, mainly the macroeconomic
factors.

Overall, the literature review revealed that most of the research carried out on the use
of machine learning for financial applications focuses mainly on equities, and also on
forex. The coverage of fixed income markets using machine learning is much less signi-
ficant. This is an opportunity (and a gap) to explore this field with additional research.

Asset classes review

From the studies covered in the asset classes review it was not possible to find a direct
solution for modelling the yield curve using machine learning (Objective 2, Section 1.2),
with one exception referred in Section 2.2.1. This is a gap in terms of academic research
and the aim of our research is to fill this gap. Notwithstanding the potential of spacial /
geostatistical models, these models base the whole mapping and forecasting processes
in intra and extrapolation using historic yield curve data only. For this reason, we
perceive machine learning models with greater potential and flexibility.

2.8. Summary and conclusions 69

Another interesting model covered in this literature review (Objective 2), was an RNN
topology called shared layer perceptron. Although the research programme did not in-
clude any application directly in the fixed income area, the characteristics of the model
appear to indicate high potential for yield curve forecasting, given the multi-asset and
multi-step characteristics.

The review was particularly interesting regarding ideas for Objective 5 and for poten-
tially better models: from the use of ensembles to different types of hybrid models,
with inclusion of broad information from several sources. Among those they should
incorporate macroeconomic, financial and, whenever possible, practitioner type of in-
formation.

On single target problems, although the results achieved were sometimes mixed, even
with the same type of machine learning model, the following models were reported
with positive results, in diverse markets: RBF, MLP, SVM, RF, and RNN.

Regarding features (Objectives 1 and 3), our research has the objective of going beyond
the exclusive use of historic data from the variable to predict. Specifically, in the object-
ives we include the assessment of a wide range of potential explanatory variables from
a variety of fields. This is a common theme in the literature, reporting the benefits of
including in the models additional information from different sources as independent
variables. These may include political, economic, financial and domain-specific factors.

Standard and deep learning models

The machine learning models that will be used in Chapters 3 and 4 for implementa-
tion were presented (Objective 5), namely: linear regression, MLP and the LSTM. They
cover a range of models in terms of complexity, from the simpler linear model to the
more complex, nonlinear standard and recurrent type of neural networks.

Multitask learning

MTL enables the learning of several targets simultaneously and there are reasons to
believe that this technique could be used to model and forecast the yield curve (Object-
ives 2 and 4). Furthermore, the type of applications described in the literature seems
to give a good indication regarding its potential use with this objective. It is definitely
a research path worth pursuing. To the best of the author’s knowledge this is a novel
application of ANNs and MTL for yield curve forecasting.

In summary, MTL can be used for yield curve forecasting in various modes. In fact,
MTL targets can represent: different points in the yield curve at the same point in
time; the yield of a particular bond, at different times; a combination of previous items,

70 Chapter 2. Literature Review

enabling multi-asset and multi-step forecast; and additional variables to include in the
structure of the network as targets.

Reinforcement learning

Finally, the limitations of supervised learning and of the traditional methods for port-
folio management used in the industry led to the selection of RL to fulfill Objective 6
of this work. This selection is also supported by the need for additional research using
RL for this type of application, especially in specific niches within the agent taxonomy
and having bonds as the target asset. For that purpose, the conditions in RL have de-
veloped favourably to support the execution of this work. This is due to the rapid
development in the last few years of powerful new algorithms, in part as a result of
recent developments in supervised machine learning, feeding through the field of RL.
Although the progress has been rapid, not enough research has been done yet, so that
these techniques could be used more widely in the industry. The results presented from
the literature also ensure that this is a challenging topic, considering the high number
of studies reporting unsatisfactory performances.

71

Chapter 3

Multilayer Perceptrons for Yield
Curve Forecasting

This chapter describes the work conducted with MLPs and MTL for forecasting the
yield curve. In more detail, we will be describing all phases of the research, covering
Objectives 1–5 (Section 1.2), specifically: selection of fixed income asset, the collection
and transformation of data, the identification of MLP models, the methodologies used,
the testing and experimental results obtained. Finally, a comparison of the results ob-
tained with those found in related works in the literature is also included.

3.1 Data

In this section we describe the dataset used for the empirical work, identifying features,
targets and pre-modelling operations.

3.1.1 Targets

The focus of our work is the government bond asset class, which was selected for the
following reasons. First, liquidity of this asset class is clearly higher than for the other
bond classes. Second, the size of the market is also considerably higher. Third, this
class encompasses a wide range of financial instruments available. Fourth and last,
research on government bonds will attract the interest of entities such as national and
supra-national institutions, in particular central banks, national government agencies
managing the public debt, as well as asset management companies. Within this asset
class, the Euro benchmark yield curve was selected and Figure 3.1 is its representa-
tion across time. Its modelling will be done through the modelling of its most relevant
benchmarks, as described in Section 2.5. The benchmarks considered were: 3-month, 2,

72 Chapter 3. Multilayer Perceptrons for Yield Curve Forecasting

FIGURE 3.1: Representation of the yield curve across time.

5, 10 and 30-year bond yield, representing five targets to be predicted. The correspond-
ing summary statistics is presented in Table 3.1.

TABLE 3.1: Descriptive statistics of the target variables.

Statistic Yield

3M 2Y 5Y 10Y 30Y

Mean (%) 1.73 2.00 2.49 3.10 3.70
Standard deviation (%) 1.65 1.74 1.72 1.56 1.47
Kurtosis 1.65 1.65 1.76 2.06 2.24
Skewness 0.18 0.00 -0.29 -0.51 -0.55
Jarque-Bera p-value 0.00 0.00 0.00 0.00 0.00
Augmented Dickey-Fuller p-value 0.20 0.20 0.23 0.22 0.19

All the target time series exhibit kurtosis below the normal distribution (with kurtosis
equal to 3), i.e. they present negative excess kurtosis. The skewness is mixed and close
to zero. On the Jarque and Bera (1980) test, the results indicate that the time series does
not present a normal distribution. In turn, the Augmented Dickey and Fuller (1979) test
shows that they are non-stationary. This data is subsequently normalised as explained
in Section 3.1.5, to have zero mean and unit standard deviation.

3.1.2 Features

Choosing relevant features is one of the most important factors to improve the per-
formance of models. Given the interconnectedness and mutual influence of various
asset classes in the markets, a large number of features from financial markets were
considered. These were selected from government bond markets and from related
classes and indicators: corporate bonds, equities, currencies, commodities and volat-
ility. Additional features were added, directly calculated from the previous features,

3.1. Data 73

mainly bond spreads, slope of the yield curve and simple technical analysis indicators.
Furthermore, economic variables are also very important, as clearly exemplified by the
well established yields-macro models presented in Section 2.1.2. Hence, a vast range
of economic indicators is also included, from different geographic locations. The com-
plete list includes 159 features and, because it is so extensive, is presented in Table A.1
of Appendix A.

3.1.3 Datasets

The dataset was obtained from Bloomberg database and it covers the period from Janu-
ary 1999 to April 2017 (Bloomberg, 2017a). This is a longer period than covered in other
studies (Dunis and Morrison, 2007; Sambasivan and Das, 2017). From the markets’
point of view, this is an interesting period to study, spanning from the euro inception
date on the 1st of January, 1999. This is also the starting date for most time series of
the Euro benchmarks, in particular the yield curve data. Additionally, this period cov-
ers several temporary bull and bear markets and market moving events, such as: the
dot-com bubble in 2000; the global financial crisis of 2008-2009, the Great Recession;
the subsequent European debt crisis; the European recession in 2012-2013; and sev-
eral phases of quantitative easing by the US Federal Reserve, European and UK central
banks. Of note is the fact that, the principal overall trend in the bond market during this
period has been of declining yields, although with significant and frequent temporary
reversals.

Regarding data frequency, the selection was daily closing values, which are easily avail-
able for financial assets in general. For economic data, only final values were con-
sidered. Besides, in order to have an uniform dataset, needing less initial cleaning and
analysis, the same daily imposition was used for all macroeconomic variables, carrying
over previous values when their frequency is lower.

3.1.4 Generation of additional features

In financial time series there is a natural temporal order that cannot be disrupted dur-
ing modelling, since that ordering has in itself relevant information. Taking this into
account, it is worth incorporating into the models past values of the time series. Hence,
new features are generated from the original ones, corresponding to the lagged values
of the respective time series. In our research, six time steps were considered, corres-
ponding to one working-days week plus one day from the previous week. A similar
window size has been used in previous studies (Mahler, 2009; Brownlee, 2020). These
generated features are subject to the feature selection process, described in detail in
Sections 2.4.2.1 and 3.2.2.

74 Chapter 3. Multilayer Perceptrons for Yield Curve Forecasting

3.1.5 Train-test split and normalisation

As is common, we divided the data into two groups, for training and testing the mod-
els. In this case, a 70% / 30% split was considered. The resulting groups are the initial
“static” training and testing datasets. Preliminary simulations to determine some hy-
perparameters to be used in the final experimental work (for example the assessment
of number of hidden units to consider in the MLP model), were done with this static
training dataset to avoid any use of testing data for this purpose. However, the final
training of models was always conducted with the use of dynamic moving windows of
training data. These will be explained in depth in Section 3.2.6. Given the long period
covered by the overall data, both training and testing datasets are significant in size
and encompass several bull and bear cycles (3296 and 1413 observations, respectively).

Finally, all data was normalised by subtracting the mean and dividing by the standard
deviation of the training dataset. This is also essential, given the wide range of features
we are considering, which have very different scales in some cases.

3.2 Methodology

In this section, the details of the methodology adopted are presented, including vari-
ous analyses carried out in advance to the modelling process to justify the parameters
adopted (Section 3.2.3 for hyperparameter “number of hidden units”; and Section 3.2.6
for hyperparameter “moving window size”). Then, all models considered in this study
are detailed. Finally, the concepts of moving window, retraining of models and cross-
validation are described. A global view of the empirical work carried out is summar-
ised in Table 3.2 and explained below.

3.2.1 Forecasting horizon

Given a specific training dataset, forecasting the next value in the time series should
be less complex than forecasting further into the future, when the time distance to the
known data increases. Taking this into consideration, a forecasting horizon parameter
was introduced in this study, equal to the number of days, or time steps, from the next
value of the time series. In practice, a forecasting horizon equal to zero corresponds to
forecasting the next value, i.e. one time step ahead, while a forecasting horizon equal
to 20 corresponds to predicting the next value plus 20 days ahead. Our research was
conducted using a range from 0 to 20, with 5 days increment (Table 3.2). The next
day plus 20-day range (working days) was considered as it corresponds to one month,
approximately. These limits have also been used in other studies (Arrieta-Ibarra and
Lobato, 2015).

3.2. Methodology 75

TABLE 3.2: Summary of empirical work.

Parameters

Original features 159
Targets 3M, 2Y, 5Y, 10Y, 30Y
Forecasting horizons 0 (next day), 5, 10, 15, 20 days

Analyses

Regularisation param. 0 to 4, step 0.1
Selected 2 and 4

Moving window size 30, 100, 300, 500, 1000, 2000, 3000, 3290
Selected 3000

No. of hidden units 5, 10, 20, 50, 100, 150, 200
Selected 10

MTL mode Yields as targets
Forecasting horizon as targets

Models

LR Linear Reg Linear regression

1. NN GenFeat MLP with all generated features
2. NN RelFeat MLP with relevant features
3. NN TgtOnly MLP with target data only

4. NN RelFeat+LRdata NN RelFeat with synthetic data from Linear
Regression model

5. NN TgtOnly+LRdata NN TgtOnly with synthetic data from Linear
Regression model

3.2.2 Feature selection

It should be emphasised that the most relevant features for each target yield are not
known in advance and this is why this study included a wide range of original fea-
tures (Table 3.2) to be submitted to feature selection. Linear regression using the Lasso
method was performed to select the most relevant features (Equation 2.14). A range
from 0 to 4 was considered for the regularisation parameter γ, with values 2 and 4 be-
ing selected. This selection will be explained in detail when discussing the results in
Section 3.3.1. Furthermore, as the impact on relevant features can change for different
forecasting periods, we determine the relevant features separately per target and per
forecasting horizon, resulting in a total of 25 combinations.

3.2.3 Number of hidden units

An additional analysis was conducted to define the number of hidden units to use in
the neural network model. Based on the previous literature (Section 2.2), the specific

76 Chapter 3. Multilayer Perceptrons for Yield Curve Forecasting

range of hidden units shown in Table 3.2 is explored. This analysis was conducted
for each target and for both single task and multitask learning. For this selection, the
static training dataset was divided into a training and validation datasets, again using
the traditional 70%/30% split. The training dataset was used to train the models and
the errors calculated on the validation dataset were used as the selection criteria for
the final value of the number of hidden units. This procedure was followed to avoid
a common mistake of using the final testing dataset for choosing parameters, which
may give an unfair advantage to the model. No data from the static testing dataset
was used to select the number of hidden units. The main conclusion from the results is
that 10 hidden units is a good compromise for the subsequent studies, with significant
overfitting observed for neural networks with more than 100 units.

3.2.4 Single task and multitask learning

The modelling was carried out using the concepts of MTL described in Section 2.5,
both in multitask learning mode, that is, considering simultaneously all targets in the
same model, and through problem transformation into five single task learning models.
For the multitask learning mode, two analyses were considered: with yields as targets
(multi-asset forecasting) and forecasting horizon as targets (multi-step forecasting).

An additional issue in MTL, is that a solution needs to be found for the relative import-
ance among target variables. This can be done through the consideration of different
weights, using Equation 2.15 (Caruana, 1997). In that study, a range of weights (from 0
to 2) for the extra tasks was tested and the best results were obtained for values of the
parameter λ around 1, meaning all tasks having equal weight and importance. Bear-
ing in mind these results, and the fact that this differentiation between main and extra
tasks may not be necessary in the case of backpropagation neural networks, all results
presented subsequently are considering all task with the same importance (λ parameter
equal to 1).

The implementation of the various techniques of MTL is particularly important in the
modelling of the yield curve, because it takes into consideration the functional form of
the curve and the high levels of correlation between adjacent yields in the curve.

3.2.5 Models

All models studied in our research are listed in Table 3.2. The multivariate linear regres-
sion model is used as the baseline for comparison with the MLPs. This model uses the
Lasso regression described in Section 2.4.2.2 to perform feature selection and identify
the most relevant features as explanatory variables, which are then used in the final

3.2. Methodology 77

multivariate linear regression model. For this reason, it represents a stronger baseline
to beat.

The following three main models considered use the MLP architecture. Model 1 uses
the complete list of generated features. Model 2 uses the relevant features determined
during the feature selection process (features selected per target and per forecasting
horizon). Finally, in Model 3 only past values of the target(s) to predict are taken into
account, i.e. a univariate type of model.

In addition, we observed that results obtained with linear regression performed sur-
prisingly well in some cases (further details in Section 3.3.2). For this reason, it was de-
cided to test the performance of hybrid models, incorporating the alternatives referred
above with better performance (Models 2 and 3) and synthetic data generated by the
linear regression model, used as additional feature(s). In more detail, Model 4 (NN
RelFeat+LRdata) and Model 5 (NN TgtOnly+LRdata), are constructed using models 2
and 3 as base, respectively. But they differ from those by the fact that they extend the
set of features used in the base model, with additional feature(s) artificially generated
by another model, in this case the linear regression model. Hence, they incorporate
one additional feature for each target (when in single task learning), or five additional
features for all targets (when in multitask learning). New MLP models are then run for
the new set of data.

When forecasting beyond one step ahead, for longer forecasting horizons, there are two
methods that can be used: direct or iterative forecasting. On the one hand, in the direct
forecast only current and past data is used to forecast directly the time step required,
using a horizon-specific model. On the other hand, in the iterative forecast a one step
ahead model is iterated forward until the target forecasting horizon is reached. In this
case, recent predictions are included as input to predict the desired target time step.

All our models use direct forecasting of targets. Iterative predictions are known to
work best when the time series is generated by a nonlinear dynamical system which
can be written as a mathematical formula, as shown in very early work by Wan (1993).
However, this is not the case with financial time series and prediction errors tend to
propagate fast if we were to do iterative predictions. As a result, new neural networks
are built for each forecasting horizon, both in single task and multitask learning, when
using yields as targets.

3.2.6 Moving window and retraining of models

One of the characteristics of financial time series is that they become available at a
specified frequency, in this case on a daily basis. As the new information becomes
available, it can be incorporated in the models which are then retrained using the new
training dataset that results from eliminating the oldest values and including the newly

78 Chapter 3. Multilayer Perceptrons for Yield Curve Forecasting

available values. Hence, the training dataset is a moving window of historical data up
to the time step being considered, corresponding to the last known data. The retraining
of models using a moving window is feasible in real time and the technique was used
to take full advantage of the models.

Furthermore, due to the large size of the testing dataset and the computing time neces-
sary to retrain the models and forecast all points, only fifty random points were selected
from the unseen testing dataset for forecasting error calculations (out of sample error).
Figure 3.2 is a graphical demonstration of the moving windows.

FIGURE 3.2: Moving window methodology. Note that at any time step t (present time for the
correspondent time step), all data up to this point is historical data and is incorporated in the

training moving window for better results.

The moving window size is another parameter that needs to be set and we performed a
sensitivity analysis to study its impact on forecasting errors, using the range shown in
Table 3.2. The same procedure described in Section 3.2.3 was followed to avoid using
data from the static testing dataset (Figure 3.2) to select the moving window size. In
short, the static training dataset was divided into a training and validation dataset,
and the errors calculated on the validation dataset were used as the selection criteria
for the final value of this parameter. The results showed that better predictions were
obtained with larger windows, with a significant improvement until it reached 2000
observations and then the benefits were much smaller. A final moving window size of
3000 observations was used.

3.2.7 Cross-validation

In classic regression problems, cross-validation is often done using k-fold (usually 10
folds), which randomly splits the data into training and validation sets and uses these
partitions to run the model. The process is repeated for all k folds. However, in time

3.2. Methodology 79

series data this approach is not correct because we have to respect the order of the time
series. In particular, it makes no sense to take the data and randomize partitions into
10 folds and then train on 9 and validate in the 10th partition, because in some cases
we will be forecasting backwards, using future data to predict past data (for example
when we forecast fold number 1, using folds 2 to 10).

Another method frequently used is the repeated random subsampling validation, also
known as Monte Carlo cross-validation (Picard and Cook, 1984). In this method, the
training dataset is randomly split into training and validation datasets a selected num-
ber of times. Hence, in each iteration we randomly draw without replacement new
training datasets with the remaining data considered as validation dataset. In this re-
spect Monte Carlo cross-validation is close to the concept of bagging (Breiman, 1996),
further described below, but the extraction of samples is performed without replace-
ment. An estimation of out-of-sample forecasting errors is obtained by fitting the model
in the new training datasets and determining the errors in the validation datasets.

When compared to k-fold cross-validation, the splitting into training and validation
in the Monte Carlo cross-validation do not depend on the number of folds chosen, en-
abling additional flexibility in terms of size and number of training/validation datasets
(Barrow and Crone, 2016). It has also been shown to be asymptotically consistent (i.e.
probability of selecting the best model converges to 1 as the number of observations
tends to infinity) and less susceptible to overfitting (Shao, 1993). However, this method
does not solve the problem found in the k-fold cross-validation of including backwards
forecasting. Additionally, and despite the fact that in each iteration both methods gen-
erate mutually exclusive training and validation datasets, in different iterations there
is overlap between data being used in training the models and in validation.

The cross-validation methodology we use instead is based on the concepts of boot-
strap (Efron, 1979; Efron and Tibshirani, 1993) and bagging (Breiman, 1996). The first
concept, bootstrap, consists of extracting samples randomly from the original dataset,
with replacement and of the same size of the original dataset. It is a powerful statistical
tool that enables the quantification of uncertainty around the forecasting error using
a particular model. The second concept, bagging, is directly related to bootstrap. It
uses bootstrap to generate samples to train multiple predictors and then the results are
combined by averaging or voting. This is a well-known and effective ensemble tech-
nique, where the diversity in the predictors is a result of the different random bootstrap
samples. Recall from Section 2.3 that considering the diversity of ensemble members
as one of the most important drivers of the success of ensembles, a recent study on
fourteen different real-world time series (Oliveira and Torgo, 2014) concluded that the
models where additional diversity was introduced showed better prediction accuracy.

Considering the concepts explained above, we do the cross-validation dynamically us-
ing a moving window that incorporates all data available up to the present moment

80 Chapter 3. Multilayer Perceptrons for Yield Curve Forecasting

for the corresponding time step, i.e. considering all historical data up to that time
step. From the corresponding moving window we extract twenty different bootstrap
samples, by sampling with replacement and of the same size of the original moving
window, i.e. 3000 observations (Section 3.2.6). The selected number of twenty bootstrap
samples seems appropriate taking into consideration previous research work, where a
range of bootstrap samples was tested (Kohavi, 1995).

Then, the time series is reordered chronologically and we proceed with training the
models for each bootstrap sample. The forecasting error calculations are always car-
ried out for the same fifty random points of the testing dataset (Figure 3.2). This is
an important point since we aim to evaluate all models when forecasting exactly the
same out-of-sample points for a fair comparison of models, objective which by itself
would exclude all the previous cross-validation methods mentioned above in this sec-
tion, namely the k-fold and Monte Carlo cross-validations.

In summary, our cross-validation method quantifies uncertainty around the model
metrics obtained, having the following advantages. First, it introduces diversity in
the training dataset through the bootstrapped samples, which has been found to lead
to better forecasting accuracies (Oliveira and Torgo, 2014). Second, it ensures a fair
comparison of models, since they are forecasting yields for the same dates, the fifty
fixed random points. Third, it also guarantees that we only use past data to predict
future data, unknown to the model, avoiding one of the problems in the other method-
ologies referred previously. Fourth, by calculating the metrics directly on testing data,
we also avoid any type of overlapping, in different iterations, between training data
and data used for calculating the forecasting errors. Fifth and last, we calculate out-
of-sample forecasting errors instead of an estimation of them obtained using the other
methods described. Overall, cross-validation is especially important for the neural net-
work model, but in order to have a fair comparison, the same methodology was fol-
lowed for the linear regression model.

3.2.8 Model comparison metrics

The main metric used for presenting the results was the mean squared error (MSE),
which is commonly used for this purpose. Nevertheless, other metrics were also cal-
culated: mean absolute error (MAE), mean absolute percentage error (MAPE) and root
mean squared error (RMSE). Although the latter evaluates the same information about
model performance as the MSE, we include it for convenience as having the same unit
as the targets may in some cases be helpful to understand more directly the magnitude
of the error versus the real variable. Additionally, the statistical significance of differ-
ences was determined for all possible combinations.

3.3. Results and discussion 81

These metrics were calculated in two different forms: normalised and non-normalised.
As mentioned in Section 3.1.5 the data was previously normalised. In the normalised
version of the metrics, it was calculated directly from normalised yields (real and pre-
dicted). In the non-normalised version, the yields were converted back to real yields
and then the metric determined. The results are presented using the normalised metric
since the non-normalised equivalents are scale dependent and, consequently, depend
on the period we are analysing and the level of yield at that particular period. Hence,
the normalised metric is used to facilitate the comparison of models in the literature.

3.3 Results and discussion

In this section the main results are presented and discussed, divided into two separate
topics. First, we present the feature selection results to identify the most relevant fea-
tures. Second, a thorough comparison of the models used and their variants is carried
out, together with a comparison to results from the literature.

3.3.1 Feature selection

A typical example of the feature selection results obtained, in this case for the 30-year
bond yield, is shown in Figure 3.3. As can be seen, it is not necessary to examine a larger
range for the regularisation parameter γ, because it starts stabilising very quickly with
a small number of features.

FIGURE 3.3: Change in the number of features as a function of the
linear regression’s regularisation parameter (γ), for target 30-year

bond yield. Inside chart: zoom in range γ = 1.5 to 4.

82 Chapter 3. Multilayer Perceptrons for Yield Curve Forecasting

However, since we are considering five different targets and most of the relevant fea-
tures are not common to all targets, the total number of features to consider for the
simultaneous modelling of all targets in MTL mode increases significantly, in relation
to the number of features to consider in single task learning. For this reason, exper-
iments with two selections of features were conducted: using linear regression with
γ equal to 2 and 4. The latter value of the regularisation parameter further reduces
the number of relevant features to consider in the models. In fact, despite the stabil-
isation trend shown in the plot (Figure 3.3), the number of relevant features continues
to decrease with γ, in particular for predictions further away in the future. The results
presented henceforth refer to the feature selection with γ = 4 (results with γ = 2 are not
included in this work because they do not provide any additional information to the
main findings). Comparatively to those obtained with γ = 2, it leads to better results,
with lower spread, mainly for the longer maturities considered (5, 10 and 30 years).
The much higher number of features using γ = 2 tend to result in some overfitting of
the neural network model.

An analysis of the feature selection results reveals that the relevant features depend
on both the target yield to predict and the forecasting horizon. Table 3.3 shows the
top relevant features per target, selected by weight above 0.01 and when they remain
relevant in at least 4 of the 5 forecasting horizons studied.

For all targets, there is a dominant feature which is the last value of the target to predict.
This is an expected result, since the last value should reflect all information available
to the markets. This strong dominance is clear for the one step ahead forecasting but
rapidly diminishes as the forecasting horizon increases and additional features are in-
cluded in the model. Apart from this dominant feature, additional relevant features
tend to come from assets with the same or adjacent type of maturity.

Now we will analyse the relevant features across target yields and across forecasting
horizons. On the one hand, for a specific target, the number of features increases with
the forecasting horizon (see Table 3.4). Most of the relevant features for one step ahead
predictions remain relevant for forecasting more distant future values, but additional
features are required for those more distant and more complex predictions. On the
other hand, considering a particular forecasting horizon, each target yield tends to have
a specific set of features. Adjacent targets may in some cases have some equal relevant
features, but rarely does a specific feature remain relevant across the yield curve for all
targets. The last row of Table 3.4 shows that the number of relevant features necessary
to model all targets simultaneously (MTL) increases continuously with the forecasting
horizon, from 31 (0 days) to 90 (20 days).

Overall, the most relevant features for yield curve forecasting (dominant features) are
the last available values of the targets. Table 3.3 also stresses the importance of assets
with the same or adjacent types of maturity, in particular neighbouring yields of the

3.3. Results and discussion 83

TABLE 3.3: Top relevant features per target, considering only those with
weights above 0.01 and when they remain relevant in at least 4 of the 5 fore-

casting horizon studied. Dominant feature in bold.

ID Feature Name Ticker Time step

3M

4 Interest Rate Overnight EUDR1T t-1
5 Interest Rate Overnight EUDR1T t
772 Euro Generic Govt 3 Month Yield GECU3M t-3
773 Euro Generic Govt 3 Month Yield GECU3M t-2
775 Euro Generic Govt 3 Month Yield GECU3M t
780 Euro Generic Govt 2 Year Yield GECU2YR t

2Y

45 Generic 2nd 3M Euribor Future ER2 t
275 Equities Euro Stoxx 50 Index SX5E t
780 Euro Generic Govt 2 Year Yield GECU2YR t

5Y

200 Bond Future Europe 2 Year Yield DU1 t
291 Equities Tokyo Topix Index TPX t-4
785 Euro Generic Govt 5 Year Yield GECU5YR t

10Y

210 Bond Future Europe 10 Year Yield RX1 t
230 Swaps rate 10 Year EUSA10 t
785 Euro Generic Govt 5 Year Yield GECU5YR t
790 Euro Generic Govt 10 Year Yield GECU10YR t

30Y

210 Bond Future Europe 10 Year Yield RX1 t
215 Bond Future Europe 30 Year Yield UB1 t
235 Swaps rate 30 Year EUSA30 t
356 Commodities Corn C 1 t-4
795 Euro Generic Govt 30 Year Yield GECU30YR t

yield curve, to facilitate the forecasting process. Other macroeconomic indicators re-
lated to inflation and economic activity, commonly used for forecasting purposes and
directly related to the components of a bond yield (Section 2.1), also contributed to
some yields or to some forecasting horizons. Likewise, other features related to the
European Central Bank balance sheet were also useful. These assume particular relev-
ance especially after the 2008 recession and the introduction by central banks of unpar-
alleled levels of non-conventional monetary policy.

As mentioned, the most relevant features were dependent on both target yield to pre-
dict and forecasting horizon. Consequently, the main lesson from the feature selection

84 Chapter 3. Multilayer Perceptrons for Yield Curve Forecasting

TABLE 3.4: Number of relevant features per
yield, per forecasting horizon and in MTL mode

(simultaneous modelling of all yields).

Yield Forecasting horizon (days)

0 5 10 15 20

3M 11 22 23 29 36
2Y 5 18 19 18 23
5Y 8 11 17 17 25
10Y 5 13 17 22 25
30Y 7 11 20 21 25

MTL 31 58 71 76 90

process is that the methodology plays an important role and is more desirable than
having a small number of pre-determined individual features. This small number of
features may limit the capacity of the model to predict with higher forecasting accur-
acy. To conclude, the results from this study indicate that it is preferable to have a
more significant number of features and submit them to a rigorous selection method
for the specific conditions of the regression problem (in our case the target yield and
the forecasting horizon).

3.3.2 Comparison of models

In this section, modelling results are presented, discussed in depth and finally com-
pared with other results in the literature.

3.3.2.1 Introduction

Results from a direct comparison of the MLP model using all generated features (Model
1, Table 3.2) versus MLP with relevant features (Model 2), demonstrated the clear ad-
vantage of performing an initial feature selection. The main advantages are twofold:
better forecasting (lower errors and lower spread) and lighter models with lower num-
ber of features meaning less computing time. For this reason, the results presented in
Figure 3.4 exclude Model 1.

The results are presented using the normalised metric (Section 3.2.8). However, in or-
der to enable a point of comparison between normalised and non-normalised results,
an example is presented for the 10-year yield in Table 3.5. Given the MAPE calculation
method, this metric tends to give very volatile results when the real yield is close to zero
(denominator in the calculating equation). For this reason, the MAPE non-normalised
metric was calculated excluding two data points with real yields equal to 0.0%, i.e. less

3.3. Results and discussion 85

(A) Forecasting horizon = 0 days (next day). (B) Forecasting horizon = 5 days.

(C) Forecasting horizon = 10 days. (D) Forecasting horizon = 15 days.

(E) Forecasting horizon = 20 days.

FIGURE 3.4: Comparison of models: linear regression (LR Linear Reg); MLP using relevant
features per target and per forecasting horizon (NN RelFeat); MLP using only past values of
the target(s) to predict (NN TgtOnly); and the last two models with synthetic data from the
linear regression model as additional feature (NN RelFeat+LRdata and NN TgtOnly+LRdata,
respectively). In all cases: neural network (NN) models with 10 hidden units and feature selec-

tion with regularisation parameter γ equal to 4.

86 Chapter 3. Multilayer Perceptrons for Yield Curve Forecasting

than 5 basis points (bp), where this metric does not become appropriate. On the com-
parison between normalised and non-normalised metrics, as can be seen the difference
between them is not substantial given the range and level of 10-year yields analysed.

TABLE 3.5: Forecasting errors for 10Y yield, for Model MLP using relevant
features, and Forecasting horizon next day. The non-normalised MAPE ex-
cludes two data points with real yields equal to 0.0% (less than 5 bp), where

this metric does not become appropriate.

Error Normalised Non-normalised

Mean Std Dev Mean Std Dev

MAE 0.0319 0.00194 0.0334 0.00185
MAPE 1.61 0.09 6.02 0.34
MSE 0.00206 0.00021 0.00226 0.00018
RMSE 0.04529 0.00229 0.04754 0.00189

3.3.2.2 Multilayer perceptron models

The one step ahead forecasting, shown in Figure 3.4a, tends to produce results of
the same magnitude for all models considered, with no significant difference between
them. In fact, analysing the baseline linear regression model, the results were surpris-
ingly good for next day forecasting. However, we need to stress that linear regression
and neural network models followed exactly the same procedure in what concerns: fea-
ture selection per target and per forecasting horizon and retraining of models at every
time step (as discussed in Sections 3.2.2 and 3.2.6). As a result, this model is a more
difficult benchmark to beat when forecasting the next day.

However, when we move from forecasting one step ahead to forecasting further into
the future, the superior performance of the MLP models compared to the benchmark
linear regression becomes more prominent, especially above next day + 5 days (Figures
3.4c to 3.4e). Specifically, the best MLPs achieved reductions of MSE w.r.t. linear regres-
sion in the range of 46% to 81% (median values, for forecasting horizons of 15 and 20
days).

Additionally, the model using relevant features (Model 2, Table 3.2), starts outperform-
ing the model using only past values of the target yield to predict (Model 3), especially
for longer forecasting horizons and longer maturities (10 and 30-year bonds). The latter
results demonstrate the importance of incorporating features from markets and eco-
nomy in the models.

The analysis of the MLP models using synthetic data, reveals another interesting point.
Despite the simplicity of linear regression, the neural network models including syn-
thetic data generated by this model tend to improve results (Figures 3.4c to 3.4e). Once

3.3. Results and discussion 87

again, this effect is more pronounced for longer forecasting horizons and longer matur-
ities (2 to 30 years), achieving MSE reductions compared to the model without synthetic
data in the range of 11% to 70% (median values, for forecasting horizons of 15 and 20
days). This is a promising result, showing the potential for the development of hybrid
models using synthetic data from other models.

Globally, considering all models and forecasting horizons studied, the results presented
show that the MLP using relevant features achieves the best overall results for yield
forecasting.

Also of note, and as one would expect, when we move from forecasting one step ahead
to forecasting further into the future, the error increases, due to the more demanding
forecast for longer horizons. This can be seen in Figures 3.4b to 3.4e, when compared
to Figure 3.4a.

All results in Figure 3.4 are presented in terms of normalised MSE, as this was the main
metric chosen for presenting the results (Section 3.2.8). To visualise what this represents
in real yields and give the reader an idea of the models’ forecasting capability, a scatter
plot of actual versus predicted yield is shown in Figure 3.5. This is presented as an
example of results for 10-year yield and next day forecasting horizon. The figure shows
a very good fit for data unknown to the model, with only one point more distant to the
equality line.

FIGURE 3.5: Forecasting results for 10Y yield (model: MLP using
relevant features; forecasting horizon: next day).

88 Chapter 3. Multilayer Perceptrons for Yield Curve Forecasting

3.3.2.3 Single task versus multitask learning

Regarding the comparison of single task with multitask learning, using both yields as
targets (multi-assets analysis) and forecasting horizon as targets (multi-step analysis),
no clear differentiation among those two techniques could be demonstrated. As a res-
ult, we present only a few examples, shown in Figure 3.6.

(A) Forecasting horizon = 0 days (next day).

(B) Forecasting horizon = 20 days.

FIGURE 3.6: Example of single task versus multitask learning for the MLP model using relevant
features per target and per forecasting horizon. In both cases: neural network models with 10

hidden units and feature selection with regularisation parameter γ equal to 4.

3.3. Results and discussion 89

Given that the literature highlighted numerous benefits of simultaneous modelling of
targets in MTL mode on a wide range of applications, this lack of differentiation was
somehow unexpected. In fact, in our research study we have also compared these two
techniques when models are trained with a fixed training dataset and no retraining (see
Section 3.2.6) is carried out. Some benefits of MTL were observed in this case, which
could not be reproduced once retraining was used (Figure 3.6).

Thus, it is worth reflecting on possible reasons justifying the results obtained. In the
neural network model with relevant features, going from a single task learning method
to a multitask mode implies the incorporation of all relevant features for each target
(in MTL with yields as targets) or all relevant features for each forecasting horizon
(in MTL with forecasting horizon as targets). This corresponds to a very significant
increase in the number of features the model has to deal with, which may not be best
for generalisation, i.e. performance outside the known training data.

Other possible reasons for the lack of performance of MTL may be obtained from a re-
cent study by Ciliberto et al. (2015). The authors reported the benefits of using MTL,
but also concluded that its advantage decreases as the amount of training examples
increases. From both mean and standard deviation of errors presented in the same re-
search study, it can be concluded that the performance improvement from MTL is not
substantial. Also, in the cases where the benefit of MTL is higher, the overall perform-
ance of models is comparatively poor, with the amount of data probably also having
an important effect. The benefits of MTL with limited data have also been reported by
Benton et al. (2017). In the research reported here, the amount of data collected was
large considering both the overall period and the amount of observations available.

In summary, there are several factors that may have contributed to the lack of differ-
entiation between single task and multitask learning: the large amount of data used
for training the models; the optimisation of models by using the relevant features per
target and per forecasting horizon together with full retraining of models at every time
step; the large increase in the number of features as we consider MTL; and the fact that
the relevant features tend to be different for all targets. There is an advantage with
MTL, which is the running of only one model for all targets instead of five. However,
this is not as relevant nowadays, given the modern computing capabilities of super-
computers and GPU computing.

3.3.2.4 Comparison with results in the literature

A comparison of results with the ones available in the literature is difficult given the
scarce number of studies having some type of overlapping with this study. Notwith-
standing, some common ground can be found in Castellani and Santos (2006), Dunis
and Morrison (2007) and Sambasivan and Das (2017), covered in Section 2.2.1. A direct

90 Chapter 3. Multilayer Perceptrons for Yield Curve Forecasting

comparison of results can only be achieved by using exactly the same data for the mod-
els being compared, which falls outside the objectives of our research. Bearing in mind
the limitations, having an indicative comparison of the magnitude of errors would be
important in this type of empirical work.

In more detail, in Castellani and Santos (2006), monthly data was used for forecasting
the US 10-year yield, and the best models achieved levels of accuracy only marginally
better than forecasting using the last available value. The closest situation in this study
would be the comparison with results obtained for a forecasting horizon of 20 (work-
ing) days, approximately a calendar month. However, given the different type of data
frequency used (monthly versus daily), the comparison is done on a qualitative basis
only, emphasising the fact that in this study all models led to results significantly better
than using the last available value.

A closer comparison can be attempted with Dunis and Morrison (2007). The authors
used daily data for next-day forecasting 10-year yields (German, UK and US), using
a feedforward neural network with one hidden layer and five hidden units, among
other models. This may be compared with our results shown in Table 3.5. The results
presented in this work compare favourably in all cases, being of the same magnitude
as the best results obtained in that study, achieved in the case of the UK yields. Main
limitations of this comparison are due to the different dataset used, both in terms of
period analysed and features considered.

Finally, a comparison of results with the work carried out by Sambasivan and Das
(2017). The dataset used in our research (January 1999 to April 2017) fully includes
the period considered in the above mentioned study (February 2006 to February 2017).
In this case, we have to take into account that only one step ahead forecasting was im-
plemented. Taking all this into consideration, the results presented in this work are sig-
nificantly better for all target yields considered. In our research additional information
from macroeconomic and market features was included, as well as a more extended
period for the datasets, totalling over 18 years of data.

3.4 Summary and conclusions

In our research we apply machine learning to fixed income markets, an area which
has received relatively little attention in the literature compared to other areas of fin-
ance, such as equities and forex markets. In particular, this is the first study which
applies machine learning, specifically multilayer perceptrons, to model the yield curve
as a whole. To this end, we apply a technique called multitask learning, which enables
learning multiple targets simultaneously, and compare this to an approach having mul-
tiple single task learning models, i.e. one for each target. In addition to MLP models,
we also compare the results to using linear regression. In our analysis we consider five

3.4. Summary and conclusions 91

different targets (i.e., 3 months, 2, 5, 10 and 30 years), and we consider both next-day
forecasting, as well as forecasting further into the future. The latter has important ap-
plications in areas such as supervision and regulation, economic forecasting, financial
strategy and portfolio management.

Our findings using data from European yield markets suggest that the methodology
needs to be carefully chosen in order to achieve good prediction results. In particular,
we noticed that, for the MLP, the feature selection process is vital (Objective 1, Sec-
tion 1.2), and that having a pre-determined set of features results in poor performance.
Indeed, our results clearly show that the relevant features depend on both the targets
selected, as well as the forecasting horizon, demonstrating that a “one set of features
fits all” methodology does not work for forecasting bond yields. It was also important
to fine-tune the regularisation parameter γ, leading to better results with lower stand-
ard deviations, due to less overfitting. Furthermore, we used an innovative approach
of combining the linear regression and MLP model, by using the predictions from the
linear regression as input for the MLP. This approach with synthetic data resulted in
superior performance (Objective 5). Finally, for both MLP and linear regression, we
use a moving window of training data to incorporate the most recent information as it
becomes available, and the retraining of models happens at every time step. This has
the advantage of increased flexibility to changing market conditions.

In more detail, the MLP using only the most relevant features for each target and each
forecasting horizon achieved overall higher levels of accuracy when compared to lin-
ear regression and to MLP using only past values of the target variable (Objectives 2–3).
While the performance is comparable for next-day forecasting, the differences become
significant for longer forecasting horizons. Specifically, the best MLPs achieved reduc-
tions of MSE w.r.t. linear regression in the range of 46% to 81% (median values, for
forecasting horizons of 15 and 20 days). The results also compare positively with the
limited existing results from the literature on yield forecasting.

Furthermore, the results obtained with the MLP models incorporating synthetic data
generated by the linear regression model tend to improve forecasting accuracy (Object-
ive 5). This effect is again more pronounced for longer forecasting horizons and longer
maturities (2 to 30 years), achieving MSE reductions compared to the model without
synthetic data in the range of 11% to 70% (median values, for forecasting horizons of
15 and 20 days). These results suggest that the use of hybrid models incorporating data
generated by industry-established models as additional features can be beneficial.

On the comparison of the multi vs single task learning used for yield curve forecasting,
no clear differentiation could be demonstrated (Objective 4). Several factors were poin-
ted out that could justify these results, which are supported by previous studies found
in the available literature, i.e.: large amount of training data; full retraining of models

92 Chapter 3. Multilayer Perceptrons for Yield Curve Forecasting

at every time step; large increase in the number of features as we consider MTL; and
the fact that relevant features tend to be different for all targets.

In summary, we showed that MLPs can be successfully used to forecast the yield curve
and we believe that the methodology and techniques described and proposed in this
work will help practitioners to build better forecasting systems for bonds.

93

Chapter 4

Long Short-Term Memory Networks
for Bond Yield Forecasting

In this Chapter, we use an LSTM architecture to build predictors of time series, extract
the internal signals of the model and regress their temporal variation on underlying
economic variables. This adds to the work reported in Chapter 3 towards addressing
Objectives 1 and 2 (Section 1.2).

4.1 Specific background literature

With the objective of placing our work in context, in this section we give a succinct
review of literature specific to this Chapter, including research that attempts to explain
how black-box models work and tools available for analysing latent signals within
models.

The importance of going beyond black-box modelling and attempting to interpret how
a model makes predictions (or, broadly, decisions) when deployed in a specific applic-
ation is widely accepted. The determination of Shapley values (Shapley, 1953) for each
feature is a technique used for interpretability of models (Molnar, 2022). It evaluates the
average marginal contribution of each feature, across all possible subsets of features, to-
wards the model prediction. For this reason, it scales exponentially with the number
of features. Consequently, given the complexity of our data and the high dimension of
the inputs, we cannot explore this technique in our forecasting problem.

One way of understanding the internal workings of a model is visualization. A tool
for such visualization of LSTM internal signals is LSTMVis, developed by Strobelt et al.
(2018). The specific application of this tool is in natural language processing, extract-
ing the relationship between input word sequences and semantic information such as
sentiments. Using LSTMVis, Persio and Honchar (2017) analysed activations of RNNs

94 Chapter 4. Long Short-Term Memory Networks for Bond Yield Forecasting

when modelling time series, and could be seen as the first attempt at “opening the
black-box”, similar to ours, for time series analysis.

In an earlier study, Giles et al. (2001) refer to the possibility of extracting rules and
knowledge from trained recurrent networks modelling noisy time series. To that end,
they start by converting the input time series into a symbolic representation using self-
organizing maps. Then the problem becomes one of grammatical inference and they
use RNNs considering the sequence of symbols as inputs. More specifically, they use an
Elman-type architecture for the RNN (Elman, 1990). In addition, the converted inputs
facilitate the extraction of symbolic information from the trained RNNs in the form of
deterministic finite state automata. The interpretation of that information resulted in
the extraction of simple rules, such as trend following and mean reversion.

Fischer and Krauss (2018) have proposed a different approach with the same objective
of interpreting models in the analysis of components of the S&P 500 index. LSTMs are
used to forecast the next time step of assets and ranked according to the probability of
outperforming the cross sectional median. Ranking these in order of performance and
selecting subsets of top and bottom performers, the authors compute descriptive stat-
istics in order to identify features that may explain such deviation from the expected
performance of the index. Characteristics they identify include high volatility, below-
mean momentum, and extreme returns in the last few days with a tendency to revert
them in the short-term. This study is an example of using a model to separate the be-
haviour of the components of a basket of assets, and attempting to explain component
behaviours that deviates from expected ones. Such analysis is done on the “outside” of
the model, distinct from our objective of looking “inside” it.

In an elegant study that observes that asset prices are influenced not only by past
trends, but also by explanatory exogenous variables, Mahler (2009) introduced the
Kalman-LagLasso method that inspires the work in this Chapter. The method fits a
linear autoregressive model to a given time series, computes the residual signal and
then attempts to explain the residual by a regression taken over several explanatory
variables. The essential idea behind the methodology is the argument that system-
atic effects of the exogenous variables can be seen in the residuals, and by inducing
sparsity in the regression by means of a Lasso penalty (Tibshirani, 1996; Takeda et al.,
2013), one can identify the most relevant variables. Mahler uses a range of macroeco-
nomic variables, each set to have a specific lag in estimating their contributions. The
autoregressive model of the time series is estimated recursively using a Kalman filter.

A recent adoption of Mahler (2009) is the work of Montesdeoca and Niranjan (2020).
In this work the authors compare the explanatory variables of time series prediction
residuals in stock indices (S&P 500 and Dow Jones Industrial Average) and cryptocur-
rencies (Bitcoin and Ethereum). The motivation of the authors is that whereas equity
prices (and hence the index which is derived from them) are driven by an underlying

4.2. Data 95

economy, cryptocurrency values depend purely on trading. Thus, they argue and go
on to demonstrate, that the explanatory value of macroeconomic variables is far greater
on stock indices than on cryptocurrencies.

4.2 Data

We build on our previous work (Chapter 3) to implement and compare the relative
performances of MLPs to the LSTMs from the current Chapter. Previous work did
not include LSTMs and is used for benchmarking purposes only. As both studies are
conducted on the same datasets, we benefit from some computationally intense tasks
of model selection previously achieved.

The dataset is composed of daily closing values obtained from Bloomberg database
(Bloomberg, 2017a) and covers the period from January 1999 to April 2017, giving 4779
time points of data. The former is the starting date for most time series of the Euro
benchmarks and the interval considered covers several bull and bear markets. Follow-
ing previous work, we take the 10-year Euro government bond yield (EUR 10Y) as the
target time series, representing one of the most important maturities in the government
yield curve and as a proof of concept. In addition, we consider a total of 159 features
from the markets as covariates in various parts of the modelling (Section 3.1.2). These
are selected from government bond markets and from related classes and indicators:
credit (corporate bonds), equities, currencies, commodities and their volatility. From
these, we compute various statistics such as bond spreads, slope of the yield curve and
simple technical analysis indicators. Furthermore, as suggested in the well established
yields-macro models such as the DNS model (Diebold and Li, 2006), we also include a
range of economic indicators, from different geographic locations.

4.3 Methodology

In this section, we present implementation details of the modelling approach which
consist of time series modelling with LSTMs, extraction of their gate signals and in-
ternal states (cell and hidden), and sparsity inducing regression of the latter on a set of
underlying economic covariates.

4.3.1 LSTM networks for bond yield forecasting

With the purpose of assessing the capability of LSTMs to strike a balance between re-
cent and distant pasts, we model univariate time series with LSTMs, i.e. using only

96 Chapter 4. Long Short-Term Memory Networks for Bond Yield Forecasting

past values of the target time series (bond yields) being predicted. A summary of the
models used and additional model information is presented in Table 4.1.

TABLE 4.1: Summary of the models used.

Model information

Original features 159
Target 10-year yield (EUR 10Y)
Forecasting horizons 0 (next day), 5, 10, 15, 20
Moving window size 3000 days
Hidden units MLP 10
Hidden units LSTM 100
Time steps MLP 6 days
Time steps LSTM 6, 21, 61 days

Model Short name Description

Direct comparison MLP vs. LSTM

MLP NN TgtOnly MLP with target data only
LSTM LSTM06 LSTM using input sequence of 6 time steps

LSTMs with different input sequences

MLP NN RelFeat MLP with relevant features
NN TgtOnly MLP with target data only

LSTM LSTM06 LSTM using input sequence of 6 time steps
LSTM21 21 time steps
LSTM61 61 time steps

In the labels used in Table 4.1, NN TgtOnly is an MLP whose inputs are identical to
those of the LSTM (LSTM06), taking six past values as inputs, enabling direct com-
parison between the use of static and recurrent architectures. Additionally, the model
NN RelFeat, is a static MLP model, where the inputs are the relevant features that res-
ulted from the feature selection process (Sections 3.2.2 and 3.3.1). The number of fea-
tures used in each MLP model depends on the forecasting horizon and is presented
in Table 3.4, varying from 5 (next-day forecasting) to 25 (next-day forecasting plus 20
days), for the 10-year yield. We also explore a range of different LSTM architectures by
varying the number of past values being used as inputs, as well as predicting different
forecasting horizons.

For training the models, we use moving windows, updating their weights at every
time step. After exploring several architectures, we converged on one with 100 hidden
units for the LSTMs to compare their performance against that of MLPs. Increasing
the model size results in higher computational cost and no additional benefit in learn-
ing the time series. In setting the number of hidden units for the MLP, 10 hidden
units was found to be a good compromise, with significant overfitting observed for

4.3. Methodology 97

neural networks with more than 100 units, consistent with what we reported previ-
ously (Section 3.2.3). Overall, increasing the number of hidden units does not substan-
tially change the results, having the advantage of using one MLP architecture instead
of 25, for each yield and forecasting horizon studied in Chapter 3.

When comparing model sizes, the MLP with 159 input features had a total of 9, 561 free
parameters and the LSTM had 40, 901. An LSTM with four times as many parameters
producing similar results is intriguing, but is a consequence of regularization acting
in different ways in these models. We trained the models by gradient descent, using
the ADAM optimiser (Kingma and Ba, 2015) throughout, as it is the state-of-the-art
technique for such problems (Brownlee, 2018).

4.3.2 Extraction of LSTM internal signals

In this section, we define the LSTM model and identify the hidden unit responses that
are extracted for analysis with the LSTM-LagLasso framework (Section 4.3.3). The equa-
tions governing the LSTM model were presented in Section 2.6.2 (Equations 2.22–2.27).
A diagrammatic representation of an LSTM cell was also presented in Figure 2.8, show-
ing where the math operations occur in the LSTM cell.

The LSTM set of equations enable us to calculate the internal signals at various loca-
tions. We consider the following locations in this study: forget gate (Equation 2.22);
product of the outputs from the input gate and input node (Equations 2.23 and 2.24);
output gate (Equation 2.25); cell state (Equation 2.26); and hidden state (Equation 2.27).
We consider the product of the outputs from input gate and input node to be a suit-
able signal because it is what gets added to update the previous cell state, thus having
most relevant and interpretable information. It is worth emphasising that the hidden
and cell states are the most important signals, since they summarise all the information
going through all the other gates. We observed that the cell gates’ signals are helpful to
understand and confirm what happens at the cell states’ level. However, they do not
add relevant information, which is why they are not included in the results presented
in Section 4.4.2. Details of the LSTM model used in this study are shown in Table 4.2.

4.3.3 Exogenous covariates explaining LSTM internal signals

To recap for emphasis, in pursuit of explaining the internal representations learned by
the black-box LSTM model, we use the framework introduced by Mahler (2009). In
this, the residual signals of a recursively computed autoregressive time series predic-
tion model are regressed on a set of exogenous covariates with a sparsity inducing
(Lasso) penalty. Should the internal states extract information that is meaningful in

98 Chapter 4. Long Short-Term Memory Networks for Bond Yield Forecasting

TABLE 4.2: Summary of the LSTM model used for signal analysis.

LSTM architecture

Features set 1 10-year yield (EUR 10Y)
set 2 10-year, momentum indicator
set 3 10-year, 5-year, 30-year yield

Target 10-year yield
Forecasting horizon next day + 5 days
Moving window size 3000 days
Hidden units 3
Sequence in 6 days
Sequence out 6 days

some way, we would expect it to be modelled by a small number of underlying eco-
nomic variables, possibly different ones during distinct market regimes. Staying with
Mahler (2009)’s nomenclature, our model is referred to as LSTM-LagLasso.

In adapting the Kalman-LagLasso framework, we differ in two ways. First, we do not
denoise the covariates using a Kalman filter, and use them directly as inputs. This is
because the Kalman filter, with its wide use in sensor data processing type applications
(Park et al., 2019; Maybeck, 1979), has an additive measurement noise term implicit in
its formulation. This instrument noise is usually assumed to be zero mean Gaussian,
with its variance taken from sensor calibration. In the financial context, however, we
need to understand noise in a very different way. Variability arising from complex
dynamics and interactions is unlikely to manifest as additive Gaussian noise. Hence,
using the original time series instead of denoising them, appears more appropriate.

The second main difference in our methodology is that we consider all lags selected
as relevant in the LSTM-LagLasso algorithm and not only one for each feature, as the
simplified setting used by Mahler (2009). We found no reason to limit the number of
lags that may participate in the forecasting process to only one. The choice of relevant
lag(s) can be left to the sparsity inducing algorithm (Tibshirani, 1996), and our results
support this option (Section 4.4.3).

Our complete algorithm is presented in Algorithm 1. For completeness, the objective
function minimized by the Lasso method is given by:

min
w
{ ∥X w− slstm∥2

2 + γ ∥w∥1 }, (4.1)

where X is the matrix of features and respective lags; w the vector of unknown para-
meters; slstm are the LSTM cell and hidden state signals (target vectors); γ is the regu-
larisation parameter; ∥.∥1 denotes the L1-norm; and ∥.∥2 the L2-norm.

4.4. Results and discussion 99

Algorithm 1: LSTM-LagLasso algorithm.
input : Macroeconomic and market features
target: LSTM cell and hidden state signals

1 Extract LSTM cell and hidden state signals and set them as targets in
independent models (one per state).

2 Select the number of lags to consider {k ∈ [1, 6]}.
3 Build matrix M containing macroeconomic and market features.
4 Transform matrix M into matrix X by incorporating k lags.
5 Standardize all variables (features and target) to have zero mean and unit

standard deviation.
6 for i← γmin to γmax do
7 Perform Lasso regression (Equation 4.1).
8 Identify non-zero weight values in vector w.
9 end for

10 Select γ (look for stabilising trend in the number of features against γ and
forecasting error).

11 Perform Lasso regression with selected γ.
12 Identify the final most relevant variables and lags (non-zero weight values in

vector w).

For interpretation of the LSTM internal states, we use a simpler model with only three
hidden units. This is necessary because, with a 100-unit LSTM, visualization and inter-
pretation becomes difficult. As exogenous variables to explain the LSTM internal states
we used the same large set of features used as inputs to the MLP, setting the number of
lags in each of them to six. We exclude from this list the variables considered in feature
sets 1 to 3 because they are already known to the model (Table 4.2).

Finally, for tuning the regularisation parameter (γ), we considered both the trend in
the number of features against γ and the forecasting error (Algorithm 1, Line 10). After
an initial rapid drop in the number of features, the trend changes significantly, but a
clear period of stabilisation cannot be observed. Additionally, for γ above 1.0, the error
starts increasing more rapidly and the quality of fit deteriorating. For this reason we
selected γ = 1.0 for the final Lasso run, as a good compromise between stabilisation
and quality of fit.

4.4 Results and discussion

In this section, we present and discuss the results obtained in experimental work in
three parts. First, we establish the relative merits of LSTM, a recurrent neural network
containing feedback, over a static MLP, thereby identifying a useful operating regime
to analyse the inner workings of an LSTM. Secondly, we analyse the internal signals
of the LSTM to show how, in non-stationary regions of the financial time series, differ-
ent hidden units capture information, achieving a regime-switching behaviour. And,

100 Chapter 4. Long Short-Term Memory Networks for Bond Yield Forecasting

finally, we model the extracted internal signals by a sparsity inducing regression on
exogenous variables (with lags) to show how different variables influence different sig-
nals.

4.4.1 Dynamic versus static models: comparing LSTM and MLP

A summary of comparing prediction error distributions from LSTM and MLP models
for different forecasting ranges is presented in Figure 4.1. In these results, the label NN
TgtOnly denotes performance of a univariate MLP, which can be compared to the vari-
ous LSTMs. NN RelFeat corresponds to an MLP which takes external inputs optimised
for 10-year yield forecasting and for each forecasting horizon.

We make several observations from the comparisons shown. First, considering the dir-
ect comparison of models in a univariate setting, the LSTM models are systematically
better for forecasting horizons of 5 and 10 days, achieving MSE reductions of 25% and
14%, respectively (median values), when compared to the univariate MLP. However,
when the horizon is too large (20 days) the advantage of the LSTM is lost. In all other
cases, the results are not significantly different. Additional results along the same lines
are included in Figure 4.2. Second, the uncertainty in estimation (standard deviation of
prediction errors) is lower for the LSTM for all forecasting horizons considered. This
is an important point suggesting the dynamic nature of the LSTM results in more ro-
bust model estimations for this class of models over more traditional, and widely used,
MLPs. Third, when we consider different LSTM input sequences and the forecasting
horizon of one day ahead (Figure 4.1a), we do not observe any significant difference
between the models, consistent with our previous study on one-day ahead forecasting
with memory-free models (Section 3.3.2.2). However, the comparison shows that, at
longer forecasting range in the region of 5 - 15 days ahead, the LSTM gives a model-
ling advantage over the static MLP, in terms of average prediction errors and/or its
variance.

Finally, we observe that LSTMs with longer input sequences are able to reach sim-
ilar levels of forecasting error to the MLP with the most relevant features (Model NN
RelFeat), again with lower standard deviation. This is an important point in the sense
that, over long windows, the memory in the LSTM is capable of capturing, at least in
part, the additional information that the static model requires from market data exo-
genous to the time series.

In summary, LSTM networks demonstrate better performance (lower error and/or
standard deviation) for a range of forecasting horizons, in particular for next day plus 5
to 15 days. However, we also observe conditions in which its superiority is not evident.
In this line, it is worth highlighting the good performance of the MLPs using the rel-
evant features as inputs, specifically for forecasting horizons between 10 and 20 days

4.4. Results and discussion 101

(A) Forecasting horizon = 0 days (next day). (B) Forecasting horizon = 5 days.

(C) Forecasting horizon = 10 days. (D) Forecasting horizon = 15 days.

(E) Forecasting horizon = 20 days.

FIGURE 4.1: Comparison of models: two types of MLPs (NN RelFeat using the relevant features
determined for the 10-year yield target and for each forecasting horizon and NN TgtOnly the
univariate MLP) vs. LSTMs with input sequences of 6, 21 and 61 time steps (LSTM06, LSTM21

and LSTM61, respectively).

102 Chapter 4. Long Short-Term Memory Networks for Bond Yield Forecasting

FIGURE 4.2: Direct comparison of models: univariate multilayer
perceptron NN TgtOnly vs. long short-term memory networks for

input sequence of 6 time steps LSTM06.

ahead. Hence, given the higher complexity of LSTMs, there are forecasting horizons
for which other models should be considered for the forecasting task. Bearing in mind
that this study only considers univariate LSTMs, a direct and fair comparison can only
be made with regards to the univariate MLPs. Consequently, the obvious next research
step should be to test how markets information can improve the LSTM results as it is
evident in the case of the MLPs, and then compare these models, both with access to
market information. This is something worth exploring in future work. As it stands
with the present study, the LSTM demonstrates superiority for specific ranges, without
having access to that additional information. This is an important outcome by itself.

4.4.2 Analysis of LSTM internal signals

The internal states of LSTM models trained to forecast 10-year yield are presented in
Figure 4.3, where we also plot the time series of the 10-year yield for reference.

The graphs show how the hidden and cell states have correlated behaviour with the
target being modelled. Additionally, some level of similarity between hidden and cell
states’ behaviour is to be expected as, at time step t, they relate via Equation 2.27. More
interestingly, we see switching behaviour of the individual hidden units. In fact, unit
1 becomes almost inactive, both in terms of volatility and weight, during two different
periods identified as period 1 and 2 in Figure 4.3. We also observe that, during these in-
tervals, while unit 1 contributes a zero weight, units 2 and 3 take over becoming more

4.4. Results and discussion 103

(A) Hidden state signals.

(B) Cell state signals.

FIGURE 4.3: Long short-term memory network signals.

104 Chapter 4. Long Short-Term Memory Networks for Bond Yield Forecasting

active and following more closely the visible temporal changes of the 10-year bond
yield. Of note is the fact that the periods in which the units have switched roles are
periods in which the 10-year yield assumes downward extreme values, more specific-
ally yields of 3.6-3.7% and below. Hence, we could conclude that the predictive model
is being built of a combination of hidden unit responses, with each unit specialising to
capture some underlying trend. In this specific case, we might postulate that upward
values are covered by unit 1 and downward extreme values controlled by units 2 and
3. Thus, the response of the hidden and cell states are helpful in understanding how
the time series is being modelled within the LSTM.

In Appendix B (Figure B.1), we present similar illustrations of LSTMs trained with fea-
ture sets two and three. Again, similar activation / deactivation of the signals with
regime switching can be observed. More specifically, for set 2 (Figure B.1a), despite
the high volatility of the second feature (momentum indicator, Table 4.2), the same
two periods can clearly be observed as described for feature set 1 (Figure 4.3a), with
unit 3 behaving in a manner similar to that of unit 1 in the previous case. These la-
bels are, however, arbitrary and interchangeable. Interestingly, we note that, given the
high volatility of the momentum indicator, two of the units tend to “specialise” in this
feature and only one unit in the 10-year yield.

For feature set 3 (Figure B.1b), the pattern of the signals in relation to the 10-year yield
data is not so stark, though different units behave differently, showing a degree of
specialisation. One reason for this may be the higher correlation among all yields con-
sidered as features (5, 10 and 30-year yield), smoothing out the temporal variation of
unit 3.

Overall, we note that the activation of the hidden units of a trained LSTM carries in-
formation about how the target signal is decomposed internally. The dynamics con-
tained in the internal signals appear to show regime switching behaviour, presumably
because the units lock onto and track some latent factors over time.

4.4.3 Explaining internal states with exogenous variables

In Figure 4.4, we present results of modelling the signal captured in unit 1 of the hid-
den state, using LSTM-LagLasso. Additional results for unit 3 are given in Appendix B
(Figure B.2). Sparsity inducing regression (Lasso) extracts the most significant explan-
atory variables. The absolute values of their weights are shown in the figures. Since
we are using market variables to explain the LSTM signals and not a financial asset
target directly, it is only the magnitude of the weights that matter to judge their relative
relevance. For reasons of brevity, we only present the analysis of the hidden state and
skip the cell state, but the main points we wish to make can be adequately illustrated
using the hidden state. This is supported by the observation that 79.3% of the relevant

4.4. Results and discussion 105

features identified are common to both hidden and cell states. In contrast, the percent-
age of top relevant features common to all hidden units is much lower than between
states, i.e. 24.7% of them are common to all three units in the hidden state and 21.4% in
the cell state.

A summary of the most influential variables that model both states is presented in
Table 4.3. For selecting the variables for this table, we set a threshold of 0.15 on the sum
of the absolute weights (for the six time steps considered).

4.4.4 Discussion

We draw several conclusions from the results presented here (Figures 4.4, B.2 and
Table 4.3). First, the internal units of an LSTM decompose the target into components
that can be explained using exogenous information which was not used in training the
model. Second, they capture dynamics in the data, each specialising to some underly-
ing latent information as shown in the regime switching behaviour. While the LSTM
internal representations may not be explainable by human intuition, the fact that dif-
ferent sets of underlying economic variables are dominant in explaining the variance
in the internal signals is a significant observation (Table 4.3). Third, we observe that
the influence of different exogenous variables feed through different time lags. While
the lags of the two immediate past days are the most important, often the lag of one
week is also significant for several of the variables, pointing to weekly seasonality of
influence that is not immediately apparent simply when looking at the raw time series.
Given the conclusion that lags are important, selecting only one lag per feature, as pro-
posed in the Kalman-LagLasso method (Mahler, 2009), would eliminate this additional
information, limiting the forecasting ability.

Finally, the features selected as relevant in explaining the hidden units are themselves
of interest. Contrary to what one would often expect as relevant features, from their
frequent use in past work on modelling asset prices (Nelson and Siegel, 1987; Dunis
and Morrison, 2007; Arrieta-Ibarra and Lobato, 2015) several other features often carry
higher weights. Established modelling research often use variables such as central bank
reference rates (ECB refinancing rate), macroeconomic indicators of inflation, (US CPI
less food and energy, Eurozone Core Monetary Union Index of Consumer Prices), eco-
nomic growth / growth expectations (Institute for Supply Management Manufactur-
ing, US Industrial Production, US Capacity Utilisation, ZEW Eurozone Expectation of
Economic Growth) and labour market (Eurozone Unemployment).

But the explanatory variables our model focuses on go well beyond this group, with
some recognisable as specific to bond markets, adding significant information to those
in the above list. For example, the top relevant feature by weight is the long German
government bond future (DEU Bond Fut 30Y). This is a leveraged instrument with

106 Chapter 4. Long Short-Term Memory Networks for Bond Yield Forecasting

F
IG

U
R

E
4.4:LSTM

-LagLasso
relevantfeatures

forthe
hidden

state,unit1,considering
a

regularisation
param

eter
γ

equalto
1.0.[Term

inology:
A

n
exam

ple
oftechnicalanalysis

indicator
used

is
“EU

R
30Y

M
A

48-M
A

35
days”

corresponding
to

the
48-day

M
oving

A
verage

(M
A

)m
inus

35-day
M

A
,ofthe

30-year
Euro

governm
entbond

yield
(EU

R
30Y

)].

4.4. Results and discussion 107

TABLE 4.3: Summary of most influential relevant features for both states.
The listed features have a sum of absolute weights greater than or equal
to 0.15 in at least one of the LSTM units. The cells in the table for which
the weight is equal to zero are left empty. [Terminology: An example of
technical analysis indicator used is “EUR 30Y MA 200 days” corresponding
to the 200-day Moving Average (MA), of the 30-year Euro government bond

yield (EUR 30Y)].

Feature name Weight

Unit 1 Unit 2 Unit 3

Hidden state

ECB Refi Rate 0.150
3M Euribor Fut 4th 0.177 0.248
GBR 30Y 0.161 0.053
DEU Bond Fut 30Y 0.674 0.287 0.410
EUR Swaps 5Y 0.398
EUR Swaps 30Y 0.192 0.199 0.315
FTSE 100 0.056 0.160 0.107
Gold Futures 0.193 0.012 0.004
US 2Y-10Y Spread 0.068 0.087 0.198
EUR 10Y-30Y Spread 0.264 0.214
EUR 10Y MA 5 days 0.247 0.082
EUR 30Y MA 200 days 0.298
EUR 5Y 0.221 0.202
EUR 30Y 0.450 0.168

Cell state

3M Euribor Fut 4th 0.212
90day Euro$ Fut 5th 0.203
GBR 30Y 0.151 0.038
DEU Bond Fut 30Y 0.723 0.921 0.533
EUR Swaps 5Y 0.258
EUR Swaps 30Y 0.220 0.186
Gold Futures 0.168 0.109 0.051
EUR 10Y-30Y Spread 0.271 0.270
EUR 10Y MA 5 days 0.525
EUR 30Y MA 200 days 0.273
EUR 5Y 0.003 0.172
EUR 30Y 0.240

108 Chapter 4. Long Short-Term Memory Networks for Bond Yield Forecasting

very long maturity and duration. Consequently, they are highly price-sensitive and
react very quickly to market movements. This justifies its role in the model, with the
sum of the weights reaching the value of 0.921 for unit 2 of the cell state (Table 4.3).
As a second example, within the futures asset class, we find the 3M Euribor and 90d
Euro$ Futures (4th and 5th contracts). Given these contracts have approximately a one
year-ahead horizon, this could be seen as incorporating investors’ expectations on the
evolution of short-term rates.

Additionally, financial instruments with maturities adjacent to the one we want to pre-
dict are also included in this group of relevant features, namely: 5 and 30-year Euro
government bond yield (these tend to lead flattening and steepening movements of the
yield curve around the 10-year maturity); 2, 10 and 30-year UK government bond yield;
and 5, 10 and 30-year EUR swap rates. Directly related with yields, we can also identify
as relevant features intra-curve spreads such as US 2–10-year spread and EUR 10–30-
year spread; as well as inter-curve spreads, specifically, EUR-GBR 10-year spread and
EUR-JPN 10-year spread.

Furthermore, other relevant features include the following asset classes and macroe-
conomic variables: commodities (Gold Futures and Brent Crude Futures); equity in-
dices (Euro Stoxx 50, FTSE100, and S&P500); forex rates (EUR-USD and EUR-JPY);
the ECB Balance Sheet Long-Term Refinancing Operations (especially relevant due to
large-scale central bank interventions); OECD Leading Indicators; and finally technical
analysis indicators (5, 50 and 200-day moving averages of 5, 10 and 30-year yields).

In summary, peeping into the internal states of a trained LSTM gives the modeller
a handle on variables that have an influence on the predictive ability of models, but
their role becomes apparent at the level of the hidden units which operate in regime
switching manner to control the overall predictive ability of the model.

A sanity check

We perform a simple sanity check to see if the regression of the LSTM states on the exo-
genous variables produces relative weights merely by chance. The question we want to
answer is: if we were to regress the signals on a set of Gaussian random variables span-
ning the same dimensions as the economic variables, would the signals be modelled to
the same accuracy? To answer this, we apply the LSTM-LagLasso method replacing the
macroeconomic and market features by the same number of Gaussian random vari-
ables, running the simulation one hundred times. The corresponding distribution of
errors is shown in the Figure 4.5. With the resulting MSE two orders of magnitude
smaller for the market data than the average of the 100 simulations, this clearly shows
the relevance of the market data in modelling over the set of orthogonal basis vectors
that span the same space.

4.5. Summary and conclusions 109

FIGURE 4.5: Forecasting error of LSTM-LagLasso using macroeco-
nomic market features and using Gaussian random features.

4.5 Summary and conclusions

While black-box models of data modelling are powerful and widely used, extracting
explanations from them is often very difficult. In this context, we have shown that
useful information may be extracted by looking into the internal states of an LSTM
model of financial time series forecasting. Focusing on bond yields as target time series,
we build a predictor, extract its internal states, and regress them on exogenous variables
that are likely to drive market behaviour. Starting with finding a regime in which an
LSTM gives a modelling advantage over a static MLP, we show that the internal units
learn specialised switching behaviour, tracking sharp non-stationarities in the target
time series.

With respect to bond yields, our study is the first comparison between static (MLP)
and dynamic (LSTM) models showing that the dynamics captured through network
memory can compensate the use of additional market-related features useful in a static
model. We carry out a systematic comparison using a range of features (past values and
side information), forecasting over several horizons, and observe that the LSTM usually
achieves lower prediction errors and more prediction confidence (lower variance of
estimation).

Second, rather than stop at simple time series prediction, this work looks at the learned
internal representations of the model. The purpose of capturing dynamics within the

110 Chapter 4. Long Short-Term Memory Networks for Bond Yield Forecasting

LSTM architecture, striking a balance between influences at different time scales, mani-
fests as differential contributions from the specialised units, exhibiting regime switch-
ing behaviour over time. Past research, reviewed in Section 4.1, makes very little at-
tempt at such explanations.

In the final part of the study, we show how signals extracted from the internal units
of the LSTM are influenced by exogenous information in the markets. By adopting a
sparsity inducing linear regression to model the internal signals, we show that those
variables found to be relevant are not only different from the most established among
empirical finance modellers, but different combinations of such variables relate to the
contributions of different units. We also observe the importance of lags in these vari-
ables.

Overall, the novel methodology we develop, which we refer to as LSTM-LagLasso, of-
fers a useful framework for explaining how a dynamic time series model of a specific
architecture learns internal representations and how such learned representations can
be understood in terms of exogenous information.

There is one immediate avenue to pursue from this starting point. It is to go beyond
simple forecasting to embedding such models in an autonomous trading system along
with trading strategies. Such trading strategies could be rule-based, or even sequen-
tially optimised using a reinforcement learning framework. The latter is the main focus
of Chapter 5.

111

Chapter 5

Deep Reinforcement Learning for
Bond Portfolio Management

In this chapter we apply RL to financial portfolio management activities, maintaining
our assets in the bond market arena. The work described here goes towards fulfilling
Objective 6 of this thesis (Section 1.2), of testing the concept of RL specifically to this
asset class. In more detail, we present the theoretical formulation of a portfolio man-
agement problem in RL terms (Section 5.1), describe the bond assets selected for the
experimental work (Section 5.2) and the methodology used (Section 5.3). Finally, we
outline the results obtained and their discussion (Section 5.4), followed by the main
conclusions deduced from this part of the work (Section 5.5).

5.1 Theoretical formulation of portfolio management in RL

In this section we present the standard RL concept as a Markov decision process (MDP),
identifying its main components when applied to financial portfolio management.

5.1.1 Introduction

An MDP is a five-tuple object, which includes (Poole and Mackworth, 2017): state space
st representative of the environment E; action space at for the agent; state transition
probabilities between adjacent states; reward function rt and the reward discounting
factor γ. We consider an extended version to include other important pieces of the
RL process, such as (Fischer, 2018): a policy mapping states to actions; and the value
function or the action-value function (the latter more relevant for our specific work).

A standard RL process includes an agent that interacts with the environment in dis-
crete time steps, learning how to take actions that maximise some form of cumulative

112 Chapter 5. Deep Reinforcement Learning for Bond Portfolio Management

reward. In this line, at each time step, the agent observes the state of the environment.
For simplicity, we consider that the environment is fully observed, so the observations
totally represent the state space. Given this state, the agent takes an action, and receives
a scalar reward. In the following sections, we proceed to formulate mathematically the
components of the MDP presented above, when applied to financial portfolio manage-
ment.

5.1.2 States and actions

The states are represented by variables that can be observed from financial markets.
They may include historical prices of assets and this is the most common situation in
the literature (Fischer, 2018). Additional information similar to the one considered in
Chapter 3 and listed in Appendix A can be included. However, in the literature only
a few exceptions have included additional information, such as Neuneier (1996) and
Eilers et al. (2014).

In our case, we aim to test the RL concept and methodologies in portfolio management
and consequently we adopt the simplest approach, i.e. considering only the historical
prices of the assets selected. At the same time this is the most demanding approach,
since additional information can contribute to the learning process, as we have seen in
Chapter 3. Finally, more specific details of the data used in our empirical work will be
presented in Section 5.2.

Portfolio managers decide the allocation of assets (i.e. the weights for every asset) in the
portfolio at each time step, taking into account their performance expectations for each
asset. Hence, the actions in the RL process are directly represented by the weights. To
be able to calculate the cost of rebalancing the portfolio (i.e. modifying the weights of
the assets), following the actions specified by the agent, the trader or portfolio manager
requires an internal state information and must therefore be recurrent (Moody and Wu,
1997). Thus, the state at each time step is represented by windows of historical prices of
the assets, together with the exposure to each asset in the previous time step, in other
words, the previous weights of each asset.

In summary, the states and actions in a portfolio of m assets are represented by the
following equations:

st = (wt−1, xt) = (at−1, xt) (5.1)

at = wt (5.2)

subject to 1T
mwt = 1 (5.3)

and wt ⪰ 0 (5.4)

5.1. Theoretical formulation of portfolio management in RL 113

where st ∈ Rm×(n+1) is the state at time step t; m is the number of assets; n is the number
of previous time steps of historical prices considered; xt ∈ Rm×n the historical prices of
the assets selected in Section 5.2, considering a window of six time steps per asset; 1m

represents an m-dimensional column vector of ones; at and at−1 ∈ Rm are the agent
actions at time step t and t − 1, respectively. As explained above, these vectors are
equal to the weights wt and wt−1. Taking into account that we are considering long-
only portfolios with no leverage, the weights are subject to the constraints presented
above.

5.1.3 State transition and assumptions

In the case of financial markets, we assume that our transactions do not have an im-
pact on the market overall, which is a reasonable assumption in practice. As a result,
the transition between states is not modelled, and is determined by the market itself.
Instead, they are an input to the model and obtained via new observations of asset
prices.

Apart from no market impact, we also assume that trades can be executed instantly
at the desired price. Although the liquidity of the assets selected for this study (Sec-
tion 5.2) is very high (Bloomberg, 2021), this may not be entirely possible. It is, however,
an appropriate simplification given the objective of this work.

5.1.4 Rewards

In portfolio management, the returns of a portfolio can be additive or multiplicative
(Moody and Wu, 1997). The latter is more appropriate when investing fixed fractions
of the portfolio, which is the case in our approach. For clarity, the alternative additive
returns are used when trading a fixed number of securities and consequently the cor-
responding equation is different. In addition, the general equation for multiplicative
returns incorporates a risk-free interest rate term, i.e. the rates of risk-free assets such
as US or European treasury bills. We ignore this term, a solution also adopted else-
where (Koker and Koutmos, 2020). Considering the present market conditions of zero
or near-zero interest-rate policy in most developed countries, this is a reasonable as-
sumption to make. Hence, the total value of the portfolio (Pt), at the end of the episode
with T time steps, can be calculated using the following equation:

Pt = P0

T

∏
t=1

{
1 + RP,t

}
(5.5){

1 + RP,t
}
=
{

1 + wT
t−1rA,t

}{
1− 1T

mC
∣∣wt −wt−1

∣∣} (5.6)

114 Chapter 5. Deep Reinforcement Learning for Bond Portfolio Management

where P0 is the initial value of the portfolio, i.e. the initial capital invested; RP,t is the
return of the portfolio at time step t; while {1 + RP,t} represents the reward received
by the agent at time step t. Finally, rA,t is the vector return of the assets at time step t
and is calculated as follows:

rA,t =
PA,t,close

PA,t−1,close
− 1 (5.7)

where PA,t,close and PA,t−1,close correspond to the closing prices of the assets at time step
t and t− 1, respectively.

In some studies, the log scale of the portfolio return is proposed as the rewards (Neun-
eier, 1998; Fischer, 2018). The log scale strongly penalises the negative returns close to
zero, i.e. when the ratio of portfolio values in subsequent time steps tends to zero, or is
at least below 0.50. For the portfolio value ratio to drop to that level, it would require
a negative daily return below -50%, which is highly unlikely. In reality, for the normal
range of variations in a bond portfolio, the log and the linear functions would be very
close. For this reason, we adopt the simple portfolio return instead of its logarithm.

In summary, the job of a portfolio manager is to maximise the total portfolio value Pt.
And the reward is what defines the goal of the RL process, so the reward considered
is equal to {1 + RP,t} (Equation 5.6). In our experimental work, we will be considering
this solution from the literature, together with two variations of this reward as it will
be explained in Section 5.3.4.

5.1.5 Policy

The goal of the agent is to learn a policy π that maximises the expected state return, i.e.
maximise the objective function J:

J = Eri ,si∼E,ai∼π [R1] (5.8)

Rt =
T

∑
i=t

γ(i−t)r(si, ai) (5.9)

where E [.] denotes the expected value of a random variable; Rt is the state return at
time step t, equal to the sum of discounted future rewards (defined in Section 5.1.4);
with R1 referring to the return from the initial state; γ the discounting factor (γ ∈ [0, 1]);
and r(si, ai) the reward received following state si and action ai.

The policy is considered by Sutton and Barto (2020) as the core of an RL agent given that
it is sufficient by itself to determine behaviour. The policy defines the way the agent
behaves at a given time, who in turn is responsible for determining the actions. In the
most general cases the policy is a function that maps states to a probability distribution
over the action (stochastic policy), or directly to actions, if the policy is deterministic.

5.1. Theoretical formulation of portfolio management in RL 115

Additionally, the policy can be parameterised in different forms, as a function π(a|s, θ),
as long as that function is differentiable with respect to its parameters. Consequently,
we can use function approximators such as deep neural networks, which can be ex-
pressed mathematically as follows, for single-asset portfolios:

at = π
(
st, θt

)
(5.10)

(5.1)
= π

(
at−1, xt, θt

)
(5.11)

where θt represents the (learned) function approximator parameters at time step t.

For multi-asset portfolios, two additional requirements are necessary in the RL sys-
tem (Moody and Wu, 1997; Moody et al., 1998). First, the policy function approxim-
ator requires a multi-output network (see Section 2.5). Second, to satisfy the constraint
presented in Equations 5.3 and 5.4, one possible approach is to use a softmax layer, so
that the output actions become:

at = so f tmax
(

f
(
at−1, xt, θt

))
(5.12)

where f (.) denotes the raw or unscaled output, i.e. before the softmax function is ap-
plied to scale the weights.

5.1.6 Action-value function

In this section, we closely follow the nomenclature used in Lillicrap et al. (2015), for a
smooth transition to our selected algorithm, which we will describe in Section 5.3.2.3.
Hence, the action-value function is used in some critic-only and actor-critic algorithms
(see Section 2.7.4), and is defined as follows:

Qπ(st, at) = Eri≥t,si>t∼E,ai>t∼π [Rt|st, at] (5.13)

where Qπ(st, at) is the action-value of the state-action pair (st, at) at time step t. In
words, it quantifies the expected return when in state st at time step t, the agent takes
action at first and then follows policy π thereafter.

Another form to present the action-value function is with the Bellman equation (Bell-
man, 1957). It states that the value of the start state is equal to the immediate reward,
plus the discounted value of the expected next state (Sutton and Barto, 2020). This
recursiveness of the Bellman equation is widely used in RL. For action values, the Bell-
man equation can be defined as:

Qπ(st, at) = Ert,st+1∼E [r(st, at) + γ Eat+1∼π [Qπ(st+1, at+1)]] (5.14)

116 Chapter 5. Deep Reinforcement Learning for Bond Portfolio Management

where r(st, at) is the immediate reward at time step t.

Equation 5.14 refers to the stochastic case, where the policy π maps states to a probab-
ility distribution over the actions, i.e. π : S → P(A). For deterministic policies, map-
ping directly states to actions, i.e. µ : S → A, the inner expectation in Equation 5.14 is
not necessary, becoming:

Qµ(st, at) = Ert,st+1∼E [r(st, at) + γQµ(st+1, µ(st+1))] (5.15)

Considering that the expectation depends only on the environment, we can use off-
policy algorithms (see Section 2.7.5.4) to learn a deterministic target policy µ and the
action-value Qµ, using samples from a stochastic behaviour policy β.

5.2 Data

Consistent with the theme of the thesis, this chapter focuses on a portfolio of differ-
ent types of bonds. Recall that the author has not found published work covering the
topic of RL specifically for fixed income portfolio management (Section 2.7.5.4). For
this empirical work we considered assets from different sub-classes of the bond mar-
ket, specifically: governments, corporates and high yield. The selected assets are ETFs
representing these sub-classes, and are listed in Table 5.1.

These assets cover a broad spectrum of financial instruments. On the one hand, in
terms of interest rate risk, they include a wide range of maturities, from short-term to
long-term. On the other hand, in terms of credit and default risk, they include from
the highest ratings (government bonds from developed economies tend to fall into this
category), to the lowest ratings included in the high yield category. In summary, the
resulting portfolio is representative of some of the main risks a fixed income portfolio
manager encounters in real bond portfolios (Fabozzi et al., 2021).

Note that the assets listed in Table 5.1 are the totality of assets in our portfolio. In
particular, we do not include a cash position, given the inclusion of ETF SHY (Asset 1),
which is a short-term government bond fund. This ETF is sufficiently conservative for
bond investment, and can be used in market turmoil for portfolio protection, making
the cash position unnecessary.

The choice of time scale or frequencies is important and may range from the high-
frequency data traditionally used in forex studies, to annual data. In our work we use
daily data so that the agent is enabled to take action on a daily basis if required, thus
taking more advantage of market opportunities through time.

The dataset for the observations of the four assets (state space) were obtained from
Bloomberg database and covering the period from April 2007 to May 2021 (Bloomberg,

5.2. Data 117

TABLE 5.1: Summary of bond ETFs selected.

Asset Ticker Strategy Maturity focus Rating focus

ETF iShares 1-3 Year Treasury Bond

Asset 1 SHY Government Short-term Investment Grade
A or higher

ETF iShares 20+ Year Treasury Bond

Asset 2 TLT Government Long-term Investment Grade
A or higher

ETF iShares iBoxx $ Investment Grade Corporate Bond

Asset 3 LQD Corporate n/a Investment Grade
BBB or higher

ETF iShares iBoxx High Yield Corporate Bond

Asset 4 HYG Corporate n/a High Yield
BB or lower

Note: n/a not applicable. Assets 3 and 4 do not have a specific maturity focus, instead
including bonds with a wide range of maturities.

2021). On the starting date, the range in this case was limited by the inception date of
Asset 4, the high yield ETF. Moreover, a total of six historical time steps were included
for each of the four assets selected. The window of six time steps was already used in
previous chapters (3 and 4) and found to give good results for both MLPs and LSTMs.
The corresponding time series are presented in Figure 5.1.

In relation to the transaction cost considered, the average cost for these assets is 1.66
bp (this corresponds to the bid-ask spread obtained from Bloomberg). This value was
rounded upwards to 2 bp, to be on the conservative side, since we do not know the
composition of the portfolio, which will also evolve with time. This composition will
be decided autonomously by the RL agent.

As common practice, we decided to split the dataset considering 80% for training and
20% for testing.1 As a result, the training data includes 2899 time steps, while the testing
data is made of 768 time steps. On the one hand, the training data covers a long period
(2007–2018), including several cycles of important market movements. On the other
hand, the resulting testing data is very demanding in terms of performance taking into
account that it comprises a sharp market correction that occurred in February / March

1This is different from the 70%/30% split considered in Chapter 3 (Section 3.1.5). A slightly different
option was considered due to the importance of having a larger training dataset in RL problems. In
addition, the dataset used in this chapter is totally different from the one used in Chapters 3 and 4, and
we have enough data for a 80%/20% split.

118 Chapter 5. Deep Reinforcement Learning for Bond Portfolio Management

FIGURE 5.1: Cumulative performance of individual assets.

2020 (Figure 5.1). Finally, the fact that throughout the whole dataset some assets go in
opposite directions will also be an interesting performance test for the RL system.

5.3 Methodology

The methodology presented in this section is an important contribution of this chapter.
Indeed, several alternative approaches were considered that followed the literature
more closely, but these did not produce the expected results (as we will show below).
As a result, several methodological adaptations were needed until more promising res-
ults were achieved. These adaptations will be detailed below. This section is organised
as follows. First, we discuss some initial top level options considered impacting sub-
sequent work. Then, we describe in detail the agent, the environment developed for
this study and the empirical work carried out.

5.3.1 Top level options

In the following subsections, we start by presenting our choices regarding the type of
action space considered, of function approximators and objective function. They res-
ult from an initial selection among alternative approaches in RL. Then, we discuss the
method used for normalisation, performance evaluation and tuning of hyperparamet-
ers.

5.3. Methodology 119

5.3.1.1 Discrete versus continuous spaces

On the state and action spaces, discrete and continuous solutions can be used. In par-
ticular, Pendharkar and Cusatis (2018) used discrete states in their work but recognised
that continuous spaces are more realistic, although leading to higher complexity of
agent learning. In this vein, Rummery and Niranjan (1994) ascertain that discrete solu-
tions are too restrictive for many practical applications, recommending the use of high-
dimensional continuous state spaces. For this reason, we decided to adopt continuous
state and action spaces. On the state space side, the observations of financial market
variables tend to be continuous by nature, so in this case it would be a requirement.

On the action space side, both discrete and continuous solutions are possible to imple-
ment. However, the discrete alternative imposes that the actions, i.e. the weights, can
only assume certain predetermined levels, say 0%, 25%, 50%, 75% and 100%. This has
known limitations, most notably the “curse of dimensionality” (Lillicrap et al., 2015).
In fact, the number of actions increase exponentially with the number of assets in the
portfolio. For example, considering the five levels of discretisation referred above and
the four assets we are considering, it would result in an action space with dimension-
ality 54 = 625. Both numbers could be be much higher in real life, so this represents a
serious scalability problem. On the portfolio management side, the limitations of this
procedure are also evident since the weights for each asset in the portfolio are prede-
termined and specific, which may not be the optimal exposure to each asset. Moreover,
with the discretisation process we are discarding important information from the ac-
tion space that may be crucial for solving the RL process. In conclusion, the optimal
and natural solution for portfolio management is the one where the weights can vary
continuous from 0% to 100%. It is the most realistic option and adopted for this work.

5.3.1.2 Policy optimisation and function approximators

In the majority of situations, the agent is confronted with states not seen before and
will need to generalise, to make good decisions about the next action to take. The
necessary function approximation may be carried out by any of the methods used in
supervised learning, which may be integrated in the RL algorithm (Sutton and Barto,
2020). Consequently, all types of solutions can be adopted for function approximation,
from simple linear models to complex nonlinear neural networks.

Although linear function approximators have been used in recent studies (Pendharkar
and Cusatis, 2018), nonlinear functions may lead to enhanced performance of the RL
agent. Thus, some of the models studied in Chapters 3 and 4 can be used for this
purpose. Our solution considered a deep neural network for both the actor and critic
networks, which will be presented in Section 5.3.2.4.

120 Chapter 5. Deep Reinforcement Learning for Bond Portfolio Management

5.3.1.3 Objective function

The objective function to be maximised by the agent is represented by a target strategy
metric which can be selected from a range of metrics (Almahdi and Yang, 2017; Ji-
ang et al., 2017): portfolio return, Sharpe ratio, differential Sharpe ratio, Calmar ratio,
among others.

Given that the main objective of this work (Objective 6, Section 1.2) is to test the concept
of RL in portfolio management of fixed income portfolios, we opted for the simplest
objective function, i.e. {1+portfolio return}, and variations of this one to better dif-
ferentiate the agents’ rewards for positive or negative outcomes. The alternatives to
portfolio return will be detailed in Section 5.3.4. The “portfolio return” metric repres-
ents a risk-neutral portfolio management, where the maximisation of return is the only
objective. Other strategies are also common in the industry, namely the ones consid-
ering risk-return trade-off using metrics such as the ones referred above (Luenberger,
1998). However, for our objective this is the simplest and most natural objective func-
tion to consider (Moody and Wu, 1997). In future work, it is important to consider
other objective functions, which can be incorporated in our RL system once the initial
objective is successfully implemented (further details in Section 6.2).

5.3.1.4 Normalisation of observations

The normalisation of observations is an important factor that helps the system to learn.
This is equally important in the case of RL (Lillicrap et al., 2015), and in supervised
learning (Ioffe and Szegedy (2015) and Section 3.1.5). The observations passed to the
agent comprise individual ETF daily returns (and respective lags), together with the
respective weights in the previous time step. The weights have an imposed range [0, 1],
while most of the ETF returns will fall in the range [−1, 1] when expressed in percentage
terms (93%), with a reduced number slightly outside that interval. As a result, in the
particular case of bond portfolio management where returns tend to be smaller than
is some other assets classes, there is a natural method to normalise the observations.
This method was implemented by introducing a Simulink Gain block, similar to the
one used to scale the rewards (this will be detailed in Section 5.3.3 and Figure 5.3).

5.3.1.5 Performance metric

Considering a risk-neutral portfolio management approach, we selected the perform-
ance metric to be the cumulative return of the portfolio during the whole training or
testing period, after transaction costs are considered. This metric is frequently presen-
ted in the form of total portfolio value (or cumulative capital value) of an initial unit of
investment. For bond portfolios in particular, it is especially important to consider both

5.3. Methodology 121

the capital gain component and the income component of returns. This was implicitly
taken into account when selecting the assets (Section 5.2 and Table 5.1).

To further support our choice, we refer the recent study by Betancourt and Chen (2021).
The authors tested two performance metrics to evaluate the profit-seeking and the risk-
aversion behaviours of their actor-critic algorithm (Section 2.7.5.3). For that purpose
they tested two different setups, one using total return in the period as performance
metric, and a second setup using the differential Shape ratio (Moody and Wu, 1997).
They found that the algorithm setup using total return was overall the more robust
solution for both profit-seeking and risk-aversion.

5.3.1.6 Hyperparameter tuning

Whenever possible, we considered as reference for the hyperparameter tuning, values
used in the literature in other applications of RL to portfolio management or financial
trading (Jiang and Liang, 2017; Jiang et al., 2017; Liang et al., 2018; Aboussalah et al.,
2021; Pigorsch and Schäfer, 2021). Since hyperparameters are not portable across dif-
ferent applications, this was the first source of information.

Additional recommendations were taken from the literature, in particular with refer-
ence to the specific algorithms used in our experimental work (Lillicrap et al., 2015;
Mnih et al., 2015), and software platform used (MathWorks, 2021b).

Finally, further tuning was carried out for the learning rate, as it is recognisedly one of
the most important hyperparameters in machine learning (Goodfellow et al., 2016). For
reference, a list of the hyperparameters used is presented in Appendix C.

5.3.2 Agent

In the following sub-sections we outline the criteria used to select the agent’s algorithm,
the DDPG. Then, after a brief summary of the algorithms from which it has evolved,
we describe the DDPG algorithm in detail. At the end, we specify the neural networks
used as function approximators in our portfolio management problem.

5.3.2.1 Algorithm selection

We considered several factors while selecting the algorithm to be used in our experi-
mental work. Our main requirements were:

• Model-free - this is an essential requirement since we do not have a model for the
workings of financial markets;

122 Chapter 5. Deep Reinforcement Learning for Bond Portfolio Management

• Can integrate deep function approximators - this is an important feature given the
flexibility that neural networks enable and their capacity for modelling complex sys-
tems;

• Online - the objective is to easily adapt the algorithm to the financial sources of in-
formation and the data frequency;

• Permits high-dimensional problems - this requirements is a results of the complexity
of financial markets and the number of features required for a better representation
of RL states;

• Continuous state and action spaces - the desirability of continuous spaces was dis-
cussed in Section 5.3.1.1;

• Deterministic policies - apart from the direct mapping from states to specific actions,
deterministic policy gradients benefit from computing efficiencies (Silver et al., 2014).

• Actor-critic architecture - the advantages of this type of agent are widely present in
the literature as outlined in Section 2.7.4. However, it is also a research interest and it
follows the fact that considerable less studies in the literature have been carried out
with this type of agent, adding some novelty to our study.

A summary of agent types and some of the most recently developed algorithms, which
represent important progression of ideas in RL recent history, is presented in Table 5.2.

TABLE 5.2: Summary of agent types and algorithms.
Based on MathWorks (2021a), with changes made by the author. Terminology: SARSA, State-
Action-Reward-State-Action; DQN, Deep Q Network; PPO, Proximal Policy Optimization;
SAC, Soft Actor-Critic; DPG, Deterministic Policy Gradient; DDPG, Deep Deterministic Policy

Gradient; TD3, Twin Delayed DDPG.

Actor

←− Discrete actions −→
←− Continuous actions −→

None Stochastic Deterministic

Critic None Policy Gradient

Policy Gradient
Value Actor-Critic

PPO

Q-Learning DPG
Q-Value SARSA SAC DDPG

DQN TD3

The information presented directly points to three specific algorithms: the DPG (Sil-
ver et al., 2014); the DDPG (Lillicrap et al., 2015); and the Twin Delayed DDPG, TD3
(Fujimoto et al., 2018). Our selection is the DDPG, which is a state-of-the-art algorithm
and a good compromise between the DPG, one of the models from which the DDPG

5.3. Methodology 123

evolves (further details in Section 5.3.2.2), and the most advanced and complex altern-
ative, the TD3. The latter work also proposes a deterministic algorithm, which is con-
sidered an improvement on DDPG (Haarnoja et al., 2018). This algorithm will be con-
sidered for future work (Section 6.2).

Finally, the DDPG has been found to be one of the most effective off-policy deep RL
methods (Duan et al., 2016). Nonetheless, some potential problems were also pointed
out in the same publication, namely: less stability when compared to batch algorithms
(methods in which at each iteration, a number of trajectories are generated), and that
the performance of the policy can deteriorate significantly during training.

5.3.2.2 Original algorithms leading to the DDPG

The DDPG algorithm presented in a seminal work by Lillicrap et al. (2015), combines
the DPG developed by Silver et al. (2014) and the Deep Q Network (DQN), proposed
by Mnih et al. (2013, 2015).

To briefly cover the original models, first, the DPG, is also known as Compatible Off-
Policy Deterministic Actor-Critic (COPDAC). As the name indicates, it is an actor-critic
algorithm, where the critic is, in this case, a linear function approximator estimating
the action-values (Q). To ensure sufficient exploration, the action-values are learnt
off-policy with samples from a stochastic behaviour policy distinct from the determ-
inistic target policy, using for example Q-learning (Watkins, 1989; Watkins and Dayan,
1992). On the other side of the actor-critic, Silver et al. (2014) demonstrated that the
deterministic policy gradient has the form of the expected gradient of the action-value
function. Hence, the actor updates its parameters by gradient ascent, in the direction
of the critic’s action-value gradient. This is more appropriate for continuous action
spaces than the typical alternative of greedy maximisation, that requires maximising Q
globally at every time step (Silver et al., 2014).

One of the main contributions of the DPG work (Silver et al., 2014) was the extension of
the policy gradient framework to deterministic policies, by clearly demonstrating that
tools used in stochastic policy gradients could also be applied to deterministic policy
gradients, namely: compatible function approximation (Sutton et al., 2000), natural
policy gradients (Kakade, 2002), actor-critic architecture (Bhatnagar et al., 2008), and
episodic/batch methods (Peters et al., 2005).

The second model in which the DDPG is based, the DQN, is a critic-only algorithm,
where the critic function approximator is a deep neural network. Given that RL is
known to be unstable and even diverges when neural networks are used as function
approximators, the DQN algorithm incorporates two innovative techniques to improve
stability (Mnih et al., 2015). First, the critic is trained off-policy from samples stored
on an experience replay buffer (also known as experience replay or replay buffer).

124 Chapter 5. Deep Reinforcement Learning for Bond Portfolio Management

Randomised sampling from this buffer is used to remove correlations from the data
(observation sequences) and smooth changes in the data distribution. The second in-
novation, aims to reduce possible correlations between action-value (Q) and the target
Q-values, thus improving stability. For this purpose two identical neural networks
are considered: one network (Q network) updating its parameters at every time step;
while the second network for the optimization target (target Q network), only updates
its parameters periodically (at every t time steps). The latter network is frozen between
updates, and at the end of every t time steps the weights of the Q network are copied
to the target Q network and they become again identical. Hence, only the Q network is
trained.

In summary, the DDPG algorithm results from the actor-critic architecture of the DPG
combined with the two innovations from DQN, plus the concept of batch normalisa-
tion (Ioffe and Szegedy, 2015). Some of these concepts will be further detailed in Sec-
tion 5.3.2.3.

5.3.2.3 Deep deterministic policy gradient algorithm

The DDPG algorithm was developed at Google Deepmind, UK, by a team of research-
ers, whose main contribution was “to provide modifications to DPG, inspired by the
success of DQN” (Lillicrap et al., 2015). The authors base their idea on the actor-critic
architecture of DPG, but instead of using a linear function approximator as the critic,
they use a deep neural network. Additionally, based on the DQN algorithm, they du-
plicate the critic network. The modifications here consist of adapting to the actor-critic
architecture, and making “soft” updates of the target network’ parameters. Note that,
in contrast, in DQN the parameters are updated periodically only, remaining frozen
between updates (Section 5.3.2.2).

In what the authors identify as an improvement in stability, they do this duplication of
networks for both the critic and the actor. As a result, the DDPG algorithm comprises
four deep neural networks, two for the critic - the Q network, Q(s, a|θQ) and the target
Q network, Q′(s, a|θQ′) and two for the actor - the behaviour policy network µ(s|θµ) the
target policy network µ′(s|θµ′) The first critic network, updates its parameters by gradient
descent, in order to minimise the loss:

L(θQ) = Est∼ρµ,at∼µ,rt∼E

[(
yt −Q(st, at|θQ)

)2
]

(5.16)

yt = r(st, at) + γQ′(st+1, µ′(st+1|θµ′)|θQ′) (5.17)

where ρµ represents the discounted state visitation distribution for a policy µ; yt is the
target action-value; θQ and θQ′ correspond to the parameters of the Q and target Q
networks, respectively; while θµ′ are the parameters of the target policy network.

5.3. Methodology 125

In relation to the first actor network, it updates its parameters by gradient ascent, in the
direction of the critic’s action-value gradient. Applying the chain rule of differentiation
to the expected return, we obtain:

∇θµ J ≈ Est∼ρβ

[
∇θµ Q(s, a|θQ)|s=st,a=µ(st|θµ)

]
(5.18)

(chain rule)
= Est∼ρβ

[
∇aQ(s, a|θQ)|s=st,a=µ(st)∇θµ

µ(s|θµ)|s=st

]
(5.19)

where θµ are the parameters of the behaviour policy network; ∇a and ∇θµ denote the
gradients with regards to the action a and the parameters of the behaviour policy net-
work θµ, respectively.

The second networks for the critic and actor, respectively, conduct “soft” updates, as
follows:

θQ′ ← τθQ + (1− τ)θQ′ (5.20)

θµ′ ← τθµ + (1− τ)θµ′ (5.21)

where the parameter τ ≪ 1, is the target smooth factor.

To ensure adequate exploration, and taking into account we are in continuous action
spaces, noise is added to the output of the actor behaviour policy µ, obtaining what the
authors call the “exploration” policy:

at = µ(st|θµ
t) +N (5.22)

where N denotes stochastic noise sampled from a noise process, for example from
an Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930). The complete DDPG
algorithm is reproduced in Algorithm 2 from the original paper (Lillicrap et al., 2015).

There are two additional aspects of the DDPG algorithm that should be mentioned
due to its importance: the experience replay buffer and normalisation. The experience
replay buffer, is another idea based on the DQN algorithm (Mnih et al., 2015). While
training, the algorithm stores previous transitions (or previous “experiences”) of the
type (st, at, rt, st+1), i.e. the sequence state-action-reward-next state. This buffer of past
experiences is used to train the model, in an analogy to the human learning process.
Hence, at each time step, the agent selects minibatches randomly from this replay buffer
to ensure the samples are independent and identically distributed.

Finally, the batch normalisation proposed for RL (Lillicrap et al., 2015) is based on a
similar concept from deep learning (Ioffe and Szegedy, 2015). It may be useful in case
of low-dimensional observations, with different types of units and ranges, sparing the
work of manually scaling the features. It consists of normalising each dimension across
samples in one minibatch so that they have unit mean and variance. At the same time,

126 Chapter 5. Deep Reinforcement Learning for Bond Portfolio Management

Algorithm 2: DDPG algorithm, reproduced from Lillicrap et al. (2015).

1 Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ

and θµ.
2 Initialize target network Q′ and µ′ with weights θQ′ ← θQ, θµ′ ← θµ.
3 Initialize replay buffer R.
4 for episode = 1 to M do
5 Initialize a random process N for action exploration.
6 Receive initial observation state s1.
7 for t = 1 to T do
8 Select action at = µ(st|θµ) +Nt according to the current policy and

exploration noise.
9 Execute action at and observe reward rt and observe new state st+1.

10 Store transition (st, at, rt, st+1) in R.
11 Sample a random minibatch of N transitions (si, ai, ri, si+1) from R.
12 Set yi = ri + γQ′(si+1, µ′(si+1|θµ′)|θQ′).
13 Update critic by minimizing the loss:

L =
1
N ∑

i
(yi −Q(si, ai|θQ))2

14 Update the actor policy using the sampled policy gradient:

∇θµ J ≈ 1
N ∑

i
∇aQ(s, a|θQ)|s=si ,a=µ(si)∇θµ µ(s|θµ)|si

15 Update the target networks:
θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

16 end for
17 end for

they store the running average of both the mean and the variance, to use during the
testing phase.

5.3.2.4 Actor and critic deep neural networks

The neural networks for both the actor and critic are presented in Figure 5.2. The actor
network is a standard feedforward neural network mapping from state observations
to actions, including fully-connected (fc1 and fc2) and ReLU activation (relu1 and relu2)
layers (Figure 5.2a). The last layer of the network scales the outputs (action) with a
softmax layer (scaction), given that the actions correspond to the weights of each asset
in the portfolio (Section 5.1.2).

Bearing in mind that the critic is part of an agent using a DDPG algorithm, the final
output of this network is the state-action value at each time step (value in Figure 5.2b).
As a consequence, it requires two separate paths: one for the observations and another
for the actions. Theses branches converge into a common path via an addition layer

5.3. Methodology 127

(A) Actor neural network (B) Critic neural network.

FIGURE 5.2: Diagrams of actor and critic neural networks’ paths, where observation represents
the state observations; action the agent’ actions; f c is a fully connected layer; f cact is also a
fully connected layer in the action path of the network; relu the activation function; scaction the

scaled actions; and value is the action value, or Q-value.

(add in Figure 5.2b). Apart from this difference, the critic network is also a sequence of
fully-connected and ReLU activation layers.

5.3.3 Environment

In this section, we present the environment developed for this work and discuss the
selection of platform used for that purpose.

5.3.3.1 Platform selection

The environment is an essential part of the RL system. Although there are a number of
notable resources available, such as OpenAI (OpenAI, 2022a,b) and Acme from Deep-
Mind (Hoffman et al., 2020), they tend to cover specific applications, e.g. in games and
particular cases for robotics. OpenAI, for example, has developed a set of high-quality
implementations of RL algorithms, called OpenAI Baselines. These have been widely
used by researchers to compare results and test new ideas against these baselines. How-
ever, they also recognise that “(...) the existing open-source collections of RL environments
don’t have enough variety, and they are often difficult to even set up and use” (OpenAI, 2022a),
and “(...) the field of deep RL has a pretty high barrier to entry for new researchers as well as
practitioners (...)” (OpenAI, 2022b). This is a problem that persists, although their con-
tribution to solve it must be celebrated. All these factors make the application of RL to
new fields, a task with added complexity and with a very steep learning curve. This
is in sharp contrast to supervised and unsupervised learning, where standard libraries

128 Chapter 5. Deep Reinforcement Learning for Bond Portfolio Management

exist and may be used in a short period of time (e.g. Scikit-learn, Tensorflow, Keras,
Pytorch).

In that context, environments specifically for portfolio management, that could be re-
liably adapted for the testing of RL agents/algorithms, are not available. Moreover,
documentation and support online from these open source frameworks tend not to be
ideal. For all these reasons, we decided to develop our own portfolio management
environment, using MATLAB and Simulink (MathWorks, 2021b,c), both of which tend
to be readily available at higher education and research institutions. This gives us an
additional flexibility for adaptations that could not be available otherwise.

5.3.3.2 Simulink environment

A simplified diagram of the Simulink environment system is presented in Figure 5.3,
including in the figure the agent (not part of the environment) to identify all connec-
tions between agent and environment.

FIGURE 5.3: Portfolio management Simulink environment and agent.

All the elements connect in a sequence process similar to the one represented simplistic-
ally in Figure 2.10. The main subsystems are: the state, the rewards, and the IsDone. The
state subsystem is responsible for inputting the time series from the four ETFs of our
portfolio. Since we consider a window of 6 time steps per asset, this includes 24 time
series in total, i.e. one per asset, up to the present time step, and 5 (per asset) lagged
versions of the first. In addition, the state also receives the previous actions, i.e. the

5.3. Methodology 129

weights of the portfolio in the previous time step. This subsystem sends this inform-
ation to the rewards subsystem and to the agent. The rewards subsystem is responsible
for the calculation of rewards, taking into account transaction costs, in accordance with
Equation 5.6 and sending the reward signal to the agent. In turn, the IsDone subsystem
is simply a counter that sends a signal to the agent, identifying if the end of the episode
has been reached.

Additional supporting subsystems are included in the diagram. First, the Portfolio total
return subsystem controls, stores and enables the visualisation of this variable during
execution. Second, the Gain subsystem enables to apply a factor to the reward signal.
The objective of this is to be able to change the scale of rewards to study the sensitivity
of the algorithm to their scale (further details in Section 5.3.4).

Third, the Random action subsystem is used to randomise the initial weights at the start
of each episode. In a typical portfolio management study, the portfolio starts with the
whole capital in cash, or in the equivalent asset (Jiang et al., 2017). To force the portfolio
to start from a different portfolio exposure and take different trajectories during an
investment episode, we introduced this randomisation. This should contribute to avoid
local optima in the RL process.

Last, the Assertion subsystem is there to ensure that the sum of the actions (weights) is
equal to one. It is important to highlight that in the DDPG algorithm (Lillicrap et al.,
2015), noise is added to the actor policy to obtain the exploration policy (Equation 5.22).
As a result, the simple inclusion of a softmax layer in the actor network does not guar-
antee that the sum of all weights is equal to one, given that the addition of noise occurs
after this point in the cycle. Hence, to ensure that this constraint (equality to one) is not
violated, we have considered an additional block in the environment immediately after
the agent output in the RL system.

5.3.4 Empirical work to test the RL system

In this section we describe the experimental work carried out with the main objective
of testing the RL system, thus evaluating its potential for fixed income portfolio man-
agement. A summary of the work is outlined in Table 5.3.

In what concerns the testing data, we consider the final agent, i.e. the resulting agent
at the end of the training phase, but also the best performing agents during the train-
ing phase. The selection criteria for those best performing agents must be objective in
order to avoid any bias in the selection process. Therefore, we select all agents that
satisfy the following two conditions: they obtain a total episode reward higher than
90% of the maximum episode reward obtained by all agents during training; and the
running average episode reward in the last 10 episodes is also above the 90% level.

130 Chapter 5. Deep Reinforcement Learning for Bond Portfolio Management

TABLE 5.3: Empirical work for RL system testing.

Data Agent Objective

Training Test the system functioning and especially the capacity of
learning.

Testing Test the system in unknown data and compare to the bench-
mark.

Final agent Compare the performance of the final agent resulting from
the training phase.

Best agents Compare the performance of the best performing agents
during training. Selection criteria: episode reward > 90%
of the maximum episode reward during training, when the
running average episode reward is also above the 90% level.

Reward alternatives

{1 + RP,t}; {RP,t}; {RP,t × 104}

Benchmark

Buy & Hold strategy of individual ETFs, with particular fo-
cus on the performance of the best asset.

The goal of the latter is to exclude agents that could correspond to a spike in the learn-
ing process. Overall, a selection of this type would correspond to selecting the best
performing portfolio managers.

We considered three alternatives for the rewards. First, the {1+portfolio return} ap-
proach as presented in Section 5.1.4 and Equation 5.6. Second, we consider the simple
portfolio returns, which are centered at positive but small value close to zero.

Finally, building on the previous alternative we amplify the reward multiplying it by
104. The rationale for doing so is connected to the basis point (bp), which is one of the
most common units in the bond market, for interest rates, yields and also for returns.
One bp is defined as 1/100th of 1%, or 10−4. As an example, if the bond portfolio re-
turns move in a range of 0 to 1%, the rewards would have a scale from 0 to 100. Hence,
with this alternative approach, the rewards are approximately centered around zero
and we ensure a higher differentiation of rewards between positive and negative per-
formance by the agent. On top of that, using this approach, we can test the sensitivity
of the RL algorithm to the scaling of rewards, a subject pointed out by Duan et al. (2016)
in relation to the DDPG algorithm, but not given considerable attention in subsequent
literature.

The benchmark considered is the buy and hold strategy of individual ETFs. However,
the main goal is to compare the RL results against the best performing asset in the
portfolio, which is a more demanding benchmark.

5.4. Results and discussion 131

5.4 Results and discussion

In this section, we present and discuss the results obtained. We start with a brief re-
porting of the results obtained with the different reward alternatives tested. Then, we
proceed with the results from both the training phase and the testing phase, since both
phases provide useful information.

5.4.1 Reward alternatives

We considered the three different reward alternatives referred to in Table 5.3. In the
first two alternatives, {1+ RP,t} and {RP,t}, the system failed to learn from the starting
point, producing learning curves close to flat. On the contrary, in the third alternative,
{RP,t × 104}, there was noticeable and rapid learning from the starting point. These
results are not presented here due to the lack of additional information.

This was somewhat unexpected given that those rewards have been used in the liter-
ature (Moody and Wu, 1997; Jiang et al., 2017; Filos, 2019; Koker and Koutmos, 2020).
However, we highlight that the vast majority of those studies cover other asset classes,
where the dimension of the returns tend to be higher. They also use different types of
algorithms, which are conceptually different from the actor-critic architecture we are
using. Specifically for the DDPG algorithm, we found indications in the literature that
it could be susceptible to the scale of the rewards (Duan et al., 2016).

In the case of bonds, which typically have smaller daily returns, the differentiation
between rewards given to the agent for positive and negative actions is much higher
using the scaled reward, and this may facilitate the learning process. For the reason
explained above, the results presented below in Sections 5.4.2 and 5.4.3, concern the
last reward alternative studied ({RP,t × 104}).

5.4.2 Training results

The most important results to test the quality of an algorithm are results obtained in
testing data, not known to the model in advance. However, in our case the training
results’ information is also relevant, because it will show if the RL system is working
and the system is able to learn. This is an important part of our objective for this work,
given that we have developed some of the components of the system from the begin-
ning. In Figure 5.4 we present the results obtained during the training phase, at evenly
spaced episodes.

The results demonstrate a significant learning from a very low portfolio return in the
initial run. In fact, we can observe that several agents obtain very high returns, mul-
tiplying several times the returns of the best performing asset in the portfolio.

132 Chapter 5. Deep Reinforcement Learning for Bond Portfolio Management

FIGURE 5.4: Portfolio total return at various episodes during the training phase, compared to
the total return of the individual assets.

Another observation from the plot is that the curves are not trending to a specific op-
timum level, although they remain at high levels when compared to the assets forming
the portfolio. This is an indication that the algorithm used is not converging to a certain
level of portfolio return, or of episode reward, and shows that the learning progress
is not totally stable. This is also confirmed by the evolution of the training-progress
plot, featuring episode reward against episode number (not presented here to avoid
duplication). In one of the few studies using the DDPG algorithm in portfolio manage-
ment, Snow (2020b) also found this problem. The author notes this RL algorithm can
be unstable, is generally hard to converge, and it tends to overfit. Difficulty converging
issues have also been reported elsewhere (Liang et al., 2018; Aboussalah et al., 2021),
and presented in Section 2.7.5.

5.4.3 Testing results

The results of the testing phase are divided in two parts: the results of the final agent
(Figure 5.5), and the results of the best agents (Figure 5.6), selected as explained in
Section 5.3.4.

The results from the final agent show a clear underperformance when compared to
the total return of the individual assets. Given the observed lack of stability of the
algorithm when applied to our portfolio (Section 5.4.2), just leaving the RL system to

5.4. Results and discussion 133

FIGURE 5.5: Portfolio total return with testing data, using the final agent of the training phase,
and compared to the total return of the individual assets.

FIGURE 5.6: Portfolio total return with testing data, of the top three agents selected during the
training phase, and compared to the total return of the individual assets. For reference, we also
add the bottom performer of the selected agents. Selection criteria: agents with episode reward
above 90% of the maximum, when the running average episode reward is also above the 90%

level.

134 Chapter 5. Deep Reinforcement Learning for Bond Portfolio Management

run until the end of the maximum number of episodes specified for training, may result
in a final model far from ideal.

The following phase of the empirical work, with the selected agents (Table 5.3) is able to
overcome, at least partially, this issue. Hence, in Figure 5.6 we show the top three agents
and also the worst, versus the performance of the individual assets. From this figure,
we can observe that by selecting the best agents we are able to outperform the simple
buy and hold strategy of any of the assets in our portfolio. Since it is outperforming
the best asset, by definition it would also beat the traditional equal weight portfolio
strategy.

Nevertheless, some selected agents do underperform in relation to the best asset. It
may be because the selected agent is at an early phase of training, as in some cases, or
other reasons. Despite that, considering a simple ensemble of all agents satisfying out
objective selection criteria (Section 5.3.4 and Table 5.3), with equal weights, we obtain
a final portfolio return of 23%. This result is very close to the best performing asset
at 25%, while benefitting from a lower drawdown (peak-to-trough decline) during the
large correction in the early phases of Covid-19. For a better weighting of the agents in
the ensemble, we would need to consider market regimes (more long term, persistent
trends). Then, develop a methodology to select from the available agents, representing
portfolio managers, the best for the specific regime in which the market trades at the
time. This would take us into another area, outside the scope of this work.

In summary, even with an algorithm that demonstrated some stability problems during
learning and also overfitting, it is possible to select agents that outperform. So the
potential for RL in fixed income portfolio management is clear.

5.5 Summary and conclusions

RL provides an advanced framework for sequential decision making, which is the main
task of a portfolio manager when deciding on asset allocation. It also provides an al-
ternative to the difficult problem of directly forecasting financial assets, prices or yields,
given the complex nature of financial markets. With RL, we can overcome this issue,
with no model of the market required, and focusing directly on the optimisation of our
ultimate objective.

When transitioning from supervised learning to RL, there are a number of barriers due
to the lack of open-source environments for very specific financial applications and of
high quality standard libraries, with the right documentation and online support. In
our case, the application for this part of the research (fixed income portfolio manage-
ment) differs from the traditional applications found in the literature for RL (general
multi-asset portfolio management, of equity or equity-bond type portfolio).

5.5. Summary and conclusions 135

Taking this into consideration, we start by formulating the problem of portfolio man-
agement in the RL context. Then, we develop an autonomous RL system using an
environment created specifically for fixed income portfolio management. The other
main component of the system is an actor-critic type of agent that interacts with that
environment. The agent incorporates an algorithm, selected following a set of require-
ments outlined in Section 5.3.2.1, suitable for our specific application. The algorithm
selected was the DDPG, a state-of-the-art model developed at DeepMind.

We introduced a number of modifications in our methodology in relation to studies
in the literature in the development of our RL system. In particular, we considered a
scaled alternative for the rewards, to test the sensitivity of the algorithm to the scale of
rewards. Other modifications introduced concern: the normalisation used, particularly
useful for bond assets; the sofmax block in the environment to assert that the sum of the
portfolio weights equal to one; and the randomisation of the initial asset allocation, to
improve exploration.

The results showed that the DDPG algorithm is sensitive to the scale of rewards, with
the unscaled version not producing significant learning. As to the training results, they
demonstrated that the RL system is working and capable of learning. With this data,
the agent tends to obtain a final portfolio value several times higher than the return
produced by the best individual asset. Another important observation during training,
related to the DDPG algorithm, was the lack of convergence to an optimum value.
Indeed, the algorithm showed signs of unstable behaviour and overfitting.

Taking that into consideration, to seek outperformance on testing data, we could not
wait until the end of the testing phase and use the corresponding final agent. In fact,
we had to devise objective criteria for the selection of the best agents, during the train-
ing phase. The results showed that it is possible to select agents that outperform all
individual assets. Moreover, an unsophisticated ensemble, with equal weights, would
achieve a result very similar to the best performing asset in the portfolio.

Overall, we consider our results satisfactory for testing the autonomous system de-
veloped and as a proof of concept. They give clear indications of the potential of RL for
fixed income portfolio management. Nevertheless, further work is required to improve
the results on testing data and the stability of the agent. Concrete steps are outlined in
Section 6.2.

137

Chapter 6

Conclusions and Future Work

In this chapter we present the main conclusions of this thesis, linking them to the ini-
tial objectives of the research (Section 1.2). Additionally, we outline potential lines of
research for future work.

6.1 Conclusions

The literature review carried out revealed four main gaps and the objective of this re-
search is to fill those gaps. The first concerns the limited amount of publications on the
use of machine learning techniques applied specifically to fixed income markets. Other
financial areas have been the target of much higher levels of interest from the research
community, such as equities and forex. This gap was used to identify an asset class that
is relatively under-investigated using machine learning as the target for this research.

The second gap is more specific and relates to the lack of direct solutions in the literat-
ure for modelling the yield curve as a whole using machine learning models. For this
purpose, multitask learning was identified as a possible solution and was evaluated
in this research. This second gap led to our research presented in Chapter 3, which
is the first study applying machine learning, specifically multilayer perceptrons, and
multitask learning to model the yield curve as a whole.

The third gap is directly linked to the black-box concept behind the neural network type
of model. In fact, the lack of explanatory power and of understanding how and why
these models work at an internal level, hinders its broader use by financial practition-
ers. On this issue, past research makes limited attempts at such internal explanations.
This gap led to the research presented in Chapter 4, which is the first contribution in
that direction.

138 Chapter 6. Conclusions and Future Work

Finally, the fourth gap in the portfolio management field concerns the reduced number
of published studies in the most complex RL architectures, together with the contrast-
ing performances reported. In addition, there is a lack of resources for this type of
application, such as specific RL environments, and the absence of studies focusing ex-
clusively on bond portfolios. This gap led to the research presented in Chapter 5.

Therefore, this thesis includes three different topics of research, addressing the gaps
identified above. In the first, we conducted a comprehensive study using a wide range
of features from macroeconomic and market indicators (Objective 1). We identify as
targets for modelling five benchmarks of the European yield curve (3 months, 2, 5, 10
and 30 years), and consider five different forecasting horizons (next day, 5, 10, 15 and
20 days). Two different multitask learning techniques were used (Objective 4): sim-
ultaneous modelling of targets (using both yields and forecasting horizon as targets)
and transformation into independent single task learning problems. In addition, hav-
ing the linear regression model as a benchmark, several MLP models were considered
(Objectives 2 and 3), specifically: an MLP using all features, a univariate type of model,
and an intermediate MLP making use of the most relevant features by target and by
forecasting horizon. Additional models were designed using an innovative approach
of combining the linear regression and MLP model, by using synthetic data generated
by the first as input features in the second (Objective 5).

Our recommended methodology uses a moving window of training data to incorporate
the most recent information as it becomes available. Besides, we do the cross-validation
dynamically using these moving windows and combine the concepts of bootstrap and
bagging. Furthermore, the retraining of models happens at every time step, having
the advantage of increased flexibility to changing market conditions. Our results also
highlight the vital role of the feature selection process. In particular, we found that the
most relevant features change depending on both target and forecasting horizon. This
provides important novel insights into the importance of choosing the right methodo-
logy in the overall process, in contrast to previous research where a small set of features
is pre-determined and used irrespective of the conditions of the problem where they are
applied.

In terms of results obtained from the models studied, the MLP using the most relevant
features for each target and each forecasting horizon achieved the best results over-
all (Objectives 1 and 2). While the performance of all models studied is comparable
for next-day forecasting, the differences become significant for longer forecasting ho-
rizons. Overall, our results are better than the ones in comparable studies from the
literature. The results also demonstrate the positive effect of incorporating in the mod-
els, via additional features, artificially-generated data from other models (Objective
3). Indeed, the models using this type of data tend to achieve superior performance
(Objective 5), especially for longer forecasting horizons and longer maturities (2 to 30
years), suggesting the potential for using hybrid models incorporating data generated

6.1. Conclusions 139

by industry-established models. On the comparison of multitask and single task learn-
ing, no clear differentiation could be demonstrated (Objective 4). Potential reasons
were presented, which are supported by the literature.

In summary, we show that MLPs can be successfully used for this purpose and re-
commend methodologies that may be used by practitioners to build better forecasting
systems for bonds.

The second topic of this thesis can be subdivided in three main parts. First, we conduct
an application of LSTM networks to the bond market, specifically for forecasting the
10-year Euro government bond yield, and compare the results to memory-free MLP
models (Objective 2). This is among the first studies of its kind. To this end, we model
the 10-year bond yield using univariate LSTMs with different input sequences (6, 21
and 61 time steps), considering five forecasting horizons, the next day as well as further
into the future, up to next day plus 20 days. Our objective is to compare those LSTM
models with univariate MLPs, as well as MLPs using the most relevant features. These
are determined using Lasso regression, for each forecasting horizon. For this compar-
ison, we use the same data and methodology as in the previous topic. As previously,
we use a training moving windows. This showed to work well because it incorpor-
ates the most recent information as it becomes available, thus having the advantage of
increased flexibility to changing market conditions.

The direct comparison of models in identical conditions shows that, with the LSTM,
we can obtain results that are similar or better and with lower standard deviations. For
forecasting horizons equal to 10 and 15 days, the superiority of the LSTMs becomes
more evident. In fact, the multivariate MLP needs additional information from mar-
kets, to reach the level of accuracy of the univariate LSTM model with longer input
sequences. This is a remarkable achievement and a promising result for future work.
Furthermore, the results for the univariate LSTM show that shorter forecasting hori-
zons require smaller input sequences and, vice-versa. Therefore, there is a need to
adjust the LSTM architecture to the forecasting horizon and in general terms to the
conditions of the problem. In summary, the results obtained in the comparative study
validate the potential of LSTMs for yield forecasting and identify their memory advant-
age when compared to memory-free models.

Second, with the objective to analyse the internal functioning of the LSTM model and
mitigate the preconceived notion of black-box normally associated with this type of
model, we conduct an internal analysis of the information in the memory cell through
time (contributing to Objective 2). Our research is the first contribution with that ob-
jective. Alternative works are either applied to a different type of model, or conducted
an external analysis of the LSTMs (Section 4.1). To achieve this goal, we select several
locations within the memory cell to directly calculate and extract the signals (weights)
at each time step and hidden unit. Specifically, the locations are as follows: forget gate,

140 Chapter 6. Conclusions and Future Work

product of the outputs from the input gate and input node, output gate, cell state, and
hidden state. This analysis is carried out using sequence-to-sequence (6 days) LSTM
architectures, with uni and multivariate feature sets and, for interpretability purposes,
with reduced number of hidden units (3 units). We used a forecasting horizon of next
day plus 5 days. Overall, considering all feature sets, the most remarkable property
found consistently in the LSTM signals, is the specialised switching behaviour. This
is manifested by the activation / deactivation of units through time, thus contributing
or not (respectively) to the forecasting process. Moreover, we found evidence that the
LSTM units tend to specialise in different yield ranges or features considered in the
model.

As the third and last part of the topic, we investigate the information contained in the
signals extracted from the LSTM hidden and cell states, to examine whether the cor-
responding time series can be explained by external sources of information (contrib-
uting to Objective 1). To this effect, we introduce a new methodology, here identified
as LSTM-LagLasso, based on both Lasso and Kalman-LagLasso. This methodology is
capable of identifying both relevant features and corresponding lags, as the Kalman-
LagLasso, but with significant modifications (Section 4.3.3). The findings show that
the information contained in the LSTM states is complex, but may be explained by
exogenous macroeconomic and markets variables, not known to the model during the
learning process. Thus, it is worth exploring this information using the developed
LSTM-LagLasso methodology, which may be used as an alternative feature selection
method. On the relevant features selected with the LSTM-LagLasso method, they indic-
ate conventional as well as non-conventional market/macro indicators (Section 4.4.3),
contributing to the prediction process, but which are not commonly used in forecasting
models. In addition, the LSTM-LagLasso identifies lags as important, in particular t,
t− 1 and t− 5. Above all, LSTM networks can capture this information and maintain
it in the long and short-term memories, i.e. cell and hidden states.

In the third topic of this thesis, we apply RL to the portfolio management problem
(Objective 6). For this purpose, we develop an autonomous system which includes a
newly created environment specifically for fixed income portfolio management, which
interacts with an agent using a state-of-the-art algorithm developed by DeepMind, the
DDPG. Our work is among a small number of studies testing this algorithm for port-
folio management (Section 2.7.5.3). To test this system, we select four bond ETFs to
represent our fixed income portfolio and use their historical prices as inputs to the en-
vironment. The methodology developed involves a number of modifications in relation
to other studies in the literature and are detailed in Section 5.3. These modifications are
due to the specific asset class and algorithm we use, but they also reflect aspects pre-
viously pointed out in the literature which had no subsequent development. In this
particular situation it was the scale of rewards that had direct impact on the learning
capacity of our RL system.

6.2. Future work 141

The system was successfully tested, demonstrating the capacity to learn from the train-
ing data. Hence, the total portfolio return of the agent during training is several times
higher than the total return of the best asset in the portfolio. On the agent side, the al-
gorithm showed some signs of instability that require further research. Some potential
follow-up on this issue is outlined in Section 6.2. Nevertheless, we demonstrate how to
extract the best agents (or portfolio managers) from the system, during training, using
an objective selection criteria. Some of these agents are capable of outperforming (in
unknown testing data) both the static equal-weight buy and hold strategy and the best
asset in the portfolio, considered as benchmarks. In fact, a simple ensemble of those
selected agents, with equal weights, performs at a level equivalent to the best asset in
the portfolio. Overall the results confirm the potential for RL in fixed income portfolio
management.

To finalise, the main practical implications of this thesis is the demonstration that sev-
eral machine learning models can be used successfully for forecasting and portfolio
management in fixed income markets. It represents a powerful tool that the industry is
already using, although it is not widespread or completely established yet, especially
when applied to bonds. This is the main rationale behind the present study. We are
certain that this line of research will continue in the future given its potential and the
promising results obtained so far, reported in this thesis and elsewhere in the literat-
ure. Overall, we have extended the state-of-the-art literature, developing methodolo-
gies and proving concepts that are useful for financial practitioners in those two main
areas of forecasting and portfolio management.

6.2 Future work

In this section we outline potential future research, directly related to the work reported
in this thesis. In particular, we focus on two distinct areas: the study of internal signals
in back-box models and RL.

Statistical significance tests

In Chapter 3, additional statistical tests can be performed on the distributions of pre-
dicted results obtained by each model, in order to strengthen our confidence on the
statistical significance of the differences observed. In finance, one of the most com-
monly used methods to compare forecasts and determine statistical significance, is the
Diebold–Mariano test (Diebold and Mariano, 1995; Diebold, 2015) and the modified
version of this model proposed by Harvey et al. (1997). Both tests could be used to
improve the robustness of the conclusions.

142 Chapter 6. Conclusions and Future Work

Internal signals in back-box models

We observed regime switching behaviour in the internal states in Section 4.4.2. It would
be interesting to study if this type of internal unit behaviour can also be identified in
other asset classes, for example in equities. This will increase the robustness of these
findings and would contribute for a better understanding of the models.

The relationships we uncover between economic variables and internal states of LSTM
models (Sections 4.4.3 and 4.4.4), are correlation-based as they result from simple linear
regressions. A necessary next step will be to aim to infer causal relationships, casting
them in a Granger causality setting. This will increase the explanatory power of the
framework and lead to more in-depth understanding of how bond yields (and prices
in general) are influenced by the environment in which trading takes place.

Reinforcement learning

From the results obtained in Section 5.4, two different lines of follow-up research ensue:
one to improve the stability of the algorithm used by the agent and another to work on
improving the results obtained by the best agents. On the first, there several other
algorithms that can be tested in the developed platform, in search for a more stable
agent. Some of the most immediate candidates for continuous action space are: Twin
Delayed DDPG – TD3 (Fujimoto et al., 2018), which is an improved, more complex ver-
sion of DDPG; Proximal Policy Optimization – PPO (Schulman et al., 2017b) has more
stable updates but requires more training; and the Soft Actor-Critic – SAC (Haarnoja
et al., 2018), which is also an improved, more complex version of DDPG, that generates
stochastic policies. These are all actor-critic type of algorithms, but other alternatives
could also be tested in the actor-only and critic-only arena. In comparison, these are
simpler architectures, which could prove effective.

On the second line of follow-up research, we would consider the field of ensembles of
best agents. In Section 5.4.3, we tested a simple ensemble using equal weights. Bet-
ter ensembles could be built with better weighting of the agents. Ideally, this line of
research should aim at selecting agents for different market regimes. The ensemble
would then attribute adequate weights according to the regime in effect at the time.

Finally, future research should consider different objective functions, covering more
closely the final set of objectives of an investor or client. Hence, the objective functions
can incorporate risk-return metrics, real-world constraints such as individual taxes,
investor preferences, and portfolio constraints. These more complex objective functions
would go towards a wider application in the asset management industry.

143

Appendix A

Chapter 3 - Initial List of Features

TABLE A.1: Initial list of features selected from financial markets, macroeconomic and
technical indicators.

Group Subgroup Ticker Name

Interest Rates

Rates ON EUDR1T EUR Deposit O/N
1M EUR001M Euribor 1 Month
3M EUR003M Euribor 3 Month
6M EUR006M Euribor 6 Month
9M EUR009M Euribor 9 Month
12M EUR012M Euribor 12 Month

ECB ECB Refi Rate EREU001W ECB Effective Min Bid Refi
3M Euribor Fut ER1 Generic 1st ‘ER’ Future
3M Euribor Fut ER2 Generic 2nd ‘ER’ Future
3M Euribor Fut ER3 Generic 3rd ‘ER’ Future
3M Euribor Fut ER4 Generic 4th ‘ER’ Future
3M Euribor Fut ER5 Generic 5th ‘ER’ Future

FED Fed Funds FDTR Federal Funds Target Rate
90day Euro$ Fut ED1 Generic 1st ‘ED’ Future
90day Euro$ Fut ED2 Generic 2nd ‘ED’ Future
90day Euro$ Fut ED3 Generic 3rd ‘ED’ Future
90day Euro$ Fut ED4 Generic 4th ‘ED’ Future
90day Euro$ Fut ED5 Generic 5th ‘ED’ Future

Fixed Rate Indices (Bberg/EFFAS)

All > 1 Yr USGATR Bberg/EFFAS Bond Indices
All > 1 Yr EUGATR Bberg/EFFAS Bond Indices
1-3 Yr EUG1TR Bberg/EFFAS Bond Indices
3-5 Yr EUG2TR Bberg/EFFAS Bond Indices
5-7 Yr EUG3TR Bberg/EFFAS Bond Indices

Continued on next page

144 Appendix A. Chapter 3 - Initial List of Features

Table A.1 – continued from previous page

Group Subgroup Ticker Name

7-10 Yr EUG4TR Bberg/EFFAS Bond Indices
>10 Yr EUG5TR Bberg/EFFAS Bond Indices

Yields

Europe 3M GECU3M Euro Generic Govt 3 Month Yield
2Y GECU2YR Euro Generic Govt 2 Year Yield
5Y GECU5YR Euro Generic Govt 5 Year Yield
10Y GECU10YR Euro Generic Govt 10 Year Yield
30Y GECU30YR Euro Generic Govt 30 Year Yield

US 3M USGG3M US Generic Govt 3 Month Yield
2Y USGG2YR US Generic Govt 2 Year Yield
5Y USGG5YR US Generic Govt 5 Year Yield
10Y USGG10YR US Generic Govt 10 Year Yield
30Y USGG30YR US Generic Govt 30 Year Yield

Japan 3M GJTB3MO Japan Generic Govt 3 Month Yield
2Y GJGB2 Japan Generic Govt 2 Year Yield
5Y GJGB5 Japan Generic Govt 5 Year Yield
10Y GJGB10 Japan Generic Govt 10 Year Yield
30Y GJGB30 Japan Generic Govt 30 Year Yield

UK 2Y GUKG2 UK Generic Govt 2 Year Yield
5Y GUKG5 UK Generic Govt 5 Year Yield
10Y GUKG10 UK Generic Govt 10 Year Yield
30Y GUKG30 UK Generic Govt 30 Year Yield

Bond Futures

Europe 2Y DU1 Generic 1st ‘DU’ Future
5Y OE1 Generic 1st ‘OE’ Future
10Y RX1 Generic 1st ‘RX’ Future
30Y UB1 Generic 1st ‘UB’ Future

Swap Rates

Europe 2Y EUSA2 EUR Swap Annual 2 Yr
5Y EUSA5 EUR Swap Annual 5 Yr
10Y EUSA10 EUR Swap Annual 10 Yr
30Y EUSA30 EUR Swap Annual 30 Yr

US 2Y USSW2 USD Swap Semi-Annual 30/360 2 Yr
5Y USSW5 USD Swap Semi-Annual 30/360 5 Yr
10Y USSW10 USD Swap Semi-Annual 30/360 10 Yr
30Y USSW30 USD Swap Semi-Annual 30/360 30 Yr

Equities

INDU Dow Jones Industrial Average
SPX S&P 500 Index

Continued on next page

145

Table A.1 – continued from previous page

Group Subgroup Ticker Name

CCMP NASDAQ Composite Index
SX5E Euro Stoxx 50
SXXP Stoxx Europe 600
SX7E Euro Stoxx Banks
UKX FTSE 100 Index
TPX TOPIX Index (Tokyo)
NKY NIKKEI 225
HSI HANG SENG Index

Currencies

EURUSD EUR-USD X-Rate
EURJPY EUR-JPY X-Rate
EURGBP EUR-GBP X-Rate
EURCHF EUR-CHF X-Rate

Commodities

CRY Core Commodity CRB Index
CL1 Generic 1st ‘CL’ Future
CO1 Generic 1st ‘CO’ Future
GC1 Generic 1st ‘GC’ Future
SI1 Generic 1st ‘SI’ Future
HG1 Generic 1st ‘HG’ Future
C 1 Generic 1st ‘C’ Future
NG1 Generic 1st ‘NG’ Future

Volatility

MOVE Merrill Lynch Option Volatility
VIX CBOE SPX Volatility Index
V2X VSTOXX Index

Economic Indicators

US GDP CQOQ GDP US Chained 2009 Dollars
CPI XYOY US CPI Urban Consumers Less F&E
NAPMPMI ISM Manufacturing PMI
IP CHNG US Industrial Production MoM
CPTICHNG US Capacity Utilization %
USURTOT U-3 US Unemployment Rate Total
NFP TCH US Employees on Nonfarm Payrolls
INJCJC US Initial Jobless Claims SA
LEI CHNG Conference Board US Leading Index

Europe EUGNEMUY Euro Area Gross Domestic Product
CPEXEMUY Eurostat Eurozone Core MUICP
EUIPEMUY Eurostat Industrial Production
EUUCEMU Europ. Commission Capacity Utilization

Continued on next page

146 Appendix A. Chapter 3 - Initial List of Features

Table A.1 – continued from previous page

Group Subgroup Ticker Name

GRZEEUEX ZEW Euroz. Expectation of Ec. Growth
UMRTEMU Eurostat Unemployment Eurozone

Global Indicators OLE3US OECD US Composite Leading Indicator
OLE3EURA OECD Euro Area Comp. Leading Indic.
OLE3JAPA OECD Japan Comp. Leading Indicator
OLE3BRAZ OECD Brazil Comp. Leading Indicator
OLE3INDI OECD India Comp. Leading Indicator
OLE3CHIN OECD China Comp. Leading Indicator

ECB Balance Sheet EBBSTOTA ECB Balance Sheet (BS) All Assets
EBBSDEPF ECB Balance Sheet Deposit Facility
EBBSLONG ECB BS LT Refinancing Operations
EBBSA050 ECB BS Lending to Euro Area Credit Inst

ECB Money Supply ECMSM1Y ECB Money Supply M1 YoY
ECMSM2Y ECB Money Supply M2 YoY
ECMSM3YY ECB Money Supply M3 YoY

Government Bond Spreads

Inter-markets 2Y calculated US-Europe Govt 2 Year Spread
calculated Europe-Japan Govt 2 Year Spread
calculated US-Japan Govt 2 Year Spread
calculated Europe-UK Govt 2 Year Spread

10Y calculated US-Europe Govt 10 Year Spread
calculated Europe-Japan Govt 10 Year Spread
calculated US-Japan Govt 10 Year Spread
calculated Europe-UK Govt 10 Year Spread

Intra-market 03M10Y calculated Europe Govt 3 M-10 Year Spread
calculated US Govt 3 M-10 Year Spread

2Y10Y calculated Europe Govt 2-10 Year Spread
calculated US Govt 2-10 Year Spread

10Y30Y calculated Europe Govt 10-30 Year Spread
calculated US Govt 10-30 Year Spread

Technical Indicators

Europe Moving Average calculated Moving Average 5 days
2Y, 5Y, calculated Moving Average 10 days
10Y, 30Y calculated Moving Average 15 days

calculated Moving Average 20 days
calculated Moving Average 50 days
calculated Moving Average 200 days
calculated MA 10 days - MA 4 days
calculated MA 24 days - MA 14 days
calculated MA 48 days - MA 35 days

147

Appendix B

Chapter 4 - Additional Figures

148 Appendix B. Chapter 4 - Additional Figures

(A) Feature set 2.

(B) Feature set 3.

FIGURE B.1: Hidden state signals for feature sets 2 and 3.

149

FI
G

U
R

E
B

.2
:L

ST
M

-L
ag

La
ss

o
re

le
va

nt
fe

at
ur

es
fo

rt
he

hi
dd

en
st

at
e,

un
it

3,
co

ns
id

er
in

g
a

re
gu

la
ri

sa
ti

on
pa

ra
m

et
er

γ
eq

ua
lt

o
1.

0.
[T

er
m

in
ol

og
y:

A
n

ex
am

pl
e

of
te

ch
ni

ca
la

na
ly

si
s

in
di

ca
to

r
us

ed
is

“E
U

R
30

Y
M

A
48

-M
A

35
da

ys
”

co
rr

es
po

nd
in

g
to

th
e

48
-d

ay
M

ov
in

g
A

ve
ra

ge
(M

A
)m

in
us

35
-d

ay
M

A
,o

ft
he

30
-y

ea
r

Eu
ro

go
ve

rn
m

en
tb

on
d

yi
el

d
(E

U
R

30
Y

)]
.

151

Appendix C

Chapter 5 - Additional Information

TABLE C.1: List of hyperparameters used in the RL empirical work.

Hyperparameters Value Description

RL neural networks

Learning rate 10−3 Learning rate for optimisation.
L2 regularisation factor 10−4 Factor for L2 regularisation (weight decay).

Optimiser Adam Adam optimiser.

Epsilon 10−8 Denominator offset.
Gradient decay factor 0.9 Decay rate of gradient moving average.
Squared gradient decay factor 0.999 Decay rate of squared gradient moving average.

Gradient threshold Inf Threshold value for the gradient.
Gradient threshold method L2-norm Gradient threshold method used to clip gradient

values that exceed the gradient threshold.

RL agent

Discount factor 0.99 Discount factor applied to future rewards during
training.

Experience buffer length 106 Size of experience replay buffer.
Minibatch size 64 Size of random experience minibatch.

Ornstein-Uhlenbeck noise options

Mean 0 Noise model mean.
Mean attraction constant 0.15 Constant that specifies how quickly the noise

model output is attracted to the mean.
Standard deviation 0.3 Noise model standard deviation.

Target smooth factor 10−3 Smoothing factor for target actor and critic up-
dates.

Target update frequency 1 Number of steps between target actor and critic
updates.

Continued on next page

152 Appendix C. Chapter 5 - Additional Information

Table C.1 – continued from previous page

Hyperparameters Value Description

Training

Maximum episodes 10000 Maximum number of episodes used to train the
agent.

Maximum steps per episode 5000 Maximum number of steps to run per episode.
Score averaging window length 10 Length of window for averaging the scores, re-

wards, and number of steps for each agent.

Testing

Maximum steps 5000 Maximum number of steps to run the simulation.
Number of simulations 20 Number of simulations run.

Portfolio management

Window size 6 Number of previous time steps considered.
Maximum trading frequency daily Maximum trading frequency enabled.
Transaction cost (bid-ask) 2 bp Transaction cost considered (per unit of asset

traded).

153

Bibliography

Masaya Abe and Hideki Nakayama. Deep learning for forecasting stock returns in
the cross-section. In Dinh Phung, Vincent S. Tseng, Geoffrey I. Webb, Bao Ho, Mo-
hadeseh Ganji, and Lida Rashidi, editors, Advances in Knowledge Discovery and Data
Mining, pages 273–284. Springer, 2018. ISBN 978-3-319-93034-3. https://doi.org/10.
1007/978-3-319-93034-3 22.

Amine Mohamed Aboussalah, Ziyun Xu, and Chi-Guhn Lee. What is the value of the
cross-sectional approach to deep reinforcement learning? Quantitative Finance, pages
1–21, 2021. https://doi.org/10.1080/14697688.2021.2001032.

J. G. Agrawal, V. S. Chourasia, and A. K. Mittra. State-of-the-art in stock prediction
techniques. International Journal of Advanced Research in Electrical, Electronics and In-
strumentation Engineering, 2(4):1360–1366, 2013.

Saud Almahdi and Steve Y. Yang. An adaptive portfolio trading system: A risk-
return portfolio optimization using recurrent reinforcement learning with expected
maximum drawdown. Expert Systems with Applications, 87:267–279, 2017. https:
//doi.org/10.1016/j.eswa.2017.06.023.

Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Józefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, Jonas
Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech Za-
remba. Learning dexterous in-hand manipulation. The International Journal of Robotics
Research, 39(1):3–20, 2020. https://doi.org/10.1177/0278364919887447.

Oscar Araque, Ignacio Corcuera-Platas, J Fernando Sánchez-Rada, and Carlos A Ig-
lesias. Enhancing deep learning sentiment analysis with ensemble techniques in so-
cial applications. Expert Systems with Applications, 77:236–246, 2017. https://doi.org/
10.1016/j.eswa.2017.02.002.

Imanol Arrieta-Ibarra and Ignacio N. Lobato. Testing for predictability in financial
returns using statistical learning procedures. Journal of Time Series Analysis, 36(5):
672–686, 2015.

https://doi.org/10.1007/978-3-319-93034-3_22
https://doi.org/10.1007/978-3-319-93034-3_22
https://doi.org/10.1080/14697688.2021.2001032
https://doi.org/10.1016/j.eswa.2017.06.023
https://doi.org/10.1016/j.eswa.2017.06.023
https://doi.org/10.1177/0278364919887447
https://doi.org/10.1016/j.eswa.2017.02.002
https://doi.org/10.1016/j.eswa.2017.02.002

154 BIBLIOGRAPHY

Adam Atkins, Mahesan Niranjan, and Enrico Gerding. Financial news predicts stock
market volatility better than close price. The Journal of Finance and Data Science, 4(2):
120–137, 2018.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In Proceedings of the International Conference
on Learning Representations, ICLR, pages 1–15, 2015. https://arxiv.org/abs/1409.0473.

Turan G. Bali, Amit Goyal, Dashan Huang, Fuwei Jiang, and Quan Wen. Predicting
corporate bond returns: Merton meets machine learning. Georgetown McDonough
School of Business Research Paper No. 3686164, Swiss Finance Institute Research Paper No.
20-110, 2022. http://dx.doi.org/10.2139/ssrn.3686164.

Michel Ballings, Dirk Van den Poel, Nathalie Hespeels, and Ruben Gryp. Evaluating
multiple classifiers for stock price direction prediction. Expert Systems with Applica-
tions, 42(20):7046–7056, 2015. https://doi.org/10.1016/j.eswa.2015.05.013.

Devon K. Barrow and Sven F. Crone. Cross-validation aggregation for combining
autoregressive neural network forecasts. International Journal of Forecasting, 32(4):
1120–1137, 2016. https://doi.org/10.1016/j.ijforecast.2015.12.011.

Bo Becker and Victoria Ivashina. Reaching for yield in the bond market. The Journal of
Finance, 70(5):1863–1902, 2015.

Richard Bellman. A Markovian decision process. Journal of Mathematics and Mechanics,
6(5):679–684, 1957. http://www.jstor.org/stable/24900506.

Alexandre Belloni, Victor Chernozhukov, and Christian Hansen. Inference on treatment
effects after selection. arXiv preprint arXiv:1201.0224, 2012. https://arxiv.org/abs/
1201.0224.

Yoshua Bengio, Paolo Frasconi, and Patrice Simard. The problem of learning long-term
dependencies in recurrent networks. In Proceedings of the International Conference on
Neural Networks, pages 1183–1188. IEEE, 1993.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies
with gradient descent is difficult. Transactions on Neural Networks, 5(2):157–166, 1994.

Adrian Benton, Margaret Mitchell, and Dirk Hovy. Multitask learning for mental health
conditions with limited social media data. In Proceedings of the European Chapter of the
Association for Computational Linguistics, EACL, volume 1, pages 152–162, 2017.

Carlos Betancourt and Wen-Hui Chen. Deep reinforcement learning for portfolio man-
agement of markets with a dynamic number of assets. Expert Systems with Applica-
tions, 164, 2021. https://doi.org/10.1016/j.eswa.2020.114002.

https://arxiv.org/abs/1409.0473
http://dx.doi.org/10.2139/ssrn.3686164
https://doi.org/10.1016/j.eswa.2015.05.013
https://doi.org/10.1016/j.ijforecast.2015.12.011
http://www.jstor.org/stable/24900506
https://arxiv.org/abs/1201.0224
https://arxiv.org/abs/1201.0224
https://doi.org/10.1016/j.eswa.2020.114002

BIBLIOGRAPHY 155

Shalabh Bhatnagar, Mohammad Ghavamzadeh, Mark Lee, and Richard S. Sutton. In-
cremental natural actor-critic algorithms. In J. Platt, D. Koller, Y. Singer, and S. Ro-
weis, editors, Advances in Neural Information Processing Systems, NeurIPS, volume 20,
pages 105–112, 2008. https://proceedings.neurips.cc/paper/2007/.

Christopher M. Bishop. Pattern recognition and machine learning (information science and
statistics). Springer-Verlag New York, 2006. ISBN 978-0-387-31073-2.

Tomas Björk and Bent Jesper Christensen. Interest rate dynamics and consistent for-
ward rate curves. Mathematical Finance, 9(4):323–348, 1999.

Fischer Black and Myron Scholes. The pricing of options and corporate liabilities.
Journal of Political Economy, 81(3):637–654, 1973.

Bloomberg. Bloomberg professional database, 2017a. (Accessed on 28-Apr-2017).

Bloomberg. Bloomberg’s 6 notable academic contributions in machine learning in 2016.
Tech at Bloomberg | Data Science, 2017b. https://www.techatbloomberg.com/ (Ac-
cessed on 30-May-2017).

Bloomberg. Bloomberg professional database, 2021. (Accessed on 07-May-2021).

John L. G. Board, Charles M. S. Sutcliffe, and William T. Ziemba. Portfolio selec-
tion: Markowitz mean-variance model. In Christodoulos A. Floudas and Panos M.
Pardalos, editors, Encyclopedia of Optimization, pages 2990–2996. Springer, 2009. ISBN
978-0-387-74759-0. https://doi.org/10.1007/978-0-387-74759-0 513.

Tim Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of
Econometrics, 31(3):307–327, 1986.

Ash Booth. Automated algorithmic trading: Machine learning and agent-based modelling in
complex adaptive financial markets. PhD thesis, University of Southampton, 2016.

Ash Booth, Enrico Gerding, and Frank McGroarty. Automated trading with perform-
ance weighted random forests and seasonality. Expert Systems with Applications, 41
(8):3651–3661, 2014a. https://doi.org/10.1016/j.eswa.2013.12.009.

Ash Booth, Enrico Gerding, and Frank McGroarty. Predicting equity market price im-
pact with performance weighted ensembles of random forests. In Proceedings of the
Conference on Computational Intelligence for Financial Engineering & Economics, CIFEr,
pages 286–293. IEEE, 2014b.

Ash Booth, Enrico Gerding, and Frank McGroarty. Performance-weighted ensembles
of random forests for predicting price impact. Quantitative Finance, 15(11):1823–1835,
2015.

https://proceedings.neurips.cc/paper/2007/file/6883966fd8f918a4aa29be29d2c386fb-Paper.pdf
https://www.techatbloomberg.com/blog/bloombergs-top-6-academic-contributions-machine-learning-2016/
https://doi.org/10.1007/978-0-387-74759-0_513
https://doi.org/10.1016/j.eswa.2013.12.009

156 BIBLIOGRAPHY

Hanen Borchani, Gherardo Varando, Concha Bielza, and Pedro Larrañaga. A survey on
multi-output regression. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 5(5):216–233, 2015.

George E. P. Box and Gwilym M. Jenkins. Some recent advances in forecasting and
control. Journal of the Royal Statistical Society. Series C (Applied Statistics), 17(2):91–109,
1968. ISSN 00359254, 14679876.

George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung. Time
series analysis: Forecasting and control. Wiley Series in Probability and Statistics. Wiley,
fifth edition, 2015. ISBN 978-1-118-67492-5.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

Jason Brownlee. Long short-term memory networks with Python. Develop sequence prediction
models with deep learning. Machine Learning Mastery, Jason Brownlee, 2018.

Jason Brownlee. Random forest for time series forecasting. Machine Learning Mastery,
2020. https://machinelearningmastery.com/ (Accessed on 21-May-2021).

Seok-Jun Bu and Sung-Bae Cho. Learning optimal Q-function using deep Boltzmann
machine for reliable trading of cryptocurrency. In International Conference on Intelli-
gent Data Engineering and Automated Learning, pages 468–480. Springer, 2018. ISBN
978-3-030-03493-1. https://doi.org/10.1007/978-3-030-03493-1 49.

Katherine Burton. Inside a moneymaking machine like no other. Bloomberg, 21 Novem-
ber, 2016.

Hongyun Cai, Zi Huang, Xiaofeng Zhu, Qing Zhang, and Xuefei Li. Multi-output
regression with tag correlation analysis for effective image tagging. In Proceedings
of the International Conference on Database Systems for Advanced Applications, DASFAA,
pages 31–46. Springer, 2014.

João Caldeira and Hudson Torrent. Forecasting the US term structure of interest rates
using nonparametric functional data analysis. Journal of Forecasting, 36(1):56–73, 2017.

Richard A. Caruana. Multitask learning: A knowledge-based source of inductive bias.
In Proceedings of the International Conference on Machine Learning, ICML, pages 41–48.
PMLR, 1993.

Richard A. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

Marco Castellani and Emanuel Augusto dos Santos. Forecasting long-term govern-
ment bond yields: An application of statistical and AI models. ISEG, Departamento de
Economia, pages 1–34, 2006.

https://machinelearningmastery.com/random-forest-for-time-series-forecasting/
https://doi.org/10.1007/978-3-030-03493-1_49

BIBLIOGRAPHY 157

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian
Hansen, Whitney Newey, and James Robins. Double/debiased machine learning for
treatment and structural parameters. The Econometrics Journal, 21(1):C1–C68, 2018.
https://doi.org/10.1111/ectj.12097.

Taufiq Choudhry, Frank McGroarty, Ke Peng, and Shiyun Wang. High-frequency
exchange-rate prediction with an artificial neural network. Intelligent Systems in Ac-
counting, Finance and Management, 19(3):170–178, 2012.

Carlo Ciliberto, Youssef Mroueh, Tomaso Poggio, and Lorenzo Rosasco. Convex
learning of multiple tasks and their structure. In Proceedings of the International
Conference on Machine Learning, ICML, volume 37, pages 1548–1557. PMLR, 2015.
http://proceedings.mlr.press/v37/.

Eugenio Culurciello. The fall of RNN / LSTM. Towards Data Science, 2018. https:
//towardsdatascience.com/the-fall-of-rnn-lstm (Accessed on 05-Sep-2018).

Michael A. H. Dempster and Vasco Leemans. An automated FX trading system us-
ing adaptive reinforcement learning. Expert Systems with Applications, 30(3):543–552,
2006. https://doi.org/10.1016/j.eswa.2005.10.012.

David Diaz, Babis Theodoulidis, and Carlos Dupouy. Modelling and forecasting in-
terest rates during stages of the economic cycle: A knowledge-discovery approach.
Expert Systems with Applications, 44:245–264, 2016. https://doi.org/10.1016/j.eswa.
2015.09.010.

David A. Dickey and Wayne A. Fuller. Distribution of the estimators for autoregressive
time series with a unit root. Journal of the American Statistical Association, 74(366a):
427–431, 1979. https://doi.org/10.1080/01621459.1979.10482531.

Francis X. Diebold. Comparing predictive accuracy, twenty years later: A personal
perspective on the use and abuse of Diebold–Mariano tests. Journal of Business &
Economic Statistics, 33(1):1–9, 2015. https://doi.org/10.1080/07350015.2014.983236.

Francis X. Diebold and Canlin Li. Forecasting the term structure of government bond
yields. Journal of Econometrics, 130(2):337–364, 2006. https://doi.org/10.1016/j.
jeconom.2005.03.005.

Francis X. Diebold and Roberto S. Mariano. Comparing predictive accuracy. Journal of
Business & Economic Statistics, 13(3):253–265, 1995.

Francis X. Diebold and Glenn D. Rudebusch. Yield curve modeling and forecasting: The
dynamic Nelson-Siegel approach. Econometric and Tinbergen Institutes lectures. Prin-
ceton University Press, 2013. ISBN 978-0-691-14680-5.

Francis X. Diebold, Glenn D. Rudebusch, and S. Boragan Aruoba. The macroeconomy
and the yield curve: A dynamic latent factor approach. Journal of Econometrics, 131
(1):309–338, 2006. https://doi.org/10.1016/j.jeconom.2005.01.011.

https://doi.org/10.1111/ectj.12097
http://proceedings.mlr.press/v37/ciliberto15.pdf
https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0/
https://towardsdatascience.com/the-fall-of-rnn-lstm-2d1594c74ce0/
https://doi.org/10.1016/j.eswa.2005.10.012
https://doi.org/10.1016/j.eswa.2015.09.010
https://doi.org/10.1016/j.eswa.2015.09.010
https://doi.org/10.1080/01621459.1979.10482531
https://doi.org/10.1080/07350015.2014.983236
https://doi.org/10.1016/j.jeconom.2005.03.005
https://doi.org/10.1016/j.jeconom.2005.03.005
https://doi.org/10.1016/j.jeconom.2005.01.011

158 BIBLIOGRAPHY

Juan Peralta Donate, Paulo Cortez, Germán Gutiérrez Sánchez, and Araceli Sanc-
his de Miguel. Time series forecasting using a weighted cross-validation evolu-
tionary artificial neural network ensemble. Neurocomputing, 109:27–32, 2013. https:
//doi.org/10.1016/j.neucom.2012.02.053.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking
deep reinforcement learning for continuous control. In Maria Florina Balcan and
Kilian Q. Weinberger, editors, Proceedings of the International Conference on Machine
Learning, ICML, volume 48, pages 1329–1338. PMLR, 2016. http://proceedings.mlr.
press/v48/.

Christian L. Dunis and Vincent Morrison. The economic value of advanced time series
methods for modelling and trading 10-year government bonds. European Journal of
Finance, 13(4):333–352, 2007.

Bradley Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statist-
ics, 7(1):1–26, 1979.

Bradley Efron and Robert J. Tibshirani. An introduction to the bootstrap. Chapman &
Hall, 1993. ISBN 978-0-412-04231-7.

Dennis Eilers, Christian L. Dunis, Hans-Jörg von Mettenheim, and Michael H. Breitner.
Intelligent trading of seasonal effects: A decision support algorithm based on rein-
forcement learning. Decision Support Systems, 64:100–108, 2014. https://doi.org/10.
1016/j.dss.2014.04.011.

Jeffrey L. Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

Walter Enders. Applied Econometric Time Series. Wiley Series in Probability and Statistics.
Wiley, fourth edition, 2014. ISBN 978-1-118-91866-1.

Robert F. Engle. Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society,
pages 987–1007, 1982.

Frank J. Fabozzi, Steven V. Mann, and Francesco Fabozzi. The handbook of fixed income
securities. McGraw-Hill, ninth edition, 2021. ISBN 978-1-260-47390-2.

Eugene F. Fama and Kenneth R. French. Business conditions and expected returns on
stocks and bonds. Journal of Financial Economics, 25(1):23–49, 1989. https://doi.org/
10.1016/0304-405X(89)90095-0.

Eugene F. Fama and Kenneth R. French. Common risk factors in the returns on stocks
and bonds. Journal of Financial Economics, 33(1):3–56, 1993. https://doi.org/10.1016/
0304-405X(93)90023-5.

Eugene F. Fama and Kenneth R. French. A five-factor asset pricing model. Journal of
Financial Economics, 116(1):1–22, 2015. https://doi.org/10.1016/j.jfineco.2014.10.010.

https://doi.org/10.1016/j.neucom.2012.02.053
https://doi.org/10.1016/j.neucom.2012.02.053
http://proceedings.mlr.press/v48/duan16.pdf
http://proceedings.mlr.press/v48/duan16.pdf
https://doi.org/10.1016/j.dss.2014.04.011
https://doi.org/10.1016/j.dss.2014.04.011
https://doi.org/10.1016/0304-405X(89)90095-0
https://doi.org/10.1016/0304-405X(89)90095-0
https://doi.org/10.1016/0304-405X(93)90023-5
https://doi.org/10.1016/0304-405X(93)90023-5
https://doi.org/10.1016/j.jfineco.2014.10.010

BIBLIOGRAPHY 159

Helmut Farbmacher, Martin Huber, Lukáš Lafférs, Henrika Langen, and Martin Spind-
ler. Causal mediation analysis with double machine learning. The Econometrics
Journal, 25(2):277–300, 2022. https://doi.org/10.1093/ectj/utac003.

Guanhao Feng, Stefano Giglio, and Dacheng Xiu. Taming the factor zoo: A test of new
factors. The Journal of Finance, 75(3):1327–1370, 2020. https://doi.org/10.1111/jofi.
12883.

Filipa da S. Fernandes, Charalampos Stasinakis, and Zivile Zekaite. Forecasting gov-
ernment bond spreads with heuristic models: Evidence from the Eurozone peri-
phery. Annals of Operations Research, 282(1):87–118, 2019. https://doi.org/10.1007/
s10479-018-2808-0.

Angelos Filos. Reinforcement learning for portfolio management. Master’s thesis, Im-
perial College London, 2019. https://arxiv.org/abs/1909.09571.

Thomas Fischer and Christopher Krauss. Deep learning with long short-term memory
networks for financial market predictions. European Journal of Operational Research,
270(2):654–669, 2018. https://doi.org/10.1016/j.ejor.2017.11.054.

Thomas G. Fischer. Reinforcement learning in financial markets - a survey. FAU Discus-
sion Papers in Economics 12/2018, Friedrich-Alexander-Universität Erlangen-Nürn-
berg, 2018.

Tristan Fletcher and John Shawe-Taylor. Multiple kernel learning with fisher kernels for
high frequency currency prediction. Computational Economics, 42(2):217–240, 2013.

Tristan S. B. Fletcher. Machine learning for financial market prediction. PhD thesis, Univer-
sity College London, 2012.

Fabio D. Freitas, Alberto F. De Souza, and Ailson R. de Almeida. Prediction-based port-
folio optimization model using neural networks. Neurocomputing, 72(10-12):2155–
2170, 2009. https://doi.org/10.1016/j.neucom.2008.08.019.

FRM. Medallion International Ltd. Investment analysis. Technical Report, Financial Risk
Management, 2002.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approxim-
ation error in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018. https:
//arxiv.org/abs/1802.09477.

Felix A. Gers and Jürgen Schmidhuber. Recurrent nets that time and count. In Proceed-
ings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, IJCNN,
volume 3, pages 189–194. IEEE, 2000.

Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual
prediction with LSTM. In Proceedings of the International Conference on Artificial Neural

https://doi.org/10.1093/ectj/utac003
https://doi.org/10.1111/jofi.12883
https://doi.org/10.1111/jofi.12883
https://doi.org/10.1007/s10479-018-2808-0
https://doi.org/10.1007/s10479-018-2808-0
https://arxiv.org/abs/1909.09571
https://doi.org/10.1016/j.ejor.2017.11.054
https://doi.org/10.1016/j.neucom.2008.08.019
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1802.09477

160 BIBLIOGRAPHY

Networks, ICANN, volume 2, pages 850–855. Institution of Engineering and Techno-
logy, 1999.

Felix A. Gers, Douglas Eck, and Jürgen Schmidhuber. Applying LSTM to time series
predictable through time-window approaches. In Roberto Tagliaferri and Maria Mar-
inaro, editors, Proceedings of the Italian Workshop on Neural Nets, WIRN Vietri-01, Per-
spectives in Neural Computing, pages 193–200. Springer, 2002. ISBN 978-1-4471-
0219-9.

Joumana Ghosn and Yoshua Bengio. Multi-task learning for stock selection. In M. C.
Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing
Systems, NeurIPS, volume 9, pages 946–952. MIT Press, 1997. https://proceedings.
neurips.cc/paper/1996/.

Stefano Giglio, Bryan T. Kelly, and Dacheng Xiu. Factor models, machine learning, and
asset pricing. Annual Review of Financial Economics, 2021. http://dx.doi.org/10.2139/
ssrn.3943284.

Grazia Gilardoni. Recurrent neural network models for financial distress prediction.
Master’s thesis, Politecnico di Milano, 2017.

C. Lee Giles, Steve Lawrence, and Ah Chung Tsoi. Noisy time series prediction using
recurrent neural networks and grammatical inference. Machine learning, 44(1-2):161–
183, 2001. https://doi.org/10.1023/A:1010884214864.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural net-
works. In Proceedings of the International Conference on Artificial Intelligence and Statist-
ics, AISTATS, volume 15, pages 315–323. Proceedings of Machine Learning Research,
2011.

Periklis Gogas, Theophilos Papadimitriou, Maria Matthaiou, and Efthymia Chrys-
anthidou. Yield curve and recession forecasting in a machine learning framework.
Computational Economics, 45(4):635–645, 2015.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
ISBN 978-0-262-03561-3. https://www.deeplearningbook.org/.

Nikola Gradojevic and Jing Yang. Non-linear, non-parametric, non-fundamental ex-
change rate forecasting. Journal of Forecasting, 25(4):227–245, 2006.

Alex Graves. Supervised sequence labelling with recurrent neural networks. Springer, 2012.
ISBN 978-3-642-24796-5.

Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bid-
irectional LSTM and other neural network architectures. Neural Networks, 18(5–6):
602–610, 2005. https://doi.org/10.1016/j.neunet.2005.06.042.

https://proceedings.neurips.cc/paper/1996/file/1d72310edc006dadf2190caad5802983-Paper.pdf
https://proceedings.neurips.cc/paper/1996/file/1d72310edc006dadf2190caad5802983-Paper.pdf
http://dx.doi.org/10.2139/ssrn.3943284
http://dx.doi.org/10.2139/ssrn.3943284
https://doi.org/10.1023/A:1010884214864
https://www.deeplearningbook.org/
https://doi.org/10.1016/j.neunet.2005.06.042

BIBLIOGRAPHY 161

Shihao Gu, Bryan T. Kelly, and Dacheng Xiu. Empirical asset pricing via machine learn-
ing. The Review of Financial Studies, 33(5):2223–2273, 2020. https://doi.org/10.1093/
rfs/hhaa009.

Yang Guan, Shengbo Eben Li, Jingliang Duan, Jie Li, Yangang Ren, Qi Sun, and
Bo Cheng. Direct and indirect reinforcement learning. International Journal of In-
telligent Systems, 36(8):4439–4467, 2021. https://doi.org/10.1002/int.22466.

Umut Güçlü and Marcel A. J. van Gerven. Modeling the dynamics of human brain
activity with recurrent neural networks. Frontiers in Computational Neuroscience, 11:
1–14, 2017.

Cecile Gutscher, Yakob Peterseil, and Dani Burger. The new quant billions are hiding
in the bond market. Bloomberg, 9 July, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
arXiv preprint arXiv:1801.01290, 2018. https://arxiv.org/abs/1801.01290.

Ben M. Hambly, Renyuan Xu, and Huining Yang. Recent advances in reinforcement
learning in finance. arXiv preprint arXiv:2112.04553v1, 2021. https://arxiv.org/abs/
2112.04553.

James Douglas Hamilton. Time series analysis. Princeton University Press, 1994. ISBN
978-0-691-04289-3.

David Harvey, Stephen Leybourne, and Paul Newbold. Testing the equality of pre-
diction mean squared errors. International Journal of Forecasting, 13(2):281–291, 1997.
https://doi.org/10.1016/S0169-2070(96)00719-4.

Arman Hassanniakalager, Georgios Sermpinis, and Charalampos Stasinakis. Trading
the foreign exchange market with technical analysis and Bayesian Statistics. Journal of
Empirical Finance, 63:230–251, 2021. https://doi.org/10.1016/j.jempfin.2021.07.006.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learn-
ing: Data mining, inference, and prediction. Springer Series in Statistics, second edition,
2013.

Martin B Haugh and Andrew W. Lo. Computational challenges in portfolio manage-
ment. Computing in Science & Engineering, 3(3):54–59, 2001. https://doi.org/10.1109/
5992.919267.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen netzen, 1991. Diploma
thesis, Technische Universität München.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computa-
tion, 9(8):1735–1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735.

https://doi.org/10.1093/rfs/hhaa009
https://doi.org/10.1093/rfs/hhaa009
https://doi.org/10.1002/int.22466
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/2112.04553
https://arxiv.org/abs/2112.04553
https://doi.org/10.1016/S0169-2070(96)00719-4
https://doi.org/10.1016/j.jempfin.2021.07.006
https://doi.org/10.1109/5992.919267
https://doi.org/10.1109/5992.919267
https://doi.org/10.1162/neco.1997.9.8.1735

162 BIBLIOGRAPHY

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient
flow in recurrent nets: The difficulty of learning long-term dependencies. In Stefan C.
Kremer and John F. Kolen, editors, A Field Guide to Dynamical Recurrent Networks,
pages 1–15. Wiley-IEEE Press, 2001. ISBN 978-0-7803-5369-5.

Robert J. Hodrick and Edward C. Prescott. Postwar US business cycles: An empirical
investigation. Journal of Money, Credit and Banking, pages 1–16, 1997.

Arthur E. Hoerl and Robert W. Kennard. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behba-
hani, Tamara Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli,
Sarah Henderson, Alex Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Cag-
lar Gulcehre, Tom Le Paine, Andrew Cowie, Ziyu Wang, Bilal Piot, and Nando
de Freitas. Acme: A research framework for distributed reinforcement learning.
arXiv preprint arXiv:2006.00979v1, 2020. https://arxiv.org/abs/2006.00979.

John J. Hopfield. Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences, 79(8):2554–2558,
1982.

Wei Huang, Kin Keung Lai, Yoshiteru Nakamori, Shouyang Wang, and Lean Yu.
Neural networks in finance and economics forecasting. International Journal of In-
formation Technology & Decision Making, 6(01):113–140, 2007.

James M. Hutchinson, Andrew W. Lo, and Tomaso Poggio. A nonparametric approach
to pricing and hedging derivative securities via learning networks. The Journal of
Finance, 49(3):851–889, 1994.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In Proceedings of the Interna-
tional Conference on Machine Learning, ICML, volume 37, pages 448–456. PMLR, 2015.
http://proceedings.mlr.press/v37/.

Bruce I. Jacobs and Kenneth N. Levy. Factor modeling: The benefits of disentangling
cross-sectionally for explaining stock returns. The Journal of Portfolio Management, 47
(6):33–50, 2021. https://doi.org/10.3905/jpm.2021.1.240.

Carlos M. Jarque and Anil K. Bera. Efficient tests for normality, homoscedasticity and
serial independence of regression residuals. Economics letters, 6(3):255–259, 1980.
https://doi.org/10.1016/0165-1765(80)90024-5.

Zhengyao Jiang and Jinjun Liang. Cryptocurrency portfolio management with deep
reinforcement learning. In Proceedings of the Intelligent Systems Conference, IntelliSys,
pages 905–913. IEEE, 2017. https://doi.org/10.1109/IntelliSys.2017.8324237.

https://arxiv.org/abs/2006.00979
http://proceedings.mlr.press/v37/ioffe15.pdf
https://doi.org/10.3905/jpm.2021.1.240
https://doi.org/10.1016/0165-1765(80)90024-5
https://doi.org/10.1109/IntelliSys.2017.8324237

BIBLIOGRAPHY 163

Zhengyao Jiang, Dixing Xu, and Jinjun Liang. A deep reinforcement learning
framework for the financial portfolio management problem. arXiv preprint arXiv:
1706.10059v2, pages 1–31, 2017. https://arxiv.org/abs/1706.10059.

Michael I. Jordan. Serial order: A parallel distributed processing approach. ICS Report
8604, 1986.

Sham M. Kakade. A natural policy gradient. In T. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Information Processing Systems, NeurIPS,
volume 14. MIT Press, 2002. https://proceedings.neurips.cc/paper/2001/.

Mikhail Kanevski and Vadim Timonin. Machine learning analysis and modeling of in-
terest rate curves. Proceedings of the European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, ESANN, pages 47–52, 2010.

Mikhail Kanevski, Michel Maignan, Alexei Pozdnoukhov, and Vadim Timonin. Interest
rates mapping. Physica A: Statistical Mechanics and its Applications, 387(15):3897–3903,
2008. https://doi.org/10.1016/j.physa.2008.02.069.

Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks, 2015.
https://karpathy.github.io/ (Accessed on 19-Jan-2018).

Bryan T. Kelly, Seth Pruitt, and Yinan Su. Characteristics are covariances: A unified
model of risk and return. Journal of Financial Economics, 134(3):501–524, 2019. https:
//doi.org/10.1016/j.jfineco.2019.05.001.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A method for stochastic optimization.
In Proceedings of the International Conference on Learning Representations, ICLR, pages
1–15, 2015. arXiv preprint arXiv:1412.6980v9.

Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In Proceedings of the International Joint Conference on Artificial Intel-
ligence, IJCAI, volume 2, pages 1137–1143. IJCAI Organization, 1995. ISBN 978-1-
55860-363-9.

Thomas E. Koker and Dimitrios Koutmos. Cryptocurrency trading using machine
learning. Journal of Risk and Financial Management, 13(8), 2020. https://doi.org/10.
3390/jrfm13080178.

Marko Kolanovic and Rajesh T. Krishnamachari. Big data and AI strategies: Machine
learning and alternative data approach to investing. J.P. Morgan Quantitative and
Derivatives Strategy Report, 2017.

Mathias Kraus and Stefan Feuerriegel. Decision support from financial disclosures with
deep neural networks and transfer learning. Decision Support Systems, 104:38–48,
2017. https://doi.org/10.1016/j.dss.2017.10.001.

https://arxiv.org/abs/1706.10059
https://proceedings.neurips.cc/paper/2001/file/4b86abe48d358ecf194c56c69108433e-Paper.pdf
https://doi.org/10.1016/j.physa.2008.02.069
https://karpathy.github.io/2015/05/21/rnn-effectiveness/
https://doi.org/10.1016/j.jfineco.2019.05.001
https://doi.org/10.1016/j.jfineco.2019.05.001
https://doi.org/10.3390/jrfm13080178
https://doi.org/10.3390/jrfm13080178
https://doi.org/10.1016/j.dss.2017.10.001

164 BIBLIOGRAPHY

Roman Kräussl, Thorsten Lehnert, and Kalle Rinne. The search for yield: Implications
to alternative investments. Journal of Empirical Finance, 44:227–236, 2017. https://doi.
org/10.1016/j.jempfin.2017.11.001.

Yoram Kroll, Haim Levy, and Harry M. Markowitz. Mean-variance versus direct utility
maximization. The Journal of Finance, 39(1):47–61, 1984. https://doi.org/10.2307/
2327667.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015. https://doi.org/10.1038/nature14539.

Zhipeng Liang, Hao Chen, Junhao Zhu, Kangkang Jiang, and Yanran Li. Ad-
versarial deep reinforcement learning in portfolio management. arXiv preprint
arXiv:1808.09940v3, pages 1–11, 2018. https://arxiv.org/abs/1808.09940.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971v6, pages 1–14, 2015. Published
as a conference paper at the International Conference on Learning Representations,
ICLR-2016. https://arxiv.org/abs/1509.02971.

Seppo Linnainmaa. The representation of the cumulative rounding error of an al-
gorithm as a Taylor expansion of the local rounding errors. Master’s thesis, Uni-
versity of Helsinki, 1970.

Zachary C. Lipton, John Berkowitz, and Charles Elkan. A critical review of recurrent
neural networks for sequence learning. arXiv preprint arXiv:1506.00019v4, pages 1–38,
2015.

David G. Luenberger. Investment science. Oxford University Press, 1998. ISBN 978-0-
19-510809-5.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches
to attention-based neural machine translation. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing, EMNLP, pages 1412–1421. Association
for Computational Linguistics, 2015. https://doi.org/10.18653/v1/D15-1166.

Nicolas Mahler. Modeling the S&P 500 index using the Kalman filter and the LagLasso.
In Proceedings of the International Workshop on Machine Learning for Signal Processing,
MLSP, pages 1–6. IEEE, 2009. https://doi.org/10.1109/MLSP.2009.5306195.

Moinak Maiti. Introduction to asset pricing factor models. In Applied Financial Eco-
nometrics: Theory, Method and Applications, pages 113–151. Springer, 2021. https:
//doi.org/10.1007/978-981-16-4063-6 5.

Nijolė Maknickienė and Algirdas Maknickas. Application of neural network for fore-
casting of exchange rates and forex trading. In Proceedings of the International Scientific
Conference Business and Management, pages 122–127, 2012.

https://doi.org/10.1016/j.jempfin.2017.11.001
https://doi.org/10.1016/j.jempfin.2017.11.001
https://doi.org/10.2307/2327667
https://doi.org/10.2307/2327667
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1808.09940
https://arxiv.org/abs/1509.02971
https://doi.org/10.18653/v1/D15-1166
https://doi.org/10.1109/MLSP.2009.5306195
https://doi.org/10.1007/978-981-16-4063-6_5
https://doi.org/10.1007/978-981-16-4063-6_5

BIBLIOGRAPHY 165

Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952. https:
//doi.org/10.1111/j.1540-6261.1952.tb01525.x.

MathWorks. Reinforcement learning onramp course. MATLAB Academy – MathWorks,
2021a.

MathWorks. Reinforcement learning toolbox™. User’s guide. MathWorks, 2021b.

MathWorks. Simulink®. User’s guide. MathWorks, 2021c.

Peter S. Maybeck. Stochastic models, estimation, and control. Mathematics in Science and
Engineering. Academic Press, 1979. ISBN 978-0-12-480701-3.

Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

Mariana Sampaio e Mello. Search-for-yield in Portuguese fixed-income mutual funds
and monetary policy. Master’s thesis, Nova School of Business and Economics, 2015.

Robert C. Merton. On the pricing of corporate debt: The risk structure of interest rates.
The Journal of finance, 29(2):449–470, 1974. https://doi.org/10.1111/j.1540-6261.1974.
tb03058.x.

Hans-Jörg von Mettenheim. Advanced neural networks: Finance, forecast and other applic-
ations. PhD thesis, Gottfried Wilhelm Leibniz Universität Hannover, 2010.

Hans-Jörg von Mettenheim. Trading decision support with historically consist-
ent neural networks. In Christian Dunis, Spiros Likothanassis, Andreas Karath-
anasopoulos, Georgios Sermpinis, and Konstantinos Theofilatos, editors, Computa-
tional Intelligence Techniques for Trading and Investment, number 6 in Routledge ad-
vances in experimental and computable economics, pages 116–130. Routledge, 2014.
ISBN 978-0-415-63680-3.

Hans-Jörg von Mettenheim and Michael H. Breitner. Robust decision support systems
with matrix forecasts and shared layer perceptrons for finance and other applica-
tions. In Proceedings of the International Conference on Information Systems, Paper 83,
pages 1–17. ICIS, 2010.

Hans-Jörg von Mettenheim and Michael H. Breitner. Forecasting complex systems with
shared layer perceptrons. In Operations Research Proceedings, pages 15–20. Springer,
2011.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antono-
glou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602v1, pages 1–9, 2013. https://arxiv.org/abs/
1312.5602.

https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1111/j.1540-6261.1974.tb03058.x
https://doi.org/10.1111/j.1540-6261.1974.tb03058.x
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602

166 BIBLIOGRAPHY

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Os-
trovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.
https://doi.org/10.1038/nature14236.

Christoph Molnar. Interpretable machine learning. A guide for making black box models ex-
plainable. Leanpub, second edition, 2022. ISBN 979-8411463330. https://christophm.
github.io/interpretable-ml-book/.

Luis Montesdeoca and Mahesan Niranjan. Extending the feature set of a data-driven
artificial neural network model of pricing financial option. In Symposium Series on
Computational Intelligence, SSCI, pages 1–6. IEEE, 2016.

Luis Montesdeoca and Mahesan Niranjan. On comparing the influences of exogenous
information on bitcoin prices and stock index values. In Panos Pardalos, Ilias Kot-
sireas, Yike Guo, and William Knottenbelt, editors, Mathematical Research for Block-
chain Economy, MARBLE, pages 93–100. Springer, 2020. https://doi.org/10.1007/
978-3-030-37110-4 7.

John Moody and Matthew Saffell. Reinforcement learning for trading. In M. Kearns,
S. Solla, and D. Cohn, editors, Advances in Neural Information Processing Systems, Neur-
IPS, volume 11, pages 917–923. MIT Press, 1999. https://proceedings.neurips.cc/
paper/1998/.

John Moody and Matthew Saffell. Learning to trade via direct reinforcement. IEEE
Transactions on Neural Networks, 12(4):875–889, 2001. https://doi.org/10.1109/72.
935097.

John Moody and Lizhong Wu. Optimization of trading systems and portfolios. In
Proceedings of the Conference on Computational Intelligence for Financial Engineering &
Economics, CIFEr, pages 300–307. IEEE, 1997. https://doi.org/10.1109/CIFER.1997.
618952.

John Moody, Lizhong Wu, Yuansong Liao, and Matthew Saffell. Performance functions
and reinforcement learning for trading systems and portfolios. Journal of Forecasting,
17(5-6):441–470, 1998.

Joseph V. T. Morell. The decline in the predictive power of the US term spread: A
structural interpretation. Journal of Macroeconomics, 55:314–331, 2018. https://doi.
org/10.1016/j.jmacro.2017.12.003.

Lkhagvadorj Munkhdalai, Oyun-Erdene Namsrai, and Keun Ho Ryu. A hybrid ap-
proach based on long short-term memory networks and vector autoregression for

https://doi.org/10.1038/nature14236
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1007/978-3-030-37110-4_7
https://doi.org/10.1007/978-3-030-37110-4_7
https://proceedings.neurips.cc/paper/1998/file/4e6cd95227cb0c280e99a195be5f6615-Paper.pdf
https://proceedings.neurips.cc/paper/1998/file/4e6cd95227cb0c280e99a195be5f6615-Paper.pdf
https://doi.org/10.1109/72.935097
https://doi.org/10.1109/72.935097
https://doi.org/10.1109/CIFER.1997.618952
https://doi.org/10.1109/CIFER.1997.618952
https://doi.org/10.1016/j.jmacro.2017.12.003
https://doi.org/10.1016/j.jmacro.2017.12.003

BIBLIOGRAPHY 167

stock market price prediction. Proceedings of the International Conference on Frontiers of
Information Technology, Applications and Tools, FITAT, pages 1–4, 2017.

Charles R. Nelson and Andrew F. Siegel. Parsimonious modeling of yield curves.
Journal of Business, pages 473–489, 1987.

Ralph Neuneier. Optimal asset allocation using adaptive dynamic programming. In
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural In-
formation Processing Systems, NeurIPS, volume 8, pages 952–958. MIT Press, 1996.
https://proceedings.neurips.cc/paper/1995/.

Ralph Neuneier. Enhancing Q-learning for optimal asset allocation. In M. I. Jordan,
M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing Sys-
tems, NeurIPS, volume 10, pages 936–942. MIT Press, 1998. https://proceedings.
neurips.cc/paper/1997/.

Mahesan Niranjan. Sequential tracking in pricing financial options using model based
and neural network approaches. In M. C. Mozer, M. Jordan, and T. Petsche, editors,
Advances in Neural Information Processing Systems, NeurIPS, volume 9, pages 960–966.
MIT Press, 1996. https://proceedings.neurips.cc/paper/1996/.

Ana Rita Nogueira, Andrea Pugnana, Salvatore Ruggieri, Dino Pedreschi, and João
Gama. Methods and tools for causal discovery and causal inference. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery, 12(2):e1449, 2022. https:
//doi.org/10.1002/widm.1449.

Manuel Nunes, Enrico Gerding, Frank McGroarty, and Mahesan Niranjan. A com-
parison of multitask and single task learning with artificial neural networks for
yield curve forecasting. Expert Systems with Applications, 119:362–375, 2019a. https:
//doi.org/10.1016/j.eswa.2018.11.012.

Manuel Nunes, Enrico Gerding, Frank McGroarty, and Mahesan Niranjan. The mem-
ory advantage of long short-term memory networks for bond yield forecasting. In-
ternational Conference on Forecasting Financial Markets, FFM, 2019b. https://doi.org/
10.2139/ssrn.3415219.

Manuel Nunes, Enrico Gerding, Frank McGroarty, and Mahesan Niranjan. LSTM-
LagLasso for bond yield forecasting: Peeping into the long short-term memory net-
works’ black box. Workshop Advancing Machine Learning in Finance, Insurance and
Economics, 2020. https://arxiv.org/abs/2005.02217.

OECD. Business and finance outlook. OECD Publishing, Paris, 2015a.

OECD. Pension markets in focus. OECD Publishing, Paris, 2015b.

Christopher Olah. Understanding LSTM networks, 2015. https://colah.github.io/ (Ac-
cessed on 19-Jan-2018).

https://proceedings.neurips.cc/paper/1995/file/3a15c7d0bbe60300a39f76f8a5ba6896-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/970af30e481057c48f87e101b61e6994-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/970af30e481057c48f87e101b61e6994-Paper.pdf
https://proceedings.neurips.cc/paper/1996/file/5eac43aceba42c8757b54003a58277b5-Paper.pdf
https://doi.org/10.1002/widm.1449
https://doi.org/10.1002/widm.1449
https://doi.org/10.1016/j.eswa.2018.11.012
https://doi.org/10.1016/j.eswa.2018.11.012
https://doi.org/10.2139/ssrn.3415219
https://doi.org/10.2139/ssrn.3415219
https://arxiv.org/abs/2005.02217
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

168 BIBLIOGRAPHY

Mariana Oliveira and Luis Torgo. Ensembles for time series forecasting. In Proceed-
ings of the Asian Conference on Machine Learning, ACML, volume 39, pages 360–370.
Proceedings of Machine Learning Research, 2014.

OpenAI. Getting started with Gym, 2022a. https://gym.openai.com/docs (Accessed
on 07-Jan-2022).

OpenAI. Openai spinning up, 2022b. https://spinningup.openai.com (Accessed on
07-Jan-2022).

Hyungjun Park, Min Kyu Sim, and Dong Gu Choi. An intelligent financial portfolio
trading strategy using deep Q-learning. Expert Systems with Applications, 158, 2020.
https://doi.org/10.1016/j.eswa.2020.113573.

Sebin Park, Myeong-Seon Gil, Hyeonseung Im, and Yang-Sae Moon. Measurement
noise recommendation for efficient Kalman filtering over a large amount of sensor
data. Sensors, 19(5):1–19, 2019. https://doi.org/10.3390/s19051168.

Parag C. Pendharkar and Patrick Cusatis. Trading financial indices with reinforcement
learning agents. Expert Systems with Applications, 103:1–13, 2018. https://doi.org/10.
1016/j.eswa.2018.02.032.

Luca Di Persio and Oleksandr Honchar. Artificial neural networks architectures for
stock price prediction: Comparisons and applications. International Journal of Circuits,
Systems and Signal Processing, 10:403–413, 2016a.

Luca Di Persio and Oleksandr Honchar. Artificial neural networks approach to the
forecast of stock market price movements. International Journal of Economics and Man-
agement Systems, 1:158–162, 2016b.

Luca Di Persio and Oleksandr Honchar. Recurrent neural networks approach to the
financial forecast of google assets. International Journal of Mathematics and Computers
in Simulation, 11:7–13, 2017.

Jan Peters, Sethu Vijayakumar, and Stefan Schaal. Natural actor-critic. In João Gama,
Rui Camacho, Pavel B. Brazdil, Alı́pio Mário Jorge, and Luı́s Torgo, editors, European
Conference on Machine Learning, ECML, pages 280–291. Springer, 2005. https://doi.
org/10.1007/11564096 29.

Fotios Petropoulos, Daniele Apiletti, Vassilios Assimakopoulos, Mohamed Zied Babai,
Devon K. Barrow, Souhaib Ben Taieb, Christoph Bergmeir, Ricardo J. Bessa, Jakub
Bijak, John E. Boylan, et al. Forecasting: Theory and practice. International Journal of
Forecasting, 2022. https://doi.org/10.1016/j.ijforecast.2021.11.001.

Richard R. Picard and R. Dennis Cook. Cross-validation of regression models. Journal
of the American Statistical Association, 79(387):575–583, 1984.

https://gym.openai.com/docs
https://spinningup.openai.com/en/latest/user/introduction.html
https://doi.org/10.1016/j.eswa.2020.113573
https://doi.org/10.3390/s19051168
https://doi.org/10.1016/j.eswa.2018.02.032
https://doi.org/10.1016/j.eswa.2018.02.032
https://doi.org/10.1007/11564096_29
https://doi.org/10.1007/11564096_29
https://doi.org/10.1016/j.ijforecast.2021.11.001

BIBLIOGRAPHY 169

Uta Pigorsch and Sebastian Schäfer. High-dimensional stock portfolio trading with
deep reinforcement learning. arXiv preprint arXiv:2112.04755v1, 2021. https://arxiv.
org/abs/2112.04755.

David L. Poole and Alan K. Mackworth. Artificial intelligence: Foundations of computa-
tional agents. Cambridge University Press, second edition, 2017. https://artint.info/.

Michiel de Pooter. Examining the Nelson-Siegel class of term structure models. Tinber-
gen Institute Discussion Paper, TI 2007-043/4, 2007.

Adam Prügel-Bennett. Advanced machine learning, 2017. University of Southampton,
School of Electronics and Computer Science.

Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, and Garrison W. Cot-
trell. A dual-stage attention-based recurrent neural network for time series predic-
tion. In Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI,
pages 2627–2633. IJCAI Organization, 2017. https://doi.org/10.24963/ijcai.2017/
366.

Soumya Ray and Prasad Tadepalli. Model-based reinforcement learning. In Encyc-
lopedia of Machine Learning, pages 690–693. Springer, 2010. ISBN 978-0-387-30164-8.
https://doi.org/10.1007/978-0-387-30164-8 556.

Gordon Ritter. Machine learning for trading. SSRN Electronic Journal, 2017. https:
//doi.org/10.2139/ssrn.3015609.

Peter M. Robinson. Root-N-consistent semiparametric regression. Econometrica, 56(4):
931–954, 1988. https://doi.org/10.2307/1912705.

Pamela Roux and Katherine Burton. This hedge fund may be poised to create the most
billionaires. Bloomberg, 25 April, 2017.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv
preprint arXiv:1706.05098v1, pages 1–14, 2017.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning internal rep-
resentations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Founda-
tions, pages 318–362. MIT Press, 1987.

Gavin A. Rummery and Mahesan Niranjan. On-line Q-learning using connectionist
systems. Technical Report CUED/F-INFENG/TR 166, Department of Engineering, Uni-
versity of Cambridge, 1994.

Rajiv Sambasivan and Sourish Das. A statistical machine learning approach to yield
curve forecasting. In Proceedings of the International Conference on Computational Intel-
ligence in Data Science, ICCIDS, pages 1–6. IEEE, 2017.

https://arxiv.org/abs/2112.04755
https://arxiv.org/abs/2112.04755
https://artint.info/2e/html/ArtInt2e.html
https://doi.org/10.24963/ijcai.2017/366
https://doi.org/10.24963/ijcai.2017/366
https://doi.org/10.1007/978-0-387-30164-8_556
https://doi.org/10.2139/ssrn.3015609
https://doi.org/10.2139/ssrn.3015609
https://doi.org/10.2307/1912705

170 BIBLIOGRAPHY

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
61:85–117, 2015. https://doi.org/10.1016/j.neunet.2014.09.003.

John Schulman, Xi Chen, and Pieter Abbeel. Equivalence between policy gradients and
soft Q-learning. arXiv preprint arXiv:1704.06440, 2017a. https://arxiv.org/abs/1704.
06440.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347v2, 2017b.
https://arxiv.org/abs/1707.06347.

Georgios Sermpinis, Konstantinos Theofilatos, Andreas Karathanasopoulos, Efstra-
tios F. Georgopoulos, and Christian Dunis. Forecasting foreign exchange rates with
adaptive neural networks using radial-basis functions and particle swarm optimiz-
ation. European Journal of Operational Research, 225(3):528–540, 2013. http://dx.doi.
org/10.1016/j.ejor.2012.10.020.

Georgios Sermpinis, Andreas Karathanasopoulos, Rafael Rosillo, and David de la
Fuente. Neural networks in financial trading. Annals of Operations Research, 297(1):
293–308, 2019. https://doi.org/10.1007/s10479-019-03144-y.

Martin Sewell. Characterization of financial time series. Research Note RN/11/01, De-
partment of Computer Science, University College London, 2011.

Jun Shao. Linear model selection by cross-validation. Journal of the American Statistical
Association, 88(422):486–494, 1993.

Lloyd S. Shapley. A value for n-person games. In H.W. Kuhn and A.W. Tucker, editors,
Contributions to the Theory of Games, Volume II, number 28 in Annals of Mathematics
Studies, pages 307–317. Princeton University Press, 1953. https://doi.org/10.1515/
9781400881970-018.

William F. Sharpe. Capital asset prices: A theory of market equilibrium under condi-
tions of risk. The Journal of Finance, 19(3):425–442, 1964. https://doi.org/10.1111/j.
1540-6261.1964.tb02865.x.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin
Riedmiller. Deterministic policy gradient algorithms. In Proceedings of the Interna-
tional Conference on Machine Learning, ICML, volume 32, pages 387–395. PMLR, 2014.
http://proceedings.mlr.press/v32/.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel,
and Demis Hassabis. Mastering the game of Go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016. https://doi.org/10.1038/nature16961.

https://doi.org/10.1016/j.neunet.2014.09.003
https://arxiv.org/abs/1704.06440
https://arxiv.org/abs/1704.06440
https://arxiv.org/abs/1707.06347
http://dx.doi.org/10.1016/j.ejor.2012.10.020
http://dx.doi.org/10.1016/j.ejor.2012.10.020
https://doi.org/10.1007/s10479-019-03144-y
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
http://proceedings.mlr.press/v32/silver14.pdf
https://doi.org/10.1038/nature16961

BIBLIOGRAPHY 171

Derek Snow. Machine learning in asset management: Part 1: Portfolio construction
– trading strategies. The Journal of Financial Data Science, 2(1):10–23, 2020a. https:
//doi.org/10.3905/jfds.2019.1.021.

Derek Snow. Machine learning in asset management: Part 2: Portfolio construction –
weight optimization. The Journal of Financial Data Science, 2(2):17–24, 2020b. https:
//doi.org/10.3905/jfds.2020.1.029.

Petar Sorić and Ivana Lolić. A note on forecasting euro area inflation: Leave-h-out cross
validation combination as an alternative to model selection. Central European Journal
of Operations Research, 23(1):205–214, 2015.

Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and Alexander M. Rush.
LSTMVis: A tool for visual analysis of hidden state dynamics in recurrent neural
networks. IEEE Transactions on Visualization and Computer Graphics, 24(1):667–676,
2018.

Ilya Sutskever. Training recurrent neural networks. PhD thesis, University of Toronto,
2013.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT
press, second edition, 2020. ISBN 978-0-262-03924-6. http://www.incompleteideas.
net/book/.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradi-
ent methods for reinforcement learning with function approximation. In S. Solla,
T. Leen, and K. Müller, editors, Advances in Neural Information Processing Systems,
NeurIPS, volume 12, pages 1057–1063. MIT Press, 2000. https://proceedings.neurips.
cc/paper/1999/.

Akiko Takeda, Mahesan Niranjan, Jun-ya Gotoh, and Yoshinobu Kawahara. Simultan-
eous pursuit of out-of-sample performance and sparsity in index tracking portfolios.
Computational Management Science, 10(1):21–49, 2013.

Chi-Sang Tam and Ip-Wing Yu. Modelling sovereign bond yield curves of the US, Japan
and Germany. International Journal of Finance & Economics, 13(1):82–91, 2008.

Ran Tao, Chi-Wei Su, Yidong Xiao, Ke Dai, and Fahad Khalid. Robo advisors, al-
gorithmic trading and investment management: Wonders of fourth industrial re-
volution in financial markets. Technological Forecasting and Social Change, 163:120421,
2021. https://doi.org/10.1016/j.techfore.2020.120421.

Thibaut Théate and Damien Ernst. An application of deep reinforcement learning to
algorithmic trading. Expert Systems with Applications, 173, 2021. https://doi.org/10.
1016/j.eswa.2021.114632.

https://doi.org/10.3905/jfds.2019.1.021
https://doi.org/10.3905/jfds.2019.1.021
https://doi.org/10.3905/jfds.2020.1.029
https://doi.org/10.3905/jfds.2020.1.029
http://www.incompleteideas.net/book/the-book.html
http://www.incompleteideas.net/book/the-book.html
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://doi.org/10.1016/j.techfore.2020.120421
https://doi.org/10.1016/j.eswa.2021.114632
https://doi.org/10.1016/j.eswa.2021.114632

172 BIBLIOGRAPHY

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), pages 267–288, 1996.

John N. Tsitsiklis and Benjamin Van Roy. An analysis of temporal-difference learning
with function approximation. IEEE Transactions on Automatic Control, 42(5):674–690,
1997.

George E. Uhlenbeck and Leonard S. Ornstein. On the theory of the brownian motion.
Physical Review, 36(5):823–841, 1930. https://doi.org/10.1103/PhysRev.36.823.

Wali Ullah, Yasumasa Matsuda, and Yoshihiko Tsukuda. Generalized Nelson-Siegel
term structure model: Do the second slope and curvature factors improve the in-
sample fit and out-of-sample forecasts? Journal of Applied Statistics, 42(4):876–904,
2015.

Kerda Varaku. Essays on causal inference and treatment effects in productivity and finance:
Double robust machine learning with deep neural networks and random forests. PhD thesis,
Rice University, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, NeurIPS, volume 30, pages
5998–6008, 2017. https://proceedings.neurips.cc/paper/2017/.

Chang Sim Vui, Gan Kim Soon, Chin Kim On, Rayner Alfred, and Patricia Anthony.
A review of stock market prediction with artificial neural network (ANN). In Pro-
ceedings of the International Conference on Control System, Computing and Engineering,
ICCSCE, pages 477–482. IEEE, 2013.

Eric A. Wan. Modeling nonlinear dynamics with neural networks: Examples in time
series prediction. In Proceedings of the International Society for Optics and Photonics,
SPIE, pages 327–327. Citeseer, 1993.

Helmut Wasserbacher and Martin Spindler. Machine learning for financial forecasting,
planning and analysis: recent developments and pitfalls. Digital Finance, 4(1):63–88,
2022. https://doi.org/10.1007/s42521-021-00046-2.

Christopher J. C. H. Watkins. Learning from delayed rewards. PhD thesis, King’s College,
Cambridge, 1989.

Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine learning, 8(3):279–
292, 1992. https://doi.org/10.1007/BF00992698.

Paul J. Werbos. Backpropagation through time: What it does and how to do it. Proceed-
ings of the IEEE, 78(10):1550–1560, 1990.

https://doi.org/10.1103/PhysRev.36.823
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1007/s42521-021-00046-2
https://doi.org/10.1007/BF00992698

BIBLIOGRAPHY 173

Robin Wigglesworth and Laurence Fletcher. A robot named Gekko: ‘quant’ funds home
in on the bond market. Financial Times, 12 June, 2019.

Robin Wigglesworth and Laurence Fletcher. The next quant revolution: shaking up the
corporate bond market. Financial Times, 7 December, 2021.

Peter M. Williams. Bayesian regularization and pruning using a Laplace prior. Neural
computation, 7(1):117–143, 1995.

Ronald J. Williams and Jing Peng. An efficient gradient-based algorithm for on-line
training of recurrent network trajectories. Neural computation, 2(4):490–501, 1990.

Ruoxuan Xiong, Eric P. Nichols, and Yuan Shen. Deep learning stock volatility with
google domestic trends. arXiv preprint arXiv:1512.04916v3, pages 1–6, 2016. https:
//arxiv.org/abs/1512.04916.

Zhuoran Xiong, Xiao-Yang Liu, Shan Zhong, Hongyang Yang, and Anwar Walid. Prac-
tical deep reinforcement learning approach for stock trading. Workshop on Challenges
and Opportunities for AI in Financial Services, Conference on Neural Information Processing
Systems, NeurIPS, 2018. https://arxiv.org/abs/1811.07522.

Jia-Ching Ying, Yu-Bing Wang, Chih-Kai Chang, Ching-Wen Chang, Yu-Han Chen, and
Yow-Shin Liou. DeepBonds: A deep learning approach to predicting United States
treasury yield. In International Conference on Ubi-Media Computing, UMEDIA, pages
245–250. IEEE, 2019. https://doi.org/10.1109/Ubi-Media.2019.00055.

Pengqian Yu, Joon Sern Lee, Ilya Kulyatin, Zekun Shi, and Sakyasingha Dasgupta.
Model-based deep reinforcement learning for dynamic portfolio optimization. arXiv
preprint arXiv:1901.08740, pages 1–21, 2019. https://arxiv.org/abs/1901.08740.

Chao Zhang, Zihao Zhang, Mihai Cucuringu, and Stefan Zohren. A universal
end-to-end approach to portfolio optimization via deep learning. arXiv preprint
arXiv:2111.09170, 2021. https://arxiv.org/abs/2111.09170.

Yishen Zhang, Dong Wang, Yuehui Chen, Huijie Shang, and Qi Tian. Credit risk as-
sessment based on long short-term memory model. In Proceedings of the International
Conference on Intelligent Computing, ICIC, pages 700–712. Springer, 2017.

Yuanyuan Zhang, Xiang Li, and Sini Guo. Portfolio selection problems with Markow-
itz’s mean–variance framework: A review of literature. Fuzzy Optimization and De-
cision Making, 17(2):125–158, 2018. https://doi.org/10.1007/s10700-017-9266-z.

Zihao Zhang, Stefan Zohren, and Stephen Roberts. Deep learning for portfolio optimiz-
ation. The Journal of Financial Data Science, 2(4):8–20, 2020. https://doi.org/10.3905/
jfds.2020.1.042.

https://arxiv.org/abs/1512.04916
https://arxiv.org/abs/1512.04916
https://arxiv.org/abs/1811.07522
https://doi.org/10.1109/Ubi-Media.2019.00055
https://arxiv.org/abs/1901.08740
https://arxiv.org/abs/2111.09170
https://doi.org/10.1007/s10700-017-9266-z
https://doi.org/10.3905/jfds.2020.1.042
https://doi.org/10.3905/jfds.2020.1.042

174 BIBLIOGRAPHY

Yang Zhao, Charalampos Stasinakis, Georgios Sermpinis, and Filipa da S. Fernandes.
Revisiting Fama–French factors’ predictability with Bayesian modelling and copula-
based portfolio optimization. International Journal of Finance & Economics, 24(4):1443–
1463, 2019. https://doi.org/10.1002/ijfe.1742.

https://doi.org/10.1002/ijfe.1742

	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	Nomenclature
	Acronyms
	1 Introduction
	1.1 Motivation and challenges
	1.1.1 Fixed income markets
	1.1.2 Machine learning
	1.1.3 Forecasting
	1.1.4 Portfolio Management

	1.2 Objectives
	1.3 Hypotheses
	1.4 Contributions
	1.5 Structure of report

	2 Literature Review
	2.1 Classical financial modelling
	2.1.1 Time series models
	2.1.2 Yield curve models
	2.1.3 Limitations of classical financial modelling

	2.2 Machine learning models in financial applications
	2.2.1 Fixed income
	2.2.2 Foreign exchange
	2.2.3 Equities
	2.2.4 Equity options
	2.2.5 Other financial applications
	2.2.6 Asset pricing and factor models
	2.2.7 Double machine learning

	2.3 Combining predictors
	2.4 Machine learning models
	2.4.1 Selection of models
	2.4.2 Linear regression
	2.4.2.1 Linear regression models
	2.4.2.2 Feature selection using Lasso

	2.4.3 Artificial neural networks

	2.5 Multitask learning
	2.6 Deep learning models
	2.6.1 Standard recurrent neural networks
	2.6.1.1 Overview
	2.6.1.2 Limitations of feed-forward neural networks
	2.6.1.3 Backpropagation through time
	2.6.1.4 Vanishing or exploding gradients

	2.6.2 Long short-term memory networks
	2.6.3 RNN-LSTM advantages and limitations
	2.6.4 RNN-LSTM applications in finance and other fields
	2.6.5 LSTM networks' potential for yield and yield curve forecasting

	2.7 Reinforcement learning
	2.7.1 Limitations of supervised learning for portfolio management
	2.7.2 Traditional portfolio management methods
	2.7.3 Reinforcement learning concept
	2.7.4 Agent taxonomy
	2.7.5 RL applications in portfolio management and trading
	2.7.5.1 Critic-only
	2.7.5.2 Actor-only
	2.7.5.3 Actor-critic
	2.7.5.4 Discussion and potential advantages of actor-critic

	2.7.6 RL potential for portfolio management

	2.8 Summary and conclusions

	3 Multilayer Perceptrons for Yield Curve Forecasting
	3.1 Data
	3.1.1 Targets
	3.1.2 Features
	3.1.3 Datasets
	3.1.4 Generation of additional features
	3.1.5 Train-test split and normalisation

	3.2 Methodology
	3.2.1 Forecasting horizon
	3.2.2 Feature selection
	3.2.3 Number of hidden units
	3.2.4 Single task and multitask learning
	3.2.5 Models
	3.2.6 Moving window and retraining of models
	3.2.7 Cross-validation
	3.2.8 Model comparison metrics

	3.3 Results and discussion
	3.3.1 Feature selection
	3.3.2 Comparison of models
	3.3.2.1 Introduction
	3.3.2.2 Multilayer perceptron models
	3.3.2.3 Single task versus multitask learning
	3.3.2.4 Comparison with results in the literature

	3.4 Summary and conclusions

	4 Long Short-Term Memory Networks for Bond Yield Forecasting
	4.1 Specific background literature
	4.2 Data
	4.3 Methodology
	4.3.1 LSTM networks for bond yield forecasting
	4.3.2 Extraction of LSTM internal signals
	4.3.3 Exogenous covariates explaining LSTM internal signals

	4.4 Results and discussion
	4.4.1 Dynamic versus static models: comparing LSTM and MLP
	4.4.2 Analysis of LSTM internal signals
	4.4.3 Explaining internal states with exogenous variables
	4.4.4 Discussion

	4.5 Summary and conclusions

	5 Deep Reinforcement Learning for Bond Portfolio Management
	5.1 Theoretical formulation of portfolio management in RL
	5.1.1 Introduction
	5.1.2 States and actions
	5.1.3 State transition and assumptions
	5.1.4 Rewards
	5.1.5 Policy
	5.1.6 Action-value function

	5.2 Data
	5.3 Methodology
	5.3.1 Top level options
	5.3.1.1 Discrete versus continuous spaces
	5.3.1.2 Policy optimisation and function approximators
	5.3.1.3 Objective function
	5.3.1.4 Normalisation of observations
	5.3.1.5 Performance metric
	5.3.1.6 Hyperparameter tuning

	5.3.2 Agent
	5.3.2.1 Algorithm selection
	5.3.2.2 Original algorithms leading to the DDPG
	5.3.2.3 Deep deterministic policy gradient algorithm
	5.3.2.4 Actor and critic deep neural networks

	5.3.3 Environment
	5.3.3.1 Platform selection
	5.3.3.2 Simulink environment

	5.3.4 Empirical work to test the RL system

	5.4 Results and discussion
	5.4.1 Reward alternatives
	5.4.2 Training results
	5.4.3 Testing results

	5.5 Summary and conclusions

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future work

	Appendix A Chapter 3 - Initial List of Features
	Appendix B Chapter 4 - Additional Figures
	Appendix C Chapter 5 - Additional Information
	Bibliography

